
U'1
m
:::c

m
U'1

-:z
-
:z
......
m
:::c
>.
n
......

<
m

CONTENTS OF THE CD-ROM

The CD-ROM contains a snapshot of the full distribution of source code, documen­
tation, and supporting materials that are located at the Magic So'ftware, Inc. web site
(www.magic-software.com). The source code is located in the directory trees

MagicSoftware/WildMagic2/Source
MagicSoftware/WildMagic2/Renderers
MagicSoftware/WildMagic2/Applications

A collection of documents is located in Magi cSoftware/Wi 1dMagi c2/Documentati on.

SOURCE DIRECTORY

ApPROXI MATION. Fitting ofpoint sets with Gaussian distributions, lines, planes,
quadratic curves, quadric surfaces, and polynomials.

CONTAINMENT. Containment of point sets by rectangles, boxes, capsules, cylin­
ders, ellipses, ellipsoids, lozenges, spheres. Point-in-polygon tests, separation ofpoint
sets, convex hull construction. Containment by minimum area rectangles and circles,
and by minimum volume boxes and spheres.

CURVES. Abstract curve class (position, derivatives, tangents, speed, arc length,
reparameterization by arc length, subdivision algorithms), 2D curves (curvature,
normals), 3D curves (curvature, torsion, normals, binormals), polynomial curves,
Bezier curves, B-spline curves, NURBS curves, cubic spline curves, tension-bias­
continuity curves.

DISTANCE. Distance between pairs of objects of type point, segment, ray, line,
triangle, rectangle, ellipse, ellipsoid, quadratic curve, quadric surface.

GEOMETRY. Definitions of the geometric objects that occur in the Wild MagIc
library.

GRAPHICS. The real-time 3D graphics engine. Scene graph management (tree
structures, internal nodes, leaf nodes, point and particle primitives, line primitives,
triangle primitives, surface primitives, bounding spheres), render state (alpha blend­
ing, dithering, fog, lighting, materials, shading, texturing, multitexturing, wireframe,
z-bufferillg). High-level effects (bump maps, gloss maps, planar reflection, planar
shadows, projected texture). Vertex and pixel shader infrastructure. Camera and
view frustrum. Object-oriented infrastructure (abstrac:t object base class, run-time
type information, streaming, smart pointers for reference counting, controllers for
time-varying quantities). Animation (key frame, inverse kinematics, skin and bones,
morphing, points and particles). Collision detection (generic bounding volume and
bounding hierarchy support). Level of detail (discrete, continuous, billboards). Sort­
ing (binary space partitioning [BSP] trees, portals). Terrain (uses continuous level of
detail).

IMAGEANALYSIS. Basic routines for 2D and 3D image analysis and processing.
Includes support for level curve extraction from 2D images and level surface e>..'trac­
tion from 3D images.

INTERPOLATION. Interpolation of data. Akima~ bilinear~ bicubic~ B-spline~ piece­
wise quadratic, spherical interpolation, thin plate splines~ trilinear, tricubic~ vec­
tor field interpolation. Scattered data interpolation uses Delaunay triangulation!
tetrahedralization.

INTERSECTION. A multitude of intersection routines for either a test query (does
intersection exist) or find query (what is the intersection set, and when does it occur
when one or both objects are moving).

MATH. Basic support for points~ vectors, matrices, quaternions, and polynomials.
Also provides fast function evaluation for a few trigonometric functions.

M ES H ES. Various implementations ofvertex-edge-triangle tables for use in graph­
ics and imaging applications.

NUMERICS. Root finding via bisection~ eigensolver for symmetric matrices, inte­
gration, linear system solving, minimization without derivative calculations, solving
systems of ordinary differential equations~ polynomial root finding.

PHYSICS. Source code particularly relevant to this book. Deformable surface
meshes. Volume interpolation for free-form deformation. Numerical solver for lin­
ear complementarity problems (LCP). Support for the physics of particle systems.
Mass-spring systems. Computation of mass and inertia for rigid, convex polyhedral
bodies. Fast overlap detection for in-tervals (lD), axis-aligned rectangles (2D), and
axis-aligned boxes (3D) that allow for fast intersection testing using time coherence.

RATIONALARITHMETIC. Exact integer and rational arithmetic functions. Sup­
ports exact conversion from floating-point types to rational numbers.

SURFACES. Abstract surface class (metric tensor, curvature tensor, principal cur­
vatures and directions)~ parametric surfaces (position, derivatives, tangents, nor­
mals)~ implicit surfaces, polynomial surfaces, B-spline and NURBS surfaces.

SYSTEM. Encapsulation of operating system specific needs (Windows, Linux, or
Macintosh).

TESSELLATION. Delaunay triangulation and tetrahedralization.

RENDERERS DIRECTORY

The graphics engine has an abstract API for the rendering system. The renderers for
specific platforms are implemented to use this API.

ox. The DirectX 9 renderer that runs on Microsoft Windows platforms.

OPENGL. The OpenGL renderers that run on Microsoft Windows, Linux~ and
Macintosh. The nonwindowing portion of the OpenGL code is the same for aU the
platforms. Window-specific code occurs for GLUT (for all platforms), Wgl (Windows
OpenGL), and Agi (Apple OpenGL).

Implementing physical simulations for real-time games is a complex task that requires a solid
understanding ofa wide range ofconcepts from the fields of mathematics and physics. Previously,
the relevant information could only be gleaned through obscure research papers. Thanks to Game
Physics, all this information is now available in a single, easily accessible volume. Dave has yet
again produced a must-have book for game technology programmers everywhere.

-Christer Ericson
Technology Lead

Sony Computer Entertainment

Game Physics is a comprehensive reference ofphysical simulation techniques relevant to games
and also contains a clear presentation of the mathematical background concepts fundamental to
most types ofgame programming. I wish I had this book years ago.

-Naty Hoffman
Senior Software Engineer

Naughty Dog, Inc.

Eppur si muove ... and yet it moves. From Galileo to game development, this book will surely
become a standard reference for modeling movement.

-Ian Ashdown
President

byHeart Consultants Limited

This is an excellent companion volume to Dave's earlier 3D Game Engine Design. It shares the
approach and strengths ofhis previous book. He doesn't try to pare down to the minimum necessary
information that would allow you to build something with no more than basic functionality.
Instead, he gives you all you need to begin working on a professional-caliber system. He puts the
concepts firmly in context with current, ongoing research, so you have plenty ofguidance on where
to go ifyou are inclined to add even more features on your own.

This is not a cookbook-it's a concise presentation ofall the basic concepts needed to understand
and use physics in a modern game engine. It gives you a firm foundation you can use either to
build a complete engine ofyour own or to understand what's going on inside the new powerful
middleware physics engines available today.

This book, especially when coupled with Dave's 3D Game Engine Design, provides the most
complete resource ofthe mathematics relevant to modern 3D games that I can imagine. Along with
clear descriptions of the mathematics and algorithms needed to create a powerful physics engine
are sections covering pretty much all of the math you will encounter anywhere in the game­
quaternions, linear algebra, and calculus.

-Peter Lipson
Senior Programmer

Toys For Bob

This comprehensive introduction to the field ofgame physics will be invaluable to anyone interested
in the increasingly more important aspect of video game production, namely, striving to achieve
realism. Drawing from areas such as robotics, dynamic simulation, mathematical modeling, and
control theory, this book succeeds in presenting the material in a concise and cohesive way. As a
matter of fact, it can be recommended not only to video game professionals but also to students
and practitioners of the above-mentioned disciplines.

-PaI-Kristian Engstad
Senior Software Engineer

Naughty Dog, Inc.

The Morgan Kaufmann Series in Interactive 3D Technology
Series Editor: David H. Eberly, Magic Software, Inc.

The game industry is a powerful and driving force in the evolution of computer tech­
nology. As the capabilities of personal computers, peripheral hardware, and game
consoles have grown, so has the demand for quality information about the algo­
rithms, tools, and descriptions needed to take advantage of this new technology. We
plan to satisfy this demand and establish a new level of professional reference for the
game developer with the Morgan Kaufmann Series in Interactive 3D Technology. Books
in the series are written for developers by leading industry professionals and academic
researchers and cover the state of the art in real-time 3D. The series emphasizes prac­
tical, working solutions and solid software-engineering principles. The goal is for the
developer to be able to implement real systems from the fundamental ideas, whether
it be for games or for other applications.

Game Physics
David H. Eberly

Collision Detection in Interactive 3D Environments
Gino van den Bergen

3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics
David H. Eberly

Forthcoming

Essential Mathematics for Games and Interactive Applications: A Programmers Guide
Jim Van Verth and Lars Bishop

Physically-Based Rendering
Matt Pharr and Greg Humphreys

Real-Time Collision Detection
Christer Ericson

GAME PHYSICS

DAVID H. EBERLY
Magic Software, Inc.

with a contribution by

KEN SHOEMAKE
Otter Enterprises

ELSEVIER

AMSTERDAM • BOSTON • HEIDELBERG. LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY. TOKYO

MORGAN KAUFMANN IS AN IMPRINT OF ELSEVIER

M(~®
MORGAN KAUFMANN PUBLISHERS

Publishing Director Diane D. Cerra
Senior Editor Tim Cox
Publishing Services Manager Simon Crump
Production Editor Sarah Manchester
Project Management Elisabeth Beller
Editorial Coordinator Rick Camp
Cover Design Chen Design Associates, San Francisco
Cover Image Chen Design Associates, San Francisco
Text Design Rebecca Evans
Composition Windfall Software, using ZzTeX
Technical Illustration Dartmouth Publishing
Copyeditor Yonie Overton
Proofreader Jennifer McClain
Indexer Steve Rath
Interior Printer The Maple-Vail Book Manufacturing Group
Cover Printer Phoenix Color Corporation

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2004 by Elsevier, Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or trans­
mitted in any form or by any means-electronic, mechanical, photocopying, scan­
ning, or otherwise-without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line via
the Elsevier homepage (http://elsevier.com) by selecting "Customer Support" and
then "Obtaining Permissions."

Library ofCongress Control Number: 2003023187

ISBN: 1-55860-740-4

For information on all Morgan Kaufmann publications,
visit our website at www.mkp.com.

Printed in the United States of America
07 06 05 04 03 5 4 3 2 1

TRADEMARKS

The following trademarks, mentioned in this book and the accompanying CD-ROM,
are the property of the following organizations:

• DirectX, Direct3D, Visual C++, DOS, and Windows are trademarks ofMicrosoft
Corporation.

• OpenGL is a trademark of Silicon Graphics, Inc.

• Radeon is a trademark ofATI Technologies, Inc.

• GeForce and the Cg Language are trademarks of nVIDIA Corporation.

• NetImmerse and R-Plus are trademarks of Numerical Design, Ltd.

• MathEngine is a trademark of Criterion Studios.

• The Havok physics engine is a trademark of Havok.com.

• SoftImage is a trademark ofAvid Technology, Inc.

• Falling Bodies is a trademark ofAnimats.

• The Vortex physics engine is a trademark of CMLabs Simulations, Inc.

• Prince of Persia 3D is a trademark of Bmderbund Software, Inc.

• XS-G and Canyon Runner are trademarks of Greystone Technology.

• Mathematica is a trademark of Wolfram Research, Inc.

• Turbo Pascal is a trademark of Borland Software Corporation.

• The 8086 and Pentium are trademarks of Intel Corporation.

• Macintosh is a trademark of Apple Corporation.

• Gigi and VAX are trademarks of Digital Equipment Corporation.

• MASPAR is a trademark of MasPar Computer Corporation.

v

CHAPTER

I

TRADEMARKS

FIGURES

TABLES

PREFACE

ABOUT THE CD-ROM

INTRODUCTION

1.1 A BRIEF HISTORY OF THE WORLD

1.2 A SUMMARY OF THE TOPICS

1.3 EXAMPLES AND EXERCISES

CONTENTS

v

xv

xxvii

XXIX

XXXlll

1

6

11

CHAPTER

2 BASIC CONCEPTS FROM PHYSICS 13

2.1

2.2

2.3

2.4

2.5

RIGID BODY CLASSIFICATION

RIGID BODY KINEMATICS

2.2.1 Single Particle
2.2.2 Particle Systems and Continuous Materials

NEWTON'S LAWS

FORCES

2.4.1 Gravitational Forces
2.4.2 Spring Forces
2.4.3 Friction and Other Dissipative Forces
2.4.4 Torque
2.4.5 Equilibrium

MOMENTA

2.5.1 Linear Momentum
2.5.2 Angular Momentum
2.5.3 Center of Mass
2.5.4 Moments and Products of Inertia
2.5.5 Mass and Inertia Tensor of a Solid Polyhedron

14

15

15
28

31

32

32
34
35
37
39

41

42
43
44
57
66

vii

viii Contents

CHAPTER

i

2.6 ENERGY

2.6.1 Work and Kinetic Energy
2.6.2 Conservative Forces and Potential Energy

RIGID BODY MOTION

3.1 NEWTONIAN DYNAMICS

3.2 LAGRANGIAN DYNAMICS

3.2.1 Equations of Motion for a Particle
3.2.2 Time-Varying Frames or Constraints
3.2.3 Interpretation of the Equations of Motion
3.2.4 Equations of Motion for a System of Particles
3.2.5 Equations of Motion for a Continuum of Mass
3.2.6 Examples with Conservative Forces
3.2.7 Examples with Dissipative Forces

3.3 EULER'S EQUATIONS OF MOTION

79

79
81

87

88

100

102

114
117
118
121
133
139

152

CHAPTER

4 DEFORMABLE BODIES 161

4.1 ELASTICITY, STRESS, AND STRAIN 161

4.2 MASS-SPRING SYSTEMS 164

4.2.1 One-Dimensional Array of Masses 164
4.2.2 Two-Dimensional Array of Masses 166
4.2.3 Three-Dimensional Array of Masses 170
4.2.4 Arbitrary Configurations 171

4.3 CONTROL POINT DEFORMATION 173

4.3.1 B-Spline Curves 173
4.3.2 NURBS Curves 183
4.3.3 B-Spline Surfaces 187
4.3.4 NURBS Surfaces 188
4.3.5 Surfaces Built from Curves 190

4.4 FREE-FoRM DEFORMATION 197

4.5 IMPLICIT SURFACE DEFORMATION 203

4.5.1 Level Set Extraction 206
4.5.2 Isocurve Extraction in 2D Images 208
4.5.3 Isosurface Extraction in 3D Images 212

Contents ix

CHAPTER

i PHYSICS ENGINES 221

5.1 UNCONSTRAINED MOTION 223

5.1.1 An Illustrative Implementation 228
5.1.2 A Practical Implementation 234

5.2 CONSTRAINED MOTION 240
5.2.1 Collision Points 240
5.2.2 Collision Response for Colliding Contact 242
5.2.3 Collision Response for Resting Contact 265
5.2.4 An Illustrative Implementation 270
5.2.5 Lagrangian Dynamics 278

5.3 COLLISION DETECTION WITH CONVEX POLYHEDRA 280
5.3.1 The Method of Separating Axes 284
5.3.2 Stationary Objects 286
5.3.3 Objects Moving with Constant Linear Velocity 311
5.3.4 Oriented Bounding Boxes 334
5.3.5 Boxes Moving with Constant Linear and Angular Velocity 342

5.4 COLLISION CULLING: SPATIAL AND TEMPORAL COHERENCE 348
5.4.1 Culling with Bounding Spheres 349
5.4.2 Culling with Axis-Aligned Bounding Boxes 354

5.5 VARIATIONS 361

CHAPTER,
PHYSICS AND SHADER PROGRAMS 367

6.1 INTRODUCTION 367

6.2 VERTEX AND PIXEL SHADERS 369

6.3 DEFORMATION BY VERTEX DISPLACEMENT 375

6.4 SKIN-AND-BoNES ANIMATION 378

6.5 RIPPLING OCEAN WAVES 379

6.6 REFRACTION 383

6.7 FRESNEL REFLECTANCE 386

6.8 IRIDESCENCE 388

x Contents

CHAPTER

7 LINEAR COMPLEMENTARITY AND MATHEMATICAL
PROGRAMMING 391

7.1 LINEAR PROGRAMMING 392
7.1.1 A Two-Dimensional Example 392
7.1.2 Solution by Pairwise Intersections 394
7.1.3 Statement of the General Problem 396
7.104 The Dual Problem 404

7.2 THE LINEAR COMPLEMENTARITY PROBLEM 407
7.2.1 The Lemke-Howson Algorithm 408
7.2.2 Zero Constant Terms 413
7.2.3 The Complementary Variable Cannot Leave the Dictionary 416

7.3 MATHEMATICAL PROGRAMMING 418
7.3.1 Karush-Kuhn-Tucker Conditions 421
7.3.2 Convex Quadratic Programming 423
7.3.3 General Duality Theory 426

7.4 ApPLICATIONS 427

704.1 Distance Calculations 427
704.2 Contact Forces 436

CHAPTER• DIFFERENTIAL EQUATIONS 437

8.1 FIRST-ORDER EQUATIONS 437

8.2 EXISTENCE, UNIQUENESS, AND CONTINUOUS DEPENDENCE 440

8.3 SECOND-ORDER EQUATIONS 442

8.4 GENERAL-ORDER DIFFERENTIAL EQUATIONS 444

8.5 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS 446

8.6 EQUILIBRIA AND STABILITY 450
8.6.1 Stability for Constant-Coefficient Linear Systems 451
8.6.2 Stability for General Autonomous Systems 453

CHAPTER,
NUMERICAL METHODS 457

9.1 EULER'S METHOD 458

9.2 HIGHER-ORDER TAYLOR METHODS 461

Contents xi

9.3 METHODS VIA AN INTEGRAL FORMULATION 462

9.4 RUNGE-KuTTA METHODS 465

9.4.1 Second-Order Methods 466
9.4.2 Third-Order Methods 468
9.4.3 Fourth-Order Method 469

9.5 MULTISTEP METHODS 470

9.6 PREDICTOR-CORRECTOR METHODS 472

9.7 EXTRAPOLATION METHODS 473

9.7.1 Richardson Extrapolation 473
9.7.2 Application to Differential Equations 474
9.7.3 Polynomial Interpolation and Extrapolation 476
9.7.4 Rational Polynomial Interpolation and Extrapolation 476
9.7.5 Modified Midpoint Method 477
9.7.6 Bulirsch-Stoer Method 478

9.8 VERLET INTEGRATION 478

9.8.1 Forces without a Velocity Component 479
9.8.2 Forces with a Velocity Component 480
9.8.3 Simulating Drag in the System 481
9.8.4 Leap Frog Method 481
9.8.5 Velocity Verlet Method 483
9.8.6 Gear's Fifth-Order Predictor-Corrector Method 485

9.9 NUMERICAL STABILITY AND ITS RELATIONSHIP TO PHYSICAL

STABILITY 487

9.9.1 Stability for Single-Step Methods 488
9.9.2 Stability for Multistep Methods 490
9.9.3 Choosing a Stable Step Size 491

CHAPTER

II

9.10 STIFF EQUATIONS

QUATERNIONS

10.1 ROTATION MATRICES

10.2 THE CLASSICAL ApPROACH

10.2.1 Algebraic Operations
10.2.2 Relationship of Quaternions to Rotations

10.3 A LINEAR ALGEBRAIC ApPROACH

503

507

507

512

512
515

517

xii Contents

lOA FROM ROTATION MATRICES TO QUATERNIONS 522

Contributed by Ken Shoemake
1004.1 2D Rotations 523
1004.2 Linearity 525
1004.3 3D Rotations: Geometry 526
100404 4D Rotations 529
1004.5 3D Rotations: Algebra 531
1004.6 4D Matrix 534
1004.7 Retrospect, Prospect 538

10.5 INTERPOLATION OF QUATERNIONS 539

10.5.1 Spherical Linear Interpolation 539
10.5.2 Spherical Quadrangle Interpolation 541

10.6 DERIVATIVES OF TIME-VARYING QUATERNIONS 543

ApPENDIX

tAa LINEAR ALGEBRA 545

A.1 A REVIEW OF NUMBER SYSTEMS 545

A.1.1 The Integers 545
A.1.2 The Rational Numbers 545
A.I.3 The Real Numbers 546
A.I.4 The Complex Numbers 546
A.I.5 Fields 547

A.2 SYSTEMS OF LINEAR EQUATIONS 548

A.2.1 A Closer Look at Two Equations in Two Unknowns 551
A.2.2 Gaussian Elimination and Elementary Row Operations 554
A.2.3 Nonsquare Systems of Equations 558
A.2A The Geometry of Linear Systems 559
A.2.5 Numerical Issues 562
A.2.6 Iterative Methods for Solving Linear Systems 565

A.3 MATRICES 566

A.3.1 Some Special Matrices 569
A.3.2 Elementary Row Matrices 570
A.3.3 Inverse Matrices 572
A.3A Properties of Inverses 574
A.3.5 Construction of Inverses 575
A.3.6 LU Decomposition 577

AA VECTOR SPACES 583

AA.1 Definition of a Vector Space 588
AA.2 Linear Combinations, Spans, and Subspaces 593

ApPENDIX

B

ApPENDIX

€i.

AA.3 Linear Independence and Bases
AAA Inner Products, Length, Orthogonality, and Projection
AA.5 Dot Product, Cross Product, and Triple Products
AA.6 Orthogonal Subspaces
AA.7 The Fundamental Theorem of Linear Algebra
AA.8 Projection and Least Squares
AA.9 Linear Transformations

A.5 ADVANCED TOPICS

A.5.1 Determinants
A.5.2 Eigenvalues and Eigenvectors
A.5.3 Eigendecomposition for Symmetric Matrices
A.5A S + N Decomposition
A.5.5 Applications

AFFINE ALGEBRA

B.l INTRODUCTION

B.2 COORDINATE SYSTEMS

B.3 SUBSPACES

BA TRANSFORMATIONS

B.5 BARYCENTRIC COORDINATES

B.5.1 Triangles
B.5.2 Tetrahedra
B.5.3 Simplices
B.5A Length, Area, Volume, and Hypervolume

CALCULUS

C.l UNIVARIATE CALCULUS

C1.1 Limits
C1.2 Limits of a Sequence
C1.3 Continuity
CIA Differentiation
C1.5 L'H6pital's Rule
C1.6 Integration

Contents xiii

595
601
606
613
616
621
624

634

634
646
652
655
661

669

669

673

675

676

677

678
679
680
681

691

692

694
696
697
698
701
701

xiv Contents

ApPENDIX

B

C.2 MULTIVARIATE CALCULUS

C2.1 Limits and Continuity
C2.2 Differentiation
C2.3 Integration

C.3 ApPLICATIONS

C3.1 Optimization
C3.2 Constrained Optimization
C3.3 Derivative Approximations by Finite Differences

ORDINARY DIFFERENCE EQUATIONS

D.I DEFINITIONS

D.2 LINEAR EQUATIONS

D.2.1 First-Order Linear Equations
D.2.2 Second-Order Linear Equations

D.3 CONSTANT-COEFFICIENT EQUATIONS

DA SYSTEMS OF EQUATIONS

BIBLIOGRAPHY

INDEX

704

704
705
708

710

711
715
718

727

727

730

730
731

734

736

739

745

FIGURES

COLOR PLATES

3.3 The Foucault pendulum.

3.7 A ball rolling down a hilL

3.14 A mass pulley spring system shown at two different times.

3.25 Two "snapshots" of a freely spinning top.

4.2 A rope modeled as a linear chain of springs.

4.4 A cloth modeled as a rectangular array of springs.

4.6 A gelatinous cube that is oscillating due to random forces.

4.7 A gelatinous blob that is oscillating due to small, random forces.

4.15 A skirt modeled by a generalized cylinder surface.

4.17 A water drop modeled as a control point surface of revolution.

4.18 A closed tube surface whose central axis is a helix.

4.19 A wriggling snake modeled as a tube surface whose central curve is a
control point curve.

4.20 Free-form deformation.

4.29 A bouncing ball with deformation based on implicit surfaces.

6.1 Two screen shots from the basic shader application.

6.2 Screen shots from the vertex noise shader application.

6.4 Two screen shots from the skinning application.

6.5 Two screen shots from the rippling ocean application.

6.7 Two screen shots from the refraction shader application.

6.8 Two screen shots from the Fresnel shader application.

6.9 Screen shots from the iridescence shader application.

FIGURES IN CHAPTERS

2.1 A couple of coordinate systems at points on a curve. 16

2.2 A polar coordinate frame at a point on a curve. 18

2.3 A curve, a tangent vector at a point, and the circle of choices for the
normal vector. The circle lies in the plane containing the point and
perpendicular to the tangent. 20

2.4 Cylindrical coordinates (x, y, z) = (r cos e, r sin e, z). 23

2.5 Spherical coordinates (x, y, z) = (p cos esin 4>, r sin esin 4>, p cos 4». 24

xv

xvi Figures

2.6 Motion of a particle about a fixed axis, a constant distance from the
axis. 25

2.7 (a) The body coordinate system as seen by the body observer. (b) The
body coordinate system as seen by the world observer. 29

2.8 Gravitational forces on objects located at various places around the
Earth. 33

2.9 Gravitational forces on objects located nearly on the Earth's surface,
viewed as a flat surface. 34

2.10 (a) Unstretched spring. (b) Force due to stretching the spring. (c)
Force due to compressing the string. 35

2.11 A block in contact with an inclined plane. (a) Static friction is
dominant and the block remains at rest. (b) Gravity is dominant and
the block slides, so kinetic friction applies. 36

2.12 Torque from a force exerted on a particle. 37

2.13 A force couple. 38

2.14 (a) All forces applied to a point mass are concurrent but are not
"balanced;' so the point moves. (b) All forces are concurrent
but do balance, so the point does not move. (c) A rigid rod with
nonconcurrent forces applied to the end points. The forces are equal
in magnitude but opposite in direction. The rod rotates about its
center. (d) Nonconcurrent forces are applied to three locations; two
forces of equal magnitudes and directions at the end points and one
force of twice the magnitude of an end-point force but opposite in
direction applied to the rod center. The rod is "balanced" and does
not rotate about its center. 39

2.15 Balancing discrete masses on a line. The center of mass for two masses
viewed as the balance point for a seesaw on a fulcrum. 44

2.16 Balancing continuous masses on a line. The center of mass for the
wire is viewed as the balance point for a seesaw on a fulcrum. A
general point location x is shown, labeled with its corresponding mass
density 8(x). 46

2.17 Balancing discrete masses in a plane. 47

2.18 Balancing discrete masses in a plane on a fulcrum. 48

2.19 Balancing continuous masses in a plane. The shades of gray indicate
variable mass density. 48

2.20 A continuous mass bounded by a parabola and a line. 49

2.21 A continuous mass in the shape of a hemicircle. 51

2.22 A force applied to a particle traveling on a straight line from position
Xo to xl' 79

Figures xvii

3.1 The infinitesimal area dA swept out by motion of the Earth over an
infinitesimal change in position dr. The swept region is effectively a
triangle whose sides are rand r + dr. 90

3.2 The Foucault pendulum. The pendulum joint is at (9, the mass is m
and is attached to the pendulum rod of length L. The gravitational
force acts in the direction k, a unit-length vector from the joint to the
center of the Earth. 94

3.3 The Foucault pendulum. The figures show the path of the pendulum
tip in the horizontal plane. New points on the path are colored
white, but the intensity of the older points along the path gradually
decreases. (See also Color Plate 3.3.) 97

3.4 The simple pendulum. The motion is constrained to a plane. The
mass is located at position X(t) at time t and is always a fixed length
L from the joint P. The angle formed by the pendulum rod with the
vertical is e(t). The curve of motion is a circle with tangent T(t) and
outward pointing normal N(t). The only force acting on the mass
is gravitational, -mgJ, where m is the mass of the particle, g is the
gravitational constant, and - J is the direction of the force (vertically
downward). The joint P provides no frictional force. 101

3.5 A ball of mass m on a flat table. A rubber band connects the ball to a
fixed point on the table. The force F due to the rubber band is shown.
The position x of the ball is shown together with its velocity x. 107

3.6 A ball is at the top of a frictionless hill. With a small push, the ball will
slide down the hill. 108

3.7 A ball rolling down a hill. Image (b) shows the path of the center of the
ball as it rolls down the hill. The ball rotates at a speed commensurate
with its downhill velocity. (See also Color Plate 3.7.) 110

3.8 (a) A metal chute oflength L, one end attached to the origin, the
other end raised by a height H. (b) Side view of the chute. 112

3.9 The initial configuration of a rigid rod containing a mass that is
attached to a spring. 117

3.10 Three masses aligned vertically and subject to gravitational force. 119

3.11 A modification of the simple pendulum problem. 121

3.12 A triangle pendulum. 124

3.13 A system consisting of two masses, a pulley with mass, and a spring. 126

3.14 A mass pulley spring system shown at two different times. The spring
expands and compresses, and the pulley disk rotates during the
simulation. The system stops when a mass reaches the center line of
the pulley or the ground. (See also Color Plate 3.14.) 128

3.15 A system of two pulleys, two springs, and a mass. 129

xviii Figures

3.16 A physical system with a bent pipe rotating about the z-axis and a disk
rotating about its axis. 130

3.17 A solid disk that rolls on a rough, inclined plane. 132

3.18 A simple diving board. 133

3.19 An inclined plane that forms an angle 4> with the horizontal. The
particle has mass m. It is located at fO = (Xo, Yo' zo); hash marks
are shown on the axes corresponding to Xo, Yo, zo, and wo, where
Yo = wo cos 4> and zo = wo sin 4>. 142

3.20 Two particles, connected by a massless rod, that slide along a rough
plane. 143

3.21 A flat board on a rough plane. 149

3.22 A side view of a solid box on a rough, inclined plane. 151

3.23 The world coordinates and body coordinates for a rigid body where
both systems have the same origin. 153

3.24 A freely spinning top with tip fixed at the origin of the world
coordinate system. 155

3.25 Two "snapshots" of a freely spinning top. The black line is the vertical
axis. The white line is the axis of the top. (See also Color Plate 3.25.) 159

4.1 Two curve mass objects represented as mass-spring systems. 164

4.2 A rope modeled as a linear chain of springs. Image (a) shows the rope
at rest with only gravity acting on it. Image (b) shows the rope subject
to a wind force whose direction changes by small random amounts.
(See also Color Plate 4.2.) 167

4.3 A surface mass represented as a mass-spring system with the masses
organized as a two-dimensional array. 168

4.4 A cloth modeled as a rectangular array of springs. Wind forces make
the cloth flap about. Notice that the cloth in image (b) is stretched in
the vertical direction. The stretching occurs while the gravitational
and spring forces balance out in the vertical direction during the
initial portion of the simulation. (See also Color Plate 4.4.) 169

4.5 A volume mass represented as a mass-spring system with the masses
organized as a three-dimensional array. Only the masses and springs
on the three visible faces are shown. The other connections are shown,
but without their springs. 170

4.6 A gelatinous cube that is oscillating due to random forces. The cube is
modeled by a three-dimensional array of mass connected by springs.
(See also Color Plate 4.6.) 172

4.7 A gelatinous blob that is oscillating due to small, random forces. This
blob has the masses located at the vertices of an icosahedron with
additional masses of infinite weight to help stabilize the oscillations.

Figures xix

The springs connecting the blob to the infinite masses are shown in
white. (See also Color Plate 4.7.) 174

4.8 Six pairs of B-spline curves of various types. The right image of each
pair shows the deformed curve by modifying one control point. 182

4.9 The initial control points and curve are shown at the top of the figure.
The evolved control points and curve are shown at three later times,
with time increasing from top to bottom in the figure. 185

4.10 The control points and curve at later times in the evolution. 186

4.11 Deformation of a line segment into a closed curve that splits away
from the original curve. 187

4.12 (a) The decomposition of (u, v) space into an n x m grid of rectangles,
each rectangle consisting of two triangles. A typical rectangle is shown
in (b), with lower corner index (i , j) corresponding to u = i I nand
v = jim. 191

4.13 A cylinder surface (b) obtained by extruding the curve (a) in a
direction oblique to the plane of the curve. 192

4.14 A generalized cylinder surface obtained by linearly interpolating pairs
of points on two curves. 193

4.15 A skirt modeled by a generalized cylinder surface. Wind-like forces
are acting on the skirt and are applied in the radial direction. Image
(a) shows the skirt after wind is blowing it about. Image (b) shows a
wireframe view of the skirt so that you can see it consists of two closed
curve boundaries and is tessellated between. (See also Color Plate
4.15.) 194

4.16 A surface of revolution. 195

4.17 A water drop modeled as a control point surface of revolution.
The surface dynamically changes to show the water drop forming,
separating from the main body of water, then falling to the floor. The
evolution is from left to right and top to bottom. (See also Color Plate
4.17.) 196

4.18 A closed tube surface whose central axis is a helix. (See also Color
Plate 4.18.) 198

4.19 A wriggling snake modeled as a tube surface whose central curve is a
control point curve. (See also Color Plate 4.19.) 199

4.20 Free-form deformation. Image (a) shows the initial configuration
where all control points are rectangularly aligned. Image (b) shows
that some control points have been moved and the surface is
deformed. The control point shown in darker gray in (b) is the point
at which the mouse was clicked on and moved. (See also Color Plate
4.20.) 204

4.21 A disk-shaped body and various deformations of it. 205

xx Figures

4.22 This is an illustration of a level surface F (x, y, z) = 0, a cube whose
eight corners correspond to image samples. Four of the image values
are shown, one positive and three negative. Assuming the image
values vary continuously, each edge connecting a positive and negative
value must have a point where the image is zero. The level surface
F(x, y, z) = 0 necessarily passes through those zero-points, as
illustrated by the triangular-shaped surface shaded in gray. 207

4.23 The 16 possible sign configurations for a pixel. 209

4.24 The three possible resolutions for the ambiguous pixel cases. 210

4.25 Two possible configurations for hyperbolic isocurves with pixels
superimposed. The four edge intersections are Po' PI' P2, and P3 as
marked. 211

4.26 Topological inconsistencies introduced in two voxels sharing an
ambiguous face. 214

4.27 A voxel and its extracted edge mesh. 216

4.28 Triangle removal in the edge mesh of Figure 4.27. 217

4.29 A bouncing ball with deformation based on implicit surfaces.
Image (a) shows the bouncing ball with only the implicit surface
deformation. Image (b) shows an additional deformation of
nonuniform scaling by applying an affine transformation. (See also
Color Plate 4.29.) 219

5.1 (a) Colliding contact. Body A moves into body B. (b) Resting contact.
Body A rests on body B and attempts neither to move into B nor to
separate from B. Body A is allowed to slide along B. (c) Separation.
Body A has a velocity that separates it from body B. 241

5.2 The reduced contact set for two convex polyhedra A and B. 242

5.3 The effects on pet) as 8 approaches zero: (a) small 8; (b) smaller 8;

and (c) really small 8 (like zero). 244

5.4 (a) Reflection of the preimpulse velocity y- through the contact
normal to obtain the postimpulse velocity y+. (b) An imperfect
reflection that represents a loss of kinetic energy. (c) An imperfect
reflection that represents a maximum loss of kinetic energy. 246

5.5 (a) The square traveling toward a sloped plane. (b) The preimpulse
configuration at the instant of contact. (c) The postimpulse
configuration at the instant of contact. (d) The square moving away
from the plane. 249

5.6 An axis-aligned box colliding with a sloped plane along an entire edge
of the box, (1- s)Po+ sP I for s E [0, 1]. 250

5.7 A rectangle travels downward and intersects two objects
simultaneously. 257

Figures xxi

5.8 Four rigid bodies with six points of contact. The centers of mass of the
four bodies are also shown. 261

5.9 A book resting on a table. Forces applied to the book include only
gravitational (force vertically downward) and those used to push the
book around the table (force has only a horizontal component). 280

5.10 (a) Object at time to. (b) Object at time to + !:It/2. (c) Object at time
to + !:It. 282

5.11 (a) A convex set. No matter which two points you choose in the set,
the line segment connecting them is in the set. (b) A nonconvex
set. The line segment connecting two specific points is not (fully)
contained in the set. 284

5.12 Nonintersecting convex objects and a separating line for them. The

algebraic condition for separation is A~~xCD) < A~n (D) as indicated
in equation (5.47). 285

5.13 (a) Nonintersecting convex polygons. (b) Intersecting convex
polygons. 287

5.14 (a) Edge-edge contact. (b) Vertex-edge contact. (c) Vertex-vertex
contact. 287

5.15 Two polygons separated by an edge-normal direction of the first
polygon. 288

5.16 (a) A convex polygon. (b) A unit circle whose vertices correspond
to normal directions of the polygon and whose arcs connecting the
vertices correspond to vertices of the polygon (the polar dual of the
polygon). 293

5.17 A BSP tree constructed by recursive splitting of the unit disk. Each
node is labeled with the test used for the split. The subsectors
consisting of points satisfying the test are shaded in dark gray. The
leaf nodes are shaded in light gray and labeled with a vertex that is
extremal. 294

5.18 Two views of two cubes that are not separated by any face normal but
are separated by a cross product of two edges, one from each cube. 299

5.19 (a) A tetrahedron. (b) A unit sphere whose vertices correspond
to normal directions of the tetrahedron, whose great circle arcs
connecting the vertices correspond to edges of the tetrahedron, and
whose spherical polygons correspond to vertices of the tetrahedron
(the spherical dual of the tetrahedron). 304

5.20 The root of the BSP tree and the two hemispheres obtained by
splitting. Both children are displayed with a viewing direction
(0, 0, -1). The right child is the top of the sphere viewed from the
outside, and the left child is the bottom of the sphere viewed from the
inside. 305

xxii Figures

5.21 The BSP trees for the children of the root. 306

5.22 (a) Edge-edge intersection predicted. (b) Vertex-vertex intersection
predicted. (c) No intersection predicted. 315

5.23 Edge-edge contact for two moving triangles. 321

5.24 An OBB with center point e, coordinate axis directions Uo, U1, and
U2, and extents eo, el' and e2 along the coordinate axes. The object
bounded by the box is shown in gray. 335

5.25 The projection intervals of two OBBs onto a line P + tD. (a) The
intervals are disjoint, so the OBBs are separated. (b) The intervals
overlap, so the line is not a separating axis. 336

5.26 Two projected intervals, one stationary and one moving. 346

5.27 Culling of bounding spheres against a view frustum. 349

5.28 Decomposition of space to reduce the number of comparisons
between pairs of objects. 351

5.29 The sweep phase of the algorithm. 355

5.30 The update phase of the algorithm when intervals have moved. 358

5.31 Axis-aligned rectangles overlap when both their x-intervals and
y-intervals overlap. 359

6.1 Two screen shots from the Bas i cShader application. Image (a) shows
a rendering using just the pixel shader. Image (b) shows a rendering
using both the vertex shader and the pixel shader. (See also Color
Plate 6.1.) 376

6.2 Screen shots from the VertexNoi se shader application. (a) Top
row: The original model and its wireframe view. Bottom row: The
output of the VertexNoi se shader and its wireframe view. The
vertex displacement is significantly large. (b) Top row: The vertices
displaced with a smaller maximum displacement, but same scale of
noise. Bottom row: The vertices displaced with the same maximum
displacement as in the bottom row of (a), but with a larger scale noise.
(See also Color Plate 6.2.) 377

6.3 A skin-and-bones system consisting of two bones that influence five
vertices. The vertex closest to the joint formed by the two bones is
equally influenced by the bones. For each vertex farther from the
joint, one bone influences it more than the other bone. 378

6.4 Two screen shots from the skinning application. The bones are
randomly generated to cause the object to continuously deform. The
sequence of deformations is from left to right, top then bottom,
within each screen shot. (See also Color Plate 6.4.) 380

Figures xxiii

6.5 Two screen shots from the rippling ocean application. The images
were captured at two different times in the simulation. (See also Color
Plate 6.5.) 382

6.6 Reflection and refraction of a light beam traveling through two media. 383

6.7 Two screen shots from the refraction shader application. Image (a)
shows refraction, but no reflection. Image (b) shows refraction and
reflection. (See also Color Plate 6.7.) 385

6.8 Two screen shots from the Fresnel shader application. (See also Color
Plate 6.8.) 387

6.9 Screen shots from the iridescence shader application. The two images
show a textured torus in two different orientations and with various
amounts of interpolation to produce the iridescent sheen. (See also
Color Plate 6.9.) 389

7.1 (a) Various level curves f(xI' x2) = c (straight lines) superimposed
on the quadrilateral region implied by the constraints. (b) The graph
of X3 = f (Xl' X2) (a plane) over the quadrilateral region. The X3 values
at four points on the plane are shown. 393

7.2 (a) Constraints with no solution. The hash marks indicate on which
side of the lines the half planes occur. (b) Constraints defining an
unbounded convex set. (c) Constraints defining a bounded convex
set. 393

7.3 (a) All five constraints are all relevant to forming the convex domain.
(b) Two of the six constraints are redundant since only four of the
constraints form the convex domain. 395

7.4 The convex domain implied by the two nonnegativity constraints and
three linear inequality constraints of the example. 398

7.5 Graph of feu, v) = 7r /~ in the first quadrant. 419

7.6 (a) The graph of a convex function. Any line segment connecting two
graph points is always above the graph. (b) The graph of a nonconvex
function. The line segment connecting two graph points is not always
above the graph. 420

7.7 The graph of a convex function f (x, y). 421

9.1 (a) Area under a curve. (b) Approximation of the area by a rectangle
(leads to Euler's method). (c) Approximation of the area by a
trapezoid (leads to the modified Euler's method). 463

9.2 The explicit Euler's method applied to the simple pendulum problem.
The image shows a plot of the pendulum angles over time. 494

9.3 The implicit Euler's method applied to the simple pendulum problem.
The image shows a plot of the pendulum angles over time. 496

xxiv Figures

9.4 The Runge-Kutta fourth-order method applied to the simple
pendulum problem. The image shows a plot of the pendulum angles
over time. 497

9.5 The leap frog method applied to the simple pendulum problem. The
image shows a plot of the pendulum angles over time. 499

9.6 The region of stability for the explicit Euler's method is shown in gray. 500

9.7 The region of stability for the implicit Euler's method is shown in
gray. 500

9.8 The region of stability for the Runge-Kutta fourth-order method is
shown in gray. 501

9.9 The region of stability for the leap frog method is shown as a heavy
black line and consists of a line segment on the imaginary axis. 502

9.10 (a) An approximation to x(t) using the Runge-Kutta fourth-order
method. (b) The graph of the actual solution xoe-ct . 504

10.1 A right-handed orthonormal set of vectors. A rotation is desired
about d by the angle e > O. 509

10.2 A 3D rotation about the z-axis that is represented as the product of
two 4D rotations. 519

10.3 2D rotation. 523

10.4 3D rotation. 527

10.5 Convert any quaternion q to rotation matrix R. 537

10.6 Convert rotation matrix R to unit quaternion q. 537

10.7 Illustration of the spherical linear interpolation, or slerp, of two
vectors. 539

10.8 Four points forming a convex quadrilateral. Any interior point of
the quadrilateral can be generated using bilinear interpolation with
parameters sand t. The curve connecting Vo and V3 indicates that we
want a particular function s = J(t) with J(O) = J(l) = O. 541

A.l (a) Two nonparallel lines. (b) Two parallel and disjoint lines. (c) Two
coincident lines (shown in bold black). 559

A.2 (a) Two nonparallel planes. (b) Two parallel and disjoint planes. (c)
Two coincident planes (shown in bold black). 561

A.3 The coincident planes are shown in bold (black for visible portions,
gray for hidden portions). 562

A.4 A vector v at two locations in the plane. 583

A.5 Addition of u and v. 584

A.6 Addition of u, v, and w. Which pair of vectors is added first is
irrelevant. 584

Figures :xxv

A.7 Addition of u and v. The order of the vectors is irrelevant. 585

A.8 A vector v and its additive identity -v. 585

A.9 The vectors u and v and the difference u - v. 586

A.I0 The vectors u and v, the parallelogram formed by them, and the sum
u + v and difference u - v shown as diagonals of the parallelogram. 586

A.ll The vector v and two scalar multiples of it, one positive and one
negative. 587

A.12 (a) Distributing across a scalar sum. (b) Distributing across a vector
sum. 587

A.13 (a) Two orthogonal vectors drawn in the plane spanned by them. (b)
Two nonorthogonal vectors and the angle between them. 602

A.14 The projection of vectors onto a unit-length vector u. (a) v projects
to Lu with L > O. The angle ebetween u and v is shown. The vector
w is obtained as w = v - L u and is itself a projection. (b) v is
perpendicular to u, so the projection onto u is the zero vector O. (c)
The projection is L u with L < O. 603

A.15 Gram-Schmidt orthonormalization applied to two vectors in the
plane. 604

A.16 Gram-Schmidt orthonormalization applied to three vectors in space. 605

A.17 (a) The cross product ofu and v according to the right-hand rule. (b)
The parallelogram formed by u and v with angle e and parallelogram
base length and height marked. 606

A.18 A parallelepiped formed by vectors u, v, and w, where u forms an
acute angle with v x w. The angle between v and w is e and the angle
between u and v x w is ¢. 609

A.19 The triple vector product p = u x (v x w). Note that p must lie in the
plane spanned by v and w. 611

A.20 A subspace U ofR3 and its orthogonal complement UJ... 614

A.21 The four fundamental subspaces. 620

A.22 The projection pES ofb E R 3, where S is a two-dimensional
subspace ofR3 (a plane through the origin). 621

A.23 A linear transformation from V to V with respect to two different
bases (horizontal arrows). The change ofbasis for V (vertical arrows). 631

A.24 (a) A unit-area square. (b) The parallelogram obtained by
transforming the square when the transformed basis vectors have the
same order as the basis vectors. (c) The parallelogram obtained by
transforming the square when the transformed basis vectors have the
opposite order as the basis vectors. (d) The basis vectors mapped to
parallel vectors, in which case A is not invertible. 635

xxvi Figures

A.2S An illustration of the butterfly rule for the determinant of a 3 x 3
matrix. 637

A.26 (a) A unit-volume cube. (b) The parallelepiped obtained by
transforming the cube when the transformed basis vectors have the
same order as the basis vectors. 638

A.27 Three graphs showing critical points. (a) f(xo) is a local maximum.
(b) f(xo) is a local minimum. (c) (xo, f(xo)) is a point of inflection
for the graph of f. 664

A.28 Three graphs showing critical points. (a) f(~) is a local maximum.
(b) f(~) is a local minimum. (c) (~, f(~)) is a saddle point on the
graph of f. The tangent planes at the graph points are shown in all
three figures. 667

B.1 (a) A vector v connecting two points P and Q. (b) The sum ofvectors,
each vector determined by two points. 670

B.2 The parallelogram law for affine algebra. 671

B.3 Three coordinate systems in the plane. Observe that the vectors in the
coordinate system are not required to be unit length or perpendicular
in pairs. 674

BA An illustration of condition 1 of the definition for affine
transformation. 676

B.5 Various barycentric combinations of two points P and Q. 678

B.6 The triangle partitions the plane into seven regions. The signs of Cl'

C2' and C3 are listed as ordered triples. 679

B.7 (a) A triangle with base length b and height h marked. The area of the
triangle is bh/2. (b) A triangle viewed as a union ofan infinite number
of line segments of varying lengths (only a few are shown). The area
of the triangle is the sum of the lengths of those line segments. 682

B.8 A tetrahedron with base formed by Po, PI' and P 2. A triangle slice
parallel to the base is shown. The direction perpendicular to the base
is marked as the positive z-axis. 684

C.1 The graph of f(x) = x 2 + x for x near 1. 695

C.2 The graph ofa function that is discontinuous at x = 0. 698

C.3 The graph of x(t) = t(l- t) with two points marked at times t1 and
t2. The lines connecting the origin (0, 0) to (t1, x(tl)) and (t2' x(t2))

are secant lines to the graph. The line at the left is the tangent line to
the graph at (0, x (0)) = (0,0). 699

CA An attempt to compute the area bounded by a parabola and the x-axis

by filling it with rectangles. 702

C.S Bases of some rectangular solids as an attempt to fill the domain 'D. 709

C.6 The graph of a function f (x) on its domain [a, b]. 711

TABLES

2.1 Moments and products of inertia for vertices 63

2.2 Moments and products of inertia for edges 64

2.3 Moments and products of inertia for faces 65

2.4 Generation of polynomials by vector fields 68

4.1 Recursive dependencies for B-spline basis functions for n = 4 and
d=2 177

4.2 Nonzero values (boxed) from Table 4.1 for N3,o(u) = 1 178

4.3 Knot vectors and parameter intervals affected by modifying the
control point 183

4.4 The vertex-edge configurations for a pixel 213

5.1 Potential separating directions for OBBs and values for ro, rl' and r 338

7.1 Solving all possible systems of two equations in two unknowns 394

7.2 Tableau of coefficients and constants (Example 7.1) 399

7.3 Updated tableau: Exchanging Wz with Xz 400

7.4 Updated tableau: Exchanging Xl with W3 401

7.5 Updated tableau: Exchanging wI with Sl 401

7.6 Maximizing f 402

7.7 Maximizing f: Exchanging Sl with Sz 403

9.1 The actual and approximate values for the solution to the system of
equations 505

C.1 Average speed calculation on intervals [0, f:j.t] with decreasing f:j.t 693

C.2 Function values for X near c 694

C.3 Derivatives of some common functions 700

C.4 Parameters for various finite difference approximations 721

xxvii

PREFACE

The evolution of the games industry clearly has been motivated by the gamers' de­
mands for more realistic environments. 3D graphics on a 2D graphics card necessarily
requires a classical software renderer. Historically, rasterization of triangles was the
bottleneck on 2D cards because of the low fill rate, the rate at which you can draw
pixels during rasterization. To overcome fill rate limitations on consumer cards the
graphics hardware accelerator was born in order to off-load the rasterization from the
2D card and the central processing unit (CPU) to the accelerator. Later generations
of graphics cards, called 3D graphics cards, took on the role of handling the stan­
dard work of a 2D graphics card (drawing windows, bitmaps, icons, etc.) as well as
supporting rasterization that the 3D graphics requires. In this sense the adjective "ac­
celerator" for a combined 2D/3D card is perhaps a misnomer, but the term remains
in use.

As fill rates increased, the complexity of models increased, further driving the
evolution of graphics cards. Frame buffer and texture memory sizes increased in
order to satisfy the gamers' endless desires for visual realism. With enough power
to render a large number of triangles at real-time rates, the bottleneck of the cards
was no longer the fill rate. Rather it was the front end of the graphics pipeline that
provides the rasterizers with data. The processes of transforming the 3D triangle
meshes from world coordinates to camera coordinates, lighting vertices, clipping, and
finally projecting and scaling to screen coordinates for the purposes of rasterization
became a performance issue.

The next generation ofgraphics cards arrived and were called hardware transform
and lighting (HW T&L) cards, the name referring to the fact that now the work of the
graphics pipeline had been off-loaded from the CPU to the graphics processing unit
(GPU). Although the intent ofHW T&L cards was to support the standard graphics
pipeline, most of these cards also supported some animation, namely skin-and-bones
or skinning, in which the vertices of a triangle mesh (the "skin") are associated with
a matrix hierarchy (the "bones"), and a set of offsets and a set of weights relative to
the bones. As the matrices vary during runtime, the vertices are computed from the
matrices, offsets, and weights, and the triangle mesh deforms in a natural way. Thus,
we have some hardware support for deformable bodies.

The standard graphics pipeline is quite low-level when it comes to lighting of
vertices. Dynamic lights in a scene and normal vectors at vertices of a triangle mesh
are combined to produce vertex colors that are interpolated across the triangles by
the rasterizer. Textured objects are rendered by assigning texture coordinates to the
vertices of a mesh, where the coordinates are used as a lookup into a texture image.
The rasterizer interpolates these coordinates during rasterization, then performs a
lookup on a per-pixel basis for each triangle it rasterizes in the mesh. With a lot of

xxix

:xxx Preface

creativity on the artists' end, the vertex coloring and texturing functions can be used
to produce high-quality, realistic renderings. Fortunately, artists and programmers
can create more interesting effects than a standard graphics pipeline can handle,
producing yet more impetus for graphics cards to evolve. The latest generation of
graphics cards are now programmable and support vertex shading, the ability to
incorporate per-vertex information in your models and tell the rasterizer how to
interpolate them. Clever use ofvertex shading allows you to control more than color.
For example, displacement mapping of vertices transfers some control of positional
data to the rasterizer. And the cards support pixel shading, the ability to incorporate
per-pixel information via images that no longer are required to represent texture data.
Dot3 bump-mapping is the classic example of an effect obtained by a pixel-shader
function. You may view vertex shading as a generalization of the vertex coloring
function and pixel shading as a generalization of the basic texturing function.

The power of current generation graphics cards to produce high-quality visual
effects is enormous. Much of the low-level programming you would do for software
rendering is now absorbed in the graphics card drivers and the graphics APls (appli­
cation programmer interfaces) built on top of them, such as OpenGL and DirectX,
which allows programmers to concentrate at a higher level in a graphics engine. From
a visual perspective, game designers and programmers have most of what they need
to create realistic-looking worlds for their gamer customers. But since you are reading
this preface, you already know that visual realism is only half the battle. Physical real­
ism is the other half. A well-crafted, good-looking character will attract your attention
for the wrong reasons if it walks through a wall of a room. And if the characters can­
not realistically interact with objects in their physical environment, the game will not
be as interesting as it could be.

Someday we programmers will see significant hardware support for physics by
off-loading work from the CPU to a physics processing unit (PPU). Until that day
arrives we are, so to speak, at the level of software rendering. We need to implement
everything ourselves, both low-level and high-level, and it must run on the CPU.
Moreover, we need real-time rates. Even if the renderer can display the environment
at 60 frames per second, if the physics system cannot handle object interactions
fast enough, the frame rate for the game will be abysmally low. We are required to
understand how to model a physical environment and implement that model in a
fast, accurate, and robust manner. Physics itself can be understood in an intuitive
manner-after all, it is an attempt to quantify the world around us. Implementing a
physical simulation on a computer, though, requires more than intuition. It requires
mathematical maturity as well as the ability and patience to synthesize a large system
from a collection of sophisticated, smaller components. This book is designed to help
you build such a large system, a physics engine as it were.

Game Physics focuses on the topic of real-time physical simulation on consumer
hardware. I believe it is a good companion to my earlier book, 3D Game Engine De­
sign, a large tome that discusses the topic of constructing a real-time graphics engine
for consumer hardware. The two disciplines, of course, will be used simultaneouly
in a game application. Game Physics has a similar philosophy to 3D Game Engine

Preface xxxi

Design in two ways. First, both books were conceived while working on commercial
engines and tools to be used for building games-the occurrence of the word "game"
in the titles reflects this-but the material in both books applies to more than just
game applications. For example, it is possible to build a virtual physics laboratory for
students to explore physical concepts. Second, both books assume that the reader's
background includes a sufficient level of mathematics. In fact, Game Physics requires
a bit more background. To be comfortable with the material presented in this book,
you will need some exposure to linear algebra, calculus, differential equations, and
numerical methods for solving differential equations. All of these topics are covered
in an undergraduate program in mathematics or computer science. Not to worry,
though: as a refresher, the appendices contain a review of the essential concepts of
linear algebra, affine algebra, calculus, and difference equations that you will need to
read this book. Two detailed chapters are included that cover differential equations
and numerical methods for solving them.

I did not call the book 3D Game Physics because the material is just as appropriate
for 1- or 2D settings. Many of the constrained physical models are of lower dimen­
sion. For example, a simple pendulum is constrained to move within a plane, even
though a rendering of the physical system is in three dimensions. In fact, the mate­
rial is applicable even to projects that are not game-related, for example, supporting
a virtual physics laboratory for students to explore physical concepts. I did call the
book Game Physics and I expect that some readers may object to the title since, in
fact, I do not cover all possible topics one might encounter in a game environment.
Moreover, some topics are not discussed in as much depth as some might like to see.
With even a few years to write a book, it is impossible to cover all the relevant topics
in sufficient detail to support building a fully-featured physics engine that rivals what
you see commercially. Some projects just require a team of more than one. I specifi­
cally avoided getting into fluid dynamics, for example, because that is an enormous
topic all on its own. I chose to focus on the mechanics of rigid bodies and deformable
bodies so that you can build a reasonable, working system for physical simulation.
Despite this restricted coverage, I believe there is a significant amount of content in
this book to make it worth every minute of your reading time. This content includes
both the written text and a vast amount of source code on the CD-ROM that accom­
panies the book, including both the Wild Magic graphics engine and components and
applications for physics support. I have made every attempt to present all the content
in a manner that will suit your needs.

As in the production of any book, the author is only part of the final result. The
reviewers for an early draft of this book were extremely helpful in providing guidance
for the direction the book needed to take. The original scope of the book was quite
large, but the reviewers' wisdom led me to reduce the scope to a manageable size by
focusing on a few topics rather than providing a large amount ofbackground material
that would detract from the main purpose ofthe book-showing you the essentials of
physical simulation on a computer. I wish to personally thank the reviewers for their
contributions: Ian Ashdown (byHeart Consultants), Colin Barrett (Havok), Michael
Doherty (University of the Pacific), Eric Dybsand (Glacier Edge Technology), David

xxxii Preface

Eberle (Havok), Todd Growney (Electronic Arts), Paul Hemler (Wake Forest Univer­
sity), Jeff Lander (Darwin 3D), Bruce Maxim (University of Michigan-Dearborn),
Doug McNabb (Rainbow Studios), Jon Purdy (University of Hull), and Craig Rein­
hart (California Lutheran University). Thanks also go to Tim Cox, my editor; Stacie
Pierce, editorial coordinator; and Rick Camp, editorial assistant for the book. Tim has
been patient with my seemingly endless delays in getting a final draft to him. Well, the
bottom line is that the draft arrived. Now it is your turn to enjoy reading the book!

ABOUT THE CD-ROM

Limited Warranty

The Publisher warrants the media on which the software is furnished to be free from
defects in materials and workmanship under normal use for 30 days from the date
that you obtain the Product. The warranty set forth above is the exclusive warranty
pertaining to the Product, and the Publisher disclaims all other warranties, express
or implied, including, but not limited to, implied warranties of merchantability and
fitness for a particular purpose, even if the Publisher has been advised of the pos­
sibility of such purpose. Some jurisdictions do not allow limitations on an implied
warranty's duration; therefore the above limitations may not apply to you.

Limitation of Liability

Your exclusive remedy for breach of this warranty will be the repair or replacement
of the Product at no charge to you or the refund of the applicable purchase price paid
upon the return of the Product, as determined by the publisher in its discretion. In no
event will the publisher, and its directors, officers, employees, and agents, or anyone
else who has been involved in the creation, production, or delivery of this software be
liable for indirect, special, consequential, or exemplary damages, including, without
limitation, for lost profits, business interruption, lost or damaged data, or loss of
goodwill, even if the Publisher or an authorized dealer or distributor or supplier
has been advised of the possibility of such damages. Some jurisdictions do not allow
the exclusion or limitation of indirect, special, consequential, or exemplary damages
or the limitation of liability to specified amounts; therefore the above limitations or
exclusions may not apply to you.

License Agreements

The accompanying CD-ROM contains source code that illustrates the ideas in the
book. Each source file has a preamble stating which license agreement pertains to it.
The formal licenses are contained in the files found in the following locations on the
CD-ROM:

MagicSoftware/WildMagic2/License/WildMagic.pdf
MagicSoftware/WildMagic2/License/GamePhysics.pdf

xxxiii

xxxiv About the CD-ROM

The source code in the following directory trees is covered by the GamePhys i cs .pdf
agreement:

MagicSoftware/WildMagic2/Source/Physics
MagicSoftware/WildMagic2/Applications/Physics

Use of the files in the Physics directories requires ownership of this book. All other
code is covered by the Wi 1dMagi c. pdf agreement.

The grant clause of the Wi 1dMagi c. pdf agreement is:

We grant you a nonexclusive, nontransferable, and perpetual license to use The
Software subject to the terms and conditions of the Agreement:

1. There is no charge to you for this license.

2. The Software may be used by you for noncommercial products.

3. The Software may be used by you for commercial products provided that such
products are not intended to wrap The Software solely for the purposes ofsell­
ing it as if it were your own product. The intent of this clause is that you use
The Software, in part or in whole, to assist you in building your own original
products. An example ofacceptable use is to incorporate the graphics portion
of The Software in a game to be sold to an end user. An example that vio­
lates this clause is to compile a library from only The Software, bundle it with
the headers files as a Software Development Kit (SDK), then sell that SDK to
others. If there is any doubt about whether you can use The Software for a
commercial product, contact us and explain what portions you intend to use.
We will consider creating a separate legal document that grants you permis­
sion to use those portions of The Software in your commercial product.

The grant clause of the GamePhys i cs .pdf agreement is:

We grant you a nonexclusive, nontransferable, and perpetual license to use The
Software subject to the terms and conditions of the Agreement:

1. You must own a copy of The Book ("Own The Book") to use The Software.
Ownership of one book by two or more people does not satisfy the intent of
this constraint.

2. The Software may be used by you for noncommercial products. A noncommer­
cial product is one that you create for yourself as well as for others to use at
no charge. If you redistribute any portion of the source code of The Software
to another person, that person must Own The Book. Redistribution of any
portion of the source code of The Software to a group of people requires each
person in that group to Own The Book. Redistribution of The Software in bi­
nary format, either as part of an executable program or as part of a dynamic
link library, is allowed with no obligation to Own The Book by the receiving
person(s), subject to the constraint in item 4.

About the CD-ROM XXXV

3. The Software may be used by you for commercial products. The source code
of The Software may not be redistributed with a commercial product. Redis­
tribution of The Software in binary format, either as part of an executable
program or as part of a dynamic link library, is allowed with no obligation to
Own The Book by the receiving person(s), subject to the constraint in item
4. Each member of a development team for a commercial product must Own
The Book.

4. Redistribution of The Software in binary format, either as part of an exe­
cutable program or as part of a dynamic link library, is allowed. The intent
of this Agreement is that any product, whether noncommercial or commer­
cial, is not built solely to wrap The Software for the purposes of redistributing
it or selling it as if it were your own product. The intent of this clause is that
you use The Software, in part or in whole, to assist you in building your own
original products. An example of acceptable use is to incorporate the phys­
ics portion of The Software in a game to be sold to an end user. An example
that violates this clause is to compile a library from only The Software, bundle
it with the headers files as a Software Development Kit (SDK), then sell that
SDK to others. If there is any doubt about whether you can use The Software
for a commercial product, contact us and explain what portions you intend to
use. We will consider creating a separate legal document that grants you per­
mission to use those portions of The Software in your commercial product.

Installing and Compiling the Source Code

The Wild Magic engine is portable and runs on PCs with the Microsoft Windows
2000/XP operating systems or Linux operating systems. Renderers are provided for
both OpenGL (version 1.4) and Direct3D (version 9). The engine also runs on Apple
computers with the Macintosh OS X operating system (version 10.2.3 or higher).
Project files are provided for Microsoft Developer Studio (version 6 or 7) on Mi­
crosoft Windows. Make files are provided for Linux. Project Builder files are provided
for the Macintosh.

For convenience of copying, the platforms are stored in separate directories on
the root of the CD-ROM. The root of the CD-ROM contains three directories and
one PDF file:

Windows
Linux
Macintosh
ReleaseNotes2pl.pdf

Copy the files from the directory of your choice. The directions for installing and
compiling are found in the PDF file. Please read the release notes carefully before
attempting to compile. Various modifications must be made to your development
environment and some tools must be installed in order to have full access to all the

xxxvi About the CD-ROM

features ofWild Magic. A portable graphics and physics engine is a nontrivial system.
If only we were so lucky as to have a "go" button that would set up our environment
automatically!

Updates and Bug Fixes

Regularly visit the Magic Software, Inc. web site, www.magic-software.com. for up­
dates and bug fixes. A history of changes is maintained at the source code page of the
site.

INT"RODUiCTION

1.1 A BRIEF HISTORY OF THE WORLD

The first real experience I had with a "computing device" was in the early 1970s when
I attended my first undergraduate college, Albright College in Reading, Pennsylvania,
as a premedical student. The students with enough financial backing could afford
handheld calculators. The rest ofus had to use slide rules-and get enough significant
digits using them in order to pass our examinations. I was quite impressed with
the power of the slide rule. It definitely was faster than the previous generation
of computing to which I was accustomed: pencil and paper. I did not survive the
program at the college (my grades were low enough that I was asked to leave) and
took a few year's break to explore a more lucrative career.

Deciding that managing a fast-food restaurant was not quite the career I thought
it would be, I returned to the college track and attended Bloomsburg University (BU)
in Bloomsburg, Pennsylvania, as a mathematics major, a field that suited me more
than chemistry and biology did. During my stay I was introduced to an even more
powerful computing device, a mainframe computer. Writing Fortran programs by
punching holes in Hollerith cards 1 was even better than having to use a slide rule,

1. Herman Hollerith used punched cards to represent the data gathered for the 1890 American census. The
cards were then used to read and collate the data by machines. Hollerith's company became International
Business Machines (IBM) in 1924.

1

2 Chapter 1 Introduction

except for the occasional time or two when the high-speed card reader decided it was
really hungry. By the end of my stay I had access to a monitor/terminal, yet another
improvement in the computing environment. Linear programming problems were a
lot easier to solve this way than with the slower modes of computing! I finished up at
BU and decided graduate school was mandated.

Next stop, the University of Colorado at Boulder (CU) in 1979. I took a liking
to differential equations and got another shot at punching cards, this time to nu­
merically solve the differential equations of motion for a particular physical system. I
understood the theory of differential equations and could properly analyze the phase
space of the nonlinear equations to understand why I should expect the solution to
have certain properties. However, I could not compute the solution that I expected­
my first introduction to being careless about applying a numerical method without
understanding its stability and how that relates to the physical system. The remainder
of my stay at CU was focused on partial differential equations related to combustion
with not much additional computer programming.

After graduating in 1984, I started my academic career at the University ofTexas at
San Antonio (UTSA) in the Division of Mathematics, Computer Science, and Statis­
tics. The university had recently started an engineering program and designed four
courses for applied mathematics and computer science relevant to the new program.
The two applied mathematics courses were your standard fare for an engineering pro­
gram and included topics on differential equations, numerical methods, and physics
concepts. The two computer science courses were somewhat unique in that both re­
quired students to work on the fast personal computers that were available at the time:
4.77 MHz Intel 8086 machines. The first course was introductory programming with
Borland's Turbo Pascal 3. The second course was on computer graphics. Although
Turbo Pascal supported graphics primitives, my requirements for the course included
writing device drivers for the state-of-the-art graphics card: the Enhanced Graph­
ics Adapter (EGA). With a blazingly fast CPU, Microsoft's Disk Operating System
(DOS), 20M ofhard disk space, 640K of accessible system memory, and an EGA card
with four 64K memory chips (one chip per color plane), we were able to produce
some fine quality output rivaling that of the 2D computer games of that era. The
output was almost as good as what we could produce on the department's DEC Gigi
that was attached to a VAX 730 and allowed you to draw to the monitor by sending
cryptic escape sequences of the type that you normally see in printer drivers.

1.1 A Brief History of the World 3

During my tenure at UTSA, I became more involved in computer-related top­
ics and less involved in theoretical considerations in my research field of differential
equations. In particular I became involved with the University ofTexas Health Science
Center's Department ofRadiology. The field ofmedical imaging was quite interesting
to me with its inherent connection to computer graphics and visualization, but also of
interest were aspects of geometry and numerical methods since we were interested in
analyzing and extracting anatomical information from 3D medical images. My inter­
est in the topic was strong enough that I decided to leave UTSA in 1991 and become
a "retread" by studying computer science and medical imaging at the University of
North Carolina (UNC) at Chapel Hill.

While at UNC I had access to more powerful equipment. We did not have a Cray
supercomputer with a couple of powerful processors, but we did have a massively
parallel machine appropriately named the MASPAR with 8196 processors, individu­
ally not very powerful, but a natural architecture for 2D image processing. Still, there
was a strong attraction to compute numerically on a personal computer, to see the re­
sults graphically and immediately, if not sooner. At the time I had upgraded my Intel
8086 machine to an Intel 80486 machine with a floating point coprocessor. I was able
to implement many algorithms of interest in image analysis, including constructing
something called ridges that are defined in terms of differential equations. The same
programming issues that arose at CU bit me again: applying numerical methods for
differential equation solvers without thought about the stability of the methods or
about their applicability to the problem at hand. Another problem of interest was to
compute geodesic curves on surfaces, curves that represent the shortest surface path
between two points on the surface. The formulation of the problem is akin to what
you see in Lagrangian dynamics in physical modeling and results in yet more differ­
ential equations to solve numerically.2

2. Specifically, a geodesic curve on a surface is the natural extension of a straight line in a plane-it has zero
curvature. The physical analogy is that a particle traveling along a geodesic has zero acceleration while
satisfying the constraint of remaining on the surface.

4 Chapter 1 Introduction

After leaving UNC, I eventually found my way into the games industry in 1997
by signing on at Numerical Design Ltd. (www.ndl.com). a company cofounded by
J. Turner Whitted, credited with the invention of ray tracing, and Robert Whitton,
a mathematics professor at Davidson College. The company's business model had
been focused on contract work in computer graphics, and they had developed a
photorealistic ray tracing package called R-Plus. Times were changing and they had
decided that a product-oriented business model was better than a contract-based
model. When I arrived the code base for NetImmerse was in its infancy. The goal of
the product was a real-time graphics engine for 3D games. At the time the Voodoo 1
graphics accelerator from the company 3Dfx (now defunct) had arrived on the scene.
This was a true accelerator in the sense that it coexisted with a standard 2D graphics
card. As you are already aware, this type of graphics technology started a whole new
trend in the computer industry leading to significant evolution of central processing
units (CPUs) and off-loading of a lot of work to graphics processing units (GPUs).
The standard development machine at NDL in 1997 was a Pentium 133 MHz with
32M of system memory, not a lot ofpower compared to present-day machines but at
the time quite a good system.

One of the first customers for NetImmerse was Broderbund, a software com­
pany that intended to use the package for their upcoming game Prince of Persia
3D (POP3D). The game engine needed a lot of help to evolve and keep up with
the features that POP3D required. In particular, the collision detection system of
NetImmerse was crude and needed improvement. The game engine was overhauled,
including the addition of quaternions to support fast keyframe animations. The col­
lision detection and response system was built from scratch, used hierarchical culling
for collision purposes, and used an oriented bounding box (OBB) tree-based hier­
archy to support collision detection of the triangle mesh geometry [GLM96J, but
with an enhancement to predict the time of first contact of moving objects (see Sec­
tion 5.3). The system also implemented 3D picking (intersection ofline/ray/segment
with objects), something heavily used in POP3D to allow the Prince to jump and
catch ledges, and other related movements with constraints. The collision system was
functional, but not what I would call sophisticated. CPUs were finally reaching speeds
of 800 MHz by the time POP3D shipped in 1999, but they still did not have sufficient
power for complex geometric environments. The collision system was also used suc­
cesfully in an arcade game called X5-G (originally called Canyon RUflner) that was
shipped by Greystone Technology in 1998.

As CPUs and GPUs evolved due to consumer demands in the gaming arena,
the graphics cards became powerful enough to give players a visually rich and
convincing environment for the games. But consumers are relentless and wanted
more physical realism. Predicting a trend in this direction, the company MathEngine
(www.mathengine.com) was started to build what was called a physics engine. The
product was a good one, but some of the demonstrations showed jittering objects
in resting contact with a flat surface. The problem is that applying numerical meth­
ods to the differential equations of motion is not enough. Stability of the methods is
important, but also important is having a robust system that integrates collision de-

1.1 A Brief History of the World 5

tection and collision response involving multiple rigid bodies. Resting contact is now
a classic problem that requires great care when implementing to avoid the jittering
objects. While I was at NDL, Steven Collins, the CTO of a Dublin-based company
called Telekinesys, Inc. contacted us to see what we thought about their physics en­
gine and how it handled problems like resting contact. The demonstrations were
very convincing and showed that, in fact, you can obtain physical realism with good
frame rates even on current consumer CPUs. Eventually, Telekinesys announced their
new technology, and the company name changed to Havok.com (www.havok.com).
Their commerical physics engine is an extremely good product. Many of the robust­
ness issues that show up in any product attempting to handle geometric queries on
a computer with floating point arithmetic have been solved by the Havok folks. In
fact, in January of 2003 I walked into my favorite store, Intrex Computers, to sat­
isfy my latest silicon craving. On display was a computer with an ATI Radeon 9700
graphics card running a demonstration from Havok.com that showed a creature in
exotic garb dancing about. The clothing was flowing in a very believable manner­
no self-intersections of the cloth and running at real-time rates. All I wanted was a
hard drive, but I also walked out with a new graphics card and the desire to write my
own physics engine. You know the feeling

Other companies, of course, have bought into the idea that you can do realis­
tic physics in real time. The various modeling packages have plug-ins to help artists
with the physics. A particularly good and robust plug-in for the modeling package
Softlmage (www.softimage.com) is the dynamics package Animats from John Nagle
(www.animats.com). John has spent a lot of time figuring out how to avoid all the
annoying floating point pitfalls that arise in any package that you build to handle
physics, collision, and distance and intersection calculations. Also noteworthy is the
Vortex physics engine from CMLabs (www.cm-labs.com). A commercial package for
robust distance calculations between convex polyhedra is named SOLID 3 and writ­
ten by Gino van den Bergen (www.libsolid.com); earlier versions are available for free
(www.dtecta.com). No doubt you will discover many other related packages. Just as
the number of commercial graphics engines increases as the technology becomes
more commonly known to people, so will the commercial physics engines.

The games industry has gone through quite an evolutionary period over the past
few decades. The computers of 10 years ago are nowhere near the powerful machines
we have today. I started out with a 4.77 MHz Intel 8086 machine and a 2D EGA
graphics card. Now I have machines with very fast CPUs and lots of system memory,
and they all have 3D graphics hardware. These include a Macintosh system, a Linux
system, and a few Microsoft Windows PCs (maintaining portable source code comes
at a price). These systems are all capable of real-time graphics and real-time physics,
whereas the systems of a decade ago just did not have that kind of power.

6 Chapter 1 Introduction

Nevertheless, a major theme in this briefhistorical journey ofmine is, The mathe­
matics and physics that you will deal with in this book is not new. Much ofthe computer
graphics research that appears in the literature of the past decade is motivated by the
power that machines have now (or soon will have). Much of what occurs in that re­
search is a reapplication ofclassic mathematical and physical concepts and shows that
the researchers appreciate the importance and power of mathematics and physics in
achieving their goals. Thus, you too should appreciate the power of all things math­
ematical and physical. As readers of my books certainly know, I have not shied away
from mathematics, because it is my language for understanding the technical world
around me. I wish it to be your language, too. After all, you will need it in order to
appreciate fully the complexities and difficulties in implementing a robust physical
simulation on a computer. What else can I say!

1.2 A SUMMARY OF THE TOPICS

Physics concepts and their application to games is quite a large topic. Rather than
attempt to provide brief summaries of all possible topics, in other words a survey
book, I decided to focus on the subset that most programmers seem to ask questions

1.2 A Summary of the Topics 7

about in the various Usenet newsgroups: mechanics, rigid bodies, deformable bodies,
and collision detection and response systems. These topics are discussed in depth
and require a minimum mathematical background that includes linear algebra and
calculus, both univariate and multivariate. Also helpful would be some exposure to
ordinary differential equations and to numerical methods that solve these, but ifyou
have not had this exposure, a couple of chapters provide enough material to support
what you will need for implementing a physical simulation.

Chapter 2 introduces curves in two dimensions and in three dimensions as repre­
sentative paths of a particle. The chapter introduces the physical concepts ofposition,
velocity, and acceleration. The choice of coordinate system is important in an appli­
cation, so the standard systems are covered, including polar coordinates, cylindrical
coordinates, and spherical coordinates. The motion ofparticles along paths in the ab­
sence of forces is called kinematics. In addition to kinematics of a single particle, we
also look into the kinematics of a particle system. This material is the all-important
foundation for the physics engines discussed in Chapter 5.

The remainder of Chapter 2 is an introduction to the standard concepts that you
see in a course on physics, starting with Newton's laws of motion. The topics of force,
torque, equilibrium, linear and angular momentum, center of mass, moments and
products of inertia, and kinetic and potential energy are discussed in detail with the
goal of being able to calculate these quantities on a computer. Computing the center
of mass and the inertia tensor for a solid convex polyhedron is necessary for the
physics engines of Chapter 5.

Chapter 3 is about dynamics: the interaction of rigid bodies when forces and
torques are present in the physical system. The classical approach in an introductory
physics course uses Newtonian dynamics and the famous formula ofNewton's second
law ofmotion, F = rna, where rn is the constant mass ofan object, a is its acceleration,
and F is the applied force. I do not spend a lot of time delving into this approach.
The coverage is sufficient to support the general purpose physics engines that use
Newton's second law for simulation.

The majority of Chapter 3 is spent on Lagrangian dynamics, a framework for
setting up the equations of motion for objects when constraints are present. In La­
grangian dynamics, the equations of motion naturally incorporate the constraints.
A Newtonian formulation requires that forces of constraint be part of the term F in
the equation of motion, and the constraint forces are sometimes difficult to derive.
For example, you will see in the Lagrangian approach that frictional forces are easier
to deal with than in the Newtonian approach. For many games, a designer's specific
knowledge of the physical system can be exploited to good effect by formulating the
simulation using Lagrangian dynamics, the result being that the computational time
ofthe simulation is reduced, compared to a general-purpose system using Newtonian
dynamics.

Euler's equations of motion are also discussed in Chapter 3, because a few prob­
lems are more naturally formulated in terms of Euler angles than in terms of other
dynamics systems. Although Hamiltonian dynamics is of importance, especially in
dealing with the n-body problem, I made the decision not to include a discussion of

8 Chapter 1 Introduction

it in this book, since the other approaches are sufficient to allow implementations on
a computer.

Chapter 4 is about deformable bodies. There are many ways to simulate defor­
mation; we will address a subset in this book. In all cases you should consider these
"hacked" physics in the sense that at no time do we use a real physical model for the
actual material that makes up the bodies. The real models do not lend themselves to
the fast computation that a game requires. All that is required of a hacked physics
approach in a game is that the deformations look believable to the player. I do cover
mass-spring systems for the purposes of deformation, but even these might not be as
realistic a model for deformable objects as you might wish.

Another method that I have included for describing deformable objects includes
the use of control point surfaces where you vary the control points in some suitable
manner to cause the surface to deform as you desire. A brief discussion is given for B­
spline curves and surfaces and for nonuniform rational B-spline(s) (NURBS) curves
and surfaces. The presentation is limited to the computational aspects of curves and
surfaces, including optimizations that allow fast evaluation. You are referred to other
sources for a more detailed look at the properties of B-splines and NURBS.

Free-form deformation is a method for deforming an object and uses a volu­
metric approach. The object is embedded in a portion of space that is defined via
a control point lattice. The volume of space is deformed, causing the object itself to
deform.

The final deformation method is based on the object's surface being defined
implicitly. The popular term for such surfaces is metaballs. I prefer to call them what
they are, implicit surfaces. The discussion of this topic shows how you define a 3D
lattice of sample points, trilinearly interpolate to obtain a continuous representation
of a function defined on the volume occupied by the lattice, then extract the implicit
surface as the level surface of the constructed function. Implicit surfaces are deformed
by varying the constructed function itself.

Chapter 5 is about what most readers probably think of as the meat of game
physics-the physics engine. The chapter describes a general system for handling
a collection of rigid bodies, including collision detection and collision response. A
general system is one that uses Newton's second law of motion, F = rna, to control
the motion of objects. The constraint forces are unknown to the system and must be
calculated based on the information that is provided by the collision detection system.

I discuss the impulse-based approach that Brian Mirtich [Mir96b] and David
Baraff [BarO1] made popular, but by all means this is not the only approach you can
take. My goal is to go into significant detail about the impulse-based approach so
that you (1) understand the layout of a general physics engine, (2) see what compli­
cations arise, and (3) learn to evaluate what its strengths and weaknesses are. Other
approaches to building a robust physics engine are based on trying to fix the weak­
nesses of the previous-generation engine. Once you understand the impulse-based
engine, you should be able to start experimenting with modifications; references to
other approaches are provided, so you have a nearly endless supply of ideas to inves­
tigate. For instance, a good tutorial site for rigid body dynamics is [Hec98].

1.2 A Summary of the Topics 9

The first section of Chapter 5 is about unconstrained motion. This gives you an
idea of how to design a data structure to represent a rigid body and how to solve the
differential equations of motion for a body that does not interact with other bodies
in its environment. Section 5.2 complicates matters by allowing interaction between
bodies, referred to as constrained motion. As you will see, building a collision detec­
tion and response system for constrained motion is a formidable task! I have provided
enough pseudocode to allow you to build a working engine if you choose to do so.
Source code is provided for a working engine with which you can experiment. A lot
of code was written by George Innis of Magic Software, Inc. after reading a draft of
this book-hopefully evidence that other folks will be able to implement real systems
from my descriptions.

The last subsection of the material on constrained motion (Section 5.2.5) pro­
poses a different approach that I think should be investigated. I propose that an
implementation can detect and provide enough information about the constraints
imposed by the contact set found by the collision detection system so that, rather
than continuing to solve the general F = ma, the system can construct the Lagrangian
equations of motion and switch to the appropriate set when necessary. This ap­
proach would be of particular importance when dealing with frictional forces since
LagrangialYdynamics do a better job of incorporating the friction into the equations.
The physics engine that Thomas Jakobsen designed and developed for 10 Interactive
already hints at this [TakO1] by using projection of the system state variables onto a
manifold described by the constraints.

Section 5.3 is on collision detection with convex polyhedra. This is generally the
hardest part of a physics engine to implement in a robust manner while not using
too much computational time that is allotted per time frame. I discuss the method
of separating axes because it burdens you with the minimum information needed to
test if two objects overlap, but provides as much information as you need to actually
compute the contact set between two noninterpenetrating objects.

Section 5.4 is about using spatial and temporal coherence ofthe rigid body objects
to reduce the amount of time spent detecting collisions. A couple of basic systems
are mentioned, one using bounding spheres, but a more effective one using axis­
aligned bounding boxes. Many approaches to collision detection are abundant in the
literature. I do not attempt to describe any of them in great detail since my goal with
this book is not to focus heavily on the collision detection portion of an engine, but
rather to focus on the collision response. That said, I do provide references in Section
5.5 so that you can investigate the topics yourself, many ofwhich are available through
the geometry web site of Ming Lin and Dinesh Manocha of the Computer Science
Department at the University of North Carolina [GAM03]. A couple offine books on
collision detection are forthcoming from Morgan Kaufmann Publishers, one by Gino
van den Bergen [vdB03] and one by Christer Ericson of Sony Interactive [Eriar].

Chapter 6 is a brief discussion of how to obtain some physical effects through
the use of shader programs on programmable graphics cards. Vertex shaders allow
displacement of vertices to obtain visual effects of the physical simulation, but it is
important to note that the displaced vertices are not accessible to the main program.

10 Chapter 1 Introduction

Until that capability is added to programmable graphics cards) you will not be able
to use the vertex locations for any type of intersection or collision testing. The chap­
ter has examples of vertex shaders for vertex displacement and for skin-and-bones
animation. Other examples are along the lines of optical effects (still in the realm of
physics)) including reflection and refraction effects. In a sense shader programs pro­
vide a form of hacked physics. As graphics hardware evolves) look for the ability to
rapidly read data from the graphics card into system memory) thereby allowing for
intersection and collision testing.

The remaining four chapters of the book provide mathematical background. As
such they are a bit more difficult to read than the previous chapters. Chapter 7 is on
the topic of linear programming (LP)) the linear complementarity problem (LCP))
and mathematical programming (MP) generally. One application ofthe material is to
use LCP methods to compute the distance between convex polygons or convex poly­
hedra. Another application is to use LCP methods to compute resting contact forces
and to use MP methods) namely) constrained quadratic minimization) to compute
impulsive contact forces at the points of contact among a collection of interacting
rigid bodies. The LCP method also is useful in computing distance between points)
convex polygons) and convex polyhedra.

Chapter 8 is a brief overview of the theory of differential equations. This material
is provided for those readers who want to understand the basic theory of differential
equations relevant to physical simulation. The overview is at the level ofwhat you will
find in an undergraduate textbook on the topic; it is intentionally limited in scope but
should give you enough of the flavor of what analysis of differential equations is all
about.

Chapter 9 is on numerical methods for sdlving differential equations. This is a
large chapter that shows you a vast collection of methods) including how the meth­
ods are derived using basic mathematical principles. The methods include Euler)s
method) higher-order Taylor methods) methods obtained by an integral formulation)
and the all-popular and robust Runge-Kutta methods. These are all single-step meth­
ods that require information only at the previous time step to generate information
at the current time step. I also discuss multistep methods that use multiple previous
times to generate information at the current step. These methods include the con­
cept of a predictor-corrector that attempts to provide good estimates of the solution
from ones that are less precise. Extrapolation methods are also covered) leading to the
Bulirsch-Stoer method that uses rational polynomial extrapolation to produce highly
accurate results with a minimum of computation cost. A class ofmethods that is very
popular now in the games arena) and has been used for a long time in molecular dy­
namics) is the Verlet methods. A section of the chapter is devoted to these methods)
including the standard Verlet method) the Leap Frog method) and the Velocity Verlet
method. I also included a reasonable alternative called the Gear fifth-order predictor­
corrector method. Thus) you have a large collection ofsolvers) all ofthem implemented
in the source code on the CD-ROM that accompanies the book.

Implementing a numerical method is only half the battle. Understanding the
stability of a method) how to choose an appropriate step size) and how to evaluate

1.3 Examples and Exercises 11

the trade-offs between accuracy and computation time is the other half of the battle.
Perhaps the most important part of Chapter 9 is the section on numerical stability
and its relationship to physical stability of equilibrium solutions. You might think of
this as an irrelevant mathematical exercise, but in fact I provide a stability analysis for
a handful of methods when applied to the simple pendulum problem. This gives you
the blueprint to follow when analyzing the stability of methods for your particular
applications. The last section ofthe chapter discusses the problem of stiffness, another
issue related to the stability of numerical solvers.

Chapter 10 is on quaternions, one of the most misunderstood and abused topics
in the Usenet newsgroups (in my opinion). Yes, these are mathematical in flavor,
but in fact a physical simulation benefits from using these because of the resulting
reduced memory in representing rotations and in the reduced computation time
in actually rotating or updating the equations of motion for a physical system. The
molecular dynamics folks have been using these for a really long time, so you can find
a lot of online material discussing quaternions in the context of that field, including
higher-order methods for numerically solving the quaternion differential equation
that shows up in the physical simulation.

I provide tl;1e classical approach to how quaternions relate to rotations and I pro­
vide a linear algebraic approach to try to motivate the connection by considering
rotation in four dimensions. Section 10.4, "From Rotation Matrices to Quaternions:'
was written by Ken Shoemake, famous for introducing the joys and necessities of
quaternions to the computer graphics and animation communities. The final two
sections involve interpolation of quaternions and derivatives of time-varying quater­
nions, the latter section being related to how you derive the equation of motion for
updating orientations of rigid bodies when quaternions are used to represent the ori­
entations.

1.3 EXAMPLES AND EXERCISES

Quite a few examples and exercises are provided in this book. The examples are
worked through in detail, of course, with some of them implemented in source code,
which is on the CD-ROM. The exercises are for you to try. They vary in difficulty
and are marked accordingly: easy tE , medium 1tJ ' or hard iH . The assignment of
these labels is my own choosing and may not agree with someone else's assessment
of the level of difficulty. The answers to selected exercises are on the CD-ROM.
I recommend that you make a significant attempt to answer the questions before
looking up the answer. The answers to the remaining exercises are available only
through your instructor, with access provided by Morgan Kaufmann Publishers.

BAS IC\\\\CONCEPTS
FROM ,eHYSICS

I n this chapter we review some of the basic concepts of physics that are relevant to
the analysis of motion and interaction of rigid bodies. A rigid body is classified ac­

cording to the type of region that contains its mass, the topic of Section 2.1. Section
2.2 introduces curves in two or three dimensions as representative paths of a particle
in the absence of forces. This topic is referred to as kinematics. The section intro­
duces the physical concepts of position, velocity, and acceleration. Many applications
are better handled with an appropriate choice of coordinate system. The Cartesian
system is usually convenient, but we also take a look at polar coordinates, cylindrical
coordinates, and spherical coordinates. In addition to kinematics of a single particle,
we also look into the kinematics of particle systems and of solid bodies. This material
is the foundation for the physics engines discussed in Chapter 5.

The remainder of this chapter is an introduction to the standard concepts that
you see in a course on physics, starting with Newton's laws of motion in Section 2.3.
The topic of forces is discussed in Section 2.4 with specific reference to forces you
will see throughout the book in the examples: gravitational forces, spring forces, and
frictional forces. The closely related topics of torque and equilibrium are also covered
in the section. Various measures of momenta are discussed in Section 2.5, includ­
ing linear and angular momentum, first-order moments and their relationship to the
center ofmass ofan object, and moments and products of inertia. The last part ofSec­
tion 2.5 shows how to compute the center of mass and the inertia tensor for a solid
polyhedron of constant mass, something you will need to implement in the physics
engines discussed in Chapter 5. Work and energy are the final topic of the chapter.

13

14 Chapter 2 Basic Concepts from Physics

The kinetic energy is an important quantity in the development of Lagrangian dy­
namics. The potential energy is important when dealing with conservative forces such
as gravity.

2.1 RIGID BODY CLASSIFICATION

A rigid body is characterized by the region that its mass lives in. The simplest body
is a single particle of mass m that occupies a single location x. A particle system is a
collection of a finite number ofparticles, say, p of them, the i th particle having mass
mi and located at Xi' 1::S i ::s p. Single particles and particle systems are examples of
discrete material since the number of particles is finite. Various physical quantities
involve summations over the particles in a ~ystem. The standard notation is

p

Qtotal = L Qi
i=l

where Qi is some physical quantity assoCiated with the ith particle and Qtotal is the
summary quantity for all the particles. Although the equation here involves a scalar­
valued physical quantity, vector-valued quantities will be encountered as well.

Another type of body is referred to as a continuous material, consisting of in­
finitely many particles that lie in a bounded region of space, denoted R. We refer
to such a rigid body as a continuum of mass. Within the category of a continuum of
mass we have a further set of classifications. The region R can be a bounded segment
of a curve, whether in one, two, or three dimensions. Mathematically we may refer to
such a rigid body as a curve mass. Physically we may call the body a wire. R can be a
bounded region in the plane (two-dimensional mass living in two dimensions) or a
bounded portion of a surface in space (two-dimensional mass living in three dimen­
sions). Mathematically we may refer to such a rigid body as a surface mass. Physically
we may call the body a lamina or, in two dimensions, a planar lamina. Finally, R can
be a solid occupying a bounded region ofspace. Mathematically we may refer to such
a body as a volume mass. Physically we may call the body a solid.

Various physical quantities involve summations over all particles of mass in the
region. The summation notation for particle systems no longer applies and is re­
placed by integration over the region. The method of integration depends on the
category of region. Generically we will use the notation

Qtotal =1Q dR

where R is the region, dR is an infinitesimal portion of the region, and Q is the
physical quantity of interest and can be scalar- or vector-valued. An analysis for a
particular type of rigid body, whether for mathematical purposes or for a computer
implementation, must provide the specific type of integration in order to compute

2.2 Rigid Body Kinematics 15

the integral. For a curve mass, the integration is computed as a line integral, where
the curve is parameterized by a single parameter and the limits of integration depend
on that parameterization. For a surface mass in the plane, the integration is computed
as a double integral, where the limits of integration depend on how the region is
represented. For a surface mass in space, the integration is via a surface integral
whose evaluation may very well involve Stokes's Theorem. For a volume mass, the
integration is computed as a triple integral, where the limits of integration depend on
how the region is represented. Throughout the book I will use the generic notation
JR Q dR when presenting general physical topics. I will resort to the specific type of
integration when demonstrating the concepts with examples.

2.2 RIGID BODY KINEMATICS

The study of motion of objects without considering the influence of external forces
is referred to as kinematics. The basics of the topic are presented in this section. We
look at the three basic types of rigid bodies: a single particle, a particle system, and
a continuum of mass. For the purposes of rigid body kinematics, the analyses for
particle systems and continuous materials are the same.

2.2.1 SINGLE PARTICLE

Let us focus first on the kinematics of a single particle. Although we might start
directly with the analysis of a particle moving through space, many situations arise
where the particle is constrained to moving within a plane. We start our analysis
with particle motion in the xy-plane, ignoring the z-component of the position. If
the constraining plane is another one at some arbitrary orientation in space, basic
methods of linear algebra may be applied to represent the particle's position with
respect to an orthonormal basis of two vectors in that plane. The ideas we present
here for the xy-plane apply directly to the coordinates within the general plane.

Whether in two or three dimensions we may choose Cartesian coordinates to rep­
resent the particle's position. However, some problems are better formulated in dif­
ferent coordinate systems. Particle motion is first discussed in Cartesian coordinates,
but we also look at polar coordinates for 2D motion and at cylindrical or spherical co­
ordinates for 3D motion since these coordinate systems are the most common ones
you will see in applications.

Planar Motion in Cartesian Coordinates

First let us consider when the particle motion is constrained to be planar. In Cartesian
coordinates, the position of the particle at time t is

ret) = x(t) I + yet) J (2.1)

16 Chapter 2 Basic Concepts from Physics

where l = (1,0) and J = (0, 1). The velocity of the particle at time t is

vet) = r = i l + YJ (2.2)

The dot symbol denotes differentiation with respect to t. The speed of the particle at
time t is the length of the velocity vector, Ivl. If set) denotes the arc length measured
along the curve, the speed is s = Ivl. The quantity s = ds / dt is intuitively read as
"change in distance per change in time,)) what you expect for speed. The acceleration
of the particle at time t is

aCt) =v= r= Xl + Y J (2.3)

At each point on the curve of motion we can define a unit-length tangent vector by
normalizing the velocity vector,

T(t) =~ = (cos(¢(t)), sin(¢(t)))
Ivl

(2.4)

The right-hand side ofequation (2.4) defines ¢ (t) and is valid since the tangent vector
is unit length. A unit-length normal vector is chosen as

N(t) = (- sin(¢(t)), cos(¢(t))) (2.5)

The normal vector is obtained by rotating the tangent vector Jr /2 radians counter­
clockwise in the plane. A coordinate system at a point on the curve is defined by origin
ret) and coordinate axis directions T(t) and N(t). Figure 2.1 illustrates the coordinate
systems at a couple of points on a curve. The coordinate system {ret); T(t), N(t)} is
called a movingframe.

Figure 2.1 A couple of coordinate systems at points on a curve.

2.2 Rigid Body Kinematics 17

The velocity and acceleration vectors may be represented in terms of the curve
tangent and normaL The velocity is a minor rearrangement of equation (2.4),

v= IvIT=sT

The acceleration is obtained by differentiating the last equation,

. d (·T) ··T . dT ··T .2 dT
a=v=- s =s +s-=s +s-

dt dt ds

(2.6)

Differentiating the tangent vector in equation (2.4) with respect to arc length s
produces

dT d (. d¢. A. ()- = - cos ¢, SIll ¢) = - (- SIll ¢, cos 'P) = K N s
ds ds ds

where K = d¢ / ds is the curvature of the curve at arc length s. Observe that large
angular changes in the normal vector over a small length of curve equate to large
curvature values. The acceleration is therefore

(2.7)

The component sT is called the tangential acceleration, the acceleration in the direc­
tion of motion. The component Ks 2N is called the normal acceleration or centripetal
acceleration, the acceleration that is perpendicular to the direction of motion. Equa­
tions (2.6) and (2.7) may be used to show that the curvature is

v· a1.. xy - yx
K---------

- Ivl 3 - (.x2 + y2)3/2
(2.8)

where (a, 13)1.. = (13, -a).
The rate of change of the tangent vector with respect to arc length is related to the

normal vector. You might be curious about the rate of change of the normal vector
with respect to arc length. It is

dN d (. A.) d¢ (.) T- = - - SIll 'P, cos ¢ = - - cos ¢, - SIll ¢ =-K
ds ds ds

Summarizing the s-derivatives in a format matrix notation:

(2.9)

Observe that the coefficient matrix is skew-symmetric, a common theme when com­
puting the derivatives of the vectors in a frame.

18 Chapter 2 Basic Concepts from Physics

EXAMPLE

2.1
Construct the various vectors and quantities mentioned earlier for a parabolic curve
ret) = tl + t 2J. For simplicity of notation, we use r = (t, t 2).

The velocity is v = (1, 2t) and the speed is just the length of the velocity vector,

s = v'1 + 4t2• The magnitude of tangential acceleration is !} = 4t / v'1+ 4t2• The ac­
celeration is a = (0, 2). The unit-length tangent and normal vectors are

T = (1,2t) ,

v'1 + 4t2

Finally, the curvature is K = 2/(1 + 4t 2)3/2.

Planar Motion in Polar Coordinates

N = (-2t, 1)

v'1 + 4t2

The particle motion may also be represented using polar coordinates. The choice of
Cartesian form versus polar form depends on your application. The position vector
is represented as a unit-length vector R= r/lrl and a distance r = Irl from the origin,

r
r=lrl-=rR

Irl
(2.10)

Since R= r/lrl is unit length, we may write it as R= (cos e, sin e), where 8 de­
pends on t. A unit-length vector perpendicular to R is P = (- sin e, cos 8) and is
obtained by a 7T/2 counterclockwise rotation of R in the plane. The moving frame
{r(t); R(t), P(t)} provides an alternate coordinate system to the tangent-normal one.
Figure 2.2 shows the polar frames at points on a curve, the same curve shown in
Figure 2.1.

Figure 2.2 A polar coordinate frame at a point on a curve.

2.2 Rigid Body Kinematics 19

The derivatives of the frame directions with respect to time are summarized in
formal matrix notation:

[~]=[J ~][~]
Notice the similarity to equation (2.9).

The velocity is represented in the polar frame by

v = r = !!:..- (rR) = rR + rR = rR + r8P
dt

The acceleration is represented in the polar frame by

(2.11)

(2.12)

EXAMPLE

2.2

a = v= rR + rR + !!:..- (r8) P+ r8P = (r - r8 2)R + (re + 2r8)P (2.13)
dt

Construct the various quantities for a spiral r =(), where () is a function of time t.

The position is r = ()R = (() cos (), () sin ()), the velocity is v = 8R + ()8P =
8(cos () - () sin (), sin () + () cos ()), and the acceleration is a = (e - ()8 2)R +
(()e + 282)P = e(cos () - () sin (), sin () + () cos ()) + 82(-() cos () - 2 sin (),
-() sin () + 2 cos ()).

Spatial Motion in Cartesian Coordinates

We now consider the spatial case. In Cartesian coordinates the position of a particle
at time tis

ret) = x(t) I + yet) J + z(t) k (2.14)

where I = (1, 0, 0), J = (0, I, 0), and k = (0, 0, 1). The velocity of the particle at time
t is

vet) = r= i I + YJ + zk (2.15)

The speed of the particle at time t is the length of the velocity vector, Ivl. If set)
denotes the arc length measured along the curve, the speed is s= Iv I. The acceleration
of the particle at time t is

aCt) = v= r= x I + Y J + zk (2.16)

At each point on the curve of motion we can define a unit-length tangent vector by
normalizing the velocity vector:

v
T(t) =-

Ivl
(2.17)

20 Chapter 2 Basic Concepts from Physics

T

Circle of potential normals

Figure 2.3 A curve, a tangent vector at a point, and the circle of choices for the normal vector.
The circle lies in the plane containing the point and perpendicular to the tangent.

In 2D we had only two choices for unit-length vectors that are perpendicular to the
curve. We chose the one that is always a counterclockwise rotation from the tangent
vector. As long as the tangent vector is a continuous function of t (the angle cjJ(t)
is a continuous function), the normal vector is also a continuous function. In 3D
there are infinitely many choices for a unit-length vector perpendicular to the tangent
vector, an entire circle of them in the plane that is perpendicular to T and centered at
the point on the curve. Figure 2.3 shows a curve, a tangent at a point, and the circle
of choices for the normaL

Which one do we choose for a normal vector N? Keeping consistent with the
2D setting, since T is a unit-length vector, T . T = 1. Differentiating with respect to
the arc length parameter s yields T· dTlds = 0, and as a result the vector dTlds is
perpendicular to the tangent. We use this vector to define both the normal vector and
the curvature K as a function of the arc length s,

dT- = K(s)N(s)
ds

(2.18)

The velocity satisfies equation (2.6) and the acceleration satisfies equation (2.7), the
vector quantities living in three dimensions in both cases.

The normal is a unit-length vector in the direction ofdTIds, but notice that there
are two choices for such a vector. Think of the second choice as the negative of the
first, -N(s). The curvature function that must be associated with the second choice
is the negative of the first, -K (s), so that the product of curvature and normal still
produces dTIds. If the curve were planar, we could resort to the two-dimensional
construction and select a normal that is a counterclockwise rotation from the tangent
within that plane. This reasoning does not apply to a nonplanar curve. The choice

EXERCISE

2.1

2.2 Rigid Body Kinematics 21

of normal should be made in an attempt to maintain a continuous function N(s).
Exercise 2.1 is designed to show that it is not always possible to do this. Once a
choice is made for the normal vector) the curvature is K = N . dT / ds. The sign of
the curvature depends on which of the two possible N was chosen.

Consider a curve defined in two pieces. The first piece is ret) = (t) t 3) 0) for t .:::: 0 and
the second piece is ret) = (t) 0) t 3) for t ~ O. Prove that r) v) and a are continuous
at t = 0 by showing limt---+o ret) = reO)) limt---+o vet) = yeO)) and limt---+o aCt) = a(O).
Construct the normal vectors for each piece as a function of t; call this N(t). Prove
that limt---+o~ N(t) = (0) 1) 0) and limt---+o+ N(t) = (0) 0) 1). Since the one-sided limits
have different values) N (t) is not continuous at t = O. Changing the sign ofthe normal
on one piece of the curve cannot change the conclusion.

The acceleration vector in 3D satisfies the relationship shown in equation (2.7).
The curvature) however) is

Iv x al
K =a---

Ivl 3
(2.19)

where a is a sign parameter that is lor -1 and chosen) ifpossible) to make the normal
vector continuous. A formula for the normal vector may be derived that contains the
sign parameter)

N = a(v x a) x v

Iv x allvl
(2.20)

The tangent T and normal N only account for two ofthe three degrees of freedom
in space. A third unit-length vector) called the binormal vector) is defined by

B=TxN (2.21)

The coordinate system {ret); T(t)) N(t)) B(t)} is a moving frame for the curve. The
binormal is perpendicular to the tangent and normal vectors) so B . T = 0 and B .
N = 0 for all t. Differentiating with respect to arc length s) we obtain

dB dT dB dB
0= _. T+B' - = - ·T+KB ·N= -·T

ds ds ds ds

The binormal is unit length) so B . B = 1 for all t. Differentiating with respect to s
and dividing by 2) we obtain

dB
O=B·­

ds

1. Exercises vary in difficulty and are marked accordingly: easy medium , or hard

22 Chapter 2 Basic Concepts from Physics

The last two displayed equations show that the derivative of the binormal is
perpendicular to both T and B. It must therefore be parallel to N and represented as

dB
-=-rN
ds

(2.22)

(2.23)

for some scalar function r, called the torsion of the curve. The choice of minus
sign is the standard convention. The curvature measures how the curve wants to
bend within the plane spanned by the tangent and normal to the curve. The torsion
measures how the curve wants to bend out of that plane.

To this point we know how the derivatives dTjds and dBjds relate to the tan­
gent, normal, and binormal. We may complete the set of relationships by computing
dNjds. The normal is N = B x T. Differentiating with respect to s yields

dN dT dB
- = B x - + - x T = KB x N - rN x T = -KT + rB
ds ds ds

Equations (2.18), (2.22), and (2.23) are called the Frenet-Serret equations for the
curve. In a formal matrix notation,

dT

ds

dN

ds

dB

ds

= [-~
K

o
-r

0] [T(S)]
r N(s)
o B(s)

(2.24)

An explicit formula for the torsion is obtained as follows. The derivative of accel­
eration, sometimes called a measure of jerk, is

A simple calculation shows that v x a = Ks 2B. Consequently, v x a . a= rK 2s 6 =
r Iv x a1 2• The torsion is

v x a' a
r=---

Iv x al 2

Spatial Motion in Cylindrical Coordinates

(2.25)

A point (x, y, z) is represented in cylindrical coordinates as x = r cos e, y = r sin e,
and z as given, where r is the distance in the xy-plane from the origin (0, 0, 0) to
(x, y, z) and z is the vertical height of the point above that plane. The angle satisfies
e E [0, 2n). Figure 2.4 shows a typical point (x, y, z) and its related parameters r
ande.

2.2 Rigid Body Kinematics 23

z

(x, y, z)

k------'---_y

x

Figure 2.4 Cylindrical coordinates (x, y, z) = (r cos e, r sin e, z).

Using notation similar to that of planar motion in polar coordinates, a unit­
length vector in the xy-plane is R = (cos e, sin e, 0). A perpendicular vector in the
plane is P = (- sin e, cos e, 0). The vertical direction is k = (0, 0, 1). The moving
frame for the curve is {ret); R(t), pet), k}. The position of a point is

The velocity is

The acceleration is

r = rR + zk

v = r = fR + rep + zk

a = v= (r - re 2)R + (rii + 2fe)P + zk

(2.26)

(2.27)

(2.28)

Observe that the position, velocity, and acceleration have the same Rand P compo­
nents as the polar representations in two dimensions, but have additional compo­
nents in the z-direction. The time derivatives of the frame vectors are shown below
in formal matrix notation:

(2.29)

EXERCISE

2.2

As always, the coefficient matrix for rates of change of frame vectors is skew­
symmetric.

Construct the position, velocity, and acceleration vectors in cylindrical coordinates
for the helix (cos(t), sin(t), t).

24 Chapter 2 Basic Concepts from Physics

z

(x, y, z)

k---'--__ y

x

Figure 2.5 Spherical coordinates (x, y, z) = (p cos esin ¢, r sin esin ¢, p cos ¢).

Spatial Motion in Spherical Coordinates

A point (x, y, z) is represented in sphericaL coordinates as x = p cos e sin ¢, y =
p sin e sin ¢, and z = p cos ¢, where e E [0, 2n) and ¢ E [0, n]. Figure 2.5 shows a
typical point (x, y, z) and its related parameters p, e, and ¢.

The position of a point is

r=pR (2.30)

where R = (cos esin ¢, sin esin ¢, cos ¢) is a unit-length vector. Two unit-length
vectors that are perpendicular to Rare P = (- sin e, cos e, 0) and Q = R x P =
(- cos e cos ¢, - sin e cos ¢, sin ¢). A moving frame for the curve is {ret);
P(t), Q(t), R(t)}. The derivatives of the moving frame are shown in equation (2.31).
The formal representation in terms ofvectors and matrices is intended to emphasize
that the coefficient matrix is skew-symmetric:

[P] [° iJ cos ¢9 = -~ cos¢ ~
Resin ¢ -¢

-8 Sin~] [~] (2.31)

The proof of these equations is left as an exercise. The velocity of a point is

v = ,oR + pR = (piJ sin ¢) P + (- pcP) Q + (,0) R (2.32)

where equation (2.31) was used to replace the derivative ofR. Another application of
a time derivative and equation (2.31) produces the acceleration of a point,

2.2 Rigid Body Kinematics 25

a = ((pi} + 2pe) sin ¢ + 2pe¢ cos ¢) p

+ (P(e 2 sin ¢ cos ¢ - ¢) - 2P¢) Q

+ (,0 - p(¢2 +e2 sin2 ¢)) R

(2.33)

EXERCISE

2.3

EXERCISE

2.4

Construct the position, velocity, and acceleration in spherical coordinates for the
spherical helix (cos(t), sin(t) , t)j.Jl+t2. What happens to the helix as time in­
creases without bound?

Verify the formulas in equation (2.31). Hint: Compute the partial derivatives with
respect to e and ¢ of R, P, and Q; then use the chain rule from calculus to obtain the
time derivatives.

Motion About a Fixed Axis

A classic question is how to compute the position, velocity, and acceleration of a
particle that is rotating about a fixed axis and is a constant distance from that axis. For
the sake of argument, assume that the axis is a line that contains the origin and whose
unit-length direction is D. We may choose the coordinate system so that D plays the
role of k in equation (2.26) and R(t) = (cos e(t), sin e(t), 0) is radial to that axis.
The 3-tuple shown in Figure 2.6 is relative to a fixed coordinate system at the origin
with an orthono,rmal set of axes ~, q, and D. That is, R = (cos e)~ + (sin e)q. In this
system the angular speed is aCt) = e(t). The angular velocity is wet) = a(t)D. The
angular acceleration is aCt) = a(t)D. Figure 2.6 illustrates the motion.

r(t)

D

....--+----11

R(t)

Figure 2.6 Motion of a particle about a fixed axis, a constant distance from the axis.

26 Chapter 2 Basic Concepts from Physics

The position for the particle in motion about the axis is

ret) = roR(t) + hoD (2.34)

where ro is the constant distance from the particle to the axis and where ho is the
constant height above the plane D . r = o. From equation (2.27) the velocity is

vet) =roaP = roaD x R=w x r (2.35)

where we have used the facts that ro and ho are constants, so their derivatives are al­
ways zero, and e= a. This formula should be intuitive. The cross product of the axis
direction and the position vector is tangent to the circle of motion. From equation
(2.28) the acceleration is

(2.36)

The vector -a2r is the centripetal acceleration of the particle. The vector Ol x r is the
tangential acceleration of the particle and, of course, is a vector that is tangent to the
circle of motion.

Motion About a Moving Axis

To motivate the concept of angular velocity for a time-varying axis with unit-length
direction vector D(t), let us take a closer look at motion about a fixed axis. Equation
(2.34) tells you the position of the particle that is rotating about the fixed axis, r(t) =
ro(cos(8(t))~ + sin(8(t))1J) + hoD. The initial position is ro = reO) = ro~. Positions
at later times are determined by a rotation of r(t) about the axis D by an angle
8(t), namely, ret) = R(t)ro, where R(t) is the rotation matrix corresponding to the
specified rotation about the axis. For any vector u = (uI' U2' U3)' define the skew­
symmetric matrix:

Skew(u) = [U~
-U2

This matrix has the property that Skew(u)r = u x r. The derivation in Chapter 10
that leads to equation (10.14) shows that the rotation matrix is

R(t) = I + (sin(8(t))) SkeweD) + (1- cos(8(t))) Skew(D)2

We can also write the linear velocity as

ret) = wet) x ret) = Skew(w(t))r(t)

2.2 Rigid Body Kinematics 27

where the angular velocity is w(t) = e(t)D. Differentiating r(t) = R(t)ro directly, we
obtain

(2.37)

Equating this to the previously displayed equation, we have

R(t)RT = Skew(w(t))

or

R(t) = Skew(w(t))R(t) (2.38)

These equations tell us the rate of change of the rotation in terms of the current
rotation and the current angular velocity.

Now consider what happens if we allow the unit-length direction vector to vary
with time, D(t). The rotation matrix corresponding to this direction vector and
rotation angle () (t) is

R(t) = I + (sin(()(t))) Skew(D(t)) + (1- cos(()(t))) Skew(D(t))2 (2.39)

The initial point ro is still transformed by r(t) = R(t)ro and the linear velocity is still
provided by equation (2.37). A rotation matrix satisfies the identity I = RRT . Tak­
ing the time derivative, 0 = RRT + RRT = RRT + (RRT)T, or (RRT)T = -RRT.
Thus, S(t) = R(t)RT(t) is a skew-symmetric matrix. We have already made this
observation fot rotation matrices that arise in specific coordinate systems, namely,
equations (2.9) and (2.29). Since Set) is a skew-symmetric matrix, it can be written
as S(t) = Skew(w(t)).

We saw that for a fixed axis D, the angular velocity is w = eD. A natural ques­
tion to ask is how the angular velocity relates to ()(t) and D(t) in the general case.
We can directly calculate this by computing R(t) for the matrix in equation (2.39)
followed by computing RRT . Some algebraic and trigonometric manipulations and
the identity Skew(D)3 = - SkeweD) for a unit-length vector D will lead you to

w = eD + (sin ())O + (cos () - 1)0 x D (2.40)

EXERCISE

2.5

Because D is unit length, D . 0 = 0, in which case 0 is perpendicular to D. Thus, D,
0, and 0 x D are mutually orthogonaL The angular velocity is a linear combination
of these three vectors.

Prove equation (2.40) is true.

28 Chapter 2 Basic Concepts from Physics

2.2.2 PARTICLE SYSTEMS AND CONTINUOUS MATERIALS

In the last section we discussed the basic concepts of kinematics for a single particle.
Let us now look at the same concepts for a discrete set of particles, a particle system,
so to speak, or a continuous material. In this general discussion we are not assuming
the body is rigid.

When a body moves through the world, each point in the body travels along a
path that is measured in world coordinates. At time 0, ifP is a body point specified in
world coordinates, the position after time t in world coordinates is denoted X(t; P).
The inclusion of P as an argument of the function indicates that we are thinking of
many paths, each path generated by a starting point P. By our definition, X(O; P) =
P. The world coordinates of the body points are what an observer measures when
he is standing at the world origin using a known set of directions for the world
coor'dinate axes. We will refer to this observer as the world observer.

We can also measure points in body coordinates. You can imagine such a coor­
dinate system as the one that an observer situated in the body uses to measure the
location of body points. We will refer to this observer as the body observer. The body
observer stands at a special point that we call the body origin. He also has his own
view of three coordinate axes called the body axes. The axis directions are assumed to
form aright-handed orthonormal set. The body origin and axes never change from
the body observer's point ofview, but the world observer sees these change over time.

If the world observer measures the point at X(t; P), the body observer sees this
point relative to his origin, measuring it as a vector bet; P). Again the inclusion of
P as an argument indicates that there are many paths, one for each initial point P.
If the body is rigid, then necessarily b is independent of time; its time derivative
is identically zero. If e is what the world observer sees as the body origin at time
0, at time t he sees X(t; e). Of course the body observer always measures this as a
relative difference 0 regardless of the time t. The world observer sees the body axis
directions as orthonormal vectors measured in world coordinates; call these Vi (t)

for i = 0, 1, 2. For convenience the world coordinate vectors can be stored as the
columns ofarotation matrix R(t) = [Vo(t) VI(t) V 2(t)]. Figure 2.7 illustrates the two
coordinate systems, but in two dimensions to keep the diagrams simple.

The relative difference between the world point and world center is ret; e) =
X(t; P) - X(t; e) = R(t)b(t; P). The transformation that produces the world coor­
dinates ofbody points at time t, given the location ofpoints as measured by the body
observer, is

X(t; P) = X(t; e) + ret; P) = X(t; e) + R(t)b(t; P) (2.41)

The orientation changes are uncoupled from the translation changes.
Consider a time-varying vector written in the body coordinate system, ~(t) =

R(t)s(t). The body coordinates set) vary with time since ~(t) does. The time deriva­
tive is

d~ ds· ds· T D~
-=R-+Rs=R-+RR ~=-+wx~
dt dt dt Dt

(2.42)

2.2 Rigid Body Kinematics 29

DI(t)

J

(a) (b)

X(t;

Figure 2.7 (a) The body coordinate system as seen by the body observer. (b) The body coordinate
system as seen by the world observer.

where RRT = Skew(w) and w is the angular velocity of the body measured in world
coordinates as determined by equation (2.38). The last equality of equation (2.42)
defines

D~ = R(t) ds
Dt dt

a quantity that measures the rate ofchange of~ relative to the body coordinate system.
The rate of change d~/dt is what the world observer sees. The quantity D~/Dt
represents the time rate of change of ~ relative to the body coordinates since ds/dt is
what the body observer measures. The body observer does not see the change w x ~

because he is rotating with the body coordinate system.
The body origin has world velocity V cen = dX(t; e)/dt and world acceleration

acen = dvcen/ dt. Differentiating equation (2.41) with respect to time, the world ve­
locityvwor = dX(t; P)/dt is

db· Dr
vwor = vcen + R - + Rb = vcen + - + w x r

dt Dt
(2.43)

where w is the angular velocity of the body at time t in world coordinates. The terms
of the equation are

• V cen ' the velocity of the body origin relative to the world coordinates, sometimes
referred to as the drag velocity,

• Dr/ Dt, the velocity of P measured relative to the body coordinates, and

• w x r, the velocity due to rotation of the frame.

30 Chapter 2 Basic Concepts from Physics

The world acceleration awor = dvwor/dt is obtained by differentiating equation
(2.43) with respect to time,

d (Dr) dawor = acen + - - + - (w x r)
dt Dt dt

The vector Dr/Dt is measured in the body coordinate system, so equation (2.42)
applies to it,

Similarly, equation (2.42) is applied to w x r to obtain

d D(w x r) Dr Dw
- (w x r) = +w x (w x r) =w x - + - x r +w x (w x r)
dt Dt Dt Dt

Observe that Dw/Dt = dw/dt since we may apply equation (2.42) to wand
use the identity w x w = O. The last three displayed equations combine to form an
equation for the acceleration,

Dw Dr D2r
a wor = acen + w x (w x r) + - x r + 2w x - + --

Dt Dt Dt2

The terms of the equation are

(2.44)

EXERCISE

2.6

EXERCISE

2.7

• acen' the translational acceleration of the body origin relative to the world coor-
dinates,

• w x (w x r), the centripetal acceleration due to rotation of the frame,

• (Dw / Dt) x r, the tangential acceleration due to angular acceleration,

• 2w x (Dr/ Dt), the Coriolis acceleration, and

• D2r / Dt2, the acceleration of P relative to the body.

The first three terms collectively are called the drag acceleration.

Consider a rigid sphere of radius 1 and center at 0 that rotates about its center. The
angular velocity is w(t) = (cos(t) , sin(t), ,J3). Does the path of the point starting at
(0, 0, 1) ever reach this same point at a later time? If it were not to reach (0, 0, 1)
again, is there some other constant angular speed for which it will reach that point
again?

Consider the same rigid sphere of the preceding exercise, but whose angular velocity
is unknown. Suppose the path of the point starting at (0,0,1) is ((1- t 2) cos(nt),

(1- t2) sin(nt), t 2)/J(1- t 2)2 + t4 for t E [-1, 1]. What is the angular velocity
w(t)? If r(t) is the path traversed by (1, 0, 0) over the time interval [-1, 1], then by

EXERCISE

2.8

2.3

2.3 Newton's Laws 31

definition r(-1) = (1, 0, 0). What is r(1)? If you have difficulties constructing all the
components of this point, can you say something about any of the components?

In the constructions of this section, the standard first-derivative operator d / d twas
applied to vector quantities. This operator has certain rules associated with it. The
operator D / Dt was introduced in this section and I used the same rules for it. For
example, I used the rule D(A x B)/Dt = A x (DB/ Dt) + (DA/ Dt) x B. What is
the relationship between d / d t and D / Dt? Use this relationship to prove that the
differentiation rules for d / d t are equally valid for D / Dt.

NEWTON'S LAWS

We have seen the concepts of position, velocity, and acceleration of a point; all are
relevant in describing the motion of an object. A key concept is one of inertia, the
tendency of an object at rest to remain at rest. Although we tend to think of the mass
of an object as a measure of the amount of matter making up the object, it is just as
valid to think of mass as a measure of the inertia of the object. The standard unit of
measurement for mass is a kilogram.

Another key concept is force, the general mechanism for changing the mechanical
state of an object. Empirically we know that a force is a vector quantity, so it has
a direction and a magnitude. Fo~ our purposes, forces are what lead to changes in
velocity of an object and cause objects to interact with each other. An external force
is one whose source is outside the system of interest. From experimental studies we
know that the net external force on an object causes it to accelerate in the direction of
the force. Moreover, the magnitude of the acceleration of the object is proportional
to the magnitude of the force (the larger the force, the more the object accelerates)
and inversely proportional to the mass of the object (the heavier the object, the less
it accelerates). The standard unit of measurement for the magnitude of a force is a
newton. One newton is the required magnitude of a force to give a one-kilogram mass
an acceleration of one meter per second2.

An introductory course to physics summarizes these concepts as a statement of
Newton's laws ofphysics:

• First law. In the absence of external forces, an object at rest will remain at rest.
If the object is in motion and no external forces act on it, the object remains in
motion with constant velocity. (Only forces can change an object's motion.)

• Second law. For an object of constant mass over time, its acceleration a is pro­
portional to the force F and inversely proportional to the mass m of the object:
a = F/ m. We normally see this written as F = rna. If the mass changes over time,
the more general statement of the law is

d dm
F = - (mv) = rna + -v

dt dt
(2.45)

32 Chapter 2 Basic Concepts from Physics

where v is the velocity of the object. The quantity rnv is the linear momentum of
the object. Thus, the second law states that the application of an external force on
an object causes a change in the object's momentum over time. (An object's path
ofmotion is determined from the applied forces.)

• Third law. If a force is exerted on one object, there is a force of equal magnitude
but opposite direction on some other body that interacts with it. (Action and
reaction always occur between interacting objects.)

The most important law for this book is the second one, although we will deal
specifically with constant mass. The equations of motion F = rna will be used to
establish the path of motion for an object by numerically solving the second-order
differential equations for position.

Each of the vector quantities of position, velocity, and acceleration is measured
with respect to some coordinate system. This system is referred to as the inertial
frame. If x = (Xl' Xl' X3) is the representation of the position in the inertial frame,
the components Xl' Xl' and X3 are referred to as the inertial coordinates. Although in
many cases the inertial frame is considered to be fixed (relative to the stars, as it were),
the frame can have a constant linear velocity and no rotation and still be inertial. Any
other frame of reference is referred to as a noninertial frame. In many situations it is
important to know whether the coordinate system you use is inertial or noninertial.
In particular, we will see later that kinetic energy must be measured in an inertial
system.

2.4 FORCES

A few general categories offorces are described here. We restrict our attention to those
forces that are used in the examples that occur throughout this book. For example,
we are not going to discuss forces associated with electromagnetic fields.

2.4.1 GRAVITATIONAL FORCES

Given two point masses rn and M that have gravitational interaction, they attract each
other with forces ofequal magnitude but opposite direction, as indicated by Newton's
third law. The common magnitude of the forces is

GrnM
Fgravity = --1­

r
(2.46)

where r is the distance between the points and G == 6.67 X 10-11 newton-metersl

per kilograml . The units of G are selected, ofcourse, so that Fgravity has units ofnew­
tons. The constant is empirically measured and is called the universal gravitational
constant.

2.4 Forces 33

Figure 2.8 Gravitational forces on objects located at various places around the Earth.

In the special case ofthe Earth represented as a single-point mass M located at the
center of the Earth and an object represented as a single-point mass m located on or
above the Earth's surface, the gravitational force exerted on the object by the Earth is

F = - FgravityR (2.47)

where R is a unit-length vector whose direction is that of the vector from the center
of the Earth to the center of the object. In the special case where the two objects are
the Earth and the Sun, the equations of motion F = ma that represent the path the
Earth travels around the Sun may be solved in closed form to produce Kepler's laws.
We do so in detail in Section 2.3. Figure 2.8 shows the Earth and the forces exerted
on various objects above its surface.

If the object does not vary much in altitude and its position does not move far
from its initial position, we can make an approximation to the equation of gravita­
tional force by assuming that the Earth's surface is flat (a plane), at least within the
vicinity of the object, and that the direction of the gravitational force is normal to the
plane. Moreover, the distance r is approximately a constant, the radius of the Earth,
so g = GM/r2 == 9.81 meters per second2 is approximately a constant. If we choose
U as the unit-length upward direction (increasing altitude above the plane), the grav­
itational force exerted on the object by the Earth is

F= -mgU (2.48)

34 Chapter 2 Basic Concepts from Physics

1 I
1

Figure 2.9 Gravitational forces on objects located nearly on the Earth's surface, viewed as a flat
surface.

Figure 2.9 shows the Earth viewed as a flat surface and the forces exerted on various
objects above it.

The weight w of the object is different than its mass, namely, w = mg, the magni­
tude of the gravitational force exerted on the object. Astronauts of course are weight­
less when in orbit, but still have the same mass as on the Earth's surface.

2.4.2 SPRING FORCES

One end of a spring is attached to a fixed point. The other end is free to be pushed or
pulled in any direction. The unstretched length of the spring is L. Experiments have
shown that for small displacements ~ of the end of the spring, the force exerted by
the spring on the end has a magnitude proportional to I~I and a direction opposite
that of the displacement. That is, if the end of the spring is pulled away from the fixed
point, the direction ofthe force is toward the fixed point, and vice versa. IfU is a unit­
length vector pointing in the direction from the fixed end to the free end, the force
IS

F= -c~U (2.49)

where c > 0 is the constant ofproportionality called the spring constant. For very stiff
springs, c is large, and vice versa. This law for spring forces is known as Hooke's law.
The law breaks down if I~ Iis very large, so be careful ifyou have a physics application
involving springs; you might want to modify the force equation when I~ I is large.
Figure 2.10 illustrates a spring that is stretched or compressed.

Hooke's law will be applied in upcoming examples where we think of two points
connected by an elastic line segment. This will be useful in modeling deformable
objects as a system of masses connected by elastic threads.

F=O

~Atrest

f--------ll A =0

(a)

------.l F

Pull

A >0

(b)

2.4 Forces 35

~F

~-PUSh

IA<O

(c)

Figure 2.10 (a) Unstretched spring. (b) Force due to stretching the spring. (c) Force due to
compressing the string.

2.4.3 FRICTION AND OTHER DISSIPATIVE FORCES

A dissipative force is one for which energy of the system decreases when motion takes
place. Typically the energy is transferred out of the system by conversion to heat. A
simple model for the magnitude of a dissipative force applied to a rigid object is

Fdissipative = clvln (2.50)

where v is the object's velocity, c > 0 is a scalar of proportionality, and n ~ 0 is an
integer power. In most applications you probably will choose c to be a constant, but
in general it may vary with position, for example, when the underlying material on
which the object moves is not homogeneous. The value c may also vary with time.
A simple model for a dissipative force also usually includes the assumption that the
direction of the force is opposite the motion of the object, that is, in the direction
-v. In our applications in this book we will consider two special types of dissipative
forces, friction and viscosity.

Friction

A frictional force between two objects in contact opposes the sliding of one (moving)
object over the surface of the adjacent (nonmoving) object. The frictional force is
tangent to the surface of the adjacent object and opposite in direction to the velocity
of the moving object. The magnitude of the frictional force is assumed to be propor­
tional to the magnitude of the normal force between surfaces. It is also assumed to be
independent of the area of contact and independent of the speed of the object once
that object starts to move. These assumptions argue that n = 0 in equation (2.50), so
the frictional force is modeled as

F = { -Ck I~I' v ~ 0
0, v=O

(2.51)

36 Chapter 2 Basic Concepts from Physics

(a) Static case (b) Kinetic case

Figure 2.11 A block in contact with an inclined plane. (a) Static friction is dominant and the
block remains at rest. (b) Gravity is dominant and the block slides, so kinetic friction
applies.

where Ck is referred to as the coefficient ofkinetic friction. The coefficient is the ratio of
the magnitudes of frictional force over normal force, Ck = Ffriction/Fnormal' but with
the correct physical units so that the right-hand side of equation (2.51) has units of
force.

Physically the transition between the nonzero and zero force cases involves an­
other concept called static friction. For example, if an object is in contact with a flat
surface and initially not moving, an external force is applied to the object to make
it move. If the magnitude of the external force is sufficiently small, it is not enough
to exceed the force due to static friction. As that magnitude increases, eventually the
static friction is overcome and the object moves. At that instant the frictional force
switches from static to kinetic; that is, the first case in equation (2.51) comes into
play since the object is now moving. Another physical constant is the coefficient of
static friction, denoted CS • It is the ratio of the maximum frictional force over nor­
mal force, Cs = max(Ffriction)/Fnormal' and with the correct physical units assigned to
it. The classical experiment to illustrate the transition from the static to the kinetic
case is a block of one material resting on an inclined plane of another material. Both
materials are subject to gravitational force. Figure 2.11 illustrates.

Initially the angle of incline is small enough so that the static friction force domi­
nates the gravitational force. The block remains at rest even though the plane is tilted.
As the angle of incline increases, the gravitational force exerts a stronger influence on
the block, enough so that it overcomes static friction. At that instant the block starts
to slide down the plane. When it does, the frictional force switches from static to
kinetic.

Viscosity

A viscous force has magnitude, modeled by equation (2.50), when n = 1. The typical
occurrence of this type of force is when an object is dragged through a thick fluid.

2.4 Forces 37

The force is modeled to have direction opposite to that of the moving object:

v v
F = -Fdissipative - = - (elvl) - = -ev

Ivl Ivl
(2.52)

where e > 0 is a scalar of proportionality. Unlike friction that has a discontinuity
when the speed is zero, a viscous force is continuous with respect to speed.

2.4.4 TORQUE

The concept of torque is one you are familiar with in everyday life. One example is
replacing a tire on an automobile. You have to remove the lug nuts with a wrench.
In order to turn a nut, you have to exert a force on the end of the wrench. The more
force you apply, the easier the nut turns. You might also have noticed that the longer
the wrench, the easier the nut turns. The ease of turning is proportional to both the
magnitude of the applied force and the length of the wrench. This product is referred
to as torque or moment offorce. When you need a nut tightened) but not too much,
you can use a tool called a torque wrench that is designed to stop turning the nut if
the torque exceeds a specified amount.

The formal mathematical definition for torque applied to a single particle ofmass
m is given below. Let F be the applied force. Let r be the position of the particle relative
to the origin. The torque is the quantity

T=rxF (2.53)

In the analogy of a wrench and bolt, the bolt is located at the origin) the wrench lies
along the vector r) and the force F is what you exert on the end of the wrench. Figure
2.12 illustrates torque due to a single force.

o

Figure 2.12 Torque from a force exerted on a particle.

38 Chapter 2 Basic Concepts from Physics

Figure 2.13 A force couple.

Notice that F is not necessarily perpendicular to r. The applied force on the
particle can be in any direction, independent of the position of the particle. The gray
line indicates the line of force for F. If the particle were on that line at a different
position s relative to the origin, the torque on it is s x F. Since r - s is a vector on the
line of force, it must be that (r - s) x F = O. That is, r x F = s x F and the torque is
the same no matter where the particle is located along the line of force.

Two forces ofequal magnitude, opposite direction, but different lines ofaction are
said to be a couple. Figure 2.13 shows two such forces. The torque due to the couple
is T = (r - s) x F. The location of rand s on their respective lines is irrelevant. As
you vary r along its line, the torque does not change. Neither does the torque change
when you vary s along its line.

For a system of p particles located at positions r; with applied forces F; for
1 :::; i :::; p, the torque is

P

T= Lr; x F;
;=1

If the object is a continuum of mass that occupies a region R, the torque is

T=Lr x FdR

(2.54)

(2.55)

where F is the applied force that varies with position r.
Important: The torque due to internal forces in an object must sum to zero. This

is an immediate consequence of Newton's third law. The essence of the argument is
in considering two points in the object. The first point is at position r1 and exerts
a force F on the second point at position r2' The second point exerts a force - F on
the first point (Newton's third law). The lines of force are the same, having direction

2.4 Forces 39

F and containing both positions rl and r2' The total torque for the two points is
rl x F + r2 x (-F) = (rl - r2) x F = O. The last equality is true since rl - r2 is on
the line of force.

2.4.5 EQUILIBRIUM

Forces on an object are said to be concurrent if their lines of action all pass through
a common point. If an object is a point mass, then all forces acting on the object
are concurrent, the common point being the object itself. An example of noncon­
current forces is a rigid rod with opposite direction forces applied at the end points.
Figure 2.14 illustrates. The forces at the end points of the rod are parallel, but the
lines through the end points and whose directions are those of the forces do not

l....--
/

(a) Concurrent, not balanced

F

-F
~rl

(c) Not concurrent, not balanced

l.. • ~

1
(b) Concurrent, balanced

r 2 -------.-
F

-2F r l+ r 2..
2

F
r 1 -------.-

(d) Not concurrent, balanced

Figure 2.14 (a) All forces applied to a point mass are concurrent but are not "balanced:' so the
point moves. (b) All forces are concurrent but do balance, so the point does not
move. (c) A rigid rod with nonconcurrent forces applied to the end points. The
forces are equal in magnitude but opposite in direction. The rod rotates about its
center. (d) Nonconcurrent forces are applied to three locations; two forces of equal
magnitudes and directions at the end points and one force of twice the magnitude
of an end-point force but opposite in direction applied to the rod center. The rod is
"balanced" and does not rotate about its center.

40 Chapter 2 Basic Concepts from Physics

intersect in a common point, so those forces are not concurrent. In Figure 2.14(c),
(d) the forces lead to a torque about the center of the rod.

An object is said to be in equilibrium if two conditions are met. The first condition
is that the sum of all external forces acting on the object must be zero. That is, if Fi

for l.:s i .:s n are the external forces, then 2:7=1 Fi = O. The second condition is that
the torques on the object must sum to zero, as we see intuitively in Figure 2.14(c),
(d). The two end points have mass, but the rod connecting them is assumed to be
massless. Let the lower end point be at position rl and the upper end point be at
position rz. Let the force applied to the upper point be F and the force applied to
the lower point be -F. We have a force couple with total torque T = rz x.F + rl x
(-F) = (rz - rl) x F. The torque is a nonzero vector perpendicular to the plane
of the diagram. This configuration is not in equilibrium even though the sum of
the forces is F + (-F) = O. In Figure 2.14(d), the center point is (rl + rz)/2. The
system shown has a total torque of zero, assuming the vectors at the end points are
both F and the vector at the center point (rl + rz)/2 is -2F. The total torque is
T = rl x F + rz x F + (rl + rz)/2 x (-2F) = O. This system is in equilibrium since
the forces sum to zero and the torques sum to zero.

An important observation is that an object in equilibrium is not necessarily sta­
tionary. It is possible that the inertial frame in which the object is measured is moving
with constant velocity. However, another coordinate system may be chosen in which
the object is not moving. A simple example, to a first approximation, is the fact
that you are currently reading this book while in equilibrium sitting in your chair,
even though the Earth is rotating with an angular speed of 1000 miles per hour! The
first approximation is that your current physical location moves along a straight line
with constant velocity, at least over a short period of time, thus making it an inertial
frame.

For a single particle, the second condition for equilbrium is a consequence of the
first condition. Let the particle be located at r and let the applied forces be Fi for
l.:s i .:s n. Assume that the sum of forces is zero, 2:7=1 Fi = O. The total torque on
the particle is

n n

T= Lr x Fi =r x LFi =r x 0=0
i=1 i=1

For a particle system whose external forces sum to zero, the total torque is not
necessarily zero, in which case the second condition for equilibrium is independent
of the first. However, it is true that the torque relative to one point is the same as
the torque relative to another. Let the particles be at positions ri for 1 .:s i .:s p. Let

the forces on particle i be Fji) for l.:s j .:s ni (the number of forces per particle may
vary). The torque relative to an origin A for a single particle subject to a single force is

2.5 Momenta 41

The total torque for the particle is

nj

L(ri - A) x Fji)
j=l

The total torque for the particle system, relative to origin A, is

p nj p

TA = L L(ri - A) x Fji) = L(ri - A) x G(i)

i=l j=l i=l

where

nj

G(i) = L Fj)

j=l

is the total applied force on particle i. The total torque relative to another origin B is

P

TB = L(ri - B) x G(i)

i=l

The difference is

p P

TA - TB = L(B - A) x G(i) = (B - A) x L G(i) = (B - A) x 0 = 0

i=l i=l

where the G(i) summing to zero is the mathematical statement that the net force on
the particle system is zero. Thus, TA = TB and the torque is the same about any point.
A similar argument applies to a continuum of mass. When setting up equations of
equilibrium, it is enough to require the sum of the external forces to be zero and the
torque about a single point to be zero.

2.5 MOMENTA

In this section we are presented with the definitions for various physical quanti­
ties that-are relevant to understanding the motion of an object undergoing external
forces. We already saw one such quantity, torque. The first portion of this section in­
troduces the concepts of linear and angular momentum. The second portion covers
the concept you should be most familiar with, mass of an object. We derive formulas
for computing the center ofmass ofan object, whether it consists ofa finite number of
point masses (discrete) or is a solid body (continuous). The construction ofthe center
of mass involves a quantity called a moment, a summation for discrete masses and an

42 Chapter 2 Basic Concepts from Physics

integral for continuous masses. The third portion discusses moments and products
of inertia, a topic that is particularly important when discussing motion of a rigid
body.

2.5.1 LINEAR MOMENTUM

We have already seen the concept of linear momentum in the presentation ofNewton's
second law of motion for a single particle. The linear momentum is the product,

p=mv (2.56)

where m is the mass ofthe particle and v is its velocity. The applied force and momen­
tum are related by F = dp/dt; that is, an applied force on the particle causes a change
in its linear momentum. For a system of p particles of masses mi and velocities vi for
1 .:s i .:s p, the linear momentum is

p

p= Lmivi
i=l

(2.57)

If the object is a continuum of mass that occupies a region R, the linear momen­
tum is

p = 1v dm = 1OV dR (2.58)

where dm = 0 dR is an infinitesimal measurement ofmass. The function 0 is the mass
density. The density and velocity v may depend on spatial location; they cannot be
factored outside the integral. In a loose sense the integration over the region is a
summation of the linear momenta of the infinitely many particles occupying that
region. You will find the trichotomy represented by equations (2.56), (2.57), and
(2.58) throughout the rest ofthis book. We will consider physical systems that consist
of a single particle, of multiple particles, or of a continuum of mass.

An important physical law is the conservation oflinear momentum. The law states
that if the net external force on a system of objects is zero, the linear momentum is a
constant. This law is an immediate consequence ofNewton's second law. In the single
particle case, ifFi for 1 .:s i .:s n are the external forces acting on the particle, then

The derivative of p is the zero vector, which implies that p is a constant. Similar
arguments apply in the cases of a discrete system and of a continuous system.

2.5 Momenta 43

2.5.2 ANGULAR MOMENTUM

Linear momentum has some intuition about it. You think of it as a measure of inertia,
the tendency to remain in motion along a straight line in the absence of any external
forces. Angular momentum is less intuitive but is similar in nature. The quantity
measures the tendency to continue rotating about an axis. For a single particle of mass
m, the angular momentum of that particle about the origin is

L=r x p=r x mv (2.59)

where r is the vector from the origin to the particle and v is the velocity of the particle.
The angular momentum vector L is necessarily perpendicular to both rand v. The
direction of L is that of the axis of rotation at each instant of time. For a system
of p particles of masses mi' positions ri relative to the origin, and velocities Vi for
1~ i :s p, the angular momentum is

p

L= Lri x mivi
i=l

(2.60)

If the object is a continuum of mass that occupies a region R, the angular momentum
is

L =1r x v dm =18 r x v dR (2.61)

where dm = 8 dR is an infinitesimal measurement of mass. The function 8 is the mass
density. The density, position r, and velocity v may depend on spatial location.

Just as force is the time derivative oflinear momentum, torque is the time deriva­
tive of angular momentum. To see this, differentiate equation (2.59) with respect to
time:

dL d(r x p)

dt dt

dp dr
=rx-+-xp

dt dt

=rxF

=T

From equation (2.59)

Using the chain rule

From Newton's second law and v x v = 0

From equation (2.53)

(2.62)

Similar constructions may be applied to the pair of equations (2.60) and (2.54) or to
the pair (2.61) and (2.55).

Another important physical law is the conservation of angular momentum. The
law states that if the net external force on a system of objects is zero, the angular
momentum is a constant. The proof is similar to that of the conservation of linear

44 Chapter 2 Basic Concepts from Physics

momentum. In the single particle case, ifF j for 1 .::; i .::; n are the external forces acting
on the particle, then

dL n n

- = L r x Fj = r x L Fj = r x 0 = 0
dt j=l j=l

The derivative of L is the zero vector, which implies that L is a constant. Similar
arguments apply in the cases of a discrete system and of a continuous system.

2.5.3 CENTER OF MASS

In many mechanical systems, each object can behave as if its mass is concentrated at
a single point. The location of this point is called the center ofmass of the object. This
section shows how to define and compute the center of mass in one, two, and three
dimensions, both for discrete sets of points and continuous materials.

Discrete Mass in One Dimension

Consider two masses ml and m2 on the x-axis at positions Xl and X2' The line segment
connecting the two points is assumed to have negligible mass. Gravity is assumed to
exert itself in the downward direction. You can imagine this system as a child's seesaw
that consists of a wooden plank, a supporting base placed somewhere between the
ends of the plank, and two children providing the masses at the ends. Figure 2.15
illustrates the system. The supporting base is drawn as a wedge whose uppermost
vertex is positioned at x.

If we select x = Xl' clearly the system is not balanced since the torque induced
by the mass m2 will cause that mass to fall to the ground. Similarly, the system is
not balanced for x= X2' Your intuition should tell you that there is a proper choice
of x between Xl and X2 at which the system is balanced. If ml = m2' the symmetry
of the situation suggests that x = (xl + x2)/2, the midpoint of the line segment.
For different masses, the choice of x is not immediately clear, but we can rely on
equilibrium of forces to help us. The force on mass mj due to gravity g is mjg. The

Xl X X2..--.=--.-----.......
ml m2

Figure 2.15 Balancing discrete masses on a line. The center of mass for two masses viewed as the
balance point for a seesaw on a fulcrum.

2.5 Momenta 45

torque for mass mi about the position i is mig(xi - i). For the system to balance at
i, the total torque must be zero,

The solution to the equation is

(2.63)

which is a weighted average of the positions of the masses called the center ofmass. If
ml is larger than m2> your intuition should tell you that the center of mass should be
closer to Xl than to X2' The coefficient of Xl' WI = mI!(ml + m2)' is larger than the
coefficient of X2' W2 = m2/(ml + m2), so in fact the center of mass is closer to Xl' as
expected.

A similar formula is derived for the center of mass i of p masses ml through m p

located at positions Xl through x p ' The total torque is zero, L;=l mig(xi - i) = 0,
the solution being

(2.64)

The sum L;=l mi is the total mass ofthe system and the sum L;=l mixi is the moment
of the system about the origin.

Continuous Mass in One Dimension

The center of mass for a discrete set of masses was simple enough to compute. All you
need are the masses themselves and their locations on the X -axis. However, you might
very well be interested in computing the center of mass for a wire of finite length. Let
us assume that the end points of the wire are located at a and b, with a < b. The wire
consists of a continuum of particles, infinitely many, so to speak. Each particle has
an infinitesimal amount of mass-call this dm-and is located at some position x.
The infinitesimal mass is distributed over an infinitesimal interval of length dx. The
mass values can vary over this interval, so we need to know the mass density 8(x)

. at each point x. The units of density are mass per unit length, from which it follows
dm = 8(x) dx. Figure 2.16 is the continuous analogy of Figure 2.15. The gray levels
are intended to illustrate varying density, dark levels for large density and light levels
for small density.

The infinitesimal force due to gravity is g dm and the infinitesimal torque about
a position i is (x - i)g dm. For i to be the center of mass, the total torque must be
zero. You should recognize this as a problem suited for calculus. The summation that

46 Chapter 2 Basic Concepts from Physics

Figure 2.16 Balancing continuous masses on a line. The center of mass for the wire is viewed as
the balance point for a seesaw on a fulcrum. A general point location x is shown,
labeled with its corresponding mass density 8(x).

occurred for discrete point sets is replaced by integration for a continuum of points.
The equilibrium condition for torque is

This equation can be solved to produce the center of mass:

_ J: x8(x) dx
x=-----J: 8(x) dx

(2.65)

The integral J: 8 dx is the total mass of the system and the integral J: x8 dx is the
moment of the system about the origin. If the density of the system is constant, say,
8(x) = c for all x, equation (2.65) reduces to

b+a

2

As expected, the center of mass for a constant density wire is situated at the midpoint
of the wire.

Discrete Mass in Two Dimensions

The extension ofthe computation ofthe center ofmass from one to two dimensions is
straightforward. Letthe p masses be mi and located at (Xi' Yi) for 1 .:::: i .:::: p. Imagine
these lying on a thin, massless plate. Gravity is assumed to exert itself in the downward
direction; the magnitude of the force is g. The center of mass is the point (x, y),
such that the plate balances when placed on a support at that location. Figure 2.17
illustrates this.

•
• •

•

• •
•

•

•

•

2.5 Momenta 47

Figure 2.17 Balancing discrete masses in a plane.

The gravitational force exerted on each mass is mig. The torque about (x, y) is
mig(xi - x, Yi - Y). The total torque must be the zero vector,

p

L mig(xi - x, Yi - y) = (0, 0)
i=l

The equation is easily solved to produce the center of mass:

(2.66)

EXERCISE

2.9

The sum m = Lf=l mi is the total mass ofthe system. The sum My = Lf=l mixi is the
moment of the system about the y-axis and the sum M x = Lf=l miYi is the moment
of the system about the x -axis.

The center of mass formula has some interesting interpretations. First, observe
that if you look only at the x-components of the mass locations (i.e., project the
masses onto the x-axis), x is the center of mass of the projected points. Similarly, y
is the center of mass of the points projected onto the y-axis. Second, observe that the
thin, massless plate containing the masses balances when placed on a fulcrum whose
top edge contains the center of mass and is parallel to either of the coordinate axes.
Figure 2.18 illustrates this.

Show that the plate balances on a fulcrum containing the center of mass regardless of
the fulcrum's orientation.

48 Chapter 2 Basic Concepts from Physics

y

--+-------..,tr-----r'---------+-_x

Figure 2.18 Balancing discrete masses in a plane on a fulcrum.

Figure 2.19 Balancing continuous masses in a plane. The shades of gray indicate variable mass
density.

Continuous Mass in Two Dimensions

Now let us consider the case of a continuum of mass that lies in a bounded region
R in the xy-plane. As in the one-dimensional case, each point in the region has
an associated infinitesimal mass, dm. The mass is distributed over an infinitesimal
rectangle of size dx by dy and having area dA = dx dy, the distribution represented
by a density function 0(x, y) with units of mass per unit area. Thus, the infinitesimal
mass is dm = 8 dA = 8 dx dy. Figure 2.19 illustrates.

2.5 Momenta 49

The infinitesimal torque relative to a location (x, :Y) is (x - x, y - y)g dm. The
equilibrium condition is

fl (x - x, y - y)g dm = 0

The center of mass is obtained by solving this equation:

_ _ ffR(x,y)8(x,y)dxdy
(x, y) = .:....:....::.;'--------

ffR 8(x, y) dx dy

= (ffR X 8(x, y) dx dy , ffR Y 8(x, y) dx dY)

ffR 8(x, y) dx dy ffR 8(x, y) dx dy

(2.67)

EXAMPLE

2.3

The integral m = f fR 8 dx dy is the total mass of the system. The integral
My = ffR x8 dx dy is the moment of the system about the y-axis and the integral
Mx = ffR y8 dx dy is the moment of the system about the x-axis.

Consider the region R bounded by the parabola y = x 2 and the line y = 1. Let the
mass density be constant, 8(x, y) = 1for all (x, y). Figure 2.20 shows the region.

Your intuition should tell you that the center of mass must lie on the y-axis, x= 0,
and the value y should be closer to y = 1 than it is to Y = O. The total mass of the
system is

m = {{ dy dx = 11

{1 dy dx = 11

1 - x 2 dx = ~
JJR -1Jx2 -1 3

y

y=l

=------ x

Figure 2.20 A continuous mass bounded by a parabola and a line.

50 Chapter 2 Basic Concepts from Physics

(Example 2.3
continued)

The moment about the y-axis is

J:i 1111 11 x
2 X411My = x dy dx = x dy dx = x(l- x 2

) dx = - - - = °
R -1 x 2 -1 2 4_1

The moment about the x-axis is

J:i 1111 11 1 - x
4

4M x = y dy dx = y dy dx = -- dx = -
R -1 x 2 -1 2 5

The center of mass is therefore (X, y) = (My, Mx)/m = (0, 3/5). As predicted, the
center of mass is on the y-axis and is closer to y = 1than to y = 0.

In many situations the continuous mass is in a bounded region with positive
area. But we must also consider the case where the mass is distributed along a curve.
The typical physical example is one of computing the center of mass of a planar
wire whose mass density varies with arc length along the wire. Let the curve be
continuously differentiable and specified parametrically by (x(t), yet)) for t E [a, b J.
In terms of arc length s, the mass density is ;5 (s). In terms of the curve parameter, it is
specified parametrically as oCt). The infinitesimal mass at the position corresponding
to t is distributed over an infinitesimal arc length ds of the wire. The infinitesimal

mass is dm = oCt) ds, where ds = Ji 2 + y2 dt for parametric curves (again, the
dot symbol denotes differentiation with respect to t). The total mass of the wire is
therefore

m = 1£ 8(s) ds = l b

8(1) Ji' + y' dt

where s is the arc length parameter and L is the total length of the curve. The
rightmost integral is the formulation in terms of the curve parameter, making it the
integral that is actually evaluated. The moment about the y-axis is

and the moment about the x -axis is

The center of mass is

2.5 Momenta 51

(
__) (My, Mx)
x,y =-...:....-_-

m

(f: x(t)8(t))i2+ y2dt, f: y(t)8(t))i2+ y2 dt)

f: 8(t))i2+ y2 dt

(2.68)

EXAMPLE

2.4

Figure 2.21

EXERCISE

2.10

Compute the center of mass for a wire of constant density 1 and that lies on the
hemicircle x 2+ y2 = 1 for y ~ 0, as shown in Figure 2.21.

y

_--'- -+- .L...-_X

A continuous mass in the shape of a hemicircle.

By symmetry, the center of mass should lie on the y-axis, i = 0, so let us calculate
only the value for y. The curve is parameterized by (x(t), yet)) = (cos(t) , sin(t)) for
t E [0, n]. The derivative of the curve is (x'(t), y'(t)) = (- sin(t), cos(t)). The total
mass is

The length of the hemicircle is n units of distance, but keep in mind that the units of
mass are not distance. The moment about the x-axis is

Mx= f.n YUh/x2 + »2 dt = f.n sin(t) dt = 2

The y-value for the center of mass is therefore y = Mxlm = 21n == 0.64. The center
ofmass is clearly not on the wire itself. Ifthe wire were to be placed on a thin, massless
plate, the balancing point for the plate and wire would be at (0, 2In).

Show that the center of mass for the half-disk x 2+ y2 ::: 1, with y ~ 0, has i =°and
y = 4/(3n) == 0,42. The y-value is smaller than that of the wire, as is to be expected
since the additional mass inside the hemicircle should bias the y-value toward the
origin.

52 Chapter 2 Basic Concepts from Physics

Discrete Mass in Three Dimensions

Let the p masses be mj and located at (Xj, yj, Zj) for 1::::: i .:s p. Imagine these lying
within a massless gel. Gravity is assumed to exert itself in the downward direction; the
magnitude of the force is g. The center of mass is the point (x, y, z), such that the gel
balances when a support is embedded at that location. The gravitational force exerted
on each mass is mjg. The torque about (x, y, z) is mjg(xj - x, Yj - y, Zj - z). The
total torque must be the zero vector,

p

L mjg(xj - x, Yj - y, Zj - z) = (0, 0, 0)
j=l

The equation is easily solved to produce the center of mass:

(2.69)

The sum m = Lf=l mj is the total mass of the system. The sum Myz = Lf=l mjXj is
the moment of the system about the yz-plane, the sum M xz = Lf=l mjYj is the mo­
ment of the system about the xz-plane, and the sum Mxy = Lf=l mjzj is the moment
of the system about the xy-plane.

Continuous Mass in Three Dimensions

We have three different possibilities to consider. The mass can be situated in a
bounded volume, on a surface, or along a curve.

Volume Mass

In the case of a bounded volume V, the infinitesimal mass dm at (x, y, z) is dis­
tributed in an infinitesimal cube with dimensions dx, dy, and dz and volume dV =
dx dy dz. The density of the distribution is 8(x, y, z), so the infinitesimal mass is
dm = 8 dV = 8 dx dy dz. The total torque is the zero vector,

Iii (x - x, y - y, z - z)g dm = 0

The center of mass is obtained by solving this equation:

_ _ _ fffv(x, y, z)8 dx dy dz
(x, y, z) = fffv 8 dx dy dz

= (fffv x 8 dx dy dZ, fffv y 8 dx dy dZ, fffv z 8 dx dy dZ)

fffv 8 dx dy dz fffv 8 dx dy dz fffv 8 dx dy dz

(2.70)

EXAMPLE

2.5

2.5 Momenta 53

The integral m = fffv 8 dx dy dz is the total mass of the system. The integral
M yz = fffv x8 dx dy dz is the moment of the system about the yz-plane, the inte­
gral Mxz = fffv y8 dx dy dz is the moment ofthe system about thexz-plane, and the
integral Mxy = fffv z8 dx dy dz is the moment of the system about the xy-plane.

Compute the center of mass of the solid hemisphere x 2 + y2 + z2 ~ 1, with z ~ 0,
assuming the density is a constant 8 == 1. From the symmetry, we know that i =
Y= O. The numerical value of the total mass should be the same as the volume of
the hemisphere, m = 2JT /3. Let us verify that anyway. The mass integral is computed
using a change to spherkal coordinates:

m = IIi dx dy dz

= In N

/

2

1n! 1n
2n

p2 sin </> de dp d</>

=(1)(1/3)(2JT)

= 2JT/3

The moment about the xy-plane is

M xy =Iii z dx dy dz

rr/2 {I {2lT
=io io io (p cos ¢)p2 sin ¢ de dp d¢

= (1/2) (1/4) (2JT)

=JT/4

The z-value of the center of mass is z= Mxy/m = 3/8 = 0.375. As you might have
predicted, the point is closer to the xy-plane than to the pole of the hemisphere.

Surface Mass

In the case of a bounded surface S, the infinitesimal mass dm at (x, y, z) is dis­
tributed in an infinitesimal surface area dS. The representation of dS depends on

54 Chapter 2 Basic Concepts from Physics

how the surface is defined. If the surface is the graph of the function z = f(x, y),
then

dS= (af)2 (af)2
1+ ax + ay dx dy

EXAMPLE

2.6

If the surface is defined parametrically as P(u, v) = (x(u, v), y(u, v), z(u, v)), then

l
ap apidS=-x-dudv
au av

The density of the distribution is 8 and is assumed to be a function defined at each
point on the surface. Solving the equilibrium equation for torque, the center of mass
for the surface is

x - z _ lIs (x , y, z)8 dS _ (lIs x 8 dS lIs y 8 dS lIs z 8 dS) (2.71)
(,y,) - lIs 8 dS - lIs 8 dS ' lIs 8 dS ' lIs 8 dS

where the integration is performed over the two-dimensional surface (hence, the use
of double integrals). The integral m = lIs 8 dS is the total mass of the system. The
integral M yz = lIs x 8 dS is the moment of the system about the yz-plane; the integral
Mxz = lIs y8 dS is the moment of the system about the xz-plane; and the integral
M xy = lIs z8 dS is the moment of the system about the xy-plane.

Compute the center of mass of the hemisphere x2 + y2 + z2 = I, with z ::: 0, assum­
ing the density is a constant 8 == 1. From the symmetry, we know that x= y= O. The
numerical value of the total mass should be the same as the area of the hemisphere,
m = 2rr. The mass integral is computed using a change to spherical coordinates with
8 = 1:

m = lis dS

= 1~/21"" sin 1> dO d1>

= (f/2 sin 1> d1» (1"" dO)

= 2rr

2.5 Momenta 55

The moment about the xy-plane is

{Jr l 2 {2Jr
= 10 10 (cos ¢) sin ¢ de d¢

=JT:

The z-value of the center of mass is z= Mxy/m = 1/2 = 0.5. This value is closer to
the pole than its counterpart for the solid hemisphere) as expected.

Curve Mass

Last of all) suppose that the continuous material is a wire that consists of mass dis­
tributed along a curve in three dimensions. Let the curve be continuously differen­
tiable and specified parametrically by (x(t)) yet)) z(t)) for t E [a) b]. In terms of arc
length) s) the mass density is 8(s). In terms of the curve parameter) it is specified
parametrically as 8(t). The infinitesimal mass at the position corresponding to t is
distributed over an infinitesimal arc length ds of the wire. The infinitesimal mass is
d m = 8(t) d s) where ds = Jx2 + y2 + z2 d t for parametric curves in space; the dot
symbol denotes differentiation with respect to t. The total mass of the wire is there­
fore

m = iL

8(s) ds = l b

8(t) lx2 + y2 + 22 dt

where s is the arc length parameter and L is the total length of the curve. The
rightmost integral is the formulation in terms of the curve parameter) making it the
integral that is actually evaluated. The moment about the yz-plane is

The moment about the xz-plane is

56 Chapter 2 Basic Concepts from Physics

And the moment about the xy-plane is

M xy =lL

z8(s) ds =lb

z(t)8(1) "jx' + y2 + z2 dt

The center of mass is

EXAMPLE

2.7
Compute the center of mass of a constant density wire in the shape of a helix,
(x(t), yet), z(t)) = (cos t, sin t, t) for t E [0, 2rr]. For simplicity, set the density to 1.
The mass of the wire is

[2Jr
m = 10 Jx2 + y2 + z2 dt

[2Jr
= 10 Ii+f2dt

= ~ (tli+f2 + In(t +1i+f2)) I~

2rr-Vl + 4rr 2 + In(2rr + -VI + 4rr 2) •= = 21.2563
2

The moment about the yz-plane is

[2Jr [2Jr
Myz = 10 x(t)Jx2 + y2 + z2 dt = 10 (cos t)1i+f2 dt == 0.386983

This integral cannot be evaluated in terms of elementary functions. A numerical
integration leads to the approximation shown in the equation. Similarly,

[2Jr [2Jr
Mxz = 10 y(t)Jx2 + y2 + z2 dt = 10 (sin t)1i+f2 dt == -5.82756

The last moment can be calculated in closed form and is

1

2Jr 12Jr (1 + 4rr2)3/21
2Jr

Mxy = z(t)Jx2 + y2 + z2 dt = tli+f2 dt = == 85.5115
o 0 3 0

The center of mass is

(x, y, z) = (Myz ' Mxz ' Mxy)/m

== (0.018206, -0.274157,4.022878)

2.5 Momenta 57

2.5.4 MOMENTS AND PRODUCTS OF INERTIA

Another moment quantity of physical significance is moment of inertia. This is a
measure ofthe rotational inertia of a body about an axis. The more difficult it is to set
the object into rotation, the larger the moment of inertia about that axis. Intuitively
this happens if the object's mass is large or if its distance from the axis is large.
Empirical studies for a single particle show that the moment of inertia is mr2, where
m is the mass ofthe particle and r is its distance to the axis. For completeness, we look
at the one- and two-dimensional problems and define moment of inertia with respect
to a point since there is no concept of rotation about a line in those dimensions.

Moment of Inertia in One Dimension

Given a discrete set of p particles with masses mi and located on the real line at
positions Xi' the total mass is m = Lf=l mi' The moment with respect to the origin
X = 0 is Mo = Lf=l mixi' This quantity showed up when computing the center
of mass i = Lf=l mixj Lf=l mi = Maim. The motivation for i is that it is the
location for which Lf=l mi(xi - i) = O. The quantities Lf=l mi and Lf=l mixi are
special cases of Lf=l mixf, where k = 0 for the mass and k = 1 for the moment. The
special case k = 2 has great physical significance itself. The quantity

p

/0= Lmix;
i=l

(2.73)

is referred to as the moment of inertia with respect to the origin of the real line. The
moment ofinertia with respect to the center ofmass is

p

/ = Lmi(Xi _i)2 = /0 - mi2

i=l
(2.74)

For a continuous mass located on the interval [a, b] of the real line and with mass
density 8(x), the total mass is m = J: 8(x) dx and the moment about the origin

is Mo = J: x8 (x) dx. The center of mass is i = Mol m. The moment of inertia with
respect to the origin is

(2.75)

and the moment of inertia with respect to the center ofmass is

(2.76)

with the right-hand side occurring just as in the discrete case.

58 Chapter 2 Basic Concepts from Physics

Moment of Inertia in Two Dimensions

Given a discrete set of p particles with masses mi and located in the plane at positions
(Xi' yJ, the total mass is m = Lf=l mi' The moment with respect to the y-axis was
defined as My = Lf=l mixi and the moment with respect to the x-axis was defined

as Mx = 'Lf=l miYi' The center of mass is (x, y) = (My/m, Mx/m). We can define
the moment ofinertia with respect to the origin as

p

10 = L mi(x; + Y;)
i=l

The moment ofinertia with respect to the center ofmass is

p

1 = L mi /(Xi' Yi) - (x, Y)1 2 = 10 - m(x2 + y2)

i=l

(2.77)

(2.78)

For a continuous mass located in the region R of the plane and having mass density
8(x, y), the total mass is m = ffR 8(x, y) dx dy and the moments with respect to
the y- and x-axes are My = ffR x8(x, y) dx dy and Mx = ffR y8(x, y) dx dy. The
center of mass is (x, y) = (My/m, Mx/m). The moment of inertia with respect to the
origin is

(2.79)

and the moment of inertia with respect to the center ofmass is

(2.80)

with the right-hand side occurring just as in the discrete case.

Moment of Inertia in Three Dimensions

Ofcourse the interesting case is in three dimensions. We could easily define a moment
of inertia relative to a point, just as we did in one and two dimensions. However,
keeping in mind that we are interested mainly in the motion of rigid bodies, if one
point on the body rotates about a line (even if only instantaneously), then all other
points rotate about that same line. In this sense it is more meaningful to define a
moment of inertia relative to a line.

Given an origin (9 and a discrete set of p particles with masses mi located at
ri = (xi' Yi' zi) relative to (9, the total mass is m = Lf=l mi' The moments with re­
spect to the xy-, xz-, and yz-planes were defined, respectively, as Mxy = 'Lf=l mizi'

2.5 Momenta 59

Mxz = Lf=l miYi' and M yz = Lf=l mixi' The center of mass is (x, y, z) =
(Myz/m, Mxz/m, Mxy/m). The moments of inertia about the X-, y-, and z-axes are,
respectively,

p

I xx = L mi(Y; + zf),
i=l

p

I zz = L mi(x; + Y;)
i=l

p

I yy = L mJx; + zf), and
i=l

(2.81)

The moment ofinertia about a line L through (9, given parametrically as (9 + t D with
nonzero direction vector D = (d1, d2 , d3), is the sum ofmirf, where ri is the distance
from Pi to the line, or

p

h = L mi (Iril2- (D· rJ2)
i=l

p p p

=d~ L mi(Y; + zf) + di L mi(x; + zf) + d; L mi(Yi
2 + zf)

i=l i=l i=l (2.82)

p p p

- 2d1d2 L mixiYi - 2d1d3 L mixizi - 2d2d3 L miYizi
i=l i=l i=l

where the first three terms contain the moments of inertia about the coordinate axes
and the last three terms have newly defined quantities called the products ofinertia,

p

I xy = LmixiYi'
i=l

p

I xz = L mixizi,
i=l

p

and I yz = L miYizi
i=l

(2.83)

Equation (2.82) may be written in matrix form as

(2.84)

where the last equality defines the symmetric matrix J, called the inertia tensor or
mass matrix,

(2.85)

60 Chapter 2 Basic Concepts from Physics

Moments and products of inertia are similar for a continuum of mass occupying
a region R. The moments of inertia are

and the products of inertia are

Ixy =l xydm, I xz = l xzdm, I yz =l yzdm (2.87)

Equation (2.84) is the same whether the mass is discrete or continuous.
The reason for the use of the term mass matrix is clear by considering a single

particle of mass m, located at r relative to the origin, and that rotates about a fixed
axis. As indicated by equations (2.34), (2.35), and (2.36), the position is r = (x, y, z);

the velocity is v = w x r, where w is the angular velocity; and the acceleration is
a = -a2r + ex x r, where a is the angular speed and ex is the angular acceleration.
The angular momentum is

L = r x mv = mr x (w x r) = m (I rl 2I - rrT)w = I w

where the inertia tensor for a single particle is

(2.88)

-xz]
-yz

x2 + y2

Notice the similarity of the angular momentum equation L = Iw to the linear
momentum equation p = mv. The coefficient oflinear velocity in the latter equation
is the mass m. The coefficient of angular velocity in the former equation is the mass
matrix I. Similarly, the torque is

i = r x ma

=mr x (-a 2r + ex x r) = mr x (ex x r) = m(lrl 2I - rrT)ex = I ex
(2.89)

Notice the similarity of the torque equation i = I ex to Newton's second law
F = ma. The coefficient oflinear acceleration in Newton's second law is the mass m,
whereas the coefficient ofangular acceleration in the torque equation is the mass ma­
trix I. Equations (2.88) and (2.89) apply as well to particle systems and continuous
mass, where the world and body origins coincide.

Equation (2.84) is a quadratic form that has a maximum and a minimum, both
eigenvalues of the matrix I. From linear algebra (see [Str88] for example or see
Appendix A), a scalar).. is an eigenvalue of I with a corresponding eigenvector
V =1= 0, such that IV =)..V. The intuition, at least for real-valued eigenvalues, is

2.5 Momenta 61

that the vector V has only its length changed by J but not its direction. The unit­
length directions D that generate the extreme values are eigenvectors corresponding
to the eigenvalues. Using techniques from linear algebra and matrix theory, we can
factor J using an eigendecomposition, J = RMRT, where M = Diag(IlI' 1l2, 1l3)
is a diagonal matrix whose diagonal entries are the eigenvalues of J. The matrix
R = [VI V 2 V 3] is an orthogonal matrix whose columns are eigenvectors of J, listed
in the order of the eigenvalues in M. The eigenvalues Ili are called the principal
moments of inertia, and the columns Vi are called the principal directions of inertia.

Equation (2.62) shows us that torque is just the time derivative of angular mo­
mentum. Equation (2.42) shows us how to compute the time derivative of a vector
in a moving frame for the rigid body. In particular, we can apply this formula to the
angular momentum:

dL
T=-

dt

DL
=-+wxL

Dt

= D(Jw) + w x (Jw)
Dt

Dw
=J-+wx(Jw)

Dt

dw
= J- +w x (Jw)

dt

(2.90)

This vector-valued equation may be viewed as equations of motion for a rigid body.
When T and ware represented in a body coordinate system where the coordinate axis
directions are the principal directions of inertia, equation (2.90) reduces to

dw
T=M- +w x (Mw)

dt
(2.91)

EXAMPLE

2.8

where M is the diagonal matrix of principal moments. This equation is referred
to as Euler's equations of motion. Mathematically, equation (2.91) is derived from
equation (2.90) by replacing J by RMRT and by replacing the world coordinate
representations T and w by the body coordinate representations RT

T and RTW. In
the process you need to use the identity (Ra) x (Rb) = R(a x b) when R is a rotation
matrix.

Compute the inertia tensor for a solid triangle of constant mass density 8 = 1 with
vertices at (0, 0), (a, 0), and (0, b).

62 Chapter 2 Basic Concepts from Physics

(Example 2.8
continued)

EXAMPLE

2.9

The region of integration R is determined by z = 0, 0:::: x :::: a, and 0:::: y ::::
b(l - x/a). Since the mass density is always 1, the mass is just the area of the triangle,
m = ab/2. The quantity /xx is

/xx = f1(y2 + z2) dR

lo
alobo-x/a)

= y2 dy dx
o 0

lo
ay3Ibo-x/a)

= - dx
0 3 0

= fa (b(l- x/a))3 dx

10 3

= _ab\l - x/a)4I
a

12 0

Similar integrations yield / yy = ma2/6, /zz = m (a 2+ b2)/6, /xy = mab/12, /xz = 0,
and /yz = O.

Consider a box centered at the origin with dimensions 2a > 0, 2b > 0, and 2c > O.

The vertices are (±a, ±b, ±c), where you have eight choices for the signs in the
components. Let the mass density be 1.

1. Compute the inertia tensor for the eight vertices of the box where all masses are 1
(discrete points).

2. Compute the inertia tensor for the box treated as a wireframe ofmasses where the
12 edges are the wires (curve mass).

3. Compute the inertia tensor for the box treated as a hollow body (surface mass).

4. Compute the inertia tensor for the box treated as a solid (volume mass).

SOLUTION 1

The moments and products of inertia are easily calculated by setting up a table
(Table 2.1). The total mass is m = 8.

2.5 Momenta 63

Table 2.1 Moments and products of inertia for vertices

Point I xx I yy I zz I xy I xz I yz

(a, b, e) b2 + e2 a2 + e2 a2 + b2 ab ae be

(a, b, -e) b2 + e2 a2 + e2 a2 +b2 ab -ae -be

(a, -b, e) b2 + e2 a2 + e2 a2 + b2 -ab ae -be

(a, -b, -e) b2 + e2 a2 + e2 a2 + b2 -ab -ae be

(-a,b,e) b2 + e2 a2 + e2 a2 +b2 -ab -ae be

(-a, b, -e) b2 + e2 a2 + e2 a2 +b2 -ab ae -be

(-a, -b, e) b2 + e2 a2 + e2 a2 +b2 ab -ae -be

(-a, -b, -e) b2 + e2 a2 + e2 a2 +b2 ab ae be

Sum m(b2 + e2) m(a2 + e2
) m(a2 + b2

) 0 0 0

SOLUTION 2

The moments and products of inertia can be calculated for each of the 12 edges,
then summed. Consider the edge (x, b, e) for Ix I :::: a. The moments and products
of inertia for this edge are

I xy = i: xy dx = b i: x dx = 0

Ixz = fa xz dx = e fa X dx = 0
-a -a

lyz = i: yz dx = he i: dx = 2abe

Similar integrals must be evaluated for the other edges. Table 2.2 shows the moments
and products of inertia for the edges. The total mass is the sum of the lengths of the
edges, m = S(a + b + e).

64 Chapter 2 Basic Concepts from Physics

Table 2.2 Moments and products of inertia for edges

Edge I xx I yy I zz I xy I xz I yz

(x, b, c) 2a(b2 + e2
) 2(a3/3 + ae2

) 2(a 3/3 + ab2
) 0 0 2abe

(x, b, -c) 2a(b2 + e2) 2(a 3/3 + ae2
) 2(a3/3 + ab2

) 0 0 -2abe

(x, -b, c) 2a(b2 + e2) 2(a3/3 + ae2
) 2(a 3/3 +ab2

) 0 0 -2abe

(x, -b, -c) 2a(b2 + e2) 2(a 3/3 + ae2
) 2(a 3/3 + ab2

) 0 0 2abe

(a, y, c) 2(b3/3 + be2
) 2b(a2 + e2) 2(b3/3 + ba2

) 0 2abe 0

(a, y, -c) 2(b3/3 + be2
) 2b(a2 + e2

) 2(b3/3 + ba2
) 0 -2abe 0

(-a, y, c) 2(b3/3 + be2
) 2b(a2 + e2) 2(b3/3 + ba2

) 0 -2abe 0

(-a, y, -c) 2(b3/3 + be2
) 2b(a2 + e2) 2(b3/3 + ba2

) 0 2abe 0

(a, b, z) 2(e3/3 + eb2
) 2(e3/3 + ea2

) 2e(a2 + b2) 2abe 0 0

(a, -b, z) 2(e3/3 + eb2
) 2(e3/3 + ea2

) 2e(a2 + b2) -2abe 0 0

(-a,b,z) 2(e3/3 + eb2
) 2(e3/3 + ea2

) 2e(a2 + b2) -2abe 0 0

(-a, -b, z) 2(e3/3 + eb2
) 2(e3/3 + ea2

) 2e(a2 + b2) 2abe 0 0

Sum m (b+c)3+3a(b2+c2) m (a+c)3+3b(a 2+c2) m (a+b)3+3c(a 2+b2)
0 0 0"3 a+b+c "3 a+b+c "3 a+b+c

(Example 2.9
continued)

SOLUTION 3

The moments and products of inertia can be calculated for each of six faces, then
summed. Consider the face z = e with Ixl :::: a and Iyl :::: b. The moments and prod­
ucts of inertia for this face are

Ixx = f~ i: y' +z' dx dy = 4a(b
3
/3 + be')

Iyy = f~ i: x' +z' dx dy = 4b(a
3
/3 + ae')

I" = f~ i: x' + y' dx dy = 4ab(a' +b')/3

Ixy = jb ja xy dx dy = 0
-b -a

Ixz = jb ja xz dx dy = 0
-b -a

Iyz = jb ja yz dx dy = 0
-b -a

2.5 Momenta 65

Table 2.3 Moments and products of inertia for faces

Face I xx I yy I zz I xy I xz I yz

z=e 4ab(b2 + 3e2)/3 4ab(a2 + 3e2)/3 4ab(a2 + b2)/3 0 0 0

z= -e 4ab(b2 + 3c2)/3 4ab(a2 + 3c2)/3 4ab(a 2 + b2)/3 0 0 0

y=b 4ae(e2 + 3b2) /3 4ae(a2 + e2)/3 4ae(a2 + 3b2)/3 0 0 0

y=-b 4ae(e2 + 3b2)/3 4ae(a2 + e2)/3 4ae(a2 + 3b2)/3 0 0 0

x=a 4be(b2 + e2)/3 4be(e2 + 3a2) /3 4be(b2 + 3a2) /3 0 0 0

x=-a 4be(b2 + e2)/3 4be(e2 + 3a2) /3 4be(b2 + 3a2)/3 0 0 0

Sum m a(b+c)3+bc(b2+c2) m b(a+c)3+ac(a 2+c2) m c(a+b)3+ab(a2+b2) 0 0 0"3 ab+ac+bc "3 ab+ac+bc "3 ab+ac+bc

Similar integrals must be evaluated for the other faces. Table 2.3 shows the moments
and products of inertia for the faces. The total mass is the sum of the areas of the
faces, m = 8(ab + ae + be).

SOLUTION 4

The total mass is the volume of the box, m = 8abe. The moments and products of
inertia are

j

c jb ja 2 2 8abe(b2 + e2
) m(b2 + e2

)
Ixx = y + z dx dy dz = = ----

-c -b -a 3 3

j

c jb ja 2 2 8abe(a2 + e2
) m(a2 + e2

)
Iyy = X + z dx dy dz = = ----

-c -b -a 3 3

j

c jb ja 2 2 8abe(a2 + b2
) m(a2 + b2

)
Izz = X + Y dx dy dz = = ----

-c -b -a 3 3

Ixy = L:i:i: xydxdydz=O

Ixz = jC jb ja xz dx dy dz = 0
-c -b -a

Iy, = i:i:f yzdxdy dz =0

EXERCISE

2.11
Repeat the experiment of Example 2.9 using a tetrahedron instead of a box. The
vertices are (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, e), where a > 0, b > 0, and e > O.

66 Chapter 2 Basic Concepts from Physics

EXERCISE

2.12

EXERCISE

2.13

EXERCISE

2.14

Compute the inertia tensor for the planar object in Example 2.3, but treated as a 3D
object (a surface mass).

Compute the inertia tensor for the hemicircle wire in Example 2.4, but treated as a
3D object (a curve mass).

Transfer ofAxes. The derivation of equation (2.82) used any specified origin CJ and
produced the quantities lxx' lyy, lzz, lxy, lxz' and lyz. Let the total mass of the
system be m. Suppose that the origin is chosen as the center of mass (x, ji, z) and
that coordinate axes are chosen so that they are parallel to those used at origin CJ. If
the corresponding inertia quantities are ixx' i yy , i zz , i xy , i xz' and i yz , show that lxx =

i xx + m(ji2 + z2), lyy = i yy + m(x2+ z2), lzz = i zz + m(x2+ ji2), lxy = i xy + mxji,

lxz = i xz + mxz, and lyz = i yz + mjiz. Compare this result with equations (2.74),
(2.76), (2.78), and (2.80).

Conclude that the moment of inertia about a line L containing the center of mass
and having unit-length direction D is

-(Ixy + mxji)

iyy ~m(x2+ z2)

-(Iyz + mjiz)

The significance of this result is that an application needs only to compute the inertia
tensor relative to the body's center of mass. The inertia tensor for other coordinate
frames is then easily calculated from this tensor.

We will look at moments of inertia in more detail in Section 3.2 when dealing
with rigid body motion.

2.5.5 MASS AND INERTIA TENSOR OF A SOLID POLYHEDRON

In a game environment the objects that physically interact typically are constructed
as simple polyhedra. In order to set up the equations of motion for such objects, we
need to compute the mass and inertia tensor for a solid polyhedron. This can be quite
a difficult task if the mass density of the object is variable but turns out to be relatively
simple for constant mass density. For the sake of simplicity we will assume that the
mass density is p = 1. For any other value you will need to multiply the mass and
inertia tensors by that value.

A mathematical algorithm for computing the mass and inertia tensor for solid
polyhedra of constant mass density is described by Mirtich [Mir96a]. The construc­
tion uses the Divergence Theorem from calculus for reducing volume integrals to
surface integrals, a reduction from three-dimensional integrals to two-dimensional
integrals. The polyhedron surface is a union of planar faces, so the surface integrals

2.5 Momenta 67

are effectively integrals in various planes. Projection of these faces onto coordinate
planes are used to set up yet another reduction in dimension. Green's Theorem, the
two-dimensional analog of the Divergence Theorem, is used to reduce the planar in­
tegrals to line integrals around the boundaries of the projected faces.

Two important points emphasized in the paper are (1) the projection of the poly­
hedron faces onto the appropriate coordinate planes to avoid numerical problems
and (2) the reduction using Green's Theorem to obtain common subexpressions,
which are integrals of polynomials of one variable, to avoid redundant calculations.
Item (2) occurs to handle polyhedron faces with four or more vertices. Item (1)
is necessary in order to robustly compute what is required by item (2). When the
polyhedron faces are triangles, neither items (1) nor (2) are necessary. A simpler con­
struction is provided here when the polyhedron faces are triangles. A consequence of
the formulas as derived in this document is that they require significantly less com­
putational time than Mirtich's formulas.

Reduction ofVolume Integrals

The mass, center of mass, and inertia tensor require computing volume integrals of
the type

Iv p(x, y, z) dV

where V is the volumetric region of integration and dV is an infinitesimal measure
ofvolume. The function p(x, y, z) is a polynomial selected from 1, x, y, z, x 2, y2, z2,
xy, xz, and yz. We are interested in computing these integrals where V is the region
bounded by a simple polyhedron. A volume integral may be converted to a surface
integral via the Divergence Theorem from calculus:

Iv p(x, y, z) dV = Iv V . F dV = Is N . F dS

where S is the boundary of the polyhedron, a union of triangular faces, and where dS
is an infinitesimal measure of surface area. The function F(x, y, z) is chosen so that
V . F = p. The vector N denotes outward-pointing, unit-length surface normals. The
choices for F in the Mirtich paper are given in Table 2.4.

The computational effort is now devoted to calculating the integrals Is N . F dS.
The boundary S is just the union of polyhedral faces S:-. An outward-pointing, unit­
length normal to face s:- is denoted by Ns-- = CfJx' fJ y , fJz). The surface integral decom­
poses to

{ N· F dS = L {N3"' F dS
is S--ES is--

(2.92)

68 Chapter 2 Basic Concepts from Physics

Table 2.4 Generation of polynomials by vector fields

p F p F

(x, 0, 0) y2 (0, y3/3, 0)

x (x 2/2, 0, 0) Z2 (0, 0, z3/3)

Y (0, y2/2, 0) xy (x 2y /2,0, 0)

z (0, 0, z2/2) xz (0, 0, z2x /2)

x 2 (x 3/3, 0, 0) yz (0, y2z/2, 0)

The integrals to be computed are now reduced to

[dV = L ~x [x dS
Jv J"ES JJ"

We now need to compute integrals of the form

~e1q(x, y, z) dS (2.93)

where eis one of x, y, or z and where q is one of x, x 2, y2, z2, x 3, y3, z3, x 2y, y2z , or
z2x .

Computation by Reduction to Line Integrals

Although we do not need to compute a surface integral when q (x, y, z) = I, we use
it as motivation. Notice that fJ" dS is the area A of the polygonal face. The area may
be computed as a three-dimensional quantity:

2.5 Momenta 69

n-I

A = [dS = ~NJ' . L Pi X PHI
lJ' 2 i=O

where the polygon vertices are Pi = (Xi' Yi, Zi), O:s i :s n - 1, and the vertices are
ordered counterclockwise relative to the face normal NJ'. Modular indexing is used so
that Pn = Po. This formula occurs in [Arv91] and is derived using Stokes's Theorem
from calculus. The computation is not as efficient as it can be. A discussion ofvarious
methods for computing area (and volume) is found in [SE02].

An efficient method for computing the area is to project the polygon onto a coor­
dinate plane, compute the area in two dimensions, and adjust the result to account for
the projection. The plane of the polygonal face is ~xx + ~yY + ~zz + w = 0, where
w = -NJ' . Po. As long as ~z i=- 0, we may project onto the xy-plane. The plane equa­
tion is written Z = f(x, y) = -(w + ~xx + ~yy)/~z' The infinitesimal surface area
in terms of the independent variables X and y is

2
(")2~ -17 1

1+ (-" x) + ~ dx dy = -,,- dx dy
17z 17z l17zl

where we have used the fact that INJ'I = 1. The surface integral becomes

[dS=~ [dxdy
lJ' l17zl1R

where R is the region bounded by the projected polygon. That polygon has vertices
Qi = (xi' Yi)' A planar integral may be converted to a line integral via Green's Theo­
rem, the two-dimensional analog of the Divergence Theorem:

1p(x, y) dx dy = LV' G dx dy =LM . G ds

where L is the boundary of the region R and where ds is an infinitesimal measure of
arc length. The function G(x, y) is chosen so that V . G = p. The vector M denotes
outward-pointing, unit-length curve normals. In our special case p(x, y) = 1and L
is a polygon. Many choices exist for G, one being G = (x, 0). The boundary is the
union of edges e. An outward-pointing, unit-length normal to the edge is denoted
Me:. The area integral decomposes to

[M· G ds = L [Me: . G ds
lL e: le:

(2.94)

70 Chapter 2 Basic Concepts from Physics

Note the similarity to equation (2.92). If edge G is the line segment connecting
Q i to Qi+l and has length L i = IQi+l - Qi I, then the edge is parameterized by
(x(s), y(s)) = (1- slLJQi + (sILJQi+l for S E [0, L;]. At first glance you might
choose the edge normals to be M i = (Yi+l - Yi, Xi - xi+l)1 L i . This is a correct
choice if the Qi are counterclockwise ordered. When r,z > 0, a counterclockwise
traversal of the Pi results in a counterclockwise traversal of the Qi' But when r,z < 0,
the Qi are traversed clockwise; the previous formula for M i must be negated. In
general M i = Sign(r,z)(Yi+l - Yi, Xi - Xi+l) I L i . The integral of equation (2.94) is
rewritten as

n-l L.

/,
M . G ds = L (I Mi' (x(s), 0) ds

L i=O io

n-l 1

= Sign(r,z) L(Yi+l - yJ { (1- t)Xi + tXi+l dt
i=O io

(2.95)

where the third equality is based on the change ofvariables s = Lit. The last equality
uses modular indexing (Yn = Yo and Y-l = Yn-l); it results in a reduction of one­
third the arithmetic operations from the previous equation. The proof of equality is
left as an exercise.

One potential source of numerical error is when r,z is nearly zero. The division
by Ir,zl is ill-conditioned. In this case we may project onto another coordinate plane.
The same ill-conditioning can occur for one of those, but not both since at least one
of the components ofN~ must be larger or equal to 1/.J3 in magnitude. The area of
the polygonal face is computed accordingly:

Ir,zI= max{Ir,x I, Ir,y I, Ir,zI}

Ir,xl = max{lr,xl, Ir,yl, Ir,zl}

Ir,y I = max{Ir,x I, Ir,y I, Ir,zI}

(2.96)

where Rxy , Ryz , and Rzx are the regions of projection of the polygonal face.

2.5 Momenta 71

The construction of fs q(x) Y) z) dS is handled in a similar manner except that
now the integrand has variables) the dependent one needing replacement using the
appropriate formulation of the plane equation:

Is q(x) y) z) dS

[

IJzl fR
xy

q(x) y) -(w + ~xx + ~yy)/~z) dx dy)

= -IAl I fR q(-(W + ~yy + ~ZZ)/~x) y) z) dy dz)
ryx yz

-IAl I fR q(X) -(W + ~xX + ~Zz)/~y) z) dz dx)
ryy zx

(2.97)

I~zl = max{l~xl) I~yl) I~zl}

I~x I= max{I~x I) I~ y I) I~zI}

I~yl = max{l~x I) I~yl) I~zl}

Each integrand is a polynomial of two independent variables. A function G must
be chosen so that V . G is that polynomial. When I~zl is the maximum absolute
normal component) G will have components that depend on x and y. Using the same
notation that led to equation (2.95)) the integral is

Is q(x) y) z) dS

n-l 1

= -1- L(Yi+l - Yi) Xi - Xi+l)·1 G((1- t)Qi + tQi+l) dt
1Jz i=O 0

At this point the remaining work involves selecting G for each integrand of equa­

tion (2.97) and computing the integral fol
G(1- t)Qi + tQi+l) dt. See [Mir96a] for

all the tedious details. I summarize the formulas below. The notation used in that
paper is that (ex) fJ) y) is a permutation of the usual coordinates) chosen from one of
(x) y) z)) (y) z) x)) or (z) x) y). The projection integrals are Jlj = fR f dex dfJ) where
R is the projection of the polygonal face onto the exfJ-plane and f is some polynomial
function:

Lex dS = l~yl-lJTa

LfJ dS = l~yl-lJT.B

Ly dS = -I~y l-l~;l(~aJTa + ~.BJT.B + WJTl)

72 Chapter 2 Basic Concepts from Physics

l a 2 dS = l~yl-1Jra2

l f32 dS = l~yl-1Jrf32

[2dS IA 1-1A- 2(A2 2A A A2 2 (A A) 2)J'J Y = rJ y rJ y rJaJra2+ rJarJf3Jraf3 + rJ f3Jr132+ W rJaJra + rJf3Jr13 + W Jr1

l a 3 dS = I~y ,-lJra3

l f33 dS = '~yl-1Jrf33

[3dS IA ,-l A-3(A3 A2 A A A2 A3J'J Y = - rJ y rJ y rJaJra3+ 3rJarJf3Jra2f3 + 3rJarJf3Jraf32 + rJf3Jrf33+

l a 2f3 dS = l~yl-1Jra2f3

[f32 y dS = -1~yl-1~-1(~aJraf32 + ~f3Jrf33 + WJrf32)J'J y

The projection integrals are

2.5 Momenta 73

+ (tiCfJ;+l + 2fJ;+lfJi + 3fJi+lfJ; + 4fJ;))

SignC~y) ~ 4 3 2 2 3 4
Jrf33 = - 20 .~_)(ti+l - (ti)CfJi+1+ fJi+1fJi + fJi+1fJi + fJi+lfJi + fJ i)

1=0

Notice that the formula for Jr1 is exactly what we derived for the area of the polygonal
face.

An example of how these are used is

I~zl = max{l~xl, I~yl, I~zl}

I~yl = max{l~xl, I~yl, I~zl}

I~xl = max{l~xl, I~yl, I~zl}

I~zl = max{l~xl, I~yl, I~zl}

I~yl = max{l~xl, I~yl, I~zl}
(2.98)

As we will see in the next section, these formulas reduce greatly when the polyhedron
has triangle faces.

74 Chapter 2 Basic Concepts from Physics

Computation by Direct Parameterization of Triangles

Let the triangular face be counterclockwise ordered and have vertices Pi = (Xi' Yi, ZJ,
o.:::: i .:::: 2. Two edges are

for 1 .:::: i ::::: 2. A parameterization of the face is

P(u, v) = Po + uE I + vEz

= (xo + (tlu + (tzv, Yo + f3 Iu + f3zv, Zo + Ylu + yzv)

= (x(u, v), y(u, v), z(u, v))

where u ~ 0, v ~ 0 and u + v .:::: 1. The infinitesimal measure of surface area is

l

ap api
dS = - x - du dv = lEI x Ezi du dvau av

and the outer-pointing unit-length face normal is

(2.99)

(f3 Iyz - f3ZYI, (tZYI - (tIYZ' (tlf3Z - (tZf3I)

lEI x Ezi

(00' 01' 0z)

lEI x Ezi

The integrals in equation (2.93) reduce to

(NJ" • l)1q (x, y, z) dS

{I {I-V
= (E I X Ez .l) 10 10 q(x(u, v), y(u, v), z(u, v)) du dv

(2.100)

where x(u, v), y(u, v), and z(u, v) are the components of the parameterization in
equation (2.99).

The integrals on the right-hand side of equation (2.100) can be computed sym­
bolically, either by hand or by a symbolic algebra package. The formulas listed on
page 75 were computed using Mathematica. Common subexpressions may be ob­
tained by some additional factoring. Define:

n

sn(w) = L w~-iw~, fo(w) = 1, and fn(w) = sn(w) + WZfn-I(W) for n ~ 1
i=O

Think of these as macros where the input argument is a textual replacement wherever
W occurs in the right-hand sides. Also define the macro:

2.5 Momenta 75

The specific expressions required in the surface integrals are listed below in terms
of w. Each macro is expanded three times, once for each of x, y, and z:

fleW) = Wo + WI + W2 = [wo + WI] + W2

f2(W) = w~ + WOWI + wi + w2fl(W)

= [[w~] + wdwo + WI)}] + w2{fl(W)}
(2.101)

hew) = w~ + W~WI + wowi + wi + w2f2(W)

= wo{w~} + WI{W~ + WOWI + wi} + w2{f2(W)}

The square brackets [] indicate that the subexpression is computed and saved in
temporary variables for later use. The curly braces { } indicate that the subexpression
was computed earlier and can be accessed from temporary variables. The number
of subexpressions that must be stored at anyone time is small, so cache coherence
should not be an issue when enough floating point registers are available for storing
the subexpressions (see the pseudocode on page 76 in this text).

The integrals are

(N:r 0 z) (x dS = 00 flex)
1:r 6

(N:r oz) (x 2 dS= 00 f2(x)
1:r 12

(N:r 0 J) (y2 dS = ~ hey)
1:r 12

(N:r 0 k) (z2 dS = 02 f2(z)
1:r 12

(N:r oz) (x 3 dS= 80 f3(x)
1:r 20

(N:r 0 J) (y3 dS = ~ f3(y)
1:r 20

(N:r 0 k) (z3 dS = O2 f3(z)
1:r 20

Comparison to Mirtich)s Formulas

Let us compare the formulas for Qx = (N:r 0 z) 1:r x dSo Our derivation led to the
formula

(20102)

76 Chapter 2 Basic Concepts from Physics

In equation (2.98) there are three possibilities for computing Qx- In the case y = z,

The final formula requires much more computational time than the one derived
in this document. In fact, the numerator is exactly divisible by the denominator
and the fraction reduces to Xo + Xl + X2' as it should to be equivalent to the Qx in
equation (2.102). The reduction was verified using Mathematica. If y = X, equation
(2.98) produces

The correctness of this formula was verified using Mathematica; in fact, it reduces to
equation (2.102). The computational requirements for this expression are enormous
compared to that of equation (2.102).

Comparisons between the formulas for the other integrals is possible, but you
will find that the differences in computational time become even greater than in the
example shown here.

Pseudocode

SOURCE CODE

PolyhedralMass­

Properties

The pseudocode for computing the integrals is quite simple. The polyhedron vertices
are passed as the array p[]. The number of triangles is tmax. The array index [] has
tmax triples of integers that are indices into the vertex array. The return values are the
mass, the center of mass, and the inertia tensor.

constant Real oneDiv6 = 1/6;
constant Real oneDiv24 = 1/24;
constant Real oneDiv60 = 1/60;
constant Real oneDiv120 = 1/120;

MACRO Subexpressions(wO,wl,w2,fl,f2,f3,gO,gl,g2)
{

// These are the expressions discussed in equation (2.101).
tempO = wO + wI;
fl = tempO + w2;
tempI = wO * wO;
temp2 = tempI + wI * tempO;

2.5 Momenta 77

f2 ~ temp2 + w2 * f1;
f3 ~ wO * tempI + wI * temp2 + w2 * f2;
gO ~ f2 + wO * (f1 + wO);
gl f2 + wI * (f1 + wI);
g2 ~ f2 + w2 * (f1 + w2);

void Compute (Point pC], int tmax, int index[], Real& mass, Point& em,
Matrix& inertia)

II order: 1, x, y, z, xA 2, yA 2, zA 2, xy. yz. zx
Real integral [10] ~ {O,O,O,O.O.O.O.O,O,O};
for (t ~ 0; t < tmax; t++)
{

II get vertices of triangle t
iO ~ index[3 * t];
il ~ index [3 * t + 1];
i2 ~ index[3 * t + 2];
xO ~ p[iO] .x;
yO ~ p[i 0] .y;
zO ~ p[i 0] . z;
xl ~ p[il] .x;
y1 ~ p[il] .y;
zl ~ p[i1].z;
x2 ~ p[i2] .x;
y2 ~ p[i2] .y;
z2 ~ P[i 2] .z;

II get edges and cross product of edges
a1 ~ xl - xO;
b1 ~ y1 - yO;
c1 ~ zl - zO;
a2 ~ x2 - xO;
b2 ~ y2 - yO;
c2 ~ z2 - zO;
dO ~ b1 * c2 - b2 * c1;
d1 ~ a2 * c1 - a1 * c2;
d2 ~ a1 * b2 - a2 * b1;

II compute integral terms
Subexpressions(xO.x1.x2.f1x,f2x,f3x.gOx,glx,g2x);
Subexpressions(yO,y1.y2.f1y.f2y.f3y.gOy.g1y.g2y);
Subexpressions(zO.zl.z2.f1z.f2z.f3z.g0z,glz,g2z);

78 Chapter 2 Basic Concepts from Physics

II update integrals
integral [0] += dO * fIx;
integral[l] += dO * f2x;
integral[2] += dl * f2y;
integral[3] += d2 * f2z;
integral[4] += dO * f3x;
integral[5] += dl * f3y;
integral[6] += d2 * f3z;
integral[7] += dO * (yO * gOx + yl * glx + y2 * g2x);
integral [8] += dl * (zO * gOy + zl * gly + z2 * g2y);
integral[9] += d2 * (xO * gOz + xl * glz + x2 * g2z);

}

integral [0] *= oneDiv6;
integral [1] *= oneDiv24;
integral[2] *= oneDiv24;
integral[3] *= oneDiv24;
integral[4] *= oneDiv60;
integral[5] *= oneDiv60;
integral[6] *= oneDiv60;
integral[7] *= oneDiv120;
integral[8] *= oneDiv120;
integral[9] *= oneDiv120;

mass = integral [0];

II center of mass
cm.x = integral [1] I mass;
cm.y = integral [2] I mass;
cm.z = integral [3] I mass;

II inertia relative to world origin
inertia.xx = integral [5] + integral [6];
inertia.yy integral [4] + integral [6];
inertia.zz = integral [4] + integral [5];
inertia.xy = -integral [7];
inertia.yz -integral [8];
inertia.xz = -integral [9];

II inertia relative to center of mass
inertia.xx -= mass * (cm.y * cm.y + cm.z * cm.z);
inertia.yy -= mass * (cm.z * cm.z + cm.x * cm.x);
inertia.zz -= mass * (cm.x * cm.x + cm.y * cm.y);
inertia.xy += mass * cm.x * cm.y;
inertia.yz += mass * cm.y * cm.z;
inertia.xz += mass * cm.z * cm.x;

EXERCISE

2.15

2.6

2.6 Energy 79

The format of the input vertices and triangle connectivity array is useful if the
input comes from triangle meshes that are also used for drawing. However, for even
greater speed you may exchange some memory usage by passing in a single array of
a more complicated triangle data structure that stores the three vertices and the cross
product oftwo edges. This format will avoid the indirect lookup ofvertices, the vector
subtraction used to compute edges, and the cross product operation.

Implement the pseudocode for computing the mass, center of mass, and inertia
tensor for a polyhedron.

Implement the Mirtich algorithm for computing the mass, center ofmass, and inertia
tensor for a polyhedron.

Set up a profiling experiment to compare the average time per polyhedron required
to compute the physical quantities.

ENERGY

This section is a brief one and describes the concepts of work, kinetic energy, and
potential energy. The concept of kinetic energy is important in the development of
Lagrangian dynamics. The concept of potential energy is important in the realm of
conservative forces.

2.6.1 WORK AND KINETIC ENERGY

Consider a particle of mass m that is constrained to travel along a straight line whose
direction is the unit-length vector D. Suppose that a constant force F is applied to the
particle while it is moving. Figure 2.22 illustrates the situation.

If L = IXI - Xol is the distance traveled by the particle over a given time interval,
the work done by the force on the particle over that time is defined to be the product

D

Figure 2.22 A force applied to a particle traveling on a straight line from position Xo to xl'

80 Chapter 2 Basic Concepts from Physics

ofthe magnitude of the force along the direction of the line and the distance traveled.
In the simple illustration of Figure 2.22, the work is

W = (IFI cos fJ)L = (F . D)L (2.103)

Observe that the component of the force in the direction of the line is (F . D)D. The
work is just the magnitude ofthat component times the distance traveled.

The path of the particle may very well be any smooth curve x(t). In this case
we resort to the usual infinitesimal argument from calculus. Over an infinitesimal
amount of time dt, the path looks like a line, and that line is the tangent line to
the curve at the initial position of the particle. The infinitesimal amount of distance
traveled by the particle during this instant of time is ds, the element of arc length.
The direction at the initial instant of time is the unit-length tangential direction
D = dx/ds. Using equation (2.103) as our motivation, the infinitesimal amount of
work dW done by the force on the particle is

dW = (F . 0) ds = (F . ~:) ds

The total work done by the force on the particle as it travels over an arc length L is

1
L dx

W= F· -ds
o ds

(2.104)

However, we usually know the position as a function of time t rather than as a
function of arc length s. The infinitesimal amount ofwork is

dW = (F .~:) ds = (F .dx) = (F .~~) dt

The total work done by the force on the particle as it travels over a time interval [to, t1]

IS

1
t1

dx 1t1

W = F . - dt = F . v dt
to dt to

(2.105)

EXAMPLE

2.10

where vet) is the velocity of the particle.
In this development it is important to keep in mind that the position x(t) may not

be entirely controlled by F. Other forces can be acting on the particle at the same time.
For example, the particle might be subject to gravitational force and F represents a
wind force. The quantity W in equation (2.105) represents the work done by the wind
on the particle, but does not include work done by gravity.

A projectile of mass m follows a parabolic path x(t) = (t, 0, t(lOO - t)) for t E

[0, 100]. The projectile is subject to gravitational force F = (0,0, -mg), where g > 0
is a constant. Compute the work done by the force over the specified interval.

EXERCISE

2.16

2.6 Energy 81

The velocity of the projectile is v = (1, 0,100 - 2t). The work done by the force is

[100
W = 10 F· vdt

[100
= 10 (0,0, -mg) . (1,0, 100 - 2t) dt

[100
=2mg 10 t - 50 dt

= 2500mg

A particle travels in the circular path x(t) = (r cos(wt), r sin(wt), 1). A constant
wind force is applied to the particle, F = (1, 1, 1). What is the work done by the wind
on the particle during one period of rotation °::::: t ::::: 2n / w? What is a time interval
over which the work is a maximum? Repeat the experiment, but for a time-varying
wind F = (t, t, 1).

IfF is the net force on a particle and it does fully control the position, the integral
in equation (2.105) can be integrated in closed form for a constant mass particle. In
this case Newton's second law allows us to use F = ma:

l
t1 ltl d (m) m()W = ma . v dt = - -lvl 2 dt = - IV(tI)12

- Iv(to)12

to to dt 2 2

The quantity W represents the work required to change the velocity of the particle
from v (to) to v(t1)' If the particle starts out at rest, that is, v(to) = 0, then W is referred
to as kinetic energy. In general, kinetic energy for a moving particle is

(2.106)

By construction, kinetic energy is measured with respect to an inertial frame of
reference. That frame is used to specify the position x(t) of the particle.

Kinetic energy is additive in the sense that for a system of particles, the kinetic
energy of the system is the sum of the kinetic energies of the individual particles. For
continuous material, the addition is in the sense of integration over a curve, surface,
or volumetric region, just as we have seen in other parts of this chapter.

2.6.2 CONSERVATIVE FORCES AND POTENTIAL ENERGY

The work done by a force on a particle traveling along a path x(t) for t E [to' t I] is
defined by equation (2.105). The particle starts at Xo = x(to) and ends at x(tI)' By
definition, the work done on the force depends on the path taken by the particle

82 Chapter 2 Basic Concepts from Physics

between the end points Xo and Xl' In many physical situations, though, the work is
independent of the path given the right type of force. When this happens, the force is
said to be conservative.

EXAMPLE

2.11
A particle is allowed to move between two points (xo, Yo, zo) and (xl' YI' zl) along a
smooth path (x(t), yet), z(t)) connecting them, t E [to' td. The particle is subjected
to a gravitational force F = -mgk. The work done by gravity is

i
t!

W = F· vdt
to

i
t!

= -mgk . (x(t), y(t), z(t)) dt
to

i
t!

= -mg z(t) dt
to

(2.107)

EXAMPLE

2.12

Regardless of how you choose the path connecting the two points, the work is always
a constant times the difference in heights ofthe end points. That is, W is independent
of the path of the particle and gravitational force is a conservative force.

One end of a spring is attached to the origin (0, 0, 0) and the other end is attached
to a particle whose position x(t) varies with time, t E [to, td. The spring constant is
c > 0 and the unstretched spring length is L. The force exerted on the particle by the
spring is F = -c(x - l) where l = Lx/lxi, a vector of constant length L in the same
direction as x. The work done by the spring force is

i
t!

w= F'vdt
to

i
t!

= -c(x - i) . xdt
to

i
t!

= -c(x - i) . (x -l) dt
to

i t! d 1 2= -c - - Ix - II dt
to dt 2

(2.108)

EXAMPLE

2.13

2.6 Energy 83

The introduction of (x - i) . i in the integrand is valid since (1) x - i is parallel
to i and (2) i is perpendicular to i because i . i = L 2 implies i . i = 0. That is,
(x - i) . i = 0. The work depends only on the end points and not on the path
connecting them, so the spring force is a conservative force.

A particle moves from (0, 0, 0) to (1, 1,0) and is subject to the spatially varying force
F = (y, -x, 0). This force is not conservative. The work done by the force when the
particle travels along the line segment (t, t, 0) for t E [0, 1] is

The work done by the force when the particle travels along the parabolic arc (t, t 2 , 0)

for t E [0, 1] is

W2 =11

F . v dl =1\1 • -I, 0) . (1, 21, 0) d1 =11

1 - 21' dl = -1/6 i' WI

The work done by the force depends on the path taken by the particle.

Other examples of nonconservative forces include friction, viscous drag when
moving through a fluid, and many forces that have explicit dependence on time and
velocity.

Consider a system of p particles with masses mi and positions (xi' Yi' zJ for
1 :::: i :::: p. These positions are referred to as the reference system. Conservative forces
Fi are applied to the particles in a general system, where the positions are (xi' Yi' zi)'
and work is measured as the general system is transferred to the reference system.
The work done by the forces in transferring the system is referred to as the potential
energy that the general system has with respect to the reference system. This quantity
is denoted V and is defined by

P [1
V = - l:= J0 F i . Vi d t

i=1 0

(2.109)

The paths implicit in the integration connect (Xi' Yi' zi)' at time 0, to (Xi' Yi' Zi)'
at time 1. Because the forces are conservative, any smooth paths that are parame­
terized by t E [0, 1] will do. The potential energy is therefore dependent only on the
general system; the reference positions are assumed to be constant. That is, as a func­
tion we have

84 Chapter 2 Basic Concepts from Physics

so that V is dependent on 3p variables. From calculus the total derivative of V is

In terms of infinitesimal quantities) the potential energy is

p p

dV = - L Fi . dXi = - L (FXidxi + FyidYi + FZidzi)
i=} i=}

where each force is specified componentwise as Fi = (FXi) F'.Yi) FZi)' In order to be
independent of path) the right-hand sides of the last two differential equations must
be equal. Thus)

av
F =--)

Yi aYi

for all i. In compact vector notation) Fi = -Vi V) where Vi denotes the gradient
operator with respect to the three variables Xi) Yi) and Zi'

By definition) ifF is a conservative force) there is a potential energy function V for
which F = - VV. But how do you know ifyou have a conservative force? The answer
lies in the same condition. If it were the case that (F}) F2) F3) = F = - VV) then

av
F}=--)

ax

av
F2 =--)

ay
av

F3 =-­
az

Assuming V has continuous second-order partial derivatives) the mixed partials are
equal. That is) a2v jaxay = a2v jayax) a2vjaxaz = a2v jazax) and a2vjayaz =
a2vjazay. In terms of the function components) it is necessary that

and (2.110)

EXAMPLE

2.14

Equations (2.110) are referred to as an exactness test. As it turns out) these conditions
are sufficient as well as necessary for the existence of a potential energy function
V for which F = - VV. If the conditions in the equation are satisfied) F must be a
conservative force.

In Example 2.11) the gravitational force is (F}) F2) F3) = (0) 0) -mg)) a constant
force. The conditions in equation (2.110) are trivially satisfied since all the derivatives
of the Fi are zero.

2.6 Energy 85

In Example 2.12, the spring force is (Fl , F2 , F3) = -c(x, y, z). The exactness condi­
tions are satisfied:

aFl = 0 = aF2 ,

ay ax

so the force is conservative.

aFl __ aF3--0--,
az ax

aF2 = 0 = aF3

az ay

In Example 2.13, the force is (Fl , F2 , F3) = (y, -x, 0). This force is not conservative
since

aF l = 1 i=- -1 = aF2

ay ax

The other two exactness tests are true, but as long as one of the three fails, the force
is not conservative.

One very important consequence of having a conservative force is that the total
energy of the system is conserved. Let F(x) be the force and let V (x) be the potential
energy function for which F = - \J V. The kinetic energy is T = m lil 2/2 and the total
energy is

1 . 2
E=T+V=-mlxl +V(x)

2

The time derivative of the energy is

dE d(T + V))
- = = mx . x + x . \J V = x . (mx - F = 0
dt dt

where the last equality follows from Newton's second law, mx = F.

(2.111)

RIGID Sd:'DY MbTION
--;'\ '"

C hapter 2 introduced the topic ofkinematics, the motion ofa body along a path
in the absence of external forces. Given the position, we can compute velocity

and acceleration by differentiation. This chapter is about dynamics, the interaction
of rigid bodies when forces and torques are present in the physical system. The
classical approach in an introductory physics course uses Newtonian dynamics and
the famous formula of Newton's second law of motion, F = ma, where m is the
constant mass ofan object, a is its acceleration, and F is the applied force. The applied
force determines the acceleration of the object, so velocity and position are obtained
by integration, exactly the opposite process we saw in kinematics. The coverage of
Newtonian dynamics is brief, yet sufficient to support the general-purpose physics
engines that use Newton's second law for simulation, as described in Chapter 5.

The majority of this chapter is on the topic of Lagrangian dynamics, a frame­
work for setting up the equations of motion for objects when constraints are present.
In Lagrangian dynamics, the equations of motion are derived from the kinetic en­
ergy function and naturally incorporate the constraints. A Newtonian formulation
requires that forces of constraint be part of the term F in the equation of motion;
the constraint forces are sometimes difficult to derive. Frictional forces are difficult
to deal with in a general-purpose physics engine that uses Newtonian dynamics. In
the Lagrangian approach frictional forces are easier to deal with. An entire section
is devoted to various examples involving objects moving on a rough plane, that is, a
plane whose material causes frictional forces.

A game designer's specific knowledge ofwhat the game physics will entail can ex­
ploit that knowledge to good effect by formulating the simulations using Lagrangian
dynamics. The result is that the computational time ofthe simulation is reduced com­
pared to a general-purpose system using Newtonian dynamics. Even more important

87

88 Chapter 3 Rigid Body Motion

is that the robustness problems with enforcing nonpenetration in a general-purpose
engine are reduced. In the situation where you explicitly know the constraining sur­
face on which an object must lie, you can periodically check if numerical round-off
errors have caused the object to be slightly off the surface, then correct the position
accordingly. On the other hand, a simulation modeled with Lagrangian dynamics is
specific to each physics application, thus requiring more programming development
time. My choice is to spend more time on the programming and gain the faster and
more robust applications. In addition, Euler's equations of motion are discussed in
this chapter because a few problems are more naturally formulated in terms of Euler
angles than in terms of other dynamics systems.

The classic textbook covering mechanics, including the topics mentioned in this
chapter, is [GPS02]. The text is on the heavy side with mathematics compared to what
you see in a standard physics course. In my opinion, the ultimate textbook for La­
grangian dynamics is a title in the Schaum's Outline Series, [We167]. The presentation
shirks away from many direct derivative computations and uses the infinitesimal ap­
proach that is popular among physicists to motivate some of the derivations (not my
personal preference), but the book has a lot of good examples for you to try. If you
are able to understand these and correctly work the exercises, you will be in a very
good position to solve any similar problem that comes your way in an application.

3.1

EXAMPLE

3.1

NEWTONIAN DYNAMICS

The section on kinematics describes the position, velocity, and acceleration of a
particle in motion along a curve and having no external forces acting on it. Dynamics,
on the other hand, describes how the particle must move when external forces are
acting on it. I assume that the mass m ofthe particle is constant over time, so Newton's
law states that F = ma, where F are the external forces acting on the particle and a is
the acceleration of the particle. If there are no external forces, F = 0, the acceleration
is a(t) = O. This equation integrates to v(t) = va' a constant. That is, the particle
travels with constant velocity when the acceleration is zero. Integrating again yields
r(t) = tva + ro, where ro is the initial location of the particle at time zero. The path
of motion is a straight line, as expected when no forces act on the object.

In the case of kinematics, we postulated the path of a particle and computed the
velocity and acceleration from it by differentiation. In the case of dynamics, we are
specifying the acceleration and must integrate to obtain the velocity and acceleration.
This is not always possible in a closed form, so many problems require numerical
methods to approximate the solution.

Let us take a look at a classic problem of motion of the Earth about the Sun. The
equations describing the motion are called Kepler's laws, after Johann Kepler, who
established the first two laws in 1609 and the third law in 1616. The basis for the
equation is that the Sun exerts a gravitational force on the Earth according to an
inverse-squared-distance law. Let M be the mass of the Sun and m be the mass of

3.1 Newtonian Dynamics 89

the Earth. Let r be the distance between the Earth and Sun. Let the position of the
Sun define the origin of the coordinate system. The force exerted is

GMm
F=---R

r 2

where G is a positive constant whose value is determined by empirical means. The
vector R is unit length and in the direction of the vector from the Sun to the Earth.
The minus sign states that the force on the Earth is attracting it toward the Sun.
Newton's law states that the acceleration a of the Earth is determined by

GMm GMm
ma=F=---R=---r

r 2 r 3

where we have used r = rR. Dividing by the Earth's mass and using a = v:
. GM
v=---r

r 3

Now consider:

(3.1)

~ (r x v) = r x v+ r x v = r x (- GM r) + v x v = - GM r x r + v x v = 0
dt r 3 r 3

This implies r x v = co' a constant vector for all time. Observe that the angular
momentum of the Earth is r x mY, so the implication is that the angular momentum
is a constant vector for all time. Another immediate consequence of the constancy is
that

O=r·rxv=r·co

The motion is necessarily within a plane containing the Sun's location and having
normal vector co'

Kepler's First Law Equal areas in the plane of motion are swept out in equal time intervals.
To see that this is true, consider an infinitesimal area dA swept out by moving the
Earth from current position r by an infinitesimal change in position dr. Figure 3.1
illustrates this.

The infinitesimal area is that of a triangle with two sides rand r + dr. The area of the
triangles is half the magnitude of the cross product of two edges, so dA = Ir x drill.
On the macroscopic level,

. 1 1 1
A = - Ir x rl = -Ir x vi = -Icol.

2 2 2

The rate of change in the swept area is constant, so equal areas are swept out in equal
time intervals.

90 Chapter 3 Rigid Body Motion

(Example 3.1
continued)

r+ dr

Figure 3.1 The infinitesimal area dA swept out by motion of the Earth over an infinitesimal
change in position dr. The swept region is effectively a triangle whose sides are rand
r+dr.

Kepler's Second Law The orbit ofthe Earth is an ellipse with the Sun as one of the focal points.
To see that this is true, consider:

d
- (v x co) = vx Co
dt

GM
=---rxCo

r 3

GM
=---rx(rxv)

r 3

= - GM r x (r x (rR + rR))
r 3

GM (")=---rx rrxR
r 3

= -GMR x (R x R)

= - GM ((R "R) R - (R " R) R)

=GMR

Integrating yields v x Co = GMR + CI for some constant vector cI" Define Yo = Icol
and YI = ICII and observe that

3.1 Newtonian Dynamics 91

=rxv·co

=r·vxco

=GMr+r·c1

= GM r + r Y1 cos e
where e is the angle between rand C1. In polar coordinates (r, e), the equation is
solved for r as a function of e:

2

r(e) = Yo
GM + Y1 cose

ep

1+ e cos e
(3.2)

which gives an ellipse with eccentricity e = yd(GM) and where p = Y~/Y1' The
major axis length is 2a = reO) + r(n) = 2pe/(l- e2). The minor axis length is 2b =

2a~. The area of the ellipse is A = nab.

Kepler's Third Law The square of the period of the motion is proportional to the cube of
the major axis length. The proof is as follows. The areal rate of change is Ii = Yo/2.
Integrating over one period of time t E [0, T] yields the total area of the ellipse,
A = YoT /2. Therefore, the period is

T = 2A = 2na2~ = ~a3/2
Yo JGMa(l- e2) JGM

or T 2 = K a3 for a constant of proportionality K.

EXERCISE

3.1

EXERCISE

3.2

EXERCISE

3.3

RCE CODE

KeplerPolarForm

Convert equation (3.2) to Cartesian coordinates and verify that it does in fact repre­
sent an ellipse.

Solve equation (3.1) using a differential equation solver. The left-hand side of that
equation is replaced by r, so the equation is second-order in position. Use GM = 1
for the right-hand side of the equation. Choose an initial position reO) and an initial
velocity reO) that are perpendicular vectors.

Consider the polar coordinate form for acceleration given in equation (2.13). We saw
in equation (3.2) that the motion of the Earth is along an elliptical path that defines r
as a function ofe. However, we had not considered howe varies in time. This exercise
is designed to give you that information.

1. Derive two second-order differential equations, ;: - rEP = -GM/r2 and re +
2-;e = 0, that are the equations of motion in polar coordinates.

92 Chapter 3 Rigid Body Motion

2. Show that the equation with (j implies a = M r 2rj is a constant. The value a

is angular momentum, so this physical system exhibits conservation of angular
momentum as well as conservation of total energy. Since a is a constant, argue
that 8 always has the same sign, in which case r may be thought of as a function
ofe, r = r(e).

3. Use the expression for a to eliminate 8 in the equation with;: to obtain;: ­
a2j(M2r 3) = -GMjr2. This may be solved numerically for ret), but you might
find that the singularity at r = 0 causes quite a fuss!

4. The potential energy is Vee) = -GMjr. Equivalently, r = -GMjV. I empha­
sized earlier that I am thinking of r as a function of e, so V is also a function of
e. Its first derivative with respect to e is denoted V' and its second derivative with
respect to e is denoted V". Dots above variables will still be reserved to indicate
time derivatives.

(a) Showthatr = GMV'8jV2=aV'j(GM2).

(b) Show that;: = aV"8 j(GM2) = a2V"V2j(G3M 5).

(c) Use the last result in ;: - a 2j(M2r 3) = -GMjr2 to obtain V" + V =
_G2M 4 ja2. Show that the general solution to this equation is Vee) =
Co since) + Cl cos(e) - G2M 4 ja2.

(d) Determine Co and Cl from the initial data ro, ro, eo, and 80,

5. From conservation of momentum, show that 8 = aV2 j(G2M 3).

6. Using the formula for Vee) and the differential equation for e, conclude that

. a (G
2
M

4)2e =-- Co sinCe) + Cl cos(e) - -- ,
G2M3 a 2 e(o) = eo

EXAMPLE

3.2

The result of this exercise is a first-order nonlinear differential equation that can be
solved by standard numerical methods. Can you solve for e(t) in closed form?

Here is a second example and it is formulated for motion of a particle relative to the
moving frame of a rigid body. Newton's second law is F = rna, where the acceleration
a is given in equation (2.44). The problem is to determine the path of motion of a
particle that is freely falling toward the Earth, the rigid body, subject only to gravita­
tional force. If the Earth were not rotating, the path of motion would clearly be a line
containing the center of the Earth and the initial particle location. Fortunately, the
Earth does rotate, so the problem is a bit more complex!

The world coordinate system is chosen so that its origin is at the center of the Earth.
One of the coordinate axes is chosen to be in the direction from the Earth's center
to the North Pole. The Earth rotates about this axis with angular velocity w. Since
we are dealing with a single particle, the center of mass is the particle's location
and, subsequently, the origin of the moving frame. The moving frame directions are
chosen to be those of spherical coordinates, ~l = P, ~2 = Q, and ~3 = R. The force on

3.1 Newtonian Dynamics 93

the particle due to gravity is -mgR, where m is the mass of the particle and g > 0
is the gravitational constant. Since R points away from the Earth's center, the minus
sign in the force expression indicates the Earth is attracting the particle toward it.
Equation (2.44) describes the path r of the particle relative to the Earth's center.

We will take the usual liberties that you see in many physics applications. The equa­
tion of motion is quite complicated, so we will make a few simplifying assumptions
that lead to a more tractable problem. First, let us assume that the time interval for
which we want to know the path of motion is small. Over this time the difference
between the particle and the world origin A is effectively a constant. If it were identi­
cally a constant, then X= O. We also assume that the angular velocity does not change
significantly during the time interval. The mathematical approximation is w= O. Fi­
nally, the number of seconds per day is approximately 86,400. The angular speed is
Iwl == 2rr186,400. The radius of the Earth is approximately 6440 kilometers. Assum­
ing the particle is relatively near the Earth's surface, its position r is of the order of
magnitude of the Earth's radius. The magnitude of w x (w x r) is of the order of
Iwl 2 1rl == 3.4 x 10-5, a very small number. The mathematical approximation to this
termisw x (w x r) =0.

Using all the approximations in the equation of motion leads to

D 2r Dr
-=-2w x - -gR
Dt2 Dt

(3.3)

This is a linear second-order system of ordinary differential equations in the un­
known ret). If we supply an initial position ro = reO) and an initial velocity Vo =
Dr(O)1Dt, the equation can be solved in closed form. We may integrate equation
(3.3) to obtain

Dr
- = Vo - 2w x (r - ro) - gtR = -2w x r + (vo + w x ro) - gtR (3.4)
Dt

Define w = evu where u is the normalized vector for wand ev = Iwl. Using methods
for solving linear systems of differential equations, equation (3.4) can be solved as

r = Rot(-2evt, u)ro + (vo + 2w x ro) t - (gt 2/2)R (3.5)

EXERCISE

3.4

where Rot(8, u) denotes the rotation matrix about the axis with unit-length direction
u by the angle 8. Observe that if there were no rotation, that is, w = 0, equation (3.5)
is instead r = ro + tvo - (gt 2/2)R, exactly the equation you see in standard physics
for a freely falling body where the Earth's rotation is considered neglible.

Suppose that the particle represents a booster rocket that was fired from Cape
Canaveral. Suppose the rocket traveled vertically upward to an altitude of 10 kilo­
meters. At that point the rocket starts falling to Earth. Assuming the physical model
of the last example applies for all time, how long does it take for the rocket to reach
the ground? Where on Earth does it strike the ground?

94 Chapter 3 Rigid Body Motion

EXAMPLE

3.3

RCE CODE

FoucaultPendulum

This example is a model of the Foucault pendulum. The pendulum consists of a
particle of mass m attached to one end of a wire of length L of negligible mass. The
other end of the wire is attached to a joint at position t). The joint is assumed to
be frictionless. The only forces acting on the particle are gravity and the tension in
the wire. Figure 3.2 shows the pendulum relative to a fixed frame with origin t). We
assume the Earth is rotating and that its angular velocity w is in the direction from
the center of the Earth e to the North Pole, just as in the previous example.

(a)

North

Pendulum
}

(b)

k
m

~-~--.. }

Figure 3.2 The Foucault pendulum. The pendulum joint is at t), the mass is m and is attached
to the pendulum rod oflength L. The gravitational force acts in the direction k, a
unit-length vector from the joint to the center of the Earth.

The fixed frame vectors are k, a vector in the direction from t) to the center of the
earth; J, a vector in the plane of wand k; and I, a vector pointing out of the page
and perpendicular to the other two frame vectors. The mass at the end of the wire is
represented in spherical coordinates relative to t). The position is

r = LR(() , ¢)

where the angle ¢ is measured between the wire and the vertical k and the angle () is
measured from the I axis in the (I, J) plane as shown in Figure 3.2(b). The angular
velocity is represented in the fixed frame as

w = (J) [(cos A)J - (sin A)k]

where (J) is the angular speed and Ais the latitude measured from the equator.

The simplifications that were made in the last example are also made here. The
gravitational force is approximately mgk and the tension in the wire is -mrR for

3.1 Newtonian Dynamics 95

some scalar r > O. The equation of motion for the pendulum is

D2r Dr- = -2w x - + gk - rR
dt 2 dt

(3.6)

Equations (2.32) and (2.33) apply) but with p = L) a constant for all time. The
velocity is

Dr = L [(Bsin ¢) P - (¢) Q]
dt

and the acceleration is

D
2
r [(.. . .)

-2 = L B sin ¢ + 2B¢ cos ¢ P
dt

These may be substituted into equation (3.6) to obtain three equations) one for each
spherical frame direction.

The first equation of motion is

.. . . D 2r
L (B sin ¢ + 2B¢ cos ¢) = p . ­

dt 2

Dr
= - 2w x - . P + gk . P - r R . P

dt

Dr
=-2w' - x P

dt

= -2w' (L¢R)

= -2L¢ (w' R)

= 2Lw¢ (- cos Asin B sin ¢ + sin Acos ¢)

The L terms cancel) so the first equation of motion has been simplified to

jj sin ¢ + 2B¢ cos ¢ = 2w¢ (- cos Asin B sin ¢ + sin Acos ¢) (3.7)

96 Chapter 3 Rigid Body Motion

(Example 3.3
continued)

The second equation of motion is

.2 .. D 2r
L (e sin ¢ cos ¢ - ¢) = Q . ­

dt 2

Dr= -2w x - . Q + gk . Q - rr· Q
dt

Dr Q .=-2w· - x +gsm¢
dt

= -2w· ((Le sin ¢)R) + g sin ¢

=2Leve sin ¢ (- cos Asin esin ¢ + sin Acos ¢) + g sin ¢

Dividing by the L term, the second equation of motion simplifies to

e 2 sin ¢ cos ¢ - ¢ = 2eve sin ¢ (- cos Asin esin ¢ + sin Acos ¢) + ~ sin ¢ (3.8)
L

The third equation is

·2 ·2 2 D 2r
- L(¢ + e sin ¢) = R . -

dt 2

Dr= -2w x - . R + gk . R - rR· R
dt

= 2Lw . [(¢)p + (e sin ¢)Q] + g (k . R) - r

which simplifies to

This is an equation of constraint and says that for static equilibrium, the tension in
the wire, -mrR, must have r satisfy the equation. Therefore, only the two equa­
tions (3.7) and (3.8) control the motion through the time-varying angles e(t) and
¢(t). (Figure 3.3-also Color Plate 3.3-shows some screen shots from the Foucault
pendulum application found on the CD-ROM.)

3.1 Newtonian Dynamics 97

(a)

(b)

Figure 3.3 The Foucault pendulum. The figures show the path of the pendulum tip in the
horizontal plane. New points on the path are colored white, but the intensity of the
older points along the path gradually decreases. (See also Color Plate 3.3.)

98 Chapter 3 Rigid Body Motion

EXAMPLE

3.4
The simple pendulum model is obtained by neglecting the angular velocity over a
small period of time. The angle e is constant and the angular speed ill may as well
be assumed to be zero. Under these assumptions, equation (3.7) is a tautology and
offers no information. Equation (3.8) is a single nonlinear differential equation in ¢:

.. g
¢ + - sin¢ = 0

L
(3.10)

Let the initial conditions be ¢(O) = ¢o > 0 and 1>(0) = O. That is, the mass at the end
of the wire starts off at some nonzero angle from the vertical and is released with
zero speed. Since the joint of the pendulum is frictionless, your intuition is that for
some future time T > 0, the angle ¢ (T) = -¢o, the motion is periodic, and T is the
half-period. So what is this time T?

Multiply equation (3.10) by 21> to obtain

. .. 2g. d (. 2 2g)o= 2¢¢ + -¢ sin ¢ = - ¢ - - cos ¢
L dt L

An integration leads to

'2 2g ()¢ = - cos ¢ - cos ¢o
L

We may take the square root and choose the appropriate sign to indicate that the angle
is initially decreasing in time,

In differential form, we have

d¢ = _ f2i dt
Jcos ¢ - cos ¢o VL

Integrating yields

I. ¢ dl/f f2i
¢o Jcos l/f - cos ¢o = -V L t

Since we require ¢ (T) = -¢o,

I. -¢o d l/f f2i
¢o Jcos l/f - cos ¢o = - VL T

Solving for the time,

3.1 Newtonian Dynamics 99

Chapter 9 includes a section on the stability of numerical solutions that solve differ­
ential equations. In particular Example 9.1 is provided for a stability analysis of the
simple pendulum. It is not as easy as you might think to obtain a robust solution that
exhibits periodic behavior.

Under the assumption that we want the pendulum to continue swinging with no
other external forces acting on it) including friction) there is no reason to solve the
problem for more than one period of oscillation. The differential equation can be
solved over one period to produce a sequence of sampled angles. Angles for other
times during that period can be interpolated from the samples) and we can use
periodicity to calculate times larger than the first period. In order to proceed) we need
to calculate the half-period T) the time difference between the two angles where the
pendulum has stopped. Once known) we can use a stable numerical method to solve
the differential equation over that half-period) store the computed samples for use by
the application over its lifetime) and use periodicity and interpolate as needed.

The integral in equation (3.11) is not solvable in closed form. The integral is improper
since the integrand becomes infinite at the upper limit of integration; that is) when
1/1 approaches <Po. Such integrals must be split into two integrals) the first integral
numerically integrated by standard methods. The integrand of the second integral is
approximated by some function to remove the singularity at the upper limit. Equa­
tion (3.11) is split into

{cPo-E d1/l 1cPo d1/l

10 Jcos 1/1 - cos <Po + cPo-E Jcos 1/1 - cos <Po

for a sufficiently smallc > O. The quadratic approximation from the Taylor series for
cos 1/1 expanded about <Po is

cos e == cos <Po - (sin <Po)(1/I - <Po) - ~(cos <Po)(1/I - <PO)2
2

Substituting this in the second integrand and making the change of variables z =
<Po - 1/1 leads to the approximation:

1cPo d1/l . {E dz

cPo-E Jcos 1/1 - cos 1/10- 10 J(sin <po)z - (cos <Po)z2j2

~ (rr . -1 (c cos <Po))
=V~ 2- sm

1- sin<po

100 Chapter 3 Rigid Body Motion

(Example 3.4
continued)

EXERCISE

3.5
EXERCISE

3.6

As E approaches zero, the approximation (and integral itself) goes to zero. You need
to choose E in your numerical methods so that the calculations in the first integral are
well behaved; that is, the denominator of the integrand stays sufficiently away from
zero to avoid introducing significant floating point errors.

Selecting 2L / g = 1and cPo = rr / 6, estimate T using numerical integration.

Redo the derivation that led to the integral for T in equation (3.11) to take into
account that the initial speed is 4>(0) = 4>0 > O. That is, the mass of the pendulum
is initially positioned at a nonzero angle from the vertical and is then given a small
push further away from the verticaL

1. What is the time r > 0 at which the mass reaches its maximum angle from the
vertical? Hint: Notice that 4>(r) = O. If cP1 = cP(r) is the maximum angle, show
that

('2)-1 LcPocP1 = cos cos cPo - 2g

Subsequently show that

{'I d1fJ
r = ¢o J4>5 + 2g(cos 1/J - cos cPo)/L

2. What is the half-period T > 0 of the pendulum? Hint: Use a numerical estimate
obtained from equation (3.11) when the initial data ofthe pendulum is cP(O) = cP1
and 4>0 = O.

Example 9.1 uses cPo = 0.1, 4>0 = 1, and g/ L = 1. In your constructions of the current
example, show that r == 1.59 and T == 3.37 and compare to the numerical results
obtained by the Runge-Kutta method in Example 9.1 as some assurance that your
results are good approximations.

3.2 LAGRANGIAN DYNAMICS

Let us revisit the basic formulation of Newton's second law. For a constant mass m
undergoing a force F, the motion of the mass over time is governed by

F =ma =mv =mx (3.12)

where x(t) is the position, v(t) = x(t) is the velocity, and a(t) = x(t) is the accel­
eration of the mass at time t. Each of these vector quantities is measured with re-

p T(t)

N(t)

3.2 Lagrangian Dynamics 101

-+---------.... x l

Figure 3.4 The simple pendulum. The motion is constrained to a plane. The mass is located at
position X(t) at time t and is always a fixed length L from the joint P. The angle
formed by the pendulum rod with the vertical is e(t). The curve of motion is a
circle with tangent T(t) and outward pointing normal N(t). The only force acting
on the mass is gravitational, -mgJ, where m is the mass of the particle, g is the
gravitational constant, and - J is the direction of the force (vertically downward).
The joint P provides no frictional force.

spect to some coordinate system. This system is referred to as the inertial frame. If
x = (xl' X2' x3) is the representation of the position in the inertial frame, the com­
ponents Xl' x2' and X3 are referred to as the inertial coordinates. Although in many
cases the inertial frame is considered to be fixed (relative to the stars, as it were), the
frame can have a constant linear velocity and no rotation and still be inertial. Any
other frame of reference is referred to as a noninertial frame. Newton's second law,
which we saw in equation (3.12), is simple to state and remember, but its simplicity
can disguise the complexity of the problem at hand. Consider the simple pendulum
problem from the last section, shown in Figure 3.4.

The only postulated force is gravitational, F = -mgJ, where g is a positive con­
stant. You might be tempted to directly apply Newton's second law to obtain the
equations of motion mx = -mgJ. An integration of these will show that the mass
drops straight to the ground, which is not the correct motion! The problem is that
F must represent all relevant forces. The pendulum has an additional force, the force
that constrains the mass to be attached to the end of the rod, thus causing the mass to
move along a circular path over time. This force is referred to as a constraining force
or a reactive force. Newton's second law requires that the constraining forces occur in
addition to the external forces applied to the mass. This example motivates what is
called Lagrangian dynamics. We will discuss this topic, then return to the pendulum
example to illustrate how to construct the Lagrangian equations ofmotion.

102 Chapter 3 Rigid Body Motion

3.2.1 EQUATIONS OF MOTION FOR A PARTICLE

From Newton's second law, equation (3.12), we may compute the small amount
of work dW that is done by F when we move the mass at position x by a small
displacement dx. Recall from Section 2.6.1 that the work done is

dW=F· dx

The displacement of the mass and the force need not be in the same direction. Using
equation (3.12) we have

mx· dx = F· dx (3.13)

The right-hand side is the small amount of work done by the force for the given
displacement. The left-hand side is the corresponding small change in the kinetic
energy of the mass. Equation (3.13) is referred to as D'Alembert's equation.

Let x = (Xl' X2' X3) and F = (FI , F2, F3). With no constraints on the position,
the displacement can be in any direction. In particular, setting dx = I and substi­
tuting into D'Alembert's equation produces mXI = mx • I = F . I = Fl. Similarly, the
displacement can be J or k, producing mX2 = F2 or mX3 = F3. The three equations
written in vector form are mx = F, which is Newton's second law. Of course this
should come as no surprise. The power ofD'Alembert's equation is in naturally sup­
porting the idea of constraints on the position, as we now demonstrate.

Motion on a Curve

Consider the simplest situation when the mass is constrained to follow a curve in
space. The curve may be parameterized by a variable q, say, x(q). The derivative
vector dx/dq is tangent to the path of motion. The small displacements dx can now
occur only so that the mass remains on the curve. In this sense the displacement is
infinitesimal. The infinitesimal displacements dx in D'Alembert's equation may be
replaced by positional derivatives:

mx. dx = F. dx
dq dq

(3.14)

This equation will be reformulated, the construction requiring a few derivative
identities from calculus. An application of the chain rule yields

. dx dx dq dx.
x=-=--=-q

dt dq dt dq
(3.15)

Treating x as a formal function of both q and q, we may compute the partial deriva­
tive of equation (3.15) with respect to q to obtain

3.2 Lagrangian Dynamics 103

dx = ~ (dX q) = ax (3.16)
dq aq dq aq

Another identity is

d (dX) d (dX). a (dX.) ax
dt dq = dq dq q = aq dq q = aq

(3.17)

where the first equality is an application of the chain rule, the second equality treats
q as a variable independent of q, and the third equality uses equation (3.15). Finally,
the product rule,

produces the identity

(3.18)

Replacing equations (3.16) and (3.17) into (3.18) and multiplying by the mass m
yields

.. dx d (. ax) . ax
mx' dq = dt mx' aq - mx' aq

= ~ (~ (~mlxI2)) -~ (~mlxI2) (3.19)
dt aq 2 aq 2

_~ (aT) _aT
dt aq aq

where T = m Ixl2/2 is the kinetic energy ofthe system. Replacing equation (3.19) into
equation (3.14) and defining Fq = F . dx/dq, we have the Lagrangian equation of
motion for a single particle constrained to a curve:

(3.20)

The scalar value Fq is referred to as a generalized force. Although called a force, it
is not a force since it is not vector valued and since the physical units are not those
of a force. An important distinction between the Newtonian equations of motion,
equation (3.12), and the Lagrangian equations of motion, equation (3.20), is that the
force term in equation (3.12) includes external and constraining forces, but the force
term in equation (3.20) eliminates the constraining forces.

104 Chapter 3 Rigid Body Motion

EXAMPLE

3.5
Returning to our simple pendulum problem, let us set up the Lagrangian equations
of motion. The mass is constrained to lie on a circle of radius L centered at P. The
position is parameterized by the angle e, the constraint variable that we named q in
the general discussion of the Lagrangian equations of motion. The position is

x(e) = P + LN(e)

whereN(e) = (sine) - cos e) is normalto the circle andwhereT(e) = (cose, sine)
is tangent to the circle. The derivative of position with respect to e and the velocity
are, respectively,

The kinetic energy is

and its derivatives with respect to e and iJ are

aT
-=0ae and aT _ L2e·.-mae

EXERCISE

3.7

RCE CODE

BeadSlide

The left-hand side of equation (3.20) becomes

~ (a~) _aT = ~ (mL2iJ) =mL2(j
dt ae ae dt

The right-hand side of equation (3.20) is

Fe = F· dx = (-mgJ) . (LT) = -mgL sin e
de

Equating the left-hand and right-hand sides produces mL2(j = -mgL sin e, or (j +
(g / L) sin e= 0) just like we derived in equation (3.10).

A bead of mass m is attached to a frictionless wire whose shape is defined by the spiral
curve x(q) = (q, q2, q3). The bead is subject to the gravitational force F = -mgk,
where g is a positive constant. Initially, the bead is held fixed at (1) 1, 1), then released
to slide down the wire. How long does the bead take to reach the origin (0, 0, O)?

Motion on a Surface

We now constrain the mass to lie on a parametric surface, x(ql' q2), where ql and q2
are independent parameters. The infinitesimal displacements in equation (3.13) are

3.2 Lagrangian Dynamics 105

now constrained to be tangential to the surface at the point in question. In particular,
the derivatives ax/aql and ax/aq2 are tangent vectors, so D'Alembert's equation
becomes

.. ax ax
mx·-=F·-,

aqi aqi
i = 1,2 (3.21)

The construction used in the case of motion on a curve applies to these equations
as well to produce the Lagrangian equations of motion. An application of the chain
rule to the velocity yields

(3.22)

Treating x as a formal function of ql' q2' ql' and q2' we may compute the partial
derivative of equation (3.22) with respect to qi to obtain

Another identity is

i = 1,2 (3.23)

d (ax)
dt aql

a (ax. ax .)=- -ql+-q2
aql aql aq2

ax
aql

By the chain rule

Order of differentiation
unimportant

Differentiation is linear

Using equation (3.22)

A similar construction applies to differentiating with respect to q2. The two formulas
are jointly represented as

i = 1, 2 (3.24)

Just as in equation (3.18), the product rule may be applied to obtain

(3.25)

106 Chapter 3 Rigid Body Motion

Replacing equations (3.23) and (3.24) into (3.25) and multiplying by the mass m
yields

.. ax d (. ax) . ax
mx' aqi = dt mx' aqi - mx' aqi

d (a (1 I' 2)) a (1 I' 2)= - -. -m xl - - -m xl
dt aqi ,2 aqi 2

d (aT) aT-- - --
dt aqi aqi

(3.26)

where T = m Ixl2/2 is the kinetic energy of the system. Replacing equation (3.26) into
equation (3.21) and defining Fqi = F . ax/aqi) we have the Lagrangian equations of
motion for a single particle constrained to a surface:

i = 1,2 (3.27)

EXAMPLE

3.6

RCE CODE

BaliRubberBand

We have a ball constrained to lie on a flat, frictionless table. A rubber band is at­
tached to the ball, the other end attached to a point on the table. The rubber band is
unstretched when the ball is located at the same attachment point on the table. What
are the Lagrangian equations of motion?

The ball has mass m. The forces on the ball due to the rubber band are assumed
to follow Hooke's law: The magnitude of the force is negatively proportional to the
length of the rubber band. If the ball is pulled to stretch the rubber band, the force
is in the direction along the rubber band away from the ball and has magnitude cL,
where c > °is a constant and L is the length ofthe stretched rubber band. Figure 3.5
illustrates.

We may assume that the table surface is in the Xlx2-plane, X3 = 0, in which case x =
(Xl' X2' 0). The kinetic energy is T = m(x~ + xD and the force is F = -c(xI' x2' 0)
for some positive constant c. The constraint variables are ql = Xl and q2 = Xl> so we
will use just the x-names rather than keep track of the q-names. The relevant partial
derivatives in equation (3.27) are

aT
-=0,
aXI

aT .
- =mxI'
ail

aT
-=0,
aX2

d (aT) ..- - =mxI'
dt ail

d (aT) ..- - = mx2
dt ai2

Figure 3.5

3.2 Lagrangian Dynamics 107

A ball of mass m on a flat table. A rubber band connects the ball to a fixed point on
the table. The force F due to the rubber band is shown. The position x of the ball is
shown together with its velocity x.

The generalized forces are

The Lagrangian equations of motion are therefore

EXERCISE

3.8

EXERCISE

3.9

Consequently, each component of the position adheres to simple harmonic motion
with frequency w = Jc/m. For an initial position x(O) = (PI' Pz, 0) and velocity
x(O) = (vI' VZ, 0), the solutions to the differential equations are XI(t) = PI cos(wt) +
(vIiw) sin(wt) and xz(t) = pz cos(wt) + (vz/w) sin(wt).

In Example 3.6, show that the path of motion is an ellipse. At what time will the ball
reach the origin?

In Example 3.6, assume that the table is covered with a viscous fluid. Let the viscous
force on the ball be in the opposite direction of motion of the ball, say, G = -ax for
some constant a > O. What are the Lagrangian equations of motion? At what time
will the ball reach the origin?

108 Chapter 3 Rigid Body Motion

EXAMPLE

3.7

RCE CODE

BallHill

A ball is placed at the top of a hill whose shape is an elliptical paraboloid. The hill
is assumed to be frictionless. The only force acting on the ball is gravitational force.
The ball is slightly pushed so that it may slide down the hill. What are the Lagrangian
equations of motion? Figure 3.6 illustrates.

I
r

Figure 3.6 A ball is at the top of a frictionless hill. With a small push, the ball will slide down the
hill.

The vertical axis is assumed to be the xraxis. The gravitational force is F = -mgk.
The height of the hill is a3 > 0, so the ground is considered to be the plane X3 = 0.
The cross section of the hill on the ground is an ellipse with semimajor axis length GI

(in the Xl direction) and semiminor axis length a2 (in the X2 direction). The equation
of the paraboloid is X3 = a3 - (XIial)2 - (X2/a2)2. The ball is constrained to

so once again ql = Xl and q2 = X2 and we will just use the x-names.

The time derivative of X3 is

The kinetic energy is

The relevant terms in equation (3.27) are

3.2 Lagrangian Dynamics 109

Fx = (-mgk) .~ = 2mgx
I

1 ax a2
I I

Fx = (-mgk)' ~ = 2mgx
2

2 ax a2
2 2

The Lagrangian equations of motion are

Observe that this is a coupled system of second-order differential equations since Xl
and X2 appear implicitly in both equations. The equations may be algebraically ma­
nipulated to obtain two explicit equations, one for each of the second derivatives.
(Figure 3.7-also Color Plate 3.7-shows some screen shots from the ball/hill appli­
cation found on the CD-ROM.)

110 Chapter 3 Rigid Body Motion

(Example 3.7
continued)

(a)

(b)

Figure 3.7 A ball rolling down a hilL Image (b) shows the path of the center of the ball as it rolls
down the hilL The ball rotates at a speed commensurate with its downhill velocity.
(See also Color Plate 3.7.)

EXERCISE

3.10

EXERCISE

3.11

EXERCISE

3.12

EXERCISE

3.13

3.2 Lagrangian Dynamics III

The equations ofExample 3.7 appear to be quite complex. However, if the paraboloid
is circular, say, al = az = 1, the radial symmetry of the surface should stoke your
intuition and allow you to deduce that the ball will roll directly down the hill. That
is, the path in the xlxrplane is along a ray that starts at the origin. If r is the radial
distance in the plane from the origin, prove that

.. 2r(2rz - g)
r+ =0

1 + 4rz

Choose a3 = 1 so that the intersection of the hill and the ground plane occurs at
r = 1. Numerically solve this differential equation for g = 1with the initial conditions
reO) = 0 and reO) = 1. Estimate the time T > 0 when the ball reaches the ground, that
is, the time T at which reT) = 1.

In Example 3.7, verify that a solution to the system of differential equations is
(XI(t), xz(t)) = (vlt, vzt).

Does this mean that the path of motion will always project to a straight line in the
plane X3 = O?

Justify your answer.

In Example 3.7, include a second force in addition to the gravitational force. That
force is due to wind blowing on the particle with constant velocity W.

Derive the Lagrangian equations of motion.

Determine conditions on W that prevent the ball from rolling to the ground plane.

A frictionless metal chute is constructed in the shape of half a cylinder of radius R
and length L. The chute is aligned to be parallel to the Xl axis. One end of the chute is
attached to the ground plane X3 = o. The other end is raised by a height H. Figure 3.8
illustrates the situation: a ball is placed at the top of the chute and released (initial
velocity is zero). The only force acting on the ball is gravitational force. Construct
the Lagrangian equations of motion for the ball. What are these equations if you
modify the problem by coating the chute with a viscous oil? Assume that the viscous
force is negatively proportional to the ball's velocity. With or without viscosity, verify
that if the ball starts in the middle of the chute, the path of motion is a straight line.

lI2 Chapter 3 Rigid Body Motion

(a) (b)

Figure 3.8

EXERCISE

3.14

EXAMPLE

3.8

(a) A metal chute oflength L, one end attached to the origin, the other end raised by
a height H. (b) Side view of the chute.

For the mathematically inclined: If the mass always lies on a frictionless height field,
the graph of the function x3 = h(Xl' X2)' and the only force acting on the mass is
gravitational force, derive the Lagrangian equations of motion. 101

Determining Constraint Forces

In general you can think ofhaving a Lagrangian equation for each degree of freedom
in the system. When the particle is constrained to a curve, you have one degree of
freedom and one equation governing the particle's motion. When constrained to a
curve, you have two degrees of freedom and two equations governing the motion.
Later, we will study particle systems with many degrees of freedom. Even though we
are in three dimensions, the degrees of freedom may very well be greater than three.
A Lagrangian equation occurs for each degree of freedom.

The construction that led to the Lagrangian equations applies equally well to ad­
ditional parameters, even if those parameters are not freely varying. However, the
generalized forces in these equations must include terms from the forces of con­
straint. These additional equations allow us to determine the actual constraint forces.

Consider the simple pendulum problem. In polar coordinates we can represent the
position as x(r, 8) = P + rN(8). The pendulum requires a constant radius, r = L for
all time. The radius is not free to vary. However, if we think of r as variable, we may
construct two Lagrangian equations. In this setting we can think of the constraint
force C to be an applied force. The positional derivatives are

ax-=rT,ae

The kinetic energy is

ax -Nar - ,

3,2 Lagrangian Dynamics 113

dx aXe' ax, e'T 'N-=- +-r=r +rdt ae ar

and the relevant derivatives are

aT =0
ae
aT '2-=mrear
aT _ 2e'2-, -mrae
aT ,-=mrar

d (aT)
dt ae

d (aT)
dt ar =mr

The generalized force for the evariable is

Fe = (-mgJ + C) . ax = -mg sin e+ C . Tae

The generalized force for the r variable is

ax
Fr = (-mgJ + C) . - = mg cos e+ C . Nar

The equations of motion are

d (aT) aT ".o= - -, - -, - Fe = mLe + 2mre + mg sin e - C . Tdt ae ae

and

d (aT) aT .. '2 eo= - - - - - F = mr - mre - mg cos - C . Ndt ar ar r

114 Chapter 3 Rigid Body Motion

(Example 3.8
continued)

These may be solved to obtain C . N = m(r - r(2
) - mg cos eand C . T = mere +

2ie) + mg sin e. Using the normal and tangent vectors as a basis, we have

C = (m(r - r(2
) - mg cos e)N + (m(re + 2ie) + mg sin e)T

When r = L for all time, we found earlier that Le + g sin e= 0 for all time. The
constraint function reduces to

C = -m(Le2 + g cos e)N(e)

Just to verify that this makes sense, consider when the mass is at the origin and
not moving; that is, e= 0 and e= O. The constraint force is C = -mgN(0) =
-mg(sin(O), - cos(O)) = mgj. It exactly balances the gravitational force -mgj, as
expected.

Also observe that the normal component of the gravitational force is -mg cos e. You
might have tried selecting -mg cos e as the constraining force, but the actual force
has the term -mLe2 in addition to the gravitational one. The constraining force,
therefore, also must counter a force due to the motion of the particle itself.

3.2.2 TIME-VARYING FRAMES OR CONSTRAINTS

If the frame of reference varies over time or if the constraining curve or surface varies
over time, the Lagrangian equations of motion in equations (3.20) or (3.27) still
apply. The method of proof is general, so covers both the curve and surface cases.
The constraining parameters may be written as a vector q. In the case of a curve,
the vector has one component q = (ql)' In the case of a surface it is q = (ql' q2). In
general let m denote the number of constraining variables. The position as a function
of the constraining parameters and time is x(t, q). You need to be careful now about
what the time derivatives mean. The velocity vector is the total derivative of position
with respect to time. As such, you use ordinary differentiation with respect to t:

. dx
x=-

dt

But now the position has an explicit dependency on time that represents either the
reference frame moving or the constraining curve/surface changing. The rate of
change of position with respect to time in that sense is represented by the partial
derivative with respect to t. The chain rule from calculus relates the two:

(3.28)

3.2 Lagrangian Dynamics 115

Observe that this is the analogy of the identity from equation (3.22). The extension
of equation (3.23) to our new situation is

~ =~ (ax +t ~qi) = a~
aqj aqj at i=l aqi aqj

The extension of equation (3.24) is

(3.29)

Differentiation is linear

Using equation (3.28)

(3.30)

By the chain rule

Order of differentiation
unimportant

= ~ (ax +t ~qi)
aqj at i=l aqi

ax
aqj

Since all the identities are used in deriving the Lagrangian equations of motion,
whether equation (3.20) or (3.27), these identities must equally apply when the po­
sition function has the explicit time component. The equations of motion for time­
varying frames or constraints are still

(3.31)

for all indices j.

EXAMPLE

3.9
Let us revisit the simple pendulum problem that is illustrated in Figure 3.4 and whose
equations of motion are derived in Example 3.5. Rather than having the joint remain
fixed over time, we allow it to vary in time, say, pet). The position function is

x(t, e) = pet) + LN(e)

The total time derivative is

. dx ax aXe' p' Le'Tx=-=-+- = +dt at ae
The kinetic energy is

116 Chapter 3 Rigid Body Motion

(Example 3.9
continued)

EXERCISE

3.15

The relevant derivatives are

aT m (., dT) ..- = - 2Lep· - = -mLep . Nae 2 de

aT m (. 2 .) (. .)-. = - 2Lp· T + 2L e = mL p. T + Leae 2
and

:1 (~~) = mL (i> .t + P. T + LiJ) = mL (p . T -oi> .N + LiJ)

The generalized force is

Fe = (-mgJ) . ax = (-mgJ) . (LT) = -mgL sin eae
Combining these into equation (3.20) produces

Le + P. T + g sin e= a

In the case where pet) is a constant (the joint is fixed as in the original problem), we
obtain Le + g sin e= aas before. However, you should also notice that if the joint
has constant linear velocity, pet) = A + tB, then we still obtain Le + g sin e = o.
This should come as no surprise since the frame of reference is moving with constant
linear velocity and is still an inertial frame.

Also curious is that if you were to hold the pendulum joint in the fingers of one
hand, hold the mass away from the vertical with the fingers of your other hand, then
drop the entire system, the angle formed by the mass never changes! Assuming no air
resistance, the joint acceleration is controlled by gravity, P= - gJ. The differential
equation reduces to Le = O. The initial angle is () (0) = eo and the initial angular speed
is B(O) = O. The solution to the equation is e(t) = eo for all t ::: o.

A rigid, frictionless rod of length L has one end attached to the origin of 3-space.
The initial direction of the rod is 0, 0, 1)lJ2. Thus, the other end of the rod is at
LO, 0, 1)/J2 = (a, 0, a). A mass m is constrained to move on the rod and has initial
location at (b, 0, b), where a< b < a. One end ofa spring is attached to the mass. The
other end is attached to a joint at location (c, 0, 0) for some positive constant c. The
spring is unstretched in this initial configuration. Figure 3.9 illustrates the setup.

The rod is rotated about the xraxis so that the angle e between the rod and axis
remains constant. The rotation occurs with angular speed et for t ::: o. Determine the
equations ofmotion for the mass. What is the position (0, d, d) of the mass when the
rod reaches the xlxrplane for the first time?

3.2 Lagrangian Dynamics 117

()

(a,O,a)
(O,a,a)

)I£---(O,d,d)_ X2

Figure 3.9 The initial configuration of a rigid rod containing a mass that is attached to a spring.

3.2.3 INTERPRETATION OF THE EQUATIONS OF MOTION

We now look at a simple, yet elegant way of interpreting the Lagrangian equations of
motion. The position ofthe particle constrained to a curve or surface is xU, q), where
q = (ql) for a curve or q = (ql' q2) for a surface. The partial derivatives of position
with respect to the qj are tangent vectors. Unit-length tangent vectors are therefore

where the last equality defines L j as the length of the partial derivative vector. The
component of acceleration of the particle in each of the tangent directions, denoted
by aqj , is computed by projection onto the tangent:

118 Chapter 3 Rigid Body Motion

We have used the Lagrangian equations of motion, equation (3.31), in this con­
struction. Now recall that the generalized force is

ax
F =F· - =L·F·T·
~ aqj } }

Define the quantity f
qj

= F . T j' the projection of the force onto the tangent vector
Tj' That is, f

qj
is the component of force in the tangent direction. Thus, a

qj
=

Fq/(mL j) or

(3.32)

for each constraining variable qj' You should recognize the similarity to Newton's
second law. As a matter offact, the Lagrangian formulation is the natural extension of
Newton's second law when the motion is constrained to a manifold (curve or surface).

3.2.4 EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES

Consider a system of p particles, particle i having mass mi and located at position
xi' 1~ i ~ p. D'Alembert's equation (3.13) applies to each particle when displaced
by an infinitesimal amount dXi and influenced by a force Fi . The derivations for
the equations of motion are applied for each such particle, to produce a Lagrangian
equation of motion for each constraint of interest:

where K i = mi IXi 1
2/2 is the kinetic energy of the particle. The total kinetic energy is

and the total generalized force for the qj coordinate is

The Lagrangian equations ofmotion are obtained by summing those for the individ­
ual particles, leading to

(3.33)

EXAMPLE

3.10

3.2 Lagrangian Dynamics 119

Three masses m1' m2' and m3 are aligned vertically and are subject to gravitational
force. The first two masses are attached by a spring with spring constant C1 and
unstretched length L l' The second two masses are attached by a spring with spring
constant C2 and unstretched length L2. The mass mi is located at Zi vertical units
with respect to the ground plane. The particle system has three degrees of freedom
represented by the variables zi' 1 SiS 3. Figure 3.10 illustrates the situation.

z

I
-mgk

Figure 3.10 Three masses aligned vertically and subject to gravitational force.

The force due to gravity on mass mi is Gi = -migk for 1sis 3. The force due to
the spring connecting masses m 1 and m2 is

The leading sign is negative as shown by the following argument. When the spring
is unstretched, the magnitude of the spring force is zero. The separation between the
two masses is Z1 - Z2 = L 1. If the mass m2 is pulled upward to a new position Z1 + 8,
where 8 > 0, the force on m2 must be in the downward direction. This force is -c18k.
Since both C1 and 8 are positive, the leading negative sign guarantees that the force is
downward. Similarly, the force due to the spring connecting masses m2 and m3 is

The force on m1 is F1 = G1 + G4• The force on m2 is F2 = G2 - G4 + Gs. The negative
sign on the G4 term occurs because an increase in Z2 causes the first spring to com­
press, in which case that spring must exert a force in the opposite direction. The force
on m3 is F3 = G3 - Gs. The negative sign on the Gs term occurs because an increase
in z3 causes the second spring to compress, in which case that spring must exert a
force in the opposite direction.

120 Chapter 3 Rigid Body Motion

(Example 3.10

continued)
The kinetic energy for the system is

The relevant derivatives are aT/azi = 0, aT/azi = mizi, and d(aT/azi)/dt = mizi
for 1~ i ~ 3.

The Lagrangian equations of motion are therefore mizi = Fi . k, or

mlZl = -Cl(Zl - Z2 - L l) - mIg

m2z2 = -C2(Z2 - Z3 - L 2) + Cl(Zl - Z2 - L l) - m2g

m3z3 = C2(Z2 - Z3 - L 2) - m3g

Setting Z = [zl z2 Z3]T, the system of equations in matrix form is

Cl Cl
0

clL l--g
ml ml ml

z= Cl Cl + C2 C2
Z+

C2 L 2 - clL l---- -g
m2 m2 m2 m2

0 ~ C2 C2 L 2

m3 m3
---g

m3

This is a second-order linear system of differential equations. Using methods from
linear systems of differential equations, it may be reduced to a first-order system by
setting

x = [Xl X2 X3 X4 Xs X6] = [Zl Z2 Z3 i l Z2 Z3]T

leading to

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

-~ Cl
0 0 0 0

clL l

x= X+
--g

ml ml ml

Cl Cl + C2 C2
0 0 0

c2 L 2 - clL l--- -g
m2 m2 m2 m2

0
C2 -~ 0 0 0 c2 L 2

m3 m3
---g

m3

EXERCISE

3.16

DoublePendulum

3.2 Lagrangian Dynamics 121

This is of the form x= Ax + b and may be solved in closed form using the methods
of linear systems of differential equations. The matrix A happens to be invertible, so
the solution is

where Xo is an initial condition (see Section 8.5). However, this solution will involve
trigonometric functions. Since these are expensive to calculate, a numerical differ­
ential equation solver may be used instead to obtain a good approximation to the
solution while requiring less computational time to calculate.

Consider a modification of the simple pendulum problem, a double pendulum prob­
lem, so to speak. In addition to the mass ml attached to a rigid rod of length rl' a
second mass m2 is attached via a rigid rod of length r2 to the first mass. The second
rod pivots at the location of ml and does so without friction. Figure 3.11 illustrates.
Construct the equations of motion as two coupled differential equations in the un­
known angles 81(t) and 82 (t).

y
h---

-t---,..----,...--_x

Figure 3.11 A modification of the simple pendulum problem.

3.2.5 EQUATIONS OF MOTION FOR A CONTINUUM OF MASS

As expected, the Lagrangian equations of motion are also valid for a continuum of
mass, whether a curve mass, a surface mass, or a volume mass. The summations that
occur in the formulas for kinetic energy and generalized forces for particle systems are
replaced by integrals. Rather than write separate formulas for curve masses (single
integra!), surface masses (double integra!), and volume masses (triple integra!), we
use a suggestive notation with one integral whose domain of integration R generically
refers to the correct type of object. The mass density is 8 and varies over R. The
infinitesimal measure of mass is dm = 8 dR, where dR is an infinitesimal measure of

122 Chapter 3 Rigid Body Motion

arc length, surface area, or volume, depending on what type of object R represents.
The kinetic energy is

where the world velocity is v. That is, the kinetic energy must be measured in an
inertial frame; in our case this frame is labeled as the world frame. For each constraint
variable qj' the generalized force is

where F represents the applied forces on the object. The Lagrangian equations of
motion are

for all j.
Although the kinetic energy is computed from the velocity in the inertial frame,

we may compute it using a transformation to local coordinates. For a rigid body we
do this by equation (2.43):

v = Veen + W x r

where Veen is the velocity of the point e identified as the origin ofthe body and where
w is the angular velocity of the body measured in the inertial frame. The relative
position r is from a rigid body point to the body origin. The kinetic energy in this
case IS

T = ~ { IvI 2 dm
2 JR

1i 2 2= - Iveenl + 2veen . w x r + Iw x rl dm
2 R

= ~IVeenl2 Ldm + veen . w Lr dm + ~ L(lwl2lrl2 - (w' r)2) dm

1 2 1 T= -mlveenl + mVeen • w x rem + -w lw
2 2

where m is the total mass of the body, rem is the position of the center of mass of the
rigid body relative to e, and I is the inertial tensor of the rigid body as specified in
equation (2.84). If we choose e to be the center of mass, the middle term vanishes

3.2 Lagrangian Dynamics 123

since rem = O. We may also choose the local coordinate basis vectors to be the prin­
cipal directions of motion (see Section 2.5.4, the portion on inertia of 3D objects).
If the principal directions are ui' 1 ::::: i ::::: 3, they may be written as the columns of a
rotation matrix Q= [U1 I u2 I U3]' By definition of principal directions, the inertial
tensor satisfies the equation I = QD QT, where D is a diagonal matrix whose diag­
onal entries J-L1' J-L2' and J-L3 are the principal moments. The world angular velocity
w is represented in terms of the principal direction basis as w = Q~. Consequently,
wTlw = ~TD~. If ~ = [~1 ~2 ~3]T, then the kinetic energy in this special case is

(3.34)

where Vern is the world velocity of the center of mass. The formula is quite aesthetic.
The first term is the energy due to the linear velocity of the center of mass. The
last terms are the energies due to the angular velocity about principal direction lines
through the center of mass. Although these formulas for kinetic energy were derived
using integrals, they apply equally well to particle systems (the construction works
for sums and integrals).

Equation (2.44) allows a similar simplification to the generalized force integral.
Using Newton's law, an infinitesimal force dF applied to a particle in R of infinitesi­
mal mass dm satisfies the relationship dF = a dm, where a is the acceleration applied
to that particle. Integrating over the entire region to obtain the total force F and ap­
plying the aforementioned equation:

F= l adm

f. dW= aeen + w x (w x r) + - x r dm
R dt

= a,onl dm + w x (w x l r dm) + d::: x l r dm

dW
=maeen +mw x (w x rem) +m- x rem

dt

where m is the total mass of the body, aeen is the world acceleration of the point e
identified as the body origin, and rem is the position of the center of mass relative to
e. If we choose e to be the center of mass, then rem = 0 and

F =maem (3.35)

That is, the external forces applied to the rigid body act as if they are applied to a
single particle located at the center of mass of the body and having mass equal to the

124 Chapter 3 Rigid Body Motion

total mass of the body. The generalized force for the rigid body may be calculated
based only on the center of mass and how it is constrained.

EXAMPLE

3.11

Figure 3.12

This example is a modification ofthe simple pendulum problem, but we treat this as a
fully 3D problem. The z-axis is perpendicular to the plane of the diagram. The simple
pendulum consists of a single-point mass located at the end of a rigid, massless rod.
The other end of the rod is attached to a frictionless joint at (0, Yo' 0). The rod-point
object is replaced by a triangular object as shown in Figure 3.12.

The triangle is isosceles with base length b and height h. Its mass density is constant,
8 = 1, so the total mass is the area of the triangle (in units of mass), m = bh/2. The
center of mass is located at (x, y, z). The distance from the pendulum joint to the
center of mass is L and the angle formed with the vertical is 8, so the center of mass
location is (x, y, z) = (L sin 8, Yo - L cos 8,0).

We assign a local coordinate frame using the principal directions ofmotion associated
with the inertial tensor. From the symmetry of the object, the principal directions are
(cos 8, sin 8,0), (- sin 8, cos 8,0), and (0,0, 1). The first two of these are drawn in
the figure as small black arrows at the center of mass. Although we could compute
the principal moments associated with the first two principal directions, it is not
necessary since the world angular velocity, w = (0, 0, 8), is already a multiple of
the principal direction. The zero-components of this vector multiply the principal
moments in equation (3.34). The only relevant moment is J.L3 associated with the
direction (0, 0, 1). The kinetic energy is

T - 1 L28'2 1 8'2 _ mL
2+ J.L3 8'2- -m + -J.L3 - ---~

222

y
yo---

y

-+---,...------x

z

A triangle pendulum.

EXERCISE

3.17

EXAMPLE

3.12

RCE CODE

MassPulleySpring

3.2 Lagrangian Dynamics 125

Since the body is rigid, according to equation (3.35) the gravitational force Fgrav =
-mgJ acts as if it is applied at the center of mass. The generalized force is

a(x,y,z) . .
Fe = Fgrav • = (-mgJ)· L(cose, sme, 0) = -mgL sme

ae

The Lagrangian equation of motion is

2 •• d(aT) aT .(mL + fL3)8 = - -. - - = Fe = -mgL sm e
dt ae ae

or ij + c sin e = 0, where c = mgL/(mL2 + fL3). Note the similarity to the equation
of motion for the simple pendulum. As the base of the triangle shrinks to zero,
all the while maintaining constant mass, the limiting case is the rod itself (of the
simple pendulum problem). The principal moment fL3 is zero in the limiting case
and c = g/ L, exactly what occurs in the simple pendulum problem.

A couple of observations about the last example are in order. Although we have
set up the equations of motion, a numerical implementation must have available the
values ofthe mass m and the principal moment fL3' Under the stated assumptions, the
center of mass is the area of the triangle. In your implementation, you simply need to
supply the dimensions of the triangle. However, if the triangle is more complicated­
namely, the mass density p is not constant-you must compute the center ofmass for
the triangle, most likely using a numerical integrator applied to m = JR 8 dR, where
R is the region of the plane that the triangle occupies. Also, the principal moment fL3

must be computed, also by numerical integration when 8 is not a constant. In general
for any rigid body, in order to construct the kinetic energy specified by equation
(3.34), you will need to compute the mass and inertia tensor of the body. These
calculations are typically done before the simulation starts and stored with the data
structures representing the rigid body and its motion.

The second observation is that if the triangle in the last example is replaced by
another planar object ofthe same mass m and having the same principal directions of
motion and principal moments leading to the same value fL3' the equation ofmotion
for the planar object is identical to that of the triangle. The triangle and planar object
are said to be dynamically equivalent.

In the Foucault pendulum example (Example 3.3), replace the massless rod and
single-point mass by a cone of height h and base radius r. Compute the equations
of motion.

Consider the physical system shown in Figure 3.13. This example has a mixture of
point-mass objects and a planar mass.

A gravitational force is applied, but note that the y-axis has been selected to point
downward, so g = gJ where g > O. The masses and locations are labeled in the figure

126 Chapter 3 Rigid Body Motion

(Example 3.12
continued)

y

Figure 3.13 A system consisting of two masses, a pulley with mass, and a spring.

as is the radius of the pulley. The other relevant quantities are the spring constant
c > 0, the unstretched spring length L > 0, and the principal moment of inertia of
the pulley I, measured with respect to the z-axis that is perpendicular to the plane of
the figure.

This system has two degrees of freedom, the vertical distance Y3 from the ceiling
to the center of mass of the pulley and the vertical distance Y1 from the vertical
location of the center of mass of the pulley to the mass m l' The vertical distance Y2
is automatically determined because the length of the wire connecting m1 and m2'
namely, (Y1 - Y3) + (Y2 - Y3) + Jr R = l, a constant.

The kinetic energy of the first mass is m1(Y~ + y;)/2 and the kinetic energy of the
second mass is m2(Y~ + yi)/2 = m2(Y~ - y;)/2. The kinetic energy of the pulley
is calculated using equation (3.34). The component associated with the velocity of
the center of mass is m3Y~/2. The component associated with the angular velocity is
I e2/2, where () is an angle measured from the horizontal line through the center of
the pulley, as shown in Figure 3.13. Notice that for an angle () as shown, the length of
the subtended arc on the pulley circumference is R(). The rate of change is Re, where
eis the angular speed of the pulley. Any change in arc length amounts to a change in
the Y1 vertical distance; that is, Y1 = Re. The kinetic energy component is, therefore,
I (yI! R)2 /2. The total kinetic energy is

m 1(' .)2 m2(' ')2 m3·2 1,2T=- Y3+Y1 +- Y3-Y1 +-Y +-y
2 2 2 3 2R2 1

The principal moment, measured with respect to the center of the pulley, is I =
JD r2r dr d(), where D is the disk r ::::: R. The integral is easily calculated to produce

1= Jr R4/2.

3.2 Lagrangian Dynamics 127

The relevant derivatives of the kinetic energy are (1) aTlaY3 = 0, aTlaYI = 0,
aTlaY3 = aY3 + {3YI' where a = ml + m2 + m3 and {3 = ml - m2' and (2) aTlaYI =
{3Y3 + YYI' where Y = ml + m2 + I I R2.

The position of mass m I is (Y3 + YI)}' The generalized forces for this mass are

The position of mass m2 is (Y3 + Y2)}' The generalized forces for this mass are

The negative sign on the right-hand side occurs because (YI - Y3) + (Y2 - Y3) =
l - rr R (a constant) implies aY21 aYI = -1. The position of the center of the pulley
is Y3}' The generalized forces for the pulley are

The Lagrangian equations of motion are

and

The equations are uncoupled by solving the second for)il and replacing in the first:

.. cy (L)
Y3 = {32 - Y3 + gay -

This is a second-order linear differential equation with a nonhomogeneous term.
(Figure 3.14-also Color Plate 3. 14-shows some screen shots from the mass/pulley/
spring application found on the CD-ROM.)

128 Chapter 3 Rigid Body Motion

(Example 3.12
continued)

(a)

(b)

Figure 3.14 A mass pulley spring system shown at two different times. The spring expands and
compresses, and the pulley disk rotates during the simulation. The system stops when
a mass reaches the center line of the pulley or the ground. (See also Color Plate 3.14.)

II

3.2 Lagrangian Dynamics 129

y

Figure 3.15

EXERCISE

3.18

EXERCISE

3.19

EXAMPLE

3.13

A system of two pulleys, two springs, and a mass.

In Example 3.12, solve the final differential equation explicitly for Y3, then solve for
Y1 and Y2 explicitly.

Compute the equations of motion for the physical system shown in Figure 3.15. The
spring constants C1 and C2 and the unstretched lengths L 1 and L 2 are labeled in the
figure. The masses, moments of inertia, and radii of the pulleys are shown, as well as
the mass of the single particle.

Figure 3.16 shows a physical system consisting of a rigid, but massless, pipe that has
a slight bend in it. The vertical portion of the pipe freely rotates about the z-axis
with angular speed e. At the end of the pipe is a solid, cylindrical disk of constant
mass density. The radius of the disk is a and the thickness is b. The disk freely rotates
about the cylinder axis with angular speed ~. The force acting on the system is given
generically by F. We wish to determine the equations of motion for the system.

The bend in the joint is h units above the end ofthe pipe. The bent portion of the pipe
has length L. The local coordinate system at the center of mass uses spherical coordi­
nates, where P = (- sin e, cos e, 0), Q = (- cos e cos ¢, - sin e cos ¢, sin ¢), and
R = (cos e sin ¢, sin e sin ¢, cos ¢). If (9 denotes the origin of the physical system,
the center of mass e of the disk is located relative to the origin by

r = e - (9 = hk + LR

130 Chapter 3 Rigid Body Motion

(Example 3.13
continued)

()

R

Figure 3.16

h
Jr7-----y
~

e -.-
x

A physical system with a bent pipe rotating about the z-axis and a disk rotating about
its axis.

The velocity of the center of mass is

dr . (. .)
vern = - = LR = L e sin c/JP - c/JQ

dt

The world coordinates ofthe angular velocity of the pipe about its sha~ is wpipe = ek.
The world coordinates of the angular velocity of the disk is Wdisk = l/J R) where l/J is
the angular measurement made in the plane ofP and Q. The world coordinates ofthe
angular velocity ofthe physical system as a whole is the sum of the angular velocities)

W = wpipe + Wdisk = ek + ~R

We may write the angular velocity in local coordinates using the fact that k =
cos c/JR + sin c/JQ:

W = OP +esin c/JQ + (~ +ecos c/J)R

in which case the local coordinates are

~ = (0) esin c/J) ~ +ecos c/J)

From equation (3.34) the kinetic energy is

1 2'2 2 '2 1 '2 2 1 .. 2
T = -mL (e sin c/J + c/J) + -JJ-2e sin c/J + -JJ-3(l/J + ecos c/J)

2 2 2

3.2 Lagrangian Dynamics 131

where m is the mass of the disk and where fJ.,2 and fJ.,3 are principal moments for
the disk. Although we do not need the value here, by symmetry fJ.,1 = fJ.,2. The only
degrees of freedom are e and l/J since ¢ is constant. The relevant derivatives are

aT
-=0,ae

aT
-=0
al/J

aT 2 • 2 ••-. = (mL + fJ.,2)e sin ¢ + fJ.,3(l/J +e cos ¢) cos ¢,ae
aT ..
-. = fJ.,3(l/J +e cos ¢)
al/J

d (aT) 2 .• 2 ••••
- -. = (mL + fJ.,2)e sin ¢ + fJ.,3(l/J + e cos ¢) cos ¢,
dt ae

d (aT)
- -. = fJ.,3(l/J + e cos ¢)
dt al/J

The generalized forces are

F. F ar F a(hk + LR) F L(. e . e . A.)e = . - = . = . - SIll SIll ¢, cos SIll 'P' °ae ae
and

ar a(hk + LR)
F1fr = F· - = F· = F· (0,0,0) = °

al/J a l/J

The fact that F1fr =°is to be expected. The center of mass is invariant with respect to
the rotation of the disk, so the applied force cannot affect it.

The equations of motion are therefore

and

The equations may be solved explicitly for the second-derivative terms:

.. -Fe cos¢
l/J=-----­

(mL2 + fJ.,2) sin2 ¢

The principal moment fJ.,3 does not enter into the solution. This does not mean
the angular speeds of the pipe and disk are unaffected by physical characteristics

132 Chapter 3 Rigid Body Motion

(Example 3.13
continued)

EXERCISE

3.20

EXERCISE

3.21

EXERCISE

3.22

of the disk. The solution still has JL2 in it. If you increase JL2 (Le., make the disk
heavier, increase its radius, or make it thicker), the right-hand sides of the differential
equations become smaller because of the presence of JL2 in the denominators. This in
turn causes the angular accelerations to become smaller, leading to reduced angular
speeds.

In Example 3.13, show that JL2 = m(a2/2 + b2/12) and JL3 = ma2/2.

In Example 3.13, if the only applied force is gravitational, say, F = -mgk, show that
the angular speeds of the pipe and disk are constant over time. j1

Consider a solid disk that is attached by a massless rod to the origin. The disk rolls
on the plane z = y tan a for a small positive angle a. Gravitational forces are present
and the plane is assumed to be rough so that frictional forces come into play. Figure
3.17 illustrates.

The disk has radius a > 0 and thickness b > O. One end of the rod is attached to
the origin, the other end to the center of the face closest to the origin. The distance
from the rod to the center of mass is L units. The physical system has one degree of
freedom, the angle e. Construct the equation of motion for e. (See Section 3.2.7 for
a model of motion of a solid box over a plane with frictional forces.)

z

Q p

y

x

Figure 3.17 A solid disk that rolls on a rough, inclined plane.

3.2 Lagrangian Dynamics 133

3.2.6 EXAMPLES WITH CONSERVATIVE FORCES

Recall that a Lagrangian equation of motion for the constraint variable q is of the
form

where Fq = F . dx/dq is a generalized force. If F is a conservative force, then F =
- VV for some potential energy function V, in which case

dx dx av
F =F·-=-VV·_=--

q dq dq aq

The Lagrangian equation of motion for a conservative force is

d (aT) aT av- - -----
dt aq aq aq

The potential function in mechanical problems is almost always independent of time
derivatives q, so if we define the scalar function L = T - V, called a Lagrangian
function, the equation of motion for a conservative force is

d(aL) aL- - --=0
dt aq aq

(3.36)

EXAMPLE

3.14

Figure 3.18

A simple model of a diving board is presented here. Figure 3.18 illustrates. The
board has length r and is massless, but has a mass m on the end that represents
someone standing on the end of the board (and can be affected by gravity). The

h~__.......L. ---+......__.. m

s r

A simple diving board.

134 Chapter 3 Rigid Body Motion

(Example 3.14

continued)
flexibility of the board is modeled by a spring attached between the board and the
ground. This spring affects the angular motion of the board about the joint at (0, h).
The spring is located at position s and has spring constant c > O. The spring is un­
stretched with length e, not necessarily the height h ofthe joint above the ground. The
location of the mass is measured by the angle e relative to the horizontal. The posi­
tion of the mass is x = (0, h) + r(cos e, sin e). The velocity is x= r(- sin e, cos e)e.
The kinetic energy is T = mr2e2/2.

The potential energy due to a change in height from the board's horizontal posi­
tion is the magnitude of the force multiplied by the change in height, as seen in
equation (2.107). For an angle e, the change in height is r sin e. The contribution
to potential energy is Vgravity = mgr sin e. The potential energy due to the spring
stretching was derived in equation (2.108). It depends only on the end points (s, h)

and (s cos e, h + s sin 8). The stretched length at the first end point is h - e. The
stretched length at the second end point is the value

The contribution is

The total potential energy is V = Vgravity + Vspring' The constant (h - e)2 may be
ignored since the derivative of V is all that matters in the Lagrangian equations of
motion. Moreover, if you want to make an approximation by allowing e to be only
a small angle, then cos 8 == 1 and sin 8 == 8, so V == (c/2)(h + s8 - e) + mgr8 is a
reasonable approximation.

Using the approximation for potential energy, the Lagrangian is

1 2' 2 1
L = T - V = -mr e - -c(h + se - e) - mgre

2 2

The Lagrangian equation of motion is

d (aL) aL
0= dt ae - aq

d 2' 2"= - (mr e) - (-cs (h + se - e) - mgr) = mr e + cs (h + se - e) + mgr
dt

If the spring is such that the diving board is in static equilibrium at e= 0, that is,
cs(h - e) + mgr = 0, then the equation of motion is ii + ((cs 2)/(mr2))e = 0, and
the board exhibits simple harmonic motion.

EXERCISE

3.23

EXAMPLE

3.15

3.2 Lagrangian Dynamics 135

Construct the equations of motion for Example 3.14, but without the approximation
involving a small angle ().

Consider a double pendulum that consists of two rigid and massless rods. The first
rod is attached to a frictionless joint on the ceiling and has length rl' The other end
of the rod has a mass m 1 attached. The second rod is attached to the other end of the
first rod, this joint also frictionless, and has length r2' A mass m2 is attached to the
other end of the second rod. The only applied force is gravitational. See Figure 3.11
for an illustration.

Mass mi is located at (xi' yJ for i = 1, 2. The kinetic energy is T = m 1(xi + yi) /2 +
m2(xi + Yi)/2. However, we have only two degrees of freedom, which may as well
be chosen to be the angles ()l and ()2' Trigonometric identities lead to Xl = rl sin ()l'

h - YI = rl cos ()l' x2 - Xl = r2 sin ()2' and YI - Y2 = r2 cos ()2' Solving for the com­
ponents:

and the derivatives are

Xl = rIel cos ()l

YI = rIel sin ()l

X2 = rIel cos ()l + r2e2cos ()2

Y2 = rIel cos ()l + r2e2cos ()2

The kinetic energy is therefore

The contribution to potential energy from mass ml is -mlg(h - YI) and the contri­
bution from mass m2 is -m2g(h - Y2), so the total potential energy is

136 Chapter 3 Rigid Body Motion

(Example 3.15

continued)
The Lagrangian L = T - V is

m 1 z· z mz (z· z z .z . .)
L = -Zr181 + -Z r 181 + r z8z + 2rlrz818z cos(81 - 8z)

+ (ml + mZ)grl cos 81 + mzgrz cos 8z

and its relevant derivatives are

aL ..
- = -mZr l r Z818Z sin(81 - 8z) - (ml + mZ)grl sin 81a81

aL ., . .
- = mZr l r Z818Z sm(81 - 8z) - mzgrz sm 8za8z

aL z· z· .-. = mlr 181 + mz(r181 + rlr Z8Zcos(81 - 8z))
a81

aL z· .-. = m z(rz8z + rl r Z81cos(81 - 8z))
a8z

d (aL)
dt ae1

d (aL)
dt aez

The two Lagrangian equations of motion are

The two equations may be solved simultaneously to produce explicit formulas for the
second derivatives iiI and iiz.

EXERCISE

3.24

EXERCISE

3.25

EXAMPLE

3.16

3.2 Lagrangian Dynamics 137

In the double pendulum problem, replace the rigid rods by massless springs whose
spring constants are Cl and C2 and whose unstretched lengths are f l and f 2• Calculate
the kinetic energy, the potential energy, the Lagrangian, and the equations of motion.

Compute the equations ofmotion for the triple pendulum problem where all the rods
are rigid. This problem adds one more massless rod to the system: one end is attached
to mass m2 (the joint is frictionless) and the free end has a mass m3 attached to it. The
rod length is r3'

Two-body problem. This is the same problem discussed in Example 3.1 that was
derived with Newtonian dynamics and that led to Kepler's laws. We now derive
the equations of motion using Lagrangian dynamics. Consider two particles with
masses mi and positions (xi' Yi' zJ for i = 1, 2. The center of mass is (x, y, z) =
(ml (Xl' Yl' zl) + m2(x2' Y2' z2))/(ml + m2)' The particles may be represented in the
coordinate system whose origin is the center of mass and whose axes are parallel to
the world coordinate axes. Specifically,

where R(e, ¢) = (cos esin ¢, sin e sin ¢, cos ¢) is in the direction from particle 1
to particle 2. Using the fact that the total moment about the center of mass is zero,
namely, Z=;=l mi(xi - X, Yi - y, Zi - z) = (0, 0, 0), the radial values must satisfy
mlrl + m2r 2 = O. Define r to be the distance between the particles, so r = r2 - rl'

Consequently, rl = -m2r /(ml + m2) and r2 = mlr/(ml + m2)' In this notation the
gravitational force exerted by particle 1on particle 2 is

where G is the gravitational constant. This force is conservative with potential energy
V = -Gmlm2/r. The kinetic energy is

2

T 1 L (·2 ·2 .2)=- mi X. +y. +z.2 I I I

i=l

138 Chapter 3 Rigid Body Motion

(Example 3.16
continued)

For simplicity we will assume that the center of mass travels through space with
constant linear velocity. In this case the Lagrangian function is

where Cl = mjm2/(ml + m2) and C2 = Gmlm2'

The relevant derivatives of L are

aL .2 '2 2 C2
- = clr(¢ + e sin ¢) - -ar r 2

aL
-=0ae
aL 2'2
- = clr e sin ¢ cos ¢
a¢

The Lagrangian equations of motion are

aL .
-=clra;
aL 2'. 2
-. =clr e sm ¢ae
aL 2'
-. =clr ¢
a¢

d (aL) aL .. ('2 e· 2 . 2 C20=- -. --=clr-clr¢ + sm ¢)+-
dt ar ar r

d(aL) aL d (2' . 2)°= dt ae - ae = Cl dt r esm ¢

d(aL) aL (d (2') 2'2.)°= dt a¢ - a¢ = Cl dt r ¢ - r e sm ¢ cos ¢

The second equation implies r2esin2 ¢ = ex is a constant. Ifwe choose e(0) = 0, then
ex = 0, which in turn implies e(t) =°for all time. Therefore, the motion of the two
particles must be in the plane e= eo' If the value e(0) =f. 0, it is still the case that the
motion is in a plane, but the analysis is a bit more complicated and left as an exercise.
The third equation of motion reduces to d(r 2¢)Id t = 0, so r 2¢ = f3, a constant for
all time. Replacing this in the first equation of motion, dividing by Cl' and defining
y = c21Cl' we have

.. f32 Y
r=---

r 3 r 2

This equation may be solved numerically for r(t) when initial conditions reO) and
;(0) are selected. The angle is obtained by one more integration, ¢(t) = ¢(O) +
J~ f3lr 2(r) dr, with ¢(O) selected as an initial condition.

3.2 Lagrangian Dynamics 139

How does this relate back to Example 3.1 on Kepler's laws? At first glance you might
have thought we found explicit solutions for ret) and ¢(t). This is not so. What we
found was a relationship between the two,

ret) = __e_p__
1+ e cos ¢(t)

an equation of an ellipse. To obtain a numerical solution for rand ¢ as functions
of time, you would need to solve r = - (Gm 11r 2)r, where r = r R. In the derivation
in that example we also showed that r x r = Co for some constant vector Co' This
constant is determined from the initial position reO) and initial velocity reO), namely,
Co = reO) x reO). This information can be used to reduce the differential equation to
one involving motion in a plane whose normal is co'

As it turns out, the ellipse equation does satisfy the second-order equation for ret)
that we just derived using Lagrangian dynamics. Taking a derivative leads to

. e2p¢ sin ¢ r2¢ sin ¢
r- ----

- (1 + e cos ¢)2 - P

Taking another derivative:

f3 sin ¢

p

EXERCISE

3.26

EXERCISE

3.27

3.2.7

EXAMPLE

3.17

;: = !!.- cos ¢ = !!.- t ~ (ep _ 1) = f32 _ f32 ~
P P r2 e r r3 ep r2

For this to equate to our Lagrangian equation we need f32 = epA.

In Example 3.16, if 8(0) =1= 0, show that the motion of the particles is still in a plane.
What is the equation of that plane? Hint: The plane will depend on the choices for
8(0) and¢(O).

Write a computer program to solve the Lagrangian equations of motion in Exam­
ple 3.16.

EXAMPLES WITH DISSIPATIVE FORCES

This section contains some examples for setting up the equations of motion when at
least one of the applied forces is dissipative. The first example is a slight modification
of the simple pendulum. Other examples are slightly more complicated.

Consider the simple pendulum problem that is illustrated in Figure 3.4. The joint
at P is now assumed to apply a frictional force Ffric to impede the motion of
the rod. The gravitational force is Fgray = -mgJ. The position of the mass is x =
(r sin (), h - r cos ()), where the joint is a height h above the ground. The velocity is

140 Chapter 3 Rigid Body Motion

(Example 3.17

continued)

RCE CODE

SimplePendulum­

Friction

v = r8(cos e, sin e). The kinetic energy is T = mlvl2/2 = mr28 2/2. The generalized
force is Fe = (Fgrav + Ffric) • dx/de. The Lagrangian equation of motion is

2" d (aT) aTmr e = - -. - - = Fe = -mgr sin e + Ffric • r(cos e, sin e)
dt ae ae

The frictional force is assumed not to contain a static friction component.

If the frictional force is kinetic friction, the force is modeled by Ffric = -cv/Ivl for
some constant c > O. The force is in the opposite direction of velocity. The equation
of motion reduces to

., c 8 g .. .
0= e + - --;- + - sin e = e + aa(e) + b sin e

mr lei r

where a = c/(mr), b = g/r, and aCt) acts as a switch. 1ft> 0, then aCt) = 1. 1ft < 0,
then aCt) = -1. To avoid the singularity at t = 0, we define a(O) = O.

If the dissipative force is viscous, for example, when the joint has a layer of oil to
prevent overheating, the force is modeled by Ffric = -cv for some constant c > O.
The equation of motion reduces to

(j + ~8+ ~ sin e= 0
m r

If the pendulum has only small oscillations about the vertical so that e is nearly zero
and sin e == e, an approximation to the equation of motion is

.. c· g
e + -e + -e = 0

m r

This is a second-order linear differential equation whose solution may be written
in closed form (see Section 8.3). If we set a = c/ m and b = g / r, the characteristic
equation is A2 + aA + b = O. If a2 > 4b, this equation has two negative real-valued
roots Al = (-a - Ja2 - 4b)/2 and A2 = (-a + J a2 - 4b)/2. The solution to the
differential equation with initial conditions e(O) = eo =1= 0 and 80 = 8(0) is

No sinusoidal terms occur, so the pendulum cannot continually oscillate about its
rest position. In the limit as t ---+ 00 (physically after a large amount of time), the
right-hand side of the equation becomes zero, that is, e(oo) = limt -+ oo e(t) = O. The
condition a2 > 4b is equivalent to c > 2mJg / r. The coefficient of friction of the
joint is sufficiently large to prevent oscillation about the rest position, and after a
large amount of time the damping causes the pendulum to stop. (Question: If eo > 0
and 80 = 0, does the pendulum ever pass the origin? That is, does there exist a time
T > 0 for which e(T) < O? How about when 80 < O?)

EXERCISE

3.28

RCE CODE

RoughPlaneParticiel

3.2 Lagrangian Dynamics 141

Ifa 2 = 4b, the characteristic equation has a repeated real-valued root, A= -a/2. The
solution to the differential equation is

Just as in the previous case, e(oo) = lim t --+ oo e(t) =°and the pendulum eventually
stops. The condition a2 = 4b is equivalent to c = 2mv'g / r and the coefficient is still
large enough to prevent oscillation about the rest position. (Question: If eo > °and
eo = 0, does the pendulum ever pass the origin? That is, does there exist a time T > °
for which e(T) < O? How about when eo < O?)

The last case is a2 < 4b. The characteristic equation has two nonreal roots, Al =
p - iw and A2 = P + iw, where p = -a/2 and w = v'4b - a 2/2. The solution to
the differential equation is

(e - peo)e(t) = exp(pt) eo cos(wt) + 0 w sin(wt)

In this case the pendulum does oscillate about the rest position, but the amplitude of
the oscillation decays exponentially over time. Once again w(oo) = lim t --+ oo e(t) =
0, so the pendulum eventually stops. The condition a2 < 4b is equivalent to c <
2mv'g / r. Physically this means the coefficient of friction is sufficiently small and
cannot prevent the oscillations, but the slightest amount of friction is enough to stop
the pendulum after a long time.

Compute the equations of motion for the double pendulum of Example 3.15 assum­
ing that both joints have kinetic friction. Repeat the exercise when both joints have a
dissipative viscous force.

The next few examples deal with kinetic friction on flat surfaces. The examples
increase in complexity. The first involves a single particle, the second involves multi­
ple particles, the third involves a curve mass, and the fourth involves an areal mass.
The last example is typical ofwhat you can expect in a 3D simulation when one object
slides over another.

One Particle on a Rough Plane

A single particle is constrained to move on an inclined plane and is subject to grav­
itational force. The plane forms an acute angle ¢ with the horizontal, so the height
relative to the horizontal is z = y tan ¢. The plane is two-dimensional. We choose co­
ordinates x and w with w shown in Figure 3.19. Basic trigonometric definitions show
us that y = w cos ¢ and z = w sin ¢. A single particle with mass m, initial position
ro = (xo, Yo' zo), and initial velocityvo = (io' Yo' 20) is shown. A portion of the path
ret) traveled by the particle is also shown. The velocity, of course, is v(t) = t(t).

L42 Chapter 3 Rigid Body Motion

z w

Figure 3.19 An inclined plane that forms an angle ¢ with the horizontal. The particle has mass
m. It is located at ro = (xo, Yo, zo); hash marks are shown on the axes corresponding
to xo, Yo, zo, and wo, where Yo = Wo cos ¢ and Zo = Wo sin ¢.

In terms of x and w, the kinetic energy is

The relevant derivatives are aTlax = 0, aTlaw = 0, aTlax = mx, aTlaw = mw,
d(aTlax)ldt = mx, and d(aTlaw)ldt = mw.

The gravitational force is Fgrav = -mgk. The frictional force is Ffric = -evIlvl,
where e = p,mg cos ¢ > 0. The constant p, depends on the material properties of the
mass and inclined plane. The generalized forces are

dr
Fx = (Fgrav + Ffric) • -

dx

= (-mgk - c 1:1) .(I, 0, 0)

ex

and

dr
Fw = (Fgrav + Ffric) • ­

dw

=(-mgk - e~) . (0, cos ¢, sin ¢)
Ivl

. ew
= -mg sm ¢ - -;:::::;:::=::::;

.Jx2 + w2

3.2 Lagrangian Dynamics 143

The Lagrangian equations are

.. cx
mx + =0,

JX 2 + W2

.. CW .
mw + + mg sm ¢ = 0

Jx 2 + w2

Just as in the pendulum example, the frictional terms are undefined at zero velocity,
when x2 + w2 = O. When this happens, define the ratios to be zero (no friction at
that instant). In the event that the inclined surface is exactly on the horizontal, the
angle is ¢ = 0 and w = y. The generalized force due to gravity has no effect on the
particle's motion since mg sin ¢ = o.

Two Particles on a Rough Plane

Consider two particles with positions ri = (xi' Yi) and masses mi for i = 1,2. The
xy-plane is a rough surface and so provides a frictional force on the particles. The
particles are interconnected with a massless rod that does not touch the plane. Thus,
the particle system is a rigid body that has three degrees of freedom: the location
(x, y) of the center of mass and an orientation angle e formed by the rod with the
x-axis. Figure 3.20 illustrates.

The lengths L i are measured from the center of mass to the particles. The particle
positions are rl = (x + L I cos e, y + L I sin e) and r2 = (x - L 2 cos e, y - L 2 sin e).
The velocities are VI = (x - LIe sin e, y+ LIe cos e) and V2 = (x + L 2esin e, y ­
L 2ecos e). The frictional forces are Fi = -civdlvi I, where Ci = J.lmig with J.l de­
pending on the material properties, and g is the gravitational constant.

y

-+-----------__ x

Figure 3.20 Two particles, connected by a massless rod, that slide along a rough plane.

144 Chapter 3 Rigid Body Motion

The kinetic energy is

2

T(x) Y) B) = L ~i (x; + y;)
i=l

= ~l ((x - L/) sin B)2 + (y + LIe cos B)2) +

~2 ((x + L 2e sin B)2 + (y - L 2e cos B)2)

ml + m2.2 .2 mlLi + m2L~ '2= (x + Y) + B
2 2

= /La (x 2+ l) + /L2 e2
2 2

(3.37)

where the last equality defines the constants /La and /L2' Formally) a term with
(mILl - m2L 2) appears) but just as in Example 3.16 on the two-body problem)
mILl - m2L 2= O. If L = L I - L 2) then L I = m2L /(ml + m2) and L 2= mIL/(ml +
m2)' The relevant derivatives of kinetic energy are

aT
-=0)
ax

aT .
ax = /Lox)

aT
-=0)ay

aT .
ay = /Lox)

aT
-=0)
aB

d (aT) ..- - =/LaX)
dt ax

d (aT) ..
dt ay = /LoY)

d (aT) ..- -. =/L2B
dt aB

The generalized force corresponding to x is

2 ar.
Fx = LFi·_1

i=l ax

J(x - LIe sin B)2 + (y + LIe cos B)2 J(x + L 2e sin B)2 + (y - L 2e cos B)2

3.2 Lagrangian Dynamics 145

The generalized force corresponding to Y is

2

'""' V'=~ -Ci-
l

• (0, 1)
i=l IVil

CI(Y + LIe cos 8)
=

J(X - LIe sin 8)2 + (y + LIe cos 8)2

The generalized force corresponding to 8 is

C2(y - L 2e cos 8)

cIL I(-x sin 8 + Ycos 8 + LIe)
= J(x - LIe sin 8)2 + (y + LIe cos 8)2

The Lagrangian equations of motion are

(3.38)

Multiple Particles on a Rough Plane

The example for two particles on a rough plane can be extended to more particles,
leading to only a slightly more complicated set of equations. Consider p > 1particles
with positions ri = (xi' Yi) and masses mi for 1 ::s i ::s p. The particle system is a
rigid body that has three degrees of freedom: the location (x, y) of the center of
mass and an orientation angle 8. At least one point is not located at the center of
mass. With a renumbering of the particles if necessary, let that point be (xl' YI). We
choose 8 to be the angle between (xl - X, YI - y) and the x-axis direction (1, 0).
Thus, Xl = X + L I cos 8 and YI = L I sin 8, where L I is the length of (xl - X, YI - y).
The differences between the points and the center of mass form fixed angles with
(xl-x'YI-Y):

146 Chapter 3 Rigid Body Motion

where L i is the length of (xi - x) Yi - y) and ¢i is the angle between (xi - x) Yi - y)
and (x1- x) Y1 - y). By definition ofe) it is the case that ¢1 = O. The frictional forces
are Fi = -civdlvil) where Vi = fi) Ci = J.lmig with J.l depending on the material
properties) and g is the gravitational constant.

The kinetic energy is

(3.39)

where the last equation defines the constants J.lo and J.l2' Just as in the case of two
particles) the choice of the center of mass as the origin causes a few formal terms to
vanish when computing kinetic energy. Specifically) that choice implies

p

L miLi cos(e + ¢i) = 0 and
i=1

p

L miLi sinCe + ¢i) = 0
i=1

This is exactly the same form as equation (3.37). The generalized forces are

= _ t CiLJ-x sinCe + ¢J + Ycos(e + ¢i) + LJ))

i=1 IVil

The Lagrangian equations of motion are

(3.40)

which is the same as for two particles) equation (3.38).

3.2 Lagrangian Dynamics 147

A Thin Rod on a Rough Plane

This example is an extension ofthe one for two particles connected by a thin, massless
rod. Now the rod itself has mass and is in contact with the rough plane at every
point. The system still has three degrees of freedom: the center of mass (x, y) of the
rod and the angle 8 formed by the rod with the positive x -axis direction. The rod is
parameterized by r(L) = (x + L cos 8, y + L sin 8) for L E [-L 2, L 1]. The velocity
is veL) = (x - L8 sin 8, Y+ L8 cos 8). The total length of the rod is L 1 + L 2• The
mass distribution is not necessarily uniform; mass density is the function 8(L). The
total mass /.La and second moment /.L2 are

i
Ll

/.La = 8(L) dL
-Lz

The kinetic energy is

and

iLl 1
T(x, y, 8) = -8(L)lv(L)1 2 dL

-Lz 2

=iLl ~8(L) ((x - L8 sin 8)2 + (y + L8 cos 8)2) dL (3.41)
-Lz 2

Just as in the case of particle systems, some terms in the formal construction of
kinetic energy vanish due to the choice ofthe center ofmass as the origin. Specifically,

f~L 8L cos 8 dL = 0 and f~L 8L sin 8 dL = O. This is exactly of the form shown in
equation (3.37).

The frictional force is F(L) = -cv(L)/lv(L)I, where c is allowed to vary for each
particle in the rod (c is allowed to be a function of L), but is assumed not to vary with
position or velocity. The generalized force Fx is now formulated as an integral rather
than as a sum:

F
x
= iLl F(L) . ar(L) dL

-Lz ax

iLl V
= -c- . (1,0) dL

-Lz Ivl

iLl -c(x - L8 sin 8)
= dL

-Lz vi(x - L8 sin 8)2 + (y + L8 cos 8)2

148 Chapter 3 Rigid Body Motion

Similarly, the generalized force Fy is

ILl V

= -c- . 0, 0) dL
-L2 Ivl

=ILl -c(y + Le cos e) dL

-L2 J(x - Le sin e)2 + (y + Le cos e)2

and the generalized force Fe is

Fe = ILl F(L) . ar(L) dL
-L2 ae

ILl V

= -c- . L(- sine, cose) dL
-L2 Ivl

=ILl -cL(-x sine + y cose + Le) dL

-L2 J (x - Le sin e)2 + (y + LiJ cos e)2

The Lagrangian equations of motion are the same as those in equation (3.38).

EXERCISE

3.29
How do the formulas for kinetic energy, generalized forces, and the Lagrangian equa­
tions of motion change if the mass is distributed along a curve rather than a straight
line segment?

A Flat Board on a Rough Plane

This example is an extension of the one for multiple particles on a rough surface. We
now consider a continuum of mass in the region R, as shown in Figure 3.21.

The system has three degrees offreedom: the center of mass (x, y) of the rod and
an angle e that represents the orientation of the region relative to the positive x-axis.
The rod is parameterized in a local coordinate system whose origin is the center of
mass and whose orthonormal axes are chosen to be (cos e, sin e) and (- sin e, cos e):

rea, f3) = (x, y) + a(cos e, sin e) + f3(- sin (), cos e)

The velocity is

v(a, f3) = (x, y) + e(a(- sin e, cos ()) - f3(cos e, sin e))

3.2 Lagrangian Dynamics 149

f3

y-

(3.42)

x

Figure 3.21 A flat board on a rough plane.

Since the region R represents a rigid body, the local coordinates (a, 13) for a
particle are independent of the orientation of the body. The distance between the
particle at (a, 13) and the center of mass is L = Ja 2 + 132• The mass density is the
function 8(a, 13) and is allowed to vary over the region. In the integral quantities
used in the following, the infinitesimal for the region is dR = da df3.

The kinetic energy is

T = ~ { 81vl 2 dR
2 JR

= ~ l8 ((x - iJ(a cos 8 + 13 sin 8))2 + (y + iJ(a cos 8 - 13 sin 8»2) dR

= (18 dR) ~(i' + Y') + (l (a' + fJ')8 dR) ~Ii'

where

Once again some formal terms in the computation ofkinetic energy vanish due to the
choice of the center of mass as the origin. Specifically, JR 8(a sin 8 + 13 cos 8) dR = 0
and JR 8(a cos 8 - 13 sin 8) dR = o. The form of the kinetic energy is the same as in
equation (3.39).

150 Chapter 3 Rigid Body Motion

The frictional forces are F = -cv/ Iv I, where c is allowed to vary with a and fJ.
The generalized force Fx is

I. ar
Fx = F· -dR

R ax

= { -c~· (1, 0) dR
JR Ivl

= (-c(i - iJ(a sin e + fJ cos e)) dR

JR Ivl

The generalized force Fy is

F = { F. ar dR
y JR ay

= { -c~· (0, 1) dR
JR Ivl

= (-c(y + iJ(a cos e - fJ cos e)) dR

JR Ivl

The generalized force Fe is

Fe = { F· ar dR
JR ae

= { -c~· (-a sin e - f3 cos e, a cos e - fJ sin e) dR
JR Ivl

= { -c(-(a sin e+ fJ cos e)i + (a cos e - fJ sin e)y + (a2+ fJ2)iJ) dR

JR Ivl

The Lagrangian equations of motion are exactly the ones shown in equation (3.40).

RCE CODE

RoughPianeSolidBox

A Solid Box on a Rough Plane

The problem we now look at is a variation on the one involving a particle on an
inclined plane as shown in Figure 3.19. Instead of a particle, we have a solid box of
dimensions 2a, 2b, and 2h. The box has constant mass density. A side view of the box
and plane is shown in Figure 3.22.

In addition to sliding down the plane, the box is also rotating about its lo­
cal vertical axis with angular speed iJ. The center of mass is located at r = (x,
w cos ¢ - h sin ¢, w sin ¢ + h cos ¢). The contribution to the kinetic energy due

3.2 Lagrangian Dynamics 151

z

----!""~_-----'--------.- Y

Figure 3.22 A side view of a solid box on a rough, inclined plane.

to the velocity of the center of mass is m (x 2 + w2) /2, where m is the mass of the box.
Since the box has angular velocity, we need to compute the contribution due to the
rotation as indicated by equation (3.34). The angular velocity in world coordinates is
w = e(O, - sin ¢, cos ¢). Local coordinates for the box are as follows. The box's ver­
tical direction is U3 = [0 - sin ¢ cos ¢]T. The other two coordinate axes vary with ()
because of the rotation. A reference frame is u~ = [1 0 O]T and u~ = [0 cos ¢ sin ¢]T.
The frame that rotates with the box as () varies is

UI = cos ()u~ - sin ()u; = [cos () - sin () cos ¢ - sin () sin ¢]T

and

U2 = sin ()u~ + cos ()u; = [sin () cos () cos ¢ cos () sin ¢]T

The local coordinates for the angular velocity are ~ = [~l ~2 ~3]T, where
3 ..T

W = Li=l ~iui· In our case, W = ()u3' so ~ = [00 ()] . From Example 2.9 we saw
that the principal moment for the vertical axis is J-L3 = (a 2 + b2) /3, so the contribu­
tion of the angular velocity to the kinetic energy is e2m (a 2 + b2) /3. The total kinetic
energy is

(3.43)

The system has three degrees of freedom given by x, w, and (), so there will be
three Lagrangian equations of motion: mx = Fx ' mw = Fw ' and m(a2 + b2){j/3 =
Fe' where the right-hand sides of the equations are the generalized forces.

The center of mass is located at r as mentioned earlier. You might be tempted
to construct the generalized forces by dotting the applied forces Fgrav + Ffric with
the partial derivatives of r with respect to x, w, and (). However, that would be an
error in analysis. The contributions ofthe gravitational force to the generalized forces

152 Chapter 3 Rigid Body Motion

may be computed by assuming that gravity applies only to the center of mass. The
frictional forces apply only to the face of the box that is sliding on the plane. In this
sense we need to compute the contribution of friction to the generalized forces in the
same manner as in the example of a flat board on a rough plane (see Figure 3.21). In
that example replace y by wand use the generalized forces exactly as shown in the
example.

EXERCISE

3.30

EXERCISE

3.31

3.3

In the discussion about a box sliding on a rough plane, the kinetic energy in equation
(3.43) was computed using equation (3.34). First, the box half-height h does not ap­
pear to affect the kinetic energy. Does this make sense to you? Second, the expression
does not have terms of the form ie or we. In the example of a flat board sliding over
a rough plane, the kinetic energy in equation (3.42) was computed directly as an in­
tegral over the velocity ofpoints in the board. This latter formula has terms involving
ie and ye (thinking of y and w as the same variable). From the perspective of fric­
tion, the sliding box and sliding flat board are identical in nature since the friction
of the sliding box is only relevant for its bottom flat face. Why is it, then, that one
expression has the ie and we terms but not the other expression?

Write a computer program that implements the example of a box sliding on a rough
plane. The example, as modeled, uses only kinetic friction. Incorporate static friction
into your program by specifying a minimum angle cPmin > 0 for which static friction
prevents the box from moving when the plane is inclined at an angle cP smaller than
cPmin' but allows movement when the angle of inclination is larger than cPmin'

EULER'S EQUATIONS OF MOTION

Sometimes a physical application is more naturally modeled in terms of rotations
about axes in a coordinate system. The prototypical example is that of a spinning
top, where the top rotates about its axis of symmetry but simultaneously the entire
top is rotating about a vertical axis. Euler's equations of motion are the likely choice
for determining the motion of such an object. These equations are the focus of this
section.

Consider a rigid body with origin <9 that coincides with the origin of the world
coordinate system. The basis vectors for the world are 1/i for 1 :s i :s 3. The rigid body
is given its own basis vectors ~i for 1 :s i :s 3, such that 1/3 and ~3 are not parallel.
The plane spanned by 1/1 and 1/2 intersects the plane spanned by ~1 and ~2 in a line.
That line passes through the origin and has unit-length direction N. Figure 3.23(a)
illustrates the two coordinate systems.

The angle between 1/3 and ~3 is cP, the angle between Nand 1/1 is e, and the
angle between N and ~1 is 1/1. The positive direction for the angles is shown in Fig­
ure 3.23(a). By definition, N lies in the plane spanned by 1/1 and 1/2' Moreover, it

(a)

1]3

3.3 Euler's Equations of Motion 153

I----t-----I ~2

~1

Figure 3.23 The world coordinates and body coordinates for a rigid body where both systems
have the same origin.

must lie on the unit circle centered at the origin. The vector also lies on the unit circle
centered at the origin of the plane spanned by ~1 and ~2' As such we may write it as

N = (cos 8)111 + (sin 8)112 = (cos 1/1)~1 - (sin 1/1)~2 (3.44)

Figure 3.23(b) illustrates the location ofN relative to the various axes of the planes.
The three angles ¢, 8, and 1/1 completely determine the orientation of the body

relative to the world coordinates. Observe that ¢ is the angular speed of rotation
about N, 8 is the angular speed of rotation about 113' and 'if;- is the angular speed of
rotation about ~3' The angular velocity ofthe rigid body is the sum ofthe axial angular
velocities w = ¢N + 8113 + 'if;-~3' The vector ~3 is obtained from 113 by a rotation
about the N axis through an angle ¢. Using a standard rotation formula and using
equation (3.44) for cross products:

~3 = 113 + (sin ¢)N x 113 + (1 - cos ¢)N x (N x 113)

= 113 + (sin¢)(-(cos8)112 + (sin 8)111) + (1- cos¢)(-113) (3.45)

= (sin 8 sin ¢)111 - (cos 8 sin ¢)112 + (cos ¢)113

1S4 Chapter 3 Rigid Body Motion

The angular velocity in world coordinates is

w = ¢N + 81/3 + ~~3

= ¢((cos 8)1/1 + (sin 8)1/2) + 81/3 + ~((sin 8 sin ¢)1/1

- (cos 8 sin ¢)1/2 + (cos ¢)1/3)

= (¢ cos 8 + ~ sin 8 sin ¢)1/1 + (¢ sin 8 - ~ cos 8 sin ¢)1/2

+ (8 + ~ cos ¢)1/3

(3.46)

Similarly, the vector 1/3 is obtained from ~3 by a rotation about the N axis through
an angle -¢. Using a standard rotation formula and using equation (3.44) for cross
products:

1/3 =~3 - (sin¢)N x ~3 + (1- cos¢)N x (N x ~3)

= ~3 - (sin ¢) (- (cos 1/1)~2 - (sin 1/1)~1) + (1 - cos ¢) (-~3) (3.47)

= (sin 1/1 sin ¢)~1 + (cos 1/1 sin ¢)~2 + (cos ¢)~3

The angular velocity in body coordinates is

w = ¢N + 81/3 + ~~3

= ¢((cos 1/I)~1 - (sin 1/1)~2) + 8((sin 1/1 sin ¢)~1 + (cos 1/1 sin ¢)~2

+ (cos ¢)~3) + ~~3

= (¢ cos 1/1 + 8 sin 1/1 sin ¢)~1 + (-¢ sin 1/1 + 8 cos 1/1 sin ¢)~2

+ (~ + 8 cos ¢)~3

(3.48)

The angular velocity in world coordinates is useful in setting up Euler's general
equations of motion, equation (2.90). The angular velocity in body coordinates,
when the ~i are chosen to be principal directions of the inertia tensor, is useful
in setting up Euler's special equations of motion, equation (2.91). If the principal
moments are J.Li' the body coordinates of the torque are Ti' and the body coordinates
of the angular velocity are wi' then the special equations are

J.LIWI + (J.L3 - J.L2)W2 W3 = Tl

J.L2 W2 + (J.Ll - J.L3)wl w 3 = T2

J.L3W3 + (J.L2 - J.Ll)wl w 2 = T3

(3.49)

EXAMPLE

3.18

Figure 3.24

3.3 Euler's Equations of Motion 155

Consider a freely spinning top whose tip is fixed in place. The top is assumed to
be symmetric about the axis of the third principal direction vector, in which case
ILl = ILz· We assume no torques on the top, a situation that can be approximated by
assuming the center of mass is effectively at the tip of the top. Figure 3.24 shows the
configuration.

~3

~------~lh

A freely spinning top with tip fixed at the origin of the world coordinate system.

The world coordinate axes 11i are shown. The body coordinate axes are ~i-the prin­
cipal directions of the inertia tensor-but only the axis of symmetry is shown.

The Euler equations, equation (3.49), reduce to

The last equation implies the component w3 = c, a constant. Define A= c(IL3 ­
ILI)/ILI' The first two equations are then WI + AW2 = 0 and W2 - AWl = O. Taking
derivatives and replacing one equation in the other leads to WI + A2WI = O. This is
the differential equation for simple harmonic motion. A solution is WI = a COS(At).
The other component is determined from the second differential equation by substi­
tuting in wI' the result being W2 = a sin(At). The angular velocity of the top in body
coordinates is

w = (a COS(At))~1+ (a sin(At))~2+ c~3

The angular speed is Iwl = .Ja 2 + c2, a constant. If the top rotates only about its axis
of symmetry, then a = 0 must occur so that w is parallel to ~3' However, the top can
be rotating about the 113 axis while simultaneously rotating about its axis ofsymmetry.
In this case the angular velocity is not parallel to ~3' and a =f=. 0 is required.

156 Chapter 3 Rigid Body Motion

(Example 3.18
continued)

EXAMPLE

3.19

CODE
FreeTopFixedTip

In world coordinates the torque T and angular momentum L are related by T =
dL/dt. Since the torque is assumed to be zero, the rate of change of angular momen­
tum is zero. Thus, the angular momentum vector is constant. Moreover, we know
that L = Jw in world coordinates. For L to be a constant and w to be time varying, J
must also be time varying. In the specified body coordinates, the angular momentum
vector is

The first two coefficients are time varying, but so are the principal directions, and
all must be in order to guarantee the angular momentum vector is constant. This
equation says that the angular momentum vector rotates about the body axis ~3 with
constant angular speed A. However, we know L is fixed in world space, and it must be
parallel to 113' so the body axis ~3 is rotating about 113 with angular speed -A.

This example is a modification of Example 3.18. Now we assume that the center of
mass is located -€ units of distance from the origin along the axis of symmetry. The
total mass ofthe top is m. Using the same notation as in our general discussion earlier
in this section, the torque is

T = r x Fgrav

= (-€~3) X (-mg113)

= (mg-€ sin ¢)N

= (mg-€ sin ¢ cos l/J)~l + (-mg-€ sin ¢ sin l/J)~2

Euler's equations are

ILIWI + (1L3 - ILI)W2 W3 = mg-€ sin ¢ cos l/J

ILIW2 - (1L3 - ILI)WIW3 = -mg-€ sin ¢ sin l/J

1L3W3 = 0

As in the previous example, w3 = C, a constant. Define A= c(1L3 - ILI)/ ILl and a =
mg-€/ ILl' The first two equations of motion are

W2 - AWl = -a sin ¢ sin l/J

Multiplying the first by WI' the second by W2' and adding:

:t (wi + wn = 2a sin ¢(WI cos l/J - w2 sin l/J)

Equation (3.48) may be used to show that wi + w~ = ¢2 +e2 sin2¢ and wI cos l/J ­
w2 sin l/J = ¢. Consequently,

3.3 Euler's Equations of Motion 157

~ (¢2 +e2 sin2¢) = 2a¢ sin ¢ = -~ (2a cos ¢)
dt dt

Integrating leads to

where the right-hand side is a constant.

In body coordinates we know that the angular momentum is

Dotting with '13 and defining y = L . "'3' we have

y = L . "'3
= ILlwl~1 . "'3 + ILlw2~2 . "'3 + CIL3~3 . "'3

= ILIWI sin ljJ sin ¢ + ILlw2 cos ljJ sin ¢ + CIL3 cos ¢

where the last equality follows from dotting equation (3.47) with the ~i. But T =
dL/dt and T • "'3 =°imply that del . ~3)/dt = 0, so y = L . ~3 is a constant. Once
again we may substitute the body coordinates for w from equation (3.48) to obtain

Finally, equation (3.48) is used once more to produce

C = W3 = ~ + ecos ¢

This has been a long mathematical construction. Let us summarize what we have so
far, three differential equations involving the three angles ¢, e, and ljJ:

¢2 +e2 sin2¢ = f3 - 2a cos ¢,
• . 2

ILle sm ¢ + CIL3 cos ¢ = y, ~ +e cos¢ =C

The second equation can be solved for e= (y - CIL3 cos ¢)/ (ILl sin2¢). Defining the
constants 8 = y / ILl and £ = CIL3/ ILl and replacing ein the first equation:

;'2 (8 -£ cos ¢) 2 p. A.
'f/ + = p - 2a cos 'f/

sin ¢

This differential equation involves only the angle ¢. Solving for the first derivative:

d¢

dt (
8 - £ cos ¢)2

(f3 - 2a cos ¢) - --.--
sm¢

158 Chapter 3 Rigid Body Motion

(Example 3.19

continued)
You should convince yourself why the positive square root is chosen instead of the
negative one. In a numerical implementation, to avoid the many trigonometric func­
tion calls that can be expensive to evaluate, the change ofvariables p = cos ¢ may be
used. The derivative is jJ = -¢ sin ¢ and sin2 ¢ = 1 - p2. The differential equation
becomes

dp = -V'-(l-_-p-2=--)(-f3---2a-p-)---(-8---c-p)---:-2
dt

(3.50)

This equation cannot be solved in closed form, even if we were to separate variables
and solve for t as an integral of a function of p. It may be solved numerically to
obtain p as a function of t, say, pet). The other angles are computed by numerically
integrating

and

de y - c/-L3 cos ¢

dt /-Ll sin2 ¢

8 - cp

1- p2
(3.51)

d1/l. 8 - cp
- =c - ecos¢ =c - p-­
dt 1- p2

(3.52)

EXERCISE

3.32

Although you can solve equations (3.50), (3.51), and (3.52) as a system of differential
equations, an alternative is to solve the first equation by generating a sequence of
samples (ti, pJ, fitting those samples with a parametric curve in t, then using that
curve in a numerical integration of the second and third equations with respect to
t. Yet another alternative is to multiply the second and third equations by dtjdp to
obtain de jdp = F(p) and d1/ljdp = G(p), where the right-hand sides are functions
of only p. Numerical integrators may be applied to solve for e and 1/1 as functions
of p. (Figure 3.25-also Color Plate 3.25-shows some screen shots from the free
top application found on the CD-ROM.)

Write a computer program that uses a differential equation solver to solve equations
(3.50), (3.51), and (3.52).

If you are feeling bold, add the following to your program. Assuming the top is a
cone of height h and radius r, detect when ¢ (t) reaches an angle for which the
cone becomes tangent to the horizontal plane. At that instant, the physical system
should change to one that models the cone rolling around the plane, still with its tip
connected to the origin (see Exercise 3.22).The plane is considered rough, so friction
comes into play. In this mode the cone should eventually stop rolling.

(Example 3.19
continued)

3.3 Euler's Equations of Motion 159

(a)

(b)

Figure 3.25 Two "snapshots" of a freely spinning top. The black line is the vertical axis. The white
line is the axis of the top. (See also Color Plate 3.25.)

160 Chapter 3 Rigid Body Motion

EXERCISE

3.33

EXERCISE

3.34

EXERCISE

3.35

Compute the Lagrangian equations of motion for the freely spinning top subject to
torque as in Example 3.19.

Compute equations of motion (Eulerian or Lagrangian) for the freely spinning top
with no torque, where the tip is allowed to move on the xy-plane.

Compute equations of motion (Eulerian or Lagrangian) for the freely spinning top
with torque, where the tip moves in the x-direction of the xy-plane according to
x(t) = ex sin At, yet) = O.

DEFORMAB,\LE BiboIES

I n the last chapter we focused on rigid bodies and their behavior under various
forces. In reality, no body is rigid, but for many bodies the assumption of rigidity

is a close approximation to the actual physical conditions. For example, a ball bearing
made of steel may be treated as a spherical rigid body. The equations of motion for
reasonable forces applied to the ball bearing are good approximations to the physics.
However, if the ball bearing is struck with a hard hammer with sufficient force, the
bearing will deform, most likely into an elliptical-shaped object.

In some physics applications, the objects we want to model are considered to
be deformable bodies, ones for which the rigid body analyses do not apply. This
first section of the chapter gives you a brief description of some concepts related to
deformation. The other sections provide four alternatives for modeling deformable
bodies in a manner that is computationally reasonable on current computers.

4.1 ELASTICITY, STRESS, AND STRAIN

The primary concept for a deformable body is elasticity. This is the property by which
the body returns to its original shape after the forces causing the deformation are
removed. A plastic rod in the shape of a line segment can be easily bent and returned
to its original form. A similarly shaped rod made of steel is more difficult to bend but
will bend slightly and return to its original shape once the bending force is removed.
The rod can be significantly bent so that it does not return to its initial shape once
the force is removed. Such catastrophic behavior will not be dealt with in this book.
Clearly, the amount of force necessary to deform a steel rod is greater than that
required to deform a plastic rod.

161

162 Chapter 4 Deformable Bodies

The stress within a solid object is the magnitude ofthe applied force divided by the
surface area over which the force acts. The stress is large when the force magnitude
is large or when the surface area is small) both intuitive behaviors. For example, if
a heavy rigid body of mass m subject to gravitational force sits on the circular top
of a cylinder of radius r, the stress on the cylinder is mg/(nr2), where g is the
gravitational constant. A heavier mass causes more stress. A thinner cylinder has
more stress generated by the same body. Since stress is the ratio of force magnitude to
area of influence, it is effectively pressure and has the units of pressure, pascals. One
pascal is defined to be one newton per meter2•

The strain on an object is the fractional deformation caused by stress. The quan­
tity is dimensionless since it measures a change in a dimension relative to the original
dimension. Although the method of measuring a change depends on the particular
type of object and how a force is applied, the simplest example to illustrate is a thin
rod of elastic material that is fixed at one end, the other end pulled. If the rod has
initial length L and changes length by !:J.L due to the force pulling on the end, the
strain on the rod is !:J.L / L.

By themselves, stress and strain do not appear to contain information about
the specific material to which a force is applied. The amount of stress to produce
a strain in a material does depend on that material. This suggests calculating the
ratio of stress to strain for materials. Three variations of this ratio are presented here:
Young's modulus, the shear modulus, and the bulk modulus. Loosely speaking, the
three moduli represent the stress to strain ratio in a linear direction, along a planar
region, and throughout a volume region.

If a wire of length L and cross-sectional area A has a force with magnitude F
applied to one end, a change in length !:J.L occurs. Young's modulus is the ratio of
stress to strain:

linear stress F / A
Y - ---- -

linear strain !:J.L/L

Consider a thin rectangular slab whose thickness is L units and whose other
dimensions are x and y. L is assumed to be small relative to x and y. The large
faces have area A = xy. One face is attached to a flat table. A tangential force of
magnitude F and direction that of the x dimension is applied to the other face.
This causes a shearing stress of F / A units. The rectangular slab slightly deforms into
a parallelepiped whose volume is the same as the slab. The area of the large faces
also remains the same. The slab has an edge length of L, but increases slightly by
an amount !:J.L due to the shearing. The shearing strain is !:J.L / L and represents
the strain of the one face attempting to move parallel to the other. The shearing
modulus is

s = planar stress = F / A
planar strain !:J.L / L

4.1 Elasticity, Stress, and Strain 163

Finally, consider a material occupying a region ofvolume V. A force ofmagnitude
F is uniformly distributed over the surface of the material, the direction of the force
perpendicular at each point of the surface. You may consider the application of the
force as an attempt to compress the material. If the surface area is A, the pressure
on the material is P = F / A. If the pressure is increased by an amount ~P, the
volume decreases by an amount ~V. The volume stress is ~P and the volume strain
is ~V / V. The bulk modulus is

volume stress ~P
B - ---- -

volume strain ~V / V

In all three cases the measurement is stress versus strain, but the difference lies in
the dimensionality, so to speak, of how the material changes shape due to the stress.

A calculus-based approach to understanding deformation of a solid material is
typically used in a course on continuum mechanics. However, the limitations of cur­
rent consumer hardware preclude us from implementing such an approach while
maintaining a reasonable running time for a physics simulation of deformable bod­
ies. Instead, we will look at a few alternatives to modeling deformable bodies. The
first one is based on physical principles and requires solving systems of differential
equations. The other alternatives are not physically based, but as long as the results
look physically correct, they are good choices for deformation in that they avoid the
numerical stability issues associated with differential equation solvers.

The first alternative models a body as a system of point masses connected by
springs. The quantity of masses, the configuration of springs, and the choice of
spring constants depend on the particular needs of an application. The mathematical
model of such a system will involve Hooke's law and result in a system of differential
equations that must be numerically solved.

The second alternative models a body by explicitly defining its boundary to be a
parametric surface with control points. In order to localize the deformation to small
portions of the surface, we would like a surface with local control. This suggests using
B-spline or NURBS surfaces (which we discuss in Section 4.3). The control points
may be varied over time to simulate time-varying forces applied to the surface of the
body.

The third alternative involves free-form deformation of a region that contains the
body. The surface of the body may be represented as a triangle mesh or as a para­
metric surface with control points. In the latter case a triangle mesh can be generated
from the parametric surface for the purposes of display of the physical simulation.
The idea is that the deformation region is parameterized by three variables and has a
small number of control points that can be modified by the application. As the con­
trol points change, the region is deformed. The vertices for the triangle mesh or the
control points for the parametric surface are located in the deformation region. As the
region is deformed, the vertices or surface control points are moved about, causing
the corresponding triangle meshes to deform.

164 Chapter 4 Deformable Bodies

The fourth alternative models a body as a region bounded by a surface defined
implicitly by F (x, y, z) = 0 for a suitably chosen function F. We will choose the
convention that the interior of the body is the set of points for which F (x, y, z) < O.
A force on the body is simulated by adding a deformation function D (x, y, z) to
F (x, y, z) and setting the deformed surface to be the surface defined implicitly by
F(x, y, z) + D(x, y, z) = 0, the interior of the deformed body being F(x, y, z) +
D(x, y, z) < o.

4.2 MASS-SPRING SYSTEMS

A deformable body can be modeled as a system ofpoint masses connected by springs.
The bodies can be curve masses (e.g., hair or rope), surface masses (e.g., cloth or the
surface of a body of water), or volume masses (e.g., a gelatinous blob or a moving,
viscous material). The time complexity of the system is related to the number of
masses and how they are interconnected. We will look at some simple configurations
to illustrate the key ideas. Curve masses are modeled as a one-dimensional array of
particles, surface masses as two-dimensional arrays, and volume masses as three­
dimensional arrays. Sections 4.2.1-4.2.3 cover those cases. Section 4.2.4 discusses less
regular configurations and the issues that arise when implementing them.

4.2.1 ONE-DIMENSIONAL ARRAY OF MASSES

A curve mass is thought of as a polyline, open with two end points or closed with
no end points. Each vertex of the polyline represents a mass. Each edge represents a
spring connecting the two masses at the end points of the edge. Figure 4.1 shows two
such configurations.

Figure 4.1 Two curve mass objects represented as mass-spring systems.

4.2 Mass-Spring Systems 165

A motivating example we looked at earlier is Example 3.10, in which three masses
aligned in the vertical direction were connected with two springs and allowed to fall
due to gravitational forces. The masses are mi and located at height Zi for 1:s i :s 3.
Two springs connect the masses, one between m1 and m2 with spring constant C1 > 0
and rest length L 1 and one between m2 and m3 with spring constant C2 > O. The
gravitational force constant is g > O. We determined the equations of motion as

m1z1

m2z2

m3z3 =
+ c1(z1 - Z2 - L 1)

+ c2(z2 - Z3 - L 2)

- c1(z1 - Z2 - L 1)

- c2(z2 - Z3 - L 2)

The organization of the terms on the right-hand side of the equation are suggestive of
the pattern that occurs if more masses are added to a vertical chain of particles. The
force on the boundary particle at Z 1 has a contribution due to the spring below the
mass, that contribution prefixed by a minus sign. The force on the boundary particle
at Z3 has a contribution due to the spring above the mass, that contribution prefixed
by a plus sign. The force on the interior particle at Z2 has two contributions, one from
the spring above the mass (prefixed with a plus sign) and one from the spring below
the mass (prefixed with a minus sign).

We can generalize the equations of motion to handle p particles in the chain. The
masses are mi and the positions are Zi for 1:s i :s p. The system has p - 1springs
with constants Ci > 0 and rest lengths L i for 1:s i :s p - 1. Spring i connects masses
mi and mi+1' The boundary points are at Z1 and zp' All other points are interior
points. The equation of motion for an interior point is modeled by

for 1:s i :s p. If we define Co = Zo = L o = c p = L p = zp+1 = 0, then this equation
applies to all points in the system.

In our example every particle is falling due to gravitational forces. If we were to
attach the boundary point Z1 to some rigid object, perhaps the ceiling in a room, a
constraint is introduced into the system. Since Z1 is now a constant over time, the first
differential equation becomes 0 = -c1 (z 1 - z2 - L 1) - m 19 and no longer applies in
solving the remaining equations. Rather, it becomes part of the forces of constraint
for the system (see Section 3.2.1). This is not to say that the physical attributes at Z1 no
longer affect the system. For example, if the joint at which z1 is attached has friction,
that force becomes a term in the differential equation for Z2' Similarly, other particles
in the system can be tacked down and their differential equations removed from the
system. Ifyou tack down an interior point Zi' the linear chain is decomposed into two
smaller linear chains, each with a fixed boundary point. The smaller systems may be
solved separately.

Also in our example, the vertical chain of masses is only one-dimensional with
regard to position, in this case vertical position z. In general, the masses can be located

166 Chapter 4 Deformable Bodies

anywhere in space. When formulated in a full spatial setting, another variation is
allowed: masses m 1 and m p can be connected by yet another spring. If that spring has
constant Cp > 0 and rest length L p' equation (4.1) still applies, but wrapped indexing
is required: Co = Cp' 20 = 2 p+l' and L o= L p' Finally, forces other than gravitational
ones can be applied to the particles.

The general formulation for an open linear chain is as follows. The masses mi are
located at positions Xi for 1 :s i :s p. The system has p - 1 springs connecting the
masses, spring i connecting mi and mi+l' At an interior point i, two spring forces are
applied, one from the spring shared with point i-I and one from the spring shared
with point i + 1. The differential equation for this point is

X' I-X'
m·j(·=c· 1 (Ix, l- x·I-L· 1) 1- I

I I 1- 1- I 1- IXi -1 - Xii

(4.2)

where Fi represents other forces acting on particle i, such as gravitational or wind
forces. Just as in the case of vertical masses, with the proper definitions of Co' cp' L o'
L p' Xo, and x p+l' equation (4.2) also handles fixed boundary points and closed loops.

EXAMPLE

4.1

SOURCE CODE

Rope

This application shows how to solve the equations of motion for a one-dimensional
array of masses connected by springs. Figure 4.2-also Color Plate 4.2-shows some
screen shots from this application found on the CD-ROM.

4.2.2 Two-DIMENSIONAL ARRAY OF MASSES

The equations of motion for a linear chain of masses are provided by equation (4.2).
At an interior particle i, the two force terms due to Hooke's law occur because
two springs are attached to the particle and its neighbors. A surface mass can be
represented by a collection of particles arranged as a two-dimensional array. An
interior particle has four neighbors as shown in Figure 4.3.

The masses are mio,i
j
and are located at xio,i

1
for 0 :s io < no and 0 :s i 1 < nl' The

spring to the right of a particle has spring constant c ~o). and resting length L ~o) ..
10,/1 10,/1

The spring below a particle has spring constant c~l). and resting length L ~l) .. The
10,/1 10,/1

understanding is that the spring constants and resting lengths are zero if the particle
has no such spring in the specified direction.

4.2 Mass-Spring Systems 167

(a)

(b)

Figure 4.2 A rope modeled as a linear chain of springs. Image (a) shows the rope at rest with
only gravity acting on it. Image (b) shows the rope subject to a wind force whose
direction changes by small random amounts. (See also Color Plate 4.2.)

168 Chapter 4 Deformable Bodies

Figure 4.3 A surface mass represented as a mass-spring system with the masses organized as a
two-dimensional array.

The equation of motion for particle (ia, i 1) has four force terms due to Hooke's
law, one for each neighboring particle. That equation is

(4.3)

EXAMPLE

4.2

As in the case of linear chains, with the proper definition of the spring constants
and resting lengths at the boundary points of the mesh, equation (4.3) applies to the
boundary points as well as the interior points.

This application shows how to solve the equations of motion for a two-dimensional
array of masses connected by springs. Figure 4.4-also Color Plate 4.4-shows some
screen shots from this application found on the CD-ROM.

CODE

Cloth

4.2 Mass-Spring Systems 169

(a)

(b)

Figure 4.4 A cloth modeled as a rectangular array of springs. Wind forces make the cloth flap
about. Notice that the cloth in image (b) is stretched in the vertical direction. The
stretching occurs while the gravitational and spring forces balance out in the vertical
direction during the initial portion of the simulation. (See also Color Plate 4.4.)

170 Chapter 4 Deformable Bodies

Figure 4.5 A volume mass represented as a mass-spring system with the masses organized as a
three-dimensional array. Only the masses and springs on the three visible faces are
shown. The other connections are shown, but without their springs.

4.2.3 THREE-DIMENSIONAL ARRAY OF MASSES

A volume mass can be represented by a collection of particles arranged as a three­
dimensional array. An interior particle has eight neighbors as shown in Figure 4.5.

The masses are mio,ij>i
2

and are located at xio,ij>i
2

for 0:::: i j < nj' j = 0,1,2.
In, the direction of positive ,increase of index i j' the spring has a spring constant
C~J)I' I' and resting length LI~J), I' for j = 0, 1,2. The understanding is that the spring

10,1' 2 0,11' 2

constants and resting lengths are zero if the particle has no such spring in the specified
direction.

The equation of motion for particle Cia, iI' i2) has eight force terms due to
Hooke's law, one for each neighboring particle. That equation is

4.2 Mass-Spring Systems 171

(4.4)

EXAMPLE

4.3

URCE CODE

GelatinCube

With the proper definition ofthe spring constants and resting lengths at the boundary
points of the mesh, equation (4.4) applies to the boundary points as well as interior
points.

This application shows how to solve the equations of motion for a three-dimensional
array of masses connected by springs. Figure 4.6-also Color Plate 4.6-shows some
screen shots from this application found on the CD-ROM.

4.2.4 ARBITRARY CONFIGURATIONS

In general you can set up an arbitrary configuration for a mass-spring system of p
particles with masses m i and location Xi. Each spring added to the system connects
two masses, say, mi and m j. The spring constant is Cij > 0 and the resting length
is L ij .

Let Ai denote the set of indices j such that m j is connected to mi by a spring, the
set of adjacent indices, so to speak. The equation of motion for particle i is

(4.5)

172 Chapter 4 Deformable Bodies

Figure 4.6 A gelatinous cube that is oscillating due to random forces. The cube is modeled by a
three-dimensional array of mass connected by springs. (See also Color Plate 4.6.)

EXAMPLE

4.4

RCE CODE

GelatinBlob

4.3 Control Point Deformation 173

The technical difficulty in building a differential equation solver for an arbitrary
graph is encapsulated solely by a vertex-edge table that stores the graph. Whenever
the numerical solver must process particle i via equation (4.5), it must be able to
iterate over the adjacent indices to evaluate the Hooke's law terms.

This application shows how to solve the equations of motion for a collection of
masses connected by springs. The mass-spring configuration forms an arbitrary
topology that is not representable as a two- or three-dimensional array of connec­
tions. Figure 4.7-also Color Plate 4.7-shows some screen shots from this applica­
tion found on the CD-ROM.

4.3 CONTROL POINT DEFORMATION

A deformable body can be modeled as a parametric surface with control points that
are varied according to the needs of an application. Although this approach is not
physically based, a careful adjustment of control points can make the surface deform
in a manner that is convincing to the viewer. To obtain localized deformations to
small portions of a surface, a good choice for surface representation is B-splines or
NURBS. A surface need not be a spline patch; it can be constructed from curves in a
couple of ways. A tube surface can be constructed from a central curve and a radius
function. If the control points of the central curve and the radius are time varying, the
resulting tube surface deforms. A surface may also be generated from a spline curve
as a surface of revolution or as a cylinder surface.

This chapter provides a brief summary of B-spline and NURBS curves, B-spline
and NURBS surfaces, tube surfaces, and cylinder surfaces. The summary is confined
to the processes of how such curves and surfaces are evaluated. The focus on eval­
uation is because you will want your deformable surfaces to be updated as rapidly
as possible so as not to unnecessarily consume cycles during the game application
runtime. A more thorough understanding of B-spline and NURBS curves and sur­
faces may be obtained by reading books such as [CRE01, Far90, Far99, Rog01]. The
construction here is closest to that of [RogO1], a good book for an engineering-style
approach to NURBS. Section 4.3.5 describes the applications on the CD-ROM that
use the ideas reviewed in Sections 4.3.1-4.3.4.

4.3.1 B-SPLINE CURVES

The control points for a B-spline curve are Bi , 0::::: i ::::: n. The construction is dimen­
sionless, so the control points can be in whatever dimension interests you. The degree

174 Chapter 4 Deformable Bodies

Figure 4.7 A gelatinous blob that is oscillating due to small, random forces. This blob has
the masses located at the vertices of an icosahedron with additional masses of infinite
weight to help stabilize the oscillations. The springs connecting the blob to the infinite
masses are shown in white. (See also Color Plate 4.7.)

4.3 Control Point Deformation 175

d of the curve must be selected so that 1~ d ~ n. The curve itself is defined by

n

X(U) = L Ni,d(U)Bi
i=O

(4.6)

where the functions Ni,d(U) are called the B-spline basis functions. These functions
are defined recursively and require selection of a sequence of scalars Ui for 0 ~ i ~
n + d + 1. The sequence must be nondecreasing, that is, Ui ~ ui+l' Each Ui is referred
to as a knot, the total sequence a knot vector. The basis function that starts the
recursive definition is

Ni,o(u) = { ~:

for 0 ~ i ~ n + d. The recursion itself is

Ui ~ U < ui+l
otherwise

(4.7)

for 1~ j ~ d and 0 ~ i ~ n + d - j. The support of a function is the closure of the
set of points on which the function is nonzero. The support of N i ,o(u) is clearly
[Ui' Ui+l]' In general, the support of Ni,j(u) is [ui' Ui+j+l]' We will use this infor­
mation later to show how X(u) for a specific value of U depends only on a small
number of control points, the indices of those points related to the choice of u. This
property is called local control and will be important when you want to deform a
portion of a curve (or surface) by varying only those control points affecting that
portion.

The knots can be within any domain, but I will choose them to be in [0, 1] to
provide a standardized interface for B-spline and NURBS curves and surfaces.

Types of Knot Vectors

The main classification of the knot vector is that it is either open or periodic. If open,
the knots are either uniform or nonuniform. Periodic knot vectors have uniformly
spaced knots. The use ofthe term open is perhaps a misnomer since you can construct
a closed B-spline curve from an open knot vector. The standard way to construct a
closed curve uses periodic knot vectors.

An open, uniform knot vector is defined by

{

0,
i-d

Ui = n+l-d'
1,

O~i~d

d+l~i~n

n+l~i~n+d+l

176 Chapter 4 Deformable Bodies

An open, nonuniform knot vector is in the same format except that the values Uj

for d + 1::: i ::: n are user defined. These must be selected to maintain monotonicity
0::: ud+l ::: ... :::; un+l ::: 1. A periodic knot vector is defined by

i-d
Uj = ,

n+1-d
0:::;i:::;n+d+1

Some of the knots are outside the domain [0, 1], but this occurs to force the curve to
have period 1. When evaluating X(u), any input value of U outside [0, 1] is reduced
to this interval by periodicity before evaluation of the curve point.

Evaluation

The straightforward method for evaluation ofX(u) is to compute all of Nj,d(U) for
o:::; i ::: n using the recursive formulas from equations (4.7) and (4.8). The pseu­
docode to compute the basis function values is shown below. The value n, degree d,
knots u[] , and control points B[] are assumed to be globally accessible.

float N (int i, int j, float u)

{

if(j>O)

cO = (u - u[i]) / (u[i + j] - u[i]);

cl = (u[i + j + 1] - u) / (u[i + j + 1] - u[i + 1]);

return cO * N(i,j - I,u) + cI * N(i + I,j - I,u);

}

el se / / j == 0
{

if (u[i] <= u && u < u[i + 1])

return 1;

else

return 0;

Point X (float u)

Point result = ZERO;

for (i = 0; i <= n; i++)

result += N(i ,d,u) * B[i];

return result;

4.3 Control Point Deformation 177

Table 4.1 Recursive dependencies for B-spline basis functions for n = 4 and d = 2

N O,2 N 1,2 N 2,2 N3,2 N4,2

{- ~ {- ~ {- ~ {- ~ {- ~

N O,1 Nl,l N 2,l N3,l N4,1 N S ,l

{- ~ {- ~ {- ~ {- ~ {- ~ {- ~

No,o N 1,o N 2,o N 3,o N4,o Ns,o N6,o

Open uniform 0 0 [0 1 2 1)3 3
Open nonuniform 0 0 [0 u3 u4 1)

Periodic 2 1 [0 1 2 1) 4 5
-3 -3 3 3 3 3

This is an inefficient algorithm because many of the basis functions are evaluated
twice. For example, the value NO,d(u) requires computing N O,d-1(U) and N 1,d-1(U),
The value N 1,d(U) also requires computing N 1,d-1(U), as well as N2,d-1(U), The
recursive dependencies are illustrated in Table 4.1 for n = 4 and d = 2. The various
types of knot vectors are shown below the table of basis function values.

The rows of knot vectors include brackets [and). These indicate that an evalua­
tion for a specified U E [0, 1) requires searching for the bounding interval [Ui' Ui+1)
containing u. Only those knots in the bracketed portion need to be searched. The
search returns the index of the left end point i, where d :s i :s n. For an open knot
vector, the knots corresponding to other indices are included for padding. For a pe­
riodic knot vector, the knots corresponding to other indices are included to force the
periodicity.

To avoid the redundant calculations, you might think to evaluate the table from
the bottom up rather than from the top down. In our example you would compute
N i ,°(u) for 0 :s i :s 6 and save these for later access. You would then compute N i , 1(u)
for 0 :s i :s 5 and look up the values Nj,o(u) as needed. Finally, you would compute
N i ,2 for 0 :s i :s 4. The pseudocode follows.

Point X (float u)

{

float basis[d + 1] [n + d + 1]; II basis[j] [i] N(i ,j)

for (i 0; i <= n + d; i++)

i f (u[i] <= u && u < u[i + 1])

basis[O][i] = 1;

else

basis[O] [i] = 0;

178 Chapter 4 Deformable Bodies

for (j = 1; j <= d; j++)

{

for (i = 0; i <= n + d - j; i++)

{

cO = (u - u[i]) / (u[i + j] - u[i]);

cl = (u[i + j + 1] - u) / (u[i + j + 1] - u[i + 1]);

basis[i] [j] = cO * basis[j - 1] [i] + c1 * basis[j - 1] [i + 1];

Point result = ZERO;
for (i = 0; i <= n; i++)

result += basis[d] [i] * B[i];

return result;

This is a reasonable modification but still not as efficient as it could be. For a single
value of u, only one of Ni,o(u) is 1; the others are all zero. In our example suppose
that U E [u3' U4) so that N 3,o(u) is 1 and all other Ni,o(u) are O. The only nonzero
entries from Table 4.1 are shown as boxed quantities in Table 4.2.

The boxed entries cover a triangular portion of the table. The values on the left
diagonal edge and on the right vertical edge are computed first since each value
effectively depends only on one previous value, the other value already known to be
zero. If Ni,o(u) = 1, the left diagonal edge is generated by

and the right vertical edge is generated by

U - u·
N· ·(u) = I N· '-l(u)I,l l,j

ui+J - Ui

Table 4.2 Nonzero values (boxed) from Table 4.1 for N3,o(u) = 1

NO,2 INl,21 IN2,21 IN3,21 N4,2

t ~ t ~ t ~ t ~ t ~

No, 1 Nl,l IN2,ll IN3,ll N4,l NS,l
t ~ t ~ t ~ t ~ t ~ t ~

No,o Nl,o N2,o !N3,ol N4,o Ns,o N6,o

4.3 Control Point Deformation 179

both evaluated for 1 ::::: j ::::: d. The interior values are computed using the recursive
formula, equation (4.8). The pseudocode for computing the curve point follows.

Point X (float u)

{

float basis[d + l][n + d + 1]; II basis[j][i] = N(i,j)

II get i for which u[i] <= u < u[i + 1]

i = GetKey(u);

II evaluate left diagonal and right vertical edges

for (j = 1; j <= d; j++)

{

cO = (u - u[i]) I (u[i + j] - u[iJ);

cl = (u[i + 1] - u) I (u[i + 1] - u[i - j + 1]);

basis[j] [i] = cO * basis[j - 1] [i];

basis[j] [i - j] = c1 * basis[j - 1] [i - j + 1];

II evaluate interior

for (j = 2; j <= d; j++)

{

for (k = i - j + 1; k < i; k++)

{

cO = (u - u[k]) I (u[k + j] - u[k]);

cl = (u[k + j + 1] - u) I (u[k + j + 1] - u[k + 1]);

basis[j] [k] = cO * basis[j - 1] [k] * fInvDO +

c1 * basis[j - 1] [k + 1];

Point result = ZERO;

for (j = i - d; j <= i; j++)

result += basis[d] [j] * B[j];

return result;

The only remaining issue is how to compute index i from the input parameter
u. For optimal efficiency, the computation should take into account whether the
knot vector is open or periodic and if open, whether the knots are uniformly or
nonuniformly spaced. The pseudocode follows. Observe that the choice is made to
clamp u to [0, 1] when the spline is open and to wrap u to [0, 1] when the spline is
periodic.

180 Chapter 4 Deformable Bodies

int GetKey (float& u) const

if (knot vector is open II open splines clamp to [0,1]

if u <= 0) { u = 0; return d;
if u >= 1) { u = l' return n', ,

}

else II periodic splines wrap to [0,1]
{

if(u<O "u > 1) u -= floor(u);

i nt i;

if (knots are uniformly spaced

= d + floor((n + 1 - d) * u);

else II knots are nonuniformly spaced

for (i = d + 1; i <= n + 1; i++) { if (u < u[i]) break; }
i--;

return i;

In all cases the search for the bounding interval [ui' ui+d of U produces an index
i, for which d ~ i ::: n (according to the discussion immediately following Table 4.1).

The basis function data and operations can be encapsulated into a class Bas is­
Funct i on so that a B-spline curve class has a basis function object for the parameter
u. For the purposes of curve evaluation, only two public interface functions must ex­
ist for a Bas is Funct i on class. One function computes the basis function values at U

and returns the index i of the nonzero basis value Ni,o(u), call it int Compute(float
u). The function returns the index i. The GetKey function described earlier becomes a
nonpublic helper function for Compute. Another function is an accessor to the values
Ni,d(U), call it float Basi s (i nt i). The Basi sFuncti on class stores the degree d inter­
nally, so only i needs to be passed. The curve evaluator does not need access to basis
function values Ni,/u) for j < d. The B-spline curve itself can be encapsulated in a
class BSp1i neCurve. This class manages the control points B[] , knows the degree d of
the curve, and has a Basi sFuncti on member called Nu. The curve evaluator becomes a
member function of BSp1i neCurve and is

4.3 Control Point Deformation 181

Point BSplineCurve::X (float u)
{

int i = Nu.Compute(u);
Point result = ZERO;
for (intj = i - d; j <= i; j++)

result += Nu.Basis(j) * B[j];
return result;

Local Control

Our goal is to dynamically modify the control points of the B-spline curve in order to
deform only a portion ofthat curve. Ifwe were to change exactly one control point Bj

in equation (4.6), what part of the curve is affected? The modified Bj is blended into
the curve equation via the basis function Nj,d(U). The curve associated with those
parameters U for which this function is not zero is affected by the change. The set of
such u is exactly what we called the support of the function, in this case the interval
[u j' U j+d+d. The property such that changing a control point affects only a small
portion of the curve is referred to as local control.

The practical application of local control is that in drawing the curve, you create
a polyline approximation by selecting samples Uk E [0, 1] for 0 .:::: k < m, with Uk <
Uk+l for all k. The curve points are Pk = X(Uk)' The polyline consists of the line
segments (Pk , Pk+1) for 0.:::: k < m - 1. If we were to change control point Bj , only
some of the line segments need to be recomputed. Specifically, define kmin and kmax
to be the extreme indices for which Uk E [u j' U j+d+d. The polyline points Pk for
kmin .:::: k .:::: kmax are the only ones to be recomputed.

Closed Curves

In order to obtain closed curves, additional control points must be included by the
curve designer or automatically generated by the B-spline curve implementation. If
the latter, and the implementation allows the user to dynamically modify control
points, the additional control points must be modified accordingly.

Closing a B-spline curve with an open knot vector is simple. If the curve has
control points Bi for 0.:::: i .:::: n, the first control point must be duplicated, Bn+1 = Bo.
An additional knot must also be added. The extra knot is automatically calculated
for uniformly spaced knots, but the curve design must specify the extra knot for
nonuniformly spaced knots.

Closing a B-spline curve with a periodic knot vector requires the first d control
points to be duplicated, Bn+i = Bi for 0 .:::: i < d. Since a periodic knot vector has
uniformly spaced knots, the d additional knots are automatically calculated.

182 Chapter 4 Deformable Bodies

EXAMPLE

4.5

CODE

BSplineCurve­

Examples

Figure 4.8 shows six pairs of B-spline curves, pairs (a)-(f). The left image in each
pair is generated from the eight ordered control points (0, 0), 0, 0), (2, 0), (2, 1),
(2, 2), 0, 2), (0,2), and (0, 1). The right image uses the same control points except
that (2,2) is replaced by (2.75,2.75). Also, the light gray portions of the curves in the
right images are those points that were affected by modifying the control point (2, 2)
to (2.75, 2.75). In order to avoid confusion between the two uses of the term open, a
curve is labeled as either closed or not closed.

...--..-_.~

•r•

(a) open, uniform, closed (b) open, uniform, not closed

•r
-----...,-;.. .

(d) open, nonuniform, not closed

•

(c) open, nonuniform, closed

-_.--~.

y
•

.' •

•

(e) periodic, not closed (f) periodic, closed

Figure 4.8 Six pairs of B-spline curves of various types. The right image of each pair shows the
deformed curve by modifying one control point.

Table 4.3 shows the knot vectors and the parameter intervals affected by modifying
the control point (2, 2). The nonuniform knot vectors were just chosen arbitrarily.
The other knot vectors were automatically generated.

Table 4.3

4.3 Control Point Deformation 183

Knot vectors and parameter intervals affected by modifying the control point

open, uniform, not closed

open, nonuniform, not closed

periodic, not closed

open, uniform, closed

open, nonuniform, closed

periodic, closed

{O, 0, 0, i, ~, ~, t, ~, 1, 1, I}

{O, 0, 0, 0.1, 0.2, 0.4, 0.7, 0.8, 1, 1, I}

{-~, -i, 0, i, ~, ~, ~, ~, 1, ~, ~}

{O, 0, 0, ~, ~, ~, ~, ~, ~, 1, 1, I}

{O, 0, 0, 0.1, 0.2, 0.4, 0.7, 0.8, 0.9,1,1, I}

[~, ~]

[0.2,0.8]

[~, ~]

[~, ~]

[0.2,0.8]

[~, ~]

4.3.2 NURBS CURVES

As we touched on earlier, NURBS is an acronym for NonUniform Rational B­
Spline(s). B-spline curves are piecewise polynomial functions. The concept ofNURBS
provides a level of generality by allowing the curves to be piecewise, rational polyno­
mial functions; that is, the curve components are ratios of polynomial functions. The
mathematics of NURBS is quite deep and is described concisely in [Far99]. Not to
de-emphasize the theoretical foundations, but for our purposes the use of NURBS is
for the greater flexibility in constructing shapes than that which B-splines provide.

The control points for a NURBS curve are Bi for 0 ~ i ~ n, just as in the case
of B-spline curves. However, control weights are also provided, Wi for 0 ~ i ~ n.
The construction is dimensionless; the control points can be m-tuples. The idea for
defining NURBS is quite simple. The (m + I)-tuples (WiBi' wi) are used to create a
B-spline curve (Y(u), w(u)). These tuples are treated as homogeneous coordinates.
To project back to m-dimensional space, you divide by the last component: X(u) =
Y(u)jw(u). The degree d of the curve is selected so that 1~ d ~ n. The NURBS curve
is defined by

where Ni,d(u) are the B-spline basis functions discussed earlier.

(4.9)

EXAMPLE

4.6
The classical example of the greater flexibility of NURBS compared to B-splines is
illustrated in 2D. A quadrant of a circle cannot be represented using polynomial
curves, but it can be represented as a NURBS curve of degree 2. The curve is xZ +
yZ = 1, x :::: 0, y :::: o. The general parameterization is

(x(u), y(u)) = wo(l- u)z(l, 0) + w12u(l- u)(l, 1) + wzuz(O, 1)

wo(l- u)2 + w12u(l- u) + wzu z

184 Chapter 4 Deformable Bodies

(Example 4.6
continued)

for u E [0, 1]. The requirementthat xl + yl = 1leads to the weights constraint 2wf =
WOWl' The choice of weights Wo = 1, wI = 1, and Wl = 2 leads to a well-known
parameterization:

(x(u), y(u)) = (1- u
l
, 2u)

1+ ul

If you were to tessellate the curve with an odd number of uniform samples of u, say,
Ui = i/(2n) for Os i S 2n, then the resulting polyline is not symmetric about the
midpoint u = 1/2. To obtain a symmetric tessellation, you need to choose Wo = Wl'

The weight constraint then implies Wo = wlh. The parameterization is then

(x(u), y(u)) = (h(l- u)l + 2u(l- u), 2u(1- u) + hu
l
)

h(1- u)l + 2u(l- u) + hul

In either case we have a ratio of quadratic polynomials.

An algebraic construction of the same type, but quite a bit more tedious to solve,
produces a ratio of quartic polynomials. The control points and control weights
are required to be symmetric to obtain a tessellation that is symmetric about its
midpoint. The middle weight is chosen as Wl = 4, as shown:

(X(u), y(u))

(1- U)4 wo (1, 0) + 4(1- u)3uWI (X I , YI) + 24(1- u)lul(Xl' xl) + 4(1- U)u3WI(YI' Xl) + u4wo

(1- U)4 wO + 4(1- u)3uWI + 24(1- u)2u2+ 4(1- U)u3WI + U4wo

The parameters are Xl = 1, YI = (-J"3 - I)/-J"3, xl = (-J"3 + I)/(2-J"3), WI = 3/h,
and Wo = 4-J"3(-J"3 - 1).

We already have all the machinery in place to deal with the basis functions. The
NURBS curve can be encapsulated in a class NURBSCurve that manages the control
points B[], the control weights we], the degree d, and has a BasisFunction member
Nu. The curve evaluator is

Point NURBSCurve::X (float u)
{

int i = Nu.Compute(u);
Point result = ZERO;
float totalW = 0;
for (int j = i - d; j <= i; j++)

float tmp = Nu.Basis(j)*W[j];
result += tmp*B[j];
totalW += tmp;

EXAMPLE

4.7

RCE CODE

NURBSCurve­

Example

4.3 Control Point Deformation 185

result /= totalW;
return result;

The next example shows a dynamic deformation of a planar NURBS curve and
is used as the foundation for the three-dimensional deformation that we will see in
Example 4.10.

Consider a NURBS curve with 13 control points that are initially on the same straight
line. The knot vector is open with uniformly spaced knots. The curve is necessarily a
line segment. The control points must be moved to deform the central portion of the
curve into a closed loop. The control weights are all 1 except for points 3, 5, 7, and
9, whose weights are 3/10. These weights were chosen to produce a final closed loop
that is nearly circular. Figure 4.9 shows the initial line segment and its control points.
It also shows how the control points evolve early in the process.

The end control points 0 and 12 remain fixed. Control points 1 and 11 are constrained
to lie on the initial line segment, but move toward the midpoint of the segment
with constant speed; they will eventually coincide. Control points 5, 6, and 7 move
vertically upward with constant speed. Control points 3 and 4 move toward the
vertical line containing point 5. Control points 8 and 9 move toward the vertical line
containing point 7. Control points 2 and 6 move toward the vertical line containing
point 6 and will eventually coincide. Figure 4.10 shows the control points and curves

10 11 12o
•

•

2

• •

• •

3

•

•

4

•
•

5

•
•

6

•
•

7

•
•

8

•
•

9

•

•

• •

• •

•

•

•

Figure 4.9 The initial control points and curve are shown at the top of the figure. The evolved
control points and curve are shown at three later times, with time increasing from
top to bottom in the figure.

186 Chapter 4 Deformable Bodies

(Example 4.7
continued)

(a)

(c)

(e)

(b)

(d)

(f)

o• •

•

Figure 4.10 The control points and curve at later times in the evolution.

Figure 4.11

4.3 Control Point Deformation 187

--- - ------ -----..... ...,,--.....,.

....r-......~ ...r-'\... JL JL rL

n A Fl Fl JL Jl
jL !L l 0 0 0

.-A- --A-. ---A-...

0 0 0 0 0 0
--"- ~ ~ ~ --- --

Deformation of a line segment into a closed curve that splits away from the original
curve.

much further along in time. The time sequence is from (a)-(f). In image (e)) control
points 1 and 11 finally coincide as do control points 2 and 6. At that instant the
NURBS curve is split into two NURBS curves as shown in image (f). The closed curve
has a periodic knot vector. The closed curve continues to move vertically upward by
uniform translations of the control points. The other curve has 5 control points with
points 1 and 3 coinciding. The curve evolves back to a line segment by translating
the middle control point 2 so that it too coincides with control points 1 and 3. Figure
4.11 shows an entire sequence of frames of the deformation. The sequence of images
is top row to bottom row) left to right in each row.

4.3.3 B-SPLINE SURFACES

The simplest extension of the concept of B-spline curves to surfaces is to blend a
rectangular array of control points Bio ,i

1
for 0 ::: io ::: no and 0 .::: i1 ::: n l' The blending

occurs separately in each dimension) leading to a rectangle surface patch. The degree
must be specified for each dimension) do and d1) with 1 ::: di .::: ni' The surface patch
is defined by

no nl

X(u) v) = L L Nio,do(u)Nil>dl(V)Bio,il
io=O i1=O

(4.10)

188 Chapter 4 Deformable Bodies

Once again we already have the mechanism in place for computing the basis func­
tions. The B-spline surface is encapsulated in a class BSp1i neSurface and manages the
control points B[] [], the degrees dO and d1, and has Bas is Funct i on objects Nu and Nv.
The surface evaluation is

Point BSplineSurface::X (float u, float v)
{

int iO = Nu.Compute(u), i1 Nv.Compute(v);
Point result = ZERO;
for (int jO = iO - dO; jO <= iO; jO++)

for (int j1 = i1 - d1; j1 <= i1; j1++)
result += Nu.Basis(jO) * Nv.Basis(jl) * B[jO] [j1];

return result;

4.3.4 NURBS SURFACES

B-spline surface patches are piecewise polynomial functions of two variables. NURBS
surface patches are piecewise rational polynomial functions of two variables. Just as
for curves, the construction involves fitting homogeneous points in one higher di­
mension with a B-spline surface (Y(u, v), w(u, v)), then projecting back to your ap­
plication space by dividing by the w(u, v) term: X(u, v) = Y(u, v)jw(u, v). NURBS
surfaces have greater flexibility than B-spline surfaces.

A NURBS rectangle surface patch is built from control points BiO,i
t

and weights
wio,i

t
for 0 S io S llO and 0 S i l S lll' The degrees di are user selected with 1 S di S lli.

The surface patch is defined by

(4.11)

EXAMPLE

4.8

The B-spline construction in one higher dimension uses the homogeneous control

points (WiO,itBiO,it' Wio,i)'

The classical example of the greater flexibility of NURBS compared to B-splines is
illustrated in 3D. An octant of a sphere cannot be represented using a polynomial
surface patch, but it can be represented as a triangular NURBS surface patch of
degree 4. A simple parameterization of x 2 + y2 + z2 = 1 can be made by setting
r2 = x 2 + y2. The sphere is then r2 + z2 = 1. Now apply the parameterization for
a circle,

(r, z) = (1- u
2

, 2u)
1+ u2

4.3 Control Point Deformation 189

But (x / r)2 + (y / r)2 = 1, so another application ofthe parameterization for a circle is

(x,y) (1-v 2,2v)

r 1+ v2

Combining these produces

(() () ())
((1- u2)(1- v2), (1- u2)2v, 2u(1 + v2))

X U, V ,y u, v ,z u, v = ---------------
(1 + u 2)(1 + v 2)

The components are ratios of quartic polynomials. The domain is u ~ 0, v ~ 0, and
u + v ::: 1. In barycentric coordinates, set w = 1 - u - v so that u + v + w = 1with
u, v, and w nonnegative. In this setting, you can think of the octant of the sphere
as a mapping from the ~vw-triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1).
Although a valid parameterization, a symmetric subdivision ofthe uvw-triangle does
not lead to a symmetric tessellation of the sphere.

Another parameterization is provided in [Far90]. This one chooses symmetric con­
trol points and symmetric weights:

,,4 ,,4-i ()

(() () ())
L..,i=O L..,j=O Wi,j,4-i-j Pi,j,4-i- j Bi ,j U, V

xu, v ,y u, v ,z u, v = 4 4-i

Li=O Lj=o Wi,j,4-i- j Bi ,j(u, v)

where

4' . . 4 ..
B· ·(u v)= . u l vl (1-u-V)-I-l u~O, v~O, u+v:::l
I,l' i!j!(4-i-j)! '

are the Bernstein polynomials. The control points Pi, j, k are defined in terms
of three constants, ao = (-J) - 1)/-J}, al = (-J) + 1)/(2-J}), and a2 = 1 ­
(5 - ./2)(7 - -J})/46:

P040 (0, 1, 0)

P031 P l30 (0, 1, ao) (ao, 1, 0)

P022 Pm PZZO (0, aI' al) (az, 1, az) (aI' aI' 0)
POl3 P llZ PZll P310 (0, ao, 1) (az, az, 1) (1, az, az) (1, ao, 0)

POO4 PI03 Pzoz P301 P400 (0, 0, 1) (ao, 0, 1) (aI' 0, al) (1,0, ao) (1,0,0)

The control weights Wi,j,k are defined in terms of four constants, bo = 4-J}(-J} - 1),

bi = 3./2, b2 = 4, and b3 = ./2(3 + 2./2 - -J}) /-J}:

W040 bo
w03I Wl30 bi bi

W022 W12I W220 b2 b3 b2
WOl3 W112 W21I W310 bi b3 b3 bi

WOO4 W103 W202 W30I W400 bo bi b2 bi bo

190 Chapter 4 Deformable Bodies

(Example 4.8
continued)

Both the numerator and denominator polynomial are quartic polynomials. Notice
that each boundary curve of the triangle patch is a quartic polynomial of one variable
that is exactly what was shown earlier for a quadrant of a circle.

We can encapsulate NURBS rectangle patches into a class NURBSSurface and give it
two BasisFunction members) just like we did for BSpl ineSurface. The class manages
the control points B[] [] and the control weights W[] [] • The surface evaluation is

Point NURBSSurface::X (float u, float v)
{

int iO = Nu.Compute(u), i1 = Nv.Compute(v);
Point result = ZERO;
float totalW = 0;
for (int jO = iO - dO; jO <= iO; jO++)
{

for (int j1 = i1 - d1; j1 <= i1; j1++)
{

float tmp = Nu.Basis(jO) * Nv.Basis(j1) * W[jO] [j1];
result += tmp * B[jO] [j 1] ;
totalW += tmp;

result 1= totalW;
return result;

4.3.5 SURFACES BUILT FROM CURVES

In order to avoid the complexity ofdealing with a naturally defined surface patch such
as B-spline or NURBS rectangle patches) sometimes it is convenient to build a surface
from curves. The idea is that the curves are easier to work with and potentially lead
to less expensive dynamic updates of the surface. A few types of surfaces built from
curves are described here. In all cases the parameter space is (u) v) E [0, 1f-

A triangle mesh is constructed by partitioning the parameter space into a rectan­
gular grid) each rectangle representing two triangles. Figure 4.12 illustrates this.

The numbers nand m do not have to be the same. Generally, you want a lot
of samples in u to capture the shape of the curve (n large), but fewer samples in v

since the surface is relatively flat in that direction (m small). The grid samples are
(ui' Vj) = (iln, jim) for 0::: i < nand 0::: j < m. The vertices are stored in a sin­
gle array in lexicographic order: k = i + n * j where 0 ::: k < nm. The triangles are
stored in an array of triples of k-indices, a total of 2(n - 1)(m - 1) triples. Pseu­
docode to generate the vertices, normals, uniform texture coordinates, and triangles
is as follows:

4.3 Control Point Deformation 191

v

(a) (b)

j+~I:;;Z=1
i+l

Figure 4.12 (a) The decomposition of (u, v) space into an n x m grid of rectangles, each rectangle
consisting of two triangles. A typical rectangle is shown in (b), with lower corner
index (i, j) corresponding to u = i I n and v = jim.

II generate vertices
II X(u,v) = point on the surface at (u,v)
II N(u,v) = normal on the surface at (u,v)
int vquantity = n * m;
Point3 vertex[vquantity], normal [vquantity];
Point2 texcoord[vquantity];

for (j = 0, k = 0; j < m; j++)
{

float v = j/(m - 1.0);
for (i = 0; i < n; i ++)
{

float u i/(n - 1.0);
vertex[k] = X(u,v);
normal [k] = N(u,v);
texcoord[k] = Point2(u,v);
k++;

II generate triangles
int tquantity = 2 * (n - 1) * (m - 1);
int indices[3 * tquantity];
for (j = 0, k = 0; j < m - 1; j++)

192 Chapter 4 Deformable Bodies

for (i = 0; i < n - 1; i++)

int vO i + n * j;

int vI vO + l',
int v2 vI + n',
int v3 vO + n;
indices[k++] va;
indices[k++] vI;
i ndi ces [k++] v2;
i ndi ces [k++] vO;
indices[k++] v2;
i ndi ces [k++] v3;

If the surface is closed in the u-direction, that is, X(l, v) = X(O, v), the first and
last columns ofvertices of the mesh coincide. The texture coordinates of the first and
last columns do not coincide, since the first column has u = 0 and the last column
has u = 1. The texture image should be designed accordingly to make sure the seam
is not visible. The same care must be taken if the surface is closed in the v-direction
or in both directions.

Cylinder Surfaces

Surface patches might provide more curvature variation than is needed for a par­
ticular modeL For example, a curved archway is curved in one dimension and flat
in another. A single curve may be built to represent the curved dimension, then ex­
truded linearly for the flat dimension. The surface obtained by this operation is said
to be a cylinder surface. Figure 4.13 illustrates the process.

(a)

n
(b)

Figure 4.13 A cylinder surface (b) obtained by extruding the curve (a) in a direction oblique to
the plane of the curve.

4.3 Control Point Deformation 193

Figure 4.14 A generalized cylinder surface obtained by linearly interpolating pairs of points on
two curves.

If Y(u) is a parameterization of the curve for u E [0, 1], and if D is the desired
amount of linear translation of the curve, the cylinder surface is parameterized by

X(u, v) = Y(u) + vD

for v E [0, 1]. First-order partial derivatives are ax/au = Y'(u) and ax/av = D.
Normal vectors to the surface are the cross product of the derivatives,

N(u) = Y'(u) x D
IY'(u) x DI

Notice that the normal does not depend on v.

Generalized Cylinder Surfaces

Some applications might require that a starting and ending curve be specified and an
interpolation applied between them to generate a surface. This is called a generalized
cylinder surface. Figure 4.14 illustrates.

If Yo (u) and Y1(u) are the starting and ending curves, u E [0, 1], the generalized
cylinder surface is parameterized by

X(u, v) = (1- v)Yo(u) + vY1(u)

for v E [0, 1]. The first-order derivatives are ax/au = (1- v)Y~(u) + vY~(u) and
ax/av = Y1(u) - Yo(u). Normal vectors to the surface are

((1- v)Y~(u) + vY~(u)) x (Y1(u) - Yo(u))
N(u, v) = ------=---------.:..--------

1((1- v)Y~(u) + vY~(u)) x (Y1(u) - Yo(u))1

EXAMPLE

4.9

RCE CODE

FlowingSkirt

This application shows a flowing skirt. The skirt is modeled as a generalized cylinder
surface whose control points are varied over time to produce the deformation. Figure
4.15-also Color Plate 4.15-shows some screen shots from this application found
on the CD-ROM.

194 Chapter 4 Deformable Bodies

(Example 4.9
continued)

(a)

(b)

Figure 4.15 A skirt modeled by a generalized cylinder surface. Wind-like forces are acting on the
skirt and are applied in the radial direction. Image (a) shows the skirt after wind is
blowing it about. Image (b) shows a wireframe view of the skirt so that you can see
it consists of two closed curve boundaries and is tessellated between. (See also Color
Plate 4.15.) II

4.3 Control Point Deformation 195

x

z

Figure 4.16 A surface of revolution.

Revolution Surfaces

A revolution surface is obtained by revolving a curve about a line that does not
intersect the curve. To simplify the discussion) suppose that the line is the z-axis and
the curve is (x(u)) z(u)) in the xz-plane. The parameter u E [0) 1] andx(u) > o. The
intersection of the surface and a plane of constant z) given by z(u) for a specified u)
is a circle whose radius is x(u) as shown by Figure 4.16.

The surface is parameterized as

X(u) v) = (x(u) COS(27TV)) x(u) sin(27Tv)) z(u))

for (u) v) E [0) IF.

EXAMPLE

4.10

WaterDrop­

Formation

The curve deformation in Example 4.7 may be used to generate a control point
deformation of a surface. The surface is constructed as a surface of revolution of the
curve about the vertical axis. Figure 4. 17-also Color Plate 4. 17-shows some screen
shots from this application found on the CD-ROM.

196 Chapter 4 Deformable Bodies

(Example 4.10
continued)

Figure 4.17 A water drop modeled as a control point surface of revolution. The surface dynam­
ically changes to show the water drop forming, separating from the main body of
water, then falling to the floor. The evolution is from left to right and top to bottom.
(See also Color Plate 4.17.)

EXAMPLE

4.11

RCE CODE

WrigglingSnake

4.4 Free-Form Deformation 197

Tube Surfaces

A surface in the shape of a tube can be generated by specifying the central curve of
the tube, say, C(v) for v E [0, 1], and by specifying a closed planar curve Y(u) =
(Yl (u), Y2 (u)) to represent the boundary of a cross section of the surface. The cross
section for a given v is within a plane whose coordinate system has origin C(v) and
one unit-length coordinate direction T(v) = C'(v)/IC'(v)l, a tangent to the central
curve. The other two unit-length coordinate directions are chosen as desired, call
them N(v) and B(v). The three vectors form a right-handed orthonormal set. The
names are suggestive of using the Frenet frame for the curve, where N is the curve
normal and B = T x N is the curve binormal. However, other choices are always
possible. The tube surface is constructed as

X(u, v) = C(v) + Yl(u)N(v) + Y2B(V)

for (u, v) E [0, If The classical tube surface is one whose cross sections are circu­
lar, Y(u) = r(cos u, sin u) for a positive radius r. More generally, the radius can be
allowed to vary with v. For example, a surface of revolution is a tube surface whose
central curve is a line segment and whose radius varies based on the curve that was
revolved about the line segment. Figure 4.I8-also Color Plate 4.I8-shows a tube
surface that was built so that the inside surface is visible to the camera.

We now look at an example of a deformation of a tube surface. The central curve
of the tube is a control point curve. The control points are modified over time,
thereby causing the tube surface itself to deform over time.

This application shows a wriggling snake. The snake is modeled as a tube surface
whose central curve is a control point curve. The control points are varied over time
to produce the deformation. Figure 4.I9-also Color Plate 4.I9-shows some screen
shots from this application found on the CD-ROM.

4.4 FREE-FoRM DEFORMATION

The deformation methods of the last section are useful for deforming a surface that
is defined parametrically based on user-specified control points. In a game environ­
ment we need to display the deforming object in addition to handling it in a physical
simulation. The typical representation of an object in the game is a triangle mesh.
The parametric surface may be tessellated to produce that representation. Although
the resulting mesh is required for display, that same mesh might also be used if the ob­
ject participates in a collision detection system. The mesh dynamically changes as the
control points are deformed, the vertices having to be recalculated after each mod­
ification of the control points. The triangle connectivity can be calculated once and
maintained during the deformations.

198 Chapter 4 Deformable Bodies

Figure 4.18 A closed tube surface whose central axis is a helix. (See also Color Plate 4.18.)

Figure 4.19

4.4 Free-Form Deformation 199

A wriggling snake modeled as a tube surface whose central curve is a control point
curve. (See also Color Plate 4.19.)

200 Chapter 4 Deformable Bodies

In many cases, though, the triangle meshes are constructed by artists using a
modeling package. No underlying control point surface is used to build those meshes.
If the game application requires deforming these meshes, how do we do this? Cer­
tainly it is possible to construct a control point surface that, in some sense, approxi­
mates the triangle mesh. However, that is generally a difficult algorithm to implement
and even more difficult to obtain approximations that an artist will agree looks like
the original mesh.

A good alternative is to embed the triangle mesh in a volume of space that itself
may be deformed via control points. The parameterization of the volume by three
parameters is just the natural extension of the parameterization of surfaces by two
parameters. The vertices of the triangle mesh initially are assigned parameters based
on where they lie in the volume. The control points of the volume are then modified
dynamically, causing a deformation of the volume, which in turn causes the vertices
to move about. This process is called free-form deformation (FFD) and was formally
introduced in [SP86], but earlier works exist regarding volume deformation with the
goal of analyzing surface deformation, for example, [Barr84]. The FFD algorithm
uses a blending of control points using Bernstein polynomials, producing a Bezier
volume patch that is a natural extension of a Bezier rectangle patch. A B-spline
representation of the volume may be used instead [GP89].

Equation (4.10) extends to a lattice of control points Bio ,i j,i2 for 0:::: io :::: no,
0:::: i l :::: nl' and 0 ::::: i z ::::: nz. The degree must be specified for each dimension, do,
d l , and dz with 1:::: d i :::: ni' The volume patch is defined by

no nj n2

X(u, v, w) = L L L Nio,do(u)Nij,d/V)Ni2,d2(W)BiO,ij,i2
io=O ij=O i2=O

(4.12)

Just as for B-spline curves and surfaces, we have the mechanism in place for com­
puting the basis functions. The B-spline volume is encapsulated in a class BSp1i neVo 1­
ume and manages the control points B[] [] [] and the degrees dO, d1, and d2 and has
Basi sFuncti on objects Nu, Nv, and Nw. The volume evaluation is

Point BSplineVolume::X (float u, float v, float w)
{

int iO Nu.Compute(u);
int i1 Nv.Compute(v);
int i2 Nw.Compute(w);
Point result = ZERO;
for (int jO = iO - dO; jO <= iO; jO++)

for (int j1 = i1 - d1; j1 <= i1; j1++)

4.4 Free-Form Deformation 201

for (int j2 = i1 - d2; j2 <= i2; j2++)
{

result += Nu.Basis(jO) * Nv.Basis(j1) *
Nw.Basis(j2) * B[jO] [j1] [j2];

return result;

Assuming the control points are selected so that the volume patch encloses the
application's triangle mesh, for each mesh vertex Pi we need to compute the cor­
responding parameters (Ui' Vi' Wi) so that X(Ui' Vi' Wi) = Pi' In general, this is a
difficult problem in that this equation represents three polynomial equations of three
unknown variables that must be solved by some numerical method. Keeping in mind
our application is to deform the mesh, we can make this a simple problem. Choose
the control points so that the initial volume is an axis-aligned box containing the tri­
angle mesh. If the box is [Xmin' xmaxJ x [Ymin' Ymax] x [Zmin' zmax]' then the control
points are

where M = (xmin' Ymin' zmin)' .6.x = (xmax - Xmin)/nO' .6.y = (Ymax - Ymin)/nl' and
.6.z = (zmax - zmin) / nz· The volume function reduces as follows:

no nl n2

X(u, V, w) = L L L Nio,d/U)Nil,d/V)Ni2,d/W)(M + (.6. x io' .6.yi 1) .6.z i z))
io=O i1=O i2=O

where

no nl n2

Co = L L L Nio,d/U)Nil,d/V)Ni2,d/W)

io=O i1=O i2=O

=1·1·1=1

202 Chapter 4 Deformable Bodies

We used the well-known property for basis functions, L:7=o Ni,d(t) = 1 for all
t E [0, 1]. Similarly,

no nj nz

Cl = L L L ioNio,do(u)Nij,d/V)Niz,d/W)
io=O ij=O iz=O

=u·1·1=u

where we use the property L:7=o Ni,d(t) = t for t E [0, 1]. The same argument shows
that C2 = v and C3 = 2. Therefore,

for the initially selected control points. The parameters to locate a mesh vertex Pi =
X(ui, Vi' Wi) are simply ui = I • (Pi - M)/~x' Vi = J . (Pi - M)/~Y' and Wi =
k· (Pi - M)/~z'

The straightforward approach to deforming the surface is to modify the control
points and recompute X(Ui, Vi' Wi) for all i. Although this certainly works, it is
less efficient than it can be. The input parameters never change for a mesh vertex.
Each time the B-spline volume function is calculated, the basis functions N io ,do (u i),
Nij,d j(Vi)' and Niz,dz(wi) are calculated. These may be calculated once and stored for
use in later volume evaluations. Another optimization is possible if only a few control
points are modified at each step. To indicate the dependence of the volume function
on the control points, let us write the function as X(u, v, w; B). The mesh vertex
positions for the initial set of control points are

for all i. The control points are modified to BiO,ij,i
Z
+ dBiO,ij,i

Z
where the control

point perturbations might be nonzero only for a few control points. In an interactive
modeling package, the interface will most likely support dragging one control point
at a time, in which case dBiO,ij,i

Z
is nonzero for exactly one triple of indices, but zero

for all the others. The new mesh vertex positions are

where the perturbation ofthe old mesh vertices is denoted bydPi = X(Ui' Vi' Wi; dB).
If you keep track of the original mesh vertices and measure only the control point
perturbations, the new mesh vertices may be rapidly computed. The evaluation of

EXAMPLE

4.12

FreeForm­

Deformation

4.5 Implicit Surface Deformation 203

the perturbation X(Ui, Vi' Wi; dB) is implemented to avoid multiplying the basis
functions by a point dBio,i1,iz when that point is the zero vector.

This programming example is a full implementation of the free-form deformation
using a B-spline volume function. The application constructs the axis-aligned bound­
ing box for a triangle mesh, computes the parameter triples for the mesh vertices, and
displays the mesh. The volume is drawn as a wireframe box with line segments con­
necting the control points. The interface allows you to select a control point and drag
it with the mouse. For each change the embedded triangle mesh is updated. The pro­
gram also has an option for randomly perturbing the current set of control points
so that the mesh wiggles. This option is toggled with the rlR keys. Figure 4.20-also
Color Plate 4.20-shows some screen shots from this application found on the CD­
ROM.

The ideas of FFD have been extended by various researchers. An extended free­
form deformation (EFFD) was developed in [Coq90] that allows the surface to be
embedded in a collection of multiple volumes to gain better control over the spatial
deformations. These results were developed more from an engineering perspective
than from a desire to obtain physically meaningful deformations. Along the latter
lines the paper [HML99] describes an algorithm to preserve the total volume enclosed
by the surface during the deformation. This is a reasonable goal, but it implicitly
assumes that the object's mass density is constant throughout the deformation. For
some objects this assumption makes sense, but for others it does not. Consider a
foam ball that is deformed by squeezing it. Clearly, the volume is not preserved,
but the total mass is preserved. The next step in developing deformation models of
the free-form type should have the goal of modifying the mass density function so
that the total mass is preserved. By accurately computing the mass density during
deformation, the inertia tensor for the deformed object can then be calculated for
use in physical simulations.

4.5 IMPLICIT SURFACE DEFORMATION

A body is modeled as the region F (x, y, z) :::: 0 for a suitably chosen function F. The
surface of the body is implicitly defined by F (x, y, z) = O. A force on the body is
simulated by adding a deformation function D(x, y, z) to F(x, y, z). The deformed
body is the region F (x, y, z) + D (x, y, z) :s 0 and has a surface implicitly defined
by F (x, y, z) + D (x, y, z) = O. A simple example in two dimensions will illustrate
the concept.

204 Chapter 4 Deformable Bodies

(a)

(b)

Figure 4.20 Free-form deformation. Image (a) shows the initial configuration where all control
points are rectangularly aligned. Image (b) shows that some control points have been
moved and the surface is deformed. The control point shown in darker gray in (b) is
the point at which the mouse was clicked on and moved. (See also Color Plate 4.20.)

EXAMPLE

4.13

4.5 Implicit Surface Deformation 205

Consider a planar body in the shape of a circular disk defined by F (x, y) = x 2 +
y2 _ 1::: O. The boundary of the object is the circle defined by F(x, y) = 0, namely,
x 2 + y2 = 1. Figure 4.21(a) illustrates the object before deformation.

(a) Original body

(d) A > 1/4

(b) Region of deformation

(e)O<A< 1/4

(c) A == 1/4

(f) A < 0

Figure 4.21 A disk-shaped body and various deformations of it.

A force is to be applied to the body at the point (1, 0) to produce a deformed body,
with some possibilities shown in Figure 4.21(c)-(f). You have a lot of flexibility in
choosing the deformation functions. A simple one to illustrate is

D(x, y) = { A(I- 4((x - 1)2 + y2)), (x - 1).2 + y2 < 1/4
0, otherwIse

This function is continuous. It is differentiable everywhere except on the circle (x ­

1)2 + y2 = 1/4. This small circle intersects the original one at x = 7/8. Outside this
circle the level curve is defined by F (x, y) = 0 and produces a large circular arc
x 2+ y2 = 1for x ::: 7/8. Inside this circle the level curve is

0= F(x, y) + D(x, y) = (1- 4A)x2+ (1- 4A)y2 + 8Ax - (1 + 3A)

If A = 1/4, the level curve is the line segment x = 7/8 with Iyl ::: ~/8. For A -11/4,
divide by 1 - 4A and complete the square on x to obtain the factored equation:

(
4A) 2 1 - A + 4A2

x+--- +y2 _
1 - 4A - (1- 4A)2

206 Chapter 4 Deformable Bodies

(Example 4.13
continued)

This is the equation for a circle. Notice that the end points of the large circular arc)
(7/8) ±,JIS/8)) are always on the arc defined by this new circle.

A time-varying deformation may be induced by allowing the amplitude A of the de­
formation to vary with time. For example) A(t) = ct for a positive constant c causes
a gradual depression in the disk. Oscillatory behavior can be induced by something
like A(t) = c sin(t) for a positive constant c.

In the example the deformation D(x) y) is symmetric about the point (1) 0))
that center point considered to be the point of application of the simulated force.
Generally) D is required neither to be symmetric nor to be viewed as having a center
point that is on the boundary of the object. We could just as easily have added
D(x) y) = A(l- 4((x - xO)z + (y - yO)z)) for any point (xO) Yo) in the plane. Of
course) if the region of influence does not intersect the level curve defining the object
boundary) no deformation occurs.

The example is also a continuous one. In practice we will have discrete objects)
polygonal objects in the plane (approximations to the level curve object boundaries))
and triangle mesh objects in space (approximations to the level surface object bound­
aries). Given a continuous representation F = 0 of the object boundary) we need to
construct the approximations. This requires extraction of curves or surfaces from
data generated by sampling F on a regular lattice. The curves and surfaces are ex­
tracted from the data using methods from image analysis. Keeping in mind we want
to have a reasonably fast simulation) the deformation D can be defined to be nonzero
within a small region so that only a handful of pixels/voxels will be affected by the
deformation. The level curves/surfaces need be updated only at those pixels/voxels.

4.5.1 LEVEL SET EXTRACTION

A standard isosurface extraction algorithm for a 3D image is the Marching Cubes
algorithm [LC87]. The image is assumed to be defined on a regular lattice of size
No x N1 X Nz with integer points (x) y) z)) where 0 :::: x < No) 0 ::: y < N1) and
0::: z < Nz. The image values themselves are F(x) y) z). An isosurface is of the form
F (x) y) z) = c for some specified level value c where x) y) and z are treated as
continuous variables. A voxel in the image is a rectangular solid whose corners are
eight neighboring lattice points (xO) Yo) zo)) (xo + 1) Yo) zo)) (xo) Yo + 1) zo)) (xo +
1) Yo + 1) zo)) (xO) Yo) zo + 1)) (xo + 1) Yo) zo + 1)) (xo) Yo + 1) zo + 1)) and (xo +
1) Yo + 1) zo + 1). Figure 4.22 illustrates the level surface contained by a single voxel.

The Marching Cubes algorithm analyzes each voxel in the image and determines
if the isosurface intersects it. If so) the algorithm produces a triangle mesh for the
voxel that is intended to approximate that portion of the isosurface inside the voxel.
By selecting a level value that cannot be an image value) for example) by selecting a
noninteger value when the image has only integer values) the voxel analysis requires
determining the signs of G (x) y) z) = F (x) y) z) - c at the eight corners) each sign
positive or negative. If two adjacent corners have opposite signs) and if the image

4.5 Implicit Surface Deformation 207

r-- .. - 1

-2

-3

Figure 4.22 This is an illustration of a level surface F (x, y, z) = 0, a cube whose eight corners
correspond to image samples. Four of the image values are shown, one positive and
three negative. Assuming the image values vary continuously, each edge connecting
a positive and negative value must have a point where the image is zero. The level
surface F (x, y, z) = 0 necessarily passes through those zero-points, as illustrated by
the triangular-shaped surface shaded in gray.

values are assumed to be linear along the edge connecting the corners, the isosurface
G (x, y, z) = 0 must intersect the edge in a single point somewhere along the edge.
The complexity of the surface of intersection is related to the sign changes that occur
on all the edges of the voxel.

The heart of the Marching Cubes algorithm is that only a small number of sign
combinations is possible, two signs at each of eight corners for a total of 256 com­
binations. Each combination is analyzed to determine the nature of the isosurface of
intersection; a triangle mesh is selected to represent that intersection. These meshes
are stored in a table of size 256. The sign analysis for a voxelleads to an index into the
table to select a triangle mesh representing the surface of intersection for that voxel.
The strength of this algorithm is the speed in which the triangle meshes are generated
for the entire isosurface, the performance due to the simplicity of the table lookups.

The Marching Cubes algorithm has two undesirable consequences. The first con­
sequence is that for a typical 3D medical image and typical isosurface, the number
of triangles in the mesh is on the order of a million. The generation of the mesh cer­
tainly requires only a small amount of time, but most rendering systems are slow to
render millions of triangles per frame, even with graphics hardware acceleration. Of
course, the large number of triangles is a problem with any isosurface extraction al­
gorithm that works at the voxellevel. The second undesirable consequence is that the
triangle mesh table can lead to topological inconsistencies in the mesh. Specifically,
the two meshes generated at adjacent voxels might have triangles that should share

208 Chapter 4 Deformable Bodies

edges, but do not, thereby producing holes in the final mesh. How these holes occur
will be discussed later in this section.

One approach that addresses the issue of the large number of triangles is to apply
mesh reduction algorithms to the extracted surface [DZ91, GH97, HDD+93, SZL92,
Tur92]. The idea is to extract the triangles at the voxellevel, build the triangle mesh
using data structures that store the adjacency information for vertices, edges, and
triangles, then attempt to reduce triangles according to some heuristic. The algorithm
in [GH97] is based on the concept of an edge collapse, where an edge is removed, the
triangles sharing the edge are removed, and the remaining triangles affected by the
removed triangles are modified to preserve the local topology. Although the reduced
meshes are quality representations of the isosurface and can be quickly rendered,
the reduction scheme is computationally expensive, thus offsetting the speed of an
extraction algorithm such as Marching Cubes. In our context of deformable surfaces,
the computation time is kept to a minimum by selecting deformation functions that
require updating only a small subset ofvoxels in the lattice.

In this section I provide an extraction algorithm that has no ambiguities and pre­
serves the topology of the isosurface itself when the image data within each voxel
has a continuous representation using trilinear interpolation of the image values at
the eight corners. The table lookup of Marching Cubes is replaced by constructing
an edge mesh on the voxel faces. That mesh approximates the intersection of the
isosurface with the faces. The mesh is then triangulated using an extension of an
ear-clipping algorithm for planar polygons [O'R98] to three dimensions. The trian­
gulation does not introduce new points (called Steiner points in the computational
geometry literature), something other researchers have tried in attempts to remove
the topological ambiguities ofMarching Cubes. The triangulation is fast and efficient,
but it is also possible to avoid the runtime cost by having a table lookup. The table
has 256 entries, just as in Marching Cubes, but each entry that has potential ambigu­
ities stores multiple triangle meshes. Selection of the correct mesh in the table entry
is based on a secondary index. The concepts are first discussed for 2D images to give
the reader intuition on how the algorithms apply to 3D images.

4.5.2 ISOCURVE EXTRACTION IN 20 IMAGES

A 2D image is assumed to be defined on a regular lattice of size No x N I with integer
points (x, y), where 0 .:s x < No and 0 .:s y < N I . The image values themselves are
F (x, y). An isocurve is of the form F (x, y) = c for some specified level value c,
where x and yare treated as continuous variables. A pixel in the image is a rectangle
whose corners are four neighboring lattice points (xo, Yo)' (xo + 1, Yo), (xo, Yo + 1),
and (xo + 1, Yo + 1). I choose F(x, y) to be a bilinear interpolation of the four
image values Foo' FlO' FOI ' and Fll at the corners, respectively. The continuous
representation of the image over the entire pixel is given below, where Ox = x - xo

and Oy = y - Yo:

4.5 Implicit Surface Deformation 209

0+~ Q+ t==:l
+ +h-J+-CJ
~ D?- rn- 171
~-++-~

f7+l [J+ n I'(]
~- +~~

SQEJD
Figure 4.23 The 16 possible sign configurations for a pixel.

The equation F (x, y) = c is a quadratic equation in x and y when the xy term
appears, a linear equation when xy does not. The isocurves for F when viewed as
a function on all of the plane are either hyperbolas or lines. As in 3D, I make the
simplifying assumption that the level value c is chosen not to be an image value.
The isocurves can intersect interior edge points of a pixel, but cannot intersect the
corner points. I also work with G (x, y) = F (x, y) - c and its isocurves generated by
G(x, y) = O.

The specialization of Marching Cubes to 2D images is usually referred to as
Marching Squares. The isocurve extraction for G (x, y) = 0 on a pixel is performed
by analyzing the signs of G at the four corners. Since the signs can be only +1or -1,
there are 16 possible sign configurations. Figure 4.23 shows these.

In the case of sign changes on two edges, clearly we can connect the two edge
points with a line segment. The actual isocurve is either a portion of a hyperbola
or a line segment. In the first case, the segment connecting the two edge points is a
reasonable approximation to the isocurve. In the second case, the segment is exactly
the isocurve. Figure 4.23 shows the approximating segments in the unambiguous

210 Chapter 4 Deformable Bodies

Figure 4.24 The three possible resolutions for the ambiguous pixel cases.

cases. However, two cases are ambiguous and are labeled with question marks. The
possible resolutions are shown in Figure 4.24.

The question is how to select which of the three possibilities in Figure 4.24 to
lead to a mesh that is topologically consistent with the isocurves. The answer is based
on an analysis of the quadratic equation G (x, Y) = °to actually determine what the
isocurves look like. For simplicity, we may consider the problem when °.::: x .::: 1and°.::: Y ::: 1 and where the pixel-image values are (0, 0, Goo), 0, 0, G lO), (0, 1, Gal)'

and 0, 1, G ll). The equation is of the form

G(x, y) = aoo + alOx + aOlY + allxy

where aoo = Goo, alO = G lO - Goo, aOl = G Ol - Goo, and all = Goo - G lO - Gal +
GIl' Of course the interesting case is when all four edges have sign changes. We may
consider the case Goo < 0, G lO > 0, G Ol > 0, and G ll < 0. The opposite signs case
has a similar analysis. Notice that aoo < 0, alO > 0, aOI > 0, and all < 0. The four
edge points where G(x, y) =°are (0, Yo)' 0, YI), (xo, 0), and (xl' 0). The linear
interpolation will show that

- -Goo
Xo = ,

G lO - Goo

- -Goo
Yo = ,

Gal - Goo

- -G lO
YI =

G ll - G lO

Since all i=- 0, the product allG(x, y) is not formally zero and can be factored as

Moreover, some algebra will show that aooan - aOlalO = GOOG ll - GOIG lO . Define
~ = GOOG ll - GOIG lO . I consider the two cases when ~ is zero or nonzero.

If~ = 0, thenallG(x, y) = (aOI + allx) (a 10 + allY)' The isocurves G =°occur
when x = -aodall and y = -alOlall' The isocurves in the entire plane consist of
the vertical and horizontal lines defined by the two equations. Thus, the right-most

(a) (b)

4.5 Implicit Surface Deformation 211

Figure 4.25 Two possible configurations for hyperbolic isocurves with pixels superimposed. The
four edge intersections are Po, PI' P2, and P3 as marked.

pixel in Figure 4.24 shows the isocurve structure within the pixel. In this case the line
segments forming the plus-sign are exactly the isocurves. The center of the plus sign
was not found by edge intersections but is added to the vertex-edge data structure for
storing the edge mesh representing the total isocurve for the image. That is, when a
plus-sign configuration is encountered, we add the four edge intersections and plus­
sign center as vertices to the mesh and we add the four segments to the mesh edges
that connect the edge intersections with the center point.

If ~ =j=. 0, then the isocurves of G = 0 are hyperbolas with asymptotes x =
-aOdall and y = -alO/all. The two possible graphs are shown in Figure 4.25.

To distinguish which configuration is correct for the given pixel, observe that a
pair of edge points is on the same hyperbolic component whenever the signs of the
expression aOI + allx are the same at those points. This test follows from the ob­
servation that points (x, y) on the vertical asymptote satisfy aOl + allx = o. Points
to the right of the vertical asymptote satisfy aOI + allx > 0 for Figure 4.25(a) and
aOI + allx < 0 for Figure 4.25(b). Points to the left of the vertical asymptote have op­
posite sign: aOI + allx < 0 for Figure 4.25(a) and aOI + allx > 0 for Figure 4.25(b).
Let a(P) denote the sign of aOI + allx for point P = (x, y). Some simple computa­
tions produce

a(PO) = Sign(aOI) = Sign(GOl - Goo) = - Sign(Goo)

and

212 Chapter 4 Deformable Bodies

Nowa(P2) =Sign(aOI + allio). Some algebra will show that the argument of the
right-hand side is

Therefore,

Similarly, a(P3) = Sign(aOI + alli l), where

- GOIG lO - GOOG llaOI + allxl = -..::..:....-..::...:------::..;~:..:.

G ll - GOI

Therefore,

Each of the four signs is computed and the points are grouped into two pairs, each
pair having the same sign. Equivalently, we may analyze the signs of Sign(Goo)a (Pi)
and pair the points accordingly. In this formulation, the modified signs are

Sign(Goo)a(Po) =-1

Sign(GOO)a(PI) = +1

Sign(Goo)a(P2) = - Sign(~)

Sign(Goo)a(P3) = + Sign(~)

Clearly, Po and PI can never be paired just as P2 and P3 can never be paired. This
should be clear geometrically from Figure 4.25. We pair (Po, P2) and (PI' P3) when
~ > 0 or (Po, P3) and (PI' P2) when ~ < o.

Table 4.4 summarizes all the possible vertex-edge configurations based on analysis
of the bilinear function for the pixel. The signs at the four pixels are written from left
to right and correspond to the signs of Goo, G lO, GOI ' and G ll, in that order. The
sign of ~ is only relevant in the ambiguous cases, so nothing is listed in this column
in the unambiguous cases. The names Po, PI' P2> and P3 always refer to edge points
on the edges x = 0, x = 1, Y = 0, and y = 1, respectively. The center point, if any, is
labeled c.

4.5.3 ISOSURFACE EXTRACTION IN 3D IMAGES

A 3D image is assumed to be defined on a regular lattice of size No x N I X N2 with
integer points (x, y, z), where o:s x < No, o:s y < N I , and 0:'S z < N2. The image
values themselves are F (x, y, z). An isosurface is of the form F (x, y, z) = c for

4.5 Implicit Surface Deformation 213

Table 4.4 The vertex-edge configurations for a pixel

Signs Sign of~ Edges

+ + + +
+ + + (Po, P3)

+ + + (PI' P3)

+ + (Po' PI)

+ + + (PI' P2)

+ (Po, P2), (PI' P3)

+ + (Po' P3), (PI' P2)

a (Po, C), (PI' C), (P2 , C), (P3 , C)

+ + (P2 , P3)

+ (Po, P2)

+ + + (Po, P2)

+ + (P2 , P3)

a (Po, C), (PI' C), (P2 , C), (P3 , C)

+ + (Po, P3), (PI' P2)

+ (Po, P2), (PI' P3)

+ (PI' P2)

+ + (Po' PI)

+ (PI' P3)

+ (Po, P3)

some specified level value c, where x, y, and z are treated as continuous variables.
A voxel in the image is a rectangular solid whose corners are eight neighboring lattice
points (xo, Yo, zo), (xo + 1, Yo, zo), (xo, Yo + 1, zo), (xo + 1, Yo + 1, zo), (xo, Yo' zo +
1), (xo + 1, Yo' zo + 1), (xo, Yo + 1, zo + I), and (xo + 1, Yo + 1, zo + 1). I chose
F (x, y, z) to be a trilinear interpolation of the eight image values, which are Fooo ,
F lOO' FOlO' F llO' FOOl' FlOI, FOll , and Flli at the corners, respectively. The continuous
representation of the image over the entire voxel follows, where Dx = x - Xo, Dy =
y - Yo' and Dz = z - zo:

F(x, y, z) = (1- Dz)((1- Dy)((1- Dx)Fooo + DxFlOO)

+ Dy((1- Dx)FolO + DxFllO)))

+ Dz((1- Dy)((1- Dx)FoOl + DxFlOI) + Dy((1- Dx)Foll + DxFlll)))

(4.14)

214 Chapter 4 Deformable Bodies

The equation F(x, y, z) = c is a cubic equation in x, y, and z when the xyz term
appears, a quadratic equation when xyz does not, and a linear equation when none
of xyz, xy, xz, or yz occur. I make the simplifying assumption that the level value c
is chosen not to be an image value. The isosurfaces can intersect interior edge points
of any of the 12 edges of a voxel, but cannot intersect the corner points. I also work
with G(x, y, z) = F(x, y, z) - c and its isosurfaces generated by G(x, y, z) = o.

Table-Based Mesh Selection

As I mentioned in the introduction, the Marching Cubes algorithm is based on the
fact that each corner has an image value that is either positive or negative, leading
to 256 possible sign configurations. The corner sign values are used to construct an
index into a precomputed table of 256 triangle meshes. I discussed the analogy of this
in 2D and showed the ambiguities that arise in two sign configurations. In 2D, rather
than having a precomputed table of 16 edge meshes, we needed a secondary index to
select one of three edge meshes that can occur in each of the two ambiguous cases.
Thus, we have a total of 20 edge meshes from which to select. The same ambiguities
arise in 3D. In fact, the ambiguities have a more serious consequence: the triangle
mesh generated by adjacent voxels can have topological inconsistencies. In particular,
when two voxels share a face that is ambiguous in the 2D sense, the table lookup can
produce triangle meshes that do not properly share edges on the common face. Figure
4.26 illustrates this.

The voxel on the right had its edge points on the ambiguous face paired differently
than the voxel on the left. This leads to a triangle mesh where a pair of triangles
occurs, one triangle from each voxel, but the triangles touch at a single edge point
rather than sharing an entire edge. To remedy this, all we need to do is make sure

+f---+---....:..r

+

Figure 4.26 Topological inconsistencies introduced in two voxels sharing an ambiguous face.

4.5 Implicit Surface Deformation 215

that the pairing of edge points on ambiguous faces occurs according to the scheme I
constructed for 2D. Interpolating each face bilinearly is consistent with the trilinear
interpolation assumed for the entire voxel.

In the 2D setting, I mentioned that the precomputed table of edge meshes has
a primary and a secondary index. The primary index takes on 16 values, each value
representing a sign configuration for the corners of the pixel. The secondary index
is 0 for the nonambiguous cases; that is, if the primary index corresponds to a non­
ambiguous case, the entry in the table stores a single edge mesh. Assuming the edge
meshes in the table entry are stored as an array with zero-based indexing, the sec­
ondary index of 0 will always locate the correct (and only) mesh. For the ambiguous
case, the secondary index takes on three values that represent whether the quantity
~ I defined earlier is zero, positive, or negative. The table entries for the ambiguous
cases have arrays of three edge meshes.

A similar construction can be applied in 3D. However, the table construction can
be a bit tedious. An ambiguity for a voxel occurs whenever one or more of its faces
is an ambiguous case in 2D. Suppose that exactly one face is ambiguous (e.g., Figure
4.26). Marching Cubes has a single triangle mesh to approximate the isosurface of
the voxel. However, the ambiguous face has one of three possible interpretations,
so the table entry for this case really needs an array of three triangle meshes. As in
2D, a secondary index can be used to select the correct mesh. Now suppose that
exactly two faces are ambiguous. Each face can be resolved in one of three ways, thus
leading to nine possible triangle meshes for the table entry of the given primary index.
Worst case, of course, is that all six faces are ambiguous, requiring a secondary index
that takes on 36 = 729 values. Consequently, the tables will be quite large but still
constructible.

Ear-Clipping-Based Mesh Construction

An alternative to the table lookup is to generate the triangle mesh for each voxel at
runtime. The concept is quite simple. The edge meshes of a voxel are generated for
each face of the voxel. A vertex-edge data structure is used to store the isosurface
points on the edges of the voxel and to keep track of which points are paired by an
edge. The assumptions that the image is trilinearly interpolated on the voxel and that
the level values are not image values guarantee that isosurface points on the voxel
edges share exactly two mesh edges.

If a plus-sign configuration occurs on the face of a voxel, then the center point
of that configuration is added as a vertex of the mesh. That point shares four edges.
Thus, a vertex shares either two or four edges. The triangle generation amounts to
finding a vertex sharing two edges, locating its two adjacent vertices, adding the
triangle formed by those three vertices to a list, then removing the original vertex
and the two edges it shares. If necessary, an edge is added to connect the remaining
adjacent vertices. This process is repeated until no more vertices exist that share

216 Chapter 4 Deformable Bodies

Figure 4.27 A voxel and its extracted edge mesh.

exactly two edges. I illustrate with an example. Figure 4.27 shows a voxel and the edge
mesh generated by analyzing the six faces using the 2D algorithm.

Vertices V3 and Vs are centers of plus-sign configurations and share four edges
each. The other vertices share two edges each. Vertex Vo shares two edges. The ad­
jacent vertices are VI and Vs' The triangle (Vs, Vo, VI) is added to a list. Vo and its
edges to the adjacent vertices are removed from the edge mesh. A new edge is added
to connect Vs and VI' Figure 4.28(a) shows the resulting edge mesh.

VI shares two edges. The adjacent vertices are Vs and V1. The triangle (Vs, VI' V1)

is added to the list. VI and its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect Vs and V1. Figure 4.28(b) shows the resulting
edge mesh.

V1 shares two edges. The adjacent vertices are Vsand V3. The triangle (Vs, V1 , V3)

is added to the list. V1 and its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect Vs and V3• Figure 4.28(c) shows the resulting
edge mesh.

V4 shares two edges. The adjacent vertices are Vsand V3• The triangle (Vs, V4 , V3)

is added to the list. V4 and its edges to the adjacent vertices are removed from the edge
mesh. An edge already exists between Vs and V3, so a new one does not have to be
added. Figure 4.28(d) shows the resulting edge mesh.

V6 shares two edges. The adjacent vertices are Vsand V7 • The triangle (Vs, V6 , V7)

is added to the list. V6 and its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect Vs and V7• Figure 4.28(e) shows the resulting
edge mesh.

V7 shares two edges. The adjacent vertices are Vsand V3• The triangle (Vs, V7 , V3)

is added to the list. V7 and its edges to the adjacent vertices are removed from the edge

4.5 Implicit Surface Deformation 217

(h)

Figure 4.28 Triangle removal in the edge mesh of Figure 4.27.

mesh. An edge already exists between Vs and V3, so a new one does not have to be
added. Figure 4.28(f) shows the resulting edge mesh.

Vs shares two edges. The adjacent vertices are V3 and V9 . The triangle (V3 , Vs, V9)

is added to the list. Vsand its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect V3 and V9• Figure 4.28(g) shows the resulting
edge mesh.

Finally, V3 shares two edges. The adjacent vertices are Vg and V9 . The triangle
(Vg, V3 , V9) is added to the list. V3 and its edges to the adjacent vertices are removed
from the edge mesh. No more vertices exist, so the triangulation is finished. Figure
4.28(h) shows the voxel with all vertices and edges removed.

EXAMPLE

4.14

RCE CODE

BouncingBall

An example of implicit surface deformation is provided in the source code on the
CD-ROM. A deformable body initially in the shape of a sphere is bounced on a
floor. When the body hits the floor, it starts to deform. At the instant of maximum
deformation, the body bounces off the floor and gradually returns to its spherical
shape.

The floor is represented by the xy-plane (z = 0). The spherical body is defined im­
plicitly at time 0 by F(x, y, z) = x 2 + y2 + (z - 1)2 - 1= O. The center point of
the body is denoted C(t) = (cl(t), 0, C3(t)) and is a hard-coded path for the pur­
poses of simplifying the demonstration. The body bounces back and forth striking

218 Chapter 4 Deformable Bodies

(Example 4.14
continued)

the plane in only the points (2,0, 0) and (-2,0,0). At time zero the center is at
(0, 0, 2) and the body is not in contact with the floor. The x-coordinate of the center
is cl(t) = 2 sin(ntI2) for t E [0, 1]. During that same time interval the z-coordinate
is defined as c3(t) = 2 - t2. The body is not in contact with the floor until the time
reaches one. At that instant a time-varying deformation is applied to the body. The
path of the center during the deformation is allowed to be downward only.

A slight complication arises because of the body motion. The body surface can be
defined implicitly using world coordinates, but then F should additionally depend
on t. To avoid this we will use a local coordinate system for the body and define the
deformations within that system. We may therefore consider F (x, y, z) = x 2+ y2 +
(z - 1)2 - 1= 0 as defining the body surface in local coordinates but translate the
surface itself to world coordinates when displaying the object.

The time interval of deformation and the actual z-value of the path of the center
depend on how the deformation is defined. Consider using

{
A(t)(1 - x 2 - y2 - z2). x 2+ y2 + z2 < 1 t E [1 1+ d]

D(x,y,z;t)= '. -' ,
0; otherwIse

where A(t) = 4(t - 1)(1 + d - t)ld2. The time interval over which the deformation
is applied is [1, 1+ d] for some selected duration d > O. The amplitude A(t) varies
from 0 at time t = I, to 1 at time t = 1+ d12, back to 0 at time t = 1+ d. The
deformation is implicitly defined by F(x, y, z) + D(x, y, z) = 0, leading to

x2 + y2 + (z __1_)2
1- A

which is the equation for a sphere. The portion of the original sphere contained
in the region of influence x 2+ y2 + z2 ::::: 1 is replaced by a spherical section from
the previously displayed equation. By symmetry, the minimum point of that section
occurs atx = y = 0, so zmin = (1- -Vl- A + A2)/(1- A) E [0,1/2] for A E [0, 1].
In the limit as A approaches I, Zmin approaches 1/2. When that limit is reached, the
deformed section of the body is a flat disk. So that the visual display of the body will
make it appear as if it is in contact with the floor, the locally defined level surface for
the deformed body should be translated downward by subtracting Zmin from the z­
coordinates of the vertices. Figure 4.29-also Color Plate 4.29-shows some screen
shots from this application found on the CD-ROM.

The level surface extractor is configured to update only those voxels that are affected
by the deformation. We know by design that only the portion of the body below
z = 1/2 is affected. Moreover, we can limit our search for new voxels that define the
next deformable surface by examining those vertically neighboring voxels intersected
by the current deformable surface, thus taking advantage of continuity in time.

4.5 Implicit Surface Deformation 219

(a)

(b)

Figure 4.29 A bouncing ball with deformation based on implicit surfaces. Image (a) shows
the bouncing ball with only the implicit surface deformation. Image (b) shows an
additional deformation of nonuniform scaling by applying an affine transformation.
(See also Color Plate 4.29.)

220 Chapter 4 Deformable Bodies

(Example 4.14

continued)
The deformed ball as constructed here most likely does not look physically realistic.
You would expect a ball hitting the ground to flatten vertically and expand hori­
zontally about its middle. The deformation function we used does not cause that to
happen. Although we could choose a different deformation function and/or increase
the region of influence of the function, a cheaper alternative involving more hacked
physics is to apply a nonuniform scaling to the vertices of the triangle mesh after the
effects of the deformation are calculated. The x- and y-components may be scaled
by a factor al > 1. The z-component may be scaled by a factor a2 < 1. Figure 4.29(b)
shows some screen shots for the modified physical simulation that uses the affine de­
formation to get nonuniform scaling.

Plate 3.3 The Foucault pendulum. The figures show the path of the pendulum tip in the horizon­
tal plane. New points on the path are colored white, but the intensity of the older points
along the path gradually decreases. (See page 97.)

Plate 3.7

a

b

A ball rolling down a hill. Image (b) shows the path of the center of the ball as it rolls
down the hill. The ball rotates at a speed commensurate with its downhill velocity. (See
page 110.)

Plate 3.14 A mass pulley spring system shown at two different times. The spring expands and com­
presses, and the pulley disk rotates during the simulation. The system stops when a mass
reaches the center line of the pulley or the ground. (See page 128.)

Plate 3.25 Two "snapshots" of a freely spinning top. The black line is the vertical axis. The white line
is the axis of the top. (See page 159.)

a

Plate 4.2

b

A rope modeled as a linear chain of springs. Image (a) shows the rope at rest with only
gravity acting on it. Image (b) shows the rope subject to a wind force whose direction
changes by small random amounts. (See page 167.)

a

Plate 4.4

b

A cloth modeled as a rectangular array of springs. Wind forces make the cloth flap about.
Notice that the cloth in image (b) is stretched in the vertical direction. The stretching
occurs while the gravitational and spring forces balance out in the vertical direction dur­
ing the initial portion of the simulation. (See page 169.)

Plate 4.6 A gelatinous cube that is oscillating due to random forces. The cube is modeled by a
three-dimensional array of mass connected by springs. (See page 172.)

Plate 4.7 A gelatinous blob that is oscillating due to small, random forces. This blob has the masses
located at the vertices of an icosahedron with additional masses of infinite weight to help
stabilize the oscillations. The springs connecting the blob to the infinite masses are
shown in white. (See page 174.)

Plate 4.15

a

b

A skirt modeled by a generalized cylinder surface. Wind-like forces are acting on the skirt
and are applied in the radial direction. Image (a) shows the skirt after wind is blowing it
about. Image (b) shows a wireframe view of the skirt so that you can see it consists of two
closed curve boundaries and is tessellated between. (See page 194.)

Plate 4.17 A water drop modeled as a control point surface of revolution. The surface dynamically
changes to show the water drop forming, separating from the main body of water, then
falling to the floor. The evolution is from left to right and top to bottom. (See page 196.)

Plate 4.18 A closed tube surface whose central axis is a helix. (See page 198.)

Plate 4.19 A wriggling snake modeled as a tube surface whose central curve is a control point curve.
(See page 199.)

Plate 4.20

a

b

Free-form deformation. Image (a) shows the initial configuration where all control
points are rectangularly aligned. Image (b) shows that some control points have been
moved and the surface is deformed. The control point shown in red in (b) is the point at
which the mouse was clicked on and moved. (See page 204.)

Plate 4.29

a

b

A bouncing ball with deformation based on implicit surfaces. Image (a) shows the
bouncing ball with only the implicit surface deformation. Image (b) shows an additional
deformation of nonuniform scaling by applying an affine transformation. (See page
219.)

Plate 6.1

a

b

Two screen shots from the Bas i cShader application. Image (a) shows a rendering using
just the pixel shader. Image (b) shows a rendering using both the vertex shader and the
pixel shader. (See page 376.)

Plate 6.2

a

b

Screen shots from the VertexNoi se shader application. (a) Top row: The original model
and its wireframe view. Bottom row: The output of the Ve r t ex N0 i se shader and its wire­
frame view. The vertex displacement is significantly large. (b) Top row: The vertices dis­
placed with a smaller maximum displacement) but same scale of noise. Bottom row: The
vertices displaced with the same maximum displacement as in the bottom row of (a) but
with a larger scale noise. (See page 377.)

Plate 6.4 Two screen shots from the skinning application. The bones are randomly generated to
cause the object to continuously deform. The sequence of deformations is from left to
right, top then bottom, within each screen shot. (See page 380.)

Plate 6.5 Two screen shots from the rippling ocean application. The images were captured at two
different times in the simulation. (See page 382.)

a

Plate 6.7 Two screen shots from the refraction shader application. Image (a) shows refraction, but
no reflection. Image (b) shows refraction and reflection. (See page 385.)

Plate 6.8 Two screen shots from the Fresnel shader application. (See page 387.)

Plate 6.9 Screen shots from the iridescence shader application. The two images show a textured
torus in two different orientations and with various amounts of interpolation to produce
the iridescent sheen. (See page 389.)

PHYSIC,S ENGINES

W e arrive at the topic I believe most readers will think of as the heart of game
physics-the physics engine. This chapter describes a general system for han­

dling a collection of rigid bodies, including collision detection and collision response.
The system uses Newton's second law of motion, F = rna, to control the motion of
objects. The constraint forces are unknown to the system and must be calculated
based on the information that is provided by the collision detection system. A nat­
ural requirement for a general system is that the rigid bodies never interpenetrate. A
model for satisfying the requirement is the impulse-based approach that Brian Mir­
tich [Mir96b] and David Baraff [BarO!] made popular, but by all means this is not
the only approach one can take. My goal is to go into significant detail about the
impulse-based approach so that you

• Understand the layout of a general physics engine.

• See what complications arise.

• Learn to evaluate its strengths and weaknesses.

Other approaches to building a robust physics engine are based on trying to fix
the weaknesses of the previous-generation engine. Once you understand the impulse­
based engine, you should be able to start experimenting with modifications; refer­
ences to other approaches are provided, so you have a nearly endless supply of ideas
to investigate.

A physics engine naturally partitions the physical simulation into two phases,
collision detection and collision response. Collision detection refers to the process of
determining if two bodies are currently intersecting or will intersect at a future time.
Even though we are concerned with nonpenetration, an implementation has to deal

221

222 Chapter 5 Physics Engines

with penetration due to numerical round-off errors. A collision detection system
must be prepared to deal with all cases and report time-zero intersections and/or
penetrations when they occur. The time of intersection is important, especially in the
case ofmoving objects that are currently not intersecting but will do so at a later time.
The first such time is called the contact time. In many situations just knowing that
two objects will intersect is sufficient information. I refer to this as a test-intersection
query, the end result a Boolean value: true if an intersection will occur, false if not.
In other situations we will want to know where the objects intersect at the time
of contact. The set of intersection points is referred to as the contact set or contact
manifold, the latter term appropriate when the intersection set is not a finite set but
a continuum of points. For example, the intersection set of a box sitting on a table is
the set ofpoints on a face of the box. When the contact set is desired, I refer to this as
a find-intersection query. As you would expect, in most cases a find-intersection query
is more expensive than a test-intersection query for a given pair of objects.

Collision detection is about determining the contact time and the contact set for
two moving objects. At the time they intersect we need to decide how the objects
will continue moving, the collision response, so to speak. For example, if a rigid
ball strikes a flat surface at an angle, you most likely want the ball to bounce away
from the surface. In particular, you will want to reflect the velocity vector through the
normal of the surface so that the angle of incidence is equal to the angle of reflection.
The method of response falls into two categories based on how the objects collide:
colliding contact and resting contact.

General analysis of two rigid bodies is quite intractable for real-time game phys­
ics. The geometric nature of the bodies can be quite complicated, preventing any
reasonable attempt at modeling their dynamics. To simplify matters, we will restrict
our attention to rigid bodies that are convex polyhedra.

Section 5.1 ofthis chapter is about unconstrained motion. The goal is to show you
the basic design and data structure to represent a rigid body that supports solving the
differential equations of motion for a body that does not interact with other bodies
in its environment. Section 5.2 complicates matters by allowing interaction between
bodies, referred to as constrained motion. Building a robust collision detection and
response system for constrained motion requires a lot of patience because there is a
lot of machinery to understand and implement. Enough pseudocode is provided to
allow you to build a working engine if you choose to do so. Source code is provided
for a rudimentary, working engine that you can experiment with.

Section 5.2.5 proposes a different approach to constrained motion than what
a general-purpose engine provides and one that I think should be investigated. I
propose that an implementation can detect and provide enough information about
the constraints imposed by the contact set found by the collision detection system so
that rather than continually solving Newton's equations of motion, the system can
construct the Lagrangian equations of motion and switch to the appropriate set of
equations when necessary. This approach is of particular importance when dealing
with frictional forces since Lagrangian dynamics do a better job of incorporating the

5.1 Unconstrained Motion 223

friction into the equations. The paper [JakOl] by Thomas Jakobsen already hints at
this by using projection ofthe system state variables onto a manifold described by the
constraints.

Handling generally shaped rigid bodies is not tractable for real-time physics on
consumer hardware. Instead, the bodies are restricted to be convex polyhedra (or
unions of convex polyhedra). Collision detection of convex polyhedra is discussed
in Section 5.3. Perhaps it is debatable, but in my opinion this is the hardest part
of a physics engine to implement in a robust manner while not using too much
computational time that is allotted per time frame. I discuss the method ofseparating
axes because it provides the minimum information needed to test if two objects
overlap, but ample information to actually compute the contact set between two
noninterpenetrating objects.

Section 5.4 is about using spatial and temporal coherence of the rigid body ob­
jects to reduce the amount of time spent detecting collisions. Two basic systems are
mentioned, one using bounding spheres and one using axis-aligned bounding boxes,
the latter more likely to be effective in practice.

Finally, Section 5.5 briefly discusses some variations that researchers have tried
for collision detection or response.

5.1 UNCONSTRAINED MOTION

For unconstrained motion, Newtonian dynamics may be used rather than Lagrangian
dynamics to establish the equations of motion. The equations of motion for a single
particle ofmass m with world position x, world velocity v = x, and world acceleration
a = Y= x are in the form of Newton's second law:

mx = my = ma = F(t)

The right-hand side represents all forces applied to the particle. The dependence
on time is indicated just to remind you that the force can change dynamically. This
is a second-order differential equation in x. Numerical differential equation solvers
are typically set up to solve first-order systems. We can transform our single second­
order equation into two first-order equations by allowing the velocity to be one of the
variables: x= v, Y= F/ m. The vector S(t) = [x v]T is referred to as the state vector for
the system. The system of differential equations is

dS d [x] [x] [v]
dt = dt v = Y = ~

The physical simulation is a matter of updating the state vector over time using the
differential equation solvers.

224 Chapter 5 Physics Engines

Newton's second law applies equally as well to a system of n particles. If the ith
particle has mass mi' position xi' velocity Vi , and applied force Fi , then the state vector
is a list of all pairs ofpositions and velocities, S = [Xl VI ... xn vn]T, and the system of
differential equations is

Xl Xl VI

VI VI !l
dS d ~l
- -
dt dt XnXn Vn

Vn Vn
!a-
mn

This is conceptually the same as a system of one particle. The numerical differential
equation solver just has to deal with more variables and equations.

A typical game application, though, has rigid bodies that are not single points.
The physical concepts we introduced earlier come into play. Section 2.2.2 showed
us the kinematics for a solid rigid body. In particular, we saw how to construct the
position, velocity, and acceleration vectors for each point P in the solid. We identified
an object center point e. As noted many times, the equations of motion greatly
simplify when that point is chosen to be the center of mass of the object. The path of
the center ofmass was denoted by X(t; e). To work solely with vectors in this section,
we will use the difference x(t) = X(t; e) - (J, where (J is the origin of the world. The
velocity of the center of mass measured in world coordinates was denoted by vcen(t).
We will drop the subscript in this section and use just the notation vet). The position
and velocity are related by

dx(t) = vet)
dt

A restatement of equation (2.56), the linear momentum of the rigid body, is

pet) = mv(t)

(5.1)

(5.2)

where m is the total mass of the body. Since the mass is a constant, we may keep track
of either (linear) velocity or linear momentum in the state of the system. We choose
the state to include X and p. The driving force behind the center of mass is F(t), the
equations of motion provided by Newton's second law, equation (2.45),

dp(t) = F(t)
dt

(5.3)

The abstract operations to determine the location of the center of mass given an
applied force F(t) are

1. Compute p from F by integrating equation (5.3).

5.1 Unconstrained Motion 225

2. Compute v from p by dividing by m in equation (5.2).

3. Compute x from v by integrating equation (5.1).

In practice these steps are handled simultaneously by a numerical differential equa­
tion solver.

An analogous set of equations tells us how the orientation matrix R (t) is affected
by an externally applied torque. The analogy to mass m is the inertia tensor (mass ma­
trix) J defined in equation (2.85). Keep in mind that the inertia tensor is constructed
relative to some coordinate system. In this section we are computing it relative to the
center of mass of the object. The analogy to linear velocity v is the angular velocity w.
The analogy to linear momentum is angular momentum L. The relationship between
angular velocity and the orientation matrix is equation (2.38),

dR(t)-- = Skew(w(t))R(t)
dt

(5.4)

The relationship between angular momentum and angular velocity is equation
(2.88),

L(t) = J (t)w(t) (5.5)

The inertia tensor is measured in world coordinates. Since the object is moving and
rotating, J does vary with time. The driving torque behind the orientation is i(t),
the equations of motion provided by equation (2.62),

dL(t) = i(t)
dt

(5.6)

The abstract operations to determine the orientation of the rigid body given an
applied torque i(t) are analogous to those for determining the location:

1. Compute L from i by integrating equation (5.6).

2. Compute w from L by dividing by J in equation (5.5). The division is in the
matrix sense-you need to multiply by the inverse matrix J-l.

3. Compute R from w by integrating equation (5.4).

Recomputing the inertia tensor J(t) and its inverse J-1(t) for each time step of
the simulation can be expensive depending on how complex the shape of the rigid
body is. We can eliminate the direct computation by an observation. Recall that
r(t; P) = R(t)b(P), where R(t) is the orientation matrix and b(P) is the location
of point P measured in body coordinates. If B denotes the region of space that the
rigid body occupies, the inertia tensor is

226 Chapter 5 Physics Engines

J(t) =1(Ir12 I - rrT
) dm,

=1(I RbI2 I - (Rb) (RbT
)) dm,

=1(lbl2 I - RbbT RT
) dm,

=1(lbl2RRT
- RbbT RT

) dm,

Definition of inertia tensor

Definition of r

Rotation preserves length
(5.7)

Rotations satisfy I = RRT

R is constant with respect to the integration

where Jbody is the inertia tensor measured in the body coordinate frame and is inde­
pendent of time since the body is rigid. The inverse matrix is easy to compute:

(5.8)

Another observation that leads to a robust implementation is that we can use
quaternions to represent the orientation matrix. Chapter 10 provides a large amount
of background material on quaternions and how they relate to rotations. The main
problem when numerically integrating equation (5.4) over many time steps is that
numerical error builds up, and the computed matrix R (t) is no longer precisely a
rotation matrix. We may easily correct for this situation. If R(t) = [uo UI U2] is the
output of the differential equation solver, Gram-Schmidt orthonormalization may
be applied to its columns to generate a set of orthonormal vectors that become the
columns of the orientation matrix, R(t) = [uo UI U2]' Specifically,

The orthonormalization does not have to be applied at every step, but often enough
to avoid numerical problems. If q(t) is a quaternion that represents R(t), and if
wet) is the (not necessarily unit-length) quaternion that corresponds to the angular
velocityw(t), then the differential equation for q(t) equivalent to equation (5.4) is

dq(t) = ~w(t)q(t)
dt 2

(5.9)

See Chapter 10 for the derivation ofthis equation. A numerical integration still occurs
and produces an output q(t) that can be normalized to unit length q (t) to account
for the numerical round-off errors, but the frequency ofnormalization can be chosen

5.1 Unconstrained Motion 227

smaller than for rotation matrices. Treating q(t) as a vector in four dimensions, the
normalization is

q
q = Iql

where Iq I is the length of the input 4-tuple. This normalization is less expensive to
compute than Gram-Schmidt orthonormalization for rotation matrices.

Now to put all this together. For a single rigid body, the state vector is expanded to

[

x(t)]
Set) = q(t)

pet)
L(t)

(5.10)

The applied force is F(t) and the applied torque is T(t). The equations of motion are

[X] [:i] [m-Ip

]dS =!!...- q = ~ = wq /2
dt dt P P F

LiT

(5.1I)

The force F(t) and torque T(t) are always computable at time t. The state values for
p(t), q(t), and L(t) at time t are maintained by the physics simulator. The orientation
matrix R(t) is computed from q(t). The angular velocity is determined by equations
(5.5) and (5.8), namely,

wet) = J-I(t)L(t) = R(t)Jb~~yR(t)TL(t)

The corresponding quaternion w is computed from wet). After these calculations we
know all the quantities on the right-hand side of equation (5.11) and can apply the
numerical differential equation solver to compute the values at the next time t + b..t
for a suitably chosen step size b..t > O.

For n rigid bodies, the state vector contains n blocks of values, each block the
position, orientation, linear momentum, and angular momentum of a single rigid
body. The state vector of the entire system is

XI(t)
qI(t)

PI(t)
LI(t)

Set) = (5.12)
xn(t)

qn(t)

Pn(t)
Ln(t)

228 Chapter 5 Physics Engines

For the ith rigid body, the applied force is Fi(t) and the applied torque is Ti(t). The
equations of motion are

Xl (t) Xl (t) -1
m i PI

qi (t) qi (t) (J)lql!2

PI(t) PI(t) FI

dS d
Ll(t) Ll(t) Tl

- - = G(t, S) (5.13)
dt dt xn(t) xn(t) -1

mn Pn
qn(t) qn(t) (J)nqn/ 2

Pn(t) Pn(t) Fn
Ln(t) Ln(t) Tn

The nonlinear system of differential equations S= G(t, S) is solved numerically to
compute the state at any time during the physical simulation.

5.1.1 AN ILLUSTRATIVE IMPLEMENTATION

We have seen how to set up the differential equations that model the unconstrained
motion of a rigid body. An implementation of the ideas is provided in [BarDl] using
the C programming language as the basis. Of course, this is just to illustrate the
concepts. Your actual implementation will require a lot more effort to manage all
the rigid body data, and it will have to interact with a collision detection system. The
structure to represent rigid bodies is

struct RigidBody

/* constant quantities */
double mass; /* mass of rigid body */
double massinv; /* inverse mass of rigid body */
matrix jbody; /* inertia tensor in body coordinates */
matrix jbodyinv; /* inverse inertia tensor in body coordinates */

/* state variables */
point x; /* position of center of mass */
quaternion q; /* orientation of rigid body q (w,x,y,z) */
vector p; /* linear momentum */
vector L; /* angular momentum */

/* derived quantities, internal and external use */
matrix R; /* orientation matrix of rigid body */
vector v; /* linear velocity */
vector w; /* angular velocity */

5.1 Unconstrained Motion 229

/* derived quantities, for differential equation solver */
matrix jinv; /* inverse inertia tensor in world coordinates */
quaternion halfWQ; /* 0.5*w*q */

/* computed quantities */
vector force, torque;

};

A global array of bodies is used in the simulation. Before the simulation begins,
the mass and body-coordinate inertia and inverse inertia tensors are computed and
stored in the rigid body structures.

#define NBODIES <number of bodies goes here>
RigidBody body[NBODIES];

void InitializeBodyConstants ()
{

for (i = 0; i < NBODIES; i++)
{

/* The mass and inertia tensor of the body is specific to
the application. Whatever you need these to be, set
those values here. For rigid bodies that are convex
polyhedra, you will want to use the construction
provided in Section 2.5.5, "Mass and Inertia Tensor of
a Solid Polyhedron."

*/
initialize body[i] .mass;
initialize body[i] .jbody;

body[i].massinv = 1.0/body[i].mass;
body[i].jbodyinv = InvertMatrix(body[i].jbody);

If the rigid bodies are polyhedra, the mass and inertia tensor can be computed
using the algorithm in Section 2.5.5. A function Initial izeBodyStateO has the re­
sponsibility to initialize the state variables and the derived quantities of the rigid
bodies.

void ComputeDerivedQuantities (RigidBody* rb)
{

rb->R = ConvertToMatrix(rb->q);
rb->jinv = rb->R * rb->jbodyinv*Transpose(rb->R);
rb->v = rb->massinv * rb->p;

230 Chapter 5 Physics Engines

rb->w = rb->jinv * rb->L;
rb->halfWQ = 0.5 * ConvertToQuaternion(rb->w) * rb->q;

void InitializeBodyState ()

/* initialized the body values at time t 0 */
for (i = 0; i < NBODIES; i++)
{

/* state variables, your choice based on application */
initial ize body[i] .x;
initialize body[i] .q;
initialize body[i] .p;
initialize body[i] .L;

ComputeDerivedQuantities(&body[i]);

The numerical differential equation solver is assumed to accept the input state
as an array of floating point numbers. The decision to represent a rigid body using
the structure Ri gi dBody requires you to copy the state variables into an array for each
rigid body.

void CopyRigidBodyToStateArray (RigidBody* rb, double* s)
{

for (i = 0; i < 3; i ++)
s++ = rb->x[i]; / copy position */

for (i = 0; i < 4; i ++)
s++ = rb->q[i]; / copy orientation */

for (i = 0; i < 3; i++)
s++ = rb->p[i]; / copy linear momentum */

for (i = 0; i < 3; i ++)
s++ = rb->L[i]; / copy angular momentum */

The numerical solver computes an output state for the next time step based on
the input state. After doing so, the output state must be copied back into the rigid
body structure. The derived quantities are computed after the copy occurs.

void CopyStateArrayToRigidBody (double* s, RigidBody* rb)
{

for (i = 0; i < 3; i ++)
rb->x[i] = *s++; /* copy position */

for (i = 0; i < 4; i++)
rb->q[i] = *s++; /* copy orientation */

5.1 Unconstrained Motion 231

for (i = 0; i < 3; i++)
rb->p[i] = *s++; /* copy linear momentum */

for (i = 0; i < 3; i++)
rb->L[i] = *s++; /* copy angular momentum */

ComputeDerivedQuantities(rb);

In fact, equation (5.13) is set up so that the numerical solver can calculate output
state for the entire set of rigid bodies. The state array is a single array of sufficient size
to store all rigid body state. We assume two global state arrays, one for the input state
and one for the output state.

/* STATE_SIZE = (sizeof(point) + sizeof(quaternion) +
2 * sizeof(vector)) / sizeof(double) */

#define STATE SIZE 13
double inState[STATE_SIZE], outState[STATE_SIZE];

The input state is initialized by

void CopyAllRigidBodiesToStateArray (double* s)
{

for (i = 0; i < NBODIES; i++)
CopyRigidBodyToStateArray(&body[i],&s[i*STATE_SIZE]);

The differential equation solver will generate the output state, which must be copied
back to the rigid bodies.

void CopyStateArrayToAllRigidBodies (double* s)
{

for (i = 0; i < NBODIES; i++)
CopyStateArrayToRigidBody(&s[i * STATE_SIZE],&body[i]);

This copy occurs after each time step in case other parts of the application require
the information. For example, if the rigid body is represented by a triangle mesh
and stored in body coordinates, the position and orientation will be needed by the
graphics system for the model-to-world transformation matrix that is used to display
the object in the world. We will also need a helper function for transferring between
the input and output states.

void CopyOutStateToInState ()
{

memcpy(inState,outState,NBODIES * STATE_SIZE * sizeof(double));

232 Chapter 5 Physics Engines

This allows us to call the numerical solver within a loop, each time feeding it the input
state.

The numerical differential equation solver requires knowing the initial time t,
the initial state Set), the time step /).t > 0, and the right-hand side functions G(t, S)
of the state differential equation. The output of the solver is an approximation to
Set + /).t). Generic solvers require G to be provided as an array of functions. The
solver in [BarOl] is not quite in this form; rather ours takes advantage of the fact that
the functions to handle a single rigid body are the same for all other rigid bodies. The
solver also assumes a function that computes the force and torque for a rigid body.
Finally, the assumption is that the state information is correct for all rigid bodies for
the current time.

void ComputeForceAndTorque (double t, RigidBody* rb)
{

/* Application-specific calculations that compute the values
rb->force and rb->torque. */

void ComputeG (RigidBody* rb, double* result)

for (i = 0; i < 3; i ++)
*result++ = rb->v[i]; // dx/dt = p/m = v

for (i = 0; i < 4; i++)
*result++ = rb->halfWQ[i]; // dq/dt = w*q/2

for (i = 0; i < 3; i ++)
*result++ = rb->force[i]; // dp/dt F

for (i = 0; i < 3; i++)
*result++ = rb->torque[i]; // dL/dt T

void G (double t, double* input, double* result)

/* computation of force/torque require bodies to store
current state */

CopyStateArrayToAllRigidBodies(input);
for (i = 0; i < NBODIES; i++)
{

ComputeForceAndTorque(t,&body[i]);
ComputeG(&body[i],&result[i * STATE_SIZE]);

The differential equation solver is available as a function:

5.1 Unconstrained Motion 233

typedef void (*GFunction)(double, double*, double*);
void Solve (double t, double dt, double* SO, double* SI, GFunction G);

where t is the current time, dt is the time step, SO is the input state, S1 is the output
state, and Gis the function corresponding to the right-hand side G(t , S) of the system
of equations. For the sake of illustration, a numerical solver that uses Euler's method
follows.

void Solve (double t, double dt, double* SO, double* SI,
GFunction G)

G(t,SO,SI);
for (i = 0; i < NBODIES * STATE_SIZE; i++)

SI[;] = SO[;] + dt * SI[;];

In practice you will most likely use a Runge-Kutta fourth-order solver. Moreover, you
will include code for the renormalization of the orientation quaternion after the loop.

Finally, we arrive at the simulation loop, written as a self-contained operation.

void DoSimulation ()
{

InitializeBodyConstants();
InitializeBodyState();
CopyAllRigidBodiesToStateArray(outState);

double t = <your choice of initial time>;
double dt = <your choice of time step>;
for (int step = 1; step <= maxSteps; step++, t += dt)
{

CopyOutStateToInState();
Solve(t,dt,inState,outState,G);
CopyStateArrayToAllRigidBodies(outState);
/* display bodies and other application work goes here */

In practice you do not want to tie together the physics and graphics in this manner.
Instead, each iteration of the simulation loop is called within the application's idle
function to obtain a coarse-level form of time slicing. In that way the various game
systems (graphics, physics, networking, AI, etc.) can be scheduled in an appropriate
manner.

234 Chapter 5 Physics Engines

5.1.2 A PRACTICAL IMPLEMENTATION

CODE

RigidBody

Keep in mind that the code and pseudocode shown previously is designed to illustrate
how all the pieces come together in the physics simulation. In practice you will want
an implementation that is object oriented and more efficient than the illustrative one.
Let us take a closer look at the illustrative example.

The main sources of inefficiency are all the copying ofdata between the Rig i dBody
structures and the state arrays. Assuming Euler's method is in use, manually stepping
through the DoSimulation function we have

initialize rigid bodies;

/* copy so that rbvalues == outstate */
CopyAllRigidBodiesToStateArray(outState);

step = 1;

/* copy so that instate == outstate */
CopyOutStateToInState();

/* called in G, not necessary to do this */
CopyStateArrayToAllRigidBodies(instate);

/* changed in Solve */
outs tate = new values;

/* copy so that rbvalues == outstate */
CopyStateArrayToAllRigidBodies(outstate);

An invariant of the loop is that the rigid bodies and the output state array always
store the same values. Note that the CopyStateArrayToAll Ri gi dBodi es function call
within the function Gis not necessary because the rigid bodies already have the same
values as the input state at that moment. A differential equation solver using multiple
function evaluations, when used in the illustrative code, does require the copy. For
example, the midpoint method uses two function evaluations. The implementation
of the solver for this method is

void Solve (double t, double dt, double* SO, double* SI,
GFunction G)

G(t,SO,SI);
for (i = 0; i < NBODIES * STATE_SIZE; i++)

V[i] = SO[i] + 0.5 * dt * SI[i];

G(t + 0.5 * dt,V,SI);

5.1 Unconstrained Motion 235

for (i = 0; i < NBODIES * STATE_SIZE; i++)
S1[i] = SO[i] + dt * Sl[;];

This solver does require a temporary array V of the same size as the state arrays.
Manually stepping through the simulation:

initialize rigid bodies;

/* copy so that rbvalues == outstate */
CopyAllRigidBodiesToStateArray(outState);

step = 1;

/* copy so that instate == outstate */
CopyOutStateToInState();

/* called in G, not necessary to do this */
CopyStateArrayToAllRigidBodies(instate);

V = temporary values;

/* called in G, necessary since rbvalues 1= V */
CopyStateArrayToAllRigidBodies(V);

/* changed in Solve */
outstate = new values;

/* copy so that rbvalues == outstate */
CopyStateArrayToAllRigidBodies(outstate);

The copy in the first call of Gis not necessary, but the second one is. The rigid
body values are the same as the input state values after the first call, but the rigid
body values need to be set to temporary Vvalues for the second call. The copy in
that second call guarantees that the computation for force and torque will occur with
the current body values and that the computations in ComputeG will occur with the
current values.

The redundant copy in the first call of Gis easily remedied by adding a Boolean
parameter.

void G (bool doCopy, double t, double* input, double* result)

if (doCopy)
CopyStateArrayToAllRigidBodies(input);

236 Chapter 5 Physics Engines

for (i = 0; i < NBODIES; i++)
{

ComputeForceAndTorque(t,&body[i]);
ComputeG(&body[i],&result[i * STATE_SIZE]);

Euler's method calls G(fal se, t,SO,Sl), whereas the midpoint method calls G(fal se,
t, SO, Sl) the firsttime and G(t rue, t + 0.5 * dt, V, Sl) the second time.

But why are we copying in the first place? The design of the structure Ri gi dBody
is intended to allow public access to human-readable data members. The design of
the state array is to be true to the formulation of equation (5.13). Neither design
is necessary. Instead, we will use an object-oriented approach whereby the interface
hides the representation of the data and allows access to it through public member
functions. The main design goal of our rigid body class is to encapsulate the state
handling to support a simulation of the form:

void DoSimulation ()
{

RigidBody body[n];
for (i = 0; i < n; i++)

body[i] .Initialize«parameters»;

double t = <your choice of initial time>;
double dt = <your choice of time step>;
for (int step = 1; step <= maxSteps; step++, t += dt)
{

for (i = 0; i < n; i++)
body[i].Update(t,dt);

/* display bodies and other application work goes here */

The class definition is shown next. The position is x, the orientation as a quater­
nion is Q, the linear momentum is P, the angular momentum is L, the orientation as a
matrix is R, the linear velocity is V, and the angular velocity is W. The mass is mass and
the inertia tensor in body coordinates is inert i a. The interface is written in a simpli­
fied manner for illustrative purposes. The actual interface in the source code is more
extensive.

class RigidBody
{

public:
RigidBody (double mass, matrix inertia);

5.1 Unconstrained Motion 237

virtual -RigidBody ();

void SetState (point X, quaternion Q, vector P, vector L);
void GetState (point& X, quaternion& Q, vector& P, vector& L);

II forceltorque function format
typedef vector (*Function)
(

) ;

double,
point,
quaternion,
vector,
vector,
matrix,
vector,
vector

II time of application
II position
II orientation
II linear momentum
II angular momentum
II orientation
II linear velocity
II angular velocity

II for computing external forces and torques
void SetForceFunction (Function force);
void SetTorqueFunction (Function torque);

II Runge-Kutta fourth-order differential equation solver
void Update (double t, double dt);

protected:
II convert (Q,P,L) to (R,V,W)
void Convert (quaternion Q, vector P, vector L,

matrix& R, vector& V, vector& W) const;

II constant quantities
double m_mass, m_invMass;
matrix m_inertia, m_invInertia;

II state variables
vector m_X;
quaternion m_Q;
vector m_P;
vector m_L;

II position
II orientation
II linear momentum
II angular momentum

II derived state variables
matrix m_R; II orientation matrix
vector m_V; II linear velocity
vector m_W; II angular velocity

238 Chapter 5 Physics Engines

II force and torque functions
Function m_force;
Function m_torque;

};

The constructor and the SetState member function make up the initialization
portion of the physical simulation. The conversion from the primary state (quater­
nion orientation, linear momentum, and angular momentum) to the secondary state
(matrix orientation, linear velocity, and angular velocity) is handled via the member
function Convert. The conversions require access to the rigid body mass and inertia
tensor, thus this function is nonstatic.

void RigidBody::Convert (quaternion Q, vector P, vector L,
matrix& R, vector& V, vector& W) const

Q.ToRotationMatrix(R);
V = m_invMass * P;
W= R * m invlnertia * Transpose(R) * L;

Rather than having force and torque data members to store the current force
and torque, we use function pointers. The force and torque vectors are required only
during the differential equation update step, so there is no need to store the vectors
with the rigid body. The force and torque functions take as input the current time and
a list of state information. As noted earlier, one of the reasons the illustrative example
code copies data from the state array to the rigid bodies during the multifunction
evaluation differential equation solver is to make sure that the force and torque
are computed with the current state values. These state values persist only for the
lifetime of the update call of the solver since they are only needed temporarily by the
multifunction evaluation algorithm. They may as well be stack variables, the main
consequence being that the global state arrays are no longer necessary; each rigid
body is now responsible for updating itself. The member function Update implements
a Runge-Kutta fourth-order solver.

void RigidBody::Update (double t, double dt)
{

double halfdt = 0.5 * dt, sixthdt = dt I 6.0;
double tphalfdt = t + halfdt, tpdt = t + dt;

vector XN, PN, LN, VN, WN;
quaternion QN;
matrix RN;

II Al = G(t,SO), Bl SO + (dt I 2) * Al
vector AIDXDT = m_V;

5.1 Unconstrained Motion 239

quaternion A1DQDT = 0.5 * m_W * m_Q;
vector A1DPDT = m_force(t,m_X,m_Q,m_P,m_L,m_R,m_V,m_W);
vector A1DLDT = m_torque(t,m_X,m_Q,m_P,m_L,m_R,m_V,m_W);
XN = m_X + halfdt * A1DXDT;
QN = m_Q + halfdt * A1DQDT;
PN = m_P + halfdt * A1DPDT;
LN = m_L + halfdt * A1DLDT;
Convert(QN,PN,LN,RN,VN,WN);

II A2 = G(t + dt I 2,81), 82 = SO + (dt I 2) * A2
vector A2DXDT = VN;
quaternion A2DQDT = 0.5 * WN * QN;
vector A2DPDT = m_force(tphalfdt,XN,QN,PN,LN,RN,VN,WN);
vector A2DLDT = m_torque(tphalfdt,XN,QN,PN,LN,RN,VN,WN);
XN = m_X + halfdt * A2DXDT;
QN = m_Q + halfdt * A2DQDT;
PN = m_P + halfdt * A2DPDT;
LN = m_L + halfdt * A2DLDT;
Convert(QN,PN,LN,RN,VN,WN);

II A3 = G(t + dt I 2,82), 83 = SO + dt * A3
vector A3DXDT = VN;
quaternion A3DQDT = 0.5 * WN * QN;
vector A3DPDT = m_force(tphalfdt,XN,QN,PN,LN,RN,VN,WN);
vector A3DLDT = m_torque(tphalfdt,XN,QN,PN,LN,RN,VN,WN);
XN = m_X + dt * A3DXDT;
QN = m_Q + dt * A3DQDT;
PN = m_P + dt * A3DPDT;
LN = m_L + dt * A3DLDT;
Convert(QN,PN,LN,RN,VN,WN);

II A4 = G(t + dt,83), Sl = SO + (dt I 6) * (AI + 2 * A2 + 2 * A3 + A4)
vector A4DXDT = VN;
quaternion A4DQDT = 0.5 * WN * QN;
vector A4DPDT = m_force(tpdt,XN,QN,PN,LN,RN,VN,WN);
vector A4DLDT = m_torque(tpdt,XN,QN,PN,LN,RN,VN,WN);
m_X = m_X + sixthdt * (A1DXDT + 2.0 * (A2DXDT + A3DXDT) + A4DXDT);
m_Q = m_Q + sixthdt * (A1DQDT + 2.0 * (A2DQDT + A3DQDT) + A4DQDT);
m_P = m_P + sixthdt * (A1DPDT + 2.0 * (A2DPDT + A3DPDT) + A4DPDT);
m_L = m_L + sixthdt * (A1DLDT + 2.0 * (A2DLDT + A3DLDT) + A4DLDT);
Convert(m_Q,m_P,m_L,m_R,m_V,m_W);

After each call to Update, all rigid body state variables have correct and consistent
information due to the last call to Convert.

240 Chapter 5 Physics Engines

5.2 CONSTRAINED MOTION

The previous section was about the unconstrained motion of rigid bodies that are
assumed not to interact with each other. We used the equations of motion that fol­
low from Newtonian dynamics, a natural choice in the absence of constraints on the
bodies. In realistic applications we, in fact, have to deal with interaction among many
objects. A physics engine must decide what to do when two objects collide. The ap­
proach in [BarDl] is to enforce nonpenetration constraints. When one object collides
with another, the two are not allowed to penetrate into each other. Despite the con­
straints imposed by collisions between objects, the Newtonian approach is still used
to drive the physical simulation. The collision response for objects in contact falls into
two categories based on how the objects collide at a point, either a colliding contact or
a resting contact. When all contact points are known, the differential equation solver
is interrupted during the simulation and the various physical parameters are adjusted
based on the type of contact. The solver is then restarted using the new parameters.
Adjustment of the physical parameters at points of colliding contact requires the in­
troduction of impulsive forces. Adjustment of the physical parameters at points of
resting contact requires computing contact forces. Sections 5.2.1 and 5.2.2 cover these
topics in detail. The Baraffapproach is quite popular with people interested in adding
physical simulations to their games, but this approach is not the only way to go about
handling the physics. For example, Section 5.2.5 presents an alternative that is based
on Lagrangian dynamics, a natural choice for dealing with motion in the presence of
constraints.

5.2.1 COLLISION POINTS

Let us now define what is meant by colliding contact and resting contact. At a point
ofcontact oftwo objects we need to decide how the objects will continue moving, the
collision response, so to speak. For example, if a rigid ball strikes a flat surface at an
angle, you most likely want the ball to bounce away from the surface. In particular,
your natural instinct is to reflect the velocity vector through the normal ofthe surface
so that the angle of incidence is equal to the angle of reflection. This type of contact
between moving rigid bodies is called colliding contact because the velocities of the
bodies cause them to tend to penetrate into each other. Figure 5.1(a) shows a point
of colliding contact.

The velocity ofbody A, shown in Figure 5.1(a) as VA' has direction into the body
B at the point of contact P. If A has zero velocity at P or has velocity perpendicular
to the surface of body B at P, the point of contact is said to be a resting contact. This
situation is shown in part (b) of the figure. The last possibility is that bodies A and B
are separating, as shown in part (c) of the figure. The figure also shows a normal
vector N to the surface of body B at the contact point P. The algebraic quantity

(a)
B

(b)
B

(c)

5.2 Constrained Motion 241

B

Figure 5.1 (a) Colliding contact. Body A moves into body B. (b) Resting contact. Body A rests
on body B and attempts neither to move into B nor to separate from B. Body A is
allowed to slide along B. (c) Separation. Body A has a velocity that separates it from
bodyB.

that distinguishes between the three cases is the magnitude of the velocity VA in the
direction of the normal N:

N· VA < 0

N·VA=O

N· VA> 0

Colliding contact

Resting contact

Separation

(5.14)

The dot product N . VA is the speed of body A in the normal direction.
Recall that we are restricting our attention to rigid bodies in the shape of convex

polyhedra. The contact set between two convex polyhedra is potentially more com­
plicated than just a single point that arises because of a vertex-face intersection. The
set is infinite in the case ofedge-face or face-face intersections. To simplify matters we
will work with a reduced contact set that consists only of vertex-face or edge-edge in­
tersections, the latter case only when the edges are not parallel. If the collision system
detects an edge-face intersection, we will record only an edge end point (a vertex) if
it is contained in the face and an edge-edge intersection point if the edge overlaps an
edge of the face. If a face-face intersection is detected, the only recorded points are
vertices of one face contained in the other face or edge-edge intersections, one edge
from each face. Figure 5.2 illustrates this.

The point Po is generated by a vertex ofB and a face ofA; the point P2 is generated
by a vertex of A and a face of B; and points PI and P3 are generated by edges of A
andB.

The reduction to a finite point set helps to minimize the time spent in the physical
simulation. However, this is only an approximation to the actual physics. Ifour target
goal is N frames per second, the computational time available for one frame is 1/N

242 Chapter 5 Physics Engines

Figure 5.2 The reduced contact set for two convex polyhedra A and B.

seconds. If the physics simulation does not use all of this time, ideally we would
calculate the line segment of intersection in an edge-face intersection or the polygon
of intersection in a face-face intersection, then proceed with the collision response
accordingly. We also process the reduced contact set a point at a time. The collision
response becomes dependent on the order and is not quite physically correct. This
can be a problem, especially when a rigid body makes simultaneous contact with two
(or more) other rigid bodies.

5.2.2 COLLISION RESPONSE FOR COLLIDING CONTACT

Let us now formulate how our physics simulation will respond at a point of colliding
contact. Let to denote the first time of contact between a pair of rigid bodies A and
B. Let Po be the contact point. If the point is a vertex-face intersection, we choose
the convention that the vertex is from the first body and the face is from the second
body. Let No be the unit-length, outer pointing normal for the face. If the point is an
edge-edge intersection, let No be the unit-length cross product ofthe edge directions.
The vector is chosen to point outside the second body of the pair. For a brief time
interval before the collision, the path of the point on the first body contributing to
the intersection is PA (t) for t .:s to, and PA (to) = Po. During that same time interval
the second body is (potentially) moving; the path of the point on it that contributes
to the intersection is PB(t) for t :s to, and P B(to) = Po. Backing up in time, the
normal vector at the point on the second body contributing to the intersection is
N(t), and N(to) = No. The signed distance between the body points contributing to
the intersection, as measured in the normal direction, is

The velocity component in the normal direction has magnitude

d(t) = N(t) . (PA (t) - PB(t)) + N(t) . (PA (t) - PB(t))

(5.15)

(5.16)

5.2 Constrained Motion 243

At the instant of contact, d(to) = °and d(to) = No . (PA (to) - PB(to)). The quantity
d(to) is exactly what was mentioned in equation (5.14) for determining the type of
contact point that Po is.

In Section 2.2 on kinematics, we derived the velocity equation for a particle,
namely, equation (2.43). We have two particles in motion, hence two velocity equa­
tions:

(5.17)

EXAMPLE

5.1

where Vc is the velocity of the center of mass Xc of body C (C is either A or B), we
is the angular velocity of the body about its center of mass, and rc = Pc - Xc is the
location of the point relative to the center of mass. Equation (2.43) also had a term
Drc / Dt, but for rigid bodies it is the zero vector. At the contact time, the speed of
Po in the normal direction No is

All the quantities on the right-hand side of this equation are known during the
physics simulation at the contact time and are stored as part of the state information
of the rigid body, just as in the case ofunconstrained motion. Thus, after the collision
detection system reports all contact points, we may iterate over them and determine
which of them are colliding contacts, resting contacts, or separating points.

Impulses

To prevent interpenetration at Po when £I (to) < 0, the relative velocity PA (t) - PB(t)
must be changed in a discontinuous manner. Of course, this is not physically possible
since any forces acting on the bodies takes some time to change the velocity smoothly.

To illustrate, consider a one-dimensional problem where a particle located at x(t)
on a line travels with constant velocity i(t) = Vo > 0. The implication, of course,
is that no forces are acting on the particle. The path of motion is x(t) = Xo + vot,
where Xo is the initial position of the particle. If the particle strikes an object located
at Xl > Xo at time to > 0, so that Xl = Xo + voto, you would expect the object to give
way over some time interval [to, to + 8], for a small positive 8. During this interval
the particle and object remain in contact at the common position x(t) = Xl + pet)
for some function pet) such that p(to) = 0, p(to) = vo, p(to+ 8) = 0, and pet) > °
for t E (to, to + 8). For illustrative purposes, let pet) = vo(t - to)(to+ 8 - t)/8 whose
graph is a parabola. During the interval of contact the velocity of the particle is
i(t) = pet) = VO(8 - 2(t - to))/8. At the first contact, Vo = i(to) = P(to). At time
to + 8/2 the particle and object come to rest, i (to + 8/2) = 0. The particle then
reverses direction. At time to + 8 the particle's velocity is i(to + 8) = -vo.

244 Chapter 5 Physics Engines

(Example 5.1
continued)

p

(a) (b)

p

(c)

Figure 5.3 The effects on pet) as 8 approaches zero: (a) small 8; (b) smaller 8; and (c) really
small 8 (like zero).

The particle had velocity va at time to and now has the opposite velocity - va at time
to + 8. The change in velocity occurred over a time period of duration 8 > O. This
is true no matter how small the duration is, so consider taking a limit and let 8 go
to zero. Intuitively, by letting 8 = 0, we have changed the velocity in a discontinuous
manner:

t .::: to
t > to

Mathematically, however, the limit is not defined. Consider what has to happen to
pet) as 8 approaches zero. Figure 5.3 shows the graph of pet) for various values of 8.

The interval on which pet) > 0 gets smaller while the maximum value of p, namely,
vol8, gets larger. The limiting function appears to be

{
0,

o(t - to) =
00,

t i=- to
t = to

The physicists refer to 0(t - to) as the Dirac delta function. It is not a function in the
mathematical sense, but the mathematicians refer to such an entity as a generalized
function. Its properties are defined in terms of integrals rather than using the informal
definition. For example, one important property is

10
t { g(to) if 0 _< to <_ t

A
g(r)o(r - to) dr = 0

otherwise
(5.19)

In the special case when get) == 1we have J~ o(r - to) dr = u(t - to)' where u(s) =
1 for s :::: 0 and u (s) = 0 for s < O. The velocity of our particle is consequently

5.2 Constrained Motion 245

jet) = vo(l- 2u(t - to)) and the acceleration is x(t) = -2vo8(t - to)' The quantity
J(t) = -2mvo8(t - to) is referred to as an impulsive force.

For a discussion of delta functions in the context of differential equations, see
[Bra84]. A key idea discussed in that book is that an integration of Newton's second
law of motion produces

mv(t) - mv(O) = J.' F(r) dr

The integral on the right-hand side of this equation is called the impulse imparted
by the force. If we allow the force F(t) to include impulsive forces as motivated by
Example 5.1, then we can cause a discontinuity in the linear momentum of the
system. This is exactly what we do in our physical simulation at a point of colliding
contact.

Computing the Change ofVelocity

Rather than constructing an impulsive function that leads to a discontinuous change
in velocity at a point of colliding contact, we will select the desired velocity to be used
at that point after the impulse is applied. I mentioned earlier that the intuitive choice
you want to make for the new velocity is a reflection of the old velocity through the
normal vector. That is, ifY- is the (relative) velocity before the impulse and N is the
unit-length outer pointing normal, you can write

where N..l is that portion ofY- after projecting out the component in the N direction.
The velocity after the impulse is selected to be

Figure 5.4(a) illustrates the reflection.
The perfect reflection represents no loss of kinetic energy during the collision

event. We may, however, want to incorporate loss of energy to make the collision
response a bit more realistic. We can do this by introducing a coefficient ofrestitution,
E E [0, 1], and generate a postimpulse velocity of

Figure 5.4(c) shows such a vector. No kinetic energy is lost when E = 1 and the
reflection is perfect. The maximum amount of kinetic energy is lost when E = 0 and
the bodies remain in contact at the contact point, a change from colliding contact to
resting contact.

246 Chapter 5 Physics Engines

N

-(N.v-)N v+

e = 1

N

............. v+

N.L

a < e < 1

N

(a) (b) (c)

Figure 5.4 (a) Reflection ofthe preimpulse velocityy- through the contact normal to obtain the
postimpulse velocity y+. (b) An imperfect reflection that represents a loss of kinetic
energy. (c) An imperfect reflection that represents a maximum loss of kinetic energy.

In the following discussion, the contact time to is omitted from function argu­
ments for clarity. Let PA" and p1 denote preimpulse and postimpulse velocities for

Po as measured from body A. Let P:B and pt denote the similar quantities for body
B. From equation (5.17) we have

(5.20)

where the use of the plus and minus superscripts on the velocity terms is clear from
context. The impulsive force changes velocities at the contact time but not the posi­
tions of Po relative to the centers of mass, so the r terms do not require plus/minus
superscripts.

Let us begin by postulating an impulsive force F = fNothat affects body A at the
colliding contact point. The scalar f is the magnitude of the impulse that we need to
compute to obtain the desired postimpulse velocity vector. The impulsive force has a
contribution that changes the velocity of the center of mass, fNo/ mA' where mA is
the mass of body A. The preimpulse and postimpulse linear velocities are related by

(5.21)

The corresponding change in linear momentum is p1 = PA" + fNo. The impulsive
force also has a contribution that changes the angular velocity of the body via an
impulsive torque, Ji1(rA x fNo), where JA is the inertia tensor at the contact time

5.2 Constrained Motion 247

and is measured in world coordinates. The preimpulse and postimpulse angular
velocities are related by

(5.22)

The corresponding change in angular momentum is L1= LA + rA x fNo' Substi­
tuting equations (5.21) and (5.22) into the velocity equation (5.20) and applying a
few algebraic steps produces

(5.23)

The opposite direction impulsive force - F is applied to body B. A construction
similar to the previous one produces vt = vIi - fNo/mB' pt = P:B - fNo, wt =
wIi - Ii/(rB x fNo), Lt = L:B - rB x fNo, and

(5.24)

Equations (5.23) and (5.24) are combined to form the relative velocity

(5.25)

The final step in computing the magnitude f involves our choice of how the
postimpulse relative velocity relates to the preimpulse one. In particular, we choose a
coefficient of restitution E E [0, 1] and require that

(5.26)

Dot equation (5.25) with No, substitute equation (5.26) into the left-hand side, use
equation (5.20), and solve to obtain

f = -(1 + E)(No . (vA - vIi) + (wA . (rA x No) - wIi . (rB x No))) (5.27)

mAl + m:Bl + (rA x No)TIAl(rA x No) + (rB x No)Tlil(rB x No)

where rA = Po - XA and rB = Po - XB' Some algebraic steps were performed to
factor out the common expressions rA x No and rB x No. The right-hand side of
equation (5.27) depends only on constants (E, mAl, I A \ m:B\ IiI), preimpulse rigid

body state (XA, vA' w A' XB, vIi, wIi), and the contact information (Po, No). The
inverse inertia tensors I A

I and IiI are positive definite, implying ~T IAl~ > 0 and

~TIil~ > 0 for any ~ =1= o. Consequently, the denominator of f must be positive, so
the division is not of numerical concern in an implementation.

248 Chapter 5 Physics Engines

Pseudocode for processing a point of colliding contact follows and uses the
Ri gi dBody structure discussed in the illustrative implementation for unconstrained
motion.

void ProcessCollidingContact (RigidBody A, RigidBody B, point P,
vector N)

II compute impulse force
const double e = <coefficient of restitution>;
vector rA = P - A.x;
vector rB = P - B.x;
vector kA = Cross(rA,N);
vector kB = Cross(rB,N);
vector uA = A.jinv * kA;
vector uB = B.jinv * kB;
double fNumer = -(1 + e) * (Dot(N,A.v - B.v) + Dot(A.w,kA)

- Dot(B.w,kA»;
double fDenom = A.massinv + B.massinv + Dot(kA,uA)

+ Dot(kB,uB);
double f = fNumer I fDenom;
vector impulse = f * N;

II apply impulse to bodies to change linearlangular momentum
A.p += impulse;
B.p -= impulse;
A.L += f * kA;
B.L -= f * kB;

II compute derived quantities, linearlangular velocity
A.v = A.p * A.massinv;
B.v = A.p * B.massinv;
A.w += f * uA;
B.w += f * uB;

Notice that this function does not modify the centers of mass or orientations of
the rigid bodies. Only the differential equation solver may change these quantities
and only because of a positive increment in time. The 'colliding contact processing
represents the application of an impulse at the current instant of time.

Before we look at a couple of simple examples, let us make an observation. In
virtual environments you will want some immovable objects, the ground clearly an
ideal candidate. We can simulate an immovable object by specifying that it has infinite
mass and infinite principal moments, the former preventing translation of the center
of mass, the latter preventing rotation about the center ofmass. Since our simulations

EXAMPLE

5.2

5.2 Constrained Motion 249

are using only the inverse mass and inverse inertia tensor, we can instead set the
inverse mass to zero and the inverse inertia tensor to the zero matrix. The velocities
and momenta of an immovable object should also be set to zero. The values for the
center of mass and orientation are irrelevant in the simulation.

Consider a constant density square traveling with constant linear velocity toward a
sloped plane of 45 degrees from the horizontal. The square is assumed to have zero
angular velocity (not rotating about its center). The sloped plane is immovable. The
coefficient of restitution is assumed to be c = 1 for a completely elastic collision.
Gravity is not assumed here. Figure 5.5 illustrates.

(a) (b) (c) (d)

Figure 5.5

EXERCISE

5.1

(a) The square traveling toward a sloped plane. (b) The preimpulse configuration at
the instant of contact. (c) The postimpulse configuration at the instant of contact.
(d) The square moving away from the plane.

The square is labeled as body A and the slope as body B. Since the slope is immovable,
VB = WB = 0 always, and m:Bl = 0 and li/ = o.
The point of contact is P and the unit-length outer pointing normal to the slope is
N. The position of the contact point relative to body A is rA = P - XA, where XA
is the center of mass of A. In this special situation of a square and 45 degree slope,
the normal is N = -rAllrA!' in which case rA x N = O. The impulse magnitude is
f = -2mAN . vA' The postimpulse linear velocity is v1 = vA - 2(N . vA)N and

the postimpulse angular velocity is w1 = wA+ f lil(rA x N) = O. Therefore, the
square travels downward and bounces to the right with no change in linear speed or
angular velocity.

Did you expect the result of Example 5.2 to be that the square obtains a nonzero
angular velocity and starts to rotate after the impulse is applied? Speculate why the
square maintains a zero angular velocity.

250 Chapter 5 Physics Engines

Suppose body A is rectangular in shape, but not a square, and axis-aligned as the
square was. At the point of contact the normal N and the relative position r A are not
parallel, so u = r A x N =j=. 0. Show that the postimpulse velocities are

Make an intuitive argument that ifthe rectangle is wider than tall, the angular velocity
corresponds to a clockwise rotation around the vector pointing out ofthe plane ofthe
figure toward you. Similarly, argue that if the rectangle is taller than wide, the angular
velocity corresponds to a counterclockwise rotation about that same vector. Now
analyze the term JAIu and show how its values relate to the direction of rotation.

Multiple Contact Points

Example 5.2 and Exercise 5.1 are useful as a simple verification of the ideas regard­
ing impulses. Both involve a two-dimensional setting. What happens in a three­
dimensional setting? Specifically, let us add thickness to the rectangle of Exercise 5.1
and consider an axis-aligned box that is traveling vertically toward the sloped plane
in such a way that the contact occurs along an entire edge of the box. Figure 5.6 illus­
trates.

According to the convention mentioned earlier, the collision detection system
will report only the end points of the edge as collision points. I previously made an
innocuous statement about processing the collision points sequentially. The conse-

Figure 5.6 An axis-aligned box colliding with a sloped plane along an entire edge of the box,
(1- s)Po+ sP I for s E [0, 1].

5.2 Constrained Motion 251

quences of doing so must be weighed against the extra time needed to implement a
system that can handle points simultaneously.

Let us process the contact points sequentially starting with Po. The relative posi­
tion in body A is ro = Po - XA- Define Uo = ro x N. The magnitude of the impulsive
force and the postimpulse velocities are

+ -r J- 1
wA=JOAuO

In our full three-dimensional setting, Ji 1UO is not the zero vector! This means
that the box's postimpulse angular velocity is not zero and the box will begin rotating.
Now for the conundrum. Do we process the impulsive force at 1'1 next? Or should we
run one time step of the differential equation solver first? Either way we have issues to
consider. The impulsive force at Po was used to change the state of the rigid body A.
Point 1'1 was a collision point determined based on the previous state. If you were to
run the differential equation solver first, it is quite possible that 1'1 would no longer be
a collision point. In our example the angular velocity due to the impulse at Po could
rotate the corner at 1'1 up off the sloped plane, in which case we do not have to even
consider that point. On the other hand, the angular velocity could cause that corner of
the box to rotate through the plane, violating the nonpenetration constraint. To avoid
this dilemma, perhaps we should process the impulse at 1'1 first. The dilemma here is
that we just finished computing postimpulse velocities due to Po. In order to retain a
dependence on that point, you would most likely use the postimpulse velocities from
Po as preimpulse velocities for Pl' The relative position in body A is r1 = 1'1 - XA­
Define u1 = r1 x N. The magnitude ofthe impulsive force and the postimpulse (post­
postimpulse?) velocities are

It is not clear that this produces a reasonably correct physical response.
The simplest thing to do from an implementation perspective is to process a col­

lision point and change the state of the rigid bodies sharing that point, the changes
based on the impulsive force introduced at the point, then run the differential equa­
tion solver for one time step. Next, the collision detection system is enabled. If an
interpenetration has occurred, rerun the differential equation solver using a smaller
time step. Repeat until no interpenetrations occur or until a maximum number of
iterations has occurred.

The latter constraint is necessary because it is quite possible that interpenetration
occurs for any increase in time. In this case great care must be taken about how to pro­
ceed. You will need a system that can decide if motion is possible, and if so, what that
motion is. This is where even commercial packages can run into problems. Getting a
generic system to work in all cases is more of an art than a science. Invariably, you will
need to use knowledge of the types of objects you have and the environment in which
they are interacting in order to adapt the generic system for your application. A more

252 Chapter 5 Physics Engines

complicated solution is to process the points simultaneously. In our example of a box
colliding with a plane, let us make the problem even more general and determine how
to introduce an impulsive force that applies to the entire edge of intersection rather
than just to end points of the edge.

Our approach requires a better understanding of delta functions, introduced in
Example 5.1. The delta function of that example was motivated as the limit of a
function as a parameter £ was decreased to zero. Equation (5.19) shows the selection
property ofa delta function; integrating a function get) against a delta function selects
the function value g (to), where to is the discontinuity of the delta function. As shown
in that example, the selection is for the time variable. Delta functions can be defined
to select spatial variables as well.

EXAMPLE

5.3
Define the function u (x, y, 77, £) = II (477£) for Ix I ~ 77 and Iy I ~ £, but zero oth­
erwise, for 77 > °and £ > 0. The volume of the region bounded by the graph of
u(x, y, 77, £) and the xy-plane is 1 regardless of the choice of £. For any continuous
function g(x, y), define the functions ¢(x, y) and ljJ(y) so that a¢lax = g(x, y)

and dljJldy = g(O, y). Consider the integral

f. 1£ lrJ g(x y)
/(77, £) = g(x, y)u(x, y, 77, £) dx dy = --'- dx dy

][{2 -£ -rJ 477£

We may compute the limits of / (77, £) as 77 and £ approach zero. This is done infor­
mally here (with apologies to mathematicians who cringe at swapping the order of
limit and integration without justification):

lim lim / (77, £) = lim lim 1£ l rJ
g(x, y) dx dy

£-+0 rJ-+ O £-+0 rJ-+ O -£ -rJ 477£

= lim lim 1£ ¢(77, y) - ¢(-77, y) dy
£-+0 rJ-+ O _£ 477£

I, 1£ I' ¢(77, y) - ¢(-77, y) d= 1m 1m y
£-+0 _£ rJ-+ O 477£

I, 1£ I' g(77, y) + g(-77, y) d= 1m 1m y
£-+0 _£ rJ-+O 4£

= lim 1£ g(O, y) dy
£-+0 _£ 2£

= lim ljJ (£) - ljJ (- £)
£-+0 2£

= lim g(O, £) + g(O, -E)
£-+0 2

= g(O, 0)

Definition of ¢

Interchange limit,
integration

I'Hopital's rule

Definition of ljJ

I'Hopital's rule

5.2 Constrained Motion 253

Ifwe informally think of 8(x, y) as the limit of u(x, y, 1], 8) when 1] and 8 go to zero,
we have the selection property

l
Y2

1
X2

g(x, y)8(x - xa, y - Ya) dx dy
YI Xl

= {g(xa, Ya)' xl:::; x :::; x2' Y1:::; Y :::; Y2
o otherwise

This is a two-dimensional analog of equation (5.19).

(5.28)

EXAMPLE

5.4

We can use the last example to formulate the impulse function at a single point
of contact. The example showed the selection for a scalar function of two spatial
variables, but the idea clearly extends to vector-valued functions of three spatial
variables. The impulse occurs at a spatial point Pa and at a time ta, so the function
may be defined using the selection property of the delta function, both in time and

_space. The function to which the selection is applied is G(X, t) = fNa, a constant in
space and time. The formulation below is a bit loose with the mathematical notation
so as not to cloud the issue with facts:

F = Ix I.G(X, t)8(t - ta)8(X - Pa) dX dt

= Ix G(X, ta)8(X - Pa) dX

= G(Pa, ta)

=fNa

Yet one more variation of the delta function is needed to handle the case of
colliding contact of a box edge with the sloped plane.

Define u(x, y, 8) = 1/(48) for Ix I :::; 1 and lyl :::; 8, but zero otherwise, for 8 > o.
The volume of the region bounded by the graph of u(x, y, 8) and the xy-plane is 1
regardless of the choice of8. For any continuous function g(x, y), define the function
¢(x, y) so that a¢/ay = g(x, y). Consider the integral

J. 11 1£ g(x y)
/(8) = g(x, y)u(x, y, 8) dy dx = --'- dy dx

R2 -1 -£ 48

We may compute the limit of / (8) as 8 approaches zero. This is again done informally:

254 Chapter 5 Physics Engines

(Example 5.4
continued)

I, I() I' 1118

g(x, Y) d d1m£=lm ---yx
8---+0 8-+0 -1 -8 4£

I
, 11 ¢(x, £) - ¢(x, -E) d= 1m x

8-+0 -1 4£

I ll' ¢(x,£)-¢(x'-£)d
= 1m x

_1 8---+ 0 4£

11 I' g(x, £) + g(x, -E) d= 1m x
_1 8---+ 0 4

= (I/2) i', g(x, 0) dx

Definition of¢

Interchange limit, integration

I'H6pital's rule

You might have noticed that the right-hand side is the average value (in the integral
sense of calculus) of g(x, 0) over the line segment (x, 0) for Ix I ::::: 1. Informally,

!~1 g(x, 0) dx "adds" up all the g values along the segment. The "total number of
values" that are added is the length of the interval, in our case 2. The average is just
the ratio of these two numbers.

Informally, the delta function that is obtained by letting £ approach zero in u (x, y, £)

has the averaging property rather than a selection property. The integral of g(x, y)
against the delta function produces the average value of g on the line segment con­
necting (-1, 0) and (1, 0).

Using some more informal notation, let S denote a line segment in space. Let
G(X) be a vector-valued function of the spatial variable X. Let 8(X, S) denote the
type of delta function we constructed in the last example. This delta function has the
averaging property

[G(X)8(X, S) dX = !XES G(X) dS = ---,-!X-,-",E.::-S_G_(X_)_d_S
Jx !XES dS Length(S)

(5.29)

Now we can address the problem of computing an impulsive force when the con­
tact set is a line segment (the box edge in our example). Let f be a to-be-determined
scalar constant and let N be the outward unit-length normal to the sloped plane. Let
the edge have end points Po and P l' The edge is denoted by S and has an arc length
parameterization (1- s/l)Po+ (s/l)P 1 for s E [0, l], where l = IP1 - Pol. The up­
date of the linear velocity for body A is

5.2 Constrained Motion 255

v! = vA + mAl !x1fN8(t - ta)8(X, S) dt dX

= VA + mAl !x fN8(X, S) dX

= vA + mAlf-l [fN dS
IXES

= vA + mAlf-l(ffN)

=VA + mAlfN

The update of the linear velocity for body B is

The update of the angular velocity for body A is

W! = w A + iiI !x1rA (X, t) x fN 8(t - ta)8(X, S) dt dX

= WA + iiI !x rA (X, ta) x fN 8(X, S) dX

=wA+iilf-l [rA(X,ta)xfNdS
IXES

=WA+ lA1r1 (!xES rA(X, to) dS) x iN

= W A+ lAIr 1 (1'(1- S /f)'Yo+ (s/0'Y1- XA dS) x iN

=wA+ iiI ((Pa+ Pl)/2 - XA) x fN

where M = (Pa + PI) /2. The update of the angular velocity for body B is

(5.30)

(5.31)

(5.32)

(5.33)

The update formulas for the angular velocities have a physically intuitive appeal.
The torque applied to the line segment shows up as a torque applied to the center
of mass of the line segment. The construction of equation (5.27) from equations

256 Chapter 5 Physics Engines

(5.20) through (5.26) is still valid for the line segment of contact, but applied to the
midpoint. The magnitude of the impulse is therefore

-(1 + E)(N . (vA - vB) + (wA. (rA x N) - wB. (rB x N)))

f = mAl + mBI + (rA x N)TJiI(rA x N) + (rB x N)TJiI(rB x N)

where r A = M - XA and r B = M - XB'

(5.34)

EXERCISE

5.2

EXERCISE

5.3

EXAMPLE

5.5

The collision system suggested in [BarOl] computes only a finite set of contact points
(the reduced contact set; see Figure 5.2). If an edge ofbody A intersects a face ofbody
B, only the end points of the edge, Po and PI' are stored by the system. Derive equa­
tions for the velocity updates and the impulse magnitude, analogous to equations
(5.30) through (5.34), that correspond to applying an impulsive force simultaneously
to the end points. (Hint: The delta function for a point and the delta function for a
segment are limits of functions whose volumes are always 1.)

Suppose your collision system computes the full set of intersection points for two col­
liding (but not interpenetrating) convex polyhedra. The set consists of either a single
point, a line segment, or a convex polygon. We have seen how to compute an impulse
force for a single point or for a line segment. If the intersection is a convex polygon,
derive equations for the velocity updates and the impulse magnitude, analogous to
equations (5.30) through (5.34).

Now suppose the collision system stores only the vertices of a convex polygon of
intersection. Derive equations for the velocity updates and the impulse magnitude,
analogous to equations (5.30) through (5.34), that correspond to applying an impul­
sive force simultaneously to the vertices. (Hint: Same as for Exercise 5.2.)

We finish the colliding contact discussion with an example that illustrates another
problem with which a collision system must deal.

Consider a rectangle traveling downward that intersects two other objects simultane­
ously. Figure 5.7 illustrates. As shown in the figure, body A intersects body B at Po
and body C at Pl' The outward unit-length normals at the contact points are No and
N l' The velocity ofbody A is vA = (0, -A) for A > o. The slope ofthe diagonal line of
B is -1 and the slope of the diagonal line of C is 2. As we saw in Example 5.2, an im­
pulsive force applied to Po (with coefficient of restitution E = 1) causes a postimpulse
velocity:

Figure 5.7

5.2 Constrained Motion 257

A rectangle travels downward and intersects two objects simultaneously.

= (0, -A) + (A, A)

= (A, 0)

Ifwe were to apply that impulse without considering the other contact point, body A
tends to move to the right. It cannot because body C impedes the motion of body A
in that direction. Similarly, ifwe apply the impulse at Pl' the postimpulse velocity is

= (0, -A) + (-4A/5, A/5)

= (-4A/5, -3A/5)

Body B impedes the motion of body A in this direction. Applying simultaneous
impulses (see Exercise 5.2), the postimpulse velocity is

= (A/lO, -4A/5)

258 Chapter 5 Physics Engines

(Example 5.5
continued)

The implied motion is to the right and downward, in which case both bodies B
and C impede the motion of A. So how do you handle this situation in a physically
meaningful manner? Two choices are (1) require body A to stop or (2) require body
A to bounce upward.

If body A is very heavy compared to bodies Band C, the first choice is reasonable.
The choice is also reasonable when you have a body that you want to collide with an
immovable surface, and you want the body not to bounce at the instant of collision
but to slide down the surface. The initial contact is colliding contact, but you want
the component of velocity in the surface-normal direction set to zero rather than
reflected as in the impulse approach. This is an instantaneous change from being a
colliding contact to a resting contact. The body still has a nonzero velocity, but it is
now orthogonal to the surface normal, so the body can slide along the surface.

If instead you want the body to bounce upward, you will need an algorithm to
determine the new velocity of the center of mass of A. This might be as simple as
reversing the direction and choosing y1= -yA' Ofcourse, you also need to compute
a new angular velocity w1. If the slope of the diagonal edge for C were chosen to be
1, the symmetry of the contact would imply w1= O. With a slope of 2 as shown
in Figure 5.7, your physical intuition says that body A should "slip downhill" a
little bit more at PI than at Po. The normals at the contact points can be used to
generate the angular velocity. For our current example, you might arbitrarily choose
w1 = ~No x N I , where ~ is the x-component of No + N I ·

Simultaneous Processing of Contact Points

Either choice in Example 5.5 appears to require feedback from the user or application
about how to update the rigid body parameters when the body has multiple colliding
contact points. In hopes that we can build a collision detection and response system
that is completely automated, let us reconsider how impulse forces were chosen.

By definition, at a point of colliding contact the magnitude of the velocity in the
normal direction at the point of contact is negative. Equation (5.16) provides us with
a formula for the relative velocity. At the instant of contact, d(to) = No . (PA(to) ­
PB(to)), where No is the normal at the contact point Po. The paths on bodies A
and B for the points that meet at time to are PACt) and PB(t), with PA(tO) = Po =
PB(to). The relative velocity between the points on the path is PA(t) - PB(t). The
construction of impulse functions was based on two assumptions:

1. The points of colliding contact will be processed one at a time.

2. The relative velocity must be reflected through the contact normal using equation
(5.26).

In light of Example 5.5, both of these assumptions create problems.

5.2 Constrained Motion 259

What we want physically is to avoid interpenetration ofbody A into body B when
{j (to) < 0 is negative. To avoid the interpenetration, body B must exert a contact force
C on body A at the point of contact. Such a force must satisfy four conditions:

1. C acts only at the instant of contact, not before and not later.

2. C must be a repulsive force. It cannot act like glue between the bodies.

3. C must prevent the interpenetration of the bodies.

4. The system cannot gain kinetic energy from the introduction ofthis contact force.

We postulate an impulsive force of the form C = fNo for some scalar f ::: 0 at
the point of contact Po. The use of an impulsive force satisfies condition 1. To satisfy
condition 2, we need f 2: 0 so that the force repels the first body away from the second
one.

Let us consider what condition 3 means at a single contact point such as the con­
figuration of Example 5.2 (using a square or a rectangle). The pre- and postimpulse
velocities are related by equation (5.25), but with mi/ = 0 ri l = 0, and PB = <9:

The normal component of the preimpulse world velocity is {j- = No' (PA- (9) and

the normal component of the postimpulse world velocity is {j+ = No . (P1- (9).
Thus,

(5.35)

If {j- ::: 0, the bodies are separating so we may select f = 0 (no impulse), in which
case {j+ = {j- (no change in world velocity). If {j- < 0, body A is trying to penetrate
into body B. We must prevent this by choosing f > 0 large enough so that {j+ ::: o. If
fa > 0 is chosen so that {j+ =0, we have met our constraint of nonpenetration. But
any choice of f > fa leads to {j+ > 0 and we still satisfy the constraint. The larger
we choose f, the larger the impulse, and consequently the larger the magnitude of
the normal component of the postimpulse velocity. An unwanted degree of freedom
exists in the simplest of configurations.

This is where condition 4 comes into play. By choosing a sufficiently large value
for f, we obtain a postimpulse value for {j+ that exceeds l{j-I, causing an increase in
the kinetic energy of the system. We need to bound the postimpulse value so that the
kinetic energy remains the same or even decreases; that is, the constraint {j+ ::: l{j-I
is required. We are still analyzing the case for {j- < 0, so the constraint is {j+ ~ -{j-.
Combining this with equation (5.35) we obtain

(5.36)

260 Chapter 5 Physics Engines

where the last equality defines fmax' This equation tells us that we need an impulsive
force to generate a nonnegative postimpulse velocity J+ 2: 0, but the impulsive force
cannot be too large. This limits our choice of f to a bounded interval [0, fmax]' but
we still have a degree of freedom to eliminate. We can do so by setting a goal for the
postimpulse velocity to be as close as possible to the reflected preimpulse velocity
while satisfying all the constraints of the system. In our special configuration of one
contact point, we can choose f = fmax and the postimpulse velocity is the reflection
of the preimpulse velocity, just as we saw in Example 5.2.

Now for a slightly more complicated example, the multiple contact configuration
of Example 5.5. The impulse equation for linear velocity is

and the impulse equation for angular velocity is

W1 = wA+ foNo + !INI
rnA

Define ri = XA - Pi' where XA is the center ofmass ofbody A and Pi are the collision
points, i = 0, 1. The outer normals at the collision points are Ni . Bodies Band Care
not moving. The preimpulse and postimpulse world velocities of body A are related
by

The normal component of the preimpulse world velocity at the ith contact point is
di- = Ni . (Pi - (9) and the normal component of the postimpulse world velocity is
'+ .+d = No . (PA - (9). Thus,

for appropriate constants ai}' Our constraints to satisfy conditions 1, 2, and 3 are

fi 2: 0 and dt 2: O. Condition 4 may be satisfied by requiring dt ::; Idi-I.
As in the example of a single point of contact, we must analyze cases based on

the signs of di-. Taking a hint from that example, let us set goals for what we want

dt to be. If do 2: 0, our goal is det = do' In the single-point example, we would
choose fa = 0 to support the goal. This two-point example causes us to think twice
about doing so. The choice for fa = 0 does not directly force the goal. Instead, we get.+ . .+ .
do = do + aOlfl' Well, we can always then choose fl = 0 so that do = do as desired.
Unfortunately, the other postimpulse velocity equation becomes dt = d1,which is a
problem when d1 < 0, the implication being that body A will penetrate body C. The

EXAMPLE

5.6

Figure 5.8

5.2 Constrained Motion 261

two postimpulse velocity equations are coupled, causing us to obtain our goal not as
"equality" but "get as close as you can."

More formally, if di- ::: 0, our goal for dt is to make it as close to di as possible
while maintaining its nonnegativity. Ifdi- < 0, our goal for dt is to make it as close

to -di as possible while maintaining its nonnegativity. We can achieve these goals in
the sense of least-squares, whereby we minimize the length of a vector rather than
requiring the vector to be zero. Define:

h. _ { .0,
1- 2d

i
-,

We want to choose (fo, fl) to make the length of the vector (aoofo + aOlfI +
ho, alOfo + al1fI + hI) as small as possible. The minimization is constrained by
fi ~ 0 and aiOfo + ailfl + di- ~ 0 for i = 0, 1. You should recognize this as a convex
quadratic programming problem, which we discuss in Chapter 7.

Let us look at an even more complicated example and set up the general formu­
lation for choosing the impulsive functions at all the contact points simultaneously.

Four rigid bodies with six points of contact are shown in Figure 5.8. It is irrelevant
to us whether or not the contact points are colliding or resting. We require impulsive
contact forces Ci = fiNi for 1.:::: i .:::: 6. Using the same superscript notation as before

Four rigid bodies with six points of contact. The centers of mass of the four bodies
are also shown.

262 Chapter 5 Physics Engines

(Example 5.6
continued)

for indicating preimpulse and postimpulse quantities, the simultaneous updates of
the linear momenta of the centers of mass using the impulsive forces are

mAv1= mAYA - !INI - f2 N 2 - f3 N 3 - f4 N4

mBvt = mBv; + flN I + f2 N 2 - fsNs

mcv~ = mcvc+ f3 N 3+ f4 N4 + f6N6

mDvj; = mDv; + fsNs - f6N6

The simultaneous updates of the angular momenta using the impulsive torques are

lAW1= lAwA - flr~ x NI - hr~ x N2 - f3r~ x N3 - f4r~ x N4

lBwt = lBW; + flr1 x NI + f2r~ x N2 - fsr~ x Ns

lcw~ = lcwc + hr~ x N3 + f4 ri: x N4 + f6r~ x N6

lDwj; = lDW; + fsr1x Ns - f6r~ x N6

where r~ = Pi - Xy for body y and contact point i.

Each contact point leads to a relative velocity equation, which we will index by i. For
example, consider the contact point PI involving bodies A and B. By our convention,
the pair of bodies is ordered as (B, A) since a vertex ofB intersects a face of A.

dt = NI . ((vt +wt x r1) - (v1 + w1 x r~))

= NI . [msl(fINI + f2 N 2 - fsNs)

+ (li
l
(flr1x NI + f2r~ x N2 - fsr~)) x r1

- mAle - flN I - f2 N 2 - f3 N 3 - f4N4)

-(lil(- flr~ x NI - hr~ x N2 - hr~ x N3 - f4r~ x N4)) x r~] + d~

=allfl + al2f2 + al3f3 + al4f4 + alsfs + al6f6 + d~

where

all =NI . [(msINI + (li l(r1 x NI)) x r1) - (-mAIN I - (lil(r~ x NI)) x r~)J

al2 = NI . [(ms
IN2 + (lil(r~ x N2)) x r1) - (-m AIN2 - (lil(r~ x N2)) x r~)]

5.2 Constrained Motion 263

au = Nl • [(0) - (-m AlN3 - (JA\r~ x N3)) x r~)]

a14 = N l . [(0) - (-m AlN4 - (JA\r~ x N4)) x r~)]

alS = Nl • [(-m"BlNs - (Ji\r~ x Ns)) x rk) - (0)]

a16 = N l . [(0) - (0)]

These expressions were not simplified to be suggestive of the general formula and
an algorithm to compute it. The simplest term to explain is a16 = o. The two bodies
sharing the contact point PI are Band A. Point P6 is not part of either of these bodies,
so the contact force f6N6 does not contribute to resolution at Pl' The term al2 has
a couple of similar expressions, one involving values for body B, the other involving
values for body A. The different subscripts B and A are one difference. The other
difference is that the second expression has minus signs. This has to do with the fact
that if the contact force on the first body is ±fN, then the contact force on the second
body is =f fN (reversed direction). Both expressions occur in al2 because P2 is also
shared by bodies B and A. The second expression in the term au occurs because P3

is part of body A, thus indirectly affecting body B. However, the first expression is 0
because P3 is not a point of body B. Finally, all contains both expressions since PI is
shared by both bodies.

Similar expressions can be constructed for the other contact points to obtain dt =
L~=l aijf} + di- for 1::::: i ::::: 6.

In the general case we have a collection of rigid bodies and n contact points Pi for
1 ::::: i :s n. The velocity at Pi in the normal direction N i has magnitude

(5.37)

where the contact force at Pi is ±fiNi' the sign chosen based on the body that is
sharing the contact point. The general formula for the aij is listed next; the pair of
bodies is (a, f3):

(5.38)

where a~ is +1when p} is in the body y and the force direction is +N}, is -1 when
p} is in the body y and the force direction is - N}, or is 0 when p} is not in the body

264 Chapter 5 Physics Engines

y. Convince yourself from the physical situation that a ji = aij; that is, the matrix
A = [aij] is symmetric. You can also verify this by direct manipulation of the general
formula for the aij values. The preimpulse velocities are

(5.39)

EXERCISE

5.4

Let us reformulate our conditions using vector and matrix notation. Let f be the
n x 1vector that stores the magnitudes of the impulsive forces. The magnitudes are
nonnegative, a condition we may write succinctly as f ~ O. Let d- be the n x 1vector
that stores the preimpulse velocities and let d+ be the n x 1 vector that stores the
postimpulse velocities. To avoid interpenetrations we need d+ ~ o. Equation (5.37)
is written as d+ = Af + d- where A = [aij] is an n x n matrix. Define the n x 1

vector b to have ith component hi = 0 if di- 2: 0 and hi = 2di- if d: < o. Define the
n x 1vector c to have ith component Ci = Idi-I.

The problem is abstracted to the following. We want to choose f to minimize the
convex quadratic function IAf + bl 2 subject to the constraints f ~ 0 (forces are re­
pulsive), Af + b 2: 0 (bodies cannot interpenetrate), and Af + b :::: c (kinetic energy
cannot be gained via impulses). This is a convex quadratic programming problem
that can be formulated as a linear complementarity problem (LCP) and solved using
the Lemke-Howson algorithm of Chapter 7.

An illustrative implementation will be provided later in this chapter. For now it is
sufficient to mention the general order of operations:

1. The collision detection system calculates all contact points for the current state of
the rigid bodies.

2. The contact points and rigid body states are used to compute the matrix A and
vector d-.

3. The LCP solver computes f and d+. We are guaranteed of no interpenetration
since d+ ~ 0 is a postcondition of the LCP solver.

4. The postimpulse velocities are computed from f and the normal vectors at the
collision points. These velocites replace the preimpulse values in the rigid bodies.

5. The differential equation solver computes the new positions and orientations of
the rigid bodies.

6. Repeat step 1.

This process will be modified when we take into account that some of the contact
points are resting contact, as described in Section 5.2.3.

The postcondition of any system that instantaneously updates the linear and angular
velocities for a collection of rigid bodies is that no instantaneous interpenetration
can occur at any contact point. The original design ofprocessing the colliding points
sequentially does not satisfy this postcondition (see Example 5.5). The LCP-based

5.2 Constrained Motion 265

method of this subsection does satisfy the postcondition. The sequential processing is
conceptually simpler to implement. The LCP-based method requires a high-powered
piece of software that is difficult to implement (robustly). Is there a middle ground?

Explore the following two concepts (mentally or programatically, whatever):

1. In sequential processing, postimpulse velocities at a contact point shared by two
bodies is computed, call them v1 and v!. Before actually updating the rigid body
states, determine if the new velocity is consistent with the postcondition. That
is, if body A has contact points J\ and contact normals N i for 1 :'S i :'S n, and if
body B has contact points Qj and contact normals Mj for 1 :'S j :'S m, compute

the values (Xi = N i • v1 and fij = M· v!. If (Xi ~ 0 for all i and fij ~ 0 for all j,
then the postcondition is satisfied. If satisfied, update the rigid body states for
these two bodies, call the differential equation solver, and proceed as usual. If not
satisfied, repeat the process on the next contact point. If the set of current contact
points becomes empty because the postcondition was never satisfied, set the new
velocities to be zero.

2. In simultaneous processing, iterate over the rigid bodies. For a body A, let J\
be the contact points contained by that body and let N i be the contact normals,
1 :'S i :'S n. Assume that any body B that shares a contact point with A is at rest.
Construct vectors v+ and w+ using impulsive forces so that if body A is updated
with these velocities, no interpenetration can occur with any neighboring body
B. If at least one of these velocities is nonzero, update the state of body A, call the
differential equation solver, and proceed as usual. If both velocities are forced to
be zero, repeat the process on the next rigid body.

Both concepts require that your collision detection system support a query whose
input is a rigid body and whose output is the set of current contact points and
normals for that body.

5.2.3 COLLISION RESPONSE FOR RESTING CONTACT

If two rigid bodies A and B are in contact at time to at a point Po, and if No is an
outward, unit-length normal for body B, we distinguish between colliding contact,
resting contact, or separation based on the normal component of the velocity ofbody
A relative to body B. Equation (5.15) provides us with the function d(t), a measure of
signed distance between the two body points P A (t) and P B (t) that meet at Po at time
to. By the definition, d (to) = o. The relative velocity has a normal component given by
equation (5.16). That component is d(t). A contact point is a colliding contact when
d(to) < 0 (body A moves into body B), a separation contact when d(to) > 0 (body A
moves away from body B), or a resting contact when d(to) = o. The latter case is the
one we now analyze.

266 Chapter 5 Physics Engines

At a resting contact Po the distance and relative velocity are zero. If body A has
an acceleration aNa relative to body B at Po with a < 0, body A is attempting to
accelerate into body B at the instant of contact. Clearly, we need to measure the
relative acceleration to determine if this situation occurs. The relative acceleration
is provided by the time derivative d(t), which we can compute by differentiating
equation (5.16):

(5.40)

=N(t) . (PA(t) - P B(t)) + 21~(t) . (PA(t) - PB(t)) + N° (PA(t) - PB(t))

At the time of contact, d(to) = No . (P A(to) - PB(to)) + 2N(to) ° (PA(to) ­
PB(to)), where the last term of equation (5.40) is zero since PA(to) = Po = PB(to)·
In order to compute the relative acceleration, we need a formula for the normal N(t)
so that we can compute the first derivative and evaluate N(to). We have two cases to
consider. The first case is for a vertex-face intersection, where N(to) is the face nor­
mal of body B. Equation (2.42) tells us how a vector quantity changes in the world
coordinate system of a body. The normal vector derivative for this case is

N(t) = wB(t) x N(t) (5.41)

where DN / Dt = 0 since the body is rigid. The angular velocity of body B is used
since the normal rotates with B. The second case is for an edge-edge intersection,
where the normal is formed by taking the cross product of an edge of A and an
edge of B, then normalized. Since each edge rotates due to the angular velocity of its
respective body, the normal derivative is more complicated to compute. As a function
oftime the normal is N(t) = EA(t) x EB(t)/L(t) with L(t) = lEA (t) x EB(t)I. Using
the product and quotient rules from vector calculus, the derivative is

Now since L 2 = (EA x EB) . (EA x EB), its derivative is 2Li = 2(EA x EB) . (EA x
E·B + BA x EB), in which case

i = (EA x E·B + BA X EB) ° N

Using equation (2.42), the edge derivatives are EA = WA X EA and BB = WB X EB.
Combining all these steps produces

N = _U_-_(_U_o_N_)_N
L

(5.42)

5.2 Constrained Motion 267

An implementation for computing the normal derivative acts on whether the contact
point is a vertex-face or an edge-edge intersection and uses either equation (5.41) or
equation (5.42), accordingly.

We also need to compute PACt) - PB(t) and PACt) - PB(t). These follow from
an application of equations (2.43) and (2.44), the latter equation containing linear
acceleration terms with v= a and angular acceleration terms that can be evaluated
using equation (2.90), W = J-l(T - W x Jw). The final formula for the relative
acceleration at the point and time of contact is

d(to) =No ' ((vA +WA x rA +WA x (WA x rA))

- (vB +WB x rB +WB x (WB x rB)))

+ 2(WB x No)' ((vA +WA x rA) - (VB +WB x rB))

= No . ((aA + (JilTA) x rA) - (aB + (JilTB) x rB)) + e

(5.43)

EXAMPLE

5.7

where the second equality groups the acceleration and torque terms together for our
later convenience. The term e contains all the remaining terms from the first equality,
including those portions from the torque equation of the form J-l(w x Jw).

To avoid the interpenetration ofbody A into body Bwhen d(to) < 0, body B must
exert a contact force C on body A. Such a force must satisfy three conditions:

1. C must prevent the interpenetration of the bodies.

2. C must be a repulsive force. It cannot act like glue between the bodies.

3. C must become zero when the bodies separate.

We postulate that C = gNo for some scalar g 2: 0 at the point of contact Po. The
value of g is chosen to satisfy condition 1. The nonnegativity of the magnitude g

satisfies condition 2. To satisfy condition 3 we specify that gd(to) = O. If the bodies
separate an instant after the contact, we have d(to + £) > 0 and g = 0 is required. If
d (to) = 0, the bodies are not separating, so the choice of g is irrelevant.

Just as for colliding contact, the contact force at a resting contact of a rigid
body A has a contribution to changing the velocity of the center of mass, gmA"lNo,

and a contribution to changing the angular velocity of the body about its center,
g(Jil(rA x No)) x rAo The computation of contact forces must be done simulta­
neously for all points of contact, each point contributing terms of this type. We use
Example 5.6 to illustrate, the same one that was used to illustrate computing impulse
forces for the simultaneous handling of contact points.

Let Fy denote the external forces applied to body y and let Ty denote the external
torques applied to body y. The external forces contribute to the linear acceleration of
the centers of mass, and the external torques contribute to the angular acceleration
of the bodies about their centers of mass. The postulated contact forces giNi at the

268 Chapter 5 Physics Engines

(Example 5.7
continued)

points of contact Pi contribute as well. A quick glance at Figure 5.8 will convince you
that the resolution of forces at the centers of mass produces

mAaA = -glNl - g2N2 - g3N3 - g4N4+ FA

mBaB = glNl + g2N2 - gsNs + FB

meae = g3N3+ g4N4+ g6N6+ Fe

mDaD = gsNs - g6N6+ FD

The torque resolution is

TA = -glr~ x Nl - g2r~ x N2 - g3r~ x N3 - g4r~ x N4 + TA

TB = glr1 x Nl + g2r1 x N2 - gsr~ x Ns + TB

Te = g3r~ x N3 + g4r'2 x N4 + g6r~ x N6 + Te

TD = gsr1 x Ns - g6r~ x N6 + TD

where r~ = Pi - Xy for body y and contact point i.

Each contact point leads to a relative acceleration equation of the form in equation
(5.43), so we will index those equations with i. In each equation the acceleration
terms we grouped together can have their accelerations and torques replaced by the
expressions we obtained in the resolution of forces. For example, consider the contact
point PI involving bodies A and B. By our convention, the pair of bodies is ordered
as (B, A) since a vertex of B intersects a face of A:

.. -1 1 -1 1
dl=Nl'((aB+(JB TB)xrB)-(aA+(JA TA)xrA))+el

= Nl . [mBl(glNl + g2N2 - gsNs + FB)

+ (Ji l(glr1 x Nl + g2r1 x N2 - gsr~ + TB)) x r1

- mAl(-glNl - g2N2 - g3N3 - g4N4+ FA)

- (JAl(-glr~ x Nl - g2r~ x N2 - g3r~ x N3

-g4r~ xN4 + TA)) xr~J + el

= allgl + a12g2 + a13g3 + a14g4 + alsgs + a16g6 + hI

where the aij are exactly the same as those computed in Example 5.6! The term hI is

5.2 Constrained Motion 269

Similar expressions can be constructed for the other contact points to obtain di =

L~=l aijgj + bi for 1 ~ i ~ 6.

In the general case we have a collection of rigid bodies and n contact points 'J\ for
1:s i ~ n. The acceleration at Pi in the normal direction N i has magnitude

n

di=Laijgj+bi
i=l

(5.44)

where the aij are provided by equation (5.38). The general formula for the bi is listed
below:

where

(5.46)

and where Fy is the external force and T y is the external torque on body y. The
quantity Ly = Jy wy is the angular momentum of body y.

We now know how to compute the accelerations di , given the contact forces. How­
ever, the original problem was to choose the contact forces to prevent interpenetration.
Let us reformulate our conditions using vector and matrix: notation. Let g be the n x 1

vector that stores the magnitudes of the contact forces. The magnitudes are all non­
negative. We may write this succinctly as g ~ 0, a shortcut for stating gi ~ 0 for all i.
Let d be the n x 1vector that stores the accelerations. To avoid interpenetrations we
need d ~ O. If the bodies separate at resting contact point i an instant after the con­
tact has occurred, we require that the contact force become zero. The mathematical
formulation is digi = O. In vector notation this is dog = O. Finally, equation (5.44)
is written as d = Ag + b, where A = [aij] is an n x n matrix and b = [bi]is an n x 1

vector.
In summary, given A and b, we need to compute d and g that satisfy d =

Ag + b subject to the constraints d ~ 0 and g ~ 0 and subject to the complemen­
tarity condition dog = O. This is a linear complementarity problem (LCP), which
we discuss briefly in Section 5.2.2 and cover in Chapter 7 in more detaiL In particular,
it is of the form of equation (7.5) where M is our A, q is our b, w is our d, and z is
our g.

270 Chapter 5 Physics Engines

The order of operations listed for handling colliding contact is modified to the
following:

1. The collision detection system calculates all contact points for the current state of
the rigid bodies.

2. The contact points and rigid body states are used to compute the matrix A) vector
d-) and vector b.

3. The LCP solver computes f and d+ from the inputs A and d-. The LCP solver
computes g and d from the inputs A and b. We are guaranteed of no interpene­
tration since d+ ~ 0 and d:::: 0 are postconditions of the LCP solver.

4. The postimpulse velocities are computed from f and the normal vectors at the
collision points. These velocities replace the preimpulse values in the rigid bodies.

5. The resting contact forces involving the g are included when computing the total
forces and torques on the rigid bodies.

6. The differential equation solver computes the new positions and orientations of
the rigid bodies.

7. Repeat step 1.

Section 5.2.4 expands on this.

5.2.4 AN ILLUSTRATIVE IMPLEMENTATION

The rigid bodies are convex polyhedral solids. We will assume the existence of a
collision detection system that handles convex polyhedra. Section 5.3 provides details
of such a system. The structure Ri gi dBodi es used earlier will also be used here. We
need another structure for representing contact points:

struct Contact

RigidBody A;
RigidBody B;
point P;
vector N;
vector EA;
vector EB;
bool isVFContact;

II body containing vertex
II body containing face
II contact point
II outward unit-length normal of face
II edge from A
II edge from B
II true if vertex-face, false if edge-edge

If the contact point is a vertex-face intersection) then N is valid but the edges EA
and EB are not. If the contact point is an edge-edge intersection) then all fields are
valid. All point and vector quantities are assumed to be in world coordinates.

The highest-level view ofthe physical simulation is listed below. It is assumed that
the initialization of the rigid bodies results in no interpenetrations.

5.2 Constrained Motion 271

void DoSimulation ()
{

II For the arrays, size() indicates the number of array elements.

array<RigidBody> body;
for (i = 0; i < body.size(); i++)

body[i].Initialize«parameters»;

array<Contact> contact;

double t = <your choice of initial time>;
double dt = <your choice of time step>;

for (int step = 1; step <= maxSteps; step++, t += dt)

DoCollisionDetection(t,dt,body,contact);
if (contact.size() > 0)

DoCollisionResponse(t,dt,body,contact);

The function DoCo 11 is i onDetect i on removes all old contact points from the array
contact before inserting new ones.

The collision response function is

void DoCollisionReponse (double t, double dt, array<RigidBody> body,
array<Contact> contact)

matrix A;
vector preRelVel, postRelVel, impulseMag;
vector restingB, relAcc, restingMag;

ComputeLCPMatrix(contact,A);

II guarantee no interpenetration by postRelVel >= 0
ComputePreImpulseVelocity(contact,preRelVel);
Mi nimi ze (A, preRe1Vel, postRe1Vel, impu 1seMag) ;
DoImpulse(contact,impulseMag);

II guarantee no interpenetration by relAcc >= 0
ComputeRestingContactVector(contact,restingB);
LCPSolver(A,restingB,relAcc,restingMag);
DoMotion(t,dt,contact,restingMag,body);

272 Chapter 5 Physics Engines

II Minimize IA * f + bl A 2 subject to f >= 0, C - b >= A * f >= -b.
II The i-th component of b is b[i] = 0 if dneg[i] >= 0 and
II b[i] = 2 * dneg[i] if dneg[i] < O. The i-th component of
II cis c[i] = Idneg [i] I. The inputs are A and dneg. The
II outputs are dpos and f.

II
void Minimize (matrix A, vector dneg, vector& dpos, vector& f);

II The parameter names match those in the chapter discussing
II LCP. The input is the matrix Mand vector q. The output
II is the vector wand the vector z.

II
void LCPSolver (matrix M, vector q, vector& w, vector& z);

The function ComputeLCPMatri x computes the matrix A = [aij] whose entries are
defined by equation (5.38).

void ComputeLCPMatrix (array<Contact> contact, matrix& A)
{

for (i = 0; i < contact.size(); i++)
{

Contact ci = contact[i];
vector rANi = Cross(ci.P - ci.A.x,ci.N);
vector rBNi = Cross(ci.P - ci .B.x,ci .N);

for (j = 0; j < contact.size(); j++)
{

Contact cj = contact[j];
vector rANj = Cross(cj.P - cj.A.x,cj.N);
vector rBNj = Cross(cj.P - cj.B.x,cj.N);

A[i][j] = 0;

if (ci.A == cj.A)

A[i][j] += ci.A.massinv * Dot(ci.N,cj.N); II force term
A[i][j] += Dot(rANi,ci.A.jinv * rANj); II torque term

}

else if (ci.A == cj.B)
{

A[i] [j] -= ci.A.massinv * Dot(ci.N,cj.N); II force term
A[i] [j] -= Dot(rANi,ci.A.jinv * rANj); II torque term

5.2 Constrained Motion 273

if (ci.B == cj.A)

A[i][j] += ci.B.massinv * Dot(ci.N,cj.N); II force term
A[i][j] += Dot(rBNi,ci.B.jinv * rBNj); II torque term

}

else if (ci.B == cj.B)
{

A[i][j]
A[i][j]

ci.B.massinv * Dot(ci.N,cj.N); II force term
Dot(rBNi,ci .B.jinv * rBNj); II torque term

The function ComputePreImpul seVel oci ty computes the preimpulse velocities di­

defined by equation (5.39).

void ComputePreImpulseVelocity (array<Contact> contact, vector& ddot)
{

for (i = 0; i < contact.size(); i++)

contact ci = contact[i];
RigidBody A = ci .A;
RigidBody B = ci.B;

vector rAi = ci.P - A.x;
vector rBi = ci.P - B.x;
vector velA = A.v + Cross(A.w,rAi);
vector velB = B.v + Cross(B.w,rBi);
ddot[i] = Dot(ci.N,velA - velB);

The function ComputeResti ngContactVector computes the vector b = [hi] defined
by equation (5.45). The derivative of the normal vector is computed using equations
(5.41) and (5.42).

void ComputeRestingContactVector (array<Contact> contact, vector& b)
{

for (i = 0; i < contact.size(); i++)

contact ci = contact[i];
RigidBody A = ci .A, B = ci .B;

274 Chapter 5 Physics Engines

II body A terms
vector rAi = ci.P - ci.A.x;
vector wAxrAi = Cross(A.w.rAi);
vector Atl = A.massinv * A.force;
vector At2 = Cross(A.jinv * (A.torque + Cross(A.L.A.w)).rAi);
vector At3 = Cross(A.w.wAxrAi);
vector At4 = A.v + wAxrAi;

II body B terms
vector rBi = ci.P - ci.B.x;
vector wBxrBi = Cross(B.w.rBi);
vector Btl = B.massinv * B.force;
vector Bt2 = Cross(B.jinv * (B.torque + Cross(B.L.B.w)).rBi);
vector Bt3 = Cross(B.w.wBxrBi);
vector Bt4 = B.v + wBxrBi;

II compute the derivative of the contact normal
vector Ndot;
if (ci.isVFContact)

Ndot = Cross(B.w.ci.N);

else

vector EAdot = Cross(A.w.ci .EA);
vector EBdot = Cross(B.w.ci.EB);
vector U = Cross(ci.EA.EBdot) + Cross(EAdot.ci.EB);
Ndot = (U - Dot(U.ci.N) * ci.N) I Length(ci.N);

b[i] = Dot(ci.N.Atl + At2 + At3 - Btl - Bt2 - Bt3) +

Dot(Ndot.At4 - Bt4);

The function DoImpul se has the responsibility of replacing the preimpulse linear
and angular velocities by the postimpulse vectors. The motivation was given in Ex­
ample 5.6. That example shows that it suffices to iterate over the contacts and impulse
magnitudes and incrementally update the velocities.

void DoImpulse (array<Contact> contact. vector f)
{

for (i = 0; i < contact.sizeO; i++)

contact ci = contact[i];

* ci. N;

ci .A.x, impul se);
ci .B.x, impul se);

// update linear/angular momentum
vector impulse = f[i]
ci .A.p += impulse;
ci .B.p -= impulse;
ci .A.L += Cross(ci.P
ci.B.L -= Cross(ci.P

// compute linear/angular velocity
ci.A.v = ci.A.massinv * ci.A.p;
ci .B.v = ci .B.rnassinv * ci .B.P;
ci .A.w ci .A.jinv * ci .A.L;
ci .B.w = ci .B.jinv * ci .B.L;

5.2 Constrained Motion 275

Finally, the function DoMot i on implements the differential equation solver. It also
must incorporate the resting contact forces into the solver in addition to any ex­
ternally applied forces. We used a Runge-Kutta method for solving the differential
equations for unconstrained motion. This method uses multiple function evalu­
ations and requires some careful programming to handle the forces and torques.
The structure Ri gi dBody in the illustrative implementation for unconstrained mo­
tion has two members, force and torque, that are intended to store the current
externally applied force and torque at the current time of the simulation. To sup­
port solvers that use multiple function evaluations and to avoid the copying in the
illustrative implementation, we designed a C++ class Ri gi dBody that had function
members for computing the external force and torque. Let us modify this class by
adding two data members to store the current external force and torque in addi­
tion to having the force and torque function members. Moreover, we will add two
data members to store the resting contact forces. Only the modified interface is
shown:

class RigidBody
{

public:
void AppendlnternalForce (vector intForce)
{

m internal Force += intForce;

void AppendlnternalTorque (vector intTorque)
{

m_internalTorque += intTorque;

276 Chapter 5 Physics Engines

protected:
II external force/torque at current time of simulation
vector m_externalForce, m_externalTorque;

II Resting contact force/torque. Initially zero, changed by
II simulator before call to ODE solver, ODE solver uses for
II motion of bodies, then reset to zero for next pass.
vector m_internalForce, m_internalTorque;

II force/torque functions (same as before)
Function m_force, m_torque;

} ;

The initialization of the rigid body objects must now include calling the force
and torque member functions m_force and m_torque to initialize the data members
m_externalForce and m_externalTorque. The member function RigidBody::Update
must also be modified to support these changes. The old function had the following
lines of code for the first step of the Runge-Kutta solver:

II Al = G(t,SO), Bl = SO + (dt I 2) * Al

vector AIDPDT = m_force(t,m_X,m_Q,m_p,m_L,m_R,m_V,m_W);
vector AIDLDT = m_torque(t,m_X,m_Q,m_P,m_L,m_R,m_V,m_W);

The force and torque evaluation are at the current time, but we are now storing
those values in the rigid body itself. The new function replaces these lines by

II Al = G(t,SO), Bl = SO + (dt I 2) * Al

vector AIDPDT = m_externalForce + m_internalForce;
vector AIDLDT = m_externalTorque + m_internalTorque;

m internal Force = 0;
m_internalTorque = 0;

II A2 = G(t + dt I 2,Bl), B2 SO + (dt I 2) * A2

5.2 Constrained Motion 277

II A3 G(t + dt I 2,B2), B3 so + dt * A3

II A4 G(t + dt,B3), SI so + (dt I 6) * (AI + 2 * A2 + 2 * A3 + A4)

The inclusion of the internal quantities takes into account that, just before the
update function is called, the collision response system needs to set the internal
quantities to support resting contact. After using the internal values for the first step,
I have set them to zero. They are not used in steps 2, 3, or 4 because the time in those
steps is later than the current time; separation potentially has occurred and the resting
contact forces must become zero as specified in our analysis. However, it is possible
that after the half-step in time, resting contact still exists, so you might want to use
the internal force and torque terms in the later steps.

The dilemma is that we are now in the middle of running the differential equation
solver. If we want more accurate information about contact after the first step, we
would have to exit after the first step and rerun the other parts of the collision system
to once again find out which intersections are resting contacts. By doing so, our solver
is nothing more than an Euler's method and we suffer from its lack of robustness and
stability. I chose to zero out the internal values for simplicity. You might very well
experiment and rewrite the solver to use the internal values for all the steps. One last
change must be made to the solver to maintain the invariant that the external force
and torque members are those of the current simulation time. Two lines of code must
be added to the end of Ri gi dBody: :Update after the fourth step is complete:

II A4 = G(t + dt,B3), SI = SO + (dt I 6) * (AI + 2 * A2 + 2 * A3 + A4)

II new lines to make force and torque correspond to new time t + dt
m_externalForce = m_force(tpdt,m_X,m_Q,m_P,m_L,m_R,m_V,m_W);
m_externalTorque = m_torque(tpdt,m_X,m_Q,m_p,m_L,m_R,m_V,m_W);

void DoMotion (double t, double dt, array<Contact> contact, vector g,
array<RigidBody> body)

II update internal force/torque
for (i = 0; i < contact.size(); i++)
{

contact ci = contact[i];
vector resting = g[i] * ci.N;

278 Chapter 5 Physics Engines

ci .A.AppendInternalForce(resting);
ci.A.AppendInternalTorque(Cross(ci.p - ci.A.x,resting));
ci.B.AppendInternalForce(-resting);
ci.B.AppendInternalTorque(-Cross(ci.p - ci.B.x,resting));

II update rigid bodies
for (i = 0; i < body.size(); i++)

body[i] .Update(t,dt);

5.2.5 LAGRANGIAN DYNAMICS

The extensive system for constrained motion that we have studied so far is designed to
be general. Other than requiring the rigid bodies to be modeled as convex polyhedra,
no assumptions are made about how the environment might constrain the objects.
In fact, the main role of the collision detection system is to determine the constraints
dynamically, then let the collision response system know with which constraints it
has to work. Such a general dynamics system is useful for many game applications
but is not necessary for all situations arising in a game. Just as game designers will
take into account the strengths and limitations of a graphics engine when deciding
on the complexity of art content, they will also consider the strengths and limitations
of a physics engine.

For example, automatic and efficient occlusion culling in a graphics engine is
a difficult task to implement. Portal systems are particularly useful for limiting the
depth complexity of an indoor scene while allowing the player to move in uncon­
strained ways. However, if a level is built in such a way that the player looks through a
door (portal) of a room and can see through another door across the room, followed
by a long path of visible doors of yet more adjacent rooms, the portal system perfor­
mance can decrease quite rapidly. Yes, a general portal system is quite powerful, but it
has its limitations. A level designer will arrange for such a configuration not to hap­
pen, knowing that the portal system is good for a couple of doors along the line of
sight. Thus, the designer establishes the constraints during development time to keep
the performance reasonable at runtime.

Careful consideration of how to build an environment to allow the physics en­
gine to perform well is also called for. For example, suppose that a game requires a
character to navigate through a room filled with boxes in order to reach an exit on
the other side of the room. The environment is designed to make it challenging-no
open path is available when the character enters the room. In order to reach the exit,
boxes must be moved around, some of them easy to move, others too heavy to move.
Moreover, the player must discover that some boxes need to be moved, but that can
happen only when they are pushed by other boxes; the other boxes block the path to

5.2 Constrained Motion 279

ones that need to be moved. A general collision system can be used for this environ­
ment. Since the boxes are in resting contact with the floor, the system must compute
the appropriate contact forces to keep the boxes from sinking through the floor. The
collision detection system also spends a lot of time reporting that the boxes are in­
tersecting the floor! No doubt we will want the floor to have friction. As commercial
physics engine developers will remind you regularly, getting the general collision sys­
tem to work correctly in the presence of static and dynamic friction is quite a difficult
chore.

But we know that the boxes are on the floor and will remain so-that is our
design. Let us take advantage of the fact that we know a constraint of the system at
development time. What better way to take advantage of known constraints than by
using Lagrangian dynamics? We covered this topic in extensive detail in Section 3.2.
At the end of that section we even derived the equations of motion for a box moving
over a rough plane. And if you did your homework (Exercise 3.31), you are ready to
test out the environment you just built! Well, not quite. We still have the dynamic
situation of boxes being pushed by the character and colliding with other boxes. A
collision detection system is still required, but even this system can be specialized for
our environment.

Two of our boxes can collide only with edge-face or face-face contact. Although
the general collision detection system can handle this as contact between 3D objects,
we can do better. If you view the boxes from above, they all appear as rectangles. The
specialized collision detection system needs to work only in 2D. An edge-face inter­
section in 3D is detected as a vertex-edge intersection in 2D. A face-face intersection
in 3D is detected as an edge-edge intersection in 2D. The Lagrangian equations of
motion for this collection of boxes will involve only floor variables (x, y) but not
the height variable z. The outline of how the system works is analogous to what the
general system did, except that now we are working in only two dimensions.

There is a drawback to what I just described. The collision system is specifically
written for this room (and similar rooms ifyou like). In the object-oriented approach,
the general differential equation solver was built into the Ri gi dBody class. In our
Lagrangian setting, the equations of motion depend on the constraints. Moreover,
our intent is that the constraints are known at development time. A general collision
system is a reusable component, a good thing as any software engineer will tell you.
The Lagrangian approach might very well lead to building a lot of components that
are not reusable, thus increasing your development costs. Hopefully, the Lagrangian
components you build, such as for a room of objects sitting on a floor, will be useful
across levels and across games.

Can we find middle ground? That is, can we use Lagrangian dynamics even if our
constraints change dynamically? I think so, but I believe such an engine will require
that a lot of thought be put into its design. To illustrate what I have in mind, consider
a book on a table as shown in Figure 5.9.

The book can be pushed around the table, all the while using the Lagrangian
equations of motion with the constraint that the center of mass of the book is a

280 Chapter 5 Physics Engines

F

n
F
-I~ ~·I

I

F-

Figure 5.9 A book resting on a table. Forces applied to the book include only gravitational (force
vertically downward) and those used to push the book around the table (force has
only a horizontal component).

constant height above the table. If the book is pushed to the edge of the table and
a small part of it extends past the edge, the book remains on the table, our constraint
still applies, and the Lagrangian equations of motion remain as they are. However, if
the book is pushed far enough past the table's edge, gravity will exert enough force to
make the book start to fall off the table. The collision detection system is constantly
reporting to us the polygon of intersection between the book and the table. This
information is what we use to decide if the book rests on the table or if the area of
intersection is small enough that torque causes the book to lift off the table and start
to fall to the floor.

At the instant the book starts to fall, our constraint of constant height center of
mass is invalid and we need a new set of equations of motion. The book will slide
along the edge of the table while rotating about a line through its center of mass (the
line perpendicular to the plane of the figure), constraints that might be difficult to
dynamically convert to equations ofmotion. A physics engine that is a hybrid between
the general collision system and a Lagrangian-based one appears to be called for. In
our book-table example, once the book starts to fall, we enable the general system.
Once the book strikes the floor and attains a resting position, we switch back to the
Lagrangian-based engine.

I will leave the ideas at that. The development of an engine of this type is a
challenge I pose to those ofyou who have the energy and desire to follow such a path!

5.3 COLLISION DETECTION WITH
CONVEX POLYHEDRA

In this chapter our rigid bodies have been selected to be convex polyhedra of constant
mass density. The short name for convex polyhedron is polytope, a term we will use
throughout the remainder ofthis section. The invariant ofthe collision detection and
response system is nonpenetration of the polyhedra. The collision detection system
must compute points of contact between each pair of polytopes. The response of

5.3 Collision Detection with Convex Polyhedra 281

the system is designed so that at all points of contact, the polytopes move with
nonnegative velocity relative to the normal directions at the contact points, thus
maintaining the nonpenetration invariant.

Now we take a close look at how to compute the contact points. Since we must
find actual intersection points, a test-intersection geometric query will not suffice. A
find-intersection geometric query must be formulated. For two stationary polytopes
a find-intersection query must compute the polytope of intersection. If we were just
to use a generic intersection algorithm, we would be ignoring the fact that our invari­
ant prevents interpenetration. Because ofour invariant, the intersection must consist
of points, line segments, or convex polygons; intersection regions with volume are
disallowed. Assuming a collision detection and response system designed to handle a
finite set of contact points, the find-intersection query might very well detect a line
segment of intersection but need only report the end points as the contact points.
Similarly, only the vertices of a convex polygon of intersection need to be reported.
Thus, a find-intersection query should be tailored to our needs.

We have an additional problem to deal with. Time is a continuous variable in the
physical setting, but we are using a differential equation solver to estimate motion
over small time intervals. Let P(t) be the path of a point on a moving polytope.
The equations of motion determine this path, but we do not know the path in
closed form. Knowing the location of a point Po = P(to) at the current time to)
our goal is to determine the location PI = P(tI) at the next sampled simulation
time t l = to + !!i.t. The differential equation solver produces a point QI that is an
approximation to Pl' The collision system might very well report that QI is outside
(or inside) another polytope when in fact PI is inside (or outside) that polytope, the
collision result being in error. For most game applications, if a collision is reported
when in fact there is none, the system is effectively conservative in its handling in
that some action will be taken to "prevent" the collision; the only harm done is that
some extra cycles are spent on the event. More serious, though, is for the collision
system not to report a collision when in fact there is one. For those of you with some
experience programming with collision detection systems, I am certain you have seen
the situation where an object (whose motion is controlled by an input device such
as a mouse or joystick) slightly interpenetrates a wall because the collision system
failed to report the intersection. When you attempt to steer the object away from the
wall, it becomes stuck because now the collision system does detect an intersection, this
one between the object and the opposite side of the wall. In some collision detection
systems you might even see the object stutter) a high-frequency oscillation of a system
in conflict) one portion trying to pull the object out of the wall and another portion
pulling it into the wall. We would like to avoid such behavior in our collision detection
system.

Even ifwe were able to compute the exact value PI' the system can still be in error.
The problem now is that we have incremented to to t l by a positive increment in time.
It is possible that Po and PI are both outside another polytope, but at some time
t2 E [to, t I] the point P(t2) is inside that polytope. The time step !!i.t of the differential
equation solver was too large to "notice" the collision event. Although your instinct

282 Chapter 5 Physics Engines

One step, missed collision

Half step,
no collision

Half step,
missed collision

(a)
t + I1t/2

(b) (c)
t + I1t

Figure 5.10 (a) Object at time to' (b) Object at time to + ~t/2. (c) Object at time to + ~t.

might be to choose a smaller value for ~t, you can do so, move the object in two time
steps, and miss the intersection again. Figure 5.10 illustrates.

In fact, the reduction in time step has problems exactly in those circumstances
that we are interested in-contact without interpenetration. A classical solution to
the problem, and one mentioned in [BarOl], is to use a bisection method. Let Bo(t)
and B 1(t) denote the solid polytopes at time t (as sets of points). The assumption is
that two polytopes are not intersecting at time to, Bo(to) n B 1(to) = 0 (the intersec­
tion is the empty set). The polytopes are to be moved during the time interval [to, t1],

the difference ~t = t 1 - to supplied by the application. If BO(tl) and B 1(t1) intersect
and the intersection set has volume, say, 1= BO(tl) n B 1(tl) i=- 0 with Volume(I) > 0,
the time step was too large. Now try the motion with half the time step, the final
time being tm = (to + t1)/2. The intersect set is 1= BO(tm) n B1(tm)' If I i=- 0 and
Volume(I) > 0, the half step was also too large and we repeat the bisection of the
time intervaL If 1= 0, the half step was too large and we search for potential inter­
section on the other half interval [tm , t1]. Our goal is to obtain an intersection I i=- 0
with Volume(I) = 0. The pseudocode is

void GetContactSet (double to, double t1, polytope BO(t),
polytope 81(t), double& tContact, set& I)

5.3 Collision Detection with Convex Polyhedra 283

II precondition: BO(tO) and B1(tO) do not intersect

I = Getlntersection(BO(t1),B1(t1));
if (I is the empty_set)

tContact = <irrelevant>;
return;

}

if (Volume(I) == 0

tContact t1;
return;

for (i = 1; i <= maxlterations; i++)

tm = (to + t1)/2;
I = Getlntersection(BO(tm),B1(tm));
if (I is the empty_set)

to = tm;
else if (Volume(I) > 0

t1 = tm;
else

tContact tm;
return;

Well, this is still not a correct algorithm for two reasons. First, it can terminate
immediately when BO(t l) and Bt(t l) do not intersect and the system reports that
no intersection has occurred. Second, it is possible that the system reports contact
points at the last time ofcontact. However, if the time steps are small compared to the
sizes and velocities of the polytopes, the algorithm should have reasonable behavior.
Observe that the pseudocode contains a function call Getlntersecti on that requires
computing the polytope of intersection for two purposes, testing if the intersection
is empty and measuring the volume if not. As mentioned earlier, we want to avoid a
generic intersection calculator for polytopes because they can be somewhat expensive
to execute. Moreover, it would be useful to have an intersection system that can predict
the time of collision on the interval [to, t1] rather than search for one by sampling the
interval.

This section addresses how we go about testing for intersection of polytopes and
predicting when they intersect. A powerful algorithm is used, called the method of
separating axes. A detailed description of the method for moving as well as stationary

284 Chapter 5 Physics Engines

objects and for 2D (convex polygons) and 3D (convex polyhedra) is provided in the
books [EbeOO] and [SE02]. A summary of the method is provided here, but with
some additional material that is relevant to objects participating in a constrained
dynamics system. In particular, we want to take advantage of time coherence to help
minimize calculations at the next time step by caching information from the previous
time step.

5.3.1 THE METHOD OF SEPARATING AXES

We have been using the term convex when referring to the polyhedra that represent
our rigid bodies. A reminder of what that term means is in order: A set C is convex
if given any two points P and Q in C, the line segment (1- t)P + tQ for t E [0, 1] is
also in C. Figure 5.11 shows a convex set and a nonconvex set in the plane.

A test for nonintersection of two convex objects is simply stated: If there exists
a line for which the intervals of projection of the two objects onto that line do not
intersect, then the objects do not intersect. Such a line is called a separating line or,
more commonly, a separating axis. Figure 5.12 illustrates.

The translation of a separating line is also a separating line, so it is sufficient to
consider lines that contain the origin. Given a line containing the origin <9 and with
unit-length direction D, the projection of a convex set C onto the line is the interval

1= [A.min(D) , Amax(D)] = [min{D . (X - (9) : X E C}, max{D . (X - (9) : X E C}]

where possibly Amin (D) = -00 or Amax(D) = +00, these cases arising when the con­
vex set is unbounded. Two convex sets Co and Clare separated if there exists a direc-

(a) (b)

Figure 5.11 (a) A convex set. No matter which two points you choose in the set, the line segment
connecting them is in the set. (b) A nonconvex set. The line segment connecting two
specific points is not (fully) contained in the set.

5.3 Collision Detection with Convex Polyhedra 285

Figure 5.12 Nonintersecting convex objects and a separating line for them. The algebraic

condition for separation is A~~(D) < A~n(D) as indicated in equation (5,47).

tion D such that the projection intervals 10 and h do not intersect. Specifically, they
do not intersect when

A(O~ (D) > A(1) (D) or A(0) (D) < A(l~ (D)
mm max max mm (5,47)

The superscript corresponds to the index of the convex set. Although the compar­
isons are made where D is unit length, the comparison results are invariant to changes
in length of the vector. This follows from Amin(tD) = tAmin(D) and Amax(tD) =
tAmax(D) for t > O. The Boolean value of the pair of comparisons is also invariant
when D is replaced by the opposite direction -D. This follows from Amin (- D) =

-Amax(D) and Amax (-D) = -Amin(D). When D is not unit length, the intervals ob­
tained for the separating line tests are not the projections of the object onto the line,
rather they are scaled versions of the projection intervals. We make no distinction
between the scaled projection and regular projection. We will also use the terminol­
ogy that the direction vector for a separating line is called a separating direction, a
direction that is not necessarily unit length.

Please note that in two dimensions, the terminology for separating line or axis
is potentially confusing. The separating line separates the projections of the objects
on that line. The separating line does not partition the plane into two regions, each
containing an object. In three dimensions, the terminology should not be confusing
since a plane would need to be specified to partition space into two regions, each
containing an object. No real sense can be made for partitioning space by a line.

286 Chapter 5 Physics Engines

5.3.2 STATIONARY OBJECTS

The method of separating axes for stationary objects determines whether or not two
objects intersect, a test-intersection query. We will analyze the method for convex
polygons in 2D to motivate the ideas, then extend the method to convex polyhedra
in 3D.

Convex Polygons

The following notation is used throughout this section. Let C j for j = 0, 1 be the

convex polygons with vertices Pji) for 0::: i < Nj that are counterclockwise ordered.

The edges of the polygons have direction vectors Eij) = pi21 - pij) for 0 ::: i < Nj
and where modular indexing is used to handle wraparound (index N is the same
as index 0; index -1 is the same as index N - 1). Outward normal vectors to the

edges are Nij
). No assumption is made about the length of the normal vectors; an

implementation may choose the length as needed. Regardless oflength, the condition
of outward pointing means

(Nij))-l . Eij) > 0

where (x, y)-l = (-y, x). All the pseudocode relating to convex polygons will use the
class shown:

class ConvexPolygon
{

public:
II N, number of vertices
int GetNO;

II V[i], counterclockwise ordered
Point GetVertex (int i);

I I E[i] = V[i + 1] - V[i]
Vector GetEdge (int i);

II N[i], N[i].x * E[i].y - N[i].y * E[i].x > 0
Vector GetNorma1 (i nt i);

} ;

All functions are assumed to handle the wraparound. For example, if the input
value is N, the number of vertices, then GetVertex returns Po and GetEdge returns
PI - Po. If the input value is -1, then GetVertex returns PN - 1 and GetEdge returns
Po - PN -1' Only the relevant interface is supplied for clarity of the presentation. The
implementation details will vary with the needs of an application.

5.3 Collision Detection with Convex Polyhedra 287

D

D ...-+------t----,---+-----+-- D ...---1f-----t-----t-----+-

Projection(Co) Projection(C1) No separation on any axis

Separation
(a) (b)

Figure 5.13 (a) Nonintersecting convex polygons. (b) Intersecting convex polygons.

(a) Edge-edge (b) Vertex-edge (c) Vertex-vertex

Figure 5.14 (a) Edge-edge contact. (b) Vertex-edge contact. (c) Vertex-vertex contact.

For a pair of convex polygons) only a finite set S of direction vectors needs to
be considered for separation tests. That set contains only the normal vectors to the
edges of the polygons. Figure 5.13(a) shows two nonintersecting polygons that are
separated along a direction determined by the normal to an edge of one polygon.
Figure 5.13(b) shows two polygons that intersect; there are no separating directions.

The intuition for why only edge normals must be tested is based on having two
convex polygons just touching with no interpenetration. Figure 5.14 shows the three
possible configurations: edge-edge contact) vertex-edge contact) and vertex-vertex
contact.

288 Chapter 5 Physics Engines

-----4------*-------t-------*-.- Do Po PI

Figure 5.15 Two polygons separated by an edge-normal direction of the first polygon.

The lines between the polygons are perpendicular to the separation lines that
would occur for one object translated away from the other by an infinitesimal dis­
tance. The vertex-vertex edge case has a low probability of occurrence. The collision
system should report this as a vertex-face collision to be consistent with our classifica­
tion of contact points (vertex-face or edge-edge with appropriately assigned normal
vectors).

A naive implementation of the method of separating axes selects a potential sep­
arating direction D, computes the intervals of projection by projecting the vertices of
both polygons onto that line, then tests if the intervals are separated. This requires
computing Ni projections for polygon Ci and keeping track of the minimum and
maximum projection values for each polygon. In the worst case that the polygons in­
tersect, No directions are tested from Co, each requiring No + N I projections, and N I

directions are tested from C I , each requiring No + N I projections. The total number
of projections is (No + N I)2.

A smarter algorithm avoids projecting all the vertices for the polygons by only
testing for separation using the maximum of the interval for the first polygon and the
minimum of the interval for the second polygon. IfD is an outward pointing normal
for the edge pi~l - piO)of Co, then the projection of the Co onto the separating line
piO)+ tD is [-JL, 0], where JL > O. If the projection of C I onto this line is [Po, prJ,
then the reduced separation test is Po > O. Figure 5.15 illustrates two separated poly­
gons using this scheme.

The value JL is irrelevant since we only need to compare Po to O. Consequently,
there is no need to project the vertices of Co to calculate JL. Moreover, the vertices
of Clare projected one at a time either until the projected value is negative, in which
case D is no longer considered for separation, or until all projected values are positive,
in which case D is a separating direction.

5.3 Collision Detection with Convex Polyhedra 289

bool TestIntersection (ConvexPolygon co, ConvexPolygon C1)
{

II Test edges of CO for separation. Because of the
II counterclockwise ordering, the projection interval for
II CO is [m,O] , where m <= O. Only try to determine if C1
II is on the 'positive' side of the line.
for (iO = CO.GetN()-l, i1 = 0; i1 < CO.GetN(); iO = i1++)
{

P = CO.GetVertex(i1);
D = CO.GetNormal(iO);
if (WhichSide(C1,P,D) > 0)
{

II C1 is entirely on 'positive' side of line P + t * D
return false;

II Test edges of C1 for separation. Because of the
II counterclockwise ordering, the projection interval for
II C1 is [m,O] , where m <= O. Only try to determine if CO
II is on the 'positive' side of the line.
for (iO = C1.GetN()-1, i1 = 0; i1 < C1.GetN(); iO = i1++)
{

P = C1.GetVertex(i1);
D = C1.GetNormal(iO);
if (WhichSide(CO,P,D) > 0)
{

II CO is entirely on ·positive' side of line P + t * D
return false;

return true;

int WhichSide (ConvexPolygon C, Point P, Vector D)
{

II C vertices are projected onto line P + t * D. Return value
Ilis +1 if all t > 0, -1 if all t < 0, or 0 if the 1i ne
II splits the polygon.

posCount = 0;
negCount = 0;
zeroCount = 0;

290 Chapter 5 Physics Engines

for (i = 0; i < C.GetNO; i++)
{

t = Dot(D,C.GetVertex(i) - P);
if(t>O)

posCount++;
else if (t < 0

negCount++;
else

zeroCount++;

if ((posCount > 0 and negCount > 0) or zeroCount > 0)
return 0;

return posCount ? -1;

In the worst case) the polygons do not intersect. We have processed No edge
normals of Co, each requiring N l projections for C l) and N l edge normals of C l)

each requiring No projections for Co' The total number of projections is 2NoN l , still
a quadratic quantity but considerably smaller than (No + Nl)2.

We can do even better in an asymptotic sense as the number of vertices be­
comes large. A form of bisection may be used to find an extreme point of the
projection of the polygon [O'R98]. The bisection effectively narrows in on sign
changes of the dot product of edges with the specified direction vector. For a poly­
gon of No vertices, the bisection is of order o (log No)) so the total algorithm is
o (max{Nolog N I , Nilog No}).

Given two vertex indices io and i1 of a polygon with N vertices) the middle index
of the indices is described by the following pseudocode.

int GetMiddlelndex (int iO, int iI, int N)

if(iO<il)
return (iO + il) / 2;

else
return ((iO + i1 + N) / 2) (mod N);

The division of two integers returns the largest integer smaller than the real­
value ratio and the mod operation indicates calculating the remainder after dividing
the argument by N. Observe that if io= i l = 0) the function returns a valid index.
The condition when io < i 1 has an obvious result-the returned index is the average
of the input indices, certainly supporting the name of the function. For example, if
the polygon has N = 5 vertices) inputs io= 0 and i l = 2 lead to a returned index of

5.3 Collision Detection with Convex Polyhedra 291

1. The other condition handles wraparound of the indices. If io= 2 and i 1 = 0, the
implied set of ordered indices is {2, 3, 4, OJ. The middle index is selected as 3 since
3 = (2 +°+ 5)12 mod 5).

The bisection algorithm to find the extreme value of the projection is

int GetExtremeIndex (ConvexPolygon C, Vector D)

iO = 0;
i1 = 0;
while (true)
{

mid = GetMiddleIndex(iO,i1,C.GetN());
if (Dot(D,C.GetEdge(mid)) > a)

if (mi d ! = ia
iO = mid;

else
return i1;

else

if (Dot(D,C.GetEdge(mid - 1)) < a)
i1 = mid;

else
return mid;

Using the bisection method, the intersection testing pseudocode is

bool TestIntersection (ConvexPolygon CO, ConvexPolygon C1)
{

II Test edges of CO for separation. Because of the
II counterclockwise ordering, the projection interval for
II CO is [m,O], where m <= O. Only try to determine if C1
II is on the 'positive' side of the line.
for (iO = CO.GetN()-l, i1 = 0; i1 < CO.GetN(); iO = i1++)
{

P = CO.GetVertex(i1);
D = CO.GetNormal (iO);

292 Chapter 5 Physics Engines

if (Dot(D,C1.GetVertex(GetExtremeIndex(C1,-D)) - P) > 0)

II C1 is entirely on 'positivel side of line P + t * D
return false;

II Test edges of C1 for separation. Because of the
II counterclockwise ordering, the projection interval for
II C1 is [m,O], where m <= O. Only try to determine if CO
II is on the 'positive' side of the line.
for (iO = C1.N-1, i1 = 0; i1 < C1.N; iO = i1++)

P = C1.GetVertex(i1);
D = C1.GetNormal (iO);
if (Dot(D,CO.GetVertex(GetExtremeIndex(CO,-D)) - P) > 0)

II CO is entirely on 'positive' side of line P + t * D
return false;

return true;

Let us consider an alternate formulation of the bisection problem. Just as we
would do in the 3D problem, the vertices, edges, and normals of the convex polygon
are stored in body coordinates. The polygon additionally stores the center of mass
(the body origin) and an orientation matrix that transforms the body coordinate axes
to the world coordinates. We will transform a potential separating direction D from
world coordinates to body coordinates and continue the separation process in those
coordinates. Figure 5.16 illustrates the initial part of the process of determining which
polygon vertex or edge is extremal.

If D = Ni' then all points on the edge Ei are extremal. If D is strictly between No
and N l' then PI is the unique extremal point in that direction. Similar arguments
apply for D strictly between any pair of consecutive normals. The normal points on
the circle decompose the circle into arcs, each arc corresponding to an extremal vertex
of the polygon. An end point of an arc corresponds to an entire edge being extremal.
The testing of D to determine the full set of extremal points is can be summarized as
follows.

• Vertex Pi is optimal when Nf_1 . D> 0 and Nf . D < 0

• Edge Ei is optimal when Nf-1 . D = 0 and Nf . D < 0

P4 extremal
for this arc

/

5.3 Collision Detection with Convex Polyhedra 293

(a) (b)

Figure 5.16 (a) A convex polygon. (b) A unit circle whose vertices correspond to normal
directions of the polygon and whose arcs connecting the vertices correspond to
vertices of the polygon (the polar dual of the polygon).

where (x, y)..1 = (- y, x). The indexing is computed in the modular sense, N-1 = N5'

Since we will be projecting the extremal point onto a potential separating axis, we can
collapse the two tests into a single test and just use one vertex of an extremal edge as
the to-be-projected point:

• Vertex Pi is optimal when Nf-l . D ~ 0 and Nf . D < 0

Generally, there are N arcs for an N -sided polygon. We could search the arcs
one at a time and test if D is on that arc, but then we are back to an 0 (N) search.
Instead, we can create a binary space partitioning tree (BSP tree) for the circle that
supports an 0 (log N) search. Effectively, this is a binary search of an ordered array
of numbers, so thinking of it as a BSP tree might not be useful to you. However, in
3D we will construct something similar that is a BSP tree in the sense you are used to.
A simple illustration using the polygon of Figure 5.16 suffices. Figure 5.17 illustrates
the construction of the BSP tree. The unit disk is recursively split into sectors, each
split representing a test Nt .D ~ O.

The vertices on the circle are N i for 0 ~ i ~ 5. The circular arcs are denoted
A ij = (Ni , N j)' where j = (i + 1) mod 6. The set of all vertices and the set of all
arcs are used to initialize the process. These are shown at the top of Figure 5.17. The
root node of the tree claims the first normal in the list, namely, No, and uses it for
computing dot products with other vectors, Nt . D ~ O. When creating the tree, the

remaining normals in the input set are tested. If Nt . Ni ~ 0, vector Ni is placed in a
'~et ofvectors that will be used to create the right child of the root (marked as T in the

294 Chapter 5 Physics Engines

N (012345)
A (01) (12) (23) (34) (45) (50)

I

N (3)

T~(23) (34)

N~. D ~°

N (123)

T~1) (12) (23) (34)

N (1)

A(Ol)(l~

Nt·D~O

N (45)

A(34)(45)~F

Figure 5.17 A BSP tree constructed by recursive splitting of the unit disk. Each node is labeled
with the test used for the split. The subsectors consisting of points satisfying the test
are shaded in dark gray. The leaf nodes are shaded in light gray and labeled with a
vertex that is extremal.

figure); otherwise N i is placed in another set of vectors that will be used to create the
left child of the root (marked as F in the figure).

The set of arcs is also processed at each node. The end points of the arc Ai} are

normals for which we have already computed di = Nt . N i and dj = Nt . N j • If
di ::::: °and d j ::::: 0, then the arc is placed in a set of arcs that will be used to create
the right child of the root. If di .:::: °and d j .:::: 0, then the arc is placed in a set of arcs
that will be used to create the left child. Ifdidj < 0, then the arc is split in a sense, but
we do not need to literally subdivide it into two subarcs. Instead, we just add that arc
to both sets to be used in constructing the child subtrees. In our example the only arc
that is split is A34 . In fact, this will be the only split and represents the wraparound,
so to speak, of the circle.

5.3 Collision Detection with Convex Polyhedra 295

The process just described is applied recursively. At the end, each interior node
of the tree has been assigned a normal vector for testing purposes. Each leaf node
was given an arc Aij' but not a normal. The last index j is that of the extreme vertex
represented by the leaf node.

Some pseudocode is provided. Let us assume a class for a BSP node as shown
next. The class ConvexPo1ygon described earlier is given a new data member of type
BSPNode.

class BSPNode
{

public:
II normal index (interior node), vertex index (leaf node)
int I;

II if Dot(E,D) >= 0, D gets propagated to this child
BSPNode R;

II if Dot(E,D) < 0, D gets propagated to this child
BSPNode L;

};

class ConvexPolygon
{

public:
II N, number of vertices
int GetNO;

II P[i], counterclockwise ordered
Point GetVertex (int i);

I I E[i] = P[i + 1] - P[i]
Vector Get Edge (int i);

I I N[i], N[i].x * E[i].y - N[i].y * E[i].x > 0
Vector Get Norma1 (i nt i);

BSPNode tree;
};

The BSP tree must be able to access the vertices and edges of the polygon, so the
creation of the tree involves passing the polygon as a parameter. Since Nf = Ei , the
direction of the edge, and since we are assuming the edges are stored in the polygon,

296 Chapter 5 Physics Engines

we do not need a Perp function. The pseudocode is written for clarity and thus not
optimized.

void CreateTree (ConvexPolygon C)

II Create the root node first, knowing that the only split can
II occur here.

array<int> NIR, NIL; II normal index sets

II Arc index sets, array element written {jO,jl},
II AIR[i][O] = jO, AIR[i][l] = jl.
array<int,int> AIR, AIL;
array<int> d(C.GetN());
d[O] = 0;
for (i = 1; i < C.GetN(); i++)
{

d[i] = Dot(C.GetEdge(O),C.GetNormal(i));

if (d[i] >= 0)
NIR.append(i);

else
NIL.append(i);

if (d[i-l] >= 0 and d[i] >= 0)
AIR.append({i-l,i});

else if (d[i-l] <= 0 and d[i] <= 0)
AIL.append({i-l,i});

else II d[i-l] * d[i] < 0
{

AIR.append({i-l,i});
AIL.append({i-l,i});

}

AIL.append({C.GetN()-l,O}); II always left!

C.tree = CreateNode(O,CreateNode(C,NIR,AIR),
CreateNode(C,NIL,AIL));

BSPNode CreateNode (int I, BSPTree R, BSPTree L)

BSPNode node;

5.3 Collision Detection with Convex Polyhedra 297

node.I = I;
node.R = R;
node.L = L;
return node;

BSPNode CreateNode (ConvexPolygon C, array<int> NI, array<int,int> AI)
{

array<int> NIR, NIL;
array<int> d(NI.size());
d[O] =NI[O];
for (i = 1; i < NI.size(); i++)
{

d[i) = Dot(C.GetEdge(NI[O]),C.GetNormal (NI[i)));
if (d[i) >= 0)

NIR.append(NI[i]);
else

NIL.append(NI[i]);

array<int,int> AIR, AIL;
for (i = 0; i < AI.size(); i++)
{

if (d[AI[i][O]] >= 0 and d[AI[i][I]] >= 0)
AIR.append(AI[i]);

else
AIL.append(AI[i]);

BSPNode RChil d;
if (NIR.size() > 0)

RChild = CreateNode(C,NIR,AIR);
else

RChild = CreateNode(AIR[O] [1],null,null);

BSPNode LChild;
if (NIL.size() > 0)

LChild = CreateNode(C,NIL,AIL);
else

LChild = CreateNode(AIL[O] [1] ,null ,null);

return CreateNode(NI[O] ,RChild,LChild);

298 Chapter 5 Physics Engines

Once the BSP tree has been constructed, locating an extreme vertex for a poten­
tial separating direction D can be done using the following pseudocode. This function
replaces the one that was used for the bisection of indices shown earlier. The TestIn­
tersect i on function corresponding to that bisection remains the same.

int GetExtremeIndex (ConvexPolygon C, Vector D)

BSPTree node = C.tree;
while (node.R)
{

if (Dot(C.GetEdge(node.I),D) >= 0)
node = node.R;

else
node = node.L;

return node.I;

The leaf nodes have no children and internal nodes have two children, so the test on
one child pointer is sufficient to identify leaf nodes.

Convex Polyhedra

The following notation is used thr~)Ughout this section. Let C j for j = 0, 1 b~ the
convex polyhedra with vertices pi l) for 0 ::s i < Nj , edges with directions Ei l) for
o::s i < M j , and faces that are planar convex polygons whose vertices are ordered
counterclockwise as you view the face from outside the polyhedron. The outward

normal vectors for the faces are NiJ) for 0 ::s i < L j. All the pseudocode relating to
convex polyhedra will use the class shown next.

class ConvexPolyhedron
{

public:
int GetVCount (); II number of vertices
int GetECount (); II number of edges
int GetFCount (); II number of faces
Point GetVertex (int i);
Vector Get Edge (int i);
Vector GetNorma1 (i nt i);

};

Only the relevant interface is supplied for clarity of the presentation. The implemen­
tation details will vary with the needs of an application.

5.3 Collision Detection with Convex Polyhedra 299

(a)

D

(b)

~--__ D

Figure 5.18 Two views of two cubes that are not separated by any face normal but are separated
by a cross product of two edges, one from each cube.

The ideas of separation of convex polygons extend to convex polyhedra. For a
pair of convex polyhedra, only a finite set of direction vectors needs to be considered
for separating tests. The intuition is similar to that of convex polygons. If the two
polyhedra are just touching with no interpenetration, the contact is one of face-face,
face-edge, face-vertex, edge-edge, edge-vertex, or vertex-vertex. The set of potential
separating directions that capture these types of contact include the normal vectors
to the faces of the polyhedra and vectors generated by a cross product of two edges,
one from each polyhedron. The necessity of testing more than just the face normals
is shown by Figure 5.18.

The first cube (dark gray) has unit-length face normals Uo = (1, 0, 0), U1 =
(0, 1, 0), and U2 = (0, 0, 1). The second cube (light gray) has unit-length face nor­
mals Va = (1, -1,0)/.../2, VI = (1,1, -.../2)/2, and V2 = (1,1, .../2)12. The other
vector shown in the figure is D = (1, 1, 0)1.../2. Figure 5.18(a) shows a view of the
two cubes when looking in the direction -U2• Figure 5.18(b) shows a view when
looking along the direction U2 x D. In view (a), neither Uo, U 1, nor Va are separat­
ing directions. In view (b), neither U2, Vl' nor V2 are separating directions. No face
axis separates the two cubes, yet they are not intersecting. A separating direction is
D = U2 X Va' a cross product of edges from the cubes.

The pseudocode for using the method of separating axes to test for intersection
of two polyhedra, similar to the naive implementation in 2D, is

bool Testlntersection (ConvexPolyhedron CO, ConvexPolyhedron C1)
{

II test faces of CO for separation
for (i = 0; i < CO.GetFCount(); i++)

D = CO.GetNormal(i);

300 Chapter 5 Physics Engines

Computelnterval (CO,D,minO,maxO);
Computelnterval (Cl,D,minl,maxl);
if (maxI < minO II maxO < minI)

return false;

II test faces of Cl for separation
for (j = 0; j < Cl.GetFCount(); j++)
{

D = Cl.GetNormal(j);
Computelnterval (CO,D,minO,maxO);
Computelnterval (Cl,D,minl,maxl);
if (maxI < minO II maxO < minI)

return false;

II test cross products of pairs of edges
for (i = 0; i < CO.GetECount(); i++)
{

for (j = 0; j < Cl.GetECount(); j++)
{

D = Cross(CO.GetEdge(i),Cl.Edge(j));
Computelnterval (CO,D,minO,maxO);
Computelnterval(Cl,D,minl,maxl);
if (maxI < minO II maxO < minI)

return fal se;

return true;

void Computelnterval (ConvexPolyhedron C, Vector D, double& min,
double& max)

min = Dot(D,C.GetVertex(O));
max = min;
for (i = 1; i < C.GetVCount(); i++)
{

value = Dot(D,C.GetVertex(i));
if (value < min)

min = value;
else

max = value;

5.3 Collision Detection with Convex Polyhedra 301

The function Computelnterval is O(N) for a polyhedron of N vertices. A quick
glance at the code shows that you need Lo(No+ N1) + L1(No+ N l) + MoM1(No+
N1) = (L o+ L 1+ MoM1HNo+ N1) units of time to execute the test (cubic order).
Since all pairs of edges are tested in the worst case, the time is at least quadratic. Our
only hope in reducing the time complexity is to have a faster algorithm for finding
extreme vertices for convex polyhedra, just as we did for convex polygons.

The asymptotically better algorithm for finding the extreme points of a convex
polygon in 2D does have a counterpart for polytopes in 3D. Given N vertices, it is pos­
sible to find extreme points in o (log N) time [Kir83, DK90]. The algorithm requires
preprocessing the polytope to build a data structure, called the Dobkin-Kirkpatrick
hierarchy, that supports the queries. The preprocessing requires 0 (N) time. A well­
written presentation of the algorithm is provided in [O'R98] and has enough infor­
mation and pseudocode to assist you in implementing the algorithm. The idea is to
construct a sequence of nested polytopes Co, ... , Ck> where the innermost polytope
Ck is either a triangle or a tetrahedron and the outermost polytope Co is the original
one. The extremal query relies on quickly finding the extreme point on Ci given the
extreme point on Ci +1; in fact, this can be done in constant time, 0(1). The construc­
tion of the nested polytopes shows that k = 0 (log N), so the total query executes in
o (log N) time.

Here is a brief summary of the ideas presented in [O'R98] to give you an idea of
the complexity of implementing the algorithm. The vertices and edges of a polytope
form a planar graph. The construction of Ci +1 from Ci is based on locating a maxi­
mum independent set ofvertices for the graph of Ci . A set ofvertices is independent if
no two vertices are adjacent. An independent set S is maximum if no other indepen­
dent set has more vertices than does S. The vertices in the maximum independent set
are removed from Ci , one at a time. On removal of a vertex P, a hole is introduced
into the current polytope. The neighboring vertices of P-call this set N (P)-must
be triangulated to generate the faces that fill in the hole. The triangulation is accom­
plished via a convex hull algorithm. After removal of a maximum independent set
of vertices from Ci , we have Ci +1. However, the construction must support the ex­
tremal query; linking steps must occur between faces of Ci +1 and Ci . The pseudocode
mentioned in [O'R98] is

void ComputeHierarchy (ConvexPolyhedron C)
{

i nt i = 0;
C.hier.poly[O] = C; II the assignment copies C into poly[O]
while (C.hier.poly[O].N > 4)
{

set<point> S = GetMaximumlndependentSet(C.hier.poly[i]);
C.hier.poly[i+l] = C.hier.poly[i];
for (each P in S) do
{

delete P from C.hier.poly[i+l];
triangulate the hole by constructing ConvexHull(N(V));

302 Chapter 5 Physics Engines

insert the triangles into C.hier.poly[i+l];
link each new triangle of C.hier.poly[i+l] to P;

}

link unchanged faces of C.hier.poly[i+l] to C.hier.poly[i];

As it turns out, constructing a maximum independent set of a graph is NP­
complete [CLR90, ch. 36]. To obtain a polynomial time construction of the hierar­
chy, an approximation is required. This is provided by [Ede87, Theorem 9.8] and
is proved that the hierarchy construction remains 0 (N) and the extremal query re­
mains 0 (log N). The approximation produces a sufficiently large independent set,
although not necessarily a maximum independent set. The pseudocode is

set<point> GetLargeIndependentSet (ConvexPolyhedron C)
{

set<point> S = empty;
mark all vertices P in C of degree{P) >= 9;
while (some nodes remain unmarked) do
{

choose an unmarked node P;
mark P and all neighbors in N{P);
S. insert{P);

The function call GetMax imumIndependentSet in the hierarchy construction is replaced
by a call to the function GetLargeIndependentSet.

The extremal query is based on the following result, formulated for the direction
D = (0, 0, 1), but easily adaptable to other directions [EM85]. If Mi is the extreme
point for Ci and M i+1 is the extreme point for Ci+l , then either M i = M i+1 or
M i+1has the largest z-value among the vertices adjacent to Mi' Although the obvious
approach now is just to search the neighbors directly, the problem is that the number
of neighbors can be quite large and lead to an 0 (N) query rather than an 0 (log N)
query. The search must be narrowed to some subset of neighbors.

The key is to project Ci+1 onto a coordinate plane parallel to the z-axis. That
projection is a convex polygon whose extreme vertex M;+I in the z-direction is the
projection ofMi+l . Two edges of the convex polygon share M;+l' call them L;+I and
R;+I' These edges are projections of some edges Li+1 and Ri+1 that share M i+l • The
umbrella parents of an edge E of Ci+1 are defined as follows. IfE is not an edge of Ci ,

then it was generated for Ci+1 by the removal of a vertex V from Ci • In this case V is
the sole umbrella parent of E ("umbrella" refers to the umbrella of faces sharing V).
If E is an edge of Ci , then its umbrella parents are the two vertices of Ci at the tips
of the triangle faces that share E. This allows us to narrow the search for the extreme

5.3 Collision Detection with Convex Polyhedra 303

point: If M j is the extreme point for C j and M j +1 is the extreme point for Cj +l' then
either M j = Mi+l or Mi+l has the largest z-value among the umbrella parents ofthe
edges Lj +1 and Rj +1. The pseudocode for the query as presented in [O'R98] is listed
below. It is assumed that the sequence of nested polytopes was already constructed.

point GetExtremePoint (ConvexPolyhedron C, Vector D)
{

II polys 0 through k = size - 1
int k = C.hier.size() - 1;
array<point> M[k + 1];

II extreme of triangle or tetrahedron
M[k] = GetExtremeVertex(C.hier.poly[k]);

compute extreme edges L[k] and R[k];
for (i = k - 1; i >= 0; i--)
{

M[i] SelectExtremeFrom(M[i + l],Parents(L[i + 1]),
Parents(R[i + 1]);

if (M[i] not equal to M[i + 1]) then

for (all edges incident to M[i]) do
save extreme edges L[i] and R[i];

else

compute L[i] from L[i + 1];
compute R[i] from R[i + 1];

}

return M[O];

The summary here should give you the idea that the implementation of the
Dobkin-Kirkpatrick hierarchy and the extremal queries is tractable, but tedious. An
alternative that is easier to implement is presented here and is the extension of the
BSP tree construction used for finding extreme points for convex polygons. The
construction of the BSP tree is 0 (N log N) and the query is 0 (log N) as long as
you have a balanced tree. The asymptotic order of construction of the BSP data
structure is worse than the 0 (N) construction of the data structure for the Dobkin­
Kirkpatrick hierarchy, but since a collision system does the constructions on start-up
of the simulation, and since the BSP tree is easy code to write, the comparison of
asymptotic times is irrelevant.

304 Chapter 5 Physics Engines

(a)

(b)

Figure 5.19 (a) A tetrahedron. (b) A unit sphere whose vertices correspond to normal directions
of the tetrahedron, whose great circle arcs connecting the vertices correspond to
edges of the tetrahedron, and whose spherical polygons correspond to vertices of the
tetrahedron (the spherical dual of the tetrahedron).

Let D be a unit-length direction. If D = N j , the normal to the ith face of the
polytope, then all points on that face are extremal. Let Ejj be the edge shared by faces
i and j. The face normals N j and N j are in the plane through the origin and with
normal vector Ejj • If D is also in this plane and in the smaller of the two sectors that
are bounded by N j and Nj' then all points on the edge are extremal. In all other cases
some vertex is the unique extreme point in the specified direction. Figure 5.19 shows
a tetrahedron and a unit sphere with points corresponding to the face normals of the
tetrahedron.

The tetrahedron has vertices Po = (0, 0, 0), 1\ = (1, 0, 0), 1'2 = (0, 1, 0), and
1'3 = (0, 0,1). The face normals are No = (1,1, l)j,J3, N 1 = (-1, 0, 0), N2 =
(0, -1, 0), and N3 = (0, 0, -1). The sphere is partitioned into four spherical tri­
angles. The interior of the spherical triangle with (No, N l' N2) corresponds to those
directions for which 1'3 is the unique extreme point. Observe that the three normals
forming the spherical triangle are the normals for the faces that share vertex 1'3'

Generally, the normal and edge directions of a polytope lead to a partitioning of
the sphere into spherical convex polygons. The interior of a single spherical convex
polygon corresponds to the set of directions for which a vertex of the polytope is the
unique extreme point. The number of edges of the spherical convex polygon is the
number of polytope faces sharing that vertex. Just as for convex polygons in 2D, we
can construct a BSP tree ofthe spherical polygons and use it for fast determination of

5.3 Collision Detection with Convex Polyhedra 305

A (12) (13) (23) (01) (02) (03)
S (012:3) (013:2) (023:1) (123:0)

I
I Initial sphere I NI x N2 • D ~ 0

A (13) (23) (03) / F T~ A (01) (02) (03)
S (013:2) (023:1) (123:0)/ ~ S (012:3) (013:2) (023:1)

Figure 5.20 The root of the BSP tree and the two hemispheres obtained by splitting. Both children
are displayed with a viewing direction (0, 0, -1). The right child is the top of the
sphere viewed from the outside, and the left child is the bottom of the sphere viewed
from the inside.

extreme vertices. The method used for 2D extends to 3D with each node of the BSP
tree representing a hemisphere determined by E . D ::::: 0 for an edge direction E of
the polytope.

The tetrahedron of Figure 5.19 has six edges Eij = Ni X N j , listed as {EI2 , E13 ,

E23 , EOI ' Eo2 , E03 }. Please note that the subscripts correspond to normal vector in­
dices, not to vertex indices. Each arc of the sphere corresponds to an edge of the
tetrahedron, label the arcs A ij' The root node of the tree claims arc A 12 for splitting.
The condition N I X N 2 • D ::::: 0 splits the sphere into two hemispheres. Figure 5.20
shows those hemispheres with viewing direction (0, 0, -1).

The set of arcs and the set of spherical faces are inputs to the BSP tree construc­
tion. These sets are shown at the top of the figure. An arc is specified by Aij and
connects N i and N j . A spherical face is Sil, ... ,in:j and has vertices Nil through N in .

The vertex Pj of the original polyhedron is the extreme vertex corresponding to the
face. The ordering of the indices for arcs and spherical faces is irrelevant. In our ex­
ample the spherical faces all have three vertices, so they are specified by Si,j,k:£'

306 Chapter 5 Physics Engines

A (13) (23) (03)
S (013:2) (023:1) (123:0)

I F

A (01) (02) (03)
S (012:3) (013:2) (023:1)

I T

A (23) A (03) A (02)
T~S (013:2) (123:0) S (013:2) (023:1V F T~ S (012:3) (023:1)

NlxN3eD20 ~ ONOXNleD20

NOXN30D7

S (023 1) /.: "-..5 (013:2) S (0132) S (023"lL)/. ~S(013:2) S (012:3)/ "-.. S (023:1)
: /' F T ~ S (123:0VF T~ : "/ F T "-.. / F T "-..

A (03)
S (013:2) (023:1)/ F

Figure 5.21 The BSP trees for the children of the root.

Figure 5.21 shows the BSP trees for the children of the root. During BSP tree
construction, the root node claims the first arc Al2 and uses the vector E = N1 X N 1

for testing other vectors corresponding to arcs Aij. Let di = E . N i and d j = E . N j .

Ifdi :::: °and dj :::: 0, then the arc is completely on one side ofthe hemisphere implied
by E. Aij is placed in a set that will be used to generate the BSP tree for the right child
of the root. If di :::: °and dj :::: 0, then the arc is completely on the other side of the
hemisphere and is placed in a set that will be used to generate the BSP tree for the left
child of the root. Ifdid j < 0, then the arc is partially in each hemisphere and is added
to both sets. This is exactly the algorithm we used in 2D.

In 3D we have some additional work in that the spherical faces must be processed
by the tree to propagate to the leaf nodes the indices of the extreme vertices repre­
sented by those nodes. In fact, the processing is similar to that for arcs. Let Si, j, H be
a face to be processed at the root node. Let di = E . N i , d j = E . N j , and dk = E . N k .

If d i :::: 0, d j :::: 0, and dk :::: 0, then the spherical face is completely on one side of the
hemisphere implied by E. Si, j, H is placed in a set that will be used to generate the
BSP tree for the right child of the root. If di :::: 0, d j :::: 0, and dk :::: 0, then the face
is completely on the other side of the hemisphere and is placed in a set that will be
used to generate the BSP tree for the right child of the root. Otherwise, the arc is
partially in each hemisphere and is added to both sets. In general for a spherical face

5.3 Collision Detection with Convex Polyhedra 307

with n vertices, the face is used for construction of the right child if all dot products
are nonnegative, for construction of the left child if all dot products are nonpositive,
or for construction of both children if some dot products are positive and some are
negative.

In a typical application we have a vertex-edge-face data structure to represent the
polygon vertices, edges, faces, and the adjacency information between them. The data
structure will support the BSP tree construction in a convenient manner. Finally, for
theoretical purposes, this algorithm is easily extendable to higher dimensions.

Pseudocode for the BSP tree construction in 3D follows. The class BSPNode is the
same as before, except that the index member stores an edge index k when the arc at
the node is Aij with N i x N j = Ek • The convex polyhedron interface has what was
postulated earlier, plus additional support for the BSP construction and query. For
simplicity of the presentation, the code is not optimized.

class SArc
{

public:
II indices of polyhedron normals that form the spherical arc
i nt f[2];

II index of edge shared by polyhedron faces
int e;

};

class SPolygon
{

public:
II indices of polyhedron normals that form the spherical polygon
array<int> f;

II index of extreme vertex corresponding to this polygon
int v;

};

class ConvexPolyhedron
{

public:
II previous interface
int GetVCount (); II number of vertices
int GetECount (); II number of edges
int GetFCount (); II number of faces
Point GetVertex (int i);

308 Chapter 5 Physics Engines

Vector GetEdge (int i);
Vector GetNormal (int i);

II additional support for extremal queries
void GetFacesSharedByVertex (int i, array<int> f);
void GetFacesSharedByEdge (int i, int f[2]);
Vector GetFaceNorma1 (i nt i);

BSPNode tree;
};

The BSP tree construction is

void CreateTree (ConvexPolyhedron C)
{

array<SArc> A(C.GetECount());
for (i = 0; i < C.GetECount(); i++)
{

C.GetFacesSharedByEdge(i,A[i] .f);
A[iJ.e=i;

array<SPolygon> S(C.GetVCount());
for (i = 0; i < C.GetVertexCount(); i++)
{

C.GetFacesSharedByVertex(i,S[i].f);
S[iJ.v=i;

C.tree = CreateNode(C,A,S);

BSPNode CreateNode (int I, BSPNode R, BSPNode L)

BSPNode node;
node.I = I;
node.R = R;
node.L = L;
return node;

BSPNode CreateNode (ConvexPolyhedron C, array<SArc> A,
array<SPolygon> S)

Vector E = C.GetEdge(A[O] .e);

5.3 Collision Detection with Convex Polyhedra 309

array<SArc> AR, AL;
for (i = 1; i < A.sizeO; i++)
{

dO = Dot(E,C.GetNormal(A[iJ.f[O]));
d1 = Dot(E,C.GetNormal(A[iJ.f[l]));
if (dO >= 0 and d1 >= 0)

AR.append(A[i]);
else if (dO <= 0 and d1 <= 0)

AL.append(A[i]);
else

AR.append(A[i]);
AL.append(A[i]);

array<SPolygon> SR, SL;
for (i = 0; i < S.sizeO; i++)
{

posCount = 0;
negCount = 0;
for (j = 0; j < S[iJ.f.sizeO; j++)
{

d = Dot(E,C.GetNormal (S[i] .fU]));
if (d > 0)

posCount++;
else if (d < 0)

negCount++;
if (posCount > 0 and negCount > 0)

break;

if (posCount > 0 and negCount == 0)
SR.append(S[i]);

else if (neg> 0 and posCount == 0)
SL.append(S[i]);

else

SR.append(S[i]);
SL.append(S[i]);

BSPNode RChild;

310 Chapter 5 Physics Engines

if (AR.size() > 0)
RChild = CreateNode(C,AR,SR);

else
RChild = CreateNode(SR[O].v,null,null);

BSPNode LChild;
if (AL.size() > 0)

LChild CreateNode(C,AL,SL);
else

LChild CreateNode(SL[O] .v,null ,null);

return CreateNode(A[O] .e,RChild,LChild);

The query for an extreme point associated with a direction D is

int GetExtremeIndex (ConvexPolyhedron C, Vector D)

BSPTree node = C.tree;
while (node.R)
{

if (Dot(C.GetEdge(node.I),D) >= 0)
node = node.R;

else
node = node.L;

return node.I;

The 0 (log N) query requires a balanced BSP tree. An application can check the
output of the algorithm to see if it is balanced. If it is not, most likely a random
permutation of the input sets will increase the likelihood of a balanced tree.
, With the extremal query support in' place, the'function ComputeInterval called by

Tes tI ntersect i on can be implemented as

void ComputeInterval (ConvexPolyhedron C, Vector D, double& min,
double& max)

min Dot(D,C.GetVertex(GetExtremeIndex(C,-D)));
max Dot(D,C.GetVertex(GetExtremeIndex(C,D)));

The function involves two calls to 0 (log N) functions, making it also an 0 (log N)
function.

5.3 Collision Detection with Convex Polyhedra 311

5.3.3 OBJECTS MOVING WITH CONSTANT LINEAR VELOCITY

The method of separating axes is used to test for intersection of two stationary convex
polyhedra. The set of potential separating axes consists of the face normals for the
polyhedra and cross products of edges, each product using an edge from each of
the participating polyhedra. As described earlier, a collision detection system can
be implemented using a bisection technique. At the first time step, no polyhedra
are intersecting. For the next time step, the physical simulation decides how each
polyhedron should move based on constraints (using a differential equation solver for
the equations ofmotion). All the polyhedra are moved to their desired locations. Each
pair of convex polyhedra are tested for intersection using the method of separating
axes. If any pair reports interpenetration, then the system is restarted at the first time
step, but with a time increment that is half ofwhat was tried the first time.

The strategy is not bad when only a small number of polyhedra are in the system
and when the frequency of contact (or close contact) is small. However, for large
numbers of polyhedra in close proximity, a lot of time can be spent in restarting
the system. A quick hack to reduce the time is to restart the system only for those
pairs that reported an interpenetration. When the bisection is completed, all the
objects have been moved to a new state with no interpenetrations, but the time step
is (potentially) different for the objects, an implied change in the speeds of some of
the objects. For a system that runs on the order of 30 frames per second or larger, this
is not usually a noticeable problem.

An alternative to the bisection approach is to attempt to predict the time of colli­
sion between two polyhedra. For a small change in time an assumption we can make
is that the polyhedra are moving with constant linear velocity and zero angular ve­
locity. Whether or not the assumption is reasonable will depend on your application.
The method of separating axes can be extended to handle polyhedra moving with
constant linear velocity and to report the first time of contact between a pair. The
algorithm is attributed to Ron Levine in a post to the SourceForge game developer
algorithms mailing list [LevOO]. As we did for stationary objects, let us first look at
the problem for convex polygons to illustrate the ideas for convex polyhedra.

Separation of Convex Polygons

If Co and Clare convex polygons with linear velocities V0 and Vl' it can be deter­
mined via projections if the polygons will intersect for some time T ::: O. If they do
intersect, the first time of contact can be computed. It is enough to work with a sta­
tionary polygon Co and a moving polygon C1 with velocity V since one can always
use V = VI - Vo to perform the calculations as if Co were not moving.

If Co and Clare initially intersecting, then the first time of contact is T = O.
Otherwise, the convex polygons are initially disjoint. The projection of C1 onto a line
with direction D not perpendicular to V is itself moving. The speed of the projection
along the line is a = (V . D)/IDI 2• If the projection interval of C1 moves away from

312 Chapter 5 Physics Engines

the projection interval of Co' then the two polygons will never intersect. The cases
when intersection might happen are those when the projection intervals for C1 move
toward those of Co'

The intuition for how to predict an intersection is much like that for selecting the
potential separating directions in the first place. If the two convex polygons intersect
at a first time Tfirst > 0, then their projections are not separated along any line at that
time. An instant before first contact, the polygons are separated. Consequently, there
must be at least one separating direction for the polygons at time Tfirst - 8 for small
8 > 0. Similarly, if the two convex polygons intersect at a last time T1ast > 0, then
their projections are also not separated at that time along any line, but an instant
after last contact, the polygons are separated. Consequently, there must be at least one
separating direction for the polygons at time 'liast + 8 for small 8 > 0. Both Tfirst and
'liast can be tracked as each potential separating axis is processed. After all directions
are processed, if Tfirst :::: 'liast' then the two polygons do intersect with first contact
time Tfirst ' It is also possible that Tfirst > 'liast' in which case the two polygons cannot
intersect.

Pseudocode for testing for intersection of two moving convex polygons is given
next. The time interval over which the event is of interest is [0, TmaxJ If knowing
an intersection at any future time is desired, then set Tmax = 00. Otherwise, Tmax is
finite. The function is implemented to indicate there is no intersection on [0, Tmax],

even though there might be an intersection at some time T > Tmax'

bool TestIntersection (ConvexPolygon CO, Vector VO,
ConvexPolygon Cl, Vector VI, double tmax, double& tfirst,
double& tlast)

V = VI - VO; II process as if CO is stationary, Cl is moving
tfirst = 0;
tlast = INFINITY;

II test edges of CO for separation
for (iO = CO.GetN() - 1, il = 0; il < CO.GetN(); iO il++)

D = CO.GetNormal (iO);
ComputeInterval(CO,D,minO,maxO);
ComputeInterval(Cl,D,minl,maxl);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,minO,maxO,minl,maxl,

tfi rst, tl ast))

return false;

5.3 Collision Detection with Convex Polyhedra 313

II test edges of C1 for separation
for (iO = C1.N - 1, i1 = 0; i1 < C1.N; iO i1++)
{

D = C1.GetNormal(iO);
ComputeInterval(CO,D,minO,maxO);
ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,minO,maxO,min1,max1,

tfirst,tlast))

return false;

return true;

bool NoIntersect (double tmax, double speed, double minO,
double maxO, double minI, double maxI, double& tfirst,
double& tlast)

if (maxI < minO

II interval (C1) initially on 'left' of interval (CO)

if (speed <= a) II intervals moving apart
return true;

t = (minO - max1)/speed;
if (t > tfirst)

tfirst = t;
if (tfirst > tmax

return true;

t = (maxO - min1)/speed;
if (t < tlast)

tlast = t;
if (tfirst > tlast

return true;

else if (maxO < minI

II interval (C1) initially on 'right' of interval (CO)

if (speed >= 0) II intervals moving apart
return true;

314 Chapter 5 Physics Engines

t = (maxO - minl)/speed;
if (t > tfirst)

tfirst = t;
if (tfirst > tmax

return true;

t = (minO - maxl)/speed;
if (t < tlast)

tlast = t;
if (tfirst > tlast

return true;

else

II interval (CO) and interval (Cl) overlap

if (speed> 0)

t = (maxO - minl)/speed;
if (t < tlast)

tlast = t;
if (tfirst > tlast

return true;

else if (speed < 0)

t = (minO - maxl)/speed;
if (t < tlast)

tlast = t;
if (tfirst > tlast

return true;

return false;

The function Computelnterval (C,O,min,max) computes the projection interval
[min, max] of a convex polygon Conto the line of direction 0 using the fast extremal
queries described earlier that use an approach based on BSP trees. The pseudocode
as written projects the convex polygons onto the line tD. In an implementation, you
most likely will want to avoid floating point problems in the projection values when
the vertices have large components. An additional parameter to Computelnterval
should be a point approximately near one (or both) polygons, something as simple
as choosing a vertex P of a polygon. The projection is onto P + tD instead.

5.3 Collision Detection with Convex Polyhedra 315

(a)

1 + 0 --I""'*~"~'~""~

1 -+--"""--...,

a -+-----1----

a
0< 0< 1

(b)

2+0 I~

-+----; :

a -+----+---

a
0= 1

(c)

0-+----1---

a
0>1

Figure 5.22 (a) Edge-edge intersection predicted. (b) Vertex-vertex intersection predicted. (c) No
intersection predicted.

The following example illustrates the ideas. The first box is the unit cube a:s x :s 1
and a :s y :s 1 and is stationary. The second box is initially a :s x ::s 1 and 1+ 8 :s
y ::s 2 + 8 for some 8 > O. Let its velocity be (1, -1). Whether or not the second box
intersects the first box depends on the value of 8. The only potential separating axes
are (1, 0) and (0, 1). Figure 5.22 shows the initial configuration for three values of 8,
one where there will be an edge-edge intersection, one where there will be a vertex­
vertex intersection, and one where there is no intersection.

The black box is stationary. The gray box is moving. The black vector indi­
cates the direction of motion. The dotted boxes indicate where the moving box first
touches the stationary box. In Figure 5.22(c),'the dotted line indicates that the mo;­
ing box will miss the stationary box. For D = (1, 0), the pseudocode produces mi nO
= 0, maxO = 1, mi n1 = 0, maxI = 1, and speed = 1. The projected intervals are initially
overlapping. Since the speed is positive, T = (maxO-mi nl) jspeed = 1 < TLast = INFIN­

ITY and TLast is updated to 1. For iJ = (0, 1), the pseudocode produces mi nO = 0,
maxO = 1, minI = l+delta, maxI = 2+delta, and speed = -1. The moving projected in­
terval is initially on the right of the stationary projected interval. Since the speed is
negative, T = (maxO-minl)jspeed = delta> TFirst = 0 and TFirst is updated to delta.
The next block of code sets T = (mi nO-maxI) jspeed = 2+del tao The value TLast is not
updated since 2 + 8 < 1 cannot happen for 8 > O. On exit from the loop over po­
tential separating directions, Tfirst = 8 and 1iast = 1. The objects intersect if and only
if Tfirst ::s 1iast' or 8 ::s 1. This condition is consistent with the images in Figure 5.22.

316 Chapter 5 Physics Engines

Figure 5.22(a) has 8 < 1and Figure 5.22(b) has 8 = 1, intersections occurring in both
cases. Figure 5.22(c) has 8 > 1 and no intersection occurs.

Contact Set for Convex Polygons

Although we are interested in nonpenetration intersections for moving objects, I
mention the stationary case just for completeness. The find-intersection query for
two stationary convex polygons is a special example of Boolean operations on poly­
gons. If the polygons have No and N 1 vertices, there is an intersection algorithm of
order O(No+ N 1) for computing the intersection [O'R98]. A less efficient algorithm
is to clip the edges of each polygon against the other polygon. The order of this algo­
rithm is O(NM). Of course, the asymptotic analysis applies to large Nand M, so the
latter algorithm is potentially a good choice for triangles and rectangles.

Given two moving convex objects Co and Cl' initially not intersecting and with
velocities Va and Vl' we showed earlier how to compute the first time of contact T, if
it exists. Assuming it does, the sets Co + TVa = {X + TVa: X E Co} and C1+ TV1 =
{X + TV1 : X E Cd are just touching with no interpenetration. See Figure 5.14 for
the various configurations.

The Testlntersection function can be modified to keep track of which vertices
or edges are projected to the end points of the projection interval. At the first time of
contact, this information is used to determine how the two objects are oriented with
respect to each other. If the contact is vertex-edge or vertex-vertex, then the contact
set is a single point, a vertex. If the contact is edge-edge, the contact set is a line
segment that contains at least one vertex. Each end point of the projection interval
is generated by either a vertex (unique extreme) or an edge (nonunique extreme). A
class to store all the relevant projection information is

class ProjInfo
{

public:
double min, max; II projection interval [min,max]
i nt index [2] ;
bool isUnique[2];

};

The zero-indexed entries of the array correspond to the minimum of the interval.
If the minimum is obtained from the unique extreme vertex Vi' then index [0] stores
i and i sUni que [0] is true. Ifthe minimum is obtained from an edge Ej , then index [0]
stores j and i sUni que [0] stores false. The same conventions apply for the one­
indexed entries corresponding to the maximum of the interval.

To support calculation of the contact set and the new configuration structure,
we need to modify the extremal query GetExtremeIndex. The version we developed
just returned the index of an extreme vertex with no information about whether it

5.3 Collision Detection with Convex Polyhedra 317

is unique or an end point of an extreme edge. We now need this information. The
revised query is

int GetExtremeIndex (ConvexPolyhedron C, Vector D, bool& isUnique)

BSPTree node = C.tree;
isUnique = true;
while (node.R)

d = Dot(C.GetEdge(node.I),D);
if (d > 0)

node = node.R;
else if (d < 0)

node node.L;
else II d == 0
{

II direction is an edge normal, edge is extreme
isUnique = false;
break;

return node.I;

Of course, in an implementation using floating point numbers, the test on the
dot product d would use some application-specified value c > 0 and replace d > 0 by
d > E and d < 0 by d < -E. Function ComputeInterva1 must be modified to provide
more information than just the projection interval.

void ComputeInterval (ConvexPolyhedron C, Vector D, ProjInfo& info)
{

info.index[O] = GetExtremeIndex(C,-D,info.isUnique[O]);
info.min = Dot(D,C.GetVertex(info.index[O]));
info.index[l] = GetExtremeIndex(C,+D,info.isUnique[l]);
info.max = Dot(D,C.GetVertex(info.index[l]));

The NoIntersect function accepted as input the projection intervals for the two
polygons. Now those intervals are stored in the Proj Info objects, so NoIntersect must
be modified to reflect this. In the event that there will be an intersection between
the moving polygons, it is necessary that the projection information be saved for
later use in determining the contact set. As a result, No Intersect must keep track of
the Proj Info objects corresponding to the current first time of contact. Finally, the
contact set calculation will require knowledge of the order of the projection intervals.

318 Chapter 5 Physics Engines

No Intersect will set a flag side with value +1if the intervals intersect at the maximum
of the Co interval and the minimum of the C1 interval, or with value -1 if the
intervals intersect at the minimum of the Co interval and the maximum of the C1

interval. The modified pseudocode is

bool NoIntersect (double tmax, double speed, ProjInfo infoO,
ProjInfo info1, ProjInfo& currO, ProjInfo& curr1, int& side,
double& tfirst, double& tlast)

if (Cfg1.max < infoO.min

if (speed <= 0)
return true;

t = (infoO.min - info1.max)/speed;
if (t > tfirst)

tfirst = t;
side = -1;
currO = infoO;
curr1 = info1;

}

if (tfirst > tmax
return true;

t = (infoO.max - info1.min)/speed;
if (t < tlast

tlast = t;
if (tfirst > tlast

return true;
}

else if (infoO.max < info1.min)

if (speed >= 0)
return true;

t = (infoO.max - info1.min)/speed;
if (t > tfirst)

tfirst = t;
side = +1;
currO = infoO;
currl = i nfo1;

}

if (tfirst > tmax
return true;

5.3 Collision Detection with Convex Polyhedra 319

t = (infoO.min - info1.max)/speed;
if (t < tlast

tlast = t;
if (tfirst > tlast

return true;
}

else
if (speed > 0)

t = (infoO.max - info1.min)/speed;
if (t < tlast)

tlast = t;
if (tfirst > tlast

return true;
}

else if (speed < 0)

t = (infoO.min - info1.max)/speed;
if (t < tlast

tlast = t;
if (tfirst > tlast

return true;

return false;

With the indicated modifications, TestIntersection has the equivalent formu­
lation

bool TestIntersection (ConvexPolygon co, Vector VO,
ConvexPolygon C1, Vector V1, double tmax, double& tfirst,
double& tlast)

ProjInfo infoO, info1, currO, curr1;
V = V1 - VO; II process as if CO stationary and C1 moving
tfi rst = 0;
tlast = INFINITY;

II process edges of CO
for (iO = CO.GetN() - 1, i1 = 0; i1 < CO.GetN(); iO = i1++)
{

D = CO.GetNormal (iO);
ComputeInterval (CO,D,infoO);
ComputeInterval (C1,D,info1);

320 Chapter 5 Physics Engines

speed = Dot{D,v);
if (NoIntersect{tmax,speed,infoO,infol,currO,currl,side,

tfirst,tlast))

return false;

II process edges of Cl
for (iO = Cl.GetN{) - 1, il 0; il < Cl.GetN{); iO il++)
{

D = Cl.GetNormal (iO);
ComputeInterval (CO,D,infoO);
ComputeI nterva1(C 1, D, i nfol) ;
speed = Dot{D,v);
if (NoIntersect{tmax,speed,infoO,infol,currO,currl,side,

tfirst,tlast))

return false;

return true;

The Fi ndIntersecti on pseudocode has exactly the same implementation as
TestIntersecti on, but with one additional block of code (after the two loops) that
is reached if there will be an intersection. When the polygons will intersect at time
T, they are effectively moved with their respective velocities and the contact set is
calculated. Let Qij) = 'Yij) + TVj represent the polygon vertices after motion. In the
case of edge-edge contact, for the sake of argument, suppose that the contact edges
are E6°) and E61

). Figure 5.23 illustrates the configurations for two triangles.
Because of the counterclockwise ordering of the polygons, observe that the two

edge directions are parallel, but in opposite directions. The edge of the first polygon
is parameterized as Q6°) + sE6°) for s E [0, 1]. The edge of the second polygon has the
same parametric form, but with s E [so, sd where

ECO) . (Q(l) _ QCO))
° 1 °S - ---'------°- IEol2

and

ECO) . (Q(l) _ QCO))
° ° °s - ---'------

1 - IEol2

The overlap of the two edges occurs for S E I = [0, 1] n [so, sd i=- 0. The correspond­

ing points in the contact set are 'Y6°) + TVo+ sE6°) for S E I.

5.3 Collision Detection with Convex Polyhedra 321

E(O)
0

Q~)

(1)
Q2

(0)
Q2

Q~)

Figure 5.23 Edge-edge contact for two moving triangles.

In the event the two polygons are initially overlapping, the contact set is more
expensive to construct. This set can be constructed by standard methods involving
Boolean operations on polygons.

The pseudocode is shown next. The intersection is a convex polygon and is re­
turned in the last two arguments of the function. If the intersection set is nonempty,
the return value of the function is true. The set must itself be convex. The number
of vertices in the set is stored in quant i ty and the vertices, in counterclockwise order,
are stored in the array I []. If the return value is fa 1se, the last two arguments of the
function are invalid and should not be used.

bool Findlntersection (ConvexPolygon co, Vector VO,
ConvexPolygon Cl, Vector WI, double tmax, double& tfirst,
double& tlast, int& quantity, Point I[])

Projlnfo infoO, infol, currO, currl;
V = VI - VO; II process as if CO stationary and Cl moving
tfirst = 0;
tlast = INFINITY;

II process edges of CO
for (iO = CO.GetN() - 1, il 0; il < CO.GetN(); iO ;1++)

D = CO.GetNormal (iO);

322 Chapter 5 Physics Engines

Computelnterval (CO,D,infoO);
Computelnterval (CI ,D, i nfoI);
speed = Dot(D,v);
if (Nolntersect(tmax,speed,infoO,infoI,currO,currI,side,

tfirst,tlast))

return false;

II process edges of CI
for (iO = CI.GetN() - 1, il = 0; il < CI.GetN(); iO iI++)
{

D = CI.GetNormal (iO);
Computelnterval (CO,D,infoO);
Computelnterva1(CI , D, i nfoI) ;
speed = Dot(D,v);
if (Nolntersect(tmax,speed,infoO,infoI,currO,currI,side,

tfirst,tlast))

return false;

II compute the contact set
Getlntersection(CO,VO,CI,VI,currO,currI,side,tfirst,quantity,I);
return true;

The intersection calculator pseudocode is shown next. Observe how the projec­
tion types are used to determine if the contact is vertex-vertex, edge-vertex, or edge­
edge.

void Getlntersection (ConvexPolygon CO, Vector VO, ConvexPolygon CI,
Vector VI, Projlnfo infoO, Projlnfo infoI, int side,
double tfirst, int& quantity, Point Ie])

if (side == 1) II CO-max meets CI-min

if (infoO.isUnique[I])

II vertex-vertex or vertex-edge intersection
quantity = 1;
1[0] = CO.GetVertex(infoO.index[I]) + tfirst * VO;

5.3 Collision Detection with Convex Polyhedra 323

el se if (i nfol. i sUni que[O])
{

II vertex-vertex or edge-vertex intersection
quant ity = 1;
1[0] = Cl.GetVertex(infol.index[O]) + tfirst * VI;

}

else

II edge-edge intersection
P = CO.GetVertex(infoO.index[I]) + tfirst * VO;
E = CO.GetEdge(infoO.index[I]);
QO = Cl.GetVertex(infol.index[O]);
Ql = Cl.GetVertex(infol.index[O] + 1);
sO = Dot(E,QI-P) I Dot(E,E);
sl = Dot(E,QO-P) I Dot(E,E);
Findlntervallntersection(O,I,sO,sl,quantity,interval);
for (i = 0; i < quantity; i++)

I[i] = P + interval [i] * E;

}

else if (side == -1) II Cl-max meets CO-min

if (infol.isUnique[l])

II vertex-vertex or vertex-edge intersection
quantity = 1;
1[0] = Cl.GetVertex(infol.index[I]) + tfirst * VI;

}

else if (infoO.isUnique[O])
{

II vertex-vertex or edge-vertex intersection
quantity = 1;
1[0] = CO.GetVertex(infoO.index[O]) + tfirst * VO;

}

else

II edge-edge intersection
P = Cl.GetVertex(infol.index[I]) + tfirst * VI;
E = Cl.GetEdge(infol.index[I]);
QO = CO.GetVertex(infoO.index[O]);
Ql = CO.GetVertex(infoO.index[O] + 1);
sO = Dot(E,QI-P) I Dot(E,E);
sl = Dot(E,QO-P) I Dot(E,E);
Findlntervallntersection(O,I,sO,sl,quantity,interval);

324 Chapter 5 Physics Engines

for (i = 0; i < quantity; i++)
I[i] = P + interval [i] * E;

else II polygons were initially intersecting

ConvexPolygon COMoved = CO + tfirst * VO;
ConvexPolygon ClMoved = Cl + tfirst * VI;
FindPolygonIntersection(COMoved,ClMoved,quantity,I);

The final case is the point at which the two polygons were initially overlapping so
that the first time of contact is T = O. FindPolygonIntersection is a general routine
for computing the intersection of two polygons. In our collision detection system
with the nonpenetration constraint, we should not need to worry about the last case,
although you might want to trap the condition for debugging purposes.

Separation of Convex Polyhedra

The structure of the algorithm for convex polyhedra moving with constant linear
velocity is similar to the one for convex polygons, except for the set of potential
separating axes that must be tested. The pseudocode is

bool TestIntersection (ConvexPolyhedron CO, Vector VO,
ConvexPolyhedron Cl, Vector VI, double tmax,
double& tfirst, double& tlast)

V = VI - VO; II process as if CO stationary, Cl moving
tfirst = 0;
tlast = INFINITY;

II test faces of CO for separation
for (i = 0; i < CO.GetFCountO; i++)
{

D = CO.GetNormal (i);
ComputeInterval (CO,D,minO,maxO);
ComputeInterval (Cl,D,minl,maxl);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,minO,maxO,minl,maxl,

tfirst,tlast)

return false;

5.3 Collision Detection with Convex Polyhedra 325

II test faces of Cl for separation
for (j = 0; j < Cl.GetFCount(); j++)
{

D = Cl.GetNormal(j);
Compute Interval (CO,D,minO,maxO);
ComputeInterval(Cl,D,minl,maxl);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,minO,maxO,minl,maxl,

tfirst,tlast))

return false;

II test cross products of pairs of edges
for (i = 0; i < CO.GetECount(); i++)

for (j = 0; j < Cl.GetECount(); j++)
{

D = Cross(CO.GetEdge(i),Cl.GetEdge(j));
Compute Interval (CO,D,minO,maxO);
ComputeInterval (Cl,D,minl,maxl);
speed = Dot(D,V);
if (NOIntersect(tmax,speed,minO,maxO,minl,maxl,

tfi rst, tl ast))

return false;

return true;

The function NoIntersect is exactly the one used in the two-dimensional problem.

Contact Set for Convex Polyhedra

The find-intersection query for two stationary convex polyhedra is a special example
of Boolean operations on polyhedra. Since we are assuming nonpenetration in our
collision system, we do not need to implement this.

Given two moving convex objects Co and Cl' initially not intersecting, with
velocities Vo and Vl' if T > 0 is the first time of contact, the sets Co + TVWo=
{X + TVo : X E Co} and C1 + TV1 = {X + TVl : X E Cd are just touching with no

326 Chapter 5 Physics Engines

interpenetration. As indicated earlier for convex polyhedra, the contact is one offace­
face, face-edge, face-vertex, edge-edge, edge-vertex, or vertex-vertex. The analysis is
slightly more complicated than that ofthe 2D setting, but the ideas are the same-the
relative orientation of the convex polyhedra to each other must be known to properly
compute the contact set.

The TestIntersection function can be modified to keep track of which vertices,
edges, or faces are projected to the end points of the projection interval. At the
first time of contact, this information is used to determine how the two objects are
oriented with respect to each other. If the contact is vertex-vertex, vertex-edge, or
vertex-face, then the contact point is a single point, a vertex. If the contact is edge­
edge, the contact is typically a single point, but can be an entire line segment. If the
contact is edge-face, the contact set is a line segment. Finally, if the contact is face­
face, the intersection set is a convex polygon. This is the most complicated scenario
and requires a two-dimensional convex polygon intersector. Each end point of the
projection interval is generated either by a vertex, an edge, or a face. Similar to the
implementation for the two-dimensional problem, a projection information class can
be defined.

class Projlnfo
{

public:
double min, max; II projection interval [min,max]
int index[2];
enum Type { V, E, F };
Type type[2];

};

The zero-indexed values correspond to the minimum of the interval, the one­
indexed values to the maximum. If the extreme point is exactly a vertex, the type is
set to V. If the extreme points are exactly an edge, the type is set to E. If the extreme
points are exactly a face, the type is set to F.

Just as for convex polygons, the extremal query must be modified to support
calculation of the contact set via Proj Info. In particular, we need to know the enu­
merated type to assign based on the extremal set.

int GetExtremelndex (ConvexPolyhedron C, Vector D,
Projlnfo::Type& type)

BSPTree node = C.tree;
array<int> edges;
while node.R)

d Dot(C.GetEdge(node.i),D);

5.3 Collision Detection with Convex Polyhedra 327

if(d>O)
node = node.R;

else if (d < 0)
node = node.L;

else

node = node.R;
edges.append(node.I);
type++;

if (edges.size() == 0)

type = ProjInfo::V;
return node.I; II vertex index at leaf node

}

else if (edges.size() == 1)
{

type = ProjInfo::E;
return edges [0] ; II edge index at interior node

else

type ProjInfo::F;
return C.GetFaceFromEdges(edges);

Note that you need another interface function for Convex Po1yhedron,

class ConvexPolyhedron
{

public:
II other members ...

int GetFaceFromEdges (array<int> edges);
};

that can determine the face bounded by the input edges. Alternatively, you could
build more information into the BSP tree nodes so that this information is imme­
diately available. Function Compute Interva1 must be modified to provide more infor­
mation than just the projection interval.

328 Chapter 5 Physics Engines

void ComputeInterval (ConvexPolyhedron C, Vector 0, ProjInfo& info)
{

info.index[O] = GetExtremeIndex(C,-D,info.type[O]);
info.min = Dot(D,C.GetVertex(info.index[O]));
info.index[l] = GetExtremeIndex(C,+D,info.type[l]);
info.max = Dot(D,C.GetVertex(info.index[l]));

The NoIntersect function that was modified in two dimensions to accept Proj­
Info objects instead of projection intervals is used exactly as is for the three-dimen­
sional problem, so I do not restate that code here. With all modifications to this point,
TestIntersection is rewritten as

bool TestIntersection (ConvexPolyhedron CO, Vector VO,
ConvexPolyhedron Cl, Vector VI, double tmax, double& tfirst,
double& tlast)

ProjInfo infoO, infol, currO, currl;
V = VI - VO; II process as if CO stationary, Cl moving
tfirst = 0;
tlast = INFINITY;

II test faces of CO for separation
for (i = 0; i < CO.GetFCount(); i++)
{

°= CO.GetNormal(i);
ComputeInterval (CO,D,infoO);
ComputeInterval (Cl,D,infol);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,infoO,infol,currO,currl,side,

tf i rs t , t 1as t))

return false;

II test faces of Cl for separation
for (j = 0; j < Cl.GetFCount(); j++)
{

°= Cl.GetNormal(j);
ComputeInterval (CO,D,infoO);
ComputeInterval (Cl, 0, i nfol);
speed = Dot(D,V);

5.3 Collision Detection with Convex Polyhedra 329

if NoIntersect(tmax,speed,infoO,infol,currO,currl,side,
tfirst,tlast)

return false;

II test cross products of pairs of edges
for (i = 0; i < CO.GetECount(); i++)

for (j = 0; j < Cl.GetECount(); j++)
{

D = Cross(CO.GetEdge(i),Cl.GetEdge(j));
ComputeInterval (CO,D,infoO);
ComputeInterval (Cl,D, infol);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,infoO,infol,currO,currl,

side,tfirst,tlast))

return false;

return true;

The Fi ndIntersecti on pseudocode has exactly the same implementation as
TestIntersecti on but with one additional block of code (after all the loops) that is
reached if there will be an intersection. When the polyhedra intersect at time T) they
are effectively moved with their respective velocities and the contact set is calculated.
The pseudocode follows. The intersection is a convex polyhedron and is returned
in the last argument of the function) but keep in mind that for nonpenetration we
should have only a convex polygon in 3D. If the intersection set is nonempty) the re­
turn value is true. Otherwise) the original moving convex polyhedra do not intersect
and the function returns fal se.

bool FindIntersection (ConvexPolyhedron CO, Vector WO,
ConvexPolyhedron Cl, Point WI, double tmax, double& tfirst,
double& tlast, ConvexPolyhedron& I)

ProjInfo infoO, infol, currO, currl;
V = VI - VO; II process as if CO stationary, Cl moving

330 Chapter 5 Physics Engines

tfirst = 0;
tlast = INFINITY;

II test faces of CO for separation
for (i = 0; i < CO.GetFCountO; i++)
{

D = CO.GetNormal(i);
ComputeInterval (CO,D,infoO);
ComputeInterval (Cl ,D, i nfo1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,infoO,info1,currO,curr1,side,

tfirst,tlast))

return false;

II test faces of C1 for separation
for (j = 0; j < C1.GetFCount(); j++)
{

D = C1.GetNormal(j);
ComputeInterval (CO,D,infoO);
Compute Interval (Cl, D, i nfo1) ;
speed = Dot(D,V);
if (NoIntersect(tmax,speed,infoO,info1,currO,curr1,side,

tfirst,tlast))

return false;

II test cross products of pairs of edges
for (i = 0; i < CO.GetECount(); i++)

for (j = 0; j < C1.GetECount(); j++)
{

D = Cross(CO.GetEdge(i),C1.GetEdge(j));
ComputeInterval(CO,D,infoO);
Compute Interval (C1, D, i nfol) ;
speed = Dot(D,V);
if (NoIntersect(tmax,speed,infoO,info1,currO,curr1,

side,tfirst,tlast))

5.3 Collision Detection with Convex Polyhedra 331

return false;

II compute the contact set
GetIntersection(CO,VO,Cl,Vl,currO,currl,side,tfirst,I);
return true;

The intersection calculator pseudocode follows.

void GetIntersection (ConvexPolyhedron CO, Vector VO,
ConvexPolyhedron Cl, Vector VI, ProjInfo infoO,
ProjInfo infol, int side, double tfirst,
ConvexPolyhedron& I)

if (side == 1) II CO-max meets Cl-min
{

if (infoO.type[l] == ProjInfo::V)

II vertex-{vertex/edge/face} intersection
I.InsertFeature(CO.GetVertex(infoO.index[l]) + tfirst * VO);

}

else if (infol.type[O] == ProjInfo::V)
{

II {vertex/edge/face}-vertex intersection
I.InsertFeature(Cl.GetVertex(infol.index[O]) + tfirst * VI);

}

else if (infoO.type[l] == ProjInfo::E)
{

Segment EO = CO.GetESegment(infoO.index[l]) + tfirst * VO;
if (infol.type[O] == ProjInfo::E)

Segment El = Cl.GetESegment(infol.index[O]) + tfirst * VI;
I.InsertFeature(IntersectSegmentSegment(EO,El));

else

Polygon Fl = Cl.GetFPolygon(infol.index[O]) + tfirst * VI;
I.InsertFeature(IntersectSegmentPolygon(EO,Fl));

332 Chapter 5 Physics Engines

else if (infol.type[O] == ProjInfo::E)
{

Segment El = Cl.GetESegment(infol.index[O]) + tfirst * VI;
if (infoO.type[l] == ProjInfo::E)

Segment EO = CO.GetESegment(infoO.index[I]) + tfirst * VO;
I.InsertFeature(IntersectSegmentSegment(El,EO»;

}

else

Polygon FO = CO.GetFPolygon(infoO.index[I]) + tfirst * VO;
I.InsertFeature(IntersectSegmentPolygon(El,FO»;

else II infoO.type[l] and infol.type[O] both ProjInfo::F

II face-face intersection
Polygon FO = CO.GetFPolygon(infoO.index[I]) + tfirst * VO;
Polygon Fl = Cl.GetFPolygon(infol.index[O]) + tfirst * VI;
I.InsertFeature(IntersectPolygonPolygon(FO,Fl»;

else if (side == -1) II Cl-max meets CO-min

if (infol.type[l] == ProjInfo::V)

II vertex-{vertex/edge/face} intersection
I.InsertFeature(Cl.GetVertex(infol.index[I]) + tfirst * VI);

}

else if (infoO.type[O] == ProjInfo::V)
{

II {vertex/edge/face}-vertex intersection
I.InsertFeature(CO.GetVertex(infoO.index[O]) + tfirst * VO);

}

else if (infol.type[l] == ProjInfo::E)
{

Segment El = Cl.GetESegment(infol.index[I]) + tfirst * VI;
if (infoO.type[O] == ProjInfo::E)

Segment EO = CO.GetESegment(infoO.index[O]) + tfirst * VO;
I. InsertFeature(IntersectSegmentSegment(El,EO»;

}

else

5.3 Collision Detection with Convex Polyhedra 333

Polygon FO = CO.GetFPolygon(infoO.index[O]) + tfirst * VO;
I.InsertFeature(IntersectSegmentPolygon(El,FO));

}

else if (infoO.type[O] == ProjInfo::E)

Segment EO = CO.GetESegment(infoO.index[O]) + tfirst * VO;
if (infol.type[l] == ProjInfo::E)

Segment El = Cl.GetESegment(infol.index[I]) + tfirst * VI;
I.InsertFeature(IntersectSegmentSegment(EO,El));

else

Polygon Fl = Cl.GetFPolygon(infol.index[I]) + tfirst * VI;
I.InsertFeature(IntersectSegmentPolygon(EO,Fl));

else II infol.type[l] and infoO.type[O] both ProjInfo::F

II face-face intersection
Polygon FO = CO.GetFPolygon(infoO.index[O]) + tfirst * VO;
Polygon Fl = Cl.GetFPolygon(infol.index[I]) + tfirst * VI;
I.InsertFeature(Intersection(FO,Fl));

else II polyhedra were initially intersecting

ConvexPolyhedron MO = CO + tfirst * VO;
ConvexPolyhedron Ml = Cl + tfirst * VI;
1= IntersectionPolyhedronPolyhedron(MO,Ml);

The type Segment refers to a line segment and the type Po1ygon refers to a convex
polygon in 3D. The various functions Intersect<Typel><Type2> are almost generic
intersection calculators. I say "almost" meaning that you know the two objects must
intersect since the separating axis results say so. Given that they intersect, you can
optimize generic intersection calculators to obtain your results. The possible out­
puts from the intersection calculators are points, line segments, or convex polygons,
referred to collectively as "features." The class ConvexPolyhedron must support con­
struction by allowing the user to insert any of these features. I simply used the name
InsertFeature to cover all the cases (overloading of the function name, so to speak).

334 Chapter 5 Physics Engines

The function GetESegment returns some representation of a line segment, for exam­
ple, a pair of points. The calculation S+t*V where S is a Segment, V is a vector, and
t is a floating point number requires the vector class to support scalar-times-vector.
Moreover, the expression requires addition to be defined for a Segment object and
a Vector object. Similarly, GetFPolygon returns some representation of the convex
polygon face, for example, an ordered array of points. The calculation F+t*V requires
addition to be defined for a Polygon object and a Vector object.

As you can see, this is the workhorse of the collision system, the geometric de­
tails of calculating intersections of line segments and convex polygons. You should
expect that this is a likely candidate for the bottleneck in your collision system. For
this reason you will see simplified systems such as [BarOl], where the contact set is
reduced to a container of points. The preceding intersection calculator can be greatly
optimized for such a system.

5.3.4 ORIENTED BOUNDING BOXES

So far we have discussed collision detection for convex polyhedra in general terms.
A very common polyhedron used in applications is an oriented bounding box, the
acronym GBB used for short. The term box is enough to describe the shape, but the
modifier bounding applies when the box contains a more complex object and is used
as a coarse measure of that portion ofspace the object occupies. The modifier oriented
refers to the fact that the box axes are not necessarily aligned with the standard
coordinate axes. Details are presented in Section 5.4 on the use of bounding boxes
(and volumes) in the context of minimizing the work the collision detection system
must do by not processing pairs of objects, if you can cheaply determine that they
will not intersect. A descriptive name for this process is collision culling, suggestive of
the culling that a graphics engine does in order not to draw objects ifyou can cheaply
determine that they are not visible.

An OBB is defined by a center point e that acts as the origin for a coordinate
system whose orthonormal axis directions are Vi for i = 0, 1, 2. The directions are
normal vectors to the faces of the OBB. The half-widths or extents of the box along
the coordinate axes are ei > °for i = 0, 1,2. Figure 5.24 shows an OBB and the
intersection of the coordinate axes with three faces of the box.

The eight vertices of the OBB are of the form

where lai I = 1 for i = 0, 1, 2; that is, we have eight choices for the signs ai'

Our interest is restricted to testing when two OBBs intersect, whether stationary
or moving. As a convex polyhedron, an OBB has six faces and 12 edges. If we just
blindly applied the test-intersection query for a pair of convex polyhedra, the number
of potential separating axis tests is 156: six face normals for the first OBB, six face
normals for the second OBB, and 144 = 12 * 12 edge-edge pairs. In the worst case

5.3 Collision Detection with Convex Polyhedra 335

Figure 5.24 An OBB with center point e, coordinate axis directions Vo, VI' and V 2, and extents
eo, el' and e2 along the coordinate axes. The object bounded by the box is shown in
gray.

we would try all 156 axes only to find the OBBs are intersecting. That is quite a large
number of tests for such simple looking objects! The nature of an OBB, though, is
that the symmetry allows us to reduce the number of tests. You probably already
observed that we have three pairs of parallel faces, so we only need to consider three
face normals for an OBB for the purposes of separation. Similarly, only three edge
directions are unique and happen to be those of the face normals. Thus, for a pair of
OBBS we have only 15 potential separating axis tests: three face normals for the first
OBB, three face normals for the second OBB, and 9 = 3 * 3 edge-edge pairs.

We still have to project an OBB onto a potential separating axis Q + t D. Although
the fast extremal query for general convex polyhedra may be applied, the symmetry
of the OBB allows us to quickly determine the interval of projection. Since a vertex
must be an extreme point, it suffices to try to find a vertex P that maximizes the dot
product

336 Chapter 5 Physics Engines

IYI- Yol
I

I

I
Yo YI
I] [I

~ ~
rO

rl
(a)

rl
Yo

I

I

YI
i

ro
(b)

P+tD

Figure 5.25 The projection intervals of two OBBs onto a line P + tD. (a) The intervals are
disjoint, so the OBBs are separated. (b) The intervals overlap, so the line is not a
separating axis.

The sign 0'0 is either 1or -1. To make the term aoD . Uoas large as possible, we want
0'0 = 1 when D . Uo > °and 0'0 = -1 when D . Uo < 0. If D . Uo = 0, it does not
matter what the choice is for 0'0. The resulting quantity can be written as the single
term ID . Uol. The same argument applies to the other terms, so

max D . (P - Q) = D . (e - Q) + eolD . Uol + eIlD . UII + e21D . U2 1

Similarly, the minimum is

min D . (P - Q) = D . (e - Q) - eolD . Uol - eilD . UII - e21D . U2 1

Therefore, the projection interval is [y - r, Y + r], where Y = D . (e - Q) and

r = L~=o eilD · Uil·
Given two oriented bounding boxes, one with center Co' axes Ai' and extents ai'

and one with center C1, axes Bi, and extents hi' let the projection intervals onto a line
Q + tD be [Yo - ro, Yo + ro] and [YI - rl' YI + rd. Figure 5.25 shows two cases, one
with separated intervals and one with overlapping intervals.

The algebraic condition that describes the separated intervals in Figure 5.25(a)
of the figure is IYl - Yol > ro + rl. In words, this says that the distance between the
centers of the projected intervals is larger than the sum of the radii of the intervals.
The intervals in Figure 5.25(b) overlap, so IYI - Yol < ro + rl. If the intervals are just
touching, IYI - Yol = ro + rl. This last case is important when dealing with moving
OBBs.

5.3 Collision Detection with Convex Polyhedra 337

Define r = IYl - Yo I. A closer look at the algebraic condition for separation ofthe
projected intervals shows that

r = IYl - Yol = ID . (e l - Q) - D· (eo - Q)I = ID . (e l - eo)1

This means we need to specify only the direction D and not worry about providing a
point Q on the line. Also,

2

ro = L a;lD· A;I,
i=O

2

rl = L b;lD . B;I
i=O

The condition for separation of the projection intervals is r > ro + rl and is formally
expanded as

2 2

ID . AI = r > ro + rl = L a;lD . A;I +L b;lD . B;I
i=O i=O

(5.48)

where A = el - eo. We have been thinking of D as a unit-length direction vector.
The face normals are already unit-length potential separating directions. A potential
separating direction D = Ai X Bj obtained as a cross product of edges, one edge
from each of the OBBs, is not necessarily unit length. We should then use D/IDI
in equation (5.48) instead of D. Notice, though, that the truth of the inequality is
unchanged whether we use the vector or the normalized vector, since we can multiply
through by IDI. Consequently, we do not need to worry about normalizing the cross
product.

A further optimization can be made. The formal sum for ro is a single term only
when D is a face normal of the first OBE. For example, if D = Ao, then ro = ao.
The formal sum for rl is also a single term only when D is a face normal of the
second OBE. The summation term of ro involves dot products Ai . Bj when using
face normals of the second OBB for potential separating directions. The summation
term of rl involves the same dot products when face normals of the first OBB are
used for potential separating directions. When D = A j X Bk , the summation term of
ro is

where {i, j, f} = {O, 1, 2}. For example, if i = 2 and j = 0, then f = 1. Similarly, the
summation term of rl is

where again {i, j, f} = {O, I, 2}. Therefore, all the separating axis tests require com­
puting the quantities Cij = Ai • Bj and do not need cross product operations. A

338 Chapter 5 Physics Engines

Table 5.1 Potential separating directions for GEEs and values for ro, rl' and r

D ro rl r

Ao ao boicool + bllcOlI + b21c021 laol

Al al bolclOl + bllcnl + b2lcl21 lall
A2 a2 bolc201 + bl lc2l1 + b2lc221 la21
Bo aolcool + allclOl + a21 c201 bo 1,801
BI aolcoll + allcnl + a21 c211 b l 1,811

B2 aOlc021 + allcd + a2l c221 b2 1,821

Ao x Bo allc201 + a21 clOi bl lc021 + b21cOII IClOa 2 - c20a ll
Ao x BI allc2l1 + a21 cnl bolc021 + b21cool ICn a 2 - c2la ll
Ao x B2 allc221 + a2l cl21 bolcoll + blicool ICl2a 2 - c22a ll

Al x Bo aOlc201 + a21 cool bl lcl21 + b21cnl IC20a O- cooa21

Al x BI aolc2l1 + a21 cOII bolcl21 + b21clOi IC2la o - cOla21

Al x B2 aolc221 + a21 c021 bolcnl + bllclOl IC22a O- c02a 21
A2 x Bo aOlclOl + alicool bl lc221 + b2lc2l1 Icooal - clOaol
A2 x BI aolcnl + allcOl1 bolc221 + b21c201 ICOlal - cnaol

A2 x B2 aolcd + allc021 bolc2l1 + bl lc201 IC02a l - cl2a ol

convenient summary of the axes and quantities required by r > ro + rl are listed in
Table 5.1. The table uses ai = A. . Ai and,8i = A. . Bi.

A term of the form ClOa2 - C20al occurs as a result of A. = aoAo + alAI + a2A2'
and

Ao x Bo . A.

=ao(Ao x Bo . Ao) + al(Ao x Bo . AI) + a2(Ao x Bo . A2)

= ao(O) - a lA 2 x Bo+ a2AI . Bo

Pseudocode follows. The code is organized to compute quantities only when
needed. The code also detects when two face normals Ai and Bj are nearly paralleL
Theoretically, ifa parallel pair exists, it is sufficient to test only the face normals ofthe
two GEEs for separation. Numerically, though, two nearly parallel faces can lead to all
face normal tests reporting no separation along those directions. The cross product
directions are tested next, but Ai x Bj is nearly the zero vector and can cause the
system to report that the GEEs are not intersecting when in fact they are.

5.3 Collision Detection with Convex Polyhedra 339

bool Testlntersection (OBB boxO, OBB boxl)
{

IIOBB: center C; axes U[O], U[I], U[2];
II extents e[O], e[I], e[2]

II values that are computed only when needed
doub1e c[3] [3] ; I I c[i] [j] = Dot (boxO. U[i] ,boxl. U[j])
double absC[3] [3]; II Ic[i] [j] I
double d[3]; II Dot(boxl.C-boxO.C,boxO.U[i])

II interval radii and distance between centers
double rO, rl, r;
int i;

II cutoff for cosine of angles between box axes
const double cutoff = 0.999999;
bool existsParallelPair = false;

II compute difference of box centers
Vector diff = boxl.C - boxO.C;

II axis CO + t * AO
for (i = 0; i < 3; i++)
{

c[O][i] = Dot(boxO.U[O],boxl.U[i]);
absC [0] [i] = Ie [0] [i] I;
if (absC[O] [i] > cutoff)

existsParallelPair = true;
}

d[O] = Dot(diff,boxO.U[O]);
r = Id[0] I;
rO = boxO.e[O];
rl = boxl.e[O] * absC[O] [0] + boxl.e[l] * absC[O] [1] +

boxl. e [2] * absC [0] [2] ;
if (r > rO + rl)

return false;

II axis CO + t * Al
for (i = 0; i < 3; i++)
{

c[1] [i] = Dot (boxO. U[1] ,boxl. U[i]) ;
absC [1] [i] = Ie [1] [i] I;
if (absC [1] [i] > cutoff)

existsParallelPair = true;

340 Chapter 5 Physics Engines

d[1] = Dot (diff, boxO .U[1]) ;
r = Id[1] I;
rO = boxO.e[l];
r1 = box1.e[0] * absC[l] [0] + box1.e[1] * absC[l] [1] +

box1. e [2] * absC [1] [2] ;
if (r > rO + r1)

return false;

II axis CO + t * A2
for (i = 0; i < 3; i++)

{

c[2][iJ = Dot(boxO.U[2],box1.U[iJ);
absC [2][iJ = Ic[2][iJ I;
if (absC [2] [iJ > cutoff)

existsParallelPair = true;
}

d[2] = Dot(diff,boxO.U[2]);
r = Id[2] I ;
rO = boxO.e[2];
r1 = box1.e[O] * absC[2] [0] + box1.e[l] * absC[2] [1] +

box1. e[2] * absC [2] [2] ;
if (r > rO + r1)

return false;

II axis CO + t * BO
r = IDot(diff,box1.U[O]) I;
rO = boxO.e[O] * absC[O] [0] + boxO.e[l] * absC[l] [0] +

boxO.e[2] * absC[2] [0];
r1 = box1.e[O];
if (r > rO + r1)

return false;

II axis CO + t * B1
r = IDot (d iff, box1. U[1]) I;
rO = boxO.e[O] * absC[O] [1] + boxO.e[l] * absC[l] [1] +

boxO.e[2] * absC[2] [1];
r1 = box1.e[l];
if (r > rO + r1)

return false;

II axis CO + t * B2
r = IDot(diff,box1.U[2])I;
rO = boxO.e[O] * absC[O] [2] + boxO.e[l] * absC[l] [2] +

boxO.e[2] * absC[2] [2];

5.3 Collision Detection with Convex Polyhedra 341

rl = boxl.e[2];
if (r > rO + r1

return false;

if (existsParallelPair)

II A pair of box axes was (effectively) parallel,
II boxes must intersect.
return true;

II axis CO + t * AO x BO
r = Id[2] * c[1] [0] - d[1] * c[2] [0] I;
rO = boxO.e[l] * absC[2] [0] + boxO.e[2] * absC[l] [0];
rl = boxl.e[l] * absC[O] [2] + boxl.e[2] * absC[O] [1];
if (r > rO + rl)

return false;

II axis CO + t * AO x Bl
r = Id[2] * c[1] [1] - d[1] * c[2] [1] I;
rO = boxO.e[l] * absC[2] [1] + boxO.e[2] * absC[l] [1];
rl = boxl.e[O] * absC[O] [2] + boxl.e[2] * absC[O] [0];
if (r > rO + rl)

return false;

II axis CO + t * AO x B2
r = Id[2] * c[1] [2] - d[1] * c[2] [2] I;
rO = boxO.e[l] * absC[2] [2] + boxO.e[2] * absC[l] [2];
r1 = boxl.e[O] * absC[O] [1] + boxl.e[l] * absC[O] [0];
fROl = rO + r1;
if (r > fROl)

return false;

II axis CO + t * Al x BO
r = Id[0] * c[2] [0] - d[2] * c[0] [0] I;
rO = boxO.e[O] * absC[2] [0] + boxO.e[2] * absC[O] [0];
rl = boxl.e[l] * absC[I] [2] + boxl.e[2] * absC[l] [1];
if (r > rO + rl)

return false;

II axis CO + t * Al x Bl
r = Id[O] * c[2] [1] - d[2] * c[O] [1] I;
rO = boxO.e[O] * absC[2] [1] + boxO.e[2] * absC[O] [1];
rl = box1.e[0] * absC[I] [2] + boxl.e[2] * absC[I] [0];

342 Chapter 5 Physics Engines

if (r > rO + rl)
return false;

II axis CO + t * Al x B2
r = Id[0] * e[2][2] - d[2] * e[0] [2] I;
rO = boxO.e[O] * absC[2] [2] + boxO.e[2] * absC[O] [2];
rl = boxI.e[O] * absC[I] [1] + boxI.e[I] * absC[I] [0];
if (r > rO + rl)

return false;

II axis CO + t * A2 x BO
r = Id[I] * e[O] [0] - d[O] * e[I] [0] I;
rO = boxO.e[O] * absC[I] [0] + boxO.e[I] * absC[O] [0];
rl = boxI.e[I] * absC[2] [2] + boxI.e[2] * absC[2] [1];
if (r > rO + rl)

return false;

II axis CO + t * A2 x BI
r = Id[1] * e [0][1] - d[0] * c[I][I] I;
rO = boxO.e[O] * absC[I] [1] + boxO.e[I] * absC[O] [1];
rl = boxl.e[O] * absC[2] [2] + boxl.e[2] * absC[2] [0];
if (r > rO + rl)

return false;

II axis CO + t * A2 x B2
r = Id[I] * e[O] [2] - d[O] * e[I] [2] I;
rO = boxO.e[O] * absC[I] [2] + boxO.e[I] * absC[O] [2];
rl = boxl.e[O] * absC[2] [1] + boxl.e[I] * absC[2] [0];
if (r > rO + rl)

return false;

return true;

5.3.5 BOXES MOVING WITH CONSTANT LINEAR AND
ANGULAR VELOCITY

OBBs may certainly be used as objects in and of themselves in an application. A
classic application in the industry is having a moving vehicle run through a wall of
bricks. A large number of bricks will demand a lot of performance from the physics
engine. After the vehicle crashes through the wall, the collision detection system has
a lot to handle. The bricks will have both nonzero linear and angular velocities, the
actual values dependent on the interactions with other bricks. To avoid performance

5.3 Collision Detection with Convex Polyhedra 343

issues with the bisection approach to collision, we would like to predict collisions
at later times and reduce the desired time step accordingly. But is that not what the
differential equation solving is about, predicting future behavior from current state?
Taking the time step with the solver just to predict that we should take half the time
step puts us right back in the bisection algorithm. The question: Can we predict
collisions without actually running the solver?

Well, the answer is "almost:' For a physical simulation running at real-time rates,
the time step will be a fraction of a second. During the time interval [0, ~t], where
~t > 0 is small, the linear and angular velocities should not change very much. Ifyou
assume that the linear and angular velocities are constant over the time step, you can
estimate the location of the center of mass and the orientation of the body at the end
of that time. The general equations of motion for these quantities are x(t) = yet) and
R(t) = Skew(w(t))R(t), where yet) is linear velocity and wet) is angular velocity.
In mathematical terms the assumption of constancy over the time interval produces
the approximate equations x(t) = Yo and R(t) = Skew(wo)R(t), where Yo = yeO) and
Wo = w(O). These have exact solutions,

x(t) = Xo + tyo, R(t) = Rot(tlwol, wo/lwol)Ro

where Xo = x(O), Ro= R(O), and Rot(8, u) is the rotation matrix by an angle 8
about an axis whose direction is the unit-length vector u. We can run our collision
detection system using x(t) and R(t) produced by these equations to predict if any
collisions will occur on the time interval [0, ~t]. If not, we can solve the differential
equations using the desired step ~t. If collisions are predicted, the system should
report the largest time T E [0, ~t] for which no collisions occur on the interval
[0, T]. The time step for the differential equation solver is chosen to be T instead
of ~t. Our estimates x(t) and R(t) are essentially a numerical method of the Euler
type for solving differential equations, but in our case we are using these estimates
in conjunction with the collision system to provide an adaptive time step for the
actual differential equation solver (such as Runge-Kutta) that our physical simulator
is using.

A collision detection system built on the method of separating axes can handle
constant linear and angular velocities with a minimum of computational effort when
the objects are oriented bounding boxes.

Constant Linear Velocity

Consider two OBBs whose centers are moving with constant linear velocity, ei + tVi
for i = 0, 1and t ~ O. The OBB axes are assumed not to rotate over time; that is, there
is no angular velocity. The general analysis that led to Testlntersection for convex
polyhedra moving with constant linear velocities applies here. The difference is that
the general case required Computelnterval for computing the projection intervals of
the polyhedra. The intervals are simpler to compute for OBBs. Partial pseudocode

344 Chapter 5 Physics Engines

for the test-intersection query is listed below. The organization is similar to the pseu­
docode for testing stationary OBBs. Blocks of the form

if (r > rO + rl)
return false;

are replaced by

speed = Dot(D,V);
if (NoIntersect(tmax,speed,minO,maxO,minl,maxl,tfirst,tlast)

return false;

where speed is of type doubl e, Dis the relevant potential separating axis, and Vis the
velocity of the second box relative to the first. The input to NoIntersect consisted
of two projection intervals [mino, maxo] and [minI' maxd on a line (') + tD, where
(') is the origin. Now we are projecting onto a line with the same direction but
containing the center of the first box. A brieflook at the code for NoIntersect will
convince you that only the relative position of the projection intervals matters, not
the absolute location of their centers. In the pseudocode that follows, the interval
values are computed relative to the projected center of the first box.

bool TestIntersection (OBB boxO, Vector VO, OBB boxl, Vector VI,
double tmax, double& tfirst, double& tlast)

IIOBB: center C; axes U[O], U[I], U[2];
II extents e[O], e[I], e[2]

II values that are computed only when needed
double c[3][3]; II c[i][j] = Dot(boxO.U[i],boxl.U[j])
double absC[3][3]; II Ic[i][j] I
double udc[3]; II Dot(boxO.U[i],boxl.C-boxO.C)
double udv[3]; II Dot(boxO.U[i],VI-VO)

double center, speed, rO, rl, minO, maxO, minI, maxI;
int i;

II cutoff for cosine of angles between box axes
const double cutoff = 0.999999;
bool existsParallelPair = false;

II compute difference of box centers and velocities
Vector CDiff = boxl.C - boxO.C;
Vector VDiff = VI - VO;

5.3 Collision Detection with Convex Polyhedra 345

tfirst = 0;
tlast = INFINITY;

II axis CO + t * AO
for (i = 0; i < 3; i++)
{

c[O][iJ = Dot(boxO.U[O],boxl.U[iJ);
absC [OJ[iJ = Ic[OJ[iJ I;
if (absC[O][i] > cutoff)

existsParallelPair = true;
}

udc[O] = Dot(boxO.U[O],CDiff);
udv[O] = Dot(boxO.U[O],VDiff);
center = udc[O];
speed = udv[O];
rO = boxO.e[O];
rl = boxl.e[O] * absC[O] [0] + boxl.e[l] * absC[O] [1] +

boxl.e[2] * absC[O] [2];
minO = -rO;
maxO = +rO;
minI = center - rl;
maxI = center + rl;
if (NoIntersect(tmax,speed,minO,maxO,minl,maxl,tfirst,tlast)

return false;

11*** other face normal cases go here ***

if (existsParallelPair)

II A pair of box axes was (effectively) parallel,
II boxes must intersect.
return true;

II axis CO + t * AO x BO
center = udc[2] * c[l] [0] - udc[l] * c[2][0];
speed = udv [2] * c[1] [0] - udv [1] * c[2] [0] ;
rO = boxO.e[l] * absC[2] [0] + boxO.e[2] * absC[I] [0];
rl = boxl.e[l] * absC[O] [2] + boxl.e[2] * absC[O] [1];
minO = -rO;
maxO = +rO;
minI = center - rl;
maxI = center + rl;

346 Chapter 5 Physics Engines

if (NoIntersect(tmax,speed,minO,maxO,minl,maxl,tfirst,tlast)
return fal se;

jj*** other edge-edge cases go here ***

return true;

The pseudocode for NoIntersect is the same used for convex polyhedra generally.

Constant Angular Velocity

The analysis for constant linear velocity is based on two things, the separating test
in equation (5.48) and the time-varying difference between centers A(t) = D . (e l ­

eo) + tD· (Vl - Vo) = c + ta. If you consider the first projection interval [-ro, ro]
to be stationary, the second projection interval is [c + ta - rl' c + ta + rd. At time
oits center is c and it moves with speed a. Figure 5.26 shows the four cases of interest.

The first two rows of the figure show the moving interval on the right of the
stationary one. In the first row a ::: 0 and the intervals will never intersect. In the

~a 0
~

-ro 0 ro c+ta-rl c + ta c+ta+rl

a<O~

-ro 0 ro c+ta-rl c + ta c+ta+rl

~a>O

~

c+ta-rl c + ta c + ta+ r l -ro 0 ro

a 0 -I
~

c+ta-rl c + ta c + ta+ r l -ro 0 ro

Figure 5.26 Two projected intervals, one stationary and one moving.

5.3 Collision Detection with Convex Polyhedra 347

second row a < 0 and the intervals will intersect at time t = (ro + rl - c)/a. The
last two rows of the figure show the moving interval on the left of the stationary one.
In the third row a > 0 and the intervals will intersect at time t = -(ro + rl + c)/a.
In the fourth row a ::s 0 and the intervals will never intersect. The constant linear
velocities of the bodies leads to a linear equation in t for computing the first time of
contact.

We are not so lucky to obtain a simple formulation for bodies moving with
constant angular velocities wk, k = 0, 1, but we can obtain a formulation nonetheless.
The constant angular speeds are Wk = IWkl and the unit-length directions for the axes
of rotation are Uk = wdlwkl. The rotation matrices corresponding to the angular
velocities are

where Sk = Skew(Uk). Let Ai and Bj be the aBB axes at time zero. At a later time
the axes are Ro(t)Ai and RI(t)B j . The separation condition along an axis based on
equation (5.48) is

2 2

ID(t) . AI = ret) > ro(t) + rl (t) = L adD(t) . Ro(t)Ad + L b j ID(t) . RI(t)Bi I
i=O j=O

where A = e l - eo does not vary with time (the box centers are stationary). The
choices for potential separating direction D(t) are Ro(t)Ai , R I(t)B j' and (Ro(t)Ai) x
(RI(t)B j).

To get an idea of the complexity of the separating equation, let us look at the
case D(t) = Ro(t)Ao. The simplest distance quantity is ro(t) = ao' For r(t) and rl(t),
define ai(t) = sin(twi) and Yi(t) = cos(twi)' The quantity ret) is

ret) = I(Ao . A) + (SoAn' A)ao(t) + (S6Ao . A)(l- Yo(t)) I

= Ico + CI sin(wot + l/J) I

for some constants Co' CI, and l/J. The last equality follows from an application of
trigonometric identities. The general term in the summation for rl (t) involves the
absolute value of

Ro(t)Ao ' RI(t)B j = dOOh + dOljal(t) + d02j (l- YI(t))

+ dlOjao(t) + dlljao(t)al(t) + d12jao(t)(l- YI(t))

+ d20j (l- Yo(t)) + d21j (l- YO(t))al(t) + d22j (l- Yo(t))(l- YI(t))

where dkej = S~Ao . SfB j' Trigonometric identities may be used to reduce this to

348 Chapter 5 Physics Engines

3

Ro(t)Ao ' RI(t)Bj = ej + L fji sin()l.i t + <PJ
i=O

where ej' fji' and <Pi are constants. The frequencies are Ao = wo, Al = wI' A2 =
Wo + WI' and A3 = Wo - WI' The separating equation becomes

Computing the first time t for which you get equality in the above expression requires
a numerical root finder. And keep in mind that the worst case is having to process all
15 separating axes, each yielding a complicated inequality of this form.

We could make yet another approximation and replace sin(wkt) == wkt and 1 ­
cos(Wkt) == O. The separating equation for potential separating axis Ro(t)Ao with
these approximations is of the form

2

Igo + gltl > ao +L bj Ih jO + h jIt + h j2t2
1

j=o

This looks less formidable, but still requires a bit ofwork to find when equality occurs.

5.4 COLLISION CULLING: SPATIAL AND
TEMPORAL COHERENCE

In a graphics system a standard approach to improving the performance of rendering
is to avoid drawing objects that are outside the view frustum. This process is called
culling. The classic algorithm is to associate a bounding volume with each drawable
object and use plane-at-a-time culling. For each frustum plane, the bounding volume
is tested to see if it is on the side outside the frustum. If so, then the object contained
by it is outside the frustum and need not be drawn. If the bounding volume is not
outside any of the planes, the object is drawn. This is not an exact culling algorithm
because the bounding volume can be outside the frustum even though not outside
any of the six planes. Figure 5.27 illustrates this for bounding spheres.

However, any culling that occurs is better than attempting to draw all objects in
the system. Of course, it is essential that the time it takes to cull an object is less than
the time spent by the rendering system transforming its triangles into view space and
clipping, only to find out that all triangle vertices are outside the frustum.

The essence of view frustum culling is that a bounding volume is a simple geo­
metric entity for which intersection testing with the frustum is much cheaper than
intersection testing between the original object and the frustum. The performance of
collision detection systems can be enhanced using culling in a similar manner. Our
algorithm for determining if two convex polyhedra are intersecting uses the method

Not culled

5.4 Collision Culling: Spatial and Temporal Coherence 349

Not culled

Culled

Figure 5.27 Culling of bounding spheres against a view frustum.

of separating axes. If the polyhedra are not intersecting, we will find that out once
we project onto one of the No + N I + NoNI potential separating directions where
polyhedra i has N i faces. An object in the system tends to interact with only a small
subset of the total objects, so you expect most pairs ofobjects at any given time not to
be intersecting. The system can spend a lot of time telling you something you already
know. Using view frustum culling as motivation, we should have a bounding volume
per convex polyhedra that is simpler in structure and allows us to quickly determine
whether two bounding volumes are (or are not) intersecting.

5.4.1 CULLING WITH BOUNDING SPHERES

An obvious choice for a bounding volume of a convex polyhedron is a sphere. Given
spheres with centers ei and radii ri for i = 0, 1, the spheres do not intersect whenever
the distance between their centers is larger than the sum of their radii. The algebraic
condition for nonintersection is leI - eol > ro + rl' This should look familiar to
you since it is the same form as the inequality for specifying the separation of two
projection intervals on a separating axis. The set of potential separating axes for a
sphere is the set of all directions. When comparing two spheres, we need only project
onto a line containing both centers. The separation test in practice is implemented
using squared quantities, leI - eol2 > (ro + rl)2, to avoid the expensive square root
calculation of distance between centers.

Suppose our environment has n convex polyhedra. Let Cp denote the average cost
of the intersection testing for two convex polyhedra. Testing all pairs, the total cost
for a test-intersection query is

n(n - 1)
cI = cp

2
(5.49)

350 Chapter 5 Physics Engines

Let Cs denote the cost of the intersection testing for two spheres. We still compute
an all-pairs, test-intersection query, this time for spheres. If two spheres intersect,
the contained polyhedra might or might not intersect. We still have to perform the
polyhedra intersection test in this case. If m pairs of spheres intersect where 0 :::: m ::::
n(n - 1)/2, the total cost for a test-intersection query is

(5.50)

The culling system needs to be more efficient, so we require that C2 < Cl' This happens
when

Cs < 1- 2m
cp n(n-l)

If the expected number of separating axis tests for a pair of polyhedra is k, where
1:::: k :s No + N l + NoN l , then we expect the ratio to be cs/cp = 1/k to a first ap­
proximation. Consequently, c2 < cl implies

(
l)n(n-l)

m < 1--
k 2

That is, the sphere-based culling system is more efficient as long as the number of
intersecting spheres does not exceed the fraction (1- 1/k) of total objects in the
system.

Despite the benefits from sphere-based culling, the system requires a comparison
of all pairs of n objects. The objects are moving about, so the comparisons occur
at each time step. When n is large, this culling system still might not be enough
to remedy the sluggishness of the application. Another improvement is called for,
one that uses coherence of the objects in the system. We have two possibilities for
coherence, spatial coherence where we take advantage of knowledge about the spatial
locations ofthe objects in the system (locality in space), and temporal coherence where
we take advantage of the fact that with a small change in time, the new state of the
system does not deviate much from its old state (locality in time).

We may modify the sphere-based culling to illustrate how to use spatial coherence
to improve the performance of the collision system. A simple idea is to decompose
the space known to be occupied by all the objects during the life of the simulation.
If the total space is an axis-aligned box, we decompose it into a regular lattice of
disjoint, smaller axis-aligned boxes. Each box maintains a list of spheres that are fully
or partially inside the box. Figure 5.28 illustrates for a collection of eight spheres and
a partition into four boxes.

If Bij denotes the bin in row i and column j, the bins are Boo = {A, C, D, E},
BOl = {B, D, E}, BlO = {E, F}, and B ll = {E, G, H}. As you can see, if a sphere
overlaps any box in the decomposition, it is placed into the list of spheres for that
bin. For the sake ofargument, suppose that we have b bins labeled Bi and the spheres

5.4 Collision Culling: Spatial and Temporal Coherence 351

o

o

Figure 5.28 Decomposition of space to reduce the number of comparisons between pairs of
objects.

are uniformly distributed in the bins. The number ofspheres in each bin is nib, where
n is the total number of spheres. Let mi denote the number of intersecting spheres in
bin Bi • The cost for the sphere-based culling in bin i is

The total cost is

b
_ " (nlb)(nlb - 1) _ n(nlb - 1)

c3 - ~ Cs + mi cp - Cs + mcp

i=l 2 2
(5.51)

where m = L~=l mi' The cost of the sphere comparisons in c3 is approximately lib
that of the cost in C2 as shown in equation (5.50). If b is a small constant compared
to n, the cost of sphere comparisons in equations (5.50) and (5.51) are both O(n2).

However, if we choose b to be on the order of n, say, b = rn for some fraction
r E (0, 1), then the cost of sphere comparisons is ((11 r - 1)12)ncs ' which is 0 (n)
in time, something quite desirable in a collision system.

Unfortunately, the analysis for the binning is not complete. We have forgotten
to include the cost of determining which bins contain the spheres. The algorithm
itself requires testing for overlap between a sphere with center e and radius rand
an axis-aligned box [Xmin' xmaxJ x [Ymin' Ymax] x [Zmin' zmax]' To test for overlap it is

352 Chapter 5 Physics Engines

sufficient to compute the distance from the center of the sphere to the solid box and
show that it is less than the radius. The algorithm is listed next. The Sphere class is
assumed to have members Cfor the center and r for the radius. The Axi sA1i gnedBox
class has six members for the minimum and maximum values on the coordinate axes.

bool Testlntersection (Sphere S, AxisAlignedBox B)
{

double sqrDist = 0.0, d;

if (S.C.x < B.xmin)

d = S.C.x - B.xmin;
sqrDist += d * d;

}

else if (S.C.x > B.xmax
{

d = S.C.x - B.xmax;
sqrDist += d * d;

if (S.C.y < B.ymin)

d = S.C.y - B.ymin;
sqrDist += d * d;

}

else if (S.C.y > B.ymax
{

d = S.C.y - B.ymax;
sqrDist += d * d;

if (S.C.z < B.zmin)

d = S.C.z - B.zmin;
sqrDist += d * d;

}

else if (S.C.z > B.zmax
{

d = S.C.z - B.zmax;
sqrDist += d * d;

return (sqrDist < S.r * S.r);

5,4 Collision Culling: Spatial and Temporal Coherence 353

The return value is true whenever the sphere intersects the box and the intersec­
tion has positive volume. The cost of this test is denoted Cp a relatively small cost. The
naive algorithm for determining the bins containing the spheres just iterates over all
spheres and tests each sphere against all boxes, a double loop, leading to a cost ofbnct •

The cost of the sphere-based culling with binning is now

n(njb-l)
C4 = Cs + mcp + bnct

2
(5.52)

EXERCISE

5.5

EXERCISE

5.6

EXERCISE

5.7

We argued earlier that to make the cost of sphere comparisons O(n), we needed
b = rn for some fraction r. Unfortunately, this makes the cost of binning 0 (n 2).

This is to be expected: The more bins you select, the cheaper the cost of sphere
comparisons, but the more expensive the cost of deciding which bins contain the
spheres.

Develop a more efficient algorithm than the naive one for determining which bins
are intersected by a sphere. How does the cost equation (5.52) change with your new
algorithm?

In a dynamic simulation the polyhedra (and spheres) will move each time step of
the simulation. The binning algorithm can be applied at each step if you so desire,
but we can do better by modifying the algorithm to take advantage of temporal
coherence. When the simulation is initialized we can determine which boxes the
spheres intersect. On the next step of the simulation the spheres are moved. Under
reasonable assumptions on the speeds of the objects, the maximum distance traveled
by the spheres should be small compared to the dimensions of a box in the partition,
or at least no worse than a couple of box extents. The set of candidate boxes that
a sphere now intersects should be quite small, restricted to the current boxes that
the sphere intersects and a small ring of neighboring boxes. The set size is constant
compared to the total number of spheres in the system, so we can update for each bin
the set of spheres overlapping it in 0 (n) time.

Develop an efficient algorithm that updates each bin's set of spheres overlapping it.
(Hint: Use a breadth-first search starting with the current box containing the sphere.)

Write a computer program to implement sphere-based culling as described in this
section. The program should use binning to take advantage of spatial coherence and
should efficiently update the overlap information of the bins to take advantage of
temporal coherence.

One final issue is to be mentioned: The convex polyhedra are both translated and
rotated at each time step of the simulation. The bounding spheres after the motion
still must be bounds. Depending on how you chose your spheres, you might have to
update the bounding spheres for each time step, adding yet one more term to the cost

354 Chapter 5 Physics Engines

equation. However, we can avoid this extra cost by choosing the bounding sphere
center to be the center of mass of the polyhedron. No matter how the polyhedron
rotates about its center of mass, the bounding sphere will contain it. Consequently,
the update of the bounding sphere requires translating its center, the exact same
translation that is applied to the polyhedron.

5.4.2 CULLING WITH AXIS-ALIGNED BOUNDING BOXES

Here we investigate another culling system that uses both spatial and temporal coher­
ence. This one performs particularly well in practice. To each convex polyhedron, we
associate an axis-aligned bounding box (AABB). If two AABBs do not intersect, then
the convex polyhedra contained by them do not intersect. If the AABBs do intersect,
we then test if the enclosed polyhedra intersect. Of course, this is the same approach
we used for bounding spheres.

We have the same issues to deal with as we did for sphere-based culling. Each
time step the convex polyhedra move, their AABBs move. First, we need to update
the AABB to make sure it contains the polyhedron. When we used a sphere whose
center is the center of mass, only a translation was applied to the center since the
sphere is guaranteed to contain the polyhedron regardless of its orientation. This is
not the case for AABBs. If the polyhedron rotates, the current AABB is not necessarily
a bound and we need to compute a new one. Certainly, an iteration over the vertices
of the newly moved polyhedron may be used to compute the extremes along each
coordinate axis, but if we have added the fast extremal query support to the convex
polyhedra discussed earlier, we can use six queries to compute the AABB.

Second, once the AABBs are updated for all the polyhedra we expect that the in­
tersection status of pairs of polyhedralAABBs has changed-old intersections might
no longer exist, new intersections might now occur. Spatial and temporal coherence
will be used to make sure the update of status is efficient.

Intersecting Intervals

CODE
Intersectinglntervals

The idea of determining intersection between AABBs is based on sorting and update
of intervals on the real line, a one-dimensional problem that we will analyze first.
The method we describe here is mentioned in [BarD1]. A more general discussion of
intersections of rectangles in any dimension is provided in [PS85]. Consider a collec­
tion of n intervals Ii = [bi , ed for 1~ i ~ n. The problem is to efficiently determine
all pairs of intersecting intervals. The condition for a single pair Ii and I j to intersect
is b j ~ ei and bi ~ ej' The naive algorithm for the full set of intervals just compares
all possible pairs, an 0 (n 2) algorithm.

A more efficient approach uses a sweep algorithm, a concept that has been used
successfully in many computational geometry algorithms. First, the interval end
points are sorted into ascending order. An iteration is made over the sorted list (the

5.4 Collision Culling: Spatial and Temporal Coherence 355

Figure 5.29 The sweep phase of the algorithm.

sweep) and a set of active intervals is maintained, initially empty. When a beginning
value bi is encountered, all active intervals are reported as intersecting with interval
Ii' and Ii is added to the set of active intervals. When an ending value ei is encoun­
tered, interval Ii is removed from the set of active intervals. The sorting phase is
o (n log n). The sweep phase is 0 (n) to iterate over the sorted list, clearly asymptot­
ically faster than 0 (n log n). The intersecting reporting phase is 0 (m) to report the
m intersecting intervals. The total order is written as 0 (n log n + m). The worst-case
behavior is when all intervals overlap, in which case m = 0 (n 2

), but for our applica­
tions we expect m to be relatively small. Figure 5.29 illustrates the sweep phase of the
algorithm.

The sorted interval end points are shown on the horizontal axis of the figure.
The set of active intervals is initially empty, A = 0. The first five sweep steps are
enumerated as follows:

1. b3 encountered. No intersections reported since A is empty. Update A = {I3}'

2. b i encountered. Intersection 13 n II is reported. Update A = {I3' Id.

3. b2 encountered. Intersections 13 n 12 and lIn 12 reported. Update A = {I3' II' I2}.

4. e3 encountered. Update A = {II' I2}.

5. el encountered. Update A = {I2}'

The remaining steps are easily stated and are left as an exercise.
A warning is in order here: The sorting ofthe interval end points must be handled

carefully when equality occurs. For example, suppose that two intervals [bi , ei] and
[b j' e j] intersect in a single point, ei = bj' If the sorting algorithm lists ei before bj'

356 Chapter 5 Physics Engines

when ei is encountered in the sweep we remove Ii from the set of active intervals.
Next, b j is encountered and intersections of I j with the active intervals are reported.
The interval Ii was removed from the active set on the previous step, so I j n Ii is
not reported. In the sort, suppose instead that b j is listed before ei by the sorting
algorithm. Since bi was encountered earlier in the sweep, the set of active intervals
contains Ii' When b j is encountered I j n Ii is reported as an intersection. Clearly, the
order of equal values in the sort is important. Our application will require that we
report just-touching intersections, so the interval end points cannot be sorted just
as a set of floating point numbers. Tags need to be associated with each end point
indicating whether it is a beginning point or an ending point. The sorting must take
the tag into account to make sure that equal end point values are sorted so that values
with a 'begin' tag occur before values with an 'end' tag. The tags are not a burden
since, in fact, we need them anyway to decide during the sweep what type of end
point we have encountered. Pseudocode for the sort and sweep is

struct EndPoint

enum Type {BEGIN 0, END 1};
Type type;
double value;
int interval; II index of interval containing this end point

II EndPoint E1, E2;
I I E1 < E2 when
II E1.value < E2.value, or
II E1.value == E2.value AND E1.type < E2.type

struct Interval

EndPoint P[2];
};

void SortAndSweep (int n, Interval I[])

II use O(n log n) sort
array<EndPoint> L = Sort(n,I);

II active set of intervals (stored by index in array)
set<int> A = empty;

II (i,j) in S means I[i] and I[j] overlap
set<int,int> S = empty;

5.4 Collision Culling: Spatial and Temporal Coherence 357

for (i = 0; i < L.sizeO; i++)

if (L[i] .type == EndPoint: :BEGIN)

for (each j in A) do
S. Insert (j , L[i] . i nterva 1) ;

A. Insert (L [i] . i nterva 1) ;

}

else II L[i].type == EndPoint::END
{

A.Remove([L[i]. interval]);

Once the sort and sweep has occurred, the intervals are allowed to move about,
thus invalidating the order of the end points in the sorted list. We can re-sort the
values and apply another sweep, an 0 (n log n + m) process. However, we can do
better than that. The sort itself may be viewed as a way to know the spatial coherence
ofthe intervals. If the intervals move only a small distance, we expect that not many of
the end points will swap order with their neighbors. The modified list is nearly sorted,
so we should re-sort using an algorithm that is fast for nearly sorted inputs. Taking
advantage of the small number of swaps is our way of using temporal coherence to
reduce our workload. The insertion sort is a fast algorithm for sorting nearly sorted
lists. For general input it is O(n2), but for nearly sorted data it is O(n + e), where e
is the number of exchanges used by the algorithm. Pseudocode for the insertion sort
IS

II input: A[O] through A[n-1]
II output: array sorted in-place
void InsertionSort (int n, type A[])
{

for (j = 1; j < n; j++)
{

key = A[j];
i = j-1;
while (i >= 0 and A[i] > key)
{

Swap(A[i] ,A[i+1]);
i--;

}

A[i+1] = key;

358 Chapter 5 Physics Engines

Figure 5.30 The update phase of the algorithm when intervals have moved.

The situation so far is that we applied the sort and sweep algorithm to our col­
lection of intervals, a once-only step that requires 0 (n log n + m) time. The output
is a set S of pairs (i, j) that correspond to overlapping intervals, Ii n I j . Some in­
tervals are now moved and the list of end points is re-sorted in 0 (n + e) time. The
set S might have changed. Two overlapping intervals might not overlap now. Two
nonoverlapping intervals might now overlap. To update S we can simply apply the
sweep algorithm from scratch, an O(n + m) algorithm, and build S anew. Better,
though, is to mix the update with the insertion sort. An exchange oftwo 'begin' points
with two 'end' points does not change the intersection status of the intervals. If a pair
of 'begin' and 'end' points is swapped, then we have either gained a pair of overlap­
ping intervals or lost a pair. By temporal coherence, we expect the number ofchanges
in status to be smalL If c is the number of changes of overlapping status, we know
that c .::: e, where e is the number of exchanges in the insertion sort. The value e is
expected to be much smaller than m, the number of currently overlapping intervals.
Thus, we would like to avoid the full sweep that takes O(n + m) time and update
during the insertion sort that takes smaller time 0 (n + e).

Figure 5.30 illustrates the update phase of the algorithm applied to the intervals
shown in Figure 5.29. At the initial time the sorted end points are {b3, bI , bz, e3' eI'
bs, b4, es, ez, e4}' The pairs of indices for the overlapping intervals are S = {(1, 2),
(1,3), (2,3), (2,4), (2, 5), (4, 5)}. Now II moves to the right and Is moves to the
left. The new end points are denoted hI' eI' hs, and es' The list of end points that was
sorted but now has had values changed is {b3, hI' bz, e3' eI' hs, b4, es, ez, e4}' The
insertion sort is applied to this set ofvalues. The steps follow.

1. Initialize the sorted list to be L = {b3 }.

2. Insert hI' L = {b3 , hd.

Intersecting­

Rectangles

5.4 Collision Culling: Spatial and Temporal Coherence 359

3. Insert bz, L = {b3 , bl , bl }.

(a) Exchange bl and bl , L = {b3 , bl , bd. No change to S.

4. Insert e3' L = {b3, bl , bl , e3}'

5. Insert el' L = {b3, bl , bl , e3' ed.
6. Insert bs ' L = {b3, bl , bl , e3' el' bs }.

(a) Exchange el and bs' L = {b3, bl , bl , e3' bs' ed. This exchange causes II and Is
to overlap, so insert (1, 5) into the set S = {(1, 2), (1, 3), (1, 5), (2, 3), (2,4),
(2,5), (4, 5)}.

7. Insert b4, L = {b3, bl , bl , e3' bs ' el' b4 }.

8. Insert es, L = {b3, bl , bl , e3' bs ' el' b4 , es}.

(a) Exchange b4 and es, L = {b3, bl , bl , e3' bs ' el' es, b4}. This exchange causes
14 and Is to no longer overlap, so remove (4, 5) from the set S = {(1, 2),
(1,3), (1,5), (2,3), (2,4), (2, 5)}.

9. Insert eZ, L = {b3 , bl , bl , e3' bs ' el' es, b4 , ell.

10. Insert e4' L = {b3, bl , bl , e3' bs ' el' es, b4 , el' e4}'

11. The new list is sorted and the set of overlaps is current.

Intersecting Rectangles

The algorithm for computing all pairs of intersecting axis-aligned rectangles is a
simple extension of the algorithm for intervals. An axis-aligned rectangle is of the
form [Xmin' xmax] x [Ymin' Ymax]' Two such rectangles intersect if there is overlap
between both their x-intervals and their y-intervals, as shown in Figure 5.31.

Figure 5.31 Axis-aligned rectangles overlap when both their x-intervals and y-intervals overlap.

360 Chapter 5 Physics Engines

The rectangles are [xo, Xl] x [Yo, yd and [X2' x3] x [Y2, Y3]' The rectangles overlap
because [xo, xd n [x2' x3] =1= 0 and [Yo, YI] n [Y2' Y3] =1= 0.

In the two-dimensional setting we maintain two sorted lists, one for the end
points of the x-intervals and one for the end points of the y-intervals. The initial
step of the algorithm sorts the two lists. The sweep portion is only slightly more
complicated than for one dimension. The condition for overlap is that the x-intervals
and y-intervals overlap. Ifwe were to sweep the sorted x-list first and determine that
two x-intervals overlap, that is not sufficient to say that the rectangles of those x­
intervals overlap. We could devise some fancy scheme to sweep both x- and y-lists
at the same time, but it is simpler just to do a little extra work. If two x-intervals
overlap, we will test for overlap of the corresponding rectangles in both dimensions
and update the set of overlapping rectangles as needed.

Once we have the sorted lists and a set of overlapping rectangles, we will move the
rectangles and must update the lists and set. The process will use an insertion sort to
take advantage of spatial and temporal coherence. The x-list is processed first. If an
exchange occurs so that two previously overlapping intervals no longer overlap, the
corresponding rectangles no longer overlap so we can remove that pair from the set
of overlaps. If an exchange occurs so that two previously nonoverlapping intervals
now overlap, the corresponding rectangles mayor may not overlap. Just as we did for
the initialization phase, we will simply test the corresponding rectangles for overlap
in both dimensions and adjust the set of overlaps accordingly.

Intersecting Boxes

RCE CODE

IntersectingBoxes

You should see clearly that the algorithm for axis-aligned rectangles in two dimen­
sions extends easily to axis-aligned boxes in three dimensions. The collision system
itself has the following outline:

1. Generate AABBs for the convex polyhedra of the system using the fast extremal
query support built into the polyhedra.

2. Using the sort-and-sweep method, compute the set S of all pairs of intersecting
AABBs.

3. Determine which AABBs intersect using the fast insertion sort update.

4. For each pair ofintersecting AABBs, determine if the contained convex polyhedra
intersect. For those pairs that do, compute the contact sets.

5. The contact sets are inputs for the collision response system that uses impulsive
forces to modify the linear/angular velocities and resting contact forces to modify
the forces/torques. Apply one step of the differential equation solver to move the
convex polyhedra.

6. Recompute the AABBs using the fast extremal query support.

7. Repeat step 3.

5.5 Variations 361

5.5 VARIATIONS

Most of this chapter is about how to architect a general rigid body simulation using
Newton's second law of motion, F = rna, and its implications for how position, ori­
entation, linear velocity/momentum, and angular velocity/momentum change over
time. In particular, a simulation based on impulsive forces to adjust linear and an­
gular velocities and to prevent interpenetration and based on resting contact forces
to prevent interpenetration is covered in detail. The simulation relies on a collision
detection system to provide information about the constraints of motion. One re­
quirement for a relatively simple system is that the rigid bodies be convex polyhedra.
The intersection testing that we have discussed uses the method of separating axes,
both for stationary and for moving objects. The goal is for you to assemble a simula­
tion of this type and see how it performs and what its strengths and weaknesses are.
Academic and industrial researchers alike have tried various alternatives in building
rigid body simulations. I briefly discuss a few ofthem here. References are provided to
papers so that you can explore them once you are comfortable with the architecture
of a simulation system as described in this book.

An alternative to impulsive forces is to use penalty-based methods in order to sat­
isfy nonpenetration constraints. The idea is to track the distance between each pair
of polytopes by maintaining the closest features for each pair [LC9l, Lin93, CLMP95,
Mir98]. This is done using Voronoi regions and allows an 0 (1) update of the features
(temporal and spatial coherence). An algorithm for tracking closest features using
BSP trees in the style of what was discussed earlier for extremal queries is [GV9l]
on multidimensional space partitioning. A recent paper on computing a directional
lookup table for finding extremal points uses 0 (n) preprocessing time for an 0 (1)

lookup [ELOO]. Instead of using impulsive forces, the system internally modifies the
simulation by adding springs between a pair of closest features that will lead to a col­
liding contact; the forces due to the springs are part of the force/torque calculations in
the differential equation solver. As the distance between the closest features becomes
small, the springs exert repulsive forces between the polytopes owning those features.
A drawback of this approach is that the springs have large constants in the Hooke's
law model, leading to stiff equations that cause numerical stability problems in the
differential equation solver (see Chapter 9, "Numerical Methods," and in particular
Sections 9.9 and 9.10 on stability and stiff equations, respectively). Maintaining non­
penetration is also difficult with this approach.

People have also tried relaxing the constraint of nonpenetration. The differen­
tial equation solver computes the updates for position and orientation and the rigid
bodies are moved. The objects may interpenetrate after the motion. The penetration
distances can be computed for the polytopes and the objects are moved to undo the
penetration. In this approach you need to compute distances between the polyhedra.
The Gilbert-Johnson-Keerthi (GJK) distance algorithm [GJK88, vdB99, vdBOlb] or
the enhanced GJK distance algorithm [Cam97] is suitable for this system. The clos­
est features [LC9l] can be tracked to allow fast updating of the distance, another

362 Chapter 5 Physics Engines

application of spatial and temporal coherence. The book [vdB03] covers these con­
cepts in detail.

Variations have been tried regarding the linear complementarity problem (LCP)
approach. The idea of contact force calculation is revisited in [Bar94], addressing the
issues both of speed and of robustness when frictional forces are present. Nonlinear
complementarity problems (NCP) have also been used to improve the robustness of
calculation of contact forces. Resting contact has problems due to numerical round­
off errors. The paper [BS99] deals with this by formulating the problem as an NCP.
The brief paper [HKL+99] quickly summarizes the mathematics that goes into set­
ting up an NCP problem for contact force calculation and provides pseudocode for
an implementation. The NCP solver itself uses an LCP solver as a subtask. An energy­
based approach for contact force computation is [Fau96]. An iterative scheme is used,
the first pass handling force and torque computations and a global energy calcula­
tion. Subsequent passes redistribute energy about the system of objects. The method
also handles static and sliding friction. A change of paradigm occurs in [RKC02b]
and uses what is called Gauss's principle ofleast constraints. The LCP-based method is
referred to as a contact space formulation. The number of degrees of freedom in this
formulation is not explicit. The Gauss principle is formulated in what is called motion
space and makes use of the explicit degrees of freedom to avoid unnecessary calcula­
tions. The abstract idea is that a kinetic norm is computed involving the constrained
acceleration. In the current contact configuration, the norm is minimized to produce
the constrained acceleration that is the closest acceleration to the unconstrained ac­
celeration.

A variation on the impulsive force method allows you to simulate friction, as
proposed by Gino van den Bergen [vdBOla] in the Usenet newsgroup, camp.games

•deve1apment. pragrammi ng. a1gari thms, excerpted as follows:

Contacts are resolved using impulses. At the time of collision, I have the contact
points (I use only points, no higher-dimension simplices), a contact normal and
a relative velocity for the contact points. The relative velocity is decomposed
into a normal component and a tangential (along the surface) component. I
compute the impulse in the direction of the normal that will result in the normal
component of the relative velocity being set to zero. (In order to avoid, the objects
drifting into each other, you'll have to do a correction using translations of the
objects, such that the objects stay in contact, i.e., do not interpenetrate too much.)

I do the same for the tangential component. I compute the impulse that will set
the relative velocity along the surface to zero. However, by applying this impulse,
your objects will stick to the surface. They cannot slip since the friction is infinite.
According to Coulomb's friction law, there is a maximum to the magnitude of
the friction impulse that is proportional to the magnitude of the normal impulse.
The ratio between the magnitude of the normal impulse and the magnitude of
the maximum friction impulse is the friction coefficient. So, given the normal
impulse, the magnitude of the maximum friction impulse is computed, and if the
magnitude of the tangential impulse is greater than the maximum, the tangential

5.5 Variations 363

impulse's magnitude is set to the maximum. In this way, it is possible to have
slipping objects.

If the need for realism is really high, you should use different friction coefficients
for slipping objects and "sticking" objects (the kinetic friction coefficient is usu­
ally smaller than the static coefficient for the same material), but I reckon that
you can get by with only one coefficient. This is a games newsgroup after all.
(Although, I guess that realistic racing games will use two coefficients for the max­
imum friction of the tyres.)

Finally, a lot of research has been done on collision detection systems themselves
to develop fast, accurate, and robust systems. Some of the earliest work was simply
based on algorithms for computing intersections of polyhedra. Nonconvex polyhe­
dra naturally make the problem complicated, but hierarchical bounding volumes
provide a relatively simple intersection system for two polyhedra represented as tri­
angle meshes. The general idea is to localize where the intersections can occur by
rapid culling of regions where they cannot be. Sphere trees were made popular by
[Hub96J, whereas oriented bounding box trees (OBB trees) and the method of sep­
arating axes were made popular by [GLM96]. A paper on hierarchical trees using
axis-aligned bounding boxes is [vdB97]. The Wild Magic source code (also on the
CD-ROM for this book) has an implementation for hierarchical bounding volumes.
A class in the system is Bound; ngVo1ume, an abstract base class whose interface sup­
ports constructing the bounding volume tree and supports the intersection queries.
The currently supported derived classes implement bounding volumes for spheres,
oriented bounding boxes, and the sphere-swept volume types of capsule (sweep a
line segment) and lozenge (sweep a rectangle). The class Bound; ngVo1umeTree is used
for constructing a bounding volume tree. The Co11; s; onGroup and Co11; s; onRecord

classes support the intersection query using the bounding volume trees of two ob­
jects. The Intersect; ngCy1; nder application shows how this collision system is used.

More sophisticated collision detection systems have been developed by one of the
foremost groups in this area, the University of North Carolina GAMMA Research
Group [GAM03]. GAMMA is the acronym for Geometric Algorithms for Modeling,
Motion, and Animation). One of their original systems was RAPID (Robust and
Accurate Polygon Interference Detection), which implements the OBB tree hierarchy
of [GLM96] and is the basis for the Wild Magic code. RAPID did not use any coher­
ence for intersection testing. Each test- or find-intersection query started anew the
comparison between two OBB trees. If the tree is sufficiently deep, say five or six lev­
els deep, the system can spend a lot of time comparing bounding volumes, especially
when the two original triangle meshes are in close proximity to each other. Various
systems have been built by UNC GAMMA over the years to improve on the disad­
vantages of the previous systems. Brief descriptions of some of these are provided
here.

I-COLLIDE is an interactive and exact collision detection system that handles
large environments of convex polyhedra [CLMP95]. Nonconvex polyhedra must be

364 Chapter 5 Physics Engines

decomposed into convex polyhedra for this system to apply. The system uses tempo­
ral coherence via Voronoi regions as mentioned earlier in this section [LC91, Lin93].
V-COLLIDE [HLC+97] is a collision detection system that attempts to be more gen­
eral than I-COLLIDE and is designed for environments with a large number ofpolyg­
onal objects. The input models are allowed to be arbitrary (polygon soups). The sys­
tem uses OBB trees as defined in RAPID but uses temporal coherence to speed up the
location of possibly intersecting triangles in the system. The intersection candidate
triangles are then tested for exact intersection. Similarities and differences among
RAPID, I-COLLIDE, and V-COLLIDE are mentioned at [GAM03].

Another alternative intended to be more powerful than I-COLLIDE is SWIFT,
Speedy Walking via Improved Feature Testing [ELOO]. This is a package for collision
detection, distance computation, and contact determination for polygonal objects
undergoing rigid motions. The distance calculations can be approximate when the
user specifies an error bound for the distance between objects, or they can be exact.
The contact determination uses bounding volume hierarchies and fast updating of
closest features, just as earlier packages at UNC do. An evolution of the package is
SWIFT++ [ELO1] and it supports nonconvex polyhedra. It also supports a proximity
query that detects whether two objects are closer than a specified tolerance.

Other research at UNC includes DEEP (Dual-space Expansion for Estimating
Penetration depth between convex polytopes) [KLM02]; PIVOT (Proximity Infor­
mation from VOronoi Techniques) [IZLMOl, IZLM02], systems that use graph­
ics hardware acceleration to support the queries; PQP (Proximity Query Package)
[LGLM99], a system that uses sphere-swept volumes and supports overlap test­
ing, distance computation, and tolerance verification; and IMMPACT (Interactive
Massive Model Proximity And Collision Testing, a system for partitioning and han­
dling massive models for interactive collision detection [WLML99], where overlap
graphs are used for localizing regions of interest. No surprise that IMMPACT also
uses bounding volume hierarchies and spatial and temporal coherence.

Recent research regarding speedups, robustness, and accuracy of collision detec­
tion are provided by the following papers.

A non-UNC paper on a variation of I-COLLIDE and V-COLLIDE is called Q­
COLLIDE [CW96] and it uses separating axes to determine intersections rather than
tracking closest features but still uses spatial and temporal coherence to speed up the
calculations.

An efficient algorithm for collision detection for moving polyhedra is presented
in [ST99]. Generally, it has been accepted that two polyhedra, each of 0 (n) features
(vertices, edges, or faces), requires 0 (n 2) time to compute collisions. This paper
shows that in the case of translational movements you can compute intersections
in 0 (n 8/ S + cS') time, and in the case of rotational movements you can compute
intersections in 0 (n S/ 3 + cS') time; both are asymptotically subquadratic.

The paper [SSW99] describes the following setting. A polyhedron is moved
through an environment that contains fixed polyhedral obstacles. Given a sequence
of prescribed translations and rotations of the single polyhedron, the question is
whether or not it can follow those transformations without colliding with the ob-

5.5 Variations 365

stacles. Integer arithmetic is used for this algorithm. The maximum number of bits
needed for intermediate calculations is shown to be 14L + 22 where L is the maximal
bit size for any input value. By knowing the maximum number of bits needed for the
intermediate calculations, you can implement an exact arithmetic library with a fixed
number of bytes for the integer type. The time performance of such a library is bet­
ter than one supporting arbitrary precision arithmetic, the latter relying on dynamic
memory management to allocate the integer objects. In a game application that uses
floating point values to represent the data, an interface would be needed to hide the
details of converting the floating point values to integer values needed as input in the
exact arithmetic collision system.

A paper about reducing the time it takes to compute the collision time of two
objects is [RKCOO]. Under some restrictions on the object motion it is shown that
the collision time can be determined by solving polynomial equations of at most
degree 3. A similar reduction to small degree polynomials can be made regarding the
collision of two rotating OBBs. I showed earlier that the collision time of the intervals
of projection of the OBBs onto a potential separating axis is a root to an equation
f (t) = 0, where f (t) involves sinusoidals of different frequencies. By replacing sine
and cosine by polynomials with a bounded error of approximation, the collision time
is then computed as the root of a polynomial. Polynomial approximations to sine and
cosine can be found on the CD-ROM in the source directory called Numerics.

In the discussion of OBBs moving with linear and/or angular velocity, I made the
observation that during the time step ofa differential equation solver, you can assume
that an OBB is moving with constant linear velocity and constant angular velocity as
an approximation to the theoretical motion (which you do not know; that is why
the numerical solver is being used). Along these lines the papers [RKCOl, RKC02a]
propose arbitrary in-between motions in order to accurately predict the first time of
contact.

These variations are by no means exhaustive. I apologize in advance for not
including references to topics that readers believe should have been included here.
An online search of some common terms in game physics (rigid body simulation,
collision detection, etc.) will net you a lot of links. With a solid understanding of
the material in this book, you should be able to quickly identify those links that are
relevant to your pursuit of further knowledge in the field of game physics.

<,.. ;;

PHYSICS AND SJ+tADER
""'"\,

P'R"Q,(; RAM S

A brief introduction to programmable graphics hardware is presented here, the
programs called shader programs. The ability to program graphics cards was

driven by a need for producing more sophisticated visual effects than what previous­
generation hardware and drivers have allowed. Shader programming examples that
illustrate interesting effects are becoming fairly easy to find on the Internet. Although
these are usually visual in nature, creative graphics programmers and researchers have
produced surprisingly interesting physical effects using shader programs. This chap­
ter discusses the two major categories of shader programs, vertex shaders and pixel
shaders. A few applications are also included to illustrate how you can obtain some
physical effects through shaders. The applications include deformation by random
vertex displacement, skin-and-bones animation, rippling ocean waves, refraction,
Fresnel reflection, and iridescence, the last three illustrating optical effects.

6.1 INTRODUCTION

As of the writing of this book, many graphics cards are programmable, the programs
themselves called shader programs or shaders. The term shading refers to the process
of assigning colors to points on a surface. The classical model is Gouraud shading,
where the vertices of a triangle are assigned colors by the user or through some
algorithmic process. The algorithmic assignment is typically based on lighting models
involving: ambient, directional, point, and/or spot lights; material properties that
are associated with the surface; and geometric considerations such as the shape of

367

368 Chapter 6 Physics and Shader Programs

the surface and how light is reflected based on the normal vector field. The vertex
colors are linearly interpolated across the screen-space pixels that correspond to the
rendered triangle. In many cases the resulting colors meet only minimal requirements
for physical realism. To remedy this and provide the viewer with a more convincing
rendering, other sources of color are combined with the vertex colors. The most
common method is to combine texture images with the vertex colors.

As with most technology, consumers always have demands for more advanced
features. Gamers have ever increasing appetites for better looking special effects. Even
with lit and textured surfaces, what happens if an object interferes with a light source
that illuminates the surface? The object most likely casts a shadow on the surface.
Ambient lighting still allows you to see the surface, albeit dimmer. The shadow might
only cover a portion of the surface, the remaining area fully lit by the light source.
Real-time shadows have been possible even before programmable graphics cards, but
those cards needed to be quite powerful to maintain the real-time frame rate. Effects
such as reflection have also been possible in real time. The problem, though, is that
the creativity of artists and programmers evolves faster than the graphics cards and
drivers can support. Shader programming is designed to allow us to create special
effects at our own rate and to implement them immediately.

This chapter is by no means a comprehensive discussion of the topic of shader
programming. In my opinion the best book to date that covers both the general
theory and the practical aspects of shader languages is [OHHM02]. Although the
book does discuss the OpenGL 2.0 API and how it supports shaders, currently that
API is not available to the general programmer. For now we have to rely on the
OpenGL extension mechanism to access the programmable features of the graphics
cards. The book [OHHM02] also mentions DirectX 9.0 and the High Level Shading
Language, but at the time the book was printed, not much information was available
about that API. As always, the current state of DirectX is available at Microsoft's web
site.

By the time this book is in print, the state of shader programming will no doubt
have evolved even further. For example, some researchers are already investigating
clever uses of depth buffering and occlusion culling that together provide collision
detection by the graphics hardware. Real-time performance ofsuch methods depends
heavily on the rate at which the depth buffer and other information can be transferred
from the graphics card to system memory. Graphics accelerators were designed with
the idea of fast writes, not fast reads. At the moment the reading rate is not large
enough for the types of complex models we see in games, but eventually the rate will
mcrease.

Initially, shader programs consisted of a small maximum number of sequentially
executed statements. The current-generation technology includes the ability to loop,
branch, and call subroutines. For example, nVIDIA's GeForce FX series of graphics
cards and ATI's Radeon 9800 Pro graphics card support looping, branching, subrou­
tines, and a large maximum number of statements, giving us fully functional and
powerful shader languages. Such languages invariably support physical simulation,
including solving the differential equations of motion that are discussed in this book.

6.2 Vertex and Pixel Shaders 369

Specifically, a shader now has the ability to translate the center of mass of a rigid
body and set its orientation. The translation and orientation are the components of
the model-to-world transformation, a renderer quantity that is always initialized by
vertex shaders. The translation and orientation are what are computed by equation
(5.11) for a single rigid body or (5.13) for multiple rigid bodies.

6.2 VERTEX AND PIXEL SHADERS

A vertex shader is a program that allows you to modify attributes of the vertices of
a triangle mesh, including the positions and colors of the vertices. The output of the
vertex shader is interpolated by the hardware to produce the final colors ofthe screen­
space pixels corresponding to the triangles in the mesh.

Vertex shaders are designed to give you control of only the attributes of the
vertices of a triangle. The user has control over the final pixel colors by modifying
the vertex attributes. Many special effects require control at the pixel level itself. A
pixel shader is a program that gives the user such control. The prototypical case is
the application of a texture image to the triangle. Recall that the two-dimensional
texture coordinates at a vertex are used as lookups into the texture image. During
rasterization the vertex texture coordinates are interpolated for each pixel in the final
rendering. The interpolated coordinates are used as lookups into the texture image
to assign a color per pixel. The responsibility of the programmer is to assign texture
coordinates to each vertex and a texture image to be used for the color lookups.

More complex features can be implemented by extending the texture image con­
cept, for example, Dot3 bump-mapping. Additional images are supplied, but they are
not used for color lookups. The images contain surface tangent and surface normal
information that is used to create the bump-mapped effect.

The Wild Magic source code, found on the CD-ROM, has shader programs writ­
ten in nVIDIA's Cg language. The Cg Toolkit provided by nVIDIA includes a compiler

CgConverter that produces output for both DirectX and OpenGL. Each scene graph object to
which a shader program is assigned must also have an associated set of constants that
are inputs to the program. Trying to put it all together is a tedious chore of data man­
agement. To ease the programmer's burden, a tool is provided, called CgConverter.
The tool runs the Cg compiler on a shader program (extension .cg), produces out­
put for both DirectX and OpenGL, and bundles these and other constants together
into files that are loaded by Wild Magic applications.

Vertex shaders are compiled to files with an extension of .wvs (Wild Magic Vertex
Shader) and pixel shaders are compiled to files with an extension of .wps (Wild Magic
Pixel Shader). That said, a programmer can create his own. wvs and. wps files without
using the Cg language, instead directly using shader assembly language. There is no
"standard" shader language for developers that could minimize the effort in creating
shaders for graphics engines. As in most industries, the powers that be will tell you
that having standards are important-as long as the standards are theirs. Look for an

370 Chapter 6 Physics and Shader Programs

RCE CODE

BasicShader

extended battle ofcompanies jockeying for position to have the most influence on the
outcome. For the time being developers just have to deal with the morass ofvariations
that must be handled for different platforms and graphics APIs. The CgConverter tool
and Wild Magic shader layer were written by Nolan Walker ofthe University ofNorth
Carolina. Equally important is his diary of comments about his experiences-and
frustrations-trying to put it all together. The diary is named ShaderNotes. pdf and is
on the CD-ROM.

The first release of the CgConverter tool contains the source code and project
files for the Microsoft Windows platform. To use the tool you must download and
install the Cg Toolkit from nVIDIA (www.nvidia.com). In order to include shader
programs directly in a project and have the converter process them during a build or
rebuild command, you need to modify the compiler's global search paths for header
files, library files, and executable files to include paths to the appropriate directories
created by the installation of Cg. The custom build step for the shader programs must
also be set up. Please read the release notes on the CD-ROM that describe how all this
is accomplished. The file name is Re1easeNotes2pl. pdf.

A simple application, Basi cShader, that illustrates vertex and pixel shaders is
found on the CD-ROM. The file Bas i cShader. cg contains a basic vertex shader and a
basic pixel shader. The basic vertex shader is

void vmain(
II In order for this shader to work, your Geometry object must have all
II of the inputs or the Renderer will give you an assertion error.
in float4 i f4Position : POSITION,
in fl oat3 i_f3Norma 1 : NORMAL,
in float2 i_f2Tex : TEXCOORDO,

out float4 0 f4Position : POSITION,
out float3 o_f3Lighting : COLOR,
out float2 o_f2Tex : TEXCOORDO,

II State variables beginning with Wml will be filled in by Wild Magic
II automatically. Some state, such as lights, must be attached to the
II scene graph.
uniform float4x4 WmlRendererModViewProj,
uniform float4x4 WmlRendererMod,

II Wild Magic will fill out constants to a float4, but you can specify
II float<n> if you do not need the other information.
uniform float3 WmlLightPositionO,
uniform float3 WmlLightAmbientO,
uniform float3 WmlLightDiffuseO)

6.2 Vertex and Pixel Shaders 371

II transform the position
0_f4Position = mul(WmlRendererModViewProj,i f4Position);

II Calculate the diffuse lighting. This is a point light, so we calculate
II the world position first. Because model->view transform is really a
II 3x3 matrix, we will save some instructions by changing it to that.
float3 f3WorldPos = mul((float3x3)WmlRendererMod,(float3)i_f4Position);

II transform the normal
float3 f3WorldNorm = mul ((float3x3)WmlRendererMod,i f3Normal);

II calculate the negative light direction and associated diffuse component
float3 f3LightDir = (WmlLightPositionO - f3WorldPos);
float fDiffuse = dot(f3LightDir,f3WorldNorm);

II return the lit color
0_f3Lighting = WmlLightDiffuseO * fDiffuse + WmlLightAmbientO;

II pass through the texture coordinates
o f2Tex i f2Tex;

The shader assigns each vertex a color based on the vertex position, vertex normal,
and a point-light source. The lit color is returned and the shader just allows the
texture coordinates to pass through the program unchanged. The constants prefixed
with a Wml are automatically assigned by the Wild Magic scene management system.

The OpenGL output of the Cg compiler for the vertex shader is

ARB_vertex_program generated by NVIDIA Cg compiler
cgc version 1.1.0003, build date Mar 4 2003 12:32:10
command line args: -q -profile arbvp1 -entry vmain
nv30vp backend compiling 'vmain ' program
PARAM c11 = { 0, 1, 2, 0 };
#vendor NVIDIA Corporation
#version 1.0.02
#profil e arbvp1
#program vmain
#semantic vmain.WmlRendererModViewProj
#semantic vmain.WmlRendererMod
#semantic vmain.WmlLightPositionO
#semantic vmain.WmlLightAmbientO
#semantic vmain.WmlLightDiffuseO
#var float4 i f4Position : $vin.POSITION POSITION 0

372 Chapter 6 Physics and Shader Programs

#var float3 i_f3Normal : $vin.NORMAL : NORMAL: 1 : 1
#var float2 i_f2Tex : $vin.TEXCOORDO : TEXCOORDO : 2 1
#var float4 o_f4Position : $vout.POSITION : POSITION: 3
#var float3 o_f3Lighting : $vout.COLOR : COLOR: 4 : 1
#var float2 o_f2Tex : $vout.TEXCOORDO : TEXCOORDO 5
#var float4x4 WmlRendererModViewProj: : c[O], 4 : 6 :
#var float4x4 WmlRendererMod: : c[4], 4 : 7 : 1
#var float3 WmlLightPositionO: : c[8] : 8 : 1
#var float3 WmlLightAmbientO c[9]: 9 : 1
#var float3 WmlLightDiffuseO: c[10]: 10 : 1
TEMP RO, R1;
ATTRIB v24 = vertex.texcoord[O];
ATTRIB v18 = vertex.normal;
ATTRIB v16 = vertex.position;
PARAM c9 = program.local [9];
PARAM c10 = program.local [10];
PARAM c8 = program. local [8];
PARAM c4[4] = { program.local [4 .. 7] };
PARAM cO[4] = { program.local[0 .. 3] };

MOV result.texcoord[O].xy, v24;
DP4 result.position.x, cOCO], v16;
DP4 result.position.y, cO[l], v16;
DP4 result.position.z, cO[2], v16;
DP4 result.position.w, cO[3], v16;
DP3 RO.x, c4[0].xyzx, v16.xyzx;
DP3 RO.y, c4[1].xyzx, v16.xyzx;
DP3 RO.z, c4[2].xyzx, v16.xyzx;
ADD R1.xyz, c8.xyzx, -RO.xyzx;
DP3 RO.x, c4[0].xyzx, v18.xyzx;
DP3 RO.y, c4[1].xyzx, v18.xyzx;
DP3 RO.z, c4[2].xyzx, v18.xyzx;
DP3 RO.w, R1.xyzx, RO.xyzx;
MOV RO.xyz, c10;
MAD result.color.front.primary.xyz, RO.xyzx, RO.w, c9.xyzx;

END
15 instructions
2 temp registers
End of program

The DirectX output is

II DX8 Vertex shader generated by NVIDIA Cg compiler
II cgc version 1.1.0003, build date Mar 4 2003 12:32:10

6.2 Vertex and Pixel Shaders 373

II command line args: -q -profile vs II-entry vmain
II nv30vp backend compiling ·vmain' program
def ell, 0, 1, 2, 0
Ilvendor NVIDIA Corporation
Ilversion 1.0.02
Ilprofile vS_l_l
Ilprogram vmain
Iisemantic vmain.WmlRendererModViewProj
Iisemantic vmain.WmlRendererMod
Iisemantic vmain.WmlLightPositionO
Iisemantic vmain.WmlLightAmbientO
II~emantic vmain.WmlLightDiffuseO
Ilvar float4 i_f4Position : $vin.POSITION : POSITION: 0 :
Ilvar float3 i_f3Normal : $vin.NORMAL : NORMAL: 1 : 1
Ilvar float2 i_f2Tex : $vin.TEXCOORDO : TEXCOORDO : 2 1
Ilvar float4 o_f4Position : $vout.POSITION : POSITION: 3
Ilvar float3 o_f3Lighting : $vout.COLOR : COLOR: 4 : 1
Ilvar float2 o_f2Tex : $vout.TEXCOORDO : TEXCOORDO 5
Ilvar float4x4 WmlRendererModViewProj: : c[O], 4 : 6 :
Ilvar float4x4 WmlRendererMod: : c[4], 4 : 7 : 1
Ilvar float3 WmlLightPositionO: : c[8] : 8 : 1
Ilvar float3 Wml LightAmbi entO c[9]: 9 : 1
Ilvar float3 WmlLightDiffuseO : c[10] : 10 : 1
Ilconst c[ll] = 0 1 2 0

mov oTO.xy, v7
dp4 oPos.x, cO, vO
dp4 oPos.y, cl, vO
dp4 oPos.z, c2, vO
dp4 oPos.w, c3, vO
dp3 rO.x, c4.xyz, vO.xyz
dp3 rO.y, c5.xyz, vO.xyz
dp3 rO.z, c6.xyz, vO.xyz
add rl.xyz, c8.xyz, -rO.xyz
dp3 rO.x, c4.xyz, v3.xyz
dp3 rO.y, c5.xyz, v3.xyz
dp3 rO.z, c6.xyz, v3.xyz
dp3 rO.w, rl.xyz, rO.xyz
mov rO.xyz, cl0
mad oDO.xyz, rO.xyz, rO.w, c9.xyz

II 15 instructions
II 2 temp registers
II End of program

374 Chapter 6 Physics and Shader Programs

Both outputs are packaged together, with a small amount of "glue," into Basi c­
Shader. wvs, which is a file that Wild Magic knows how to load and parse.

The basic pixel shader in Bas i cShader. cg is

void pmain(
in float3 i_f3Lighting : COLOR.
in float2 i_f2Tex : TEXCOORDO.

out float3 o_f3Color : COLOR.

uniform sampler2D s2Tex)

II look up texture with coordinates
float3 f3TexColor = tex2D(s2Tex,i_f2Tex).rgb;

II multiply texture color with lighting
o_f3Color = i_f3Lighting * f3TexColor;

The input variables for the pixel shader are the output lit color and texture coor­
dinates of the vertex shader.

The OpenGL output of the Cg compiler for the pixel shader is

ARB_fragment_program generated by NVIDIA Cg compiler
cgc version 1.1.0003. build date Mar 4 2003 12:32:10
command line args: -q -profile arbfp1 -entry pmain
#vendor NVIDIA Corporation
#version 1.0.02
#profil e arbfp1
#program pmain
#semantic pmain.s2Tex
#var float3 i_f3Lighting : $vin.COLOR : COLOR: 0 : 1
#var float2 i_f2Tex : $vin.TEXCOORDO : TEXCOORDO : 1
#var float3 o_f3Color : $vout.COLOR COLOR: 2 : 1
#var sampler2D s2Tex: : texunit 0 : 3 : 1
TEMP RO;
TEX RO.xyz, fragment.texcoord[O], texture[O], 2D;
MUL result.color.xyz, fragment.color.primary, RO;
END
2 instructions, 1 R-regs, 0 H-regs.
End of program

6.3 Deformation by Vertex Displacement 375

The DirectX output is

II DX8 Vertex shader generated by NVIDIA Cg compiler
II cgc version 1.1.0003, build date Mar 4 2003 12:32:10
II command line args: -q -profile ps II-entry pmain
Ilvendor NVIDIA Corporation
Ilversion 1.0.02
Ilprofile ps_1_1
Ilprogram pmain
Iisemantic pmain.s2Tex
Ilvar float3 i_f3Lighting : $vin.COLOR : COLOR: 0 : 1
Ilvar float2 i_f2Tex : $vin.TEXCOORDO : TEXCOORDO : 1
Ilvar float3 o_f3Color : $vout.COLOR COLOR: 2 : 1
Ilvar sampler2D s2Tex: : texunit a : 3 : 1
ps .1.1
def cO, 0.000000, 0.000000, 0.000000, 0.000000
tex to
mul rO.rgb, va, to
+ mov rO.a, cO.b
II 2 instructions
II End of program

Again, both outputs are packaged together, with a small amount of "glue:' into
BasicShader.wps, which is a file that Wild Magic knows how to load and parse.
Figure 6.1-also Color Plate 6.1-shows some screen shots from the Basi cShader
application.

6.3 DEFORMATION BY VERTEX DISPLACEMENT

CODE
VertexNoise

Vertex displacement is one of the simplest methods to obtain deformation of an
object using a shader. The sample application VertexNoi se has a shader that per­
mutes the vertex positions based on three-dimensional Perlin noise [EMP+03]. The
table of permutations and gradients is precomputed at start-up time and passed
as a uniform constant to the vertex shader. This type of noise also can be used to
create procedural textures. The vertex shader is a slightly modified version of the
one from the nVIDIA Cg Toolkit, the original shader also available at the web site
www.cgshaders.org.

The shader is applied to a model of a face. Figure 6.2-also Color Plate 6.2­
shows some screen shots from the VertexNoi se application.

376 Chapter 6 Physics and Shader Programs

(a)

(b)

Figure 6.1 Two screen shots from the Bas i cShader application. Image (a) shows a rendering
using just the pixel shader. Image (b) shows a rendering using both the vertex shader
and the pixel shader. (See also Color Plate 6.1.)

6.3 Deformation by Vertex Displacement 377

(a)

(b)

Figure 6.2 Screen shots from the VertexNoi se shader application. (a) Top row: The original
model and its wireframe view. Bottom row: The output of the VertexNoi se shader
and its wireframe view. The vertex displacement is significantly large. (b) Top row:
The vertices displaced with a smaller maximum displacement, but same scale of
noise. Bottom row: The vertices displaced with the same maximum displacement as
in the bottom row of (a), but with a larger scale noise. (See also Color Plate 6.2.)

378 Chapter 6 Physics and Shader Programs

V1(1.0 of B1 ' 0.0 of B2)

2(0.75 of B1 ' 0.25 of B2)

(0.5 of B1 ' 0.5 of B2)

V4(0.25 of B 1 ' 0.75 of B2)

Vs(O.O of B1 ' 1.0 of B2)

Figure 6.3 A skin-and-bones system consisting of two bones that influence five vertices. The
vertex closest to the joint formed by the two bones is equally influenced by the bones.
For each vertex farther from the joint, one bone influences it more than the other
bone.

6.4 SKIN-AND-BoNES ANIMATION

Skin-and-bones animation, or simply skinning, is the process of attaching a de­
formable mesh to a skeletal structure in order to smoothly deform the mesh as the
bones move. The skeleton is represented by a hierarchy ofbones, each bone positioned

Skinning in the world by a translation and orientation. The skin is represented by a triangle
mesh for which each vertex is assigned to one or more bones and is a weighted av­
erage of the world positions of the bones that influence it. As the bones move, the
vertex positions are updated to provide a smooth animation. Figure 6.3 shows a sim­
ple configuration of two bones and five vertices.

The intuition of Figure 6.3 should be clear: Each vertex is constructed based on
information relative to the bones that affect it. To be more precise, associate with bone
Bi the uniform scale Si' the translation vector Ti , and the rotation matrix Ri• Let the
vertex Vj be influenced by n j bones whose indices are kl through kn j' The vertex has
two quantities associated with bone Bk .: an offset from the bone, denoted e jk. and
measured in the model space of the b~ne; and a weight of influence, denoted IW j k

i
'

The world space contribution by Bki to the vertex offset is

This quantity is the transformation of the offset from the bone's model space to

6.5 Rippling Ocean Waves 379

world space. The world space location of the vertex is the weighted sum of all such
contributions,

nj

V j = L Wjki (SkiRki8jki + T ki)

i=l

(6.1)

The skinning application demonstrates the use of a vertex shader to compute
the vertex locations of equation (6.1). The application loads four bones (i.e., matrix
transformations) as uniform constants to the vertex shader and passes the weights in
as texture coordinates. In this application the bone matrices are created procedurally,
but other applications can load these from a file of animation data. Skinning anima­
tion has been supported by graphics cards before shader support was available, but
the number of bones per vertex was limited. With the ability to specify a large num­
ber of constants in a shader program, a much larger number ofbones per vertex may
be used, thus supporting more complex animation sequences. The skinned mesh of a
standard biped model such as the one in the Ski nnedBi ped graphics application found
on the CD-ROM can be completely handled by a single shader program. Figure 6.4­
also Color Plate 6.4-shows some screen shots from the skinning application.

6.5 RIPPLING OCEAN WAVES

RCE CODE

RipplingOcean

A shader program that is more complex than the previously mentioned ones shows
a rippling ocean water effect with large waves and small bump-mapped ripples.
This shader is built using ideas from the book [Eng02J, in particular the arti­
cle, "Rendering Ocean Water;' by John Isodoro, Alex Vlachos, and Chris Bren­
nan. The sky texture is edited from Jeremy Engleman's page of public textures
http://art.net/~jeremy/photo/public_texture/. The plasma height map was made with
the GNU Image Manipulation Program (GIMP), using the render sky plasma2 ef­
fect with the "tile horizontally" and "tile vertically" options enabled. The GIMP is
available at www.gimp.org.

The Ri ppl i ngOcean application has both a vertex shader and a pixel shader. The
vertex shader is responsible for creating the wave displacement effect. The pixel
shader is responsible for calculating the water color, the diffuse lighting, and the
specular reflection and for putting it all together.

The vertex shader is responsible for many aspects of the rendering. First) the
wave effect is obtained by creating a surface that is the sum of four sinusoidal waves,
each propagating in the two-dimensional tangent space of the surface. The waves
have a specific height along the normal direction, as well as a speed, direction, and
offset in that direction. Using only one or two sinusoidal components gives the water
an unrealistic appearance. Four sinusoidal waves gives it a very undulating effect.
You can easily add another four waves if you want yet more control over fine-scale
variations.

380 Chapter 6 Physics and Shader Programs

Figure 6.4 Two screen shots from the skinning application. The bones are randomly generated
to cause the object to continuously deform. The sequence of deformations is from
left to right, top then bottom, within each screen shot. (See also Color Plate 6.4.)

6.S Rippling Ocean Waves 381

Second, the vertex shader also calculates a number ofvectors that the pixel shader
uses. A new tangent vector, normal vector, and binormal vector are computed, all
based on the cosines of the wave. These vectors are used by the pixel shader to gen­
erate a coordinate frame at each pixeL The vertex shader also calculates a view vector
for the pixel shader. Finally, it creates two texture coordinates. These coordinates vary
with different wave speeds, with one coordinate inverted relative to the other, so that
the two image textures are never aligned, a condition that leads to an unnatural ren­
dering.

The pixel shader first samples the plasma height map, which has been converted
into a normal map, with both texture coordinates. The resulting bump maps are
averaged together to form a new normal vector for the current pixeL Using the
normal, tangent, and binormal vectors, the bump-map value is transformed into
world space. This value becomes the new normal for the pixel, thereby causing the
ripple effect.

The water color is calculated by computing the dot product of the originally
calculated normal vector and the view direction and using it as an index into a lookup
table for a gradient. When the view direction is nearly perpendicular to the water
surface, the water has a green tint. When the view direction is nearly parallel, for
example, when looking at the water in the distance, the water has a blue tint. The
originally calculated normals are used rather than the new normals, because the latter
vector field is too high-frequency for the colors to look realistic. Because ofthe bump­
mapping, blue and green patches appear to be equally distributed over the entire
water surface.

The diffuse color is calculated as a dot product of the normal with a directional
light. A specular reflection is also calculated. The view direction is reflected through
the new normal and a color is looked up from the background image. The magnitude
of this color is squared to emphasize the bright parts and then multiplied by the
background color. The resulting specular color is multiplied by a Fresnel factor (as a
dot product of the view direction and the normal; see Section 6.7). The visual effect is
that the water has a large reflectance when the view direction is nearly perpendicular
to the surface normaL The reflectance is small when the view direction is nearly
parallel to the surface normaL All calculated colors are then combined to obtain the
final water color.

Figure 6.S-also Color Plate 6.S-shows some screen shots from the rippling
ocean application.

The Ri pp1i ngOcean shader required many tweaks to make the water look realistic.
The most important contributor to the realism is the specular reflection. Without
it, the shadowing from the bump-mapping looks very strange. In addition to the
specular reflection, offsetting the amount of shadowing from the bump-mapping
required that a certain amount of ambience be added to the diffuse color term.
Adjusting the ambient color gives the water an appearance anywhere from that seen
at sunset to full noon on a clear day. The application has various controls to adjust at
runtime, including adjusting the wave height, the wave speed, the ripple frequency,
the ripple texture coordinate repeat factor, and the addition of ambient lighting.

382 Chapter 6 Physics and Shader Programs

Figure 6.5 Two screen shots from the rippling ocean application. The images were captured at
two different times in the simulation. (See also Color Plate 6.5.)

6.6 Refraction 383

N

Incoming Reflected

Figure 6.6 Reflection and refraction of a light beam traveling through two media.

6.6 REFRACTION

A beam of light travels through two semitransparent media that are separated by a
planar surface. The speed of light through a medium depends on the density of that
medium. The difference in densities at the planar surface causes the light to slightly

Refraction change direction as it crosses from one medium into the other. This bending effect
is called refraction. The planar surface typically has reflective properties. A portion of
the light is reflected, the other portion refracted. Figure 6.6 depicts a beam of light
that is reflected and refracted.

The incoming light has direction L and the unit-length outward surface normal
is N. A unit-length normal to the plane spanned by Land N is L x N/ IL x N I. The
vector N.l is also unit length and is defined by

N.l =N x Lx N
IL xNI

The angles of incidence and reflection are both 8. Notice that cos 8 = - L . N. Some
basic trigonometry and linear algebra will convince you that

L = (- cos 8)N + (sin 8)N.l

The reflected light has direction

R = (cos 8)N + (sin 8)N.l = L + (2 cos 8)N = L - 2(N . L)N (6.2)

384 Chapter 6 Physics and Shader Programs

The refraction angle ¢ is different than the reflection angle () because of the
difference in densities of the media. The actual amount of bending depends on the
ratio ofdensities, or equivalently, on the ratio of speeds through the media. Physicists
assign an equivalent measure called the index ofrefraction. In Figure 6.6 the index of
refraction of the first medium is n I and the index of refraction of the second medium
is n2' If VI and V2 are the speeds of light through the media, then nI!n2 = v2lvI'
The indices of refraction, the reflection angle, and the refraction angle are related
by Snell's law:

nIsin()=n2 sin ¢

It follows that

cos ¢ = 1- C;)' sin' 8

The refracted light has direction

p = (- cos ¢)N + (sin ¢)Nl-

(6.3)

(

n l= - cos()-
n2

The formula is expressed in terms of the independent input values: the surface nor­
mal N, the incoming light direction L, the angle of incidence (), and the indices of
refraction n I and n2'

Refraction is dearly observed when placing a stick into water. The stick appears
to bend at the water surface. Empirical measurements have shown that the index
of refraction for air is 1.00029 and the index of refraction for water is 1.333. If the
first medium in Figure 6.6 is air and the second medium is water, and if the angle of
incidence (angle of reflection) is Jr14 radians (45 degrees), then the refraction angle
is ¢ == 0.559328 radians. This angle is slightly larger than Jr16 radians (30 degrees).

Figure 6.7-also Color Plate 6.7-shows some screen shots from the refraction
shader application found on the CD-ROM. The texture image is a modification of
one that is available from the Cg texture library at http://oss.ckk.chalmers.seltextures/.

The reflection effects in Figure 6.7(b) are produced by Fresnel reflectance, the
topic of the next section. Notice that rendering using both refraction and reflection
appears to be more realistic than with refraction alone; the model has a glassier look
to it.

6.6 Refraction 385

(a)

(b)

Figure 6.7 Two screen shots from the refraction shader application. Image (a) shows refraction,
but no reflection. Image (b) shows refraction and reflection. (See also Color
Plate 6.7.)

386 Chapter 6 Physics and Shader Programs

The refraction application uses both a vertex and a pixel shader and calculates
refraction and reflection of the environment. The light direction is computed as the
view direction from the eye point to a surface vertex. Using the surface normal and
the indices of refraction, a refraction vector is computed according to equation (6.3).
This vector is used as a lookup into the environment map. If the environment map
is a cube map, a shader can directly perform the lookup. If the environment map is
a sphere map, a few more calculations are needed to obtain the correct texture coor­
dinates. A reflection vector is calculated in a similar manner according to equation
(6.2). A Fresnel factor, as described in the next section, is calculated to determine the
strength of the reflection versus the refraction. For a more realistic refraction, a tex­
tured quadrilateral that represents the environment map is placed behind the object.

6.7 FRESNEL REFLECTANCE

Fresnel

CODE

The Fresnel effect is named after Augustin Jean Fresnel, a scientist of the 18th century,
who studied and postulated theories for propagation oflight as waves. He derived for­
mulas for computing the reflectance of smooth surfaces. The refraction calculations
using Snell's law were discussed in the last section, but no indication was given about
how much light is reflected and how much is refracted. The Fresnel factor is a quan­
tity that measures the fraction ofpower (oflight viewed as electromagnetic radiation)
reflected by a surface separating two media. The remaining fraction corresponds to
power transmitted through the surface. In fact, the Fresnel factor affects, and is af­
fected by, the polarization of light. Polarization is a measure of the orientation of the
light (as an electromagnetic field) with respect to the surface normals. The Fresnel ef­
fect polarizes the reflected light. For a detailed discussion of the mathematics leading
to the Fresnel factor, see [OHHM02].

Figure 6.7(b) shows a surface (a mask of a face) that separates two media. The
refraction and Fresnel reflections are both included in the rendered surface. Notice
the typical polarization effect of the surface as compared to the lack of it in Figure
6.7(a), a surface where only refraction effects are included.

The Fresnel application is designed to illustrate where the strong Fresnel reflec­
tions occur on the face mask model. Figure 6.8-also Color Plate 6.8-shows some
screen shots from the Fresnel shader application found on the CD-ROM. The face
is black with white highlights, where the strong reflections are. The application uses
both a vertex and a pixel shader, just like the refraction application does. The Fresnel
factor is a greatly simplified version from the theoretic value, just to minimize the
computations in a real-time application.

Fresnel reflections are part of a lighting model that is not included in the stan­
dard hardware texture and lighting pipeline. Some media, such as plastic or glass,
have reflections that are much stronger when viewed perpendicular to the normal
than when they are viewed straight on. The vertex shader of the application incorpo­
rates the Fresnel factor by setting the color equal to the square of one minus the dot

6.7 Fresnel Reflectance 387

Figure 6.8 Two screen shots from the Fresnel shader application. (See also Color Plate 6.8.)

388 Chapter 6 Physics and Shader Programs

product of the normal and view direction. In the refraction application, the Fresnel
factor is used in a typical manner, to bias the amount of reflection used to calculate
the pixel color. To generate an even more precise Fresnel factor per pixel, the vertex
shader calculates the view direction and normal and outputs these as texture coor­
dinates, which the graphics pipeline will interpolate per pixel and hand off to the
pixel shader to finish the calculation. This application is based on an article by Chris
Brennan in [Eng02].

6.8 IRIDESCENCE

CODE

Iridescence

Yet another optical effect related to reflection and refraction at the surface between
two media, iridescence is caused by interference when light is partially transmitted
through the surface and partially reflected by the surface. The classical occurence
of iridescence is with soap bubbles obtained by dipping a circular wire into a soapy
solution. When the wire is removed from the solution, bands of color will appear on
the soap film. The physical mechanism is a bit complex, the interference caused by
some of the light waves being reflected out of phase and interacting with other light
waves in phase. The typical hack by computer graphics programmers is to simulate
the effects with view-dependent coloring.

The Iri descence shader works in very much the same way that the Fresnel shader
works. The shader calculates a per-pixel viewing direction and normal vector. In the
pixel shader, a dot product of the viewing direction and normal is computed and
used as an input to a one-dimensional gradient texture lookup. When viewed straight
on, the gradient texture has a green tint. When viewed at an angle the tint is blue.
The looked-up texture color is blended with the original texture and produces an
iridescent sheen.

Figure 6.9-also Color Plate 6.9-shows some screen shots from the iridescence
shader application found on the CD-ROM. The leaf texture image is available from
the Cg texture library at http://oss.ckk.chalmers.se/textures/.

The upper left quadrants of both images show the torii with no iridescence. The
interpolation factor used to control the iridescence is set to zero in the application.
The upper right quadrants show the torii using an interpolation factor of 0.3. The
lower left quadrants use an interpolation factor of 0.5, the renderings having good­
quality texture detail and iridescence. The lower right quadrants use an interpolation
factor of O. 7. The iridescence is stronger but at the cost of quality in the texture detail.

6.8 Iridescence 389

Figure 6.9 Screen shots from the iridescence shader application. The two images show a textured
torus in two different orientations and with various amounts of interpolation to
produce the iridescent sheen. (See also Color Plate 6.9.)

LillNEAR
COMPLEM"'EN"TARITY

AND MATHEMATICAL
PROGRAMMING

T he collision response system of a generic physics engine described in Chapter 5
enforces nonpenetration constraints among all the rigid bodies participating in

a physical simulation. When a set of rigid bodies collides simultaneously, the system
must guarantee that the velocities and accelerations of the objects do not cause a
pair of rigid bodies to start to interpenetrate at a contact point. The mathematical
model that arises from the nonpenetration constraints requires us to solve a couple
of problems in the form of what is called a linear complementarity problem CLCP),
which we discussed briefly in Chapter 5. As it turns out, calculation of distances
between convex polygons or convex polyhedra can be formulated as an LCP. The
applications to nonpenetration and to distance calculations are presented at the end
of this chapter. The first part of the chapter is devoted to showing how you can solve
an LCP.

The Lemke-Howson algorithm is a pivoting method for solving an LCP and is
motivated by the classical linear programming problem. We discuss this problem first
as well as how you go about solving it. Convex quadratic programming is also solvable
by converting to an LCP. The typical convex quadratic functions you encounter are
squared distance functions that arise when attempting to compute the separation
distance between two convex objects. Linear and quadratic programming are special

391

392 Chapter 7 Linear Complementarity and Mathematical Programming

CODE

LCPSolver

cases ofwhat is known as mathematical programming, a term not to be confused with
programming mathematical algorithms.

Applications are provided at the end of the chapter for computing distance be­
tween a point and a convex polygon, distance between a point and a convex poly­
hedron, distance between two convex polygons, and distance between two convex
polyhedra. The application to computing contact forces in order to enforce nonpen­
etration constraints in the collision response system is also summarized, although
you will need to read Chapter 5 to see exactly how the LCP formulation is derived.
Source code is provided on the CD-ROM for solving the LCP problem and is based
on the algorithm discussed in this chapter, using both direct numerical calculations
in the pivoting scheme and symbolic manipulations to handle degenerate behavior
in the system.

7.1 LINEAR PROGRAMMING

The topic of linear programming has to do with maximizing a linear function sub­
ject to a set of linear inequality contraints. Let us first look at the problem in two
dimensions to obtain some intuition about how to solve such problems in higher
dimensions.

7.1.1 A Two-DIMENSIONAL EXAMPLE

Consider the problem of maximizing the linear function f (x I' X2) = x I + X2 subject
to the linear inequality constraints Xl :::: 0, X2 :::: 0, 2XI + X2 :s 2, and Xl + 2X2 .:s 3.
Figure 7.1 shows two ways ofvisualizing the problem.

The four inequality constraints define a convex quadrilateral in the plane. Figure
7.I(a) shows four level curves f(xI' X2) = c in the quadrilateral: c = 1/3, c = 2/3,
c = 1, and c = 3/2. The largest value of c for any level curve in the quadrilateral is
c = 5/3 and occurs at the vertex (1/3,4/3). Figure 7.I(b) shows the graph of X3 =
f (x I' X2), a plane in three dimensions. The point on the portion ofthe plane over the
quadrilateral domain with largest X3 value occurs at (xl' X2' X3) = (1/3,4/3, 5/3).

The example shows that the maximization problem has two important aspects.
The first aspect is determining the region defined by the linear inequality constraints.
Each constraint defines a half plane. Points satisfying two constraints must be in the
intersection of the half planes implied by the constraints. Generally, the intersection
of the half planes of all the constraints is either the empty set, in which case the
maximization problem has no solution, or a convex set that is possibly unbounded.
In most applications the constraints are set up to generate a bounded convex set.
Because the boundary of the convex sets is generated by the lines corresponding
to equality in the linear inequality constraints, a bounded convex set must be a
solid convex polygon. An unbounded convex set has a boundary consisting of linear
components (lines, rays, or line segments). Figure 7.2 illustrates various cases.

(a) (b)

7.1 Linear Programming 393

Figure 7.1 (a) Various level curves I(XI' xl) = c (straight lines) superimposed on the quadri­
lateral region implied by the constraints. (b) The graph of X3 = I(XI' xl) (a plane)
over the quadrilateral region. The X3 values at four points on the plane are shown.

(a)

Xl ~ 0, Xl ~ 0, Xl + Xl :s; -1

Empty set (b)

Xl ~ 0, X2 ~ 0, Xl + X2 ~ 1

Unbounded (c)

Xl ~ 0, Xl ~ 0, Xl + x2 :S; 1

Bounded

Figure 7.2 (a) Constraints with no solution. The hash marks indicate on which side of the
lines the half planes occur. (b) Constraints defining an unbounded convex set. (c)
Constraints defining a bounded convex set.

The second important aspect is locating the maximum of the linear function
when restricted to the convex domain. Figure 7.1 suggests that the maximum of I(x)
occurs at a vertex x on the convex polygon boundary. This is a correct observation. If
I happened to be constant, the maximum is that constant and occurs at every point
in the domain, and so at a vertex. If I is not identically a constant, at a point y in the

394 Chapter 7 Linear Complementarity and Mathematical Programming

interior of the polygon the gradient d = Vf (y) is in the direction of largest increase
of f. The function get) = f (y + td) is strictly increasing in t, so the function value at
y is smaller than function values at points nearby on the ray y + cd. This means f (y)
cannot be a maximum for f. The same argument applies on the convex polygon itself
to show that the maximum must occur at a vertex. If f is identically a constant on an
edge, the maximum along the edge is that constant and occurs at every point of the
edge, and so at a vertex. If the function values along an edge are strictly monotone,
the maximum must occur at one of the edge end points.

In order to simplify our discussions from here on, let us assume that the con­
straints forces generate a nonempty bounded convex set. For most physics appli­
cations this is a reasonable assumption to make since the constraints are naturally
formed based on physical information that indicates a solution is to be expected.

7.1.2 SOLUTION BY PAIRWISE INTERSECTIONS

We have already argued that f(xI' x2) must attain its maximum at a vertex of the
bounded convex polygonal domain. A natural approach to finding the maximum is
to construct all the vertices, evaluate f at each, then select the maximum of these
values. Each vertex occurs as the intersection of two lines determined by inequality
constraints, so we proceed by solving all possible systems of two equations in two
unknowns. In our ongoing example, we have four inequality constraints. Ifwe choose
two at a time, the total number of systems is six. The systems and solutions are listed
in Table 7.1.

You probably already noticed that the systems produce six points, yet the convex
domain shown in Figure 7.1 has only four vertices. Two of the points produced by the
system are not in the convex domain. We need to eliminate those points by testing all
inequality constraints. Any point not satisfying one of the constraints is discarded.
In the presence of a floating point number system, you need to be careful about this
step, perhaps by introducing an error tolerance when making the comparison of the

Table 7.1 Solving all possible systems of two equations in two unknowns

System

Xl = 0, Xl =°
XI = 0, 2x I + X2 = 2

Xl = 0, Xl + 2X2 = 3

x2 = 0, 2x I + X2 = 2

x2 = 0, Xl + 2x2 = 3

2x I + x2 = 2, XI + 2x2 = 3

Solution

(0,0)

(0,2)

(0, 3/2)

(1,0)

(3,0)

(1/3,4/3)

(a) (b)

7.1 Linear Programming 395

Figure 7.3 (a) All five constraints are all relevant to forming the convex domain. (b) Two of
the six constraints are redundant since only four of the constraints form the convex
domain.

constraint. In the example, the point (0, 2) is discarded because it fails to satisfy
xl + 2X2 :::: 3. The point (3, 0) is discarded because it fails to satisfy 2xI + x2 :::: 2.
The function is evaluated at the remaining 4 points: f(O, 0) = 0, f(O, 3/2) = 3/2,
f(1, 0) = 1, and f(1/3, 4/3) = 5/3. The maximum is 5/3 and occurs at the vertex
(1/3,4/3).

If m constraints are specified, (ai' bJ . (Xl' X2) :::::: Ci for 1:::::: i :::::: m, the number
of linear systems to solve is the number of ways of choosing two items from a set of
m, namely, ml/(2!(m - 2)!) = m(m - 1)/2. For a large number of constraints, the
computational effort will be quite large. Each point (Xl' X2) obtained as the solution
of a system of equations is tested by (ai' bi) . (Xl' X2) :::::: Ci. If this inequality is false,
the point is discarded. The function f(xI' x2) is evaluated at the remaining points
and the maximum is selected. Figure 7.3 shows two possible scenarios for constraints.

Figure 7.3(a) has five inequality constraints. The line of each constraint is drawn
and the light gray segment is attached to each point to the side corresponding to
the half plane represented by the constraint. All 10 intersections of pairs of lines
are shown as black dots of which 5 are vertices of the convex domain. Each con­
straint contributes an edge to the domain. Figure 7.3(b) has six inequality constraints.
The 15 intersections of pairs of lines are shown as black dots of which only 4 are
vertices of the convex domain. Only four constraints contribute to edges of the do­
main. The other two are redundant constraints in the sense that if you were to ig­
nore those constraints, the convex domain is unaffected and the optimization of the

396 Chapter 7 Linear Complementarity and Mathematical Programming

objective function produces the same result. Notice that redundant constraints jointly
generate 9 of the 30 pairwise intersections. Had these constraints not occurred, we
would have to solve only six linear systems.

Given m constraints, the pairwise intersection method of the last section requires
solving on the order of m2 linear systems. Effectively this is an exhaustive search for
a vertex of the convex domain that produces the maximum function value. In the
general dimensional case when you have n independent variables x I through X n and
m > n constraints, the exhaustive search for a vertex of the convex domain requires
solving all possible combinations of m equations choosing n at a time for a total
of m!j(n!(m - 2)!). This can be quite an expensive endeavor. The exhaustive search
turns out to be suboptimaL A better method that uses a smart search is the simplex
method invented by Dantzig [Dan63]. We will take a look at this for the general
dimensional case.

7.1.3 STATEMENT OF THE GENERAL PROBLEM

Stated in its most general terms for x E IRn, the linear programming problem is about
maximizing the linear function f (x) = CTx subject to the n nonnegativity constraints
x 2: 0 and the m linear inequality constraints Ax ::::: b. The m x n matrix A, the n x 1
column vector c, and the m x 1column matrix b are all application-specified values.
The inequality notation for vectors is shorthand to denote that the inequality holds
for each pair of components, that is, (uI' ... , Uk) 2: (VI' ... , Vk) if and only ifUi 2: vi

for 1 ::::: i ::s k. The function f is called the objective function. Any vector that satisfies
the inequality constraints is called a feasible vector. A feasible vector that maximizes
the objective function is called an optimal feasible vector; there may be more than
one such vector. The constraints trim IRn to a convex domain (possibly empty or
nonempty and possibly unbounded). Each vertex of the domain is a solution to
exactly n of the n + m constraints and is called a feasible basis vector. Using our
motivation in two dimensions, the feasible basis vectors are the only feasible vectors
that need to be searched for optimality.

The method of solution requires two changes to the constraints Ax ::s b. We are
interested in constructing feasible basis vectors that, by definition, are the vertices
of the convex domain. These vectors occur as solutions to constraints where the
inequality has been replaced by equality. This suggests that we eliminate inequalities
in the first place. The first change is therefore to introduce new nonnegative variables
called slack variables; these take up the slack, so to speak, between the two sides of the
inequalities. For a constraint aIxl + ... + anXn ::::: b, the slack is s = b - alxl - ... ­

anXn 2: O. The single inequality constraint is replaced by a new equality constraint
alxl + ... + anXn + s = b and a new nonnegativity constraint s 2: O. In total m slack
variables are introduced, Si for 1 ::::: i ::::: m, and stored in the m x 1 column vector s.
In matrix notation, the constraints Ax ::s b and x 2: 0 are transformed to

Ax + s = b, x 2: 0, s 2: 0 (7.1)

7.1 Linear Programming 397

where the zero vectors are of the appropriate size in their respective contexts. This
form ofthe linear programming problem is called the normal form. The pair (x, s) has
n + m components, so is a vector in IRn+m . Each equation in Ax + s = b represents a
hyperplane in IRn+m . These bound a convex domain in IRn+m whose vertices we must
search. A vertex (x, s) of interest is one for which x maximizes the objective function.
The s component of that solution is simply discarded.

A search of the vertices implied by the normal-form constraints, equation (7.1),
will involve starting at one vertex, then visiting another vertex whose objective func­
tion value is larger than that of the current vertex. This requires finding an ini­
tial vertex to start the search. To support this, the second change is to introduce
more new nonnegative variables called artificial variables. For an equality constraint
alxl + ... + anxn + s = b, where s is the appropriate slack variable, an artificial
variable will be set to the difference of the two sides of the equation. We require
that the right-hand side be nonnegative. If b ~ 0, the new variable W is set to w =
b - alxl - ... - anXn - s ~ O. If b < 0, a multiplication by -1 must occur first,
w = -b + alxl + ... + anxn + s ~ O. In total, m artificial variables are introduced,
Wi for 1 :s i :s m, and stored in the m x 1column vector w. In matrix notation,

w = D (b - Ax - s), x ~ 0, s ~ 0, w ~ 0 (7.2)

where D = Diag(d1, ... , dm) with di = 1 if bi ~ 0 or di = -1 if bi < O. The linear
programming problem in this form is called the restricted normal form. We associate
an auxiliary objective function with the constraints of equation (7.2),

Since Wi ~ 0 for all i) g(w) :s o. The goal is to maximize g(w). If the maximum
occurs at w =f=. 0, then it is not possible to construct a pair (x, s) that solves the linear
system in the constraints) equation (7.1). In this case, the original linear program­
ming problem has no solution because the inequality constraints are inconsistent.
However, if the maximum does occur at w = 0, we will have found a pair (x, s) that
is the initial vertex to start a search in the normal-form problem to maximize the orig­
inal objective function. The search for a maximum of g will always start with x = 0
and s = O. In this case the initial artificial variables are w = Db ~ O.

The normal form and restricted normal form can be solved with the same meth­
ods. The simplex method refers to the two-phase process of solving the restricted
normal form in optimizing the auxiliary objective function to find an initial feasible
basis vector, then solving the normal form in optimizing the objective function, the
search starting at the feasible vector found in the first phase. The method is illustrated
in Example 7.1.

398 Chapter 7 Linear Complementarity and Mathematical Programming

EXAMPLE

7.1

Figure 7.4

The objective function is f(XI' x2) = Xl + X2 and is to be maximized with respect
to the constraints xl ~ 0, X2 ~ 0, -Xl + X2 ::::: 2, 2xI - x2 ::::: -1, and 3xI + X2 ::::: 3.
Figure 7.4 shows the convex domain implied by the constraints.

> 0) M-xl + X2 ~ 2
x[_ /

(1/4,9/4)

The convex domain implied by the two nonnegativity constraints and three linear
inequality constraints of the example.

To convert to normal form requires three slack variables, Sl' S2' and S3:

-XI+X2+ S I=2

2x I - X2 + S2 = -1

3xI+x2+s3=3

To convert to restricted normal form requires three artificial variables, WI' Wb

and W3:

The auxiliary objective function is g = -(Wi + W2 + W3) = -6 + 3X2 + Sl - S2 + s3'

As mentioned earlier, the search for a maximum of g always starts with (xl' X2) =
(0,0) and (Sl' S2' S3) = (0, 0, 0), in which case (wI' W2' W3) = (2, 1,3) are the initial
artificial variables and g = -6. The goal is to modify the variables to increase g to
zero.

7.1 Linear Programming 399

Table 7.2 Tableau of coefficients and constants (Example 7.1)

Value Xl X2 Sl S2 S3

g -6 0 3 1 -1 1

w] 2 1 -1 -1 0 0

w2 1 2 -1 0 1 0

w3 3 3 -3 0 0 -1

The classic method of setup involves storing the various coefficients and constants in
a tableau. Table 7.2 shows the tableau for this example.

The value column initially contains the constant terms in the equations for g, WI' w2'

and W3 and represents the fact that we will always be thinking of the variables in the
other columns as being zero. The entries in the other column are the coefficients of
those variables in the auxiliary objective function g and in the equality constraints.

Let us analyze the coefficients in the g-row after the value column. The xl coefficient
is zero since Xl does not occur in that function. No matter how you modify Xl' g will
not change, so we may ignore xl at this step of the process. The x2 coefficient is 3, a
positive number. If we increase the value of X2 from its current value of zero, g will
also increase, thereby giving us a chance to force it to become zero. The column entry
for X2 in the wI-row tells us how wI depends on x2' The coefficient is -1, a negative
number, so any increase in x2 will result in a decrease in WI' Since we require W] 2: 0,
we cannot increase X2 by an arbitrary amount. In fact, the most we can increase is to
X2 = 2, in which case wI = O.

Similarly in the wrrow and wrrow, the coefficients are negative, which means that
an increase in x2 will result in decreases in W2 and W3' As we increase Xl> all the
wi will decrease simultaneously. When the first wi value reaches zero, we can no
longer increase X2' Of course, if the coefficient of X2 in a z-equation is positive, there
is no limit on increasing x2' so we need consider only z-equations for which the
X2 coefficient is negative. The maximum value to which we can increase X2 is the
minimum of the negatives of the ratios of the constant terms and the coefficients.
In our current case the ratios for the wI-row, wrrow, and wrrow are 2 = -(2/(-1),
1 = -(1/(-1)), and 1 = -(3/(-3)), respectively. The wrrow limits the increase of
X2 to 1.

Once the row corresponding to the limiting increase is identified, the next step is to
make the row variable (basic variable) a column variable (nonbasic variable) and vice
versa. In our example we solve for X2 in the W2 equation to obtain

400 Chapter 7 Linear Complementarity and Mathematical Programming

(Example 7.1
continued)

This equation is substituted into the Xz terms in the g equation and the other equality
constraints:

WI = 2 + xl - Xz - Sl = 1 - xl + Wz - Sl - Sz

W3 = 2 - 5XI + Wz - Sz - S3

The tableau is updated in Table 7.3 by swapping the row variable Wz with the column
variable xz. The invariant in this process is that the resulting tableau represents a
linear programming problem in restricted normal form.

Table 7.3 Updated tableau: Exchanging Wz with Xz

Value Xl Wz Sl Sz S3

g -3 6 -3 1 2 1

wI 1 -1 1 -1 -1 0

Xz 1 2 -1 0 1 0

w3 2 -5 1 0 -1 -1

We repeat the process. The column variables are thought of as having value zero. The
X I coefficient in the g -row is positive, so an increase in X I results in an increase in g.
The Xl coefficients in the WI-row and wrrow are negative, so WI and W3 will decrease
when Xl is increased. The limiting factor is the minimum of the ratios 1= -(1/(-1))
and 2/5 - (2/(-5)); that is, w3 will reach zero before WI does. We now need to
exchange X I and W3 by solving for

and substituting in the g equation and the other constraints:

3 6 9 4 1
g = -3 + 6XI - 3wz + Sz + 2sz + s3 = -- - -w3 - -wz + sl + -sz - -s3

5 5 5 5 5

3 1 4 4 1
WI = 1 - xl + Wz - sl - Sz = S + SW3 + Swz - sl - Ssz + SS3

9 2 3 3 2
Xz = 1+ 2xI - Wz + Sz = - - -w3 - -wz + -sz - -s3

5 5 5 5 5

Table 7.4 shows the updated tableau.

7.1 Linear Programming 401

Table 7.4 Updated tableau: Exchanging Xl with W3

Value W3 W2 Sl S2 S3

g 3 6 9 4 I
-5 -5 -5 5 -5

WI
3 I 4 -1 4 I
5 5 5 -5 5

x2
9 2 3 0 3 2
5 -5 -5 5 -5

xl
2 I I 0 I I
5 -5 5 -5 -5

And yet one more repetition of the process. The coefficient of Sl in the g-row is
positive) so an increase in sl results in an increase in g. Note that in this step we are
increasing a slack variable) not one of the original variables) to increase the auxiliary
objective function. The only negative coefficient in the Sl column is in the WI row) so
we may increase Sl until WI is zero. We exchange WI and Sl by solving for

and substituting in the g equation and the other constraints:

3 6 9 4 1
g = -- - -w3 - -w2 + sl + -s2 - -s3 = 0 - wI - w2 - w3

5 5 5 5 5

9 2 3 3 2
x2 = - - -w3 - -w2 + -s2 - -s3

5 5 5 5 5

2 1 1 1 1
xl = - - -w3 + -w2 - -s2 - -s3

5 5 5 5 5

Table 7.5 shows the updated tableau.

Table 7.5 Updated tableau: Exchanging WI with Sl

Value W3 W2 WI S2 S3

g 0 -1 -1 -1 0 0

Sl
3 I 4 -1 4 1
5 5 5 -5 5

x2
9 2 3 0 3 2
5 -5 -5 5 -5

xl
2 I I 0 I 1
5 -5 5 -5 -5

402 Chapter 7 Linear Complementarity and Mathematical Programming

(Example 7.1
continued)

The current value of g is zero and none of the coefficients in the g row is positive, so it
is no longer possible to increase any ofthe nonbasic variables S2' S3' WI' W2' or W3 and
obtain an increase in g. That is, g does have a maximum ofzero and is obtained when
S2 = S3 = WI = W2 = W3 = o. The basic variables are Xl' x2' and Sl and have values
Xl = 2/5, x2 = 9/5, and Sl = 3/5. The vector (xl' X2' Sl' S2' S3) = (2/5, 9/5, 3/5, 0, 0)
is a feasible basis vector for the normal form, equation (7.1), and is the starting point
for the search to maximize f(xI' x2) = Xl + X2. Just to verify, replace the feasible
vector in the constraints as in equation (7.2), written as Ax + s - b:

-Xl + X2 + sl - 2 = -2/5 + 9/5 + 3/5 - 2 = 0

2xI - X2 + S2 + 1= 4/5 - 9/5 + 1= 0

3xI + X2 + S3 - 3 = 6/5 + 9/5 - 3 = 0

The slack variable Sl is positive, but the other two are zero. In terms of what is
shown in Figure 7.4, (xl' X2) = (2/5,9/5) is a vertex of the convex domain and is
the intersection of2xI - X2 = -1 and 3xI + X2 = 3 (slack variables S2 = S3 = 0). That
vertex is not on the other line, but -Xl + X2 < 2 (slack variable Sl > 0).

Now we are ready to maximize f. The artificial variables Wi are no longer needed, so
the tableau no longer contains them. The tableau also contains a row representing f
since the auxiliary function g is no longer needed. In terms of the nonbasic variables,

and the initial tableau is shown in Table 7.6.

Table 7.6 Maximizing f

Value S2 S3

f
11 2 3
5 5 -5

Xl 2 1 1
5 -5 -5

x2
9 3 2
5 5 -5

sl 3 4 1
5 -5 5

S2 and S3 are nonbasic variables whose initial values are zero. The coefficient of S2

in the f -row is positive, so an increase in S2 leads to an increase in f. The negative
coefficients in the S2 column are in the Xl-row and sl-row. The limiting increase is the

Table 7.7

7.1 Linear Programming 403

minimum of 2 = -((2/5)/(-1/5)) and 3/4 = -((3/5)/(-4/5)), so the Sl variable
decreases to zero before Xl does. Exchange Sl and S2 by solving for

and substituting in the f equation and the other constraints:

11 2 3 5 1 1
f = - + -s2 - - = - - -sl - -s3

5 5 5 2 2 2

2 1 1 1 1 1
xl = - - -s2 - -s3 = - + -sl - -s3

5 5 544 4

9 3 2 9 3 1
x2 = - + -s2 - -s3 = - - -sl - -s3

5 5 544 4

Table 7.7 shows the updated tableau.

Maximizing f: Exchanging Sl with S2

Value Sl S3

f 5 I I
2 -2 -2

xl
I I I
4 4 -4

x2
9 3 I
4 -4 -4

s2
3 5 I
4 -4 4

The coefficients of the nonbasic variables in the f -row are all negative, so no amount
of increasing those variables will increase f. Thus, f has a maximum of 5/2 and it
occurs when Sl = S3 = o. Consequently, the basic variables are Xl = 1/4, x2 = 9/4,
and S2 = 3/4. The pair (xl' X2) = (1/4, 9/4) is another vertex of the convex domain
shown in Figure 7.4. The slack variables Sl and S3 are both zero, therefore that ver­
tex is generated as the intersection of the lines corresponding to -Xl + X2 = 2 and
3x I + x2 = 3. The slack variable S2 > 0, so the vertex is not on the line of the other
constraint; that is, 2x I - x2 < -1.

As is true in most algorithms, you have to deal with degenerate cases. The con­
stant terms in the value column are constrained to be nonnegative, but in the pre­
vious example were always positive. If a zero constant term is encountered, the cor­
responding basic variable is zero whenever all the nonbasic variables are zero. The
vector of basic and nonbasic variables in this case is referred to as a degenerate fea­
sible vector. As suggested in [PFTV88], the zero constant term must be handled by

404 Chapter 7 Linear Complementarity and Mathematical Programming

exchanging the basic variable in that row with a nonbasic variable in a column, some­
times having to make several such exchanges. In fact, the description in [PFTV88] is
incomplete because there are three types of degeneracies that can occur. We will dis­
cuss these in Section 7.2 showing that the linear programming problem is a special
case ofthe linear complementarity problem CLCP). The method ofsolution ofan LCP
is well suited for dealing with the degeneracies.

7.1.4 THE DUAL PROBLEM

The linear programming problem has an associated problem called the dual prob­
lem. In this context the original problem is referred to as the primal problem. The
motivation for the dual problem is provided by Example 7.1. We wanted to maxi­
mize f(xI' x2) = Xl + X2 subject to the nonnegativity constraints Xl ::::: °and X2 ::::: °
and the linear inequality constraints -Xl + X2 :::: 2, 2xI - x2 :::: -1 and 3xI + X2 :::: 3.
The simplex method was used to show that the maximum of f is 5/2 and occurs at
(xl' X2) = 0/4, 9/4). Before proceeding with the simplex method, we can in fact use
the linear inequality constraints to obtain upper bounds on the maximum of f. For
example,

This guarantees that max(f) .::: 3. We can also use combinations of constraints to
obtain upper bounds:

This bound leads to max(f) :::: 4, not as good a bound as the previous case but still a
bound. Another possibility is

f =XI +x2:::: 4xI +x2

again concluding that max(f) .::: 4. Yet one more possibility is

We conclude that max(f) :::: 5/2 but in fact got lucky in that the upper bound really
happens to be the maximum value of f.

Perhaps we can choose just the right multipliers for the linear inequality con­
straints so that we will indeed obtain the maximum value for f. In the example let
YI ::::: 0, Y2 ::::: 0, and Y3 2: °be the multipliers for the constraints; that is,

7.1 Linear Programming 405

The constraints are combined to form the following:

2Yl - Y2 + 3Y3 ~ Yl(-xl +X2) + Y2(2x l - x2) + Y3(3x l +x2)

= (-Yl + 2Y2 + 3Y3)Xl + (Yl - Y2 + Y3)x2

The last inequality is what we want to be true, so we have to choose Yl :::: 0, Y2 :::: 0,
and Y3 ~ °to make that happen. Specifically, choose -Yl + 2Y2 + 3Y3 ~ 1 and Yl ­
Y2 + Y3 :::: 1. Our goal is to make the quantity 2Yl - Y2 + 3Y3 as small as possible. That
is, we want to minimize g(Yl' Y2' Y3) = 2Yl - Y2 + 3Y3 subject to the nonnegativity
constraints Yl ~ 0, Y2 ~ 0, and Y3 ~ °and the linear inequality constraints - Yl +
2Y2 + 3Y3 ~ 1 and Yl - Y2 + Y3 ~ 1. You will notice that this is nearly identical in
structure to the original problem with the exceptions that we are now minimizing a
function and have instead greater-or-equal constraints. This problem is referred to as
the dual problem for the original problem.

In general, and using vector notation, the primal problem is

Maximize f (x) = CTx subject to x ~ 0 and Ax :::: b

The dual problem is

Minimize g(y) = bTy subject to y ~ 0 and ATy ~ C

(7.3)

(7.4)

You should convince yourself from the previous example of why AT, b, and c show
up as they do in the general definition for the dual problem. The dual problem may
be solved with the simplex method by introducing slack and artificial variables. Of
course the process requires you to decrease the objective function values rather than
increase as the primal problem requires.

A few relationships hold between the primal and dual problems. These are re­
ferred to as weak duality, unboundedness property, and strong duality.

Weak Duality Principle

Ifx is a feasible vector for the primal problem and ify is a feasible vector for the dual
problem, then f(x) ::: g(y).

The proof is simple. Since x is a feasible vector for the primal problem, we know
that it satisfies the constraints Ax ::: b. The components ofthe vectors Ax and b must
be ordered by the inequality, so the transposition of the vectors satisfies the same
ordering:

406 Chapter 7 Linear Complementarity and Mathematical Programming

The y components are nonnegative, so multiplying the previous equation by y
does not change the direction of inequality,

Also, y is a feasible vector for the dual problem so we know that it satisfies the
constraints c :::; ATy. Since x has nonnegative components, multiplying by x does
not change the direction of the inequality,

Combining this with the previous displayed equation yields

and the proof is complete.

Unboundedness Property

A linear programming problem is said to have an unbounded solution ifyou can make
the objective function arbitrarily large. Figure 7.2(b) shows a domain for which the
objective function f(x) can be made as large as you like by choosing values ofx far
away from the origin. The unboundedness property is stated in three ways:

1. If the primal problem has an unbounded solution, then the dual problem has no
solution and is said to be infeasible.

2. If the dual problem has an unbounded solution, then the primal problem is
infeasible.

3. The primal problem has a finite optimal solution if and only if the dual problem
has a finite optimal solution. .

These results are direct consequences of the weak duality principle. For example,
if the primal problem has an unbounded solution, then you can force f (x) to be
arbitrarily large by choosing appropriate feasible vectors. You can visualize this in 2D
by sketching a convex domain for f. One of the boundary components will be a ray.
Choose x along that ray with increasing length to force the corresponding f values
to become large. Given that you can do this, and given f(x) :::; g(y) for a feasible
solution y, you would also force g to become arbitrarily large. This cannot-happen,
so there is no such feasible vector y and the dual problem cannot be solved.

7.2 The Linear Complementarity Problem 407

Strong Duality Principle

If x is a feasible vector for the primal problem and y is a feasible vector for the dual
problem, then these vectors optimize f and g if and only if f(x) = g(y).

Let us assume that x is a feasible vector for the primal problem, y is a feasible
vector for the dual problem, and f(x) = g(y). From the weak duality principle we
know that feu) :::: g(v) for any feasible vectors u and v. Thus, max(f) :::: min(g).
The fact that equality occurs in f(x) = g(y) guarantees that max(f) = f(x) and
min(g) = g(y).

The proof in the other direction is more complicated and is not proved here. The
essence is that in constructing the optimal solution for the primal problem using
the simplex method, the details of the construction also allow you to construct the
optimal solution for the dual problem with the same function value as that of the
primal solution.

7.2 THE LINEAR COMPLEMENTARITY PROBLEM

In the last section we saw a brief overview of the linear programming problem and
introduced the concepts of primal problem and dual problem. The strong duality
principle states that you can optimize the primal problem or optimize the dual prob­
lem to arrive at the same optimum value. An important consequence ofthis principle
is called complementary slackness. The vector ofslack variables for the primal problem
is s = b - Ax ~ O. The vector of slack variables for the dual problem is u = ATy - c.
Complementary slackness presents the following challenge. If x = (Xl' ... , xn) is a
feasible vector for the primal problem and y = (YI' ... , Ym) is a feasible vector for
the dual problem, then these vectors optimize f and g if and only if both of the fol­
lowing apply:

1. Either X j = 0 or U j = O.

2. Either Yi = 0 or si = O.

In vector notation we write these conditions as x 0 u = 0 and y 0 s = 0, where the
circle operator defines a new vector whose components are the products of the com­
ponents from the input vectors, u 0 v = (UI, .•. , uk) 0 (VI' ... , Vk) = (UIVI, ... ,

ukVk)'

The primal and dual problems combined fit the format for a more general prob­
lem (which we discussed briefly in Chapter 5) called the linear complementarity prob­
lem (LCP): Given a k x 1vector q and a k x k matrix M, construct k x 1 vectors w
and z such that

w = q + Mz, w 0 z = 0, w ~ 0, and z ~ 0 (7.5)

The variables Wi and Zi are said to be complementary. The reduction of the primal
and dual problems to this form is straightforward. The various quantities in the LCP

408 Chapter 7 Linear Complementarity and Mathematical Programming

are written in block matrix form as

q = [~c l M = [* l w = [: land Z = [;] (7.6)

Make sure you understand the difference in formulations for the linear program­
ming problem and the linear complementarity problem. In the former problem your
goal is to optimize a function based on various constraints. In the latter your goal is
to satisfy the complementarity condition w 0 z = o.

7.2.1 THE LEMKE-HoWSON ALGORITHM

The simplex method may be used to solve an LCP. Although the tableau method
works fine, a modern approach uses slightly different terminology which we intro­
duce here. The presentation here is based on Joel Friedman's nicely written online
summary ofLCP and MP [Fri98]. The equation w = q + Mz is considered to be a
dictionary for the basic variables w defined in terms of the nonbasic variables z. The
analogy to a dictionary makes sense since each Wi is a new "word" whose definition
is provided in terms of already defined "words;' z j' If q ::: 0, the dictionary is said to
be feasible. In this case, the LCP has a trivial solution ofw = q and z = O.

If the dictionary is not feasible, then a two-phase algorithm called the Lemke­
Howson algorithm [PSC97] is applied. The first phase of the algorithm adds an auxil­
iary variable Zo ::: 0 by modifying the dictionary to

w=q + Mz+zol

where 1 is the appropriately sized vector whose components are all one. An exchange
is made, much like that in the tableau method, between Zo and some basic variable
Wi' That is, Zo enters the dictionary and Wi leaves the dictionary. Not just any exchange
will do; we need an exchange that will make the modified dictionary feasible.

The second phase ofthe Lemke-Howson algorithm is designed to obtain a dictio­
nary such that both of two conditions hold:

1. Zo is nonbasic.

2. For each i either Zi or Wi is nonbasic.

Note that Zo is nonbasic to start, enters the dictionary in the first phase, and
eventually leaves the dictionary to once again become nonbasic. When Zo leaves the
dictionary, we know that as a nonbasic variable it is thought of as Zo = 0 (just like in
the tableau method) and the modified dictionary w = q + Mz + zol is restored to
the original one w = q + Mz. The condition that Zi or Wi is nonbasic for each i ::: 1
means that either Zi = 0 or Wi = 0; that is, w 0 z = 0 and we have solved the LCP. A

EXAMPLE

7.2

7.2 The Linear Complementarity Problem 409

dictionary that satisfies conditions 1 and 2 is said to be a terminal dictionary. If the
dictionary satisfies only condition 2, it is said to be a balanced dictionary. The first
phase produces a balanced dictionary, but since 20 is in the dictionary, the dictionary
is nonterminal. The procedure to reach a terminal dictionary is iterative, each iter­
ation designed so that a nonbasic variable enters the dictionary and a basic variable
leaves the dictionary. The invariant of each iteration is that the dictionary remain fea­
sible and balanced. To guarantee this happens and (hopefully) avoid returning to the
same dictionary twice (a cycle, so to speak), if a variable has just left the dictionary,
then its complementary variable must enter the dictionary on the next iteration (a
variable cannot leave on one iteration and enter on the next iteration and vice versa).

The Lemke-Howson algorithm is illustrated with a simple linear programming
problem in Example 7.2.

Maximize f(XI' X2) = 2XI + X2 with respect to the constraints Xl :::: 0, X2 :::: 0, and
Xl + X2 ::s 3. The vectors and matrices implied by this are

A = [1 1], b= [3], and

Equation (7.6) makes the conversion to an LCP:

q= [~~1M= [~l ~l ~1w= [:~] = [::1and

z = [::] = [::]

The initial dictionary with auxiliary variable 20 is

WI = -2 + 20 + 23

W2 = -1 + 20 + 23

The first phase involves moving 20 to the dictionary. In order to obtain a feasible
dictionary, we need consider only solving for 20 in an equation that has a negative
constant term. Moreover, that constant term should be the largest in magnitude so
that, when substituting the new 20 equation into the other equations, all constant
terms are guaranteed to be nonnegative. In this example the first equation is the one

410 Chapter 7 Linear Complementarity and Mathematical Programming

(Example 7.2
continued)

EXAMPLE

7.3

to use. We solve for Zo (so WI leaves the dictionary) and substitute that expression
into the other equations:

The new constant vector is (2, I, 5) ::: (0,0,0), so we have a feasible dictionary. Since
the Zi are nonbasic for all i ::: I, we have a balanced dictionary. The dictionary is not
terminal since Zo is still in it.

The second phase is now initiated. The variable WI just left the dictionary, so its
complementary variable Z 1 must now enter the dictionary. The only way this can
happen is by solving the W3 equation for Z l' The other two equations have no Z 1 terms
in them, so no substitution by the newly formed ZI equation is necessary:

The variable W3 left the dictionary, so its complementary variable Z3 must enter the
dictionary. We have two equations involving Z3' Just as in the tableau method, we
should choose the one that limits an increase in Z3 so that the constant terms in the
other equations remain nonnegative. The first equation is limiting since the ratio of
constant term and negative Z3 coefficient is 2, whereas the ratio in the last equation is
5. Solving for Z3 and substituting in any other equations containing Z3:

Since Zo has left the dictionary to return as a nonbasic variable, the process is com­
plete. The dictionary is terminal. The solution to the LCP is Zo = Z2 = WI = W3 = °
(nonbasic variables are zero) and Z3 = 2, w2 = 1, and ZI = 3. In vector form w =
(0, 1,0) and z = (3,0,2). As required, w 0 Z = (0, 0, 0).

Now we look at a more complicated problem in the context of the LCP, Exam­
ple 7.1 solved earlier in this chapter.

We want to maximize f(xI' x2) = Xl + X2 with respect to the constraints Xl ::: 0,
X2 ::: 0, -Xl + X2 :s 2, 2x1 - x2 :s -1, and 3x1 + x2 :s 3. The vectors and matrices
implied by this are

7.2 The Linear Complementarity Problem 411

Equation (7.6) makes the conversion to an LCP:

-1 ° ° -1 2 3

-1 ° ° 1 -1 1
--

q= 2 M= 1 -1 ° ° °-1 -2 1 ° ° °3 -3 -1 ° ° °
Xl Zl

X2 Z2

and z= Yl Z3

Y2 Z4

Y3 Z5

Ul

U2

w= Sl

S2

S3

The initial dictionary with auxiliary variable Zo is

W2 = -1 + Zo + Z3 - Z4 + Z5

W3 = 2 + Zo + Z1 - Z2

W5 = 3 + Zo - 3z l - Z2

The first phase involves moving ~o to the dictionary. We do so using the first equation,
solve for Zo (so WI leaves the dictionary), and substitute that expression into the other
equations:

Zo = 1+ WI + Z3 - 2z4 - 3z5

W2 =°+ WI + 2z3 - 3z4 - 2z5

W3 = 3 + WI + Zl - Z2 + Z3 - 2z4 - 3z5

The new constant vector is (1, 0, 3, 0, 4) ~ (0, 0, 0, 0, 0), so we have a feasible dictio­
nary. Since all Zi for i ~ 1are nonbasic, we have a balanced dictionary. The dictionary
is not terminal since Zo is still in it. The tableau method requires extra care when any

412 Chapter 7 Linear Complementarity and Mathematical Programming

(Example 7.3
continued)

of the constant terms becomes zero. The Lemke-Howson algorithm is itself not ex­
empt from the potential problems of zero constants as we will see.

The second phase is now initiated. The variable WI just left the dictionary, so its
complementary variable Z1 must now enter the dictionary. We have three equations
involving Z 1 from which to choose one to solve for Z l' but only two have negative
coefficients for ZI' the W4 and Ws equations. The limiting value for the ratio of the
constant term and the negative of the Z1 coefficient comes from the W 4 equation, a
ratio of 0 as compared to the ratio 4/3 for the Ws equation. Solving the W4 equation
for Z1 and substituting into other equations:

Zo = 1+ wI + z3 - 2z4 - 3zs

Wz = 0 + WI + 2z3 - 3z4 - 2zs

3 1 139
w3 = 3 + -wI - -w4 - -zz + -z3 - 3z4 - -zs

2 2 2 2 2

1 1 1 1 3
zi = 0 + -wI - -w4 + -zz + -z3 - z4 - -zs

2 2 2 2 2

1 3 5 1 3
Ws = 4 - -WI + -w4 - -zz - -z3 + z4 + -zs

2 2 2 2 2

The variable W4 left the dictionary, so its complementary variable Z4 must enter the
dictionary, all the while maintaining a feasible, balanced dictionary. Four equations
contain Z4 with a negative coefficient. Two of the equations lead to a limiting ratio of
zero. Choosing the Wz equation, solving for Z4' and substituting in other equations:

1 2 1 5
Zo = 1+ -wI + -wz - -z3 - -zs

3 3 3 3

1 1 2 2
z4 = 0 + -wI - -wz + -z3 - -zs

3 3 3 3

1 1 1 1 5
w3 = 3 + -wI + Wz - -w4 - -zz - -z3 - -zs

2 2 2 2 2

1 1 1 1 1 5
zi = 0 + -wI + -wz - -w4 + -zz - -z3 - -zs

6 3 2 2 6 6

1 1 3 5 1 5
Ws = 4 - -wI - -wz + -w4 - -zz + -z3 + -zs

6 3 2 2 6 6

The variable Wz left the dictionary, so Zz must enter the dictionary. As before we
need to maintain a feasible and balanced dictionary. Two equations contain Zz with
a negative coefficient, the Ws equation providing a limiting ratio of 8/5 whereas the
W3 equation has a ratio of 6. Solving the Ws equation for Zz and substituting in other
equations:

7.2 The Linear Complementarity Problem 413

1 2 1 5
Zo = 1+ -wI + -w2 - -z3 - -zs

3 3 3 3

1 1 2 2
z4 = 0 + -wI - -w2 + -z3 - -zs

3 3 3 3

11 8 16 4 1 8 8
w 3 = - + -WI + -w2 - -w4 + -ws - -z3 - -zs

5 15 15 5 5 15 3

42 4 1 3 2 2
zI = - + -wI + -W2 - -w4 - -ws - -z3 - -zs

5 15 15 5 15 15 3

81 2 3 2 1 1
z2 = - - -wI - -w2 + -w4 - -ws + -z3 + -zs

5 15 15 5 5 15 3

The variable Ws left the dictionary, so Zs must enter the dictionary. Four equations
contain Zs with a negative coefficient. The limiting equation is the Z4 equation with a
ratio ofzero and must be solved for z5' In doing so, we are now in a predicament. The
variable Z4 leaves the dictionary and on the next step W4 must enter the dictionary.
But an earlier step saw us removing W4 from the dictionary and adding Z4' Contin­
uing along our present path, we will undo all the work we have done only to arrive
back at the start. What we have is a cycle in the processing. This occurred due to the
presence of a zero constant term. The problem occurred in the first phase; to move
Zo into the dictionary, we had multiple choices for the leaving variable, either choice
forcing an equation to have a zero constant term.

With our last example in mind, now is a good time to mention two potential
problems that might be encountered when using the Lemke-Howson algorithm:

1. Cycling due to degeneracies.

2. The variable complementary to the leaving variable cannot enter the dictionary.

The term degeneracy refers to a constant term becoming zero. As we saw in Ex­
ample 7.3, a zero constant term arises when there are multiple choices for the leaving
variable. Cycling refers to removing a variable from the dictionary that was inserted
at an earlier step. In Example 7.3, the cycling occurs because of a degeneracy-a con­
stant term became zero. As it turns out, if we can modify the algorithm to prevent
degeneracies, no cycling can occur.

7.2.2 ZERO CONSTANT TERMS

The classical method for handling degeneracies is to apply a perturbation to the
constant terms. The kth constant term is modified (perturbed) by a power ck for
some small c E (0, 1). The value of c is made so that the choice of leaving variable
is unambiguous, thus never forcing zero constant terms to occur. The perturbed
problem is solved using the Lemke-Howson algorithm. The final solution will be a

414 Chapter 7 Linear Complementarity and Mathematical Programming

continuous function of £, so we can evaluate the solution at £ = °(formally, take the
limit as £ approaches zero) to obtain the solution to the original problem.

EXAMPLE

7.4
Maximize f (Xl' Xz) = Xl + Xz subject to the constraints xl ~ 0, Xz ~ 0, and Xl + Xz ::;

2. The vectors and matrices implied by this are

A = [1 1], b = [2], and c = [:]

Equation (7.6) makes the conversion to an LCP:

q=[~:J M=[~l ~l iJ w=[:;]=[::J and

z= [~:] =U:]
The initial dictionary with auxiliary variable Zo is

WI = -1 + Zo + Z3

Wz = -1 + Zo + Z3

W3 = 2 + Zo - Zl - Zz

The limiting equations for moving Zo to the dictionary are the WI and Wz equations,
an ambiguous choice. Solving the first leads to Zo = 1 - Z3 + wI. Replacing it in the
second produces Wz =°+ WI' a degeneracy.

Instead, add powers of a small number £ E (0, 1) to the constant terms:

WI = (-1 + £) + Zo + z3

Wz = (-1 + £z) + Zo + z3

w3 = (2 + £3) + Zo - zl - Zz

Since £z < £, we are forced to use the Wz equation to solve for Zoo Do so and substitute
in the other equations:

WI = (£ - £z) + Wz

Zo = (l - £z) + Wz - Z3

w3 = (3 + £3 - £z) + Wz - Zl - Zz - Z3

Observe that the constant terms are all positive for small £. The variable W2 left the

7.2 The Linear Complementarity Problem 415

dictionary, so Z2 must now enter the dictionary. The only equation containing Z2 is
the W3 equation:

WI = (£ - £2) + W2

Zo = (1 - £2) + W2 - Z3

The variable w3left the dictionary, so Z3 must enter the dictionary. For small, positive
£, 1 - £2 is smaller than 3+ £3 - £2, so the limiting equation is the Zo equation. Solve
for Z3 and substitute in other equations:

WI = (£ - £2) + W2

Z3 = (1 - £2) + W2 - Zo

Z2 = (2 + £3) - W3 + Zo - Z1

Since Zo has left the dictionary, the process ends and the dictionary is terminal.
The solution to the LCP is w = (WI' W2' W3) = (£ - £2, 0, 0) and Z = (zI' Z2' z3) =
(0, 2 + £3, 1 - £2). Clearly, w 0 Z = (0, 0, 0). This argument applies for arbitrarily
small £, so we may take the limit as £ approaches zero to obtain w = (0, 0, 0) and
Z = (0, 2, 1). Since Xl = ZI = °and X2 = Z2 = 2, the solution to the original linear
programming problem is max(f) = f (0, 2) = 2.

In order to evaluate the perturbed solution at £ = 0, a numerical implementa­
tion of the Lemke-Howson algorithm must allow for the inclusion of £ symbolically.
This can be done by maintaining a data structure that implements a polynomial in
£ (stored as an array of coefficients), one structure for each equation in the dictio­
nary. The constant term of the polynomial is the constant term of the equation. The
higher-order polynomial terms represent the perturbation of the constant term. The
implementation also maintains a variable that represents the current value of £ so
that the perturbed constant term in the equation can be computed by evaluating the
corresponding polynomial at £. When a terminal dictionary is found, the solution
to the original problem is obtained by setting the nonbasic variables to zero and the
basic variables to the constant terms of the polynomials.

Ifno degeneracies occur during the algorithm, there can be no cycling. The proof
of this uses an analogy-referred to as the museum principle in [Fri98]-to visiting a
finite collection of rooms that have the following properties:

1. Each room is labeled "stop" or "continue."

2. All "continue" rooms have one or two doors.

3. Ifyou reach a "stop" room, then your visiting stops.

4. Ifyou reach a "continue" room with one door, then your visiting stops.

5. Ifyou reach a "continue" room with two doors, then your visiting continues, but
you must leave the room through the other door from which you entered.

416 Chapter 7 Linear Complementarity and Mathematical Programming

The museum principle states that you will never enter a room twice; that is, your
path of visitation does not have a cycle. This principle may be used to show that the
second phase of the Lemke-Howson algorithm, in the absence of degeneracies, has
no cycles and terminates in a finite number of steps.

The analogy is as follows. The feasible, balanced dictionaries are the rooms. Each
door corresponds to the act of one variable entering the dictionary and another leav­
ing. A room is labeled "stop" if it is a terminal dictionary. All other rooms are labeled
"continue." Each "continue" room corresponds to a feasible, balanced dictionary with
20 as a basic variable. The dictionary has exactly one pair ofcomplementary variables,
both of which are nonbasic. The "continue" room has at most two doors; each of the
complementary variables can enter the dictionary in at most one way. Finally, the first
phase of the Lemke-Howson algorithm produces a "continue" room that has exactly
one door, and this is the room in which you start the visitation. To see that there is
only one door, consider that 20 enters the dictionary and a basic variable Wi leaves
the dictionary, the choice of Wi made so that the constant terms of the equations are
nonnegative. Because we have assumed that there are no degeneracies, there can be
only one such wi' The corresponding equation is solved for 20 and the Wi term shows
up as a nonbasic variable that has a positive coefficient (with value 1). Substituting
the 20 into all other equations, Wi shows up with a positive coefficient (with value 1)
in every case. Because all the Wi coefficients are positive and the constant terms are
nonnegative, Wi cannot reenter the dictionary. For if you were to solve for Wi' the
constant term on the right-hand side would be a negative number, contradicting the
fact the invariant of each step is that the dictionary is feasible. Thus, there is no door
in which Wi can enter the room, in which case the room has one door (correspond­
ing to 2i entering the dictionary). The rooms satisfy the conditions of the museum
principle, and the Lemke-Howson algorthm cannot cycle.

7.2.3 THE COMPLEMENTARY VARIABLE CANNOT LEAVE
THE DICTIONARY

Degeneracies are one problem with the method of solving an LCP, but the pertur­
bation method discussed earlier circumvents the problems. Another problem with
the method is that at some point the variable complementary to the leaving variable
cannot enter the dictionary, in which case you cannot proceed with the algorithm.

EXAMPLE

7.5
Maximize f(xI, x2) = 2xI + X2 subject to the constraints Xl :::: 0, X2 :::: 0, and -Xl ­

X2 .:::; -1. The initial dictionary with auxiliary variable 20 is

7.2 The Linear Complementarity Problem 417

The first phase is to move Zo into the dictionary by solving the first equation, Zo =
2 + wI + Z3' and substituting into the other equations:

Zo = 2 + wI + Z3

W2 = 1+ wI

W3 = 1+ wI + ZI + Z2 + Z3

The variable WI left the dictionary, so ZI must enter it. The only equation containing
ZI is the last, but the coefficient of ZI is positive. In solving for ZI we would obtain a
negative constant term, violating the feasibility ofthe dictionary. Therefore, Z1 cannot
enter the dictionary.

A sketch ofthe convex domain defined by the constraints shows us what the prob­
lem is. The domain is unbounded, so in fact f is unbounded and has no maximum.
The linear programming problem has no solution. Some general statements can be
made about the matrix M in the LCP regarding the inability for the complementary
variable to enter the dictionary.

First, some definitions. The matrix M is said to be copositive if xTM x 2: 0 for all
x 2: o. M is said to be copositive-plus if (1) it is copositive and (2) x 2: 0, Mx 2: 0, and
xTMx = 0 imply (M + MT)x = o. Recall from linear algebra that a matrix M is said
to be positive-semidefinite if M is symmetric and xTMx 2: 0 for all x. In contrast,
a copositive matrix is not required to be sYmmetric and the vectors for which we
require xTMx 2: 0 are only those whose components are all nonnegative.

A simple fact to verify is that the matrix M that comes from complementary slack­
ness and is shown in equation (7.6) is copositive. For any skew-symmetric matrix M,
it is the case that zTMz = o. Setting M = [mij] and z = [zd:

n n

zTMz = L L zimijZj

i=1 j=1

=L ZimijZ j +L zimijz j +L zimijz j

i<j i=j i>j

= "'" z·m··z . + 0 - "'" z·m ··z .L...J I IJ J L...J I JI J'

i<j i>j

= "'" z·m··z· + 0 - "'" z·m··z·L...J I IJ J L...J I IJ J'

i<j j>i

=0

Skew symmetry
means mij = -m ji

Swapping names i and
j in the last summation

This is true for all z, so it is true for z 2: o. Thus, a skew-symmetric matrix is coposi­
tive. M in equation (7.6) is skew-symmetric, therefore copositive.

418 Chapter 7 Linear Complementarity and Mathematical Programming

The main result of this section is

Let M be copositive. If the Lemke-Howson algorithm reaches the stage where
a complementary variable cannot leave the dictionary, then the linear com­
plementarity problem has no solution.

The proof is somewhat tedious and not presented here. The consequence of the
linear complementarity problem regarding a numerical implementation is that when
you reach a stage where the complementary variable cannot leave the solution, the
program terminates and reports to the caller that the LCP has no solution.

7.3 MATHEMATICAL PROGRAMMING

Now that we have a good understanding oflinear programming, I will briefly discuss
a generalization called mathematical programming (MP). The goal is to minimize
I (x) subject to the constraints g(x) :::: 0, where I :~n -+ ~, the objective function,
and g :~n -+ ~m, the constraining functions, are arbitrary functions. The conven­
tion used in the mathematical programming is that the objective function is to be
minimized. If an application requires maximizing I, you can minimize instead the
function - I.

Here is some further terminology that will be used later. A point x satisfying the
constraints g(x) :::: 0 is said to be a feasible point. If gi (x) = 0 for some i, we say that
gi is active at x.

EXAMPLE

7.6

EXAMPLE

7.7

The linear programming problem can be rephrased as a mathematical programming
problem. The original problem is to maximize cTx subject to x :::: 0 and Ax :::: b. As
a mathematical programming problem, the objective function is I(x) = -cTx, we
want to minimize I, and the constraints are combined into g(x) :s 0 as

In this case I is a linear function and g is an affine function.

You are given a set of points {(xi' yJ J7=1 with at least three noncollinear points. Let
(xo, Yo) be the average ofthe points. Compute the minimum area, axis-aligned ellipse
centered at the average that contains all the points.

The average is (xo, Yo) = (:L7=1(Xi, yJ)jn. The axis-aligned ellipse centered at the
average is of the form,

where a > 0 and b > 0 are the half-lengths ofthe ellipse axes. The area of the ellipse is

Figure 7.5

7.3 Mathematical Programming 419

A = nab

We want to minimize the area and have all points contained in the ellipse. The
containment leads to the constraints

In terms of the notation of mathematical programming, the variables are a and b,
the objective function is !(a, b) = nab, and the constraint functions are g(a, b) =
(gl(a, b), ... , gn(a, b), gn+l(a, b), gn+2(a, b)), where gi(a, b) = «Xi - xo)la)2 +
«Yi - Yo)lb)2 - I, gn+l(a, b) = -a, and gn+2(a, b) = -b. Both! and g are non­
linear functions.

The problem can be equivalently formulated in a manner that makes g an affine
function, potentially making the solution a bit easier to construct. Instead ofvariables
a andb, let us choose u = l1a2and v = Ilb2. The constraint functions are gi(u, v) =
(Xi - xO)2u + (Yi - YO)2 v - 1for 1:::: i :::: n, gn+l(u, v) = -u, and gn+2(u, v) = -v,
all affine functions of u and v. The objective function is !(u, v) = nI~. The uv­
domain implied by g(u, v) :::: 0 is a bounded region whose boundary is a convex
polygon. The graph of ! is shown in Figure 7.5. Even though ! is nonlinear, the
figure should convince you that the minimum must occur on the polygon boundary
(not necessarily at a vertex).

u

Graph of ! (u, v) = T(I~ in the first quadrant.

420 Chapter 7 Linear Complementarity and Mathematical Programming

f(x)

Graph is convex

f(x2) -+----\-----~

(1 - t)f(xl) + t!(x2) -+-------\---------j'"

f (xl) -+----.­

f (x) -+-----+--'~---I'

'-----+-----+---+---x

x = (l - t) xl + tX2

W ~

f(x)

Graph is not convex

'--------------x

Figure 7.6 (a) The graph of a convex function. Any line segment connecting two graph points
is always above the graph. (b) The graph of a nonconvex function. The line segment
connecting two graph points is not always above the graph.

Two categories of mathematical programming problems are of interest to us. The
first is called quadratic programming. The objective function has a quadratic term
in addition to the linear term that appears in the linear programming problem. The
constant term is omitted here since f can be minimized without it, then that constant
added back in to the result. The function is

(7.7)

where S is a symmetric matrix. The constraint functions are still of the form used in
linear programming, g(x) = (Ax - h, -x) s O.

The second category is convex programming and involves objective functions that
are convex functions. A function f (x) is said to be convex if its domain is a convex set
and if

f((1- t)x + ty) S (1- t)f(x) + tf(y) (7.8)

for all t E [0, 1] and for all x and y in the domain of the function. Since the domain
of f is a convex set, (1 - t)x + ty is guaranteed to be in the domain for any t E [0, 1].
Thus, the left-hand side of the inequality equation (7.8) is well defined since the input
to f is in its domain. Figure 7.6 illustrates the graphs of a convex function and a
nonconvex function of one variable.

7.3 Mathematical Programming 421

z

f(x2, Y2)

(1- t)f(XI'YI) + t!(X2'Y2)

x

~------'\c I····································· I I 1-----__ Y

(X2' Y2)

(x, y) = (1 - t) (Xl' YI) + t (X2' Y2)

Figure 7.7 The graph of a convex function I(x, y).

Visually, convexity means that any line segment connecting two points on the
graph of the function must always lie above the graph. If I (x) has a continuous
second-order derivative, it is a convex function when If!(x) :::: O. Figure 7.7 illustrates
the graph of a convex function of two variables.

A line segment connecting any two points on the graph of the function must
always lie above the graph. Generally, if I (x) for x E IRn has continuous second-order
partial derivatives, it is a convex function when the matrix of second-order partial
derivatives is positive-semidefinite (the eigenvalues are all nonnegative).

In Example 7.7, the second formulation ofthe problem that has affine constraints
in u and v is both a quadratic programming and a convex programming problem.
That is, the objective function is a convex and quadratic function and the constraints
are affine.

7.3.1 KARUSH-KuHN-TuCKER CONDITIONS

In calculus we have the concept of a local minimum of a function. If I (x) is the
function and Xo is a point for which I (x) 2: I (Xo) for all x sufficiently close to Xo,
then Xo is referred to as a local minimum for I. In mathematical programming a
similar concept can be defined. A point Xo is a constrained local minimum if I (x) 2:
I (Xo) for all feasible x sufficiently close to Xo. That is, x must be close to Xo and
g(x) :::: O. We will assume from here on that both I and g are differentiable functions.
The constraint function is stored as an m x 1 column vector. The gradient of I (x),
denoted VI (x), is stored as a 1 x n row vector. The derivative matrix ofg(x), denoted

422 Chapter 7 Linear Complementarity and Mathematical Programming

Dg(x), is stored as an m x n matrix. The ith row corresponds to the gradient of the
ith component, Vgj(x).

An important result for mathematical programming is stated here without proof:
IfXo is a constrained local minimum for the MP problem, then there exists nonneg­
ative Uj for 0 :s i :s m, such that

rn

uoVf(Xo) + LujVgJXj) =0
j=l

(7.9)

and such that Uj = 0 whenever gj (Xj) < O. The left-hand side of equation (7.9) is
effectively a summation over active constraints since the Uj are zero for inactive
constraints. If the constraints of the MP problem are allowed to include equality
constraints, equation (7.9) is still valid, except that the Uj for an equality constraint is
allowed to be negative. By making this minor adjustment, the generalized result stated
above includes the classical theory of Lagrange multipliers. One final observation: If
Uo =0, equation (7.9) contains information only about the constraint functions and
nothing about f. In most applications of interest, information about f allows us to
choose Uo = l.

A feasible x that satisfies equation (7.9) with Uo = 1, the other Uj as specified in
that equation, is said to be a Karush-Kuhn- Tucker point, or KKT point for short. The
conditions for being a KKT point are summarized in vector notation:

g(X) :s 0, v f(x) + uTDg(x) = 0 for u ~ 0, and u 0 g(x) = 0 (7.10)

where u is the m x 1 vector whose components are Ul through Urn mentioned in
equation (7.9). Notice that the last expression ofequation (7.10) is a complementarity
condition.

Recall from calculus that the candidates for minimizing a differentiable function
f(x) on an interval [a, b] are those points for which f'ex) = 0 and the end points x =
a and x = b. These points were named critical points. For a multivariate differentiable
function f(x) defined on a closed and bounded domain, the critical points are those
for which Vf (x) = 0 and boundary points of the domain. The KKT points are the
analogy of critical points in the realm of mathematical programming. Specifically,
a constrained local minimum of the MP problem must be a KKT point when the
constraints are any of the following types:

1. The constraint function is affine, g(x) = Mx + t for a matrix M and vector t.

2. The constraint components gj (x) are convex functions and there is at least one
feasible x at which all constraints are inactive.

3. For any feasible x, the vectors Vgj (x) are linearly independent.

EXAMPLE

7.8

7.3 Mathematical Programming 423

The linear programming problem is to minimize f(x) = -cTx subject to g(x) =
(Ax - b, -x) .::::: o. The three KKT conditions for this problem are as follows.

The first condition is g(x) .::::: 0, which simply states that x is feasible.

The second condition is

o= Vf (x) + UTDg(x) = _cT + uT
[~~]

where I is the identity matrix of the appropriate size. Partitioning U into two blocks
of the appropriate sizes, U = (ud' us), the last displayed equation is equivalent to

That is, Us are the slack variables for the primal problem and Ud are the regular
variables for the dual problem. The condition U ~ 0 is a statement of dual feasibility.

Using the same block decomposition of U just described, the third condition is

0= U 0 g(x) = (ud' us) 0 (Ax - b, -x)

or Ud 0 (Ax - b) = 0 and Us 0 x = 0, just statements of complementary slackness.

7.3.2 CONVEX QUADRATIC PROGRAMMING

The quadratic programming problem is to minimize f(x) = xTSx - cTx + K for a
constant symmetric matrix S, a constant vector c, and a constant scalar K, subject
to g(x) = (Ax - b, -x) .::::: o. We additionally want f to be a convex function; it is
sufficient to require S to be positive-semidefinite.

The first KKT condition is a statement of feasibility: Ax .::::: b and x ~ O. The
second KKT condition is

Using the decomposition of U = (ud' u2) as in the linear programming problem, the
last equation implies

Us = -x + 2Sx + ATud (7.11)

and is called the dual slack equation. The third KKT condition is the same as in the
linear programming problem,

Ud 0 (Ax - b) = 0 and Us 0 x = 0

and is called complementary slackness.

(7.12)

424 Chapter 7 Linear Complementarity and Mathematical Programming

These conditions allow us to reformulate the quadratic programming problem as
a linear complementarity problem,

w = q + Mz, W 0 z = 0, W ~ 0, z ::: °
where

x, = b - Ax, q = [~C l M = [* l w = [::l z = [:d]
Moreover, the matrix M is positive-semidefinite. To see this,

where the last equality is valid since the matrix involving just A and - A is skew­
symmetric, causing its quadratic form to be zero. The last matrix in the equations
is positive-semidefinite since S is positive-semidefinite. The lower right-hand zero
block only introduces zero eigenvalues in the larger matrix. As a result, M is also
copositive-plus, which means that the Lemke-Howson algorithm may be applied,
using a perturbation if necessary to eliminate degeneracies, and allowing for proper
termination either because a solution is found or because a complementary variable
could not leave the dictionary, in which case f has no minimum.

Because the linear complementarity problem is just a reformulated set of KKT
conditions, any solution to it must be a KKT point. The additional assumption of
convexity allows us to use the following result: If f and gl through gm are convex
functions, then any KKT point for the MP problem must be a global minimum.

In summary, the solution to a convex quadratic programming problem may be
constructed by solving the corresponding linear complementarity problem using
the Lemke-Howson algorithm. That algorithm will properly terminate and produce
either a minimum for f or indicate that'f has no minimum. Since f is convex and
the affine constraints are convex, the minimum found by the algorithm must be the
global minimum of f.

EXAMPLE

7.9
A solid triangle has vertices (0, 0), (1, 0), and (0, 1). Compute the closest triangle
point to (1, 2). A sketch of the triangle and point will convince you that the closest
point is on the edge connecting (1, 0) and (0, 1). Although you can use a simple
geometric argument to construct the closest point, we will solve this as a convex
quadratic programming problem.

We must minimize the squared distance (Xl - 1)2 + (X2 - 2)2 = xi + x~ - 2XI ­
4X2 + 5, where (Xl' X2) is any point in the solid triangle. We can ignore the constant
term and equivalently minimize f(XI' X2) = xi + x~ - 2xI - 4x2' The interior of
the triangle is the intersection of half planes: X I ::: 0, X2 ::: °and X I + X2 :::; 1. The

7.3 Mathematical Programming 425

quantities of interest in the quadratic programming problem are

s=[~ nc=[a A=[I I], and b=[I]

The quantities of interest in the linear complementarity problem are

The initial modified dictionary is

WI = -2 + Zo + 2z 1 + Z3

W2 = -4 + Zo + 2z2 + Z3

In the first phase Zo enters the dictionary and W2 leaves the dictionary,

Zo = 4 + W2 - 2z2 - Z3

W3 = 5 + W2 - ZI - 3z2 - Z3

Since w2left the dictionary, Z2 must enter it. The limiting equation is the WI equation,
so solve that equation for Z2 and substitute in the others:

Since WI left the dictionary, ZI must enter it. The limiting equation is the W3 equation,
so solve that equation for ZI and substitute in the others:

3 1 3 1 1
z2 = - - -wI + -W2 - -w3 - -z3

2 8 8 4 4

1 1 1 1
Zo = 1+ -WI + -w2 + -w3 - -z3

442 2

13111
zl = - + -wI - -w2 - -w3 - -z3

2 8 8 4 4

426 Chapter 7 Linear Complementarity and Mathematical Programming

(Example 7.9
continued)

Finally, w3left, so Z3 must enter. Two equations are limiting, the Zo and ZI equations.
No need to apply a perturbation here. We know that cycling should not occur, so
solve the Zo equation for Z3 and substitute:

1 1 1 1
z2 = 1 - -wI + -w2 - -w3 + -zo

4 4 2 2

1 1
z3 = 2 + -wI + -w2 + w3 - 2zo2 2

1 1 1 1
zi = °+ -wI - -w2 - -w3 + -zo

4 4 2 2

The solution is w = (wI' W2' W3) = (0, 0, 0) and Z = (zI' Z2' z3) = (0, 1,2). In terms
ofthe original variables, xI = Z1 =°and X2 = Z2 = 1. The closest point on the triangle
to (1, 2) is the vertex (0, 1).

7.3.3 GENERAL DUALITY THEORY

The linear programming problem was referred to as the primal problem. We discov­
ered an equivalent problem, called the dual problem. The mathematical program­
ming problem has a similar concept of duality. The primal MP problem is

Minimize f (x) subject to g(x) :::; 0

Define hex, u) = f(x) + uTg(x). Notice that the (row) vector of derivatives of
L with respect to x, denoted ah/ax, is ah/ax = V f(x) + U TDg(x), exactly the
expression that appears in the second KKT condition. Define the Lagrangian function,

L(u) = min hex, u)
XElRn

The dual MP problem is

Maximize L(u) subject to u ~ 0

Ifmin(f) is the minimum ofthe primal problem andmax(L) is the maximum of
the dual problem, then it is the case that max(L) .:s min(f). The difference min(f) ­
max(L) is called the duality gap. For the linear programming problem we saw that the
duality gap is zero.

We had used the terminology that x is feasible if g(x) :::; O. Similarly, we say that u
is feasible for the dual problem if u ~ 0. Results similar to the strong duality principle
for linear programming are the following:

1. If there are feasible vectors x and u such that L(u) = f (x), then x is an optimal
solution to the primal problem.

7.4 Applications 427

2. If there are feasible vectors x and u such that f(x) + uTg(x) = L(u) and u a

g(x) = 0, then x is an optimal solution to the primal problem.

In either case, the duality gap is zero.

7.4 ApPLICATIONS

A few applications of LCP methods are presented here. The first subsection includes
distance calculations between a point and a convex polygon, a point and a convex
polyhedron, two convex polygons, and two convex polyhedra. The second subsection
is a brief summary of how one goes about computing impulsive forces and resting
contact forces at points of contact between two rigid bodies represented as convex
polyhedra.

7.4.1 DISTANCE CALCULATIONS

The origin of the coordinate system in any of these applications is always chosen to
be O. The distinction between point and vector is not necessary in this situation, so
all quantities are typeset using vector notation.

Distance Between Point and Convex Polygon

Let Vi for 0 .:s i :::; n - 1be the counterclockwise-ordered vertices for a convex poly­
gon. The vertices may occur anywhere in the plane, but to support distance calcu­
lations using LCP methods, we require that all the vertices lie in the first quadrant.
If the polygon is not in the first quadrant, it is always possible to place it there by a
translation of all vertices. Let P be a point that is outside the polygon. We wish to
compute the distance between the point and the polygon.

In order to apply LCP methods to solve this problem, we need to formulate it
in terms of convex quadratic programming as discussed in Section 7.3.2. The objec­
tive function must be of the form f (x) = xTSx - CTx + K, where S is a positive­
semidefinite matrix. The constraints are of the form Ax .:s b and x :::: O. The objective
function is simple enough to construct. The vector x is a point that is inside the poly­
gon (includes points on the boundary). We want to choose x to minimize the squared
distance,

where I is the 2 x 2 identity matrix. Clearly, we should choose S = I, which is
positive-definite, c = 2P, and K = IPI 2• Since the polygon vertices are in the first
quadrant, we know that x ::: O.

428 Chapter 7 Linear Complementarity and Mathematical Programming

The remaining constraints occur because x must be inside the polygon. If N i

is an outer normal to the polygon edge with direction Vi+1 - Vi' then x is inside
the polygon whenever N i . (x - VJ .:::; 0 for all i. The matrix A in the constraints
is created by selecting row i to be NT- The vector b in the constraints is created by
selecting row i to be Ni . Vi'

The conversion to an LCP of the form w = q + M z with w 2: 0, z 2: 0, and
w 0 z =°was discussed earlier. We choose inputs

[-c]q= -
b

The output w is not important for this application, but the other output is z =
[x IUd]T. We need only the first block x ofthe output, which corresponds to the closest
point of the polygon to P.

Pseudocode for computing the distance from P to the polygon is listed below. The
convex polygon object has an array of vertices denoted vertex.

double Distance (vector p. ConvexPolygon C)
{

int n = C.vertex.size();

II translate to first quadrant (if necessary)
vector min = C.vertex[O];
for (i = 1; i < n; i++)

if (C.vertex[i].x < min.x
min.x = C.vertex[i] .x;

if (C.vertex[i].y < min.y)
min.y = C.vertex[i].y;

}

if (mi n. x < 0 II mi n.y < 0)

P -= min;
for (i = 0; i < n; i++)

C.vertex[i] -= min;

II compute coefficients of objective function
matrix 5[2][2] = identity_2; II the 2-by-2 identity matrix
vector c = 2.0*P;
II double K= Dot(P.P); not needed in the code

II compute constraint matrix and vector
matrix A[n][2];

7.4 Applications 429

vector b[n] ;
for (iO = n-1, i1 = 0; i1 < n; iO = i1++)
{

vector normal = Perp(C.vertex[i1]-C.vertex[iO]);
A[i 1] [0] = normal.x;
A[i 1] [1] = normal.y;
b[il] = Dot (normal ,C.vertex[iO]);

II compute inputs for LCP solver
matrix M[n+2] [n+2] = Block(2*S,Transpose(A),-A,zero_nxn);
vector q[n+2] = Block(-c,b);

II compute outputs
vector w[n+2], z[n+2];
LCPSolver(M,q,w,z);

II compute closest point and distance to P
vector closest(z[O],z[l]);
return sqrt(Dot(closest-P,closest-P»;

II The parameter names match those in the section discussing LCP
II where w = q + Mz. The inputs are the matrix Mand the vector
II q. The outputs are the vectors wand z.
void LCPSolver (Matrix M, Vector q, Vector& w, Vector& z);

The function Perp takes a vector (x, y) and returns (y, -x). We also assume an
implementation of an LCP solver of the form shown in the pseudocode. An actual
implementation for an LCP solver is on the CD-ROM.

Distance Between Point and Convex Polyhedron

This problem is nearly identical in formulation to the one for computing the distance
from a point to a convex polygon. The convex polyhedron must be translated to the
first octant if it is not already located there. The polyhedron is made up of a collection
of n faces. The only information we need from the polyhedron for the setup is for
face i, a vertex Vi' and an outer normal Fi for that face. If the query point is P, the
objective function is still f(x) = Ix - PI 2 = xTIx - 2pTx + IPI 2, where x is a point
inside the polyhedron. Because we have required the polyhedron to be in the first
octant, we know that x ~ O. The constraint matrix A is n x 3 with the transpose of
the face normal NT as its ith row. The constraint vector b is n x 1with ith row given
byNi ·Vi ·

430 Chapter 7 Linear Complementarity and Mathematical Programming

The conversion to an LCP of the form w = q + M z with w 2:: 0) z 2:: 0, and
w 0 z = 0 was discussed earlier. We choose inputs

M= [~~ I~T l q = [~c]

The output w is not important for this application, but the other output is z =
[x IUd]T. We need only the first block x ofthe output, which corresponds to the closest
point of the polygon to P.

Pseudocode for computing the distance from P to the polyhedron follows. The
convex polyhedron object is assumed to have any data structures and methods that
are necessary to support the calculations.

double Distance (vector P, ConvexPolyhedron C)
{

int nv = C.vertex.size();

II translate to first octant (if necessary)
vector min = C.vertex[O];
for (i = 1; i < nv; i++)

if (C.vertex[i].x < min.x)
min.x = C.vertex[i].x;

if (C.vertex[i].y < min.y)
min.y = C.vertex[i] .y;

if (C. vertex [i] . z < mi n. z
min.y = C.vertex[i] .y;

}

if (mi n. x < 0 II mi n. y < 0)
{

P -= min;
for (i = 0; i < nv; i++)

C.vertex[i] -= min;

II compute coefficients of objective function
matrix 5[3][3] = identity_3; II the 3-by-3 identity matrix
vector c = 2.0*P;
II double K = Dot(P,P); not needed in the code

II compute constraint matrix and vector
int n = C.face.size();
matri x A[n] [3] ;
vector ben] ;

PolygonDistance

7.4 Applications 431

for (i = 0; i < n; i++)
{

A[i] [0] = C. face[i] .normal.x;
A[i] [1] = C.face[i] .normal.y;
A[i] [2] = C.face[i] .normal.z;
b[i] = Dot(C.face[i] .normal ,C.face[i] .vertex);

II compute inputs for LCP solver
matrix M[n+3] [n+3] = Block(2*S,Transpose(A),-A,zero_nxn);
vector q[n+3] = Block(-c,b);

II compute outputs
vector w[n+3], z[n+3];
LCPSolver(M,q,w,z);

II compute closest point and distance to P
vector closest(z[O] ,z[l] ,z[2]);
return sqrt(Dot(closest-P,closest-P));

As you can see, the structure of the code is nearly identical to that for convex
polygons.

Distance Between Convex Polygons

Two convex polygons are specified, the first Co with vertices ViO) for 0 :::: i < no and
the second CI with vertices Vi!) for 0:::: i < nl. Both sequences of vertices are coun­
terclockwise ordered. As we had arranged in the point-object calculators discussed
previously, a translation is applied (if necessary) to place both polygons in the first
quadrant. Let Po denote a point inside Co and let PI denote a point inside CI. We want
to choose one point in each polygon to minimize the squared distance IPo - PII 2

•

The setup to solve this using LCP methods is similar to that for computing distance
between a point and a convex polygon, except that the unknown vector x will be
four-dimensional. The unknown vector and the objective function are

2 [TIT] [~] [Po] Tf(x) = IPo - PII = Po PI --=JTI ~ =x Sx

where I is the 2 x 2 identity matrix. The matrix S is 4 x 4, has diagonal blocks I
and off-diagonal blocks - I. S is positive-semidefinite since it is symmetric and its
eigenvalues are A = 0 and A = 2, both nonnegative numbers.

432 Chapter 7 Linear Complementarity and Mathematical Programming

Since the polygons are in the first quadrant) both P0 ~ 0 and P1 ~ 0 and the non­
negativity constraint x ~ 0 are satisfied. The other constraints arise from requiring
that the points be in their convex polygons. Let N~j) denote outer normals for poly-

. . I

gon Cj for the edge of direction vi~1 - Vi}). The point containment imposes the
constraints

N~j) . (p. - V~j) < 0
I } I -

for 0 ::s i < n j' The constraint matrix A is (no + n 1) x 4 and is a block diagonal
matrix A = Diag(AO) AI») where A j is n j x 2. The ith row of A j is the transposed

normal vector Nij
). The constraint vector b is (no + n 1) x 1 and consists of two

blocks b j of size n j x 1. The i th row of b j is N;j) . vij). As before the inputs to the
LCP solver are

M= [~~ I~T l q=[:]
but in this case c = O. The output z = [x I*]T where the first block produces a pair of
closest points on the polygons.

The pseudocode is similar yet again to what we had before.

double Distance (ConvexPolygon CO, ConvexPolygon C1)
{

int nO = CO.vertex.size(), n1 = C1.vertex.size();

II translate to first quadrant (if necessary)
vector min = CO.vertex[O];
for (i = 1; i < nO; i++)

if (CO.vertex[i].x < min.x)
mi n. x = CO. vertex [i] .x;

if (CO.vertex[i].y < min.y)
min.y = CO.vertex[i].y;

}

for (i = 0; i < n1; i++)

if (C1.vertex[i].x < min.x
min.x = Cl.vertex[i].x;

if (Cl.vertex[i].y < min.y)
min.y = Cl.vertex[i] .y;

7.4 Applications 433

if (mi n. x < 0 II mi n. y < 0)

for (i = 0; i < nO; i++)
CO.vertex[i] -= min;

for (i = 0; i < n1; i++)
Cl.vertex[i] -= min;

II Compute coefficients of objective function, identity_2 is the
II 2-by-2 identity matrix.
matrix S[4] [4] = Block(identity_2,-identity_2,

-identity_2,identity_2);
vector c = zero_4; II the 4-by-1 zero vector
II double K = 0; not needed in the code

II compute constraint matrix and vector
mat ri x AO [nO] [2], Al [n 1] [2] ;
vector bO[nO], b1[n1];
for (iO = nO-I, i1 = 0; i1 < nO; iO = i1++)
{

vector normal = Perp(CO.vertex[i1]-CO.vertex[iO]);
AO [il] [0] = normal. x;
AO[il] [1] = normal.y;
bO[i1] = Dot(normal,CO.vertex[iO]);

}

for (iO = n1-1, i1 = 0; i1 < nO; iO = i1++)
{

vector normal = Perp(C1.vertex[i1]-C1.vertex[iO]);
Al [il] [0] = normal. x;
A1[il] [1] = normal.y;
b1[il] = Dot (norma1, Cl. vertex [i 0]) ;

}

matrix A[nO+n1] [4] = BlockDiagonal(AO,A1);
vector b[nO+n1] = Block(bO,b1);

II compute inputs for LCP solver
int n = nO+n1;
matrix M[n+4] [n+4] = Block(2*S,Transpose(A),-A,zero_nxn);
vector q[n+4] = Block(-c,b);

II compute outputs
vector w[n+4], z[n+4];
LCPSolver(M,q,w,z);

434 Chapter 7 Linear Complementarity and Mathematical Programming

II compute closest points PO in CO and PI in Cl and
II distance IPO-Pll
vector PO(z[O],z[I]), Pl(z[2],z[3]);
return sqrt(Dot(PO-Pl,PO-Pl));

Distance Between Convex Polyhedra

URCE CODE

PolyhedronDistance

The LCP formulation is similar to the previous ones. The convex polyhedra are Co
and C l' A translation must be applied to make sure both polyhedra are in the first
octant. Let the number of faces of C j be denoted n j' The outer pointing normal

for face i is Nij) and a vertex on the face for use in constraints is Vij). The goal is
to find points Pj E Cj that minimize IPo - Pd. The construction parallels that of
distance between convex polygons. The unknown vector is xT = [pJ IPiJ and is six­
dimensional. The objective function is f (x) = XTSx, where S is a 6 x 6 matrix whose
diagonal blocks are the 3 x 3 identity matrix I and whose off-diagonal blocks are - I.
The eigenvalues of S are 0 and 2, so S is positive-semidefinite. The constraint matrix
A is (no + n 1) x 6 and the constraint vector b is (no + n 1) x 1, both constructed
similarly to what was done for convex polygons. Pseudocode is

double Distance (ConvexPolyhedron CO, ConvexPolyhedron Cl)
{

int nvO = CO.vertex.size(), nvl = Cl.vertex.size();

II translate to first octant (if necessary)
vector min = CO.vertex[O];
for (i = 1; i < nvO; i++)

if (CO.vertex[i].x < min.x
min.x = CO.vertex[i].x;

if (CO.vertex[i].y < min.y)
min.y = CO.vertex[i].y;

}

for (i = 0; i < nvl; i++)

if (Cl.vertex[i].x < min.x)
min.x = Cl.vertex[i] .x;

if (Cl.vertex[i].y < min.y
min.y = Cl.vertex[i].y;

}

if (min.x < 0 II min.y < 0)

7.4 Applications 435

for (i = 0; i < nvO; i++)
CO.vertex[i] -= min;

for (i = 0; i < nvl; i++)
C1. vertex [i] -= mi n;

II Compute coefficients of objective function, identity_3 is the
II 3-by-3 identity matrix.
matrix S[6] [6] = Block(identity_3,-identity_3,

-identity_3,identity_3);
vector c = zero_6; II the 6-by-l zero vector
II double K = 0; not needed in the code

II compute constraint matrix and vector
int nO = CO.face.size(), nl = Cl.face.size();
matrix AO[nO] [2], Al[nl] [2];
vector bO[nO], bl[nl];
for (iO = nO-I, il = 0; il < nO; iO = il++)
{

vector normal = CO.face[i] .normal;
AO[il][O] = normal.x;
AO [il] [1] = normal.y;
AO[il] [2] = normal.z;
bO[il] = Dot(normal,CO.face[i].vertex);

}

for (iO = nl-l, il = 0; il < nO; iO = il++)
{

vector normal = Cl.face[i].normal;
Al[il][O] = normal.x;
Al [i 1] [1] = normal.y;
Al [i 1] [2] = normal. z;
bl[il] = Dot(normal,Cl.face[iJ.vertex);

}

matrix A[nO+nl] [6] = BlockDiagonal(AO,Al);
vector b[nO+nl] = Block(bO,bl);

II compute inputs for LCP solver
int n = nO+nl;
matrix M[n+6] [n+6] = Block(2*S,Transpose(A),-A,zero_nxn);
vector q[n+6] = Block(-c,b);

II compute outputs
vector w[n+6], z[n+6];

436 Chapter 7 Linear Complementarity and Mathematical Programming

LCPSolver(M,q,w,z);

II compute closest points PO in CO and PI in Cl and
II distance IPO-Pll
vector PO(z[0],z[l],z[2]), Pl(z[3],z[4],z[5]);
return sqrt(Dot(PO-Pl,PO-Pl));

Once again we have assumed that the data members and methods of the class for
the convex polyhedron have enough structure to support the queries required in the
distance calculator.

7.4.2 CONTACT FORCES

The derivation of contact forces for colliding rigid bodies is presented in detail in
Section 5.2. The impulsive force construction to modify the linear and angular ve­
locities simultaneously for all contact points was formulated as the following ab­
stract problem: Minimize IAf + bl 2 subject to the constraints f ~ 0, Af + b ~ 0, and
Af + b .::: c, where A is a known n x n matrix and band c are known n x 1 vec­
tors. The impulse magnitudes f are required by the collision response system. The
postimpulse velocities <i+ = Af + b are also required, but can be computed once f
is known. The quadratic function expands to fT (AT A)f + (2bTA)f + Ib1 2. This is a
classical problem of quadratic programming, but it cannot be formulated as an LCP.
First, the matrix M that would result in such an attempt is not necessarily positive­
semidefinite. Second, there is no complementarity condition.

The resting contact force construction to prevent the rigid bodies from interpen­
etrating was formulated as equation (5.44), d= Ag + b. The outer normals at the n
contact points are as before. The resting contact forces are postulated as giNi' where
gi :::: 0 is required to satisfy the nonpenetration constraints. The force magnitudes
are stored as a vector g ~ O. The acceleration of the first body in the direction Ni

has magnitude di • The magnitudes are stored as a vector d. The nonpenetration con­
straint requires that d ~ O. The matrix A is the same one used for impulsive force
calculations. The vector b is defined by equation (5.45). We also had a complemen­
tarity condition dog = o. Once again an LCP solver can be applied, where M = A,
q = b, w = d, and z = g. The outputs dand g are what the collision response system
needs to adjust the forces and torques that are used by the differential equation solver
to update the rigid body states. Pseudocode for both of these problems is presented
in Section 5.2 immediately following their derivations.

DIF\.FERE1NTIAL
EQuATIONS

T his chapter is a brief summary of the basic concepts you need for working with
ordinary differential equations. The modifier ordinary refers to equations that

involve functions of a single independent variable. Rates of change of functions of
multiple independent variables fall under the topic of partial differential equations,
something we will not cover here. Thus, I will refer to ordinary differential equations
in this chapter by only the term differential equations. A very good undergraduate
textbook on the topic of ordinary differential equations is [Bra84], and it emphasizes
an applied approach of the flavor of the problems in this book. A graduate textbook
that is oriented toward physical applications and covers the advanced mathematical
topics you need to fully understand the analysis of the physical models is [HS74].

Since our applications have time-varying quantities in physical simulations, the
independent variable in the differential equations is always time t. The derivatives of
dependent variables will use the dot notation. For example, if x(t) is a function of
t, the first derivative with respect to t is denoted x (t) and the second derivative is
denoted x(t).

8.1 FIRST-ORDER EQUATIONS

A first-order differential equation of a real-valued function x(t) of the independent
variable t is

x=f(t,x) (8.1)

437

438 Chapter 8 Differential Equations

The function f (t , x) is a known quantity. The left-hand side of the equation is the
formal expression for the first derivative of x with respect to t, which measures the
rate of change of x over time. The right-hand side is what we wish the rate of change
to be. For the sake ofillustration, suppose that x (t) measures the position ofan object
moving along a straight line. The velocity of the object is x(t) and the acceleration is
x(t). Equation (8.1) is what we want the velocity to be. Knowing the velocity x(t) at
any time t, our goal is to determine what the position x (t) is at any time. In a sense
we want to integrate the velocity to obtain position.

An instinctive method for solving for position is the following. If we were to
specify an initial position x(O), equation (8.1) tells us immediately that the initial
velocity is x(O) = f(O, x(O)). We can differentiate equation (8.1) with respect to t
and apply the chain rule from calculus to obtain

x (t) = ft (t , x) + fx (t , x) X(t)

where ft = af/at and fx = af/ax. The initial acceleration is therefore x(O) =
ft(O, x(O)) + fx(O, x (O))x (0). Assuming that f(t, x) is differentiable of all orders,
we could continue differentiating and evaluating to obtain the value of every deriva­
tive of x(t). If x(n)(t) denotes the nth derivative of x(t), then we can compute the
initial values of all derivatives x(n)(O). If you recall from calculus, the formal Taylor
series of x(t) expanded about t = 0 is

00 (n)()
x(t)=L~tn

n=O n!

If we can compute all the derivatives of x(t) at time 0, it appears that we have an
expression for x (t). I used the term formal. The right-hand side is an infinite sum.
As you are aware, such a sum does not necessarily have a value. The general topic in
calculus is convergence (or divergence) of the series. Moreover, not all functions have
a Taylor series representation. Functions that do and for which the series converges
for some interval of t are called analytic functions.
, Unforttmately, the reality is that the Taylor series approach is not useful, especi~lly

for a computer application. We do not have the luxury of computing an infinite
number ofderivatives! At any rate, the process would require some general expression
for partial derivatives of f (t , x). Since f arises in our physical applications as applied
forces, we might not even know a formula for it. In most cases f (t , x) itself is not an
analytic function, which means, most likely, that x(t) is not representable as a Taylor
series. What we need to do instead is numerically solve the equation. That is the topic
of Chapter 9. We will look at a few relevant concepts for differential equations before
pursing numerical methods for solving them.

An initial value problem for a first-order differential equation is of the form

x = f(t, x), (8.2)

8.1 First-Order Equations 439

The differential equation is specified together with a selected initial time to and initial
function value Xo = x (to). These are the types of problems we will see in practice.
Some initial value problems can be solved in closed form. For example, consider

x= f(t),

where f (t) depends only on time. Formally we can write the solution as an integral,

x(t) = Xo + t fer) drito
Ifa closed form exists for J f (t) dt, we can immediately write down the solution

for x(t). For example, if f(t) = tP, a polynomial term, then J f(t) dt = tP+1/(p +
1). The solution to the differential equation is then x(t) = Xo + (t P+1- t{;+l)/(p +
1). In many cases, though, we do not have a closed form for J f(t) dt. The integral
itself must be evaluated numerically using a standard numerical integrator.

Another type of problem that can be solved in closed form, so to speak, is a first­
order linear differential equation. This is of the form

x= a(t)x + b(t), (8.3)

where aCt) and bet) are known functions of time. If bet) = 0 for all t, the equation
x = a(t)x is said to be homogeneous. The formal solution is

Ifwe can integrate the various integrals in this equation in closed form, we can easily
evaluate x (t). Ifnot, numerical integrators are required. The homogeneous equation
(8.3) can be solved in closed form when the coefficient aCt) is a constant for all time.
That is, x= ax for some constant a with x (to) = Xo has the solution

(8.4)

as you can well verify.
Another special type of equation is a separable equation. These are of the form

dx/dt =x = f(t)/g(x),

The variables may be separated and placed on different sides of the equation,
g(x) dx = f(t) dt, then integrated:

l
x

g(O d~ = t fer) dr
Xo ito

440 Chapter 8 Differential Equations

The same issue occurs regarding closed formulas for the integrals. If we do not
have closed formulas, we must resort to numerical integration to estimate a solution.
Even if we do have closed formulas, there is still a potential problem. If G (x) is an
antiderivative of g(x), that is, dG/dx = g, and if F(t) is an antiderivative of I(t),
so that dF/dt = I, then the separated and integrated equation becomes G(x) ­
G(xo) = F(t) - F(to)' To solve explicitly for x, we need to be able to invert the
function G(x); that is, x = G-1(F(t) - F(to) + G(xo))' The inversion might not be
possible in closed form, and once again you must resort to numerical techniques. We
already saw an application of separable equations to solving the simple pendulum
problem, Example 3.4. The separation was not for numerically solving the angle as
a function of time; rather, it was to determine an estimate for the period of the
pendulum.

The existence of closed formulas for the integrals or for inverse functions might
be of pedagogic importance in a class on differential equations but not so in appli­
cations. The numerical differential equation solvers work directly with I (t , x) in the
equation and only require evaluations of that function.

8.2 EXISTENCE, UNIQUENESS, AND
CONTINUOUS DEPENDENCE

Perhaps you might object to the title of this section-just like a mathematician to
cloud the issue with facts! There is a good chance that the tutorials you find about
physics simulations using differential equations of motion do not discuss the topic
mentioned in the section title. Our interest is in numerically solving the initial value
problem of equation (8.2). You can apply your favorite numerical solver to the dif­
ferential equations ofyour application. A computer is quite happy to produce output
without any thought, so to speak. The fundamental question on computer output:
Can you trust it?

In the case of the initial value problem, in order for you to trust your output
you really should be assured that the problem has a solution. This is the existence
question about the initial value problem. Does there exist a solution to the problem?
If there is a solution, your chances of finding it with a computer have just improved.
If there is no solution, your output is useless. Better to do some type of analysis
before implementing the problem or running a program to solve the problem. To
make an analogy, consider solving a linear system of equations Ax = b, where the
n x n coefficient matrix A and the n x 1 vector b are inputs into the program. The
output must be the solution x, an n x 1 vector. Well, it is quite possible that the
linear system does not have a solution. Your linear system solver must be prepared
to inform you that is the case. If you implemented Gaussian elimination to row­
reduce the augmented matrix [A Ib] to upper echelon form H = [U Ie], where U
is upper triangular, there is no solution to the system when rank(U) < rank(H). The

8.2 Existence, Uniqueness, and Continuous Dependence 441

consequence of not trapping the rank condition is that you most likely will generate
an exception due to division by zero.

Even if there is a solution, you still might not be able to trust the output of the
program. What if there are multiple solutions to the same initial value problem? This
is the uniqueness question about the initial value problem. Using our analogy oflinear
systems, it is possible that Ax = b has multiple solutions. In fact, the theory says that
if it has two solutions, it must have infinitely many solutions. This happens when
rank(U) = rank(H) < n. An algorithm based on Gaussian elimination can trap this,
report that there are multiple solutions, and terminate. However, your application
might want to know more information. For example, the output might be a basis for
the affine space of solutions. In the case of differential equations, if the initial value
problem has multiple solutions, the physical modeling is more than likely in error.
We expect that the modeling produces equations of motion for which there exists a
unique solution.

Although I will not delve into the gory mathematical details, you can find in
[Bra84], as well as in any other textbook on differential equations, the following
theorem regarding existence and uniqueness ofa solution to the initial value problem
of equation (8.2).

Theorem Let J (t , x) and Jx (t , x) be continuous in the rectangle R defined by
to :::: t .:::: to + a and Ix - xol :::: b for some positive constants a and b. Let M =
max(t,x)ER IJ(t, x)I, a bound on the absolute value of J(t, x) on the rectangle.
Define ex = min(a, blM). The initial value problem i = J(t, x) with x (to) = Xo
has a unique solution x (t) defined for to :::: t :::: to + ex.

The bound M is guaranteed because a continuous function on a closed and
bounded rectangle must have a minimum and a maximum, a standard result from
calculus. The proof is not important to us, but the result is. As long as our function
J(t , x) has a continuous derivative in x in a small region about the initial point
(to, xo), we have a unique solution. In fact, weaker conditions on J than having a
continuous x-derivative still lead to existence-uniqueness results. But for all practical
purposes the types of functions you expect to occur in the equations of motion will
have continuous derivatives.

WARNING If your application "switches on and off" input forces and torques, you
do not even have a continuous function. The theory of differential equations will
provide you with yet more tools on showing existence and uniqueness, so feel
free to investigate this topic in detaiL A field ofparticular interest is control theory,
by which you try to select J(t , x) to force the solution x (t) to behave in certain
ways. For example, a pendulum with a metal end is swinging between two electric
magnets. The magnets are either on or off; you get to choose their on/off status
over time in order to get the pendulum to stop in the minimum amount of time.

442 Chapter 8 Differential Equations

The third portion of the section title is about continuous dependence of the so­
lution on the input parameters. If there exists a unique solution for each choice of
initial values (ta, xa), we can write the solution to indicate its dependence on the val­
ues: x(t; ta, xa). Our concern is that this function is continuous in ta and Xa. Why
should we care? Think about it from the perspective of numerical round-off errors. If
a small change in the input xa results in a very large change in the solution near initial
time, we have an ill-conditioned problem whose numerical errors can propagate and
lead to significantly incorrect outputs. In the applications we encounter with physi­
cal simulation, invariably we do have continuous dependence, so we will not concern
ourselves at the moment with theoretical results.

8.3 SECOND-ORDER EQUATIONS

A second-order differential equation of a real-valued function x(t) of the independent
variable t is

x=!(t,x,x) (8.5)

The function! (t , x, x) is a known quantity. The left-hand side of the equation is
the formal expression for the second derivative of x with respect to t. For physical
applications where x(t) measures position, the second derivative measures accelera­
tion, the rate of change ofvelocity x(t). The right-hand side is what we wish the rate
of change to be. From this second-derivative information we wish to construct x(t)
itself. The initial value problem for the second-order equation is

x=!(t,x,x), (8.6)

where ta, Xa, and xa are user-supplied inputs.
The initial value problem for a second-order linear differential equation is

x = a(t)x + b(t)x + e(t),

The homogeneous equation is the case e(t) = 0 for all t. Additionally, the equation
with constant coefficients is

X =ax +bx,

From the classical theory, at least one solution is of the form x(t) = ert for a constant
r that is possibly complex-valued. To determine r, compute the derivatives x(t) =
rert and x(t) = r 2ert and substitute into the equation to obtain

For this equation to be true for all t, we need r 2 - ar - b = 0, a quadratic equation in
r. If the equation has two distinct real roots rl and r2' both er1t and erzt are solutions

8.3 Second-Order Equations 443

to the differential equation. The solution to the initial value problem is

x(t) = rzxa - i a ert(t-to) _ rlxa - i a er2(t-to)
rz - rl rz - rl

(8.8)

This equation is valid even if the roots are distinct, complex-valued numbers. How­
ever, the coefficients are then complex-valued and the exponential functions have
powers that are complex-valued. If the roots are ex ± if3, where f3 =F 0, then Euler's
identityei8 = cos 8 + i sin 8) yields

e(a+i{3)t = eat (cos(f3t) + i sin(f3t))

Some complex arithmetic applied to our solution in order to rearrange it into only
real-valued expressions leads to

x(t) = (xo cos(fJ(t - to)) + Xo ~axo sin(fJ(t - to))) e"(l-Io) (8.9)

Finally, the quadratic equation can have a repeated real root r = al2 (when b =
aZI4). The theory shows that two solutions to the differential equation are ert and
tert . The solution to the initial value problem is

(8.10)

An understanding of this example is important for higher-order linear equations
with constant coefficients. In particular, the relationship between the roots of the
quadratic equation r Z - ar - b = 0 and the types of solutions to the differential
equation, namely, ert , eat cos(f3t), eat sin(f3t), and tert , is important.

The theory of differential equations includes analysis of second-order equations
in the form of equation (8.6). From our perspective we want only to solve the initial
value problem numerically. We can do so by formulating the second-order equa­
tion as two first-order equations. If we define vet) = i, then iJ = x= f(t, x, i) =
f (t , x, v). The first-order system ofequations with initial conditions corresponding to
equation (8.6) is

(8.11)

To be suggestive of the form of equation (8.2), define y = [x v]T, g(t, y) =
[v f(t, x, v)]T, and Ya = [xaia]T. The initial value problem for the first-order sys­
tem is

y = g(t, y), t?:. ta, (8.12)

The importance of maintaining the form of the equation has to do with developing
numerical methods for solving it. Methods that apply to equation (8.2) naturally

444 Chapter 8 Differential Equations

extend to systems in the form of equation (8.12). The repackaging also applies to a
system of n second-order equations to generate a first-order system of 2n equations.
This latter case is exactly what we do in our physical simulations. For instance, see
Example 3.10.

8.4 GENERAL-ORDER DIFFERENTIAL EQUATIONS

The nth-order differential equation of a real-valued function x (t) of the independent
variable t is

x(n) = J(t, x, x(l), ... ,x(n-l)) (8.13)

where x(k)(t) denotes the kth-order derivative ofx(t). The function J(t, Yl' ... , Yn)
is a known quantity. The left-hand side of the equation is the formal expression for
the nth-order derivative of x with respect to t. The right-hand side is what we wish
that derivative to be. We wish to construct x (t) itself from the equation. The initial
value problem for the nth-order equation is

where to and xci
k
) for 0 ::'S k .:::: n - 1are user-supplied inputs.

The initial value problem for an nth-order linear differential equation is

n-l

x(n) = L ak(t)x(k) + b(t), t :::: to, x(k)(to) = xcik), 0.:::: k .:::: n - 1 (8.15)
k=O

The homogeneous equation is the case b(t) = 0 for all t. Additionally, the equa­
tion with constant coefficients is

n-l

x(n) = L akx(k), t :::: to, x(k)(to) = xcik), 0.:::: k .:::: n - 1

k=O

(8.16)

for some constants ak for 0 ::'S k .:::: n - 1. Using the second-order linear equation with
constant coefficients as the model, we expect a general solution ofthe form x (t) = ert

•

The derivatives are x (k) (t) = r k ert
• Substituting into the differential equation leads to

where per) is a polynomial of degree n and is called the characteristic polynomial for
the differential equation. The only way to make p(r)ert = 0 for all t is if per) = o.

8.4 General-Order Differential Equations 445

Thus, r must be a root of a polynomial. The Fundamental Theorem ofAlgebra states
that p (r) is factorable into

d

per) =n(r - r})m j

}=l

where r1 through rd are the distinct roots, m) is the multiplicity of root r}, and
L~=l m} = n. We know that the ak are real-valued, so if a nonreal root occurs, say,
r = (X + if3 for f3 =j=. 0, then its conjugate r = (X - if3 is also a root. The values rand
r are considered to be distinct roots, of course. Thus, nonreal roots occur in pairs. If
r) is a real-valued root, the contribution to the solution of the differential equation
is the set of functions t£erjt for o:s,£ < m}. If r} = (X) + if3} is a nonreal root, the
contribution of r} and r} to the solution of the differential equation is the set of
functions t£eajt cos(f3}t) and teeajt sin(f3}t) for o:s,£ < m}. If the real-valued roots
are indexed by 1 :s j :s 10 and the complex-valued roots have indices 10 < j :::: d, the
general solution to the initial value problem is of the form

Jo mj-l d mj-l

x(t) = L L Ce,}teerjt + L L [De,} cos(f3}t) + Ee,} sin(f3}t)] teeajt

}=l e=o }=Jo+l e=o

(8.17)

where the n constants Ce,}, De,}, and Ee,} are determined by the initial conditions
of the problem.

Just as we converted the second-order equation to a first-order system, we may
convert the nth-order equation to a system. Define Yk(t) = x(k-l)(t) for 1:::: k :::: n.
Differentiating the equation we obtain

The last equation is

In vector form, definey = [Yl ... Yn]T, get, y) = [Y2 ... Yn f(t, Yl"'" tn)]T, and
Yo = [xo x61

) ... x6n- 1)]T. The initial value problem for the first-order system is

y = g(t, y), t ::: to, y(to) = Yo (8.18)

which is identical to equation (8.12) except for the dimension ofy. Thus, numerical
solvers for first-order systems are all that we need to solve nth-order equations.

446 Chapter 8 Differential Equations

8.5 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

We have already observed that an nth-order differential equation can be reformulated
as a system of n first-order equations. This applies to linear differential equations,
of course. A special case of interest, both generally and for physical applications, is
the nth-order linear equation with constant coefficients. These equations arise in the
stability analysis of the differential equation, a topic discussed Section 8.6.

The nth-order homogeneous linear equation with constant coefficients is equa­
tion (8.16), and it has a general solution given by equation (8.17). We can reformulate
the equation and its solution in vector-matrix form. Recall that we defined an n x 1
vector y whose components are Yk(t) = x(k-l)(t) for 1::: k ::: n. The system of equa­
tions is

y = Ay, t:::: to, (8.19)

where A is an n x n matrix of constants and Yo is the vector of initial conditions for
the original equation. The matrix A is specifically

0 1 0 0 0
0 0 1 0 0

A=
0 0 0 1 0
0 0 0 0 1

ao al a2 a n-2 an-l

The solution to the system of equations may be written as

yet) = eA(t-to\o (8.20)

where eA(t-to) is formally the exponential of a matrix power. Of course we need to
define what this means. Notice the similarity of this solution to the one for a single
first-order, linear, constant-coefficient, homogeneous equation (8.4).

Recall that the Taylor series for the exponential function is

and that it converges for any real-valued input x. Ifwe formally replace x by an n x n
matrix of constants A, we have an expression for exponentiating a matrix:

An advanced course on matrix analysis covers the topic of convergence of such a
series; for example, see [HI8S]. The series does in fact converge for any matrix. The

8.5 Systems of Linear Differential Equations 447

practical issue, though, is evaluating the series in order to compute the differential
equation solution in equation (8.20). Since we already know the format of the general
solution for the nth-order equation with constant coefficients, equation (8.17), we
expect that evaluation of the exponential eA(t-to) to depend somehow on the roots of

the characteristic polynomial p(r) = rn - L~:~ akrk.
The characteristic polynomial does, in fact, show up in the problem. From linear

algebra, the characteristic equation of a square matrix A is defined to be det(r I ­
A) = O. The determinant is indeed the characteristic polynomial p(r) = det(r I - A).
A fact well known in linear algebra is the Cayley-Hamilton Theorem that states
p(A) = 0, whereby you replace r formally by the matrix A in the characteristic
polynomiaL In our case we obtain the equation

n-I

An = LakAk

k=O

The nth power of A is decomposed into a linear combination of smaller powers
of the matrix. The ramification for evaluating eA is that the term An in the power
series formula can be replaced by a linear combination of smaller powers. The next
term is

= A (aoI + alA + ... + an_IAn-I)

=aoI + aIA
2 + ... + an_IAn

n-I

=aoI + aIA
2 + ... + an-I L ak Ak

k=O

where the constants bk are computed by grouping together like powers of A. We can
repeat this procedure to obtain

n-I

A
n+m = L cm,kAk

k=O

for any m ::: O. When m = 0 we have cO,k = ak and when m = 1 we have cI,k = bk
from the formula we derived for An+I

. Replacing in the power series:

448 Chapter 8 Differential Equations

00 A k n-1 A k 00 A k

L-=L-+L-
k=O k! k=O k! k=n k!

n-1 A k 00 A n+m

=L-+L--
k=O k! m=O (n + m)!

n-1 k 00 n-1

=L~+LL Cm,k A k

k=O k! m=O k=O (n + m)!

n-1 k n-1 (00)=L ~ +L L Cm,k A k

k=O k! k=O m=O (n + m)!

n-1 (00)=L ~ + L Cm,k Ak

k=O k! m=O (n + m)!

where the last equation defines dk = L~=o cm,k/(n + m)! Thus, the infinite sum is
replaced by a finite sum of the powers A k with k < n. Unfortunately, this does not
help us reach our final goal of computability because the dk are still infinite sums.

Well, it takes quite a bit more of the power of linear algebra to get us to our goaL
We need to be able to decompose A in such a way as to make the computation of
eA a reasonable endeavor. The motivation comes from diagonalizable matrices. The
matrix A is diagonalizable if there exists a diagonal matrix D and an invertible matrix
P such that A = PDP -1. Powers of such matrices are easy to compute. For example,

The square of a diagonal matrix D = Diag(d1, ... , dn) is D 2 = Diag(df, ... , d~).
Repeating the process we see that

where D k = Diag(d~, ... , d~). The exponential matrix is

A special case where A is diagonalizable is when it is a symmetric matrix. The
factorization is A = RDRT , where the columns of R are eigenvectors of A and the

8.5 Systems of Linear Differential Equations 449

diagonal entries of D are eigenvalues. Not all matrices are diagonalizable, so what to
do? A handful of decomposition formulas can help you compute eA , some good for
mathematical reasons and others good for numerical reasons. Your best bet numer­
ically is to use what is called the S plus N decomposition. The mathematical details
of the decomposition are presented in [HS74]. A square matrix A with real-valued
entries can always be decomposed as A = S + N, where S is a semisimple matrix and
N is a nilpotent matrix. A real-valued matrix N is said to be nilpotent if N P = 0 for
some power p > 0, but N k i= 0 for powers 1::::: k < p. A real-valued matrix S is said
to be semisimple if, as an operator on n-tuples of complex number, it is diagonaliz­
able. If we were to attempt to use the diagonalizability of S directly, we would have
S = PDP -1 for a diagonal matrix D and an invertible matrix P. The problem is
that D can have nonreal diagonal terms (complex conjugate roots of the characteris­
tic equation) and P can have nonreal terms. To avoid the nonreal values we need to
factor S = PEP-I, where P is a real-valued invertible matrix and E is of the form

E=
[

aJo+1

f3 Jo+1
(8.21)

where the distinct real-valued roots ofthe characteristic equation are rj for 1::::: j.::::: 10

and the distinct nonreal roots are rj = ex j ± 1f3 j for 10 < j .::::: d. The factorization
S = PEP -1 is always possible for a semisimple matrix.

First, it is important to know that the properties of the exponential function of
a matrix are not always the same as for real numbers. If a and b are real numbers,
then ea+b = eaeb = ebea = eb+a. If A and B are matrices, generally eA+B i= eAeB

and generally eAeB i= eBeA. The failure for equality of eAeB and eBeA should be
intuitive; you are already aware that matrix multiplication is not commutative. The
failure for equality ofeA+B and eAe B is not obvious. Now these terms are equal under
very special conditions, in particular when the input matrices themselves commute,
AB = BA.

The decomposition A = S + N has the property that SN = N S, so in fact we
can write eA = eS+N = eSeN. Since S is semisimple, it is factorable as S = PEP -1,

where P is invertible and E is a matrix of the form in equation (8.21). Since N is
nilpotent, the infinite sum of eN is really a finite one because N k = 0 for k ~ p,

00 k p-1 k

eN = L !!- =L !!-
k=O k! k=O k!

450 Chapter 8 Differential Equations

Combining these leads to a concise formula for eA ,

when D = Diag(d1, .•. , dn). The only remaining computation is eE
, a matrix that is

shown to be

(8.22)

The solution to the linear system of differential equations in equation (8.20) is
therefore

(8.23)

The bulk of the work in computing the solution is therefore in numerically comput­
ing the decomposition A = S + N and factoring S = PEP-I.

8.6 EQUILIBRIA AND STABILITY

An intuitive description of the concepts of equilibria and stability of solutions comes
from the simple pendulum problem of Example 3.4. The differential equation that
models the motion of the pendulum relative to the vertical, and measured in terms
of the angle e(t) formed with the vertical, is

.. g.e+ - SIll e= 0, t ~ 0,
L

If we were to let the pendulum hang straight down and not give it an initial
push, it would remain in the vertical position forever. The initial conditions for
this configuration are eo = 0 and eo = O. The solution to the differential equation
is e(t) = 0, where the three-barred symbol denotes "equal for all t!' This solution is
referred to as an equilibrium solution. Moreover, the solution is stable in the sense that
if you were to just slightly push the pendulum, the motion is about the equilibrium
solution and remains so for all time.

8.6 Equilibria and Stability 451

Now suppose you were to position the pendulum so that it was vertically upward
and had no initial velocity. The initial conditions are eo = rr and eo. Observe that
e(t) == rr is a solution to the differential equation with the specified initial conditions.
This solution is also an equilibrium solution, but it is unstable in the sense that ifyou
were to just slightly push the pendulum, the motion would take the pendulum far
away from eo = rr .

We can write the simple pendulum model as a system of equations of the form
. T'

of equation (8.18) by defining Yl = e(t), Yz = e(t), yet) = [Yl yz] ,Yo = [eo eo], and
g(t, y) = [yz - (gj L) sin YdT, namely,

y = get, y)

In this form the equilibrium solutions are y == (0, 0) and y == (rr, 0).
In general, an equilibrium solution to equation (8.18) is yet) == Yo where g(t, Yo) ==

o. Just as in the pendulum problem we want to know if we start the system near an
equilibrium solution, will it remain nearby for all time (stable)? Or will it immedi­
ately move away from the equilibrium (unstable)? To answer this question we need a
formal definition for stability. The definition is more general in that it may be applied
to any solution of the differential equation, not just to an equilibrium solution. The
intuitive concept is that a solution is stable when other solutions nearby at initial time
tend to stay nearby for all time.

The classical stability results are developed for autonomous systems of equations.
These are differential equations where the right-hand side does not explicitly depend
on t; that is, the differential equation is y = g(y).

Definition Let y = l/J(t) be a solution to y = g(y). The solution is stable if every so­
lution t(t) of the differential equation that is close to l/J(t) at initial time t = 0
remains close for all future time. In mathematical terms, this is reminiscent of
the definition for a limit: For each choice of £ > 0 there is a 8 > 0 such that
It(t) -l/J(t)1 < £ whenever It(O) -l/J(O)I < 8. If at least one solution t(t) does
not remain close, then l/J(t) is said to be unstable.

For a stable solution the £-8 definition says that you select the maximum amount
of error £ you can tolerate between t(t) and l/J(t). The value 8, which depends on
your choice of £, tells you how close to l/J(O) you have to start in order to stay within
that error.

8.6.1 STABILITY FOR CONSTANT-COEFFICIENT LINEAR SYSTEMS

The stability of solutions for constant-coefficient linear systems y= Ay is completely
determinable. The motivation for the general results is provided by the following
example.

452 Chapter 8 Differential Equations

Consider a second-order equation with characteristic polynomial r 2 - ar - b =
0. Suppose that the polynomial has two distinct real-valued roots rl and r2' The
solution to the initial value problem is listed in equation (8.8). Generally,

An equilibrium solution is ¢(t) == 0. In order for x(t) to remain close to ¢(t) for
all time, we need to understand what happens to x (t) as t becomes large (as t ~ 00

in the mathematical vernacular). The behavior of x(t) for large t is dependent, of
course, on the behavior of its components erjt and er2t

• If rl < °and r2 < 0, both
exponentials decay to zero, in which case lim t --+ oo x(t) = 0. In fact, x(t) remains
"close" to zero. However, if rl > 0, the exponential term erjt becomes unbounded
regardless of the value of r2 and x(t) does not stay dose to zero. The same instability
occurs if r2 > °regardless of the value of rl' That brings us to the case of rl =°and
r2 < °(or similarly, rl < °and r2 = 0). The solution is x(t) = C I + C2er2t and the
limiting behavior is limt --+ oo x(t) = CI . The solution remains dose to zero but does
not approach zero when C I i= 0. Being stable does not require the limit to be zero,
only that you stay dose for all time. Thus, the equilbrium solution is stable when
rl :::: °and r2 :::: °but unstable when either rl > °or r2 > 0.

If the roots ofthe characteristic equation are Ci ± i{3, where (3 i= 0, the initial value
problem has a solution provided by equation (8.9). Generally,

x(t) = (C I cos({3t) + C2 sin({3t))eat

The graph of this function has sinusoidal oscillations, but the amplitude is exponen­
tial. If Ci < 0, then the amplitude decays to zero over time. That is, limt --+ oo x(t) = 0.
The equilibrium solution ¢ (t) == °is stable in this case. If Ci > 0, the oscillations are
unbounded and the equilibrium solution is unstable. If Ci = 0, the function x(t) re­
mains bounded for all time, which means it remains dose to the zero solution ("close"
in the sense that it does not move unboundedly away from the zero solution). The
equilbrium solution is stable when Ci :::: 0, but unstable when Ci > 0.

Another case occurs when the characteristic polynomial has a repeated real root
r =a12. Equation (8.10) provides the solution to the initial value problem. Generally,

If r < 0, the solution decays to zero; the equilibrium solution is stable. If r > 0, the
solution becomes unbounded; the equilibrium solution is unstable. If r = 0, x(t) still
becomes unbounded (generally for any nonzero C2) and the equilbrium solution is
unstable. This behavior is slightly different than the previous cases when a root was
zero or the real part of a root was zero: The equilibrium solution is stable when r < °
but unstable when r ~ 0. The general stability result is listed next without proof.

8.6 Equilibria and Stability 453

Theorem Consider the constant-coefficient linear equation y = Ay.

1. Every solution is stable if all the eigenvalues of A have negative real parts.

2. Every solution is unstable ifat least one eigenvalue of A has positive real parts.

3. Suppose that the eigenvalues of A all have real parts that are zero or negative.
List those eigenvalues with zero real parts as r j = if3 j for 1 ::'S j :s £ and let the
multiplicity of r j relative to the characteristic equation be m j' Every solution
is stable if A has m j linearly independent eigenvectors for each r j' Otherwise)
every solution is unstable.

The first two conditions ofthe theorem are clearly illustrated by our example for a
second-order equation) when the characteristic roots are distinct. The third condition
is illustrated regardless of whether the characteristic roots are repeated or distinct. In
the case oftwo distinct real roots) when rl = 0 and r2 < 0 we have stability. The matrix
A has an eigenvalue r = 0 of multiplicity 1 and one linearly independent eigenvector
to go with it. In the case of two distinct nonreal roots) when ex = 0 we have stability.
Each nonreal root is an eigenvalue of A with multiplicity 1) each eigenvalue having
one linearly independent eigenvector to go with it. In the case of a repeated real
root) the matrix A has an eigenvalue r = a12 of multiplicity 2) but only one linearly
independent eigenvector (1) aI2)) so the equilibrium solution is unstable.

Notice that when all the eigenvalues of A have negative real parts) the limit of any
solution x(t) as t approaches infinity is O. Thus) the equilibrium solution ¢(t) = 0
is stable. The limit being zero is quite a strong condition. In this case we say that the
zero solution is asymptotically stable. The concept applies to any solution:

Definition Let y = t!J(t) be a solution to y = g(y). The solution is asymptotically stable
if it is stable and if every solution t(t) that is close to t!J(t) at initial time t = 0
approaches t!J(t) as t approaches infinity.

8.6.2 STABILITY FOR GENERAL AUTONOMOUS SYSTEMS

This last section shows the stability properties for constant-coefficient) linear systems
of equations. Other than the mass-spring systems) our physics applications were
invariably nonlinear. We would still like to know the stability of the physical systems
at equilibrium points. Consider the general autonomous system)

y = Ay + g(y)

where A is an n x n matrix of constants and where g(y) is an n x 1vector for which
g(y)/llyll is continuous and which is zero when y is zero. The norm of the vector is
the max norm) Ilyll = max{IYll) ...) IYnlL and is not the length of the vector. The
stability analysis is summarized by the following.

454 Chapter 8 Differential Equations

Theorem Consider the equilibrium solution y(t) == 0 of Y= Ay + g(y), where
g(y)/Ilyll is continuous andlimy---+o g(y)/Ilyll = o.

1. The equilibrium solution is asymptotically stable if all the eigenvalues of A
have negative real parts.

2. The equilibrium solution is unstable ifat least one eigenvalue ofA has positive
real parts.

3. The stability of the equilibrium solution cannot be determined from the sta­
bility of the equilibrium solution for the linear system y = Ay when all the
eigenvalues of A have real parts zero or negative with at least one eigenvalue
having real part zero.

The classical way this result is applied to a general autonomous system y = fey),
where f(O) = 0, is to use Taylor's Theorem with Remainder from calculus to write

fey) = f(O) + Ay + g(y) = Ay + g(y)

where A is the matrix of first-order partial derivatives of fey) evaluated at zero and
g(y) is the remainder term of second- and higher-order expressions.

The three conditions of the theorem mimic those shown in the theorem for
stability oflinear systems with constant matrix A. The last condition is problematic.
In the case of linear systems, having some eigenvalues with negative real parts and
the rest with zero real parts puts you on the border of stability versus instability.
This is a particular problem in the numerical solution of differential equations. If
you have a physical model for which theoretically there is a zero eigenvalue of the
linearized system, numerical error can make it appear as if the model actually has a
small positive eigenvalue, causing the numerical solution to behave erratically.

As an example consider the damped, simple pendulum problem. The equation of
motion is e+ (g / L) sin e= -ce, c > 0, where the right-hand side represents viscous
friction at the pendulum joint. Setting Yl = e, Y2 = e, y = [Yl Y2]T, and

fey) = [fl(Yl' Y2)] = [g Y2]
h(Yl' Y2) -r sin Yl - CY2

the system that models the pendulum is y = fey), where f(O) = O. The linearized
system is y = Ay, where

The eigenvalues are r = (-c ± .jc2 - 4g/L)/2. If c > 0 and c2 ::::: 4g/L, the eigen­
values are negative real numbers and we have asymptotic stability of y == O. What
this means physically is that if you start the pendulum nearly vertical and give it a
small velocity, it will move to the vertical position and stop without oscillating about

8.6 Equilibria and Stability 455

the vertical position (strong damping). If c > 0 and c2 < 4gjL, the eigenvalues are
complex-valued with nonzero imaginary parts and negative real parts. Ifyou start the
pendulum nearly vertical and give it a small velocity, it will oscillate about the vertical
position and eventually stop in the vertical position (weak damping). If you remove
the damping so that c = 0, the eigenvalues are ±if3 for a value f3 =f=. O. The theorem
does not provide us any information on the stability in this case. A more detailed
analysis will show that the zero solution is stable, but not asymptotically stable. That
is, if you start the pendulum in a nearly vertical position and give it a small velocity,
it will oscillate about the vertical forever (never stopping).

If you have shied away from eigenvalues and eigenvectors, change your ways!
The eigendecomposition of a matrix is related to solving linear systems of differen­
tial equations that in turn occur as part of a physical simulation. And you want to
program physics in a game environment, do you not? We did not avoid eigenvalues
and eigenvectors in the previous chapters of this book, but one topic I intentionally
avoided was choosing a differential equation solver for the equations of motion of
a physical model. Part of the decision process involves choosing a step size for the
numerical solver. This choice depends on the physical stability of equilibria of the
system, an analysis that requires eigendecomposition. The choice also depends on
the numerical stability of the solver. The relationship between physical stability and
numerical stability is discussed in the next chapter.

NUMERICA

T his chapter is the most fitting one for a computer implementation of a physical
simulation. The focus ofthe book has been on understanding the basic concepts

of physics, modeling a physical system, and deriving the equations of motion for
that system. The physical simulation itself requires us to implement methods that
numerically solve the differential equations that we derive. Many choices exist for
numerical solvers. Each choice has its trade-offs to consider, the usual one being
an exchange of speed for accuracy and/or stability. We want the solver to be fast,
accurate, and robust. In most cases it is not possible to obtain all three simultaneously.
A variety of algorithms for numerically solving differential equations are provided
here, some to give you a flavor of the ideas even if they are not the best choices for
a real application. The issue of stability is revisited, as promised in the chapter on
differential equations.

To keep the discussion simple, let us look at a single first-order differential equa­
tion with initial conditions

i = f(t, x), t:::: ta, x(ta) = Xa (9.1)

The methods presented here extend easily to vector-valued functions that we en­
counter in the physics applications. Much of the analysis depends on looking at the
derivatives of x(t). In particular, recall the following result from calculus:

457

458 Chapter 9 Numerical Methods

Taylor's Theorem If x(t) and its derivatives x(k)(t) for 1~ k ~ n are continuous on
the closed interval [to, t1]and x(n)(t) is differentiable on the open interval (to, t1),
then there exists t E [to' t1]such that

By convention x(O)(t) = x(t). The polynomial Pn(t) = L~=o X(k) (to)(t - to)k / k!
is called the Taylor polynomial of degree n and may be used to approximate x(t).
The remainder term is Rn(t) = x(n+1)(t)(t - to)n+1/(n + I)! In practice we estimate
a bound M for which Ix(n+l)(t) I :::: M for all t E [to, td, thus leading to a bound on
the total error IRn(t)1 ~ M(t1- to)n+1/(n + I)! for t E [to, td.

9.1 EULER'S METHOD

No discussion of numerical methods is complete without mentioning Euler's
method, a very simple and popular method for solving differential equations. Its at­
traction is its simplicity. Its downfall is its large amount oftruncation error compared
to other methods and its lack of stability and accuracy for many practical examples.

Euler's method is a matter of using Taylor's Theorem with n = 2 on the interval
[ti' ti+d, where h = ti+1- ti > 0. Using dot notation, since we only have a couple of
derivatives to look at,

for some t E [ti , ti+d. Observe that we replaced i(ti) by f(ti' x(ti)) since we know
that x (t) is a solution to the differential equation (9.1). Define xi = x (ti) for all i; keep
in mind that Xi refers to the exact value of the solution to the differential equation at
time ti. Discarding the remainder term and using Yi to denote the approximation to
Xi' we obtain Euler's method,

Yi+1 = Yi + hf(ti' Yi), i:::: 0, Yo = Xo (9.2)

Certainly this is an easy method to implement. The important question, though, is
how well Yi approximates Xi for large i. In particular we would like to know a bound
on the error term IXi - Yi I·

In Chapter 8, "Differential Equations;' we mentioned an existence and unique­
ness theorem whose hypotheses included the continuity of the partial derivative
fx (t , x) on a rectangle containing the initial point (to, xo). This condition implies

If(t, x) - f(t, x)1 :::: Llx - xl

9.1 Euler's Method 459

for some constant L > 0 and for any (t, x) and (t, i) in the rectangle. Let us assume
that there is a value M > 0 for which Ix (t) I :::: M for all t of interest in our differential
equation solving. We can use these facts to obtain an upper bound on the error term
IXi - yd· Specifically,

IXi+l - Yi+ll = IXi + hI(!i> x;) + xCi) ~2 - Yi - hI(!,> Y;)I

::: IXi - Yil + hl!Cti' xi) - !(ti' Yi)1 + Mh
2/2

:::: IXi - yd + Llxi - Yil + Mh
2/2

= (1 + Lh)lxi - yd + Mh 2/2

Define ei = IXi - Yd. The preceding inequality is of the form ei+l ::: (1 + Lh)ei +
c for c > O. We know that eo = O. The inequality for i = 1 is

el:::: (1 + Lh)eo + c = c

The inequality for i = 2 is

e2::: (1 + Lh)el + c ::: (1 + Lh)c + c = ((1 + Lh) + l)c

For i = 3 the inequality is

e3::: (1 + Lh)e2 + c ::: (1 + Lh)((1 + Lh) + l)c = ((1 + Lh)2 + (1 + Lh) + l)c

You should recognize the pattern and deduce that, in general,

i-I

ei :::: c L(1 + Lh)j
j=o

Mh 2 (1 + Lh)i - 1

2 Lh

Mh 2 eiLh - 1
<-----

2 Lh

::: Kh

(9.3)

for i ::: 1. We have used the fact that (1 + x)P ::: ePx for x ::: 0 and p > O. We also
used ti = to + ih. The final bound K is a constant that absorbs M and L and uses the
fact that expeL (ti - to) is bounded when we are solving the differential equation on
an already specified interval [to, T], namely, exp(L(ti - to)) ::: exp(L(T - to))' The

460 Chapter 9 Numerical Methods

bound K is independent of h; the smaller h is, the more iterations it takes to get to
time T, but K is independent of this process.

What we have shown is that the amount of error ei between the true value of the
iterate Xi and the approximate value Yi is bounded by ei .:s K h for some constant K.
If you were to halve the step size, you would expect only half the error and a better
approximation. However, it takes you twice as many steps to reach the maximum
time T. This is one of the promised trade-offs you have to decide on: smaller errors
in exchange for more computing time.

The analysis that led to the inequality of equation (9.3) is based on truncation
error in the mathematical formulation. That is, we discarded the remainder term
from Taylor's Theorem and argued how much error occurs in the iterates. As you
are well aware, a full numerical analysis of the problem must also deal with errors
introduced by a floating point number system. In particular, when you compute
Yi + hf(ti' Yi) using floating point arithmetic, a small round-off error will occur.
If 8i+ 1 is the round-off error that occurs when computing Yi+1' we can formulate
yet another equation for determining the actual floating point values obtained from
Euler's method:

The iterate Zi is the floating point number that occurs when trying to compute the
theoretical value Yi. An argument similar to the one used in the truncation error can
be applied to estimate the error IXi - Zi I. Specifically,

lx,+! - z'+11 = Ix; + hf(t;> x,) + xCi) ~2 - z, - hf(t,> z,) - 8,+11

Mh 2

:s (1 + Lh)lxi - z;I + -2- + 8

where 8 is an upper bound on all the 18i I values. Define c = IXi - zi I. In this case co
is not necessarily zero since the floating point representation Zo for Xo might not be
an exact representation. The inequality for i = 1 is

The inequality for i = 2 is

For i = 3 the inequality is

c3 :s (1 + Lh)C2 + 8 .:s (1 + Lh)3cO + ((1 + Lh)2 + (1 + Lh) + 1)(Mh2/2 + 8)

9.2 Higher-Order Taylor Methods 461

The pattern leads to the closed form

L(T-t) eL(T-to) - 1(Mh 8)
< cae 0 + - +-
- L 2 h

1
= Ko+ K1h + K2 -

h

(9.4)

for i 2: 1and for some constants Ko, K 1, and K2•

The inequality of equation (9.4) differs from that of equation (9.3) in that a term
1/ h occurs in equation (9.4). The general folklore of numerical differential equation
solvers is that to get a better approximation you choose a smaller step size. This
analysis shows that in fact this is not always true. Inequality (9.4) shows that as you
let h approach zero, the error can become unbounded. Please keep in mind that
the bound we produced using the inequality is exactly that-a bound. The actual
error can be less; but then again, it might reach the upper bound. Also notice that
(Mh/2 + 8/ h) has a global minimum at h = J28/ M. This choice of h produces the
smallest error bound. For an actual floating point number system, the chances are
that J28/ M is sufficiently small that you would never decrease h to such a small
number in your numerical solver.

The analysis of this section was quite lengthy, but I include it to let you know that
this is what numerical analysis of an algorithm is all about. You have errors due to
mathematical approximations in the algorithms and errors due to representation in
a floating point number system. In order to have some assurance of the accuracy of
the output of the computer, you might consider doing analyses of this type yourself.

9.2 HIGHER-ORDER TAYLOR METHODS

Euler's method is the algorithm obtained by using the first-degree Taylor polynomial
ofx (t) to approximate x (t + h). Higher-order approximations may be used, the class
ofsuch algorithms called higher-order Taylor methods. For example, Taylor's Theorem
when using a second-degree polynomial is

where h = ti+l - ti and for some t E [ti , ti+l]. We know that i(t) = f(t, x(t)) since
x(t) is a solution to the differential equation. An expression for x(t) is obtained by

462 Chapter 9 Numerical Methods

differentiating the differential equation and using the chain rule from calculus,

x(t) = !!.- f(t, x(t))
dt

= ft(t, x(t)) + fx(t, x(t))i(t) = ft(t, x(t)) + fx(t, x(t))f(t, x(t))

where ft = af/at and fx = af/ax. The numerical method for degree n = 2 is

Euler's method is a Taylor method ofdegree 1and has approximation error bound
K h for some constant K. The degree n Taylor method can be shown to have an error
bound K hn for some constant K, so generally you expect more accuracy than Euler's
method for a given step size h.

The technical problem with Taylor methods is that you need to formally compute
the partial derivatives of f(t, x). In many applications such as our physics examples
where f represents external forces and torques, we do not have the luxury of com­
puting derivatives since we do not know ahead of time a closed form for f itself.

9.3 METHODS VIA AN INTEGRAL FORMULATION

The initial value problem of equation (9.1) may be formally integrated to obtain

(t i +1

X(ti+1) = x(tJ + Jt: f(t, x(t)) dt
I

(9.6)

Define ¢(t) = f(t, x(t)); for the sake of illustration, suppose that ¢(t) > O. The
integral of equation (9.6) represents the area bounded by the graph of ¢(t), the t­
axis, and the vertical lines t = ti and t = ti+1' Figure 9.1(a) illustrates.

Figure 9.1 (b) shows an approximation of the area by a rectangle,

{ti+1 (tHI

Jf, f(t, x(t)) dt = Jt: ¢(t) dt == (ti+1- tJ¢(tJ = (ti+1- tJf(ti' xJ
I I

If Xi = x(ti), Yi is an approximation to xi' and h = ti+1 - ti' then substituting the
integral approximation into equation (9.6) produces Euler's method: Yi+1 = Yi +
hf(ti' yJ.

Figure 9.1 (c) shows an approximation of the area by a trapezoid,

i
ti+1 f(t- x·) + f(t- 1 x· 1)

f(t, x(t)) dt == (ti+1 - tJ l' 1 1+' 1+
ti 2

9.3 Methods via an Integral Formulation 463

(a) (b) (c)

Figure 9.1 (a) Area under a curve. (b) Approximation of the area by a rectangle (leads to Euler's
method). (c) Approximation of the area by a trapezoid (leads to the modified Euler's
method).

This leads to a numerical algorithm for approximations Yi to Xi'

h
Yi+l = Yi + 2(fUi' yJ + fUi+l' Yi+l)), i ~ 0, Yo = Xo (9.7)

Unfortunately, we cannot immediately use this equation since the quantity we wish
to determine, Yi+l' occurs on both the left and right sides of the equality. One mod­
ification to remedy this is to use an Euler step for the term on the right, Yi+ 1 =

Yi + hfUi' yJ:

h
Yi+l = Yi + -(fUi' yJ + fUi + h, Yi + hf(ti' yJ)) (9.8)

2

This is referred to as the modified Euler's method and is an explicit method since Yi+ 1 is
defined explicitly in terms of the quantities ti and Yi computed at the previous time.

The method in equation (9.9) is referred to as an implicit method since Yi+l is
defined implicitly by the equation. Implicit equations can use Newton's method for
root finding to determine the unknown quantity. In our example, ifwe define

g(z) = (Xi + ~ f(li,Xi)) + ~ f(li+ h, z) - z

464 Chapter 9 Numerical Methods

then Yi+l is a root of g(z) = 0; that is, g(Yi+l) = O. A reasonable starting guess for z
is Zo = Yi' The Newton iterates are

j~O

You may well compute iterates until you are assured of convergence to a root that
is used for Yi+l' An alternative that uses a bounded amount of time is just to iterate
once and use that as your choice for Yi+l' in which case

(h/2)(f(ti + h, Yi) + fUi' Yi))
Yi+l = Yi - (h/2)fxUi + h, Yi) - 1

(9.9)

This does require knowing the partial derivative fx (t , x) in order that you may
evaluate it.

An implicit method that occurs in a simpler manner is to think of Euler's method
as an algorithm that uses a forward difference to approximate the first derivative of
x(t). That is,

. . x(t· + h) - x(t·) x(t· + h) - x(t·) xi+l - Xix(t.) = hm I I == I I = -----'-__
I h---+O h h h

Choosing Yi as the approximation to Xi and substituting into the differential equation
leads to the approximation (Yi+l - yJ/ h = fUi' yJ or Yi+l = Yi + hf(ti , yJ, which
is Euler's method. If we were to use a backward difference to approximate the first
derivative:

then substituting into the differential equation and multiplying by h leads to an
implicit Euler's method,

(9.10)

The equation is implicit since xi+l occurs on both sides of the equality. Just as
we tried earlier, define g(z) = Yi + hf(ti + h, z) - z and compute Yi+l as a root of
g(z) = O. Using Newton's method with an initial iterate Zo = Xi and iterating only
once, we have

hf(ti + h, yJ
Yi+l = Yi - hf (t. + h .) - 1

x I 'Yl
(9.11)

This also requires knowing the partial derivative fx (t , x) in order that you may
evaluate it.

9.4 Runge-Kutta Methods 465

9.4 RUNGE-KUTTA METHODS

The Taylor methods of Section 9.2 have high-order truncation errors, a good thing
for an algorithm, but the methods require that you compute partial derivatives of
f(t, x). Runge-Kutta methods are designed to have the same high-order truncation
error, yet use only evaluations of the function f(t, x). The derivations require the
extension of Taylor's Theorem to bivariate functions.

Taylor's Theorem Let f (t , x) and its partial derivatives of orders 1 through n + 1be
continuous on a rectangular domain D. Let (ta, xa) E D. For every (t, x) E D,
there is atE [ta, t] and an i E [xa, x] such that f(t, x) = Pn(t, x) + Rn(t, x),
where

n j .

P (t, x) = '" ~ '" (~) a
l

f.(t~, x~) (t _ t)j-i(x _ x)i
n ~ ., ~ l a J-1a 1 a a

j=a J. i=a t x

is the Taylor polynomial ofdegree n and where

n+l () n+l --
R(t,x)='" n:-l a f(~,x~(t_t)n+l-i(x_x)i

n ~ l atn+1- 1 ax l a a
I=a

is the remainder term.

The Taylor polynomial you see quite often in practice is the one that includes the
first- and second-order partial derivatives:

where Df (t , x) is called the gradient of f (t , x) (a list of the first-order partial deriva­
tives) and D2f (t , x) is called the Hessian matrix of f (t , x) (a list of the second-order
partial derivatives).

466 Chapter 9 Numerical Methods

9.4.1 SECOND-ORDER METHODS

The application of Taylor's Theorem to the solution x(t) produces the equation
x(t + h) = x(t) + hi(t) + ¥-x(t) + R(t) for a remainder R(t) that is oforder O(h 3).

Using i = f(t, x) and x = ft + ffx as we did in deriving Taylor's method in equa­
tion (9.5), we have

h2

X (t + h) = x (t) + hf (t , x) + - (ft (t , x) + f (t , x) fx (t , x)) + R (t) (9.12)
2

As indicated, the equation requires evaluating the first-order partial derivatives of f.
What we would like to do instead is replace the derivative evaluations by function
evaluations. This is possible through an approximation that will change the remain­
der term R. Specifically, we want to obtain a formal expression

x(t + h) = x(t) + haf(t + b, x(t) + c) + R(t)

for some choice of a, b, and c and a remainder R(t) that is of order O(h 3). Using
Taylor's Theorem for bivariate functions, we have

af(t + b, x + c) = af(t) x) + abft(t) x) + acfx(t, x)c + Set)

where Set) is O(h2). The right-hand side appears to be ofthe form shown in equation
(9.12). Matching terms we obtain a = 1) ab = h12, andac = (hI2)f. The error terms
match up as R(t) = hS(t) + R(t). Consequently, a = 1, b = h12, and c = hfl2, so
that

x(t + h) = x(t) + hf (t + %' x(t) + %f(l, X(t))) + R(t)

This suggests a numerical method for solving the differential equation,

(9.13)

and is called the midpoint method.
The midpoint method occurred as a result of using a Taylor polynomial of degree

1 to approximate x(t). The numerical method has error of order O(h2). The hope is
that an approximation using a Taylor polynomial of degree 2 will lead to a method
whose error is of order O(h 3). As it turns out, we can use the same method of
construction but only obtain 0 (h 2) methods. From Taylor's Theorem,

9.4 Runge-Kutta Methods 467

h2 d h3 d 2

x(t + h) = x(t) + hf(t, x) + 2 dt fU, x) + (5 dt 2 f(t, x) + R(t)

h2 h3 2 (9.14)
=x(t) + hf + -eft + ffx) + -(ftt + 2fftx + f fxx

2 6

+ fx(ft + ffx)) + R(t)

where R(t) is of order O(h4). To replace the derivative evaluations by function eval­
uations, we postulate a formal expression,

x(t + h) = x(t) + h(alf(t, x(t)) + a2f(t + b, x(t) + e)) + R(t)

for some choice of aI' a2' b2, and e2 and a remainder R(t) that is of order O(h4
).

Using Taylor's Theorem to expand the expression involving the functions,

alf(t, x) + a2f(t + b, x + e)

=alf + a2(bft + efx + (b2/2)ftt + beftx + (e2/2)fxx) + Set)

where Set) is of order O(h 3). The right-hand side is almost of the form in equation
(9.14), except there is no subexpression involving fx(ft + ffx)' Regardless, let us
try to match as many terms as possible. We can match the f, ft> and fx terms:
al + a2 = I, a2b = h/2, and a2e = hf/2. The remaining matches overconstrain the
problem. This, and the inability to match the term fx(ft + ffx)' means that those
terms must become part of the remainder S(t), forcing it to be of order O(h2)

instead.
Our matched terms involve four parameters but only three equations. This gives

us some flexibility in choosing them. One choice is al = a2 = 1/2, b = h, and e = hf,
leading to the numerical method

h
Yi+l = Yi + -(fUi' yJ + fUi + h, Yi + hfUi' yJ)) (9.15)

2

You will notice that this is the modified Euler method (9.8) derived by other means.
Another choice ofparameters is al = 1/4, a2 = 3/4, b = 2h /3, and e = 2hf/3, leading
to the numerical method

Yi+l = Yi + ~ (I (Ii , Yi) + 31 (Ii + ~ h, Yi + ~ hl(ti' Y;))) (9.16)

This is referred to as Heun's method.

468 Chapter 9 Numerical Methods

9.4.2 THIRD-ORDER METHODS

The inability to match some of the higher-order terms had to do with choosing an
expression with a singly nested evaluation of f. That is, we have attempted to replace
derivative evaluations by function evaluations using a term of the form f Ct + a, x +
{3f (t , x)). We can actually match the higher-order terms ifwe include a doubly nested
term,

f(t + aI' x + {3lf(t + a2' x + {32fCt, x)))

The method of construction is to expand this using Taylor's Theorem. The algebraic
details are tedious because you have to first expand f(t + a2' x + {32f), substitute it
in the second component of the outermost f, and expand that. A symbolic mathe­
matics package is quite useful here, not that Runge and Kutta could have benefited
since their development of the ideas was in about 1900!

A couple of numerical methods of third order that are obtainable from this con­
struction are

No nesting

Singly nested

k3 = hfCti + h, Yi - kl + 2k2)

1
Yi+l = Yi + -(kl + 2k2+ k3)

6

Doubly nested
(9.17)

which for lack of a proper name we will call the RK3a method, and

k, = hf (Ii + ~'Yi + ~,)

k
3
= hf(t. + 2h , y. + 2k2)

I 3 I 3

which we will call the RK3b method.

(9.18)

9.4 Runge-Kutta Methods 469

9.4.3 FOURTH-ORDER METHOD

To obtain a fourth-order method, the Taylor polynomial used to approximate x(t) is

The symbolic expansion ofd 3J/dt 3 is quite complicated. The replacement of deriva­
tive evaluations by function evaluations uses a matching scheme by postulating a
combination of function terms, one term with no nesting, one singly nested term,
one doubly nested term, and one triply nested term. The details of matching are not
shown here as they are quite complicated. The resulting numerical method is

No nesting

Singly nested

k4 = hJ(ti + h, Yi + k3)

1
Yi+l = Yi + -(k1 + 2k2 + 2k3 + k4)

6

Doubly nested

Triply nested

(9.19)

and is known as a Runge-Kutta fourth-order method (or the RK4a method). I specifi­
cally used the article a, not the. Other fourth-order methods are possible, just like the
midpoint, modified Euler, and Heun methods were different second-order methods.
A concise summary of many of these methods may be found in [AS65, Section 25.5].
Two of these are

k3 = hi (ti + 2:, Yi - ; + k2)

k4 = hJ(ti + h, Yi + k 1 - k2 + k3)

1
Yi+l = Yi + -(k1 + 3k2 + 3k3 + k4)

8

(9.20)

470 Chapter 9 Numerical Methods

which I will refer to as the RK4b method. The other is

k3 = hf (Ii + ~, Yi + (- ~ +If) k, + (1 - If) k2)

k4 =hf (Ii +h, Yi - If k2 + (1+ If) k3)

Yi+ 1 = Yi + ~ (k' +2(1 - If) k2+2(1+ If) k3+k4)

which is known as Gill's method.

9.5 MULTISTEP METHODS

(9.21)

The methods previously discussed in this chapter are referred to as one-step methods.
Each numerical method computes Yi+l using information only about Yi' Euler's
method is an explicit one-step method, Yi+l = Yi + hf(ti' yJ. We also mentioned
the implicit Euler's method-a one-step method, Yi+l = Yi + hf(ti+1, Yi+l)-that
requires root finding to solve for Yi+l' Multistep methods are a generalization of these
two equations. An m-step method generates the iterate Yi+l from the previous iterates
Yi through Yi-(m-l)' The general method is summarized by

m-l m

Yi+l = L ajYi-j + h L bj fCti+l-j' Yi+l-j)' i 2: m - I
j=o j=o

(9.22)

where the method is implicit if bo =1= 0 (Yi+l occurs on the right-hand side) or explicit
if bo = 0 (Yi+l does not occur on the right-hand side). Initial conditions are required
to start the iteration and must include known values for Yo through Ym-l' In practice
you typically know only Yo at time to. The other iterates can be generated by using a
I-step method, a bootstrapping process of sorts.

The differential equation in its integral form is mentioned in equation (9.6). For
f > 0 the motivation for numerical methods was to approximate the area under the
curve ¢ (t) = f (t , x (t)) for ti :'S t :'S ti+l' Multistep methods are derivable in a similar
manner. The approximation by the area of a rectangle is equivalent to approximating
¢(t) by a constant function pet) = ¢(ti) and integrating. The approximation by

9.5 Multistep Methods 471

the area of a trapezoid is equivalent to approximating ¢(t) by a linear function
pet) = ¢(tJ + (¢(ti+I) - ¢(tJ(t - tJ/(ti+I - tJ but leads to an implicit method
because of the occurrence of the future value ¢(ti +I). We may approximate ¢(t) by a
polynomial pet) of higher degree and obtain either explicit or implicit methods.

The explicit m-step method using the higher-degree approximation is to choose
pet) as the interpolating polynomial of degree m - 1 of the iterates (t j , Yj) for
i - m + 1 :::: j :::: i. If we set t = ti + sh, where s is a continuous variable and Ii =
I (ti' YJ, the polynomial is

P() _ i ni s(s + 1) n2i s(s + 1) ... (s + m - 2) nm-li
t - ,+sv .+ v .+ ... + v .

I I 2 I (m _ I)! I

where V j Ii terms are backward differences defined by V fi = Ii - Ii -1' and
Vk+ I fi = V(VkIJ for k ~ 1. The numerical method obtained by integrating pet)

and using it as an approximation to the integral is referred to as the Adams-Bashforth
m-step method. The local truncation error is O(hm). Some special cases are shown:

Yi+1 = Yi + hfi Euler's method

h(3fi - ii-I)
Yi+1 = Yi + 2 two-step method

h(23fi - 16fi-1 + 5fi-2)
Y· I - y. + three-step method

1+ - 1 12

h(55fi - 59h_1 + 37ii-2 - 9ii-3)
Yi+1 = Yi + 24 four-step method

h(l901fi - 2774ii_1 + 2616fi_2 - 1274ii_3 + 251fi_4)
Yi+1 = Yi + 720 five-step method

(9.23)

The derivation of the two-step method uses pet) = Ii + s(fi - Ii-I) and

If
'+f p(t) dt

I

A small observation: The coefficients of the I -terms add up to the denominator of
the h-term.

In the Adams-Bashforth explicit solver the polynomial pet) interpolates the it­
erates occuring at times t :::: ti . The values of pet) for t E [ti , ti+I] are extrapolated.
In a sense the solver predicts the value Yi+I by this extrapolation. An implicit solver

472 Chapter 9 Numerical Methods

is obtained by interpolating the iterates at times t ::::: ti+l. For example, if a two­
step implicit method interpolates (ti-l, Ii-I), (ti' IJ, and (ti+l' ii+l) by a quadratic
polynomial,

P(t) = +. + (/i+l - ii-I) (t _ f.) + (ii+l - 2/i + ii-I) (t _ f.)2
Jl 2h I 2h2 I

The integral is

1
~+1 h

pet) dt = -(S/i+l + 8/i - ii-I)
ti 12

The implicit solver is Yi+l = Yi + (h/12)(Sii+l + 8ii - Ii-I). The m-step implicit
method obtained in this manner is referred to as the Adams-Moulton m-step method.
In general the local truncation error of an m-step implicit method is O(hm+1), one
degree larger than for an m-step explicit method. As a rule of thumb you get better
accuracy with the implicit method, but the cost is that you have to solve the implicit
equation for Yi +1. Some special cases are shown:

h(5fi+1 + 8fi - fi-I)
Yi+1 = Yi + --'--12----

Trapezoid method,
equation (9.7)

two-step method

(9.24)
h(9 fi+1 + 19 fi - 5fi-1 + fi-2)

Y· I - y. + three-step method
1+ - 1 24

h(251 fi+1 + 646fi - 264fi_1 + 106fi_2 - 19h-3)
Yi+1 = Yi + 720 four-step method

9.6 PREDICTOR-CORRECTOR METHODS

The Adams-Bashforth m -step solver is an explicit method that interpolates the iter­
ates through time ti with a polynomial and integrates the polynomial on [ti' ti+l]. As
such we are using the polynomial to extrapolate the behavior for times t ~ ti • The
resulting approximation is used to generate the iterate Yi+l. The Adams-Moulton m­

step solver is an implicit method that interpolates the iterates through time ti+l with a
polynomial and integrates the polynomial on [ti' ti+1]. We are using the polynomial
to interpolate the behavior for times t ~ ti , but since we do not know Yi+l we ob­
tain the implicit behavior. Rather than solve the implicit equation via a root finder or
fixed point iteration, something not guaranteed to be stable or robust, we use the two
methods together. The pair forms what is called a predictor-corrector method. The ex­
plicit method is used to predict the value ofYi+l. This value is used on the right-hand
side of the implicit equation to correct the value. The left-hand side of the implicit
equation is the corrected value. Of course, you may iterate the corrector portion of

9.7 Extrapolation Methods 473

the system by taking the left-hand side value and feeding it back to the right-hand
side, effectively implementing a fixed point iteration that hopefully converges.

9.7 EXTRAPOLATION METHODS

In this section we look at the prospect of applying extrapolation methods to increase
the accuracy of our approximations to the solutions of differential equations. The
basic approach will be to compute three approximations to x(t) using different step
sizes whose ratios in pairs are integers; each approximation will require a different
number of iterations. The approximations are all O(h 2) but can be combined to
produce an approximation that is O(h6).

9.7.1 RICHARDSON EXTRAPOLATION

Accurate approximations may be obtained from low-order formulas using a method
called Richardson extrapolation [RG27]. Let Q be an unknown quantity, which is
approximated by A(h). Think of A(h) as a black-box process that can approximate Q
depending on some parameter h that you may choose as you like. For our purposes
h is the step size in the differential equation solver. Suppose that the approximation
is of the following form for some constant CI:

We can generate another approximation with the process by selecting h/2 instead,
namely,

In practice, of course, we would use A (h) or A (h /2) as the approximation since
we do not know what CI is; after all, A represents a black-box process. The two
approximations can be combined to eliminate the quadratic term in h, even though
we do not know CI' Specifically, another approximation for the quantity is

Q = ~ (4(A(h/2) + c1h
2/4 + O(h4

)) - (A(h) + c1h
2 + O(h4

)))

= 4A(h/2) - A(h) + O(h4)

3

That is, the value (4A(h/2) - A(h))/3 is an approximation for Q, but the surprising
conclusion is that the error is 0 (h 4) rather than 0 (h 2) of the two original approxi­
mations.

474 Chapter 9 Numerical Methods

Define A 1(h) = A(h) and A 2(h) = (4A(hj2) - A(h))j3. We have seen that Q =
A 2(h) + O(h4). Ifadditionally we know that

we can repeat the process. Using half the input parameter, we have another approxi­
mation

The two approximations combine to produce

with yet another increase in the order of the error. Define A 3(h) = (16A2(hj2) ­

A 2(h))j15. Assuming more structure in the error terms so that powers ckh2k appear
for constants Ck' further repetitions lead to the approximation

9.7.2 ApPLICATION TO DIFFERENTIAL EQUATIONS

Let us look at the application of a slight variation of the Richardson extrapolation to
numerical methods for differential equations. The method is attributed to [Gra65].
The differential equation is i = f (t , x). Suppose we have a numerical method of the
form

Yi+l = Yi + h¢(ti , Yi' h)

Let A(t, h) denote the process of solving the numerical method to approximate yet).

As long as the approximation is of the form

n

x(t) = A(t, h) + L ck(t)h2k + o (h2n+2)

k=l

where the Ck(t) are independent of h) we can use extrapolation to produce a high­
order approximation from low-order ones. Choose a value h > 0 and choose three
step sizes h j = h jqj' 0 .::: j .::: 2, where the q j are positive integers. We solve the

9.7 Extrapolation Methods 475

numerical method for these step sizes. The approximation using h j requires qj steps.
The actual solutions are

x(t) = A(t, h j) + c1(t)h} + c2(t)h' + O(h
6

)

=A(t, h.) + c1(t) h2+ c2(t) h 4 + O(h6)
} q~ q~

} }

for 0 s j S 2.
Define A j , 0 = A (t , h j) for 0 S j S 2. We can combine the first two equations for

x(t) to eliminate the h2 term:

x(t) = q?A1,o - q~Ao,o _ c2(t) h 4 + O(h6) = Al 1 _ c2(t) h4 + O(h6)

q? - q6 q~q? ' q6q?

where the last equality defines A I, l' We can also combine the last two equations to
eliminate the h2 term:

x(t) = q1A 2,O - q?A1,o _ c2(t) h4 + O(h6) = A
2

1 _ c2(t) h4 + O(h6)

qi- qf qfqi ' qfqi

where the last equality defines A2, l' Both combined equations have error terms of
o (h 4

), whereas the original ones had error terms of 0 (h 2
). Combining the combined

equations to eliminate the h4 term,

where the last equality defines A2, 2' a quantity that approximates x (t) with error term
o (h6) rather than the errors 0 (h 2) that occurred in the initial approximations. You
may view this construction as building a table of approximations,

where an entry Ai,j is obtained by combining A i ,j-1 and A i - 1,j-1 in the appropriate
manner. The first column represents different 0 (h 2) approximations to the solution,
the second column represents 0 (h 4) approximations, and the third column repre­
sents an 0 (h6) approximation.

Although the presentation here uses three approximations of 0 (h 2
) to construct

an approximation of 0 (h 6), it is clear that the ideas easily extend to using m approx­
imations of O(h2) generated from step sizes h j = h/qj for m distinct integers qj in

476 Chapter 9 Numerical Methods

order to obtain a final approximation of O(hZm). The table of approximations is

Ao,o
A1,o
Az,o

A1,1

AZ,1 Az,z

Am-l,z Am-l,m-l

(9.25)

where the entries in column j represent approximations of order O(hZ(j+I»).

9.7.3 POLYNOMIAL INTERPOLATION AND EXTRAPOLATION

Given points (ti , Yi) for 0 ::::: i ::::: n, the interpolating polynomial of degree n is the
Lagrange polynomial,

Direct evaluation of the right-hand side is not the recommended way to compute
P (t) on a computer. A more robust method uses a recursion formula for Lagrange
polynomials, called Neville's method. For i :::: j define Pi,j (t) to be the interpolating
polynomial of degree j of (tk> Yk)' where i - j ::::: k ::::: i. The recursion is started by
Pi,o = Yi for 0 ::::: i ::::: n and the recursion itself is

P
. .() _ (t - ti-j)Pi,j-l(t) - (t - ti)Pi-l,j-I(t)
I } t - ---------------
, ti - ti-j

(9.26)

for 1::::: j ::::: nand j ::::: i ::::: n. The resulting values can be stored in a table identical to
the format shown in equation (9.25) with Pi,j as the general term rather than Ai,j.
This is no coincidence! The construction is in essence a Richardson extrapolation.

The diagonal term Pi,i is determined by the inputs (tj' Y) for 0 ::::: j ::::: i. An
application might want to add new points to the system and continue evaluation until
the diagonal terms do not change significantly. That is, the application supplies an
error tolerance E > 0 and requires a stopping condition IPi,i - Pi -l,i _ Ii < E. If the
condition is met, Pi, i is the output of the method. If the condition is not met, the
application provides another data point (tH1 , Yi+l) and evaluates another row in the
table.

9.7.4 RATIONAL POLYNOMIAL INTERPOLATION AND EXTRAPOLATION

A set ofpoints (ti, Yi) for 0::::: i ::::: n can be interpolated by rational polynomials rather
than by polynomials. The idea is that some functions are not well interpolated by

9.7 Extrapolation Methods 477

polynomials but do have reasonable approximations by rational polynomials. The
form of the interpolating rational polynomial is chosen to be

where the degrees of the polynomials satisfy dp + dq = n. The coefficients allow us
one arbitrary choice, so we set qo = 1. If we choose any other nonzero value for qo,
we can always divide the coefficients in both numerator and denominator by qo so
that in fact the constant term of the denominator becomes 1.

Bulirsch and Stoer developed an algorithm for interpolating and extrapolating
rational polynomials that is similar to the algorithm for polynomial interpolation
and extrapolation [BS64]. Ifn is even, the degrees ofthe numerator and denominator
are equal, dp = dq = n12. If n is odd, the denominator is one degree larger than the
numerator, dp = Lnl2J and dq = dp + 1. The recursion is started with Ri,o = Yi for
o::'S i ~ n and the recursion itself is

R ()
- R () Ri ,j-l(t) - Ri- 1,j-l(t)

i . t - i . 1 t + -------------­
,j ,j- (t-ti- i) (1- Ri,i-l(t)-Ri-l,i-l(t») _ 1

t-ti Ri ,i-l(t)-Ri- 1,i-2(t)

(9.27)

for 1 ::'S j ::'S nand j ~ i ::'S n. In evaluating the recursion, it is understood that R i ,j = 0
whenever i < j.

Just as for polynomials, the diagonal term Ri,i is determined by the inputs (t j , Yj)
for 0 ::'S j ~ i. The application supplies an error tolerance E > 0 and requires a stop­
ping condition IRi,i - Ri-1, i-II < E. If the condition is met, Ri,i is the output of
the method. If the condition is not met, the application provides another data point
(ti+l' Yi+l) and evaluates another row in the table.

9.7.5 MODIFIED MIDPOINT METHOD

The modified midpoint method is a numerical method for solving a differential equa­
tion that takes a large step in time to produce an approximation. If Yi is an approx­
imation to x(ti), we wish to approximate x(ti + H) using n substeps, each of size
h = HI n. The approximation is denoted Yi +n to reflect the fact that we are approxi­
mating X(ti + nh) = X(ti+n).

The process is initialized with Zo = Yi. The first iterate is generated by Euler's
method,

Other iterates are generated by

478 Chapter 9 Numerical Methods

The final approximation is

1
Yi+n = -(zn + zn-l + hf(t + nh, zn))

2

This process is part of the Bulirsch-Stoer numerical method for solving a differential
equation, as we will see in the next section.

9.7.6 BULIRSCH-STOER METHOD

The Bulirsch-Stoer method [BS66] is designed to obtain highly accurate solutions
to a differential equation for which f (t , x) is smooth and to do so with a minimal
amount of computation. The idea is analogous to the method we discussed in an
earlier section that uses polynomial extrapolation to improve the order of the error
term. The final, highly accurate approximation was generated by combining the low
accuracy approximations in the appropriate manner. The Bulirsch-Stoer method uses
the modified midpoint method for solving the differential equation for a sequence
of decreasing step sizes and uses rational polynomial extrapolation to improve the
accuracy.

A step size H > 0 is chosen and the equation is solved three times using the modi­
fied midpoint method with substep counts ofqo = 2, ql = 4, and q2 = 6. These values
are used to construct a table of rational polynomial approximations, the table of
the form in equation (9.25) and consisting of three rows. The differential equation
is solved again by the modified midpoint method using substep counts generated
by qj = 2qj-2 for j :::: 3. For each numerical solution, the rational polynomial ap­
proximation table has a new row added and a comparison is made between the new
diagonal term Ri,i and the old one Ri-1,i-l, as mentioned in Section 9.7.4 on ra­
tional polynomial interpolation and extrapolation. If the difference is suitably small,
the value Ri , i is used as the approximation to x (t + H). Ifnot, the next substep count
is used and the process is repeated.

9.8 VERLET INTEGRATION

A numerical method that has its origins in molecular dynamics is due to Verlet
[Ver67]. The method and its variations were made popular in the game programming
industry through the work of Thomas Jakobsen [JakOl]. The scheme is based on
Taylor's Theorem using

x(t + h) = x(t) + x(t)h + ~X(t)h2 + ~x(3)(t)h3 + O(h 4
)

2 6

x(t - h) = x(t) - x(t)h + ~x(t)h2 - ~x(3)(t)h3 + O(h4)
2 6

The first expansion is forward in time, the second backward in time. Summing these
and keeping only the x(t + h) term on the left-hand side leads to

9.8 Verlet Integration 479

x(t + h) = 2x(t) - x(t - h) + x(t)h 2 + O(h4
)

The velocity terms cancel as well as the third-order terms, leaving an approximation
error on the order of O(h4

). Assuming the physical system is modeled by Newton's
second law of motion, x= F(t, x, x) / m, the iteration scheme is

(9.28)

The iterate Yi is an approximation to the position x(tJ and Yi is an approximation to
the velocityx(ti)' In this most general form of the force function, the general iteration
scheme requires estimates of the velocity.

One of the main advantages ofthe Verlet approach is that the difference method is
reversible in time, something that a differential equation for a physical model satisfies
when the force is conservative. The reversibility shows up in that we could just as eas­
ily have solved for Yi-l = 2Yi - Yi+l + h2F(ti' Yi' Yi)/m and iterate to approximate
position backward in time. The implication of reversibility in time is that the method
maintains conservation of energy, at least when treating the quantities in the equa­
tion as true real numbers. On a computer, numerical round-off errors can cause an
apparent change in energy. Another advantage is that only one evaluation of F is re­
quired per time step, as compared to the multiple evaluations in methods such as the
ones of the Runge-Kutta type. The computational time is minimized to some extent.
The disadvantage of the Verlet method is that it is not as accurate as other methods.
Variations on the method were developed in attempts to maintain the advantages of
reversibility in time and minimum computational time but improve accuracy. We
will discuss a few of these variations later in this section.

9.8.1 FORCES WITHOUT A VELOCITY COMPONENT

In its original formulation, the force is assumed to depend only on time and posi­
tion, F(t, x). This rules out frictional forces, of course, which depend on velocity.
Moreover, in nearly all applications you see to molecular dynamics, the force is con­
servative, F(x) = -VV(x), where V is the potential energy function. The iteration
scheme in this restricted case is a two-step method and requires two initial positional
conditions. The initial value problem for the second-order differential equation has
one positional condition Yo and one velocity condition Yo. The second positional con­
dition can be generated with an Euler step:

Yo, Yo are specified

Yl =Yo + hyo (9.29)

This fits the mold of an explicit two-step method of the form in equation (9.22).

480 Chapter 9 Numerical Methods

Notice that the method does not calculate velocity explicitly. The new position is
computed from the previous two steps and the force on the particle. If an estimate of
velocity is required by your application, you have a couple of possibilities. One is to
use the previous two positions and select Yi+l = (Yi - Yi-l)/ h, an O(h) approxima­
tion. The other possibility is to use a centered difference Yi = (Yi+l - Yi-I)/(2h), an
o (h 2

) approximation at the same cost of calculation as the 0 (h) one. The trade-off,
though, is that you have to wait until the (i + l)-th time step to estimate the velocity
at the i th time step.

9.8.2 FORCES WITH A VELOCITY COMPONENT

If frictional forces are part of the physical model and/or if you need to compute the
velocity for the purposes of computing the energy of the system, then the velocity
approximations must be generated. The force is of the form F(t, x, x). An application
using forces of this type does need approximations to the velocity at each time step
in order to evaluate the force function. A few variations are possible.

Using our suggestion for estimating velocity when the force does not have a
velocity component, an explicit method is provided by

Yo, Yo are specified

YI =Yo +hyo

(9.30)

The Yi term must be evaluated first, then used in the evaluation OfYi+I' Notice that
YI = Yo' so effectively the explicit method assumes no change in velocity over the first
time step.

The other suggestion for estimating velocity when the force does not have a
velocity component leads to an implicit method:

Yo, Yo are specified

YI =Yo +hyo

. 1 (
Yi = 2h Yi+l - Yi-l)'

(9.31)

As with any implicit method, you must decide how to solve for the implicit quan­
tity Yi+l' A fixed point iteration or Newton's method each require a force-function

9.8 Verlet Integration 481

evaluation per iteration, something that would negate the advantage of minimum
computational time in the Verlet method. A cheaper alternative is to use a predictor­
corrector approach where you predictYi = (Yi - Yi-1)/ h, use it to computeYi+1 from
the other difference equation, then correct the value with Yi = (Yi+1 - Yi_1)/(2h).

9.8.3 SIMULATING DRAG IN THE SYSTEM

The iteration of the Verlet equation can be modified to simulate drag in the system.
The difference equation is rewritten as

The term Yi - Yi -1 is related to an estimate ofvelocity. Drag is introduced by includ­
ing a drag coefficient 0 E [0, 1),

A reasonable requirement is that you choose 0 to be a small positive number, say, on
the order of 10-2

•

9.8.4 LEAP FROG METHOD

The velocity estimates in the standard Verlet approach might not be as accurate as
an application requires. The estimate Yi = (Yi - Yi-1)/ h is O(h) and the estimate
Yi = (Yi+1 - Yi)/(2h) is O(h 2

). The leap frog method is designed to improve on the
velocity estimates.

Let us take a different look at the velocity by using Taylor's Theorem:

x(t + h) = x(t) + hx(t) + h
2
x(3)(t) + h

3
x(4)(t) + h

4
x(S)(t) + O(h s)

2 6 24

x(t - h) = x(t) _ hx(t) + h
2
x(3)(t) _ h

3
x(4)(t) + h

4
x(S)(t) + O(h s)

2 6 24

Subtracting leads to

x(t + h) = x(t - h) + 2hx(t) + h
3

x(4)(t) + O(h s) = x(t - h) + 2hx(t) + O(h3)
3

This represents a time step of h. If we were to use half the step h/2, the equation
becomes

x(t + h/2) = x(t - h/2) + hx(t) + h
3

x(4)(t) + O(h s)
24

= x(t - h/2) + hx(t) + O(h3)

482 Chapter 9 Numerical Methods

The order term is O(h 3) in either case, and the third-order term includes x(4)(t)

in both cases. By using only a half step) the second equation produces a coefficient of
h3/24, which is 1/8 of the coefficient generated by the full step h. The intuitive appeal
is that the error generated by the second equation is less than that of the first, so the
velocity estimates should be better than with the straightforward Verlet method.

We need to estimate the position as well, but our goal is to approximate the
positions using the full step h. The previous paragraph tells us how to estimate
the velocities for half steps h/2. The leap frog method interleaves the velocity and
position iteration. The informal manner in which you normally see the leap frog
method stated is

vet + h/2) = vet - h/2) + ha(t)

x(t + h) = x(t) + hv(t + h/2)

where x(t) is position, vet) is velocity) and aCt) is acceleration given by F/m. The
velocity is updated on the time interval [t - h/2, t + h/2] by using the acceleration
computation at the midpoint t of the interval. The position is updated on the time
interval [t, t + h] by using the velocity estimate at the midpoint of the interval,
t + h/2. As with any second-order differential equation, the initial conditions x(O)
and v(O) must be specified. The leap frog method requires v(h/2), not v(O), to
approximate the first position x(h) = x(O) = hv(h/2). We may not use v(h/2) =
v(-h/2) + ha(O) since we have no information about the velocity at negative times.
Instead, we should estimate v(h/2) = v(O) + (h/2)a(O), an Euler iterate for the half
step h/2.

The implicit assumption in this formulation is that the force F is a function of
time t and position x(t) only. If the force were also to depend on velocity vet), then
the velocity approximations involve times t - h/2, t) and t + h/2, thereby requiring
velocity estimates at all times t + i h/2 for i ~ o. In this setting, the method is no
longer the one intended by leap frog, yet is still a valid numerical method.

When the force is of the form F(t, x), the formulation of the difference equations
in the style to which we have become accustomed is shown next, where ti = ih/2 and
initial time is o.

Yo' Yo are specified

. . h
Yl = Yo + -F(O, Yo)

m
(9.32)

. . h (
Yi+l = Yi-l + -F ti , Yi)'

m

Yi+2 = Yi + hYi+l' i ~ 0

Notice the "leap frog" behavior in that the velocity iterates are computed for the odd
indices and the position iterates are computed for the even indices. When the force is
of the form F(t, x, x), the formulation is in terms of an explicit two-step solver. The

9.8 Verlet Integration 483

step size H = h/2, where h is the original step size and ti = i H where initial time is 0.

Yo, Yo are specified

YI =Yo + Hyo

. . H (.)
YI =Yo + -F 0, Yo' Yo

m

. . 2H (.)
Yi+2 = Yi + -F ti+l' Yi+l' Yi+l ,

m

(9.33)

An Euler step is also needed to estimate YI. The position and velocity iterates are
computed for all indices, so no leap-frogging going on here.

The general rule of thumb on the advantages of the leap frog over the standard
Verlet method is that the position and velocity estimates are better but come at the
cost of slightly more computation time.

9.8.5 VELOCITY VERLET METHOD

Another variation on the Verlet method is called the Velocity Verlet method. The
velocity estimate is produced using an integral formulation of the same type that led
to equation (9.7), using dv/dt = aCt) and an integration:

I
t+h h

vet + h) = vet) + aCT) dT == v(t) + -(aCt) + aCt + h))
t 2

This provides a slightly better estimate than what the leap frog method used. Specifi­
cally, Taylor's Theorem gives us

vet + h) - v(t - h) - 2ha(t) = h
3

aCt) + O(h5)
6

Taylor expansions for velocity and acceleration are

vet + h) = v(t) + ha(t) + h
2

aCt) + h
3

aCt) + O(h4
)

2 6

aCt + h) = aCt) + ha(t) + h
2

aCt) + 0 (h 4
)

2

so that

vet + h) - vet) - (h/2)(a(t) + aCt + h)) = - h
3

aCt) + O(h4
)

12

484 Chapter 9 Numerical Methods

The velocity in the leap frog method is

vet + h) = vet - h) + 2ha(t) + h
3

aCt) + O(h 5
)

6

and the velocity using the Velocity Verlet method is

vet + h) = vet) + !:.(a(t) + a(t + h)) - h
3

aCt) + O(h4
)

2 12

All other things being equal, you expect the latter velocity estimate to have about half
the error of the former since the coefficient of the h3 term is half that in the other
expression. The price for less error, though, is more computational time. The leap
frog method uses one evaluation of acceleration whereas the Velocity Verlet method
uses two evaluations. But the comparison is not quite fair. The leap frog computes
velocity on every other time step. The Velocity Verlet method computes velocity on
each time step. If you need the velocity information in the leap frog method, such as
in the implicit scheme ofequation (9.33), then both methods use the same number of
acceleration evaluations. The Velocity Verlet produces a better estimate for the same
cost.

The position in the Velocity Verlet method is estimated from Taylor's Theorem.
The numerical method stated in the manner in which it normally is found in the
literature is

h2

x(t + h) = x(t) + hv(t) + -a(t)
2

h
vet + h) = vet) + -(aCt) + a(t + h))

2

Once again the implicit assumption is that the force is of the form F(t , x) with no ex­
plicit dependence on velocity. The idea of the iteration is that x(t), vet), and aCt) =
F(t, x(t))jm are known. The next position x(t + h) is calculated from the first differ­
ence equation. This value is used to compute aCt + h) = F(t + h, x(t + h))jm and
is substituted into the second difference equation to obtain the next velocity vet +
h). Many literature sources describe the process with one intermediate step. First,
x(t + h) is computed. Second, the velocity for a half step is computed, vet + hj2) =
vet) + (hj2)a(t). Third, a(t + h) = F(t + h, x(t + h))jm is computed. Fourth, the
velocity for the full step is computed, vet + h) = vet + hj2) + (hj2)a(t + h). How­
ever, it is not necessary to do so in an implementation unless for some reason you
need estimates of the velocities at the half steps. In our standard formulation, the
numerical method is

9.8 Verlet Integration 485

Yo, Yo are specified

h2

Yi+1 =Yi + hYi + -F(ti' yJ, i ~ 0
2m

Yi+1 =Yi +!!:...- (F(ti' yJ + F(ti+1, Yi+1))' i ~ 0
2m

(9.34)

The Yi +1term must be computed first since it is used in the equation to produce Yi + l'

When the force is of the form F(t, x, x), the numerical method becomes implicit:

Yo, Yo are specified

i ;::: 0 (9.35)

x(t + h)

The implicitness is because Yi+1 occurs on both sides of the last difference equation.
As always, a predictor-corrector method could be used. For example, you could pre­
dict Yi+1= (Yi+1- Yi) / h and substitute in the right-hand side of the last difference
equation to obtain the correction for Yi + l'

The Velocity Verlet method gives you the best estimates of velocity of all the
Verlet-style methods, but the cost is additional function evaluations. It is a one-step
method, whereas the other explicit Verlet methods are two-step methods.

9.8.6 GEAR'S FIFTH-ORDER PREDICTOR-CORRECTOR METHOD

A method that is sometimes used as an alternative to the Velocity Verlet method is
called Gear's fifth-order predictor-corrector method [Gea71]. The prediction portion
of the algorithm is based once again on Taylor's Theorem:

h2 h3 h4 hS
=x(t) + hx(l)(t) + -x(2)(t) + -x(3)(t) + -x(4)(t) + -x(S\t) + O(h6)

2! 3! 4! 5!

h2 h3 h4
x(l)(t + h) = x(l\t) + hx(2\t) + -x(3\t) + -x(4\t) + -x(S)(t) + O(hs)

2! 3! 4!

h2 h3
x(2\t + h) = x(2)(t) + hx(3)(t) + -x(4)(t) + -x(S)(t) + O(h4)

2! 3!

h2
x(3)(t + h) = x(3)(t) + hx(4)(t) + -x(S)(t) + O(h3)

2!

X(4)(t + h) = x(4)(t) + hx(S)(t) + O(h2)

x(S)(t + h) = x(S)(t) + O(h)

486 Chapter 9 Numerical Methods

Subscripting the predicted values with p and the corrected values with c, the matrix
form of the prediction step is

xp(t + h) xc(t)
hx(l)(t + h) 1 1 1 1 1 1 hx(l)(t)p c

!i.x (2)(t + h) 0 1 2 3 4 5 !i. x (2) (t)
2! P 0 0 1 3 6 10 2! c

~x(3)(t + h) 0 0 0 1 4 10 ~x(3)(t)
3! p 3! c

~x(4)(t + h)
0 0 0 0 1 5

~x(4)(t)
4! p 0 0 0 0 0 1 4! c

~x(5)(t + h) ~x(5)(t)
5! p 5! c

Notice that the nonzero entries of the columns of the 6 x 6 matrix are the rows of
Pascal's Triangle. The predicted values are used to evaluate the force function and
obtain a corrected second-order derivative,

Define:

The corrected values are

A
251/360

1
11/18
1/6

1/60

xc(t + h)

hx(l)(t + h)
c

!i.x (2)(t + h)
2! c

~x(3)(t + h)
3! c

~x(4)(t + h)
4! c

~x(5)(t + h)
5! c

xp(t + h)

hx(l)(t + h)
p

!i.x (2)(t + h)
2! P

= !!!..x(3)(t + h) + ~
3! p

~x(4)(t + h)
4! p

~x(5)(t + h)
5! p

where A= 3/16 ifthe force is of the form F(t , x) or A= 3/20 if the force is of the form
F(t, x, x). Starting the iteration does require that estimates be made for the second­
and higher-order derivatives at initial time.

Compared to the Velocity Verlet method, the Gear method will require more
memory usage, potentially of importance ifyour physical system has a large number
of rigid bodies. The trade-off, though, is that the Gear method makes one func­
tion evaluation per time step, whereas the Velocity Verlet method uses two function
evaluations. Thus, we have the classic space versus time trade-off. Experience in the
molecular dynamics field has shown that the velocity estimates from the Velocity
Verlet method tend to degenerate over time faster than those computed in the Gear

9.9 Numerical Stability and Its Relationship to Physical Stability 487

method. The Gear method also has a higher degree of energy conservation with a
larger time step compared to the Velocity Verlet method. However, the Gear method
is not reversible in time as are the Verlet methods.

Finally, if you should want to choose variable step sizes for the Verlet methods
rather than fixed step sizes, see [HOS99].

9.9 NUMERICAL STABILITY AND ITS RELATIONSHIP
TO PHYSICAL STABILITY

Stability of solutions to a system of differential equations was discussed in Section
8.6. The intuitive description is that a solution ~(t) is stable if each solution 1/1(t) that
starts out close to ~(t) remains close to it for all time. In effect this is a statement
about the continuous dependence of a solution on its initial conditions. If x= f(t, x)
is the system of differential equations with initial data x(to) = Xo, the solution is
denoted x(t; Xo). If we compare solutions x(t; Xo + 0) and x(t; Xo), where °is a
nonzero vector of small length, we want to know about the differences Ix(t; Xo +
0) - x(t; Xo) Ias time t increases. We do know that Ix(to; Xo + 0) - x(to; Xo) I= I(Xo +
0) - Xol = 101, which is smalL The question is whether or not the differences remain
bounded or become unbounded with increasing time. I will refer to this measure
of stability as physical stability since the differential equations are obtained as the
equations of motion for a physical system.

Our earlier discussion involved understanding the stability of linear systems x=
Ax for which A has constant entries. As we saw, the stability is directly related to
the signs on the real parts of the eigenvalues of A. If all eigenvalues have negative
real parts, the system is stable. If at least one eigenvalue has positive real parts, the
system is unstable. If all eigenvalues have negative or zero real parts with at least
one eigenvalue having zero real parts, the stability depends on the dimension of the
eigenspace of the eigenvalue.

We then used our knowledge of linear stability to determine the stability prop­
erties of equilibrium solutions to nonlinear autonomous systems x= f(x). For the
sake of argument, let us assume that the equilibrium solution of interest is x(t) == o.
If this were not the case and x(t) == Xo i=- 0 were an equilibrium solution, we could
always transform the system to one that does have a zero equilibrium solution by
y = x - Xo and F(y) = f(y + Xo), so y = F(y) has the equilibrium solution y(t) == o.
Taylor's Theorem allows us to write

f(x) = Ax + R(x)

where A is the matrix of first -order derivatives of the components of f that are
evaluated at o. The remainder R consists of quadratic and higher-order terms. The
linearized system is x= Ax. If the eigenvalues of A all have negative real parts, then
the equilibrium solution of the physical system is stable. If at least one eigenvalue has
positive real parts, the equilibrium solution is unstable. No immediate conclusions

488 Chapter 9 Numerical Methods

can be drawn when the eigenvalues have negative or zero real parts with at least one
having zero real parts.

This result addresses the physical stability of the equilibrium solution. However,
we will solve x= f(x) using a numerical method. It is important that the approxima­
tions generated by the method are themselves close to the true solution. The concept
of closeness in this context is referred to as numerical stability. In general, to obtain
numerical stability, you will need to carefully choose your step size h in the numeri­
cal solvers. The end result of our discussion will be that you can do this safely only by
understanding the relationship between numerical stability and physical stability.

9.9.1 STABILITY FOR SINGLE-STEP METHODS

Three concepts are of interest: consistency, convergence, and stability. Recall that the
local truncation error refers to the terms we discard when generating a numerical
method from something such as a Taylor expansion. For example, Euler's method
arose from Taylor's Theorem in representing a solution to i = f (t , x) as

where ~ E [ti , ti+d, but whose value is generally unknown to us. We discarded the
second-order term to obtain the numerical method,

where Yi is the approximation to x(tJ. The discarded term is the local truncation er­
ror for Euler's method and is oforder O(h2). As we make h small, the local truncation
error for a single iteration is small. Ifwe can make the local truncation errors become
small for n iterations, that is a good thing for our numerical method. This leads us to
the definition that follows.

Definition Let Ti denote the local truncation error at the ith step of the numerical
method. The method is said to be consistent with the differential equation it
approximates if

lim max ITil = 0
h~O lsiSn

Intuitively, this says that for very small step sizes, the local truncation error made
at any time t is very small.

According to this definition, Euler's method is consistent. In general having very
small local truncation errors at any time is not enough to guarantee that Yi is a good
approximation to x(tJ. We need a definition about closeness.

9.9 Numerical Stability and Its Relationship to Physical Stability 489

Definition A numerical method is said to be convergent with respect to the differential
equation if

lim max Ix(ti) - Yil = 0
h---+a ISiSn

Intuitively, this says that for very small step sizes, the maximum error at any time
t between the approximation and the true solution is very small.

Our derivation that led to the inequality of equation (9.3) shows that Euler's
method is convergent. Our last definition is about stability itself.

Definition A numerical method is said to be stable if small changes in the initial data
for the differential equation produce correspondingly small changes in the sub­
sequent approximations. In formal terms, let Xa and x I be two initial values for
the differential equation. Let Yi be the approximation to x(ti; xa) and let Yi be the
approximation to x(ti ; Xl)' For each £ > 0, there is a 8 > 0 sufficiently small so
that IYi - Yi I < £ whenever IXI - xal < 8.

This definition is a statement about continuous dependence of solutions on the
initial data. The relationship between consistency, convergence, and stability for a
one-step numerical method is summarized by the following result.

Theorem Consider the initial value problem x= f (t , x) for t E [ta, ta+ ex] with initial
data x (ta) = xa' Let a numerical method for the equation be of the form Ya =
Xa and Yi+l = Yi + h¢(ti , Yi' h) for i ~ O. If there is a value ha > 0 such that
¢(t, y, h) is continuous on the domain

D={(t,y,h):tE [ta,ta+ex], yEIR, hE [O,han

and if there exists a constant L > 0 such that

I¢(t, y, h) - ¢(t, Y, h)l::: Lly - yl

for all (t, y, h), (t, Y, h) E D, which is called a Lipschitz condition.

1. The numerical method is stable.

2. The method is convergent if and only if it is consistent; that is, if and only if
¢(t, x, 0) = f(t, x, 0) for all t E [ta, ta+ ex].

3. If the local truncation errors are bounded by Iii I ::: T (h) for some function
B(h) independent of i and for h E [0, ha], then

Ix(tJ - yd ::: B(h) exp(L(ti - ta))/L.

490 Chapter 9 Numerical Methods

The condition in item 2 of the conclusion is easily verified for all the single-step
numerical methods we have encountered. Notice that for Euler's method, ¢ (t , y, 0) =
f (t , y). The same is true for the Runge-Kutta methods. Item 3 of the conclusion gives
us an upper bound on the error of the approximation and looks similar to what we
derived for Euler's method.

9.9.2 STABILITY FOR MULTISTEP METHODS

A stability result for multistep methods is only slightly more complicated than the
one for single-step methods. The general multistep method can be formulated as

m-l

Yi+l = L ajYi-j + hF(ti , h, Yi+l' Yi, ... , Yi+l-m), i ~ 0
j=O

with start-up conditions Yi = hi for selected constants hi with 0 ::s i ::'S m - 1. Since we
started with a differential equation with initial condition x (to) = Xo, we choose Yo =
Xo. The other start-up values are generated by some single-step method. The proto­
typical explicit method is Adams-Bashforth and the prototypical implicit method is
Adams-Moulton.

The concepts ofconvergence and stability are the same as for single-step methods,
but consistency requires there be a slight bit more to it. The local truncation errors
for a multistep method are of the form

The analysis of the algorithm for the m-step Adams-Bashforth method will show
that the local truncation error is ii+l = O(hm). The m-step Adams-Moulton method
has a local truncation error of ii+l = O(hm+ 1

). The definition for consistency of a
multistep method includes the same condition we used for single-step methods,

lim max liil = 0
h---+O l:Si:Sn

so the local truncation errors go to zero as the step size becomes small. But, in
addition, we need to make sure that the local truncation errors for the start-up
conditions become small also.

lim max Ix(ti)-hil=O
h---+O l:Si:Sm-l

The result for multistep methods that is the analogy of the one for single-step
methods follows.

9.9 Numerical Stability and Its Relationship to Physical Stability 491

Theorem Consider the initial value problem i = f (t, x) for t E [to, to + a] with initial
data x (to) = xo. Consider a multistep method ofthe form Yi+l = 'Lj::Ol ajYi- j +
hF(ti, h, Yi+l' Yi' ... , Yi+l-m) with start-up conditions Yo = xo and Yi = bi for
specified constants bi with 1 ::: i ::: m - 1. Suppose that F == 0 whenever f == O.
Suppose that F satisfies a Lipschitz condition,

m

::: L L IYi+l-j - Yi+l-jl for each i with m - 1::: i ::: n
j=o

1. The numerical method is stable if and only if all roots of peA) = 0 satisfy
IAI ::: 1and any root such that IAI = 1must be a simple root (multiplicity is 1).

2. If the numerical method is consistent with the differential equation, the
method is stable if and only if it is convergent.

The important aspect of this theorem for practical purposes is the analysis of the
roots of peA). Note that the roots can be nonreal. Also note that p(1) = 0 because
of the way the a j were defined for multistep methods. Thus, A = 1 is always a root
and has magnitude IAI = 1. If A= 1 is the only root of magnitude 1, all other roots
satisfying IA I < 1, then the numerical method is said to be strongly stable. Ifmore than
one root has magnitude one, the others satisfying IA I < 1, the numerical method is
said to be weakly stable. The numerical method is said to be unstable if any root has
magnitude IAI > 1,

9.9.3 CHOOSING A STABLE STEP SIZE

In fact, we can go one step further. The analysis of the roots of peA) when using the
linearized equation instead of the original f(x) allows us to decide what step sizes h
lead to stability, an important issue for solving the equations on a computer. More
details can be found in Chapter 5 of [BFO 1], although they are listed in the section
on stiffequations. A presentation of the material in the context ofgame development
may also be found in [RhoOl].

Assuming an equilibrium solution of x(t) == 0, the linearized equation is x=
Ax, where A is an n x n matrix of constants occuring in the expansion f (x) =
Ax + R. Let us assume that the eigenvalues of A all have negative real parts so that
the equilibrium solution is physically stable. For each eigenvalue A, consider what
is called the modal equation, x= AX. An m-step method (m 2: 1) is applied to the
modal equation. The resulting difference equation is linear and has a characteristic
polynomial of the type P(z) whose coefficients involve the eigenvalue A and the step
size h. This polynomial includes the linear contribution from the function F in the

492 Chapter 9 Numerical Methods

multistep method. The conditions of Izi :::: 1 for all roots and unit-magnitude roots
being simple are required for a stable method. These in turn impose conditions on
how we can choose h.

The best way to illustrate this is with an example. We will once again revisit the
simple pendulum problem of Example 3.4.

EXAMPLE

9.1
The equation of motion for a simple pendulum with viscous friction at the joint is

jj + be + c sinCe) = 0, t:::: 0, 61(0) = eo, e(O) = eo

where b :::: 0 represents the coefficient ofviscous friction (b = 0 for a frictionless joint)
and c = g/ L > 0, where g is the gravitational constant and L is the length of the
pendulum rod. The angle 61 (t) is measured from the vertical position. The initial
angle is eo and the initial angular speed is eo' We may write this equation as a first­
order system x= f(t, x) by defining

f(t, x) = [11] = [. e]= [X2]f2 -be - c sinCe) -bX2 - c sin(xI)

In fact, the system is autonomous since f does not depend explicitly on t, only on Xl

and X2' The first-derivative matrix is

The equilibrium solutions of the system are Xo(t) == (0, 0) and Xl (t) == (n, 0). The
first equilibrium solution corresponds to the pendulum hanging vertically downward
with no angular speed. Physically you expect this to be stable. Ifyou move the pendu­
1um slightly, you expect it to stay near the vertical. The second solution corresponds
to the pendulum positioned vertically upward with no angular speed. Physically you
expect this to be unstable because any slight movement of the pendulum will cause it
to fall downward. Let us see what the mathematical model has to say about this.

The first-derivative matrix at the first equilibrium solution is

Df(0, 0) = [_oc 1]
-b

and has the characteristic equation A2 + bA + c = O. For the case of viscous friction
where b > 0, the roots are

-b ± Jb2 - 4c
A=------

2

Both roots are negative real numbers when b2 :::: 4c or are complex numbers with
negative real parts when b2 < 4c. In either case the real parts are both negative, so

9.9 Numerical Stability and Its Relationship to Physical Stability 493

(0, 0) is a stable equilibrium solution. For the case of no friction where b = 0, the
roots are

A = 0 ± ci

Both roots are complex-valued with zero real parts. Each root is an eigenvalue of
Df(O, 0) with one linearly independent eigenvector. According to our theorem on
stability of linear systems, the equilibrium solution is stable. Thus, the equilibrium
solution (0, 0) is stable for any b :::: 0, so the mathematical model appears to be a
reasonable match to what we expect physically.

The first-derivative matrix at the second equilibrium solution is

and has the characteristic equation A2 + bA - c = O. The roots are

-b ± Jb2 +4c
A=------

2

Regardless of b = 0 or b > 0, both roots are real-valued with one negative and one
positive. The second equilibrium solution is therefore unstable, once again showing
that the mathematical model exhibits properties that we expect in the physical system.

Before doing the analysis for numerical stability, let us try four different numerical
methods for the simple pendulum problem where b = 0, c = 1, eo = 0.1, 80 = 1.0,
and h = 0.1. The experiments generate n = 256 iterates. The test driver is

double c = 1.0f; II global constant used by numerical methods
void SolveSystem (double* (*NumericalMethod)(double,double,double,int»
{

int n = 256;
double thetaO = 0.1, dthetaO = 1.0, h = 0.1;
double theta* = NumericalMethod(thetaO,dthetaO,h,n);
II plot the output ...

EXPLICIT EULER'S METHOD

The numerical method is

with initial data Yo = (eo, (0), Pseudocode for generating the iterates is

494 Chapter 9 Numerical Methods

(Example 9.1

continued)
double* ExplicitEuler (double thetaO, double dthetaO, double h, int n)
{

double* theta = new double[n];
for (int i = 0; < n; i++)
{

double thetal = thetaO + h * dthetaO;
double dthetal = dthetaO - h * c * sin(thetaO);
theta[i] = thetal;
thetaO = thetal;
dthetaO = dthetal;

return theta;

Figure 9.2 shows a plot of the output of the numerical method.

Observe that the angles are becoming unbounded over time, contrary to how the
physical solution should behave. The true solution should be periodic, implying that
the maximum angles are all the same and the minimum angles are all the same. Also,
the time between two consecutive zeros should be a constant. The results should make
you question whether choosing Euler's method without analysis was a good thing
to do.

()

2.14

1.55

1.13

-1.32

-1.81

-2.57

Figure 9.2 The explicit Euler's method applied to the simple pendulum problem. The image
shows a plot of the pendulum angles over time.

9.9 Numerical Stability and Its Relationship to Physical Stability 495

IMPLICIT EULER'S METHOD

The numerical method is

with initial data Yo = (80 , eo)' The iterate Yi+1 appears on both sides of the equation.
For the simple pendulum, Yi = (8i , eJ and the iteration scheme is

My implementation combines these into a single equation,

2 . •eH1 + h c sm(8i +1) - 8i - h8i = 0

and applies Newton's method to g(z) = z + h2c sin(z) - 8i - hei with initial guess
Zo = 8i and

g(zm)
zm+ 1 = zm - ----;---() ,

g zm
m ~O

where g'(z) = 1+ h 2c cos(z). The final iterate ZM is chosen to be the value 8i+1•

Pseudocode for generating the differential equation iterates is

double* ImplicitEuler (double thetaO, double dthetaO, double h,
int n)

const int maxIterations = 32;
double* theta = new double[n];
for (int i = 0; i < n; i++)
{

double thetal = thetaO;
for (int j = 0; j < maxIterations; j++)
{

double 9 = thetal + h * h * c * sin(thetal) - thetaO
- h * dthetaO;

double gder = 1.0 + h * h * c * cos(thetal);
theta1 -= g/gder;

}

double dthetal = dthetaO - h * c * sin(thetal);
theta[i] = thetal;
thetaO = thetal;
dthetaO = dthetal;

return theta;

496 Chapter 9 Numerical Methods

(Example 9.1
continued)

e

0.98
0.72
0.52
0.38

-0.33
-0.45
-0.61
-0.84

Figure 9.3 The implicit Euler's method applied to the simple pendulum problem. The image
shows a plot of the pendulum angles over time.

For simplicity, no convergence or stopping criterion is used in the inner loop that
constructs the Newton's iterates; the loop just runs a fixed number of times. A more
sophisticated loop with an eye toward minimizing inner loop cycles may certainly be
tried. Figure 9.3 shows a plot of the output of the numerical method.

Now the angles are dampened over time, contrary to how the physical solution should
behave, although in this case someone observing the numerical pendulum behavior
might think the physical system had friction at the joint causing the oscillations to
dampen. The time between two consecutive zeros in the Euler's method was signifi­
cantly increasing over time. In the implicit Euler's method, the time between zeros is
only gradually decreasing.

RUNGE-KUTTA FOURTH-ORDER METHOD

The numerical method is

k 1 = hf(ti , yJ

k2 = hf(ti + h/2, Yi + kr/2)

k3 = hf(ti + h/2, Yi + k2/2)

k4 = hf(ti + h, Yi +k3)

Yi+l = Yi + (k1 + 2k2 + 2k3 + k4)/6

with initial data Yo = (80 , eo)' Pseudocode for generating the iterates is

double* RungeKutta (double thetaO, double dthetaO, double h, int n)
{

double* theta = new double[n];

9.9 Numerical Stability and Its Relationship to Physical Stability 497

for (int i = 0; i < n; i++)
{

double Kltheta = h * dthetaO;
double Kldtheta = -h * c * sin(thetaO);
double thetal = thetaO + 0.5 * Kltheta;
double dthetal = dthetaO + 0.5 * Kldtheta;
double K2theta = h * dthetal;
double K2dtheta = -h * c * sin(thetal);
thetal = thetaO + 0.5 * K2theta;
dthetal = dthetaO + 0.5 * K2dtheta;
double K3theta = h * dthetal;
double K3dtheta = -h * c * sin(thetal);
thetal = thetaO + K3theta;
dthetal = dthetaO + K3dtheta;
double K4theta = h * dthetal;
double K4dtheta = -h * c * sin(thetal);
thetal = thetaO + (Kltheta + 2.0 * K2theta

+ 2.0 * K3theta + K4theta) / 6.0;
dthetal = dthetaO + (Kldtheta + 2.0 * K2dtheta

+ 2.0 * K3dtheta + K4dtheta) / 6.0;
theta[i] = thetal;
thetaO = thetal;
dthetaO = dthetal;

return theta;

Figure 9.4 shows a plot of the output of the numerical method.

()

1.05

-1.05

Figure 9.4 The Runge-Kutta fourth-order method applied to the simple pendulum problem.
The image shows a plot of the pendulum angles over time.

498 Chapter 9 Numerical Methods

(Example 9.1
continued)

The results appear to indicate that this method is stable. The zeros ofe(t) are evenly
spaced and the four maximum values, in order of increasing time, are 1.05289,
1.05117, 1.05285, and 1.05249. The four minimum values are -1.05232, -1.05291,
-1.05221, and -1.05293.

LEAP FROG METHOD

This is a two-step method,

where the initial data is Yo and the first iterate is generated by an Euler step, Yl =
Yo + hf(to, Yo)· Pseudocode for generating the iterates is

double* LeapFrog (double thetaO, double dthetaO, double h, int n)
{

double* theta = new double[n];

II generate first iterate with Euler's to start up the process
double theta1 = thetaO + h * dthetaO;
double dtheta1 = dthetaO - h * c * sin(thetaO);
theta[O] theta1;

for (int = 1; i < n; i++)
{

double theta2 = thetaO + 2.0 * h * dtheta1;
double dtheta2 = dthetaO - 2.0 * h * c * sin(theta1);
theta[i] = theta2;
thetaO = theta1;
dthetaO = dtheta1;
theta1 = theta2;
dtheta1 = dtheta2;

return theta;

Figure 9.5 shows a plot of the output of the numerical method.

The results appear to indicate that this method is stable. The zeros ofe(t) are evenly
spaced and the four maximum values, in order of increasing time, are 1.05816,
1.05079, 1.05582, and 1.05810. The four minimum values are -1.05750, -1.05410,
-1.05730, and -1.05820.

We now analyze the numerical stability of the four methods for the physically sta­
ble equilibrium solution (0, 0) when b = 0 and c = 1. The eigenvalues of Df(O, 0)

9.9 Numerical Stability and Its Relationship to Physical Stability 499

e

1.05

-1.05

Figure 9.5 The leap frog method applied to the simple pendulum problem. The image shows a
plot of the pendulum angles over time.

are A= ±i. The modal equation is x= AX. We apply the numerical methods using
f(t, x) = AX.

EXPLICIT EULER'S METHOD

The application to the modal equation is

Yi+l = Yi + hAYi = (l + hA)Yi

The characteristic polynomial equation p(z) = 0 of a linear difference equation is
obtained by subtracting all terms to the left-hand side of the equation and formally
replacing Yi+ j by z j for j :::: O. In this case the characteristic polynomial is

p(z) = z - (l + hA)

and has the single root z= 1+ hA. For stability we need Izl :::: 1, so 11 + hAl:::: 1. This
is an inequality that defines a set of points in the complex plane. We can plot the set
in terms of the complex variable hA. Figure 9.6 shows the region for 11 + hA I :::: 1.

Regardless of choice of h > 0, hA = ±hi is never inside the gray region. The explicit
Euler's method is not stable for the simple pendulum problem for any choice ofhand
cannot be used to obtain good approximations.

500 Chapter 9 Numerical Methods

(Example 9.1
continued)

Irn(hA)

--+---+-~ Re(hA)

Figure 9.6

Figure 9.7

The region of stability for the explicit Euler's method is shown in gray.

IMPLICIT EULER'S METHOD

The application to the modal equation is

Yi+l = Yi + hAYi+l

The characteristic polynomial is

p(z) = (1- hA)z - 1

and has the single root z = 1/(1- hA). For stability we need Izi :::: 1, so 11 - hAl::: 1.

Figure 9.7 shows the region of stability.

The region of stability for the implicit Euler's method is shown in gray.

Figure 9.8

9.9 Numerical Stability and Its Relationship to Physical Stability 501

Regardless of choice of h > 0, hA = ±hi is always inside the gray region. The implicit
Euler's method is always stable for the simple pendulum problem for any choice of h.
However, the approximations are not accurate over time.

RUNGE-KUTTA FOURTH-ORDER METHOD

The application to the modal equation is

k2 = hA(l + hA/2)Yi

k3 = hA(l + (hA/2)(l + hA/2))Yi

k4 = hA(l + hA(l + (hA/2)(l + hA/2)))Yi

These combine to form

[1 1 1]Yi+l = 1+ (hA) + -(hA)2 + -(hA)3 + -(hA)4 Yi = q(hA)Yi
2 6 24

where the last equality defines the fourth-degree polynomial q(hA). The characteris­
tic polynomial is

p(z) = z - q(hA)

and has a single root z = q(hA). For stability we need Iq(hA)1 ::::: 1. Figure 9.8 shows
the region of stability.

Im(hA)

--+--+--Re(hA)

The region of stability for the Runge-Kutta fourth-order method is shown in gray.

502 Chapter 9 Numerical Methods

(Example 9.1
continued)

Figure 9.9

Although Figure 9.8 does not show this, the right boundary of the gray region is
slightly to the right of the imaginary axis, except at the origin, which is a point on the
boundary. An evaluation at h = 0.1 for either eigenvalue ±i shows that Iq(±O.li)1 ==
0.999999986 < 1. Thus, the Runge-Kutta method is stable for the simple pendulum
problem and it turns out to be accurate over time.

LEAP FROG METHOD

The application to the modal equation is

The characteristic polynomial is

p(z) = z2 - 2h'Az - 1

and has two roots z = h'A ± "II + (h'A)2. For stability we need two conditions satis­

fied, Ih'A + J1 + (h'A)21 :s 1and Ih'A - J1 + (h'A)21 :s 1. Figure 9.9 shows the region
ofstability. The region consists ofthe line segment z = wi, where Iw I :s 1. In our case
z = ±O.li, so the leap frog method is stable for the simple pendulum problem with
our chosen step size.

1m(hA)

--+---+-+------+-+-- Re(hA)

The region of stability for the leap frog method is shown as a heavy black line and
consists of a line segment on the imaginary axis.

9.10 Stiff Equations 503

9.10 STIFF EQUATIONS

When dealing with a system of differential equations, numerical stability is clearly
important in order that the output of the numerical method be meaningful. A some­
what related problem that can also occur is the problem of stiffness. These types of
problems arise when the differential equation has two or more functional terms that
have widely different scales. If the solution relevant to the application is the one that
yields a steady state, a transient term that rapidly decays to zero can affect the cal­
culations and generate significant error. The prototypical behavior is illustrated by
a second-order linear equation or, equivalently, a system of two first-order linear
equations.

EXAMPLE

9.2
Consider the second-order equation

.. 2
X =c x, t :::: 0, x(O) = xo, i(O) = i o

where c > 0 is a constant. The solution is

() (
cxo + io) ct (cxo - io) -ct

X t = e + e
2c 2c

A physical application will no doubt be interested only in the steady state solution
that has the decaying term e-ct . We can make this happen by choosing the initial
conditions so that i o= -cxo. The solution for such conditions is

and has the property lim t ---+ oo x(t) = O. Choosing c2 = 2, Xo = 1, i o= -v'2, and
h = 0.01, the Runge-Kutta fourth-order method produces iterates as shown in Fig­
ure 9.10.

As you can see, the approximation appears to be stable and accurate for quite some
time, but then becomes unbounded. Two problems are occurring here. The first is
that we cannot exactly represent c = v'2 on the computer, so our theoretical require­
ment of cXo + i o= 0 cannot be enforced. Numerical errors cause cXo + i o= c for
a very small value of c =f=. O. This causes the functional term ect to influence the ap­
proximations and cause the unbounded behavior as shown in Figure 9.10. Even ifwe
could represent the initial data exactly, the numerical method still introduces errors,
both local truncation errors and round-off errors. This, too, causes ect to affect the
solution eventually. Consequently, this problem is stiff.

504 Chapter 9 Numerical Methods

(Example 9.2
continued)

x(t)

t= 0

(a)

x(t)

l~
t= 0

(b)

t =18.1

t = 18.1

Figure 9.10

EXAMPLE

9.3

(a) An approximation to x(t) using the Runge-Kutta fourth-order method. (b) The
graph of the actual solution xoe-ct .

You might be tempted to conclude that the problem occurs only because of the
occurrence of a positive eigenvalue c > 0 and a negative one -c < O. However, even
if the theoretical solution has two negative eigenvalues, stiffness can occur. The fol­
lowing example from [BF01] illustrates this.

Consider the first-order linear system

i = 9x + 24y + S cos(t) - ~ sin(t)
3

. () 1.Y = -24x - Sly - 9 cos t + - sm(t)
3

with initial data x(O) = 4/3 and yeO) = 2/3. The solution is

9.10 Stiff Equations 505

1
x(t) = 2e-3t

- e-39t + - cos(t)
3

1
yet) = _e-3t + 2e-39t

- - cos(t)
3

The homogeneous linear system is physically stable about the equilibrium solution
(0, 0) since the eigenvalues of the first-derivative matrix are A = -3 and A = -39.
The Runge-Kutta fourth-order method was used to numerically solve this problem
with step sizes of h = 0.1 and h = 0.05. Table 9.1 shows the iterates for times between
oand 1. It also shows the actual values.

Table 9.1 The actual and approximate values for the solution to the system of equations

h = 0.05 h = 0.1

x(t) yet) xi Yi Xi Yi

0.1 1.793063 -1.032002 1.712221 -0.870315 -2.645182 7.844543

0.2 1.423902 -0.874681 1.414072 -0.855015 -18.451691 38.876595

0.3 1.131577 -0.724999 1.130526 -0.722892 -87.473297 176.484833

0.4 0.909409 -0.608214 0.909278 -0.607948 -394.077576 789.365967

0.5 0.738788 -0.515658 0.738752 -0.515581 -1760.050049 3521.062256

0.6 0.605710 -0.440411 0.605684 -0.440356 -7848.706055 15698.184570

0.7 0.499860 -0.377404 0.499837 -0.377355 -34990.457031 69981.546875

0.8 0.413671 -0.322953 0.413650 -0.322908 -155983.609375 311967.750000

0.9 0.341614 -0.274409 0.341595 -0.274368 -695351.062500 1390702.750000

1.0 0.279675 -0.229888 0.279658 -0.229852 -3099763.500000 6199527.500000

As you can see, the method appears to be stable when h = 0.05 but not when h = 0.1.
The differences in behavior for the two step sizes is explained by something we already
talked about: determining if the chosen step size puts us in the region of stability
associated with the numerical method. The region of stability for the Runge-Kutta
fourth-order (RK4) method is shown in Figure 9.8. The eigenvalues for the current
problem are Al = -3 and A2 = -39. For step size h = 0.1, hAl = -0.3 is in the
region of stability, but hA2 = -3.9 is outside the region (to the left of it). However,
when h = 0.05, both hAl = -0.15 and hA2 = -1.95 are inside the region, so the RK4
method is stable. Our experiments agree with this analysis.

As the last example shows, the analysis of numerical stability for the linearized
system is important for choosing a step size for which the method is stable and,

506 Chapter 9 Numerical Methods

hopefully, that avoids the problems of stiffness. Numerical methods that lead to as
large a region ofstability as possible are clearly desirable. Ofcourse, since the physical
stability requires eigenvalues with negative real parts and since the step sizes are
positive, the only relevant portion of the region of stability is that part in the left
half of the complex plane. For example, the region of stability for the implicit Euler's
method includes the entire left half of the complex plane. In general, if the region
of stability for a numerical method includes the entire left half of the complex plane,
the method is called A-stable. Another example ofan A-stable method is the trapezoid
method listed in equation (9.7). This happens to be the only multistep method that
is A-stable.

Although I have not discussed the topic here, the numerical methods of this
chapter all use fixed-size steps. A class ofnumerical methods that might be important
to you are those involving variable-size steps. It is not clear if variable step sizes
gain you much in a real-time physics simulation, but if you do decide to use such
a method, you need to balance the desire to choose large steps against the need to
retain stability and avoid stiffness. Error monitoring is implemented in methods
using variable step sizes in order to allow you to decide that the local truncation
errors warrant choosing a larger step size. However, that larger step could take you
outside the region of stability. Your implementation should additionally determine,
if possible, whether the desired larger step size keeps you in the region of stability.

Q uaternions are a powerful way to represent rotations within computer graph­
ics and physics applications. Unfortunately, the mathematical complexity of

quaternions seems to discourage some practitioners from any attempt at understand­
ing them. As an aid to such understanding, a section is provided that constructs a
matrix representing rotation about an arbitrary axis. The matrix is based on know­
ing how to rotate about the z-axis and uses the concept of change ofbasis from linear
algebra. Afterwards, three sections are presented, each with a different view of what
a quaternion is. Section 10.1 is the classical approach that defines quaternions in
terms of symbols i, j, and k and shows how they are related to rotation. Section 10.2
presents quaternions based solely on concepts from linear algebra. In this setting a
quaternion is a rotation matrix in 4D whose geometric actions are easy to under­
stand. Section lOA, written by Ken Shoemake, is yet another view of quaternions
using matrices.

10.1 ROTATION MATRICES

Let us review a concept that you are no doubt already familiar with, rotation in the
xy-plane. The rotation of the vector (x, y) about the origin by an angle () > 0 is the
vector (x', y') specified by

x' = cos(()x - sin(() y, y' = sin(()x + cos(()y

507

508 Chapter 10 Quaternions

The formula is derivable using a standard trigonometric construction. The direction
of rotation is counterclockwise about the origin. In vector-matrix form the equa­
tion is

[X'] = [c?s(e)
y' sm(e)

- sin (e)] [x]
cos(e) y

If we now add a third dimension, the rotation of the vector (x, y, z) about the z­
axis by an angle e > 0 is just a rotation of the (x, y) portion about the origin in the
xy-plane. The rotated vector (x', y', z') is specified by

[
X'] [cos(e)
y' = sin (e)
z' 0

Setting v = [x Y z]T, v' = [x' y' z']T, S = since), and c = cos(e), the rotation is v' =
Rov, where Ro is the rotation matrix

-s
c
o

(10.1)

The standard coordinate axis directions, represented as 3 x 1 vectors, are I =
[10 O]T, J = [0 1O]T, and k = [00 I]T. Observe that

The vectors ROI, RoJ, and Rok are the columns of the rotation matrix Ro.
The equation for rotation of a vector v E }R3 by an angle e > 0 about an axis

with unit-length direction d is derived next. Let a and b be vectors in the plane that
contains the origin and has normal d. Moreover, choose these vectors so that {a, b, d}
is a right-handed orthonormal set: each vector is unit length; the vectors are mutually
perpendicular; and a x b = d, b x d = a, and d x a = b. Figure 10.1 shows a typical
choice.

The orthonormal set ofvectors may be used as a basis for }R3, both as domain and
range of the rotational transformation. The matrix Ro in equation (10.1) represents
the rotation in this basis. A matrix R 1 that represents the rotation in the standard
basis will transform a, b, and d as

(10.3)

The similarity between equations (10.3) and (10.2) is no coincidence. The equations
in (10.2) may be collected into a single equation using the convenient bookkeeping
that block matrices provide,

10.1 Rotation Matrices 509

d

Figure 10.1 A right-handed orthonormal set ofvectors. A rotation is desired about d by the angle
() > O.

R 1 [a I bid] = [ca + sb I -sa + cb I d]

=[albld][~ ~s n

The matrix P = [a Ibid] is itself a rotation since {a, b, d} is a right-handed
orthonormal set, so its inverse is just its transpose. The last displayed equation is
R 1P = PRo. Solving for R 1 = P RapT, we have

I d] [~
-s

n[a1b1d]"R 1 = [a I b c

0

I d][~
-s

n [::]
= [a I b c

0
(lOA)

[caT -SbT]
=[aI bid] saT;cbT

= a(caT
- sbT

) + b(saT + cbT
) + ddT

= c(aaT + bbT
) + s(baT

- abT
) + ddT

510 Chapter 10 Quaternions

Keep in mind that aaT is the product of a 3 x 1 matrix and a 1 x 3 matrix, the
result being a 3 x 3 matrix. This is not the same as aTa, a product of a 1 x 3 matrix
and a 3 x 1 matrix, the result being a 1 x 1 matrix (a scalar). Similarly, bbT, ddT,
baT, and abTare 3 x 3 matrices. From a computational perspective, R 1 is easily
computed from equation (lOA), but requires selecting a and b for the specified axis
direction d. Your intuition, though, should tell you that the rotation about the axis
is independent of which pair of orthonormal vectors you choose in the plane. The
following construction shows how to remove the dependence.

The representation ofv in the basis {a, b, d} is

v = (a . v)a + (b . v)b + (d . v)d = aa + ,Sb + 8d (l0.5)

where the last equality defines a,,S, and 8 as the dot products ofthe basis vectors with
v. This renaming is done for simplicity of notation in the ensuing constructions. A
couple of vector quantities of interest are

d x v = d x (aa + ,Sb + 8d) = ad x a + ,Sd x b + 8d x d = -,Sa + ab (l0.6)

and

d x (d x v) = d x (ab - ,Sa) = ad x b - ,Sd x a = -aa - ,Sb (l0.7)

The cross product d x v can be written as a matrix multiplied by a vector:

(l0.8)

=Dv

where the last equality defines the 3 x 3 matrix D. This matrix is skew-symmetric
since D T = -D. The cross product d x (d x v) is written as a matrix multiplied by
a vector by applying equation (l0.8) twice:

d x (d x v) = D(d x v) = D (Dv) = D 2v (l0.9)

We now take a closer look at the vectors v = Iv, d x v = Dv, and d x (d x v) =
D 2v to determine how a, b, and their various products are related to the matrices I,
D, and D 2•

10.1 Rotation Matrices 511

First, observe that equation (10.5) may be manipulated as

!v=v

= (a . v)a + (b . v)b + (d . v)d

= a(aTv) + b(bTv) + d(dTv)

= (aaT + bbT + ddT)v

The equation is true for all vectors v, so

Second, equations (10.5), (10.6), and (10.8) imply the relationship

Dv=d x v

=ab - f3a

= (a . v)b - (b . v)a

= b(aTv) - a(bTv)

= (baT - abT)v

This equation is true for all vectors v, so

D = baT - abT

Third, equations (10.5), (10.7), and (10.9) imply the relationship

D 2v = d x (d xv)

= -aa - f3b

= (d' v)d - v

= d(dTv) - V

= (ddT - I)v

This equation is true for all vectors v, so

(10.10)

(10.11)

(10.12)

512 Chapter 10 Quaternions

Combining these relationships with equation (1004),

Restatement of equation (1004)R I = c(aaT + bbT) + s(baT
- abT) + ddT

=c(I - ddT) + s(baT
- abT) + ddT

= C(I - ddT) + sD + ddT

= I + s D + (1 - c) (ddT - I)

= I + sD + (1- c)D2

By equation (10.10)

By equation (10.11)

By equation (10.12)

(10.13)

This equation provides the rotation matrix R I in terms of the unit-length axis direc­
tion d stored as the matrix D and the angle e occurring in s = sinCe) and c = cos(e).
The application of the rotation matrix to a vector is

Rlv = (I + sD + (1 - c)D2)v

= I v + sDv + (1 - c) D 2v

= V + sd x v + (1- c)d x (d x v)

(10.14)

Make sure you understand the constructions used to obtain equations (1004) and
(10.13). The same idea is used in Section 10.3 to explain how a quaternion is related
to a rotation matrix in four dimensions.

10.2 THE CLASSICAL ApPROACH

A quaternion is specified by the abstract quantityq = w + xi + yj + zk, where w, x,
y, and z are real numbers. This quantity can be thought of as a vector (w, x, y, z) E

IR:4. As it turns out, the quaternions that are related to rotations are unit-length
quaternions, those quaternions for which the length of (w, x, y, z) is 1. As vectors
in IR:4, the unit-length quaternions are located on the hypersphere of radius I, given
algebraically as w 2 + x 2 + y2 + z2 = 1. Many practitioners use the term quaternion
in place of unit-length quaternion. In this section I will use quaternion to mean any
quantity of the form w + xi + yj + zk and unit-length quaternion when I intend the
vector (w, x, y, z) to have length 1.

10.2.1 ALGEBRAIC OPERATIONS

Addition of two quaternions is defined by

qo + ql = (wo + xoi + yoj + zok) + (WI + Xli + Ylj + zlk)

= (wo + wI) + (xo + xI)i + (Yo + YI)j + (zo + zl)k
(10.15)

10.2 The Classical Approach 513

Scalar multiplication of a quaternion by a real number c is defined by

cq = c(w + xi + yj + zk) = (cw) + (cx)i + (cy)j + (cz)k (10.16)

The subtraction operation is defined as a consequence of these two definitions, qo ­

q1 = qo + (-I)q1'
Multiplications are allowed between quaternions. The symbols i, j, and k have

multiplicative properties similar to pure imaginary numbers: i 2 = -1, j2 = -1, and
k2 = -1. They also have multiplicative properties that are superficially similar to
cross products of the 3D vectors I, J, and k: ij = - ji = k, jk = -kj = i, and ki =
-ik = j. Observe that ij i= ji, so multiplication is not a commutative operation.
The analogy to cross products is not fully valid, though. Multiplication is associative;
for example, (ij)k = -1 = i (jk), but the cross product operation is not associative.
Generally, the product of quaternions is defined by allowing the distributive law to
apply and by using the various product formulas for the i, j, and k terms:

= (WOW1 - XOX1 - YOY1 - zOzl)

+ (wOX1 + W1XO + YOZ1 - zOY1)i

+ (WOY1 + W1YO + ZOX1 - xOz1)j

+ (wOz1 + W1ZO + XOY1 - yox1)k

(10.17)

As noted multiplication is not generally commutative. The product in the other order
obtained from equation (10.17) by interchanging the 0 and 1subscripts is

= (WOW1 - xOx1 - YOY1 - zOzl)

+ (wOX1 + w1xO + Y1zO - yoz1)i

+ (WOY1 + w1Yo + zlxO - ZOX1)j

+ (WOz1 + w1zO + x1YO - xOY1)k

(10.18)

The w-components of qOq1 and q1qo are the same. On the other hand, the last
two terms of each of the i-, j-, and k-components in the second equation of (10.18)
are opposite in sign to their counterparts in the first equation. Those terms should
remind you of the components of a cross product. Symbolically, equations (10.17)
and (10.18) are different, but it is possible for some (but not all) quaternions that

514 Chapter 10 Quaternions

(Xo, Yo, zo) X (xl' YI' Zl) = (YOZI - YIZO' ZOXI - ZIXO, XOYI - YOXI)

= (YIZO - YOZI, ZIXO - ZOXI, XIYO - XOYI)

The only way the two cross products can be the same for a pair ofvectors is if they are
parallel. In summary, qOql = qlqO if and only if (xl' YI' Zl) = t(xo, Yo, zo) for some
real-valued scalar t.

The complex number { = w + xi has real part wand imaginary part x. I refer
to xi as the imaginary portion of {. To allow a closer parallel between properties of
quaternions and properties of complex numbers, a quaternion may be written as
q = w + V, where v= xi + Yj + zk. The separation ofquaternions into two portions
allows us to think of w as the real part of q and vas the imaginary portion of q. The
conjugate of { is defined as { = w - xi; that is, the sign of the imaginary portion
is changed. A consequence is that {{ = w2 + x 2. The right-hand side is called the
norm of { and is denoted N ({) = {{.As long as N ({) =1= 0, the multiplicative inverse
of { exists and is {-I = {/N(O. If N(O = 1, the complex number is said to be unit
length. Similar definitions apply to a quaternion q = w + V. The conjugate is

q* = w - V (10.19)

For historical reasons and reasons of mathematical nomenclature, a superscript
asterisk is used to denote the conjugate rather than an overline bar as is done for
complex numbers. The norm ofq is N(q) = qq* = w2+ x 2+ y2+ z2 and the length

ofq is naturally defined as the square root of the norm, L (q) = viN (q). If L (q) = 1,
q is said to be unit length. As long as N(q) =1= 0, the inverse of q is q-l = q* / N(q). If
L(q) = 1, the inverse and conjugate are the same, q-l = q*. For purposes of rotations
the norm, length, and inverse do not playa role, so I mention them here merely for
completeness.

The polar form of a unit-length complex number is { = cos ¢ + i sin ¢. A unit­
length quaternion has a similar representation,

q = cos ¢ + J sin ¢ (10.20)

where J = xi + yj + zk and x 2 + y2 + z2 = 1. Note the similarity in form to {. The
imaginary number i has the property i 2 = -1. The imaginary portion J has the
similar property J2 = -1. The polar form is important in understanding how unit­
length quaternions are related to rotations, the topic of Section 10.2.2.

The representation of any quaternion as q = w + vmay be viewed in a sense
as a coordinate-free description. We may identify v= xi + yj + zk with the vector
v = (x, y, z). This allows us to define two operations on the imaginary portions

10.2 The Classical Approach 515

based on how those operations apply to vectors. The dot product of VA and VI is
denoted VA • VI and defined to be the real-valued vector dot product va . VI. The
cross product of VA and VI is denoted VA x VI' another quaternion with a zero w­
component. Its x, y, and z values are the components of the vector cross product
va x VI. In this formulation, the product of two quaternions is

(10.21)

We will make use ofthis identity in the next section. Other identities are provided:

1. (q*)* = q

2. (pq)* = q*p*

3. If d = xi + yj + zk with x 2+ y2 + z2 = 1, then d2= -1

4. (wo + VO)(WI + vI) = (WI + VI)(WO + Va) if and only if VA x VI = 0

I leave the proofs of these as an exercise.

10.2.2 RELATIONSHIP OF QUATERNIONS TO ROTATIONS

A vector V is to be rotated about an axis with unit-length direction d by an angle
e. The sense of the rotation is counterclockwise: If you look at the origin of a plane
perpendicular to d, your view direction is -d, and e > 0, then any vector in that
plane is rotated counterclockwise about the origin. Let u be the rotation of V about
axis d by angle e. Figure 10.1 illustrates the rotation.

The quaternions d, V, and uare those identified with the vectors d, v, and u. De­
fine the quaternion q = y + ad, where y = cos(e /2) and a = sinCe /2). The quater­
nion u= qvq* has a zero w-component; the left-hand side is written as if there is no
w-component, but we do need to verify this. The vector u turns out to be the rotation
ofv. The formal calculations are shown:

qvq* = (y + ad)(O + v)(y - ad)

= (-ad· V+ yv + ad x v)(y - ad)

= [(-ad· v)(y) - (yv + ad x v)(-ad)]

+ (y)(yv + ad x V) + (-ad· v)(-ad)

+ (yv + ad x V) x (-ad)

= y2v + a 2(d . v)d + 2ayd x V+ a 2d x (d x V)

Definition ofq and q*

Using equation (10.21)

Using equation (10.21)

516 Chapter 10 Quaternions

The last equality uses the facts that (d x v) . d = 0, v x d = -d x v and d x
(d x v) = -(d x v) x d, the same identities that the vector counterparts of d and v
satisfy. Continuing with the calculations:

qvq* = (1- a 2)v + 2a y d x v + a 2 [(d . v)d + d x (d x v)]

= v + 2ayd x v + a 2 [(d . v)d - v + d x (d x v)]

An identity from vector algebra is d x (d x v) = (d . v)d - (d . d)v = (d . v)d - v,
the last equality a consequence of d being unit length. The quaternion counterpart
satisfies the same identity, so

qvq* = v + 2a y d x v + 2a 2d x (d x v)

Recall also the trigonometric identities sin e = 2 sinCe/2) cos(e /2) = 2ay and 1 ­
cos e = 2 sin2(e /2) = 2a 2, so we finally arrive at

qvq* = v + (sin e)d x v + (1 - cos e)d x (d x v) (10.22)

This is the quaternion counterpart of equation (10.14), the general rotation of v
about an axis d by an angle e. The vector u corresponding to u = q vq * is therefore
the rotation ofv.

The rotation matrix R corresponding to the quaternion q may be obtained by
symbolically computing the right-hand side of u = qvq* and factoring the coeffi­
cients of the i -, j -, and k -terms to obtain u = Rv, where

[

1- 2y 2 - 2z2

R= 2xy+2wz
2xz - 2wy

2xy - 2wz
1 - 2x 2 - 2z2

2yz + 2wx

2xz + 2wy]
2yz - 2wx

1- 2x 2 - 2y 2

(10.23)

Composition of rotations is easily stated in terms of quaternion algebra. If p and
q are unit-length quaternions that represent rotations, and if v is the quaternion
identified with vector v, then the rotation represented by q is accomplished by u=
q vq * as shown earlier. The vector u identified with u is further modified by the
rotation represented by p:

pup* = p(qvq*)p*

=(pq)v(q* p*)

=(pq)v(pq)*

Quaternion multiplication is associative

Property of conjugation

This equation shows that composite rotation is represented by the quaternion prod­
uct pq.

10.3 A Linear Algebraic Approach 517

10.3 A LINEAR ALGEBRAIC ApPROACH

The classical approach of the last section is unappealing to those who are new to the
topic because it neither appeals to the geometric nature of quaternions nor indicates
what reasoning led to the definitions in the first place. This section provides a ge­
ometric understanding of quaternions, one that is based only on concepts of linear
algebra. Instead of analyzing a rotation in three dimensions, we analyze it in a four­
dimensional setting. A unit-length quaternion is shown to correspond to a rotation
matrix in 4D and a transformation equation analogous to equation (10.22) is con­
structed. The construction is motivated by a change of basis, the same motivation
used in the construction of equations (10.4) and (10.13).

Let us return to the standard basis {l, J, k} and the rotation matrix Rofrom equa­
tion (10.1) that represents rotation about the z-axis by angle e. Instead ofviewing the
rotation as an operation on vectors v = (x, y, z) E JR3, let us look at it as an operation
on vectors v= (x, y, z, w) E JR4. The inclusion of the fourth component gives us an
additional degree of freedom that allows the creation of a more efficient representa­
tion of rotations than what is possible in three dimensions. By efficient, I mean in the
sense of a computer implementation. The 4D representation requires less memory
than its 3D counterpart. Composition of rotations in 3D involves multiplication of
rotation matrices. Composition using the 4D representation can be computed faster
than its 3D counterpart.

A natural choice for representing the rotation in 4D is

-s
e
o
o

o
o
1
o

(10.24)

where the first equality defines a 2 x 2 block matrix whose upper-left block is the
3 x 3 rotation matrix, whose upper-right block is the 3 x 1zero vector, whose lower­
left block is the 1 x 3 zero vectors, and whose lower-right block is the scalar 1. The
second equality defines a 2 x 2 block matrix where each block is itself a 2 x 2 matrix.
The matrix Rxy is just the rotation within the xy-plane, the matrices 0 and OT have
all zeros, and I is the 2 x 2 identity matrix. The vector (x, y, z, w) is transformed
to (ex - sy, sx + ey, z, w). The next step, a strange thing to do at first glance, is the
key observation in the construction. The rotation by angle ewithin the xy-plane can
be thought of as a composition of two rotations, each by angle e/2:

where a = sinCe /2), y = cos(e /2), and H is the rotation matrix for the half angle

518 Chapter 10 Quaternions

e/2 that controls the rotation in the xy-plane. The matrix in equation (10.24) may
be factored into

Although certainly the simplest factorization you might think of) the identity
matrix I that keeps z and w fixed during the rotations can be replaced by Hand H T .

That is) we actually can allow z and w to change during each half-angle rotation in
the xy-plane as long as we make sure z returns to its original value after both operations.
The corresponding factorization is

(10.25)

where the last equality defines the matrices Qo and QO) themselves rotations in 4D.
In summary) the half-angle rotation H is applied twice to (x) y) to obtain the full­
angle rotation in the xy-plane. The inverse half-angle rotation H T is applied to
(z) w)) a rotation within the zw-plane) but that rotation is undone by H in the
second operation) the end result being that (z) w) is unchanged by the composition.
Figure 10.2 illustrates this.

What does this really gain us? For the 3D rotation matrix Ro we have a loss
rather than a gain. The 3D matrix requires storing two precomputed numbers) s
and c. The zeros and one are in known positions and do not need to be stored in
general memory. The application of R to (x) y) z) is computed as Rxy(x) y) since z
is unchanged. This requires a product of a 2 x 2 matrix and a 2 x 1vector that uses 6
operations (four multiplications and two additions). The 4D matrix requires storing
a and y-no change in memory requirements. However) the blind application of
the right-hand-side matrices in equation (10.25) leads to computing terms H (x) y))
H(H(x) y))) HT(z) w)) and H(HT(z) w)) for a total of24 operations. We could be
clever and realize that (z) w) will not change) but that still leaves us with computing
H(x) y) and H(H(x) y)) for a total of 12 operations. Being even more clever) we
realize that H 2 = Rxy and just compute RxyCx) y). This just brings us full circle with
no gain.

The real gain occurs by constructing a 4D rotation matrix ~l that corresponds
to the general 3D rotation matrix R 1 constructed by equations (lOA) and (10.13).
We need to "lift» all our basis vectors into }R4 by appending a zero w-component.
These vectors will be written as block matrices to preserve the notion of the first three
components living in }R3. Additional vectors are defined to allow us to have a standard
basis and an alternate basis for }R4. The standard basis is {l) j) k) lJ, where

(10.26)

y y

10.3 A Linear Algebraic Approach 519

y

------+---.....--....x ------e""----------:....:..=--....x ------------....x

Qo Qo
I-----------~~ t__----------I~t__---------_1

w

-----+--.....--....z

w

2(0

w

----.......---e------z

Figure 10.2 A 3D rotation about the z-axis that is represented as the product of two 4D rotations.

The alternate basis is {a, b, d, ll, where

(10.27)

The construction in equation (10.4) is mimicked by choosing P = [a Ibid I l] and
computing

where the last equality defines Q1 and Ql' The matrix Qo represents a general4D ro­
tation with respect to the alternate basis. The matrix Q1 represents the same rotation,

520 Chapter 10 Quaternions

but with respect to the standard basis, and is obtained by

Y -a 0 0

a Y 0 0

0 0 Y a

0 0 -a Y
]

aT

bT
-- (10.28)dT

-T
l

A construction analogous to the one that produced equation (10.10) may be used
to obtain

(10.29)

where :J is the 4 x 4 identity matrix. Equation (10.11) extends to four dimensions as

baT - ab
T =[~] [aT I 0] - [~] [bT I 0]

:]=[*]
It is easy to verify that

--T --T [~d]dl -ld = T
-d 0

The two matrices may be added to form a new matrix,

(10.30)

Equations (10.29) and (10.30) are replaced in equation (10.28), leading to the
representation:

[

YI+aD
Q 1 = y:J + a'D =

-adT
(10.31)

10.3 A Linear Algebraic Approach 521

where I is the 3 x 3 identity and D is the skew-symmetric matrix defined in the last
section. A similar construction leads to

(10.32)

A quick calculation that uses equation (10.13) will verify that

_ [_YI + a D---!---ad] [Y I + a D ad] __ [*10]9(1 = Q1Q l =
adT Y -adT Y OT 1

The application to a vector v E ffi.3 is to apply 9(1 as shown:

[~] =~1 [~]
The 3D result is v' = Rlv.

The matrix Ql has a special form:

ad
l
] [Wad2 z

ad
3

- -y

Y -x

-z
W

x
-y

y
-x

W

-z

(10.33)

where the last equality defines x = adl , Y = ad2 , z = ad3, and w = y. The names x,
y, z, and w of these quantities are not to be confused with the names of the variable
components for vectors in ffi.4. I use these names because that is the standard choice
for the components of a quaternion to which Ql happens to be related. Although Ql
has 16 entries, only 4 of them are unique-the last column values. Moreover, Ql uses
those same 4 values. The 4 x 4 matrix Q requires less storage than the 9 values for a
3 x 3 rotation matrix.

One issue that has not yet been addressed is composition of rotations. Let us do
so now. Let 9(= QQ and S = PP be two of our 4D rotations that correspond to 3D
rotation matrices Rand S, respectively. The composition in the 4D setting is

The astute reader will say, Wait a moment, and remind me that matrix multipli­
cation is generally not commutative, so how can we switch the order in PQ = QP? As
it turns out, the matrices P and Q do commute. This can be verified with a moderate
amount of symbolic manipulation. What this means is that we can store Q to repre­
sent 9(, store P to represent S, and compute the product PQ and store to represent

522 Chapter 10 Quaternions

the composition S9(. If Q is stored as the 4-tuple (xo, Yo' Zo, wo) and P is stored as
the 4-tuple (xl' Yl' Zl' WI)' we need compute only the unique values in PQ, call them
(x2' Y2' Z2' W2)' We can do this by computing P times the last column of Q, the result
being the last column ofP:

The product PQ effectively represents the composition of the 3D rotations. Notice
that the right-hand side values in the equation are those of equation (10.18), the
definition for quaternion multiplication, when computing qlqO = (WI + Xli + Yl) +
zlk)(wo + xoi + Yo} + zok). To rotate a vector using 9(= QQ,

Ii = [~] = ITQ [~] = ITQv

This is the matrix equivalent of equation (10.22).

10.4 FROM ROTATION MATRICES TO QUATERNIONS 1

Quaternions are a valuable supplement to 3D matrices. Here we distill them from
rotation matrices and their algebra, reducing space and time costs. We implicitly gen­
erate spin groups within Clifford algebras made from complex structures, but despite
that exotic connection our tools are elementary. Any reader who understands rota­
tion matrices can learn quaternions.

Although rotation matrices are the most efficient way known to transform the
many points and vectors comprising a 3D scene and combine well with other trans­
forms such as translation and scaling, they are not ideal for every task. They are triply
redundant, using nine numbers instead of the minimal three. Maintaining that bulk
requires enforcing constraints, another unwelcome expense. And when two rotations
are combined the result is again a rotation, but matrix arithmetic is again redundant.
Interpolation, used to smoothly animate from one rotation to another to another, is
a notable task for which matrices are both expensive and poorly behaved.

Quaternions, on the other hand, are compact, easy to maintain, quick to com­
bine, and nice to animate. To build intuition, we proceed as follows.

Beginning in 2D, we not only recall necessary facts about all rotations, but also
get a first taste of methods we will use later. After that brief warm-up, we construct a
general 3D rotation matrix and show how trigonometric substitution can simplify

1. Section 10.4 (pages 522-538) was written by Ken Shoemake.

lOA From Rotation Matrices to Quaternions 523

it, as both a review of 3D rotations and a preview of quaternions. We then begin
to construct quaternion algebra, but from 4D, not 3D, matrices; this, our reduction
method demands. Applying the 4D results to 3D rotations, we produce the famous
quaternion rotation formula. And we explicitly construct a rotation matrix based on
that formula, one that matches our earlier 3D simplification.

10.4.1 20 ROTATIONS

A rotation transforms one vector, v, into another, v', without changing the length.
Almost everything there is to know about rotations comes from this first of two
essential facts.

In 2D coordinates a vector has two components, x and y, and its squared length
is x 2 + y2. One vector perpendicular to such a v, which we'll denote PERP v, has
components - y and x. Trigonometry tells us we can rotate v by angle () using cosine
times v and sine times PERP v:

v' = cos(())v + sin(()) PERP v

In components the formula is

x' = cos(())x - sin(())y

y' = cos(())y + sin(())x

Figure 10.3 illustrates this rotation.

Figure 10.3 2D rotation.

524 Chapter 10 Quaternions

Abbreviating e = cos(e), s = sinCe), and using the trigonometric identity e2 + s2 =
1, we confirm the (squared) length does not change:

(X
,
)2 + (yl)2 = (ex _ sy)2 + (ey + sx)2

=e2x 2 - 2esxy + s2y2

+ e2y2+ 2esxy + s2X2

Writing v' = Rv, in matrix form the transformation formula is

[
XI] _ [cos(e)
y' - sinCe)

- sin (e)] [x]
cos(e) y

We can also restate length preservation in matrix form. Denoting the transpose
ofR as RT, the requirement is (vTRT)(Rv) = vTv, or simply

For any rotation angle e the determinant ofR is the constant cos2(e) + sin2(e) =
1. This fits the second and last essential fact about rotations: A rotation matrix must
have determinant +1 (otherwise, we have reflection).

Rotation by 90° gives a particularly simple and important matrix, our PERP oper­
ator,

Thus, any rotation matrix is a weighted sum of this matrix and the identity:

[
cos(e)

sinCe)
- sin (e)] [1 0] . [0
cos(e) = cos(e) 0 1 + sm(e) 1

If we call the identity matrix 1 and the 90° rotation matrix J, a little calculation
reveals some interesting facts.

II = 1

JJ =-1

II = J

II = J

Suppose a and h are real numbers. Then al + hJ is a 2 x 2 matrix but not nec­
essarily a rotation. It is redundant compared to a simple 2D vector but works well
with our rotations. For if instead of multiplying one of our rotation matrices times

10.4 From Rotation Matrices to Quaternions 525

a vector, we rather multiply it times such a 2 x 2 matrix, we can reduce each matrix
product using our known products:

(el + sJ)(al + bJ) = call + sbJJ + saJI + cbl}

=cal - sbl + saJ + cbJ

= (ca - sb)1 + (sa + cb)J

So we can replace the four elements of a 2 x 2 matrix with a two-element pair
(c, s) or (a, b) accompanied by a simple multiplication table. That is, all we really
need are the multiplication properties ofI and J. Rotations look like points (c, s) on
a unit circle, c2 + s2 = 1.

Remarkably, we have rediscovered complex numbers, a + bi, and the fact that
multiplying by a unit magnitude complex number acts like a rotation, as the follow­
ing summarizes:

Matrix Form acts like Complex Form

matrix I acts like real

scaled rI acts like real r

matrix J acts like imaginary i=yC!
transpose .T acts like complex conjugation *

Complex numbers require half the space of 2 x 2 matrices, distilling four num­
bers to two; and their multiplication, a perfect substitute for matrix multiplication,
requires half the time. We cannot do this with just any matrix, such as a shear matrix,
but that's not important for our needs here. Quite unexpectedly, the clear distinction
between matrix and vector has given way to a unified framework where both take the
same form.

Attempting to do this for 3D, we encounter a few obstacles, but nothing we can't
get around. Our principal tool is linearity.

10.4.2 LINEARITY

Mathematics uses the term "linear" in several different ways. We will depend espe­
cially on the fact that matrix multiplication is a linear transformation, meaning that,
for matrices M, A, B and scalar r,

M(A + B) = MA + MB

M(rA) = rMA

Matrix multiplication acts as a linear transformation from the right as well as
from the left-it is bilinear.

(A + B)M = AM + BM

(rA)M = rAM

526 Chapter 10 Quaternions

A linear transformation f acts in a particularly simple way on weighted sums
(linear combinations):

In other words, linearity provides a "distributive law" like that of common arith­
metic: 2 x 31 = 2 x 3 x 10 + 2 x 1 x 1. If we can dissect an object into a sum of
smaller pieces, linearity lets us operate on each piece independently. The consequent
simplification and speedup make linearity the single most valuable tool in all of ap­
plied mathematics. In 3D graphics it is common to dissect vectors; here, we instead
dissect matrices, choosing pieces that multiply in a special way.

10.4.3 3D ROTATIONS: GEOMETRY

A rotation in any dimension keeps one point fixed, but a rotation in 3D fixes a whole
line of points. This could be the x -axis, using

or the y-axis, using

[~
o

cos(e)
sinCe)

- Si~(e)]
cos(e)

or the z-axis, using

[

cos(e)

- Si~(e)

[

cos(e)
sinCe)

o

~ Sin~e)]
o cos(e)

- sinCe) o~]
cos(e)

o

or any direction desired, using a geometric extension of our 2D method.
It is helpful to present this in stages. We establish the necessary geometry; we

express that as algebra; we turn the algebra into a matrix; and then we use two
suspiciously well-chosen substitutions to simplify the matrix greatly. (Later we derive
the final matrix more honestly.)

Suppose the axis is given by unit vector uwith coordinates (x, y, z) and that we
wish to rotate vector v by angle e. We work with three pieces: the part of v that is
parallel to u, the part that's not, and the PERP of that. The parallel component has
length u.v along u, or matrix form

10.4 From Rotation Matrices to Quaternions 527

What remains is v minus that, which has matrix form

-xy
1- y2
-zy

-xz]
-yz v
1- z2

And the perpendicular ofthat, also perpendicular to U, is simply u xv. Note the cross
product automatically kills any component of v parallel to u. We can write the cross
product PERPu v = Ux v in matrix form,

PERPu V..l = PERPu V= [~
-y

-z
o
x

Now we have the three pieces that comprise our matrix. Rotating v leaves the
parallel component unchanged and again combines cosine and sine of the remaining
component and its PERP:

rot(u, 8)v = vII + cos(8)v..l + sin(8) PERPu V..l

= {uuT + cos(8)(I - uuT) + sin(8) PERPu}V

Figure 10.4 illustrates.

V'

Figure IDA 3D rotation.

528 Chapter 10 Quaternions

Abbreviating c(} = cos(e), s(} = sinCe), the matrix is

[

(1 - x 2)c() + x 2

zs(} - xyc(} + xy
-ys(} - xzc(} + xz

-zs(} - xyc(} + xy
(1 - y2)c() + y2

xs(} - yzc(} + yz

We can often simplify trigonometric polynomials by using half angles, and we do so
here. Let c = cos(e /2), s = sinCe /2), so that

s(} = 2cs

and substitute to get a revised matrix,

[

2x2s2 - 2s2+ 1 2xys2 - 2zcs
2xys2+ 2zcs 2y2s2 - 2s 2 + 1

2xzs2 - 2ycs 2yzs2+ 2xcs

All components ofuoccur scaled by s, so rename them x', y', z', and replace uwith
u = su, switching to new variable meanings

w=c

Now s2 = Ilu11 2, and we get a much cleaner four-parameter matrix,

[

2x2 - 211ul1 2 + 1 2xy - 2wz 2xz + 2wy]
2xy + 2wz 2y2 - 211ul1 2 + 1 2yz - 2wx
2xz - 2wy 2yz + 2wx 2z2 - 211ul1 2 + 1

Numerically, the four parameters x, y, z, w make up a quaternion; but this
derivation gives no hint of algebraic properties. To reveal the algebra we need a
set of basis matrices with simple multiplication, as we saw in 2D. We also note the
occurrence of two parameters in each term, suggesting we'll need not just linearity,
but bilinearity.

We soon discover that 3D rotations provide no matrix that squares to minus the
identity, which is critical for our distillation. Luckily, we can detour through 4D to
get around that problem.

lOA From Rotation Matrices to Quaternions 529

10.4.4 40 ROTATIONS

In 2D we could rotate only in the xy-plane, so one matrix, J, was all we needed (along
with the identity, I) to create all rotations. In 3D we have three independent planes:
yz (for the x-axis), zx (for the y-axis), and xy (for the z-axis). In 4D we no longer
have an axis, and we add three new independent planes: wx, wy, and wz.

The 4 x 4 matrix for a zx-plane ("y-axis") rotation is

[

cos(e) 0 sinCe) 0]

-+0) ~ CO~(O) ~

We recognize the upper-left 3 x 3 corner as a 3D rotation matrix. Now consider
a 90° rotation of the xy-plane ("z-axis"), with matrix

~1 ~ ~]
010
o 0 1

Its square is

which is halfway to -I. Ifwe simultaneously rotate in the wz-plane, squaring matrix

-1
o
o
o

o 0]o 0
o 1
-1 0

then we are there. Thus, the 4 x 4 matrices we will employ to build our 3D rotation
algebra are

x=[~
0 0

ny=[~
0 1

nz=u
-1 0

n0 -1 0 0 0 0
1 0 -1 0 0 0 0

-1 0 0 0 -1 0 0 -1

More succinctly, using our previous 2 x 2 matrices 1 and J as building blocks, these
are

x=[O ~J] y=[O ~] z= [~ ~J]-J -I

530 Chapter 10 Quaternions

Using either the explicit 4 x 4 forms or the block 2 x 2 forms, we can begin to
build a multiplication table. Note that we always use I to mean an identity matrix; its
size should be clear from context.

XX=-I YY=-I ZZ=-I

All three matrices square as intended, so no surprises here. As with J, transposi­
tion simply negates each matrix; thus, we easily verify the first essential property of
rotation matrices for all.

y T =-y

yTY=1

ZT =-Z

ZTZ=I

We leave it as an exercise to verify that all have determinant +1, the second
essential property. (Three simple rules suffice: The determinant as a function of the
columns is linear on each column, changes sign if any two columns are swapped, and
equals +Ion the identity matrix.)

Next we explore mixed multiplication.

xy=Z

yx=-Z

YZ=X

ZY=-X

ZX=Y

xz=-y

These mixed products, impossible in 2D, are both a curse and a blessing. We must
constantly take care because the sign of the result depends on the order-that's the
curse. The blessing: that same difference will give us our route back to 3D.

We will explore this shortly; but for now the important thing is that we again have
a basis for a new number system. It is somewhat like complex numbers, but with four
terms instead of two. From our experiments we can write the general multiplication
rule:

(aX + bY + eZ + dl)(xX + yY + zZ + wI) = (dx + aw + bz - ey)X

+ (dy + bw + ex - az)Y

+ (dz + ew + ay - bx)Z

+ (dw - ax - by - ez)1

Using rotations without an I component, we get a revealing special case.

(aX + bY + eZ)(xX + yY + zZ) = (bz - ey)X

+ (ex - az)Y

+ (ay - bx)Z

- (ax + by + ez)1

10.4 From Rotation Matrices to Quaternions 531

Thinking of (a, b, c) and (x, y, z) as vectors, this is a cross product minus a dot
product, and a nice way to remember the general case.

We call these new four-part numbers quaternions, and again list correspondences.

Matrix Form acts like Quaternion Form

matrix I acts like real

scaled rI acts like real r

matrix X acts like one imaginary i=yCl

matrix Y acts like another imaginary j=yCl

matrix Z acts like yet another imaginary k=yCl

transpose .T acts like conjugation .*

Conjugation of a quaternion negates all three imaginary components. We can
summarize our multiplication results with Hamilton's famous equation,

Instead of the 16 components of a 4 x 4 rotation matrix, or even the nine com­
ponents of a 3 x 3 rotation matrix, we have an algebra on just four components,
[(x, y, z), w], or xi + yj + zk + wI, three with negative squares and one with a
positive square. Rather than multiply matrices, we merely refer to a small table of
precomputed combinations. The product of any two of our four base matrices is
plus-or-minus another base matrix; and that plus linearity is enough to compute the
product ofweighted sums of them.

The rotation matrix constraint QTQ = I, with

Q = xX + yY + zZ + wI

implies the scalar equation

as can be shown with little computation. (Because QTQ equals its own transpose,
only the I component of the product can be nonzero; and the transpose merely
negates the X, Y, and Z components of Q.) Furthermore, though we won't prove
it here, any matrix constructed from weights satisfying the scalar equation is a 4D
rotation. Not all4D rotations can be written this way, but we have all we need for our
purposes.

10.4.5 3D ROTATIONS: ALGEBRA

Now let's make our way back to 3D. Our X, Y, Z base rotations alter all four com­
ponents of a 4D vector. We need a way to isolate the last dimension and leave it
unchanged so that all the rotation is restricted to the first three dimensions. Our tool

532 Chapter 10 Quaternions

will be the similarity transform,

M'=QMQ-l

routinely used to rewrite a matrix M in a different basis.
To get more familiar with our new algebra, we'll use its notation for our next

calculations. Suppose that q is either i, j, k, or 1. We know that

q*q = 1

and we also can easily show that

qq* = 1

So we can avoid rotating wI by making a "sandwich" with q for "bread."

q(wl)q* = (wl)qq*

=wl

In fact, any rotation q constructed as a weighted sum of i, j, k, and 1 (so that the sum
of the squares is 1) satisfies qq* = 1 and will also preserve wI unchanged.

But have we done too much? Have we completely canceled all rotation? Thanks
to product order dependence, we have not. For example, we can combine weights
of i, j, k, and 1 and put that "meat" inside a sandwich with i for bread. Because
matrix (and now quaternion) multiplication is linear, and from both sides, we can
distribute inside the parentheses term by term. We then pull the weight outside each
term and simplify using what we know about mixed multiplication and conjugation
(transposition) .

i(xi + yj + zk + wl)i* = i(xi)i* + i(yj)i* + i(zk)i* + i(wl)i*

=x(-iii) + y(-iji) + z(-00) + w(-iIi)

=xi + (-y)j + (-z)k + wI

This duplicates the effect of a homogeneous rotation matrix for a 1800 flip around
the x-axis.

We leave it as an exercise to verify that

o
-1
o
o

o
o
-1
o

j(xi + yj + zk + wl)j*

10.4 From Rotation Matrices to Quaternions 533

matches a 180° flip around y,

and

o 0
1 0
o -1
o 0 ~]

matches a 180° flip around z,

k(xi + yj + zk + wl)k*

Apparently in the process of getting back to 3D we doubled our rotation angle.
We did use the rotation twice, so this is understandable. Thus, we find, for example,
that a 45° sandwich made with

namely,

l+i(. . k)l-ih Xl+YJ+Z +wl h

gives a 90° x rotation,

xi + (-z)j + yk + wI

The savings for single rotations are welcome, but it's also important to be able
to combine rotations. Does angle doubling make this expensive? Not at all, because
applying first ql' then q2' gives

q2(ql(xi + yj + zk + wl)qnq; = (q2ql) (xi + yj + zk + wI)(q~q;)

= (q2ql) (xi + yj + zk + WI)(q2ql)*

=q(xi + yj + zk + wI)q*

where

534 Chapter 10 Quaternions

The simplification of quaternion conjugation follows from the same well-known
property of matrix transposition. Thus, a modest quaternion product replaces a
full matrix product. Also note that because the inverse of a rotation matrix is its
transpose, the inverse of q is q *.

So we must remember product order and angle doubling, a minor burden given
the savings in space and time. A four-component quaternion can replace a nine­
component matrix, and one quaternion multiply requires only 16 real multiplies
and 12 real additions to replace a matrix multiply's 27 real multiplies and 18 real
additions. Also, the expensive constraint on the rotation matrix,

has been replaced by a cheap unit quaternion constraint

q*q = 1

As noted earlier, this merely says that the sum of the squares of the weights must be
1. Actually, we can loosen even this requirement. We know that

N(q) = q*q

is just the sum of the squares of the weights. If, as similarity transforms suggest, we
replace q * in our sandwich by the more general inverse,

-1 1 *
q = N(q)q

we can show that

q(xi + yj + zk + wI)q-l

is always a rotation, so long as N(q) is not zero. That's about as cheap a constraint as
we could hope for!
, We have gone from 3 x 3 rotation matrices to 4 x 4 rotation matrices to quater­

nions, and discovered how to cheaply replace any 3D rotation with a quaternion
sandwich. But we have left a gap we must now close.

10.4.6 40 MATRIX

Because of the way we use a quaternion twice to perform a 3D rotation, it does not
directly give a single 4 x 4 rotation matrix to act on a vector. We need a way to
combine Q and QT, taking account of the fact that they're on opposite sides of the
"meat." We cannot do this in the quaternion algebra (nor do we need to), but we can
do it with matrices.

10.4 From Rotation Matrices to Quaternions 535

When we multiply Q from the left times the matrix aX + bY + cZ + dI, we get
a matrix result that is consistent with multiplying Q from the left times the column
vector [a bcd]T. For example,

X(aX + bY + cZ + dI) = dX + (-c)Y + bZ + (-a)I

X[a b c -c b

However, when we multiply Q from the right times the matrix, we get a matrix result
that is consistent with multiplying some other matrix, say, fj, from the left times the
column vector. For example,

(aX + bY + cZ + dI)X = dX + cY + (-b)Z + (-a)I

b c c -b

Abriefinspection shows that all we need for right-left "mutation" is transposition
of the upper-left 3 x 3 corner.

x=[~
0 0

n x=[~
0 0

n0 -1 0 1
1 0 -1 0

-1 0 0 -1 0 0

y=[~
0 1

n f=[!
0 -1

n0 0 0 0
-1 0 0 0 0
0 -1 0 -1 0

z=u
-1 0

n - [~l
1 0

n0 0 0 0
Z=

0 0 0 0 0
0 -1 0 0 -1

Of course, Y= I, and linearity assures us weighted sums mutate term by term.
Conveniently, the mutation of a transpose is the transpose of the mutation. With
these results in hand, we can immediately state that the 4 x 4 rotation matrix cor­
responding to 3D rotation by the unit quaternion

q = xi + yj + zk + wI

536 Chapter 10 Quaternions

is the product

QQT=[~
-z y

iH~
-z y

-X]W -x w -x -y
-y x w x w -z
-x -y -z y z w

=[~ xx + yy ~ zz + ww]

with

[

ww - zz - yy + xx

R = zw + wz + xy + yx
-yw + xz - wy + zx

-wz - zw + yx + xy
-zz + ww - xx + yy
yz + xw + wx + zy

wy + zx + yw + xz]
zy - wx - x w + y z

-yy - xx + ww + zz

The term in the bottom right corner is N(q), and since we assume it is 1 we can
simplify R to

[

1 - 2(z2 + y2)

2(xy + wz)
2(zx - wy)

2(xy - wz)
1- 2(x2+ z2)

2(yz + wx)

2(zx + wy)]
2(yz - wx)

1- 2(x2+ y2)

Although its diagonal looks different, this matrix agrees with the one derived earlier
in 3 x 3 form.

For the more relaxed case when N(q) = s, we need merely replace each 2 with
2/s. Even in the formally disallowed case when s = 0, we can replace each 2 with a 0
and get a rotation matrix: the identity!

Taking advantage of common subexpressions, we arrive at the algorithm shown
in Figure 10.5 for constructing a 3 x 3 rotation matrix from any quaternion, whether
zero or of any norm.

Naturally we also want the opposite conversion, from rotation matrix to quater­
nion. Properly done, this can be both efficient and numerically robust, especially
compared to other forms of reduction. However, the quaternion components always
appear in pairs, so some manipulation is unavoidable.

In weighing our algebraic options, we must be careful to avoid two pitfalls: loss
of sign information and loss of precision. To begin, look at signed sums, along either
the diagonal or the cross-diagonal. For example, attach a plus sign to the corner two
diagonal entries and a minus sign to the inner two and sum to get 4x2• Or add the
two cross-diagonal entries adjacent to the top left corner to get 4xy, from which y
can be obtained with the correct sign, if x is known and not too small.

To avoid sign loss, we extract only one component using the diagonal and divide
that into cross-diagonal sums. We can freely choose the sign for the square root;
either yields a correct result. To avoid precision loss, we look for a component of
large magnitude as our divisor, with subtlety. The first diagonal element is 2x 2 + t,
where t = w 2 - x 2 - y2 - z2. Similarly, the second diagonal element is 2y 2+ t and
the third is 2z2 + t. Thus, the largest ofthose three diagonal elements tells us which of

10.4 From Rotation Matrices to Quaternions 537

Nq := q; + q~ + q; + q~

s := if Nq > 0.0 then 2.0/Nq else 0.0

xs:= qx s

wxs:= qlJJ xs

xxs:= qx xs

ys:= qy s

wys:= qlJJ ys

xys:= qx ys

zs:= qz S

wzs:= qlJJ zs

xzs:= qx zs

yys := qy ys yzs := qy zs zzs := qz zs

[

1.0 - (yys + zzs) xys - wzs

R := xys + wzs 1.0 - (xxs + zzs)

xzs - wys yzs + wxs

xzs + wys]

1.0~~:Syys)

Figure 10.5 Convert any quaternion q to rotation matrix R.

tr := Rxx + R yy + Rzz

if tr < 0.0

then

(i, j, k) := (x, y, z)

if Ryy > Rxx then (i, j, k) := (y, z, x)

if Rzz > Rii then (i, j, k) := (z, x, y)

r:= JR ii - Rjj - Rkk + 1.0

s:= 0.5/r

qi:= 0.5 r

qj:= (Rij + Rji) S

qk:= (Rki + Rik) s

qw := (Rkj - Rjk) s

Figure 10.6 Convert rotation matrix R to unit quaternion q.

else

r:= Jtr + 1.0

s:= 0.5/r

qx := (Rzy - Ryz) s

qy := (Rxz - Rzx) s

qz := (R yx - Rxy) s

qw:= 0.5 r

x, y, or z has the largest magnitude. Still, they might all be too small if w dominates;
so we first test for that by comparing the sum of all three diagonal elements to zero,
which is the same as comparing the magnitude of w to 1/2. The algorithm shown in
Figure 10.6 brings it all together.

538 Chapter 10 Quaternions

10.4.7 RETROSPECT, PROSPECT

The nine entries ofa 3 x 3 rotation matrix are redundant, since a 3D rotation has only
three degrees offreedom; but we have seen how to create any 3D rotation matrix from
four parameters having the same minimal redundancy as homogeneous coordinates,
an overall scale factor. We also learned how to combine rotations more quickly, in the
process discovering a new algebra that blurs the line between number and matrix.

An even-dimensional rotation matrix that squares to minus the identity is called a
complex structure. Necessarily, it is skew, since RTR = 1 and RR = -I together imply
RT = - R. The technique employed, a set of such matrices that anticommute with
each other, extends to rotations in any dimension by generating a Clifford algebra,
which is an algebra built up from vectors by using a special bilinear product. The
general construction of a spin group within a Clifford algebra differs slightly from
what we have done here, because we took advantage ofsimplifying coincidences. (The
spin group in 2D acts just like aID Clifford algebra, which acts like complex numbers;
and the spin group in 3D acts like a 2D Clifford algebra, which acts like quaternions.)

So, in one sense, complex numbers, quaternions, and general Clifford algebras
are no more exotic than matrices. This once again attests to the generality ofmatrices,
though historically it was quaternions that inspired matrix algebra, not the other way
around.

However, this account does not do justice to the remarkable properties of quater­
nions in their own right. The most glaring omission is the beautiful link between the
geometry of quaternions seen as 4D vectors and the geometry of 3D rotations.

A hint of this connection, so essential to interpolation, can be seen by looking at
the 4D dot product of two unit quaternions:

[a bcd]T. [x y z w]T = ax + by + cz + dw

In geometric terms, it gives the cosine of the angle between the two quaternions
considered as vectors. But it can also be written in terms of the quaternion algebra
as the I-component of

(ai + bj + ck +dI)(xi + yj + zk + wI)*

which from our 3D reduction is the cosine ofhalf the angle between the two rotations
represented. Thus, we have, in one view, two points on a sphere with a central angle
between them; and in another view, two rotations with a direct turn connecting them.
We exploit this to interpolate the two rotations in a surprisingly simple but effective
way: we draw the spherical arc between the two quaternions.

Matrix notation streamlines linear transformations; quaternion notation goes
even further in the case of 3D rotations. I hope exploring the similarity of the two,
as we have done here, illuminates both. Some complexity remains, but that is an
inevitable consequence of the behavior of rotations, not a quirk of quaternions.

10.5 Interpolation of Quaternions 539

10.5 INTERPOLATION OF QUATERNIONS

An application that benefits from a quaternion representation of rotation is keyframe
animation. The rotational keyframes must be interpolated to produce reasonable
in-between rotations. The quaternions representing the rotations can themselves be
interpolated in a natural manner, as described in this section.

10.5.1 SPHERICAL LINEAR INTERPOLATION

The 4-tuple (x, y, Z, w) that represents the matrix Q was already shown to be unit
length when viewed as a vector in }R4. That means it is a point on the hypersphere
of radius 1 that is centered at the origin of}R4. This is just a fancy way of stating the
geometry associated with the algebraic equation x 2 + y2 + z2 + w2 = 1.

A standard problem in computer graphics and animation is to interpolate two 3D
rotation matrices Ro and R1 for various choices of t E [0, 1]. The interpolant is de­
noted R(t), a rotation matrix itself, and it is required that R(O) = Roand R(l) = RIo

The 4-tuple representations of the rotation matrices and the corresponding hyper­
sphere geometry allow for a simple yet elegant interpolation called spherical linear
interpolation, or slerp for short. If qi = (Xi' Yi' Zi' Wi) are the 4-tuple representations
for R i (i = 0, 1) and if q(t) is the 4-tuple representing R(t), then a reasonable geo­
metric condition to impose is that q(t) lie on the hyperspherical arc connecting qo
and qI' Moreover, the angle between q(t) and qo should be proportional to the angle
¢ between qo and qI with constant ofproportionality t. Figure 10.7 illustrates this by
showing the plane spanned by qo and qI and the circular arc connecting them within
that plane.

Figure 10.7 Illustration of the spherical linear interpolation, or slerp, of two vectors.

540 Chapter 10 Quaternions

The angle ¢ E (0, n) between qo and ql is indirectly obtained by a dot product,
cos(¢) = qo . ql' The interpolant is required to be of the form q(t) = co(t)qo +
CI(t)ql for some to-be-determined coefficient functions co(t) and CI (t). Construction
of q(t) uses only trigonometry and solving two equations in two unknowns. As t
uniformly varies between 0 and 1, the values q (t) are required to uniformly vary along
the circular arc from qo to ql' That is, the angle between q(t) and qo is t¢ and the
angle between q(t) and qI is (1- t)¢. Dotting the equation for q(t) with qo yields

cos(t¢) = co(t) + COS(¢)c1 (t)

and dotting the equation with ql yields

cos((1- t)¢) = cos(¢)co(t) + CI(t)

These are two equations in the two unknowns Co and CI' The solution for Co is

Co(t) = cos(t¢) - cos(¢) cos((1- t)¢) = sin((1- t)¢)

1 - cos2 (¢) sin(¢)

The last equality is obtained by applying double-angle formulas for sine and cosine.
By symmetry, cI (t) = co(1- t). Or solve the equations for

CI(t) = cos((1 - t)¢) - cos(¢) cos(t¢) = sin(t¢)

1- cos2 (¢) sin(¢)

The spherical linear interpolation is

I ()
sin((1-t)¢)qo+sin(t¢)ql

s erp t; qo, ql = -----.--=--------==
sm¢

(10.34)

for 0 :::: t :::: 1. It is easy to verify that slerp(O; qo, ql) = qo, and slerp(l; qo, ql) = ql'
Using trigonometry applied directly to equation (10.34), you can also verify that
I slerp(t; qo, ql)1 = 1 for all t.

The derivative of slerp with respect to time is

1
'() -¢ cos((1- t)¢)qo + ¢ coS(t¢)ql

s erp t; qo, ql = ------.-----=:"'---------'=
sm¢

(10.35)

It is easy to verify that slerp'(O; qo, ql) = ¢(-(cos ¢)qo + ql)/ sin ¢, and
slerp'(l; qo, ql) = ¢(-qo + (cos ¢)ql)/ sin ¢. Using trigonometry applied directly
to equation (10.35), you can also verify that I slerp'(t; qo, ql)1 = ¢ for all t. The
derivative vector has constant length, so a uniform sampling of t produces a uniform
sampling of points on the circular arc.

Ifyou were to specify a unit-length vector T that is tangent to the unit hypersphere
at a point q on the hypersphere, and ifyou specify an angular speed ¢, a circular arc
starting at q in the direction of T is

pet) = cos(t¢)q + sin(t¢)T (10.36)

10.5 Interpolation of Quaternions 541

for t ~ O. In terms of the slerp function) q is the starting point qo) </J is the angle
between qo and the ending point ql) and T = slerp' (0; qo) ql)/</J.

10.5.2 SPHERICAL QUADRANGLE INTERPOLATION

In many applications there is a need for higher-order interpolation than what slerp
provides. This section introduces spherical quadrangle interpolation as an iteration of
slerp operations to produce a higher-order result. The motivation for this comes from
quadrangle interpolation of four points in the plane that form a convex quadrilateral)
call the points Vi for 0 .::s i ::s 3. Figure 10.8 shows a typical configuration.

Bilinear interpolation is used to generate points inside the quadrilateral. To rep­
resent the linear interpolation) or lerp) of the two input vectors) we use the notation
lerp(r; a) b) = (1- r)a + rb for r E [0) 1]. The bottom and top edges are linearly
interpolated using parameter t E [0) 1]. The interpolated point for the bottom edge is

and the interpolated point for the top edge is

p =(1- s)[(1- t)vo + tv3] + s[(1- t)v1 + tv2]

=(1- t)[(1- s)vo + SV1] + t[(1- s)v3 + SV2]

Figure 10.8 Four points forming a convex quadrilateral. Any interior point of the quadrilateral
can be generated using bilinear interpolation with parameters sand t. The curve
connecting Vo and V3 indicates that we want a particular function s = f(t) with
f(O) = f(1) = o.

542 Chapter 10 Quaternions

The line segment connecting Uo and UI can itselfbe generated by linear interpolation
of the end points using parameter s E [0, 1]. Such points are of the form

p=(1-S)UO+SUI

= (1- s)[(1- t)vo + tV3] + s[(1- t)vI + tV2]

= lerp(s; lerp(t; Yo, v3)' lerp(t; VI' V2))

We want a curve that connects the initial point va and the final point v3' This re­
quires imposing a functional constraint s = I(t) for some function I. It is necessary
that I(t) E [0, 1] since s E [0, 1]. For the curve to contain the initial point and final
point, we need 1(0) = 0 and 1(1) = d, respectively. The function I (t) should also
be symmetric about the t-interval midpoint 1/2 so that the curve generated by the
ordered input points and the curve generated by the reverse-ordered input points are
the same. The constraint is therefore 1(1- t) = I(t) for all t E [0, 1]. The simplest
function to use that satisfies the constraints is the quadratic I (t) = ct (1 - t) for some
c .:::: 4; the bound on c guarantees I(t) .:::: 1. Although there are many choices for c, a
natural one is c = 2 so that at the midpoint t = 1/2, the interpolation produces the
average of the four points. The curve is given parametrically as

pet) = quad(t; va' VI' V2' V3)

= lerp(2t (1 - t); lerp(t; Va' V3), lerp(t; VI' V2))
(l0.37)

A couple of observations are in order. First, as a function of sand t the interpo­
lation scheme is bilinear. The coefficients of the input points are quadratic functions;
however, once the constraint s = 2t (1 - t) is imposed, the coefficients are cubic poly­
nomials in t. Second, equation (10.37) is not the cubic Bezier curve corresponding to
four control points. The Bezier curve is

h(t) = (1- t)3vo + 3(1- t)2tVI + 3(1- t)t2v2 + t3v3

= lerp(t; lerp(t; lerp(t; va' vI)' lerp(t; VI' V2)),

lerp(t; lerp(t; VI' V2), lerp(t; V2' V3)))

The coefficient of va in equation (10.37) is (1- 2t(1- t))(1- t) and is not the
same as the coefficient of va in h(t), namely, (1 - t)3. The Bezier curve has end
tangents h' (0) = 3(vi - va) and h' (1) = 3(v3 - v2)' The quadratic interpolation curve
has end tangents p/(O) = (v3 - va) + 2(vi - va) and p' (1) = (v3 - va) - 2(v2 - v3)'

Using the analogy of the iterated lerp function to define the quad function, we
define the squad function of quaternions as

10.6 Derivatives of Time-Varying Quaternions 543

10.6 DERIVATIVES OF TIME-VARYING QUATERNIONS

In equation (5.9) ofSection 5.1 we stated that the derivative of a time-varying quater­
nionq(t) is

dq(t) = ~w(t)q(t)
dt 2

where wet) is the quaternion representation of the angular velocity vector wet) =
(wI' Wl' W3). As such, wet) = wli + wlj + w3k; that is, wet) has a zero real part. It
is not necessary that w (t) be a unit-length quaternion since we know that the angular
velocity wet) is not necessarily a unit-length vector.

The derivative formula is proved according to the following construction that is a
slightly more formal and detailed version ofwhat occurs in the fine book [Kui99]. Let
q(t) = cos(()(t)/2) + u(t) sin(()(t)/2), where u = uli + ulj + u3k with ui + u~ +
u~ = 1. The rotation angle for q(t) is () and the rotation axis has unit-length direction
U = (uI' Ul' u3). The quaternions q(t + h) and q(t) are both unit length, so the
product q(t + h)q-l(t) is unit length; write it as

q(t + h)q-l(t) = p(t, h) = cos(a(t, h)/2) + v(t, h) sin(a(t, h)/2) (10.39)

where v = VIi + Vlj + v3k with vi + v~ + v~ = 1. The quaternion p(t, h) has angle
of rotation a(t, h) and rotation axis direction v = (VI' Vl' V3). When h = 0 the left­
hand side is q(t)q-l(t) = 1, so a(t, 0) = o. Multiplying equation (10.39) by q(t),
subtracting q(t), and dividing by h leads to

q(t + h) - q(t) cos(a(t, h)/2) - 1+ vet, h) sin(a(t, h)/2) ()
-----=---- = q t

h h

Taking the limit as h goes to zero:

dq = lim q(t + h) - q(t)
dt h---+O h

1. (cos(a(t, h)/2) - 1+ vet, h) sin(a(t, h)/2) ())= ~ qt
h---+O h

(1' cos(a(t,h)/2)-1 ()1· Sin(a(t,h)/2)) ()= 1m + V t, 0 1m q t
h---+O h h---+O h

(1
. -(ah (t, h) /2) sin(a(t, h) /2) 1. (ah (t, h) /2) cos(a(t, h) /2))= 1m + u(t) 1m q(t)

h---+O 1 h---+O 1

= (ah(t, 0)/2)u(t)q(t)

544 Chapter 10 Quaternions

where the next to last equality uses I'H6pital's rule and ah(t, h) = aa(t, h)/ah. So
we have

dq 1 1- = -(ah(t, O)u(t))q(t) = -wq
dt 2 2

(10.40)

Alternatively, we can use the approach taken in [DKL98]. Specifyq(t) = y + au,
where y = cos(()(t)/2), a = sin(()(t)/2), and u = u(t) has a zero real part and its
corresponding vector u is unit length. Differentiating directly with respect to t:

dq. .
- = -(() /2)a + au + (() /2)yu
dt

= (e /2)(yu - a) + au

= (e /2)uq + au

= ~ (eu + 2auq -
1
) q

Since u . u = 1, the derivative u satisfies u . u= 0; that is, u is perpendicular to u.
Consider:

uq-l = u(y - au)

= yu - auu

= yu - a(-u . u + u x u)

= yu - a(u xu)

= 0 + (yu - a(u x u))

By equation (10.21)

Since uand u are perpendicular as vectors

The last equality stresses the fact that the real part is zero. This is true since uand
ux u both have zero real parts. The derivative of q(t) is therefore

dq 1(' . 2.- = - () u + 2a y u - 2a u x u)q
dt 2

=~(eu + sin(())u + (cos(()) - l)u x u)q = ~wq
2 2

(10.41)

Notice that u, u, and ux u in the term for angular velocity form an orthonormal set
as vectors. Compare this to equation (2.40) to see, indeed, that the quaternion wet)
does correspond to the angular velocity vector w(t).

Yet another approach is given in [KKS96] and uses logarithmic and exponential
maps. However, this complicated approach is unnecessary as evidenced by the sim­
plicity of the preceding proofs.

LINE~ ALGEBRA
\" J

A.I A REVIEW OF NUMBER SYSTEMS

A.I.l THE INTEGERS

We are all familiar with various number systems whose properties we take for
granted. The simplest set of numbers is the integers. The basic operations on this
set are addition and multiplication. Each operation takes a pair of integers and pro­
duces another integer. Ifnand m are integers, then n + m and n . m are integers. The
result of the operation does not depend on the order ofthe operands: n + m = m + n
and n . m = m . n. The operations are said to be commutative. When adding or mul­
tiplying three integers n, m, and p, the grouping of the operands is unimportant:
n + (m + p) = (n + m) + p and n . (m . p) = (n . m) . p. The operations are said
to be associative. Because the grouping is unimportant, we may unambiguously write
the sum as n + m + p and the product as n . m . p. Multiplication is distributive
across a sum: n . (m + p) = n . m + n . p. The number zero is the additive identity
in that n + 0 = n. Each integer n has an additive inverse -n where n + (-n) = O.
This concept supports the definition of subtraction of two numbers nand m, namely,
n - m = n + (-m). Finally, the number one is the multiplicative identity in that
n·l=n.

A.I.2 THE RATIONAL NUMBERS

The set of integers is deficient in a sense. Other than the numbers 1 and -1, no
integer has a multiplicative inverse that is itself an integer. Ifn is an integer such that
In I =f=. 1, there is no integer m for which n . m = 1. The remedy for this is to define a
superset of numbers that do have multiplicative inverses within that set. You are also

545

546 Appendix A Linear Algebra

familiar with this set, the rational numbers, that consists of all ratios n/ m where n
and m are integers and m ::j=. O. A single rational number has many representations,
for example, 2/5 and 4/10 represent the same number. The standard representative
is one for which the greatest common divisor of the numerator and denominator is
1. In the example, the greatest common divisor of 2 and 5 is 1, so this is the standard
representative. The greatest common divisior of 4 and 10 is 2, so this number is not
the standard, but can be reduced by dividing both numerator and denominator by 2.
An integer n represented as a rational number is n/l, but for notational convenience,
we still use n to represent the number.

Addition of rational numbers is based on addition of integers. Ifn Iim 1 and n2/m2
are rational numbers, then the sum and product are defined by

nl n2 nl • m2 + n2 . ml- + - = --=-_--::-_--::-_....::.

ml m2 ml 'm2
and ~. !!2=~

ml m2 ml 'm2

The addition and multiplication operators on the left-hand sides of the definitions
are those for the rational numbers. The addition and multiplication operators on the
right-hand sides of the definitions are those for the integers. The rational operations
have all the properties that the integer operations do: commutative, associative, and
distributive. The rational number 0/1 (or a for short) is the additive identity. The
additive inverse ofn/m is (-n)/m (or -n/m for short). The rational number 1/1
(or 1 for short) is the multiplicative identity. The multiplicative inverse of n / m with
n ::j=. ais m/n.

A.I.3 THE REAL NUMBERS

The rational numbers may also be thought of as deficient in the sense that certain
algebraic equations with rational coefficients may not have rational roots. For exam­
ple, the equation 16x 2 = 9 has two rational roots, x = ±3/4. The equation x 2 = 2
does not have rational roots. Looking ahead, we need the concept of irrational num­
bers. The remedy is, once again, to define a superset of numbers, in this case the real
numbers. The formal construction is nontrivial, normally taught in a course on real
analysis, and is not presented here. The construction includes defining the addition
and multiplication operations for real numbers in terms of the operations for rational
numbers. The operations are commutative and associative and multiplication dis­
tributes across addition. The additive identity is the real number aand each number
r has an additive inverse denoted -r. The multiplicative identity is the real number
1 and each nonzero number r has a multiplicative inverse denoted 1/r. In this book,
the set of real numbers is denoted by JR.

A.I.4 THE COMPLEX NUMBERS

And yet one more time we have another deficiency. Algebraic equations with real
coefficients may not have real roots. We can now solve x 2 = 2 to obtain two real

A.l A Review of Number Systems 547

solutions x = ±J2, but x 2 = -1 does not have real solutions since the square of a
nonzero real number must be positive. The remedy is to define a subset of numbers,
in this case the complex numbers. The symbol i is defined to be a complex number for
which i2 = -1. Complex numbers are written in the form x + iy, where x and yare
real numbers. Addition is defined by

and multiplication is defined by

The additive identity is 0 + iO (or 0 for short). The additive inverse of x + iy is
(-x) + i (- y) (or -x - iy for short). The multiplicative identity is 1+ i0 (or 1 for
short). The multiplicative identity of x + iy, assuming not both x and yare zero, is

1 x . Y
--=----l---
X + iy x 2+ y2 x 2+ y2

The addition and multiplication operators are commutative and associative and mul­
tiplication distributes across addition. The set of complex numbers is finally complete
in the sense that the roots of any polynomial equation with complex-valued coeffi­
cients are always representable as complex numbers. This result is the Fundamental
Theorem ofAlgebra.

A.1.5 FI ELDS

The arithmetic properties ofthe rational numbers, the real numbers, and the complex
numbers may be abstracted. The general concept is a field that consists of a set F of
numbers, an addition operator (+), and a multiplication operator (.) that satisfy the
following axioms. In the axioms, x, y, and z are elements of F.

1. x + y is in F (set is closed under addition).

2. x + y = y + x (addition is commutative).

3. (x + y) + z = x + (y + z) (addition is associative).

4. There is an element 0 in F such that x + 0 = x for all x in F (additive identity).

5. For each x in F, there is an element -x in F such that x + (-x) = 0 (additive
inverses).

6. x . y is in F (set is closed under multiplication).

7. x . Y = Y . x (multiplication is commutative).

8. (x . y) . z = x . (y . z) (multiplication is associative).

9. x . (y + z) = x . y + x . z (multiplication distributes across addition).

548 Appendix A Linear Algebra

10. There is an element 1 in F such that x . 1 = c for all x in F (multiplicative
identity).

11. For each x =j=. 0 in F, there is an element x -1 such that x . x-I = 1 (multiplicative
inverses).

This topic and related ones are usually presented in an undergraduate course in
abstract algebra.

A.2 SYSTEMS OF LINEAR EQUATIONS

Suppose that a1 through am and b are known constants and that Xl through Xm are
variables. The equation

is called a linear equation. A common problem in applications is to have to solve a
system of n linear equations in m unknown variables. In most cases n = m, but the
method of solution applies even if this is not the case. As we shall see, the system
has no solutions, one solution, or infinitely many solutions. The method of solution
involves elimination of one variable at a time from the equations. This phase is
referred to as forward elimination. At the end of the phase, the first equation has m
variables, the second equation has m - 1variables, and so on, the last equation having
1variable. The equations are then processed in reversed order to eliminate variables
and obtain the final solution (if any). This phase is referred to as back substitution.

EXAMPLE

A.I
Here is a simple example for mixing two acid solutions to obtain a desired ratio of
acid to water. Determine how many liters of a 10% and a 15% solution of acid must
be used to produce 3 liters ofa 12% solution ofacid. Let x and y represent the number
ofliters of 10% and 15% solutions, respectively. Intuitively, x > y since 12 is closer to
10 than 15. Two conservation rules apply. Conservation ofvolume implies

x + y = 3

Liters of 10 % solution Liters of 15% solution Liters of 12% solution

Conservation of acid implies

O.lOx + 0.15y

Acid in 10 % solution Acid in 15% solution

0.12(3)

Acid in 12% solution

Thus, we have two equations in two unknowns, x + y = 3 and O.lOx + 0.15y =
0.36. Forward elimination is used to remove x from the second equation. The first
equation implies x = 3 - y. Substitute in the second equation to eliminate x and

EXAMPLE

A.2

A.2 Systems of Linear Equations 549

obtain 0.36 = 0.10(3 - y) + 0.15y = 0.05y + 0.30. The last equation is solved for
y = 6/5. Back substitution is used to replace the occurrence of y in the first equation,
x = 3 - 6/5 = 9/5. The final answer is that 9/5 liters of the 10% solution and 6/5
liters of the 15% solution combine to produce 3 liters of the 12% solution.

Here is an example of a system of three linear equations in three unknowns:
(1) x + y + z = 6, (2) x + 2y + 2z = 11, and (3) 2x + 3y - 4z = 3. The forward
elimination process is applied first. Use the first equation to eliminate x in the other
equations. Multiply equation 1 by -1 and add to equation 2:

-x y z -6

x + 2y + 2z 11

Y + z 5

Multiply equation 1 by - 2 and add to equation 3:

-2x 2y 2z -12

2x + 3y 4z 3

Y 6z -9

We now have two equations in two unknowns: y + z = 5 and y - 6z = -9. Multiply
equation 1 by -1 and add to equation 2:

-y

y

z

6z

-5

-9

EXAMPLE

A.3

-7z -14

We now have one equation in one unknown: -7z = 14. In summary, forward elim­
ination has produced the equations x + y + z = 6, Y + z = 5, and -7z = 14. Back
substitution is the next process. Solve equation 3 for z = 2. Substitute this z value in
equation 2, 5 = Y + z = y + 2, and solve for y = 3. Substitute the z and y values in
equation 1,6 = x + y + z = x + 3 + 2, and solve for x = 1. The system has a single
solution x = 1, Y = 3, and z = 2.

There are a couple of snags that can be encountered in forward elimination. The
next two examples illustrate these and how to get around them.

In this example, the right-hand side values are unimportant in the illustration. We
simply put asterisks in these places. Consider

x

2x

4x

+ y

+ 2y

+ 6y

+ z

+ 5z

+ 8z

*
*
*

SSO Appendix A Linear Algebra

(Example A.3
continued)

Use equation 1 to eliminate x from equations 2 and 3. Multiply equation 1by -1 and
add to equation 2. Multiply equation 1 by -4 and add to equation 3 to obtain the
system

x + Y

2y

+ z = *
+ 3z = *
+ 4z *

There is no y-term in equation 2, so you cannot use it to eliminate the y-term in
equation 3. In order to continue the formal elimination process, you must swap the
last two equations. The swap has no effect on the algebraic process of solving the
equations, but it is convenient in establishing an algorithm that a computer could
use in solving systems. After swapping we have

x + Y
2y

+ z

+ 4z
*
*

EXAMPLE

AA

3z = *

Forward elimination is now complete and back substitution may be applied to obtain
a solution.

In the following system, the constants on the right-hand side of the equations are
denoted a, b, and c, but are still considered to be known values:

x

2x

4x

+ Y

+ 2y

+ 4y

+ z = a

+ 5z = b

+ 8z = c

Use equation 1 to eliminate x from equations 2 and 3. Multiply equation 1 by -2 and
add to equation 2. Multiply equation 1 by -4 and add to equation 3. The resulting
system is

x + Y + z a

3z b - 2a

4z c - 4a

There is no y-term in either equation 2 or 3. Instead we proceed to the next variable,
z, in the second equation and use it to eliminate z in the third equation. Multiply
equation 2 by -4/3 and add to equation 3.

A.2 Systems of Linear Equations 551

x + y + z a

3z b - 2a

o (c - 4a) - 4(b - 2a)/3

The last equation contains none of the original variables, but nonetheless must still
be a true statement. That is, the constants a, b, and c, whatever they might be, must
satisfy (c - 4a) - 4(b - 2a)/3 = o. If they do not, the system of equations has no
solutions; no choice of x, y, and z can force the last equation to be true. For example,
if a = I, b = -I, and c = I, (c - 4a) - 4(b - 2a)/3 = 1::j=. 0, and the system has no
solutions. If the constants do satisfy the last equation, the first two equations can be
manipulated further. The second equation is solved for z = (b - 2a)13. Replacing
this in the first equation and moving the constant terms to the right-hand side,
we have

x + y = a - (b - 2a)13 = (Sa - b)I 3

One ofthe variables may be freely chosen, the other variable depending on the choice.
If y is freely chosen, then x = (Sa - b)/3 - y. There are infinitely many choices for
y (any real number), so the system of equations has infinitely many solutions. For
example, if a = I, b = -I, and c = 0, (c - 4a) - 4(b - 2a)/3 = 0 and the solutions
are tabulated as

(x, y, z) = (-y + 2, y, -1) = y(-l, 1,0) + (2, 0, -1)

which emphasizes the dependence on the free parameter y.

A.2.1 A CLOSER LOOK AT Two EQUATIONS IN Two UNKNOWNS

Let us take a closer look at the forward elimination for a system of two equations,

allxI + a12xl = b l

a2lx I + allxl = bl

The coefficients aij and the right-hand sides b j are known constants. The x j are the
unknowns. For the sake of argument, assume all ::j=. 0 so that no row-swapping is
needed. To eliminate xl from equation 2, multiply equation 1by a2l1all and subtract
from equation 2. The resulting system is

552 Appendix A Linear Algebra

Observe that you do not need to compute a2l - all * a2l1all since the multiplier was
chosen so that this term is zero. To solve using back substitution, solve the second
equation for X2:

Substitute this in the first equation and solve for x I:

b I - all * X2
Xl =

all

The method ofsolution needs to be implemented for a computer. A practical con­
cern is the amount of time required to compute a solution. The number of cycles for
floating point addition/subtraction, multiplication, and division can vary on differ­
ent processors. Historically, additions and subtractions were the fastest to compute,
multiplication somewhat slower, and division the slowest. A speedy implementation
had to be concerned about the cycle counts for the operations, sometimes replacing
the slower operations with fast ones. For example, if addition requires a cycles and
multiplication requires J1, cycles, then the floating point expression 2 * x requires jl

cycles to compute. The expression written instead as x + x requires a cycles. If a < jl,

then the application most likely would choose to use the latter expression. Avariation
on this is to compute 3 * x using jl cycles or x + x + x using 2a cycles. Again, if the cost
for an addition is less than half that for a multiplication, then the latter expression is
a better choice for speed.

A more interesting example is in the product of two complex numbers, (a + bi) *
(c + di) = (a * c - b * d) + (a *d + b * c)i. The expression on the right-hand side
requires 4 multiplications and 2 additions for a cost of 4jl + 2a cycles. An alternate
form of the right-hand side is (d * (a - b) + a * (c - d)) + (d * (a - b) + b * (c +
d))i. The expression d * (a - b) is common to the real and imaginary parts, so only
needs to be computed once. The alternate form requires 3 multiplications and S
additions for a cost of 3jl + Sa. As long as an addition is less than one-third the cost
of a multiplication, the alternate form is cheaper to compute.

On some current-generation processors, additions and multiplications require
the same number of cycles. Tricks of the form discussed previously are no longer of
use in this setting. In fact, as hardware has evolved to eliminate the disparity between
cycle counts for basic arithmetic operations, other issues have become important.
Inexpensive comparisons were once used to steer the flow of computation along a
path that minimizes the cycle count for arithmetic operations. Now comparisons
can be more expensive to compute than additions or multiplications, so the steering
might lead to a larger cycle count than by just using a direct path. Cache misses,
floating point stalls, branch penalties, parallel integer and floating point units, and
a collection of other issues must be dealt with when implementing algorithms. They
will certainly make your programming life interesting!

A.2 Systems of Linear Equations 553

Well, that was a long digression. How does it relate to linear systems? In the
example of a system of two equations, the expressions that are computed, in order,
are listed below:

1. Compute Cl = a2l/all'

2. Compute dl = a22 - all * cl'

3. Compute el = b2 - b l * cl'

4. Solve for X2 = edd l .

5. Compute 11 = b l - all * x2'

6. Solve for Xl = Idall'

The algorithm requires 3 additions, 3 multiplications, and 3 divisions. Divisions
are still typically more expensive to compute than additions and multiplications, so
you might try to eliminate them (if possible). Convince yourself that the following
sequence also leads to a solution:

1. Compute c2 = all * a22 - a2l *all'

2. Compute d2 = all *b2 - a2l * bl .

3. Solve for X2 = c2/d2.

4. Compute e2 = b l - all * x2'

5. Solve for Xl = e2/all'

This algorithm requires 3 additions,S multiplications, and 2 divisions. The trade-off
is that 1 division has been replaced by 2 multiplications. Whether that is a reduction
in cycles depends on your processor. On most current processors, it is.

Other time-saving options depend on how you plan on using the solution (Xl' x2)'

For example, if your application needs only to compare the solution to see if it lies
in a rectangle, the divisions are not required at all. Suppose the comparisons to be
tested are Xl E [Ul' vd and X2 E [U2' V2]' The pseudocode using Xl and X2 directly is

bool Contains (float xl, float x2, float ul, float vI, float u2, float v2)

return ul <= xl && xl <= vI && u2 <= x2 && x2 <= v2;

The divisions can be avoided:

bool Contains (float e2, float all, float c2, float d2, float ul, float vI,
float u2, float v2)

554 Appendix A Linear Algebra

if (all > 0)

if (d2 > 0)
return all * ul <= e2 && e2 <= all * vI && d2 * u2 <= c2 &&

c2 <= d2 * v2;
else

return all * ul >= e2 && e2 >= all * vI && d2 * u2 >= c2 &&
c2 >= d2 * v2;

}

else

if (d2 > 0)
return all * ul >= e2 && e2 >= all * vI && d2 * u2 >= c2 &&

c2 >= d2 * v2;
else

return all * ul <= e2 && e2 <= all * vI && d2 * u2 <= c2 &&
c2 <= d2 * v2;

The 2 divisions have been replaced by 4 multiplications and 2 comparisons, in worst
case. It is possible that not all multiplications are performed since an early return can
occur if one of the Boolean subexpressions is false. On most current processors, the
alternate method will reduce the cycle count.

A.2.2 GAUSSIAN ELIMINATION AND ELEMENTARY Row OPERATIONS

I believe we now have a sufficient grasp on the methods of forward elimination and
back substitution to look at the general setting. The total process is called Gaussian
elimination and starts with n linear equations in m unknowns:

+
+

+

where the coefficients aij and inputs bi are known and where the x j are unknown
(l ::::; i ::::; n, 1::::; j ::::; m). The system can be written more concisely as

m

L aijxj = bi' 1::::; i ::::; n

j=l

EXAMPLE

A.S

A.2 Systems of Linear Equations 555

The coefficients aij can be written in tabular form, called a matrix, A = [aij]'
The table has n rows indexed by i and m columns indexed by j. The numbers bi
can be written in tabular form, called a column matrix, b = [bi]. This table also has
n rows indexed by i but only a single column. The variables x j can be written as
a column matrix, x = [x j]' that has m rows indexed by j. Using the tabular forms,
the system may be suggestively written as Ax = b, where the implied product Ax
denotes the operations necessary to reconstruct the left-hand sides of the equations
in the system. In a later section I will define the general operation for multiplying
matrices. The elimination process algebraically manipulates the entries of the A and
b matrices. The bookkeeping is concisely represented in terms of operations on A, b,
and the augmented matrix [A Ib], the matrix with n rows and m + 1 columns that is
obtained by appending b on the right of A.

Forward elimination is equivalent to applying what are called elementary row
operations to the augmented matrix. These operations are

1. Interchange row i with row j. Notation: Ri *+ Rj'

2. Multiply row i by a scalar C =j=. O. Notation: C Ri ---+ Ri •

3. Multiply row i by a scalar Ci' multiply row j by a scalar Cj' then add the results
and replace row j. Notation: Ci R i + C j R j ---+ R j'

The sequential application of the operations is performed until the following rules
are satisfied:

1. If row r has its first nonzero entry in column c, then every entry in column C

below row r is zero.

2. If row rl has its first nonzero entry in column CI' row rz has its first nonzero entry
in column cz, and rl < rz, then CI < Cz is required.

3. Each row having all zero entries must lie below any other row having at least one
nonzero entry.

Solve Xl + Xz + X3 = 6, xl + 3xz + 2x3 = 11, 2xI + 3xz - 4x3 = 3. The augmented
matrix is

[Alb)= [i
1

2

3

1

2

-4

Apply elementary row operations to [A Ib] so that the above rules are satisfied. For
each row of the matrix, try to satisfy rule 1. The entry in the row that is used to
eliminate the column entries below it is called a pivot and is nonzero. The pivots are
indicated by boxes (in the following matrices). The process ofgetting from one matrix
to another is denoted by the operator symbol r-v (row equivalent). The elementary

556 Appendix A Linear Algebra

(Example A.S
continued)

row operations applied in that step are written below that symbol.

1

2

3

1

2

-4

1

1

-6

[~
1

1

o

1

1

-7

The system of equations corresponding to this reduced matrix is x I + X2 + X3 = 6,
x2 + x3 = 5, and -7x3 = -14.

Back substitution involves solving for Xn ' Xn-l' ... , Xl' one at a time using the
system obtained by forward elimination. In the last example we can solve the third
equation for X3 = 2. Substituting X3 in the second equation: x2 = 5 - x3 = 5 - 2 = 3.
Substituting X2 and X3 in the first equation: X I = 6 - X2 - X3 = 6 - 3 - 2 = 1.

We will now count operations, just like we did for the case of two equations in
two unknowns. To simplify matters, let us assume that m = n and that no rows need
to be swapped. The first step of forward elimination is to zero out all entries below
all in the first column.

[au
al2 aln

hI]
[Alb] = afl

a22 a2n b 2 allR2 - a21 R I ---+ R 2

anI a n2 ann b n allRn - anlRI ---+ R n

[I
al2 aln

hI]alla22 - a21a l2 alla2n - a21a ln allb2 - a21b l

allan2 - a n lal2 allann - anlaln allbn - :anlallb l

=[1
al2 aln

h,]a~l at b t
l,n-l I

at at b
t

n-l, I n-l,n-l n-l

Note that the (n - 1) x n submatrix consisting of the a;j and b; is set up for the next

forward elimination step, thus leading to a recursive process.

A.2 Systems of Linear Equations 557

Define Cn to be the cost of the arithmetic operations for solving the system of
equations using Gaussian elimination. Let Fn be the cost of forward elimination and
let Bn be the cost of back substitution; then Cn = Fn + Bn . The forward elimination
phase takes an augmented matrix of size n x (n + 1) and reduces the problem to one
involving an augmented matrix of size (n - 1) x n. The cost for forward elimination
on the reduced augmented matrix is Fn - 1• The elimination requires n - 1elementary
row operations. Each row operation modifies n column entries; we do not count the
replacement of the first column entry by zero. Each modified column entry requires
2 multiplications and 1 addition. If a represents the cost of an addition and f.l rep­
resents the cost of a multiplication, the zeroing of the first column entries has a cost
(2f.l + a)n(n - 1). The forward elimination cost must satisfy

Fn = (2f.l + a)n(n - 1) + Fn - 1, n ~ 2

For a single equation in a single unknown (n = 1), no forward elimination is
necessary, so F1 = O. This is an example of a linear difference equation. This equation,
though, is easy to solve. Note that

Fi - Fi - 1 = (2f.l + a)i(i - 1)

n n

L (Fi - Fi - 1) = L(2f.l + a)i(i - 1)
i=2 i=2

n

Fn - F1 = (2f.l + a) L i(i - 1)
i=2

n(n2 - 1)
Fn = (2f.l +a)--­

3

The summation on the left-hand side is called a telescoping sum. The quantity - Fj

appears in one term of the summation, then appears as Fj in the next term and
is canceled. The cancellation occurs for all but F1 and Fw The right-hand summa­
tion is evaluated using standard formulas for summation, L7=1 i = n(n + 1)/2 and
L7=1 i 2 = n(n + 1)(2n + 1)/6. The number of operations for forward elimination is
therefore on the order ofn3.

Now let us compute the cost of back substitution. After forward elimination, the
augmented matrix is of the form

o

fh]fh
f3n

. where aU = 0 for i > j. The back substitution is

558 Appendix A Linear Algebra

x -~n-
ann

an-l,n-l

1 division

1 multiply, 1 add, 1 division

n - 1multiplies, n - 1adds, 1 division

EXERCISE

A.I

A.2.3

If 8 is the cost of a division and a and J.L are as before,

Bn = (8) + (IL + a + 8) +... + ((n - 1)J.L + (n - l)a + 8)

n-l

=8n+L(IL+a)i
i=O

n(n - 1)
=8n+(IL+a)--­

2

The number of operations is on the order of n2
, so clearly forward elimination is

the dominant cost in solving the system. The total cost for Gaussian elimination is

n(n2 - 1) n(n - 1)
Cn = Fn + Bn = (21L + a) + (J.L + a) + 8n

3 2

A long story, but this is the classical method for solving linear systems and counting
how many operations it takes to estimate the cost of solving systems. The cost is not
particularly important for small n, but for very large n it becomes an issue.

The forward elimination is designed to satisfy the constraint mentioned earlier: If
row r has its first entry in column c, then every entry in column c below row r is zero.
Change this constraint to: If row r has its first entry in column c, then every other
entry in column c is zero. The entries above as well as below entry (r, c) must be
zeroed out using elementary row operations. Determine the total cost Cn for this new
elimination method. Compare it to the cost for Gaussian elimination.

NONSQUARE SYSTEMS OF EQUATIONS

Although I illustrated Gaussian elimination for systems of equations with the same
number of unknowns as equations, the same process applies to systems with any
number of equations and unknowns. Some examples are shown below for solving
general linear systems.

A.2 Systems of Linear Equations 559

In general after application of the relevant elementary row operations, if row r

has its first nonzero entry in column c, then the variable Xc is referred to as a basic
variable. All other variables are referred to as free variables. The quantity of basic
variables is called the rank of the matrix, denoted rank(A), where A is the matrix of
coefficients. Gaussian elimination allows us to solve for the basic variables in terms
of the free variables.

A.2.4 THE GEOMETRY OF LINEAR SYSTEMS

The last section was about the algebraic manipulations needed to solve a system of
linear equations. The linear equations have geometric counterparts that, perhaps,
provide greater insight about what the solution set of a system really is. Let us look at
the simplest example, a system of two equations in two unknowns.

Consider allxI + a12x2 = hI and a21xI + a22x2 = h2. I assume that either all or
a12 is nonzero and either a21 or a22 is nonzero. Each of these equations represents a
line in the plane. The geometric possibilities are listed below.

1. The lines are not parallel. They intersect in a single point.

2. The lines are parallel and disjoint. They do not intersect.

3. The lines are the same. The set of points common to both is infinite.

Figure A.l shows these configurations.

(a) (b) (c)

/
Figure A.I (a) Two nonparallel lines. (b) Two parallel and disjoint lines. (c) Two coincident lines

(shown in bold black).

560 Appendix A Linear Algebra

The vector (all' al2) is normal to the first line and the vector (aZI' azz) is normal
to the second line. If the two lines are parallel or the same line, then their normals
are parallel. Consequently, one vector is a multiple of the other, say, (all' alZ) =
t(aZI' azz) for some nonzero scalar t. Define allaZZ - al2aZI; then

Conversely, the two lines are not parallel when allaZZ - alZaZI 'f=. 0, an algebraic
condition that guarantees that the two lines intersect in a single point and the linear
system has a unique solution. If aiiaZZ - alZaZI = 0, the lines are parallel and either
disjoint or coincident. The second equation of the system can be multiplied by t to
obtain

These equalities are valid only when bl = tbz, in which case the two lines are coinci­
dent. Notice that (all' alZ' b l) = t(aZI' aZZ' bz) in this case. The value d is computed
without explictly computing the multiplier t. We may obtain a similar expression
without t that indicates that the lines are coincident. Specifically, (all' b l) = t (aZI' bz)
implies allbz - az1bl = O. Equivalently, (aIZ' bl) = t (azz, bz) implies al2bl - anbz =
O. If bl 'f=. tbz' the lines are parallel and disjoint. The algebraic equivalents to the three
geometric possibilites mentioned earlier are summarized below.

1. allan - alZaZI 'f=. 0: The lines are not parallel. The linear system has a unique
solution.

2. aiiaZZ - alZaZI = 0 and a11bz - a21bl 'f=. 0: The lines are parallel and disjoint. The
linear system has no solution.

3. aiiaZZ - alZaZI = 0 and a11bz - a21bl = 0: The two lines are the same. The linear
system has infinitely many solutions.

A similar algebra-geometry relationship exists for equations involving three vari­
ables. Consider three equations in three unknowns, L~=l aijx j = b i for 1~ i :s 3.
A single equation represents a plane in three dimensions. If this is the only equa­
tion of the system, the set of solutions is infinite and is represented by all the
points on the plane. The possibilities for two equations in three unknowns are listed
below.

1. The planes are not parallel. They intersect in a line.

2. The planes are parallel and disjoint. They do not intersect.

3. The planes are parallel and coincident.

A.2 Systems of Linear Equations 561

(a) (b) (c)

Figure A.2 (a) Two nonparallel planes. (b) Two parallel and disjoint planes. (c) Two coincident
planes (shown in bold black).

Figure A.2 shows these configurations.
Three equations in three unknowns lead to yet more possibilities.

1. No two planes are parallel.

(a) The planes intersect in a single point.

(b) The planes intersect in a line.

(c) The three planes have no common point.

2. Two planes are parallel; the third is not parallel to them.

(a) The two parallel planes are disjoint. The three planes have no common point.

(b) The two parallel planes are coincident. The three planes intersect in a line.

3. All three planes are parallel.

(a) All planes are coincident. The intersection set is the common plane.

(b) At least two planes are not coincident. The three planes have no common
point.

Figure A.3 shows these configurations. The intersection set is either empty, a single
point, a line, or a plane. Further geometric interpretations of linear equations and
their solutions are discussed later in Section AA.7.

562 Appendix A Linear Algebra

Case lea) Case l(b) Case l(c)

Case 2(a) Case 2(b) Case 3(a) Case 3(b)

Figure A.3 The coincident planes are shown in bold (black for visible portions, gray for hidden
portions).

A.2.S NUMERICAL ISSUES

The method of Gaussian elimination was discussed previously in mathematical terms
without regard to numerical issues that can arise when implemented on a computer.
The main issue is using the first nonzero entry in a row, the pivot, to zero out the
column entries below it. The reciprocal of the pivot is required in the process. If the
pivot is nearly zero, the division can be a source of numerical errors.

A.2 Systems of Linear Equations 563

Consider a system whose augmented matrix is

(A.l)

where £ is a number that is nearly zero. If that entry is used as the pivot, then formally
we can row-reduce the augmented matrix to

[~ 1/£ I 1/£]

2 - 1/£ -1 - 1/£

This matrix now has very large entries due to 1/£. The numerical representations of
some of the numbers are now suspect. For example, the floating point calculation for
2 - 1/£ could effectively ignore the 2 if 1/£ is so large that in matching the exponents
ofthe two numbers to allow the floating point sum ofthe mantissas, the intermediate
representation of 2 is the floating point number zero.

A better algorithm involves searching the entries in the first column of the aug­
mented matrix and looking for the pivot that is largest in absolute magnitude. In the
example we should have swapped the two equations:

The forward elimination produces

(A.2)

[~
2

1- 2£

EXERCISE

A.2

The last equation is solved for X2 = (1 + £)/(1- 2£). For £ nearly zero, the denom­
inator is nearly 1 and the division is numerically well behaved. The other variable is
Xl = -3/(1- 2£).

Write a computer program to solve the system in equation (A.I) using Gaussian
elimination so that the first pivot is £. Allow this parameter to be supplied by the
caller ofthe function for solving the system. The program should also have a function
for solving the system in the form of equation (A.2), where £ is a parameter to the
function. The test program should implement a loop that starts with £ = 0.1 and
solves the system. On each successive iteration, replace £ by £ /2. The system should
be solved using each of the two functions. Compare the results as £ becomes very
small.

564 Appendix A Linear Algebra

The search for a pivot entry of largest absolute magnitude is a good approach in
solving systems. However, the next example shows that even this can be a problem.
The system is

81X1 +X2 = 1
82x1 + 2x2 =-1

where 81 and 82 are both nearly zero. Regardless of which of these entries is largest in
absolute magnitude, forward elimination will require a division by a number that is
nearly zero. A close inspection of the system will show that we were unfortunate to
name the variables as shown! Had we made X2 the "first" variable and x 1 the "second"
variable, the division problem disappears. That is, name Y1 = X2 and Y2 = Xl and
obtain the system

Y1 + 81Y2 = 1

2Y1 + 82Y2 =-1

The augmented matrix and the forward elimination are shown:

The forward elimination step is well behaved numerically, but now we need to solve
for X2 = -3/(82 - 281) where the denominator is nearly zero. This is unavoidable; the
system is ill-conditioned in the sense that if 81 and 82 really were zero, the equations
would be Y1 = 1and 2Y1 = -1, implying that Yl = 1and Y1 = -1/2, an impossibility.
Even so, the divisions in the back substitution can be deferred (by using back elim­
ination instead) to make sure any numerical round-off errors from one division are
not propagated (and magnified) through the remaining divisions. In our example,
the operation is R 1 *- (82 - 281)R1 - 81R2:

If the application decides inversion of 82 - 281 is justified, the division 'A = 1/(82 ­

281) is calculated once. The system solution is Y1 = (81 + 82)'A and Y2 = -3'A.

The renaming ofXl and X2 to Y2 and Y1 amounts to swapping columns ofthe aug­
mented matrix. This is not an elementary row operation, so additional bookkeeping
must be done to reconstruct the solution components in the order in which they
were specified. You can do this by maintaining a permutation vector of indices. In
the example the original variable indices are stored as (1, 2). When the column swap
is deemed appropriate, and memory swapping is actually performed in a computer
implementation, the permutation vector indices are swapped to (2, 1). Ifthe final val­
ues obtained on the right-hand sides of the equations after Gaussian elimination are

A.2 Systems of Linear Equations 565

(CI' c2) and the permutation vector is (iI' i2), one of (1, 2) or (2, 1), then the system
solution is XiI = CI and xi

2
= C2'

Generally, for a system of n equations in n unknowns, you can search the entire
matrix of coefficients looking for the entry of largest absolute magnitude to be used
as the pivot. This process is known as full pivoting. If that entry occurs in row r
and column c, then rows rand 1 are swapped followed by a swap of column C and
column 1. The original permutation vector is (1, 2, ... , c, ... , n); the new vector
is (c, 2, ... , 1, ... , n). After both swaps, the entry in row 1 and column 1 is the
largest absolute magnitude entry in the matrix. If nearly zero, the linear system is ill­
conditioned and you may choose to stop solving and notify the user of this situation.
If you choose to continue, the division can be performed to make the pivot 1 and
forward elimination commences. The process is repeated for the submatrix of n - 1
rows and n - 1 columns. Many column swaps can occur during the process. Let the
final values obtained on the right-hand sides of the equation be listed as (cI' ... , cn)'

Let the permutation vector be (iI' ... , in)' a permutation of (1, ... , n). The system
solution is xi

j
= Cj for 1~ j ~ n.

A.2.6 ITERATIVE METHODS FOR SOlVI NG LI NEAR SYSTEMS

As it turns out, Gaussian elimination is not the final word in solving systems. Iterative
methods can be used. After all, why look for the exact mathematical solution when a
good numerical approximation will do! Such algorithms are typically used in sparse
linear systems. These systems have a large number of equations, but each equation
involves only a small subset of the variables. The matrix A for the system is large, but
has only a small number of nonzero entries. I will not go into great detail as this topic
is quite extensive, but here are a couple of possibilities on which to ponder.

The first method we look at is known as a splitting method. I will illustrate for a
system of two equations in two unknowns:

allxl + a12x 2 = b l

a2lx I + a22x 2 = b2

For simplicity of the presentation, suppose that all f=. 0 and a22 f=. O. The system can
be rewritten as

The term splitting refers to splitting up the equations into the terms correspond­
ing to the diagonal entries and the terms corresponding to the nondiagonal entries.
Why bother with this form when it clearly does not give us a solution? The concept

566 Appendix A Linear Algebra

is to generate a sequence of iterates x (1) , X(2), ••. , x(n), where n is large enough that
x(n) is an acceptable approximation to the actual solution to the equation. At the same
time we want n small enough to minimize the computational time in producing the

approximation. Each iterate is of the form xCi) = (x?), xii)). The key idea is to relate
the iterates by modifying the split equations to

The left-hand side is the next iterate and is obtained by substituting the current
iterate into the right-hand side. Whether or not the sequence of iterates converges to
the exact solution depends on your particular system. Another issue is that if any
of the aii are nearly zero, the division by that small number can cause numerical
problems. The splitting used here to illustrate the concept is not the only one. In fact,
each equation on the right-hand side of the split system might very well contain all
of the original variables. Such is the case when one of the au is zero or nearly zero.
Ideally, you want to split your terms so that you get rapid convergence and avoid
numerical problems.

The second iterative method involves formulating the linear system Ax = b as
a minimization problem. The illustration here is for a system of two equations in
two unknowns. The two equations may be written as allxl + a12x2 - b l = 0 and
a21xI + a22x2 - b2 = o. The sum of squares of the left-hand sides must be zero:

Observe that f(xI' x2) 2: 0 no matter the choice of input. Assuming the system has
a unique solution, the graph of this function is a paraboloid whose vertex lies in the
x IXrplane and is the solution to the system of equations. An iterative minimization
~lgorithl11 takes the current iterate xC:)"~ where f(x(i)) > 0, and produces the next
iterate x(i+l) so that (hopefully) f(x(i+l)) < f(x(i)). You can visualize the iterates on

the graph of f as a sequence of points (x ii) , xii) , f (x ii) , x2))) for i 2: 1that descend
toward the vertex of the paraboloid. A good choice for generating the iterates is the
conjugate gradient method, but other methods may be applied as well. See [PFTV88]
for a discussion of numerical methods for function minimization.

A.3 MATRICES

Gaussian elimination applied to a system of linear equations is accomplished by set­
ting up a table of numbers called an augmented matrix. The algebraic operations are
applied only to the equation coefficients. The variable names themselves are unim­
portant in the manipulations. The concept of matrices is more powerful if we allow

A.3 Matrices 567

additional structure to be placed on them. Part of that structure is introduced here in
the context of solving linear systems of equations. More structure is introduced later
where matrices are shown to be naturally related to the concept of a linear transfor­
mation.

The matrix of coefficients for the system ofn equations in m unknowns is denoted
A = [aij] and has n rows and m columns. The column matrix for the right-hand side
values is denoted b = [b i] and has n rows and, of course, one column. Similarly we
define the column matrix x = [x j] that has m rows and one column. The concise
representation for a linear system using summation notation is

m

L aijxj = bi , 1::::; i ::; n

j=1

A suggestive shorthand notation is Ax = b and makes the linear system appear sym­
bolically to be a single linear equation with known values A and b and unknown
value x. For this to really make sense, we need to formalize what it means to multiply
the matrices A and x and obtain the product Ax. Consider a system with two equa­
tions and three unknowns: allxl + a12x2 + a13x3 = b l , a21xI + a22x2 + a23x3 = b2.

The symbolic form Ax = b with juxtaposed matrices is

In order to re-create the linear equations, it appears that we need to multiply each
row of A with the column x, then equate the resulting product with the correspond­
ing row of the column b. For this to work, clearly the number of columns of A must
equal the number of rows of x. We will use this as motivation for defining the prod­
uct of two matrices A and B. Let A have n rows and m columns. For the product
C = AB to make sense, the number of rows of B must be m. Let B have p columns.
The product C itself is a matrix of numbers. Your intuition from the example of a
linear system should convince you that C has n rows and p columns. Symbolically
A B = C is shown next.

[

all al2 .. , aIm] [bll
a2l an .. , aZm b2l.
anI anz ." anm bml

[

allbll + ' ,,+ almbml)

= (a2lbll + ' ':' + aZmbml)

(anlb ll + .. ,+ anmbml)

bl2 ... bl P]

b~z " " b~p
. . .. , ,

bmZ '" bmp

(allb l2 + .. ,+ almbmz)

(a2lbl2 + .. ,+ azmbmz)
(allb lp + .. ,+ almbmp)]
(a21blp + + azmbmp)

(anlb lp + + anmbmp)

568 Appendix A Linear Algebra

In summation notation, the general entry of the product is

m

cij = L aikbkj

k=l

for 1 :::: i :::: nand 1:::: j :::: p.

EXAMPLE

A.6
Consider the matrices

and B = [~
1

~ ~3]
-2 3 0

The product AB is

AB = [1 0
-1 2

-1] [~1 ~ ~3] = [Cll
o -2 3 0 cZl

To compute Cij' use the summation formula shown earlier,

In the example, the product is

AB= [:
-2
1

A matrix that has n rows and m columns is referred to as an n x m matrix. In
defining the product C = AB, A is an n x m matrix, B is an m x p matrix, and C is
an n x p matrix. It is important to note that the order of the matrices in a product
is relevant. For example, if A is 2 x 3 and B is 3 x 4, the product AB is defined and
is 2 x 4. On the other hand, B A is not defined since the number of columns of B
is different than the number of rows of A. Now, it is possible that both products
are defined. This is the case when A is n x m and B is m x n. The product AB is
n x n and the product B A is m x m. Ifn ¥- m, then A Band B A cannot be the same
matrix since their sizes are different. Even ifn = m, the products still might differ. For
example,

AB = [~ ~] [~ ~] = [~ ~] fe [~ ~] = [~ ~] [~ ~] = BA

A.3 Matrices 569

Matrix multiplication is therefore considered not commutative. It is the case that
matrix multiplication is associative. That is, A(BC) = (AB)C for matrices A, B, and
C where the relevant pairwise products are defined.

A.3.1 SOME SPECIAL MATRICES

A few special types of matrices arise frequently in practice. Here are some that are of
interest, some of general size n x m and some that are called square matrices where
n = m (number of rows and number of columns are the same).

The diagonal entries of an n x m matrix A = [aij] are those entries aii' A square
matrix A = [aij] is a diagonal matrix if aij = °whenever i -:f. j. That is, the nondi­
agonal terms are all zero. The diagonal terms can be anything, including zero. For
example, consider

A = [~ ~ ~] and B = [~ n
The diagonal entries of A are 1and 5. The matrix B is diagonaL A shorthand notation
for the diagonal matrix is to list only its diagonal entries, B = Diag(O, 1).

A special diagonal matrix is the identity matrix I. All the diagonal entries are 1.
The identity matrices for n = 2 and n = 3 are shown:

I = [~ n and I = [~ !n
The identity matrix has the property that I A = A. That is, the product of the n x n
identity matrix with the n x m matrix A does not change A.

If A = [aij] is an n x m matrix, the transpose of A is the m x n matrix AT = [a ji]'

That is, the entry aij in the ith row and jth column of A becomes the entry in the
jth row and ith column of AT. For example,

EXERCISE

A.3
Verify that the transpose satisfies the property (A B)T = BTAT.

A square matrix A is symmetric if A = AT. It is skew-symmetric if A = -AT. For
example, consider

and B = [~1 ~ ~]
-2 -3 °

570 Appendix A Linear Algebra

The matrix A is symmetric and the matrix B is skew-symmetric. The diagonal entries
of a skew-symmetric matrix are necessarily zero.

An n x m matrix U = [uij] is said to be upper echelon if uij = 0 for i > j. In
addition, if n = m, then U is said to be upper triangular. Similarly, an n x m matrix
L = [iij] is said to be lower echelon if iij = 0 for i < j. If n = m, then L is said to be
lower triangular. For example, consider

u = [~ ~ ~] and L = [~ ~]

The matrix U is upper echelon and the matrix L is lower triangular.

A.3.2 ELEMENTARY Row MATRICES

Now that we have a concise symbolic representation ofa system ofequations, Ax = b,
let us review the forward elimination algorithm that reduces the augmented matrix
[A Ib]. In our earlier discussion, the elimination was accomplished by applying ele­
mentary row operations to the augmented matrix in order to zero out various column
entries below pivot elements. A reminder of the operations:

1. Interchange row i with row j. Notation: Ri B R j'

2. Multiply row i by a scalar C i= o. Notation: C Ri ~ Ri •

3. Multiply row i by a scalar Ci' multiply row j by a scalar Cj' then add the results
and replace row j. Notation: ciRi + cjRj ~ R j .

Each elementary row operation can be represented by a square matrix that multiplies
the augmented matrix on its left.

Consider a general matrix A that is n x m (not necessarily an augmented matrix
for a linear system). Let CJ be an elementary row operation applied to A to obtain
a matrix B of the same size as A. The notation we introduced in Example 4.5 was
A '""'(') B. There is an n x n matrix E such that B = EA. The elementary row matrix
E corresponding to the elementary row operation CJ is obtained by applying CJ to the
n x n identity matrix: I '"'" (') E.

EXAMPLE Consider the 3 x 4 matrix
A.7

A=U ~2]
-1 0
4 -1
0 1

A type 1 operation is

U
4 -1 -2] [0 1

nAA=
R1 BR2

-1 0 2 = 1 0
0 1 o 0 0

EXAMPLE

A.8

A.3 Matrices 571

A type 2 operation is

[T
2 0 -4] [-2 0

nAA=
-2Rl -+ R l

4 -1 -2 = 0 1
0 1 o 0 0

A type 3 operation is

[1 -1 0 2] [1 0

nA
~

A= 0 4 -1 -2 - 0 1
-2Rl + R3 -+ R3 0 2 1 -4 -2 0

Observe that in all cases the 3 x 3 elementary row matrices shown on the right-hand
side ofthe equations are obtained by applying the row operations to the 3 x 3 identity
matrix.

The final result of forward elimination can be stated in terms of elementary row
matrices applied to the augmented matrix [Alb]. Namely, if E l through Ek are the
elementary row matrices corresponding to the applied elementary row operations,
then the final augmented matrix is the product

[Ulv] = Ek ·•• EdAlb]

The matrix U = [ui}] is upper triangular; that is, ui} = 0 whenever i > j. The only
possible nonzero entries are on or above the diagonal, the diagonal defined by entries
where i = j. Back substitution is achieved by another sequence of elementary row
operations, Ek+ l through E£-. The end result, assuming the diagonal entries of U are
all nonzero, is

The solution to the linear system is x = w.

This example was shown earlier, but is revisited in terms of elementary row matri­
ces. Solve Xl + X2 + x3 = 6, xl + 3x2 + 2x3 = 11, 2xl + 3x2 - 4x3 = 3. The forward
elimination is

[Albl= [~ 2

3

2

-4

-6 o

-4

-7

:] = [Ulv)

-14

572 Appendix A Linear Algebra

(Example A.S The backward substitution is
continued)

IU1VJ=U -~J U n
1 1 1

1 1
-(1/7)R3 -+ R3

1

a -7 a

[~
1 1 n-R3+;1~Rl U1 a

}]1 a 1 a
-R3 + R2 -+ R2 a 1 a 1

[~
a a iJ = [Ilw]1 a

-R2 + R I -+ R I a 1

The solution is xl = 1, x2 = 3, and X3 = 2. The elementary row matrices listed in the
order of operations shown previously are

[I 00] E2 = [~
a n E3 =U

a nE I = -1 1 a , 1 1
a a 1 -2 a -1

E4 =U
a

o] E5 =U
a

~IJ [I 0-I]1 a , 1 E6 = a 1 a ,
a -1/7 a a a 1

E,= [~
-1 n1
a

A.3.3 INVERSE MATRICES

The linear system is symbolically written as Ax = h. The product of the elementary
row operations used in solving the system is P = Ee ... E l' The application of all the
elementary row matrices at one time is x = PAx = Ph = w. An implication of the
construction is that P A = I, where I is the identity matrix. We use this as motivation
for the inverse of a square matrix. That is, if A is an n x n matrix and if P is another
n x n matrix for which P A = I, then P is the inverse of A and is denoted A-I.

EXAMPLE

A.9
In the last example, the product of the elementary row matrices is

A.3 Matrices 573

It is easily verified that

PA= [~~
-1

6
"7
1

~] [~ ~ ~]-[~ 001 ~l]=I
.!...1 2 3 -4 - 0

EXAMPLE

A.IO

If you are curious, verify that A P = I also.

Not all square matrices are invertible. The 2 x 2 zero matrix is clearly not invertible:

z=[~ ~]

since P Z = Z no matter which 2 x 2 matrix P you choose. A more interesting
example of a noninvertible matrix is

A=[1-1]
-1 1

You may attempt to construct one, say,

For this matrix to be the inverse, we need

[~ O]=I=PA=[a-b
1 c-d

b -a]
d-c

Equating the first row entries yields a - b = 1 and b - a = O. The second of these
forces b = a. Replacing in the first leads to 0 = 1, a false statement. Thus, A is not
invertible.

The elementary row matrices have inverses. The list of the elementary row oper­
ations and their inverse operations is provided:

Row Operation

Ri ++ R j

cRi ---+ Ri

cRi + R j ---+ R j

Inverse Operation

Ri ++ R j

1. R- ---+ R-c I I

-cRi + R j ---+ R j

If E represents an elementary row operation, then E- 1 denotes the matrix that
represents the inverse operation.

574 Appendix A Linear Algebra

EXAMPLE

A.II
The 3 x 3 elementary row matrix corresponding to the row operation - 2R1 + R3~

R3 is

E = [~ ~ ~]
-2 0 1

The inverse row operation is 2R I + R3~ R3 and

[
1 0 0]

E- I = 0 1 0
201

It is easily shown that E- I E = I, where I is the 3 x 3 identity matrix.

A.3.4 PROPERTIES OF INVERSES

Here are some important properties of inverses. The first one is quite subtle. The
definition of inverse was that P is an inverse of A when P A = I. More precisely,
P is a left inverse. I already pointed out that matrix multiplication is generally not
commutative, so PA = I does not immediately imply AP = I.

1. If A -1A = I, then A A -1 = I. This is the same as saying that the inverse of A -1 is
A: (A-I)-I.

2. Inverses are unique.

3. If A and B are invertible, then so is AB. Its inverse is (AB)-I = B- 1A-I.

To prove the first item, I use the method of solution for linear systems as moti­
vation. The system is Ax = b and, assuming A is invertible, has solution x = A -lb.
Symbolically, this is obtained as

x = Ix = (A- 1A)x = A -l(Ax) = A -lb

Now replace this in the original equation to obtain

(AA -l)b = A(A -lb) = Ax =b

The column matrix b can be anything you like. Regardless of the choice it is the case
that (AA -l)b = b. Some clever choices will help us out. Define ei to be the n x 1
row matrix with a 1 in row i and 0 in all other rows. For any n x n matrix M, the
product M ei is the n x 1matrix that stores the entries of M from the i th column. In
particular, (AA -I)ei = ei' so the ith column of AA -1 is the vector ei' Consequently,
AA-1 consists of columns e1 through en' in that order, which is exactly the identity
matrix I. It is always the case for an invertible matrix A that A-IA = I = AA -1.

A.3 Matrices 575

The second item is proved by contradiction. Suppose that A has two inverses, B
and C; then AB = I = BA and AC = I = CA. Also,

AB=I

C(AB) = C(l)

(CA)B = C

(l)B = C

B=C

B is an inverse for A

Multiply by C

Matrix multiplication is associative; I is the identity

C is an inverse for A

I is the identity

and so there is only one inverse.
The third item is proved by a simple set of calculations:

(B- 1A-l)(AB) = B- 1(A-lA)B

= B- 1IB

=B- 1B

=1

Matrix multiplication is associative

A -1 is the inverse of A

I is the identity

B-1 is the inverse of B

By direct verification, B- 1A -1 is the inverse of A B.

A.3.5 CONSTRUCTION OF INVERSES

This is illustrated with 3 x 3 matrices, but the ideas clearly carryover to the n x n
case. Let

Any 3 x 3 matrix M = [mij] can be thought of as a block matrix consisting of three
column vectors:

In particular, if A is invertible, then A -1 exists and

576 Appendix A Linear Algebra

where the column vectors Vk (k = 1,2,3) are unknowns to be determined. Matching
the similar entries in the block matrices yields

k = I, 2, 3

Each of these systems of equations can be solved separately by row-reducing [A led
to [Ilvd. However, we can solve these systems simultaneously by row-reducing
[AleI!e2Ie3] = [All] to [IlvI!v2Iv3] = [IIA -1].

EXAMPLE

A.13

A.3 Matrices 577

The matrix

A=[l -1]
-2 2

has no inverse. Row-reduce:

This last matrix can never be row-reduced to the form [liB], so A has no inverse.

A.3.6 LU DECOMPOSITION

The forward elimination of a matrix A produces an upper echelon matrix V. Sup­
pose this happens with only row operations of the form cR i + Rj -+ Rj' i < j. Let
E 1, ••• , Ek be the corresponding elementary row matrices; V = Ek ••• E 1A. The
matrices E i are all lower triangular, the product Ek ••. E 1 is lower triangular, and
L = (Ek ... E 1)-1 = E~l ... E;l is lower triangular. Thus, A = LV where L is
lower triangular and V is upper echelon. This is called the LV decomposition of the
matrix A.

EXAMPLE

A= U0 -4 0 nA.14 1 -3 -3
3 7 -3

[~
0 -4 0

-~l]-SRI + Rz -+ Rz 1 17 -3
-6R1 + R3 -+ R3 3 31 -3 -35

[~
0 -4 0

-~l] = U-3Rz+ R3 -+ R3
1 17 -3
0 -20 6 28

The elementary row matrices corresponding to these operations are

E, = [~5
0 n E,= [~

0 n E3 = [~
0 n1 1 1

0 -6 0 -3

We have

U = E,E,E]A = [~5
0 nA

,
and A = E~]E;]E3]U = [:

0 nu=w1 1

-6 -3 3

578 Appendix A Linear Algebra

The matrix U can be factored further by applying row operations of the type
cRi --+ Ri to obtain pivot values of 1. With a renaming of U to DU, we have the LDU
decomposition of the matrix, A = LDU, where L is lower triangular, D is a diagonal
matrix, and U is upper echelon with diagonal entries either 1or O.

EXAMPLE

A.IS
This is the continuation of the last example.

U =E,E,EjA = [~
0 -4 0

-~I]1 17 -3
0 -20 6 28

[I 0 -4 0

~~l]
rv

1 0 1 17 -3
-2fjR3 --+R3 0 0 1 3

-10

The elementary row matrix representing this last row operation is

[

1 0
E 4 = 0 1

o 0

Let D = E:;l = Diag(l, 1, -20), a diagonal matrix. With a renaming of U to be the
upper echelon matrix whose diagonal elements are 1,

A = LDU = [~ ~ ~] [~~ ~] [~ ~ ~;
6 3 1 0 0 -20 0 0 1

o
-3

3
-10

EXAMPLE

A.16

If row swappings are needed in the forward elimination, then the LDU decom­
position method must be slightly modified since matrices representing row swap­
pings are not lower triangular. A matrix that represents swapping rows is called a
permutation matrix.

If Ek (k = 1,2, 3) represent the row operations, then U = E 3EzE 1A. Consequently,

A.3 Matrices 579

The first matrix in the decomposition is not lower triangular. However, apply the
operation R2 ** R3 to A first. Let P = £3' a permutation matrix. Then

[
1 10] [1 00] [1 10]PA = -1 0 1 = -1 1 0 0 1 1 = LV
221 201001

In general, the factorization can be written as P A = LDV, where

1. P represents row operations of type Ri ** R j;

2. L is lower triangular, represents row operations of type ci Ri + R j ---+ R j' and has
diagonal entries 1;

3. D is diagonal and represents row operations of type cRi ---+ Ri; and

4. V is upper echelon with diagonal entries 1.

In practice, we cannot expect to know which row swappings must be performed
first in order to obtain P A = L D V. The following procedure allows us to postprocess
the elementary row operations so that the row swappings are applied first. Apply row
operations in the usual manner: Do cRi + R j ---+ R j and Ri ** R j first, cRi ---+ Ri
last.

EXAMPLE [i1

3 n [~
3 nA.I? A= 6 -2R1 + R2 ---+ R2 0

0 R 1 + R3 ---+ R3 3

[~
3 n U

3 nR2 ** R3
3 1 1
0 "3 R2 ---+ R2 0

Instead of switching rows 2 and 3 of A first and re-reducing, do the following. Write
down the operations in the order applied:

The row swapping operations should appear first. Interchange the row swapping
operation with the one directly to its left. In doing so, swap any row indices on that
operation matching those of the row interchange. In the example,

and

580 Appendix A Linear Algebra

give the correct ordering of the operations, with row swappings first. Therefore,(Example A.Il
continued)

p= [~ ~ n
u=[~ !n

L=[~ ~ ~],
-2 0 1 [

1 0 0]
D= 0 3 0 ,

001

EXAMPLE

A.I8

The examples so far have been relatively simple. Here is a physics application that
is a bit more in-depth. Ifyou are not yet ready for the calculus portion of the problem
(the exact solution), skip to the part after the point where an approximation is made
to the second derivative function.

Given a homogeneous, thin rod of constant cross-section and length 1, which is
insulated except at its ends, a simple model of steady-state heat distribution in the
rod is

- u"(x) = J(x), 0 < x < 1

u(O) = u(1) = 0

where u(x) is the quantity of heat at position x, J (x) ::: 0 is a given heat source, and
u(O) = u(1) = 0 represents fixed temperature 0 at the ends.

EXACT SOLUTION

Integrate the differential equation u"(x) = - J (x) from 0 to x to obtain

u'(x) = u'(O) - /.x J(t) dt

where u' (0) needs to be determined. Integrate again from 0 to x to obtain

u(x) = u(O) + u'(O)x - /.X /.S J(t) dt ds

Using the conditions u(O) = u(1) = 0 yields

u'(O) = /.1 /.' f(l) dt ds

so that

u(x) = x [/.' fit) dt ds - /.' /.' fit) dt ds

A.3 Matrices 581

The double integral can be manipulated so that

u(x) = 11

G(x, t)f(t) dt

where

G(x, t) = { (1 - t)x , x ~ t
(1- x)t, x ~ t

In most cases for J(t), the integral for u(x) cannot be evaluated symbolically to
obtain a dosed-form solution in terms of elementary functions. However, you can
resort to numerical integration methods to obtain approximate values for u (x).

ApPROXIMATE SOLUTION

Find approximations to the values u (jh) for 1 :s j ~ n, where h = 1/ (n + 1) for some
large positive integer n. From calculus,

"() I' u(x+h)-2u(x)+u(x-h)u x = 1m -----------
h--+O h2

The approximation below is reasonable for small values of h:

u"(x) == u(x + h) - 2u(x) + u(x - h)

h2

Replace h by 1/(n + 1) and x = jh, j = 0,1, ... , n + 1. Define u j = u(jh) (so that
Uo = Un+l = 0) and Jj = J(jh). The differential equation is approximated by the
second-order linear difference equation

Uo = un+l =°
We can rewrite this as a system of n equations in n unknowns as

The n x n matrix A = [aij] can be written concisely as

i=j
i=j±1
otherwise

Such a matrix is said to be tridiagonal.

582 Appendix A Linear Algebra

(Example A.1B Consider the case n = 4; then
continued)

[~l
-1 0

~l] [~
-1 0

~l]

2 -1 3 -1
A= 1R l + R2 --+ R2

2
0 -1 2 -1 2
0 0 -1 0 -1

[~
-1 0

~l] [!
-1 0

~l]

3 -1 3 -12 2
~R2 + R3 --+ R3 0 4 ~R3 + R4 --+ R4 0 4

3 3
0 -1 0 0

[!

1 0

~~]
1R l --+ R 1

-2
1 2

~R2--+R2 -3

~R3 --+ R3
0 1

~R4 --+ R4
0 0

Therefore,

[~!
0 0

~][!
0 0

i] [!
1 0

~~] =LDU

-2
1 0 3 0 1 2

A= 2 "2 -3
2 40 -3 1 0 3 0 1

0 0 3 0 0 0 0-4

Note that L T = V and the diagonal entries of D are positive. Also note that A can be
factored into

where JDiag(d1, ••• , dn) = Diag(~, ... , ~).

A couple of observations are in order. First, if A is invertible, then its LDU
decomposition is unique. The proof is by contradiction. Assume that we have two
decompositions, A = L 1D 1V 1 = L 2D2V 2. Then (L21L 1)D1 = D2(V2V 11

). The left­
hand side is lower triangular and the right-hand side is upper triangular. The only
way this can happen is if both are diagonaL Since D 1 is invertible, L21L 1 must be
diagonaL Since the diagonal entries of L 1 and L 2

1 are all 1, the diagonal of their

product must all be 1. Therefore, L2
1L 1 = I andL I = L 2.Similarly, VI = V2.Finally,

canceling the L and V matrices yields D1 = D2• The conclusion is there can be only
one decomposition.

Second, if A is symmetric, then V in the LDU decomposition must be V =
LT. That is, A = LDLT. If, in addition, the diagonal entries of D are nonnegative,
then A = (LVD)(LVD)T. To prove this, let A = LDV. Then A = AT = VTDLT.

AA Vector Spaces 583

This is another LDU decomposition, so by the uniqueness we proved in the last
paragraph, U = LT. The additional factorization when D has nonnegative entries
follows trivially.

A.4 VECTOR SPACES

The central theme of linear algebra is the study of vectors and the sets in which they
live, called vector spaces. Our intuition about vectors comes from their manipulation
in the xy-plane. The classical introduction in a physics setting introduces vectors
to represent velocities, accelerations, or forces. In this setting, a vector is normally
introduced as a quantity with direction and magnitude. As such, it does not matter
where you place that vector in the plane-it is still the same vector. Figure AA shows
a vector v occurring at two locations in the plane. The standard convention is used
to draw the vector as an arrow to indicate its direction, the length of the arrow
corresponding to its magnitude. Regardless oflocation, the two arrows have the same
direction and same magnitude, so they represent the same vector.

The visual approach ofdrawing arrows is also used to illustrate various operations
on vectors. Figure A.S illustrates the addition of two vectors u and v, the result
denoted u + v.

You think of this as starting at the initial point of the arrow u, walking to the
end of the arrow to get to the initial point of the arrow v, then walking to the end
of that arrow to arrive at your final destination. That destination may be achieved by
starting at the initial point of the arrow u + v (placed conveniently at the initial point
of u) and walking to the end of the arrow for the sum. The concept of aligning the

Figure AA A vector v at two locations in the plane.

584 Appendix A Linear Algebra

Figure A.5 Addition of u and v.

(0 + v) + w

0+ (v + w)

Figure A.6 Addition of u, v, and w. Which pair of vectors is added first is irrelevant.

vectors from initial point to final point and walking along the path may be used for
motivation in the remaining rules mentioned next.

Figure A.6 illustrates that vector addition is associative: u + (v + w) =
(u + v) + w. Not only is the grouping irrelevant, but also the ordering. Figure A.7
illustrates that vector addition is commutative: u + v = v + u.

If you start at the initial point of an arrow v, walk to its final point, then walk
back to the initial point, the net effect is as if you never moved in the first place.
The symbol 0 is used to represent the zero vector that has length zero, but undefined

A.4 Vector Spaces 585

v+u

u+v
v

Figure A.7 Addition of u and v. The order of the vectors is irrelevant.

Figure A.8 A vector v and its additive identity -v.

direction, and corresponds to the net effect ofno motion. As such, the following rule
is suggested: v + 0 = v. The arrow representing moving from the final point ofv to its
initial point is denoted -v and is called the additive identity ofv. Figure A.8 illustrates
this vector.

Using our intuition about walking along the vectors, it is always true that v +
(-v) = O. The concept ofan additive identity allows us to naturally define subtraction
of a vector v from a vector u as u - v = u + (-v). The quantity on the left of the

586 Appendix A Linear Algebra

Figure A.9 The vectors u and v and the difference u - v.

Figure A.lO The vectors u and v, the parallelogram formed by them, and the sum u + v and
difference u - v shown as diagonals of the parallelogram.

equality is also referred to as the difference of u and v. Figure A.9 shows two vectors
and their difference. Typically, though, the sum and difference vectors are visualized
as the diagonals of a parallelogram formed by u and v. Figure A.IO illustrates this.

The direction of a vector v can be preserved, but its length changed by a multipli­
cative factor c > O. The resulting vector is denoted by cv. Figure A.II shows a vector
whose length is scaled by 2. The vector 2v has the same direction as v but twice the
length. The figure also shows the vector (-2j3)v, which may be thought of as having

AA Vector Spaces 587

Figure A.II The vector v and two scalar multiples of it, one positive and one negative.

(a) (b)

Figure A.I2 (a) Distributing across a scalar sum. (b) Distributing across a vector sum.

the direction of -v but two-thirds ofthe length. We may as well allow c to be negative
in the definition.

A simple yet relevant observation: If you multiply a vector by the scalar 1, the
length is unchanged. This suggests the rule 1 . v =v. The dot is included to emphasize
that the left-hand side is a scalar multiple of the vector. It should also be intuitive that
you can scale a vector by a, scale that vector by b, and obtain the same vector if you
just scaled by abo The formal rule is a (bv) = (ab)v.

Figure A.12 shows two distributive laws that apply to scalar multiplication of
vectors. Figure A.12(a) illustrates the rule for distributing across a scalar sum

588 Appendix A Linear Algebra

(a + b)v = av + by. Figure A.12(b) illustrates the rule for distributing across a vector
suma(u+v) =au+av.

The various rules that apply to vectors in the plane also apply to vectors in space.
More generally, a lot of systems in practice follow the same rules. The abstraction of
the objects we call vectors and of the rules that apply to them leads us to the heart of
linear algebra-vector spaces, as defined next.

A.4.1 DEFI N ITI ON OF A VECTOR SPACE

Let V be a set whose elements are called vectors. Assume that equality of vectors is
well defined. Suppose that there are two operations, vector addition (+) and scalar
multiplication (.), such that the following properties hold. To help distinguish vectors
from scalars, vectors are typeset in boldface. In the properties, u, v, W E V and
a, b E JR. We can now state the following 10 axioms:

1. (closure under +): u + v E V

2. (+ is associative): u + (v + w) = (u + v) + W

3. (+ is commutative): u + v = v + u

4. (additive identity): There is a vector 0 E V such that v + 0 = v for any v E V

5. (additive inverses): For each v E V there is a vector -v E V such that
v+ (-v) =0

6. (closure under·): e . v E V, written simply as ex

7. (. is distributive over real addition): (a + b)v = av + bv

8. (. is distributive over vector addition): a(u + v) = au + av

9. (. is associative): a(bu) = (ab)v

10. (multiplicative identity): The number 1 E JR has the property 1 . v = x

The triple (V, +, .) is called a vector space over the real numbers. As it turns out,
any field of numbers is allowable, not just the field of real numbers. For example, the
complex numbers or even the rational numbers could be used. There are also fields
that have a finite number of elements; such fields could be used. In the applications
in this book, the field of real numbers invariably is the appropriate choice.

A few comments are in order about the axioms for a vector space. First, the
notation for the additive inverse of v E V, namely, -v E V, is not to be confused
with the scalar multiple -1 . v. However, we will prove that in fact, -v = -1 . v.
Second, the zero vector is indicated as 0, but as we will see in a later example, there
are vector spaces where the numerical value of0 has nothing to do with "zero." Third,
the numerical value of the multiplicative identity 1 for a field may not be related to
the number "one." (For example, S = {O, 2, 4, 6, 8} with addition and multiplication
modulo 10 is an example of something called a finite field. It has additive identity 0
and multiplicative identity 6.)

EXAMPLE

A.19

AA Vector Spaces 589

This is the classic example of a vector space, n-tuples of numbers whose components
are real numbers. Let V = IRn = {(Xl' ... , Xn) : Xk E IR, k = 1, , n} be the set of
ordered n-tuples of real numbers. Let x, y E V, where x = (xl' ,xn) and y =
(YI' ... , Yn), and let c E ~.

Define vector equality by x = y if and only if Xk = Yk for every k = 1, ... , n. That is,
the vectors must be the same component-wise. Define vector addition by

and define scalar multiplication by

The triple (IRn, +, .) is a vector space over the real numbers. The additive identity is
0= (0, ... , 0). For x = (xl' ... ,xn), the additive inverse is -x = (-xl' ... , -xn).

Each of the 10 axioms for a vector space must be verified. For example, the proof that
axiom 3 is satisfied is given as

= (YI +xI'···' Yn +xn)

= (YI' ... , Yn) + (xl' ... ,xn)

=y+x

Definition ofx and y

Definition ofvector addition

Since real addition is commutative

Definition of vector addition

Definition of x and y

EXAMPLE

A.20

The verification of the other axioms is left as an exercise.

Consider the set of all polynomials with real-valued coefficients,

where W = {O, 1,2, ...} is the set of whole numbers. Let p, q E V where

n

p= LPiXi

i=O

m

and q= Lqixi
i=O

In the following verifications, we can assume for the sake of argument that n ~ m.
Define vector equality by p = q iff n = m and Pk = qk for all k = 0, ... , n. Define
vector addition, p + q, by

m n

p+q=L(Pi+qJX
i

+ L Pi xi

i=O i=m+l

590 Appendix A Linear Algebra

(Example A.20
continued)

EXAMPLE

A.21

EXAMPLE

A.22

By convention, if in the summation S = Lf=L ti , the lower index L is larger than
the upper index U, then S = O. Thus, in the above definition if n = m, in which case
m + 1 > n, the second summation is zero. Finally, define scalar multiplication, cp for
c E~, by

n

cp= LCPiXi
i=O

For example, if p = Po + PIX + P2x2 and q = qo + qIx, then

The triple (~[x], +, .) is a vector space. The additive identity is the zero polynomial,
which can be represented as 0 = 0, where the right-hand side denotes a constant poly­
nomial (degree zero) whose only coefficient is the scalar zero. The additive inverse for

"n k·P = Lk=O PkX IS

n

-p = L(-Pk)X
k

k=O

Of course, you need to verify the 10 axioms for a vector space.

Define V = F (~, ~) to be the set ofall real-valued functions ofa real-valued variable.
Two functions f (x) and g (x) are represented as the vectors f, g E V. The vectors are
equal, denoted f = g, whenever

f(x) = g(x), for all x E ~

Define vector addition, f + g, to be the usual addition of functions:

(f + g)(x) = f(x) + g(x), for all x E I

That is, the vector f + g represents the function f + g. Note that the addition on the
left represents vector addition, whereas the addition on the right is real addition. Let
C E ~ and f E V. Define scalar multiplication, C • f, to be the usual scalar multiplica­
tion for functions:

(cf)(x) = c . f(x), for all x E I

The scalar multiplication on the left is that for V, but the scalar multiplication on the
right is multiplication of real numbers. The triple (F (~, ~), +, .) is a vector space.

The final example is a strange one, but illustrates how abstract the concept of vector
space really is. Let V = (0, (0) denote the set of positive real numbers. Each positive

AA Vector Spaces 591

number x E V is a vector. Define vector equality by x = y iff x and yare equal as real
numbers. Define vector addition) denoted EB because of its lack ofresemblance to real­
valued addition) by x EB y = xy. That is, the vector addition of two positive numbers
is defined to be their product! Define scalar multiplication, denoted 8 because of its
lack of resemblance to real-valued multiplication, by e 8 x = xc) where e is a scalar
and x is a vector. That is, scalar multiplication of a positive number by a real number
is defined to be the positive number raised to a power! Note that the additive identity
is the positive number 1, not the real number O. The multiplicative identity is the scalar
1E JR. The additive inverse of x is the reciprocalljx. The triple (V, EB, 8) is a vector
space) albeit a strange one.

Some consequences of the axioms for a vector space are listed here.

1. The additive identity 0 is unique.

2. The additive inverse ofx is unique.

3. For any x, Ox = O.

4. For anye E JR, cO = O.

5. If -x is the additive inverse ofx, then -x = (-1) . x.

6. If ex = 0, then either e = 0 or x = o.

Proof of Item 1 Suppose there are two additive identities, call them 01 and O2, Then

Since O2 is an additive identity

Since 01 is an additive identity

so there can only be one additive identity.

Proof of Item 2 Suppose x has two additive inverses, call them y and z. Then

z=z+O

=z + (x+y)

= (z+x) +y

= (x+z) +y

=O+y

=y+O

=y

Since 0 is the additive identity

Since y is an additive inverse for x

Since vector addition is associative

Since vector addition is commutative

Since z is an additive inverse for x

Since vector addition is commutative

Since 0 is the additive identity

Therefore, x has only one additive inverse.

592 Appendix A Linear Algebra

Proof of Item 3 Let y be the additive inverse for Ox. Then

Ox = (0 + O)x

=Ox+Ox

Ox + Y = (Ox + Ox) + Y

= Ox + (Ox + y)

O=Ox+O

=Ox

Since 0 = 0 + 0

By axiom 7

By axiom 2

Since y is the additive inverse for Ox

Since 0 is the additive identity

Proof of Item 4 Let c E R and let y be the additive inverse for cO. Then

cO = c(O + 0)

= cO + cO

cO + Y = (cO + cO) + Y

= cO + (cO + y)

0= cO + 0

=cO

Since 0 is the additive identity

By axiom 8

By axiom 2

Since y is the additive inverse for cO

Since 0 is the additive identity

Proof of Item 5 x + (-I)x = Ix + (-I)x

= [1 + (-I)]x

=Ox

=0

By axiom 10

By axiom 7

Since 1+ (-1) = 0

By item 3, proved earlier

The vector (-I)x is the additive inverse of x. By item 2 above, additive inverses
are unique; therefore, -x = (-1)x.

Proof of Item 6 If c = 0, then the conclusion is clearly true. If c i:. 0, then

O=cx

1 1
-0 = -(ex)
c c

By hypothesis

1
0= -(cx)

C

1
= (- c)x

C

AA Vector Spaces 593

By item 4, proved earlier

By axiom 9

= Ix

= x By axiom 10

sox = o.

A.4.2 LI NEAR COM B INATIONS, SPANS, AND SUBSPACES

Let xk E V, a vector space, and let Ck E ffi. for k = I, ... , n. The expression

n

CIXI + ... + CnXn = L CkXk

k=l

is called a linear combination of the vectors.

EXAMPLE

A.23
All vectors in ffi.2 can be written as a linear combination of the vectors (1, 1) and
(1, -1). To prove this, we verify that each vector (x, y) = cI(1, 1) + c2(1, -1) for
some choice of CI' C2'

(x, y) = cI(1, 1) + c2(1, -1)

= (cI' cI) + (c2' -c2) By definition of scalar multiplication

By definition ofvector addition

Using the definition for vector equality, x = ci + C2 and y = CI - C2' We have two
equations in the two unknowns CI' C2' Solve these to obtain CI = x"iY and C2 = x;y.
Thus,

x+y x-y
(x, y) = --(1,1) + --(1, -1)

2 2

a unique representation of (x, y) as a linear combination of (1, 1) and (1, -1).

Let V be a vector space and let A C V. The span of A is the set

That is, the span is the set of all finite linear combinations of vectors in A. The
subset A need not be finite, and the number of terms in the sums can be arbitrarily

594 Appendix A Linear Algebra

large. For example, in the last example all vectors (x, y) E lR2 can be written as linear
combinations of (1, 1) and (1, -1), which implies lR2 = Span [(1, 1), (1, -1)].

A general result may be stated now. Let (V, +, .) be a vector space. Let A be a
nonempty subset of V. The triple (Span[AJ, +, .) is also a vector space. To prove
this, we must verify the 10 axioms for a vector space.

1. Let x, Y E Span[A]. Then x = Z=7=1 aixi and Y = Z=7=1 bjYj for some ai' bj E lR

and for some Xi' Yj E V. Thus, x +y = Z=7=1 aixi + Z=7=1 bjYj = Z=~~~ ckzk E

Span[A] where

l<k<n }
n+l::::k::::n+m '

l<k<n }
n+l::::k::::n+m

2. Since + is associative in V, it is associative in any subset of V. The set Span [A] of
linear combinations of elements in A C V must itselfbe a subset of V. Thus, +
is associative in Span[A].

3. Since + is commutative in V, it is commutative in any subset of V. Thus, + is
commutative in Span[A].

4. If 0 is the additive identity in V, then we show also that 0 E Span[A]. The set
A =1= 0 implies Span[A] =1= 0. Let x E Span[A]. Then x = Z=7=1 aixi for some ai E

lRandforsomexi E A. Moreover, x + (-I)x= Z=7=1[ai + (-I)adxi E Span[A].
But 0 = x + (-I)x by an earlier result, so 0 E Span[A].

5. Let x E Span[A] C V. We need to show that -x E Span[A]. Since x is in the
span, x = Z=7=1 aixi for some ai E lR and for some Xi E A. Then -x = (-I)xx =
Z=7=1 -aixi is a linear combination of elements of A, so -x E Span[A].

6. Let c E lR and x E Span[A]. Then x = Z=7=1 aixi for some ai E lR and for some
Xi EA. But

n

cx=c Laixi
i=l

n

= Lc(aixJ
i=l

n

= L(cai)Xi
i=l

E Span[A]

By axiom 8 for V

By axiom 9 for V

7. Since scalar multiplication is distributive over real addition in V, it is distributive
in any subset of V. Thus, scalar multiplication is distributive over real addition in
Span[A].

EXAMPLE
A.24

EXAMPLE
A.25

A.4.3

AA Vector Spaces 595

8. Since scalar multiplication is distributive over vector addition in V, it is distribu­
tive in any subset of V. Thus, scalar multiplication is distributive over vector
addition in Span[A].

9. Since scalar multiplication is associative in V, it is associative in any subset of V.
Thus, scalar multiplication is associative in Span[A].

10. Since 1 . x = x for all vectors in V, the same property is true in any subset. Thus,
1 . x = x for x E Span[A].

If a nonempty subset S of a vector space V is itself a vector space, S is said to be a
subspace of V. For any given subset S, the 10 axioms for a vector space can be checked
to see if S is a subspace. However, an analysis of the proof that the span of a set is a
subspace shows that many of the vector space axioms are automatically satisfied just
because of the fact that you are working with a subset of V. As it turns out, to show
that S c V is a subspace, we need only to verify closure under scalar multiplication
and vector addition. That is, S c V is a subspace if and only if ax + by E S for any
a,bE~andx,YES.

Let V = ~3 and S = {(Xl' X2' X3) : Xl = X2}' The subset S is a subspace. To verify, let
a, b E~ andx, yES; then

ax + by = a(XI' X2' X3) + b(YI' Y2' Y3) Notation

= a(XI' Xl' X3) + b(YI' YI' Y3) Since x, yES

= (aXI' aXI' aX3) + (bYI' bYI' bY3) Definition of scalar multiplication

= (axi + bYI' aXI + bYI' aX3 + bY3) Definition ofvector addition

Since the first two components of the last vector in the displayed equation are equal,
that vector is in S. That is, ax + by E Sand S must be a subspace of V.

Let V = ~2 and S = {(Xl' X2) : X2 = Xl + I}. The subset S is not a subspace for many
reasons, one of which is that (0, 0) rj. S.

LINEAR INDEPENDENCE AND BASES

Let V be a vector space. If possible, we would like to find sets A C V such that
Span[A] = V. For example, let V = ~2. If A = {(x, y) : X ~ OJ, then it is easily shown
that Span[A] = ~2. If B = {(1, 1), (1, -I)}, then also Span[B] = ~2. In some sense,
B is a "smaller" set than A. Given a suitable definition for "smallness:' we want to
find the "smallest" sets A C V for which Span[A] = V. The following concept gives

596 Appendix A Linear Algebra

us a handle on this. Let (V, +, .) be a vector space. The vectors xI' ... , X n E V. The
vectors are linearly dependent if

n

L CkXk = clxl + ... + cnxn = 0
k=l

for some set of scalars CI' ... , Cn which are not all zero. If there is no such set of
scalars, then the vectors are linearly independent. A set of vectors is said to be a
linearly independent set (linearly dependent set) if the vectors in that set are linearly
independent (linearly dependent).

EXAMPLE

A.26
For V = ffi.3, the vectors Xl = (1, 0, -I), x2 = (2, 1,0), x3 = (0, 0, I), and x =
(-1, I, 2) are linearly dependent. Set:

(0,0, 0) = ci (1, 0, -1) + c2(2, I, 0) + c3(O, 0, 1) + c4(-I, I, 2)

This equation can be formulated as a linear system of equations,

This system of three equations in four unknowns has infinitely many solutions. In
particular, it must have a nonzero solution. We could also solve the system:

A=[~
2 0 -I] [I 20 :1]rv

1 0 101 0
-1 0 1 2 R I +R3 -+R3 0 2 1

U
0 0 -3]-2R2 + R I -+ R I 1 0 1 = A,

-2R2 + R3 -+ R3 0 1 -1

The general solution is

Choose C4 = 1; then CI = 3, c2 = -I, and C3 = 1. We can write

3(1, 0, -1) - 1(2, I, 0) + 1(0, 0, 1) + 1(-1, I, 2) = (0, 0, 0)

and the vectors are linearly dependent.

EXAMPLE

A.27

EXAMPLE

A.28

EXAMPLE

A.29

A.4 Vector Spaces 597

In V = R2, the vectors (1, 1) and (1, -1) are linearly independent. Let cl (1, 1) +
c2(1, -1) = (0, 0). Then (cl + C2' Cl - c2) = (0, 0) and so Cl + C2 = 0, Cl - C2 = 0.
The only solution to this system is cl = c2 = 0, so the vectors are linearly independent.

Let V = F(R, R) be the vector space of all real-valued functions whose domain is
the set of real numbers. The vectors f and g that represent the functions f (x) = sin x

and g(x) = cos x, respectively, are linearly independent. The vector h = clf + c2g
represents the function hex) = clf(x) + c2g(x). Setting h = 0 is equivalent to re­
quiring h(x) == 0; that is, h(x) = °is true for all values of x. In particular, °=
h (0) = Cl sin(O) + C2 cos(O) = C2 and °= h (rr/2) = cl sin(rr/2) + c2 cos(rr/2) =
Cl' Since both Cl = °and C2 = 0, the vectors f and g are linearly independent.

The following result is an important one. Let V be a vector space and let A = {Xj E

V : i = 1, ... , n} be a linearly independent set of vectors. Each vector x E Span [A]
has a unique representation x = "L7=1 ajXj. The proofofthis result is by contradiction.
Suppose that there are two distinct representations X= "L7=1 ajXj andx = "L7=1 bjxj,
where not all aj = bj. Subtract x from itself:

n n n n

o=x - x = L ajXj - L bjxj = L(aj - bj)xj = L CjXj
j=l j=l j=l j=l

where Cj = aj - bj. Since the vectors in A are linearly independent, all Cj = 0, so aj =
bj for all i = 1, ... , n, a contradiction to the assumption that not all aj = bj. Thus,
there can be only one representation ofx. The values aj in the unique representation
are called the coefficients ofx with respect to A.

In an earlier example we had shown that R2 = Span[{(1, 1), (1, -I)]), where

The coefficients of x with respectto A = {(1, 1), (1, -I)} are Xl"iX2 and Xl ;X2 , where
the order is important.

A couple of useful algorithms are provided for manipulating sets based on linear
independence or dependence.

598 Appendix A Linear Algebra

Removing Vectors from a Linearly Dependent Set
to Obtain a Linearly Independent Set

Let Xl' ... , xn (n 2: 2) be linearly dependent vectors; then L~=l CkXk = 0 for coeffi­
cients Ck that are not all zero. Suppose that Cm ::j:. °for some index m. We can solve
for Xm to obtain

Moreover,

since for any vector y that is a linear combination of the Xk> just replace the Xm term
by the relationship given above for X m as a linear combination of the other Xk'

Inserting Vectors into a Linearly Independent Set
to Retain a Linearly Independent Set

Let A = {Xl' ... , xn } be a linearly independent set. Let y fj Span[A]; then A U {y},
the union of A and the singleton set containing y, is also a linearly independent set.
Consider the linear combination

If Co ::j:. 0, then we can solve the equation for y,

CI Cny = --Xl -.,. - -Xn E Span[A]
Co Co

a' contradiction to the assumption that'y fj Span[A]. It must be that Co = O. Con­
sequently, CIXI + ... + CnXn = O. But the Xk are linearly independent, so Ck =°for
k = 1, ... , n. We have shown that Ck = °for k = 0, ... , n, and so A U {y} is a linearly
independent set.

This leads us to an important concept in linear algebra. Let V be a vector space
with subset A c V. The set A is said to be a basis for V if A is linearly independent
and Span[A] = V. The plural of the term basis is bases.

EXAMPLE

A.3D
Let V = 1R2 with the usual vector addition and scalar multiplication. Accordingly,

1. {(1, 0), (0, I)} is a basis for V. It is easy to show that the two vectors are linearly
independent. To show that they span V, note that

AA Vector Spaces 599

(x, y) = (x, 0) + (0, y) = x(1, 0) + yeO, 1)

2. {(I, 1), (1, -1), (0, I)} is not a basis for V since the vectors are linearly dependent:

1(1, 1) - 1(1, -1) - 2(0, 1) = (0, 0)

However, they do span V since

x+y-2 x-y+2
(x, y) = (1,1) + (1, -1) + 2(0,1)

2 2

3. {(O, I)} is not a basis for V. The set is linearly independent, but v f= Span [{ (0, I)}],

since (1, 0) E V but (I, 0) fj. Span[{ (0, I)}].

The last example is designed to illustrate that, in fact, a basis for V is the "small­
est" set of vectors whose span is V. The term "smallest" in this sense is the number
of vectors in the set. Now it is the case that V can have many bases. For example,
{(1, 0), (0, I)} and {(1, I), (1, -I)} are bases for }R2. Note that the two bases have the
same number of elements. The number of elements of a set A, called the cardinality
of the set, is denoted by IA I. The properties in the following list are valid for a vector
space V that has a basis B of cardinality IB I= n. The set A in the first three items is
any subset of V.

1. If IA I > n, then A is linearly dependent. The contrapositive of this statement is,
If A is linearly independent, then IAI :s n.

2. IfSpan[A] = V, then IAI :::: n.

3. Every basis of V has cardinality n. The vector space is said to have dimension
dim(V) = n and is referred to as a finite dimensional vector space.

Proof of Item 1 Let the known basis be B = {YI' ... , Yn}' Choose A = {Xl' ... , xn+d
to be a linearly independent set of n + 1vectors, so IA I= n + 1. Since B is a basis,
each vector Xi has a unique representation with respect to that basis,

n

Xi = L CijY}

}=l

for 1 :S::S n + 1. To show that the Xi are linearly dependent, show that there are

values di' not all zero, such that L7~11 dixi = 0:

600 Appendix A Linear Algebra

n+l

0= LdiXi
i=l

n+l n

= L LdicijYj
i=l j=l

Since the Yj are linearly independent, L7~11 cijdi = 0 for 1::S j ::s n. But this is a
system of n equations in n + 1 unknowns, so there must be a nonzero solution.
That is, there must be a solution for which not all di are zero. Indeed, the Xi must
be linearly dependent and A is a linearly dependent set.

Proofof Item 2 The proof is by contradiction. Suppose that A C V and V = Span [A].
Assume that IAI = m < n, say, A = {xl' ... , xm }. Remove linearly dependent
vectors until we have a set A' = {YI' ... , yd that is linearly independent and
for which V = Span [A']. Since we have potentially removed vectors from the set,
e ::s m < n. The fact that A' is a linearly independent set and the fact that the
span of A' is V means that A' is a basis for V with cardinality e. The basis B
is a set whose cardinality IB I= n > e, to which (by item 1), B must be a linearly
dependent set, a contradiction to B being a basis. The assumption IA I < n cannot
be valid, so in fact IAI ::: n.

Proofof Item 3 The basis B for V has cardinality n, the number mentioned in the first
two items. Let C be a basis for V. Since C is a linearly independent set, item 1 says
that ICI ::s n. Since V = Span[C], item 2 says that ICI ::: n. The two conditions
require that ICI = n.

EXAMPLE

A.31
Observe that dim(}Rn) = n since a basis is given by {el' ... , en}' where ej is the n­
tuple whose j th component is 1, and all other components are O. It is easy to verify
that these vectors are linearly independent. To see that they span }Rn:

(Xl' ... , xn) = (Xl' 0, , 0) + (0, x2, 0, , 0) + + (0, ... , 0, xn)

= xl(1, 0, ,0) + x2(0, 1,0, ,0) + + xn(O, ... ,0, 1)

A.4 Vector Spaces 601

The basis of vectors {el' ... , en} is called the standard Euclidean basis for IRn.

The vector space IRn is an example of a finite dimensional vector space; that is,
dim(IRn) is a finite number. Not all vector spaces are finite dimensional. For example,
F(IR, IR), the set of all real-valued functions whose domain is the real numbers, is
infinite dimensional.

The remaining material in this section is restricted to the vector spaces IRn
. The

concepts generalize to other vector spaces, but for the purposes of this book are not
necessary to investigate in detail.

A.4.4 INNER PRODUCTS, LENGTH, ORTHOGONALITY,
AND PROJECTION

Let x = (xl' ... , xn), Y = (Yl' ... , Yn) E IRn. When they are represented as n x 1
column vectors, the standard inner product ofx and y is the real number,

n

(x,y) =xTy= LXiYi
i=l

(A.3)

The inner product satisfies the conditions (ex + y, z) = e(x, z) + (y, z) and (x, ey +
z) = e(x, y) + (x, z). It is possible to define other inner products that satisfy the same
constraints, hence the use of the adjective standard in this definition. Treating x and
y as n-tuples, a common notation for the standard inner product is x . y, called the
dot product. The length ofx is defined by

Ixl=~=J~x,' (A.4)

The dot product is related to orthogonality of vectors. Two vectors x and yare
orthogonal (perpendicular) ifand only ifx . y = O. To see that this is true, Figure A.13
shows two orthogonal vectors drawn in the plane that they span.

Applying the Pythagorean Theorem,

Ixl 2+ IYl2 = Ix _ yl2

=(x-y)'(x-y)

= (x . x) - (x . y) - (y . x) + (y . y)

= Ixl 2+ IYl2 - 2x . Y

Subtracting Ixl 2+ IYl2 from both sides and dividing by -2 yields x . y = O. The
argument is reversible; the converse of the Pythagorean Theorem is, If Ixl 2+ IYl2 =
Ix - Y12, then the triangle must be a right triangle. Thus, x . y = 0 implies x and y
are orthogonal.

602 Appendix A Linear Algebra

(a)

x

(b)

y
f}

x

Figure A.I3 (a) Two orthogonal vectors drawn in the plane spanned by them. (b) Two nonorthog­
onal vectors and the angle between them.

An alternative formulation for the standard inner product is in terms of the angle
ebetween vectors x and y,

x . y = Ixllyl cos e (A.5)

Figure A.I3 shows a pair ofvectors and the angle between them. The construction of
equation (A.S) uses the same geometry argument for a triangle having sides x, y, and
x - y, but now the Law of Cosines for a general triangle applies. In the special case
of a right triangle, e= n /2 and cos(n /2) = 0, in which case xTy = 0 and the vectors
are orthogonaL Equation (A.3) defines the dot product in terms of coordinates, but
equation (A.5) is referred to as a coordinate-free description since the individual
coordinates of the vectors are not part of the equation.

The dot product is similarly related to projection of vectors. If u is a unit-length
vector and v is any vector, the projection ofv onto u is illustrated in Figure A.I4.

Figure A.I4(a) illustrates the algebraic construction. If e is the angle between v
and u, then basic trigonometry tells us cos e= L / Iv I. Solving for L and using Iu I= 1,
we have L = Ivl cos e= Ivllul cos e= v . u. The projection ofv onto u is

proj(v, u) = (v . u)u (A.6)

As illustrated in two dimensions in Figure A.I4, the vector obtained by subtracting
the projection ofv from itself is

w =v - (v' u)u

and is necessarily orthogonal to u. The calculation is simple:

u . w = u . v - (v . u)u . u = u . v - u . v = 0

(A.7)

(a)

w

Lu u

(L>O)

(b)

A.4 Vector Spaces 603

Ll
o u Lu u

~=~ ~<~

(c)

Figure A.14 The projection ofvectors onto a unit-length vector u. (a) v projects to Lu with L > O.
The angle () between u and v is shown. The vector w is obtained as w = v - Lu and
is itself a projection. (b) v is perpendicular to u, so the projection onto u is the zero
vector O. (c) The projection is Lu with L < O.

One last observation: The vector u was deemed to be unit length. Projection is
still well-defined if the vector is not unit length. Let d be a non-unit-Iength vector in
the direction of u; then u = d/ldl. Replacing this in equation (A.6), but changing the
left-hand-side argument from u to d to indicate the target of the projection is d,

. (d) d (v. d)proJ(v d) = v· - - = -- d
, Idl Idl d· d

(A.8)

A set of nonzero vectors {xl' ... , xm } consisting of mutually orthogonal vectors
(each pair is orthogonal) must be a linearly independent set. To see this:

m

0= LCiXi

i=l

m

0= LCiXj 'Xi

i=l

Since inner product is distributive

Since XJXi = 0 for i i=- j

Since X j i=- 0, x j • x j is not zero and it must be that Cj = O. The argument is valid for
every j = I, ... , m, so all C j are zero and the vectors are linearly independent. A set

604 Appendix A Linear Algebra

of mutually orthogonal vectors is said to be an orthogonal set ofvectors. Additionally,
if all the vectors in the set are unit length, the set is said to be an orthonormal set of
vectors.

It is always possible to construct an orthonormal set ofvectors {Ul' ... , um } from
any linearly independent set of vectors, {vI' ... , vm }. The process is referred to as
Gram-Schmidt orthonormalization.

EXAMPLE

A.32

Figure A.IS

Consider VI = (1, 2) and Vz = (-3, 0) in }Rz. Figure A.IS illustrates the process, one
based on projection of the input vectors. Choose:

so that UI is a unit vector in the direction ofVI. The component ofVz in the direction
OfUI can be removed, the remainder vector necessarily orthogonal to UI'

6
Wz =vz - (UI· vz) ul = -(-2,1)

S

It is easily verified that UI . Wz = o. The remainder is not necessarily unit length, but
we can normalize it to obtain

Wz (-2, 1)
uz= -- = ---

Iwzl ~

The set {UI' uz} is orthonormal.

Gram-Schmidt orthonormalization applied to two vectors in the plane.

EXAMPLE

A.33

AA Vector Spaces 605

Let {vI' V2' v3} be a linearly independent set in ~3. Figure A.16 illustrates a typical
case.

Figure A.16 Gram-Schmidt orthonormalization applied to three vectors in space.

Let ul' W2' and U2 be constructed as in the last example,

and

The components of v3 in the directions of Ul and U2 can be removed, the remainder
vector necessarily orthogonal to both Ul and Uz,

It is easily verified that Ul • W3 = 0 and U2 • W3 = O. The remainder is normalized to
obtain

The process for n vectors is iterative,

L: j
-

1
()v·- . v· ·u, u·

d - } /=1 } / /

an Uj-,. I'v· - ",!-1 (v .. u.) u·
} L.../=1 } / /

(A.9)

606 Appendix A Linear Algebra

The key idea, as shown in the examples, is that each new input vector from the origi­
nallinearly independent set has components removed in the direction of the already
constructed vectors in the orthonormal set. The remainder is then normalized to pro­
duce the next vector in the orthonormal set.

A.4.5 DOT PRODUCT, CROSS PRODUCT, AND TRIPLE PRODUCTS

In the last section we defined the dot product of two vectors u and v and named it
u . v. We saw its relationship to projection of one vector onto another and found it
to be a useful concept for constructing an orthonormal set of vectors from a linearly
independent set of vectors.

Cross Product

In three dimensions we have another type of product between vectors u and v that
fits in naturally with the topics of the last section, namely, the cross product, a vector
we will denote by u xv. This vector is required to be perpendicular to each of its two
arguments, and its length is required to be the area of the parallelogram formed by
its arguments. Figure A.I? illustrates the cross product.

Your intuition should tell you that there are infinitely many vectors that are
perpendicular to both u and v, all such vectors lying on a normal line to the plane
spanned by u and v. Of these, only two have the required length. We need to make

UXV

Ivlsin((})

U

(a) (b)

FigureA.17 (a) The cross product of u and v according to the right-hand rule. (b) The
parallelogram formed by u and v with angle e and parallelogram base length and
height marked.

AA Vector Spaces 607

a selection between the two. The standard convention uses what is called the right­
hand rule. If you place your right hand so the fingers point in the direction of u (the
first argument) as shown in Figure A.17(a), then rotate your fingers toward v (the
second argument) so that you make a closed fist, the cross product is selected to be
that vector in which direction your thumb points.

The area of the parallelogram is ex = bh, where b is the length of the base (the
length of u) and h is the height (the length of the projection of v onto a vector
perpendicular to u):

ex = bh = lullvl sinCe) (A. 10)

Let w be a unit-length vector perpendicular to both u and v and in the direction con­
sistent with the right-hand rule. The coordinate-free definition of the cross product
is therefore

u x v = (Iullvl sinCe)) w (A.ll)

A coordinate-dependent definition can be constructed by solving a system of two
linear equations in three unknowns plus the length and direction constraints. Let
u x v = (Xl' xz, x3). The orthogonality conditions are

0= u . (u x v) = (uI' uz, u3) • (Xl' xz, X3) = UIXI + UZXz + U3X3

0= V • (u x v) = (VI' Vz, V3) • (Xl' Xz, X3) = VIXI + VZXz + V3 X3

We solve this system symbolically by choosing X3 to be the free parameter and solve
for X I and Xz as basic parameters:

Multiplying the first equation by Vz, the second equation by Uz, and subtracting
second from first yields

Multiplying the first equation by VI' the second equation by UI' and subtracting the
first from the second yields

The term UIVZ - UZVI appears on the left-hand side of both equations, so a con­
venient replacement for the free parameter is x3 = t(uIVZ - uZVI)' where t now is
the free variable. In terms of t, the two basic parameters are X I = t (u ZV3 - U3vz) and
Xz = t(u3V I - UIV3). Thus,

608 Appendix A Linear Algebra

The value of (is determined by the length and direction constraints. In the enforce­
ment of the length constraint, we use equations (A.11) and (A.S):

iu X viz = lulzlvlz sinz ()

= lulzlvlz(1- cosz 8)

= lulzlvlz (1 _(ll . V)Z)
lulZ[vlZ

= lulzlvl z - (u . v)z

= (ui + u~ + u;)(vi + v~ + v~) - (UIVI + uzvz + U3V3)Z

= (uZv3 - U3VZ)Z + (u3vl - UIV3)z + (uIVZ - UZVl)Z

(A.I2)

The last equality is obtained by quite a few algebraic manipulations, albeit simple
ones. From earlier,

For the last two displayed equations to be equal we need (z = 1. The direction con­
straint narrows our final choice to (= 1. That is, the coordinate-dependent definition
for the cross product of two vectors is

(A.13)

The coordinate-dependent and coordinate-free descriptions of the dot product are
equations (A.3) and (A.S), respectively. The coordinate-dependent and coordinate­
free descriptions of the cross product are equations (A. 13) and (A. 11), respectively.

There are a couple of important properties of the cross product of which to be
aware. First, the cross product is not commutative; in general u x v and v x II are
not the same vector. The two vectors, however, point in opposite directions. The cross
product is said to be anti-commutative,

v x u= -u x v (A.I4)

The geometric intuition for this identity is given in Figure A.I7. If you apply the
right-hand rule to v and u, in that order, you should get a vector that is opposite
in direction to u x v. Equation (A.I4) is simple to verify algebraically by use of
equation (A.I3). The other important property is that the cross product is a linear
transformation in each component (called a bilinear transformation). That is,

(eu + w) x v = e(u xv) + (u xv)

u x (cv +w) = (ll X v) + c(u x w)

Linear in first component

Linear in second component
(A. IS)

EXERCISE

A.4

EXERCISE

A.S

AA Vector Spaces 609

Prove that the identities in equations (A.I4) and (A. IS) are true.

Ifu +v +w = 0, then u x v = v x w = w x u. What is the geometric interpretation
of this statement?

Triple Scalar Product

The cross product of two vectors v and w is a vector that can be dotted with a third
vector u to obtain a scalar, v = u . v x w. No parentheses are needed about the cross
product portion. If you were to compute the dot product of u and v, the resulting
scalar cannot be crossed with w since we have defined no such operation between
scalars and vectors. The quantity u . v x w is referred to as the triple scalar product of
the three vectors. This quantity has an important geometric interpretation as a signed
volume of a parallelepiped. Figure A.I8 illustrates this where u forms an acute angle
with v x w.

The volume v ofthe parallelepiped is the product area ofthe base a = IvIlwI sin ()
as determined by equation (A.IO) and the height h = lui cos ¢ as determined by the
dot product between u and v x w,

v = u . v x w = Iv x wllul cos ¢
(A.I6)

= Clvllwl sin B)(Iul cos ¢) = ah = lullvllwl sin B cos ¢

vxw

h

o v

Figure A.I8 A parallelepiped formed by vectors u, v, and w, where u forms an acute angle with
v x w. The angle between v and w is B and the angle between u and v x w is ¢.

610 Appendix A Linear Algebra

In the configuration of vectors in Figure A.I8, the volume is v > O. If u were to
form an obtuse angle with v x w, ¢ E (nI2, n), then v < 0 and Ivl is the volume.
If ¢ = n 12, then v = 0 and the parallelepiped is degenerate (all three vectors are
coplanar) and has volume zero. Thus, v is referred to as a signed volume. Observe
that equation (A.I6) is a coordinate-free description of the triple scalar product.
The coordinate-dependent formulas for dot product and cross product allow us to
construct a coordinate-dependent description of the triple scalar product,

(A.I?)

EXERCISE

A.6

EXERCISE

A.7

Prove the following:

1. The identity in equation (A. I?)

2. u x v . w = u . v x w

3. u . w x v = -u . v x w

4. If {u, v, w} is an orthonormal set of vectors, then lu . v x wi = 1.

Let u, v, and w be linearly independent vectors.

1. Prove that any vector p has the representation

(p . v x w)u + (u . P x w)v + (u . v x p)w
p=

u'V xw

2. Prove that any vector p has the representation

(w' p)u x v + (u . p)v x w + (v' p)w x u
p=

u'V xw

Triple Vector Product

Another type of product of three vectors u, v, and w is the triple vector product
p = u x (v x w), itself a vector. For the sake of argument, let us assume that v x w
is not the zero vector (the two vectors are linearly independent). The cross product
of two vectors is perpendicular to each of those vectors. In our case, p must be
perpendicular to v x w. But v x w is perpendicular to the plane spanned by v and
w, so p must lie in that plane. Figure A.I9 illustrates this.

Consequently, there must be scalars sand t such that u x (v x w) = sv + two
The scalars can be computed in a coordinate-dependent manner, but the algebraic
details will be quite tedious. The following construction is coordinate-free.

A.4 Vector Spaces 611

u vxw

Figure A.19 The triple vector product p = u x (v x w). Note that p must lie in the plane spanned
byv and w.

Consider the special case

v x (v x w) = sv + tw (A.IS)

Dotting equation (A. IS) with v and using the fact that v is perpendicular to the cross
product v x w, we have

0= v 0 v x (v x w) = (v 0 v)s + (v 0 w)t

Now dot equation (A.IS) with w. The left-hand side is

(A.I9)

w 0 v x (v x w) = (w x v) 0 (v x w)

= -(v x w) 0 (v x w)

= -Iv X wl 2

The second equation in sand t is

By equation (A.I4)

-Iv X wl 2 = (v 0 w)s + (w 0 w)t (Ao20)

The equations (AoI9) and (Ao20) are a system of two linear equations in two
unknowns that can be written in matrix form as

[
vov vow] [s] [0]
vow wow t = -Iv X wj2

612 Appendix A Linear Algebra

The matrix of coefficients on the right-hand side is inverted to produce the solution

[
S] 1 [W.W
t - (v . v)(w . w) - (v . w)2 -v· W

-v .WJ [0] [V .W]
v . v -Iv X wI 2 = -v· v

where we have used the fact that Iv x wI 2 = (v . v)(w . w) - (v· w)2 from the deri­
vation in equation (A.12). Therefore, we have the identity

v x (v x w) = (v . w)v - (v . v)w (A.21)

This identity may be used to construct a formula for the general case. We need to
determine scalars sand t such that

u x (v x w) = sv + tw

Dotting equation (A.22) with u produces

(u . v)s + (u . w)t = U • U x (v x w) = 0

Dotting equation (A.22) with v produces

(A.22)

(A.23)

(v . v)s + (v . w)t = u x (v x w) . v

= u· (v x w)· v

= -u· (v x w) x v

= -u . ((v· w)v - (v . v)w)

= (v . v)(u . w) - (v . w)(u . v)

By equation (A.14)

By equation (A.21)

(A.24)

The equations (A.23) and (A.24) are a system of two linear equations in two
unknowns that can be written in matrix form as

[
U.v u.wJ[SJ [0]
v . v v· w t - (v· v)(u . w) - (v . w)(u . v)

The matrix of coefficients on the right-hand side is inverted to produce the solution

1 [v· w
- (u· v)(v . w) - (u . w)(v . v) -v . v

[
u·w]

- -u·v

Therefore, we have the identity

-U· wJ [0]
U • v (v . v)(u . w) - (v . w)(u . v)

U x (v x w) = (u . w)v - (u . v)w (A.25)

A.4 Vector Spaces 613

A similar formula is

(u x v) x w = (u x w)v - (v . w)u (A.26)

EXERCISE

A.8

Equations (A.25) and (A.26) show that, in general, u x (v x w) =1= (u x v) x w.
That is, the cross product operation is not associative.

Prove the following:

1. The identity in equation (A.26)

2. (u x v) . (w x p) = (u . w)(v . p) - (u . p)(v . w)

3. (u x v) x (w x p) = (u x v . p)w - (u x v . w)p

A.4.6 ORTHOGONAL SUBSPACES

Let U and V be subspaces of IRn . The subspaces are said to be orthogonal subspaces if
x . y = °for every x E U and for everyy E V.

EXAMPLE

A.34

EXAMPLE

A.35

Let U = Span [(1, 1)] and V = Span [(1, -1)] in IR2• Geometrically, these sets are per­
pendicular lines in IR2 passing through the origin. A vector x E U is of the form
x = a(1, 1) and a vector y E V is of the form y = b(1, -1). The inner product is
(a, a) . (b, -b) = ab - ab = 0, so U and V are orthogonal subspaces.

Let U = Span[(1, 0, 0, 0), (1, 1,0,0)] and V = Span[(O, 0, 4, 5)]. Let x E U and y E

V; then

and so

x· y = [a + b bOO] [I~] = (a + b)(O)+ (b)(O)+ (O)(4c)+ (O)(5c) = 0

The subspaces are therefore orthogonaL

Given two subspaces U and V, some analysis of the subspaces is applied to verify
thattheyare (or are not) orthogonal subspaces. For example, U = Span[(1, 1,0)] and
V = Span[(1, -1,0)] are orthogonal subspaces since a general vector in U is (a, a, 0),
a general vector in V is (b, -b, 0), and (a, a, 0) . (b, -b, 0) = 0, regardless ofchoice
for a and b. Geometrically, the two subspaces are perpendicular lines containing the

614 Appendix A Linear Algebra

Figure A.20 A subspace U of1R3 and its orthogonal complement U.1..

origin. Vectors on the line representing V are perpendicular to any vector in U, but
there are other vectors perpendicular to those in U that are not in V. Specifically, the
plane containing the origin and having the normal vector (1, 1, 0) is a subspace W
that is orthogonal to U, and V is a strict subset of W. The general problem, then,
is to find the largest dimension subspace V of ffi.n that cis orthogonal to a specified
subspace U. That subspace is called the orthogonal complement of U and is denoted
by U.1.. The formal set definition is

U.1. = {x E ffi.n : x . y = 0 for all y E U} (A.27)

Figure A.20 illustrates this concept for ffi.3.
Figure A.20 suggests that the orthogonal complement of U.1. is U itself; that is,

(U.1.).1. = U. This is true for finite dimensional vector spaces, but there are examples
of infinite dimensional vector spaces for which it is not true. The most you can say in
those spaces is that U ~ (U.1.).1., something that is easily verified just by the definition
of U.1.. For finite dimensional vector spaces, the proof that (U.1.).1. = U is presented
next.

Let us consider the trivial case first. If U = {O}, the subspace consisting of only
the zero vector, the orthogonal complement is U.1. = ffi.n since every vector is trivially
perpendicular to the zero vector. Conversely, the only vector perpendicular to all
vectors in ffi.n is the zero vector, so (U.1.).1. = (ffi.n).1. = {OJ = U.

A.4 Vector Spaces 615

The nontrivial cases require a bit more work. Let U be a nontrivial subspace of
~n. It has a basis A = {UI' ... , urn}, 1 < m < n, that is an orthonormal set ofvectors.
Given any basis of U, it is always possible to construct an orthonormal one from it
using Gram-Schmidt orthonormalization. Let B be a basis for ~n. The set A can be
extended to a basis for ~n by attempting to insert, one at a time, the vectors from B
into A. The insertion ofa vector is allowed only if the resulting set ofvectors is linearly
independent. See the subsection on linear independence and bases to understand why
this algorithm works. Let the resulting basis for ~n be {UI' ... , Urn' VI' ... , vn - m }.

Now define:

m

Wi =Vi - L (Vi' uJ Uj)

j=1

l~i~n-m

The set C = {WI' ... , wn - m } is linearly independent. To see this, set

n-m

0= L CiWi

i=1

n-m m

= L civi + Ldjuj
i=1 j=1

where the last equality defines the coefficients d j . The right-hand side is a linear
combination of basis vectors for ~n, so all the Ci and d j must be zero. Since all the Ci

are zero) the set ofWi vectors are in fact linearly independent. Moreover, observe that

m

Uk • Wi = Uk • Vi - L (Vi • UJ Uk • U j

j=I

= Uk· Vi - t (Vi· Uj) { ~:
]=1

=0

j=k}
ji-k

The n - m vectors in C are all orthogonal to the m vectors in A. The set C is therefore
a basis for U..1. The construction applies equally to U..1 to obtain a basis D of m
vectors for (U..1)..1. At this point we know that U ~ (U..1)..1 and that dim(U) = m =
dim((U..1)..1») the last condition disallowing proper containment; that is, U = (U..1)..1.

616 Appendix A Linear Algebra

A.4.7 THE FUNDAMENTAL THEOREM OF LINEAR ALGEB RA

Let us revisit linear systems of equations. Given an n x m matrix A, there are four
subspaces associated with it. Each of these subspaces-kernel (A), range (A), kernel
(AT), and range (AT)-is discussed in this section.

Kernel of A

Define the kernel or nullspace of A to be the set

kernel(A) = {x E IRm
: Ax = O}

This subset of IRm is a subspace. As discussed earlier we only need to verify that
ax + by E kernel(A) for anya, b E IR and any x, y E kernel(A). This is the case since

A(ax + by) = aAx + bAy = aO + bO = 0

IfU = E A, where E is a product of elementary row matrices and U is upper echelon,
then Ax = 0 and Ux = 0 have the same set of solutions. Therefore, kernel(A) =
kernel(U). A basis for kernel(A) is constructed by solving the system Ax = O. If
r = rank(A), then dim(kernel(A)) = m - r.

EXAMPLE

A.36
Consider Ax = 0 where

The basic variables are Xl and X3' and the only free variable is X2' The general solu­
tion is

[

Xl] [-3X2] [-3]
x = ~~ = ~2 = x2 ~

The kernel is kernel(A) = Span[(-3,1,0)] and dim(kernel(A)) = 1.

EXAMPLE

A.37

AA Vector Spaces 617

Suppose A is a matrix such that its complete row-reduced form is

u=[~ ~ ~1 ~ ~ =~]
° ° ° ° ° °° ° ° ° ° °

The basic variables are Xl and X4' and the free variables are X2' X3' Xs, and X6' The
general solution is

Xl - 2X2 +X3 - 3XS+X6

X2 X2

X=
X3 X3

X4 - 2xs + X6

Xs Xs

X6 x6

-2 1 -3 1
1 ° ° °° 1 ° °=x2

°
+x3

°
+xs -2 +x6 1

° ° 1 °° ° ° 1

The kernel is

kernel(A) = Span[(-2, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0),

(-3,0,0, -2, 1,0), (1,0,0,1,0,1)]

with dim(kernel (A)) = 4.

Range of A

Let A be written as a block matrix of n x 1column vectors,

where CXk = [aik] for 1~ k ~ m. The expression Ax can be written as a linear combi­
nation of these columns:

m

Ax =L aikxk = xICXl + ... + xmcxm
k=l

618 Appendix A Linear Algebra

Treating A as a function A : IRm ~ IRn , the range of the function is

range(A) = {y E IRm
: y = Ax for some x E IRn

} = Span[al' ... , am]

This subset of IRn is a subspace since the span of any subset is itself a subspace. The
columns of A are not required to be linearly independent, in which case they do not
form a basis for the range.

Suppose that U = E A, where E is a product ofelementary row matrices and U is
upper echelon. It is usually the case that range(A) i= range(U). However, if the pivot
elements of U are in columns k1, ••. ,kr where r = rank(A), then the corresponding
columns of A form a basis for the range(A). That is,

with dim(range(A)) = r. We prove this assertion. Construct the block matrices U=
[Wk I ... IWk] and A= [ak I ... lak]. Note that

1 r 1 r

~ [I
rxr

]
U = 0Cn-r)xr

where Irxr is an identity matrix, r = rank(A), and 0Cn-r)xr is a block matrix with all

zero entries. Also note that U = E A implies U= EA.
Set L:J=1 c jakj = 0. To show linear independence, we need to show_that the only

possibility is C j =°for all j = 1, ... , r. But this equation is simply Ac = 0 where
c = [c j] is an r x 1column vector, so

0= Ac = E- 1Uc = E- 1
[I

rxr
] c

°Cn-r)xr

which implies

[I]rxr C = EO = 0
°Cn-r)xr

The only solution is c = 0, and so the vectors aI' ... , a r are linearly independent.
Moreover, range(A) = Span[ak

1
' ••• ,ak) The proof is as follows. Suppose

{ak , ... , ak ,ae} is a linearly independent set for some .e rf. {k 1, ••• , kr }; then_ 1 r

[Ajae]c = 0, where c is (r + 1) x 1, has the unique solution c = O. Consequently,

This row-reduced system has more unknowns than equations, so it has infinitely
many solutions c, a contradiction to the uniqueness c = O. Therefore, {ak

j
, ••• , ak

r
}

EXAMPLE

A.38

A.4 Vector Spaces 619

is the maximal linearly independent set of columns of A and must form a basis for
the range of A.

Consider the same matrix A as in Example A.36:

Then

and

range(A) = Span [(1, 2, 3), (2, 9, 8)],

Note that range(A) =I- range(U).

Kernel of AT

range(U) = Span[(I, 0, 0), (0, 1,0)]

As a function, AT: IRn ---+ IRm since AT is an m x n matrix when A is an n x m matrix.
The kernel of AT is

kernel(AT) = {y E IRm : ATy = O}

and is a subspace ofIRn . Construction of a basis is similar to that ofkernel(A). Since
rank AT = rank(A) = r, dim(kernel(AT)) = n - r.

Range of AT

Write AT as a block matrix ofcolumn vectors: AT = [~ll ... I~n]' where ~i is an m x 1
column vector for each i = 1, ... , n. The range of the transpose is

range(AT) = Span[~l' ... , ~n]

and is a subspace of IRm with dimension dim(range(AT)) = r.

These four subspaces are related by the following theorem.

The Fundamental Theorem of Linear Algebra If A is an n x m matrix with
kernel(A) and range(A), and if AT is the m x n transpose of A with kernel(AT)
and range(AT), then kernel(A) = range(AT)-l, kernel(A)-l = range(AT),
kernel(AT) = range(A)-l, andkernel(AT)-l = range(A).

620 Appendix A Linear Algebra

range(AT)

kemel(A)

range(A)

kemel(AT)

Figure A.21 The four fundamental subspaces.

Proof Let us prove that kernel(A) = range(AT)-l. To prove that kernel(A) ~
range(AT)-l, let x E kernel(A) so that Ax = O. For each y E range(AT), y = ATz
for some z E Rn . Consequently,

and so x is orthogonal to all vectors in range(AT). That is, x E range(AT).

To prove that range(AT)-l ~ kernel(A), let x E range(AT)-l; then xTy = 0 for
all y E range(AT). As z varies over all vectors in jRn, y = ATz varies over all
vectors in range(AT). Thus, 0 = xT(ATz) = (Ax)Tz for all z ERn. In particular,
the equation is true for the Euclidean basis vectors el' ... , en: (Ax)Tei = O. In
block matrix form,

(Ax)T = [(Ax)Tel I ... I (Ax)Ten] = [0 I ... I 0] = 0T

so Ax = 0 and x E kernel(A). The containment has been shown in both direc­
tions, so kernel(A) = range(AT)-l.

We proved earlier that (U-l)-l = U. This result and the one of the previous para­
graph implies that range(AT) = (range(AT)-l)-l =kernel(A)-l. The other two
subspace equalities are valid by replacing A with AT in the previous construc­
tions. Figure A.21 illustrates the relationship between the four subspaces. They
are drawn to indicate the orthogonality to each other. Note that x = Xk + xr since
kernel(A) and range(AT) are orthogonal subspaces.

AA Vector Spaces 621

b

Figure A.22 The projection pES ofb E IR3, where S is a two-dimensional subspace ofIR3 (a plane
through the origin).

A.4.8 PROJECTION AND LEAST SQUARES

The projection p of a vector b E IRn onto a line through the origin with direction
a (not necessarily unit length) is provided by equation (A.8). I will write this in a
different form by grouping together the terms involving a. This form appears strange
at first but is suggestive of what is to follow:

(A.28)

The line is a one-dimensional subspace of IRn . The projection of b onto a higher­
dimensional subspace S may be similarly constructed. In this context, projection ofa
vector b onto a subspace S will amount to finding the point in S that is closest to b.
Figure A.22 illustrates this for a two-dimensional subspace in IR3.

The quantity aTa appears in equation (A.28). For higher-dimensional subspaces,
the analogous quantity is ATA, where A is a matrix.

The construction of a projection onto a subspace is motivated by attempting to
solve the system of linear equations Ax = b, where A is an n x m matrix, x is an
m x 1column matrix, and b is an n x 1column matrix. A solution exists if and only
ifb E range(A). Ifb is not in the range of A, an application might be satisfied with a
vector x that is "close enough"; that is, find an x so that Ax - b is as close to the zero
vector as possible. Rather than attempting to solve the linear system, we can instead
try to find x that minimizes the length lAx - b1 2

• This is called the least-squares
problem. "Least" refers to minimum and "squares" refers to the distance-squared
quantity to be minimized. If the squared distance has a minimum of zero, any such x

622 Appendix A Linear Algebra

that attains that minimum must be a solution to the linear system. If the minimum
distance is positive, the linear system has no solution, but the minimization problem
always does.

Geometrically, the minimizing process amounts to finding the point p E
range(A) that is closest to b. Such a point p always exists and is obtained by a
projection onto range(A). As shown in Figure A.22, there is also always a point
q E range(A)..l = kernel(AT) such that the distance from b to kernel(AT) is a mini­
mum. The figure should also make it clear that the quantity lAx - bl 2 is minimized if
and only if Ax - b E kernel(AT). Since p E range(A), there must be a vector x E IRm

such that p = Ax, and Ax - bE kernel(AT). Therefore) lAx - bl 2 is a minimum
and AT (Ax - b) = O. The equations ATAx = ATb are called the normal equations
corresponding to the linear system Ax = b.

Solving the normal equations requires the following information. If A is an n x m
matrix, then AT A is symmetric and rank(ATA) = rank(A). The symmetry of AT A
follows from (AT A)T = AT (A T)T = AT A. The equality of the ranks is proved by
showing that kernel(A) = kernel(ATA). Let x E kernel(A); then Ax = O. Multiply
by AT to obtain

which implies x E kernel(ATA). Thus, kernel(A) ~ kernel(AT A). To show the subset
inclusion in the other direction, let x E kernel(ATA); then AT Ax = O. Multiply by xT

to obtain

The length of Ax is zero, so Ax = 0 is the only possibility. This implies x E kernel(A),
so we have shown kernel(ATA) ~ kernel(A). The subset inclusion is true in both
directions, so kernel(A) = kernel(AT A). The equality of the ranks follows by a di­
rect application of the Fundamental Theorem of Linear Algebra. As we saw earlier,
dim(kernel(A)) + rank(A) = m. Similarly, dim(kernel(ATA)) + rank(ATA) = m.
Since dim(kernel(A)) = dim(kernel(ATA)), a subtraction of the two equations leads
to rank(A) = rank(ATA).

A consequence of this result is that if the columns of A are linearly independent,
then AT A is an invertible matrix. The linear independence of the columns means
that m = rank(A) = rank(ATA). The matrix ATA is an m x m matrix of full rank m,
so it must be invertible. In this case the normal equations have the unique solution
x = (AT A)-lAT. Finally, the projection ofb onto range(A) is

(A.29)

Observe the similarity in form between this and equation (A.28). Also observe that
the matrix M = (AT A) -1AThas the property M A = I. It is called the left inverse of

A.4 Vector Spaces 623

A, but note that A is not a square matrix! The product P = AM = A(ATA)-lAT is
not generally the identity matrix. Geometrically, this is clear since p = Pb. And, P
cannot be the identity when b ¢ range(A).

Let us take a closer look at the projection matrix P = A (ATA) -1AT. As shown
previously, the projection of b onto range(A) is p = Pb. If we attempt to project p
itself onto range(A), nothing should happen since p is already in the range. That is,

Pb = p = Pp = p 2b

This equation suggests that p 2 = P, intuitively saying that projecting a second time
does not produce anything different than projecting once. We can verify the identity
using the definition of P:

p 2 = (A(ATA)-lAT)(A(ATA)-lAT)

= A(ATA)-l(ATA)(ATA)-lAT = A(ATA)-lAT = P

Also notice that

p T = (A(ATA)-lAT)T

= (AT)T((ATA)-l)TAT = A((ATA?)-lAT = A(ATA)-lAT = P

so P is a symmetric matrix. Finally, Figure A.22 suggests the following. Let Q be
the projection matrix onto kernel(AT). The subspaces range(A) and kernel(AT) are
orthogonal complements of each other. The sum of the projections onto those sub­
spaces should be the original vector. That is, b = Pb + Qb = (P + Q)b. This equa­
tion is true for all vectors b, so it must be that P + Q = I, or Q = I - P. A pro­
jection onto one subspace followed by a projection onto the orthogonal comple­
ment should always produce the zero vector. Algebraically, we can see this is true:
P Q = P (I - P) = P - p 2 = 0, which is the zero matrix.

So far all is well as long as the m x m matrix ATA is invertible, which is the case if
and only if rank(A) = m. What if r = rank(A) < m? The range ofA is spanned by the
columns of A. Let the columns of A be denoted Cj for 1.:s i .:s m. Reorder the columns
as Cj j for 1.:s i j .:s m, where the first r vectors are linearly independent (1 .:s j .:s r) and
the last m - r vectors are dependent on them (r < j .:s m). The left-hand side of the
equation Ax = b is expanded into a linear combination of the columns of A, then
reordered:

m r m

b = Ax = '"'" XjCj = '"'" Xj .Cj. + '"'" Xj .Cj.L..J L..J}} L..J }}
j=l j=l j=r+l

The dependent Cj. terms are written as linear combinations of the independent ones.
}

The linear combination of the dependent vectors becomes a linear combination of

624 Appendix A Linear Algebra

the independent vectors and is folded into the already existing combination of inde­
pendent vectors:

r

b = '" y. c· = CyL...J lj lj

j=l

where Yi . is a linear combination ofxi. and xi
k

where r < k < m. We now have a linear
]] -

system where the n x r matrix C has linearly independent columns. Moreover) by the
construction range(C) = range(A)) and the projection p ofb onto the range of A is
exactly the projection onto the range of C. Thus) the projection matrix is

Since all we need is C) and not a vector y from the previous construction) it is enough
to identify the columns of A that form a basis for range(A) and use them to construct
C) then P.

A.4.9 LINEAR TRANSFORMATIONS

The discussion of systems of linear equations naturally leads us to the concept of a
matrix) whether it be the n x m coefficient matrix A of the system) the m x 1column
matrix x of the unknown variables) or the n x 1 column matrix of outputs b. The
definition for the product of matrices was motivated by solving linear systems using
elementary row operations that are represented by matrices. In this section we will
discover an approach to defining matrices and operations on them) one that is more
natural in the framework of vector spaces.

Let V and W be vector spaces. A function L : V ~ W is said to be a linear
transformation whenever

1. L(x + y) = L(x) + L(y) for all x) y E V) and

2. L(cx) = cL(x) for all c E IR and for all x E V.

In words) the linear transformation of a sum of vectors is the sum of linear transfor­
mations ofthose vectors) and the linear transformation ofa scalar multiple ofa vector
is the scalar multiple of the linear transformation of that vector. The two conditions
can be summarized as a single condition) L(cx + y = cL(x) + L(y) for all c E IR and
for all x) y E V. We will refer to V as the domain of Land W as the codomain of L.
The last term is used to avoid confusion in nomenclature. Sometimes W is said to be
the range ofthe function) but in our development we use the term range to refer to the
set of vectors in W that are obtained by applying the function to the domain vectors.
In many cases the range is a proper subset of W.

EXAMPLE

A.39

AA Vector Spaces 625

A couple of simple consequences of the definition: L(O) = 0 and L(-x) =
- L (x). The first identity follows from

L(O) = L(OO) = (O)L(O) = 0

The first and third equalities are a consequence of the fact that the scalar zero multi­
plied by any vector is the zero vector. The second equality is valid since L is a linear
transformation (item 2 in the definition). The second identity is proved similarly:

L(-x) = L(-lx) = (-l)L(x) = -L(x)

In a finite dimensional vector space, if a vector is written as an n-tuple x =
(xl' ... , xn), you would write L(x) = L((xI' ... , xn)). In these specific cases the
extra parentheses are dropped for readability: L(xI, ... , xn).

Define L : JR3 -+ JR2 by L(xI' X2' x3) = (xl + X2, Xl - 3x3)' Let e E JR, x = (xl' X2, x3),
and y = (YI, Y2, Y3); then

L(ex + y) = L(e(xI' X2, x3) + (YI, Y2' Y3))

=L(axi + bYI' aX2 + bY2' aX3 + bY3)

= ((exi + YI) + (ex2+ Y2), (exi + YI) - 3(ex3+ Y3))

= (e(xi + x2) + (YI + Y2), e(xi - 3x3) + (YI - 3Y3))

=e(xi + X2' Xl - 3X3) + (YI + Y2' YI - 3Y3)

=eL(x) + L(y)

so L is a linear transformation.

If {el, e2' e3} is the standard Euclidean basis, then x = (xl' X2, X3) = xlel + X2e2+
X3e3 and

since L is linear. Thus, L is determined completely by the values ofL (ei) for 1~ i ~ 3.
As we will see, in general L is determined by its values for any specified basis.

In column vector form,

626 Appendix A Linear Algebra

(Example A.39
continued)

EXAMPLE

AAO

The transformation L (x) is represented by a matrix multiplication Ax. Since the kth
column of A is Aek' L(ek) is the kth column of A:

This relationship naturally ties together linear transformations and matrices.

Let P be the vector space of all polynomials with real coefficients. Define L : P -+ P
by L(p(x)) = p'(x). That is,

You should recognize L as differentiation of the polynomial p(x). Let p(x) =
2::7=0 Pixi and q(x) = 2::~=0 qixi , where n:::: m. If we define Pi = 0 for i > n, then
p(x) = 2::~=0 Pixi so that the upper limits of summation on p(x) and q (x) are the
same. Let C E IR; then

L(cp(x) +q(x)) =L (c ~Pixi + ~qixi)

= L (f;(CPi + qi)X
i
)

1=0

m-l

= L(j + 1) (CPj+l + qj+l)X
j

j=o

m-l m-l

= C L(j + l)pjx
j + L(j + l)qjx

j

j=O j=O

= cL (p(x)) + L (q(x))

This proves that L is a linear transformation.

Using vector
space operations

Definition of L

Using vector
space operations

Definition of L

The next result establishes for certain the relationship between linear transforma­
tions and matrices: L : IRm -+ IRn is a linear transformation if and only if L (x) = Ax
for some n x m matrix A = [aij]' The proof follows.

A.4 Vector Spaces 627

Define the function L(x) = Ax, where x is treated as an m x 1column vector and
where L(x) is treated as an n x 1column vector. For c E ~ and x, y E ~m,

L(cx + y) = A(cx + y)

=A(cx) + Ay

=c(Ax) + Ay

=cL(x) + L(y)

Definition of L

Matrix multiplication is distributive

Property of matrix arithmetic

Definition of L

This proves that L is a linear transformation.
Conversely, let L : ~m ----+ ~n be a linear transformation, where x and L(x) are

treated as column vectors. Let {el' ... , en} be the standard Euclidean basis for ~n;

then L(ek) E ~m for all k. As such, these vectors can be represented as

k = 1, ... , n

Since L is linear

= [I:~~,:alkxk]

Lk=l amkxk

=Ax

The argument actually provides the construction of the n x m matrix A given L.

628 Appendix A Linear Algebra

EXAMPLE

A.41
Define L :}R2 ~ }R2 by L(x1, X2 = (3x1 + 6x2' -2x1 + x2)' In column vector form,

and

The transformation has been written as L(x) = Ax, where

A = [L(e,) L(e,)hx, = [~2 ~]

This representation depends on our choice of the Euclidean basis for }R2. That is,

[~J = x, [~]+ x, [n and

L ([~;]) = (3x, +6x,) [~] + (-2xj +x,) [n
What happens if you use different bases? Let L : V ~ W be a linear transforma­

tion where V has basis F = {f1, ••• , fm} and W has basis G = {gl' ... , gn}' Treating
the elements of V and W as column vectors, we can represent L by L (x) = Ax, where
A depends on the definition for L, the basis F for V, and the basis G for W. A vector
x EV is represented in the F basis asx = 2::}=1 xi}. Each vector L(f}) EW is repre-

sented in the G basis as L (f}) = 2::7=1 ai} gi' The linear transformation is expanded as

m

=LX}L(f})
}=1

=t x} (t aijgi)
}=1 i=l

= E(~aijXj) g,

n

where the last equality defines the Yi = 2::}=1 aijx}. The coefficient vector x, which
is m x 1, and the coefficient vector y, which is n x 1, are related by the matrix

EXAMPLE

A.42

A.4 Vector Spaces 629

equation y = Ax) where A = [aij] is an n x m matrix. This matrix represents the
linear transformation with respect to the chosen bases F and G. Different choices for
bases will lead to different matrices for A.

Let L :}R2 ---+ }R2 be given by L(xI) x2) = (3xI + 6x2) -2xI + x2) = (YI) Y2)' The stan­
dard Euclidean basis is E = {(1) 0)) (0) I)}. The matrix representation of L where E
is the basis used for both the domain and codomain is

The notations XE and YE indicate that the vectors are to be represented in the basis
E. The input 2-tuple (xl) x2) and output 2-tuple (YI) Y2) have the obvious represen­
tations in E as

and

Choose different bases) F = {fI) f2} = {(1) 1)) (1) -I)} for the domain and G =
{gI) g2} = {CO) 1)) (1) O)} for the codomain. The representation of (xl) x2) in the F
basis is

Xp = Xl +X2(1) 1) + Xl -X2(1) -1) = xl + X2 f I + Xl - x2f2
2 2 2 2

The representation of (YI) Y2) in the G basis is

The linear transformation applied to the F basis vectors has results written in the G
basis)

L(fI) = L(1) 1) = (9) -1) = -1(0) 1) + 9(1) 0) = -gi + 9g2

L(f2) = L(1) -1) = (-3) -3) = -3(0) 1) - 3(1) 0) = -3g1 - 3g2

so the matrix that represents L with respect to the bases F and G is

A quick verification shows

[Y2] [-1YI = YG = Axp = 9

and reproduces exactly the linear transformation (YI) Y2) = (3xI + 6x2) -2xI + x2)'

630 Appendix A Linear Algebra

EXAMPLE

A.43
Let Pn be the set of polynomials with real-valued coefficients and of degree at most
n. That is,

Pn ={t a,x' :a, E Ill}
1=0

Define L : PI ---+ P2 by

L(p(x» = fax p(t) dt

You should recognize this as the definite integral of the polynomial over the interval
[0, x], where the upper limit x is variable. Polynomials in PI are of the form p(x) =
ao + alx and polynomials in P2 are of the form p(x) = bo+ bix + b2x 2

• The linear
transformation can be restated as L(ao + aIx) = aox + (ad2)x 2

• A basis for PI is
F = {fI, f2}= {I, x} and a basis for P2 is G = {gI' g2' g2} = {I, x, x 2

}. Applying the
linear transformation to the F basis vectors produces

L(fI) = L(1) = x = 0 . 1 + 1 . x + 0 . x 2 = g2

1 2 1 2
L(f2) = L(x) = -x = 0 . 1 + 0 . x + - . x = (1/2)g3

2 2

The matrix A that represents the linear transformation with respect to the bases F
and G is

In terms of the polynomial coefficients, the application of the matrix is

Let L : V ---+ V be a linear transformation where V is both the domain and
codomain and has dimension n. A matrix representation of L is an n x n matrix. We
have seen that the matrix representation depends on the bases selected for the domain
and codomain. If a basis F = {fI , ... , fn } is chosen for domain and codomain with
corresponding matrix representation A, and a basis G = {gI' ... , gn} is chosen for
domain and codomain with corresponding matrix representation B, the question is
how are A and B related? The key idea is change ofbasis, the process of representing
basis vectors in F in terms of the basis G. Each vector f j is represented in G as

n

f j = L Cijgi' 1~ j ~ n
i=I

(V, F)

Ct

(V, G)

A
---+

B
---+

(V, F)

tC

(V, G)

AA Vector Spaces 631

Figure A.23 A linear transformation from V to V with respect to two different bases (horizontal
arrows). The change of basis for V (vertical arrows).

The matrix C = [cij] is called the change of basis matrix and itself represents a linear
transformation from V to V. Figure A.23 is a diagram that indicates how all the
matrices map V to itself. The bases are explicitly paired with V for clarity.

To get from (V, F) to (V, F) you can directly apply matrix A. Or you can go from
(V, F) to (V, G) by applying matrix C, then from (V, G) to (V, G) by applying
matrix B, then from (V, G) to (V, F) by applying the inverse matrix C-1• The two
alternatives suggest that A = C -1 B C. This is in fact the case as the following algebraic
construction shows. The inverse matrix C- 1 has entries named dij . The basis vectors
in G are related to the basis vectors in F by

n

gi = LdeJe
e=1

The linear transformation is expanded as

n

= L ckjL(gk)

k=1

n n

= L L bikCkjgi

i=1 k=1

Using the change of basis matrix C

Since L is linear

Using the matrix B that represents L

Using the change of basis matrix C- 1

(continued)

632 Appendix A Linear Algebra

Using the matrix A that represents L

EXAMPLE

A.44

so afj = L:7=1 L:~=l dnbikCkj' Using the definition ofmatrix multiplication, we have
A = C-IBC.

The relationship between A and B is called a similarity relationship. In general
if A and B are square matrices for which there exists an invertible matrix C with
A = C-IBC, then A and B are said to be similar. The importance of similarity of
matrices will become more apparent in Sections A.S.2 and A.S.3 on eigenvalues and
eigenvectors.

Consider the linear transformation L : IR2 ~ IR2 defined by L(XI' X2) = (Xl - 3X2'
Xl + X2)' Two bases for IR2 are F = {(2, 1), (1, -I)}, and G = {(O, 1), (1, O)}.

Compute the matrix A representing L : (IR2, F) ~ (IR2, F). Solve

L(fl) = L(2, 1) = (-1, 3) = all(2, 1) + a21(I, -1) = allfl + a21f2

L(f2) = L(1, -1) = (4, 0) = a12(2, 1) + a22(1, -1) = al2f l + a22f2

The coefficients aij are solutions to

therefore,

and

Compute the matrix B representing L : (IR2, G) ~ (IR2, G). Solve

L(gl) = L(O, 1) = (-3, 1) = bll(O, 1) + b21 (1, 0) = bllgl + b21g2

L(g2) = L(1, 0) = (1, 1) = b12 (O, 1) + bn (1, 0) = b l2g1 + b22g2

The coefficients bij are solutions to

[0 1] [bll bl2] = [-3 1]
1 0 b21 bn 1 1

A.4 Vector Spaces 633

therefore)

B=[bll bl2]=[O 1]-1[-31]=[1 1]
b21 b22 1 0 1 1 -3 1

and

Finally) compute the change of basis matrix C from

f l = (2) 1) = cll(O) 1) + c2l(1) 0) = cllgl + c2lg2

f2 = (1) -1) = cl2(O) 1) + c22(1) 0) = cl2gl + c22g2

the solution being

[1-1]
C = 2 1)

The similarity relationship between A and B is

There is one last topic on vector spaces to consider) finally. Composition of linear
transformations is the foundation for the definition of matrix multiplication. Let R :
IRn -+ IRP and S : IRm -+ IRn be linear transformations) say y = Sex) and z = R(y).

The composition is T = R 0 S(x)R(S(x)) and is a linear function T : IRm -+ IRP.

(The circle symbol denotes composition offunctions.) To see that T is linear) let c E IR.
and Xl) x2 E IRm

:

T(CXl + x2) = R(S(cxl + x2))

= R(cS(Xl) + S(x2))

= cR(S(Xl)) + R(S(X2))

=cT(Xl) + T(X2)

Definition of T

S is linear

R is linear

Definition of T

If A is a matrix representation of Rand B is a matrix representation of S) with
respect to specified bases) of course) then what is the matrix representation of T with
respect to those same bases? The answer is simply put: R(y) is represented by z = Ay

and Sex) is represented byy = Bx. The composition is z = Ay = A(Bx) = (AB)x =
Cx. The matrix representing T is C and is a product of A and B. Observe that A is
p x n) B is n x m) and C is p x m.

634 Appendix A Linear Algebra

A.5 ADVANCED TOPICS

A.5.l DETERMINANTS

A determinant is a scalar quantity associated with a square matrix and is encountered
frequently in applications. You are most likely familiar with the determinant formulas
for 2 x 2 and 3 x 3 matrices. I will take a closer look at these definitions and provide
a geometric interpretation for them.

Determinant ofa 2 x 2 Matrix

The determinant for a 2 x 2 matrix A is defined by

(A.30)

which is a simple enough formula to commit to memory. As it turns out, det(A)
is nonzero if and only if A is an invertible matrix. Formally, the inverse of A is the
matrix

Verify for yourself that AA-1 = A- 1A = I, where I is the identity matrix. Observe
that the scalar before the matrix is the reciprocal of the determinant, 1/ det(A),
so clearly the determinant must not be zero in order that A -1 exist. This algebraic
requirement is perhaps unsatisfying to someone wanting a geometric understanding
of the problem. Let us go ahead and take a closer look.

Let I = [1 O]T and] = [0 I]T be the standard basis vectors for]R2. These vectors
are transformed to Al = [all a2dT and A] = [al2 a22]T, the columns of the matrix
A. Figure A.24 shows the unit-area square whose sides are determined by the basis
vectors and shows various possibilities for the transformed square.

Although Figure A.24(d) shows Al and A] as nonzero vectors, either or both
can be the zero vector; that is, one or both columns of A can be the zero vector. It
is also possible that the transformed basis vectors are nonzero but point in opposite
directions.

Set u = Al and v = A]. The area of the parallelogram formed by u and v is
a = bh, where b is the base (the length of u) and where h is the height (the length
of the projection of v onto a vector perpendicular to u). We will do the calculations
in squared form, that is, a 2 = b2h2. The squared base is just

(a) (b)

A.5 Advanced Topics 635

(c) (d)

A]

Al

Figure A.24 (a) A unit-area square. (b) The parallelogram obtained by transforming the square
when the transformed basis vectors have the same order as the basis vectors. (c)
The parallelogram obtained by transforming the square when the transformed basis
vectors have the opposite order as the basis vectors. (d) The basis vectors mapped to
parallel vectors, in which case A is not invertible.

The squared height is calculated from the aforementioned projection that is cal­
culated using equation (A.8):

u·v
p=v - --u

lul 2

The squared height is

h2 _ I 12 _I u . V 12 _ I 12 2(u . v)2 (u . v)2 _ I 12 (u . v)2- P - v - --u - v - + --- - v - ---
lul2 lul2 lul2 lul2

636 Appendix A Linear Algebra

The squared area is

= lul 21pI 2

= lul 21vl2 - (u . V)2

= (det(A))2

The area of the parallelogram is a = Idet(A) I, the absolute value of the determinant
of the matrix. To distinguish between the two cases corresponding to Figure A.24(b),
(c) we will use a signed area. Part (b) occurs when the order of the basis vectors is
preserved; we will assign a positive area to that parallelogram. Part (c) occurs when
the order is switched; we will assign a negative area to that paralleogram. The signed
area formula (using the same variable name) is a = det(A). This equation captures
all the geometry in parts (a)-(c) of the figure, part (d) representing the case when
the determinant is zero. In this case, the parallelogram is degenerate and may be
considered to bound a region of zero area.

Determinant of a 3 x 3 Matrix

The determinant for a 3 x 3 matrix is defined by

(A.3!)

= all (a22a33 - a23a32) + a12(a23a31 - a2la33) + a13(a2la32 - a22a31)

This equation is more difficult to commit to memory than its 2 x 2 counterpart. One
method that is taught to help remember the formula is the butterfly rule as shown in
Figure A.25.

The matrix is written down and its first two columns are repeated after it. The
three terms along each directed arrow are multiplied together. The diagonals from
upper left to lower right are given a plus sign (use the product as is). The diagonals
from lower left to upper right are given a minus sign (negate the product before using
it). (Important note: The buttefly rule does not apply to larger matrices.)

A.S Advanced Topics 637

Figure A.25 An illustration of the butterfly rule for the determinant of a 3 x 3 matrix.

The inverse of a 3 x 3 matrix A is formally

al3a32 - al2a33
alla33 - al3a31
aI2a31 - alla32

and may be verified by symbolically calculating AA -1 = A-IA = I, where I is the
identity matrix. As in the 2 x 2 case, the scalar before the matrix is the reciprocal of
the determinant, 1/ det(A), so the determinant must be nonzero for the inverse to
exist.

The geometric interpretation of the determinant for a 3 x 3 matrix is analogous
to that of the 2 x 2 matrix. Let z = [10 O]T, J = [0 10]T, and k = [00 I]T be the
standard basis vectors for }R3. These vectors are transformed to Az = [all a21 a3dT,
AJ = [al2 a22 a32]T, and Ak = [al3 a23 a33]T, the columns of the matrix A. Figure
A.26 shows a typical situation when the transformed vectors are linearly independent
and have the same ordering as the basis vectors.

The degenerate cases that have zero volume occur when all three transformed vec­
tors are coplanar or collinear. The signed volume v of a parallelepiped formed by Az,
AJ, and Ak is computed in a coordinate-dependent manner using equation (A.l?):

v = Az . (AJ x Ak)

= det(A)

This is exactly the determinant as defined by equation (A.3!).

638 Appendix A Linear Algebra

k

(a) (b)

A}

Figure A.26 (a) A unit-volume cube. (b) The parallelepiped obtained by transforming the cube
when the transformed basis vectors have the same order as the basis vectors.

Formal Construction ofDeterminant Functions

A general and formal construction of the determinant function is given next. First,
though, we need to define a few concepts. Let V and W be vector spaces. Recall that a
function L : V -+ W is a linear transformation if L(cx +y) = cL(x) + L(y) for all
c E IR and for all x, y E V. Define V n = {(xl' ... , xn) : Xj E V for all j}, the set ofn­
tuples of vectors from V. A function L : V n -+ W is a multilinear transformation if it
is linear with respect to each argument. That is, L(xI' ... , xn) satisfies the conditions:

You have already seen an example of a multilinear function, the dot product
L(x, y) = x . y.

Let S = {I, ... , n}. A permutation on S is any one-to-one, onto function a : S -+
S. For example, if S = {I, 2, 3}, then a (1) = 2, a(2) = 1, and a(3) = 3 defines a per­
mutation. Typically, we indicate the permutation by listing the elements of Sand
a(S) as n-tuples. In the last example, S = (123) and a(S) = (2 13). A transposition
is a permutation that swaps two elements in S. The permutation a in the last example
is a transposition since 1 and 2 were swapped. The permutation a (12 3) = (3 12) is
not a transposition. However, a permutation can always be factored into a composi­
tion of transpositions.

EXAMPLE

A.45

A.5 Advanced Topics 639

Let S = (12 3 4 5) and define a by a (12 3 4 5) = (4 3 5 2 1). Begin swapping pairs of
numbers. The circle symbol denotes composition of functions.

(12345)

(423 15)

(432 15)

(43251)

(43521)

S

Transpose 1,4, TI (S)

Transpose 2, 3, T2(TI(S» = T2 0 TI (S)

Transpose 1, 5, T3(T2 0 TI(S» = T3 0 T2 0 TI(S)

Transpose 2,5, T4(T3 0 T2 0 TI(S» = T4 0 T3 0 T2 0 TI(S) = a(S)

Note that TI(S) = (42315), T2(S) = (13245), T3(S) = (52341), and T4(S) =
(15342).

The factorization of a permutation into transpositions is not unique. However,
the parity of the number of transpositions in the factorizations is. That is, if a per­
mutation can be factored into an even number of transpositions, then any other
factorization contains an even number of transpositions. We call such a permuta­
tion an even permutation. A similar statement can be made for a permutation with
an odd number of transpositions in the factorization. We call such a permutation an
odd permutation.

Let V be a vector space with dim(V) = n. A determinant function is any function
D. : V n ---+ IR such that:

1. D. is a multilinear transformation; and

2. D. is skew-symmetric with respect to all arguments. That is, given a permutation
a on {1, ... , n}, D. (xa(l)' ... , xa(n)) = Ea (xl' ... , x n), where Ea = 1ifa is even,
and Ea = -1 if a is odd.

We will work with V = IRn , so V n is the set ofn-tuples ofvectors in IRn . Ifwe represent
the vectors as n x 1 row vectors, the n-tuple of rows may be represented as an n x n
matrix. In this framework the domain of a determinant function is the set of all n x n
matrices. When the argument is explicitly a matrix A, we will use det(A) to denote a
determinant. If we specify an additional constraint,

3. D.(e1, ... , en) = 1

where the ej are the standard Euclidean basis vectors, then the three conditions
uniquely determine D..

Assuming the three conditions, let us proceed to construct the determinant func­
tion. If {xl' ... , xn } is a set oflinearlydependent vectors, then D.(xI' ... ,xn) = O. For

640 Appendix A Linear Algebra

simplicity, let Xn be dependent on the other vectors in the set. That is, xn = 'L7~11 CiXi

for some coefficients Ci that are not all zero; then

n-l n-l

~(xl' ... , xn) = ~(Xl'· .. , L cixJ = L Ci~(xl' ... , Xn-l' xJ
i=l i=l

where the last equality is a consequence of ~ being a multilinear transformation.
Define (Yl' ... , Yi' ... , Yn) = (xl' ... , xi' ... , xJ. If a is a transposition of i and
n, then a is odd, and by condition 2 in the definition of a determinant function:

~(Xl' ... , Xi' ... , xJ = ~(Yl' ... , Yi' ... , Yn)

= -~(Ycr(l)' ... , Ycr(i) , ... , Ycr(n))

= -~(Yl' ... , Yn' ... , yJ

The only way a number can equal its negative is if that number is zero, ~(Xl' ... ,
Xi' •.• , Xi) = O. Replacing this in the summation expansion for ~ (x l' ... , Xn) pro­
duces ~(Xl' ... , xn) = o.

Let C E IR and i i=- j. Replace the j th argument X j in the determinant function by
CXi + Xj; then

That is, the determinant function does not change value. To see that this is true, use
the linearity in component i:

where the zero term is obtained by the argument of the previous paragraph.
We are now ready to construct the determinant function. Let el' ... , en be the

standard Euclidean basis vectors. Let xi = 'LJ=l ajiej for 1 SiS n. Using linearity
of~ a component at a time:

EXAMPLE

A.46

A.S Advanced Topics 641

n n n

=L a hl l:1(eh' L ajz2e jz' .•. , L ajnlejn)

h=l h=l jn=l

n n n

=L L ah la jz21:1(eh' ejz' .•. , L ajnlej)

h=l jz=l jn=l

n n n

= L L ... L ahla jz2' .. a jnn l:1(eh' ejz' .•. , ejn)

h=l jz=l jn=l

If ju = jv for some u #- v, then l:1(eh' ... , eju' ..• , ejv' ... , ej) = 0 using the
skew symmetry of 1:1. Therefore, in the above summations, the only nonzero terms
occur when all components ofthe multi-index (jl' h, ... ,jn) are distinct. Each such
multi-index is just a permutation of the numbers 1 through n. That is, (h, h, ... ,
jn) = 0'(1, ... , n) for some permuation o'. Consequently,

I:1(Xl' ... , x n) = L aa(l)laa(2)2 ... aa(n)nl:1 (ea(l) , ea (2)' ..• , ea(n))

a

= L Ca a a (1)laa(2)2 •.. aa(n)n

a

where the summation is over all permutations a (there are n! of them) and where we
have used condition 3 in the definition of the determinant function.

Let n = 2. Let A be the block matrix whose first row is vector Xl and whose second
row is vector X2' There are only two permutations on {l, 2}, namely, 0'1 (1, 2) = (1, 2)
and 0'2(1, 2) = (2, 1) with Cal = +1and caz = -1. The determinant of A is

= L Ca a a (l)laa(2)2

a

642 Appendix A Linear Algebra

EXAMPLE

A.47

EXERCISE

A.9

For n = 3, let A be a matrix whose rows are Xl' x2' and X3' There are six permutations
on {I, 2, 3}, so

=L ca a a (l)laa(2)2a a(3)3
a

Compute the formal expression for the determinant when n = 4.

We now take a closer look at the determinant function in terms of its application
to matrices. Let A = [aij] be an n x n matrix. Let mij be the determinant of the
(n - 1) x (n - 1) matrix obtained from A by deleting row i and column j. The value
mij is called the minor ofaij' The cofactor ofaij is defined by cij = (_I)i+ j mij'

EXAMPLE Let
A.48

[-2
1

1]A= 0 1
-3 0

The minors are

mll = del [~ ~] =6, m12 = del [_~ ~]=3, m13 = del [_~ ~] =3

m2J = del [~ ~] =6, [-2 ~] = -9, [-2 ~] = 3m22 = det -3 m23 = det -3

m31 = del [: :] =0, [-2 :] = -2, [-2 :] =-2m32 = det 0 m33 = det 0

The matrix of minors is

M = [mij] = [~
3

-n-9
-2

To obtain the matrix ofcofactors, the minors are multiplied by either lor -1 depend­
ing on whether i + j is even or odd. The matrix of cofactors is

[

+(6)
C = [cij] = -(6)

+(0)

-(3)
+(-9)
-(-2)

~~~~ ] = [-~ =~ -~]
+(-2) 0 2-2



EXAMPLE

A.49

A.5 Advanced Topics 643

The cofactor expansion ofA by row k is 2:J=l akjckj' The cofactor expansion ofA

by column k is 2:7=1 aikcik' For an n x n matrix, there are 2n such summations to
compute; all summations have the same value det(A).

Consider the matrix

from the last example. Expanding by row 1:

det A =allcll +a12c12 +a13c13 = (-2)(6) + (1)(-3) + (1)(3) = -12

Expanding by column 2:

det A = a12c12 + a22c22 + a32c32 = (1)(-3) + (1)(-9) + (0)(2) = -12

EXAMPLE

A.sO
Let us compute the determinant of the matrix

[

-5 0 1
2 -1 3

A = 4 4-5

1 -1 6 -n
Since any cofactor expansion will produce the determinant, you should choose to
expand by that row or column that contains the maximum number of zeros. In any
term aijcij where aij = 0, you do not need to compute Cij' Expand by row 1:

detA=+(-5)det [-~ -~ -~] + (1)det [~ -~ -~]
-1 6 2 1 -1 2

[
2-1 3]

- (6) det 4 4 - 5
1 -1 6

= +(-5)(95) + (1)(-40) - (6)(43) = -773

We will now compute the number ofarithmetic operations it takes to evaluate the
determinant of an n x n matrix by a row or column expansion. Let ()n be the number
of such operations.

• Case n = 1. For A = [a], there are no operations required. Therefore, ()1 = O.



644 Appendix A Linear Algebra

• Case n = 2. For A = [aij]' expanding by row 1 produces the quantity det A =
all det[an] - a12 det[a2l]' This requires 2 multiplications and 1 addition (sub­
traction). Therefore, 82 = 281 + 2 + 1= 3.

• Case n = 3. Expanding A by row 1 produces

EXERCISE

A.IO

Each 2 x 2 matrix requires 82 operations. Additionally) there are 3 multiplications
and 2 additions. Therefore, 83 = 382 + 3 + 2 = 14.

Inductively, the determinant of A reduces to a combination of n determinants of
(n - 1) x (n - 1) matrices. Each ofthese requires 8n - l operations. Additionally, there
are n multiplications and n - 1additions. Therefore, 8n = n8n - l + 2n - 1operations
are required. This is a first-order linear difference equation with initial data 81 = 0
whose solution is (for n ~ 2):

n-l
~ n'8n = L.J --'-(2i + 1) > n!
i=l (i + I)!

This is a lot of operations, even for values of n on the order of 10.

An earlier exercise had you compute the formal expression for the determinant when
n = 4. Verify that 84 = 63. Derive an alternate formula for n = 4 that uses 47 opera­
tions.

The determinant can be evaluated in a more reasonable amount of time by row­
reducing the matrix, as we will see later. Row reductions require on the order of n 3

operations. For large n, this is much smaller than n!. A computer program written to
evaluate determinants should avoid cofactor expansion for large n. For small n the
overhead costs of Gaussian elimination may outweigh the costs of using a cofactor
expansion. The best advice is to profile the function to determine when to switch be­
tween the two methods. On current hardware, cofactor expansion for n ::::: 4 appears
to be a reasonable choice.

Some properties of the determinant for a matrix A follow immediately from
the definition and constructions given earlier. If any row of A has all zero entries,
then det(A) = O. This is a consequence of the linearity in any component of the
determinant function. A linear transformation has the property L (0) = O. The same
is true for a multilinear transformation that has a zero in any component. The proof
is exactly the same used for a linear transformation.

The determinants of elementary row operations are easy to construct. A swap
of two rows of A is equivalent to transposing two arguments in the determinant
function. Condition 2 ofthe definition for a determinant function is that the function
is skew-symmetric with respect to its arguments; a transposition of two arguments



A.S Advanced Topics 645

changes the sign of the determinant. If E is an elementary row matrix for swapping
two rows, then det(E) = -1. Multiplication of a row of A by a nonzero scalar c
is equivalent to replacing an argument of the determinant function with a scalar
times the original argument. By multilinearity, that scalar can be factored outside
the function: ~(... , CXj' .•• ) = c~( . .. , Xj' .•• ). If E is an elementary row matrix
that represents multiplying a row by a nonzero scalar, then det(E) = c. Finally, if
E is the elementary row matrix to add to row j a nonzero scalar multiple of row i,
then det(E) = 1. We proved this earlier when we showed that replacing argument
x j by CXi + X j in the determinant function ~ did not change the function's value.
An application of two elementary row operations is equivalent to a composition of
two linear functions of the argument of the determinant function. The last section
on transformations showed us that composition of linear functions is represented by
multiplication of matrices of the functions involved in the composition. Therefore, if
E 1 and E2 are two elementary row matrices, then

That is, the determinant of a product is the product of the determinants.
Forward plus backward elimination of the n x n matrix A reduces that matrix to

an upper echelon matrix U that either is the identity I or is a matrix with at least one
row of zeros. The determinant of the identity is 1, just a restatement of condition 3 in
the definition for the determinant function. If U has a row of zeros, then det(U) = 0,
as proved earlier. Therefore, det(U) is 0 or 1. If E 1 through Em are the elementary
row matrices used in the elimination, then

The determinant of a product was shown to be the product of the determinants, so

det(Em ) ... det(E1) det(A) = det(U)

Since elementary row matrices all have nonzero determinants,

det(A) = det(U)
det(Em ) ... det(E1)

(A.32)

EXERCISE

A.II

EXERC ISE

A.I2

The full elimination can be done with the order of n3 operations, clearly asymp­
totically better than cofactor expansion that uses the order of n! operations. Actually,
we need only apply forward elimination. The backward elimination is not necessary.
For an invertible matrix A, after forward elimination, the matrix U is upper triangu­
lar. The determinant of such a matrix is just the product of its diagonal entries.

Prove that the determinant ofan upper triangular matrix is the product of its diagonal
entries.

For an invertible matrix A, prove that det(A -1) = 1/ det(A).



646 Appendix A Linear Algebra

A.S.2 EIGENVALUES AND EIGENVECTORS

Eigenvalues and eigenvectors represent a topic vital to the study of difference and
differential equations and to the analysis of the stability of mathematical models that
describe physical phenomena. It is also a topic that many/ shy away from, but please
do not since you need it later!

Although we have been working with vector spaces ~n, the initial discussion here
will involve the vector space of n-tuples of complex numbers, en, whose scalar field
is itself the set of complex numbers. Let A be an n x n matrix of complex-valued
entries. The scalar AE e is said to be an eigenvalue of A if there is a nonzero vector
x such that Ax = AX. In this case, x is said to be an eigenvector corresponding to A.
Geometrically, an eigenvector is a vector that when transformed does not change
direction. If A =f=. I, the length changes, but if A= I, the eigenvector changes neither
direction nor length.

EXAMPLE

A.51
The number -1 is an eigenvalue for

with a corresponding eigenvector x = (-4, 2, -1) (written as a 3-tuple). To verify
this,

Let Abe an eigenvalue of the n x n matrix A. The eigenspace ofAis the set

SA = {x E en :Ax = AX}

This set is a subspace of en. The proof is simple. Let e E e and let x, y E SA. By
definition of SA' Ax = AX and Ay = Ay. Applying A to the linear combination,

A (ex + y) = eAx + Ay = eAx + Ay = A(ex + y)

This shows that ex + y E SA' so SA is a subspace. An alternate proof is to note that
SA = kernel(A - AI). We had proved earlier that the kernel of a matrix is a subspace.

The method of construction of eigenvalues A and eigenvectors x is as follows.
Observe that

Ax = AX {:} Ax = AIx {:} Ax - AIx = 0 {:} (A - AI)x = 0

We want nonzero solutions x to this homogeneous system of equations. The only
way this can happen is if (A - AI) is not invertible. For if it were invertible, then



EXAMPLE

A.52

A.S Advanced Topics 647

x = (A - AI) -10 = 0 is the only possible solution. An equivalent condition for (A ­

AI) not to be invertible is that peA) = det(A - AI) = O. This determinant is a poly­
nomial in A of degree n since A is n x n. The eigenvalues are therefore roots of the
polynomial equation peA) = O. The equation det(A - AI) = 0 is called the charac­
teristic equation for the matrix A.

The Fundamental Theorem of Algebra states that every polynomial of degree n
with complex coefficients can be factored as

k

peA) = n(A - Ai)mi

i=l

where Ai) 1::: i ::: k) are the distinct roots of the equation peA) = 0 and where
L~=l mi = n. For each root Ai) solve the system (A - AJ)x = 0 to find the cor­
responding eigenvectors.

Find the eigenvalues and corresponding eigenspaces for

Solve det(A - AI) = 0:

[
-2-Ao= det(A - AI) = det 1 o ]=(-2-A)(4-A)

4-A

EXAMPLE

A.53

The eigenvalues are the roots A = -2, 4. For each eigenvalue solve the system (A ­

AI)x = O. Start with A= - 2 and solve (A + 2I)x = 0:

A+2I=[~ ~]~[~ ~]

If x = (xl' x2), then Xl is basic and X2 is free with Xl + 6x2 = O. Therefore, x =
x2(-6, 1) and S-2 = Span[(-6,1)]. Now select A= 4 and solve (A - 4I)x = 0:

Ifx = (xl' x2), then Xl is basic and X2 is free with Xl = O. Therefore) x = x2(0) 1) and
S4 = Span[(O, 1)].

Find the eigenvalues and corresponding eigenspaces for



648 Appendix A Linear Algebra

(Example A.S3
continued)

Solve det(A - AI) = 0:

[

1- A

o= det (A - AI) = ~

-1
2-A

1

4 ]-1
-I-A

=+(1_A)det[2~A _;2A]-(-l)det[~ _~]+(4)det[~ 2~A]

= (1- A)[(2 - A)(-I- A) + 1] + [3(-1- A) + 2] + 4[3 - 2(2 - A)]

= _A 3 + 2AZ + SA - 6

= -(A + 2)(A - 1)(A - 3)

The eigenvalues are the roots A= -2, 1, 3. For each eigenvalue, solve the system
(A - AI)X = O. For A= -2, solve (A + 2I)x = 0:

A + 2/ = [~ - ~ - ~] '" [~ ~ - ~ ]
2 1 1 0 0 0

where the row operations are -R3+ R l ---+ Rl, -3Rl + Rz ---+ Rz, -2Rl + R3 ---+ R3,
to Rz ---+ Rz' -SRz + R3 ---+ R3, and 2Rz + R l ---+ Rl· Ifx = (xl' Xz, x3)' then the only
free variable is X3' so 5-z = Span [(-1, 1, 1)].

For A= 1, solve (A - I)x = 0:

A - / = [2~ -~ -~] '" [~ ~ -~]
1 -2 0 0 0

where the row operations are -R3+ Rz ---+ Rz' R l ~ Rz, -2Rl + R3 ---+ R3, Rz +
R3 ---+ R3, and - Rz ---+ Rz. If x = (xl' xz, x3), then the only free variable is X3' so
51 = Span[(-I, 4,1)].

For A= 3 solve (A - 3I)x = 0:

A-3/=[-2~ =~ -~]",[~ ~ =~]
1 -4 0 0 0

where the row operations are R l + Rz ---+ Rz' R l + R3 ---+ R3, R l ~ Rz' 2Rl + Rz ---+
Rz' -~Rz ---+ Rz, and 2Rz + R l ---+ Rl. Ifx = (xl' xz, x3)' then the only free variable
is X3' so 53 = Span [(1, 2,1)].



EXAMPLE

A.54

A.5 Advanced Topics 649

This next example shows that the dimension of the eigenspace can be larger than
one. Let

Solve det(A - AI) = 0:

[

I-A

det(A - AI) = det ~

-1
1- A

o

so A = 1 is the only eigenvalue. Solve (A - I)x = 0:

A-J=[~ - ~ ~] rv [~ ~ -~]
o 0 0 0 0

EXAMPLE

A.55

If x = (xl' X2' x3), then Xl and X3 are free variables with X2 - 2x3 = o. Thus, x =
xl(1, 0, 0) + x3(0, 2, 1) and 51 = Span [(1, 0, 0), (0,2, 1)].

Suppose that A is an n x n matrix with real-valued entries. IfA is an eigenvalue of
A that has a nonzero imaginary part and has corresponding eigenvector x, then X, the
complex conjugate of A, is also an eigenvalue of A and has corresponding eigenvector
X, the component-wise complex conjugate ofvector x. Define the complex conjugate
of a matrix A = [aij] by A= [aij]; then the following sequence of steps is valid:

Ax = AX, Ax = AX, Ax = Xx, Ax = Xx

where we have used A= A since A has only real-valued entries. The last statement
indicates that Xis an eigenvalue of A with a corresponding eigenvector x.

Let

- sin 8]
cos 8

where 8 is not an integer multiple of Jr. This matrix represents rotation of vectors
in the plane by 8 radians (counterclockwise rotation when 8 > 0). An intuitive ar­
gument is that there should be no real-valued eigenvalues since any vector must
have its direction changed by the rotation. The algebraic construction is to solve
det(A - AI) = 0:

det(A - AI) = [ cos.8 -8 A
SIll

- sin 8 ] 2 . 2

8
1 = (cos 8 - A) + SIll 8 = 0

cos - A



650 Appendix A Linear Algebra

so the eigenvalues are A= cos e± i sin e. For A= cos e+ i sin e, solve (A - Al)x =
0:

(Example A.SS
continued)

[
-i

A - AI = sin e 1 -1] . [1-i rv sm e 0

If x = (Xl' x2), then X2 is the free parameter with Xl - iX2 = O. Therefore, x =
x2(i, 1) and SA = Span[(i, 1)] C C2. The other eigenvalue is the complex conju­
gate X= cos e - i sin e. The eigenvectors are i: = x2(-i, 1) and the eigenspace is
Sx = Span[(-i, 1)].

Let A be an n x n matrix with n linearly independent eigenvectors xl' ... , Xn'

If AI' , An are the corresponding eigenvalues, not necessarily distinct, and if S =
[xl I Ixn], then p- l AP = Diag(AI' ... , An) =: D. The proof is as follows:

AP = A [ xl I ... I Xn ]

= [ AXI I I AXn ]

= [ Xl I .. , I Xn ] Diag(AI' ... , An)

=PD

Definition of S

Distributive property
ofblock multiplication

Since Ai are eigenvalues

Since the columns of P are the linearly independent eigenvectors of A, P must be
invertible; thus, AP = P D implies P-IAP = D. For example, we had

[-2 0]
A = 1 4 '

Therefore,

S-2 = Span[(-6, 1)], S4 = Span[(O, 1)]

p = [-~ ~] and riA? = Diag(-2, 4)

Recall from the section on linear transformations that the condition p- l AP = D
means that A and D are similar matrices. Not all n x n matrices have n linearly
independent eigenvectors. However, it might still be possible to find a similarity
transformation P -1A P = D where D is diagonal. If so, A is said to be diagonalizable.

A specific instance where A is diagonalizable is when it has n distinct eigenvalues
Al through An' Let xl through Xn be corresponding eigenvectors. This set of eigenvec­
tors is linearly independent. The proof of this fact is by mathematical induction. The
first case is n = 2. Let clxl + c2x2 = O. Multiply by A to obtain



A.5 Advanced Topics 651

Replace C2X2 = -ClXl in this equation and group terms to obtain

where Xl =j=. 0 since it is an eigenvector and Al =j=. A2 by assumption, so Cl = o. Replac­
ing in the original equation yields C2X2 = o. Again, x2 =j=. 0 since it is an eigenvector,
so it must be that Cl = o. Therefore, Xl and X2 are linearly independent.

The inductive hypothesis is that Xl through Xk are linearly independent. We need
to use this to show that Xl through xk+l are linearly independent. Let clxl + ... +
ck+lxk+l = o. Multiply by A to obtain

0= A(clxl + ... + ck+lXk+l)

Replace ck+lxk+l = -ClXl - ... - ckxk in this equation and group terms to obtain

By the inductive hypothesis, the k vectors in the linear combination are linearly
independent, so all the coefficients must be zero: ci (Ai - Ak+l) = o. The eigenvalues
are distinct, so Ai =j=. Ak+l for 1 :::; i :::; k, thus forcing Ci = 0 for 1 ::s i ::s k. Replacing
in the original equation yields ck+lxk+l = o. Amd, again, xk+l =j=. 0 since it is an
eigenvector, so it must be that ck+l = o. Therefore, the vectors Xl through xk+l are
linearly independent. The result is true for all n ::: 2 by the principle of mathematical
induction.

Generally, two similar matrices A and B have the same characteristic polynomial,
so their eigenvalues are identical. Because the matrices are similar, B = P -1A P for
some invertible matrix P. The characteristic polynomial of B, det(B - AI) = 0, can
be manipulated as

0= det(B - AI)

=det(p-lAP - AP-l/ P)

=det(p-l(A - AI)P)

=det(p- l) det(A - AI) det(P)

=det(A - AI)

since det(p- l) det(P) = det(p- lP) = det(I) = 1. Although the eigenvalues are the
same for A and B, the corresponding eigenvectors are not necessarily the same, but
are related. Define y = P -Ix where Ax = AX. Multiplying the eigensystem by p- l

and replacing X = Py leads to

By = P-lAPy = AP-lPy = Ay

The vector y = P -Ix is an eigenvector for B corresponding to A whenever X is an
eigenvector for A with respect to the same eigenvalue.



652 Appendix A Linear Algebra

A.5.3 EIGENDECOMPOS ITION FOR 5YMMETR IC MATR ICES

A special class of matrices that arises most frequently in applications, especially phys­
ics applications, is the class of n x n symmetric matrices with real-valued entries. A
symmetric matrix A satisfies the condition that AT = A. Within the class of symmet­
ric matrices are subclasses of importance.

• IfxTAx > afor all x i=- 0, then A is said to be positive definite.

• IfxTAx ::: afor all x i=- 0, then A is said to be positive semidefinite or nonnegative
definite.

• IfxTAx < afor all x i=- 0, then A is said to be negative definite.

• IfxTAx :s afor all x i=- 0, then A is said to be negative semidefinite or nonpositive
definite.

The eigenvalues of a real-valued symmetric matrix must themselves be real­
valued, and the corresponding eigenvectors are naturally real-valued. If A were to
have a possibly complex-valued eigenvector x, then xTAx must be real-valued. To see
this:

=L XiaijX j + L XiaijX j + L XiaijX j

i=j i<j i>j

=L aiilx il
2 + L XiaijXj + L XjajiXi

i<j j>i

=L aii IXi 1
2 + L XiaijX j + L XiaijX j

i<j i<j

=L aii IXi 1

2 + L (XiaijX j + XiaijX j)

i<j

=L aiilx il
2 + L 2 Re(xiaijXj)

i<j

Interchange names on i and j

Since A is symmetric

Re(z) denotes the real part of z

The right-hand side of the last equality is a real number, so xTAx is real-valued. Also,
xTx = Ix1 2, another real number. Since x is an eigenvector, Ax = AX, where A is the
corresponding eigenvalue. Thus, xTAx = AxTx and



A.S Advanced Topics 653

The right-hand side is the ratio of real numbers, so must be real-valued itself. That is,
the eigenvalue A must be reaL Moreover, since the eigenvalues are real, the nonzero
solutions to (A - AI)X = 0 must be real-valued.

Another interesting result for a real-valued symmetric matrix: If Al and A2 are
distinct eigenvalues for A, then corresponding eigenvectors Xl and X2 are orthogonaL
The proof is straightforward:

TAT=xl x2

=XJAX2

X1 is an eigenvector for Al

A is symmetric

Since X2 is an eigenvector for A2

But then (AI - A2)X'[X2 = 0 and Al =1= A2 imply that X'[X2 = O. That is, Xl and X2 are
orthogonaL

We are now in a position to characterize the eigenvectors for a real-valued sym­
metric matrix A. The construction makes use of a more general result that applies to
square matrices. If A is a square matrix, there always exists an orthogonal matrix Q
such that QTA Q = U, where U is an upper triangular matrix. The diagonal entries
of U are necessarily the eigenvalues of A. The proof is as follows. Let Al be an eigen­
value for A. There is at least one linearly independent eigenvector Yl corresponding
to it. Let xl = YIIIYll, such that Xl is a unit-length eigenvector. Define the matrix

where {Z2' ... ,zn} is an orthonormal basis for the orthogonal complement of
Span[xd. The matrix Q l is orthogonal by construction and

*
*

*



654 Appendix A Linear Algebra

The process is recursively applied to the lower right-hand corner submatrix to obtain
an orthogonal matrix P2 such that

*
*
*

*
*
*

o o * *

At the last step of the reduction, we have Q = f17= 1 Q i and QTA Q = U, where U is
upper triangular and its diagonal entries are the eigenvalues of A.

The primary consequence of this result is that if A is symmetric and QTA Q =
U, where Q is orthogonal and U is upper triangular, then in fact U must be a
diagonal matrix. This follows from UT = (QTAQ)T = QTAT(QT)T = QTAQ = U,
which forces U to be symmetric. The only upper triangular symmetric matrices are
the diagonal matrices. The diagonal entries of U are the eigenvalues of A and the
columns of Q are the corresponding eigenvectors. This means that an n x n real­
valued symmetric matrix always has n linearly independent eigenvectors.

Finally, an important classification for the "definite" matrices: The symmetric
matrix A is (positive, nonnegative, negative, nonpositive) definite if and only if its
eigenvalues are (positive, nonnegative, negative, nonpositive). Let us prove this for
the case of positive-definite matrices. The other cases are similar.

• (:::}): Let A be positive-definite. Let A be an eigenvalue for A with corresponding
eigenvector x; then Ax = AX, xTAx = xT(AX) = AXTX, and so A= (xTAx)!(xTx).
But A is positive-definite, so xTAx > O. Moreover, xTx is the squared length of
x, so it is positive. Thus, A= (xTAx)! (xTx) > O. The argument works for every
eigenvalue of A.

• (¢:::): Let A be an eigenvalue for A and assume that A > O. Then as in the first
part,O < A = (xTAx)!(xTx), where x is a corresponding eigenvector. Therefore,
xTAx > 0 for every eigenvector of A. Since A is symmetric, it must have a set of
linearly independent eigenvectors xl' ... , xn given by the columns of Q in the
decomposition. Let x = a1x1 + ... + anXn i= 0; then

xTAx= (taiXi)T A (tajXj)
1=1 J=l

= (t aixJ) (t ai AX;)
1=1 J=l



A.S Advanced Topics 655

= (t aixi) (t AiaiXi)
1=1 J=1

=L AjaiajX;Xj
i,j

=L Aia; Xi are orthonormal

> 0 since Ai > 0 and x i= 0

Similar arguments apply to negative, nonpositive, or nonnegative definite matrices.
The eigenvalues of a symmetric matrix can be calculated directly by solving the

characteristic equation det(A - AI) = 0; however, for large n, root finding in this
manner is typically ill-conditioned. A better approach reduces A to a tridiagonal ma­
trix T via a finite sequence of similarity transformations by orthogonal matrices (i.e.,
Householder reduction) followed by an iterative reduction to a diagonal matrix using
the Q R algorithm. In the second phase, the reductions involve more similarity trans­
formations by orthogonal matrices. In the end, A = RDR- 1, where D is a diagonal
matrix whose diagonal entries are the eigenvalues of A, and R is an orthogonal ma­
trix whose columns are the corresponding linearly independent eigenvectors, ordered
according to the eigenvalue ordering on the diagonal of D.

A.5.4 S + N DECOMPOSITION

Given a square matrix A, we are going to show that it may be decomposed into a sum
A = S + N, where S is diagonalizable (the S comes from semisimple, a term that is
synonymous with diagonalizable) and N is nilpotent, a matrix for which NP = 0 for
some p > 0, but N i i= 0 for 0 < i < p, and SN = N S. The decomposition allows
us to efficiently compute powers Ak that arise in solving linear difference equations
and to compute the exponential eA (a formal power series eA = Lk=O A k/ k!) that
arise in solving linear differential equations. Both types of equations occur in physics
applications.

Let V be an n-dimensional vector space. Let VI' ... , Vr be subspaces of V. V

is said to be the direct sum of the Vi if every x E V can be written uniquely as
x = L;=1 Xi' where Xi E Vi' The notation for indicating that V is the direct sum of
the subspaces is

V = VI EB ••• EB Vr = EB Vi

i=1



656 Appendix A Linear Algebra

We have already seen this concept in the section introducing orthogonal subspaces.
If U is an m-dimensional subspace of}Rn and U..1 is its (n - m)-dimensional or­
thogonal complement, we proved that }Rn = U EB U..1 by constructing a basis of
vectors, the first m in U and the last n - m in U..1. A special case comes from
the Fundamental Theorem of Linear Algebra. If A is an n x m matrix, then }Rm =
kernel(A) EB range(AT) and }Rm = kernel(AT) EB range(A). Let's look at one last ex­
ample. Let {fI' ... , fn} be a basis for }Rn; then}Rn = EB7=I Span[f;] since every vector
in}Rn can be written uniquely as a linear combination of basis vectors.

Linear transformations can be decomposed in a manner similar to the vector
space. Let L : V -+ V be a linear transformation. Let L i : Vi -+ Vi for 1~ i ~ r be
linear transformations. Define L (Vi) = {L (x) :x E Vi}. L is said to be the direct sum
of the L i if

1. V = EB;=I Vi (V is the direct sum of the VJ;

2. L(VJ S; Vi for all i (Vi is invariant under L); and

3. L(x) = Li(x) for x E Vi (L restricted to the set Vi is just the transformation LJ.

The notation for indicating L is a direct sum of the transformations is

L = L I EB ... EB Lr = EB Li
i=I

A direct sum of transformations is applied as follows,

If Li is represented by the matrix Ai with respect to the basis fJi for Vi' then the
union of the bases fJ = U;=I fJi is a basis for V and the diagonal block matrix A =
Diag(A I, ... , A r ) represents L with respect to fJ.

EXAMPLE

A.56
Let V = }R2 and L(xI' x2) = (-2xI' Xl + 4X2)' The matrix that represents L with
respect to basis BI = {(I, 0), (0, I)} is

Another basis for V is B2 = {vI' v2}' where VI = (-6, 1) and V2 = (0, 1). Note that
VI is an eigenvector of M corresponding to the eigenvalue Al = -2 and V2 is an
eigenvector of A corresponding to the eigenvalue A2 = 4. Let Vi = Span[vi ] for each
i, so}R2 = Span[vd EB Span [v2]' a direct sum of the eigenspaces of M.



A.5 Advanced Topics 657

Define L 1 : VI -+ VI by L 1(av1) = - 2avl' Since VI is one-dimensional, we can think
of LIas L 1(a) = - 2a. Its matrix of representation is Al = [-2]. Similarly, define
L z : Vz -+ Vz by L z({3vz) = 4{3vz. As a one-dimensional transformation, L z({3) = 4{3
and the matrix representation is Az = [4]. Observe that

L(a(-6, 1)) = aLe-6, 1) = a(12, -2) = -2a(-6, 1) = L 1(a( -6, 1))

L({3(O, 1)) = (3L(O, 1) = (3(O, 4) = 4{3(O, 1) = L z({3(O, 1))

Consequently, L is the direct sum L = L 1 EB Lz. The matrix representing L with
respect to the basis Bz is

A = Diag(A 1, A 2) = [-~ ~]

The intent of the example is to show that the behavior of L is determined by its
behavior on certain special subspaces. In this particular case, the subspaces are one­
dimensional eigenspaces and L acts like the classic linear function f (x) = ax on each
eigenspace. In some cases it is possible to have eigenspaces of dimension larger than
1, but the vector space V is a direct sum of eigenspaces. The representation of L as a
direct sum of transformations on the eigenspaces is constructed in a manner similar
to the example. In other cases, though, V is not a direct sum of eigenspaces, but it is
a direct sum ofgeneralized eigenspaces.

Since a change of basis is a similarity transformation between two matrix repre­
sentations of a linear transformation L : V -+ V, the characteristic polynomials of
the matrix representations are the same (we proved this earlier), call it

peA) =n(A - Ak)nk

k=1

where dim(V) = L~=1 nk and where the Ak are the distinct roots of the polynomiaL
This allows us to refer to eigenvalues Ak of L rather than having to explicitly associate
the eigenvalues with a specific matrix A that represents L. Similarly, we will refer
to the eigenspace of Ak as the set kernel(L - AkI) without reference to a specific
matrix A since L - AkI is itself a linear transformation with a kernel and a range.
The generalized eigenspace ofL corresponding to Ak is the set



658 Appendix A Linear Algebra

The sets Ek are invariant subspaces of L; that is, L(Ek) ~ Ek. To see this, select
y E L(Ek); then y = L(x) for some x E Ek. Also,

(L - AkI)nk(y) = (L - AkI)nk(L(x))

=((L - Akltk 0 L)(x)

= (L 0 (L - AkI)nk)(x)

= L(L - AkI)nk)(x))

= L(O)

=0

Definition of composition

L commutes with itself

Definition of composition

Since x E Ek

L is a linear transformation

Thus, y E Ek and so L(Ek) ~ Ek.
The main result is now stated, without proof. Let L : V ---+ V be a linear trans­

formation. The vector space is a direct sum of the generalized eigenspaces, V =
EB~=l Ek, where Ek is the generalized eigenspace of L with respect to eigenvalue Ak'
The proof involves showing that (1) Ek has a basis of nk vectors and (2) eigenvectors
corresponding to distinct eigenvalues are linearly independent. If L k is the restriction
of L to Ek> a consequence ofthe direct sum decomposition and the result L(Ek) ~ Ek
(proved in the last paragraph) is that L can be decomposed as L = EB~=l L k.

The most important consequence of the direct sum decomposition is that there
are transformations Sand N such that L = S + N (a sum of transformations), any
matrix representation of S is a diagonalizable matrix, any matrix representation ofN
is a nilpotent matrix, and the order of composition of Sand N is irrelevant: SN =
N S. To prove this, let us look at the special case when there is a single eigenvalue AI'
The characteristic polynomial is peA) = (A - A1)n. The generalized eigenspace is E =
kernel(L - A1I)n. Define S = All and N = L - All. Clearly, SoN = NoS since
the identity transformation commutes with any transformation. E = kernel(Nn)

implies N n = 0 since the only transformation that maps everything to 0 is the zero
transformation.

Let L k be the restriction of L to Ek. Each L k has characteristic polynomial
(A - Ak)'k (just the special case mentioned in the previous paragraph) so L k =
Sk + Nk> where Sk = Akl and Nk = L k - Akl are defined on Ek with SkNk = NkSk.

Define S = EB~=l Sk and N = EB~=l Nk. First,



EXAMPLE

A.57

A.S Advanced Topics 659

r r

= EB Sk + EB Nk

k=l k=l

=S+N

so L = S + N as claimed. Second,

=NS

so SN = N S as claimed.

Let L : JR.3 ---+ JR.3 be defined by L(xI, Xl' X3) = (Xl - Xl + 2X3' Xl' x3)' The matrix
representing L with respect to the Euclidean basis is

[1-1 2]
A = 0 1 0

o 0 1

The characteristic polynomial is peA) = -(A - 1)3, so

S = AI = I, N=A-I=[~ -~ ~]

EXAMPLE

A.58

Note that N l = 0, so N is nilpotent. Clearly, S is diagonalizable since it is already
diagonal.

Let L : JR.3 ---+ JR.3 be defined by L(xI' Xl' X3) = (-Xl + Xl - 2X3' -Xl + 4X3' x3)' The
matrix representing L with respect to the Euclidean basis is



660 Appendix A Linear Algebra

(Example A.5S
continued)

The characteristic polynomial is peA) = -(A + 1)2(A - 1). The generalized eigen­
spaces are E 1 = ker(A + /)2 and E2 = ker(A - /). To construct these, row-reduce:

so that E 1 = Span[(1, 0, 0), (0, 1, 0)]. Also,

A - I = [-~ -~ -n ~ [~ ! -n
so that E2 = Span[(O, 2, 1)].

Restrict L to E 1:

L(a(1, 0, 0) + f3(0, 1, 0)) = aL(1, 0, 0) + f3L(O, 1, 0)

=a(-I, 0, 0) + f3(1, -1, 0)

= (f3 - a)(1, 0, 0) + (-f3)(0, 1,0)

Therefore, L 1(a, f3) = (f3 - a, -f3). Similarly, restrict L to E2:

L(y (0, 2, 1)) = YL(O, 2, 1)

= yeO, 2, 1)

so L 2(y) = y.

The matrix representing L 1 with respect to the basis {(1, 0, 0), (0, 1, O)} is

and the matrix representing L 2 with respect to the basis {(O, 2, I)} is

We can write Al = 51 + N 1, where

52 = [1],



A.5 Advanced Topics 661

Therefore, L = L 1 EB L 2 is represented by

=S+N

The original matrix A and this matrix B are similar, B = P-1AP. The columns of
the matrix P consist of the generalized eigenvectors:

[
10 0]

P= 0 1 2 ,
001

The decomposition is not necessarily unique. For example, we could choose E 1 =
Span[(1, 1,0), (1, -1,0)]; then

L(a(1, 1,0) + 13(1, -1,0)) =a(O, -1,0) + 13(-2,1,0)

(
a+ f3 ) a-3f3= - -2- (1,1,0) + -2-(1, -1,0)

and

L,(a, tJ) = ( _a: tJ, a ~ 3tJ )

The matrix representing L 1 with respect to this new basis is

Finally,

B = Diag(A" A,) =S+ N = [_-_~l ~_I-+-~_J + [-::~=----=---'o~=--:-+-~_]

A.5.5 ApPLICATIONS

Three applications of interest regarding eigendecomposition are computing the pow­
ers of a matrix, computing the exponential of a matrix, and constructing the local
extrema of multivariate functions. We discuss each application in this section.



662 Appendix A Linear Algebra

Powers ofa Matrix

The decomposition of a matrix A = S + N where S is diagonalizable, N is nilpotent
with N P = 0 and N i =j:. 0 for i < p, and SN = N S allows us to efficiently evaluate
powers A} for j ~ 2. Because SN = N S, the binomial expansion formula applies to
(S + N)}. That is,

(A.33)

The last equality follows since N k = 0 for k ~ p. Since S is diagonalizable, S =
p DP-1 for some diagonal matrix D. The powers on S are efficiently computed as
S}-k = (P DP-1)}-k = P D}-k p-1.

Let us do an operation count to see why the right-hand side of equation (A.33) is
a more efficient way of computing A) than the obvious iterative product. We will do
this in general for an n x n matrix. Let 8} denote the number of operations needed
to compute A} in the usual manner. The product A2 requires n multiplications and
n - 1additions per entry. The matrix has n2 entries, so the total operations are given
by 8 2 = n2(2n - 1). For j > 2, A} = A . A}-I, so each additional multiplication
requires n2(2n - 1) operations. The total count is 8} = (j - l)n 2(2n - 1) for j ~ 2.

Define <I>} to be the number ofoperations needed to compute A} using the S + N
decomposition. The simplest case is when A is already diagonalizable, A = PDP -1,

so that N = o. The powers are A} = P D} P-1. The product DP-1requires n2 mul­
tiplications. Once computed and cached, the next product is D 2p-1= D(DP-1),
which takes an additional n2 multiplications. Once D} p-1 is computed in this man­
ner, the last multiplication on the left by P requires n2(2n - 1) operations. The total
count is <I>} = jn2 + n2(2n - 1). It is the case that <I>} ~ 8} when j ~ 1 + (2n ­
l)j(2n - 2).

When N =j:. 0, the operation count increases as the power of nilpotency, p, be­
comes large. Consider the case when N =j:. 0, but N 2 = 0; then

PD}-l requires (j - l)n 2 multiplications; DP-1requires n2 multiplications; p-1N
requires n2(2n - 1) operations; the product j (P- 1N) requires an additional n2

multiplications; the sum (DP-1) + (j p-1N) requires n2 additions; and finally
(P D}-l)(Dp-1 + j p-1N) uses n2(2n - 1) operations. The total count is <I>} =
(j - l)n2 + 2n 2(2n + 1). It is the case that <I>} ~ 8} when j ~ 1+ (2n + 1) j (2n - 2).
The break-even point for j occurs when N 2 = 0 is larger than in the case N = O.

As it turns out, the power of nilpotency p is bounded by the matrix size, p < n.
Even though A} might be more cheaply computed for small j using the obvious
multiplication, as j becomes large the S + N decomposition will be cheaper.



A.S Advanced Topics 663

Exponential of a Matrix

A system of ordinary differential equations with constant coefficients is of the form

dx- = Ax, t ::: 0, x(O) = Xo
dt

where A is an n x n matrix of constants and Xo is a specified initial condition. As we
will see, the solution is

where et A is the power series for the function f (x) = eX formally evaluated with the
matrix argument tAo Recall that

a power series that converges for any real-valued X. Although not proved here, the
formal series

also converges for any real-valued matrix A. We could use the A = S + N decompo­
sition to calculate Ak for each k, but we can actually do better. The exponential of a
matrix happens to satisfy the condition eA+B = eAeB whenever AB = BA. However,
do not make the mistake of using this formula when AB f= BA; the formula is not
true in these cases. Using A = S + N, the fact that SN = N S, and the exponential
identity,

The right-hand side requires evaluating the power series for eX twice. The power
series for et S is simplified by using the fact that S is diagonalizable, S = PDP -1. The
series is

The diagonal matrix is D = Diag(d1, ... , dn ) and the exponential of t D is



664 Appendix A Linear Algebra

The power series for etN is actually a finite sum since NP = 0 for some positive
power p. That is,

In summary, the exponential of A is

(A.34)

Local Extrema ofMultivariate Functions

Let y = I (x) for x E R, where I is twice-differentiable for all x. The critical points for
I are those points Xo such that I' (xo) = O. At such a point, three possibilities occur
for the function as illustrated in Figure A.27.

In studying calculus you discussed the concept of Taylor polynomials. If I is twice­
differentiable at xo, then for x near xo,

where R is a remainder term such that

(a) (b)

v

Figure A.27 Three graphs showing critical points. (a) I(xo) is a local maximum. (b) I(xo) is a
local minimum. (c) (xo, I (xo)) is a point of inflection for the graph of I.



A.5 Advanced Topics 665

Suppose that f' (xo) = 0; then

where

Consequently,

for x sufficiently close to xo, where

{

Ix> 0
sign (x) = 0 x=O

-1 x < 0

From the above we can develop the Second Derivative Test: If f' (xo) = 0, then

1. f (xo) is a local maximum if f" (xo) < O.

2. f (xo) is a local minimum if f" (xo) > o.
3. No conclusion can be made if f" (xo) = o. A more detailed analysis is required to

understand the behavior of the graph of f at (xo, f (xo)).

The idea is that for x near xo, f" (xo) > 0 implies that f" (xo) + 2R (x , xo) / (x ­
xO)2 > 0, so f(x) ~ f(xo) for x near xo. A similar argument holds if f"(XO) < 0
[f(x) s f(xo) for x near xo].

The concept of Taylor polynomials can be generalized to functions w = f(x),
where x E jRn. We will look at the case n = 2. A function f(xI, X2) is differentiable at
(xl' x2) if the partial first derivatives

exist. Similarly, f (xl' x2) is twice-differentiable at (xl' x2) if the partial second deriva­
tives

and

exist.



666 Appendix A Linear Algebra

Let x = (xl' xz) and Xo = (a, b). If f(x) is twice-differentiable at Xo, then

where the implied operations are defined by

1. Df(x) = Vf(x) = (fxj(XI' xz), fX2(XI' xz)) (the gradient of f)

T'" z
2. Df(x)y = Y V f(x) = Li=l fXiYi

3. DZf(x) = [fx.x'] = [fxjxj fXj X2]
I ] fX2Xj fX2X2

4. DZf(x)YZ = yTDZf(x)z = L7=1 L~=l fXiXjYiZ j

Generally,

The quantity R(x, Xo) in the above Taylor polynomial expansion has the property

The Second Derivative Test is the following. If Df (Xo) = 0, then

1. f (Xo) is a local maximum if D Zf (Xo)(x - Xo)z < 0 for all x near Xo.

2. f (Xo) is a local minimum if D Zf (Xo) (x - Xo)z > 0 for all x near Xo.

3. No conclusion can be made otherwise without more information.

Using our results about the characterization of definite matrices, the Second
Derivative Test may be rephrased as follows. If Df (Xo) = 0, then

1. f (Xo) is a local maximum if D Zf (Xo) is negative-definite.

2. f (Xo) is a local minimum if D Zf (Xo) is positive-definite.

3. No conclusion can be made if D Zf (Xo) is neither positive- nor negative-definite.
A more detailed analysis is required to understand the behavior of the graph of f
at (Xo, f(xa))·

Figure A.28 shows a graph of f for various possibilities.



(a) (b)

A.5 Advanced Topics 667

(c)

Figure A.28 Three graphs showing critical points. (a) f(Xo) is a local maximum. (b) f(Xo) is
a local minimum. (c) (Xo, f(Xo)) is a saddle point on the graph of f. The tangent
planes at the graph points are shown in all three figures.

EXAMPLE Consider f(XI' x2) = xi + 4xix2 + xi + 5x; - 2xlx2; then
A.59

and

Solve Df = (0,0):

The second equation implies x2 = Xl~2X~. Replacing in the first equation yields °=

~XI (xl + 1)(XI + 2). The critical points are (0, 0), (-1, -3/5), and (-2, -2).

• Case 1: (0,0)

2 [2 -2]D f(O,O)= -2 10

det(D2 f(O, 0) - AI) = A2
- 12A + 16 =°

so the eigenvalues are A == 1.53,0.76. Thus, D 2 f(O, 0) is positive-definite and
f (0, 0) =°is a local minimum.



668 Appendix A Linear Algebra

(Example A.59
continued)

• Case 2: (-1, -3/5)

[

46

D
2
fe-I, -3/5) = -10 -10]10

2 2 96
det(D fe-I, -3/5) - AI) = A - -A - 8 = 0

5

so the eigenvalues are A == 19.61, -0.41. The Second Derivative Test gives no
conclusions. Actually, the function has a saddle point at (-1, - 3/5).

• Case 3: (-2, -2)

D'!<-Z,-ZJ=[ ~:8 ~~8]

det(D 2 f(-2, -2) - AI) = A2
- 44A + 16 = 0

so the eigenvalues are A == 43.63, 0.37. Thus, D 2 f( -2, -2) is positive-definite
and f(-2, -2) = 0 is a local minimum.

Note that f(XI, X2) = (Xl - X2)2 + (x~ + 2X2)2, so 0 is the absolute minimum for the
function.



AFFIN\\E ALGEBRA

B.I INTRODUCTION

As we saw earlier, linear algebra is the study of vectors and vector spaces. In two
dimensions, a vector was treated as a quantity with direction and magnitude. It does
not matter where you place the vector in the plane; it represents the same vector (see
Figure AA) since the directions and magnitudes are the same. In physics applications,
among others, the location of the vector, that is, where its initial point is, may very
well be significant. For example, if a particle has a certain velocity at a given instant,
the velocity vector necessarily applies to the position of the particle at that instant.
Similarly, the same force applied to two different positions on a rod have different
effects on the rod. The point of application of the force is relevant.

Clearly, there needs to be a distinction between points and vectors. This is the
essence of affine algebra. Let V be a vector space of dimension n. Let A be a set
of elements that are called points. A is referred to as an n-dimensional affine space
whenever the following conditions are met:

1. For each ordered pair of points P, Q E A, there is a unique vector in V called the
difference vector and denoted by Ll(P, Q).

2. For each point PEA and v E V, there is a unique point Q E A such that v =
Ll(P, Q).

3. For any three points P, Q, ~ E A, it must be that Ll(P, Q) + Ll(Q,~) = Ll(P, ~).

Figure B.1 illustrates these three items.
If P and Q are specified, v is uniquely determined (item 1). If P and v are

specified, Q is uniquely determined (item 2). Figure B.1 (b) illustrates item 3.

669



670 Appendix B Affine Algebra

Q

(a) p (b)

~(Q,!R...)
Q~-----y

p

Figure B.l (a) A vector v connecting two points P and Q. (b) The sum of vectors, each vector
determined by two points.

The formal definition for an affine space introduced the difference vector
~ (P, Q). Figure B.l gives you the geometric intuition about the difference, specifi­
cally that it appears to be a subtraction operation for two points. However, certain
consequences of the definition may be proved directly without having a concrete
formulation for an actual subtraction of points.

A few consequences of the definition for an affine algebra follow.

1. ~(P, P) = 0

2. ~(Q, P) = -~(P, Q)

3. If ~(Pl' Ql) = ~(Pz, Qz)' then ~(Pl' P z) = ~(Ql' Qz)

The first consequence follows immediately from item 3 in the definition, where Q

is replaced by P, ~ (P, P) + ~ (P, J() = ~ (P, J(). The vector ~ (P, J() is subtracted
from both sides to obtain ~ (P, P) = O.

The second consequence also follows from item 3 in the definition, where J( is
replaced by P, ~(P, Q) + ~(Q, P) = ~(P, P) = O. The last equality is what we just
proved in the previous paragraph. The first vector is subtracted from both sides to
obtain ~(Q, P) = -~(P, Q).

The third consequence is called the parallelogram law. Figure B.2 illustrates.
Item 3 in the definition can be applied in two ways:

Subtracting these leads to

where the last equality is valid since we assumed ~(Pl' Ql) = ~(Pz, Qz). Therefore,
~(Pl' P z) = ~(Ql' Qz)·



B.l Introduction 671

Figure B.2 The parallelogram law for affine algebra.

In the formal sense of affine algebra, points and vectors are distinct entities. We
have already used two different fonts to help distinguish between them: P is a point,
v is a vector. Even so, the following example shows how powerful the formal setting
is. Given a vector space V, the points may be defined as the elements of V themselves,
namely, A = V. If P and Q are points, the corresponding vectors are labeled p and q.
Think of the vectors geometrically as P - t.J and Q - t.J, respectively, where t.J is the
origin. The difference vector of the points is ~(P, Q) = q - p, a subtraction of the
two vectors. The three items in the definition for affine space can be easily verified.
The example also shows that you must be steadfast in maintaining that points and
vectors are different abstract quantities, even if you happen to represent them in a
computer program in the same way, say, as n-tuples of numbers.

Any further discussion of affine spaces in the abstract will continue to use the
notation ~ (P, Q) for the vector difference of two points. However, in situations that
have a computational flavor, we will instead use the more intuitive notation Q - P
with the warning that the subtraction operator is a convenient notation that is not
necessarily indicative of the actual mechanism used to compute the vector difference
of two points in a particular application. We also use the suggestive notation Q =
P + v when v = ~ (P, Q).

To avoid inadvertent confusion between points and vectors in a computer im­
plementation, separate data structures for points and vectors are recommended. For
example, in C++ you can define the vector class by

template class <T real, int n> Vector
{

public:
II construction
Vector 0;
Vector (const real tuple[n]);
Vector (const Vector& v);



672 Appendix B Affine Algebra

II tuple access as an array
operator const real* () const;
operator real* ();
real operator[] (int i) const;
real& operator[] (int i);

II assignment and comparison
Vector& operator= (const Vector& v);
bool operator== (const Vector& v) const;
bool operator!= (const Vector& v) const;

II arithmetic operations
Vector operator+ (const Vector& v) const;
Vector operator- (const Vector& v) const;
Vector operator* (real scalar) const;
Vector operatorl (real scalar) const;
Vector operator- () const;
friend Vector operator* (real scalar, const Vector& v);

private:
real m_tuple[n];

};

where rea1allows you to support both fl oat and doub1e and where nis the dimension
of the underlying vector space. The point class is defined by

template class <T real, int n> Point
{

public:
II construction
Poi nt ();
Point (const real tuple[n]);
Point (const Point& p);

II tuple access as an array
operator const real* () const;
operator real* ();
real operator[] (int i) const;
real& operator[] (int i);

II assignment and comparison
Point& operator= (const Point& p);
bool operator== (const Point& p) const;
bool operator!= (const Point& p) const;



B.2 Coordinate Systems 673

II arithmetic operations
Point operator+ (const Vector& v) const;
Vector operator- (const Point& p) const;

private:
real m_tuple[n];

};

Of course, these are just the basic operations, but other members can be added as
needed for your applications.

B.2 COORDINATE SYSTEMS

Let A be an n-dimensional affine space. Let a fixed point (') E A be labeled as the
origin and let {vI' ... , vn } be a basis for V. The set {('); VI' ... , vn } is called an affine
coordinate system. Each point PEA can be uniquely represented in the coordinate
system as follows. The difference P - (') is a vector and can be represented uniquely
with respect to the basis for V,

n

P-(')= Laivi

i=l

or using our suggestive notation for sum of a point and a vector,

n

P=(')+ Laivi

i=l

The numbers (aI' ... , an) are called the affine coordinates of P relative to the spec­
ified coordinate system. The origin (') has coordinates (0, ... , 0). Figure B.3 shows
three coordinate systems in the plane.

A natural question is how to change coordinates from one system to another. Let
{(')l; ul' ... , un} and {(')2; VI' ... ,vn}be two affine coordinate systems for A. A point
PEA has affine coordinates (aI' ... , an) and (b l , ••• , bn), respectively. The origin
(')2 has affine coordinates (Cl' ... , cn) in the first coordinate system. The relationship

n n n n

P=(')l + LaiUi =(')2+ LbiVi =(')1 + LCiUi + LbiVi
i=l i=l i=l i=l

implies

n n

L biVi = L(ai - Ci)Ui

i=l i=l



674 Appendix B Affine Algebra

V2VV1
°2

Figure B.3 Three coordinate systems in the plane. Observe that the vectors in the coordinate
system are not required to be unit length or perpendicular in pairs.

The two bases are related by a change of basis transformation, Ui = L~=1 m jiVj for
1 ::s i ::s n, so

n n n

L biVi = L(ai - cJ L m jiVj
i=1 i=1 j=1

Renaming the index i to j on the left-hand side and rearranging terms on the right­
hand side,

The uniqueness of the representation for a vector requires

n

b j = LmjJai - cJ,
i=1

1~ j ~ n,

EXAMPLE

B.1

which is the desired relationship between the coordinate systems.

Here are two coordinate systems in the plane, the ones shown in Figure B.3. The
origin of the first is CJ 1 = (-1, 2) and the basis vectors (coordinate axis directions)
are Ul = (1, 0) and U2 = (0, 1). The origin of the second is CJ 2 = (2, 1) and the basis
vectors are VI = (1, 1) / hand V2 = (-1, 1) / h. Let us represent the origin of the
second system in terms of the first:



B.3 Subspaces 675

The change of basis matrix is determined by Ul = mllvl + m21v2 and U2 = m12vl +
m22v2' In block matrix form where the basis vectors are written as columns,

The solution is

:]

EXERCISE

B.l

EXERCISE

B.2

B.3

The point (0,0) is represented as <9 1+ (1)Ul + (-2)U2 in the first coordinate system.
Using the change of coordinate relationship above, verify that the representation
in the second coordinate system is <9 2+ (-3/,J2)Vl + (1/ ,J2)V2' Carefully sketch a
picture to convince yourself that the coordinates are accurate.

How does the analysis of Example B.1 change when you have the common origin
<9 1 = <92 = (0, O)? In the first coordinate system, let R be the matrix that represents
a counterclockwise rotation about the origin by an angle 7T / 4. What is the matrix R?
How is it related to the change of basis matrix?

Repeat the construction in Example B.1, but use the coordinate system {<93; WI' W2}
instead of {<92; VI' V2}, where <93 = (-2, -2), wI = (1, 0), and W2 = (1, 1).

SUBSPACES

Let A be an affine space. An affine subspace of A is a set A 1 ~ A such that VI =
{~(P, Q) E V : P, Q E S} is a subspace of V. The geometric motivation for this
definition is quite simple. If V = ~3, the one-dimensional subspaces are lines through
the origin and the two-dimensional subspaces are planes through the origin. If A is
the set of points in space, the one-dimensional subspaces are lines (not necessarily
through the origin) and the two-dimensional subspaces are planes (not necessarily
through the origin). That is, the affine subspaces are just translations of the vector
subspaces.

Let Al and A2 be affine subspaces of A with corresponding vector subspaces VI
and V2 of V, respectively. The subspaces are said to be parallel if VI ~ V2 or if V2 ~ VI'
If it is the case that VI ~ V2' then as sets either Al and A2 are disjoint (AI n A2 = 0)
or Al is contained in A2 (AI ~ A2 ).



676 Appendix B Affine Algebra

EXAMPLE

B.2

EXERCISE

B.3

B.4

Let A be the set of points in space and V = ffi.3. Let P = (0, 0, 1), UI = (1, 0, 0), and
U2 = (0, 1, 0). Let Q = (0, 0, 2) and VI = (1, 1, 0). The sets Al = {P + sIuI + s2u2 :

SI' s2 E ffi.} and A 2 = {Q + tivi : t l E ffi.} are parallel, affine subspaces. In this case, Al
and A2 are disjoint. If instead A 2 = {P + tivi : tl E ffi.}, Al and A2 are still parallel
subspaces, but A2 is a proper subset of AI.

Let A be the set of points in space and V = ffi.3. Let P = (0, 0, 0), U = (1, 0, 0),
Q = (0, 0,1), and V = (0,1,0). Are the sets Al = {P + su: S E ffi.} and A 2 = {Q + tv:
t E ffi.} parallel subspaces?

TRANSFORMATIONS

Just as we defined linear transformations for vector spaces, we can define affine
transformations for affine spaces. Let A be an affine space with vector space V and
vector difference operator t::.. A. Let B be an affine space with vector space Wand
vector difference operator t::.. B. An affine transformation is a function T : A ~ B such
that the following are true:

1. t::.. A (PI' QI) = t::.. A (P2 , Q2) implies that t::..B(T(PI), T (QI)) = t::.. B(T(P2) , T(Q2))·

2. The function L : V ~ W defined by L(t::.. A (P, Q)) = t::..B(T(P) , T(Q)) is a linear
transformation.

Figure B.4 illustrates condition 1 in the definition. Setting U = t::.. A (PI' QI) and v =
t::..B(T(PI), T(QI))' in geometric terms the condition states that no matter what
point P is used as the initial point for u, the initial point for v must be T (P).
Condition 2 just states that the vectors themselves must be transformed linearly.

T
~

Figure B.4 An illustration of condition 1 of the definition for affine transformation.



B.5 Barycentric Coordinates 677

If eJ A is selected as the origin for A and if eJ B = T (eJ A) is selected as the origin
for B, then the affine transformation is of the form

Consider the special case when the two affine spaces are the same B = A, W = V,
and !:J. B = !:J. A' Define eJ B - eJ A = b. The affine transformation is now of the form

T(eJ A + x) = eJ A + b + L(x)

Thus, for a fixed origin eJ A and for a specific matrix representation M of the linear
transformation L, the induced action of the affine transformation on the vector space
elements is

y=Mx+b (B.l)

Hopefully this form looks familiar! If M is the identity matrix, then the affine trans­
formation is a translation by b. IfM is an orthogonal matrix with determinant 1and b
is the zero vector, the affine transformation is a pure rotation about the origin. IfM is
an orthogonal matrix of determinant 1 and b is any vector, the affine transformation
is called a rigid motion, quite an important concept for physics applications.

B.5 BARYCENTRIC COORDINATES

The definition of an affine space allows for computing the difference of two points
and for computing the sum of a point and a vector. The latter operation is the natural
way you "move" from one point to another. The sum of two points is just not defined.
However, there is an operation on two points that does make intuitive sense, that of
a weighted average of two points. If P and Q are two points and v = Q - P, then
Q = P + v. For each t E JR, the quantity tv is, of course, a vector, so P + tv is a point
itself. Using our suggestive notation for subtraction of points, we have

P + tv = P + t (Q - P)

It is an error to distribute the multiplication by t across the difference of points,
because the definition of affine algebra does not allow the operation of a scalar times
a point. That is, t (Q - P) is well defined since t is a scalar and Q - P is a vector, but
tQ - tP is ill defined. But let's go ahead and distribute anyway, then combine the P
terms to obtain

~ = (1- t)P + tQ (B.2)

~ is said to be a barycentric combination of P and Q with barycentric coordinates 1 - t
and t, respectively. Observe that the sum of the coordinates is I, a necessity for a



678 Appendix B Affine Algebra

P 2{ Q
.................••-- ------e- t E [0,1]

2{ P Q
......•........•.---------e- t < 0

P Q 2{.................•.---------e- t > 1

Figure B.5 Various barycentric combinations of two points P and Q.

pair of numbers to be barycentric coordinates. For t E [0, 1], J< is a point on the line
segment connecting P and Q. For t < 0, J< is on the line through P and Q with P
between J< and Q. Similarly, for t > 1, J< is on the line with Q between J< and P.
Figure B.5 illustrates these cases.

To support barycentric combinations, the C++ template code for points has one
additional member function. The other two arithmetic operations are shown just for
comparison.

template class <T real, int n> Point
{

public:
II return_point = this + v
Point operator+ (const Vector& v) const;

II return_vector = this - p
Vector operator- (const Point& p) const;

II return_point = (1 - t) * this + t * p (barycentric combination)
Point operator+ (real t, const Point& p) const;

B.S.! TRIANGLES

The concept ofbarycentric coordinates extends to three noncolinear points P, Q, and
J<. The points, of course, form a triangle. Two vectors located at Pare u = Q - P and
v = J< - P. For any scalars sand t, su and tv are vectors and may be added to any
point to obtain another point. In particular,

P + su + tv = P + seQ - P) + t(J< - P)

is a point. Just as equation (B.2) was motivated by distributing the scalar product
across the differences and collected terms, we do the same here to obtain

23 = (1- s - t)P + sQ + tJ< (B.3)



B.5 Barycentric Coordinates 679

Figure B.6 The triangle partitions the plane into seven regions. The signs of Cl' C2' and C3 are
listed as ordered triples.

'B is said to be a barycentric combination of P, Q, and 9( with barycentric coordinates
Cl = 1 - s - t, C2 = s, and C3 = t, respectively. As with a barycentric combination of
two points, the barycentric coordinates must sum to 1: cl + c2 + c3 = 1. The location
of'B relative to the triangle formed by the three points is illustrated in Figure B.6.

The signs of Cl' C2' and C3 are listed as ordered triples. On a boundary between
two regions, not including the vertices, one of the Ci is O. At a vertex, two of the Ci

are 0, the other coordinate necessarily 1. The coordinates cannot be simultaneously
negative since the sum of three negative numbers cannot be 1.

EXERCISE

BA

B.5.2

Linear interpolation over a triangle. A real-valued function I (x, y), unknown to
you, has been sampled at three noncolinear points (xi' Yi) with function values Ii'
o::: i ::: 2. Ifyou are given the information that I :IR2 ----+ IR is a linear transformation,
construct an explicit formula for I.

TETRAHEDRA

The concept of barycentric coordinates also extends to four noncoplanar points Pi'
o::: i ::: 3. The points form a tetrahedron. Using a construction similar to that for a
segment and a triangle, a barycentric combination of the points is

(B.4)

The values Co = 1 - cl - c2 - c3' cl' C2' and C3 are the barycentric coordinates of 'B
and they sum to 1. The tetrahedron partitions space into 15 regions, each region
labeled with an ordered quadruple of signs for the four coefficients. The only invalid



680 Appendix B Affine Algebra

combination of signs is all negative since the sum of four negative numbers cannot
equal 1.

EXERCISE

B.5

B.5.3

Linear interpolation over a tetrahedron. A real-valued function f (x, y, z), unknown
to you, has been sampled at four noncoplanar points (xi' Yi' zi) with function values
ii, 0::::; i ::::; 3. If you are given the information that f : jR3 ~ jR is a linear transfor­
mation, construct an explicit formula for f.

SIMPLICES

We have seen barycentric coordinates relative to a segment, a triangle, and a tetrahe­
dron. The concept extends to affine spaces of n-tuples for any n :::: 2. The name of the
object that generalizes triangle and tetrahedron is simplex (plural simplices). A sim­
plexis formed byn + 1points Pi' 0::::; i ::s n, such that the set ofvectors {Pi - PO}7=1
are linearly independent. A barycentric combination of the points is

n

'B = LCiPi
i=O

(B.5)

and the Ci are the barycentric coordinates of'B with respect to the given points. As
before, the coefficients sum to 1, L:7=o ci = 1.

Although we tend to work in 2D or 3D, let us be abstract for a moment and
ask the same question we did for segments, triangles, and tetrahedra. A segment, a
simplex in jR, partitioned jR into 3 regions. A triangle, a simplex in jR2, partitioned
jR2 into 7 regions. A tetrahedron, a simplex in jR3, partitioned jR3 into 15 regions.
How many regions in jRn are obtained by a partitioning of a simplex? The sequence
with increasing dimension is 3, 7, 15, so you might guess that the answer is 2n+1 - 1.
This is correct. An intuitive reason is supported by looking at the signs of the n + 1
coefficients. Each region is labeled with an ordered (n + I)-tuple of signs, each sign
positive or negative. There are two choices of sign for each of the n + 1 components,
leading to 2n+1 possibilities. As in the cases we've already looked at, all negative signs
are not allowed since the sum would be negative and you cannot obtain a sum of 1.
This means only (2n+1 - 1) tuples of signs are possible.

A more geometric approach to counting the regions is based on an analysis of the
components of the simplices. A segment has two vertices. The interior of the segment
is formed by both vertices, so you can think of that region as occuring as the only
possibility when choosing two vertices from a set of two vertices. That is, the number
of interior regions is C (2, 2) = 1, where

C(n k) _ n!
, - k!(n - k)!

is the number of combinations of n items choosing k at a time. The segment has
two exterior regions, each formed by a single vertex. The number of such regions



B.5 Barycentric Coordinates 681

is C (2, 1) = 2 since you have two vertices, but choose only one at a time. The total
number of regions in the partition of the line is C(2, 1) + C(2, 2) = 2 + 1 = 3.

A triangle has three vertices. The interior is formed by choosing all three vertices.
The number of interior regions is C(3, 3) = 1. Figure B.6 shows that each edge has
a corresponding exterior region. An edge is formed by two vertices and you have
three vertices to choose from. The total number of edges is C(3, 2) = 3. The figure
also shows that each vertex has a corresponding exterior region. The total number of
vertices is C(3, 1) = 3. The total number of regions in the partition of the plane is
C(3, 1) + C(3, 2) + C(3, 3) = 3 + 3 + 1 = 7.

The same argument applies to a tetrahedron with four vertices. The interior is
formed by all four vertices; the number of interior regions is C (4, 4) = 1. A face is
formed by three vertices; there are C (4, 3) = 4 such possibilities. An edge is formed
by two vertices; there are C (4, 2) = 6 such possibilities. Finally, there are C (4, 1) = 4
vertices. An exterior region is associated with each vertex, each edge, and each face.
The total number of regions is C(4, 1) + C(4, 2) + C(4, 3) + C(4, 4) = 4 + 6 + 4 +
1.

Consider now the general case, a simplex formed by n + 1 points. The compo­
nents, so to speak, of the simplex are classified by how many vertices form them.
If a component uses k vertices, let's call that a k-vertex component. The interior of
the simplex is the only (n + I)-vertex component. Each k-vertex component where
1~ k < n + 1has a single exterior region associated with it. The total number of re­
gions is therefore

n+l

C(n + 1, n + 1) + C(n + 1, n) + ... + C(n + 1,1) = L C(n + 1, k) = 2n+1
- 1

k=l

The term C(n, k) indicates the number of k-vertex components, the number of
combinations of n vertices choosing k at a time. Where did that last equality come
from? Recall the binomal expansion for a power of a sum of two values:

(x + y)m = C(rn, O)xm + C(rn, l)xm- 1y + ... + C(rn, rn - l)xym-l + C(rn, rn)ym

m

=L C(rn, k)xm-kyk

k=O

Setting x = 1, Y = 1, and rn = n + 1, we arrive at

n+l n+l

2n+ 1= (1 + l)n+l = L C(n + 1, k) = 1+ L C(n + 1, k)

k=O k=l

B.5.4 LENGTH, AREA, VOLUME, AND HVPERVOLUME

The constructions in this section are designed to show that the area of a triangle
(simplex in 2D) can be computed as a sum (in an integration sense) of lengths



682 Appendix B Affine Algebra

of line segments (simplices in ID). I also show that the volume of a tetrahedron
(simplex in 3D) can be computed as a sum of areas of triangles (simplices in 2D).
These two facts indicate the process is recursive in dimension. Intuitively, a simplex
in 4D has a "volume;' so to speak, that can be computed as a sum of volumes of
tetrahedra (simplices in 3D). Sometimes this is called a hypervolume, but that leads
us to wanting names for the similar concept in yet higher dimensions. I will use the
term hypervolume for any dimension and note that hypervolume in ID is length,
hypervolume in 2D is area, and hypervolume in 3D is volume. Given a simplex
formed by points Pi for 0:::: i :::: n, the hypervolume is denoted H(Po, ... , Pn ).

Length of a Segment

A line segment with end points Po and PI is a simplex with two vertices. The length
of the simplex is 1PI - Po I. Using our notation for hypervolume,

(B.6)

Area of a Triangle

Recall that the area of a triangle with base length b and height h is A = bh /2.
Figure B.7(a) shows the standard drawing one normally uses to show band h. Fig-

y

(a)

b

(b)

h

1'-- ---.;'--_ X

Figure B.7 (a) A triangle with base length b and height h marked. The area of the triangle is
bh/2. (b) A triangle viewed as a union of an infinite number of line segments of
varying lengths (only a few are shown). The area of the triangle is the sum of the
lengths of those line segments.



B.5 Barycentric Coordinates 683

ure B.7(b) shows a triangle viewed as the union of line segments of varying lengths.
The drawing shows the bottom edge aligned with the x-axis, but the ensuing argu­
ments do not depend on this. The area of the triangle may be thought of as the sum
of the lengths of all the line segments in the union. This is an informal and mathe­
matically nonrigorous view of the situation, but intuitively it works quite well. The
number of line segments is infinite, one segment per y-value in the interval [0, h].
The sum cannot be computed in the usual sense. In this setting it becomes an inte­
gration of the lengths as a function of y.

Select a value of y E [0, h]. The line segment has two end points, one on the
triangle edge from Po to P2 and one on the triangle edge from PI to P2' The fraction
of the distance along each edge on which the end points lie is y j h E [0, 1]. That is,
the end points are the barycentric combinations (1- yj h)Po+ (yj h)P2 and (1­
y j h)PI + (y j h)P2. The length of the segment is the length of the vector connecting
the end points,

v = ((1- yj h)P1 + (yj h)P2) - (1- yj h)Po+ (yj h)P2 = (1- yj h)(PI - Po)

The length of the segment as a function of y is

L(y) = Ivl = (1- yj h)IPI - Pol = (1- yj h)b

where b is the length of the base of the triangle. To "add" all the values L (y) for
y E [0, h] in order to obtain the area A, we need to integrate

l
h lh -h(1- yj h)2l

h
A= L(y)dy= (1-yjh)bdy=b -..:.....-.....:......:..----:....-

o 0 2 0

In terms of our hypervolume notation,

bh

2

(B.7)

where h = IP2 - Pol cos ewith e the angle as shown in figure B.7.
The height h also may be computed as the length of the projection of P2 - Po

onto the vertical axis. A convenient vector to use, whose direction is that of the
vertical axis, is the following. Let PI - Po =v = (VI' VI)' A perpendicular vector in
the direction of the positive vertical axis as shown in Figure B.7 is - Perp(Po, PI)'
where

(B.8)

is called the perp vector. You will notice that the perp vector itself is in the direction of
the negative vertical axis as shown in Figure B.7. Using the coordinate-free definition
of dot product, equation (A.5),



684 Appendix B Affine Algebra

The perp vector has the same length as PI - Po, so the dot product in the previous
equation is twice the area of the triangle, bh. This gives us the nonrecursive formula
for the area of a triangle,

(B.9)

Volume of a Tetrahedron

The volume of a tetrahedron may be computed in the same intuitive way that was
used for the area ofa triangle. Let Pi' 0 ::::: i ::::: 3, denote the vertices ofthe tetrahedron.
The base of the tetrahedron will be selected as the triangle formed by Pi' 0 ::::: i ::::: 2.
The tetrahedron may be informally thought of as an infinite union of triangles that
are parallel to its base. Figure B.8 shows a tetrahedron and one of its triangle slices.

Select a value of z E [0, h]. The corresponding triangle has three vertices, one
on each tetrahedron edge with end points Pi and P3 for 0 ::::: i ::::: 2. The fraction of
the distance along each edge which the end points lie is z/ h E [0,1]. The end points
are the barycentric combinations Qi = (1- z/ h)Pi + (z/ h)P3 for 0::::: i ::::: 2. If A(z)
denotes the area of this triangle, the volume of the tetrahedron is

v = l h

A(z) dz

z

Figure B.8 A tetrahedron with base formed by Po, PI' and P2• A triangle slice parallel to the base
is shown. The direction perpendicular to the base is marked as the positive z-axis.



B.S Barycentric Coordinates 685

We would like to use equation (B.9) to compute A(z), but there is a problem. Even
though that equation is written in a coordinate-free manner, it is implicitly tied to 2D
points via the definition of the perp vector in equation (B.8) that requires points in
two dimensions. For the time being, let's instead use the area formula from equation
(A.IO). We will later return to the issue of the perp vector and provide a definition
that is valid in any dimension.

Set Vi = Qi - Qo = (I - z/ h) (P i - Po) for I ::::; i ~ 2. The triangle slice is halfofa
parallelogram formed bYVI and V2' so using equation (A.IO) the area ofthe triangle is

where b is the area of the base of the tetrahedron. The volume of the tetrahedron is

v = (h A(z) dz = {h (1- z/ h)2b dz = b -h(1- z/ h)3l
h

10 10 3 0

In our hypervolume notation, the volume is

bh

3

(B.IO)

where h = IP3 - Pol cos ewith e the angle shown in Figure B.8.
The height may also be computed as the length of the projection ofP3 - Po onto

the vertical axis. We already know a vector with that direction, the cross product
(PI - Po) X (P2 - Po). Using equation (B.8) as motivation, define

(B.ll)

Using the coordinate-free definition of dot product, equation (A.S),

(P3 - Po) . Perp(Po, PI' P2 ) = IP3 - Poll Perp(Po, PI' P2 ) 1 cos e
= hi Perp(Po' PI' P 2)1 = 2hb

where b is the area of the triangle base of the tetrahedron. Dividing by 6 we have a
nonrecursive formula for the volume,

(B.I2)



686 Appendix B Affine Algebra

Hypervolume of a Simplex

Notice the strong similarities between equations (B.?) and (B.IO) and between equa­
tions (B.9) and (B.I2). The first pair of equations suggests that for a simplex formed
from n + 1points Pi' 0 .::: i :::: n, the recursive formula for the hypervolume is

(B.13)

where h = IPn - Pol cos () with () the angle between Pn - Po and a vector that is
perpendicular to the base of the simplex. The base is itself a simplex but formed
by n points Pi for 0 :::: i :::: n - 1. As we saw in the cases n = 2 and n = 3, we
want the perpendicular vector chosen so that () is an acute angle. In 2D we used
- Perp(Po, PI) and in 3D we used Perp(Po, PI' P2). This suggests that in general di­
mension n, we will use a vector (_l)n+1 Perp(Po, ... , Pn-l), where the perp vector
Perp(Po, ... , Pn- l ) is appropriately defined. The second pair of equations suggests
the nonrecursive formula

(B.I4)

This leaves us with the task of finding a formula for Perp(Po, ... , Pn-l)' hopefully
in a way that applies to any dimensional input points. We accomplish this last goal
by introducing an indexed quantity that stores information about permutations. In
tensor calculus, this is called the Levi-Civita permutation tensor, but the name and
tensor calculus are not really important in our context.

Let's look at the 2D problem first. The doubly indexed quantity eij for 1 .::: i .::: 2
and 1 .::: j .::: 2 represents four numbers, each number in the set {-I, 0, I}. The value is
oif the two indices are the same: ell = 0 and e22 = O. The other values are el2 = 1and
e2l = -1. The choice of lor -1 is based on whether the ordered index pair (i , j) is an
even or odd permutation of (1, 2). In the current case, (1, 2) is an even permutation
of (1, 2) (zero transpositions, zero is an even number) so el2 = 1. The pair (2, 1) is
an odd permutation of (1, 2) (one transposition, one is an odd number) so e21 = -1.
You should notice that eji = -eij' Treating eij as the elements of a 2 x 2 matrix E,

that matrix is skew-symmetric: ET = -E.
The arguments of the area function and perp operation are points. Since the

area and perp vector are invariant under translations, we may as well replace the
arguments by vectors v(i) = Pi - Po for i ~ 1. In 2D, v(i) = (v~i), vii)). Thus,



B.S Barycentric Coordinates 687

In summation notation the components of u are

2

Uj = L eji v?)
i=l

The area of the triangle is

(B.IS)

2 2

= -~ '""" '""" e "V\2)V~1)2 L.J L.J )1) 1

i=l j=l

Using equation (B.9)

Using equation (B. IS)
(B.I6)

2 2

= ~ L L eijv;l)vY)

i=l j=l

eij = -eji and swapping terms

In 3D the triply indexed permutation tensor is eijk for 1 :::: i ::: 3, 1 ::: j ::: 3, and
1::: k ::: 3. Each value is in the set {-I, 0, I}. Ifany pair of indices is the same, the value
is zero; for example, elll = 0, e1l2 = 0, and e233 = °(there are 21 zero elements).
Otherwise, eijk = 1 if (i, j, k) is an even permutation of (1, 2, 3) or eijk = -1 if
(i, j, k) is an odd permutation of (1, 2, 3). Under these conditions only six elements
are nonzero: el23 = e231 = e312 = 1 and e132 = e321 = e213 = -1. As in the 2D case, if
a pair of indices is swapped, the sign is changed: e jik = eikj = ekji = -eijk' Define

v(i) = Pi - Po = (v~i), vii), v~i»), 1 ::: i ::: 3; then

In summation notation the components ofu are

3 3

Uk = L L ekijV;l)VY)

i=l j=l

(B.I7)



688 Appendix B Affine Algebra

The volume of the tetrahedron is

3 3 3

= ~ L L L ekijvf)v?)vY)

i=l j=l k=l

Using equation (B.I2)

Using equation (B.I?) (B.I8)

3 3 3

= ~ L L L -eikjV;l)vj2)vf)

i=l j=l k=l

ekij = -eikj and swapping terms

The last couple of steps are just to swap the k into the last position. In 2D one swap
was required. In 3D two swaps were required.

The pattern holds for general dimension n. The permutation tensor is an n­
indexed quantity eir .. i

n
that is zero ifany pair of indices is repeated, is 1if (iI' ... , in)

is an even permutation of (1, ... , n), or is -1 if (i l , . .. , in) is an odd permutation
of (1, ... , n). Only n! values are nonzero where n! is the number of permutations
of n numbers. The vectors of interest are y(i) = ::1\ - Po for 1 .s i .s n. The vector
(u l' ... , Un) = U = Perp(y(l), ... , yen)) has components

The hypervolume of the simplex is

(B.I9)

H (y(l) , ... , yen))

(_l)n+l
___yen) . Perp(y(l), ... , y(n-l))

n!
Using equation (B.I4)

Using equation (B.I9)

(B.20)

The last equation is the result of swapping in with each of the n - 1 other indices.
Each swap introduces a factor of -1, so the total swaps introduces the factor (_l)n-l.
Combining with the other sign factor (_l)n+l results in a factor of(_l)n-l( _l)n+l =
(_1)2n = 1.



B.5 Barycentric Coordinates 689

The final interesting observation is that the summations in the hypervolume
equation (B.20) are just the determinant of a matrix. The n-indexed quantity ei] .•• i

n

is the same quantity as e(J introduced in Section A.5.1 on determinants. Ifthe vectors
y(i) are written as the columns of an n x n matrix, say, [yO) I ... Iy(n)], then the
hypervolume of the simplex is

(B.2l)

The formula was developed with a certain ordering in mind for the input vectors.
For general ordering, equation (B.2l) can produce negative numbers, in which case
the formula generates the signed hypervolume. To be sure you have the nonnegative
hypervolume, just take the absolute value of the right-hand side of the equation.



T his appendix provides a brief summary of topics in calculus that you should be
familiar with in order to fully understand how to model a physical system and

implement the physical simulation on a computer. Calculus occurs in two flavors,
differential calculus and integral calculus. Both disciplines are founded on the concepts
of infinitesimal quantities and a limit, the measurement ofwhat happens to a quantity
as one or more parameters are varied.

Calculus involves processing functions, the topic further subdivided based on the
number of independent and dependent variables. Univariate calculus studies func­
tions Y = f(x), where x is an independent variable and Y is the dependent variable.
Formally, the function is written as f :D ----+ ~, where D c JR is the domain of the
function and ~ c JR is the range of the function. To be somewhat loose with the no­
tation, an emphasis will be placed on the sets containing the domain and range by
writing f : JR ----+ JR. The domain and range are most likely proper subsets of JR, but
those will be known within the context of the problem at hand.

Multivariate calculus studies functions Y = f(Xl' ... , xn ), where Xl through Xn

are n independent variables and Y is a single dependent variable. The function may
be written as f : JRn ----+ JR, where JRn denotes the set of n-tuples of real numbers. As
indicated in the last paragraph, the domain of f may be a proper subset of JRn and
the range of f may be a proper subset of JR.

The next natural extension is to study a collection offunctions Yi = fi (xl' ... ,xn )

for 1.:::: i .:::: m. We now have n independent variables and m dependent variables. Us­
ing vector notation, let Y = (Yl' ... , Ym), X = (xl' ... , xn), and F = (fl' ... , fm)'
The function may be written as Y = F(X), or F : JRn ----+ JRm. This coordinate-free
representation looks just like the univariate case where n = m = 1. For physical appli­
cations attention is focused on the case ofm = 1and n = 2 or n = 3. That is, Yi = fi (t)

691



692 Appendix C Calculus

for all i with a single independent variable t (time). Extensive discussion of this case
is already a large portion of Chapter 2!

Section C.l is a summary of the key ideas for univariate calculus, whereas Section
C.2 is a summary for multivariate calculus. Section C.3 provides a few applications
that are related to physical simulations. Optimization involves computing maxima
and minima of functions. Constrained optimization also involves computing max­
ima and minima, but with additional constraints related to the problem at hand. This
appendix will cover only equality constraints that can be solved using the method of
Lagrange multipliers. Inequality constraints are a bit more challenging, but we actually
talk about these in this book! See Chapter 7 for the details. The final topic in Section
C.3 on applications covers approximation of derivatives by finite differences. This
topic is relevant to constructing numerical methods for solving differential equations.

e.l UNIVARIATE CALCULUS

Differential calculus generalizes the idea ofthe rate ofchange ofa quantity over a fixed
time interval to the limit of rate of change over time intervals of decreasing duration.
The prototypical example is a measurement of speed of an object traveling along a
straight-line path. If the position of an object at an initial time tinitial is Xinitial and
the position at a final time tfinal is Xfinal' the average speed of the object on the time
interval is

Xfinal - Xinitial
Saverage =

tfinal - tinitial

The measurement is the difference of final and initial positions divided by the differ­
ence of final and initial times. As an average, the measurement does not give you any
information about the position or speed of the object at intermediate times. It is sim­
ply a statistic that summarizes the behavior of the object on the given time intervaL

If we think of the position as a function of time, say, x(t), the initial position of
the object at time t is xinitial = x(t), the final position at time t + !:i.t for some !:i.t > 0
is Xfinal = x(t + !:i.t), and the average speed is

X(t + !:i.t) - x(t)
Saverage([t, t + !:i.t]) = -----­

!:i.t

I have included the time interval on the left-hand side to stress over which time
interval the average is computed. Now suppose we are able to compute the position of
the object at any time. Consider how the average speed changes as we look at smaller
and smaller time intervals; that is, we will choose smaller values of !:i.t to make the
measurements. Example C.l illustrates.



EXAMPLE

C.l

Table C.I

C.l Univariate Calculus 693

Suppose the position is measured as x(t) = t(1- t) for t E [0, 1]. The initial position
is x (0) = 0 and the final position is x (1) = 0; that is, the object starts and ends at the
same position. The average speed for the time interval [0, 1] is Saverage = O. Although
you know the object is moving, it does begin and end at the same position. If you
looked at the object at the initial time, closed your eyes for one second, and then
opened them, you would see the object in the same position. In this sense an average
speed of zero is meaningful!

Now suppose that you opened your eyes after a half a second. The position of the
object is x (1/2) = 1/4 and the average speed on the time interval [0, 1/2] is Saverage =
(1/4 - 0) / (1/2 - 0) = 1/2. In fact, you now know that the object has moved because
you kept your eyes closed for a shorter period of time. It has moved away from you,
so a nonzero average speed makes sense.

Table C.l displays average speed calculations on intervals [0, f'j,t] of decreasing dura­
tion.

Average speed calculation on intervals [0, f'j,t] with decreasing f'j,t

f'j,t x (f'j,t) Saverage

1 0 0

0.5 0.25 0.5

0.25 0.1875 0.75

0.125 0.109375 0.875

0.01 0.0099 0.99

0.001 0.000999 0.999

0.0001 0.00009999 0.9999

The pattern in our example is evident. As we make f'j,t smaller, the average speed is
apparently getting closer to 1.

In Example C.l, we say that in the limit as f'j,t approaches zero, the average speed
approaches 1. At time zero, the value 1 is said to be the instantaneous speed of the
object. This measurement is only valid for time zero. At any other time we may
go through the same process to reach an instantaneous measurement as a limit of
average measurements. The instantaneous speed is referred to as the derivative of
position and is denoted by dx / dt or x' (t). The former notation uses infinitesimals dx
and dt. Think of dx/dt intuitively as specifying a really small (infinitesimal) change
in position per really small (infinitesimal) change in time. Before we introduce the
formal construction of the derivative, let us take a closer look at what it means to be
a limit.



694 Appendix C Calculus

C.l.I LIMITS

Given a univariate function f (x) that may be computed for values of x near a spec­
ified value c, we can repeat the experiment of Example C.1 by looking at how the
function values change for values of x closer and closer to c. If those function values
appear to be getting close to some number L, we may formally state this using limit
notation:

lim f(x) = L
x--+c

The notation x ~ c means that you think of choosing x closer and closer to c, or
phrased mathematically: The limit as x approaches c of f (x) is L. The intuition for
what a limit is should come from our earlier example. A more formal presentation
uses the limit notation. The mathematicians say: For each c > 0 you can find a 8 > 0
such that If(x) - LI < c whenever Ix - cl < 8. In less formal terms, think of c as an
error tolerance that you select to be small. Your goal is to make the function values
f (x) to be within this tolerance of the number L; that is, If (x) - L I < c is just a
requirement on how large the absolute error can be between the function values and
L. The allowable error is most likely not met by any value ofx you so choose. Rather,
the error will cause you to constrain your attention to values of x close to c. That is,
as long as Ix - cl is small enough (i.e., the absolute difference is smaller than 8), then
you will achieve your goal of bounding the function error.

Visually you can think of this process as "boxing the point (f (x), L)" in the xy­
plane. An example will illustrate this.

EXAMPLE

C.2

Table C.2

Let f (x) = x 2 + x and let c = 1. Table C.2 shows various function values for x near c.
The pattern shows that as x approaches 1, f (x) approaches 2. In our limit notation,

Function values for x near c

x f(x)

0.9 1.71

0.99 1.9701

0.999 1.997001

1.001 2.003001

1.01 2.0301

1.1 2.31



Figure C.l

C1 Univariate Calculus 695

y

2 + E +----------+----Il----------

2
2 - E -+-----------'l~+------

-+-"'""""=--------+-r-~--~x

1-811+8

The graph of I (x) = x 2 + x for x near 1.

lim (x 2 + x) = 2
x---+l

The graph of I (x) near x = 1 is shown in Figure Cl.

The point (c, L) = (1, 2) is "boxed" in by two pairs of parallel lines. You get to
choose E > 0 and require the function values to be within that tolerance of L = 2.
The horizontal parallel lines provide two edges of the box. In order for you to be
on the graph of I (x) and within the horizontal strip, vertical bars must be drawn
sufficiently close to 1. If you find a pair of such bars, any pair closer to 1 will also
work, but one pair is all you need. This boxing process must succeed for any choice
of E, no matter how smalL Of course, the smaller you choose E, the smaller you expect
to have to choose 8.

This process of boxing in (c, L) is made formal mathematically by actually con­
structing 8 as a function of E. We will not go into such a construction. The intuition
is what is important.

In Example C2 you might ask yourself why we bothered with the formalism in
the first place. Clearly, ifyou evaluate the function at x = 1, you get 1(1) = 12 + 1 = 2.
As it turns out, it is not always possible to evaluate I (x) to see what its limit is. For
example,

I(x) = sin(x)
x



696 Appendix C Calculus

is defined for all x i= o. You cannot evaluate I (0) because the denominator is zero.
However, the limit as x approaches 0 does exist:

I
, sin(x)
Im--=1

x---+o X

Construct a table ofnumbers x and I (x) for x closer and closer to zero to see why this
is the case. The formal proof of the limit is provided in standard calculus textbooks
and requires some trigonometry, algebra, and a bit of patience to complete.

C.1.2 LIMITS OF A SEQUENCE

The concept of a limit was discussed in terms of a continuous variable x; that is, x is
a real-valued number that is allowed to approach some other real-valued number. A
similar concept exists for a limit of a sequence of numbers In for n :::: 1. The formal
notation for a sequence is {In}~l to indicate that the index n is a positive integer and
is allowed to become increasingly large. For example, In = 1/n denotes a sequence
of real numbers 1, 1/2, 1/3, and so on. You should notice that the numbers in this
sequence are decreasing in size as n increases. In fact, your intuition should tell you
that the numbers have a limiting value of zero.

Just as we had a formal notation for a limit of a function, we have one for a limit
of a sequence. The definitions are quite similar. We say that the limit of the sequence
{In}~l as n increases without bound is L, denoted as

lim In = L
n---+oo

when the following is true: For each c > 0 you can find an integer N > 0 such that
IIn - L I < c whenever n :::: N. The intuition is similar to that of a function. Your
goal is to make the sequence values In be within the error tolerance c of the number
L; that is, IIn - L I < c is just a requirement on how large the absolute error can be
between the sequence values and L. In order for this to happen, you most likely have
to choose n significantly large, the condition indicated by n :::: N, Generally, as you
choose c smaller, the index N becomes larger. In our example of In = 1/n, we believe
that the limit is L = O. If you choose a small c > 0, IIn - L I = 11/n I < c happens
whenever n > 1/c. You may choose N to be the smallest integer that is larger than
1/c. Clearly, the smaller you choose c, the larger N is.

Limits of sequences are more commonly encountered when working with iter­
ative methods in computer science. Although we have not reached the point in the
appendix where we discuss derivatives, you no doubt are familiar with derivatives
since computational physics requires that you be so. An iterative method that you
most likely encountered is Newton's method for estimating the root of a function
F (x) = O. An initial guess Xo is made for the root. The guess is refined by a sequence



C.1 Univariate Calculus 697

n::::O

where F'(x) is the derivative of F(x). What you hope is that the limit

lim Xn = L
n---+oo

really is a root to F, namely, F(L) = O. In order to have a good estimate, you get to
choose how close to the root L you would like to be by selecting the error tolerance c.
The corresponding index N tells you how many times to apply the iteration method
before you can be confident that xN is an estimate that meets your tolerance criterion.

C.1.3 CONTINUITY

Example C.2 illustrated the limit L = 2 of a function f (x) = x 2 + x as x approaches
c = 1. As noted earlier, the function value f (1) and limit 2 are the same number. This
happens for most functions you tend to encounter in your applications. The property
has a special name. If

lim f(x) = f(c)
x---+c

then f is said to be continuous atx = c. The idea is shown in Figure c.l. The graph of
f (x) at x = 1 is a solid curve; that is, the graph to the left of (1, f (1)) and the graph
to the right of (1, f(1)) both meet at the common point (1, f(1)).

The function f (x) = sin(x) / x is not continuous at x = 0 because the function is
not even defined there. However, ifwe extend the function as follows:

{

sin(x)
g(x) = -x-'

1,
x :F 0
x=O

the function g(x) is continuous at x = 0 since limx---+o g(x) = 1= g(O).
Iflimx---+ c f(x) = L exists and f(c) is defined, but f(c) :F L, the function f is

said to be discontinuous at c. For example, consider:

{

1, x > 0
f(x) = 0, x = 0

-1, x < 0

The graph of this function is shown in Figure C.2.
The function is discontinuous at x = O. In fact, no matter how we define f (0),

we cannot make this function continuous at zero because there is no way to make a



698 Appendix C Calculus

y

°-------+-------x

°

Figure C.2 The graph of a function that is discontinuous at x = 0.

"solid" connection between the graph to the left of zero and the graph to the right of
zero.

C.1.4 DIFFERENTIATION

As motivation for the concept of derivative and differentiation, let us return to our
initial example of computing the instantaneous speed of an object whose position at
time t is x(t). By an intuitive limiting process, we computed this speed to be a limit
of average speeds of the form (x (t + /).t) - x (t)) /).t. In formal terms the limit is

'( ) 1. x(t + /).t) - x(t)
x t = 1m

M---+O /).t

The function x'(t) is referred to as the derivative of x(t). The derivative exists only
when the limit on the right-hand side of the definition exists.

The derivative has a geometric implication that is quite important. Consider the
position function in our ongoing example, x(t) = t(1- t) for t E [0, 1]. Figure C.3
shows the graph of the function.

The line containing (0, x(O)) and (t2 , x(t2)) is called a secant line ofthe graph. The
average speed (x (t2) - x (0))/(t2 - 0) is the slope of the secant line. The line through
(0, x (0)) and (t I , X (t I)) is yet another secant line and has slope given by the average
speed (x (t I ) - x(O))/(tI - 0). As t l is chosen to be closer and closer to zero, the limit
of the secant lines is the line shown at the left in the figure. This is called the tangent
line of the graph at the point (0, x(O)). The derivative x'(t) may therefore be viewed
as the slope of the tangent line to the graph at (t, x(t)).



C.1 Univariate Calculus 699

x

Figure C.3 The graph of x(t) = t(l- t) with two points marked at times t l and t2. The lines
connecting the origin (0, 0) to (t I , x(t I )) and (t2, x (t2)) are secant lines to the graph.
The line at the left is the tangent line to the graph at (0, x (0)) = (0, 0),

In the example x(t) = t(l- t), we had a good guess at the instantaneous speed
at t = 0 by looking at the average speeds for values of t close to zero. This would
be quite a time-consuming process at other values of t, Instead, we can construct a
general formula for the derivative by directly applying the limit definition.

'( ) I' x(t + b.t) - x(t)x t = 1m
~t-+O b.t

= lim (t + b.t)(l- t - b.t) - t(l- t)

~t-+O b.t

= lim (b.t)(l- 2t) - (b.t)2
~t-+O b.t

= lim (l - 2t - b.t)
~t-+O

= 1- 2t

The last equality is valid since 1 - 2t - b.t is a continuous function of b.t; that is, we
can just evaluate the argument of the limit with b.t = O. Notice that x' (0) = 1, but we
can evaluate x' (t) at any other t of our choosing.

A function f with domain [a, b] is said to be differentiable at x E (a, b) with
derivative

!,(x) = lim f(x + h) - f(x)
h-+O h

as long as the limit on the right-hand side exists. For most functions we work with,
the derivative exists for all points in the domain, but sometimes we meet functions for



700 Appendix C Calculus

Table C.3 Derivatives of some common functions

f(x) f'ex) f(x) f'ex)

x p px p - 1 cot(x) csc2(x)

sin(x) cos(x) exp(x) exp(x)

cos(x) - sin(x) In(x) I
x

tan(x) sec2(x)

which this is not the case. The typical example is the function f (x) = Ix I. The graph
consists of two rays, y = x for x ::: 0 and y = -x for x < O. The derivative for x > 0 is
f'ex) = 1 (the slope of the ray for x > 0). The derivative for x < 0 is f' (x) = -1 (the
slope of the ray for x < 0). However, f' (0) is not defined, so f is not differentiable at
x = O. The graph of f has a cusp, or kink, at the origin.

In a standard calculus course you will spend a lot of time constructing derivatives
for many functions that you will encounter in your applications. Table C3 provides
some common derivatives without going through the formal constructions here.

The function exp(x) is the natural exponential function and In(x) is the natural
logarithm function. Derivatives of other functions can be found in calculus or other
reference books.

Also of use are some standard identities for working with derivatives. The product
rule is

d
- (f(x)g(x)) = f(X)g'(X) + f'(x)g(x)
dx

(Cl)

The notation on the left-hand side indicates the derivative of the product of two
functions f (x) and g (x). The right-hand side is that derivative. For example, if
f(x) = x 2 and g(x) = sin(x), then

~ (x2 sin(x)) = x 2 cos(x) + 2x sin(x)

The quotient rule is

!!- (f(X)) = f'(X)g(X) - f(X)g'(X)
dx g(x) (g(x))2

Using the same f and g as in the last example,

!!- (~) = 2x sin(x) - x
2

cos(x)
dx sin(x) sin2(x)

(C2)



C.1 Univariate Calculus 701

The chain rule tells you how to compute the derivative of a composition of two
functions, f (g (x)),

d I I
dx (f(g(x))) = f (g(x))g (x) (C.3)

You compute the derivative of fey) with respect to its argument y, evaluate it at
y = g (x), then multiply by the derivative of g (x). Once again, using the same f and
g as before, the composition is f(g(x)) = (sin(x)f. The derivative is

~(sin(x))2 = 2(sin(x)) cos(x)
dx

C.1.5 L'HOPITAL'S RULE

In some instances, a limit of a quotient of functions needs to be evaluated where both
numerator and denominator become zero at the target independent variable value.
A rule for evaluating such limits is l'Hopital's rule, named after Guillaume Frans:ois
Antoine Marquis de l'Hopital, who wrote (in the 1600s) the first introductory differ­
ential calculus textbook in which the rule appeared.

Specifically, if f(x) and g(x) are continuous functions at x = e and fee) =
gee) = 0, an attempt to evaluate

1
. f(x)
1m-­

x--*c g(x)

by direct substitution of x = e fails because the fraction % is an indeterminate form.
If the functions are differentiable at x = e and if g' (c) f. 0, then the limit is, in fact,

lim f(x) = lim f'(x) = f'(e)
x--*c g(x) x--*c g'(X) g'ee)

For example,

I, sin(x) l' cos(x) (0)1m --= 1m --=cos =1
x--*O x x--*o 1

which is a result I stated earlier without proof.

C.1.6 INTEGRATION

The other flavor of calculus is integral calculus. The concept is motivated by the desire
to compute the area of an irregular-shaped region. We are familiar with area formulas
for standard geometric objects. The area of a square of width Wand height H is
A = W H. The area of a circle of radius R is A = Jr R 2• However, consider as an



702 Appendix C Calculus

y y

(a)

x

(b)

x

Figure CA An attempt to compute the area bounded by a parabola and the x-axis by filling it
with rectangles.

example the region in the first quadrant of the xy-plane bounded by the x-axis and
the graph of y = x (1 - x). The graph is a parabola. The natural approach to solving
this problem is to attempt to decompose it into regions for which we do know how to
compute the area. What is more natural than trying rectangles? Figure CA shows an
attempt to fill the region with a few rectangles, all of whose bases are on the x -axis.

The problem, of course, is that no matter how many rectangles we select, we can­
not fill the region. However, the more rectangles we choose and the smaller their
widths, the more we can fill the bounded region. The sum of the areas of the rect­
angles in Figure CA(b) provides a better approximation to the true area than does
the sum of the areas of the rectangles in Figure CA(a).

Have we failed in the attempt? No, as long as we rely on our old friend the limit
to help us out. Intuitively, if we let the maximum width of the rectangles approach
zero, all the time requiring more rectangles, in a limiting sense we can fill the region
with rectangles. The classical argument from a physicist's or engineer's perspective
is to think of choosing a rectangle whose width is infinitesimal-call this width dx.
The rectangle is positioned at x on the axis. The height of the rectangle is just the
function value j(x). The rectangle has an infinitesimal area, dA = j(x)dx, which is
just the product ofthe (infinitesimal) width and height. Sum up all such rectangles as
x varies over the relevant domain to obtain the area of the region. The summation is
not finite, so to speak, so rather than using the standard capital sigma (~) to denote
the summation, historically a large S-shaped symbol was used (8 for sum). In our
example the area is indicated by the notation

A = l' x (1 - x) dx



C.1 Univariate Calculus 703

The right-hand side is referred to as the definite integral of j(x) = x(1 - x) on the
domain [0, 1]. For a function j (x) on a domain [a, b], the definite integral is

l b

f(x) dx (C.4)

The function j (x) is referred to as the integrand of the definite integral.
The process of computing the definite integrals is called integration. Our intuitive

approach leads us to believe that the sum of the infinitesimal areas should be the
area of the bounded region, but to obtain the actual area we would need to provide
more formal details on computing a general formula for the area. Once again, these
are details you discuss in a standard calculus course. For our purposes, we just need
to know the end result, the mechanical means by which you integrate the function
j(x). One of the most important results from calculus relates differentiation and
integration:

Fundamental Theorem of Calculus If F(x) = J: j(O d~ is the definite integral of
j(O on the interval [a, x], then F'(x) = j(x). That is, the derivative of F(x) is
just the integrand j (x). The function F (x) is said to be an antiderivative of j (x).
The relationship is sometimes written concisely as

~ l x

j(O d~ = j(x)
dx a

which says that the derivative is the inverse operation of integration.

The result is general knowledge for us, but historically differential calculus and in­
tegral calculus were developed independently. Pierre de Fermat and Rene Descartes
worked on the aspects of computing tangent lines to graphs (differential calculus),
whereas Bonaventura Francesco Cavalieri and Christian Huygens worked on the as­
pects of calculating areas (integral calculus), all of this in the 1600s. Also in the 1600s,
Isaac Newton and Gottfried Wilhelm von Leibniz independently discovered that, in
fact, differentiation and integration were directly related, the result being the Funda­
mental Theorem of Calculus.

With the Fundamental Theorem at hand, let us revisit the problem of computing
the area bounded by a parabola and the x-axis. We had stated this as a definite
integral, A = J0

1
x(1- x) dx. An antiderivative F(x) for j(x) = x(1- x) = x - x 2

is a function for which F'(x) = j(x). Using our knowledge about derivatives of
polynomial terms, we can integrate a polynomial term in the reverse manner. That is,
an antiderivative ofx P is X p+1/ (p + 1) as long as p =J=. -1. An antiderivative ofx - x 2

is therefore F (x) = x 2/2 - x 3/3. The antiderivative mentioned in the Fundamental
Theorem has the property that F (a) = 0, but in general an antiderivative can be any



704 Appendix C Calculus

function for which F' (x) = f (x). That is, the antiderivative is not unique. When we
choose one, we integrate by

lab f(x) dx = F(x)l~ = F(b) - F(a)

where the vertical bar in the middle expression is a notation that says to evaluate F
at the top number and subtract from it F evaluated at the bottom number. The area
of the bounded region is, therefore,

A ={X(l - x) dx = ~2 - ~31~ =G-D-G-D= ~

e.2 MULTIVARIATE CALCULUS

Multivariate calculus involves studying functions y = f(xI' ... ,xn ) with n indepen­
dent variables Xl through X n and one dependent variable y. The heart of the topic
is once again limits, but the introduction of multiple independent variables makes it
somewhat more challenging and interesting. For the sake ofmaking the constructions
look like the ones for univariate functions, define x = (Xl' ••• ,xn ) and y = f(x).

C.2.1 LIMITS AND CONTINUITY

If we choose values ofx close to a specified point c and if the corresponding function
values f (x) are close to a number L, we say that L is the limit of f (x) as x approaches
c. The formal notation is

lim f(x) = L
x---+c

The mathematical definition is just like the one for univariate functions. The limit
exists and is the value L if for each £ > 0, there is a 8 > °such that If (x) - L I < £

whenever Ix - cl < 8. The value £ may once again be viewed as an error tolerance. In
order to make f(x) differ from L by no more than the tolerance, we need to choose
x suitably close to c. The value 8 tells you how close. Observe that Iyl denotes the
length of the vector y. This definition applies for any number n ~ 1 of independent
variables, so the univariate case n = 1 is automatically covered by the definition.

The function f (x) is said to be continuous at c whenever f is defined at c, the
limit of f as x approaches c exists, and the limit is

lim f(x) = f(c)
x---+c



C.2 Multivariate Calculus 705

Many functions you will encounter in physical applications are continuous. For ex­
ample, polynomial functions are continuous at all points and the process of comput­
ing the limit is simply one of evaluating the function.

C.2.2 DIFFERENTIATION

A univariate function y = f (x) that is differentiable has derivative dy / dx = l'(x),
a measure of instantaneous rate of change of f at the value x. We can make simi­
lar measurements of instantaneous rates of change for a multivariate function y =
f(Xl' ... , xn ) with respect to each independent variable. If xi is the independent
variable of interest, the rate of change is called the partial derivative of f with respect
to Xi' Its definition is similar to the one for univariate functions,

af I" f(Xl' ... , Xi + h, ... , Xn ) - f(Xl'" ., Xi' ... , Xn )- = 1m .:....-.--=-------'---------'------'---::.....----'--------'-'--

aXi h-..+O h

The term partial is used to indicate that the rate of change is with respect to only
one of the variables. The univariate differential operator was named d / dx and uses a
regular italic letter d. The partial derivative operator is a/aXi; the symbol a is used to
indicate that the setting involves multiple independent variables.

EXAMPLE

C.3
When working with two independent variables, rather than indexing them, we some­
times use z = f(x, y). The partial derivatives are af/ax and af/ay. Consider z =
f(x, y) = x 2y3. The partial derivatives are

af 3
- =2xy,
ax

Notice that in computing af / ax, the variable y was treated as a constant as far as x is
concerned. As a function ofx alone, think of F (x) = cx2 (the constant c is y3) whose
derivative is F' (x) = 2cx2•

All the derivative formulas that you know for univariate functions apply to mul­
tivariate functions. You simply treat the function as one that depends only on the
independent variable Xi of interest, with all other x j (j =1= i) treated as constants. The
product rule and quotient rule both apply to multivariate differentiation.

The Chain Rule

The chain rule, that differentiation rule that applies to composition of functions,
is more complicated when multiple independent variables are present. The issue is
that each independent variable may be a function of other variables; composition



706 Appendix C Calculus

can occur in multiple components. For example, consider the function g(YI' Y2) =
f(xI(YI' Y2), x2(YI, Y2), x3(YI, Y2)), where f is a function of three independent vari­
ables Xl' xb and X3' but each of these variables is a function of two other variables YI
and Y2. The resulting composition is named g(YI' Y2), a function of two independent
variables. We would like to see how g varies with respect to each of the independent
variables. As YI varies, notice that each of the three components of f varies since
those components are compositions involving YI. You should expect that the rate of
change of g with respect to YI involves the rates of change of f with respect to all of
its independent variables. In fact, the partial derivative of g with respect to YI is

Each term in the summation on the right-hand side looks like the term you see in the
univariate version of the chain rule. Similarly, the partial derivative of g with respect
to Y2 is

Generally, if f depends on n independent variables Xl through Xn and each of the
Xi depends on m independent variables YI through Yw then the partial derivative of
f when viewed as a function of the Yj is

In the event that the Xi depend only on another single variable t-say, Xi (t) are
the components as functions of t-then the notation changes slightly (but not the
idea):

d ~ af dXi
-f(xI'·· .,xn ) =L--
dt i=l aXi dt

The change is due to the fact that f viewed as a function of t alone is univariate, so
the d notation is used rather than a.

We used the chain rule many times in our coverage of Lagrangian dynamics to
compute the partial derivatives of the kinetic energy function.

Directional Derivatives

Consider a multivariate function f (x) where x E lRn
. The partial derivatives measure

rates of change with respect to each independent variable of the function. Effectively,
the rate of change is measured with respect to the direction vector associated with the
independent variable. For example, the function f(XI' X2) has partial derivatives



EXAMPLE

CA

C.2 Multivariate Calculus 707

af = lim f(XI + h, X2) - f(XI' X2)

aXI h--+O h

The measurements are made in the xlxrplane in the direction (1, 0) associated with
x l' That is, the limit formula can be thought of as

af = lim f((XI' X2) + h(1, 0)) - f((XI, X2))

aXI h--+O h

Similarly,

~ = lim f(XI, X2 + h) - f(XI' X2) = lim f((XI, X2) + h(O, 1)) - f((XI, X2))

aX2 h--+O h h--+O h

and the rate of change is measured in the direction (0, 1) associated with X2'
It is natural to ask how f changes in another unit-length direction (uI' u2)' Using

the pattern you see in the partial derivatives, that rate of change should be as shown:

As it turns out, this quantity can be shown to be equal to

which is a weighted sum of the partial derivatives of f. The sum is called the direc­
tional derivative off in the specified direction. We can write this in a coordinate-free
manner by defining x = (Xl' X2)' and u = (uI' u2)' and by defining the gradient of f
to be the vector of partial derivatives of f, namely,

Vf= (af,~)
aXI aX2

The directional derivative at x in the direction u is u . V f(x). This form of the
directional derivative applies to any number of independent variables,

n af
u,vf(x)=Lui-

i=l aXi

Let f(x, y) = x 2y 3. The directional derivative at (1, 2) in the direction (3/5, 4/5) is

(3/5,4/5) . (2xy3, 3x 2y2) I = (3/5,4/5) . (16, 12) = 19.2
(1,2)

The vertical bar notation means that you evaluate the variable terms on the right
using the specific point that occurs as a subscript on the bar.



708 Appendix C Calculus

The partial derivatives aflax and af I ay of f (x, y) have a geometric interpreta­
tion' just as the ordinary derivative f' (x) of f (x) did. In the univariate case, f' (x)
is the slope of the tangent line to the graph of f (x) at x. That is, the tangent line at
(x, f(x)) has direction (1, f'ex)). In the multivariate case, and assuming the func­
tion is differentiable, the graph at (x, y, f (x, y)) has a tangent plane. Ifyou walk in a
specific direction in the xy-plane, there is a corresponding tangent line in the tangent
plane. If the planar direction is (1, 0), the corresponding tangent line has direction
(1,0, aflax). If the direction is (0, 1), the tangent line has direction (0, 1, aflay).
Generally, the direction (UI' U2) in the xy-plane generates a tangent line whose di­
rection is

In coordinate-free form, this vector is (u, u . V f). Given two linearly independent
tangent line directions, the tangent plane normal N must be the normalized cross
product of those directions. In particular, as long as Vf i= 0, the tangent line di­
rections corresponding to (1, 0) and (0, 1) are linearly independent and the tangent
plane normal is

N = (1,0, aflax) x (0, 1, aflay)

1(1,0, aflax) x (0,1, aflay) 1

C.2.3 INTEGRATION

(-aflax, -aflay, 1)

The motivation for the definite integral of a univariate function was based on com­
puting the area bounded by the graph of a function f(x) and the x-axis. A similar
motivation applies for multivariate functions. In particular, let us consider bivariate
functions f (x, y) that are nonnegative. Let 'D C }R2 be the domain of the function
whose boundary is a simple closed curve. The region 9( bounded by the graph of
z = f(x, y), the xy-plane, and the boundary of'D extruded vertically has a finite
volume. We can attempt to "fill" 9( with vertical rectangular solids whose bases are
axis-aligned in the xy-plane. Figure C.S shows the bases of some rectangular solids as
an attempt to fill the region.

Naturally, just as in the univariate case, we cannot fill 9( with a finite number of
rectangular solids because the graph of the function has variable slope. Moreover, we
cannot even fill 'D with rectangular bases because its shape is also not a union of a
finite number of rectangles. In a limiting sense, though, we can obtain better and
better approximations by using rectangles with smaller area bases and lots more of
them. From the infinitesimal perspective, ifan axis-aligned rectangular base is chosen
to be very small, say, of dimensions dx by dy, and placed at (x, y) E 'D, the height
of the rectangle is f (x, y). The infinitesimal volume covered by the rectangular solid
is the product of the infinitesimal area of the base, dx dy, with the height f(x, y),



C.2 Multivariate Calculus 709

y

+--------------x

Figure C.5 Bases of some rectangular solids as an attempt to fill the domain 'D.

namely, dV = f(x, y)dx dy. If we "add" these up for all (x, y) E 'D, we obtain the
volume

v = In f(x, y)dx dy

a multidimensional integral. The question is how do we make sense of this and
evaluate it. The answer is to use iterated integration by decomposing the domain so
that we can fix y, integrate with respect to x, then integrate with respect to y. When
we use iterated integrals, the integral sign in the last displayed equation is replaced by
two integral signs.

EXAMPLE

C.5
Let us compute the volume of the solid bounded by the graph of f (x, y) = 4 - x 2 ­

y2 on the closed disk 'D, x 2 + y2 ::s 1. The volume is

A fixed value of y in the domain corresponds to a horizontal line segment that
touches the left and right hemispheres of the disk. The x values on that segment vary
from -.j1=Y2 to.j1=Y2. The y values themselves vary from -1 to 1. The iterated
integral is



710 Appendix C Calculus

(Example C.S
continued)

Treating y as a constant, the "innermost integral" is evaluated.

11 (1~ )V = 2 4 - x2 - y2dx dy
-1 -~

11 1 I~= (4- y2)x - _x3 dy
-1 3 -Jl-y2

The last integral is univariate. Although one is apparently taught in calculus courses
that closed-form antiderivatives are the goal, in practice that is typically not the case.
An integral ofthe type we now have can be approximated using numerical integration
algorithms.

The same iterated integration method applies in more dimensions. The technical
challenge in higher dimensions is invariably the decomposition of the domain of
the function in order to construct the limits of integration. However, numerical
methods do exist for numerical integration without having to formally decompose
the domain. These methods are discussed in standard numerical analysis textbooks
such as [BFOl].

Other examples of multivariate integrals are found in Section 2.5. Computing
centers of mass and inertia tensors are the main application of multivariate integra­
tion in a physics simulation.

C.3 ApPLICATIONS

This section contains a few applications that are relevant to physical simulation. The
first section is on optimization of a function, the process of constructing minima
and/or maxima of the function. An illustrative example of optimization for a uni­
variate function is provided: determining whether or not an oriented bounding box
intersects a plane where the box is both translating and rotating in space. The speci­
fied time interval is [0, T]. The distance between the box and plane is time varying,
say, D(t). The box will intersect the plane if the minimum value of D(t) on [0, T] is
zero. An example for a multivariate function is provided and arises in the problem of
computing the closest point on a triangle to a specified point.

Constrained optimization involves computing minima and/or maxima ofa func­
tion, but with additional constraints on the variables. Only equality constraints are
considered here. The method ofsolution uses Lagrange multipliers. An illustrative ex­
ample of constrained optimization is provided: computing the distance between two



C.3 Applications 711

objects whose boundary surfaces are level surfaces, ellipsoids being the prototypical
case.

Finally, in constructing numerical methods for solving differential equations,
we need to approximate derivatives by finite differences. The numerical methods
of Chapter 9 all require such approximations. The last application discussed here is
about obtaining approximations of a specified order of error.

C.3.1 OPTIMIZATION

The ideas for optimization are first summarized for univariate functions. The exten­
sion of the ideas to multivariate functions is then provided.

Univariate Functions

Let I (x) be a differentiable function with domain [a, b]. We wish to locate the value
Xmin for which I (Xmin) is a minimum. That is, I (xmin) :::: I (x) for all x E [a, b].
Similarly, we want to locate the value Xmax for which I (x) is a maximum: I (x) .::::

I (xmax ) for all x E [a, b]. A typical function with these values is shown in Figure C.6.
The function has a local maximum at XloC' Such a point has the property that

I (x) :::: I (xloc) for all x nearby XloC' That is, the maximum value for the function
is only relevant in the locale near XloC' The function has a local minimum at Xmiw
Such a point has the property that I (x) ~ I (xmin) for all x nearby Xmiw That is,
the minimum value for the function is only relevant in the locale near xmiw In this
particular example the local minimum happens to be the global minimum for the

y

fmax

fmin

-+-+-----t------t-----+--x
a

Figure C.6 The graph of a function I(x) on its domain [a, b].



712 Appendix C Calculus

function. The global maximum for the function occurs at xmax = b, an end point of
the domain interval.

Generally, a global extremum (minimum or maximum) occurs at a point where
the derivative of the function exists and is zero, or where the derivative does not
exist, or at an end point of the interval. The process of function optimization involves
locating all such candidate points, evaluating the function at these points, and then
choosing the optimum value. In Figure C.6 we would find Xloc and Xmin as solutions
to f' (x) = 0 and we would look at x = a and x = b since they are the end points
of the domain interval. An analysis of f(a), feb), f(xloc )' and f(xmin) shows that
fmin = f(Xmin) and fmax = feb).

The technical challenge in computing global extrema is, of course, solving the
equation f'(x) = 0 and/or determining where f'ex) is undefined. Even when f(x)
is a polynomial, implementing fast and robust numerical methods to solve for zeros
of the derivative is sometimes difficult.

EXAMPLE

C.6

EXAMPLE

C.7

Compute the global extrema of f(x) = x 3 - 2x 2 - 4x - 5 on the interval [-1,3].
The derivative of f is f'ex) = 3x 2 - 4x - 4. The roots to f'ex) = 0 are computed
using the quadratic equation: x = 2 and x = -2/3. The function values that contain
the extrema are f(-I) = -4, f(3) = -8, f(2) = -13, and f(-2/3) = -95/27 ==
-3.518. The global minimum is fmin = -13 and the global maximum is fmax =
-95/27.

An oriented bounding box (OBB) is translating and rotating through space. Its center
at time t is C(t). The box axis directions are Vo(t), VI (t), and V 2(t). The directions
are unit length and mutually perpendicular. The extents (half-widths) along each axis
are eo, eI' and e2' Points in the OBB are

X(t) = C(t) + R(t)Y

where R(t) = [Vo(t) IVI (t) IV 2(t)] is a rotation matrix whose columns are the box
axis directions and where Y(t) = (Yo, YI' Y2) with !yiI .:::: ei for all i.

We are interested in when the OBB will first contact a stationary plane given by
N . X = d, where N is a unit-length normal to the plane and X is any point on
the plane. At first time of contact, the distance between the OBB and the plane is
a minimum.

At time zero, the OBB and plane are assumed not to be intersecting and the OBB is
on the side of the plane to which the normal points. The distance from the OBB to
the plane at time t is the distance between the plane and a corner of the OBB that is
closest to the plane. This corner has the property that its projection onto the normal
line sN is closer to the plane than are other corners (possibly two or more corners are
equally close). The projection of any OBB point X(t) is s(t)N, where

set) = N . X(t) = N . (C(t) + R(t)Y)



C.3 Applications 713

At first time of contact it is the case that s = d, the plane constant. The smallest s (t)

for all points occurs at one of the eight corners. These corners occur for one of the
eight possibilities Y = (±eo, ±el' ±ez). The eight projection values are

set) = N . X(t)

= N . (C(t) ± eoVo(t) ± eIVI(t) ± ezVz(t))

= N· C(t) ± eoN· Vo(t) ± eIN· VI(t) ± ezN· Vz(t)

The closest corner occurs when set) is as small as possible, so

set) = N· C(t) - eolN· Vo(t) I - eIIN· VI(t)1 - ezlN· Vz(t) I

Because we required the OBB to be initially on the side ofthe plane to which N points,
it is the case that s(O) > d. If we define f(t) = (s(t) - d)z and limit our collision
query to t E [0, T] for some user-specified maximum time T > 0, we have reduced
the problem to calculating the minimum of f(t) on the interval [0, T] and testing if
that minimum is zero. The roots to l'(t) = 0 occur when s (t) = d or when s' (t) = o.
The ease or difficulty with which we can solve this problem depends on the simplicity
or complexity of the translation C(t) and the orientation matrix R(t).

Multivariate Functions

Locating the global extrema of multivariate functions has similarities to the univari­
ate case but is geometrically more challenging. The abstract idea ofthe univariate case
extends naturally. A global extremum must occur either at a point where the "deriva­
tive" is zero, a point where the "derivative" is undefined, or at a boundary point of
the domain. The "derivative" in the multivariate case is the gradient vector of the
function f(x), namely, V f.

When we have n independent variables, the equation Vf = 0 represents n equa­
tions in n unknowns. The equations are generally nonlinear, so numerical methods
must be applied to solve them. The standard method is a multidimensional New­
ton's method. Once the solutions are found, they can be classified as maxima points,
minima points, or saddle points by using second-order partial derivatives. The classi­
fication requires knowing about eigenvalues and eigenvectors and is covered in detail
in Section A.5.5.

The analysis of the function f restricted to its boundary points can itself be
complicated depending on the function, but in fact the analysis is one of recursive
descent in dimension. Consider a bivariate function f (x, y) with an irregular-shaped
domain'D in the xy-plane. Suppose that the boundary of 'D is a simple closed curve
parameterized by (x(t), yet)) for t E [a, b]. The restriction of f to the boundary
is get) = f(x(t), yet)). The global extrema of get) on [a, b] may be found. This
is a one-dimensional problem (one independent parameter t), whereas finding the
points where Vf = 0 is a two-dimensional problem (two independent variables x



714 Appendix C Calculus

and y). Thus, the analysis of the boundary is in one fewer dimensions than that of
the interior of 'D .

The recursive descent for a function 1(x, y, z) is similar. Let 'D be the domain
of the function whose boundary is a simple closed surface. The candidate extrema
points in the interior of 'D are obtained by solving V1 = 0, a system of three equa­
tions in three unknowns. The boundary surface can be parameterized by two vari­
ables, say, sand t, that parameterization being (x (s, t), y (s, t), z(s, t)). The param­
eter domain is denoted P; that is, each parameter pair (s, t) E P. The function 1
restricted to the boundary is g(s, t) = l(x(s, t), yes, t), z(s, t)). We now need to
compute the global extrema of g(s, t) for (s, t) E P. This is a two-dimensional prob­
lem, whereas the original was in three dimensions. The two-dimensional problem,
involves determining where Vg = 0, a system of two equations in two unknowns.
The global extrema of g on the boundary of P (a curve) is performed by parameter­
izing the boundary by a parameter r. The boundary curve is (s (r), t (r)) for r E [a, b)
and the restriction of g to the boundary is h(r) = g (s (r), t (r)). The reduction in di­
mension has led us to a one-dimensional problem.

EXAMPLE

e.B
Compute the global minimum of1(s, t) = aoos 2 + 2aOlst + a ll t 2+ 2bos + 2b1t + c
for (s, t) in the triangular domain s ::: 0, t :::. 0, and s + t .:::: 1. We will assume that
aoo > °and aOOall - a~l > °so that the graph of 1 is a paraboloid opening upward,
thus a global minimum exists.

The gradient of 1 is

The equation V1 =°leads to two linear equations in the two unknowns sand t. The
solution is

- +aolbo - aOOb 1t=------'-2":""""';O
aOOall - aQl

If (5, t) is inside the triangular domain, then 1 (S, t) must be the global minimum
since the graph is a paraboloid opening upward. If it is not in the triangular domain,
then we need to search for the minimum of 1 restricted to the boundary.

On the boundary s =°with t E [0, 1], the function is get) = 1(0, t) = allt2 + 2b1t +

c. The minimum of g occurs when g'(t) = °or at t = °or t = 1. The equation
g'(t) =°has solution

The candidate minima are g(O) = c, g(1) = all + 2b1 + c, and get).



EXERCISE

C.l

C.3.2

e.3 Applications 715

On the boundary t = 0 with s E [0, 1], the function is h(s) = f(s, 0) = aoos2+
2bos + c. The minimum ofh occurs when h' (s) = 0 or at s = 0 or s = 1. The equation
h'(s) = 0 has solution

A bos=--
aoo

The candidate minima are h(O) = c, h(1) = aoo + 2bo+ c, and h(s).

Finally, on the boundary s + t = 1 with s E [0, 1], the function is pes) = f(s, 1 ­
s) = (aoo - 2aOl + all)s2 + 2(aOI - all + bo - bl)s + (all + 2b l + c). The mini­
mum of p occurs when p'(s) = 0 or at s = 0 or s = 1. The equation p'(s) = 0 has
solution

- -aOl + all - bo+ bls=--------
aoo - 2aOl + all

The candidate minima are p(O) = all + 2b l + c, p(1) = aoo + 2bo+ c, and pes).

The global minimum is the smallest of g(O), g(1), get), h(1), h(s), and pes). Notice
that g(O) corresponds to f(O, 0), g(1) corresponds to f(O, 1), and h(1) corresponds
to f(1, 0), the function values at the vertices of the triangular domain. The values
g(i), h(s), and pes) correspond to local minima on the lines containing the edges of
the triangular domain.

By the way, this exact problem arises when computing the distance from a point
to a triangle in 2D or in 3D. The sand t values are the variables of the standard
parameterization for a triangle. The point (s, t) at which the global minimum of f
occurs corresponds to the closest point on the triangle to the specified point.

Establish the connection just described in Example e.s between distance from point
to triangle and minimization of f (s, t).

CONSTRAINED OPTIMIZATION

We have already seen that local extrema of multivariate functions f (x) occur when
the gradient is zero, 'V f (x) = O. Sometimes an additional equality constraint is
placed on the independent variable, say, g(x) = 0 for some multivariate function
g. The constraint causes dependencies within the set of independent variables, thus
reducing the number of independent ones.

Constrained optimization is the term used to refer to problems of this type.
A classical method for handling these is called the method of Lagrange multipliers.
The method involves introducing another parameter into the problem, call it A, and
analyzing



716 Appendix C Calculus

hex, A) = f(x) + Ag(X)

The constraint g = 0 generally causes a reduction from n independent variables to
n - 1. The introduction ofA raises this back to n independent variables. The function
h is optimized in the manner mentioned earlier, by determining those x and A for
which the gradient ofh is zero. Notice that the gradient ofh has one more component
than the gradient of f. To stress this difference, we use the notation

(
ah ah)V'h= -,- = (V'f +AV'g, g)
ax aA

Setting V'h = 0 leads to V' f + AV'g = 0 and g = O. The second equation is just the
constraint with which we started. The first equation is solved by dotting with V'g,

assuming of course that V'g is not identically the zero vector. Resubstituting this in
the first equation, we obtain

This equation provides n equations in the n unknown variables x 1 through X n and
may be solved by numerical methods for multidimensional root finding.

If m multiple constraints are specified, say, gj(x) = 0 for 1::::: j :::::: m, the same
introduction of parameters Aj allows for a similar method of solution. The Aj are
called Lagrange multipliers. The new function to optimize is

m

hex, AI' ... ,Am) = f(x) + L gj(x)
j=1

The gradient ofh is

Setting the first component of the gradient vector to the zero vector yields

m

V'f+LAjV'gj=O
j=1

(C.S)

Setting the other components to zero reproduces the constraints g j = 0 for all j.



EXAMPLE

C.9

C.3 Applications 717

Dotting equation (C.S) with Vgj for 1 ::::: i ::::: m gives us a set of m equations in the
m unknown Lagrange multipliers,

m

L Vg j ' Vg/Aj = -Vf· Vg j

j=l

If A = [aij] is an m x m matrix with aij = Vg j • Vg j , ifB = [bd is an m x 1vector
with b j = - Vf . Vgj, and if A = [).), the system of equations is AA = B, a linear

system that can be solved whenever A is invertible: A = A-IB. The Aj from the
solution are resubstituted into equation (C.S), thereby giving us a single vector­
valued equation of n equations in the n unknowns Xl through X n .

Two ellipsoids are defined implicitly by the quadratic equations gj(x) = xTA jX +
b}x + Cj = 0, j = 1and j = 2. The 3 x 3 matrices A j are positive-definite (symmet­
ric with positive eigenvalues). Let us assume that the ellipsoids are separated, so the
distance between them is positive. How do we go about computing the distance?

Let x be a point on the first ellipsoid, so gl (x) = O. Let y be a point on the second
ellipsoid, so g2(Y) = O. The squared distance between these two points is

f(x, y) = Ix - yl2

We wish to select x and y that minimize f(x, y) subject to the constraints that
gl(x) = 0 and g2(y) = O. The number of independent variables is six, three for the
first ellipsoid and three for the second ellipsoid. Each constraint reduces the number
of independent variables by one, leaving us (implicitly) with four independent vari­
ables. This makes sense in that x and y each lie on an ellipsoid, a two-dimensional
surface. We have two degrees of freedom for each point, a total of four degrees of
freedom.

Using the method of Lagrange multipliers, define

hex, y, AI' A2) = f(x, y) + Algl(x) + A2g2(y)

= Ix - YI 2+ Al(XTAlx + bix + cl) + A2(yTA2y + biy + c2)

Setting the gradient of h to zero yields four vector-valued equations:

ah/ax = 2(x - y) + Al(2A lx + b l) = 0

ah/ay = 2(y - x) + A2(2A2y + b2) = 0

ah/aAl = xT
Alx + bix + Cl = 0

ah/aA2 = yT A2y + biy + C2 = 0

(C.6)



718 Appendix C Calculus

(Example C9
continued)

The last two equations of equation C.6 are just the original constraints. The first
two equations have a geometric interpretation. The minimum distance between the
ellipsoids is attained by points x on the first and y on the second and is the closest
pair of points, one point per ellipsoid. Sketch a picture to convince yourself that the
vector connecting these two, x - y, is perpendicular to both ellipsoids at the closest
points. The gradient vectors of the implicitly defined surfaces are perpendicular to
their respective surfaces. The gradient of the first ellipsoid is V'gI (x) = 2A IX + b I,
the gradient of the second is V'g2(y) = 2A2y + b2. The vectors x - y and 2A Ix + b I
are parallel, so some linear combination of the two vectors must be the zero vector.
This is exactly what the first equation in (C.6) says. The same argument applies to
x - y and 2A2y + b2; the second equation of (C.6) says the two vectors are paralleL

The first two equations of (C.6) may be solved directly to obtain the Lagrange multi­
pliers, then we resubstitute the multipliers into the equations to obtain the following
system of two equations in two vector-valued unknowns:

and

x - - (x - y) . (2A 2y + b2) (2A + b ) = 0
Y 12A2y + b212 2Y 2

A multidimensional numerical root finder may be used to compute the solutions.

C.3.3 DERIVATIVE ApPROXIMATIONS BY FINITE DIFFERENCES

In numerical methods for solving ordinary differential equations of the type shown
in Chapter 9, and in numerical methods for solving partial differential equations, we
invariably need to use approximations to ordinary derivatives and to partial deriva­
tives in order to establish the iterative method itself. The following material shows
how to obtain such approximations.

Given a small value h > 0, the dth-order derivative satisfies the following equa­
tion where the integer order of error p > 0 may be selected as desired,

(C.?)

for some choice of extreme indices imin and imax and for some choice of coefficients
Ci • The equation becomes an approximation by throwing away the O(hd+p ) term.
The vector C= (Ci . , ••• , Ci ) is called the template for the approximation. Ap­
proximations for th~mderivativ~axof multivariate functions are constructed as tensor
products of templates for univariate functions.



e.3 Applications 719

Derivatives of Univariate Functions

The following approximations are valid for the derivative of F(x). A forward differ­
ence approximation is

F'(x) = F(x + h) - F(x) + O(h)
h

a backward difference approximation is

F'(x) = F(x) - F(x - h) + O(h)
h

and a centered difference approximation is

F'(x) = F(x + h) - F(x - h) + O(h2)
2h

(e.8)

(e.9)

(e.IO)

The approximations are obtained by throwing away the error terms indicated by the
o notation. The order of the error for each of these approximations is easily seen
from formal expansions as Taylor series about the value x,

h2 00 hn
F(x + h) = F(x) + hF'(x) + -F"(x) + ... = L -F(n\x)

2! n=O n!

and

h2 00 hn
F(x - h) = F(x) - hF'(x) + -F"(x) + ... = L(-l)n-F(n\x)

2! n=O n!

where F(n)(x) denotes the nth-order derivative of F. The first equation leads to
the forward difference F'(x) = (F(x + h) - F(x))j h + O(h). The second equation
leads to the backward difference F'(x) = (F(x) - F(x - h))j h + O(h). Both ap­
proximations have error 0 (h). The centered difference is obtained by subtracting the
second equation from the first to obtain (F(x + h) - F(x - h))j(2h) + O(h2).

Higher-order approximations to the first derivative can be obtained by using
more Taylor series, more terms in the Taylor series, and cleverly weighting the various
expansions in a sum. For example,

lead to a forward difference approximation with second-order error,

F'(x) = -F(x + 2h) + 4F(x + h) - 3F(x) + O(h2)
2h

(e.ll)



720 Appendix C Calculus

to a backward difference approximation with second-order error,

F'(x) = 3F(x) - 4F(x - h) + F(x - 2h) + O(h2)

2h

and to a centered difference approximation with fourth-order error,

(CI2)

F'(x) = -F(x + 2h) + 8F(x + hi2: 8F(x - h) + F(x - 2h) + O(h4 ) (Cl3)

Higher-order derivatives can be approximated in the same way. For example, a
forward difference approximation to F" (x) is

F"(x) = F(x + 2h) - 2F(x + h) + F(x) + O(h)
h2

and centered difference approximations are

F"(x) = F(x + h) - 2F(x) + F(x - h) + O(h2)

h2

and

(CI4)

(CIS)

F"(x) = -F(x + 2h) + 16F(x) - 30F(x) + 16F(x - h) - F(x - 2h) + O(h4 )

12h2

(CI6)

Each of these formulas is easily verified by expanding the F (x + i h) terms in
a formal Taylor series and computing the weighted sums on the right-hand sides.
However, of greater interest is to select the order ofderivative d and the order of error
p and determine the weights Ci for the sum in equation (C?). A formal Taylor series
for F(x + ih) is

Replacing this in equation (C?) yields

h
d

F(d)(x) + O(hd+p ) = I: c, t inh: F(n) (x)
d! i=i

min
n=O n.



C3 Applications 721

Table CA Parameters for various finite difference approximations

Equation d p Approximation Type i min imax

(CS) 1 1 forward 0 1

(C9) 1 1 backward -1 0

(CIO) 1 2 centered -1 1

(Cll) 1 2 forward 0 2

(CI2) 1 2 backward -2 0

(Cl3) 1 4 centered -2 2

(CI4) 2 1 forward 0 2

(CIS) 2 2 centered -1 1

(CI6) 2 4 centered -2 2

Multiplying by dlj hd , the desired approximation is

In order for equation (CI7) to be satisfied, it is necessary that

i
max

{L inC
i

= 0, 0 ~ n ~ d + p - 1and n f d
1, n =d

i=imin

(CI7)

(CIS)

EXAMPLE

C.IO

This is a set of d + p linear equations in imax - imin + 1 unknowns. If we constrain
the number of unknowns to be d + p, the linear system has a unique solution. A
forward difference approximation occurs if we set i min = 0 and imax = d + p - 1. A
backward difference approximation occurs ifwe set imax = 0 and i min = -(d + p - 1).
A centered difference approximation occurs if we set imax = -imin = (d + p - 1)/2
where it appears that d + p is necessarily an odd number. As it turns out, p can be
chosen to be even regardless of the parity ofd and imax = L(d + p - I)/2J.

Table C.4 indicates the choices for d and p, the type of approximation (forward,
backward, or centered), and the corresponding equation number.

Approximate F(3)(x) with a forward difference with error O(h), d = 3, and p = 1.
We need i min = 0 and imax = 3. The linear system from equation (CIS) is



722 Appendix C Calculus

(Example C.l 0
continued)

and has solution (Co, C1, C2 , C3) = (-1,3, -3, 1)/6. Equation (CI7) becomes

F
(3)() -F(x) + 3F(x + h) - 3F(x + 2h) + F(x + 3h) 0 h

x = h3 + ()

Approximate F(3\x) with a centered difference with error O(h2), d = 3, and p = 2.
We need imax = -imin = 2. The linear system from equation (CI8) is

[

1 1 1 1
-2 -1 0 1
4 1 0 1

-8 -1 0 1
16 1 0 1

EXAMPLE

C.II

and has solution (C-2 , C- 1, Co' Cl' C2) = (-1, 2, 0, -2, 1) /12. Equation (CI7)
becomes

F(3)(X) = -F(x - 2h) + 2F(x - h) - 2F(x + h) + F(x + 2h) + O(h2)

2h 3

Finally, approximate with a centered difference with error 0 (h 4 ), d = 3, and p = 4.
We need imax = -imin = 3. The linear system from equation (CI8) is

1 1 1 1 1 1 1 C-3 0
-3 -2 -1 0 1 2 3 C-2 0

9 4 1 0 1 4 9 C-1 0
-27 -8 -1 0 1 8 27 Co 1

81 16 1 0 1 16 81 C1 0
-243 -32 -1 0 1 32 243 C2 0

729 64 1 0 1 64 729 C3 0

and has solution (C-3, C-2 , C-1, Co' C1, C2 , C3) = 0, -8,13,0, -13, 8, -1)/48.
Equation (CI7) becomes

F(3)(x) = F(x - 3h) - 8F(x - 2h) + 13F(x - h) - 13F(x + h) + 8F(x + 2h) - F(x + 3h)

8h 3

Approximate F(4\x) with a forward difference with error O(h), d = 4, and p = 1.
We need i min = 0 and imax = 4. The linear system from equation (CI8) is

[~ ~: 1:] [~;] = [~]
o 8 27 64 C3 0
o 16 81 256 C4 1



C3 Applications 723

and has solution (Co' Cl , C2 , C3 , C4) = (1, -4,6, -4, 1)/24. Equation (CI7)
becomes

F(4)(X) = F(x) - 4F(x + h) + 6F(x + 2h) - 4F(x + 3h) + F(x + 4h) + O(h)

h4

Approximate F(4)(x) with a centered difference with error O(h2), d = 4, and p = 2.
We need imax = -imin = 2. The linear system from equation (CI8) is

[

1 1 1 1
-2 -1 0 1

4 1 0 1
-8 -1 0 1
16 1 0 1

and has solution (C- 2 , C- l , Co' C l , C2) = (1, -4,6, -4,1)/24. Equation (CI7)
becomes

F(4\X) = F(x - 2h) - 4F(x - h) + 6F(x) - 4F(x + h) + F(x + 2h) + O(h2)

h4

Finally, approximate with a centered difference with error 0 (h 4), d = 4, and p = 4.
We need imax = -imin = 3. The linear system from equation (CI8) is

1 1 1 1 1 1 1 C-3 0
-3 -2 -1 0 1 2 3 C-2 0

9 4 1 0 1 4 9 C- l 0
-27 -8 -1 0 1 8 27 Co 0

81 16 1 0 1 16 81 Cl 1
-243 -32 -1 0 1 32 243 C2 0

729 64 1 0 1 64 729 C3 0

and has solution

Equation (CI7) becomes

F(4)(X)

-F(x - 3h) + 12F(x - 2h) - 39F(x - h) + 56F(x) - 39F(x + h) + 12F(x + 2h) - F(x + 3h)

6h4



724 Appendix C Calculus

Derivatives of Bivariate Functions

For functions with more variables, the partial derivatives can be approximated by
grouping together all of the same variables and applying the univariate approxima­
tion for that group. For example, if F (x, y) is our function, then some partial deriva­
tive approximations are

F ( ) ~ F (x + h, y) - F (x - h, y)
x x, y - 2h

F( )~F(x,y+k)-F(x,y-k)
y x, y - 2k

F ( ) ~ F(x + h, y) - 2f(x, y) + F(x - h, y)
xxx,y - h2

F ( ) ~ F(x, Y + k) - 2f(x, y) + F(x, Y - k)
yy x, y - k2

F ( ). _F....:..(x_+_h_,=-.y_+_k...:....)_-_F_(....:..x_+_h_,--=:.y_------.:k)....:..-_F....:..(x_-_h_,-=--y_+_k....:..)_+_F-----.:(x_-_h.....;,y....:..------..:...k)
xy x, y = 4hk

Each of these can be verified in the limit: the x-derivatives by taking the limit as h
approaches zero, the y-derivatives by taking the limit as y approaches zero, and the
mixed second-order derivative by taking the limit as both hand k approach zero.

The derivatives Fx ' Fy ' Fxx ' and Fyy just use the univariate approximation for­
mulas. The mixed derivative requires slightly more work. The important observation
is that the approximation for Fxy is obtained by applying the x-derivative approxi­
mation for Fx ' then applying the y-derivative approximation to the previous approx­
imation. That is,

F ( ) ~ F(x + h, y) - F(x - h, y)
xy x, y - 2h

F(x+h,y+k)-F(x-h,y+k) F(x+h,y-k)-F(x-h,y-k)
2h 2h

2k

F(x + h, y + k) - F(x + h, y - k) - F(x - h, y + k) + F(x - h, y - k)

4hk

The approximation implied by equation (C.?) may be written as

(C.19)

The inclusion of the superscript on the C coefficients is to emphasize that those
coefficients are constructed for each order m. For bivariate functions, we can use the



C.3 Applications 725

natural extension of equation (C.19) by applying the approximation in x first, then
applying the approximation in y to that approximation, just as in our example of Fxy •

kn an hm am kn an i
max

----F(x,y)=-- L C~m)F(x+ih,y)
n! ayn m! axm n! ayn .. I

I =1 min

imax imax

-=-- L L Ci(m)C;n) F(x + ih, Y + jk)

i =imin i = imin

(C.20)

=L
imax

'"" C~m.'n)F(x + ih, y + jk)
~ I,]

i=imin i=imin

where the last equality defines

The coefficients for the bivariate approximation are just the tensor product of the
coefficients for each of the univariate approximations.

Derivatives ofMultivariate Functions

The approximation concept extends to any number of variables. Let (xl' ... , xn ) be
those variables and let F(XI' ... , xn ) be the function to approximate. The approxi­
mation is

where

a tensor product of the coefficients of the n univariate approximations.

(C.2l)



ORDINARY D\\,fFFE ENCE
\,

EQuATIONS

D.I DEFINITIONS

Let {Yd~o be a sequence of numbers whose terms are dependent based on the
equation

Yk+n = f(k, Yk' Yk+l' ... , Yk+n-l) (D.l)

for some function f, for some n > 0, and for all k ::: 0. The equation is called an
explicit nth-order difference equation. The first n terms of the sequence Yo through
Yn-l are called the initial values for the difference equation. Once selected, the next
term is determined from the previous terms by Yn = f(O, Yo' ... , Yn-l)' The terms
Yl through Yn may in turn be used to construct Yn+ l' The process is repeated as often
as an application requires. The adjective explicit refers to the explicit occurrence ofthe
next term Yk+n on the left-hand side of the equation. An implicit nth-order difference
equation is

F(k, Yk' ... , Yk+n) = ° (0.2)

For all practical purposes, the function is assumed to be differentiable in its last com­
ponent with aF / aYk+n i=- °for any generated sequence. If it is possible to solve the
implicit equation in closed form for Yk+n' then the solution is an explicit equation.
In many cases it is not possible to solve in closed form, so Yk+n must be calculated by
some numerical method.

727



728 Appendix D Ordinary Difference Equations

If the function in the definition for an explicit difference equation does not have
a k-component, that is, Yk+n = f(Yk' ... , Yk+n-l), then the equation is said to be
autonomous. The autonomous implicit difference equation is F (Yb ... , Yk+n) = 0.

In some applications, the behavior of Yk in the limit as k becomes infinite is
important to know. The possibilities are that the limit is a finite number, is infinite
(+00 or -00), or does not exist.

EXAMPLE

D.l
The equation Yk+l = Yf' Yo ::: 0, is an explicit, autonomous, first-order difference
equation. It is of the form Yk+l = f(Yk), where feu) = u2. In this example we can
construct a general formula. The first few terms of the sequence are

2
Yl = Yo'

2 (2)2 4
Y2 = Y1 = Yo = Yo'

2 (4)2 8Y3 = Y2 = Yo = YO' ... ,

EXAMPLE

D.2

EXAMPLE

D.3

A check to make sure we observed the correct pattern:

and in fact we do have a solution. IfYo = 0, all terms in the sequence are zero. IfYo = 1,
all terms in the sequence are 1. For°< Yo < 1, the sequence terms decrease in size and
limk--+oo Yk = 0. For Yo > 1, the sequence terms increase in size and limk--+oo Yk =
+00.

The equation Yk+l + (k + I)Yf - 1=°is an implicit, nonautonomous, first-order
difference equation. It is of the form F(k, Yb Yk+l) = 0, where F(k, u, v) =
v 3 + (k + l)u2 - 1. This equation may be solved explicitly as

(
2) 1/3

Yk+l = 1 - (k + I)Yk

A few iterations are shown:

(
2) 1/3

Yl = 1- Yo

A general solution for this example is intractable, but it can be shown that the limiting
behavior is limk--+oo Yk = -00.

The equation Yk+2 + exp(-Yk+2) - Yk+l - Yk = ° is an autonomous, implicit,
second-order difference equation. The initial values are Yo and Yl. It is not possible to



D.1 Definitions 729

explicitly solve for Yk+2. Define g(x) = x + exp(-x) - c, where c = Yk+l + Yk. The
value Yk+2 is a root to g(x) = o. First, g(x) = 0 might not have roots. The first and
second derivatives are g/(x) = 1 - exp(-x) and g//(x) = exp(-x). The first deriva­
tive is zero when x = o. The second derivative is always positive. These conditions
imply that g(x) has a global minimum atx = 0, so g(x) ~ g(O) = 1- c. Ifc < I, then
g(x) > 0 for all x, which means g has no roots. In order to have a next (real-valued)
term Yk+2 in the sequence, it is necessary that Yk+ 1 + Yk ~ 1. If this constraint is met,
then g(O) < O. Because g(O) is a global minimum and g//(x) > 0, there are exactly
two roots to g(x) = o. We will always choose the positive one.

Let's look at constructing Y2 when the initial values satisfy the constraint c = Yl +
Yo ~ 1. We must solve g(x) = 0 for its positive root. Newton's method can be applied
to approximate the root. For x ~ 0, define h (x) = x - c. A quick sketch of the graph
shows that the hex) < g(x), so the positive root must be in (0, c) since h(c) = o. We
may as well choose the initial guess for Newton's method to be Xo = c. The other
iterates are

j~O

EXAMPLE

DA

This is yet another ordinary difference equation, an autonomous and first-order
one. A few iterates x j are generated until some stopping condition is met, usually
a combination of making sure g (x j) is close to zero and Ix j +1 - X j I is close to zero.
The last iterate is the number used for Y2. The iterate Y3 can now be computed in a
similar manner as long as c = Y2 + Yl ~ 1. Assuming Yk+ 1 + Yk ~ 1 at each step of
the process, the limit as k becomes infinite exists, call it L, and it must be a solution
to 0 = L + exp(-L) - 2L (replace the Yk> Yk+l' and Yk+2 terms in the difference
equation by L). This simplifies to exp(-L) = L. The equation cannot be solved in
closed form. A numerical construction leads to the approximation L == 0.567143.
Observe that when the Yk terms are close to L, Yk+l + Yk will in fact be larger than 1
(the sum is approximately 1.134286).

Compute an approximation to 1/Vi for x > O. Let Y = 1/Vi. Equivalently, x =
1/y2• We may formulate the problem in terms ofroot finding. For a specified x, define
g(y) = 1/y2 - x. The root to g(y) = 0 is the number l/sqrtx. Applying Newton's
method, let Yo be some initial guess to the root. The other iterates are determined by

Once again we have an autonomous, first-order, explicit difference equation. The
number of iterations to produce a reasonable approximation to 1/Vi depends on
how good an initial guess you choose. Suppose that x is written as x = (1 + m )2e ,



730 Appendix D Ordinary Difference Equations

(Example D.4
continued)

where 0 ::::: m < 1; then 1/,JX = 1/Jl + m2-ej2. This reduces the problem to com­
puting 1/,JZ for 0 ::::: z < 2, where z = 1+ m. Now we need to select a good initial
guess. One way to do this is to approximate the function R (m) = 1/-V1+ m for
m E [0, 1] by a straight line L(m) and use L(m) as the approximation to R(m). One
such line is L(m) = 0.966215 - 0.25m.

To illustrate, letm = 0.5. Using a hand calculator, 1/-VI + m = 1/,J1.5 == 0.81649658.
The initial guess is Yo = L(0.5) = 0.841215. A couple of iterations of Newton's
method are shown next:

Yl = Yo(3 - (1 + m)Y5) = 0.81536277,
2

Y2 = Yl(3 - (1 + m)yf) = 0.81649422
2

One iteration is a reasonable approximation. Two iterations is a really good approxi­
mation.

D.2 LINEAR EQUATIONS

A restricted class ofexplicit difference equations is the set ofnth-order linear difference
equations,

(n) (n-l) (1) (0) b
ak Yk+n + ak Yk+n-l + ... + ak Yk+l + ak Yk = k> (D.3)

where the aim) and bk coefficients are known sequences. The initial values for the
equation are Yo through Yn- The order of the equation is degenerate if ain) = 0 for
some k. In many applications we have at) f:. 0 for all k. In this case equation (D.3) is
of the form

which will be used in the remainder of Section D.2. The linear difference equation is
homogeneous ifbk = 0 for all k; otherwise, it is nonhomogeneous. The theory oflinear
difference equations is analogous to the theory of ordinary differential equations as
the following sections will show.

D.2.1 FIRST-ORDER LINEAR EQUATIONS

The first-order linear equation is

(D.5)

The initial value Yo and the coefficient sequences ak and bk are known quantities.



D.2 Linear Equations 731

The homogeneous equation sets bk = 0 for all k. The homogeneous solution is
presented here with hk denoting the sequence. The equation is rewritten as hk+1=
-akhk for k ::: 0 with ho= Yo. The first few iterations are

The observed pattern of terms leads to

(0.6)

where the "capital pi" symbol (TI) denotes a product of terms, analogous to "capital
sigma" (h) denoting a sum of terms. The convention for products is fl~=f Ti = 1

whenever u < .e. A similar convention for sums is L~=f Ti = 0 whenever u < .e.
A particular solution is a sequence Pk such that Pk+l + akPk = bk for k ::: 0, but

with initial value Po = o. This equation can also be solved by iterating and observing
the pattern:

The observed pattern of terms leads to

(0.7)

The general solution to equation (D.S) is the sum of the homogeneous solution
(D.6) and particular solution (D.7):

(0.8)

D.2.2 SECOND-ORDER LINEAR EQUATIONS

The second-order linear equation is

(D.9)

where Yo and Yl are known initial values. The coefficient sequences ak> bk> and Ck are
known quantities. Establishing a pattern for the solution by writing down the first
few iterates is difficult at best, although it can be done as we will see in the section on
systems of equations.



732 Appendix D Ordinary Difference Equations

For now, let us take a look at the homogeneous equation where Ck = 0 for all
k. The homogeneous solution h k can be written as two other solutions Uk and Vk'

where the second sequence is not a constant multiplied by the first. In this sense
the sequences Uk and Vk are linearly independent. Any linear combination of the
sequences is also a homogeneous solution, so h k = aUk + {3vk' where a and {3 are
chosen so that Yo = h o = auo + {3vo and YI = hI = aUI + (3VI·

Define !!J. k = ukvk+1 - uk+Ivk. This quantity is analogous to the Wronskian of
two linearly independent solutions to a second-order linear differential equation.
The initial value is !!J.o= uOvI - uIvO. We know that uk+2 + akuk+1 + bkuk = 0 and
vk+2 + akvk+1 + bkVk = o. Multiplying the first equation by vk+I' the second equa­
tion by uk+I' and subtracting produces

which is a first-order equation whose solution is

k-I

!!J. k = nbb k 2: I, !!J.o= uOvI - uIvO

i=O

Ifwe happen to know in advance the solution Uk' we can determine Vk from the first­
order equation in the v-terms:

k-I

ukvk+1 - uk+Ivk =nbk

i=O

Another method for obtaining one homogeneous solution from another is re­
duction oforder. If Uk is a known homogeneous solution, we attempt a solution of the
form Vk = Akuk. Replacing this in the homogeneous equation yields

0= vk+2 + akvk+1 + bkVk

= Ak+2Uk+2 + akAk+Iuk+1 + bkAkUk

=Ak+2Uk+2 + Ak+l( -uk+2 - bkuk) + bkAkUk

=Uk+2(Ak+2 - Ak+l) - bkUk(Ak+1 - Ak)

where Dk = Ak+1 - Ak. The term Dk satisfies a first-order linear equation that we
know how to solve,

Summing over k and canceling all the common terms on the left,



D.2 Linear Equations 733

n-Ik-I"0 b·u·An - Ao =~ _1_1

k=O i=O Ui+2

The value AO is chosen so that the solutions Uk and Vk are linearly independent.
Now let us try to construct a particular solution Pk whose initial values are Po =

PI = O. The method shown here is analogous to the variation ofparameters that is
used for second-order linear differential equations. Let uk and Vk be linearly indepen­
dent solutions to the homogeneous equation. Assume that a particular solution is of
the form Pk = dkuk + ekvk' The initial values for Pk require do = d l = eo = el = O.
Replacing this in equation (D.9) yields

Ck = Pk+2 + akPk+1 + bkPk

= (dk+2Uk+2 + ek+2 vk+2) + ak(dk+Iuk+1 + ek+Ivk+l) + bk(dkuk + ekvk)

= (dk+2Uk+2 + ek+2 vk+2) - dk+I(Uk+2 + bkuk) - ek+l(vk+2 + bkVk)

+ bk(dkuk + ekvk)

= [Uk+2(dk+2 - dk+l) + vk+2(ek+2 - ek+I)] - bk[Uk(dk+1 - dk) + vk(ek+1 - ek)]

As in the variation of parameters for ordinary differential equations, an arbitrary
equation may be selected to relate the parameters dk and ek' The simplest is to require
uk(dk+1 - dk) + vk(ek+1 - ek) = O. The previously displayed equation reduces to
Uk+2(dk+2 - dk+l) + vk+2(ek+2 - ek+l) = O. Incrementing the index k by 1 in the
arbitrary equation and defining Dk = dk+2 - dk+1 and Ek = ek+2 - ek+I' the two
equations are written as the system

Summing over k, canceling all the common terms on the left, and using d l = el = 0,
we obtain

and

k ~ 2, Po = PI = 0 (D.lO)



734 Appendix D Ordinary Difference Equations

D.3 CONSTANT-COEFFICIENT EQUATIONS

For the general linear difference equation, obtaining closed-form homogeneous so­
lutions can be difficult, if not impossible. A special class of linear equations includes
those whose coefficient sequences are all constants:

Yk+n + an-lYk+n-l + ... + alYk+l + aOYk = ° (D.ll)

where the aj are constant and ao i=- 0. We attempt a solution of the form Yk = rk,

where ri=-O is a constant. Replacing this in equation (D.II) and dividing by rk leads
to

This is a polynomial equation, say, per) = 0, whose roots may be found in closed
form for 1 .::: n .::: 4 or by numerical root finding for any n.

Let rl through r( be the distinct roots of per). Let each root rj have multiplicity
m j. That is, the polynomial is factored into

e
per) =n(r - rj)rn j

j=l

Necessarily, n = L~=l m j. If r is a real-valued root with multiplicity m, then by the
construction, rk is a solution to the difference equation. However, there are m linearly
independent solutions to the difference equation corresponding to r:

If r is a complex-valued root with a nonzero imaginary part, say, r = ex + fJi with fJ i=­
0, and if r has multiplicity m, then the conjugate r is also a root with multiplicity m.
There are 2m linearly independent solutions corresponding to rand r. In complex­
valued form, these are

Using the polar representation r = p(cos B + i sin B), the real-valued form for the
solutions are generated from erk and erj by taking combinations kt (r k + rk)/2 and
kt(r k - rk )/(2i). These are

epk cos(kB) , epk sin(kB) , °.::: t .::: m - 1

When a root r has multiplicity m > 1, the question is how did we arrive at the
solutions er k for t > O? The answer is variation of parameters, a method discussed



D.3 Constant-Coefficient Equations 735

in Section D.2.2. As an example, consider the fourth-order equation

Yk+4 - 3Yk+3 - 6Yk+2 + 28Yk+l - 24 = 0

The polynomial equation obtained by trying a solution Yk = rk is p(r) = r4 - 3r3 ­
6r 2+ 28r - 24 - O. The polynomial factors into per) = (r - 2)3(r + 3). The root
r = 2 has multiplicity 3, and the root r = - 3 has multiplicity 1. Two linearly inde­
pendent solutions to the difference equation are Yk = 2k and Yk = (-3)k. Since r = 2
has multiplicity larger than 1, attempt a reduction by Yk = ak2k for some sequence
ak' Replacing this in the difference equation yields

0= Yk+4 - 3Yk+3 - 6Yk+2 + 28Yk+l - 24

=ak+42k+4 - 3ak+32k+3 - 6ak+22k+2 + 28ak+12k+l - 24ak2k

= 8 . 2k(2ak+4 - 3ak+3 - 3ak+2 + 7ak+l - 3ak)

Consequently, the ak satisfy yet another fourth-order constant-coefficient equation:

An important observation is that the sum of the coefficients is zero. This allows the
following reduction:

0= 2ak+4 - 3ak+3 - 3ak+2 + 7ak+l - 3ak

=2(ak+4 - ak+3) - ak+3 - 3ak+2 + 7ak+l - 3ak

= 2(ak+4 - ak+3) - (ak+3 - ak+2) - 4ak+2 + 7ak+l - 3ak

=2(ak+4 - ak+3) - (ak+3 - ak+2) - 4(ak+2 - ak+l) + 3ak+l - 3ak

= 2(ak+4 - ak+3) - (ak+3 - ak+2) - 4(ak+2 - ak+l) + 3(ak+l - ak)

Define bk = ak+l - ak' The previous equation is restated as

This is a third-order equation, a reduction in order by one from the original equa­
tion. The sum of the coefficients in this equation is also zero, allowing yet another
reduction:

0= 2bk+3 - bk+2 - 4bk+1+ 3bk

=2(bk+3 - bk+2) + bk+2 - 4bk+1+ 3bk

= 2(bk+3 - bk+2) + (bk+2 - bk+1) - 3bk+1+ 3bk

=2(bk+3 - bk+2) + (bk+2 - bk+1) - 3(bk+1 - bk)



736 Appendix D Ordinary Difference Equations

Define ck = bk+1 - bk. The previous equation is restated as

The order has been reduced by one again. The sum of the coefficients in this equation
is zero, allowing yet one more reduction:

Define dk = Ck+ 1 - Ck' The previous equation is restated as

The general solution is dk = doC -3/2)k, but as it turns out, we need consider only
the instance when do = 0, in which case dk =°for all k. Backtracking, we now know
that ck+1 - Ck = dk = 0. The Ck must be constant, so choose Ck = Co =f. °for all k.
Backtracking again, bk+1- bk = ck = co' Summing over k and canceling terms leads

to bk = bo+ L~==-~ Co = bo+ cok. Backtracking for the last time, ak+1 - ak = bk =
bo+ cok. Summing over k and canceling terms leads to

k-1

ak = ao + LCbo+ coO = ao + bok + coCk - 1)k/2 = a + fJk + yk2

i=O

for appropriately selected values a, fJ, and y. The choice ofa = 1and fJ = y =°leads
to ak = 1and the already known solution 2k. The choice of fJ = 1and a = y =°leads
to ak = k and a new solution k2k. The choice of y = 1and a = fJ =°leads to ak = k2

and a new solution k22k .

D.4 SYSTEMS OF EQUATIONS

Equation (D. I) provides a relationship between the terms of a single sequence. Some
applications might involve multiple sequences that are interrelated. For example, two
sequences {Xk}~O and {xd~omight be interrelated by

for some n > 0, for all k ::: 0, and for some specified functions fo and fl' The initial
values are Xo through Xn-1 and Yo through Yn-1' The pair of equations is evaluated to
obtain the next terms Xn and Yn' which in turn can be used to generate subsequent



DA Systems of Equations 737

terms. The pair of relationships is an example of a system ofdifference equations. The
system in the example can be written in vector form. Define:

f (k ( ) ( )) - [Jo(k, so' ... , sn-l' to, ... , tn-I)]
, SO' to , ... , Sn-l' tn- l - J (k )

I ,SO"," Sn-l' to, ... , tn- l

In terms of these quantities, the system is

with initial values Uo through Un-I' Systems may contain explicit equations (as in our
example), implicit equations, or a mixture of both.

A convenient use for a system of equations is in solving the nth-order linear
equation (DA). Define the vector sequence:

Increasing the index by 1,

[

Yk+l]Yk+2
uk+l= :

Yk+n

In matrix form, the system is

[

Yk+l ]
_ Yk+2

0-0' ~
bk - ak Yk+n-l - ... - ak Yk

[

(1) ]
uk

(2)
_ Uk

b
(n-l) (n-l~ (0) (0)

k - ak Uk - ... - ak Uk

(0.12)



738 Appendix D Ordinary Difference Equations

where Uo is a known quantity and where Ak is an n x n matrix and Bk is an n x 1
vector given by

Ak = [ ! 1 0
0 1

0 0
(0) (1) (2)ak ak ak

Equation (0.12) has exactly the form of equation (D.S) and can be solved symboli­
cally in the same way. The homogeneous solution is

(D.13)

The particular solution is

(D.14)

The general solution to equation (D.12) is the sum of the homogeneous solution
(D.13) and particular solution (D.14):

(D.1S)



BIBLIOGRAPHY

[Arv91] James Arvo, editor. Graphics Gems II. Academic Press, San Diego, CA, 1991.

[AS65] Milton Abramowitz and Irene A. Stegun. Handbook ofMathematical Func­
tions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1965.

[Bar94] David Baraff. Fast contact force computation for nonpenetrating rigid bod­
ies. Proceedings ofSIGGRAPH 1994, 1994, pp. 23-34.

[BarOl] David Baraff. Physically based modeling: Rigid body simulation. www.pixar
.com/companyinfo/research/pbm2001/notesg.pdf, 2001, (68 pages).

[Barr84] A. Barr. Global and local deformations of solid primitives. Proceedings of
SIGGRAPH 1984, 1984, pp. 21-30.

[BFOl] Richard 1. Burden and J. Douglas Faires. Numerical Analysis, 7th ed. Brooks/
Cole, Belmont, CA, 2001.

[Bra84] Martin Braun. Differential Equations and Their Applications, Applied Math­
ematical Sciences. Springer-Verlag, Heidelberg, Germany, 1984, vol. 15.

[BS64] R. Bulirsch and J. Stoer. Fehlerabschatzungen und extrapolation mit ratio­
nalen Funktionen bei Verfahren von Richardson-typus. Numerische Mathematik,
6:413-427, 1964.

[BS66] R. Bulirsch and J. Stoer. Numerical treatment of ordinary differential equa­
tions by extrapolation methods. Numerische Mathematik, 8:1-13, 1966.

[BS99] Matthias Buck and Elmar Schomer. Interactive rigid body manipulation
with obstacle contacts. www.mpi-sb.mpg.de/-schoemer/publications/JVCA98.pdf '
1999.

[Cam97] S. Cameron. Enhancing GJK: Computing minimum and penetration dis­
tances between convex polyhedra. Proceedings of the IEEE Conference on Robotics
and Automation, 1997, pp. 591-596.

[CLMP95] J. Cohen, M. Lin, D. Manocha, and K. Ponamgi. I-COLLIDE: An interac­
tive and exact collision detection system for large-scaled environments. Proceed­
ings ofACM International 3D Graphics Conference, 1995, pp. 189-196.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald 1. Rivest. Introduc­
tion to Algorithms. MIT Press, Cambridge, MA, 1990.

[Coq90] S. Coquillart. Extended free form deformation: A sculpturing tool for 3D
geometric design. Proceedings ofSIGGRAPH 1990,1990, pp. 187-193.

[CREO1] Elaine Cohen, Richard F. Riesenfeld, and Gershon Elber. Geometric Model­
ing with Splines: An Introduction. A. K. Peters, Natick, MA, 2001.

739



740 Bibliography

[CW96] K. Chung and W. Wang. Quick collision detection of polytopes in virtual
environments. Proceedings of ACM Symposium on Virtual Reality Software and
Technology, 1996, pp. 125-13I.

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, Princeton, NJ, 1963.

[DK90] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of prepro­
cessed polyhedra-a unified approach. In Proceedings of the 17th International
Colloquium on Automata, Languages, and Programming (ICALP), Lecture Notes
in Computer Science. Springer-Verlag, Heidelberg, Germany, vol. 443, 1990, pp.
400-413.

[DKL98] Erik B. Dam, Martin Koch, and Martin Lillholm. Quaternions, animation
and interpolation. http://citeseer.nj.nec.com/dam98quaternions.html, 1998, (103
pages).

[DZ91] Michael J. Dehaemer and Michael J. Zyda. Simplification of objects rendered
by polygonal approximations. Computer & Graphics, 15(2):175-184, 199I.

[EbeOO] David H. Eberly. 3D Game Engine Design. Morgan Kaufmann, San Fran­
cisco, CA, 2000.

[Ede87] H. Edelsbrunner. Algorithms in Computational Geometry. Springer-Verlag,
Heidelberg, Germany, 1987.

[ELOO] S. Ehmann and M. C. Lin. Accelerated proximity queries between convex
polyhedra using multi-level Voronoi marching. Proceedings ofIEEE/RS] Interna­
tional Conference on Intelligent Robots and Systems, 2000, p. 7.

[ELOl] S. Ehmann and M. C. Lin. Accurate and fast proximity queries between poly­
hedra using surface decomposition. In Computer Graphics Forum (Proceedings of
Eurographics 2001),2001, p. II.

[EM85] H. Edelsbrunner and H. A. Maurer. Finding extreme points in three dimen­
sions and solving the post-office problem in the plane. Information Processing
Letters, 21:39-47, 1985.

[EMP+03] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and
Steve Worley. Texturing and Modeling: A Procedural Approach, 3rd ed. Morgan
Kaufmann, San Francisco, CA, 2003.

[Eng02] Wolfgang F. Engel. ShaderX: Vertex and Pixel Shader Tips and Tricks. Word­
ware, Plano, TX, 2002.

[Eriar] Christer Ericson. Real Time Collision Detection. Morgan Kaufmann, San
Francisco, CA, forthcoming.

[Far90] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design: A
Practical Guide. Academic Press, San Diego, CA, 1990.

[Far99] Gerald Farin. NURBS: From Projective Geometry to Practical Use. A. K. Pe­
ters, Natick, MA, 1999.



Bibliography 741

[Fau96] Fran~ois Faure. An energy-based approach for contact force computation.
In Computer Graphics Forum (Proceedings ofEurographics 1996), voL 16, 1996, pp.
357-366.

[Fri98] Joel Friedman. Linear complementarity and mathematical (non-linear) pro­
gramming. www.math.ubc.ca/-jflcourses/340/pap.pdf. April 1998, (22 pages).

[GAM03] GAMMA, or Geometric Algorithms for Modeling, Motion, and Anima­
tion), University of North Carolina. www.cs.unc.edu/-geom, 2003.

[Gea71] C. W. Gear. Numerical Initial-Value Problems in Ordinary Differential Equa­
tions. Prentice Hall, Englewood Cliffs, NJ, 1971.

[GH97] Michael Garland and Paul Heckbert. Surface simplification using quadric
error metrics. Proceedings ofSIGGRAPH 1997, 1997, pp. 209-216.

[GJK88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for com­
puting the distance between complex objects in three-dimensional space. IEEE
Journal ofRobotics and Automation, 4(2):193-203, 1988.

[GLM96] Stefan Gottschalk, Ming Lin, and Dinesh Manocha. OBBtree: A hierar­
chical structure for rapid interference detection. Proceedings ofSIGGRAPH 1996,
1996, pages 171-180.

[GP89] J. Griessmair and W. Purgathofer. Deformation of solids with trivariate B­
splines. In Proceedings ofEurographics 1989, 1989, pp. 134-148.

[GPS02] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics, 3rd
ed. Addison-Wesley, San Francisco, CA, 2002.

[Gra65] W. B. Gragg. On extrapolation algorithms for ordinary initial-value prob­
lems. SIAM Journal on Numerical Analysis, 2:384-403, 1965.

[GV91] G. Vanecek, Jr. Brep-index: A multi-dimensional space partitioning tree. In
ACM/SIGGRAPH Symposium on Solid Modeling Foundations and CAD Applica­
tions, 1991, pp. 35-44.

[HDD+93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Mesh optimization. Proceedings of SIGGRAPH 1993, 1993,
pp.19-26.

[Hec98] Chris Hecker. Rigid body dynamics. www.d6.com/userslchecker/dynamics
.htm, 1998.

[HJ85] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge Univer­
sity Press, Cambridge, England, 1985.

[HKL+99] G. Hotz, A. Kerzmann, C. Lennerz, R. Schmid, E. Schmer, and T. Warken.
Calculation of contact forces. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, 1999, pp. 180-181.

[HLC+97] T. Hudson, M. Lin, J. Cohen, S. Gottschalk, and D. Manocha.
V-COLLIDE: Accelerated collision detection for VRML. Proceedings of VRML
1997, 1997, p. 7.



742 Bibliography

[HML99] Gentaro Hirota, Renee Maheshwari, and Ming C. Lin. Fast volume­
preserving free form deformation using multi-level optimization. ACM Solid
Modeling 1999, 1999, pp. 234-245.

[HOS99] D. J. Hardy, D. I. Okunbor, and R. D. Skeel. Symplectic variable stepsize in­
tegration for N-body problems. Applied Numerical Mathematics, 29:19-30, 1999.

[HS74] Morris W. Hirsch and Stephen Smale. Differential Equations, Dynamical Sys­
tems, and Linear Algebra. Academic Press, San Diego, CA, 1974.

[Hub96] P. M. Hubbard. Approximating polyhedra with spheres for time-critical
collision detection. ACM Transactions on Graphics, 15(3):179-210, 1996.

[IZLMO1] Kenneth E. Hoff III, Andrew Zaferakis, Ming Lin, and Dinesh Manocha.
Fast and simple 2D geometric proximity queries using graphics hardware. Pro­
ceedings ofACM Symposium on Interactive 3D Graphics, 2001.

[IZLM02] Kenneth E. Hoff III, Andrew Zaferakis, Ming Lin, and Dinesh Manocha.
Fast 3D geometric proximity queries between rigid and deformable models us­
ing graphics hardware acceleration. Technical Report TR02-004, Department of
Computer Science, University of North Carolina, 2002.

[Jak01] Thomas Jakobsen. Advanced character physics. In Game Developers Confer­
ence Proceedings 2001, CMP Media, Inc., San Francisco, CA, 2001, pp. 383-401.

[Kir83] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on
Computing, 12:28-35, 1983.

[KKS96] Myoung-Jun Kim, Myung-Soo Kim, and Sung Yong Shin. A compact dif­
ferential formula for the first derivative of a unit quaternion curve. The Journal of
Visualization and Computer Animation, 7(1) :43-58, 1996.

[KLM02] Young J. Kim, Ming C. Lin, and Dinesh Manocha. DEEP: Dual-space ex­
pansion for estimating penetration depth between convex polytopes. Proceedings
of the IEEE International Conference on Robotics and Automation, 2002, p. 6.

[Kui99] Jack B. Kuipers. Quaternions and Rotation Sequences: A Primer with Applica­
tions to Orbits, Aerospace, and Virtual Reality. Princeton University Press, Prince­
ton, NJ, 1999.

[LC87] William E. Lorensen and Harvey Cline. Marching cubes: A high resolution
3D surface construction algorithm. Proceedings of SIGGRAPH 1987, 1987, pp.
163-169.

[LC91] Ming C. Lin and John F. Canny. A fast algorithm for incremental distance
calculation. In Proceedings ofIEEE International Conference on Robotics and Auto­
mation, 1991, pp. 1008-1014.

[LevOO] Ron Levine. Collision of moving objects. On the game developer algorithms
list. www.sourceforce.net. November 2000.



Bibliography 743

[LGLM99] Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. Fast
proximity queries with swept sphere volumes. Technical Report TR99-018, De­
partment of Computer Science, University of North Carolina, 1999.

[Lin93] Ming C. Lin. Efficient Collision Detection for Animation and Robotics. Doc­
toral dissertation, University of California at Berkeley, Berkeley, California, 1993.

[Mir96a] Brian Mirtich. Fast and accurate computation of polyhedral mass proper­
ties. Journal ofGraphics Tools, 1(2):31-50, 1996.

[Mir96b] Brian Mirtich. Impulse-Based Dynamic Simulation of Rigid Body Systems.
Doctoral dissertation, University of California at Berkeley, Berkeley, California,
1996.

[Mir98] Brian Mirtich. V-Clip: Fast and robust polyhedral collision detection. ACM
Transactions on Graphics, 17(3):177-208, 1998.

[OHHM02] Marc Olano, John C. Hart, Wolfgang Heidrich, and Michael McCooL
Real-Time Shading. A. K. Peters, Natick, MA, 2002.

[O'R98] Joseph O'Rourke. Computational Geometry in C, 2nd ed. Cambridge Uni­
versity Press, Cambridge, England, 1998.

[PFTV88] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numer­
ical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
Cambridge, England, 1988.

[PS85] Franco P. Preparata and Michael 1. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, Heidelberg, Germany, 1985.

[PSC97] Jong-Shi Pang, Richard E. Stone, and Richard W. Cottle. The Linear Com­
plementarity Problem. Academic Press, San Diego, CA, 1997.

[RG27] 1. F. Richardson and J. A. Gaunt. The deferred approach to the limit. Philo­
sophical Transactions of the Royal Society ofLondon, 226A:299-361, 1927.

[RhoOl] Graham S. Rhodes. Stable rigid-body physics. In Game Developers Confer­
ence Proceedings 2001, CMP Media, Inc., San Francisco, CA, 2001, pp. 651-669.

[RKCOO] S. Redon, A. Kheddar, and S. Coquillart. An algebraic solution to the prob­
lem of collision detection for rigid polyhedral objects. In Proceedings of IEEE
International Conference on Robotics and Automation, 2000, pp. 3733-3738.

[RKC01] S. Redon, A. Kheddar, and S. Coquillart. Contact: Arbitrary in-between
motions for continuous collision detection. In Proceedings of the 10th IEEE Inter­
national Workshop on Robot-Human Interactive Communication, 2001, p. 6.

[RKC02a] S. Redon, A. Kheddar, and S. Coquillart. Fast continuous collision detec-
tion between rigid bodies. In Proceedings ofEurographics, 2002, p. 9.

[RKC02b] S. Redon, A. Kheddar, and S. Coquillart. Gauss' least constraints principle
and rigid body simulations. In Proceedings of IEEE International Conference on
Robotics and Automation, 2002, p. 6.



744 Bibliography

[RogO1] David F. Rogers. An Introduction to NURBS with Historical Perspective. Mor­
gan Kaufmann, San Francisco, CA, 2001.

[SE02] Philip J. Schneider and David H. Eberly. Geometric Tools for Computer Graph­
ics. Morgan Kaufmann, San Francisco, CA, 2002.

[SP86] T. Sederberg and S. Parry. Free-form deformation of solid geometric models.
Proceedings ofSIGGRAPH 1986, 1986, pp. 151-160.

[SSW99] Elmar Schomer, Jiirgen Sellen, and Markus Welsch. Exact geometric colli­
sion detection. www.mpi-sb.mpg.del-schoemerlpublicationsIEGCD.pdf. 1999.

[ST99] Elmar Schomer and Christian Tiel. Efficient collision detection for moving
polyhedra. www.mpi-sb.mpg.del-schoemerlpublicationslECDFMP.pdf, 1999.

[Str88] Gilbert Strang. Linear Algebra and Its Applications, 3rd ed. International
Thomson Publishing, 1988.

[SZL92] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decima­
tion of triangle meshes. Proceedings ofSIGGRAPH 1992,1992, pp. 65-70.

[Tur92] Greg Turk. Re-tiling of polygonal surfaces. Proceedings ofSIGGRAPH 1992,
1992, pp. 55-64.

[vdB97] Gino van den Bergen. Efficient collision detection of complex deformable
models using AABB trees. Journal ofGraphics Tools, 2(4):1-13, 1997.

[vdB99] Gino van den Bergen. A fast and robust GJK implementation for collision
detection of convex objects. Journal ofGraphics Tools, 4(2):7-25, 1999.

[vdB01a] Gino van den Bergen. Physical behavior and resting contacts with fric­
tion. Post to the USENET newsgroup comp.games.development.programming
.algorithms, August 2001.

[vdB01b] Gino van den Bergen. Proximity queries and penetration depth computa­
tion on 3D game objects. In Proceedings of the Game Developers Conference 2001,
2001, pp. 821-837.

[vdB03] Gino van den Bergen. Collision Detection in Interactive 3D Environments.
Morgan Kaufmann, San Francisco, CA, 2003.

[Ver67] L. Verlet. Computer experiments on classical fluids. I. Thermodynamic
properties of Lennard-Jones molecules. Physical Review, 159:98-103, 1967.

[WeI67] D. A. Wells. Lagrangian Dynamics. Schaum's Outline Series. McGraw-Hill,
New York, 1967.

[WLML99] A. Wilson, E. Larsen, D. Manocha, and M. Lin. Partitioning and han­
dling massive models for interactive collision detection. In Computer Graphics
Forum (Proceedings ofEurographics 1999), vol. 18, 1999, pp. 319-329.

[WuOO] David Wu. Penalty methods for contact resolution. www.pseudointeractive
.comlgameslpenaltymethods.ppt, 2000.



NUMBERS

2 x 2 matrix determinant,
634-636

2D images
continuous representation,

208
definition, 208
isocurve extraction in,

208-212
Marching Cubes to, 209

2D rotations, 523-525
3 x 3 matrix determinant,

636-638
butterfly rule, 636-637
defined,636
inverse, 637
See also determinants

3D images
definition, 212
isosurface extraction in,

212-220
3D rotations, 522

algebra, 531-534
base, 531
fixed x-axis, 526
fixed y-axis, 526
fixed z-axis, 526
geometry, 526-528
illustrated, 527
matrix,529
See also rotation(s)

4D rotation matrices, 518, 529,
534-537

3D rotation correspondence,
518,535

for xy-plane, 529

4D rotations, 517, 521, 529-531

A

acceleration
angular, 25
centripetal, 17, 26
drag, 30
equation for, 30
Foucault pendulum, 95
normal,17
of particles, 16, 19
of points, 23, 24-25
polar coordinate form, 91
polar frame representation,

19
relative, 266
tangential, 17, 26
Taylor expansion for, 483
world,30

acid solutions example,
548-549

active intervals
defined,355
not reported, 356
reported, 356
See also intersecting intervals

Adams-Bashforth m-step
method, 471, 490

Adams-Moulton m-step
method, 472, 490

addition
complex numbers, 547
number of cycles, 552
quaternions, 512
vector, 584, 588

additive identity, 585, 588
complex numbers, 547
integer, 545
rational numbers, 546
real numbers, 546
zero polynomial, 590

INDEX

additive inverse, 545, 546, 590
adjacent indices, 171
affine algebra, 669-689

barycentric coordinates,
677-689

consequences, 670
coordinate systems, 673-675
essence, 669
introduction, 669-673
parallelogram law, 670, 671
points and vectors, 669, 671
subspaces, 675-676
transformations, 676-677

affine constraints, 421
affine coordinate systems,

673-675
defined,673
illustrated, 674
relationship between, 674

affine coordinates, 673
affine space, n-dimensional,

669
affine transformations, 676-677

condition 1 of definition of,
676

defined, 676
as functions, 676
as pure rotation, 677
as translations, 677
See also affine algebra

algebra
affine, 669-689
linear, 545-668

analytic functions, 438
angular acceleration, 25
angular momentum, 43-44,

225
angular velocity relationship,

225

745



746 Index

angular momentum (contin-
ued)

changein,247
conservation of, 43
defined,43
simultaneous updates, 262

angular speed, 25, 98
defined, 25
freely spinning top example,

155
See also speed

angular velocity, 25, 27
angular momentum

relationship, 225
of body, 29
of body, about center of

mass, 243
in body coordinates, 154
change in, 246
clockwise rotation

correspondence, 250
constant, 346-348
determination, 227
edge rotation due to, 266
in fixed frame, 94
freely spinning top example,

155
impulse equation, 260
instantaneous update, 264
orientation matrix

relationship, 225
postimpulse, 247, 249
preimpulse, 247
of rigid body, 153
solid box (rough plane), 151
update, 255
world, 123, 130, 154

anti-commutative cross
product, 608

antiderivative, 703-704
applications (calculus),

710-725
constrained optimization,

715-718

derivative approximations by
finite differences, 718-725

optimization, 711-715
applications (linear algebra),

661-668
exponential of a matrix,

663-664
local extrema of multivariate

functions, 664-668
power of a matrix, 662

arbitrary mass-spring system,
171-173

defined, 171
differential equation solver,

173
equations of motion, 171
illustrated, 174
See also mass-spring systems

artificial variables
defined,397
need for, 402
restricted normal form

conversion and, 398
A-stable method, 506
augmented matrix, 563, 564

after forward elimination,
557

defined,555,566
elementary row operations

to, 570
row-reducing, 563
searching entries in, 563
swapping columns of, 564

autonomous systems
of equations, 451
general, stability for, 453-455

auxiliary objective function,
398

defined, 397
increase, 401
See also objective function

auxiliary variables, 409, 411,
414,416

averaging property, 254

axis-aligned bounding boxes
(AABBs),354

computation queries, 354
culling with, 354-360
generating, 360
intersecting intervals,

354-359
intersection determination,

360
intersection with, 354
polyhedra pairs, 354
update, 354

axis-aligned box
collision example, 253-254
postimpulse angular velocity,

251
sloped plane collision, 250

axis-aligned ellipse, 418
axis-aligned rectangles, 359
Ax; sA1; gnedBox class, 352

B

back elimination, 564
back substitution, 572

applying, 550-551
cost computation, 557
defined,548
divisions in, 564

backward difference
approximation

defined, 719
occurrence, 721
parameters, 721
with second-order error,

720
See also derivative

approximations
backward elimination, 645
balanced dictionary, 409
barycentric combinations, 679,

680
defined,677
of two points, 678



barycentric coordinates,
677-689

defined,677-678
simplices, 680-681
tetrahedra, 679-680
triangles, 678-679
See also affine algebra

bases
change of, 630
choices, 629
defined, 598
linear transformations, 629
linear transformations (two

different), 631
standard Euclidean, 601, 629
vector representation relative

to, 599
See also vector spaces

Bas i cShader application, 370
rendering with pixel shader,

376
rendering with vertex and

pixel shader, 376
BasisFunction class, 180
bent pipe physical system

example, 129-132
center of mass velocity, 130
defined, 129
generalized forces, 131
illustrated, 130
kinetic energy, 130-131
Lagrangian equations of

motion, 131
world angular velocity, 130

Bernstein polynomials, 189
Bezier curve, 542
bilinear interpolation, 541
bilinear transformations, 608
binary space partitioning (BSP)

tree, 293
balanced, 310
for children of root, 306
code, 303
construction, 306

construction pseudocode,
307-310

interior nodes, 295
recursive splitting

construction, 294
root, 305
of spherical polygons,

304
vertice/edge access, 295

binning, 353
binormal vectors

defined,21
derivative, 22
unit length, 21

bisection
algorithm, 291
alternative, 311
intersection testing

pseudocode,291-292
performance issues, 343
problem, 292

bivariate approximation,
724-725

block matrix, 619, 675
body axes, 28
body coordinates

angular velocity in, 154
defined,28
illustrated,29
of rigid body, 153
time variance, 28

body observer
body coordinate system by,

29
defined, 28
location of points by, 28

body origin
defined,28
world velocity, 29

body points, 242
bouncing ball example,

217-220
defined, 217
deformed ball, 220

Index 747

floor, 217
illustrated, 219
level surface extractor, 218
spherical body definition,

217
time interval, 218
See also implicit surface

deformation
bounding spheres, 348

center choice, 354
culling, 349-354
culling, against view frustum,

349
update, 353

Boundi ngVo1umeTree class, 363
brick wall application, 342-343
B-spline curves, 173-183

basis functions, 175
closed, 181-183
computation pseudocode,

179
control points, 173
defined,175
evaluation, 176-181
knot vectors, 175-176
local control, 175, 181
open, nonuniform, 182
open, uniform, 182
periodic, 182
recursive dependencies,

177
six pairs of, 182

B-spline surfaces, 187-188
defined, 187
encapsulation, 188

B-spline volume, 200
BSp1i neSurface class, 188
BSp1i neVo1ume class, 200
BSPNode class, 307
Bulirsch-Stoer method, 478
bulk modulus, 162, 163
butterfly rule, 636-637

defined,636
illustrated,637



748 Index

C

calculus, 691-725
applications, 710-725
differential, 691
infinitesimal quantities, 691
integral, 691, 701-704
limits, 691
multivariate, 691
processing functions, 691
univariate, 691

Cartesian coordinates
acceleration of particle, 16,

19
planar motion in, 15-18
position of particle, 15-16,

19
spatial motion in, 19-22
speed of particle, 16, 19
velocity of particle, 16, 19

Cayley-Hamilton Theorem,
447

center of mass, 41, 44-56
change ofvelocity, 246
computing, 51
construction, 41
continuous mass in one

dimension, 45-46
continuous mass in three

dimensions, 52-56
continuous mass in two

dimensions, 48-51
defined,44,45
discrete mass in one

dimension, 44-45
discrete mass in three

dimensions, 52
discrete mass in two

dimensions, 46-48
formula, 45
location determination,

224-225
modification, 248
moment of inertia with

respect to, 57, 58

polyhedron rotation about,
354

resolution of forces at, 268
two-body problem, 137
values, 249
velocity, 130, 243
world velocity, 123
y-value,51
z-value,55
See also mass(es)

centered difference
approximation, 720

defined, 719
example, 722, 723
with fourth-order error, 720
occurrence, 721
parameters, 721
See also derivative

approximations
centripetal acceleration, 17, 26
Cg

CgConverter tool, 370
compiler, 369
installation, 370
Toolkit, 369, 370

chain rule, 114, 704, 705-706
applied to velocity, 105
defined, 705
use of, 706

change of basis matrix
computing, 633
defined,631

change ofvelocity, 243, 245-250
of center of mass, 246
discontinuous, 245
impulsive force, 246

characteristic equations, 647
characteristic polynomials, 444,

447,659,660
explicit Euler's method, 499
general-order differential

equations, 444, 447
implicit Euler's method, 500
leap frog method, 502

of matrix representation, 657
Runge-Kutta fourth-order

method,501
second-order differential

equations, 452
classes

AxisAlignedBox, 352
BasisFunction, 180
BoundingVolumeTree, 363
BSplineSurface, 188
BSp1i neVo1ume, 200
BS PNode, 307
CollisionGroup, 363
CollisionRecord,363
ConvexPolygon, 286,295
ConvexPolyhedron, 298
NURBSCurve, 184
NURBSSurface, 190
RigidBody, 275-276,279
Sphere, 352

Clifford algebras, 522, 538
closed B-spline curves, 181-183

with open knot vector, 181
with periodic knot vector,

181
See also B-spline curves

closed formulas, 440
coefficient vectors, 628
coefficients of restitution, 245
cofactors

defined,642
expansion, 643
matrix of, 642

coherence, 350
spatial, 350
temporal, 350, 358

collection of functions, 691
colliding contact, 242-265, 243,

258
change ofvelocity at, 245
change to resting contact,

245
collision response for,

242-265



defined, 240
illustrated, 241
operation order, 270
physical simulation at point

of, 245
processing point of, 248
See also contact; resting

contact
collision culling. See culling
collision detection, 221-222

for constrained motion,
222

contact set, 222, 316-324,
325-334

contact time, 222
of convex polyhedra, 9, 223,

280-348
defined, 221
enabling, 251
with nonpenetration

constraint, 324
collision detection systems, 4-5,

280,281,324
intersection detection, 281
not reporting collisions, 281
on method of separating

axes, 343
outline, 360
performance, 348

collision points, 240-242
object movement at, 240
processing, 251, 252

collision response
for colliding contact,

242-265
function, 271
for resting contact, 265-270
system, 277, 278

Co 11 is i onGroup class, 363
Co 11 is i onRecord class, 363
column matrices, 555
column swap, 564
complementary slackness, 407,

423

complementary variables, 407,
410,412

dictionary, 416
nonbasic, 416
not leaving dictionary,

416-418
complex numbers, 546-547

addition, 547
defined, 547
imaginary part, 514
multiplication, 547
real part, 514

complex structures, 538
Computelnterva1 function, 301,

310,314,317
ComputeLCPMatri x function,

272-273
ComputePrelmpu1seVe10city

function, 273
ComputeRestingContactVector

function, 273-274
conjugate gradient method, 566
conservative forces, 82-83

applied in general system, 83
consequences, 85
defined, 82
exactness conditions and, 85
examples, 82-83, 133-139
gravitational, 82
Lagrangian equation of

motion for, 133
See also forces

consistency, 488
constant angular velocity,

346-348
distance quantity, 347
moving bodies formulation,

347
rotation matrices, 347
separating equation, 348
See also angular velocity

constant linear velocity,
311-334

analysis basis, 346

Index 749

boxes moving with, 343-346
contact set for convex

polygons, 316-324
contact set for convex

polyhedra, 325-334
separation of convex

polygons, 311-316
separation of convex

polyhedra, 324-325
time-varying distance

between centers, 346
See also linear velocity

constant-coefficient difference
equations, 734-736

constrained local minimum,
421

constrained motion, 240-280
change of velocity

computation, 245-250
collision points, 240-242
collision response for resting

contact, 265-270
illustrative implementation,

270-278
impulses, 243-245
Lagrangian dynamics,

278-280
multiple contact points,

250-258
simultaneous processing of

contact points, 258-265
constrained optimization, 692,

715-718
defined, 710, 715
method of Lagrange

multipliers, 715-716, 717
See also applications

(calculus)
constraining forces

balancing, 114
defined, 101
determining, 112-114
equations of motion, 113
generalized forces and, 113



750 Index

constraining forces (continued)
kinetic energy, 113
See also forces

constraining functions, 418,
419

contact
colliding, 240, 241, 242-265
convex polyhedra, 325-326
edge-to-edge,320
at instant of, 258
last time of, 283
line segment of, 256
resolution, 362
resting, 5, 240, 241

contact forces
acceleration computation

and, 269
choosing, 269
computing, 240
derivation of, 436
exerting, 267
at resting contact, 267
zero, 269
See also forces

contact points
of colliding contact, 248-250
computing, 281
edge-to-edge intersection,

270
finite set of, 256, 281
four rigid bodies, 261
magnitude ofvelocity at, 258
multiple, 250-258
processing, 251
simultaneous processing of,

258-265
vertex-face intersection, 270

contact sets
calculation, 316, 317
for convex polygons,

316-324
convex polyhedra, 325-334
defined, 222
determining, 222

as line segments, 254, 316
reduced, 241, 242
See also collision detection

contact space formulation, 362
contact time, 246

defined, 222
determining, 222
last, 283

continuity
multivariate calculus,

704-705
univariate calculus, 697-698

continuous dependence, 442
continuous functions

multivariate calculus, 704
univariate calculus, 697

continuous mass
balancing, on a line, 46
bounded by parabola and

line, 49
moments for, 60
in one dimension, 45--46
products of inertia for, 60
in shape ofhemicircle, 51
in three dimensions, 52-56
in two dimensions, 48-51
See also mass(es)

continuous materials
defined, 14
kinematics, 28-31

continuous variables, 696
continuum of mass

defined, 14
equations of motion,

121-132
linear momentum, 42

continuum of points, 46
control points

B-spline curves, 173
deformation, 173-197
in free-form deformation,

204
knot vectors and, 183
lattice of, 200

management, 190
mesh vertex positions, 202
modified, 202
NURBS curves, 183, 185, 186
for parametric surface, 163
perturbations, 202-203
symmetric, 189
vertices, 163

control theory, 441
control weights, 183, 185

definition, 189
management, 190
symmetric, 189

convergent methods, 489
conversion

to LCP, 409, 411
planar integral, 69
primary state to secondary

state, 238
restricted normal form, 398
to rotation matrix, 537

Convert function, 238, 239
convex functions

defined, 420
graph of, 420, 421
of two variables, 421

convex polygons, 286-298
bisection formula, 291
Boolean operations on, 316
contact set, 316-324
counterclockwise-ordered

vertices, 427
distance between, 431--434
distance between point and,

427--429
edge-edge contact, 287
edges, 286, 302
find-intersection query for,

316
illustrated, 293
intersecting, 287, 312
intersection testing

pseudocode, 312-314
linear velocities, 311



lines between, 288
nonintersecting, 287
number of edges, 304
planar, 298
separation of, 299, 311-316
spherical, 304
two-dimensional intersector,

326
vertex-edge contact, 287
vertex-vertex contact, 287

convex polyhedra, 223, 298-310
colliding, intersection points

for, 256
collision detection of, 223,

280-348
computing points of contact

between,280
contact set for, 325-334
contact type, 326
defined,284
distance between, 434-436
distance between points and,

429-431
finite set of direction vectors

and,299
interfaces, 307
intersection calculator for,

283
intersection testing cost, 349
intersections, 283, 329
moving, 282, 329
moving with constant linear

velocity, 324-325
nonconvex polyhedra

decomposition into,
363-364

penetration of, 280
reduced contact set for, 242
rigid bodies as, 270
separation of, 324-325
translation, 429
vertices, 281

convex programming
defined,420

problem, 421
quadratic, 264, 423-426

convex quadrilaterals, 392, 541
convexity, 421
ConvexPo1ygon class, 286, 295
ConvexPo1yhedron class, 298
coordinate systems

affine, 673-675
coordinate axis directions, 16
illustrated, 16
inertial, 32
moving frame, 16, 21
noninertial, 32
origin, 16

CopyStateArrayToAllRigidBodies
function, 234

critical points, 667
cross product, 606-609

anti-commutative, 608
defined,515,606
illustrated,606
not associative operation,

613
vector, 515

cubic polynomials, 542
culling

algorithm, 348
with axis-aligned bounding

boxes (AABBs), 354-360
with bounding spheres,

349-354
with bounding spheres,

against view frustum, 349
collision, 334, 348-360
defined, 348
occlusion, 278
for performance

enhancement,348
system, 350
time, 348
view frustum, 348

curvature, 20, 21
curve mass

center of mass, 55-56

Index 751

defined,14
equations of motion for,

121-132
integration, 15
as polyline, 164
See also mass(es)

curves, 7
area under, 463
B-spline, 173-183
closed,181-183
Frenet-Serret equations for,

22
motion on, 102-104
NURBS, 8,173,183-187
parametric, 50, 55
surfaces built from, 190-197
torsion, 22

cusp, 700
cycling, 413
cylinder surfaces, 192-193

defined, 192
generalized, 193-194
illustrated, 192
parameterization, 193
See also surface(s)

cylindrical coordinates
acceleration of points, 23
illustrated,23
position of points, 23
spatial motion in, 22-24
velocity of points, 23

o
D'Alembert's equation, 102
DEEP, 364
definite integrals

defined, 703
motivation, 708

deformable bodies, 8, 161-220
elasticity, 161
first alternative models, 163
fourth alternative models,

164



752 Index

deformable bodies (continued)
mass-spring systems,

164-173
parametric surface modeling,

173
physics simulation of, 163
second alternative models,

163
strain, 162
stress, 162, 163
third alternative models, 163

deformation
by vertex displacement,

375-377
control points, 173-183
free-form, 197-203
functions, 205
illustrated, 205
implicit surface, 203-220
model development, 203
time interval, 218
time-varying, 206

degeneracy, 413, 415
degenerate feasible vector, 403
degrees of freedom

particle systems, 112, 119
solid box (rough plane), 151
unwanted, 259

delta functions
averaging property, 254
in differential equations

context, 245
Dirac, 244
selection property, 252, 253

dependent vectors, 623
derivative approximations,

718-725
backward difference, 719,

720
bivariate functions, 714-715
centered difference, 719, 720
defined, 718
examples, 721-723
forward difference, 719

higher-order, 719
multivariate functions, 725
parameters, 721
template, 718
univariate functions,

719-723
derivatives, 700, 701

of bivariate functions,
724-725

computing, 701
directional, 706-708
list of, 700
of multivariate functions,

725
partial, 705
total, 114
of univariate functions,

719-723
determinant functions,

638-645
defined, 639
formal construction of,

638-645
determinants, 634-646

of 2 x 2 matrix, 634-636
of 3 x 3 matrix, 636-638
computing formal expression

for, 642
defined, 634
of elementary row

operations, 644
evaluation, 644
evaluation program, 644
geometric interpretation of,

637
of identity, 645
of matrix, computing, 643
of matrix, properties, 644
ofproduct, 645
See also linear algebra

diagonal matrices, 448, 449
defined, 569
identity, 569
power computation, 448

square, 448
dictionaries

balanced, 409, 416
for basic variables, 408
complementary variables,

416
entering, 408, 410, 415, 425
feasible, 409, 410, 411
initial, 409, 411, 414, 416
leaving, 408, 415, 417, 425
modified, initial, 425
moving to, 409
moving variables from, 413
obtaining, 408
terminal, 409, 411

difference equations, 727-738
autonomous, 728
constant-coefficient,

734-736
implicit nth-order, 727
linear, 730-733
nth-order, 727
systems of, 736-738

difference vectors, 669
differentiable functions, 699
differential calculus, 691
differential equation solver

implementation, 275
multifunction evaluation,

238
time step, 343

differential equations, 2,
437-455

characteristic polynomial for,
444

equilibria, 450-455
extrapolation methods

application to, 474-476
first-order, 92, 437-440
general-order, 444-445
integration, 580
linear, 140, 446-450
for motion, 2
nonlinear, 92



numerical methods, 10-11
ridges and, 3
second-order, 91, 140,

442-444
solution computation, 447
solutions, 140, 141
solving with Runge-Kutta

method,275
stability, 450-455
stiffness, 503-506
system of, 223, 224

differentiation
multivariate calculus,

705-708
univariate calculus, 698-701

Dirac delta function, 244
direct sum, 655, 656

defined,656
of eigenspaces, 657
of transformations, 656

direction vectors, 285, 337
directional derivatives, 706-708

defined, 707
example, 707
independent variables form,

707
DirectX, 368

pixel shader output, 375
vertex shader output,

372-373
discontinuous functions,

697-698
discrete mass

balancing, in a plane, 47
balancing, in a plane on a

fulcrum, 48
balancing, on a line, 44
in one dimension, 44-45
in three dimensions, 52
in two dimensions, 46-48
See also mass(es)

displacement, 102
of force, 102
infinitesimal, 102

of mass, 102
dissipative forces

examples with, 139-152
flat board on rough plane,

148-150
multiple particles on rough

plane, 145-146
one particle on rough plane,

141-143
solid box on rough plane,

150-152
thin rod on rough plane,

147-148
two particles on rough plane,

143-145
viscous, 140
See also forces

distance
calculations, 427-436
between convex polygons,

431-434
between convex polyhedra,

434-436
between point and convex

polygon, 427-429
between point and convex

polyhedron, 429-431
Divergence Theorem, 66, 67, 69
diving board example, 133-134

board flexibility, 133-134
defined, 133
illustrated, 133
Lagrangian equation of

motion, 134
potential energy, 134
See also conservative forces

division
avoiding,553-554
in back substitution, 564
computation expense, 553

Dobkin-Kirpatrick hierarchy,
301,303

data structure for, 303
implementation of, 303

Index 753

DoCollisionDetection
function, 271

Dolmpul se function, 274-275
domain vectors, 624
DoMot i on function, 275
DoSimulation function, 234
dot product

coordinate-dependent, 608
coordinate-free, 608, 683,

685
defined,515,601
orthogonality and, 601
real-valued vector, 515
in terms of coordinates, 602

dotting equation, 612
double-pendulum problem,

135-136
defined, 121, 135
illustrated, 121
kinetic energy, 135
with kinetic friction, 141
Lagrangian equations of

motion, 136
potential energy, 135

drag acceleration, 30
drag coefficient, 481
drag simulation, 481
dual MP problem, 426
dual problem, 404-407

defined,404,405
feasible vector for, 406, 407
optimizing, 407
primal problem

relationships, 405
strong duality principle, 407
unboundedness property,

406
with vector notation, 405
vector of slack variables, 407
work duality principle,

405-406
See also linear programming

dual slack equation, 423
duality gap, 426



754 Index

dynamic equivalence, 125
dynamics, 7

defined, 87
Lagrangian, 7, 14, 87,

100-152
Newtonian, 87, 88-100

E
ear-clipping-based mesh

construction, 215-220
Earth

orbit, 90
particle attraction, 93
rotation, 92, 93

edge meshes
adjacent vertices removal

from, 216-217
for each voxel face, 215
extracted, 216
precomputed table, 215
triangle removal, 217

edge-edge contact, 287, 321
edge(s)

convex polygon, 286, 302
input, 327
interactions, 211
isosurface intersection, 207
moments for, 63-64
oriented bounding boxes

(OBBs),334
overlap,320
products of inertia for, 63-64
projections, 302
sign changes on, 209
tetrahedrons, 305
umbrella parents, 302
vertex configurations, 213
See also intersections

edge-to-edge intersections, 242,
270,315

edge-to-face intersections, 241,
242

eigendecomposition, 652-655

eigenspaces
dimension of, 649
direct sum of, 657
finding, 647-648
generalized, 657, 658

eigenvalues, 60, 455, 632,
646-651,667-668

defined,646
diagonal entries, 654
example, 646
finding, 647,647-648
of first-derivative matrix, 505
method of construction, 646
negative, 504
of negative real parts, 487
real-valued, 60-61, 649
as roots, 647, 648
of symmetric matrix, 655

eigenvectors, 455, 632, 646-651
characterizing, for real­

valued symmetric
matrices, 653

corresponding, 647
defined, 646
example, 646
linearly independent, 650
method of construction, 646
unit-Iength,653

elastic collision, 249
elasticity, 161
elementary row matrices,

570-572
defined,570
examples, 570-572
inverses, 573
last row operation, 578
listing, 572
nonzero determinants, 645
product of, 572

elementary row operations
determinants of, 644
order of, 572
representation, 570

ellipse
area, 91, 418-419
axis-aligned,418
path of motion, 107, 108
points contained in, 419

energy, 79-85
kinetic, 14, 79-81
potential, 83-85, 92
time derivative, 85
total, 85

equality constraints, 692
equations of motion, 32, 93,

165,224,227,228,343
arbitrary mass-spring

system, 171
constraining forces, 113
for continuum of mass,

121-132
for Foucault pendulum, 95,

96
interpretation of, 117-118
Lagrangian, 87, 101, 103
motion on a curve, 102-104
motion on a surface, 104-112
Newton's second law, 224
for particle systems, 118-121
for particles, 102-114
simple pendulum, 492
three-dimensional array

(masses),170-171
for time-varying frames, 115
two-dimensional array

(masses), 168
unconstrained motion, 228

equilibrium, 39-41, 450-455
defined, 40, 450
equations for, 41
objects in, 40
physical stability, 488
solution, 450, 451
stability properties and, 487
unstable, 487
zero, 487



Euler's equations of motion, 7,
61, 152-160

Euler's method, 234, 277
consistency, 488
defined,458
explicit, 463, 493-494,

499-500
implicit, 464, 495-496,

500-501
local truncation error, 488
modified, 463, 467
numerical solver using, 233,

343
obtaining, 458
See also numerical methods

even permutation, 639, 686,
687

exactness test
defined, 84
satisfaction, 85

examples/exercises, this book,
11

existence question, 440
explicit Euler's methods, 463,

493-494
application to modal

equation, 499
applied to simple pendulum

problem, 494
characteristic polynomial,

499
iterate generation

pseudocode,493-494
numerical method, 493
region of stability, 500
See also Euler's method

exponent matrices, 448,
663-664

extended free-form
deformation (EFFD),
203

external forces, 31, 267
applied to rigid bodies, 123

motion of objects
undergoing, 41

particle reaction to, 88
particle system, 40
See also forces

external torque, 267
extraction

isocurve, in 2D images,
208-212

isosurface, in 3D images,
212-220

level set, 206-208
triangle, 208

extrapolation methods,
473-478

application to differential
equations, 474-476

Bulirsch-Stoer, 478
modified midpoint, 477-478
Neville's, 476
polynomial interpolation

and,476
rational polynomial

interpolation and,
476-477

Richardson extrapolation,
473-474

See also numerical methods
extreme point, 302-303

search for, 302
unique, 304

F
face(s)

moments for, 64-65
oriented bounding boxes

(OBBs),334
polygonal, area, 70
polygonal, projection, 71
polyhedron, 67
products of inertia for, 64-65
spherical, 305, 306

Index 755

triangle, 73, 74-75
See also intersections

face-to-face intersection, 241,
242

feasible basis vectors
defined, 396
for normal form, 402

feasible dictionary, 409, 410,
411

feasible points, 418
feasible vectors

choosing, 406
in constraints, 402
defined,396
degenerate, 403
for dual problem, 406, 407
optimal, 396
for primal problem, 405, 407

fields, 547-548
finite, 588
vector, 68

Fi nd Intersect i on function,
329-331

find-intersection queries
for convex polygons, 316
for convex polyhedra, 325
defined,222
See also queries

finite dimensional vector
spaces, 599, 625

finite fields, 588
first-derivative matrix, 492, 493
first-order differential

equations, 437-440
closed form solution, 439
initial conditions, 457
with initial time, 439
initial value problem, 438,

445
linear, 439
numerical solvers, 445
separable, 439
See also differential equations



756 Index

first-order linear difference
equations, 730-731

fixed axis, motion about, 25-26
flat board (rough plane),

148-150
defined, 148
frictional forces, 150
generalized force, 150
illustrated, 149
kinetic energy, 149
Lagrangian equations of

motion, 150
velocity, 148

forces, 32-41
applied, 227, 228
computing, 238
concurrent, 39
conservative, 82
constraining, 101, 112-114
contact, 240, 267
couple, 38
defined, 31
displacement, 102
diss!pative, 139-152
equilibrium, 39-41
evaluation, 276
external, 31, 267
frictional,35-36
generalized, 103
gravitational, 32-34
impulsive, 240, 245, 246
infinitesimal, 123
moment of, 37-39
nonconcurrent, 39
nonconservative, 83
product of magnitude of,

79-80
reactive, 101
resolution, at center of mass,

268
spring, 34-35
torque, 37-39
with velocity component,

480-481

viscous, 36-37
without velocity component,

479-480
forward difference

approximation
defined,719
example, 721-723
occurrence, 721
parameters, 721
with second-order error, 719
See also derivative

approximations
forward elimination, 563, 564

augmented matrix, 557
defined,548
design, 558
elementary row operations

and,555
first step, 556
snags, 549-550
two equations in two

unknowns, 551-554
Foucault pendulum, 94-97

acceleration, 95
defined,94
equation of motion, 95, 96
illustrated, 94, 97
tip path, 97
velocity, 95

four rigid bodies contact points
example, 261-263

defined, 261
illustrated,261
impulsive contact forces, 261
relative velocity equation,

262
simultaneous updates of

angular momenta, 262
simultaneous updates of

linear momenta, 262
fourth-order Runge-Kutta

methods, 469-470
defined,469
Gill's, 470

RK4a, 469-470
See also Runge-Kutta

methods
free-form deformation (FFD),

197-203
algorithm, 200
with B-spline volume

function, 200-201, 203
control points, 204
defined,200
extended (EFFD), 203
illustrated, 204

freely spinning top example,
155-156

angular speed, 155
defined, 155
Euler equations, 155
illustrated, 155
top angular velocity, 155
world coordinate axes, 155

freely spinning top
modification, 156-158

angular momentum, 157
defined, 156
differential equations,

157-158
Euler's equations, 156
snapshots, 159
torque, 156

Frenet-Serret equations, 22
Fresnel effect, 386
Fresnel factor

defined, 386
per pixel,

388
in refraction application, 388

Fresnel reflectance, 386-388
defined,386
reflection effects produced

by, 384
Fresnel shader application,

386-388
design, 386
illustrated, 387



friction, 35-36
coefficient of, 140
defined,35
flat board on rough plane,

148-150
kinetic, coefficient of, 36
Lagrangian dynamics and, 87
magnitude, 35
multiple particles on rough

plane, 145-146
Newtonian dynamics and, 87
on flat surfaces, 141
one particle on rough plane,

141-143
simple pendulum friction

example, 140
solid box on rough plane,

150-152
static, 36
static, coefficient of, 36
thin rod on rough plane,

147-148
two particles on rough plane,

143-145
velocity computation and,

480
See also forces

frictionless metal chute
example, 111-112

frustum, object outside, 348
full pivoting, 565
functions (calculus)

bivariate, derivatives,
724-725

collection of, 691
continuous, 697, 704
defined, 691
derivatives, 698, 700, 701
differentiable, 699
discontinuous, 697-698
domain, 691
global maximum, 712
global minimum, 711-712,

714, 715

as indeterminate form, 701
local maximum, 711
local minimum, 711
multivariate, 691
multivariate, derivatives, 725
multivariate, local extrema,

664-668
multivariate, optimization,

713-715
range, 691
recursive descent, 713-714
univariate, derivatives,

719-723
univariate, optimization,

711-713
value change, 694

Fundamental Theorem of
Algebra, 445, 547,
616-620,647,656

Fundamental Theorem of
Calculus, 703

G

GAMMA,363
Gaussian elimination, 554-558

defined,554
elementary row operations

and,554-558
total cost, 558

Gauss's principle of least
constraints, 362

Gear's fifth-order predictor­
corrector method,
485-487

energy conservation, 487
matrix prediction step, 486
reversibility and, 487
Taylor's Theorem basis, 485
Velocity Verlet method vs.,

486,487
gelatinous cube, 172, 174
general autonomous systems

defined,453

Index 757

stability analysis, 453-454
stability of, 453-455

general duality theory, 426-427
generalized cylinder surfaces,

193-194
defined, 193
normal vectors, 193
skirt model, 194
See also surface(s)

generalized eigenspaces, 657,
658

generalized forces, 118
bent pipe physical system

example, 131
constraint force

determination and,
113

defined, 103
flat board (rough plane), 150
multiple particles (rough

plane),146
pulley and mass system

example, 127
of rigid bodies, 124
single particle (rough plane),

142
thin rod (rough plane),

147-148
total, 118
two particles (rough plane),

144-145
generalized function, 244
general-order differential

equations, 444-445
characteristic polynomial for,

444,447
constant coefficients, 444
converting, 445
defined,444
homogeneous linear, 446
initial-value problem, 444
See also differential equations

geodesic curves, 3
GetESegment function, 334



758 Index

GetFPolygon function, 334
Getlntersection function, 283
GetKey function, 180
GetMaximumlndependentSet

function, 302
Gill's method, 470
global extremum, 711-712
global state arrays, 231, 238
GNU Image Manipulation

Program (GIMP), 379
Gouraud shading, 367
Gram-Schmidt orthonor­

malization, 226, 227,
615

applied to three vectors in
space, 605

applied to two vectors in the
plane, 604

defined,604
illustrated, 604, 605

graphics processing units
(GPUs),4

graphs
cusp, 700
illustrated,699
kink,700
nonconvex functions, 420
secant line of, 698
tangent line of, 698, 708

gravitational forces, 32-34
conservative, 82
constraint force balance, 114
infinitesimal, 45
on objects by Earth, 33
on objects located near

Earth's surface, 34
one-dimensional array

(masses), 165
single particle on rough

plane, 142
two-body problem, 137
universal constant, 32

Green's Theorem, 67, 69

H

half angles, 517-518, 528
Hessian matrix, 465
Heun's method, 467
High Level Shading Language,

368
higher-order Taylor methods,

461-462
defined,461
example, 461

Hollerith cards, 1
Hooke's law, 34, 106, 173
Householder reduction, 655
hypervolume

defined,682
notation, 683, 685
recursive formula, 686
signed,689
of simplex, 682, 686-689
summations in, 689

I-J

I-COLLIDE,363-364
defined, 363
variations, 364

identity matrices, 569, 572, 574
IMPACT,364
implicit Euler's method, 463,

464
application to modal

equation, 500
applied to simple pendulum

problem, 496
characteristic polynomial,

500
iterate generation

pseudocode, 495
numerical method, 495
time between zeros, 496
See also Euler's method

implicit nth-order difference
equation, 727

implicit surface deformation,
203-220

example, 217-220
functions, 205
illustrated, 205
isocurve extraction, 208-212
isosurface extraction,

212-220
level set extraction, 206-208
time-varying, 206

impulse functions, 258
impulse-based approach, 221
impulses, 243-245

angular velocity after, 247,
249

angular velocity before, 247
imparted by force, 245
simultaneous, 257
at spatial points, 253
velocity after, 245
velocity before, 245, 246

impulsive forces, 240
change of angular velocity,

246
change ofvelocity, 246
computing, 254
defined,245
magnitude, 251, 264
opposite direction, 247
postulating, 246, 259
variation, 362

impulsive torque, 246
incidence angles, 383
independent vectors, 624
index of refraction, 384
inequality, 459, 460
inequality constraints, 394,

692
four, 392
linear, 392, 398
lines, 395
redundant, 395
six,394



inertia
defined, 31
moment, about line, 59
moment, in one dimension,

57
moment, in three

dimensions, 58-66
moment, in two dimensions,

58
moments, about x-, y- and

z-axes, 59
products of, 57-66

inertia tensor, 225-226
in body coordinates, 226, 236
computing, 66, 225-226
coordinate system

construction, 225
defined, 59
inverse, 249
measurement, 225
for single particle, 60
solid polyhedron, 66-79
for solid triangle, 61

inertial coordinates, 32, 101
inertial frame, 32, 101
infinitesimal area, 702
infinitesimal displacement, 102
infinitesimal forces, 123
infinitesimal mass, 45, 48, 121

distribution, 45
for parametric curves, 50, 55

infinitesimal quantities, 691
infinitesimal volume, 708
initial value problem

defined, 437
first-order differential

equations, 438, 445
general-order differential

equations, 444
positional condition, 479
second-order differential

equations, 442, 479
solution, 443
velocity condition, 479

Init i ali zeBodyState function,
229,230

input states, 231, 234
insertion sort, 357
instantaneous speed, 693,

699
integers, 545
integral calculus, 691, 701-704
integral formulation, 462--464
integrand, 703
integration

defined, 703
iterated, 709, 710
multivariate calculus,

708-710
univariate calculus, 701-704

interpolation
bilinear, 541
linear, over a tetrahedron,

680
linear, over a triangle, 679
polynomial, 476--477
quadrangle, 541, 542
quaternions, 539-542
spherical linear, 539-541
spherical quadrangle,

541-542
intersecting boxes, 360
intersecting intervals, 354-359

active, 355
determining, 354
moved, 358
nonoverlapping, 358, 360
sorted end points, 355
sweep algorithm, 354-355

intersecting rectangles, 359-360
intersection calculators

features, 333
possible outputs, 333
pseudocode, 322-324,

331-333
intersection set, 282
intersections

convex polygons, 312

Index 759

convex polygons, testing
pseudocode, 312-314

detection, 281
edge-edge, 242,266, 270
edge-face, 241, 242
face-face, 241, 242
pairwise, 394-396
of polytopes, 283
prediction, 312, 315
testing pseudocode, 291-292
vertex-face, 241, 242, 270
vertex-vertex, 315

intervals
active, 355, 356
average speed calculation on,

693
intersecting, 354-359
GBB computation, 343
projection, 317, 318, 336,

344,346
time, 343

inverse matrices, 572-574
computing, 226
defined, 572
examples, 572-573, 574

inverses
computing, 576
construction of, 575-577
defined, 574
left, 574, 622-623
properties, 574-575

invertible matrix, 449
iridescence, 388-389

defined, 388
shader application, 388
shader application screen

shots, 389
isocurves

in entire plane, 210-211
extraction, 208-212
form, 208
hyperbolic, configurations,

211
intersection, 209



760 Index

isocurves (continued)
mesh consistency with, 210

isosurfaces
extraction, 212-220
form, 212-213
interior edge point

intersection, 214
iterated integration

defined, 709
dimensions, 710
See also calculus; integration

K

Karush-Kuhn-Tucker (KKT)
points

conditions, 423
critical points analogy, 422
defined,422
first condition, 423
reformulated conditions, 424
second condition, 423
third condition, 423
See also mathematical

programming (MP)
Kepler's laws

defined,88
first law, 89-90
second law, 90-91

kinematics, 15-31
continuous materials, 28-31
defined, 13, 15
particle systems, 28-31
single particle, 15-27

kinetic energy, 14, 108
additive nature, 81
bent pipe physical system

example, 130-131
constraining forces, 113
defined, 81
double-pendulum problem,

135
flat board (rough plane), 149
Lagrangian dynamics and, 14

masses aligned vertically
example, 120

maximum, 245
measurement, 81
multiple particles (rough

plane),146
pulley and mass system

example, 126
simple pendulum friction

example, 140
single particle (rough plane),

142
solid box (rough plane), 151,

152
of system, 81
thin rod (rough plane), 147
time-varying frames, 115
two particles (rough plane),

144
two-body problem, 137

kinetic norm, 362
kink,700
knot vectors, 175-176

control point modification
and, 183

nonuniform, 175
open, nonuniform, 176
open, uniform, 175
periodic, 175
rows of, 177
See also B-spline curves

L
Lagrange multipliers, 692

defined, 716
method of, 715-716, 717

Lagrangian dynamics, 7,
100-152

constrained motion, 278-280
defined,87,101
frictional forces and, 87, 222
kinetic energy and, 14
See also dynamics

Lagrangian equations of
motion, 87, 101

ball at top of frictionless hill
example, 109

ball constrained on
frictionless table example,
107

bent pipe physical system
example, 131

conservative force, 133
constraining force, 103
for constraint variable, 133
for constraints of interest,

118
for continuum of mass,

121-132
diving board example, 134
double-pendulum problem,

136
external force, 103
flat board (rough plane),

150
frictionless metal chute

example, 111
interpretation of, 117-118
masses aligned vertically

example, 120
multiple particles (rough

plane), 146
for particle constrained on a

surface, 106
for particle constrained to a

curve, 103
for particle systems, 118-121
pulley and mass system

example, 127
simple pendulum friction

example, 140
simple pendulum problem,

104
single particle on rough

plane, 143
thin rod (rough plane), 148
triangle pendulum, 125



two particles (rough plane),
145

two-body problem, 138
See also equations of motion

Lagrangian function, 133, 426
lamina, 14
Law of Cosines, 602
LCP applications, 427-436

contact forces, 436
distance calculations,

427-436
See also linear

complementarity problem
(LCP)

LDU decomposition method,
578,582,583

leap frog method, 481-483
advantages, 483
application to modal

equation, 502
applied to simple pendulum

problem, 499
characteristic polynomial,

502
defined,481
first position approximation,

482
implicit assumption, 482
iterate generation

pseudocode, 498
region of stability, 502
velocity, 482, 484

least-squares problem, 621
left inverse, 622-623
Lemke-Howson algorithm, 391,

408-413
complementary variable

cannot leave dictionary,
418

defined, 408
example, 409-413
first phase, 408, 416
numerical implementation

of,415

problems of zero constants,
412

second phase, 408, 416
level set extraction, 206-208
Levi-Civita permutation tensor,

686
l'H6pital's rule, 701
limit notation, 694
limits, 694-696

approach of, 694, 696
continuous variables and,

696
defined,691
multivariate calculus,

704-705
ofasequence,696-697
univariate calculus, 694-696
See also calculus

line integrals
computation by reduction

to, 68-73
planar integral conversion to,

69
line segments

contact sets as, 254, 316
end points, 683
as function ofy, 683
length of, 681-682
vector-valued function, 254

linear algebra, 545-668
advanced topics, 634-668
applications, 661-668
determinants, 634-646
eigendecomposition,

652-655
eigenvalues and eigenvectors,

646-651
fundamental theorem of,

616-620
matrices, 566-583
number systems, 545-548
S + N decomposition,

655-661

Index 761

systems of linear equations,
548-566

vector spaces, 583-633
linear combinations, 593-594

defined,593
example, 593
finite, 593

linear complementarity
problem (LCP), 10,264,
269,407-418

complementary variables
and,416-418

conversion to, 409, 411
defined,391,407
formulation, 392
Lemke-Howson algorithm

and, 391,408-413
online summary, 408
overview, 391-392
quantities in, 407-408
simplex method solution,

408
software requirement, 265
solution, 410
solver, 264
variations, 362
zero constant terms and,

413-416
linear difference equations,

730-733
defined, 730
first-order, 730-731
homogeneous, 730
second-order, 731-733
See also difference equations

linear differential equations,
446-450

nth-order homogeneous, 446
solution, 450
systems of, 446-450

linear equations
defined,548
nonhomogeneous, 730



762 Index

linear equations (continued)
nonsquare systems of,

558-559
re-creating, 567
systems of, 548-566

linear independence, 595-601
linear inequality constraints,

392
linear interpolation

over a tetrahedron, 680
over a triangle, 679

linear momentum, 42, 225
change in, 246
conservation of, 42
continuum of mass, 42
defined,42
discontinuity in, 245
simultaneous updates, 262

linear programming (LP), 10,
392-407

defined, 392
dual problem, 404-407
general problem, 396-404
problems, 2
solution by pairwise

intersections, 394-396
two-dimensional example,

392-394
linear systems, 548-566

geometry, 559-562
iterative methods for solving,

565-566
nonsquare,558-559
sparse, 565

linear transformations,
525-526,624-633

applied to basis vectors, 629
bilinear, 525, 608
composition of, 633
defined,526,624
examples, 625-626
expansion, 628, 631
matrix notation and, 538
on weighted sums, 526

with respect to chosen bases,
629

with respect to two different
bases, 631

of sum ofvectors, 624
linear velocity, 26

constant, 311-334, 343-346
convex polygons, 311
impulse equation, 260
instantaneous update, 264
postimpulse, 246, 249
preimpulse, 246
update, 254, 255

linearity, 525-526
"distributed law," 526
weighted sums mutation

and,535
linearly dependent sets

cardinality, 599
defined,506
example, 596
inserting vectors into,

598-601
removing vectors from, 598,

600
See also vectors

linearly independent sets
cardinality, 599
defined,596
examples, 597
obtaining, 598
retaining, 598-601
See also vectors

lines
coincident, 559
horizontal parallel, 695
nonparallel,559
parallel, 559
secant, 698
tangent, 698, 708

local control, 175, 181
local minimum, 421
local truncation error, 488
lower echelon matrices, 570

lower triangular matrices, 571
LV decomposition, 577,

577-583
approximate solution,

581-583
defined, 577
exact solution, 580-581
LDV, 578, 582, 583

M
magnitude

computing, 247
of forces, product of, 79-80
impulsive forces, 251, 264
normal component, 259
vectors, 583
velocity, 258, 263

Marching Cubes algorithm,
206-208

2D images and, 209
defined,206
sign analysis, 207
sign combinations, 207
table lookup, 208
triangle mesh, 215
undesirable consequences,

207
voxel analysis, 206

Marching Squares, 209
mass matrix, 59
mass(es)

ball, 106, 107
bead, 104
center of, 41, 44-56
constrained, 116
continuous, 42
continuous, in one

dimension, 45-46
continuous, in three

dimensions, 52-56
continuous, in two

dimensions, 48-51
continuum of, 14,42,60



curve, 14, 15,55-56
defined,31
density, 121, 125
discrete, in one dimension,

44-45
discrete, in three dimensions,

52
discrete, in two dimensions,

46-48
displacement, 102
infinitesimal, 45, 48,50, 121
integral computation, 53
inverse, 249
measurement, 31
motion, over time, 100
one-dimensional array of,

164-166
particle, 93
pendulum, 100
projectile, 80
solid polyhedron, 66-79
surface, 14, 15,53-55
three-dimensional array of,

170-171
torque, 44-45
total, ofbody, 122,224
total, of system, 46, 47,53,54
total, of wire, 50, 55
two-dimensional array of,

166-170
volume, 14, 15,52-53

masses aligned vertically
example, 119-121

defined,119
force, 119
illustrated, 119
kinetic energy, 120
Lagrangian equations of

motion, 120
mass-spring systems, 164-173

arbitrary configurations,
171-173

one-dimensional array of
masses, 164-166

three-dimensional array of
masses, 170-171

two-dimensional array of
masses, 166-169

volume mass representation,
170

Mathematica, 74, 76
mathematical programming

(MP), 10,418-427
convex, 420
defined,392,418
dual problem, 426
goal,418
notation, 419
objective function, 418
primal problem, 426
problem categories, 420
quadratic, 420

matrices, 566-583
augmented, 555, 557, 563,

566
block, 619, 675
change ofbasis, 631, 633
of cofactors, 642
column, 555
concept, 566-567
decomposition of, 662
diagonal, 448, 449, 569
diagonal entries, 569
elementary row, 570-572
exponential of, 663-664
identity, 569, 572
inverse, 572-574
juxtaposed,567
lower echelon, 570
lower triangular, 570
LV decomposition, 577-583
of minors, 642
nilpotent, 655
permutation, 578, 579
power of, 662
projection, 623, 624
skew-symmetric, 569, 570
special,569-570

Index 763

symmetric, 448, 569, 570,
623

tridiagonal, 581
upper echelon, 577
upper triangular, 571
zero, 573

matrix multiplication, 569
matrix of coefficients, 567,612
maximum independent set of

vertices, 301, 302
medical imaging, 3
mesh

consistency with isocurves,
210

ear-clipping-based
construction, 215-220

edge, precomputed table, 215
extracted edge, 216
reduction algorithms, 208
table-based selection,

214-215
triangle, 190,214,215
vertex positions, 202

method of Lagrange
multipliers, 715-716

defined,715-716
using, 717
See also constrained

optimization
method of separating axes,

284-285
collision detection systems

built on, 343
defined,283
naive implementation of, 288
use of, 311

middle index, 290, 291
midpoint method, 466

defined, 466
modified,477-478
See also numerical methods

minors, 642
Mirtich's formulas, 75-76

comparison to, 75-76



764 Index

Mirtich's formulas (continued)
implementing, 79

modal equation
defined, 491
explicit Euler's method, 499
implicit Euler's method, 500
leap frog method, 502
Runge-Kutta fourth-order

method, 501
modified Euler's method, 463,

467
modified midpoint method,

477-478
moments

about x-axis, 47, 49,50
about xy-plane, 52, 53, 54, 56
about xz-plane, 52, 53, 54, 55
about y-axis, 47,49, 50, 51
about yz-plane, 52, 53, 54, 55
calculating, 62, 63, 64
for continuum of mass, 60
defined, 41
for edges, 63-64
for faces, 64-65
inertia about line, 59
inertia about x-, y- and

z-axes, 59
inertia in one dimension, 57
inertia in three dimensions,

58-66
inertia in two dimensions, 58
inertia with respect to center

of mass, 57, 58
inertia with respect to origin,

57,58
products of inertia and,

57-66
for vertices, 63

momentum, 41-79
angular, 43-44, 225, 247, 262
linear, 42, 225, 245, 262

motion
about fixed access, 25-26
about moving axis, 26-27

circle of, 26
constrained, 240-280
equations, for Foucault

pendulum, 95, 96
equations, in Lagrangian

dynamics, 87
equations of, 32, 87, 93, 95,

96, 102-114
Euler's equations of, 61
on a curve, 102-104
on a surface, 104-112
path of, 88
period, square of, 91-92
plane, equal areas in, 89-90
rigid, 677
rigid body, 87-160
unconstrained, 222, 223-239

moving axis, motion about,
26-27

moving frames, 16, 21
multidimensional integrals, 709
multilinear transformations

defined, 638
equality as consequence of,

640
multiple contact points,

250-258
multiple particles (rough

plane), 145-146
defined, 145
frictional forces, 146
kinetic energy, 146
Lagrangian equations of

motion, 146
multiplication

as associative operation, 513
complex numbers, 547
matrix, 569
number of cycles, 552
quaternions, 514-515
scalar, 588, 589
vector, 587-588

multiplicative identity, 545,
546,588,591

multiplicative inverse, 545, 546
multistep methods, 470-472

Adams-Bashforth m-step,
471,490

Adams-Moulton m-step,
472,490

defined, 470
derivable, 470
explicit, 471
formulation, 490
generalization, 472
implicit, 70
stability, 490-491
two-step, 471
See also numerical methods

multivariate calculus, 704-710
continuity, 704-705
defined, 691
differentiation, 705-708
integration, 708-710
limits, 704-705
See also calculus

museum principle, 415-416
defined, 415
path of visitation, 416
satisfying, 416

N

n-dimensional affine space, 669
NetImmerse,4
Neville's method, 476
Newtonian dynamics, 87,

88-100
examples, 91-100
frictional forces and, 87
for unconstrained motion,

223
See also dynamics

Newton's laws, 31-32
Newton's second law, 100, 223

equations of motion, 224
Lagrangian formulation as

extension of, 118



for object motion control,
221

nipotent, 655
Nolntersect function, 317, 318
nonbasic variables, 402, 403
nonconvex functions, 420
noninertial frame, 32, 101
nonlinear complementarity

problems (NCP), 362
nonpenetration constraints,

240
nonuniform rational B-splines.

See NURBS
normal equations, 622
normal form

constraints, 397
defined,397
feasible basis vector for, 402
restricted, 397
solving, 397

nth-order difference equation,
727

nth-order differential
equations. See general­
order differential
equations

number systems, 545-548
complex numbers, 546-547
fields, 547-548
integers, 545
rational numbers, 545-546
real numbers, 546

numerical methods, 10-11,
457-506

convergent, 489
Euler's method, 458-461
explicit, 463
extrapolation methods,

473-478
Gear's fifth-order predictor­

corrector method,
485-487

higher-order Taylor methods,
461-462

implementing, 10
implicit, 463, 464
leap frog method, 481-483
multistep methods, 10,

470-472
predictor-corrector methods,

472-473
Runge-Kutta methods,

465-470
single-step, 10
stability, 487-502
stiffness, 11
Velocity Verlet method,

483-485
Verlet method, 478-487
via integral formulation,

462-464
numerical round-off errors, 226
numerical stability, 487-502

defined,489
explicit Euler's method, 500
implicit Euler's method, 500
leap frog method, 502
multistep methods, 490-491
Runge-Kutta fourth-order

method,501
single-step methods,

488-490
stable step-size selection,

491-502
strongly stable, 491
unstable, 491
weakly stable, 491

NURBS curves, 8,173,183-187
concept, 183
control points, 183, 185, 186
control weights, 183, 185
defined, 183
encapsulation, 184
evaluator, 184-185
examples, 183-187
initial control points, 185
later control points, 186
split, 187

Index 765

NURBS surfaces, 173
defined, 188
encapsulation, 190
example, 188-190
flexibility, 188

NURBSCurve class, 184
NURBSSurface class, 190

o
objective function, 398, 418,

419,427
auxiliary, 397, 398,401
defined,396
MP and, 418
quadratic term, 420

objects
coherence, 350
in equilibrium, 40
gravitational forces on, 33,

34
moving, constant linear

velocity,311-334
number of comparisons

between, 351
OBBs as, 342
stationary,286-310
weight of, 34

occlusion culling, 278
odd permutation, 639, 686, 687
one-dimensional array

(masses), 164-166
configurations, 164
defined, 164
equations of motion, 165
gravitational forces, 165
illustrated, 167
open linear chain, 166
See also mass-spring systems

OpenGL
pixel shader output, 374
shader support, 368
vertex shader output,

371-372



766 Index

optimal feasible vector) 396
optimization (calculus))

711-715
constrained) 692) 710
defined) 692
multivariate functions)

713-715
univariate functions)

711-713
organization) this book) 6-11
orientation

modification) 248
quaternions) 233) 236
values) 249

orientation matrix) 225
angular velocity relationship)

225
computing) 227

oriented bounding boxes
(OBBs)) 4) 334-342

axes) 343
axes at time zero) 347
center point) 334) 335
with constant angular

velocity) 346-348
with constant linear velocity)

343-346
coordinate axis directions)

335
defined) 334
edges) 334
extents) 335
face normals) 338
faces) 334
illustrated) 335
intervals computation) 343
as objects) 342
potential separating axis

tests) 335
potential separating

directions) 338
projecting) 335
projection intervals) 336
symmetry) 335

testing) 334
test-intersection query) 344
trees) 363
use of) 334
vertices) 334

orthogonal set of vectors) 6
orthogonal subspaces) 613-615)

620
complement) 614
defined) 613
illustrated) 614

orthogonal vectors
defined) 601
illustrated) 602

orthonormal set of vectors) 508)
510)604

already constructed) 606
constructing) 604
defined) 604
right-handed) 509

orthonormalization
application) 226
Gram-Schmidt) 226) 227)

604)615
for rotation matrices) 227

output states) 231) 234

p

pairwise intersections) 394-396
parabolas

area bounded by) 702
continuous mass bounded

by) 49
parallelogram law

defined) 670
illustrated) 671

parallelograms
area of) 634
obtained by transforming

cube) 638
obtained by transforming

square) 635
parameterization

arc length) 254

cylinder surfaces) 193
revolution surfaces) 195
triangle faces) 74

parametric curves) 50) 55
parametric surfaces

control points) 163
for deformable body

modeling) 173
partial derivatives) 705

defined) 705
first) 665
rates ofchange measurement)

706) 707
second) 665
vector of) 707
See also derivatives

particle systems
defined) 14
degrees of freedom) 112)

119
equations of motion for)

118-121
external forces) 40
kinematics) 28-31
total torque for) 41

particles
acceleration of) 16) 19
defined) 14
discrete set of) 58
equations of motion for)

102-114
inertia tensor for) 60
kinematics) 15-27
kinetic energy of) 81
mass) 93
motion about fixed axis)

25-26
motion about moving axis)

26-27
multiple) on rough plane)

145-146
path of) 80
planar motion in Cartesian

coordinates) 15-18



planar motion in polar
coordinates, 18-19

position of, 15-16, 19
single, on rough plane,

141-143 _
spatial motion in Cartesian

coordinates, 19-22
spatial motion in cylindrical

coordinates, 22-24
spatial motion in spherical

coordinates, 24-25
speed of, 16, 19
total torque, 41
two, on rough plane,

143-145
velocity equation, 243
velocity of, 16, 19

path(s)
Foucault pendulum tip, 97
of motion, 88
work independence of, 82

permutation matrix, 579
defined,578
factorization of, 639

permutations
defined, 638
even,639,686,687
multi-index as, 641
odd,639,686,687
summation over, 641
tensor, 688
transposition, 638

Perp function, 429
perp vectors

defined,683
length,684

physical stability
defined, 487
of equilibrium solution, 488

physics
concepts, 6, 13-85
in real time, 5
shader programs and,

367-389

physics engines, 8, 221-365
constrained motion, 240-280
defined,4
performance, 278
unconstrained motion,

223-239
pixel shaders, 367

basic,374
defined,369
DirectX output, 375
OpenGL output, 374
rendering with, 376
rippling ocean waves, 381
See also shader programs

pixels
ambiguous, resolutions for,

210
sign configurations, 209
vertex-edge configurations,

213

planar lamina, 14
planar motion

in Cartesian coordinates,
15-18

in polar coordinates, 18-19
planes

coincident, 561, 562
disjoint, 561
nonparallel, 561
tangent, 708

points
affine coordinates, 673
body, 242
collision, 240-242, 251,

252
contact, 248-258, 270, 281
continuum of, 46
control, 173-197, 202-203
defined,669
extreme, 302-303
feasible, 418
separating, 243
spatial, 253
tetrahedron, 679

Index 767

vectors vs., 671
polar coordinates

equations of motion in, 91
frame at point on curve, 18
planar motion in, 18-19

polarization, 386
polygonal faces

area, 70
projection, 71

polygons
clockwise ordering, 320
overlapping, 324
projection intervals, 317
See also convex polygons

polyhedra
boundary of, 67
faces, 67
inertia tensor, 66-79
mass, 66-79
mass pseudocode, 76-78
rigid bodies, 229
triangle faces, 73, 74-75
See also convex polyhedra

polynomial coefficients, 630
polynomial interpolation,

476-477
extrapolation and, 476
rational,476-477

polynomials
Bernstein, 189
characteristic, 444, 447,

659-660
generation by vector fields,

68
interpolation, 476-477
quartic, 190
Taylor, 458, 465

polytope. See convex polyhedra
portal systems, 278
position

of particles, 15-16, 19
of points, 23, 24
total derivative of, 114
vector, 26



768 Index

postimpulse velocities, 259
angular, 247, 249
linear, 246, 249
magnitude, 251
nonnegative, 260
rectangle intersecting two

objects, 257
as reflection of preimpulse

velocity, 260
relative, 247
sequential processing, 265
simultaneous processing, 265
world, 259, 260

potential energy, 83-85, 92
defined,83
dependency, 83-84
diving board example, 134
double-pendulum problem,

135
infinitesimal quantities, 84
quantity, 83

potential separating axes, 311,
315

separating equation, 348
for sphere, 349
tests, 335

power series, 663, 664
powers of a matrix, 662
predictor-corrector methods,

472--473
preimpulse velocities, 246, 264

angular, 247
computing, 273
linear, 246
as reflection to postimpulse

velocity, 260
replacing by postimpulse

vectors, 274
world, 259, 260

pressure, 162
primal MP problem, 426
primal problem

defined,404

dual problem relationships,
405

feasible vector for, 405, 407
optimizing, 407
with vector notation, 405
vector of slack variables, 407
See also linear programming

product rule, 700
products of inertia, 57-66

calculation, 62, 63, 64
for continuum of mass, 60
defined,59
for edges, 63-64
for faces, 64-65
for vertices, 63
See also inertia; moments

projection integrals, 71-73
projection intervals

intersection, 318
one stationary, one moving,

346
order, 317
overlapping, 336
polygons, 317
relative position, 344
separated, 336
sum of the radii, 336
of two OBBs, 336
values computation, 344

projection matrix, 623, 624
projection of vectors, 602, 603,

621-624
equation, 621
onto range, 622
onto subspace, 621
See also vectors

pulley, spring, and mass system
example, 125-128

defined, 125
generalized forces, 127
gravitational force, 125
illustrated, 126, 128
kinetic energy, 126

Lagrangian equations of
motion, 127

mass position, 127
principle moment, 126
pulley, 128
spring, 128

pulleys, springs, and mass
system example, 129

Pythagorean Theorem, 601

Q
Q-COLLIDE,364
quadrangle interpolation, 541,

542
quadratic programming

convex, 423--426
defined,420
problem, 421, 423,436
quantities of interest, 425
See also mathematical

programming
quaternions, 11,507-544

addition, 512
algebraic operations,

512-515
classical approach, 512-516
conversion to rotation

matrix,537
defined,507,512
geometric understanding,

517
interpolation of, 539-542
linear algebl"aic approach,

517-522
multiplication, 513-515
notation, 538
orientation, 233, 236
product of, 515
representation as coordinate-

free description, 514
rotation matrix, 516, 537



rotations relationship,
515-516

scalar multiplication, 513
specification, 512
square function of, 542
subtraction, 513
time-varying, derivatives of,

543-544
unit constraint, 534
unit-length, 512, 517, 543

queries
AABB computation, 354
external, 326
find-intersection, 316, 325
test-intersection, 222, 344,

349,350
quotient rule, 700

R
range of the function, 624
RAPID, 363
rational numbers, 545-546

addition, 546
defined, 546

ray tracking, 4
reactive forces, 101
real numbers, 546, 588
rectangles

approximation of area by,
463

axis-aligned, 359
height, 702
infinitesimal area, 702
infinitesimal width, 702
intersecting, 359-360
overlapping, 360
two-object intersection,

256-257
rectangular surface patch, 187
recursive descent in dimension,

713
reduced contact set, 241

for convex polyhedra, 242

processing, 242
See also contact sets

redundant constraints, 395
reference system, 83
reflection, 383

angles, 383, 384
effects, 384
Fresnel, 386-388
illustrated, 383
light direction, 383
refraction with, 384

refraction, 383-386
angle, 384
application, 386
application screen shots,

385
defined, 383
illustrated, 383
index of, 384
light direction, 384
observation, 384
reflection with, 384

relative acceleration, 266
relative velocity, 243, 245

equation, 262
formula, 258
normal component, 265
between points on path, 258
postimpulse,247
at resting contact, 266

resolution of forces, 268
resting contact, 5, 243

colliding contact change to,
245

collision response for,
265-270

contact force at, 267
defined, 240
distance, 266
illustrated, 241
relative velocity, 266
support, 277
See also colliding contact;

contact

Index 769

restricted normal form
conversion, 398
defined, 397
solving, 497

revolution surfaces, 195-196
defined, 195
example, 195-196
illustrated, 195
parameterization, 195
See also surface(s)

Richardson extrapolation,
473-474

approximation combination,
474

approximation form, 473
defined, 473
variation, 474
See also extrapolation

methods
ridges, 3
right-hand rule, 607
rigid bodies

angular velocity, 153
basis vectors, 152
body coordinates, 153
characterization, 14
classification, 13, 14-15
continuous material, 14,

28-31
continuum of mass, 14
as convex polyhedral solids,

270
curve mass, 14, 15
derived quantities of,

229-230
external forces applied to,

123
generalized force for, 124
global array of, 229
initialization, 276
integration, 14-15
kinematics, 15-31
lamina, 14
motion, 87-160



770 Index

rigid bodies (continued)
as not single points, 224
orientation determination,

225
output state calculation, 231
particle systems, 28-31
planar lamina, 14
polyhedra, 229
preimpulse state, 247
single particle, 15-27
spatial coherence of, 223
state variables, 239
surface mass, 14, 15
temporal coherence of, 223
values, 235
volume mass, 14, 15
world coordinates, 153

rigid frictionless rod example,
116-117

rigid motion, 677
Ri gi dBody class, 275-276, 279
Ri gi dBody function, 276
rippling ocean waves, 379-382

diffuse color calculation, 381
GIMP, 379
pixel shader, 381
screen shots, 382
tweaks, 381
vertex shader, 379, 381
water color calculation, 381

RK3a method, 468
RK3b method, 468
RK4a method, 469-470
rotation matrices, 26, 27, 343,

507-512
3D, 518, 521, 522
4D,518,529,534-537
angular velocities, 347
application of, 512
defined, 26
direction vector and, 27
equation, 512
for half angles, 517-518
homogeneous, 532

quaternions, 516
rotation(s)

2D,523-525
3D, 522, 526-528, 531-

534
4D,517,521,529-531
about z-axis, 519
by angle, 517
composite, 516
composition of, 516
counterclockwise, 515
direction, 508
fixed point, 526
half-angle, 518
quaternions relationship,

515-516
vector, 508, 649
in xy-plane, 507,518

rough planes
flat board on, 148-150
multiple particles on,

145-146
one particle on, 141-143
solid box on, 150-152
solid disk rolling on, 132
thin rod on, 147-148
two particles on, 143-145

round-off errors, 226,460
row swapping, 579, 580
R-Plus,4
Runge-Kutta fourth-order

solver, 233, 238, 275
Runge-Kutta methods,

465-470,496-498
applied to model equation,

501
applied to simple pendulum

problem, 497
characteristic polynomial,

501
design, 465
fourth-order, 469-470
Gill's, 470
Heun's, 467

iterate generation
pseudocode,496-497

midpoint, 466
numerical method, 496
output plot, 497
region of stability, 501
RK3a, 468
RK3b,468
RK4a, 469-470
second-order, 466-467
third-order, 468
See also numerical methods

s
S + N decomposition, 655-661

defined,449, 655
direct sum, 655-656
examples, 656-657, 659-661

scalar multiplication, 588
associativity, 595
defining, 589,590,591
distributive over real

addition, 594
distributive over vector

addition, 595
on left, 590
on right, 590
See also multiplication

secant lines, 698
Second Derivative Test, 666,

668
second-order differential

equations, 442-444
characteristic polynomial,

452
defined,442
initial value problem, 442,

479
linear, 442

second-order linear difference
equations, 731-733

coefficient sequences, 731
defined,731



homogeneous solution, 732
variation of parameters and,

733
second-order Runge-Kutta

methods, 466-467
semisimple,655
semisimple matrices, 449
separable equation, 439
separating axes

defined, 284
direction vector, 285
method of, 283, 284-285
potential, 311, 315
potential, for sphere, 349
potential, separating

equation, 348
potential tests, 335
results, 333
terminology, 285
translation of, 284

separating direction
defined, 285
potential, 288
potential, for OBBs, 338

separating equations, 348
separating points, 243
SetState function, 238
shader programs, 9, 367-389

abilities, 369
categories, 367
custom build step, 370
defined, 367
directly in projects, 370
Fresnel reflectance, 386-388
introduction, 367-369
iridescence, 388-389
OpenGL support, 368
physical effects with, 367
pixel, 367, 369-375
refraction, 383-386
rippling ocean waves,

379-382
sequentially executed

statements, 368

skinning, 378-379
vertex, 367, 369-375

shading, 367
shear modulus, 162, 163
signed area, 636
signed hypervolume, 689
signed volume, 609, 610
similarity relationship, 632
similarity transform, 532
simple pendulum friction

example, 139-141
defined, 139
differential equation

solutions, 140, 141
frictional force, 140
kinetic energy, 140
Lagrangian equation of

motion, 140
velocity, 139-140

simple pendulum problem,
98-100

equations of motion, 492
explicit Euler's method

applied to, 494
illustrated, 101
implicit Euler's method

applied to, 496
integral equation, 99
Lagrangian equations of

motion, 104
leap frog method applied to,

499
modification, 121
motion constraint, 101
obtaining, 98
Runge-Kutta method applied

to, 497
swinging assumption, 99

simplex method, 396, 404
defined, 396
for solving LCP, 408

simplices
barycentric coordinates,

680-681

Index 771

defined, 680
formation, 680, 681
hypervolume of, 686-689

single particle (rough plane),
141-143

defined, 141
frictional force, 142
generalized forces, 142
gravitational force, 142
kinetic energy, 142
Lagrangian equations of

motion, 143
single particles. See particles
skew-symmetric matrices,

569-570
defined, 569
diagonal entries, 570
See also matrices

skinning animation, 378-
379

defined, 378
illustrated, 378
screen shots, 380
skin, 378
vertex shader, 379
See also shader programs

slack variables, 403
defined, 396
positive, 402
vector of, 407
zero, 403

slerp. See spherical linear
interpolation

Snell's law, 384
Softlmage, 5
SOLID 3, 5
solid box (rough plane),

150-152
angular velocity, 151
defined, 150-151
degrees of freedom, 151
frictional forces, 152
illustrated, 151
kinetic energy, 151, 152



772 Index

sort and sweep
algorithm, 358
pseudocode, 356-357

spans, 593-594
defined, 593
subset, 618
See also vector spaces

sparse linear systems, 565
spatial coherence, 350
spatial motion

in Cartesian coordinates,
19-22

in cylindrical coordinates,
22-24

in spherical coordinates,
24-25

spatial points, 253
spatial variables, 253, 254
speed, 243

angular, 25, 98
average calculation on

intervals, 693
instantaneous, 693, 699
of particles, 16, 19

Sphere class, 352
sphere trees, 363
sphere-based culling, 350

with binning, cost, 353
cost, 351
modification, 350
See also culling

spheres
candidate intersection boxes,

353
comparison cost, 351
intersecting, number of, 351
number, in each bin, 351

spherical coordinates
acceleration of points, 24-25
illustrated, 24
position of points, 24
spatial motion in, 24-25
velocity of points, 24

spherical linear interpolation,
539-541

defined, 539

derivative, 540
illustrated, 539

spherical quadrangle
interpolation, 541-542

spin groups, 522, 538
splitting, 565-566

defined, 565
method, 565

spring forces, 34-35
compression, 35
spring constant, 34
stretch, 34, 35
See also forces

squared area, 636
squared height, 635
stability, 450-455

asymptotic, 453, 454
for constant-coefficient

linear systems, 451-453
explicit Euler's method,

500
for general autonomous

systems, 453-455
implicit Euler's method, 500
leap frog method, 502
numerical, 487-502
physical,487
results, 451
Runge-Kutta fourth-order

method, 501
for single-step methods,

488-490
solution, 450

stack variables, 238
standard Euclidean basis, 601
state arrays

copying data from, 238
copying of data and, 234
design, 236
global, 231, 238
size, 235

state variables
copying, 230
initialization, 229
projection of, 223
rigid body, 239

state vectors
defined, 223
of entire system, 227
as list of pairs, 224
n blocks ofvalues, 227
updating, 223

static friction, 36
stationary objects, 286-310

convex polygons, 286-298
convex polyhedra, 298-310

Steiner points, 208
stiff equations, 503-506
Stokes's Theorem, 15
strain, 162
stress

defined, 162
ratio to strain, 162
volume, 163

strong duality principle, 407,
426

subsets, span of, 618
subspaces

affine, 675-676
analysis, 613
defined, 595
four fundamental, 620
one-dimensional, 621
orthogonal, 613-615, 620
parallel, 675
projection, 621
span of subsets as, 618
subsets as, 595
two-dimensional, 621, 675

subtraction, 545
quaternions, 513
vector, 585

superscript asterisk, 514
surface integrals

decomposition, 67-68
volume integral conversion

to, 67
surface mass, 14, 15, 53-55

center of mass, 53-55
defined, 14
equations of motion for,

121-132



integration, 15
in space, 15
See also mass(s)

surface(s)
B-spline, 187-188
built from curves, 190-197
closed, 192
cylinder, 192-193
generalized cylinder, 193-194
motion on, 104-112
NURBS, 188-190
parametric, 163, 173
revolution, 195-196
tube, 197, 198, 199

swapping, 688
sweep algorithm, 354-355

defined, 354
illustrated, 355

SWIFT, 364
symmetric matrices, 448, 570,

623
defined, 569
eigendecomposition for,

652-655
eigenvalues of, 655
example, 569
real-valued, 652

systems of difference equations,
736-738

defined, 737
homogeneous solution, 738
uses, 737

T
tableau

of coefficients and constants,
399

defined, 399
rows, 402
updated, 400, 401

table-based mesh selection,
214-215

tangent line, 708
defined, 698

direction, 708
tangent plane, 708
tangential acceleration, 17, 26
Taylor expansions

for acceleration, 483
for velocity, 483

Taylor polynomials, 458, 465,
664,665

Taylor series, 720
approach, 438
for exponential function, 446

Taylor's Theorem, 454, 458,
467,478,481

application of, 466
extension to bivariate

functions, 465
with second-degree

polynomial, 461
temporal coherence, 350, 358
terminal dictionary, 409, 411
Testlntersection function,

289,291-292,298,316,
326,328-329,339-341,
344-346

test-intersection queries, 344
defined, 222
total cost, 349, 350
See also queries

tetrahedrons
barycentric coordinates,

679-680
edges, 305
illustrated, 304
spherical dual of, 304
triangle base, 685
triangle slices, 684, 685
vertices, 304
volume of, 684-685, 688

thin rod (rough plane),
147-148

defined, 147
frictional force, 147
generalized force, 147-148
kinetic energy, 147

Index 773

Lagrangian equations of
motion, 148

third-order Runge-Kutta
methods, 468

three-dimensional array
(masses), 170-171

defined, 170
equation of motion, 170-171
illustrated, 170

three-dimensional Perlin noise,
375

time
coherence, 284
collision, predicting, 283
as continuous variable, 281
culling, 348
intervals, constancy over, 343
last, of contact, 283
object at, 282
step, 343

time-varying frames, 114-116
equations of motion, 115
generalized force, 116
kinetic energy, 115
relevant derivatives, 116
total time derivative, 115

time-varying quaternions,
derivatives, 543-544

topics, this book, 6-11
torque, 37-39

applied, 227,228
computing, 238
defined, 37
driving, 225
due to internal forces, 38
equation, 60
evaluation, 276
external, 267
impulsive, 246
infinitesimal, 49
mass, 44--45
nonzero vector, 40
quantity, 37
resolution, 268



774 Index

torque (continued)
total, 39, 41
See also forces

torsion, 22
total derivatives, 114
transfer of axes, 66
transpositions, 638, 639
trapezoids, approximation of

area by, 462-463
triangle faces, 73, 74-75

counterclockwise ordered, 74
parameterization of, 74

triangle pendulum, 124-125
defined, 124
illustrated, 124
Lagrangian equation of

motion, 125
mass density, 125

triangle slices, 684, 685
triangles

area of, 682-684, 687
barycentric coordinates,

678-679
base length, 682
direct parameterization of,

74-75
extraction, 208
generation, 215
height, 682
large number issue, 208
linear interpolation over, 679
mesh,190,214,215
moving, edge-to-edge

contact, 321
removal in edge mesh, 217

tridiagonal matrices, 581
triple pendulum problem, 137
triple scalar product, 609-610

defined,609
signed volume, 609, 610

triple vector product, 610-613
defined,610
illustrated,611

tube surfaces, 197
closed,198

construction, 197
defined, 197
wriggling snake modeled as,

199
See also surface(s)

two particles (rough plane),
143-145

defined, 143
generalized force, 144-145
illustrated, 143
kinetic energy, 144
Lagrangian equations of

motion, 145
two-body problem, 137-139

center of mass, 137
defined, 137
gravitational force, 137
kinetic energy, 137
Lagrangian equations of

motion, 138
See also conservative forces

two-dimensional array
(masses), 166-169

equations of motion, 168
illustrated, 169
mass location, 166
surface mass representation,

168
See also mass-spring systems

two-dimensional example
(linear programming),
392-394

u
umbrella parents, 302
unboundedness property, 406
unconstrained motion, 9, 222,

223-239
equations of motion, 228
illustrative implementation,

228-233
Newtonian dynamics for, 223
practical implementation,

234-239
unique representation, 597

unique solution, 441
uniqueness question, 441
unit-area square, 635
unit-length quaternions, 512,

517,543
unit-volume cube, 638
univariate calculus, 692-704

continuity, 697-698
defined,691
differentiation, 698-701
functions, 691
integration, 701-704
I'H6pital's rule, 701
limits, 694-696
limits of a sequence, 696-697
See also calculus

universal gravitational constant,
32

Update function, 238, 239
upper echelon matrices, 577
upper triangular matrices, 571

V
V-COLLIDE, 364
vector addition, 584, 588

associative, 584
commutative, 585
defining, 589-590, 591
scalar multiplication

distributive over, 595
vector class, 671
vector equality, 588, 589
vector multiplication, 587
vector spaces, 583-633

axiom consequences, 591
axiom verification, 589, 594
bases, 598-601
cross product, 606-609
defined,583
definition of, 588-593
dot product, 601, 602
finite dimensional, 599, 625
linear combinations,

593-594



linear independence,
595-601

linear transformations,
624-633

orthogonal subspaces,
613-615

over real numbers, 588
projections, 621-624
properties, 599
spans, 593-594
subspaces, 595
triple products, 609-613
See also linear algebra

vector subtraction, 79, 585
vector sum, 586

distributing across, 587, 588
linear transformation of, 624

vectors
acceleration, 17, 21
additive identity, 585
basis, 152
binormal, 21
coefficient, 628
degenerate feasible, 403
dependent, 623
difference, 586, 669
direction, 285, 337, 583
domain, 624
feasible, 396, 402
feasible basis, 396, 402
frame, 23
independent, 624
knot, 175-176
linear combination of,

593-594
linearly dependent, 596
linearly independent, 596,

600,610
magnitude, 583
nonorthogonal, 602
norm of, 453
normal, 20, 21
orthogonal, 601, 602
orthogonal set of, 604

orthonormal set of, 508, 510,
604

parallelepiped formed by,
609

partial derivative, 117, 707
perp, 683,684
points vs., 671
position, 26
projection of, 602, 603,

621-624
quantities, 510
right-handed orthonormal

set of, 509
rotation, 508, 649
rotation matrix application

to, 512
state, 223, 224, 227
triple scalar product,

609-610
triple vector product,

610-613
unique representation, 597
unit-length, 20, 27
velocity, 17, 114
zero,243,251,261,338,614

velocity
about fixed axis, 26
angular, 25, 27, 29, 94, 225,

346-348
of body origin, 29
center of mass, 130, 243
chain rule application to, 105
change of, 243, 245-250
due to rotation of frame, 29
estimating,480
flat board (rough plane), 148
Foucault pendulum, 95
leap frog method, 482, 484
linear, 26, 225, 343-346
magnitude of, 258, 263
of particles, 16, 19, 243
of points, 23, 24
polar frame representation,

19

Index 775

postimpulse, 245, 259
preimpulse, 246, 264
relative, 243, 245
simple pendulum friction

example, 139-140
Taylor expansion for, 483
vector, 17, 114
Velocity Verlet method, 484
world,29

Velocity Verlet method,
483-485

cost, 485
defined,483
Gear's fifth-order predictor­

corrector method vs.,
486

position in, 484
velocity, 484
velocity estimate, 483, 485

Verlet method, 478-487
advantages, 479
disadvantages, 479
drag simulation, 481
forces with velocity

component,480-481
forces without velocity

component, 479-480
Gear's fifth-order predictor-

corrector, 485-487
leap frog, 481-483
reversibility, 479
Taylor's Theorem basis, 478
Velocity, 483-485
See also numerical methods

vertex displacement, 375-377
defined,375
deformation by, 375-377

vertex shaders, 367
basic, 370-371
compilation, 369
defined,369
DirectX output, 372-373
OpenGL output, 371-372
rendering with, 376



776 Index

vertex shaders (continued)
rippling ocean waves, 379,

381
skinning, 379
See also shader programs

vertex-edge contact, 287
VertexNoi se application, 375

defined, 375
screen shots, 377

vertex-to-face intersection, 241,
242,270

vertex-to-vertex intersection,
315

vertex-vertex contact, 287
vertices

counterclockwise-ordered,
427

independent, 301
maximum independent set

of, 301, 302
neighboring, 301
oriented bounding boxes

(OBBs),334
polygon, 307
polygon, after motion, 320
tetrahedrons, 304
umbrella parents, 302

viscous force, 36-37
volume

B-spline, 200

infinitesimal measure of, 67
integrals, 67-68
nonrecursive formula, 685
stress, 163
of tetrahedron, 684-685, 688

volume mass
center of mass, 52-53
defined, 14
equations of motion for,

121-132
integration, 15
See also mass(es)

Vortex physics engine,S
voxels

analysis, 206
edge meshes, 215
extracted edge mesh; 216
sharing ambiguous face, 214

W
weak duality, 405-406
weight, of objects, 34
Wild Magic

Pixel Shader, 369
scene management system,

371
source code, 369
Vertex Shader, 369

work
computing, 80-81
defined, 80
gravity and, 82
independent of path, 82
infinitesimal amount of, 80

world acceleration, 30
world coordinates, 28, 92

of angular velocity, 130,
154

of body points, 28
of rigid body, 153

world velocity, 29
angular, 123
center of mass, 123
postimpulse, 259, 260
preimpulse, 259, 260

x-z
Young's modulus, 162
zero constants, 413-416

cycling and, 413
Lemke-Howson algorithm

and, 412
never forcing, 413

zero matrix, 249, 573
zero vectors, 243, 251, 261, 338

614



Dave Eberly is the president of Magic Software, Inc. (www.magic-software.com). a
company known for its web site that offers free source code and documentation for
computer graphics, image analysis, and numerical methods. Previously, he was the
director of engineering at Numerical Design Limited, the company responsible for
the real-time 3D game engine, NetImmerse. His background includes a B.A. degree
in mathematics from Bloomsburg University, M.S. and Ph.D. degrees in mathematics
from the University of Colorado at Boulder, and M.S. and Ph.D. degrees in com­
puter science from the University of North Carolina at Chapel HilL He is author of
3D Game Engine Design (2001) and coauthor with Philip Schneider ofGeometric Tools
for Computer Graphics (2003), both published by Morgan Kaufmann.

As a mathematician, Dave did research in the mathematics of combustion, signal
and image processing, and length-biased distributions in statistics. He was an asso­
ciate professor at the University ofTexas at San Antonio with an adjunct appointment
in radiology at the U.T. Health Science Center at San Antonio. In 1991 he gave up his
tenured position to re-train in computer science at the University of North Carolina.
After graduating in 1994, he remained for one year as a research associate professor
in computer science with a joint appointment in the Department of Neurosurgery,
working in medical image analysis. His next stop was the SAS Institute, working for
a year on SAS/Insight, a statistical graphics package. Finally, deciding that computer
graphics and geometry were his real calling, Dave went to work for Numerical De­
sign Limited, then later to Magic Software, Inc. Dave's participation in the newsgroup
comp.graphics.algorithms and his desire to make 3D graphics technology available to
all are what has led to the creation of his company's web site and this book.

Ken Shoemake first caught the attention of the computer graphics community by
using unit quaternions and spherical curves to animate rotation. Trained in computer
science and mathematics at Yale, Stanford, and the University of Pennsylvania, he
supplemented his formal education with experience in compilers, digital music, flight
graphics, video, and user interfaces in a career spanning CCRMA, Link, Ampex, PDI,
and Xerox PARe. Beyond his quaternion papers, he has also taught mathematics
to SIGGRAPH audiences. Ken now consults, and he still enjoys research bringing
together abstract mathematics and practical tasks.



ApPLICATIONS DIRECTORY

The directory has two important subdirectories) App1i ca t i on2 that contains a 2D­
application layer and Appl i cati on3 that contains a 3D-application layer. The appli­
cation layer is an abstract API. Each platform of interest implements this (DirectX)
GLUT) WgI) AgI). The other subdirectories are

GRAPHICS. Illustrations of the real-time graphics engine. Bezier surface tessella­
tion) bump maps) camera and light nodes) environment maps) gloss maps) intersec­
tion of cylinders (uses bounding volume hierarchy)) inverse kinematics) light maps)
morphing face, particle system) point system, polygon offset (to avoid z-buffer fight­
ing), polylines) portals) projected textures, skinned and animated biped, specular
lighting after texturing is applied, terrain (uses continuous level ofdetail), illustration
of combine modes for texturing.

I MAGICS. Illustrations of some basic image analysis. Binary operations on 2D im­
ages) extraction oflevel curves from 2D images, extraction oflevel surfaces from 3D
images (two different algorithms), image tessellation based on continuous level of
detail.

MISCELLANEOUS. Reduction of control points for B-spline curves using least­
squares methods. Continuous level ofdetail for polylines. Ray trace implicit surfaces.
Dynamic intersection of circle and rectangle. TeB keyframe animation. Perspective
mapping of a texture onto a quadrilateral. Perspective and bilear mappings between
quadrilaterals. Perspective projection ofconvex polyhedron (useful for shadow calcu­
lations and occlusion culling). Tessellation of a sphere. Dynamic intersection of two
triangles.

PHYSICS. Applications) examples, and exercises that come directly out of this
book. Ball rolling down frictionless hill. Bouncing ball (deformation of implicit sur­
faces). B-spline curves for deformation. Cloth flapping in a breeze. Flowing skirt
subject to gravity and wind (generalized cylinder surface). Foucault pendulum. Free­
form deformation using B-spline volumes. Gelatin blob (arbitrary mass-spring sys­
tem with energy dissipation). Gelatin cube (3D array mass-spring system with energy
dissipation). Fly-through of tube surface. Mass-pulley-spring system. NURBS curves
for deformation. Distance between convex polygons or between convex polyhedra
using LCP methods. Rope blowing in a breeze. Spinning top. Water drop formation
using deformable NURBS surfaces of revolution. Wriggling snake (deformable tube
surface with B-spline medial curve).

SHADERS. Applications that are based on vertex and/or pixel shaders. A basic ex­
ample illustrating a vertex shader and a pixel shader. Shading with a charcoal ap­
pearance. Fresnel reflectance. Iridescence. Refraction and reflection. Rippling ocean
waves (mixture of vertex shaders to handle the physics and pixel shaders for specular
effects). Skin and bones animation. Deformation by vertex displacement.



GREEK ALPHABET

Here are the names for all the Greek letter symbols in this book:

alpha a eta rJ nu v tau T

beta fJ theta 8, e xi e 'H' upsilon tJ,~

gamma y,r iota omicron 0 phi ;,4>
delta t5, .6. kappa K pi 7r,n chi X
epsilon f lambda A,A rho p psi 'It,\P
zeta ~ mu /-L sigma u,E omega c.o,n



DAVID H. EBERLY

THE MORGAN KAUFMANN SERIES IN INTERACTIVE 3D TECHNOLOGY

"I keep at most a dozen reference texts within easy reach of my workstation computer.

This book will replace two of them." - Ian Ashdown, President, Consultants limited

Game Physics is an introduction to the ideas and techniques needed to create physically realistic 3D graphic

environments. As a companion volume to Dave Eberly's industry standard 3D Game Engine Design, Game

Physics shares a similar practical approach and format. Dave includes simulations to introduce the key problems

involved and then gradually reveals the mathematical and physical concepts needed to solve them. He then

describes all the algorithmic foundations and uses code examples and working source code to show how they

are implemented, culminating in a large collection of physical simulations. This book tackles the complex,

challenging issues that other books avoid, including lagrangian dynamics, rigid body dynamics, impulse

methods, resting contact, linear complementarity problems, deformable bodies, mass-spring systems, friction,

merical solution of differential equations, numerical stability and its relationship to physical stability, and

. tegration methods. Dave even describes when real physics isn't necessary-and hacked physics will do.

FEATURES

GAME PROGRAMMING
COMPUTER GRAPHICS

N P


	cd-rom contents
	note
	trademarks
	toc
	figures
	tables
	preface
	cd-rom
	1. intro
	2. basic concepts from physics
	3. rigid body motion
	4. deformable bodies
	5. physics engines
	6. physics and shader programs
	7. linear complementarity and math programming
	8. differential equations
	9. numerical methods
	10. quaternions
	a - linear algebra
	a.5 - advanced topics
	b - affine algebra
	c - calculus
	d - ordinary difference equations
	biblio
	index
	authors
	app directory
	greek alphabet
	back cover



