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CONTENTS OF THE CD-ROM

The CD-ROM contains a snapshot of the full distribution of source code, documen-
tation, and supporting materials that are located at the Magic Software, Inc. web site
(www.magic-software.com). The source code is located in the directory trees

MagicSoftware/WildMagic2/Source
MagicSoftware/WildMagic2/Renderers
MagicSoftware/WildMagic2/Applications

A collection of documents is located in MagicSoftware/Wi1dMagic2/Documentation.

SOURCE DIRECTORY

APPROXIMATION. Fitting of point sets with Gaussian distributions, lines, planes,
quadratic curves, quadric surfaces, and polynomials.

CONTAINMENT. Containment of point sets by rectangles, boxes, capsules, cylin-
ders, ellipses, ellipsoids, lozenges, spheres. Point-in-polygon tests, separation of point
sets, convex hull construction. Containment by minimum area rectangles and circles,
and by minimum volume boxes and spheres.

CURVES. Abstract curve class (position, derivatives, tangents, speed, arc length,
reparameterization by arc length, subdivision algorithms), 2D curves (curvature,
normals), 3D curves (curvature, torsion, normals, binormals), polynomial curves,
Bézier curves, B-spline curves, NURBS curves, cubic spline curves, tension-bias-
continuity curves.

DisTANCE. Distance between pairs of objects of type point, segment, ray, line,
triangle, rectangle, ellipse, ellipsoid, quadratic curve, quadric surface.

GEOMETRY. Definitions of the geometric objects that occur in the Wild Magic
library.

GRAPHIcs. The real-time 3D graphics engine. Scene graph management (tree
structures, internal nodes, leaf nodes, point and particle primitives, line primitives,
triangle primitives, surface primitives, bounding spheres), render state (alpha blend-
ing, dithering, fog, lighting, materials, shading, texturing, multitexturing, wireframe,
z-buffering). High-level effects (bump maps, gloss maps, planar reflection, planar
shadows, projected texture). Vertex and pixel shader infrastructure. Camera and
view frustrum. Object-oriented infrastructure (abstract object base class, run-time
type information, streaming, smart pointers for reference counting, controllers for
time-varying quantities). Animation (key frame, inverse kinematics, skin and bones,
morphing, points and particles). Collision detection (generic bounding volume and
bounding hierarchy support). Level of detail (discrete, continuous, billboards). Sort-
ing (binary space partitioning [BSP] trees, portals). Terrain (uses continuous level of
detail).



IMAGEANALYSIS. Basic routines for 2D and 3D image analysis and processing.
Includes support for level curve extraction from 2D images and level surface extrac-
tion from 3D images.

INTERPOLATION. Interpolation of data. Akima, bilinear, bicubic, B-spline, piece-
wise quadratic, spherical interpolation, thin plate splines, trilinear, tricubic, vec-
tor field interpolation. Scattered data interpolation uses Delaunay triangulation/
tetrahedralization.

INTERSECTION. A multitude of intersection routines for either a test query (does
intersection exist) or find query (what is the intersection set, and when does it occur
when one or both objects are moving).

MATH. Basic support for points, vectors, matrices, quaternions, and polynomials.
Also provides fast function evaluation for a few trigonometric functions.

MESHES. Various implementations of vertex-edge-triangle tables for use in graph-
ics and imaging applications.

NuMERIcs. Root finding via bisection, eigensolver for symmetric matrices, inte-
gration, linear system solving, minimization without derivative calculations, solving
systems of ordinary differential equations, polynomial root finding.

PHYsICS. Source code particularly relevant to this book. Deformable surface
meshes. Volume interpolation for free-form deformation. Numerical solver for lin-
ear complementarity problems (LCP). Support for the physics of particle systems.
Mass-spring systems. Computation of mass and inertia for rigid, convex polyhedral
bodies. Fast overlap detection for intervals (1D), axis-aligned rectangles (2D), and
axis-aligned boxes (3D) that allow for fast intersection testing using time coherence.

RATIONALARITHMETIC. Exact integer and rational arithmetic functions. Sup-
ports exact conversion from floating-point types to rational numbers.

SURFACES. Abstract surface class (metric tensor, curvature tensor, principal cur-
vatures and directions), parametric surfaces (position, derivatives, tangents, nor-
mals), implicit surfaces, polynomial surfaces, B-spline and NURBS surfaces.
SYSTEM. Encapsulation of operating system specific needs (Windows, Linux, or
Macintosh).

TESSELLATION. Delaunay triangulation and tetrahedralization.

RENDERERS DIRECTORY

The graphics engine has an abstract API for the rendering system. The renderers for
specific platforms are implemented to use this API.

DX. The DirectX 9 renderer that runs on Microsoft Windows platforms.

OPENGL. The OpenGL renderers that run on Microsoft Windows, Linux, and
Macintosh. The nonwindowing portion of the OpenGL code is the same for all the
platforms. Window-specific code occurs for GLUT (for all platforms), Wgl (Windows
OpenGL), and Agl (Apple OpenGL).



Implementing physical simulations for real-time games is a complex task that requires a solid
understanding of a wide range of concepts from the fields of mathematics and physics. Previously,
the relevant information could only be gleaned through obscure research papers. Thanks to Game
Physics, all this information is now available in a single, easily accessible volume. Dave has yet
again produced a must-have book for game technology programmers everywhere.

—Christer Ericson
Technology Lead
Sony Computer Entertainment

Game Physics is a comprehensive reference of physical simulation techniques relevant to games

and also contains a clear presentation of the mathematical background concepts fundamental to
most types of game programming. I wish I had this book years ago.

—Naty Hoffman

Senior Software Engineer

Naughty Dog, Inc.

Eppur si muove . . . and yet it moves. From Galileo to game development, this book will surely
become a standard reference for modeling movement.

—Ian Ashdown

President

byHeart Consultants Limited

This is an excellent companion volume to Dave’s earlier 3D Game Engine Design. It shares the
approach and strengths of his previous book. He doesn’t try to pare down to the minimum necessary
information that would allow you to build something with no more than basic functionality.
Instead, he gives you all you need to begin working on a professional-caliber system. He puts the
concepts firmly in context with current, ongoing research, so you have plenty of guidance on where
to go if you are inclined to add even more features on your own.

This is not a cookbook—it’s a concise presentation of all the basic concepts needed to understand
and use physics in a modern game engine. It gives you a firm foundation you can use either to
build a complete engine of your own or to understand what’s going on inside the new powerful
middleware physics engines available today.

This book, especially when coupled with Dave’s 3D Game Engine Design, provides the most

complete resource of the mathematics relevant to modern 3D games that I can imagine. Along with

clear descriptions of the mathematics and algorithms needed to create a powerful physics engine

are sections covering pretty much all of the math you will encounter anywhere in the game—
quaternions, linear algebra, and calculus.

—Peter Lipson

Senior Programmer

Toys For Bob

This comprehensive introduction to the field of game physics will be invaluable to anyone interested

in the increasingly more important aspect of video game production, namely, striving to achieve

realism. Drawing from areas such as robotics, dynamic simulation, mathematical modeling, and

control theory, this book succeeds in presenting the material in a concise and cohesive way. As a

matter of fact, it can be recommended not only to video game professionals but also to students
and practitioners of the above-mentioned disciplines.

—P4l-Kristian Engstad

Senior Software Engineer

Naughty Dog, Inc.



The Morgan Kaufmann Series in Interactive 3D Technology
Series Editor: David H. Eberly, Magic Software, Inc.

The game industry is a powerful and driving force in the evolution of computer tech-
nology. As the capabilities of personal computers, peripheral hardware, and game
consoles have grown, so has the demand for quality information about the algo-
rithms, tools, and descriptions needed to take advantage of this new technology. We
plan to satisfy this demand and establish a new level of professional reference for the
game developer with the Morgan Kaufmann Series in Interactive 3D Technology. Books
in the series are written for developers by leading industry professionals and academic
researchers and cover the state of the art in real-time 3D. The series emphasizes prac-
tical, working solutions and solid software-engineering principles. The goal is for the
developer to be able to implement real systems from the fundamental ideas, whether
it be for games or for other applications.
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Collision Detection in Interactive 3D Environments
Gino van den Bergen

3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics
David H. Eberly

Forthcoming

Essential Mathematics for Games and Interactive Applications: A Programmers Guide
Jim Van Verth and Lars Bishop
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Matt Pharr and Greg Humphreys
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TRADEMARKS

The following trademarks, mentioned in this book and the accompanying CD-ROM,
are the property of the following organizations:

DirectX, Direct3D, Visual C4++, DOS, and Windows are trademarks of Microsoft
Corporation.

OpenGL is a trademark of Silicon Graphics, Inc.

Radeon is a trademark of ATI Technologies, Inc.

GeForce and the Cg Language are trademarks of nVIDIA Corporation.
NetImmerse and R-Plus are trademarks of Numerical Design, Ltd.
MathEngine is a trademark of Criterion Studios.

The Havok physics engine is a trademark of Havok.com.

SoftImage is a trademark of Avid Technology, Inc.

Falling Bodies is a trademark of Animats.

The Vortex physics engine is a trademark of CMLabs Simulations, Inc.
Prince of Persia 3D is a trademark of Braderbund Software, Inc.

XS-G and Canyon Runner are trademarks of Greystone Technology.
Mathematica is a trademark of Wolfram Research, Inc.

Turbo Pascal is a trademark of Borland Software Corporation.

The 8086 and Pentium are trademarks of Intel Corporation.
Macintosh is a trademark of Apple Corporation.

Gigi and VAX are trademarks of Digital Equipment Corporation.
MASPAR is a trademark of MasPar Computer Corporation.
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The infinitesimal area dA swept out by motion of the Earth over an
infinitesimal change in position dr. The swept region is effectively a
triangle whose sides are r and r + dr.

The Foucault pendulum. The pendulum joint is at O, the mass is m
and is attached to the pendulum rod of length L. The gravitational
force acts in the direction k, a unit-length vector from the joint to the
center of the Earth.

The Foucault pendulum. The figures show the path of the pendulum
tip in the horizontal plane. New points on the path are colored
white, but the intensity of the older points along the path gradually
decreases. (See also Color Plate 3.3.)

The simple pendulum. The motion is constrained to a plane. The
mass is located at position X (¢) at time ¢ and is always a fixed length
L from the joint P. The angle formed by the pendulum rod with the
vertical is 6(¢). The curve of motion is a circle with tangent T(¢) and
outward pointing normal N(#). The only force acting on the mass

is gravitational, —mg j, where m is the mass of the particle, g is the
gravitational constant, and — j is the direction of the force (vertically
downward). The joint P provides no frictional force.

A ball of mass m on a flat table. A rubber band connects the ball to a
fixed point on the table. The force F due to the rubber band is shown.
The position x of the ball is shown together with its velocity x.

A ball is at the top of a frictionless hill. With a small push, the ball will
slide down the hill.

A ball rolling down a hill. Image (b) shows the path of the center of the
ball as it rolls down the hill. The ball rotates at a speed commensurate
with its downhill velocity. (See also Color Plate 3.7.)

(a) A metal chute of length L, one end attached to the origin, the
other end raised by a height H. (b) Side view of the chute.

The initial configuration of a rigid rod containing a mass that is
attached to a spring.
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PREFACE

The evolution of the games industry clearly has been motivated by the gamers’ de-
mands for more realistic environments. 3D graphics on a 2D graphics card necessarily
requires a classical software renderer. Historically, rasterization of triangles was the
bottleneck on 2D cards because of the low fill rate, the rate at which you can draw
pixels during rasterization. To overcome fill rate limitations on consumer cards the
graphics hardware accelerator was born in order to off-load the rasterization from the
2D card and the central processing unit (CPU) to the accelerator. Later generations
of graphics cards, called 3D graphics cards, took on the role of handling the stan-
dard work of a 2D graphics card (drawing windows, bitmaps, icons, etc.) as well as
supporting rasterization that the 3D graphics requires. In this sense the adjective “ac-
celerator” for a combined 2D/3D card is perhaps a misnomer, but the term remains
in use.

As fill rates increased, the complexity of models increased, further driving the
evolution of graphics cards. Frame buffer and texture memory sizes increased in
order to satisfy the gamers’ endless desires for visual realism. With enough power
to render a large number of triangles at real-time rates, the bottleneck of the cards
was no longer the fill rate. Rather it was the front end of the graphics pipeline that
provides the rasterizers with data. The processes of transforming the 3D triangle
meshes from world coordinates to camera coordinates, lighting vertices, clipping, and
finally projecting and scaling to screen coordinates for the purposes of rasterization
became a performance issue.

The next generation of graphics cards arrived and were called hardware transform
and lighting (HW T&L) cards, the name referring to the fact that now the work of the
graphics pipeline had been off-loaded from the CPU to the graphics processing unit
(GPU). Although the intent of HW T&L cards was to support the standard graphics
pipeline, most of these cards also supported some animation, namely skin-and-bones
or skinning, in which the vertices of a triangle mesh (the “skin”) are associated with
a matrix hierarchy (the “bones”), and a set of offsets and a set of weights relative to
the bones. As the matrices vary during runtime, the vertices are computed from the
matrices, offsets, and weights, and the triangle mesh deforms in a natural way. Thus,
we have some hardware support for deformable bodies.

The standard graphics pipeline is quite low-level when it comes to lighting of
vertices. Dynamic lights in a scene and normal vectors at vertices of a triangle mesh
are combined to produce vertex colors that are interpolated across the triangles by
the rasterizer. Textured objects are rendered by assigning texture coordinates to the
vertices of a mesh, where the coordinates are used as a lookup into a texture image.
The rasterizer interpolates these coordinates during rasterization, then performs a
lookup on a per-pixel basis for each triangle it rasterizes in the mesh. With a lot of
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XXX Preface

creativity on the artists’ end, the vertex coloring and texturing functions can be used
to produce high-quality, realistic renderings. Fortunately, artists and programmers
can create more interesting effects than a standard graphics pipeline can handle,
producing yet more impetus for graphics cards to evolve. The latest generation of
graphics cards are now programmable and support vertex shading, the ability to
incorporate per-vertex information in your models and tell the rasterizer how to
interpolate them. Clever use of vertex shading allows you to control more than color.
For example, displacement mapping of vertices transfers some control of positional
data to the rasterizer. And the cards support pixel shading, the ability to incorporate
per-pixel information via images that no longer are required to represent texture data.
Dot3 bump-mapping is the classic example of an effect obtained by a pixel-shader
function. You may view vertex shading as a generalization of the vertex coloring
function and pixel shading as a generalization of the basic texturing function.

The power of current generation graphics cards to produce high-quality visual
effects is enormous. Much of the low-level programming you would do for software
rendering is now absorbed in the graphics card drivers and the graphics APIs (appli-
cation programmer interfaces) built on top of them, such as OpenGL and DirectX,
which allows programmers to concentrate at a higher level in a graphics engine. From
a visual perspective, game designers and programmers have most of what they need
to create realistic-looking worlds for their gamer customers. But since you are reading
this preface, you already know that visual realism is only half the battle. Physical real-
ism is the other half. A well-crafted, good-looking character will attract your attention
for the wrong reasons if it walks through a wall of a room. And if the characters can-
not realistically interact with objects in their physical environment, the game will not
be as interesting as it could be.

Someday we programmers will see significant hardware support for physics by
off-loading work from the CPU to a physics processing unit (PPU). Until that day
arrives we are, so to speak, at the level of software rendering. We need to implement
everything ourselves, both low-level and high-level, and it must run on the CPU.
Moreover, we need real-time rates. Even if the renderer can display the environment
at 60 frames per second, if the physics system cannot handle object interactions
fast enough, the frame rate for the game will be abysmally low. We are required to
understand how to model a physical environment and implement that model in a
fast, accurate, and robust manner. Physics itself can be understood in an intuitive
manner—after all, it is an attempt to quantify the world around us. Implementing a
physical simulation on a computer, though, requires more than intuition. It requires
mathematical maturity as well as the ability and patience to synthesize a large system
from a collection of sophisticated, smaller components. This book is designed to help
you build such a large system, a physics engine as it were.

Game Physics focuses on the topic of real-time physical simulation on consumer
hardware. I believe it is a good companion to my earlier book, 3D Game Engine De-
sign, a large tome that discusses the topic of constructing a real-time graphics engine
for consumer hardware. The two disciplines, of course, will be used simultaneouly
in a game application. Game Physics has a similar philosophy to 3D Game Engine
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Design in two ways. First, both books were conceived while working on commercial
engines and tools to be used for building games—the occurrence of the word “game”
in the titles reflects this—but the material in both books applies to more than just
game applications. For example, it is possible to build a virtual physics laboratory for
students to explore physical concepts. Second, both books assume that the reader’s
background includes a sufficient level of mathematics. In fact, Game Physics requires
a bit more background. To be comfortable with the material presented in this book,
you will need some exposure to linear algebra, calculus, differential equations, and
numerical methods for solving differential equations. All of these topics are covered
in an undergraduate program in mathematics or computer science. Not to worry,
though: as a refresher, the appendices contain a review of the essential concepts of
linear algebra, affine algebra, calculus, and difference equations that you will need to
read this book. Two detailed chapters are included that cover differential equations
and numerical methods for solving them.

I did not call the book 3D Game Physics because the material is just as appropriate
for 1- or 2D settings. Many of the constrained physical models are of lower dimen-
sion. For example, a simple pendulum is constrained to move within a plane, even
though a rendering of the physical system is in three dimensions. In fact, the mate-
rial is applicable even to projects that are not game-related, for example, supporting
a virtual physics laboratory for students to explore physical concepts. I did call the
book Game Physics and 1 expect that some readers may object to the title since, in
fact, I do not cover all possible topics one might encounter in a game environment.
Moreover, some topics are not discussed in as much depth as some might like to see.
With even a few years to write a book, it is impossible to cover all the relevant topics
in sufficient detail to support building a fully-featured physics engine that rivals what
you see commercially. Some projects just require a team of more than one. I specifi-
cally avoided getting into fluid dynamics, for example, because that is an enormous
topic all on its own. I chose to focus on the mechanics of rigid bodies and deformable
bodies so that you can build a reasonable, working system for physical simulation.
Despite this restricted coverage, I believe there is a significant amount of content in
this book to make it worth every minute of your reading time. This content includes
both the written text and a vast amount of source code on the CD-ROM that accom-
panies the book, including both the Wild Magic graphics engine and components and
applications for physics support. I have made every attempt to present all the content
in a manner that will suit your needs.

As in the production of any book, the author is only part of the final result. The
reviewers for an early draft of this book were extremely helpful in providing guidance
for the direction the book needed to take. The original scope of the book was quite
large, but the reviewers’ wisdom led me to reduce the scope to a manageable size by
focusing on a few topics rather than providing a large amount of background material
that would detract from the main purpose of the book-—showing you the essentials of
physical simulation on a computer. I wish to personally thank the reviewers for their
contributions: Ian Ashdown (byHeart Consultants), Colin Barrett (Havok), Michael
Doherty (University of the Pacific), Eric Dybsand (Glacier Edge Technology), David
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Eberle (Havok), Todd Growney (Electronic Arts), Paul Hemler (Wake Forest Univer-
sity), Jeff Lander (Darwin 3D), Bruce Maxim (University of Michigan—Dearborn),
Doug McNabb (Rainbow Studios), Jon Purdy (University of Hull), and Craig Rein-
hart (California Lutheran University). Thanks also go to Tim Cox, my editor; Stacie
Pierce, editorial coordinator; and Rick Camp, editorial assistant for the book. Tim has
been patient with my seemingly endless delays in getting a final draft to him. Well, the
bottom line is that the draft arrived. Now it is your turn to enjoy reading the book!



ABOUT THE CD-ROM

Limited Warranty

The Publisher warrants the media on which the software is furnished to be free from
defects in materials and workmanship under normal use for 30 days from the date
that you obtain the Product. The warranty set forth above is the exclusive warranty
pertaining to the Product, and the Publisher disclaims all other warranties, express
or implied, including, but not limited to, implied warranties of merchantability and
fitness for a particular purpose, even if the Publisher has been advised of the pos-
sibility of such purpose. Some jurisdictions do not allow limitations on an implied
warranty’s duration; therefore the above limitations may not apply to you.

Limitation of Liability

Your exclusive remedy for breach of this warranty will be the repair or replacement
of the Product at no charge to you or the refund of the applicable purchase price paid
upon the return of the Product, as determined by the publisher in its discretion. In no
event will the publisher, and its directors, officers, employees, and agents, or anyone
else who has been involved in the creation, production, or delivery of this software be
liable for indirect, special, consequential, or exemplary damages, including, without
limitation, for lost profits, business interruption, lost or damaged data, or loss of
goodwill, even if the Publisher or an authorized dealer or distributor or supplier
has been advised of the possibility of such damages. Some jurisdictions do not allow
the exclusion or limitation of indirect, special, consequential, or exemplary damages
or the limitation of liability to specified amounts; therefore the above limitations or
exclusions may not apply to you.

License Agreements

The accompanying CD-ROM contains source code that illustrates the ideas in the
book. Each source file has a preamble stating which license agreement pertains to it.
The formal licenses are contained in the files found in the following locations on the
CD-ROM:

MagicSoftware/WildMagic2/License/WildMagic.pdf
MagicSoftware/WildMagic2/License/GamePhysics.pdf

xxxiii
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The source code in the following directory trees is covered by the GamePhysics.pdf
agreement:

MagicSoftware/WildMagic2/Source/Physics
MagicSoftware/WildMagic2/Applications/Physics

Use of the files in the Physics directories requires ownership of this book. All other
code is covered by the WildMagic.pdf agreement.
The grant clause of the WildMagic.pdf agreement is:

We grant you a nonexclusive, nontransferable, and perpetual license to use The
Software subject to the terms and conditions of the Agreement:

1. There is no charge to you for this license.
2. The Software may be used by you for noncommercial products.

3. The Software may be used by you for commercial products provided that such
products are not intended to wrap The Software solely for the purposes of sell-
ing it as if it were your own product. The intent of this clause is that you use
The Software, in part or in whole, to assist you in building your own original
products. An example of acceptable use is to incorporate the graphics portion
of The Software in a game to be sold to an end user. An example that vio-
lates this clause is to compile a library from only The Software, bundle it with
the headers files as a Software Development Kit (SDK), then sell that SDK to
others. If there is any doubt about whether you can use The Software for a
commercial product, contact us and explain what portions you intend to use.
We will consider creating a separate legal document that grants you permis-
sion to use those portions of The Software in your commercial product.

The grant clause of the GamePhysics.pdf agreement is:

We grant you a nonexclusive, nontransferable, and perpetual license to use The
Software subject to the terms and conditions of the Agreement:

1. You must own a copy of The Book (“Own The Book™) to use The Software.
Ownership of one book by two or more people does not satisfy the intent of
this constraint.

2. The Software may be used by you for noncommercial products. A noncommer-
cial product is one that you create for yourself as well as for others to use at
no charge. If you redistribute any portion of the source code of The Software
to another person, that person must Own The Book. Redistribution of any
portion of the source code of The Software to a group of people requires each
person in that group to Own The Book. Redistribution of The Software in bi-
nary format, either as part of an executable program or as part of a dynamic
link library, is allowed with no obligation to Own The Book by the receiving
person(s), subject to the constraint in item 4.
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3. The Software may be used by you for commercial products. The source code
of The Software may not be redistributed with a commercial product. Redis-
tribution of The Software in binary format, either as part of an executable
program or as part of a dynamic link library, is allowed with no obligation to
Own The Book by the receiving person(s), subject to the constraint in item
4. Each member of a development team for a commercial product must Own
The Book.

4. Redistribution of The Software in binary format, either as part of an exe-
cutable program or as part of a dynamic link library, is allowed. The intent
of this Agreement is that any product, whether noncommercial or commer-
cial, is not built solely to wrap The Software for the purposes of redistributing
it or selling it as if it were your own product. The intent of this clause is that
you use The Software, in part or in whole, to assist you in building your own
original products. An example of acceptable use is to incorporate the phys-
ics portion of The Software in a game to be sold to an end user. An example
that violates this clause is to compile a library from only The Software, bundle
it with the headers files as a Software Development Kit (SDK), then sell that
SDK to others. If there is any doubt about whether you can use The Software
for a commercial product, contact us and explain what portions you intend to
use. We will consider creating a separate legal document that grants you per-
mission to use those portions of The Software in your commercial product.

Installing and Compiling the Source Code

The Wild Magic engine is portable and runs on PCs with the Microsoft Windows
2000/XP operating systems or Linux operating systems. Renderers are provided for
both OpenGL (version 1.4) and Direct3D (version 9). The engine also runs on Apple
computers with the Macintosh OS X operating system (version 10.2.3 or higher).
Project files are provided for Microsoft Developer Studio (version 6 or 7) on Mi-
crosoft Windows. Make files are provided for Linux. Project Builder files are provided
for the Macintosh.

For convenience of copying, the platforms are stored in separate directories on
the root of the CD-ROM. The root of the CD-ROM contains three directories and
one PDF file:

Windows

Linux

Macintosh
ReleaseNotes2pl.pdf

Copy the files from the directory of your choice. The directions for installing and
compiling are found in the PDF file. Please read the release notes carefully before
attempting to compile. Various modifications must be made to your development
environment and some tools must be installed in order to have full access to all the
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features of Wild Magic. A portable graphics and physics engine is a nontrivial system.
If only we were so lucky as to have a “go” button that would set up our environment
automatically!

Updates and Bug Fixes
Regularly visit the Magic Software, Inc. web site, www.magic-software.com, for up-

dates and bug fixes. A history of changes is maintained at the source code page of the
site.
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11 A BRIEF HISTORY OF THE WORLD

The first real experience I had with a “computing device” was in the early 1970s when
I attended my first undergraduate college, Albright College in Reading, Pennsylvania,
as a premedical student. The students with enough financial backing could afford
handheld calculators. The rest of us had to use slide rules—and get enough significant
digits using them in order to pass our examinations. I was quite impressed with
the power of the slide rule. It definitely was faster than the previous generation
of computing to which I was accustomed: pencil and paper. I did not survive the
program at the college (my grades were low enough that I was asked to leave) and
took a few year’s break to explore a more lucrative career.

Deciding that managing a fast-food restaurant was not quite the career I thought
it would be, I returned to the college track and attended Bloomsburg University (BU)
in Bloomsburg, Pennsylvania, as a mathematics major, a field that suited me more
than chemistry and biology did. During my stay I was introduced to an even more
powerful computing device, a mainframe computer. Writing Fortran programs by
punching holes in Hollerith cards ! was even better than having to use a slide rule,

Herman Hollerith used punched cards to represent the data gathered for the 1890 American census. The
cards were then used to read and collate the data by machines. Hollerith’s company became International
Business Machines (IBM) in 1924.
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except for the occasional time or two when the high-speed card reader decided it was
really hungry. By the end of my stay I had access to a monitor/terminal, yet another
improvement in the computing environment. Linear programming problems were a
lot easier to solve this way than with the slower modes of computing! I finished up at
BU and decided graduate school was mandated.

Next stop, the University of Colorado at Boulder (CU) in 1979. I took a liking
to differential equations and got another shot at punching cards, this time to nu-
merically solve the differential equations of motion for a particular physical system. I
understood the theory of differential equations and could properly analyze the phase
space of the nonlinear equations to understand why I should expect the solution to
have certain properties. However, I could not compute the solution that I expected—
my first introduction to being careless about applying a numerical method without
understanding its stability and how that relates to the physical system. The remainder
of my stay at CU was focused on partial differential equations related to combustion
with not much additional computer programming.

After graduating in 1984, I started my academic career at the University of Texas at
San Antonio (UTSA) in the Division of Mathematics, Computer Science, and Statis-
tics. The university had recently started an engineering program and designed four
courses for applied mathematics and computer science relevant to the new program.
The two applied mathematics courses were your standard fare for an engineering pro-
gram and included topics on differential equations, numerical methods, and physics
concepts. The two computer science courses were somewhat unique in that both re-
quired students to work on the fast personal computers that were available at the time:
4.77 MHz Intel 8086 machines. The first course was introductory programming with
Borland’s Turbo Pascal 3. The second course was on computer graphics. Although
Turbo Pascal supported graphics primitives, my requirements for the course included
writing device drivers for the state-of-the-art graphics card: the Enhanced Graph-
ics Adapter (EGA). With a blazingly fast CPU, Microsoft’s Disk Operating System
(DOS), 20M of hard disk space, 640K of accessible system memory, and an EGA card
with four 64K memory chips (one chip per color plane), we were able to produce
some fine quality output rivaling that of the 2D computer games of that era. The
output was almost as good as what we could produce on the department’s DEC Gigi
that was attached to a VAX 730 and allowed you to draw to the monitor by sending
cryptic escape sequences of the type that you normally see in printer drivers.
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During my tenure at UTSA, I became more involved in computer-related top-
ics and less involved in theoretical considerations in my research field of differential
equations. In particular I became involved with the University of Texas Health Science
Center’s Department of Radiology. The field of medical imaging was quite interesting
to me with its inherent connection to computer graphics and visualization, but also of
interest were aspects of geometry and numerical methods since we were interested in
analyzing and extracting anatomical information from 3D medical images. My inter-
est in the topic was strong enough that I decided to leave UTSA in 1991 and become
a “retread” by studying computer science and medical imaging at the University of
North Carolina (UNC) at Chapel Hill.

While at UNCT had access to more powerful equipment. We did not have a Cray
supercomputer with a couple of powerful processors, but we did have a massively
parallel machine appropriately named the MASPAR with 8196 processors, individu-
ally not very powerful, but a natural architecture for 2D image processing. Still, there
was a strong attraction to compute numerically on a personal computer, to see the re-
sults graphically and immediately, if not sooner. At the time I had upgraded my Intel
8086 machine to an Intel 80486 machine with a floating point coprocessor. I was able
to implement many algorithms of interest in image analysis, including constructing
something called ridges that are defined in terms of differential equations. The same
programming issues that arose at CU bit me again: applying numerical methods for
differential equation solvers without thought about the stability of the methods or
about their applicability to the problem at hand. Another problem of interest was to
compute geodesic curves on surfaces, curves that represent the shortest surface path
between two points on the surface. The formulation of the problem is akin to what
you see in Lagrangian dynamics in physical modeling and results in yet more differ-
ential equations to solve numerically.?

2. Specifically, a geodesic curve on a surface is the natural extension of a straight line in a plane—it has zero
curvature. The physical analogy is that a particle traveling along a geodesic has zero acceleration while
satisfying the constraint of remaining on the surface.
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After leaving UNG, I eventually found my way into the games industry in 1997
by signing on at Numerical Design Ltd. (www.ndl.com), a company cofounded by
J. Turner Whitted, credited with the invention of ray tracing, and Robert Whitton,
a mathematics professor at Davidson College. The company’s business model had
been focused on contract work in computer graphics, and they had developed a
photorealistic ray tracing package called R-Plus. Times were changing and they had
decided that a product-oriented business model was better than a contract-based
model. When I arrived the code base for NetImmerse was in its infancy. The goal of
the product was a real-time graphics engine for 3D games. At the time the Voodoo 1
graphics accelerator from the company 3Dfx (now defunct) had arrived on the scene.
This was a true accelerator in the sense that it coexisted with a standard 2D graphics
card. As you are already aware, this type of graphics technology started a whole new
trend in the computer industry leading to significant evolution of central processing
units (CPUs) and off-loading of a lot of work to graphics processing units (GPUs).
The standard development machine at NDL in 1997 was a Pentium 133 MHz with
32M of system memory, not a lot of power compared to present-day machines but at
the time quite a good system.

One of the first customers for NetImmerse was Broderbund, a software com-
pany that intended to use the package for their upcoming game Prince of Persia
3D (POP3D). The game engine needed a lot of help to evolve and keep up with
the features that POP3D required. In particular, the collision detection system of
NetImmerse was crude and needed improvement. The game engine was overhauled,
including the addition of quaternions to support fast keyframe animations. The col-
lision detection and response system was built from scratch, used hierarchical culling
for collision purposes, and used an oriented bounding box (OBB) tree—based hier-
archy to support collision detection of the triangle mesh geometry [GLM96], but
with an enhancement to predict the time of first contact of moving objects (see Sec-
tion 5.3). The system also implemented 3D picking (intersection of line/ray/segment
with objects), something heavily used in POP3D to allow the Prince to jump and
catch ledges, and other related movements with constraints. The collision system was
functional, but not what I would call sophisticated. CPUs were finally reaching speeds
of 800 MHz by the time POP3D shipped in 1999, but they still did not have sufficient
power for complex geometric environments. The collision system was also used suc-
cesfully in an arcade game called XS-G (originally called Canyon Rupner) that was
shipped by Greystone Technology in 1998.

As CPUs and GPUs evolved due to consumer demands in the gaming arena,
the graphics cards became powerful enough to give players a visually rich and
convincing environment for the games. But consumers are relentless and wanted
more physical realism. Predicting a trend in this direction, the company MathEngine
(www.mathengine.com) was started to build what was called a physics engine. The
product was a good one, but some of the demonstrations showed jittering objects
in resting contact with a flat surface. The problem is that applying numerical meth-
ods to the differential equations of motion is not enough. Stability of the methods is
important, but also important is having a robust system that integrates collision de-
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tection and collision response involving multiple rigid bodies. Resting contact is now
a classic problem that requires great care when implementing to avoid the jittering
objects. While I was at NDL, Steven Collins, the CTO of a Dublin-based company
called Telekinesys, Inc. contacted us to see what we thought about their physics en-
gine and how it handled problems like resting contact. The demonstrations were
very convincing and showed that, in fact, you can obtain physical realism with good
frame rates even on current consumer CPUs. Eventually, Telekinesys announced their
new technology, and the company name changed to Havok.com (www.havok.com).
Their commerical physics engine is an extremely good product. Many of the robust-
ness issues that show up in any product attempting to handle geometric queries on
a computer with floating point arithmetic have been solved by the Havok folks. In
fact, in January of 2003 I walked into my favorite store, Intrex Computers, to sat-
isfy my latest silicon craving. On display was a computer with an ATT Radeon 9700
graphics card running a demonstration from Havok.com that showed a creature in
exotic garb dancing about. The clothing was flowing in a very believable manner—
no self-intersections of the cloth and running at real-time rates. All I wanted was a
hard drive, but I also walked out with a new graphics card and the desire to write my
own physics engine. You know the feeling . . . .

Other companies, of course, have bought into the idea that you can do realis-
tic physics in real time. The various modeling packages have plug-ins to help artists
with the physics. A particularly good and robust plug-in for the modeling package
SoftImage (www.softimage.com) is the dynamics package Animats from John Nagle
(www.animats.com). John has spent a lot of time figuring out how to avoid all the
annoying floating point pitfalls that arise in any package that you build to handle
physics, collision, and distance and intersection calculations. Also noteworthy is the
Vortex physics engine from CMLabs (www.cm-labs.com). A commercial package for
robust distance calculations between convex polyhedra is named SOLID 3 and writ-
ten by Gino van den Bergen (www.libsolid.com); earlier versions are available for free
(www.dtecta.com). No doubt you will discover many other related packages. Just as
the number of commercial graphics engines increases as the technology becomes
more commonly known to people, so will the commercial physics engines.

The games industry has gone through quite an evolutionary period over the past
few decades. The computers of 10 years ago are nowhere near the powerful machines
we have today. I started out with a 4.77 MHz Intel 8086 machine and a 2D EGA
graphics card. Now I have machines with very fast CPUs and lots of system memory,
and they all have 3D graphics hardware. These include a Macintosh system, a Linux
system, and a few Microsoft Windows PCs (maintaining portable source code comes
at a price). These systems are all capable of real-time graphics and real-time physics,
whereas the systems of a decade ago just did not have that kind of power.
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Nevertheless, a major theme in this brief historical journey of mine is, The mathe-
matics and physics that you will deal with in this book is not new. Much of the computer
graphics research that appears in the literature of the past decade is motivated by the
power that machines have now (or soon will have). Much of what occurs in that re-
search is a reapplication of classic mathematical and physical concepts and shows that
the researchers appreciate the importance and power of mathematics and physics in
achieving their goals. Thus, you too should appreciate the power of all things math-
ematical and physical. As readers of my books certainly know, I have not shied away
from mathematics, because it is my language for understanding the technical world
around me. I wish it to be your language, too. After all, you will need it in order to
appreciate fully the complexities and difficulties in implementing a robust physical
simulation on a computer. What else can I say!

12 A SUMMARY OF THE TOPICS

Physics concepts and their application to games is quite a large topic. Rather than
attempt to provide brief summaries of all possible topics, in other words a survey
book, I decided to focus on the subset that most programmers seem to ask questions
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about in the various Usenet newsgroups: mechanics, rigid bodies, deformable bodies,
and collision detection and response systems. These topics are discussed in depth
and require a minimum mathematical background that includes linear algebra and
calculus, both univariate and multivariate. Also helpful would be some exposure to
ordinary differential equations and to numerical methods that solve these, but if you
have not had this exposure, a couple of chapters provide enough material to support
what you will need for implementing a physical simulation.

Chapter 2 introduces curves in two dimensions and in three dimensions as repre-
sentative paths of a particle. The chapter introduces the physical concepts of position,
velocity, and acceleration. The choice of coordinate system is important in an appli-
cation, so the standard systems are covered, including polar coordinates, cylindrical
coordinates, and spherical coordinates. The motion of particles along paths in the ab-
sence of forces is called kinematics. In addition to kinematics of a single particle, we
also look into the kinematics of a particle system. This material is the all-important
foundation for the physics engines discussed in Chapter 5.

The remainder of Chapter 2 is an introduction to the standard concepts that you
see in a coutse on physics, starting with Newton’s laws of motion. The topics of force,
torque, equilibrium, linear and angular momentum, center of mass, moments and
products of inertia, and kinetic and potential energy are discussed in detail with the
goal of being able to calculate these quantities on a computer. Computing the center
of mass and the inertia tensor for a solid convex polyhedron is necessary for the
physics engines of Chapter 5.

Chapter 3 is about dynamics: the interaction of rigid bodies when forces and
torques are present in the physical system. The classical approach in an introductory
physics course uses Newtonian dynamics and the famous formula of Newton’s second
law of motion, F = ma, where m is the constant mass of an object, a is its acceleration,
and F is the applied force. I do not spend a lot of time delving into this approach.
The coverage is sufficient to support the general purpose physics engines that use
Newton’s second law for simulation.

The majority of Chapter 3 is spent on Lagrangian dynamics, a framework for
setting up the equations of motion for objects when constraints are present. In La-
grangian dynamics, the equations of motion naturally incorporate the constraints.
A Newtonian formulation requires that forces of constraint be part of the term F in
the equation of motion, and the constraint forces are sometimes difficult to derive.
For example, you will see in the Lagrangian approach that frictional forces are easier
to deal with than in the Newtonian approach. For many games, a designer’s specific
knowledge of the physical system can be exploited to good effect by formulating the
simulation using Lagrangian dynamics, the result being that the computational time
of the simulation is reduced, compared to a general-purpose system using Newtonian
dynamics.

Euler’s equations of motion are also discussed in Chapter 3, because a few prob-
lems are more naturally formulated in terms of Euler angles than in terms of other
dynamics systems. Although Hamiltonian dynamics is of importance, especially in
dealing with the n-body problem, I made the decision not to include a discussion of
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it in this book, since the other approaches are sufficient to allow implementations on
a computer.

Chapter 4 is about deformable bodies. There are many ways to simulate defor-
mation; we will address a subset in this book. In all cases you should consider these
“hacked” physics in the sense that at no time do we use a real physical model for the
actual material that makes up the bodies. The real models do not lend themselves to
the fast computation that a game requires. All that is required of a hacked physics
approach in a game is that the deformations look believable to the player. I do cover
mass-spring systems for the purposes of deformation, but even these might not be as
realistic a model for deformable objects as you might wish.

Another method that I have included for describing deformable objects includes
the use of control point surfaces where you vary the control points in some suitable
manner to cause the surface to deform as you desire. A brief discussion is given for B-
spline curves and surfaces and for nonuniform rational B-spline(s) (NURBS) curves
and surfaces. The presentation is limited to the computational aspects of curves and
surfaces, including optimizations that allow fast evaluation. You are referred to other
sources for a more detailed look at the properties of B-splines and NURBS.

Free-form deformation is a method for deforming an object and uses a volu-
metric approach. The object is embedded in a portion of space that is defined via
a control point lattice. The volume of space is deformed, causing the object itself to
deform. ~

The final deformation method is based on the object’s surface being defined
implicitly. The popular term for such surfaces is metaballs. 1 prefer to call them what
they are, implicit surfaces. The discussion of this topic shows how you define a 3D
lattice of sample points, trilinearly interpolate to obtain a continuous representation
of a function defined on the volume occupied by the lattice, then extract the implicit
surface as the level surface of the constructed function. Implicit surfaces are deformed
by varying the constructed function itself.

Chapter 5 is about what most readers probably think of as the meat of game
physics—the physics engine. The chapter describes a general system for handling
a collection of rigid bodies, including collision detection and collision response. A
general system is one that uses Newton’s second law of motion, F = ma, to control
the motion of objects. The constraint forces are unknown to the system and must be
calculated based on the information that is provided by the collision detection system.

I discuss the impulse-based approach that Brian Mirtich [Mir96b] and David
Baraff [Bar01] made popular, but by all means this is not the only approach you can
take. My goal is to go into significant detail about the impulse-based approach so
that you (1) understand the layout of a general physics engine, (2) see what compli-
cations arise, and (3) learn to evaluate what its strengths and weaknesses are. Other
approaches to building a robust physics engine are based on trying to fix the weak-
nesses of the previous-generation engine. Once you understand the impulse-based
engine, you should be able to start experimenting with modifications; references to
other approaches are provided, so you have a nearly endless supply of ideas to inves-
tigate. For instance, a good tutorial site for rigid body dynamics is [Hec98].
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The first section of Chapter 5 is about unconstrained motion. This gives you an
idea of how to design a data structure to represent a rigid body and how to solve the
differential equations of motion for a body that does not interact with other bodies
in its environment. Section 5.2 complicates matters by allowing interaction between
bodies, referred to as constrained motion. As you will see, building a collision detec-
tion and response system for constrained motion is a formidable task! I have provided
enough pseudocode to allow you to build a working engine if you choose to do so.
Source code is provided for a working engine with which you can experiment. A lot
of code was written by George Innis of Magic Software, Inc. after reading a draft of
this book—hopefully evidence that other folks will be able to implement real systems
from my descriptions.

The last subsection of the material on constrained motion (Section 5.2.5) pro-
poses a different approach that I think should be investigated. I propose that an
implementation can detect and provide enough information about the constraints
imposed by the contact set found by the collision detection system so that, rather
than continuing to solve the general F = ma, the system can construct the Lagrangian
equations of motion and switch to the appropriate set when necessary. This ap-
proach would be of particular importance when dealing with frictional forces since
Lagrangian dynamics do a better job of incorporating the friction into the equations.
The physics engine that Thomas Jakobsen designed and developed for IO Interactive
already hints at this [Jak01] by using projection of the system state variables onto a
manifold described by the constraints.

Section 5.3 is on collision detection with convex polyhedra. This is generally the
hardest part of a physics engine to implement in a robust manner while not using
too much computational time that is allotted per time frame. I discuss the method
of separating axes because it burdens you with the minimum information needed to
test if two objects overlap, but provides as much information as you need to actually
compute the contact set between two noninterpenetrating objects.

Section 5.4 is about using spatial and temporal coherence of the rigid body objects
to reduce the amount of time spent detecting collisions. A couple of basic systems
are mentioned, one using bounding spheres, but a more effective one using axis-
aligned bounding boxes. Many approaches to collision detection are abundant in the
literature. I do not attempt to describe any of them in great detail since my goal with
this book is not to focus heavily on the collision detection portion of an engine, but
rather to focus on the collision response. That said, I do provide references in Section
5.5 so that you can investigate the topics yourself, many of which are available through
the geometry web site of Ming Lin and Dinesh Manocha of the Computer Science
Department at the University of North Carolina [GAMO03]. A couple of fine books on
collision detection are forthcoming from Morgan Kaufmann Publishers, one by Gino
van den Bergen [vdB03] and one by Christer Ericson of Sony Interactive [Eriar].

Chapter 6 is a brief discussion of how to obtain some physical effects through
the use of shader programs on programmable graphics cards. Vertex shaders allow
displacement of vertices to obtain visual effects of the physical simulation, but it is
important to note that the displaced vertices are not accessible to the main program.
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Until that capability is added to programmable graphics cards, you will not be able
to use the vertex locations for any type of intersection or collision testing. The chap-
ter has examples of vertex shaders for vertex displacement and for skin-and-bones
animation. Other examples are along the lines of optical effects (still in the realm of
physics), including reflection and refraction effects. In a sense shader programs pro-
vide a form of hacked physics. As graphics hardware evolves, look for the ability to
rapidly read data from the graphics card into system memory, thereby allowing for
intersection and collision testing.

The remaining four chapters of the book provide mathematical background. As
such they are a bit more difficult to read than the previous chapters. Chapter 7 is on
the topic of linear programming (LP), the linear complementarity problem (LCP),
and mathematical programming (MP) generally. One application of the material is to
use LCP methods to compute the distance between convex polygons or convex poly-
hedra. Another application is to use LCP methods to compute resting contact forces
and to use MP methods, namely, constrained quadratic minimization, to compute
impulsive contact forces at the points of contact among a collection of interacting
rigid bodies. The LCP method also is useful in computing distance between points,
convex polygons, and convex polyhedra.

Chapter 8 is a brief overview of the theory of differential equations. This material
is provided for those readers who want to understand the basic theory of differential
equations relevant to physical simulation. The overview is at the level of what you will
find in an undergraduate textbook on the topic; it is intentionally limited in scope but
should give you enough of the flavor of what analysis of differential equations is all
about. ‘

Chapter 9 is on numerical methods for solving differential equations. This is a
large chapter that shows you a vast collection of methods, including how the meth-
ods are derived using basic mathematical principles. The methods include Euler’s
method, higher-order Taylor methods, methods obtained by an integral formulation,
and the all-popular and robust Runge-Kutta methods. These are all single-step meth-
ods that require information only at the previous time step to generate information
at the current time step. I also discuss multistep methods that use multiple previous
times to generate information at the current step. These methods include the con-
cept of a predictor-corrector that attempts to provide good estimates of the solution
from ones that are less precise. Extrapolation methods are also covered, leading to the
Bulirsch-Stoer method that uses rational polynomial extrapolation to produce highly
accurate results with a minimum of computation cost. A class of methods that is very
popular now in the games arena, and has been used for a long time in molecular dy-
namics, is the Verlet methods. A section of the chapter is devoted to these methods,
including the standard Verlet method, the Leap Frog method, and the Velocity Verlet
method. I also included a reasonable alternative called the Gear fifth-order predictor-
corrector method. Thus, you have a large collection of solvers, all of them implemented
in the source code on the CD-ROM that accompanies the book.

Implementing a numerical method is only half the battle. Understanding the
stability of a method, how to choose an appropriate step size, and how to evaluate
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the trade-offs between accuracy and computation time is the other half of the battle.
Perhaps the most important part of Chapter 9 is the section on numerical stability
and its relationship to physical stability of equilibrium solutions. You might think of
this as an irrelevant mathematical exercise, but in fact I provide a stability analysis for
a handful of methods when applied to the simple pendulum problem. This gives you
the blueprint to follow when analyzing the stability of methods for your particular
applications. The last section of the chapter discusses the problem of stiffness, another
issue related to the stability of numerical solvers.

Chapter 10 is on quaternions, one of the most misunderstood and abused topics
in the Usenet newsgroups (in my opinion). Yes, these are mathematical in flavor,
but in fact a physical simulation benefits from using these because of the resulting
reduced memory in representing rotations and in the reduced computation time
in actually rotating or updating the equations of motion for a physical system. The
molecular dynamics folks have been using these for a really long time, so you can find
a lot of online material discussing quaternions in the context of that field, including
higher-order methods for numerically solving the quaternion differential equation
that shows up in the physical simulation.

I provide the classical approach to how quaternions relate to rotations and I pro-
vide a linear algebraic approach to try to motivate the connection by considering
rotation in four dimensions. Section 10.4, “From Rotation Matrices to Quaternions,”
was written by Ken Shoemake, famous for introducing the joys and necessities of
quaternions to the computer graphics and animation communities. The final two
sections involve interpolation of quaternions and derivatives of time-varying quater-
nions, the latter section being related to how you derive the equation of motion for
updating orientations of rigid bodies when quaternions are used to represent the ori-
entations.

13 EXAMPLES AND EXERCISES

Quite a few examples and exercises are provided in this book. The examples are
worked through in detail, of course, with some of them implemented in source code,
which is on the CD-ROM. The exercises are for you to try. They vary in difficulty
and are marked accordingly: easy (& , medium 4 , or hard . The assignment of
these labels is my own choosing and may not agree with someone else’s assessment
of the level of difficulty. The answers to selected exercises are on the CD-ROM.
I recommend that you make a significant attempt to answer the questions before
looking up the answer. The answers to the remaining exercises are available only
through your instructor, with access provided by Morgan Kaufmann Publishers.



BASIC CONCEPTS
FROM PHYSICS

l n this chapter we review some of the basic concepts of physics that are relevant to
the analysis of motion and interaction of rigid bodies. A rigid body is classified ac-
cording to the type of region that contains its mass, the topic of Section 2.1. Section
2.2 introduces curves in two or three dimensions as representative paths of a particle
in the absence of forces. This topic is referred to as kinematics. The section intro-
duces the physical concepts of position, velocity, and acceleration. Many applications
are better handled with an appropriate choice of coordinate system. The Cartesian
system is usually convenient, but we also take a look at polar coordinates, cylindrical
coordinates, and spherical coordinates. In addition to kinematics of a single particle,
we also look into the kinematics of particle systems and of solid bodies. This material
is the foundation for the physics engines discussed in Chapter 5.

The remainder of this chapter is an introduction to the standard concepts that
you see in a course on physics, starting with Newton’s laws of motion in Section 2.3.
The topic of forces is discussed in Section 2.4 with specific reference to forces you
will see throughout the book in the examples: gravitational forces, spring forces, and
frictional forces. The closely related topics of torque and equilibrium are also covered
in the section. Various measures of momenta are discussed in Section 2.5, includ-
ing linear and angular momentum, first-order moments and their relationship to the
center of mass of an object, and moments and products of inertia. The last part of Sec-
tion 2.5 shows how to compute the center of mass and the inertia tensor for a solid
polyhedron of constant mass, something you will need to implement in the physics
engines discussed in Chapter 5. Work and energy are the final topic of the chapter.

13
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The kinetic energy is an important quantity in the development of Lagrangian dy-
namics. The potential energy is important when dealing with conservative forces such
as gravity.

2.1 RIGID BODY CLASSIFICATION

A rigid body is characterized by the region that its mass lives in. The simplest body
is a single particle of mass m that occupies a single location x. A particle system is a
collection of a finite number of particles, say, p of them, the ith particle having mass
m; and located at x;, 1 < i < p. Single particles and particle systems are examples of
discrete material since the number of particles is finite. Various physical quantities
involve summations over the particles in a system. The standard notation is

p
Ototal = Z Qi
i=1

where Q; is some physical quantity associated with the ith particle and Q,, is the
summary quantity for all the particles. Although the equation here involves a scalar-
valued physical quantity, vector-valued quantities will be encountered as well.

Another type of body is referred to as a continuous material, consisting of in-
finitely many particles that lie in a bounded region of space, denoted R. We refer
to such a rigid body as a continuum of mass. Within the category of a continuum of
mass we have a further set of classifications. The region R can be a bounded segment
of a curve, whether in one, two, or three dimensions. Mathematically we may refer to
such a rigid body as a curve mass. Physically we may call the body a wire. R can be a
bounded region in the plane (two-dimensional mass living in two dimensions) or a
bounded portion of a surface in space (two-dimensional mass living in three dimen-
sions). Mathematically we may refer to such a rigid body as a surface mass. Physically
we may call the body a lamina or, in two dimensions, a planar lamina. Finally, R can
be a solid occupying a bounded region of space. Mathematically we may refer to such
a body as a volume mass. Physically we may call the body a solid.

Various physical quantities involve summations over all particles of mass in the
region. The summation notation for particle systems no longer applies and is re-
placed by integration over the region. The method of integration depends on the
category of region. Generically we will use the notation

Qtotal Z/ QdR
R

where R is the region, dR is an infinitesimal portion of the region, and Q is the
physical quantity of interest and can be scalar- or vector-valued. An analysis for a
particular type of rigid body, whether for mathematical purposes or for a computer
implementation, must provide the specific type of integration in order to compute
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the integral. For a curve mass, the integration is computed as a line integral, where
the curve is parameterized by a single parameter and the limits of integration depend
on that parameterization. For a surface mass in the plane, the integration is computed
as a double integral, where the limits of integration depend on how the region is
represented. For a surface mass in space, the integration is via a surface integral
whose evaluation may very well involve Stokes’s Theorem. For a volume mass, the
integration is computed as a triple integral, where the limits of integration depend on
how the region is represented. Throughout the book I will use the generic notation
Jr Q dR when presenting general physical topics. I will resort to the specific type of
integration when demonstrating the concepts with examples.

2.2 RIGID BODY KINEMATICS

The study of motion of objects without considering the influence of external forces
is referred to as kinematics. The basics of the topic are presented in this section. We
look at the three basic types of rigid bodies: a single particle, a particle system, and
a continuum of mass. For the purposes of rigid body kinematics, the analyses for
particle systems and continuous materials are the same.

2.2.1 SINGLE PARTICLE

Let us focus first on the kinematics of a single particle. Although we might start
directly with the analysis of a particle moving through space, many situations arise
where the particle is constrained to moving within a plane. We start our analysis
with particle motion in the xy-plane, ignoring the z-component of the position. If
the constraining plane is another one at some arbitrary orientation in space, basic
methods of linear algebra may be applied to represent the particle’s position with
respect to an orthonormal basis of two vectors in that plane. The ideas we present
here for the xy-plane apply directly to the coordinates within the general plane.

Whether in two or three dimensions we may choose Cartesian coordinates to rep-
resent the particle’s position. However, some problems are better formulated in dif-
ferent coordinate systems. Particle motion is first discussed in Cartesian coordinates,
but we also look at polar coordinates for 2D motion and at cylindrical or spherical co-
ordinates for 3D motion since these coordinate systems are the most common ones
you will see in applications.

Planar Motion in Cartesian Coordinates

First let us consider when the particle motion is constrained to be planar. In Cartesian
coordinates, the position of the particle at time ¢ is

r)=x@)1+y@)j (2.1
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Figure 2.1

where 1 = (1, 0) and j = (0, 1). The velocity of the particle at time ¢ is
vit)=t=x1+y] (2.2)

The dot symbol denotes differentiation with respect to ¢. The speed of the particle at
time ¢ is the length of the velocity vector, |v]. If s(¢) denotes the arc length measured
along the curve, the speed is § = |v|. The quantity § = ds/dt is intuitively read as
“change in distance per change in time,” what you expect for speed. The acceleration
of the particle at time ¢ is

al)=v=r=xX1+yy (2.3)

At each point on the curve of motion we can define a unit-length tangent vector by
normalizing the velocity vector,

T() = — = (cos(¢(1)), sin($(1))) (24)

vl

The right-hand side of equation (2.4) defines ¢ (¢) and is valid since the tangent vector
is unit length. A unit-length normal vector is chosen as

N(r) = (- sin(¢ (1)), cos(¢(1))) (255)

The normal vector is obtained by rotating the tangent vector 7 /2 radians counter-
clockwise in the plane. A coordinate system at a point on the curve is defined by origin
r(¢) and coordinate axis directions T(¢) and N(¢). Figure 2.1 illustrates the coordinate
systems at a couple of points on a curve. The coordinate system {r(z); T(z), N(¢)} is
called a moving frame.

A couple of coordinate systems at points on a curve.
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The velocity and acceleration vectors may be represented in terms of the curve
tangent and normal. The velocity is a minor rearrangement of equation (2.4),

v =|v|T =5T (2.6)
The acceleration is obtained by differentiating the last equation,

. d . .dT .,dT
a=v=—(T)=5§T+5§— =5§T+§*—
dt dt s
Differentiating the tangent vector in equation (2.4) with respect to arc length s
produces

dT d d

— = — (cos ¢, sin @) = ¢ (— sin ¢, cos ¢) = kN(s)

ds ds ds

where k = d¢/ds is the curvature of the curve at arc length s. Observe that large
angular changes in the normal vector over a small length of curve equate to large
curvature values. The acceleration is therefore

a=5T+ ks*N (2.7)

The component § T is called the tangential acceleration, the acceleration in the direc-
tion of motion. The component x§°N is called the normal acceleration or centripetal
acceleration, the acceleration that is perpendicular to the direction of motion. Equa-
tions (2.6) and (2.7) may be used to show that the curvature is

Cveal -

VPG5

(2.8)

where (o, f)* = (B, —a).

The rate of change of the tangent vector with respect to arc length is related to the
normal vector. You might be curious about the rate of change of the normal vector
with respect to arc length. It is

N = i(— sin ¢, cos ¢) = @(— cos ¢p, —sin ¢p) = —«kT
ds ds ds

Summarizing the s-derivatives in a format matrix notation:
dT
ds 0 « T
= 2.9
MEEIN @)
ds

Observe that the coefficient matrix is skew-symmetric, a common theme when com-
puting the derivatives of the vectors in a frame.
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EXAMPLE
2.1

Construct the various vectors and quantities mentioned earlier for a parabolic curve
r(t) = t1 + t?J. For simplicity of notation, we use r = (¢, t2).

The velocity is v = (1, 2t) and the speed is just the length of the velocity vector,
§ = /1 + 4¢2. The magnitude of tangential acceleration is § = 4t /+/1+ 4¢2. The ac-
celeration is a = (0, 2). The unit-length tangent and normal vectors are

(1) 2t) N = (_2t1 1)

V1+arZ V1+ 412

Finally, the curvature is k = 2/(1 4 4t2)%/2.

T=

Planar Motion in Polar Coordinates

The particle motion may also be represented using polar coordinates. The choice of
Cartesian form versus polar form depends on your application. The position vector
is represented as a unit-length vector R = r/|r| and a distance r = |r| from the origin,

r=|r|]=— =rR (2.10)
|r|

Since R =r/|r| is unit length, we may write it as R = (cos 8, sin 8), where 0 de-
pends on t. A unit-length vector perpendicular to R is P = (— sin 8, cos §) and is
obtained by a 7 /2 counterclockwise rotation of R in the plane. The moving frame
{r(2); R(z), P(¢)} provides an alternate coordinate system to the tangent-normal one.
Figure 2.2 shows the polar frames at points on a curve, the same curve shown in
Figure 2.1.

Figure 2.2 A polar coordinate frame at a point on a curve.
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The detivatives of the frame directions with respect to time are summarized in

formal matrix notation:
R 0 61[R

Notice the similarity to equation (2.9).
The velocity is represented in the polar frame by

v=i‘=§;(rR)=r'R+rR=iR+réP (2.12)

The acceleration is represented in the polar frame by
a=v=FR+7R+ % (r0) P+ rP = (¥ — r6)R + (rf + 2/)P  (2.13)

Construct the various quantities for a spiral r = 6, where 6 is a function of time ?.

The position is r=6R = (6 cos 0, 6 sin §), the velocity is v = OR + QéP =
f(cos 6 — 6 sin 6, sin & + 6 cos 0), and the acceleratioq is a= (6 —00°)R +
(00 + 20%)P = O(cos @ — O sin 0, sin O + O cos 0) + 6%(—60 cos § — 2 sin 6,

Spatial Motion in Cartesian Coordinates

We now consider the spatial case. In Cartesian coordinates the position of a particle
at time 7 is

r)=x@)1+y@)j+z@)k (2.14)

where1 = (1,0, 0), y = (0, 1, 0),and k = (0, 0, 1). The velocity of the particle at time
tis

vit)=t=x1+yj+zk (2.15)

The speed of the particle at time ¢ is the length of the velocity vector, |v|. If s(r)
denotes the arc length measured along the curve, the speed is § = |v|. The acceleration
of the particle at time ¢ is

a()=v=t=%1+5)+7k (2.16)

At each point on the curve of motion we can define a unit-length tangent vector by
normalizing the velocity vector:

T(r) = — (2.17)
[v|
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Figure 2.3

Circle of potential normals

A curve, a tangent vector at a point, and the circle of choices for the normal vector.
The circle lies in the plane containing the point and perpendicular to the tangent.

In 2D we had only two choices for unit-length vectors that are perpendicular to the
curve. We chose the one that is always a counterclockwise rotation from the tangent
vector. As long as the tangent vector is a continuous function of ¢ (the angle ¢(r)
is a continuous function), the normal vector is also a continuous function. In 3D
there are infinitely many choices for a unit-length vector perpendicular to the tangent
vector, an entire circle of them in the plane that is perpendicular to T and centered at
the point on the curve. Figure 2.3 shows a curve, a tangent at a point, and the circle
of choices for the normal.

Which one do we choose for a normal vector N? Keeping consistent with the
2D setting, since T is a unit-length vector, T - T = 1. Differentiating with respect to
the arc length parameter s yields T - dT/ds = 0, and as a result the vector dT/ds is
perpendicular to the tangent. We use this vector to define both the normal vector and
the curvature « as a function of the arc length s,

av _ Kk (s)N(s) (2.18)
ds

The velocity satisfies equation (2.6) and the acceleration satisfies equation (2.7), the
vector quantities living in three dimensions in both cases.

The normal is a unit-length vector in the direction of d'T/dss, but notice that there
are two choices for such a vector. Think of the second choice as the negative of the
first, —N(s). The curvature function that must be associated with the second choice
is the negative of the first, —« (s), so that the product of curvature and normal still
produces dT/ds. If the curve were planar, we could resort to the two-dimensional
construction and select a normal that is a counterclockwise rotation from the tangent
within that plane. This reasoning does not apply to a nonplanar curve. The choice
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of normal should be made in an attempt to maintain a continuous function N(s).
Exercise 2.1 is designed to show that it is not always possible to do this. Once a
choice is made for the normal vector, the curvature is k = N - dT/ds. The sign of
the curvature depends on which of the two possible N was chosen.

H ! Consider a curve defined in two pieces. The first piece is r(¢) = (¢, ¢°, 0) for < 0 and

the second piece is r(¢) = (¢, 0, #3) for t > 0. Prove that r, v, and a are continuous
at t = 0 by showing lim,_, 4 r(z) = r(0), lim,_, 4 v(¢) = v(0), and lim,_, 4 a(z) = a(0).
Construct the normal vectors for each piece as a function of #; call this N(¢). Prove
thatlim,_, - N(¢) = (0, 1, 0) and lim,_, 4+ N(¢) = (0, 0, 1). Since the one-sided limits
have different values, N(¢) is not continuous at # = 0. Changing the sign of the normal
on one piece of the curve cannot change the conclusion

The acceleration vector in 3D satisfies the relationship shown in equation (2.7).
The curvature, however, is
v x al

K=o WE (2.19)

where o is a sign parameter that is 1 or —1 and chosen, if possible, to make the normal
vector continuous. A formula for the normal vector may be derived that contains the
sign parameter,

_o(vxa)xv

(2.20)
v xal |v]

The tangent T and normal N only account for two of the three degrees of freedom
in space. A third unit-length vector, called the binormal vector, is defined by

B=T x N (2.21)

The coordinate system {r(z); T(z), N(¢), B(z)} is a moving frame for the curve. The
binormal is perpendicular to the tangent and normal vectors, so B+ T=0and B -
N =0 for all ¢. Differentiating with respect to arc length s, we obtain

_dB-

dB
ds

'dT=@‘T+KB'N=— T

0 e
ds ds ds

T+B
The binormal is unit length, so B - B =1 for all ¢. Differentiating with respect to s
and dividing by 2, we obtain

o=p-8
ds
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The last two displayed equations show that the derivative of the binormal is
perpendicular to both T and B. It must therefore be parallel to N and represented as

d—B =—1N (2.22)
ds
for some scalar function 7, called the torsion of the curve. The choice of minus
sign is the standard convention. The curvature measures how the curve wants to
bend within the plane spanned by the tangent and normal to the curve. The torsion
measures how the curve wants to bend out of that plane.

To this point we know how the derivatives dT/ds and dB/ds relate to the tan-
gent, normal, and binormal. We may complete the set of relationships by computing
dN/ds. The normal is N = B x T. Differentiating with respect to s yields

d—Nszg—f—d—BxT::chN—tNxT:—KT—f—rB (2.23)
ds ds ds
Equations (2.18), (2.22), and (2.23) are called the Frenet-Serret equations for the

curve. In a formal matrix notation,

dT

ds 0 « O T(s)

d—N =| —« 0 N(s) (2.24)
ds 0 -t 0 B(s)

dB '
| ds _

An explicit formula for the torsion is obtained as follows. The derivative of accel-
eration, sometimes called a measure of jerk, is

a= % (ET + KsZN) = (s - K2§3) T+ [i (K.S"z) 4 KSS] N+ (mﬁ) B

dt
A simple calculation shows that v x a = k§?B. Consequently, v x a - a = 1x2%° =
7|v x a|% The torsion is
vxa-a
=— (2.25)
v x a2

Spatial Motion in Cylindrical Coordinates

A point (x, y, z) is represented in cylindrical coordinates as x =r cos 6, y =r sin 6,
and z as given, where r is the distance in the xy-plane from the origin (0, 0, 0) to
(x, y, z) and z is the vertical height of the point above that plane. The angle satisfies
6 € [0, 27). Figure 2.4 shows a typical point (x, y, z) and its related parameters r
and 6.
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Cylindrical coordinates (x, y, z) = (r cos 6, r sin 6, z).

Using notation similar to that of planar motion in polar coordinates, a unit-
length vector in the xy-plane is R = (cos 8, sin 6, 0). A perpendicular vector in the
plane is P = (— sin 9, cos 6, 0). The vertical direction is k = (0, 0, 1). The moving
frame for the curve is {r(7); R(?), P(z), k}. The position of a point is

r=rR+zk (2.26)
The velocity is
v=t=FR+rfP+ ik (2.27)
The acceleration is
a=v=(—r6)R+ (r + 2/)P + k (2.28)

Observe that the position, velocity, and acceleration have the same R and P compo-
nents as the polar representations in two dimensions, but have additional compo-
nents in the z-direction. The time derivatives of the frame vectors are shown below
in formal matrix notation:

6
0
0

xne g B
I
|
S DO
c oo

R
P (2.29)
k

As always, the coefficient matrix for rates of change of frame vectors is skew-
symmetric.

Construct the position, velocity, and acceleration vectors in cylindrical coordinates
for the helix (cos(t), sin(¢), t). @
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Figure 2.5  Spherical coordinates (x, y, z) = (p cos 6 sin ¢, r sin 0 sin ¢, p cos ¢).

Spatial Motion in Spherical Coordinates

A point (x, y, z) is represented in spherical, coordinates as x = p cos € sin ¢, y =
p sin 6 sin ¢, and z = p cos ¢, where 6 € [0, 27) and ¢ € [0, ]. Figure 2.5 shows a
typical point (x, y, z) and its related parameters p, 6, and ¢.

The position of a point is

r=pR (2.30)

where R = (cos 6 sin ¢, sin 6 sin ¢, cos ¢) is a unit-length vector. Two unit-length
vectors that are perpendicular to R are P =(—sin 6, cos#,0) and Q=R x P =
(— cos 0 cos ¢, — sin 6 cos ¢, sin ¢). A moving frame for the curve is {r(z);
P(#), Q(t), R(#)}. The derivatives of the moving frame are shown in equation (2.31).
The formal representation in terms of vectors and matrices is intended to emphasize
that the coefficient matrix is skew-symmetric:

P 0 Gcosp —6sing P
Q|=| —fcosg 0 o || Q (2.31)
R 0 sin ¢ —¢ 0 R

The proof of these equations is left as an exercise. The velocity of a point is
v=/pR+ pR=(pfsin¢) P+ (—pd) Q + (5) R (2.32)

where equation (2.31) was used to replace the derivative of R. Another application of
a time derivative and equation (2.31) produces the acceleration of a point,
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a = ((pf +260) sin ¢ + 2p0¢ cos ¢) P
+ (p(é2 sin ¢ cos ¢ — ) — 2/5<i>) Q (2.33)
+ (6 - p(@*+6%sin §)) R

EXERCISE (E Construct the position, velocity, and acceleration in spherical coordinates for the
2.3 spherical helix (cos(t), sin(¢), t)/+/1+ t2. What happens to the helix as time in-
creases without bound?

EXERCISE M Verify the formulas in equation (2.31). Hint: Compute the partial derivatives with
2.4 respect to 6 and ¢ of R, P, and Q; then use the chain rule from calculus to obtain the
time derivatives.

Motion About a Fixed Axis

A classic question is how to compute the position, velocity, and acceleration of a
particle that is rotating about a fixed axis and is a constant distance from that axis. For
the sake of argument, assume that the axis is a line that contains the origin and whose
unit-length direction is D. We may choose the coordinate system so that D plays the
role of k in equation (2.26) and R(¢) = (cos 6(¢), sin 6(¢), 0) is radial to that axis.
The 3-tuple shown in Figure 2.6 is relative to a fixed coordinate system at the origin
with an orthonormal set of axes &, 3, and D. That is, R = (cos )& + (sin 8). In this
system the angular speed is o (t) = 6(1). The angular velocity is w(t) = o (¢)D. The
angular acceleration is a(t) = ¢ (¢)D. Figure 2.6 illustrates the motion.

rO \
R(1)

Figure 2.6 Motion of a particle about a fixed axis, a constant distance from the axis.
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The position for the particle in motion about the axis is
r(t) =roR(t) + hoD (2.34)

where r, is the constant distance from the particle to the axis and where A is the
constant height above the plane D - r = 0. From equation (2.27) the velocity is

v(t)=ropocP=rpoD xR=w xr (2.35)

where we have used the facts that ry and h are constants, so their derivatives are al-
ways zero, and = o. This formula should be intuitive. The cross product of the axis
direction and the position vector is tangent to the circle of motion. From equation
(2.28) the acceleration is

a(t) = —rgo R+ rfP=—0’r+rgoD x R=—or+axr (2.36)

The vector —o°r is the centripetal acceleration of the particle. The vector & x r is the
tangential acceleration of the particle and, of course, is a vector that is tangent to the
circle of motion.

Motion About a Moving Axis

To motivate the concept of angular velocity for a time-varying axis with unit-length
direction vector D(z), let us take a closer look at motion about a fixed axis. Equation
(2.34) tells you the position of the particle that is rotating about the fixed axis, r(¢) =
ro(cos(0(t))& + sin(0(1))n) + hoD. The initial position is ry = r(0) = ry€. Positions
at later times are determined by a rotation of r(¢) about the axis D by an angle
0(t), namely, r(t) = R(t)rg, where R(t) is the rotation matrix corresponding to the
specified rotation about the axis. For any vector u = (i1, u,, u3), define the skew-
symmetric matrix:

0 —Uj3 4%}
Skew(u) = Us 0 —u,

—u u 0
2 1

This matrix has the property that Skew(u)r = u x r. The derivation in Chapter 10
that leads to equation (10.14) shows that the rotation matrix is

R(t) = I + (sin(8(z))) Skew(D) + (1 — cos(8(t))) Skew(D)?
We can also write the linear velocity as

I(t) =w(t) x r(t) = Skew(w(r))r(r)
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where the angular velocity is w(t) = 6(t)D. Differentiating r(t) = R(t)ry directly, we
obtain

£(1) = R()ry = RORTRry = (R()RD)r(r) (2.37)
Equating this to the previously displayed equation, we have
R(t)RT = Skew(w(?))
or
R(r) = Skew(w(1))R(¢) (2.38)

These equations tell us the rate of change of the rotation in terms of the current
rotation and the current angular velocity.

Now consider what happens if we allow the unit-length direction vector to vary
with time, D(f). The rotation matrix corresponding to this direction vector and
rotation angle 6(¢) is

R(t) = I + (sin(6(2))) Skew(D(?)) + (1 — cos(6(1))) Skew(D())®>  (2.39)

The initial point ry, is still transformed by r(t) = R(¢)r, and the linear velocity is still
provided by equation (2.37). A rotation matrix satisfies the identity / = RRT. Tak-
ing the time derivative, 0 = RRT + RRT = RRT + (RRDT, or (RR")T = —RR™.
Thus, S(t) = REO)RT(¢) is a skew-symmetric matrix. We have already made this
observation fof rotation matrices that arise in specific coordinate systems, namely,
equations (2.9) and (2.29). Since S(¢) is a skew-symmetric matrix, it can be written
as S(t) = Skew(w(?)).

We saw that for a fixed axis D, the angular velocity is w = §D. A natural ques-
tion to ask is how the angular velocity relates to 8(¢) and D(¢) in the general case.
We can directly calculate this by computing R(t) for the matrix in equation (2.39)
followed by computing RR”. Some algebraic and trigonometric manipulations and
the identity Skew(D)? = — Skew(D) for a unit-length vector D will lead you to

w =0D + (sin §)D + (cos § — )D x D (2.40)
Because D is unit length, D - D = 0, in which case D is perpendicular to D. Thus, D,

D, and D x D are mutually orthogonal. The angular velocity is a linear combination
of these three vectors.

E' Prove equation (2.40) is true.
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2.2.2 PARTICLE SYSTEMS AND CONTINUOUS MATERIALS

In the last section we discussed the basic concepts of kinematics for a single particle.
Let us now look at the same concepts for a discrete set of particles, a particle system,
so to speak, or a continuous material. In this general discussion we are not assuming
the body is rigid.

When a body moves through the world, each point in the body travels along a
path that is measured in world coordinates. At time 0, if P is a body point specified in
world coordinates, the position after time ¢ in world coordinates is denoted X (¢; P).
The inclusion of P as an argument of the function indicates that we are thinking of
many paths, each path generated by a starting point P. By our definition, X(0; P) =
P. The world coordinates of the body points are what an observer measures when
he is standing at the world origin using a known set of directions for the world
coordinate axes. We will refer to this observer as the world observer.

We can also measure points in body coordinates. You can imagine such a coor-
dinate system as the one that an observer situated in the body uses to measure the
location of body points. We will refer to this observer as the body observer. The body
observer stands at a special point that we call the body origin. He also has his own
view of three coordinate axes called the body axes. The axis directions are assumed to
form a right-handed orthonormal set. The body origin and axes never change from
the body observer’s point of view, but the world observer sees these change over time.

If the world observer measures the point at X(¢; P), the body observer sees this
point relative to his origin, measuring it as a vector b(¢; P). Again the inclusion of
P as an argument indicates that there are many paths, one for each initial point P.
If the body is rigid, then necessarily b is independent of time; its time derivative
is identically zero. If € is what the world observer sees as the body origin at time
0, at time ¢ he sees X(¢; €). Of course the body observer always measures this as a
relative difference 0 regardless of the time ¢. The world observer sees the body axis
directions as orthonormal vectors measured in world coordinates; call these U, ()
for i =0, 1, 2. For convenience the world coordinate vectors can be stored as the
columns of a rotation matrix R(¢) = [Uy(r) U,(¢) U,(¢)]. Figure 2.7 illustrates the two
coordinate systems, but in two dimensions to keep the diagrams simple.

The relative difference between the world point and world center is r(¢; ) =
X(t; P) — X(#; €) = R(1)b(#; P). The transformation that produces the world coor-
dinates of body points at time #, given the location of points as measured by the body
observer, is

X#P)=X(1C) +r(P)=X(1; C) + R()b(E:; P) (2.41)

The orientation changes are uncoupled from the translation changes.

Consider a time-varying vector written in the body coordinate system, &(7) =
R(t)s(). The body coordinates s(z) vary with time since &(¢) does. The time deriva-
tive is

dé ds

22— p= —|—Rs=R-L{§
dt dt dt

D§

E +wx§& (2.42)

+ RR"t =
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(@ (b)

(a) The body coordinate system as seen by the body observer. (b) The body coordinate
system as seen by the world observer.

where RR" = Skew(w) and w is the angular velocity of the body measured in world
coordinates as determined by equation (2.38). The last equality of equation (2.42)
defines

b = R(;)ﬁ

Dt dt
a quantity that measures the rate of change of £ relative to the body coordinate system.
The rate of change d&/dt is what the world observer sees. The quantity D&/Dt
represents the time rate of change of & relative to the body coordinates since ds/dt is
what the body observer measures. The body observer does not see the change w x &
because he is rotating with the body coordinate system.

The body origin has world velocity v, = dX(z; ) /dt and world acceleration

Qe = dV ., /dt. Differentiating equation (2.41) with respect to time, the world ve-
locity vy = dX(t; P)/dt is

db . Dr
vwor=vcen+RE +Rb:Vcen+ E +wXr (2.43)

where w is the angular velocity of the body at time 7 in world coordinates. The terms
of the equation are

B v, the velocity of the body origin relative to the world coordinates, sometimes
referred to as the drag velocity,

®  Dr/Dt, the velocity of P measured relative to the body coordinates, and

®  w X 1, the velocity due to rotation of the frame.
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EXERCISE
2.6

EXERCISE iﬁ
2.7

The world acceleration a,,, = dv,,,/dt is obtained by differentiating equation
(2.43) with respect to time,

=a, +1<E)+i(wxr)
a'WO]'_ cen d[ D[ dl

The vector Dr/Dt is measured in the body coordinate system, so equation (2.42)

applies to it,
d (Dr) D (Dr) Dr D% Dr
—l— )= |— ]}tV X —=——+WX —
dt \ Dt Dt \ Dt Dt D2 Dt

Similarly, equation (2.42) is applied to w X r to obtain

d D(w x r) Dr Dw
— WXr)=——"4FWXWXI)=WX —+ — XIr+wXx (WXrt)
dt Dt Dt Dt
Observe that Dw/Dt = dw/dt since we may apply equation (2.42) to w and
use the identity w x w = 0. The last three displayed equations combine to form an
equation for the acceleration,
Dr D

Dw
Wor:acen—}—w><(wxr)+-l—)7xr+2wx—+— (2.44)

a.
Dt  Di?

The terms of the equation are

®  a_,, the translational acceleration of the body origin relative to the world coor-
dinates,

B w x (w X 1), the centripetal acceleration due to rotation of the frame,
m  (Dw/Dt) x r, the tangential acceleration due to angular acceleration,
® 2w x (Dr/Dt), the Coriolis acceleration, and

®  D?r/Dt?, the acceleration of P relative to the body.
The first three terms collectively are called the drag acceleration.

Consider a rigid sphere of radius 1 and center at 0 that rotates about its center. The
angular velocity is w(t) = (cos(t), sin(z), V/3). Does the path of the point starting at
(0, 0, 1) ever reach this same point at a later time? If it were not to reach (0, 0, 1)
again, is there some other constant angular speed for which it will reach that point
again?

Consider the same rigid sphere of the preceding exercise, but whose angular velocity
is unknown. Suppose the path of the point starting at (0, 0, 1) is ((1 — ¢2) cos(rt),
(1 — £2) sin(rt), t2)/y/(1 — t)2 + t4 for t € [—1, 1]. What is the angular velocity
w(#)? If r(¢) is the path traversed by (1, 0, 0) over the time interval [—1, 1], then by
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definition r(—1) = (1, 0, 0). What is r(1)? If you have difficulties constructing all the
components of this point, can you say something about any of the components?

In the constructions of this section, the standard first-derivative operator d/dt was
applied to vector quantities. This operator has certain rules associated with it. The
operator D/ Dt was introduced in this section and I used the same rules for it. For
example, I used the rule D(A x B)/Dt = A x (DB/Dt) + (DA/Dt) x B. What is
the relationship between d/dt and D/Dr? Use this relationship to prove that the
differentiation rules for d/dt are equally valid for D/Dt.

2.3 NEWTON’S LAWS

We have seen the concepts of position, velocity, and acceleration of a point; all are
relevant in describing the motion of an object. A key concept is one of inertia, the
tendency of an object at rest to remain at rest. Although we tend to think of the mass
of an object as a measure of the amount of matter making up the object, it is just as
valid to think of mass as a measure of the inertia of the object. The standard unit of
measurement for mass is a kilogram.

Another key concept is force, the general mechanism for changing the mechanical
state of an object. Empirically we know that a force is a vector quantity, so it has
a direction and a magnitude. For our purposes, forces are what lead to changes in
velocity of an object and cause objects to interact with each other. An external force
is one whose source is outside the system of interest. From experimental studies we
know that the net external force on an object causes it to accelerate in the direction of
the force. Moreover, the magnitude of the acceleration of the object is proportional
to the magnitude of the force (the larger the force, the more the object accelerates)
and inversely proportional to the mass of the object (the heavier the object, the less
it accelerates). The standard unit of measurement for the magnitude of a force is a
newton. One newton is the required magnitude of a force to give a one-kilogram mass
an acceleration of one meter per second?.

An introductory course to physics summarizes these concepts as a statement of
Newton’s laws of physics:

®  First law. In the absence of external forces, an object at rest will remain at rest.
If the object is in motion and no external forces act on it, the object remains in
motion with constant velocity. (Only forces can change an object’s motion.)

m  Second law. For an object of constant mass over time, its acceleration a is pro-
portional to the force F and inversely proportional to the mass m of the object:
a = F/m. We normally see this written as F = ma. If the mass changes over time,
the more general statement of the law is

F= % (mv) =ma+ i—'yv (2.45)
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where v is the velocity of the object. The quantity mv is the linear momentum of
the object. Thus, the second law states that the application of an external force on
an object causes a change in the object’s momentum over time. (An object’s path
of motion is determined from the applied forces.)

®  Third law. If a force is exerted on one object, there is a force of equal magnitude
but opposite direction on some other body that interacts with it. (Action and
reaction always occur between interacting objects.)

The most important law for this book is the second one, although we will deal
specifically with constant mass. The equations of motion F = ma will be used to
establish the path of motion for an object by numerically solving the second-order
differential equations for position.

Each of the vector quantities of position, velocity, and acceleration is measured
with respect to some coordinate system. This system is referred to as the inertial
frame. If x = (x, x5, x3) is the representation of the position in the inertial frame,
the components x;, x,, and x5 are referred to as the inertial coordinates. Although in
many cases the inertial frame is considered to be fixed (relative to the stars, as it were),
the frame can have a constant linear velocity and no rotation and still be inertial. Any
other frame of reference is referred to as a noninertial frame. In many situations it is
important to know whether the coordinate system you use is inertial or noninertial.
In particular, we will see later that kinetic energy must be measured in an inertial
system.

24 FORCES

A few general categories of forces are described here. We restrict our attention to those
forces that are used in the examples that occur throughout this book. For example,
we are not going to discuss forces associated with electromagnetic fields.

2.4.1 GRAVITATIONAL FORCES

Given two point masses m and M that have gravitational interaction, they attract each
other with forces of equal magnitude but opposite direction, as indicated by Newton’s
third law. The common magnitude of the forces is

GmM
F ravity = ——2 (246)

& r
where r is the distance between the points and G = 6.67 x 107! newton-meters?
per kilogram?. The units of G are selected, of course, so that F, gravity as units of new-
tons. The constant is empirically measured and is called the universal gravitational
constant.
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Gravitational forces on objects located at various places around the Earth.

In the special case of the Earth represented as a single-point mass M located at the
center of the Earth and an object represented as a single-point mass m located on or
above the Earth’s surface, the gravitational force exerted on the object by the Earth is

F = —FypiyR (2.47)

where R is a unit-length vector whose direction is that of the vector from the center
of the Earth to the center of the object. In the special case where the two objects are
the Earth and the Sun, the equations of motion F = ma that represent the path the
Earth travels around the Sun may be solved in closed form to produce Kepler’s laws.
We do so in detail in Section 2.3. Figure 2.8 shows the Earth and the forces exerted
on various objects above its surface.

If the object does not vary much in altitude and its position does not move far
from its initial position, we can make an approximation to the equation of gravita-
tional force by assuming that the Earth’s surface is flat (a plane), at least within the
vicinity of the object, and that the direction of the gravitational force is normal to the
plane. Moreover, the distance r is approximately a constant, the radius of the Earth,
s0 g = GM/r? = 9.81 meters per second’ is approximately a constant. If we choose
U as the unit-length upward direction (increasing altitude above the plane), the grav-
itational force exerted on the object by the Earth is

F=—mgU (2.48)
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Figure 2.9

Gravitational forces on objects located nearly on the Earth’s surface, viewed as a flat
surface.

Figure 2.9 shows the Earth viewed as a flat surface and the forces exerted on various
objects above it.

The weight w of the object is different than its mass, namely, w = mg, the magni-
tude of the gravitational force exerted on the object. Astronauts of course are weight-
less when in orbit, but still have the same mass as on the Earth’s surface.

2.4.2 SPRING FORCES

One end of a spring is attached to a fixed point. The other end is free to be pushed or
pulled in any direction. The unstretched length of the spring is L. Experiments have
shown that for small displacements A of the end of the spring, the force exerted by
the spring on the end has a magnitude proportional to |A| and a direction opposite
that of the displacement. That is, if the end of the spring is pulled away from the fixed
point, the direction of the force is toward the fixed point, and vice versa. If U is a unit-
length vector pointing in the direction from the fixed end to the free end, the force
is

F=—cAU (2.49)

where ¢ > 0 is the constant of proportionality called the spring constant. For very stiff
springs, ¢ is large, and vice versa. This law for spring forces is known as Hooke’s law.
The law breaks down if | A| is very large, so be careful if you have a physics application
involving springs; you might want to modify the force equation when |A| is large.
Figure 2.10 illustrates a spring that is stretched or compressed.

Hooke’s law will be applied in upcoming examples where we think of two points
connected by an elastic line segment. This will be useful in modeling deformable
objects as a system of masses connected by elastic threads.
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Figure 2.10

(a) Unstretched spring. (b) Force due to stretching the spring. (c) Force due to
compressing the string.

2.4.3 FRICTION AND OTHER DISSIPATIVE FORCES

A dissipative force is one for which energy of the system decreases when motion takes
place. Typically the energy is transferred out of the system by conversion to heat. A
simple model for the magnitude of a dissipative force applied to a rigid object is

Fclissipative =clv|" (2.50)

where v is the object’s velocity, ¢ > 0 is a scalar of proportionality, and n > 0 is an
integer power. In most applications you probably will choose ¢ to be a constant, but
in general it may vary with position, for example, when the underlying material on
which the object moves is not homogeneous. The value ¢ may also vary with time.
A simple model for a dissipative force also usually includes the assumption that the
direction of the force is opposite the motion of the object, that is, in the direction
—v. In our applications in this book we will consider two special types of dissipative
forces, friction and viscosity.

Friction

A frictional force between two objects in contact opposes the sliding of one (moving)
object over the surface of the adjacent (nonmoving) object. The frictional force is
tangent to the surface of the adjacent object and opposite in direction to the velocity
of the moving object. The magnitude of the frictional force is assumed to be propor-
tional to the magnitude of the normal force between surfaces. It is also assumed to be
independent of the area of contact and independent of the speed of the object once
that object starts to move. These assumptions argue that n = 0 in equation (2.50), so
the frictional force is modeled as

¥
F={ Gk V7O (2.51)
0, v=0
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Figure 2.11

0,> 0,

(a) Static case (b) Kinetic case

A block in contact with an inclined plane. (a) Static friction is dominant and the
block remains at rest. (b) Gravity is dominant and the block slides, so kinetic friction
applies.

where ¢y, is referred to as the coefficient of kinetic friction. The coefficient is the ratio of
the magnitudes of frictional force over normal force, ¢; = Fiiction/ Frormal> DUt with
the correct physical units so that the right-hand side of equation (2.51) has units of
force.

Physically the transition between the nonzero and zero force cases involves an-
other concept called static friction. For example, if an object is in contact with a flat
surface and initially not moving, an external force is applied to the object to make
it move. If the magnitude of the external force is sufficiently small, it is not enough
to exceed the force due to static friction. As that magnitude increases, eventually the
static friction is overcome and the object moves. At that instant the frictional force
switches from static to kinetic; that is, the first case in equation (2.51) comes into
play since the object is now moving. Another physical constant is the coefficient of
static friction, denoted c,. It is the ratio of the maximum frictional force over nor-
mal force, ¢, = max(Fyiction)/ Frormal» and with the correct physical units assigned to
it. The classical experiment to illustrate the transition from the static to the kinetic
case is a block of one material resting on an inclined plane of another material. Both
materials are subject to gravitational force. Figure 2.11 illustrates.

Initially the angle of incline is small enough so that the static friction force domi-
nates the gravitational force. The block remains at rest even though the plane is tilted.
As the angle of incline increases, the gravitational force exerts a stronger influence on
the block, enough so that it overcomes static friction. At that instant the block starts
to slide down the plane. When it does, the frictional force switches from static to
kinetic.

Viscosity

A viscous force has magnitude, modeled by equation (2.50), when n = 1. The typical
occurrence of this type of force is when an object is dragged through a thick fluid.
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The force is modeled to have direction opposite to that of the moving object:

v v
F= _Fdissipative — =—(c|v]) = =—cv (2.52)
vl vl

where ¢ > 0 is a scalar of proportionality. Unlike friction that has a discontinuity
when the speed is zero, a viscous force is continuous with respect to speed.

244 TORQUE

The concept of torque is one you are familiar with in everyday life. One example is
replacing a tire on an automobile. You have to remove the lug nuts with a wrench.
In order to turn a nut, you have to exert a force on the end of the wrench. The more
force you apply, the easier the nut turns. You might also have noticed that the longer
the wrench, the easier the nut turns. The ease of turning is proportional to both the
magnitude of the applied force and the length of the wrench. This product is referred
to as torque or moment of force. When you need a nut tightened, but not too much,
you can use a tool called a torque wrench that is designed to stop turning the nut if
the torque exceeds a specified amount.

The formal mathematical definition for torque applied to a single particle of mass
m is given below. Let F be the applied force. Let r be the position of the particle relative
to the origin. The torque is the quantity

T=rxF (2.53)

In the analogy of a wrench and bolt, the bolt is located at the origin, the wrench lies
along the vector r, and the force F is what you exert on the end of the wrench. Figure
2.12 illustrates torque due to a single force.

Figure 2.12  Torque from a force exerted on a particle.



38 Chapter 2 Basic Concepts from Physics

Figure 2.13

A force couple.

Notice that F is not necessarily perpendicular to r. The applied force on the
particle can be in any direction, independent of the position of the particle. The gray
line indicates the line of force for F. If the particle were on that line at a different
position s relative to the origin, the torque on itis s x F. Since r — s is a vector on the
line of force, it must be that (r —s) x F=0. Thatis, r x F=s x F and the torque is
the same no matter where the particle is located along the line of force.

Two forces of equal magnitude, opposite direction, but different lines of action are
said to be a couple. Figure 2.13 shows two such forces. The torque due to the couple
is T=(r — s) x F. The location of r and s on their respective lines is irrelevant. As
you vary r along its line, the torque does not change. Neither does the torque change
when you vary s along its line.

For a system of p particles located at positions r; with applied forces F; for
1 <i < p, the torque is

p
=) 1 xF (2.54)
i=1
If the object is a continuum of mass that occupies a region R, the torque is

‘r=f r x FdR (2.55)
R

where F is the applied force that varies with position r.

Important: The torque due to internal forces in an object must sum to zero. This
is an immediate consequence of Newton’s third law. The essence of the argument is
in considering two points in the object. The first point is at position r; and exerts
a force F on the second point at position r,. The second point exerts a force —F on
the first point (Newton’s third law). The lines of force are the same, having direction
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F and containing both positions r; and r,. The total torque for the two points is
r) X F+ 1, x (—F) = (r; — r,) X F=0. The last equality is true since r; — r, is on
the line of force.

2.4.5 EQUILIBRIUM

Figure 2.14

Forces on an object are said to be concurrent if their lines of action all pass through
a common point. If an object is a point mass, then all forces acting on the object
are concurrent, the common point being the object itself. An example of noncon-
current forces is a rigid rod with opposite direction forces applied at the end points.
Figure 2.14 illustrates. The forces at the end points of the rod are parallel, but the
lines through the end points and whose directions are those of the forces do not

/ ¢ - - . >
(a) Concurrent, not balanced (b) Concurrent, balanced
gy re—»
F F
—2F r+r,
b 2
_F F
REEE ¥ o ' ée—p
(c) Not concurrent, not balanced (d) Not concurrent, balanced

(a) All forces applied to a point mass are concurrent but are not “balanced,” so the
point moves. (b) All forces are concurrent but do balance, so the point does not
move. (c) A rigid rod with nonconcurrent forces applied to the end points. The
forces are equal in magnitude but opposite in direction. The rod rotates about its
center. (d) Nonconcurrent forces are applied to three locations; two forces of equal
magnitudes and directions at the end points and one force of twice the magnitude
of an end-point force but opposite in direction applied to the rod center. The rod is
“balanced” and does not rotate about its center.
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intersect in a common point, so those forces are not concurrent. In Figure 2.14(c),
(d) the forces lead to a torque about the center of the rod.

An object is said to be in equilibrium if two conditions are met. The first condition
is that the sum of all external forces acting on the object must be zero. That is, if F;
for 1 <i < n are the external forces, then Z:; | Fi = 0. The second condition is that
the torques on the object must sum to zero, as we see intuitively in Figure 2.14(c),
(d). The two end points have mass, but the rod connecting them is assumed to be
massless. Let the lower end point be at position r; and the upper end point be at
position r,. Let the force applied to the upper point be F and the force applied to
the lower point be —F. We have a force couple with total torque T =r, x F+ r; x
(—=F) = (r, — rp) x F. The torque is a nonzero vector perpendicular to the plane
of the diagram. This configuration is not in equilibrium even though the sum of
the forces is F + (—F) = 0. In Figure 2.14(d), the center point is (r; + r,)/2. The
system shown has a total torque of zero, assuming the vectors at the end points are
both F and the vector at the center point (r; + r,)/2 is —2F. The total torque is
t=r1; X F+ 1, Xx F+ (r; + 1,)/2 X (—2F) = 0. This system is in equilibrium since
the forces sum to zero and the torques sum to zero.

An important observation is that an object in equilibrium is not necessarily sta-
tionary. It is possible that the inertial frame in which the object is measured is moving
with constant velocity. However, another coordinate system may be chosen in which
the object is not moving. A simple example, to a first approximation, is the fact
that you are currently reading this book while in equilibrium sitting in your chair,
even though the Earth is rotating with an angular speed of 1000 miles per hour! The
first approximation is that your current physical location moves along a straight line
with constant velocity, at least over a short period of time, thus making it an inertial
frame.

For a single particle, the second condition for equilbrium is a consequence of the
first condition. Let the particle be located at r and let the applied forces be F; for
1 <i < n. Assume that the sum of forces is zero, ) !_; F; = 0. The total torque on
the particle is

‘r:zn:eri=rxzn:F,-=rx0=0
i=1

i=1

For a particle system whose external forces sum to zero, the total torque is not
necessarily zero, in which case the second condition for equilibrium is independent
of the first. However, it is true that the torque relative to one point is the same as
the torque relative to another. Let the particles be at positions r; for 1 <i < p. Let
the forces on particle i be F;’) for 1 < j < n; (the number of forces per particle may
vary). The torque relative to an origin A for a single particle subject to a single force is

(r; —A) x Fg.")



2.5 Momenta 41

The total torque for the particle is

n,— )
Y @ —A) x FE’)

j=1

The total torque for the particle system, relative to origin A, is

p n; 14
W=y Y (r—A)x F;” =Y (@ —A) x G
i=1

i=1 j=1

where
n;
(O &
GO =3 F
j=1

is the total applied force on particle i. The total torque relative to another origin B is

p
3= (r;—B) x GV

i=1

The difference is

p 14
w-t3=) B-A)xG'=B-A)x Y GP=B-4)x0=0

i=1 i=1

where the G%) summing to zero is the mathematical statement that the net force on
the particle system is zero. Thus, T, = g and the torque is the same about any point.
A similar argument applies to a continuum of mass. When setting up equations of
equilibrium, it is enough to require the sum of the external forces to be zero and the
torque about a single point to be zero.

2.5 MOMENTA

In this section we are presented with the definitions for various physical quanti-
ties that-are relevant to understanding the motion of an object undergoing external
forces. We already saw one such quantity, torque. The first portion of this section in-
troduces the concepts of linear and angular momentum. The second portion covers
the concept you should be most familiar with, mass of an object. We derive formulas
for computing the center of mass of an object, whether it consists of a finite number of
point masses (discrete) or is a solid body (continuous). The construction of the center
of mass involves a quantity called a moment, a summation for discrete masses and an
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integral for continuous masses. The third portion discusses moments and products
of inertia, a topic that is particularly important when discussing motion of a rigid

body.

2.5.1 LINEAR MOMENTUM

We have already seen the concept of linear momentum in the presentation of Newton’s
second law of motion for a single particle. The linear momentum is the product,

p=mv (2.56)

where m is the mass of the particle and v is its velocity. The applied force and momen-
tum are related by F = dp/dt; that is, an applied force on the particle causes a change
in its linear momentum. For a system of p particles of masses m; and velocities v; for
1 <i < p, the linear momentum is

pP= Z m;v; (2.57)

If the object is a continuum of mass that occupies a region R, the linear momen-
tum is

p=/ vdm:/ 8vdR (2.58)
R R

where dm = § dR is an infinitesimal measurement of mass. The function § is the mass
density. The density and velocity v may depend on spatial location; they cannot be
factored outside the integral. In a loose sense the integration over the region is a
summation of the linear momenta of the infinitely many particles occupying that
region. You will find the trichotomy represented by equations (2.56), (2.57), and
(2.58) throughout the rest of this book. We will consider physical systems that consist
of a single particle, of multiple particles, or of a continuum of mass.

An important physical law is the conservation of linear momentum. The law states
that if the net external force on a system of objects is zero, the linear momentum is a
constant. This law is an immediate consequence of Newton’s second law. In the single
particle case, if F; for 1 < i < n are the external forces acting on the particle, then

‘ d(mv) dp
0= F = =X
; ! dt dt

The derivative of p is the zero vector, which implies that p is a constant. Similar
arguments apply in the cases of a discrete system and of a continuous system.
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2.5.2 ANGULAR MOMENTUM

Linear momentum has some intuition about it. You think of it as a measure of inertia,
the tendency to remain in motion along a straight line in the absence of any external
forces. Angular momentum is less intuitive but is similar in nature. The quantity
measures the tendency to continue rotating about an axis. For a single particle of mass
m, the angular momentum of that particle about the origin is

L=rxp=rxmv (2.59)

where r is the vector from the origin to the particle and v is the velocity of the particle.
The angular momentum vector L is necessarily perpendicular to both r and v. The
direction of L is that of the axis of rotation at each instant of time. For a system
of p particles of masses m;, positions r; relative to the origin, and velocities v; for
1 <i < p, the angular momentum is

p
L= Z r; X m;v; (2.60)
i=1

If the object is a continuum of mass that occupies a region R, the angular momentum
is

L:frxvdm:f&rxvdR (2.61)
R R

where dm = § dR is an infinitesimal measurement of mass. The function § is the mass
density. The density, position r, and velocity v may depend on spatial location.

Just as force is the time derivative of linear momentum, torque is the time deriva-
tive of angular momentum. To see this, differentiate equation (2.59) with respect to

time:
dL d
—= & From equation (2.59)
dt dt
dp dr . .
=rx —+ — x Using the chain rule
di di 1Y g (2.62)
=rxF From Newton’s second law and v x v=10
=1 From equation (2.53)

Similar constructions may be applied to the pair of equations (2.60) and (2.54) or to
the pair (2.61) and (2.55).

Another important physical law is the conservation of angular momentum. The
law states that if the net external force on a system of objects is zero, the angular
momentum is a constant. The proof is similar to that of the conservation of linear
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momentum. In the single particle case, if F; for 1 < i < n are the external forces acting
on the particle, then

The derivative of L is the zero vector, which implies that L is a constant. Similar
arguments apply in the cases of a discrete system and of a continuous system.

2.5.3 CENTER OF MASS

Figure 2.15

In many mechanical systems, each object can behave as if its mass is concentrated at
a single point. The location of this point is called the center of mass of the object. This
section shows how to define and compute the center of mass in one, two, and three
dimensions, both for discrete sets of points and continuous materials.

Discrete Mass in One Dimension

Consider two masses m and m, on the x-axis at positions x; and x,. The line segment
connecting the two points is assumed to have negligible mass. Gravity is assumed to
exert itself in the downward direction. You can imagine this system as a child’s seesaw
that consists of a wooden plank, a supporting base placed somewhere between the
ends of the plank, and two children providing the masses at the ends. Figure 2.15
illustrates the system. The supporting base is drawn as a wedge whose uppermost
vertex is positioned at x.

If we select ¥ = x,, clearly the system is not balanced since the torque induced
by the mass m, will cause that mass to fall to the ground. Similarly, the system is
not balanced for X = x,. Your intuition should tell you that there is a proper choice
of x between x; and x, at which the system is balanced. If m; = m,, the symmetry
of the situation suggests that X = (x; + x,)/2, the midpoint of the line segment.
For different masses, the choice of X is not immediately clear, but we can rely on
equilibrium of forces to help us. The force on mass m; due to gravity g is m;g. The

xl X X2
— —o
m m,

Balancing discrete masses on a line. The center of mass for two masses viewed as the
balance point for a seesaw on a fulcrum.
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torque for mass m; about the position X is m;g(x; — x). For the system to balance at
X, the total torque must be zero,

0=mg(x; — X) + myg(x; — %) = gl(mx; + myxy) — (my + my)x]
The solution to the equation is

_ MX{+myHx m m
X = tadl 272 = 1 X1 + 2 Xy = WXy + Wy Xy (2.63)
my+m; my+m, my+m;

which is a weighted average of the positions of the masses called the center of mass. If
my is larger than m,, your intuition should tell you that the center of mass should be
closer to x; than to x,. The coefficient of x;, w; = m,/(m; + m,), is larger than the
coefficient of x,, wy = m,/(m + m,), so in fact the center of mass is closer to x;, as
expected.

A similar formula is derived for the center of mass X of p masses m, through m,
located at positions x; through x,,. The total torque is zero, Y migx; —x)=0
the solution being

- Zf; m;Xx; i m; i
X = Zpl Z Z”_lm Z (2.64)

Thesum _7_, m; is the total mass of the system and the sum Y /_ m;x; is the moment
of the system about the origin.

Continuous Mass in One Dimension

The center of mass for a discrete set of masses was simple enough to compute. All you
need are the masses themselves and their locations on the x-axis. However, you might
very well be interested in computing the center of mass for a wire of finite length. Let
us assume that the end points of the wire are located at a and b, with a < b. The wire
consists of a continuum of particles, infinitely many, so to speak. Each particle has
an infinitesimal amount of mass—call this dm—and is located at some position x.
The infinitesimal mass is distributed over an infinitesimal interval of length dx. The
mass values can vary over this interval, so we need to know the mass density §(x)
. at each point x. The units of density are mass per unit length, from which it follows
dm = §(x) dx. Figure 2.16 is the continuous analogy of Figure 2.15. The gray levels
are intended to illustrate varying density, dark levels for large density and light levels
for small density.
The infinitesimal force due to gravity is g dm and the infinitesimal torque about
a position X is (x — x)g dm. For X to be the center of mass, the total torque must be
zero. You should recognize this as a problem suited for calculus. The summation that
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Figure 2.16

=

~
\)L—b -—

Balancing continuous masses on a line. The center of mass for the wire is viewed as
the balance point for a seesaw on a fulcrum. A general point location x is shown,
labeled with its corresponding mass density 8 (x).

occurred for discrete point sets is replaced by integration for a continuum of points.
The equilibrium condition for torque is

b b
/ (x—i)gdm:g/ x—x)6(x)dx =0

This equation can be solved to produce the center of mass:

(2.65)

The integral [” 8 dx is the total mass of the system and the integral [” x3 dx is the
moment of the system about the origin. If the density of the system is constant, say,
8(x) = c for all x, equation (2.65) reduces to

[Pxedx  [Pxdx (B’ —a)/2 _b+a

fPedx [? dx b—a 2

a

X =

As expected, the center of mass for a constant density wire is situated at the midpoint
of the wire.

Discrete Mass in Two Dimensions

The extension of the computation of the center of mass from one to two dimensions is
straightforward. Let the p masses be m; and located at (x;, y;) for 1 <i < p. Imagine
these lying on a thin, massless plate. Gravity is assumed to exert itself in the downward
direction; the magnitude of the force is g. The center of mass is the point (X, y),
such that the plate balances when placed on a support at that location. Figure 2.17
illustrates this.
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Balancing discrete masses in a plane.

The gravitational force exerted on each mass is m; g. The torque about (X, ¥) is
m;g(x; — X, y; — ¥). The total torque must be the zero vector,

p
> migi — %, 3~ 5) = (0,0
i=1

The equation is easily solved to produce the center of mass:

(2.66)

& )= D mixi, vy B (Zf:lmixi Zf;lmiyi)

Zf=1mi Z,P=1mi ’ Z,P:1 m;

Thesumm =Y F_ m; is the total mass of the system. The sum M, = Y mx;isthe
moment of the system about the y-axis and the sum M, = Y {_ m;,y; is the moment
of the system about the x-axis.

The center of mass formula has some interesting interpretations. First, observe
that if you look only at the x-components of the mass locations (i.e., project the
masses onto the x-axis), X is the center of mass of the projected points. Similarly, y
is the center of mass of the points projected onto the y-axis. Second, observe that the
thin, massless plate containing the masses balances when placed on a fulcrum whose
top edge contains the center of mass and is parallel to either of the coordinate axes.
Figure 2.18 illustrates this.

! Show that the plate balances on a fulcrum containing the center of mass regardless of

the fulcrum’s orientation.
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Figure 2.18

Figure 2.19

Balancing discrete masses in a plane on a fulcrum.

Balancing continuous masses in a plane. The shades of gray indicate variable mass
density.

Continuous Mass in Two Dimensions

Now let us consider the case of a continuum of mass that lies in a bounded region
R in the xy-plane. As in the one-dimensional case, each point in the region has
an associated infinitesimal mass, dm. The mass is distributed over an infinitesimal
rectangle of size dx by dy and having area dA = dx dy, the distribution represented
by a density function & (x, y) with units of mass per unit area. Thus, the infinitesimal
mass is dm = § dA = § dx dy. Figure 2.19 illustrates.
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The infinitesimal torque relative to a location (¥, y) is (x — %, y — y)g dm. The

equilibrium condition is
f/(x—i,y—i)gdm:O
R

The center of mass is obtained by solving this equation:

JIrGx, »)8(x, y) dx dy
f.[R 8(x,y)dxdy

_ [frxd(x,y)dxdy [[zyd8x,y)dxdy
[fr8C dxdy  [f8(x,y)dxdy
The integral m = [[, §dx dy is the total mass of the system. The integral

M, = [[, x8 dx dy is the moment of the system about the y-axis and the integral
M, = [[z y8 dx dy is the moment of the system about the x-axis.

*x, y) =
(2.67)

Consider the region R bounded by the parabola y = x? and the line y = 1. Let the
mass density be constant, §(x, y) = 1for all (x, y). Figure 2.20 shows the region.

Your intuition should tell you that the center of mass must lie on the y-axis, x =0,
and the value y should be closer to y = 1 than it is to y = 0. The total mass of the

system is
1 pt 1 4
m://dydx:/ /dydx:/ 1—x?dx =~
R —1Jx2 -1 3

A continuous mass bounded by a parabola and a line.
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(Example 2.3
continued)

The moment about the y-axis is

1 pl 1 pra—t
My://xdydx=/ /xdydx:f x(1—x)dx==——-="| =0
R —1Jx2 -1 2 4|,

The moment about the x-axis is

1 pl 1 _ 4
Mx=//ydydx:/ fydydx:f 1=~ dx:é
R —1Jx2 -1 2 5

The center of mass is therefore (x, y) = (M, M,)/m = (0, 3/5). As predicted, the
center of mass is on the y-axis and is closer to y = 1 than to y = 0.

In many situations the continuous mass is in a bounded region with positive
area. But we must also consider the case where the mass is distributed along a curve.
The typical physical example is one of computing the center of mass of a planar
wire whose mass density varies with arc length along the wire. Let the curve be
continuously differentiable and specified parametrically by (x(¢), y(¢)) for¢ € [a, b].
In terms of arc length s, the mass density is 5(s). In terms of the curve parameter, it is
specified parametrically as §(¢). The infinitesimal mass at the position corresponding
to ¢ is distributed over an infinitesimal arc length ds of the wire. The infinitesimal
mass is dm = §(t) ds, where ds = /3% + y? dt for parametric curves (again, the
dot symbol denotes differentiation with respect to ¢). The total mass of the wire is
therefore

L b
m=/ S(s)ds=/ 85(t) 32+ y2drt
0 a

where s is the arc length parameter and L is the total length of the curve. The
rightmost integral is the formulation in terms of the curve parameter, making it the
integral that is actually evaluated. The moment about the y-axis is

L b
My=/ xS(s)ds:/ x(0)8(t) VX2 + y2dt
0

a

and the moment about the x-axis is
L b
Mx:/ y8(s) ds:/ y()8(t) VX2 + y2dt
0 a

The center of mass is
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M, M,
(,;,}',)=(y—2

(2.68)

(ff X(O8() VF 2 dt, [} y08(1) F +? dt)
[P 8 it + 32 ar

Compute the center of mass for a wire of constant density 1 and that lies on the
hemicircle x? + y? = 1for y > 0, as shown in Figure 2.21.

A continuous mass in the shape of a hemicircle.

By symmetry, the center of mass should lie on the y-axis, ¥ = 0, so let us calculate
only the value for ¥. The curve is parameterized by (x (), y(t)) = (cos(¢), sin(¢)) for
t € [0, m]. The derivative of the curve is (x'(¢), y'(¢)) = (— sin(t), cos(?)). The total
mass is

g b/
m:f \/x2+y’2dt=/ dt=m
0 0

The length of the hemicircle is 7 units of distance, but keep in mind that the units of
mass are not distance. The moment about the x-axis is

n b4
M, =/ y(O)Vx2+ y2 dt =/ sin(t) dt =2
0 0

The y-value for the center of mass is therefore y = M, /m = 2/m = 0.64. The center
of mass is clearly not on the wire itself. If the wire were to be placed on a thin, massless

™M Show that the center of mass for the half-disk x2 + y? < 1, with y > 0, has ¥ = 0 and

¥ =4/(37) = 0.42. The y-value is smaller than that of the wire, as is to be expected
since the additional mass inside the hemicircle should bias the y-value toward the
origin.
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Discrete Mass in Three Dimensions

Let the p masses be m; and located at (x;, y;, z;) for 1 <i < p. Imagine these lying
within a massless gel. Gravity is assumed to exert itself in the downward direction; the
magnitude of the force is g. The center of mass is the point (X, ¥, Z), such that the gel
balances when a support is embedded at that location. The gravitational force exerted
on each mass is m; g. The torque about (X, y, z) is m;g(x; — %, y; — ¥, z; — z). The
total torque must be the zero vector,

p
Y miglx; — %,y — 3,2 —2) = (0,0, 0)
i=1

The equation is easily solved to produce the center of mass:

f:1mi(xi’yz',zi)=(Zf=1mixi > my; Zf;lmizi) (2.69)

b >
Zzpzl m; ZIP:l m; ZIPZI mi lpzl m;

The summ = Y_7_ m; is the total mass of the system. The sum My, =>"F  mx, is
the moment of the system about the yz-plane, the sum M,, = Y.¥_ m;y; is the mo-
ment of the system about the xz-plane, and the sum M, = P mjz; is the moment
of the system about the xy-plane.

(327 )_’)2) =

Continuous Mass in Three Dimensions

We have three different possibilities to consider. The mass can be situated in a
bounded volume, on a surface, or along a curve.

Volume Mass

In the case of a bounded volume V, the infinitesimal mass dm at (x, y, z) is dis-
tributed in an infinitesimal cube with dimensions dx, dy, and dz and volume dV =
dx dy dz. The density of the distribution is §(x, y, z), so the infinitesimal mass is
dm =6 dV =6 dx dy dz. The total torque is the zero vector,

///(x—f,y—)'z,z—é)gdmzo
|4

The center of mass is obtained by solving this equation:

[ffy(x, y,2)8dx dyd:
[ff, 8 dx dydz

_(fffvadxdydz [ffy yédxdyd: fffVZdedydz)
N\ [ff,8dxdydz " [[[,8dxdydz " [[[,8dxdyd:z

*x,y,2)=
(2.70)
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The integral m = [ff,, 8 dx dy dz is the total mass of the system. The integral
M,, = [[[, x8 dx dy dz is the moment of the system about the yz-plane, the inte-
gral M,, = [[[,, y8 dx dy dz is the moment of the system about the x z-plane, and the
integral M, = [/, 28 dx dy dz is the moment of the system about the xy-plane.

Compute the center of mass of the solid hemisphere x? + y? 4 z% < 1, with z > 0,
assuming the density is a constant § = 1. From the symmetry, we know that X =
y = 0. The numerical value of the total mass should be the same as the volume of
the hemisphere, m = 27 /3. Let us verify that anyway. The mass integral is computed
using a change to spherical coordinates:

m:/// dxdyd:z
v
/2 pl p2w
=/ /f p?sin ¢ do dp de
0 0o Jo
/2 1 2
=<f sin¢d¢) (/ pzdp) (/ d@)
0 0 0

= (D(1/3)2m)
=2r/3

The moment about the xy-plane is

Mxyzf// zdxdyd:z
v

/2 1 p2n
= / / (p cos p)p*sin ¢ d6 dp do
0 0 0

(e () £

= (1/2)(1/4) (27)
=n/4

The z-value of the center of mass is z = M, /m = 3/8 = 0.375. As you might have
predicted, the point is closer to the xy-plane than to the pole of the hemisphere.

Surface Mass

In the case of a bounded surface S, the infinitesimal mass dm at (x, y, z) is dis-
tributed in an infinitesimal surface area dS. The representation of dS depends on
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EXAMPLE
2.6

how the surface is defined. If the surface is the graph of the function z = f(x, y),

then
2 2
as=./1+ (ﬁ) + (ﬂ) dx dy
ox ay

If the surface is defined parametrically as P(u, v) = (x(u, v), y(u, v), z(u, v)), then

P 9P
—— X —
ou av

ds = du dv

The density of the distribution is 8 and is assumed to be a function defined at each
point on the surface. Solving the equilibrium equation for torque, the center of mass
for the surface is

ffs(x,y,z)8d5_<ff5x5d5 Jfsy8ds ffszMS) 271

3,2 = “\ Jfs8dS T [[g8dS’ [[;84S

[fs8ds

where the integration is performed over the two-dimensional surface (hence, the use
of double integrals). The integral m = [[ 8 dS is the total mass of the system. The
integral M, = [[¢ x8 dS is the moment of the system about the yz-plane; the integral
M,, = [[ y8dS is the moment of the system about the xz-plane; and the integral
M,, = [[; 28 dS is the moment of the system about the xy-plane.

Compute the center of mass of the hemisphere x? + y% + z% = 1, with z > 0, assum-
ing the density is a constant § = 1. From the symmetry, we know that x = y = 0. The
numerical value of the total mass should be the same as the area of the hemisphere,
m = 27. The mass integral is computed using a change to spherical coordinates with

=1
m=// ds
s
w/2 p2mw
=/ / sin ¢ d6 d¢
0 0

() 17

=2
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The moment about the xy-plane is

M =//zdS
xy s

/2 p2m
:/ (cos ¢) sin ¢ dO d¢
0

0

(/0”/2 sin ¢ cos ¢ dq&) (/(;2” d0>

b/

The z-value of the center of mass is z = M,,,/m = 1/2 = 0.5. This value is closer to
the pole than its counterpart for the solid hemisphere, as expected. &

Curve Mass

Last of all, suppose that the continuous material is a wire that consists of mass dis-
tributed along a curve in three dimensions. Let the curve be continuously differen-
tiable and specified parametrically by (x (), y(¢), z(¢)) for t € [a, b]. In terms of arc
length, s, the mass density is 5(s). In terms of the curve parameter, it is specified
parametrically as §(¢). The infinitesimal mass at the position corresponding to ¢ is
distributed over an infinitesimal arc length ds of the wire. The infinitesimal mass is
dm = §(t) ds, where ds = /2 + y? + 22 dt for parametric curves in space; the dot
symbol denotes differentiation with respect to ¢. The total mass of the wire is there-
fore

L b
m:/ S(s)ds=/ 8(t) Vx2 + y2 4 22 dt
0 a

where s is the arc length parameter and L is the total length of the curve. The
rightmost integral is the formulation in terms of the curve parameter, making it the
integral that is actually evaluated. The moment about the yz-plane is

oL b
Myz=/ x8(s) ds=/ x(D)8(t) Vx2+ y2 + 22 dr
0 a

The moment about the xz-plane is

L b
sz=f y8(s) ds=/ Y(O)8(t) VX2 + Y2 + 22 dt
0 a
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And the moment about the xy-plane is

L b
M,, =/ z8(s) ds=/ z()8(t) VX2 4+ y2 4+ 22 dt
0 a

The center of mass is

G5, 5) = Mz, Moy, Myy) IMETO) yb(t), 2(1) 8(t) /12 + y2 + 22 dt 272)
m [ 8@ X2+ y2+ 22 dr

Compute the center of mass of a constant density wire in the shape of a helix,
(x(@®), y(r), z(t)) = (cos t, sin ¢, r) for ¢ € [0, 27 ]. For simplicity, set the density to 1.
The mass of the wire is

2
m:/ Vx4 y2 4 z2dt
0

2

1+¢2dt
0

% (t\/l—f-tz-i-ln(t—i-\/l-l-tz))

_ 2nV/144n% + InQ2r 4+ V14 47?)
Bl 2

2
0

= 21.2563

The moment about the yz-plane is

2 2
M, = f x(OVA2+y2 4+ 22de = / (cos 1)V 1+ 1% dr =0.386983
0 0

This integral cannot be evaluated in terms of elementary functions. A numerical
integration leads to the approximation shown in the equation. Similarly,

2 2
M, = / YOVIE+y2 4+ 22dr = / (sin 1)v/1+4 12 dt = —5.82756
0 0

The last moment can be calculated in closed form and is
2 27 2\3/2 |27
5 5 5 1+ 4
Mxy=f VBt t Rdi= | itrd=LETN g5 sins
0 0 3 0
The center of mass is
(x,y,2)= (Myz’ sz) Mxy)/m

= (0.018206, —0.274157, 4.022878) &
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2.54 MOMENTS AND PRODUCTS OF INERTIA

Another moment quantity of physical significance is moment of inertia. This is a
measure of the rotational inertia of a body about an axis. The more difficult it is to set
the object into rotation, the larger the moment of inertia about that axis. Intuitively
this happens if the object’s mass is large or if its distance from the axis is large.
Empirical studies for a single particle show that the moment of inertia is mr?2, where
m is the mass of the particle and r is its distance to the axis. For completeness, we look
at the one- and two-dimensional problems and define moment of inertia with respect
to a point since there is no concept of rotation about a line in those dimensions.

Moment of Inertia in One Dimension

Given a discrete set of p particles with masses m; and located on the real line at
positions x;, the total mass is m = 1., m;. The moment with respect to the origin
x=0is My=Y"_ m;x;. This quantity showed up when computing the center
of mass X =Y, m;x;/ 3P m; = My/m. The motivation for ¥ is that it is the
location for which }"_ m;(x; — X) = 0. The quantities Y 7_ m; and Y *_, m;x; are
special cases of Zf:l m,-xf, where k = 0 for the mass and k = 1 for the moment. The
special case k = 2 has great physical significance itself. The quantity

P
Iy=Y myx} (2.73)

i=1

is referred to as the moment of inertia with respect to the origin of the real line. The
moment of inertia with respect to the center of mass is

p
[=Y"mx; = %) = Iy — mx* (2.74)

i=1

For a continuous mass located on the interval [a, b] of the real line and with mass
density §(x), the total mass is m = fab 8(x) dx and the moment about the origin

is My = fab x8(x) dx. The center of mass is X = My/m. The moment of inertia with
respect to the origin is

b
Iy= / x28(x) dx (2.75)
a
and the moment of inertia with respect to the center of mass is
b
[ = / (x — %)*8(x) dx = Iy — mx* (2.76)
a

with the right-hand side occurring just as in the discrete case.
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Moment of Inertia in Two Dimensions

Given a discrete set of p particles with masses m; and located in the plane at positions
(x;> ¥;), the total mass is m = Zf;l m;. The moment with respect to the y-axis was
defined as M, = > f_, m;x; and the moment with respect to the x-axis was defined
asM, = Zle m;y;. The center of mass is (X, y) = (M, /m, M,/m). We can define
the moment of inertia with respect to the origin as

Iy= Zm 7+ yD (2.77)

The moment of inertia with respect to the center of mass is
- 2
1= "m|(xy) — G| =l —mE+5 (2.78)

For a continuous mass located in the region R of the plane and having mass density
8(x, y), the total mass is m = //R 8(x, y) dx dy and the moments with respect to
the y- and x-axes are My, = [fp x8(x, y) dx dy and M, = [[ ¥8(x, y) dx dy. The
center of mass is (¥, y) = (M,/m, M, /m). The moment of inertia with respect to the
origin is

Iy= / (24 yH8(x, y) dx dy (2.79)
R

and the moment of inertia with respect to the center of mass is

1= / f (= D4 (= 9D Y drdy = Iy —mE + 570 (2.80)
R

with the right-hand side occurring just as in the discrete case.

Moment of Inertia in Three Dimensions

Of course the interesting case is in three dimensions. We could easily define a moment
of inertia relative to a point, just as we did in one and two dimensions. However,
keeping in mind that we are interested mainly in the motion of rigid bodies, if one
point on the body rotates about a line (even if only instantaneously), then all other
points rotate about that same line. In this sense it is more meaningful to define a
moment of inertia relative to a line.

Given an origin O and a discrete set of p particles with masses m; located at
r; = (x;, ¥;» z;) relative to O, the total mass is m = ) 1_ m;. The moments with re-
spect to the xy-, xz-, and yz-planes were defined, respectively, as M, = S mizp,
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M,, =Z,P=1 m;y;, and M, =37  mix;. The center of mass is (%, y,Z) =

(My,/m, M,,/m, M,,/m). The moments of inertia about the x-, y-, and z-axes are,
respectively,

P P
Ixx=Zmi(yl.2+z?), Iyy=Zm,-(xi2+zf), and
= (2.81)

i=1
p

I, = Z ’ni(xi2 + y,z)
i=1

The moment of inertia about a line L through O, given parametrically as O + D with
nonzero direction vector D = (d,, d,, d5), is the sum of miriz, where r; is the distance
from P; to the line, or

p

Iy = Z m; (lri|2 —-(D- l'i)z)

i=1

14 14 14
=d} Y mGi+z)+d; Yy mGi+D)+di Y mGl+z) .
i=1 i=1 i=1 2.82

p P P
—2d,d, Z mix;y; — 2d,d; Z mix;z; — 2dyd; Z m;y;z;

i=1 i=1 i=1

=dl 1, +d]1

21y, +dil,, — 2didy 1, — 2dds1,, — 2dyds]

where the first three terms contain the moments of inertia about the coordinate axes
and the last three terms have newly defined quantities called the products of inertia,

P p P
Iy = Z miX; ;> I,= Z mix;z;, and Iy, = Z m;y;z;  (2.83)
i=1 i=1 i=1

Equation (2.82) may be written in matrix form as

]xx _Ixy _Ixz
="\ -1, 1, -I,|D=D"JD (2.84)
_Ixz _Iyz Izz

where the last equality defines the symmetric matrix J, called the inertia tensor or
mass matrix,

Ixx _Ixy _Ixz
J=|~1, I, -, (2.85)
1 -1 1

T ixz yz zz
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Moments and products of inertia are similar for a continuum of mass occupying
aregion R. The moments of inertia are

IM:/ y* + 22 dm, Iyy:/xz—l—zzdm, IZZ=/x2+y2dm (2.86)
R R R

and the products of inertia are

Ixyzf xydm, Ixz=/xzdm, Iyz=/ yzdm (2.87)
R R R

Equation (2.84) is the same whether the mass is discrete or continuous.

The reason for the use of the term rmass matrix is clear by considering a single
particle of mass m, located at r relative to the origin, and that rotates about a fixed
axis. As indicated by equations (2.34), (2.35), and (2.36), the position is r = (x, y, z);
the velocity is v =w X r, where w is the angular velocity; and the acceleration is
a=—0’r + a x r, where o is the angular speed and « is the angular acceleration.
The angular momentum is

L=rxmv=mr x (wxr) =m(|r|21 — rrT)w= Jw (2.88)

where the inertia tensor for a single particle is

yE42z2 —xy —Xxz
J=m ([rlzl —rrT) =m —xy  x*4z? —yz
—Xz —yz xt+ y2

Notice the similarity of the angular momentum equation L = Jw to the linear
momentum equation p = mv. The coefficient of linear velocity in the latter equation
is the mass m. The coefficient of angular velocity in the former equation is the mass
matrix J. Similarly, the torque is

T=r X ma
. . T (2.89)
=mrXx {(—ocr+axr)=mrx (@xr)=m(r|’] —rtHa=Ja

Notice the similarity of the torque equation T = Ja to Newton’s second law
F = ma. The coefficient of linear acceleration in Newton’s second law is the mass m,
whereas the coefficient of angular acceleration in the torque equation is the mass ma-
trix J. Equations (2.88) and (2.89) apply as well to particle systems and continuous
mass, where the world and body origins coincide.

Equation (2.84) is a quadratic form that has a maximum and a minimum, both
eigenvalues of the matrix J. From linear algebra (see [Str88] for example or see
Appendix A), a scalar A is an eigenvalue of J with a corresponding eigenvector
V # 0, such that JV = AV. The intuition, at least for real-valued eigenvalues, is
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that the vector V has only its length changed by J but not its direction. The unit-
length directions D that generate the extreme values are eigenvectors corresponding
to the eigenvalues. Using techniques from linear algebra and matrix theory, we can
factor J using an eigendecomposition, J = RMRT, where M = Diag(u;, iy, ft3)
is a diagonal matrix whose diagonal entries are the eigenvalues of J. The matrix
R = [U; U, Us]is an orthogonal matrix whose columns are eigenvectors of J, listed
in the order of the eigenvalues in M. The eigenvalues u; are called the principal
moments of inertia, and the columns U; are called the principal directions of inertia.

Equation (2.62) shows us that torque is just the time derivative of angular mo-
mentum. Equation (2.42) shows us how to compute the time derivative of a vector
in a moving frame for the rigid body. In particular, we can apply this formula to the
angular momentum:

dL
T=—
dt

— th +w x (Jw) (2.90)

— 7P < w)
Dt

I L x (Jw)
dt

This vector-valued equation may be viewed as equations of motion for a rigid body.
When 7 and w are represented in a body coordinate system where the coordinate axis
directions are the principal directions of inertia, equation (2.90) reduces to

T =M‘2—‘: +w x (Mw) (2.91)

where M is the diagonal matrix of principal moments. This equation is referred
to as Euler’s equations of motion. Mathematically, equation (2.91) is derived from
equation (2.90) by replacing J by RMR" and by replacing the world coordinate
representations T and w by the body coordinate representations RTt and RTW. In
the process you need to use the identity (Ra) x (Rb) = R(a x b) when R is a rotation
matrix.

EXAMPLE = Compute the inertia tensor for a solid triangle of constant mass density § = 1 with
2.8 . vertices at (0, 0), (a, 0), and (0, b).
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(Example 2.8
continued)

EXAMPLE
29

The region of integration R is determined by z=0, 0 <x <g, and 0 <y <
b(1 — x/a). Since the mass density is always 1, the mass is just the area of the triangle,
m = ab/2. The quantity I, is

Ixx=f/(y2+z2) dR
R
a pb(l—x/a)
:/ / ytdy dx
0 Jo

a _3|b(l-x/a)
=f y— dx
o 3o
a _ 3
[ euzxar,
0 3

a

_ab3(1 —x/a)*
12

0
_ ab’®
12

_mb

6

Similar integrations yield 7, = ma?/6, I, = m(a*+ b?) /6, I,y =mab/12,I,, =0,

Consider a box centered at the origin with dimensions 2a > 0, 2b > 0, and 2¢ > 0.
The vertices are (+a, £b, £c), where you have eight choices for the signs in the
components. Let the mass density be 1.

1. Compute the inertia tensor for the eight vertices of the box where all masses are 1
(discrete points).

2. Compute the inertia tensor for the box treated as a wireframe of masses where the
12 edges are the wires (curve mass).

3. Compute the inertia tensor for the box treated as a hollow body (surface mass).

4. Compute the inertia tensor for the box treated as a solid (volume mass).

SOLUTION 1

The moments and products of inertia are easily calculated by setting up a table
(Table 2.1). The total mass is m = 8.
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Moments and products of inertia for vertices

Point I, I, I, L, L, I,
(a, b, c) b? + ¢? a*+c? a*+b? ab ac be
(a, b, —c) b4 a*+c? a® + b? ab —ac —bc
(a, —b,c) b2 42 a?+ 2 a? + b? —ab ac  —bc
(a, —b, —¢) b2 4 2 a* + c? a’+ b? —ab —ac be
(—a, b, ) b2+ c? a*+ ¢? a? + b? —ab —ac be
(—a, b, —0) b4 c? a®+ c? a® + b? —ab ac —bc
(—a, —b, ¢) b? 4+ 2 a* + c? a? + b? ab  —ac —bc
(—a, —b, —c) b2+ ¢? a* + c* a*+ b? ab ac bc
Sum mB*+cd  m@*+c®  m@+ b 0 0 0
SOLUTION 2

The moments and products of inertia can be calculated for each of the 12 edges,
then summed. Consider the edge (x, b, ¢) for |x| < a. The moments and products
of inertia for this edge are

a a

I, = / V+Z2dr=0"+c*) | dx=2ab*+ D)
—a —a

a a a
Iyy‘_‘/ x2—|—zzdx=/ x2+c2dx=x3/3+czx|

—a —a -

=2(a’/3 + ac®)
a

L,= / x4 ytdx = / X +prdx=x/3+ ble“ =2(a’/3 + ab?)
—a

a a
Iyz:f yzdx:bc/ dx =2abc

—a —a

Similar integrals must be evaluated for the other edges. Table 2.2 shows the moments
and products of inertia for the edges. The total mass is the sum of the lengths of the
edges,m = 8(a + b+ ¢).
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Table 2.2 Moments and products of inertia for edges

Edge Iy Iy I, Iy Iy, Iy,
(x, b, ¢) 2a(b* + ¢?) 2(a®/3 + ac?) 2(a%/3 + ab?) 0 0 2abc
(x,b, —c) 2a(b* + c?) 2a®/3 +ac?) 2(a®/3 + ab?) 0 0 —2abc
(x, —b, ) 2a(b® + ¢?) 2(a®/3 4+ ac?) 2(a/3 + ab?) 0 0 —2abc
(x, =b, —¢) 2a(b* + b 2a%/3+ ac?) 2(a’/3 + ab?) 0 0 2abc
(@, y,¢) 2(b%/3 + bc?d) 2b(a® + ¢?) 2(b*/3 + ba?) 0 2abc 0
(a,y, —c) 2(b3/3 + bc?) 2b(a* + ¢?) 2(b*/3 + ba?) 0 —2abc 0
(—a, y,c) 2(b*/3 + bc?) 2b(a® + ¢?) 2(b*/3 + ba?) 0 —2abc 0
(—a,y, —c)  2(b*/3+ bc?) 2b(a® + ¢?) 2(b%/3 + ba?) 0 2abc 0
(a, b, z) 2(c*/3 + cb?) 2(c*/3 + ca®) 2c(a® + b?) 2abc 0 0
(a, —b, 2) 2(c3/3 + cb?) 2(c/3 + ca?) 2¢(a® + b?) —2abc 0 0
(—a, b, 2) 2(c3/3 + cb?) 2(c*/3 + ca?) 2c(a? +b?) —2abc 0 0
(—a, —b, z) 2(c3/3 + ch?) 2(c*/3 + ca®) 2c(a® + b?) 2abc 0 0
Sum poilerid) g geupEldi) o g g
(Example 2.9 SOLUTION 3

continued)

b a
I, = / / y2+ 22 dx dy = 4a(b’/3 + bc?)
—b J—a
b a 5
I, = /b / x*+ 22 dx dy =4b(a*/3 + ac?)
—bJ—a

b pa
1,= / f x2+ y*dx dy = 4ab(a® + b*)/3
—b J-a

b pra

Ixy:/ / xydxdy=0
—b J—a
b pa

Ixzzf / xzdxdy=0
—b J—a
b pa

Iyz:f / yzdxdy =0
—b J—a

The moments and products of inertia can be calculated for each of six faces, then
summed. Consider the face z = ¢ with |x| < a and |y| < b. The moments and prod-
ucts of inertia for this face are



Table 2.3 Moments and products of inertia for faces

2.5 Momenta

65

Face I, I, 1, Iy I, I,

z=c 4ab(b* + 3c¢%)/3 4ab(a® + 3¢%)/3 4ab(a® + b%)/3 0 0 0

z=—c dab(b* + 3c¢?)/3 4ab(a® + 3¢%)/3 dab(a® +b%)/3 0 0 0

b 4ac(c® +3b%) /3 4ac(a’*+c*/3 4ac(a® +3b%)/3 0 0 0
—b 4ac(c* +3b%)/3 dac(a®*+c®/3 4ac(a® +3b%)/3 0 0 0
=a 4bc(b* + c?)/3 4bc(c? + 3a%)/3 4bc(b? + 3a%) /3 0 0 0

x=—a 4bc(b* + c?)/3 4bc(c? + 34%)/3 4bc(b® + 3a%) /3 0 0 0

b+’ +he(B*+¢?) bla+c)*+ac(a’+c?) (a+b)*+ab(a®+b?)

Sum % : acb+acj-bc ‘ % . acb+aii-l‘;c 2 % & ab+aac+?7c 0 0 0
Similar integrals must be evaluated for the other faces. Table 2.3 shows the moments
and products of inertia for the faces. The total mass is the sum of the areas of the
faces, m = 8(ab + ac + bc).

SOLUTION 4
The total mass is the volume of the box, m = 8abc. The moments and products of
inertia are
c b pa 2 2 2 2
Ixx:»/ / / yz-l-zzdxddezSabc(b +c)=m(b + ¢)
—J-bJ-a 3 3
c b pa 2 2 2 2
Iyy=/ f / x2+22dxdde:8abc(a +c)=m(a + ¢%)
—cJ—=bJ-a 3 3
c pb pa 2 2 2 2
Izz=f / / x2+y2dxdydz=8abc(a +b)=m(a + %)
—cJ—-bJ—a 3 3
c b a
Ixyz/. / f xydxdydz=0
—J=bJ—a
c pb pa
Ixz:/ f / xzdxdydz=0
—cJ—=bJ—a
c b pa
Iyz = / / / yzdxdydz=0 u
—cJ—bJ-a
EXERCISE Repeat the experiment of Example 2.9 using a tetrahedron instead of a box. The
2.11 vertices are (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, ¢), where a > 0,b > 0,and ¢ > 0.
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EXERCISE H
2.12

EXERCISE (H
2.13

2.14

Compute the inertia tensor for the planar object in Example 2.3, but treated as a 3D

object (a surface mass).

Compute the inertia tensor for the hemicircle wire in Example 2.4, but treated as a
3D object (a curve mass).

Transfer of Axes. The derivation of equation (2.82) used any specified origin O and
produced the quantities I, Iy, I,,, I;), I,,, and I,,. Let the total mass of the
system be m. Suppose that the origin is chosen as the center of mass (¥, y, Z) and
that coordinate axes are chosen so that they are parallel to those used at origin O. If
the corresponding inertia quantities are I, , I_yy, I, I_xy, I,,,and iyz, showthat/,, =
L +m(32+ 20, Iy =1y + m(E2 +2%), L, = I, + m(x2 + 32, L,y = I, + miy,
I, =1, +mxz, and I, = I_yz + myz. Compare this result with equations (2.74),
(2.76), (2.78), and (2.80).

Conclude that the moment of inertia about a line L containing the center of mass
and having unit-length direction D is

Lo +mG+2)  —(Ly+miy)  —(L; +miD)
I, =D' ~(Ly +mi3) I, +_m(i2+22) ~,,+myz) |D
—(I,, + mxz) —(I,, +myz) L, +mGE+ 32

The significance of this result is that an application needs only to compute the inertia
tensor relative to the body’s center of mass. The inertia tensor for other coordinate
frames is then easily calculated from this tensor.

We will look at moments of inertia in more detail in Section 3.2 when dealing
with rigid body motion.

2.5.5 MASS AND INERTIA TENSOR OF A SOLID POLYHEDRON

In a game environment the objects that physically interact typically are constructed
as simple polyhedra. In order to set up the equations of motion for such objects, we
need to compute the mass and inertia tensor for a solid polyhedron. This can be quite
a difficult task if the mass density of the object is variable but turns out to be relatively
simple for constant mass density. For the sake of simplicity we will assume that the
mass density is p = 1. For any other value you will need to multiply the mass and
inertia tensors by that value.

A mathematical algorithm for computing the mass and inertia tensor for solid
polyhedra of constant mass density is described by Mirtich [Mir96a]. The construc-
tion uses the Divergence Theorem from calculus for reducing volume integrals to
surface integrals, a reduction from three-dimensional integrals to two-dimensional
integrals. The polyhedron surface is a union of planar faces, so the surface integrals
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are effectively integrals in various planes. Projection of these faces onto coordinate
planes are used to set up yet another reduction in dimension. Green’s Theorem, the
two-dimensional analog of the Divergence Theorem, is used to reduce the planar in-
tegrals to line integrals around the boundaries of the projected faces.

Two important points emphasized in the paper are (1) the projection of the poly-
hedron faces onto the appropriate coordinate planes to avoid numerical problems
and (2) the reduction using Green’s Theorem to obtain common subexpressions,
which are integrals of polynomials of one variable, to avoid redundant calculations.
Item (2) occurs to handle polyhedron faces with four or more vertices. Item (1)
is necessary in order to robustly compute what is required by item (2). When the
polyhedron faces are triangles, neither items (1) nor (2) are necessary. A simpler con-
struction is provided here when the polyhedron faces are triangles. A consequence of
the formulas as derived in this document is that they require significantly less com-
putational time than Mirtich’s formulas.

Reduction of Volume Integrals

The mass, center of mass, and inertia tensor require computing volume integrals of
the type

/ p(x,y,z)dV
\4

where V is the volumetric region of integration and dV is an infinitesimal measure
of volume. The function p(x, y, z) is a polynomial selected from 1, x, y, z, x2 y2, z2,
xy, xz, and yz. We are interested in computing these integrals where V is the region
bounded by a simple polyhedron. A volume integral may be converted to a surface

integral via the Divergence Theorem from calculus:

/p(x,y,z)dV:/ V-FdV:/N-FdS
1% v N

where S is the boundary of the polyhedron, a union of triangular faces, and where dS
is an infinitesimal measure of surface area. The function F(x, y, z) is chosen so that
V - F = p. The vector N denotes outward-pointing, unit-length surface normals. The
choices for F in the Mirtich paper are given in Table 2.4.

The computational effort is now devoted to calculating the integrals f¢ N - F dS.
The boundary S is just the union of polyhedral faces F. An outward-pointing, unit-
length normal to face § is denoted by N = (7, 7}y, ,). The surface integral decom-
poses to

N-FdS= N+ - FdS 2.92
fs ng 5 (2.92)

FeS§
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Table 2.4

Generation of polynomials by vector fields

p F p F

1 (x,0,0) ¥ 0,5°/3,0)
x  (x%/2,0,0) 22 (0,0,23/3)
y  (0,5%/2,0) xy  (x%/2,0,0)
z  (0,0,z%/2) xz (0,0, z%x/2)
x2 (x3/3, 0, 0) yz (0, yzz/2, 0)

The integrals to be computed are now reduced to

1
dv = ﬁ/de /yde=— ﬁf Ay
[ av=3n ; iy [

Fes§ FeS§
ﬁde:%gﬁx/?xzdS /szdV=%g§Sﬁz/?z3dS
ﬁde:%%ﬁyf?yzdS nydV:%%ﬁx/&rxzde
/‘;de:%%ﬁz/;ﬁdS fvyde=%gZ€Sﬁy/§yzzds

zdV

1 1
2 A 3 N 2
de——E fx das /x ——E /zde
/;/ 3 T T v 2 nsz

Fes§ Fes

We now need to compute integrals of the form
e /ffq(x, y>2)dS (2.93)

where £ is one of x, y, or z and where g is one of x, x2, y%, 2%, x*, y3, 23, x2y, y?z, or

ZZ.X.

Computation by Reduction to Line Integrals

Although we do not need to compute a surface integral when g(x, y, z) = 1, we use
it as motivation. Notice that [, dS is the area A of the polygonal face. The area may
be computed as a three-dimensional quantity:
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n—1

1
AZ‘/:;dSZENg"'ZPiXPH_I

i=0

where the polygon vertices are P; = (x;, y;, z;), 0 <i < n — 1, and the vertices are
ordered counterclockwise relative to the face normal Ng. Modular indexing is used so
that P, = Py. This formula occurs in [Arv91] and is derived using Stokes’s Theorem
from calculus. The computation is not as efficient as it can be. A discussion of various
methods for computing area (and volume) is found in [SE02].

An efficient method for computing the area is to project the polygon onto a coor-
dinate plane, compute the area in two dimensions, and adjust the result to account for
the projection. The plane of the polygonal face is 7, x + 7,y + 7,z + w = 0, where
w = —Njg - Py. Aslong as 7, # 0, we may project onto the xy-plane. The plane equa-
tion is written z = f(x, y) = —(w + l,x + 7,y)/7,. The infinitesimal surface area
in terms of the independent variables x and y is

2 2
dSz\/1+(£) +(i) dxdy
dx ay

it =i\ 1
= 1+(;’h) + = dxdy=—dxdy
N, n, ,]

where we have used the fact that [N5| = 1. The surface integral becomes

/dsz 1 /dxdy
F In.l Jr

where R is the region bounded by the projected polygon. That polygon has vertices
Q; = (x;, y;). A planar integral may be converted to a line integral via Green’s Theo-
rem, the two-dimensional analog of the Divergence Theorem:

/p(x,y)dxdy:/V'dedy:/M-Gds
R L L

where L is the boundary of the region R and where ds is an infinitesimal measure of
arc length. The function G(x, y) is chosen so that V - G = p. The vector M denotes
outward-pointing, unit-length curve normals. In our special case p(x, y) =1and L
is a polygon. Many choices exist for G, one being G = (x, 0). The boundary is the
union of edges €. An outward-pointing, unit-length normal to the edge is denoted
Mg. The area integral decomposes to

/M~Gds=Z]Mg-Gds (2.94)
L 3 &
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Note the similarity to equation (2.92). If edge & is the line segment connecting
Q; to Q;;; and has length L; = |Q;; — Q;|, then the edge is parameterized by
x(s), y())=Q—s/L)Q; + (s/L;)Q;41 for s € [0, L;]. At first glance you might
choose the edge normals to be M; = (y; | — y;, x; — x;4.1)/L;. This is a correct
choice if the Q; are counterclockwise ordered. When 7, > 0, a counterclockwise
traversal of the P; results in a counterclockwise traversal of the Q;. But when 7, < 0,
the Q; are traversed clockwise; the previous formula for M; must be negated. In
general M; = Sign(9,)(¥;41 — ¥i» X; — X;11)/L;. The integral of equation (2.94) is
rewritten as

n—1 L;
/M-Gds:Zf M; - (x(s), 0) ds
L i—=0 0

n—1 L:
A Yier— Vi [T 5 s
=Sln(n)2 ———/ (1——)x-+(—-)x» ds
&0t L; 0 L) \g,) !

i=0
n—1 1
—Sign(i) 3 (i1 — 30 /0 (1= 0% + tx;4 dt (295)
i=0
Sign(#,)
= —g—z(n—Z) Z(xi-H + %) (Vi1 — Y1)
i=0
Sign(#,)
= —g—zﬁn—Z) Z xi (Vi1 = Yi-1)
i=0

where the third equality is based on the change of variables s = L;z. The last equality
uses modular indexing (y, = y; and y_; = y,_;); it results in a reduction of one-
third the arithmetic operations from the previous equation. The proof of equality is
left as an exercise.

One potential source of numerical error is when 7, is nearly zero. The division
by |7,] is ill-conditioned. In this case we may project onto another coordinate plane.
The same ill-conditioning can occur for one of those, but not both since at least one
of the components of Ng must be larger or equal to 1/+/3 in magnitude. The area of
the polygonal face is computed accordingly:

-1 A ~ A A

i1 Jr, dxdy =55 X xi0i = Yicy)s 1l = max{|iyls iyl 171}
-1 A~ A A N

Wlx‘ fRyz dy dz= ﬁ ?:0 yi(zi—H - Zifl)) |nx| = max{'nx|) Iny|9 Inzl} (296)

—1 A ~ A A
ﬁ _[sz dZ dx = i Z;lzo Zi(xi+1 _xi—l)’ Ir/yl = max{'nx|> |77y|) lnzl}

where R,,, R,,, and R, are the regions of projection of the polygonal face.
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The construction of . 5 q(x, y, z) dS is handled in a similar manner except that
now the integrand has variables, the dependent one needing replacement using the
appropriate formulation of the plane equation:

/ q(x,y,z)dS (2.97)
S

w1 Jr,, 40y, =W+ x +8yy)/0) dx dy, || = max{|7], 7y, 17.])
= ﬁfRyzq(_(w—*_ﬁyy'i_ﬁzz)/ﬁx) ¥, 2z) d)’dz) |ﬁx|=max{|ﬁxl)|ﬁy|)|ﬁzl}
i Jr, 406 =+ Aex +0:2)/fy, 2) dz dx, || = max{[fl, 1,1, 171}
Each integrand is a polynomial of two independent variables. A function G must
be chosen so that V - G is that polynomial. When |7,] is the maximum absolute

normal component, G will have components that depend on x and y. Using the same
notation that led to equation (2.95), the integral is

/q(x, y,z)dS
S

/ M; - G(x(s), y(s)) ds
Inz = 0

_ Slgn(ﬁz) Z (yl-‘rl Yi> Xi — H—l)

- / G((1—s/L)Q; + (s/LPQ;y1) ds
|7’z| i=0 Li

1

=— Z()’:H Yir Xi = Xit1) * f G((A-0Q; +1Q;1y) dt
Nz i=0 0

At this point the remaining work involves selecting G for each integrand of equa-

tion (2.97) and computing the integral fol G —1Q; +1Q;, ) dt. See [Mir96a] for
all the tedious details. I summarize the formulas below. The notation used in that
paper is that (&, B, ) is a permutation of the usual coordinates, chosen from one of
(x,y,2),(y,2,x),0r(z, x, y). The projection integrals are 7t y = fR f da dB, where
R is the projection of the polygonal face onto the &8-plane and f is some polynomial

function:
/ adS=7,|"'n
F

Bds =i, 'x
/,J, 4 B

. /;ydS—__—'ﬁyl_lﬁ;l(ﬁana—i_ﬁﬂnﬂ+wn1)
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/azdS= |9, 1 g2
F
f B> dS =i, g
F

Lyz dS = 17, |70, 2 (Mo a2 + 2MafipTiap + Mmpe + 2w (ATt + fignp) + w?m)

f o’ dS =i, | 'mys
F
B2dS =17, g
/r; 4 B
L y? dS = —|if, |70, (03 7e + 3oz + 3aligmape + Mgmpt
3w(Hiy2 + 2MahpMep + ﬁgnﬂz) + 3w (A, + Ngmg) + wimy)

f o’B dS = il | " mep

F

ﬂzy ds = _Iﬁylilﬁil(ﬁaﬂaﬂz + ﬁﬂn 3+ wag)
5 y B B

/rfyzadS=|ﬁy| 15— Z(n T + 20 N7, zﬁ+nﬁ wp? + 2W(Ae T2 + pTap) + wmy)

The projection integrals are

S
7= lgn("y) Z(ﬂ,+1 B @i+ )

Slgn(ny

6 Z(ﬁl+l ﬂl)(al+1 + o ¢ + C{ )

i=0

S
_ 1gn(ny) Z(“z+1 ) (B + BiiBi + BY)

=0

Sign(7],,) <
o2 = TVZ(ﬂ,+1 B (e, +of e + 0] + o))
i=0

Sign(7),)

Tap = 4

Z(ml B (Bi (e}, + 2010 + o) + Bilal, | + 205400 + 3a)))
i=0



2.5 Momenta 73

Slgn(ny

= Z(am ) (B + BB + BBl + B

i=0

7T52=

Slgn(n
T3 = — Z(ﬁt+1 ;B )(a,_H + (IH_IO!, + Ol (I + d,_HCY +(¥ )

i+1%
i=0
Ta2p = E%Ay) nz_l(ﬂiﬂ - lgi)(ﬁi+1(4a,~3+l + 3ai2+la,- + 2a,~+1ai2 + a?)
i=0
+Bi (ai3+1 + 2“:'2+1°’i + 30007 + 40‘,'3))
Mg = Slgz(ny Z(a,+1 ) (@1 (4B, + 387 1B + 2B B + BY)

i=0

+0y(B]yy + 2828 + 3BiaB} + 4B)

Sign(#
mp = "V Z( Qi1 — (B + BB+ BEBE + BB+ B

=0

Notice that the formula for 7, is exactly what we derived for the area of the polygonal
face.
An example of how these are used is

A Rty 1) = max([A, ], 1A 170}
i [ s =] 35 s 1| = max(li 13,1, 171
N JRTIN A ~ A ~ ~
—|77x ll(ny”y + n,7m, + wﬂl)! |77xl =max{|nxlr |r’y|) |nz|}

Ax -1 A A ~ A
6’]_;12 Z?:()(yi+l - yi)(xi2+1 +xi+1xi +xi2)’ |772| = maX{|'7x|) |'Iy|, |nz|}

- A o
—;’T e — 2 G2+ x 2D, 1Ay = max{Il, 18, 1A} (29

= Z (Zz+l z) 7+ vipi D

:sz Z,':_o Yig1 — yi)(2,~2+1 +zi412; + ziz)

f) XQ+ﬁ y0+ﬁ Zy) A A ~ A
— S oG — 2D G+ 3)s il = max{|fl, 18, ], 17,1}

As we will see in the next section, these formulas reduce greatly when the polyhedron
has triangle faces.
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Computation by Direct Parameterization of Triangles

Let the triangular face be counterclockwise ordered and have vertices P; = (x;, y;, z;),
0 <i < 2.Two edges are

E; =P, — Py =(x; — X0, yi — Yo, zi — z0) = (@, Bi> vi)
for 1 <i < 2. A parameterization of the face is
P(u, v) =Py + uE, + vE,
= (xg +oqu + v, yo + Bru + Bov, zg + yiu + y,v) (2.99)
= (x(u, v), y(u, v), z(u, v))
where u > 0, v > 0 and u + v < 1. The infinitesimal measure of surface area is
P 3P

X —
ou Jv

ds = dudv=|E; x )| dudv

and the outer-pointing unit-length face normal is

= E, X By _ (Bivs = Bovi doni — auyn, 1By — a2By) _ (8¢5 81, 82)
|E; x E,| |E; X E, |E; x E,|

The integrals in equation (2.93) reduce to

(N - £) Lq(x, v.2)dS
(2.100)

1 1-v
= (E, xEZ-E)/ f q(x(u, v), y(u, v), z(u, v)) du dv
0o Jo

where x(u, v), y(u, v), and z(u, v) are the components of the parameterization in
equation (2.99).

The integrals on the right-hand side of equation (2.100) can be computed sym-
bolically, either by hand or by a symbolic algebra package. The formulas listed on
page 75 were computed using Mathematica. Common subexpressions may be ob-
tained by some additional factoring. Define:

s,(w) = Z wg’—iwi, fow)y=1, and f,(w)=s,w)+w,f,_;(w) forn>1
=0

Think of these as macros where the input argument is a textual replacement wherever
w occurs in the right-hand sides. Also define the macro:

gi(w) = fLw) +w,; filw) + wi2
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The specific expressions required in the surface integrals are listed below in terms
of w. Each macro is expanded three times, once for each of x, y, and z:

fl(U)) = wO + wl + U)2 = [U)O + w1]+ wZ
fr(w) = w4+ wow, + wi + w, fr(w)
= [[wﬁl + wi{wy + w)H+ wy{ fi(w)}
(2.101)
f3(w) = wg + w(z,wl + wowf + wf + w, fr(w)
= wolwg} + wifwg + wowy + wi} + wy{ fH(w))
(L)} + w;({ fi(w)} + w;)

gi(w)
The square brackets [ ] indicate that the subexpression is computed and saved in
temporary variables for later use. The curly braces { } indicate that the subexpression
was computed earlier and can be accessed from temporary variables. The number
of subexpressions that must be stored at any one time is small, so cache coherence
should not be an issue when enough floating point registers are available for storing

the subexpressions (see the pseudocode on page 76 in this text).
The integrals are

8 8
(Ng - 1) f xdS=2fx) (Ng+ 1) / y dS == fi(y)
F 6 F 20
P 8
(Ng 1) /?xz ds = 1—02-f2(x) (N5 - k) /{ff ds = £f3(z)
)
(Ng-7) / y ds = —fz()’) (Ng-1) szy ds = é(yogo(x) + y181(x) + ¥282(x))
P $
(N - k) / 2* dS = _Z'fz(z) Ng-7) f yzz ds = _1(2080(}’) +z181() + 228,())
F 12 F 60

k)
(Ns - 1) f 2 ds=2fx) (Ny-k) f 22 dS = 2 (xyg0(2) + 121(2) + 1282(2))
F 20 T 60

Comparison to Mirtich’s Formulas

Let us compare the formulas for @, = (N5 - 1) f; x dS. Our derivation led to the
formula

O, =—f1( y=2 (xo+x1+x2) (2.102)
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SOURCE CODE
PolyhedralMass-
Properties

In equation (2.98) there are three possibilities for computing Q. In the case y =z,

_ S On— YOO + xox1 + x3) + (v, — ¥y (7 + X100 + %) + (o — ¥ (6 + Xox; + x3)
6 (x; = x0) (¥ — ¥o) — (x3 — x) (1 — ¥p)

O«

The final formula requires much more computational time than the one derived
in this document. In fact, the numerator is exactly divisible by the denominator
and the fraction reduces to xy + x| + x,, as it should to be equivalent to the Q, in
equation (2.102). The reduction was verified using Mathematica. If y = x, equation
(2.98) produces

2 2

1 (68 8

0,= N (gl z Gip1 = 2)OFy + Yipi + D) — gz E i1 = ¥ + 2z +2)
0 i=0 i=0

2
_ 30_"0_‘*i12}’0_+_52@ Z(Z"“ = 2) (Vi + yi))
i—0

The correctness of this formula was verified using Mathematica; in fact, it reduces to
equation (2.102). The computational requirements for this expression are enormous
compared to that of equation (2.102).

Comparisons between the formulas for the other integrals is possible, but you
will find that the differences in computational time become even greater than in the
example shown here.

Pseudocode

The pseudocode for computing the integrals is quite simple. The polyhedron vertices
are passed as the array p[]. The number of triangles is tmax. The array index[] has
tmax triples of integers that are indices into the vertex array. The return values are the
mass, the center of mass, and the inertia tensor.

constant Real oneDivé = 1/6;
constant Real oneDiv24 = 1/24;
constant Real oneDiv60 = 1/60;
constant Real oneDiv120 = 1/120;

MACRO Subexpressions(w0,wl,w2,f1,f2,f3,90,91,92)
{
// These are the expressions discussed in equation (2.101).
temp0 = w0 + wl;
fl = temp0 + w2;
templ = w0 * w0;
temp2 = templ + wl * temp0;



}
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f2 = temp2 + w2 * f1;

f3
g0
gl
g2

n

w0 * templ + wl * temp2 + w2 * f2;
f2 + w0 * (f1 + w0);
f2 +wl * (fl + wl);
f2 + w2 * (f1 + w2);

void Compute (Point p[], int tmax, int index[], Real& mass, Point& cm,
Matrix& inertia)

{

// order: 1, x, y, z, X2, y°2, z°2, Xy, ¥z, ZX
Real integral[10] = {0,0,0,0,0,0,0,0,0,0};
for (t = 0; t < tmax; t++)

{
//
i0
il
i2
x0
y0
20
x1
yl
z1
x2
y2
z2

/1

al
bl
cl
a2
b2
c2
do
dl
d2

/1

get vertices of triangle t

= index[3 * t];

= index[3 * t + 1];
= index[3 * t + 2];
= p[i0].x;
= p[i0].y;
= p[i0].z;
= p[il].x;
= plill.y;
= plil].z;
= pli2].x;
= pli2].y;
= pli2].z;

get edges and cross product of edges

= xl
=yl
=121
= x2
= y2
=22
= bl
= a2
= al

x03
¥0;
z0;
x0;
¥0;
z0;
c2 - b2 * cl;
cl - al * c2;
b2 - a2 * bl;

compute integral terms

Subexpressions(x0,x1,x2,flx, f2x,f3x,90x,91x,92x) ;
Subexpressions(y0,yl,y2,fly,f2y,f3y,g0y,g9ly,q2y);
Subexpressions(z0,z1,2z2,f1z,f2z,f3z,90z,91z,92z);

77
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// update integrals

integral[0]
integral[1]
integral[2]
integral[3]
integral[4]
integral[5]
integral[6]
integral[7]
integral[8]
integral[9]
}
integral[0] *=
integral[1] *=
integral[2] *=
integral[3] *=
integral [4] *=
integral[5] *=
integral[6] *=
integral[7] *=
integral[8] *=
integral[9] *=

mass = integral[0];

+=

do
do
dl
d2
do
dl
d2
do
dl
d2

*

*

*

*

*

oneDiv6;

oneDiv24;
oneDiv24;
oneDiv24;
oneDiv60;
oneDiv60;
oneDiv60;

flx;
f2x;
f2y;
f2z;
f3x;
f3y;
f3z;
(y0 * gOx + y1 * glx + y2 * g2x);
(z0 * g0y + z1 * gly + z2 * g2y);
(x0 * g0z + x1 * glz + x2 * g2z);

oneDiv120;
oneDiv120;
oneDiv120;

// center of mass

cm.x
cm.y
cm.z

integral[l] / mass;
integral[2] / mass;
integral[3] / mass;

// inertia relative to world origin
inertia.xx = integral[5] + integrall[6];
inertia.yy = integral[4] + integral[6];
inertia.zz = integral[4] + integral[5];
inertia.xy = -integral[7];

inertia.yz = -integral[8];

inertia.xz = -integral[9];

// inertia relative to center of mass

inertia.xx -= mass * (cm.y * cm.y + cm.z * cm.z);
inertia.yy -= mass * (cm.z * cm.z + cm.x * cm.x);
(cm.x * cm.x + cm.y * cm.y);

inertia.zz -= mass
inertia.xy += mass
inertia.yz += mass
inertia.xz += mass

*

*

*

*

cm.x * cm.y;
cm.y * cm.z;
cm.z * cm.x;
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The format of the input vertices and triangle connectivity array is useful if the
input comes from triangle meshes that are also used for drawing. However, for even
greater speed you may exchange some memory usage by passing in a single array of
a more complicated triangle data structure that stores the three vertices and the cross
product of two edges. This format will avoid the indirect lookup of vertices, the vector
subtraction used to compute edges, and the cross product operation.

Implement the pseudocode for computing the mass, center of mass, and inertia
tensor for a polyhedron.

Implement the Mirtich algorithm for computing the mass, center of mass, and inertia
tensor for a polyhedron.

Set up a profiling experiment to compare the average time per polyhedron required
to compute the physical quantities.

2.6 ENERGY

This section is a brief one and describes the concepts of work, kinetic energy, and
potential energy. The concept of kinetic energy is important in the development of
Lagrangian dynamics. The concept of potential energy is important in the realm of
conservative forces.

2.6.1 WORK AND KINETIC ENERGY

Figure 2.22

Consider a particle of mass m that is constrained to travel along a straight line whose
direction is the unit-length vector D. Suppose that a constant force F is applied to the
particle while it is moving. Figure 2.22 illustrates the situation.

If L = |x; — xp] is the distance traveled by the particle over a given time interval,
the work done by the force on the particle over that time is defined to be the product

A force applied to a particle traveling on a straight line from position x; to x;.
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EXAMPLE
2.10

of the magnitude of the force along the direction of the line and the distance traveled.
In the simple illustration of Figure 2.22, the work is

W = (|F| cos §)L = (F - D)L (2.103)

Observe that the component of the force in the direction of the line is (F - D)D. The
work is just the magnitude of that component times the distance traveled.

The path of the particle may very well be any smooth curve x(¢). In this case
we resort to the usual infinitesimal argument from calculus. Over an infinitesimal
amount of time d¢, the path looks like a line, and that line is the tangent line to
the curve at the initial position of the particle. The infinitesimal amount of distance
traveled by the particle during this instant of time is ds, the element of arc length.
The direction at the initial instant of time is the unit-length tangential direction
D = dx/ds. Using equation (2.103) as our motivation, the infinitesimal amount of
work dW done by the force on the particle is

dW:(F-D)ds:(F-d—X) ds
ds

The total work done by the force on the particle as it travels over an arc length L is

L
w =/ F- d_x ds (2.104)
0 ds

However, we usually know the position as a function of time ¢ rather than as a
function of arc length s. The infinitesimal amount of work is

dW=(F-d—x)ds=(F'dx)=(F°gE)dt
d dt

N

The total work done by the force on the particle as it travels over a time interval [¢, ¢;]
is

4 H
W=/ F'@-dt=/ F-vd: (2.105)
fo dt Iy

where v(¢) is the velocity of the particle.

In this development it is important to keep in mind that the position x(¢) may not
be entirely controlled by F. Other forces can be acting on the particle at the same time.
For example, the particle might be subject to gravitational force and F represents a
wind force. The quantity W in equation (2.105) represents the work done by the wind
on the particle, but does not include work done by gravity.

A projectile of mass m follows a parabolic path x(¢) = (¢, 0, (100 — t)) for ¢t €
[0, 100]. The projectile is subject to gravitational force F = (0, 0, —mg), where g > 0
is a constant. Compute the work done by the force over the specified interval.
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The velocity of the projectile is v = (1, 0, 100 — 2¢). The work done by the force is

100
W:/ F-vdt
0

100
= / (0,0, —mg) - (1,0, 100 — 2¢) dt
0

100
=2mg / t —50dt
0

EXERCISE %l A particle travels in the circular path x(z) = (r cos(wt), r sin(wt), 1). A constant

2.16

wind force is applied to the particle, F = (1, 1, 1). What is the work done by the wind
on the particle during one period of rotation 0 <t < 27 /w? What is a time interval
over which the work is a maximum? Repeat the experiment, but for a time-varying
wind F=(t, ¢, 1). ®

If F is the net force on a particle and it does fully control the position, the integral
in equation (2.105) can be integrated in closed form for a constant mass particle. In
this case Newton’s second law allows us to use F = ma:

f "“d (m m
W= a-vdt= — [ =IV*) dr=—= (Iv@) > = Iv(t))?
[ [ (BwR) ar="% (iveor - weor?)

0

The quantity W represents the work required to change the velocity of the particle
fromv(zy) to v(z)). If the particle starts out at rest, that is, v(¢;) = 0, then W is referred
to as kinetic energy. In general, kinetic energy for a moving particle is

T = %MZ (2.106)

By construction, kinetic energy is measured with respect to an inertial frame of
reference. That frame is used to specify the position x(z) of the particle.

Kinetic energy is additive in the sense that for a system of particles, the kinetic
energy of the system is the sum of the kinetic energies of the individual particles. For
continuous material, the addition is in the sense of integration over a curve, surface,
or volumetric region, just as we have seen in other parts of this chapter.

2.6.2 CONSERVATIVE FORCES AND POTENTIAL ENERGY

The work done by a force on a particle traveling along a path x(z) for t € [t;, 1] is
defined by equation (2.105). The particle starts at xy = x(fp) and ends at x(t}). By
definition, the work done on the force depends on the path taken by the particle
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EXAMPLE
2.11

EXAMPLE
2.12

between the end points x; and x;. In many physical situations, though, the work is
independent of the path given the right type of force. When this happens, the force is
said to be conservative.

A particle is allowed to move between two points (xg, ¥y, zg) and (x}, y;, z;) along a
smooth path (x(¢), y(t), z(t)) connecting them, ¢ € [t,, #;]. The particle is subjected
to a gravitational force F = —mgk. The work done by gravity is

]
W:/ F-vd:
Iy
1

t
_ f —mgk - (:(1), $(1), 2(1)) dt
fo

I
= —mg/ z(t) dt

)

(2.107)

= —mg(z(t)) — z(t))

Regardless of how you choose the path connecting the two points, the work is always
a constant times the difference in heights of the end points. That is, W is independent
of the path of the particle and gravitational force is a conservative force. #

One end of a spring is attached to the origin (0, 0, 0) and the other end is attached
to a particle whose position x(¢) varies with time, ¢ € [fy, #;]. The spring constant is
¢ > 0 and the unstretched spring length is L. The force exerted on the particle by the
spring is F = —c(x — €) where £ = Lx/|x], a vector of constant length L in the same
direction as x. The work done by the spring force is

h
W:/ F-vdt
fo
1

t
=/ —c(x—4¢€) - xdt
fy

T
= / 1 —c(x—0) - (x—4£)dt (2.108)
)

n
=—c/ 41 Ix — £|? dt
dt 2

fo

= —(c/2)(Ix(1y) — £@)]* = [x(tg) — L(1p)]*)
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The introduction of (x — £) - £ in the integrand is valid since (1) x — £ is parallel
to £ and (2) £ is perpendicular to £ because £ - £ = L? implies £ - £ =0. That is,
(x — £) - £=0. The work depends only on the end points and not on the path
connecting them, so the spring force is a conservative force.

A particle moves from (0, 0, 0) to (1, 1, 0) and is subject to the spatially varying force
F = (y, —x, 0). This force is not conservative. The work done by the force when the
particle travels along the line segment (¢, ¢, 0) for ¢ € [0, 1] s

1 1
Wﬁi/F‘Wﬁ=/(h—hm'aJﬁﬁﬂ=0
0 0

The work done by the force when the particle travels along the parabolic arc (¢, ¢2, 0)
fort € [0, 1]is

1 1 1
W2=/ F-vdt=/(t,—t,O)-(l,Zt,O)dt:/ t—22dt =—1/6 # W,
0 0

0

The work done by the force depends on the path taken by the particle. =

Other examples of nonconservative forces include friction, viscous drag when
moving through a fluid, and many forces that have explicit dependence on time and
velocity.

Consider a system of p particles with masses m; and positions (%;, ¥;, z;) for
1 <i < p. These positions are referred to as the reference system. Conservative forces
F; are applied to the particles in a general system, where the positions are (x;, ¥;» z;),
and work is measured as the general system is transferred to the reference system.
The work done by the forces in transferring the system is referred to as the potential
energy that the general system has with respect to the reference system. This quantity
is denoted V and is defined by

p 1
v=-3Y /O v, dt (2.109)
i=1

The paths implicit in the integration connect (%;, ¥;, Z;), at time 0, to (x;, ¥;» z;),
at time 1. Because the forces are conservative, any smooth paths that are parame-
terized by ¢ € [0, 1] will do. The potential energy is therefore dependent only on the
general system; the reference positions are assumed to be constant. That is, as a func-
tion we have

V=V&, ¥z Xp> Yp» zp)
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EXAMPLE
2.14

so that V is dependent on 3p variables. From calculus the total derivative of V' is

v av av av v v
dV = Sdx) + Sdy + c—dzy o+ —dx, + —dy, + —dz,
3x1 Byl Z 8xp 3yp BZP

14
aV A% A%
= —dx; + —dy; + ——dZi
(ax,» Uy T b )

i=1
In terms of infinitesimal quantities, the potential energy is

p p
AV =-3F dg=-3 (indx,- + Fydy; + indz,)
i=1

i=1

where each force is specified componentwise as F; = (Fy, F,, ). In order to be
independent of path, the right-hand sides of the last two differential equations must
be equal. Thus,

av A% 1%
Fo=——, F,=——, F, ==
! ax; ! ay; ! az;
for all i. In compact vector notation, F; = —V,;V, where V; denotes the gradient

operator with respect to the three variables x;, y;, and z;.

By definition, if F is a conservative force, there is a potential energy function V for
which F = —V V. But how do you know if you have a conservative force? The answer
lies in the same condition. If it were the case that (F;, F,, F3) = F= —VV, then

v F av A%

Fil=——o,
T ax T gy 3z

Assuming V has continuous second-order partial derivatives, the mixed partials are

equal. That is, 32V /3xdy = 3*V /dydx, 8%V /9xdz = 3°V /9zdx, and 8%V /dydz =

82V /3z3dy. In terms of the function components, it is necessary that

0 _0F,  OR_0R . R _0F

= R (2.110)
oy dax dz ax dz ay

Equations (2.110) are referred to as an exactness test. As it turns out, these conditions
are sufficient as well as necessary for the existence of a potential energy function
V for which F = —V V. If the conditions in the equation are satisfied, F must be a
conservative force.

In Example 2.11, the gravitational force is (F}, F,, F3) = (0, 0, —mg), a constant
force. The conditions in equation (2.110) are trivially satisfied since all the derivatives
of the F; are zero.
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In Example 2.12, the spring force is (Fy, F,, F3) = —c(x, y, z). The exactness condi-
tions are satisfied:

3R _,_OF AR _ _OF  F_ O
dy ax’ oz ox 82__3y
so the force is conservative.

In Example 2.13, the force is (F}, F,, F3) = (¥, —x, 0). This force is not conservative
since

The other two exactness tests are true, but as long as one of the three fails, the force
is not conservative.

One very important consequence of having a conservative force is that the total
energy of the system is conserved. Let F(x) be the force and let V (x) be the potential
energy function for which F = —V V. The kinetic energy is T = m|x|?/2 and the total
energy is

1.
E=T+V=£m|x|2+V(x) (2.111)

The time derivative of the energy is

dE _d(T+V)

=mx-X+x-VV=x-(mx—F)=0
dt dt ( )

where the last equality follows from Newton’s second law, mx = F.
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hapter 2 introduced the topic of kinematics, the motion of a body along a path

in the absence of external forces. Given the position, we can compute velocity
and acceleration by differentiation. This chapter is about dynamics, the interaction
of rigid bodies when forces and torques are present in the physical system. The
classical approach in an introductory physics course uses Newtonian dynamics and
the famous formula of Newton’s second law of motion, F = ma, where m is the
constant mass of an object, a is its acceleration, and F is the applied force. The applied
force determines the acceleration of the object, so velocity and position are obtained
by integration, exactly the opposite process we saw in kinematics. The coverage of
Newtonian dynamics is brief, yet sufficient to support the general-purpose physics
engines that use Newton’s second law for simulation, as described in Chapter 5.

The majority of this chapter is on the topic of Lagrangian dynamics, a frame-
work for setting up the equations of motion for objects when constraints are present.
In Lagrangian dynamics, the equations of motion are derived from the kinetic en-
ergy function and naturally incorporate the constraints. A Newtonian formulation
requires that forces of constraint be part of the term F in the equation of motion;
the constraint forces are sometimes difficult to derive. Frictional forces are difficult
to deal with in a general-purpose physics engine that uses Newtonian dynamics. In
the Lagrangian approach frictional forces are easier to deal with. An entire section
is devoted to various examples involving objects moving on a rough plane, that is, a
plane whose material causes frictional forces.

A game designer’s specific knowledge of what the game physics will entail can ex-
ploit that knowledge to good effect by formulating the simulations using Lagrangian
dynamics. The result is that the computational time of the simulation is reduced com-
pared to a general-purpose system using Newtonian dynamics. Even more important

87
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is that the robustness problems with enforcing nonpenetration in a general-purpose
engine are reduced. In the situation where you explicitly know the constraining sur-
face on which an object must lie, you can periodically check if numerical round-off
errors have caused the object to be slightly off the surface, then correct the position
accordingly. On the other hand, a simulation modeled with Lagrangian dynamics is
specific to each physics application, thus requiring more programming development
time. My choice is to spend more time on the programming and gain the faster and
more robust applications. In addition, Euler’s equations of motion are discussed in
this chapter because a few problems are more naturally formulated in terms of Euler
angles than in terms of other dynamics systems.

The classic textbook covering mechanics, including the topics mentioned in this
chapter, is [GPS02]. The text is on the heavy side with mathematics compared to what
you see in a standard physics course. In my opinion, the ultimate textbook for La-
grangian dynamics is a title in the Schaum’s Outline Series, [Wel67]. The presentation
shirks away from many direct derivative computations and uses the infinitesimal ap-
proach that is popular among physicists to motivate some of the derivations (not my
personal preference), but the book has a lot of good examples for you to try. If you
are able to understand these and correctly work the exercises, you will be in a very
good position to solve any similar problem that comes your way in an application.

3.1 NEWTONIAN DYNAMICS

EXAMPLE
3.1

The section on kinematics describes the position, velocity, and acceleration of a
particle in motion along a curve and having no external forces acting on it. Dynamics,
on the other hand, describes how the particle must move when external forces are
acting on it. I assume that the mass m of the particle is constant over time, so Newton’s
law states that F = ma, where F are the external forces acting on the particle and a is
the acceleration of the particle. If there are no external forces, F = 0, the acceleration
is a(¢) = 0. This equation integrates to v(¢) =v,, a constant. That is, the particle
travels with constant velocity when the acceleration is zero. Integrating again yields
r(t) = tvy + rg, where ry is the initial location of the particle at time zero. The path
of motion is a straight line, as expected when no forces act on the object.

In the case of kinematics, we postulated the path of a particle and computed the
velocity and acceleration from it by differentiation. In the case of dynamics, we are
specifying the acceleration and must integrate to obtain the velocity and acceleration.
This is not always possible in a closed form, so many problems require numerical
methods to approximate the solution.

Let us take a look at a classic problem of motion of the Earth about the Sun. The
equations describing the motion are called Kepler’s laws, after Johann Kepler, who
established the first two laws in 1609 and the third law in 1616. The basis for the
equation is that the Sun exerts a gravitational force on the Earth according to an
inverse-squared-distance law. Let M be the mass of the Sun and m be the mass of
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the Earth. Let r be the distance between the Earth and Sun. Let the position of the
Sun define the origin of the coordinate system. The force exerted is

GMm

F=
r2

R

where G is a positive constant whose value is determined by empirical means. The
vector R is unit length and in the direction of the vector from the Sun to the Earth.
The minus sign states that the force on the Earth is attracting it toward the Sun.
Newton’s law states that the acceleration a of the Earth is determined by

V=——-r (3.1)
Now consider:

d s GM GM

— (XV)=rXv4+rxv=rXx|——r)|+vxv=——-—0rxr+vxv=0
dt r3 r3
This implies r x v = ¢, a constant vector for all time. Observe that the angular
momentum of the Earth is r x mv, so the implication is that the angular momentum
is a constant vector for all time. Another immediate consequence of the constancy is
that

O=r-rxv=r-q

The motion is necessarily within a plane containing the Sun’s location and having
normal vector ;.

Kepler’s First Law Equal areas in the plane of motion are swept out in equal time intervals.
To see that this is true, consider an infinitesimal area dA swept out by moving the
Earth from current position r by an infinitesimal change in position dr. Figure 3.1
illustrates this.

The infinitesimal area is that of a triangle with two sides r and r 4 dr. The area of the
triangles is half the magnitude of the cross product of two edges, so dA = |r x dr|/2.
On the macroscopic level,

. 1 . 1 1
A=—rxrf|==]rxv|l==]|c.
2 2 2

The rate of change in the swept area is constant, so equal areas are swept out in equal
time intervals.
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(Example 3.1
continued)

Figure 3.1

The infinitesimal area dA swept out by motion of the Earth over an infinitesimal
change in position dr. The swept region is effectively a triangle whose sides are r and
r+dr.

Kepler’s Second Law The orbit of the Earth is an ellipse with the Sun as one of the focal points.

To see that this is true, consider:

E(vxco) =V X ¢

GM . .
=X (r x (rR+7R))

GM .,
=——rx (rr xR)

=—-GMR x (R x R)
=-GM ((R-R)R— (R-R)R)

= GMR

Integrating yields v x ¢, = GMR + ¢; for some constant vector ¢;. Define y, = |}
and y; = |¢;| and observe that
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}’02=|C0|2
=rxv-g
=r-vxc
=r-(GMR+¢)
=GMr+r-¢
=GMr +ry;cosf

where 6 is the angle between r and c¢;. In polar coordinates (r, 6), the equation is
solved for r as a function of 9:

)’02 ep

r@) = =
GM+ y,cos8 14 ecosf

(3.2)

which gives an ellipse with eccentricity e = y;/(GM) and where p = y02/ ;. The
major axis length is 2a = r(0) + r(7r) = 2pe/(1 — ?). The minor axis length is 2b =
2a+/1 — e?. The area of the ellipse is A = wab.

Kepler’s Third Law The square of the period of the motion is proportional to the cube of

EXERCISE M
3.1

EXERCISE {H
3.2

EXERCISE fH
3.3

SOURCE CODE
KeplerPolarForm

the major axis length. The proof is as follows. The areal rate of change is A=1y,/2.
Integrating over one period of time ¢ € [0, T] yields the total area of the ellipse,
A = y,T /2. Therefore, the period is

_2A_ 2md’V1-¢&2 2 sp

T = =
Yo GMa(l—e?) ~GM

or T? = Ka? for a constant of proportionality K. &

Convert equation (3.2) to Cartesian coordinates and verify that it does in fact repre-
sent an ellipse. *

Solve equation (3.1) using a differential equation solver. The left-hand side of that
equation is replaced by ¥, so the equation is second-order in position. Use GM =1
for the right-hand side of the equation. Choose an initial position r(0) and an initial
velocity £(0) that are perpendicular vectors. =

Consider the polar coordinate form for acceleration given in equation (2.13). We saw
in equation (3.2) that the motion of the Earth is along an elliptical path that defines r
as a function of 8. However, we had not considered how 0 varies in time. This exercise
is designed to give you that information.

1. Derive two second-order differential equations, ¥ — r§* = —GM/r? and rf +
2r6 = 0, that are the equations of motion in polar coordinates.
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EXAMPLE
3.2

2. Show that the equation with § implies & = Mr?d is a constant. The value &
is angular momentum, so this physical system exhibits conservation of angular
momentum as well as conservation of total energy. Since « is a constant, argue
that § always has the same sign, in which case r may be thought of as a function
of 6, r =r(6).

3. Use the expression for « to eliminate 6 in the equation with # to obtain ¥ —
a?/(M?r’) = —G M /r?. This may be solved numerically for r(¢), but you might
find that the singularity at r = 0 causes quite a fuss!

4. The potential energy is V(6) = —GM/r. Equivalently, r = —GM/V. I empha-
sized earlier that I am thinking of r as a function of 6, so V is also a function of
0. Its first derivative with respect to 8 is denoted V' and its second derivative with
respect to 6 is denoted V”. Dots above variables will still be reserved to indicate
time derivatives.
(a) Show that 7 = GMV'6/V2=aV'/(GM?).
(b) Show that ¥ = aV"8/(GM?) = a?V"V2/(G*M>).
(c) Use the last result in ¥ — a?/(M?r®) = —GM/r? to obtain V" +V =
—G*M*/a?. Show that the general solution to this equation is V(#) =
co sin(8) + ¢, cos(8) — G*M*/a?.
(d) Determine ¢, and ¢, from the initial data rg, 7o, 6y, and 6.
5. From conservation of momentum, show that § = «V2/(G*M?).

6. Using the formula for V(6) and the differential equation for 6, conclude that

2aq04

2
- # (co sin(9) + ¢, cos(8) — ) . 6(0) =86,

The result of this exercise is a first-order nonlinear differential equation that can be
solved by standard numerical methods. Can you solve for 6(¢) in closed form?

Here is a second example and it is formulated for motion of a particle relative to the
moving frame of a rigid body. Newton’s second law is F = ma, where the acceleration
a is given in equation (2.44). The problem is to determine the path of motion of a
particle that is freely falling toward the Earth, the rigid body, subject only to gravita-
tional force. If the Earth were not rotating, the path of motion would clearly be a line
containing the center of the Earth and the initial particle location. Fortunately, the
Earth does rotate, so the problem is a bit more complex!

The world coordinate system is chosen so that its origin is at the center of the Earth.
One of the coordinate axes is chosen to be in the direction from the Earth’s center
to the North Pole. The Earth rotates about this axis with angular velocity w. Since
we are dealing with a single particle, the center of mass is the particle’s location
and, subsequently, the origin of the moving frame. The moving frame directions are
chosen to be those of spherical coordinates, & = P, & = Q, and &§; = R. The force on
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the particle due to gravity is —mgR, where m is the mass of the particle and g > 0
is the gravitational constant. Since R points away from the Earth’s center, the minus
sign in the force expression indicates the Earth is attracting the particle toward it.
Equation (2.44) describes the path r of the particle relative to the Earth’s center.

We will take the usual liberties that you see in many physics applications. The equa-
tion of motion is quite complicated, so we will make a few simplifying assumptions
that lead to a more tractable problem. First, let us assume that the time interval for
which we want to know the path of motion is small. Over this time the difference
between the particle and the world origin A is effectively a constant. If it were identi-
cally a constant, then A = 0. We also assume that the angular velocity does not change
significantly during the time interval. The mathematical approximation is w = 0. Fi-
nally, the number of seconds per day is approximately 86,400. The angular speed is
|w| = 27 /86,400. The radius of the Earth is approximately 6440 kilometers. Assum-
ing the particle is relatively near the Earth’s surface, its position r is of the order of
magnitude of the Earth’s radius. The magnitude of w x (w x r) is of the order of
Iw|?|r| = 3.4 x 1075, a very small number. The mathematical approximation to this
termisw X (w X r) =0.

Using all the approximations in the equation of motion leads to

D%r

Dr
D_[Z = —2w X E - gR (33)

This is a linear second-order system of ordinary differential equations in the un-
known r(z). If we supply an initial position ry = r(0) and an initial velocity vy =
Dr(0)/Dt, the equation can be solved in closed form. We may integrate equation
(3.3) to obtain

D

D—: =vyg—2w X (r —rg) — gtR=—-2w xr+ (v0+w X ro) —gtR (3.4)
Define w = wu where u is the normalized vector for w and @ = |w|. Using methods
for solving linear systems of differential equations, equation (3.4) can be solved as

r = Rot(—2wt, wry + (vo + 2w X ro) t — (gt?/2)R (3.5)

where Rot(8, u) denotes the rotation matrix about the axis with unit-length direction
u by the angle . Observe that if there were no rotation, that is, w = 0, equation (3.5)
is instead r = ry + vy — (g72/2)R, exactly the equation you see in standard physics
for a freely falling body where the Earth’s rotation is considered neglible. =

" Suppose that the particle represents a booster rocket that was fired from Cape
Canaveral. Suppose the rocket traveled vertically upward to an altitude of 10 kilo-
meters. At that point the rocket starts falling to Earth. Assuming the physical model
of the last example applies for all time, how long does it take for the rocket to reach
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EXAMPLE
3.3

FoucaultPendulum

Figure 3.2

This example is a model of the Foucault pendulum. The pendulum consists of a
particle of mass m attached to one end of a wire of length L of negligible mass. The
other end of the wire is attached to a joint at position O. The joint is assumed to
be frictionless. The only forces acting on the particle are gravity and the tension in
the wire. Figure 3.2 shows the pendulum relative to a fixed frame with origin 0. We
assume the Earth is rotating and that its angular velocity w is in the direction from
the center of the Earth C to the North Pole, just as in the previous example.

Pendulum

(®)

The Foucault pendulum. The pendulum joint is at O, the mass is m and is attached
to the pendulum rod of length L. The gravitational force acts in the direction k, a
unit-length vector from the joint to the center of the Earth.

The fixed frame vectors are k, a vector in the direction from O to the center of the
earth; j, a vector in the plane of w and k; and 1, a vector pointing out of the page
and perpendicular to the other two frame vectors. The mass at the end of the wire is
represented in spherical coordinates relative to O. The position is

r=LR(0, ¢)

where the angle ¢ is measured between the wire and the vertical k and the angle 9 is
measured from the 1 axis in the (¢, 7) plane as shown in Figure 3.2(b). The angular
velocity is represented in the fixed frame as

w=w [(cos A)J — (sin A)k]

where w is the angular speed and 4 is the latitude measured from the equator.

The simplifications that were made in the last example are also made here. The
gravitational force is approximately mgk and the tension in the wire is —mtR for
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some scalar T > 0. The equation of motion for the pendulum is

D% Dr
Z — =_2wx —+4+gk—1R 3.6
dr? dt & (3.6)

Equations (2.32) and (2.33) apply, but with p = L, a constant for all time. The
velocity is

%ZL[(ésin(p)P—(d'))Q]

and the acceleration is

D%r

e = L[(G sin ¢ + 26 cos ¢) P

+ (92 sin ¢ cos ¢ — ¢) Q- (<132+ 62 sin? ¢> R]

These may be substituted into equation (3.6) to obtain three equations, one for each
spherical frame direction.

The first equation of motion is

2
L@ sin ¢ +26¢ cos ¢) =P - ‘3,_;

D
=—2wxd—r-P+gk-P—rR-P
t

=——2w—ExP
dt

=—2w - (L4R)
=—2L$ (w-R)

= 2Lwe (— cos A sin 6 sin ¢ + sin A cos ¢)

The L terms cancel, so the first equation of motion has been simplified to

6 sin ¢ + 206 cos ¢ = 2w (— cos A sin O sin ¢ + sin A cos ¢) (3.7)
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(Example 3.3
continued)

The second equation of motion is

2
L(0*singcos¢p — ) =Q - D
dr?

=—2W><%:--Q+gk-Q—rr-Q

Dr
=-2w-: — X Q+ gsin
” Q-+ gsing

= —2w - ((L§ sin $)R) + g sin ¢

=2Lw0 sin ¢ (— cos A sin 6 sin ¢ + sin A cos ¢) + gsing

Dividing by the L term, the second equation of motion simplifies to

6% sin ¢ cos ¢ — ¢ = 2wh sin ¢ (— cos A sin O sin ¢ + sin A cos @) + —i— sing (3.8)

The third equation is

2
L@+ Psintg) =R - 2F
dt?
=—2WX21:'R+gk'R—‘L'R'R

dt
=2Lw - [($)P+ (O sin)Q] + g (k-R) — 7

which simplifies to
=1L [¢32+0'23in2¢+243 (w-P)+2ésin¢(w-Q)] +gk-R) (3.9

This is an equation of constraint and says that for static equilibrium, the tension in
the wire, —mTR, must have T satisfy the equation. Therefore, only the two equa-
tions (3.7) and (3.8) control the motion through the time-varying angles 6(¢) and
¢ (1). (Figure 3.3—also Color Plate 3.3—shows some screen shots from the Foucault
pendulum application found on the CD-ROM.)
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(b)

The Foucault pendulum. The figures show the path of the pendulum tip in the
horizontal plane. New points on the path are colored white, but the intensity of the
older points along the path gradually decreases. (See also Color Plate 3.3.) i
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EXAMPLE ' The simple pendulum model is obtained by neglecting the angular velocity over a
3.4 small period of time. The angle 6 is constant and the angular speed w may as well

. g .
+ =sing =0
¢ 3 ¢

half-period. So what is this time 72
Multiply equation (3.10) by 2¢ to obtain

O=2<ﬁ<}5+2fg¢sin¢=%(¢32—2fgcos¢>

An integration leads to

P = 27‘5: (cos ¢ — cos )

is initially decreasing in time,

_\/2_g (cos ¢ — cos ¢0)
L
In differential form, we have

,/cos¢—cos¢0 L

d¢ 2_g dt

Integrating yields

[t
b Jeos ¥ —cosg VL
Since we require ¢(T) = —¢y,

)

oo 1/cosW—cosq&o L

Solving for the time,

be assumed to be zero. Under these assumptions, equation (3.7) is a tautology and
offers no information. Equation (3.8) is a single nonlinear differential equation in ¢:

Let the initial conditions be ¢ (0) = ¢, > 0 and ¢(0) = 0. That is, the mass at the end
of the wire starts off at some nonzero angle from the vertical and is released with
zero speed. Since the joint of the pendulum is frictionless, your intuition is that for
some future time T > 0, the angle ¢ (T') = — ¢, the motion is periodic, and T is the

We may take the square root and choose the appropriate sign to indicate that the angle
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(3.11)

2L (%o
\/_/ ,/cosw—cosd)o \/7/ ,/c051//—cos¢0

Chapter 9 includes a section on the stability of numerical solutions that solve differ-
ential equations. In particular Example 9.1 is provided for a stability analysis of the
simple pendulum. It is not as easy as you might think to obtain a robust solution that
exhibits periodic behavior.

Under the assumption that we want the pendulum to continue swinging with no
other external forces acting on it, including friction, there is no reason to solve the
problem for more than one period of oscillation. The differential equation can be
solved over one period to produce a sequence of sampled angles. Angles for other
times during that period can be interpolated from the samples, and we can use
periodicity to calculate times larger than the first period. In order to proceed, we need
to calculate the half-period T, the time difference between the two angles where the
pendulum has stopped. Once known, we can use a stable numerical method to solve
the differential equation over that half-period, store the computed samples for use by
the application over its lifetime, and use periodicity and interpolate as needed.

The integral in equation (3.11) is not solvable in closed form. The integral is improper
since the integrand becomes infinite at the upper limit of integration; that is, when
Y approaches ¢. Such integrals must be split into two integrals, the first integral
numerically integrated by standard methods. The integrand of the second integral is
approximated by some function to remove the singularity at the upper limit. Equa-
tion (3.11) is split into

$o—¢ dyr $o dyr

S I — + A S ——
V/€os ¥ — cos ¢ $o—c /€COS Y — cOS ¢y

for a sufficiently small ¢ > 0. The quadratic approximation from the Taylor series for
cos ¥ expanded about ¢ is

cos 8 = cos Py — (sin @) (¥ — ) — %(COS b)) (¥ — ¢0)2

Substituting this in the second integrand and making the change of variables z =
¢y — Y leads to the approximation:

d

é z
/¢0—s J/cos 1// — cos Y /0 /(sin )z — (cos ¢)z2/2

2 (n . _1( ecosdbo))
= — —sin 1——
cos ¢y \ 2 sin @,
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(Example 3.4
continued)

EXERCISE M
3.5

EXERCISE H
3.6 '

As g approaches zero, the approximation (and integral itself) goes to zero. You need
to choose ¢ in your numerical methods so that the calculations in the first integral are
well behaved; that is, the denominator of the integrand stays sufficiently away from
zero to avoid introducing significant floating point errors. i

Selecting 2L /g = 1 and ¢, = /6, estimate T using numerical integration

Redo the derivation that led to the integral for 7 in equation (3.11) to take into
account that the initial speed is ¢(0) = qf)o > 0. That is, the mass of the pendulum
is initially positioned at a nonzero angle from the vertical and is then given a small
push further away from the vertical.

1. What is the time 7 > 0 at which the mass reaches its maximum angle from the
vertical? Hint: Notice that ¢(7) = 0. If ¢; = ¢(7) is the maximum angle, show

that
L¢?
o= cos™! (cos Py — ﬂ)
28

Subsequently show that

/¢1 dyr
T =
%o \/¢T§+ 2g(cos ¥ — cos ¢g)/ L

2. What is the half-period T > 0 of the pendulum? Hint: Use a numerical estimate
obtained from equation (3.11) when the initial data of the pendulum is ¢(0) = ¢,
and ¢y = 0.

Example 9.1 uses ¢y = 0.1, ¢ = 1, and g/L = 1. In your constructions of the current
example, show that 7 = 1.59 and T = 3.37 and compare to the numerical results
obtained by the Runge-Kutta method in Example 9.1 as some assurance that your
results are good approximations.

32 LAGRANGIAN DYNAMICS

Let us revisit the basic formulation of Newton’s second law. For a constant mass m
undergoing a force F, the motion of the mass over time is governed by

F=ma=mv=mx (3.12)

where x(t) is the position, v(t) = x(t) is the velocity, and a(r) = X(¢) is the accel-
eration of the mass at time ¢t. Each of these vector quantities is measured with re-
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Py T()

> X

The simple pendulum. The motion is constrained to a plane. The mass is located at
position X (#) at time ¢ and is always a fixed length L from the joint P. The angle
formed by the pendulum rod with the vertical is 6(¢). The curve of motion is a
circle with tangent T(¢) and outward pointing normal N(#). The only force acting
on the mass is gravitational, —mgj, where m is the mass of the particle, g is the
gravitational constant, and —j is the direction of the force (vertically downward).
The joint P provides no frictional force.

spect to some coordinate system. This system is referred to as the inertial frame. If
X = (x1, X3, Xx3) is the representation of the position in the inertial frame, the com-
ponents x|, x,, and x3 are referred to as the inertial coordinates. Although in many
cases the inertial frame is considered to be fixed (relative to the stars, as it were), the
frame can have a constant linear velocity and no rotation and still be inertial. Any
other frame of reference is referred to as a noninertial frame. Newton’s second law,
which we saw in equation (3.12), is simple to state and remember, but its simplicity
can disguise the complexity of the problem at hand. Consider the simple pendulum
problem from the last section, shown in Figure 3.4.

The only postulated force is gravitational, F = —mgj, where g is a positive con-
stant. You might be tempted to directly apply Newton’s second law to obtain the
equations of motion mX = —mg J. An integration of these will show that the mass
drops straight to the ground, which is not the correct motion! The problem is that
F must represent all relevant forces. The pendulum has an additional force, the force
that constrains the mass to be attached to the end of the rod, thus causing the mass to
move along a circular path over time. This force is referred to as a constraining force
or a reactive force. Newton’s second law requires that the constraining forces occur in
addition to the external forces applied to the mass. This example motivates what is
called Lagrangian dynamics. We will discuss this topic, then return to the pendulum
example to illustrate how to construct the Lagrangian equations of motion.
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3.2.1 EQUATIONS OF MOTION FOR A PARTICLE

From Newton’s second law, equation (3.12), we may compute the small amount
of work dW that is done by F when we move the mass at position x by a small
displacement dx. Recall from Section 2.6.1 that the work done is

dW =F -dx

The displacement of the mass and the force need not be in the same direction. Using
equation (3.12) we have

mX -dx=F-dx (3.13)

The right-hand side is the small amount of work done by the force for the given
displacement. The left-hand side is the corresponding small change in the kinetic
energy of the mass. Equation (3.13) is referred to as D’Alembert’s equation.

Let x = (x|, x5, x3) and F = (F}, F,, F3). With no constraints on the position,
the displacement can be in any direction. In particular, setting dx = and substi-
tuting into D’Alembert’s equation produces mX;, = mX - 1 =F - ¢ = F}. Similarly, the
displacement can be j or k, producing mx, = F, or mX; = F;. The three equations
written in vector form are mX = F, which is Newton’s second law. Of course this
should come as no surprise. The power of D’Alembert’s equation is in naturally sup-
porting the idea of constraints on the position, as we now demonstrate.

Motion on a Curve

Consider the simplest situation when the mass is constrained to follow a curve in
space. The curve may be parameterized by a variable g, say, x(g). The derivative
vector dx/dq is tangent to the path of motion. The small displacements dx can now
occur only so that the mass remains on the curve. In this sense the displacement is
infinitesimal. The infinitesimal displacements dx in D’Alembert’s equation may be
replaced by positional derivatives:

dx_p.dx

mX - =F-— (3.14)
dq dg

This equation will be reformulated, the construction requiring a few derivative
identities from calculus. An application of the chain rule yields

_dx_dxdg _dx,

_ - 3.15
dt dgdt  dq. (3.15)

Treating X as a formal function of both ¢ and ¢, we may compute the partial deriva-
tive of equation (3.15) with respect to g to obtain
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dx _ 39 (d_xq) = (3.16)
dg 0q \dgq aq
Another identity is
a (d_") _4 (‘L") g=2 (flfq> _ox (3.17)
dt \dg dg \dgq dq \dq dq

where the first equality is an application of the chain rule, the second equality treats
g as a variable independent of g, and the third equality uses equation (3.15). Finally,

the product rule,
1(d_d_)_d_d_+d_z(d_)
di \dt dq) di? dq dt dt \dg

produces the identity

xd_x=i<xd_x>_xi<£i_x_> (3.18)
dqg dt dq dt \dgq

Replacing equations (3.16) and (3.17) into (3.18) and multiplying by the mass m
yields

. dx d ( . 31'() . 0%
m:—=—|[mx-—)—mx-—
dg dt 0q aq

_4 (i <1m|5c|2)) _h <1m|x|2) (3.19)
dt \9qg \2 ag \2
oy
~dr \3g dq
where T = m|x|?/2 is the kinetic energy of the system. Replacing equation (3.19) into

equation (3.14) and defining F,, = F - dx/dq, we have the Lagrangian equation of
motion for a single particle constrained to a curve:

4 (E) T _ g (3.20)
dt \ 9q

The scalar value F is referred to as a generalized force. Although called a force, it
is not a force since it is not vector valued and since the physical units are not those
of a force. An important distinction between the Newtonian equations of motion,
equation (3.12), and the Lagrangian equations of motion, equation (3.20), is that the
force term in equation (3.12) includes external and constraining forces, but the force
term in equation (3.20) eliminates the constraining forces.
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EXAMPLE Returning to our simple pendulum problem, let us set up the Lagrangian equations

3.5 of motion. The mass is constrained to lie on a circle of radius L centered at P. The
position is parameterized by the angle 6, the constraint variable that we named g in
the general discussion of the Lagrangian equations of motion. The position is

x(0) =P + LN(9)

where N(6) = (sin 0, — cos 8) is normal to the circle and where T(8) = (cos 8, sin )
is tangent to the circle. The derivative of position with respect to 6 and the velocity
are, respectively,

D _pN 17 oand k=X dX0 4y
do dé dt  dé dt
The kinetic energy is

1. 1 .
T = ~m|x)* = ~mL*6*.
2 2

and its derivatives with respect to 8 and 6 are

91 =0 and 3—7-1— =mlL?*
20 a0

The left-hand side of equation (3.20) becomes
i (B_T) — E = —d— (mLzé) =mL%
dt \ 96 00 dt

The right-hand side of equation (3.20) is

Fy=F- Z—z = (—mg]) - (LT) = —mgL sin 0

Equating the left-hand and right-hand sides produces mL%) = —mgL sin 6, or § +
(g/L) sin 6 = 0, just like we derived in equation (3.10). *

A bead of mass m is attached to a frictionless wire whose shape is defined by the spiral
curve x(q) = (g, % ¢°). The bead is subject to the gravitational force F = —mgk,
where g is a positive constant. Initially, the bead is held fixed at (1, 1, 1), then released

CE CODE to slide down the wire. How long does the bead take to reach the origin (0, 0, 0)? #
BeadSlide

Motion on a Surface

We now constrain the mass to lie on a parametric surface, x(g;, g,), where g; and g,
are independent parameters. The infinitesimal displacements in equation (3.13) are
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now constrained to be tangential to the surface at the point in question. In particular,
the derivatives 9x/0q, and 9x/dq, are tangent vectors, so D’Alembert’s equation
becomes

mx?£=pa_x i=1,2 (3.21)

dq; dq;

The construction used in the case of motion on a curve applies to these equations
as well to produce the Lagrangian equations of motion. An application of the chain
rule to the velocity yields

g-dx_0xdq  Oxdg Ox. . Ox

= = + —g 3.22
di g dt | dg, dt  og T g, (3.22)

Treating % as a formal function of g, ¢,, ¢, and ¢,, we may compute the partial
derivative of equation (3.22) with respect to ¢; to obtain

x_ 2 (3’541 + iai@) . (3.23)
dg;  9g; \9q, 99, 9g;

Another identity is

4 (B_X) - (B_X) a+ 2 (B_X) g,  Bythechainrule
dr \dq, dg, \9q; 9g; \9q;

-9 (ﬁf) q,+ 9 (8_:() a4 Order of differentiation

dg; \9q; 99, \ 99, unimportant

= 9 (a—qu + 8_xq2) Differentiation is linear
dq; \9q; 9q,
ox . .

= Using equation (3.22)
9q,

A similar construction applies to differentiating with respect to ¢,. The two formulas
are jointly represented as

4 (f’l) = a_x i=12 (3.24)
dt \dq;/ dq;

Just as in equation (3.18), the product rule may be applied to obtain

;.d_":i(,-(.d_x)_,-(.i(d_") (3.25)
dg dt dq dt \dq
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EXAMPLE
3.6

SOURCE CODE
BallRubberBand

]

Replacing equations (3.23) and (3.24) into (3.25) and multiplying by the mass m

yields
( : 8;‘:) . 9%
) —mx e —
a4; 9g;
(5 (3se)) =, (st
ag; \2 dg; \2

(i)
1 \9g; ag;
where T = m|x|?/2 is the kinetic energy of the system. Replacing equation (3.26) into

equation (3.21) and defining F,, = F - 9x/dq;, we have the Lagrangian equations of
motion for a single particle constrained to a surface:

d <8T) aT
(%) -%==F,,
dt 8q, 8(]1 !

We have a ball constrained to lie on a flat, frictionless table. A rubber band is at-
tached to the ball, the other end attached to a point on the table. The rubber band is
unstretched when the ball is located at the same attachment point on the table. What
are the Lagrangian equations of motion?

3

P
D
]

@
S
SR
3
»

SIS

(3.26)

Q..IQ_

i=1,2 (3.27)

The ball has mass m. The forces on the ball due to the rubber band are assumed
to follow Hooke’s law: The magnitude of the force is negatively proportional to the
length of the rubber band. If the ball is pulled to stretch the rubber band, the force
is in the direction along the rubber band away from the ball and has magnitude cL,
where ¢ > 01is a constant and L is the length of the stretched rubber band. Figure 3.5
illustrates.

We may assume that the table surface is in the x,x,-plane, x; = 0, in which case x =
(x1, X, 0). The kinetic energy is T = m(xl2 + x%) and the force is F = —c(xy, x5, 0)
for some positive constant c¢. The constraint variables are g; = x; and g, = x,, so we
will use just the x-names rather than keep track of the g-names. The relevant partial
derivatives in equation (3.27) are

T
T_y, I

— =0,
ax; 0x,

aT . oT .
oL T MXp, oL T mXy,
8x1 8X2

d (3T> . d <8T) .
—\5z =m0 A\ =m0
dr \ dx, dt \ 0x,
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Figure 3.5 A ball of mass m on a flat table. A rubber band connects the ball to a fixed point on
the table. The force F due to the rubber band is shown. The position x of the ball is
shown together with its velocity x.

The generalized forces are

0

F'x1 = F . _X = —C(xl, _)Cz, 0) . (1, 0, O) = —c_xl
axl
0x

Fy,=F:— =—c(x},x,0) - (0,1,0) = —cx,
3x2

The Lagrangian equations of motion are therefore
mi; = —cxy, mX, = —cx,

Consequently, each component of the position adheres to simple harmonic motion
with frequency w = +/c/m. For an initial position x(0) = (p;, p,, 0) and velocity
x(0) = (v;, vy, 0), the solutions to the differential equations are x,(f) = p; cos(wt) +
(v1/@) sin(wt) and x,(¢) = p, cos(wt) + (v,/w) sin(wt). =

EXERCISE In Example 3.6, show that the path of motion is an ellipse. At what time will the ball
3.8 reach the origin? =
EXERCISE In Example 3.6, assume that the table is covered with a viscous fluid. Let the viscous

3.9 force on the ball be in the opposite direction of motion of the ball, say, G = —ax for
some constant @ > 0. What are the Lagrangian equations of motion? At what time
will the ball reach the origin?
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EXAMPLE
3.7

URCE CODE
BallHill

Figure 3.6

A ball is placed at the top of a hill whose shape is an elliptical paraboloid. The hill
is assumed to be frictionless. The only force acting on the ball is gravitational force.
The ball is slightly pushed so that it may slide down the hill. What are the Lagrangian
equations of motion? Figure 3.6 illustrates.

I -mgk

A ball is at the top of a frictionless hill. With a small push, the ball will slide down the
hill.

The vertical axis is assumed to be the x3-axis. The gravitational force is F = —mgk.
The height of the hill is a3 > 0, so the ground is considered to be the plane x; = 0.
The cross section of the hill on the ground is an ellipse with semimajor axis length a,
(in the x, direction) and semiminor axis length a, (in the x, direction). The equation
of the paraboloid is x3 = a3 — (x;/a;)? — (x,/a,)*. The ball is constrained to

2 2
X1 X2
X = X1, Xp, 43 — | — — | —
a a
o once again ¢, = x; and ¢, = x, and we will just use the x-names.

The time derivative of x3 is

2x1X 2X,X
| aXi X 2XpXp

X3 =

The kinetic energy is

2
=" (x12+x§ +x§) =22+ + (2"1"‘ + 2x2x2>
2 2 2 a?
1 2

The relevant terms in equation (3.27) are

aT _ 4mx1 (ﬂ + X2X2)

ox, at \ a} a3
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%))
7))

lxl +x1

. ) . . .
X2X) +x2 4x1 X1Xq XXy
d )JTa\a e

2 1 1 2

(%
(o (2
ACARMCRETCE

2
X _ (10,220
ax; a

2
_a_x ={0,1, - xzz
8x2 5

Foy=(-mgk) - =% = =252

X1 aj
ox  2mgx,
F,, =(—mgk) - — =
X ( g ) axz ag

The Lagrangian equations of motion are

xz)'c'2+5t§) n

.551+—7

4xl xl£1+x"%
aQ

»e 2
4x, (x1x1+x1

x25c'2 + x% _ ngl
ay g ) q

JC25C.2 +x22 _ 2gx2
a} a ) q

Observe that this is a coupled system of second-order differential equations since ¥,
and X, appear implicitly in both equations. The equations may be algebraically ma-
nipulated to obtain two explicit equations, one for each of the second derivatives.
(Figure 3.7—also Color Plate 3.7—shows some screen shots from the ball/hill appli-

cation found on the CD-ROM.)
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(Example 3.7
continued)

(b)

Figure 3.7 A ball rolling down a hill. Image (b) shows the path of the center of the ball as it rolls
down the hill. The ball rotates at a speed commensurate with its downhill velocity.




EXERCISE
3.10

EXERCISE
3.11

EXERCISE
3.12

EXERCISE M
3.13
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is circular, say, a; = a, = 1, the radial symmetry of the surface should stoke your
intuition and allow you to deduce that the ball will roll directly down the hill. That
is, the path in the x,x,-plane is along a ray that starts at the origin. If r is the radial
distance in the plane from the origin, prove that

2r(2r% —
i r(2r-—g)

1+ 4r2

Choose a; = 1 so that the intersection of the hill and the ground plane occurs at
r = 1. Numerically solve this differential equation for g = 1with the initial conditions
r(0) = 0and 7(0) = 1. Estimate the time T’ > 0 when the ball reaches the ground, that

In Example 3.7, verify that a solution to the system of differential equations is
(x1(8), x2(2)) = (vqf, vyt).

M\ Does this mean that the path of motion will always project to a straight line in the

plane x; = 02

Justify your answer.

In Example 3.7, include a second force in addition to the gravitational force. That
force is due to wind blowing on the particle with constant velocity W.

* Derive the Lagrangian equations of motion.

. Determine conditions on W that prevent the ball from rolling to the ground plane.

e

A frictionless metal chute is constructed in the shape of half a cylinder of radius R
and length L. The chute is aligned to be parallel to the x; axis. One end of the chute is
attached to the ground plane x5 = 0. The other end is raised by a height H. Figure 3.8
illustrates the situation: a ball is placed at the top of the chute and released (initial
velocity is zero). The only force acting on the ball is gravitational force. Construct
the Lagrangian equations of motion for the ball. What are these equations if you
modify the problem by coating the chute with a viscous 0il? Assume that the viscous
force is negatively proportional to the ball’s velocity. With or without viscosity, verify
that if the ball starts in the middle of the chute, the path of motion is a straight line.
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Figure 3.8

EXERCISE
3.14

EXAMPLE
3.8

(a) (b)

(a) A metal chute of length L, one end attached to the origin, the other end raised by
a height H. (b) Side view of the chute.

For the mathematically inclined: If the mass always lies on a frictionless height field,
the graph of the function x; = k(xy, x;), and the only force acting on the mass is
gravitational force, derive the Lagrangian equations of motion. #

Determining Constraint Forces

In general you can think of having a Lagrangian equation for each degree of freedom
in the system. When the particle is constrained to a curve, you have one degree of
freedom and one equation governing the particle’s motion. When constrained to a
curve, you have two degrees of freedom and two equations governing the motion.
Later, we will study particle systems with many degrees of freedom. Even though we
are in three dimensions, the degrees of freedom may very well be greater than three.
A Lagrangian equation occurs for each degree of freedom.

The construction that led to the Lagrangian equations applies equally well to ad-
ditional parameters, even if those parameters are not freely varying. However, the
generalized forces in these equations must include terms from the forces of con-
straint. These additional equations allow us to determine the actual constraint forces.

Consider the simple pendulum problem. In polar coordinates we can represent the
position as x(r, 6) = P + rN(6). The pendulum requires a constant radius, r = L for
all time. The radius is not free to vary. However, if we think of  as variable, we may
construct two Lagrangian equations. In this setting we can think of the constraint
force C to be an applied force. The positional derivatives are
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8—x=rT, 3—X=N, dx—a—xe+a—xr_r9T+rN
a6 or dt 90 ar

The kinetic energy is
P2 ()

and the relevant derivatives are

T _o

00
CL—
ar

T _ r2g?
00

oT .
— =mr

ar

4 (3—T> =m (rzé + 2rr‘é>

dt \ 30

d (3T) ..

— | =) =m¥

dt \ or
The generalized force for the 6 variable is

ax .
Fy=(—mgj+C)- £=—mgsm0+C-T
The generalized force for the r variable is
F,=(-mgj+C)- —-—mgcosB-{—C N
ar

The equations of motion are

d T
. (L)_E_Fe_mw+zmre +mgsing —C-T
dt \ 90 a0

and

0=i(£)—£—F =mF —mrf* —mg cos® —C-N
dt \ or ar

113
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(Example 3.8
continued)

These may be solved to obtain C - N =m(¥ — r6?) —mg cos@and C - T =m(rf +
2r6) + mg sin 6. Using the normal and tangent vectors as a basis, we have

C = (m(# — r6% — mg cos O)N + (m(rf + 276) + mg sin )T

When r = L for all time, we found earlier that L# + g sin 6 = 0 for all time. The
constraint function reduces to

C=—m(L6? + g cos O)N(H)

Just to verify that this makes sense, consider when the mass is at the origin and
not moving; that is, # =0 and 6 = 0. The constraint force is C = —mgN(0) =
—mg(sin(0), — cos(0)) = mg . It exactly balances the gravitational force —mg, as
expected.

Also observe that the normal component of the gravitational force is —mg cos 6. You
might have tried selecting —mg cos 8 as the constraining force, but the actual force
has the term —mL6? in addition to the gravitational one. The constraining force,
therefore, also must counter a force due to the motion of the particle itself. @

3.2.2 TIME-VARYING FRAMES OR CONSTRAINTS

If the frame of reference varies over time or if the constraining curve or surface varies
over time, the Lagrangian equations of motion in equations (3.20) or (3.27) still
apply. The method of proof is general, so covers both the curve and surface cases.
The constraining parameters may be written as a vector q. In the case of a curve,
the vector has one component q = (g,). In the case of a surface it is ¢ = (¢;, ¢5). In
general let m denote the number of constraining variables. The position as a function
of the constraining parameters and time is x(#, q). You need to be careful now about
what the time derivatives mean. The velocity vector is the total derivative of position
with respect to time. As such, you use ordinary differentiation with respect to ¢:

. dx
X=—

dt

But now the position has an explicit dependency on time that represents either the
reference frame moving or the constraining curve/surface changing. The rate of
change of position with respect to time in that sense is represented by the partial
derivative with respect to ¢. The chain rule from calculus relates the two:

m

dx 0x ox
— =1y —§ 3.28
dt ot ; dq; 9 (3.28)
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Observe that this is the analogy of the identity from equation (3.22). The extension
of equation (3.23) to our new situation is

ax 3 [0x < 0x . ax
_ (E n Z _q,.> = (3.29)

dq;  94;

The extension of equation (3.24) is

m
4 (x _9 (2 + Z 9 (X q; By the chain rule
dt Bq] ot Bq] = Bq, 3q]

9 (ﬁ) + Z g (8_x> g; Order of differentiation

dq; \ ot =7 9q; unimportant (3.30)
3 [0x < 0x |
=— | =+ Z —g; Differentiation is linear
aq] ot =1 q;
= 9% Using equation (3.28)
aq i

Since all the identities are used in deriving the Lagrangian equations of motion,
whether equation (3.20) or (3.27), these identities must equally apply when the po-
sition function has the explicit time component. The equations of motion for time-
varying frames or constraints are still

aT aT
4(oT) T _p, (331)
for all indices j.
EXAMPLE Let us revisit the simple pendulum problem that is illustrated in Figure 3.4 and whose
3.9 equations of motion are derived in Example 3.5. Rather than having the joint remain

fixed over time, we allow it to vary in time, say, P(¢). The position function is
x(t,0) =P(r) + LN()
The total time derivative is
%= dx 0dx  ox

=—=—+—0=P+ LT
dt ot 06

The kinetic energy is

T=% |P+L9T|2=% (P~1‘>+2L9’1’>.T+L2é2)
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(Example 3.9
continued)

EXERCISE
3.15

The relevant derivatives are

T _m <2L0'1'>- f"_T) — _mLiP-N
de

00 2
0T _m 2
5= (2LB-T+20%) =mL (B- T+ L6)
and
jt (8T> mL(B-T+P-T+L8)=mL (B-T-6B N+ Ld)

The generalized force is

Fy=(—mgj) - 39—( mgj) (LT)=—mgL sin

Combining these into equation (3.20) produces

LI +P-T+gsing=0

In the case where P(t) is a constant (the joint is fixed as in the original problem), we
obtain L6 + g sin 6 = 0 as before. However, you should also notice that if the joint
has constant linear velocity, P(t) = A + B, then we still obtain Lo+ gsinf =0.
This should come as no surprise since the frame of reference is moving with constant
linear velocity and is still an inertial frame.

Also curious is that if you were to hold the pendulum joint in the fingers of one
hand, hold the mass away from the vertical with the fingers of your other hand, then
drop the entire system, the angle formed by the mass never changes! Assuming no air
resistance, the joint acceleration is controlled by gravity, P = —gj. The differential
equation reduces to Lé 0.The initial angle is 0(0) =6, and the 1nit1al angular speed

M A rigid, frictionless rod of length L has one end attached to the origin of 3-space.

The initial direction of the rod is (1, 0, 1)/+/2. Thus, the other end of the rod is at
L(1,0,1)/ /2= (a, 0, a). Amass m is constrained to move on the rod and has initial
location at (b, 0, b), where 0 < b < a. One end of a spring is attached to the mass. The
other end is attached to a joint at location (c, 0, 0) for some positive constant c. The
spring is unstretched in this initial configuration. Figure 3.9 illustrates the setup.

The rod is rotated about the x;-axis so that the angle 6 between the rod and axis
remains constant. The rotation occurs with angular speed ¢ for ¢ > 0. Determine the
equations of motion for the mass. What is the position (0, d, d) of the mass when the
rod reaches the x,x;-plane for the first time?
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X3

0,a,a)

©,d,d)— x,

Figure 3.9  The initial configuration of a rigid rod containing a mass that is attached to a spring.

3.2.3 INTERPRETATION OF THE EQUATIONS OF MOTION

We now look at a simple, yet elegant way of interpreting the Lagrangian equations of
motion. The position of the particle constrained to a curve or surface isx(¢, q), where
q = (gq,) for a curve or q = (g, g,) for a surface. The partial derivatives of position
with respect to the ¢ j are tangent vectors. Unit-length tangent vectors are therefore

1 ox 1 9x

where the last equality defines L ; as the length of the partial derivative vector. The

component of acceleration of the particle in each of the tangent directions, denoted
by a,. is computed by projection onto the tangent:

1 . 0
aqua—Tj=—— <x~ _x)
Li\ 94,

_ ! (1 <£>_§1)
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We have used the Lagrangian equations of motion, equation (3.31), in this con-
struction. Now recall that the generalized force is
a
F, =F- = =L;F-T,
Define the quantity fo,=F-T), the projection of the force onto the tangent vector
T;. That is, qu is the component of force in the tangent direction. Thus, a
F 9 /{(mL j) or

9j

ma,, = f,, (3.32)

for each constraining variable g;. You should recognize the similarity to Newton’s
second law. As a matter of fact, the Lagrangian formulation is the natural extension of
Newton’s second law when the motion is constrained to a manifold (curve or surface).

3.2.4 EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES

Consider a system of p particles, particle i having mass m; and located at position
x;, 1 <i < p. D’Alembert’s equation (3.13) applies to each particle when displaced
by an infinitesimal amount dx; and influenced by a force F;. The derivations for
the equations of motion are applied for each such particle, to produce a Lagrangian
equation of motion for each constraint of interest:

d (0K _oKi o ox
where K; = m;|%;|?/2 is the kinetic energy of the particle. The total kinetic energy is

1 .
T=2Ki=E m;|%;|?

=1 i=1
and the total generalized force for the g; coordinate is
0x;
F = Z F, - —L
q; L
g 9q;

The Lagrangian equations of motion are obtained by summing those for the individ-
ual particles, leading to

d [T aT
—\|—=|-——=F, j=I (3.33)
dr \ 9q; aq; J
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Three masses m1, m,, and mj; are aligned vertically and are subject to gravitational
force. The first two masses are attached by a spring with spring constant ¢; and
unstretched length L. The second two masses are attached by a spring with spring
constant ¢, and unstretched length L,. The mass m; is located at z; vertical units
with respect to the ground plane. The particle system has three degrees of freedom
represented by the variables z;, 1 <i < 3. Figure 3.10 illustrates the situation.

bz
1 em l
-mgk
7+ m,
731 sy

Three masses aligned vertically and subject to gravitational force.

The force due to gravity on mass m; is G; = —m; gk for 1 <i < 3. The force due to
the spring connecting masses m and m, is

G4 = —Cl(Zl —Zp — Ll)k

The leading sign is negative as shown by the following argument. When the spring
is unstretched, the magnitude of the spring force is zero. The separation between the
two masses is z; — z, = L. If the mass m, is pulled upward to a new position z; + 4,
where § > 0, the force on m, must be in the downward direction. This force is —c,dk.
Since both ¢ and § are positive, the leading negative sign guarantees that the force is
downward. Similarly, the force due to the spring connecting masses m, and m; is

G5 = —02(22 — Z3 — Lz)k

The force on m is F; = G| + Gy4. The force on m, is F, = G, — G4 + Gs. The negative
sign on the G4 term occurs because an increase in z, causes the first spring to com-
press, in which case that spring must exert a force in the opposite direction. The force
on mj is F; = G3 — Gs. The negative sign on the G5 term occurs because an increase
in z3 causes the second spring to compress, in which case that spring must exert a
force in the opposite direction.
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(Example 3.10 The kinetic energy for the system is
continued)

3
1
T=- m;z?
PR

The relevant derivatives are 37 /0z; =0, 0T /3z; = m;z;, and d(dT/9z;)/dt = m;Z;
forl<i <3.

The Lagrangian equations of motion are therefore m;z; =F; - k, or

mizy=—c(zy—z;— L)) —mg
myZy = —cy(zg — 23— Ly) + c1(zy — 25 — L) —myg

M3z =Cy(z; — 23— Ly) —mag

Setting z = [z, z, z5]T, the system of equations in matrix form is

c c c¢;L -
1 1 0 1Ly
m m m
. 91 aqte o Ly — 1Ly
Z= — -_ — z4 | ———— —
my my m; my
c c
0 -2 -2 _c2L2 _
ms ms ms .

This is a second-order linear system of differential equations. Using methods from
linear systems of differential equations, it may be reduced to a first-order system by

setting
X = [x) X X3 Xy X5 Xg] = [21 2 23 21 2 23]
leading to
r o 0 0 10 07 B 0 ]
0 0 0 0 10 0
0 0 0 0 0 1 0
L
L W 0 00 0 am
a atrae 9 o454 Gly—aly _
mp mp my my
0 2 2 99 0 &Ly
- m3 ms - L ms A
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This is of the form x = Ax + b and may be solved in closed form using the methods
of linear systems of differential equations. The matrix A happens to be invertible, so
the solution is

x=elx— A7

where X, is an initial condition (see Section 8.5). However, this solution will involve
trigonometric functions. Since these are expensive to calculate, a numerical differ-
ential equation solver may be used instead to obtain a good approximation to the
solution while requiring less computational time to calculate.

EXERCISE {M Consider a modification of the simple pendulum problem, a double pendulum prob-
3.16 lem, so to speak. In addition to the mass m, attached to a rigid rod of length r;, a
second mass m, is attached via a rigid rod of length r, to the first mass. The second
rod pivots at the location of m; and does so without friction. Figure 3.11 illustrates.
OURCE CODE Construct the equations of motion as two coupled differential equations in the un-
DoublePendulum known angles 9,(¢) and 6,(¢).

Figure 3.11 A modification of the simple pendulum problem.

3.2.5 EQUATIONS OF MOTION FOR A CONTINUUM OF MASS

As expected, the Lagrangian equations of motion are also valid for a continuum of
mass, whether a curve mass, a surface mass, or a volume mass. The summations that
occur in the formulas for kinetic energy and generalized forces for particle systems are
replaced by integrals. Rather than write separate formulas for curve masses (single
integral), surface masses (double integral), and volume masses (triple integral), we
use a suggestive notation with one integral whose domain of integration R generically
refers to the correct type of object. The mass density is é and varies over R. The
infinitesimal measure of mass is dm = § dR, where dR is an infinitesimal measure of
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arc length, surface area, or volume, depending on what type of object R represents.
The kinetic energy is

1
T:—/Iv|2dm
2 Jr

where the world velocity is v. That is, the kinetic energy must be measured in an
inertial frame; in our case this frame is labeled as the world frame. For each constraint
variable g ;, the generalized force is

F‘=/F-~aidR
R

where F represents the applied forces on the object. The Lagrangian equations of
motion are

d [oT aT

—|=)-—=F,
forall j.

Although the kinetic energy is computed from the velocity in the inertial frame,
we may compute it using a transformation to local coordinates. For a rigid body we
do this by equation (2.43):

V=V, +WXTr
where v, is the velocity of the point C identified as the origin of the body and where
w is the angular velocity of the body measured in the inertial frame. The relative

position r is from a rigid body point to the body origin. The kinetic energy in this
case is

_ 1 2
T_Z/R|v| dm

1
=3 / Veen|? + 2Veen - W X 1+ |w X r|? dm
R

1 1
=—|vcen|2f dm +vcen-w/ rdm—}-—/ <|w|2|r|2— (w~r)2> dm
2 R R 2JR

1 1
= Emlvcenl2 + MVeen W X Py + EWTJW

where m is the total mass of the body, r ., is the position of the center of mass of the
rigid body relative to C, and J is the inertial tensor of the rigid body as specified in
equation (2.84). If we choose C to be the center of mass, the middle term vanishes
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since r.;, = 0. We may also choose the local coordinate basis vectors to be the prin-
cipal directions of motion (see Section 2.5.4, the portion on inertia of 3D objects).
If the principal directions are u;, 1 <i < 3, they may be written as the columns of a
rotation matrix Q = [u; | u, | u3). By definition of principal directions, the inertial
tensor satisfies the equation J = QD Q7, where D is a diagonal matrix whose diag-
onal entries 41, {5, and p3 are the principal moments. The world angular velocity
w is represented in terms of the principal direction basis as w = Q&. Consequently,
wlJw=§TDE IfE = ¢ & &]T, then the kinetic energy in this special case is

1 1
T = Smivenl + 3 (&l + 28] + 11283 (3.34)

where v, is the world velocity of the center of mass. The formula is quite aesthetic.
The first term is the energy due to the linear velocity of the center of mass. The
last terms are the energies due to the angular velocity about principal direction lines
through the center of mass. Although these formulas for kinetic energy were derived
using integrals, they apply equally well to particle systems (the construction works
for sums and integrals).

Equation (2.44) allows a similar simplification to the generalized force integral.
Using Newton’s law, an infinitesimal force dF applied to a particle in R of infinitesi-
mal mass dm satisfies the relationship dF = a dm, where a is the acceleration applied
to that particle. Integrating over the entire region to obtain the total force F and ap-
plying the aforementioned equation:

F=/ adm
R

dW
=[] ag+wx(Wxr)+ — xrdm
R dt

=acen/dm+w><(wx/rdm)—i—d—wxfrdm
R R dt R

dW
= Magy + MW X (W X Iey) —|—mz X Tem

where m is the total mass of the body, a,, is the world acceleration of the point C
identified as the body origin, and r g, is the position of the center of mass relative to
C. If we choose C to be the center of mass, then r_, = 0 and

F=ma,, (3.35)

That is, the external forces applied to the rigid body act as if they are applied to a
single particle located at the center of mass of the body and having mass equal to the
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EXAMPLE
3.11

Figure 3.12

total mass of the body. The generalized force for the rigid body may be calculated
based only on the center of mass and how it is constrained.

This example is a modification of the simple pendulum problem, but we treat this as a
fully 3D problem. The z-axis is perpendicular to the plane of the diagram. The simple
pendulum consists of a single-point mass located at the end of a rigid, massless rod.
The other end of the rod is attached to a frictionless joint at (0, y,, 0). The rod-point
object is replaced by a triangular object as shown in Figure 3.12.

The triangle is isosceles with base length b and height A. Its mass density is constant,
8 = 1, so the total mass is the area of the triangle (in units of mass), m = bh/2. The
center of mass is located at (X, y, z). The distance from the pendulum joint to the
center of mass is L and the angle formed with the vertical is 6, so the center of mass
location is (x, y, z) = (L sin 8, y, — L cos 6, 0).

We assign a local coordinate frame using the principal directions of motion associated
with the inertial tensor. From the symmetry of the object, the principal directions are
(cos 8, sin B, 0), (— sin 8, cos 8, 0), and (0, 0, 1). The first two of these are drawn in
the figure as small black arrows at the center of mass. Although we could compute
the principal moments associated with the first two principal directions, it is not
necessary since the world angular velocity, w = (0, 0, 6), is already a multiple of
the principal direction. The zero-components of this vector multiply the principal
moments in equation (3.34). The only relevant moment is p3 associated with the
direction (0, 0, 1). The kinetic energy is

1 o1 L? .
T = szZGZ + EM392 = m—'l'[le, 92

A triangle pendulum.
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Since the body is rigid, according to equation (3.35) the gravitational force F,,, =
—mgJ acts as if it is applied at the center of mass. The generalized force is

=(—mgyj) - L(cos®,sinb, 0) = —mgL sinf
The Lagrangian equation of motion is

. d (0T 8T
(mL* 4 pu3)d = — (a_) — — =Fy=—mgLsin6
dt \ 06

or 6 + ¢ sin § = 0, where c = mgL/(mL* + (3). Note the similarity to the equation
of motion for the simple pendulum. As the base of the triangle shrinks to zero,
all the while maintaining constant mass, the limiting case is the rod itself (of the
simple pendulum problem). The principal moment p5 is zero in the limiting case
and ¢ = g/L, exactly what occurs in the simple pendulum problem.

A couple of observations about the last example are in order. Although we have
set up the equations of motion, a numerical implementation must have available the
values of the mass m and the principal moment 3. Under the stated assumptions, the
center of mass is the area of the triangle. In your implementation, you simply need to
supply the dimensions of the triangle. However, if the triangle is more complicated—
namely, the mass density p is not constant—you must compute the center of mass for
the triangle, most likely using a numerical integrator applied to m = [ 8 dR, where
R is the region of the plane that the triangle occupies. Also, the principal moment 15
must be computed, also by numerical integration when § is not a constant. In general
for any rigid body, in order to construct the kinetic energy specified by equation
(3.34), you will need to compute the mass and inertia tensor of the body. These
calculations are typically done before the simulation starts and stored with the data
structures representing the rigid body and its motion.

The second observation is that if the triangle in the last example is replaced by
another planar object of the same mass m and having the same principal directions of
motion and principal moments leading to the same value u5, the equation of motion
for the planar object is identical to that of the triangle. The triangle and planar object
are said to be dynamically equivalent.

In the Foucault pendulum example (Example 3.3), replace the massless rod and
single-point mass by a cone of height 4 and base radius r. Compute the equations
of motion. =

Consider the physical system shown in Figure 3.13. This example has a mixture of
point-mass objects and a planar mass.

A gravitational force is applied, but note that the y-axis has been selected to point
downward, so g = gj where g > 0. The masses and locations are labeled in the figure
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(Example 3.12
continued)

Figure 3.13

A system consisting of two masses, a pulley with mass, and a spring.

as is the radius of the pulley. The other relevant quantities are the spring constant
¢ > 0, the unstretched spring length L > 0, and the principal moment of inertia of
the pulley I, measured with respect to the z-axis that is perpendicular to the plane of
the figure.

This system has two degrees of freedom, the vertical distance y; from the ceiling
to the center of mass of the pulley and the vertical distance y; from the vertical
location of the center of mass of the pulley to the mass m . The vertical distance y,
is automatically determined because the length of the wire connecting m; and m,,
namely, (y; — y3) + (y, — y3) + TR = £, a constant.

The kinetic energy of the first mass is ml()'l§ + )'112) /2 and the kinetic energy of the
second mass is mz()'zf + )')22) /2= m2()'1§ - )'112) /2. The kinetic energy of the pulley
is calculated using equation (3.34). The component associated with the velocity of
the center of mass is m3y%/2. The component associated with the angular velocity is
1 92/ 2, where 6 is an angle measured from the horizontal line through the center of
the pulley, as shown in Figure 3.13. Notice that for an angle 6 as shown, the length of
the subtended arc on the pulley circumference is Rf. The rate of change is R, where
6 is the angular speed of the pulley. Any change in arc length amounts to a change in
the y, vertical distance; that is, y; = R6. The kinetic energy component is, therefore,
I1(3,/R)?/2. The total kinetic energy is

m m m 1
T=—"2G+3)"+ 20— 3+ =295+ — 30
5 3+ 5 (3 =y S Vit o
The principal moment, measured with respect to the center of the pulley, is I =
r2r dr dO, where D is the disk r < R. The integral is easily calculated to produce
D 8 y P

I =mR%)2.
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The relevant derivatives of the kinetic energy are (1) 97/dy; =0, 07/3y, =0,
0T /dy;=ays;+ By, wherea =m, +m, +mzand 8 =m, —m,,and (2) 3T /0y, =
B3+ 3y where y = m) +my + I/R2,

The position of mass m is (y3 + y;)j. The generalized forces for this mass are

((ys+ynJ)
Fy}:mlgjo%=m1g
3
(s +y)J)
FM:mng._}__lL:m
v

The position of mass m, is (y; + y,) 7. The generalized forces for this mass are

L3+ "

F,,=mygj
¥ dys
0((ys +y2)7)
Fy =myg) - —=0 = —myg
dy,

The negative sign on the right-hand side occurs because (y; — y3) + (¥, — y3) =
£ — R (a constant) implies dy,/dy; = —1. The position of the center of the pulley
is y37. The generalized forces for the pulley are

d
Fy, =(m3g+c(L—y3))j - Oa1) ms3g + c(L — y3)
dy
d
Fy =(m3g +c(L—y3))J - % =0
1

The Lagrangian equations of motion are
ays+ By =F,=mg +myg+msg+c(L —y3) =ag+c(L—y;)
and

Bys +yy = Fy =mg—myg=pg
The equations are uncoupled by solving the second for ¥, and replacing in the first:

cy

m@ —y3)+g

y3=
This is a second-order linear differential equation with a nonhomogeneous term.

(Figure 3.14—also Color Plate 3.14—shows some screen shots from the mass/pulley/
spring application found on the CD-ROM.)
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(Example 3.12

continued)
(b)
Figure 3.14 A mass pulley spring system shown at two different times. The spring expands and
compresses, and the pulley disk rotates during the simulation. The system stops when
a mass reaches the center line of the pulley or the ground. (See also Color Plate 3.14.)
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A system of two pulleys, two springs, and a mass.

In Example 3.12, solve the final differential equation explicitly for y;, then solve for
v, and y, explicitly. =

v Compute the equations of motion for the physical system shown in Figure 3.15. The

spring constants ¢; and ¢, and the unstretched lengths L, and L, are labeled in the
figure. The masses, moments of inertia, and radii of the pulleys are shown, as well as

the mass of the single particle. &

Figure 3.16 shows a physical system consisting of a rigid, but massless, pipe that has
a slight bend in it. The vertical portion of the pipe freely rotates about the z-axis
with angular speed 6. At the end of the pipe is a solid, cylindrical disk of constant
mass density. The radius of the disk is @ and the thickness is b. The disk freely rotates
about the cylinder axis with angular speed . The force acting on the system is given
generically by B. We wish to determine the equations of motion for the system.

The bend in the joint is 4 units above the end of the pipe. The bent portion of the pipe
has length L. The local coordinate system at the center of mass uses spherical coordi-
nates, where P = (— sin 8, cos 8, 0), Q = (— cos 8 cos ¢, — sin 0 cos ¢, sin ¢), and
R = (cos 0 sin ¢, sin 0 sin ¢, cos ¢). If O denotes the origin of the physical system,
the center of mass € of the disk is located relative to the origin by

r=C—-0=hk+ LR
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(Example 3.13
continued)

Figure 3.16 A physical system with a bent pipe rotating about the z-axis and a disk rotating about
its axis.

The velocity of the center of mass is

d , . .
Vom = d—::LR=L (6 sin P — Q)
The world coordinates of the angular velocity of the pipe about its shaft is Wi, = Ok.

The world coordinates of the angular velocity of the disk is wy;q. = ¥R, where ¥ is
the angular measurement made in the plane of P and Q. The world coordinates of the
angular velocity of the physical system as a whole is the sum of the angular velocities,

W = Wpipe + Wisk = 0k + YR

We may write the angular velocity in local coordinates using the fact that k =
cos oR + sin ¢Q:

w = 0P + 6 sin $Q + (¢ + 6 cos ¢)R
in which case the local coordinates are

£=(0,0sin ¢, ¥ + 6 cos ¢)

From equation (3.34) the kinetic energy is

1 P . 1 ., . 1 . .
T = szZ(G2 sin® ¢ + ¢%) + 5#292 sin® ¢ + 5/;,3(1// + 0 cos ¢)?
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where m is the mass of the disk and where p, and p; are principal moments for
the disk. Although we do not need the value here, by symmetry ;= w,. The only
degrees of freedom are 6 and ¥ since ¢ is constant. The relevant derivatives are

T _y, T,
30 Iy
ar

i (mL* + 11,)0 sin® ¢ 4 u3(¢ + 6 cos ¢) cos ¢,

T . .
o = p3(¢¥ + 6 cos ¢)

i (aT) (mL* + p)0 sin® ¢ + p3(§ + 6 cos ¢) cos ¢,

dt \ 00
d (aT
(aw) 3 + 6 cos ¢)

The generalized forces are

Fy=F- 8r F~a(hk—+LR2=F~L(—sin@sin¢,cos€sin¢,0)
20 a0
and
F,=F- or _F.sz.(o’o’o)zo
3y Y

The fact that F;, = 0 s to be expected. The center of mass is invariant with respect to
the rotation of the disk, so the applied force cannot affect it.

The equations of motion are therefore
(mL*+ )0 sin® ¢ + (¥ + 6 cos ¢) cosp = Fy

and

3 + 6 cos ¢) =
The equations may be solved explicitly for the second-derivative terms:

_ Fy V= —Fycos ¢
©(mL?+ py)sin? ¢’  (mL2 + py) sin? ¢

The principal moment g3 does not enter into the solution. This does not mean
the angular speeds of the pipe and disk are unaffected by physical characteristics
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(Example 3.13
continued)

of the disk. The solution still has u, in it. If you increase p, (i.e., make the disk
heavier, increase its radius, or make it thicker), the right-hand sides of the differential
equations become smaller because of the presence of ji, in the denominators. This in
turn causes the angular accelerations to become smaller, leading to reduced angular
speeds. =

|
:

EXERCISE In Example 3.13, show that p, = m(a?/2 + b*/12) and 13 = ma?/2. «
3.20

EXERCISE In Example 3.13, if the only applied force is gravitational, say, F = —mgk, show that
3.21 the angular speeds of the pipe and disk are constant over time. *

EXERCISE Consider a solid disk that is attached by a massless rod to the origin. The disk rolls

3.22 on the plane z = y tan « for a small positive angle . Gravitational forces are present
and the plane is assumed to be rough so that frictional forces come into play. Figure
3.17 illustrates.

The disk has radius a > 0 and thickness b > 0. One end of the rod is attached to
the origin, the other end to the center of the face closest to the origin. The distance
from the rod to the center of mass is L units. The physical system has one degree of
freedom, the angle 6. Construct the equation of motion for 8. (See Section 3.2.7 for
a model of motion of a solid box over a plane with frictional forces.) %

Figure 3.17 A solid disk that rolls on a rough, inclined plane.



3.2.6

EXAMPLE
3.14

Figure 3.18

3.2 Lagrangian Dynamics 133

EXAMPLES WITH CONSERVATIVE FORCES

Recall that a Lagrangian equation of motion for the constraint variable g is of the

form

d (dT T

()

dt \ 9q aq
where F, = F - dx/dq is a generalized force. If F is a conservative force, then F =
—VV for some potential energy function V, in which case

F =F.d_"=_vv.d"=_£’Z

T dq dg dg
The Lagrangian equation of motion for a conservative force is

4 (o) oo
dt \ag) 9q dq

The potential function in mechanical problems is almost always independent of time
derivatives ¢, so if we define the scalar function L =T — V, called a Lagrangian
function, the equation of motion for a conservative force is

4 (35) Ay (3.36)
dr \ 9q aq

A simple model of a diving board is presented here. Figure 3.18 illustrates. The
board has length r and is massless, but has a mass m on the end that represents
someone standing on the end of the board (and can be affected by gravity). The

A simple diving board.
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(Example 3.14
continued)

flexibility of the board is modeled by a spring attached between the board and the
ground. This spring affects the angular motion of the board about the joint at (0, &).
The spring is located at position s and has spring constant ¢ > 0. The spring is un-
stretched with length £, not necessarily the height 4 of the joint above the ground. The
location of the mass is measured by the angle € relative to the horizontal. The posi-
tion of the mass is x = (0, &) + r(cos 8, sin 8). The velocity is x = r(— sin 8, cos 9)6.
The kinetic energy is T = mr262/2.

The potential energy due to a change in height from the board’s horizontal posi-
tion is the magnitude of the force multiplied by the change in height, as seen in
equation (2.107). For an angle 6, the change in height is r sin 6. The contribution
to potential energy is Vg, = mgr sin 6. The potential energy due to the spring
stretching was derived in equation (2.108). It depends only on the end points (s, &)
and (s cos 8, h + s sin 0). The stretched length at the first end point is # — £. The
stretched length at the second end point is the value

Vs2(cosf — 12+ (h+ssinf)? — ¢

The contribution is

Vepring = g ((Jsz(cos 6 — 12+ (h+ 5 sin 6) — e)z —(h— 3)2)

The total potential energy is V = Vgayity + Vipring- The constant (h — £)? may be
ignored since the derivative of V is all that matters in the Lagrangian equations of
motion. Moreover, if you want to make an approximation by allowing 6 to be only
a small angle, then cos @ = 1 and sin @ =6, s0 V = (c/2)(h + 56 — £) + mgrf is a

reasonable approximation.

Using the approximation for potential energy, the Lagrangian is

1 . 1
L=T—V=5mr292—5c(h+s9—5)—mgr9

The Lagrangian equation of motion is
0=2 (3_L) _a
~dr \ 36 g
= %(mrzé) —(—cs(h+s6 —€) —mgr) = mr26 + cs(h + s6 — ) + mgr

If the spring is such that the diving board is in static equilibrium at 6 = 0, that is,
cs(h — £) + mgr = 0, then the equation of motion is 6 + ((cs?)/(mr?))8 = 0, and
the board exhibits simple harmonic motion.
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= Construct the equations of motion for Example 3.14, but without the approximation

involving a small angle 6. #

Consider a double pendulum that consists of two rigid and massless rods. The first
rod is attached to a frictionless joint on the ceiling and has length r,. The other end
of the rod has a mass m attached. The second rod is attached to the other end of the
first rod, this joint also frictionless, and has length r,. A mass m, is attached to the
other end of the second rod. The only applied force is gravitational. See Figure 3.11
for an illustration.

Mass m; is located at (x;, y;) for i = 1, 2. The kinetic energy is T = m(x} + y7)/2 +
my(%3 + )'722) /2. However, we have only two degrees of freedom, which may as well
be chosen to be the angles 6; and 6,. Trigonometric identities lead to x;, = r; sin 8,
h —y =rcos 6y, x, — x; =r, sin by, and y; — ¥, = r, cos §,. Solving for the com-
ponents:

x;=rsin 8,
yi=h—rjcosb

X, =rysinf; 4 r, sin 6,
yo=h—rjcosf —r,cosb,

and the derivatives are

%, = ri6; cos 6,

)'71 = rlél sin 01

%, = ri6; cos 0; + r,6, cos 6,

Yy = rlél cos 0, + rzéz cos 6,
The kinetic energy is therefore

T— %rféf + % (rféf + 1262 + 217460, cos (8, — 92))

The contribution to potential energy from mass m; is —m g(h — y,) and the contri-
bution from mass m, is —m,g(h — y,), so the total potential energy is

V=—mgh—y)—mygh —y,) =—(my+my)grcos b —m,gr, cos b,
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(Example 3.15
continued)

The Lagrangian L=T — V is
L= "3r367 + 72 (1362 + 1362 + 216, os(6, — 0,))

+ (my 4+ my)gry cos 6; + m,gr, cos 6,

and its relevant derivatives are

L .
gé— = —m,rry616, sin(0) — 6,) — (m + m,)gr; sin 6;
1
oL < .
8—6’_ = myr 0,6, sin(6; — 9,) — m,gr, sin 6,
2

aL . . .
Y = mlrfal + mz(r1291 + 10, cos(6; — 6,))
1

oL . .
— = mz(r§92 + r1r201 COS(QI — 62))
36,

d (dL .. i Co .
= (g) =m0 + my(ri0, + riry(=6,(6) — 6,) sin(8) — 6,) + 6, cos(6; — 6,)))
1
d (oL . o ..
— e = mz(r292 + rlrz(_el(el — 92) Sln(91 — 92) + 91 COS(GI — 92)))
dt \ 96,
The two Lagrangian equations of motion are
o= 4 (%) _aL
T dr \38,) 96,
= (m, + mr(r) + g sin 0)) + m,rir, (0, cos(0, — 6,) + 62 sin(9; — 6,))
o= 4 (%) L
T dr \36,) 06,
= myry(ryf, + g sin 6,) + myrry (@) cos(9) — 6) — 67 sin(6, — 6,))

The two equations may be solved simultaneously to produce explicit formulas for the



3.2 Lagrangian Dynamics 137

M In the double pendulum problem, replace the rigid rods by massless springs whose

EXERCISE (M
3.25

EXAMPLE
3.16

spring constants are ¢; and ¢, and whose unstretched lengths are £, and ¢,. Calculate
the kinetic energy, the potential energy, the Lagrangian, and the equations of motion.

Compute the equations of motion for the triple pendulum problem where all the rods
are rigid. This problem adds one more massless rod to the system: one end is attached
to mass m, (the joint is frictionless) and the free end has a mass m; attached to it. The
rod length is r5. #

Two-body problem. This is the same problem discussed in Example 3.1 that was
derived with Newtonian dynamics and that led to Kepler’s laws. We now derive
the equations of motion using Lagrangian dynamics. Consider two particles with
masses m; and positions (x;, y;, z;) for i =1, 2. The center of mass is (x, y, z) =
(m(xy, Y1, 21) + my(Xy, ¥2, 25)) /(M1 + m,). The particles may be represented in the
coordinate system whose origin is the center of mass and whose axes are parallel to
the world coordinate axes. Specifically,

(x> yir 2)) = (x, ¥, 2) +r;R(6, @)

where R(9, ¢) = (cos 0 sin ¢, sin 8 sin ¢, cos ¢) is in the direction from particle 1
to particle 2. Using the fact that the total moment about the center of mass is zero,
namely, Zf=1 mi(x; — X, y; — ¥, z; — z) = (0, 0, 0), the radial values must satisfy
mr; + myry = 0. Define r to be the distance between the particles, so r =r, — r;.
Consequently, r; = —m,r/(m, + m,) and ry = mr/(m, + m,). In this notation the
gravitational force exerted by particle 1 on particle 2 is

F=—"p e, )
-

where G is the gravitational constant. This force is conservative with potential energy
V = —Gmm,/r. The kinetic energy is

2
1 . 2
T=5 E mi(xiz—i—yiz—i—zf)
i=1

mim,

my+m, (-2 .2 -2) (-2 2072 | 42 2 )
=—(x"+y +2)+ ———— (" +r + 6° sin
5 y 2o+ mmy) (@ ®)
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(Example 3.16
continued)

For simplicity we will assume that the center of mass travels through space with
constant linear velocity. In this case the Lagrangian function is

L=T—V=%(i2+r2(¢32+ézsin2¢))+cz

where ¢; = mm,/(m; + m,) and ¢, = Gmym,.

The relevant derivatives of L are

. . aL
L _ i@ +0singy -2 L _;
ar r? ar
oL =0 % =c,r%0 sin’ ¢
a6 a6
aL :
§£ = clr2 sin ¢ cos ¢ D clrqu
3¢ ¢
The Lagrangian equations of motion are
d (3L L . 2y | 422 €2
O0=—|—)——=cfF —cir(¢°+6-sin + =
dt ( o ) ar @ L

d (9oL oL d /5. .,
d( )—%_cldt(resm d))

_d(BLY_BL _(d (a0
0 t(3¢) ” cl(dt(r¢) reg sm¢cos¢)

The second equation implies r20 sin? ¢ = « is a constant. If we choose 6 (0) = 0, then
o = 0, which in turn implies 6 (¢) = 0 for all time. Therefore, the motion of the two
particles must be in the plane 8 = 6. If the value 6(0) s 0, it is still the case that the
motion is in a plane, but the analysis is a bit more complicated and left as an exercise.
The third equation of motion reduces to d(r2$)/dt = 0, so r’¢ = B, a constant for
all time. Replacing this in the first equation of motion, dividing by ¢, and defining
¥y = ¢,/cy, we have

_B_y

r3 r2

This equation may be solved numerically for r(¢#) when initial conditions r(0) and
7(0) are selected. The angle is obtained by one more integration, ¢ () = ¢(0) +
fot B/r*(v) dt, with ¢ (0) selected as an initial condition.
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How does this relate back to Example 3.1 on Kepler’s laws? At first glance you might
have thought we found explicit solutions for r(¢) and ¢ (¢). This is not so. What we
found was a relationship between the two,

ep

r) = 14 e cos ¢(t)

an equation of an ellipse. To obtain a numerical solution for r and ¢ as functions
of time, you would need to solve ¥ = —(Gm,/r?)r, where r = rR. In the derivation
in that example we also showed that r x ¥ = ¢, for some constant vector ¢;. This
constant is determined from the initial position r(0) and initial velocity £(0), namely,
¢p =r(0) x £(0). This information can be used to reduce the differential equation to
one involving motion in a plane whose normal is .

As it turns out, the ellipse equation does satisfy the second-order equation for r(t)
that we just derived using Lagrangian dynamics. Taking a derivative leads to

_ eXpé sin ¢ _r24'>sin¢_ﬂsin¢
T (1+ecosg)? 0 T

Taking another derivative:

F=f osp=PL! (@_1);32 g1
p orle \'r

For this to equate to our Lagrangian equation we need 82 = epi. *

EXERCISE M In Example 3.16, if §(0) 3 0, show that the motion of the particles is still in a plane.
3.26 What is the equation of that plane? Hint: The plane will depend on the choices for
6(0) and ¢(0). =

EXERCISE QVT Write a computer program to solve the Lagrangian equations of motion in Exam-
3.27 ple3.16. =

3.2.7 EXAMPLES WITH DISSIPATIVE FORCES

This section contains some examples for setting up the equations of motion when at
least one of the applied forces is dissipative. The first example is a slight modification
of the simple pendulum. Other examples are slightly more complicated.

EXAMPLE @ Consider the simple pendulum problem that is illustrated in Figure 3.4. The joint
. ple p p 8 )

3.17 at P is now assumed to apply a frictional force Fg;. to impede the motion of

the rod. The gravitational force is F,,, = —mgj. The position of the mass is x =

. (rsin@, h — r cos §), where the joint is a height 4 above the ground. The velocity is
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(Example 3.17
continued)

OURCE CODE
SimplePendulum-
Friction

]

v = rf(cos 0, sin ). The kinetic energy is T = m|v|?/2 = mr?62/2. The generalized
force is Fy = (Fgay + Fpric) - dx/d6. The Lagrangian equation of motion is

. T oT
mrig = % (2—9) ~ %0 = Fy = —mgr sin 0 + Fg;. - r(cos 6, sin 0)

The frictional force is assumed not to contain a static friction component.

If the frictional force is kinetic friction, the force is modeled by Fg;. = —cv/|v| for
some constant ¢ > 0. The force is in the opposite direction of velocity. The equation
of motion reduces to

0=0+——— 1+ £5sin0 = +ao(d) +bsinb
mr|6| r
wherea =c/(mr), b= g/r,and o(t) acts as a switch. I[ff > 0, theno (1) = L. Ifr <0,
then o (¢) = —1. To avoid the singularity at = 0, we define 6(0) = 0.
If the dissipative force is viscous, for example, when the joint has a layer of oil to
prevent overheating, the force is modeled by Fg;. = —cv for some constant ¢ > 0.
The equation of motion reduces to

§+ 564+ 8sino=0
m r

If the pendulum has only small oscillations about the vertical so that 6 is nearly zero
and sin 6 = 0, an approximation to the equation of motion is

i+6+80=0
m r

This is a second-order linear differential equation whose solution may be written
in closed form (see Section 8.3). If we set a = ¢/m and b = g/r, the characteristic
equation is A2 + aA + b = 0. If a* > 4b, this equation has two negative real-valued
roots A; = (—a — va? — 4b)/2 and A, = (—a + ~/a®? — 4b) /2. The solution to the
differential equation with initial conditions 6(0) = 6, # 0 and 6, = 6(0) is

(a8 — ) exp(ryt) ~ (A6 — 6;) exp(ht)
Ay — A

0(t) =

No sinusoidal terms occur, so the pendulum cannot continually oscillate about its
rest position. In the limit as # — oo (physically after a large amount of time), the
right-hand side of the equation becomes zero, that is, § (00) = lim,_, o, () = 0. The
condition a? > 4b is equivalent to ¢ > 2m+/g/r. The coefficient of friction of the
joint is sufficiently large to prevent oscillation about the rest position, and after a
large amount of time the damping causes the pendulum to stop. (Question: If 6, > 0
and 6, = 0, does the pendulum ever pass the origin? That is, does there exist a time
T > 0 for which (T') < 0? How about when éo < 0?)
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3.28

SOURCE CODE
RoughPlaneParticle1
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If a? = 4b, the characteristic equation has a repeated real-valued root, A = —a /2. The
solution to the differential equation is

6(t) = (6 — A6p)t + 6p) exp(Ar)

Just as in the previous case, 8(00) = lim,_, o, 6(¢) = 0 and the pendulum eventually
stops. The condition a? = 4b is equivalent to ¢ = 2m+/g/r and the coefficient is still
large enough to prevent oscillation about the rest position. (Question: If 6, > 0 and
6, = 0, does the pendulum ever pass the origin? That is, does there exist a time T > 0
for which 8(T) < 0? How about when éO < 0?)

The last case is a> < 4b. The characteristic equation has two nonreal roots, A, =
o —iwand A, = p + iw, where p = —a/2 and w = +/4b — a?/2. The solution to
the differential equation is

0(t) = exp(pt) (00 cos(wt) + M sin(a)t)>
w

In this case the pendulum does oscillate about the rest position, but the amplitude of
the oscillation decays exponentially over time. Once again w(00) = lim,_, o, 6(1) =
0, so the pendulum eventually stops. The condition a? < 4b is equivalent to ¢ <
2m./g/r. Physically this means the coefficient of friction is sufficiently small and
cannot prevent the oscillations, but the slightest amount of friction is enough to stop
the pendulum after a long time.

Compute the equations of motion for the double pendulum of Example 3.15 assum-
ing that both joints have kinetic friction. Repeat the exercise when both joints have a
dissipative viscous force. i

The next few examples deal with kinetic friction on flat surfaces. The examples
increase in complexity. The first involves a single particle, the second involves multi-
ple particles, the third involves a curve mass, and the fourth involves an areal mass.
The last example is typical of what you can expect in a 3D simulation when one object
slides over another.

One Particle on a Rough Plane

A single particle is constrained to move on an inclined plane and is subject to grav-
itational force. The plane forms an acute angle ¢ with the horizontal, so the height
relative to the horizontal is z = y tan ¢. The plane is two-dimensional. We choose co-
ordinates x and w with w shown in Figure 3.19. Basic trigonometric definitions show
us that y = w cos ¢ and z = w sin ¢. A single particle with mass m, initial position
rg = (X, Yo Zg)> and initial velocity vy = (X, o, Zo) is shown. A portion of the path
r(zr) traveled by the particle is also shown. The velocity, of course, is v(r) = ().
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P

Figure 3.19  An inclined plane that forms an angle ¢ with the horizontal. The particle has mass
m. It is located at ry = (x4, ¥g, 2p); hash marks are shown on the axes corresponding
to X, Yo» Zg» and wy, where y, = wy cos ¢ and zy = wy sin ¢.

In terms of x and w, the kinetic energy is
T(x,w)= _’Z_ (x2+)'}2 +22) — gl_ <x2+ wz)

The relevant derivatives are 97 /9x =0, 37 /0w =0, 9T /9x = mx, 0T /0w = mw,
d(@T/9x)/dt =mi,and d(T /3w)/dt = mi.

The gravitational force is Fyy,, = —mgk. The frictional force is Fgic = —cv/|v],
where ¢ = umg cos ¢ > 0. The constant u depends on the material properties of the
mass and inclined plane. The generalized forces are

dr
Fy= (Fgrav + Fgio) - d_;

(—mgk — c-l) *(1,0,0)
v

cx

Vi +w?

and

dr
Fy= (Fgrav + Fgio) - E

= (—mgk — cl) - (0, cos ¢, sin ¢)
v

cw

Vit +uw?

= —mgsin ¢ —
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The Lagrangian equations are

cx cw

Ners s

mx + 2+mgsin<,1>-——0

Vit+w

Just as in the pendulum example, the frictional terms are undefined at zero velocity,
when %% 4 1? = 0. When this happens, define the ratios to be zero (no friction at
that instant). In the event that the inclined surface is exactly on the horizontal, the
angle is ¢ = 0 and w = y. The generalized force due to gravity has no effect on the
particle’s motion since mg sin ¢ = 0.

Two Particles on a Rough Plane

Consider two particles with positions r; = (x;, y;) and masses m; for i = 1, 2. The
xy-plane is a rough surface and so provides a frictional force on the particles. The
particles are interconnected with a massless rod that does not touch the plane. Thus,
the particle system is a rigid body that has three degrees of freedom: the location
(x, y) of the center of mass and an orientation angle 6 formed by the rod with the
x-axis. Figure 3.20 illustrates.

The lengths L; are measured from the center of mass to the particles. The particle
positionsarer; = (x + Lycos6, y+ L,sin@) andr, = (x — Ly cos6,y — L, sin6).
The velocities are v; = (x — L0 sin 6, y + L6 cos §) and v, =(x+ L,8sinf,y —
L,6 cos 0). The frictional forces are F; = —c;v;/|v;|, where ¢; = um; g with p de-
pending on the material properties, and g is the gravitational constant.

Figure 3.20  Two particles, connected by a massless rod, that slide along a rough plane.
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The kinetic energy is

2
TGy, 6)= ) 2 (8 +5)
i=1
- % ((x — Lfsin6)? + (5 + L6 cos 9)2) +
% ((x + L0 sin0)* + (5 — L8 cos 9)2) (3.37)

mlL% + mzL% 9.2

my+my .o .2
=== @+ )+
5 x4+ y9) 5

Ko .2 | .2 K252
=—&"+ + —=6
2( ) 5

where the last equality defines the constants w, and u,. Formally, a term with
(mL, — m,L,) appears, but just as in Example 3.16 on the two-body problem,
mL,—myLy,=01fL=L,— Ly, then L, =m,L/(m;+m,)and L, =m,L/(m,+
m;,). The relevant derivatives of kinetic energy are

T, WT_, T,

ox ay 06

?I_ ¥ _T_ * 8_7‘__ 6
o b Gy TH g TR

(D) £ ()
ar\ox ) M G Gy )T g \B) T

The generalized force corresponding to x is

=Z—ci|-"%-(1,0)

_ (X — Ly6 sin 9) B cy(% + L0 sin 6)
\/(x — L6 sin6)2 4 (3 + L6 cos §)? \/(; + L, sin 6)% + (y — L, cos §)2
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The generalized force corresponding to y is

=Z —Ci—vL . (0, ].)
= il

o1y + L8 cos 6) B (3 — L, cos 6)
( — L6 sin )2+ (3 + L6 cos §)> \/(x + L,0sin )2 + (3 — L,6 cos 6)?

The generalized force corresponding to 6 is

F XZ: F 31‘,-
9= i a4
i=1 36

=N, Li(—sinf, cos ) — a% . L,(sin @, — cos 0)
fval [V
ciLy(=isin6+ycos6+Lif) oLy sinf —y cosf + LyH)

(6= L sin07+ (3 + Lif cos? /(& + Lyf sin )2 + ( — Lyf cos B)?
The Lagrangian equations of motion are

toX = Fy, toy = Fy, bl = Fy (3.38)

Multiple Particles on a Rough Plane

The example for two particles on a rough plane can be extended to more particles,
leading to only a slightly more complicated set of equations. Consider p > 1 particles
with positions r; = (x;, ¥;) and masses m; for 1 <i < p. The particle system is a
rigid body that has three degrees of freedom: the location (x, y) of the center of
mass and an orientation angle 6. At least one point is not located at the center of
mass. With a renumbering of the particles if necessary, let that point be (x,, y;). We
choose 6 to be the angle between (x; — x, y; — y) and the x-axis direction (1, 0).
Thus, x; =x + L, cos 6 and y; = L, sin 6, where L is the length of (x; — x, y; — ¥).
The differences between the points and the center of mass form fixed angles with
(X1 —x, 31— )

x;=x+L; cos(6 + ¢;), yi=y+L;sin(6 +¢,), 1<i<p
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where L; is the length of (x; — x, y; — y) and ¢; is the angle between (x; — x, y; — y)
and (x; — x, y; — ¥). By definition of 6, it is the case that ¢»; = 0. The frictional forces

are F; = —c;v;/|v;|, where v; = ¥;, ¢; = um;g with yu depending on the material
properties, and g is the gravitational constant.
The kinetic energy is
2 m;
T=)» — (x + )
PR

i=1

p
Z % ( i — L6 sin(0 + ¢i))2 + (3 + L6 cos(d + ¢l.))2)
- (3.39)
= Zp:m. 1@2_*_)‘]2)_'_ Xp:mL? 10.2

=1 VE i=1 )2

=By 4 %éz

where the last equation defines the constants z¢; and p,. Just as in the case of two
particles, the choice of the center of mass as the origin causes a few formal terms to
vanish when computing kinetic energy. Specifically, that choice implies

p 14
D miLicos(0+¢)=0 and Y mL;sin(@ +¢;)=0

i=1 i=l1

This is exactly the same form as equation (3.37). The generalized forces are

P P . .
Fo=Y B Doy GV g g = Y Gl = L0 sin@ + )

il . vi

3 _y P .3 + L0 cos(6 + ¢;
=Y E - oy g oy UL cosB + )

p p
Fo=Y"E - o _ 3 -GV L sin(@ + ¢,), cos(@ + 1))

v,

. i ¢;Li(—x sin(@ + ¢;) + ¥ cos(8 + ¢;) + L;6)
- vil

The Lagrangian equations of motion are
nok=F,,  wi=F,, mb=F (3.40)

which is the same as for two particles, equation (3.38).
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A Thin Rod on a Rough Plane

This example is an extension of the one for two particles connected by a thin, massless
rod. Now the rod itself has mass and is in contact with the rough plane at every
point. The system still has three degrees of freedom: the center of mass (x, y) of the
rod and the angle 6 formed by the rod with the positive x-axis direction. The rod is
parameterized by r(L) = (x + L cos @, y + L sin ) for L € [~L,, L]. The velocity
is v(L) = (x — L6 sin 0, y + L6 cos ). The total length of the rod is L, + L,. The
mass distribution is not necessarily uniform; mass density is the function §(L). The
total mass pq and second moment p, are

Ly L,
o = / S(L) dL and  p,= [ S(LYL*dL
-L, -L,

The kinetic energy is

Ly
T(x,y,0>=f s yvPdL
L, 2

Ly . |
N / Es(L) (()& — LOsin 0)* + (3 + L6 cos 9)2) ar. (341

Ho .2, .2 H2 52
=—(x"+ + —=6
2( ) 5

Just as in the case of particle systems, some terms in the formal construction of
kinetic energy vanish due to the choice of the center of mass as the origin. Specifically,
f_Liz 8L cos @ dL = 0 and ff;‘z 8L sin 6 dL = 0. This is exactly of the form shown in
equation (3.37).

The frictional force is F(L) = —cv(L)/|v(L)|, where c is allowed to vary for each
particle in the rod (c is allowed to be a function of L), but is assumed not to vary with
position or velocity. The generalized force F, is now formulated as an integral rather
than as a sum:

Ly
F, :/ FLy - ED 4
-L, ax

Ly
=/ —eY . (1,0)dL
[v]

~L,
L1 _ . S .

:/ : c(x — L6 sin 0) . dL
—L, v/ (x — LO sin 0)2 + (3 + L6 cos 0)2



148 Chapter 3 Rigid Body Motion

EXERCISE {H
3.29

Ty

Similarly, the generalized force F, is

Ly
F =f F(L) - 3‘;” dL

y

—L, y
L
=/ —eY . (1,0)dL
-L, vl
_ /Ll —c(y + L6 cos )
~L, /(& — LO sin 6)2 + (3 + L0 cos )2

and the generalized force Fy is

L,
F, =/ F(L) - M dL
—L, a6

Ly v
= / —c— + L(—sin 6, cos8) dL
L, vl

dL

/Ll —cL(~%sin@ + y cos 6 + L6)
~L, /(x — L6 sin )2 + (y + L8 cos 6)?

The Lagrangian equations of motion are the same as those in equation (3.38).

How do the formulas for kinetic energy, generalized forces, and the Lagrangian equa-
tions of motion change if the mass is distributed along a curve rather than a straight
line segment? =

A Flat Board on a Rough Plane

This example is an extension of the one for multiple particles on a rough surface. We
now consider a continuum of mass in the region R, as shown in Figure 3.21.

The system has three degrees of freedom: the center of mass (x, y) of the rod and
an angle 0 that represents the orientation of the region relative to the positive x-axis.
The rod is parameterized in a local coordinate system whose origin is the center of
mass and whose orthonormal axes are chosen to be (cos 8, sin 8) and (— sin 6, cos 6):

r(a, B) =(x,y) +a(cos 8, sin §) + B(— sin 8, cos §)
The velocity is

v(a, B) = (%, y) + 6(a(~ sin 0, cos @) — B(cos 6, sin 6))



Figure 3.21
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A flat board on a rough plane.

Since the region R represents a rigid body, the local coordinates («, B) for a
particle are independent of the orientation of the body. The distance between the
particle at (¢, B) and the center of mass is L = /a2 + 2. The mass density is the
function &(«, B) and is allowed to vary over the region. In the integral quantities
used in the following, the infinitesimal for the region is dR = da df.

The kinetic energy is

T=1fa|v|2dR
2 Jr

= % / ) ((J& —8(a cos O + Bsin0))> + (3 + 6(ax cos 6 — B sine))2) dR
R

= (/ 8 dR) L4yt + (/ (o + B%8 dR) 142 (5.42)
R 2 R 2

Ho,o2 | 22 H3 40
=20 224
5 x"+y9) + 5
where
o _—/ 8dR and u, _—f(ozz—{—ﬂz)z? dR
R R

Once again some formal terms in the computation of kinetic energy vanish due to the
choice of the center of mass as the origin. Specifically, [, 8(a sin6 + B cos8) dR =0
and [ 8( cos & — B sin 6) dR = 0. The form of the kinetic energy is the same as in
equation (3.39).
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SOURCE CODE
RoughPlaneSolidBox

The frictional forces are F = —cv/|v|, where c is allowed to vary with & and 8.
The generalized force F, is

Fx=/F'ﬂdR
R 0x

=/ —cY . (1,0)dR
R

vl

_/ —c(% — O(a sin 6 + B cos 6)) JR
R vl

The generalized force Fy is

Fy=fF-ﬁdR
R 9y

=f —eY .0, 1)dR
R

vl

___/ —c(3 + 6(a cos § — B cos 0)) 4R
R vl

The generalized force Fy is
Fy= / F- or dR
R 06

=/ —cﬁ-(—ozsin@—ﬂcos@,ozcos@—ﬁsinO)dR
R v

_/ —c(—(a sin 0 + B cos 0)% + (a cos § — B sin 0)y + (o + BHH) R
R [vi

The Lagrangian equations of motion are exactly the ones shown in equation (3.40).

A Solid Box on a Rough Plane

The problem we now look at is a variation on the one involving a particle on an
inclined plane as shown in Figure 3.19. Instead of a particle, we have a solid box of
dimensions 2a, 2b, and 2A. The box has constant mass density. A side view of the box
and plane is shown in Figure 3.22.

In addition to sliding down the plane, the box is also rotating about its lo-
cal vertical axis with angular speed 6. The center of mass is located at r = (x,
w cos ¢ — h sin ¢, w sin ¢ + k cos ¢). The contribution to the kinetic energy due
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A side view of a solid box on a rough, inclined plane.

to the velocity of the center of mass is m (%2 + ?)/2, where m is the mass of the box.
Since the box has angular velocity, we need to compute the contribution due to the
rotation as indicated by equation (3.34). The angular velocity in world coordinates is
w = 6(0, — sin ¢, cos ¢). Local coordinates for the box are as follows. The box’s ver-
tical direction is u3 = [0 — sin ¢ cos @]'. The other two coordinate axes vary with 8
because of the rotation. A reference frame is u} = [10 0]T and w, = [0 cos ¢ sin oL
The frame that rotates with the box as 8 varies is

u; = Cos Gu’l —sin Gu’z =[cos® —sinfcos¢ —sinb sin ¢]T

and
u, = sin fu; + cos fu, = [sin & cosH cos ¢ cos b sin oIF
The local coordinates for the angular velocity are & = [£, &, &)Y, where
w= Z?zl &u;. In our case, w = Hus, so £ =[006]". From Example 2.9 we saw
that the principal moment for the vertical axis is j43 = (a® 4 b%)/3, so the contribu-
tion of the angular velocity to the kinetic energy is §?m (a® + b%)/3. The total kinetic
energy is

7= m(E i) + (e + 602 (3.43)

The system has three degrees of freedom given by x, w, and 8, so there will be
three Lagrangian equations of motion: m¥ = F,, mi = F,,, and m(a® + b*)6/3 =
Fy, where the right-hand sides of the equations are the generalized forces.

The center of mass is located at r as mentioned earlier. You might be tempted
to construct the generalized forces by dotting the applied forces Fyp,, + Fgjc with
the partial derivatives of r with respect to x, w, and 6. However, that would be an
error in analysis. The contributions of the gravitational force to the generalized forces
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EXERCISE (E
3.30

EXERCISE M
3.31

may be computed by assuming that gravity applies only to the center of mass. The
frictional forces apply only to the face of the box that is sliding on the plane. In this
sense we need to compute the contribution of friction to the generalized forces in the
same manner as in the example of a flat board on a rough plane (see Figure 3.21). In
that example replace y by w and use the generalized forces exactly as shown in the
example.

In the discussion about a box sliding on a rough plane, the kinetic energy in equation
(3.43) was computed using equation (3.34). First, the box half-height 4 does not ap-
pear to affect the kinetic energy. Does this make sense to you? Second, the expression
does not have terms of the form %6 or wé. In the example of a flat board sliding over
a rough plane, the kinetic energy in equation (3.42) was computed directly as an in-
tegral over the velocity of points in the board. This latter formula has terms involving
%6 and y6 (thinking of y and w as the same variable). From the perspective of fric-
tion, the sliding box and sliding flat board are identical in nature since the friction
of the sliding box is only relevant for its bottom flat face. Why is it, then, that one
expression has the 6 and w# terms but not the other expression? *

Write a computer program that implements the example of a box sliding on a rough
plane. The example, as modeled, uses only kinetic friction. Incorporate static friction
into your program by specifying a minimum angle ¢;, > 0 for which static friction
prevents the box from moving when the plane is inclined at an angle ¢ smaller than
@min> but allows movement when the angle of inclination is larger than ¢,;,.

33 EULER’S EQUATIONS OF MOTION

Sometimes a physical application is more naturally modeled in terms of rotations
about axes in a coordinate system. The prototypical example is that of a spinning
top, where the top rotates about its axis of symmetry but simultaneously the entire
top is rotating about a vertical axis. Euler’s equations of motion are the likely choice
for determining the motion of such an object. These equations are the focus of this
section.

Consider a rigid body with origin O that coincides with the origin of the world
coordinate system. The basis vectors for the world are 5; for 1 </ < 3. The rigid body
is given its own basis vectors & for 1 <i < 3, such that 53 and &; are not parallel.
The plane spanned by 5, and », intersects the plane spanned by &; and &, in a line.
That line passes through the origin and has unit-length direction N. Figure 3.23(a)
illustrates the two coordinate systems.

The angle between 73 and &; is ¢, the angle between N and %, is 6, and the
angle between N and & is ¢. The positive direction for the angles is shown in Fig-
ure 3.23(a). By definition, N lies in the plane spanned by #, and 5,. Moreover, it
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(a) (®)

The world coordinates and body coordinates for a rigid body where both systems
have the same origin.

must lie on the unit circle centered at the origin. The vector also lies on the unit circle
centered at the origin of the plane spanned by &, and &,. As such we may write it as

N = (cos 8)n, + (sin 0)7, = (cos ¥)&; — (sin Y)&, (3.44)

Figure 3.23(b) illustrates the location of N relative to the various axes of the planes.

The three angles ¢, 6, and ¢ completely determine the orientation of the body
relative to the world coordinates. Observe that ¢ is the angular speed of rotation
about N, 6 is the angular speed of rotation about 53, and ¥ is the angular speed of
rotation about &;. The angular velocity of the rigid body is the sum of the axial angular
velocities w = ¢N + 695 + v/&;. The vector &; is obtained from 75 by a rotation
about the N axis through an angle ¢. Using a standard rotation formula and using
equation (3.44) for cross products:

& =13+ (sin @)N x 93+ (1 — cos )N x (N x 73)
=3+ (sin ) (—(cos )7, + (sin O)y) + (1 — cos @) (—73)  (3.45)
= (sin @ sin ¢)n; — (cos 6 sin P)n, + (cos P)n;
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The angular velocity in world coordinates is

w =N+ 015+ V&
= ¢((cos 0)n; + (sin 6)n,) + O3 + ¥ ((sin 6 sin p) 7,
— (cos 8 sin @), + (cos ¢)n3) (3.46)
= (¢ cos 6 + ¥ sin 6 sin @)y, + (¢ sin @ —  cos B sin P17,

+ (8 + ¥ cos )

Similarly, the vector 55 is obtained from £; by a rotation about the N axis through
an angle —¢. Using a standard rotation formula and using equation (3.44) for cross
products:

N3 =& — (sin )N x & + (1 — cos $)N x (N x &)
=& — (sin @) (—(cos )&, — (sin ¥)§)) + (1 —cos p)(—&;)  (3.47)
= (sin ¥ sin ¢)&; 4 (cos ¥ sin ¢)&, + (cos P)&;

The angular velocity in body coordinates is

w=@N +0n; + Vs
= ¢((cos ¥)& — (sin ¥)&,) + 0((sin ¥ sin )&, + (cos ¥ sin )&,
+ (cos $)&3) + ¥ks (3.48)
= (¢ cos ¥ + 6 sin ¥ sin §)&, + (—¢ sin ¥ + 6 cos ¥ sin P)&,
+ (¢ + 6 cos $)é;

The angular velocity in world coordinates is useful in setting up Euler’s general
equations of motion, equation (2.90). The angular velocity in body coordinates,
when the & are chosen to be principal directions of the inertia tensor, is useful
in setting up Euler’s special equations of motion, equation (2.91). If the principal
moments are 4;, the body coordinates of the torque are 7;, and the body coordinates
of the angular velocity are w;, then the special equations are

g + (U3 — p)wws =14

Moty + (g — U3)wiw3 =T, (3.49)

H3ws + (U — DWW, = T3
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Consider a freely spinning top whose tip is fixed in place. The top is assumed to
be symmetric about the axis of the third principal direction vector, in which case
[t = U, We assume no torques on the top, a situation that can be approximated by
assuming the center of mass is effectively at the tip of the top. Figure 3.24 shows the
configuration.

UA]

m
m

A freely spinning top with tip fixed at the origin of the world coordinate system.

The world coordinate axes 3; are shown. The body coordinate axes are §—the prin-
cipal directions of the inertia tensor—but only the axis of symmetry is shown.

The Euler equations, equation (3.49), reduce to
piwy + (13 — ppPwws =0, Hiw, — (1 — p3)wiws =0, paws =0

The last equation implies the component w; = ¢, a constant. Define A = c(u3 —
1)/ ;. The first two equations are then w; + Aw, = 0 and w, — Aw; = 0. Taking
derivatives and replacing one equation in the other leads to W, + A*w; = 0. This is
the differential equation for simple harmonic motion. A solution is w; = o cos(At).
The other component is determined from the second differential equation by substi-
tuting in w, the result being w, = « sin(At). The angular velocity of the top in body
coordinates is

w = (& cos(r?))&; + (« sin(r1))E, + c&;

The angular speed is |w| = ~/a? + ¢2, a constant. If the top rotates only about its axis
of symmetry, then & = 0 must occur so that w is parallel to &. However, the top can
be rotating about the 7 axis while simultaneously rotating about its axis of symmetry.
In this case the angular velocity is not parallel to &;, and & # 0 is required.
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(Example 3.18
continued)

EXAMPLE
3.19

D CE CODE
FreeTopFixedTip

In world coordinates the torque T and angular momentum L are related by 7 =
dL/dzt. Since the torque is assumed to be zero, the rate of change of angular momen-
tum is zero. Thus, the angular momentum vector is constant. Moreover, we know
that L = Jw in world coordinates. For L to be a constant and w to be time varying, J
must also be time varying. In the specified body coordinates, the angular momentum
vector is

L=Mw = (p & cos(A1))§ + (pa sin(A1))§; + (130)é;

The first two coefficients are time varying, but so are the principal directions, and
all must be in order to guarantee the angular momentum vector is constant. This
equation says that the angular momentum vector rotates about the body axis &; with
constant angular speed A. However, we know L is fixed in world space, and it must be
parallel to 93, so the body axis &; is rotating about 55 with angular speed —A. =

This example is a modification of Example 3.18. Now we assume that the center of
mass is located ¢ units of distance from the origin along the axis of symmetry. The
total mass of the top is m. Using the same notation as in our general discussion earlier
in this section, the torque is

T=r X Fyyy
= (¢&3) X (—mgn3)
= (mg¥ sin )N
= (mg¥ sin ¢ cos ¥ )& + (—mg¥ sin ¢ sin ¥)&,
Euler’s equations are
ity + (3 — ) wyws = mgl sin @ cos ¥
piwy — (M3 — ppPw w3 = —mge sin ¢ sin Y
Haws =0

As in the previous example, w3 = ¢, a constant. Define A = c¢(u; — p)/u; and ¢ =
mgt/ ;. The first two equations of motion are

Wy + Aw, = sin ¢ cos ¥, Wy — Aw; = —a sin ¢ sin ¥

Multiplying the first by w;, the second by w,, and adding:

é—l; (wf + w%) = 2« sin ¢ (w; cos Y — w, sin ¥r)

Equation (3.48) may be used to show that w? + w% = ¢? + 62 sin® ¢ and w, cos ¥ —
w, sin ¢ = . Consequently,
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4

7 (¢2 + 6% sin® qb) = 20:43 sin ¢ = —;—t (2a cos ¢)

Integrating leads to
¢*+6%sin> g =B — 20 cos ¢

where the right-hand side is a constant.

In body coordinates we know that the angular momentum is
L=Mw = pwi§) + pyw,§ + cisés
Dotting with 55 and defining y = L - 33, we have
y=L-ns
= pywiby - N3+ w3+ cpnsds s
= pw; sin ¥ sin ¢ + (1w, cos ¥ sin ¢ + cpe3 cos ¢
where the last equality follows from dotting equation (3.47) with the §;. But 1 =

dL/dt and t - 93 =0 imply that d(L - &)/dt =0, so y =L - & is a constant. Once
again we may substitute the body coordinates for w from equation (3.48) to obtain

0 sin® ¢ 4 cp3 cos p =y
Finally, equation (3.48) is used once more to produce
c=w3=1[f+écos¢

This has been a long mathematical construction. Let us summarize what we have so
far, three differential equations involving the three angles ¢, 6, and ¥:

$*+6%sin’ p = B — 2 cos ¢, ulésin2¢+cu3cos¢=y, Y +0cosp=c

The second equation can be solved for 6 = (y — i3 €08 @) / (1, sin? ¢). Defining the
constants § = y/u, and & = cu3/ i, and replacing 6 in the first equation:

2
(252 b

This differential equation involves only the angle ¢. Solving for the first derivative:

2
fl_dlz\/(‘g_ZQCOSq;)_ (M)

dt sin ¢
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(Example 3.19
continued)

EXERCISE (H
3.32

You should convince yourself why the positive square root is chosen instead of the
negative one. In a numerical implementation, to avoid the many trigonometric func-
tion calls that can be expensive to evaluate, the change of variables p = cos ¢ may be
used. The derivative is p = —¢ sin ¢ and sin? ¢ = 1 — p2. The differential equation
becomes

L =P~ 2ap) — G~ ep)? (3.50)

This equation cannot be solved in closed form, even if we were to separate variables
and solve for r as an integral of a function of p. It may be solved numerically to
obtain p as a function of ¢, say, p(¢). The other angles are computed by numerically
integrating

df _y —cuzcos¢p S—¢ep

= = 3.51
dt Wy sin? ¢ 1— p? (3:51)
and
dy . §—e¢ep
— =c—0cosp=c— 3.52
7 ¢ P2 (3.52)

Although you can solve equations (3.50), (3.51), and (3.52) as a system of differential
equations, an alternative is to solve the first equation by generating a sequence of
samples (¢;, p;), fitting those samples with a parametric curve in ¢, then using that
curve in a numerical integration of the second and third equations with respect to
t. Yet another alternative is to multiply the second and third equations by dr/dp to
obtain d6/dp = F(p) and dyr/dp = G(p), where the right-hand sides are functions
of only p. Numerical integrators may be applied to solve for 6 and ¢ as functions
of p. (Figure 3.25—also Color Plate 3.25—shows some screen shots from the free
top application found on the CD-ROM.) =

Write a computer program that uses a differential equation solver to solve equations
(3.50), (3.51), and (3.52).

If you are feeling bold, add the following to your program. Assuming the top is a
cone of height A and radius r, detect when ¢(r) reaches an angle for which the
cone becomes tangent to the horizontal plane. At that instant, the physical system
should change to one that models the cone rolling around the plane, still with its tip
connected to the origin (see Exercise 3.22).The plane is considered rough, so friction
comes into play. In this mode the cone should eventually stop rolling.
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continued)

Figure 3.25
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(b)

Two “snapshots” of a freely spinning top. The black line is the vertical axis. The white
line is the axis of the top. (See also Color Plate 3.25.)
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EXERCISE {

3.33

EXERCISE
3.34

EXERCISE
3.35

A“f‘ﬁ%

Compute the Lagrangian equations of motion for the freely spinning top subject to
torque as in Example 3.19.

Compute equations of motion (Eulerian or Lagrangian) for the freely spinning top
with no torque, where the tip is allowed to move on the xy-plane.

Compute equations of motion (Eulerian or Lagrangian) for the freely spinning top
with torque, where the tip moves in the x-direction of the xy-plane according to
x(t) =« sin At, y(t) =0.




n the last chapter we focused on rigid bodies and their behavior under various

forces. In reality, no body is rigid, but for many bodies the assumption of rigidity
is a close approximation to the actual physical conditions. For example, a ball bearing
made of steel may be treated as a spherical rigid body. The equations of motion for
reasonable forces applied to the ball bearing are good approximations to the physics.
However, if the ball bearing is struck with a hard hammer with sufficient force, the
bearing will deform, most likely into an elliptical-shaped object.

In some physics applications, the objects we want to model are considered to
be deformable bodies, ones for which the rigid body analyses do not apply. This
first section of the chapter gives you a brief description of some concepts related to
deformation. The other sections provide four alternatives for modeling deformable
bodies in a manner that is computationally reasonable on current computers.

41 ELASTICITY, STRESS, AND STRAIN

The primary concept for a deformable body is elasticity. This is the property by which
the body returns to its original shape after the forces causing the deformation are
removed. A plastic rod in the shape of a line segment can be easily bent and returned
to its original form. A similarly shaped rod made of steel is more difficult to bend but
will bend slightly and return to its original shape once the bending force is removed.
The rod can be significantly bent so that it does not return to its initial shape once
the force is removed. Such catastrophic behavior will not be dealt with in this book.
Clearly, the amount of force necessary to deform a steel rod is greater than that
required to deform a plastic rod.

161
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The stress within a solid object is the magnitude of the applied force divided by the
surface area over which the force acts. The stress is large when the force magnitude
is large or when the surface area is small, both intuitive behaviors. For example, if
a heavy rigid body of mass m subject to gravitational force sits on the circular top
of a cylinder of radius r, the stress on the cylinder is mg/(7wr?), where g is the
gravitational constant. A heavier mass causes more stress. A thinner cylinder has
more stress generated by the same body. Since stress is the ratio of force magnitude to
area of influence, it is effectively pressure and has the units of pressure, pascals. One
pascal is defined to be one newton per meter?.

The strain on an object is the fractional deformation caused by stress. The quan-
tity is dimensionless since it measures a change in a dimension relative to the original
dimension. Although the method of measuring a change depends on the particular
type of object and how a force is applied, the simplest example to illustrate is a thin
rod of elastic material that is fixed at one end, the other end pulled. If the rod has
initial length L and changes length by AL due to the force pulling on the end, the
strain on the rod is AL /L.

By themselves, stress and strain do not appear to contain information about
the specific material to which a force is applied. The amount of stress to produce
a strain in a material does depend on that material. This suggests calculating the
ratio of stress to strain for materials. Three variations of this ratio are presented here:
Young’s modulus, the shear modulus, and the bulk modulus. Loosely speaking, the
three moduli represent the stress to strain ratio in a linear direction, along a planar
region, and throughout a volume region.

If a wire of length L and cross-sectional area A has a force with magnitude F
applied to one end, a change in length AL occurs. Young’s modulus is the ratio of
stress to strain:

Y = linear stress F/A

" linear strain AL /L

Consider a thin rectangular slab whose thickness is L units and whose other
dimensions are x and y. L is assumed to be small relative to x and y. The large
faces have area A = xy. One face is attached to a flat table. A tangential force of
magnitude F and direction that of the x dimension is applied to the other face.
This causes a shearing stress of F/A units. The rectangular slab slightly deforms into
a parallelepiped whose volume is the same as the slab. The area of the large faces
also remains the same. The slab has an edge length of L, but increases slightly by
an amount AL due to the shearing. The shearing strain is AL/L and represents
the strain of the one face attempting to move parallel to the other. The shearing
modulus is

_ planarstress  F/A

S =
planar strain ~ AL/L
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Finally, consider a material occupying a region of volume V. A force of magnitude
F is uniformly distributed over the surface of the material, the direction of the force
perpendicular at each point of the surface. You may consider the application of the
force as an attempt to compress the material. If the surface area is A, the pressure
on the material is P = F/A. If the pressure is increased by an amount AP, the
volume decreases by an amount AV. The volume stress is A P and the volume strain
is AV /V. The bulk modulus is

__volumestress AP

B = =
volume strain ~ AV/V

In all three cases the measurement is stress versus strain, but the difference lies in
the dimensionality, so to speak, of how the material changes shape due to the stress.

A calculus-based approach to understanding deformation of a solid material is
typically used in a course on continuum mechanics. However, the limitations of cur-
rent consumer hardware preclude us from implementing such an approach while
maintaining a reasonable running time for a physics simulation of deformable bod-
ies. Instead, we will look at a few alternatives to modeling deformable bodies. The
first one is based on physical principles and requires solving systems of differential
equations. The other alternatives are not physically based, but as long as the results
look physically correct, they are good choices for deformation in that they avoid the
numerical stability issues associated with differential equation solvers.

The first alternative models a body as a system of point masses connected by
springs. The quantity of masses, the configuration of springs, and the choice of
spring constants depend on the particular needs of an application. The mathematical
model of such a system will involve Hooke’s law and result in a system of differential
equations that must be numerically solved.

The second alternative models a body by explicitly defining its boundary to be a
parametric surface with control points. In order to localize the deformation to small
portions of the surface, we would like a surface with local control. This suggests using
B-spline or NURBS surfaces (which we discuss in Section 4.3). The control points
may be varied over time to simulate time-varying forces applied to the surface of the
body.

The third alternative involves free-form deformation of a region that contains the
body. The surface of the body may be represented as a triangle mesh or as a para-
metric surface with control points. In the latter case a triangle mesh can be generated
from the parametric surface for the purposes of display of the physical simulation.
The idea is that the deformation region is parameterized by three variables and has a
small number of control points that can be modified by the application. As the con-
trol points change, the region is deformed. The vertices for the triangle mesh or the
control points for the parametric surface are located in the deformation region. As the
region is deformed, the vertices or surface control points are moved about, causing
the corresponding triangle meshes to deform.
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The fourth alternative models a body as a region bounded by a surface defined
implicitly by F(x, y, z) =0 for a suitably chosen function F. We will choose the
convention that the interior of the body is the set of points for which F(x, y, z) < 0.
A force on the body is simulated by adding a deformation function D(x, y, z) to
F(x, v, z) and setting the deformed surface to be the surface defined implicitly by
F(x,y,z)+ D(x, y, z) =0, the interior of the deformed body being F(x, y, z) +
D(x,y,z)<0.

4.2 MASS-SPRING SYSTEMS

A deformable body can be modeled as a system of point masses connected by springs.
The bodies can be curve masses (e.g., hair or rope), surface masses (e.g., cloth or the
surface of a body of water), or volume masses (e.g., a gelatinous blob or a moving,
viscous material). The time complexity of the system is related to the number of
masses and how they are interconnected. We will look at some simple configurations
to illustrate the key ideas. Curve masses are modeled as a one-dimensional array of
particles, surface masses as two-dimensional arrays, and volume masses as three-
dimensional arrays. Sections 4.2.1-4.2.3 cover those cases. Section 4.2.4 discusses less
regular configurations and the issues that arise when implementing them.

421 ONE-DIMENSIONAL ARRAY OF MASSES

Figure 4.1

A curve mass is thought of as a polyline, open with two end points or closed with
no end points. Each vertex of the polyline represents a mass. Each edge represents a
spring connecting the two masses at the end points of the edge. Figure 4.1 shows two
such configurations.

Two curve mass objects represented as mass-spring systems.
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A motivating example we looked at earlier is Example 3.10, in which three masses
aligned in the vertical direction were connected with two springs and allowed to fall
due to gravitational forces. The masses are m; and located at height z; for 1 <i <3.
Two springs connect the masses, one between m, and m, with spring constant ¢, > 0
and rest length L, and one between m, and m; with spring constant ¢, > 0. The
gravitational force constant is g > 0. We determined the equations of motion as

mz; = —azi—z,— L) —mg
myz, = +cz1—z,—L) —czz—z3—Ly) —myg
mszy = +cy(z;—z3— Ly) — msg

The organization of the terms on the right-hand side of the equation are suggestive of
the pattern that occurs if more masses are added to a vertical chain of particles. The
force on the boundary particle at z; has a contribution due to the spring below the
mass, that contribution prefixed by a minus sign. The force on the boundary particle
at z3 has a contribution due to the spring above the mass, that contribution prefixed
by a plus sign. The force on the interior particle at z, has two contributions, one from
the spring above the mass (prefixed with a plus sign) and one from the spring below
the mass (prefixed with a minus sign).

We can generalize the equations of motion to handle p particles in the chain. The
masses are m; and the positions are z; for 1 <i < p. The system has p — 1 springs
with constants ¢; > 0 and rest lengths L; for 1 <i < p — 1. Spring i connects masses
m; and m; ;. The boundary points are at z; and z,,. All other points are interior
points. The equation of motion for an interior point is modeled by

miZ;=c;_y(zi_y—z; — Li_) —¢i(z; — zip — L) —m;g (4.1)

for 1 <i < p. If we define ¢g=zy= Lo =c, =L, = z,,; =0, then this equation
applies to all points in the system.

In our example every particle is falling due to gravitational forces. If we were to
attach the boundary point z; to some rigid object, perhaps the ceiling in a room, a
constraint is introduced into the system. Since z, is now a constant over time, the first
differential equation becomes 0 = —¢(z; — z, — L) — m g and no longer applies in
solving the remaining equations. Rather, it becomes part of the forces of constraint
for the system (see Section 3.2.1). This is not to say that the physical attributes at z; no
longer affect the system. For example, if the joint at which z, is attached has friction,
that force becomes a term in the differential equation for z,. Similarly, other particles
in the system can be tacked down and their differential equations removed from the
system. If you tack down an interior point z;, the linear chain is decomposed into two
smaller linear chains, each with a fixed boundary point. The smaller systems may be
solved separately.

Also in our example, the vertical chain of masses is only one-dimensional with
regard to position, in this case vertical position z. In general, the masses can be located
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EXAMPLE
4.1

SOURCE CODE
Rope

anywhere in space. When formulated in a full spatial setting, another variation is
allowed: masses m, and m , can be connected by yet another spring. If that spring has
constant ¢, > 0 and rest length L ,, equation (4.1) still applies, but wrapped indexing
is required: ¢y = ¢, g = 211, and Ly = L ,. Finally, forces other than gravitational
ones can be applied to the particles.

The general formulation for an open linear chain is as follows. The masses m; are
located at positions x; for 1 <i < p. The system has p — 1 springs connecting the
masses, spring i connecting m; and m; ;. At an interior point i, two spring forces are
applied, one from the spring shared with pointi — 1 and one from the spring shared
with point i + 1. The differential equation for this point is

X1 X

mX; =c;_y (|Xi71 - x| — Li—l) X x|
i—1— X
(4.2)

Xit1 — X
+ ¢ (i1 — x| = L;) o x| +F;
i+1— X

where F; represents other forces acting on particle i, such as gravitational or wind
forces. Just as in the case of vertical masses, with the proper definitions of ¢, ¢, Ly,
L, %y, and x,,1 ;, equation (4.2) also handles fixed boundary points and closed loops.

This application shows how to solve the equations of motion for a one-dimensional
array of masses connected by springs. Figure 4.2—also Color Plate 4.2—shows some
screen shots from this application found on the CD-ROM. =

42.2 Two-DIMENSIONAL ARRAY OF MASSES

The equations of motion for a linear chain of masses are provided by equation (4.2).
At an interior particle i, the two force terms due to Hooke’s law occur because
two springs are attached to the particle and its neighbors. A surface mass can be
represented by a collection of particles arranged as a two-dimensional array. An
interior particle has four neighbors as shown in Figure 4.3.

The masses are m; ; and are located at x; ; for 0 < iy <ngand 0 <i; <n;. The
i((?,)il and resting length LE(?’)Z.I.
The spring below a particle has spring constant Cz%?ﬁ and resting length Ll(;) i The
understanding is that the spring constants and resting lengths are zero if the particle
has no such spring in the specified direction.

spring to the right of a particle has spring constant ¢
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(b)

A rope modeled as a linear chain of springs. Image (a) shows the rope at rest with
only gravity acting on it. Image (b) shows the rope subject to a wind force whose
direction changes by small random amounts. (See also Color Plate 4.2.)
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Figure 4.3 A surface mass represented as a mass-spring system with the masses organized as a
two-dimensional array.

The equation of motion for particle (i, i;) has four force terms due to Hooke’s
law, one for each neighboring particle. That equation is

X 1 X
. _ i0—1,1 10511
Mo i Xig iy = Cig—1,i (lxio—l,il = Xjg,iy] — Lio—l,i1> o %
ig—1,1; 105 [1
Xio+1,i; — Xig,i;
L) T

+Ci+1-(|x- X i —
otLip \ Mo+l ig> i1
’ Xip+1,i, — Xig, i,

Xig,i;—1 — Xig, i (4.3)

+¢ig -1 (|Xi0,i1—-1 = Xjo,i)l = Lig,i,—1 x

— X

iovii—1 — Xig, iy

Xig,ir+1 — Xig, iy
ig,iy+1

+ Cip i1 (|Xi0,i1+1 = Xjpi,] —
|xi0,i1+l - xio,il

As in the case of linear chains, with the proper definition of the spring constants
and resting lengths at the boundary points of the mesh, equation (4.3) applies to the
boundary points as well as the interior points.

EXAMPLE  This application shows how to solve the equations of motion for a two-dimensional
4.2 - array of masses connected by springs. Figure 4.4—also Color Plate 4.4—shows some
~ screen shots from this application found on the CD-ROM.

SOURCE CODE
Cloth
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(b)

A cloth modeled as a rectangular array of springs. Wind forces make the cloth flap
about. Notice that the cloth in image (b) is stretched in the vertical direction. The
stretching occurs while the gravitational and spring forces balance out in the vertical
direction during the initial portion of the simulation. (See also Color Plate 4.4.)
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Figure 4.5 A volume mass represented as a mass-spring system with the masses organized as a
three-dimensional array. Only the masses and springs on the three visible faces are
shown. The other connections are shown, but without their springs.

42,3 THREE-DIMENSIONAL ARRAY OF MASSES

A volume mass can be represented by a collection of particles arranged as a three-
dimensional array. An interior particle has eight neighbors as shown in Figure 4.5.

The masses are m; ; ; and are located at x; ; ; for 0<i; <n;, j=0,12.
In the direction of positive increase of index i;, the spring has a spring constant
ngoj,)il, i, and resting length Ll(oj »)ib i, for j=0,1,2. The understanding is that the spring
constants and resting lengths are zero if the particle has no such spring in the specified
direction.

The equation of motion for particle (iy, i;, i) has eight force terms due to
Hooke’s law, one for each neighboring particle. That equation is
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GelatinCube

MiginirXigipis = Cig—1Lipi, (lxio—l,il,iz = X ini,]

|
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L Xig—1ipyiy — Xig,ip,is
ig—1,ip,0n

Xig—1,i1,i, — Xigyir,iy
n | Xig+1,i,0, — Xig,ipi;
Cio+1,ip,ip 10+1,11,i2 Xigsitriz 10+1 i1yiy X . “x ..
10+ inip 1051512
+ | | Xigyir—1l,iy — Xig,iy,is
Cigyir—1Liy \ Xig,iy—1,i — Xig, i1, i, lo,ll—ll ix o—X i
Xipi1—1,i; 10,01, 02
X _x |- Xig,i1+1,i — Xig,ip,ip
10,11+1 i g, i1+1,is 10,11,12 10,11+lt lx ] C_x ..
ig,i1+1, 03 g, 015107
+ | X | Xig,iryia—1 — lo,il,iz
czo,zl,tz 1 xlo,ll,lz*l ig>i i 10,11,12—1 l o
10,11,12—1 10,11,12
I | 10‘i1>i2+1 B XiO)iliiZ
10,11,12+1 Xzo,il,zz—H xlo,il,iz 10,11,12+1 Ix; - . |
i, I1>ip+ Xigs iy, iz
+F i (4.4)

With the proper definition of the spring constants and resting lengths at the boundary
points of the mesh, equation (4.4) applies to the boundary points as well as interior
points.

This application shows how to solve the equations of motion for a three-dimensional
array of masses connected by springs. Figure 4.6—also Color Plate 4.6—shows some
screen shots from this application found on the CD-ROM.

424 ARBITRARY CONFIGURATIONS

In general you can set up an arbitrary configuration for a mass-spring system of p
particles with masses m; and location x;. Each spring added to the system connects
two masses, say, m; and m . The spring constant is ¢;; > 0 and the resting length
is L;;
Let A; denote the set of indices j such that m ; is connected to m; by a spring, the
set of adjacent indices, so to speak. The equation of motion for particle i is
j X

mX; = Z ¢ij (Ix; —x1 = Lyj) T—
jeA; J '

X

+F; (4.5)
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Figure 4.6 A gelatinous cube that is oscillating due to random forces. The cube is modeled by a
three-dimensional array of mass connected by springs. (See also Color Plate 4.6.)
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The technical difficulty in building a differential equation solver for an arbitrary
graph is encapsulated solely by a vertex-edge table that stores the graph. Whenever
the numerical solver must process particle i via equation (4.5), it must be able to
iterate over the adjacent indices to evaluate the Hooke’s law terms.

This application shows how to solve the equations of motion for a collection of
masses connected by springs. The mass-spring configuration forms an arbitrary
topology that is not representable as a two- or three-dimensional array of connec-
tions. Figure 4.7—also Color Plate 4.7—shows some screen shots from this applica-

43 CONTROL POINT DEFORMATION

A deformable body can be modeled as a parametric surface with control points that
are varied according to the needs of an application. Although this approach is not
physically based, a careful adjustment of control points can make the surface deform
in a manner that is convincing to the viewer. To obtain localized deformations to
small portions of a surface, a good choice for surface representation is B-splines or
NURBS. A surface need not be a spline patch; it can be constructed from curves in a
couple of ways. A tube surface can be constructed from a central curve and a radius
function. If the control points of the central curve and the radius are time varying, the
resulting tube surface deforms. A surface may also be generated from a spline curve
as a surface of revolution or as a cylinder surface.

This chapter provides a brief summary of B-spline and NURBS curves, B-spline
and NURBS surfaces, tube surfaces, and cylinder surfaces. The summary is confined
to the processes of how such curves and surfaces are evaluated. The focus on eval-
uation is because you will want your deformable surfaces to be updated as rapidly
as possible so as not to unnecessarily consume cycles during the game application
runtime. A more thorough understanding of B-spline and NURBS curves and sur-
faces may be obtained by reading books such as [CRE01, Far90, Far99, Rog01]. The
construction here is closest to that of [Rog01], a good book for an engineering-style
approach to NURBS. Section 4.3.5 describes the applications on the CD-ROM that
use the ideas reviewed in Sections 4.3.1-4.3.4.

4.3.1 B-SPLINE CURVES

The control points for a B-spline curve are B;, 0 < i < n. The construction is dimen-
sionless, so the control points can be in whatever dimension interests you. The degree
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Figure 4.7 A gelatinous blob that is oscillating due to small, random forces. This blob has
the masses located at the vertices of an icosahedron with additional masses of infinite
weight to help stabilize the oscillations. The springs connecting the blob to the infinite
masses are shown in white. (See also Color Plate 4.7.)
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d of the curve must be selected so that 1 < d < n. The curve itself is defined by

X(u) =) N; 4)B; (4.6)

i=0

where the functions N; ,(u) are called the B-spline basis functions. These functions
are defined recursively and require selection of a sequence of scalars u; for 0 <i <
n +d + 1. The sequence must be nondecreasing, that is, u; < u; ;. Each u; is referred
to as a knot, the total sequence a knot vector. The basis function that starts the
recursive definition is

1, u;<u<u;
N, > WSt =lin 4.7
o) { 0, otherwise (4.7)
for 0 <i < n + d. The recursion itself is
u—u; Uipjr1— U
Ni’j(u) =—" Ni,j—l(u) + e Ni+1,j_1(u) (48)
Wipj — U Uipjr1— Uinr

forl<j<dand0<i<n-+d— j. The support of a function is the closure of the
set of points on which the function is nonzero. The support of N; (1) is clearly
(u;, u;11). In general, the support of N; ;(u) is [u;, u; j4,]. We will use this infor-
mation later to show how X(u) for a specific value of u depends only on a small
number of control points, the indices of those points related to the choice of u. This
property is called local control and will be important when you want to deform a
portion of a curve (or surface) by varying only those control points affecting that
portion.

The knots can be within any domain, but I will choose them to be in [0, 1] to
provide a standardized interface for B-spline and NURBS curves and surfaces.

Types of Knot Vectors

The main classification of the knot vector is that it is either open or periodic. If open,
the knots are either uniform or nonuniform. Periodic knot vectors have uniformly
spaced knots. The use of the term open is perhaps a misnomer since you can construct
a closed B-spline curve from an open knot vector. The standard way to construct a
closed curve uses periodic knot vectors.

An open, uniform knot vector is defined by

0, 0<i=<d
up=1 54, d41<i<n

1, n+l1<i<n+d+1
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An open, nonuniform knot vector is in the same format except that the values u;
ford 4+ 1 <i < n are user defined. These must be selected to maintain monotonicity
0<wuyy < <u,,; <1 Aperiodic knot vector is defined by

“i:_l;i‘) 0<is=n+d+1
n+l-—d

Some of the knots are outside the domain [0, 1], but this occurs to force the curve to
have period 1. When evaluating X (), any input value of u outside [0, 1] is reduced
to this interval by periodicity before evaluation of the curve point.

Evaluation

The straightforward method for evaluation of X(u) is to compute all of N; ,(u) for
0 <i < n using the recursive formulas from equations (4.7) and (4.8). The pseu-
docode to compute the basis function values is shown below. The value n, degree d,
knots u[ ], and control points B[ ] are assumed to be globally accessible.

float N (int i, int j, float u)

{
if(j>0)
{
c0 = (u - u[i]) / (uli + 3] - u[il);
cl = (u[i+3+1]-u)/ (uli+3+11-uli+1]);
return c0 * N(i,j - l,u) + cl * N(i + 1,j - 1,u);
}
else //j==10
{
if (u[i] <= u && u < ufli +1] )
return 1;
else
return 0;
}
}

Point X (float u)
{
Point result = ZERO;
for (i = 0; i <= n; i++)
result += N(i,d,u) * B[i];
return result;
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Recursive dependencies for B-spline basis functions forn =4 andd =2

No, Niyp Nypy N3y Ny
N R A N
Noo  Niyno Npno Nspo Ny Ns

N T " 2 VI S VO
No,o Nio  Npo N Nyo o Nso  Neo

. 1 2

Open uniform 0 0 [0 3 5 1) 1 1

Open nonuniform 0 0 [0 Us Uy 1) 1 1
T 2 1 1 2 4 5

Periodic -5 -3 [0 3 5 1) 3 3

This is an inefficient algorithm because many of the basis functions are evaluated
twice. For example, the value Ny, ;(u) requires computing Ny ;_;(u) and Ny 4_;(u).
The value Ny ,(u) also requires computing Ny ;_(u), as well as N, ;_,(u). The
recursive dependencies are illustrated in Table 4.1 for n = 4 and d = 2. The various
types of knot vectors are shown below the table of basis function values.

The rows of knot vectors include brackets [ and ). These indicate that an evalua-
tion for a specified u € [0, 1) requires searching for the bounding interval [u;, u; ;)
containing u. Only those knots in the bracketed portion need to be searched. The
search returns the index of the left end point i, where d <i < n. For an open knot
vector, the knots corresponding to other indices are included for padding. For a pe-
riodic knot vector, the knots corresponding to other indices are included to force the
periodicity.

To avoid the redundant calculations, you might think to evaluate the table from
the bottom up rather than from the top down. In our example you would compute
N; o(u) for 0 <i < 6 and save these for later access. You would then compute N; ;(u)
for 0 <i < 5 and look up the values N j,0u) as needed. Finally, you would compute
N; , for 0 <i < 4. The pseudocode follows.

Point X (float u)

{
float basis[d + 1][n + d + 1]; // basis[j1[i] = N(i,Jj)

for (i = 0; i <= n +d; i++)
{
if (ufi] <= u & u < uli + 1] )
basis[0][i] = 1;
else
basis[0][i] = 0;
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Table 4.2

for (j =13 3 <= d; 3+4)

{
for (i =0; i <=n+d - j; i++)
{
c0 = (u - u[i]l) / (u[i + 3] - u[il);
cl = (u[i +j+1] -u) / (u[i +3+1]-uli+1]);

basis[i][j] = c0 * basis[j - 1][i] + cl1 * basis[j - 1]J[i + 1];
}

Point result = ZERO;
for (i = 0; 1 <= n; i++)

result += basis[d][i] * B[i];
return result;

This is a reasonable modification but still not as efficient as it could be. For a single
value of u, only one of N; 4(u) is 1; the others are all zero. In our example suppose
that u € [u3, uy) so that N3 o(u) is 1 and all other N; o(u) are 0. The only nonzero
entries from Table 4.1 are shown as boxed quantities in Table 4.2.

The boxed entries cover a triangular portion of the table. The values on the left
diagonal edge and on the right vertical edge are computed first since each value
effectively depends only on one previous value, the other value already known to be
zero. If N; o(u) = 1, the left diagonal edge is generated by

Uiy — U

Ni_j,jw) = Ni_jr,j—1(w)

Uip1 — Ui j11
and the right vertical edge is generated by

u—u;
N; i) = ———N; ;_(u)
Wipj — Ui

Nonzero values (boxed) from Table 4.1 for N5 o(u) =1

Noo> [Nio] [Nyo| [Nsg]  Nap
N Y 2 VN O
NO,I Nl,l N4,1 NS,I
N " 2 VI S VR A VR AN
No,o  Nio Ny Ngo  Nso  Neo
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both evaluated for 1 < j < d. The interior values are computed using the recursive
formula, equation (4.8). The pseudocode for computing the curve point follows.

Point X (float u)

{
float basis[d + 1][n +d + 1]; // basis[31[i] = N(i,J)
// get i for which u[i] <= u < u[i + 1]
i = GetKey(u);
// evaluate left diagonal and right vertical edges
for (j = 1; j <= d; j++)
{
c0 = (u - ufil) / (u[i + 3] - ulil);
cl = (u[i +1] - u) / (uli +1] -uli -j+1]);
basis[j][i] = c0 * basis[j - 1][i];
basis[jI[i - j] = ¢l * basis[j - 1][i - j + 1];
}
// evaluate interior
for (j = 25 j <= d; j++)
{
for (k=1 -3+ 1; k < i; ktt)
{
c0 = (u - u[k]) / (ulk + 3] - u[k]);
cl = (ulk +3 + 1] -u) / (ulk +j + 1] - ulk + 1]);
basis[j][k] = c0 * basis[j - 1][k] * fInvDO +
cl * basis[j - 11[k + 1];
}
Point result = ZERO;
for (j =1 -d; j <= i; j++)
result += basis[d][j] * B[i];
return result;
}

The only remaining issue is how to compute index i from the input parameter
u. For optimal efficiency, the computation should take into account whether the
knot vector is open or periodic and if open, whether the knots are uniformly or
nonuniformly spaced. The pseudocode follows. Observe that the choice is made to
clamp u to [0, 1] when the spline is open and to wrap u to [0, 1] when the spline is
periodic.
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int GetKey (float& u) const
{
if ( knot vector is open ) // open splines clamp to [0,1]
{
if (u<=
if (u>=

_— O

{ u=20; return d; }
u = 1; return n; }

~—
——

}

else // periodic splines wrap to [0,1]

{
if (u<0|]u>1)u-="floor(u);

int i;
if ( knots are uniformly spaced )
{
i=d+ floor((n + 1 -d) * u);
}
else // knots are nonuniformly spaced
{
for (i =d+ 1; i <=n + 1; i++) { if (u < ul[i] ) break; }

i--3

return i;

In all cases the search for the bounding interval [u;, u; ;] of u produces an index
i, forwhich d <i < n (according to the discussion immediately following Table 4.1).

The basis function data and operations can be encapsulated into a class Basis-
Function so that a B-spline curve class has a basis function object for the parameter
u. For the purposes of curve evaluation, only two public interface functions must ex-
ist for a BasisFunction class. One function computes the basis function values at u
and returns the index i of the nonzero basis value N; o(u), call it int Compute(float
u). The function returns the index i. The GetKey function described earlier becomes a
nonpublic helper function for Compute. Another function is an accessor to the values
N; 4(u), call it float Basis(int 1). The BasisFunction class stores the degree d inter-
nally, so only i needs to be passed. The curve evaluator does not need access to basis
function values N; ;(u) for j < d. The B-spline curve itself can be encapsulated in a
class BSplineCurve. This class manages the control points B[], knows the degree d of
the curve, and has a BasisFunction member called Nu. The curve evaluator becomes a
member function of BSplineCurve and is
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Point BSplineCurve::X (float u)
{
int i = Nu.Compute(u);
Point result = ZERO;
for (int j =i - d; j <= i; j++)
result += Nu.Basis{j) * B[jl;
return result;

Local Control

Our goal is to dynamically modify the control points of the B-spline curve in order to
deform only a portion of that curve. If we were to change exactly one control point B;
in equation (4.6), what part of the curve is affected? The modified B j is blended into
the curve equation via the basis function N ;,a(u). The curve associated with those
parameters u for which this function is not zero is affected by the change. The set of
such u is exactly what we called the support of the function, in this case the interval
[, uyq11]) The property such that changing a control point affects only a small
portion of the curve is referred to as local control.

The practical application of local control is that in drawing the curve, you create
a polyline approximation by selecting samples u; € [0, 1] for 0 < k < m, with u;, <
ity for all k. The curve points are P, = X(it;). The polyline consists of the line
segments (Py, Py ;) for 0 <k < m — 1. If we were to change control point B;, only
some of the line segments need to be recomputed. Specifically, define ki, and k.,
to be the extreme indices for which # € [u}, uj 4.} The polyline points P, for
kmin <k < k., are the only ones to be recomputed.

Closed Curves

In order to obtain closed curves, additional control points must be included by the
curve designer or automatically generated by the B-spline curve implementation. If
the latter, and the implementation allows the user to dynamically modify control
points, the additional control points must be modified accordingly.

Closing a B-spline curve with an open knot vector is simple. If the curve has
control points B; for 0 < i < n, the first control point must be duplicated, B,,, | = By.
An additional knot must also be added. The extra knot is automatically calculated
for uniformly spaced knots, but the curve design must specify the extra knot for
nonuniformly spaced knots.

Closing a B-spline curve with a periodic knot vector requires the first d control
points to be duplicated, B, ,; = B; for 0 <i < d. Since a periodic knot vector has
uniformly spaced knots, the d additional knots are automatically calculated.
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EXAMPLE = Figure 4.8 shows six pairs of B-spline curves, pairs (a)—(f). The left image in each
4.5 - pair is generated from the eight ordered control points (0, 0), (1, 0), (2, 0), (2, 1),
(2,2),(1,2), (0, 2), and (0, 1). The right image uses the same control points except
that (2, 2) is replaced by (2.75, 2.75). Also, the light gray portions of the curves in the
OURCE CODE right images are those points that were affected by modifying the control point (2, 2)
BSplineCurve-  to (2.75, 2.75). In order to avoid confusion between the two uses of the term open, a
Examples curve is labeled as either closed or not closed.

r—

(c) open, nonuniform, closed

. ./ -

!
" . "
| { !
. —a . & _._,J, L wD _
(e) periodic, not closed (f) periodic, closed
Figure 4.8 Six pairs of B-spline curves of various types. The right image of each pair shows the

deformed curve by modifying one control point.

Table 4.3 shows the knot vectors and the parameter intervals affected by modifying
the control point (2, 2). The nonuniform knot vectors were just chosen arbitrarily.
The other knot vectors were automatically generated.
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Knot vectors and parameter intervals affected by modifying the control point

open, uniform, not closed {0,0,0,4,2,2,4,2,1,1,1) (2, 2]
open, nonuniform, not closed {0,0,0,0.1,0.2,0.4,0.7,0.8, 1, 1, 1} [0.2,0.8]
periodic, not closed {-2,-%,0,4,2,2,4,2,1,2, 4 £, 21
open, uniform, closed {0,0,0, %, 2,3,4,2, 81,1, 1} (2, 2]
open, nonuniform, closed {0, 0,0,0.1, 0.2, 0.4, 0.7, 0.8, 0.9, 1, 1, 1} [0.2, 0.8]
periodic, closed (-3,-4.0, 4,33, 43,841,389 (3, 2]

4.32 NURBS CURVES

EXAMPLE
4.6

As we touched on earlier, NURBS is an acronym for NonUniform Rational B-
Spline(s). B-spline curves are piecewise polynomial functions. The concept of NURBS
provides a level of generality by allowing the curves to be piecewise, rational polyno-
mial functions; that is, the curve components are ratios of polynomial functions. The
mathematics of NURBS is quite deep and is described concisely in [Far99]. Not to
de-emphasize the theoretical foundations, but for our purposes the use of NURBS is
for the greater flexibility in constructing shapes than that which B-splines provide.

The control points for a NURBS curve are B; for 0 <i <n, just as in the case
of B-spline curves. However, control weights are also provided, w; for 0 <i <n.
The construction is dimensionless; the control points can be m-tuples. The idea for
defining NURBS is quite simple. The (m + 1)-tuples (w;B;, w;) are used to create a
B-spline curve (Y(u), w(u)). These tuples are treated as homogeneous coordinates.
To project back to m-dimensional space, you divide by the last component: X(u) =
Y (u)/w(u). The degree d of the curve is selected so that 1 < d < n. The NURBS curve
is defined by

_ 2o Niaww;B;

io Ni,a)w;

X(u) (4.9)

where N; ,;(u) are the B-spline basis functions discussed earlier.

The classical example of the greater flexibility of NURBS compared to B-splines is
illustrated in 2D. A quadrant of a circle cannot be represented using polynomial
curves, but it can be represented as a NURBS curve of degree 2. The curve is x? +
y2=1,x >0,y > 0. The general parameterization is

wo(1 — u)*(1, 0) + wy2u(l — u)(1, 1) + w,u?(0, 1)
wo(l — u)? + w2u(l — u) + wyu?

(x(u), y()) =
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(Example 4.6
continued)

for u € [0, 1]. The requirement that x> + y2 = 1leads to the weights constraint wa =
wow,. The choice of weights wo =1, w; =1, and w, =2 leads to a well-known
parameterization:

(1 — u?, 2u)

(x(u), y(u)) = T

If you were to tessellate the curve with an odd number of uniform samples of u, say,
u; =1i/(2n) for 0 < i < 2n, then the resulting polyline is not symmetric about the
midpoint # = 1/2. To obtain a symmetric tessellation, you need to choose wy = w;.
The weight constraint then implies wy = w,+/2. The parameterization is then

(V2(1 — u)? 4+ 2u(1 — u), 2u(l — u) + +/2u?)
V21 = )2 + 2u(l — u) + V2u?

(x(u), y(w)) =

In either case we have a ratio of quadratic polynomials.

An algebraic construction of the same type, but quite a bit more tedious to solve,
produces a ratio of quartic polynomials. The control points and control weights
are required to be symmetric to obtain a tessellation that is symmetric about its
midpoint. The middle weight is chosen as w, = 4, as shown:

(x (@), y(u))

(L= w)tw(L, 0) + 41 — w)’uw; (xy, 1) + 2401 — ) P (x), xp) + 4(1 — wudwy(yy, 1) + utwy
(1 — w)*wy + 4(1 — u)3uw; + 24(1 — u)2u? + 4(1 — wudw, + utw,

The parameters are x; = 1, y = (v3 = D/V3, x = (V3 + D/Q2V3), w; =3/V2,
and wO = 4ﬁ(ﬁ —_ l)~ e

We already have all the machinery in place to deal with the basis functions. The
NURBS curve can be encapsulated in a class NURBSCurve that manages the control
points B[ ], the control weights W[ ], the degree d, and has a BasisFunction member
Nu. The curve evaluator is

Point NURBSCurve::X (float u)
{
int i = Nu.Compute(u);
Point result = ZERO;
float totalW = 0;
for (int j =1 -d; j <= i; j++)
{
float tmp = Nu.Basis(j)*W[jl;
result += tmp*B[j];
totalW += tmp;
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result /= totalW;
return result;

The next example shows a dynamic deformation of a planar NURBS curve and
is used as the foundation for the three-dimensional deformation that we will see in
Example 4.10.

Consider a NURBS curve with 13 control points that are initially on the same straight
line. The knot vector is open with uniformly spaced knots. The curve is necessarily a
line segment. The control points must be moved to deform the central portion of the
curve into a closed loop. The control weights are all 1 except for points 3, 5, 7, and
9, whose weights are 3/10. These weights were chosen to produce a final closed loop
that is nearly circular. Figure 4.9 shows the initial line segment and its control points.
It also shows how the control points evolve early in the process.

The end control points 0 and 12 remain fixed. Control points 1 and 11 are constrained
to lie on the initial line segment, but move toward the midpoint of the segment
with constant speed; they will eventually coincide. Control points 5, 6, and 7 move
vertically upward with constant speed. Control points 3 and 4 move toward the
vertical line containing point 5. Control points 8 and 9 move toward the vertical line
containing point 7. Control points 2 and 6 move toward the vertical line containing
point 6 and will eventually coincide. Figure 4.10 shows the control points and curves

The initial control points and curve are shown at the top of the figure. The evolved
control points and curve are shown at three later times, with time increasing from
top to bottom in the figure.
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(Example 4.7
continued)

(a) (b)

(©) (d)

(e ®

Figure 4.10 The control points and curve at later times in the evolution.
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Deformation of a line segment into a closed curve that splits away from the original
curve.

much further along in time. The time sequence is from (a)—(f). In image (e), control
points 1 and 11 finally coincide as do control points 2 and 6. At that instant the
NURBS curve is split into two NURBS curves as shown in image (f). The closed curve
has a periodic knot vector. The closed curve continues to move vertically upward by
uniform translations of the control points. The other curve has 5 control points with
points 1 and 3 coinciding. The curve evolves back to a line segment by translating
the middle control point 2 so that it too coincides with control points 1 and 3. Figure
4.11 shows an entire sequence of frames of the deformation. The sequence of images
is top row to bottom row, left to right in each row. !

4.3.3 B-SPLINE SURFACES

The simplest extension of the concept of B-spline curves to surfaces is to blend a
rectangular array of control points B, ; for 0 <i, <ngand0 <i, <n,. The blending
occurs separately in each dimension, leading to a rectangle surface patch. The degree
must be specified for each dimension, d; and d;, with 1 < d; < n;. The surface patch
is defined by

ng n
X, v) =) > Nip gy N, 4, 0By, i, (4.10)

i0=0 11=0
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Once again we already have the mechanism in place for computing the basis func-
tions. The B-spline surface is encapsulated in a class BSplineSurface and manages the
control points B[][], the degrees d0 and d1, and has BasisFunction objects Nu and Nv.
The surface evaluation is

Point BSplineSurface::X (float u, float v)
{
int 10 = Nu.Compute(u), il = Nv.Compute(v);
Point result = ZERO;
for (int jOo = i0 - d0; jO <= i0; jO++)
{
for (int jl = i1 - d1; jl <= i1; jl++)
result += Nu.Basis(jO) * Nv.Basis(jl) * B[j0][j1];
}

return result;

4.3.4 NURBS SURFACES

EXAMPLE
4.8

B-spline surface patches are piecewise polynomial functions of two variables. NURBS
surface patches are piecewise rational polynomial functions of two variables. Just as
for curves, the construction involves fitting homogeneous points in one higher di-
mension with a B-spline surface (Y(u, v), w(u, v)), then projecting back to your ap-
plication space by dividing by the w(u, v) term: X(u, v) = Y(u, v)/w(u, v). NURBS
surfaces have greater flexibility than B-spline surfaces.

A NURBS rectangle surface patch is built from control points B; ; and weights
w;,.i, for 0 <ip <ngand 0 <i; <n,. Thedegrees d; are user selected with 1 <d; <n;.
The surface patch is defined by

o ny
Ziozo il:0 Nio,do(u)Nil,dl(v)wioyilBiO)il

X(u,v) = ~
0 ny
Zio=0 i =0 Nio»do(u)Nipdl(v)wio,h

(4.11)

The B-spline construction in one higher dimension uses the homogeneous control

pomts (wi())ilBiO)il’ wio,il).

The classical example of the greater flexibility of NURBS compared to B-splines is
illustrated in 3D. An octant of a sphere cannot be represented using a polynomial
surface patch, but it can be represented as a triangular NURBS surface patch of
degree 4. A simple parameterization of x% + y? + z? = 1 can be made by setting
r? = x? 4+ y%. The sphere is then r2 + z? = 1. Now apply the parameterization for

a circle,

(1 —u?, 2u)

r,z)=
(r,z) -
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But (x/r)? + (y/r)? = 1, s0 another application of the parameterization for a circle is

(x,y) _ (1—v%20)
ro 1402

Combining these produces

(1 —udHA—v?), A —ud)2v, 2u(l + v?))
1+ ud)(1+v?)

(x(u, v), y(u, v), z(u, v)) =

The components are ratios of quartic polynomials. The domain is 4 > 0, v > 0, and
u + v < 1. In barycentric coordinates, set w = 1 — u — v so thatu + v + w = 1 with
u, v, and w nonnegative. In this setting, you can think of the octant of the sphere
as a mapping from the uvw-triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1).
Although a valid parameterization, a symmetric subdivision of the uvw-triangle does
not lead to a symmetric tessellation of the sphere.

Another parameterization is provided in [Far90]. This one chooses symmetric con-
trol points and symmetric weights:

Zl ()Z] ()wlj4lelj4l] lj(u v)
ZIOZJO i,j,a—i—jBi, j(, V)

(x(u, v), y(u’ v), z(u, v)) =

where
4!

—-———uivj(l—u—v)4_i_j, u>0, v>0, u+v<l
4 —i— !

Bi,j(u) v) =

are the Bernstein polynomials. The control points P; ; ; are defined in terms
of three constants, ay= (+/3 —1)//3, a;= (\/——l- 1)/(2\/—), and a, =1-—
(5= 2)(7 — /3)/46:

Pyyo 0, 1,0)

Pos1 Pisg 0,1, ap) (ap, 1,0)

Poy Piar Poyp = (0,a,a;)) (a4 L a) (a1, a,0)

Pois P Poy Piy 0,a0,)  (ap,a,, ) (Laya) (1,a0)

Poosa Pros Paa Paor Pygo 0,0, 1 (@,0,1)  (a1,0,a;) (1,0,a9) (1,0,0)

The control weights w; ; , are defined in terms of four constants, by = 4/3(/3 - 1),

bl = 3\/5, b2 :4, and b3 = \/5(34‘ 2\/2 - \/3)/\/5:

Wo40 by

We31  Wi3g b, b

Wpop  Wip1 Wi =b, by b
Woi3 Wiz W Wiy by bs; by b

Woog Wip3 Wop2 W3e1 Wyo by by by, by b
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(Example 4.8
continued)

Both the numerator and denominator polynomial are quartic polynomials. Notice
that each boundary curve of the triangle patch is a quartic polynomial of one variable

that is exactly what was shown earlier for a quadrant of a circle.

We can encapsulate NURBS rectangle patches into a class NURBSSurface and give it
two BasisFunction members, just like we did for BSplineSurface. The class manages
the control points B[] [] and the control weights W[] []. The surface evaluation is

Point NURBSSurface::X (float u, float v)
{
int i0 = Nu.Compute(u), il = Nv.Compute(v);
Point result = ZERO;
float totalW = 0;
for (int jO = i0 - d0; jO <= i0; jO++)
{
for (int j1 = il - dl; j1 <= j1; jl++)
{
float tmp = Nu.Basis(jO) * Nv.Basis(jl) * W[jol[j1];
result += tmp * B[jOI[j1];
totalW += tmp;
1

1
result /= totalW;
return result;

43,5 SURFACES BUILT FROM CURVES

In order to avoid the complexity of dealing with a naturally defined surface patch such
as B-spline or NURBS rectangle patches, sometimes it is convenient to build a surface
from curves. The idea is that the curves are easier to work with and potentially lead
to less expensive dynamic updates of the surface. A few types of surfaces built from
curves are described here. In all cases the parameter space is (u, v) € [0, 1]%.

A triangle mesh is constructed by partitioning the parameter space into a rectan-
gular grid, each rectangle representing two triangles. Figure 4.12 illustrates this.

The numbers n and m do not have to be the same. Generally, you want a lot
of samples in u to capture the shape of the curve (n large), but fewer samples in v
since the surface is relatively flat in that direction (m small). The grid samples are
(u;, vj) =(i/n, j/m) for 0 <i <nand 0 < j < m. The vertices are stored in a sin-
gle array in lexicographic order: k =i + n * j where 0 < k < nm. The triangles are
stored in an array of triples of k-indices, a total of 2(n — 1){(m — 1) triples. Pseu-
docode to generate the vertices, normals, uniform texture coordinates, and triangles
is as follows:



Figure 4.12
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Jj+l

u i i+l

(@ (®)

(a) The decomposition of (#, v) space into ann X m grid of rectangles, each rectangle
consisting of two triangles. A typical rectangle is shown in (b), with lower corner
index (7, j) corresponding tou =i/nand v = j/m.

// generate vertices

//  X(u,v) = point on the surface at (u,v)
//  N(u,v) = normal on the surface at (u,v)
int vquantity = n * m;

Point3 vertex[vquantity], normal[vquantity];
Point2 texcoord[vquantity];

for (j =0, k=05 j <m j++)
{
float v = j/(m - 1.0);
for (i = 0; 1 < n; i++)
{
float u = i/(n - 1.0);
vertex[k] = X{u,v);
normal [k] = N{u,v);
texcoord[k] = Point2(u,v);

k++;

// generate triangles

int tquantity =2 * (n - 1) * (m - 1);
int indices[3 * tquantity];

for (j =0, k=20;j<m-1; j+)

{
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for (i = 0; i <n - 1; i+t)
{
intvb=1+n>*j;
int vl = v0 + 1;
int v2 = vl + n;
int v3 = v0 + n;
indices[k++] = vO0;
indices[k++] = vl1;
indices[k++] = v2;

indices[k++] = v0;
indices[k++] = v2;
indices[k++] = v3;

If the surface is closed in the u-direction, that is, X (1, v) = X(0, v), the first and
last columns of vertices of the mesh coincide. The texture coordinates of the first and
last columns do not coincide, since the first column has # = 0 and the last column
has u = 1. The texture image should be designed accordingly to make sure the seam
is not visible. The same care must be taken if the surface is closed in the v-direction
or in both directions.

Cylinder Surfaces

Surface patches might provide more curvature variation than is needed for a par-
ticular model. For example, a curved archway is curved in one dimension and flat
in another. A single curve may be built to represent the curved dimension, then ex-
truded linearly for the flat dimension. The surface obtained by this operation is said
to be a cylinder surface. Figure 4.13 illustrates the process.

@ (b)

Figure 4.13 A cylinder surface (b) obtained by extruding the curve (a) in a direction oblique to
the plane of the curve.



Figure 4.14
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A generalized cylinder surface obtained by linearly interpolating pairs of points on
two curves.

If Y(u) is a parameterization of the curve for u € [0, 1], and if D is the desired
amount of linear translation of the curve, the cylinder surface is parameterized by

X, v)=Y@) + vD

for v € [0, 1]. First-order partial derivatives are X/du = Y'(«) and 9X/dv =D.
Normal vectors to the surface are the cross product of the derivatives,

NG — Y'(u) x D
[Y'(u) x D|

Notice that the normal does not depend on v.

Generalized Cylinder Surfaces

Some applications might require that a starting and ending curve be specified and an
interpolation applied between them to generate a surface. This is called a generalized
cylinder surface. Figure 4.14 illustrates.

If Yo () and Y,(u) are the starting and ending curves, u € [0, 1], the generalized
cylinder surface is parameterized by

X, v)=(1—v)Yeu) + vY, (1)

for v € [0, 1]. The first-order derivatives are dX/du = (1 — v)Y;(u) + vY/(1) and
0X/0v =Y (u) — Yo(u). Normal vectors to the surface are
N, v) = (1= v)Yg ) + vY;(w) x (Y1) — Yo(u))
T = v)Y(w) 4 Y[ @) x (Y1) — Yo(w)]

This application shows a flowing skirt. The skirt is modeled as a generalized cylinder
surface whose control points are varied over time to produce the deformation. Figure
4.15—also Color Plate 4.15—shows some screen shots from this application found
on the CD-ROM.
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(Example 4.9
continued)

(a)

(b)

Figure 4.15 A skirt modeled by a generalized cylinder surface. Wind-like forces are acting on the
skirt and are applied in the radial direction. Image (a) shows the skirt after wind is
blowing it about. Image (b) shows a wireframe view of the skirt so that you can see
it consists of two closed curve boundaries and is tessellated between. (See also Color
Plate 4.15.) =




Figure 4.16
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A surface of revolution.

Revolution Surfaces

A revolution surface is obtained by revolving a curve about a line that does not
intersect the curve. To simplify the discussion, suppose that the line is the z-axis and
the curve is (x (#), z(u)) in the xz-plane. The parameter u € [0, 1]and x(u) > 0. The
intersection of the surface and a plane of constant z, given by z(u) for a specified u,
is a circle whose radius is x () as shown by Figure 4.16.

The surface is parameterized as

X(u, v) = (x(u) cos(2mv), x(u) sin(2mwv), z(u))

for (u, v) € [0, 112

The curve deformation in Example 4.7 may be used to generate a control point
deformation of a surface. The surface is constructed as a surface of revolution of the
curve about the vertical axis. Figure 4.17—also Color Plate 4.17—shows some screen
shots from this application found on the CD-ROM.
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(Example 4.10

continued)

Figure 4.17 A water drop modeled as a control point surface of revolution. The surface dynam-

ically changes to show the water drop forming, separating from the main body of

water, then falling to the floor. The evolution is from left to right and top to bottom.
(See also Color Plate 4.17.)
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Tube Surfaces

A surface in the shape of a tube can be generated by specifying the central curve of
the tube, say, C(v) for v € [0, 1], and by specifying a closed planar curve Y(u) =
(y1(#), y,(u)) to represent the boundary of a cross section of the surface. The cross
section for a given v is within a plane whose coordinate system has origin C(v) and
one unit-length coordinate direction T(v) = C'(v)/|C'(v)|, a tangent to the central
curve. The other two unit-length coordinate directions are chosen as desired, call
them N(v) and B(v). The three vectors form a right-handed orthonormal set. The
names are suggestive of using the Frenet frame for the curve, where N is the curve
normal and B=T x N is the curve binormal. However, other choices are always
possible. The tube surface is constructed as

X(u, v) =C() + y»WN®) + y,B(v)

for (u, v) € [0, 1]%. The classical tube surface is one whose cross sections are circu-
lar, Y(u) = r(cos u, sin u) for a positive radius r. More generally, the radius can be
allowed to vary with v. For example, a surface of revolution is a tube surface whose
central curve is a line segment and whose radius varies based on the curve that was
revolved about the line segment. Figure 4.18—also Color Plate 4.18—shows a tube
surface that was built so that the inside surface is visible to the camera.

We now look at an example of a deformation of a tube surface. The central curve
of the tube is a control point curve. The control points are modified over time,
thereby causing the tube surface itself to deform over time.

This application shows a wriggling snake. The snake is modeled as a tube surface
whose central curve is a control point curve. The control points are varied over time
to produce the deformation. Figure 4.19—also Color Plate 4.19—shows some screen
shots from this application found on the CD-ROM.

4.4 FREE-FORM DEFORMATION

The deformation methods of the last section are useful for deforming a surface that
is defined parametrically based on user-specified control points. In a game environ-
ment we need to display the deforming object in addition to handling it in a physical
simulation. The typical representation of an object in the game is a triangle mesh.
The parametric surface may be tessellated to produce that representation. Although
the resulting mesh is required for display, that same mesh might also be used if the ob-
ject participates in a collision detection system. The mesh dynamically changes as the
control points are deformed, the vertices having to be recalculated after each mod-
ification of the control points. The triangle connectivity can be calculated once and
maintained during the deformations.



198 Chapter 4 Deformable Bodies

N

M Aﬂﬁ 7
”#M&QE

gw&%\\

%

75

Figure 4.18 A closed tube surface whose central axis is a helix. (See also Color Plate 4.18.)
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Figure 4.19 A wriggling snake modeled as a tube surface whose central curve is a control point
curve. (See also Color Plate 4.19.)
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In many cases, though, the triangle meshes are constructed by artists using a
modeling package. No underlying control point surface is used to build those meshes.
If the game application requires deforming these meshes, how do we do this? Cer-
tainly it is possible to construct a control point surface that, in some sense, approxi-
mates the triangle mesh. However, that is generally a difficult algorithm to implement
and even more difficult to obtain approximations that an artist will agree looks like
the original mesh.

A good alternative is to embed the triangle mesh in a volume of space that itself
may be deformed via control points. The parameterization of the volume by three
parameters is just the natural extension of the parameterization of surfaces by two
parameters. The vertices of the triangle mesh initially are assigned parameters based
on where they lie in the volume. The control points of the volume are then modified
dynamically, causing a deformation of the volume, which in turn causes the vertices
to move about. This process is called free-form deformation (FFD) and was formally
introduced in [SP86], but earlier works exist regarding volume deformation with the
goal of analyzing surface deformation, for example, [Barr84]. The FFD algorithm
uses a blending of control points using Bernstein polynomials, producing a Bézier
volume patch that is a natural extension of a Bézier rectangle patch. A B-spline
representation of the volume may be used instead [GP89].

Equation (4.10) extends to a lattice of control points B; ; ; for 0 <ij <n,,
0 <i; <ny, and 0 < i, < n,. The degree must be specified for each dimension, dy,
d,, and d, with 1 < d; < n;. The volume patch is defined by

ng np m

X, v, w)= Y > Y Ny 4 (N 0 WN, 4 (w)B; ; 5, (4.12)

ip=0 i;=0 i,=0

Just as for B-spline curves and surfaces, we have the mechanism in place for com-
puting the basis functions. The B-spline volume is encapsulated in a class BSp1ineVol-
ume and manages the control points B[] [][] and the degrees d0, d1, and d2 and has
BasisFunction objects Nu, Nv, and Nw. The volume evaluation is

Point BSplineVolume::X (float u, float v, float w)
{

int i0 = Nu.Compute(u);

int i1 = Nv.Compute(v);

int i2 = Nw.Compute(w);

Point result = ZERO;

for (int jOo = i0 - dO; jO <= i0; jO++)
{

for (int jl = il - dl; jl <= il; jl++)
{
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for (int j2 = il - d2; j2 <= i2; j2++)
{
result += Nu.Basis(jO) * Nv.Basis(jl) *
Nw.Basis(j2) * B[j0][i1]1[i2];

return result;

Assuming the control points are selected so that the volume patch encloses the
application’s triangle mesh, for each mesh vertex P; we need to compute the cor-
responding parameters (u;, v;, w;) so that X(u;, v;, w;) = P;. In general, this is a
difficult problem in that this equation represents three polynomial equations of three
unknown variables that must be solved by some numerical method. Keeping in mind
our application is to deform the mesh, we can make this a simple problem. Choose
the control points so that the initial volume is an axis-aligned box containing the tri-
angle mesh. If the box is [*in> Xmax] X [Ymin> Ymax] X [Zmin> Zmax » then the control
points are

B =M+ (Ayig, Ayiy, Asiy)

ig»i1,i)

where M = (Xpin, Ymin> Zmin)> Ax = Fmax — Xmin) /70> &y = (Ymax — Ymin)/ 11> and
A, = (Zmax — Zmin)/ N2 The volume function reduces as follows:

ng np n

X(u, v, w) =Y Y " N g @N;, 4, @)N;y g, (IM + (Agig, Ayiy, Aiy))

ig=0 ;=0 i=0
=coM + Ayt + Ay ]+ 3k
where

nog np Ny

‘o= Z Z Z Nig,dy(WN;, 4, (V)N g, (w)

ig=0 i1=0 i,=0
ng ny ny
=Y Nipa@ | | D N @ | | D Niyyay(w)
10=0 ll—_-O l2=0

=1-1-1=1
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We used the well-known property for basis functions, 3" _ N; ,4(t) =1 for all
t € [0, 1]. Similarly,

ng n;  ny
a= Z Z Z ioNig,dy W Niy, a4, (VINiy, 4, (W)

i=0 i,=0 i,=0
ny n ny
= Z ioNjy,d, (1) Z Nij,a,(v) Z Nj,, 4, (w)
ig=0 i=0 i=0
=u-1-1=u

where we use the property 3 ' _ N; 4(t) =t fort € (0, 1]. The same argument shows
that ¢; = v and ¢3 = 2. Therefore,

X, v, w) =M+ noAut +njAyvy +nAwk

for the initially selected control points. The parameters to locate a mesh vertex P; =
X(u;, v;, w;) are simply u; =1+ (P; —M)/A,, v;=j - (P; —M)/A,, and w; =

The straightforward approach to deforming the surface is to modify the control
points and recompute X(u;, v;, w;) for all i. Although this certainly works, it is
less efficient than it can be. The input parameters never change for a mesh vertex.
Each time the B-spline volume function is calculated, the basis functions N; 4 (4;),
Nj,,4,(v;),and N;, 4 (w;) are calculated. These may be calculated once and stored for
use in later volume evaluations. Another optimization is possible if only a few control
points are modified at each step. To indicate the dependence of the volume function
on the control points, let us write the function as X(u, v, w; B). The mesh vertex
positions for the initial set of control points are

P; =X(u;, v;, w;; B)

for all i. The control points are modified to B; ; ; + dB; ; ; where the control
point perturbations might be nonzero only for a few control points. In an interactive
modeling package, the interface will most likely support dragging one control point
at a time, in which case dB; ; ;, is nonzero for exactly one triple of indices, but zero
for all the others. The new mesh vertex positions are

Qi :X(Mi, Vi» lUi;B +dB) =X(u,-, V;, wi;B) +X(u,~, V;» wi;dB) :Pi +dP,

where the perturbation of the old mesh vertices is denoted by dP; = X (;, v;, w;; dB).
If you keep track of the original mesh vertices and measure only the control point
perturbations, the new mesh vertices may be rapidly computed. The evaluation of
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the perturbation X(u;, v;, w;; dB) is implemented to avoid multiplying the basis

functions by a point dB; ; ; when that point is the zero vector.

This programming example is a full implementation of the free-form deformation
using a B-spline volume function. The application constructs the axis-aligned bound-
ing box for a triangle mesh, computes the parameter triples for the mesh vertices, and
displays the mesh. The volume is drawn as a wireframe box with line segments con-
necting the control points. The interface allows you to select a control point and drag
it with the mouse. For each change the embedded triangle mesh is updated. The pro-
gram also has an option for randomly perturbing the current set of control points
so that the mesh wiggles. This option is toggled with the r/R keys. Figure 4.20—also
Color Plate 4.20—shows some screen shots from this application found on the CD-
ROM.

The ideas of FFD have been extended by various researchers. An extended free-
form deformation (EFFD) was developed in [Coq90] that allows the surface to be
embedded in a collection of multiple volumes to gain better control over the spatial
deformations. These results were developed more from an engineering perspective
than from a desire to obtain physically meaningful deformations. Along the latter
lines the paper [HML99] describes an algorithm to preserve the total volume enclosed
by the surface during the deformation. This is a reasonable goal, but it implicitly
assumes that the object’s mass density is constant throughout the deformation. For
some objects this assumption makes sense, but for others it does not. Consider a
foam ball that is deformed by squeezing it. Clearly, the volume is not preserved,
but the total mass is preserved. The next step in developing deformation models of
the free-form type should have the goal of modifying the mass density function so
that the total mass is preserved. By accurately computing the mass density during
deformation, the inertia tensor for the deformed object can then be calculated for
use in physical simulations.

45 IMPLICIT SURFACE DEFORMATION

A body is modeled as the region F(x, y, z) < 0 for a suitably chosen function F. The
surface of the body is implicitly defined by F(x, y, z) = 0. A force on the body is
simulated by adding a deformation function D(x, y, z) to F(x, y, z). The deformed
body is the region F(x, y, z) + D(x, y, z) < 0 and has a surface implicitly defined
by F(x,y,z)+ D(x, y, z) = 0. A simple example in two dimensions will illustrate
the concept.
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(b)

Figure 4.20  Free-form deformation. Image (a) shows the initial configuration where all control
points are rectangularly aligned. Image (b) shows that some control points have been
moved and the surface is deformed. The control point shown in darker gray in (b) is
the point at which the mouse was clicked on and moved. (See also Color Plate 4.20.)
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Consider a planar body in the shape of a circular disk defined by F (x, y) = x* +
y? — 1< 0. The boundary of the object is the circle defined by F(x, y) = 0, namely,
x% 4 y? = 1. Figure 4.21(a) illustrates the object before deformation.

(a) Original body (b) Region of deformation ©A=1/4

dA>1/4 ©)0<A<1/4 HA<O

A disk-shaped body and various deformations of it.

A force is to be applied to the body at the point (1, 0) to produce a deformed body,
with some possibilities shown in Figure 4.21(c)—(f). You have a lot of flexibility in
choosing the deformation functions. A simple one to illustrate is

_ A0 -4 -D2+yH), x-D*+y*<1/4
D(x,y) = { 0, otherwise

This function is continuous. It is differentiable everywhere except on the circle (x —
1)2 + y% = 1/4. This small circle intersects the original one at x = 7/8. Outside this
circle the level curve is defined by F(x, y) =0 and produces a large circular arc
x% 4 y? = 1for x < 7/8.Inside this circle the level curve is

0=F(x,y)+ D(x, y) = (1 — 44)x> + (1 — 44)y*> + 84x — (1+ 3A)

If A = 1/4, thelevel curve is the line segment x = 7/8 with |y| < V15/8.For A # 1/4,
divide by 1 — 4A and complete the square on x to obtain the factored equation:

( 4A
X+
1—4A

>2+ 21— A+4A2
(1— 4A)?
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(Example 4.13
continued)

This is the equation for a circle. Notice that the end points of the large circular arc,
(7/8, +/15 /8), are always on the arc defined by this new circle.

A time-varying deformation may be induced by allowing the amplitude A of the de-
formation to vary with time. For example, A(t) = ct for a positive constant ¢ causes
a gradual depression in the disk. Oscillatory behavior can be induced by something

\\\\\\

like A(t) = c sin(¢) for a positive constant ¢.

In the example the deformation D(x, y) is symmetric about the point (1, 0),
that center point considered to be the point of application of the simulated force.
Generally, D is required neither to be symmetric nor to be viewed as having a center
point that is on the boundary of the object. We could just as easily have added
D(x,y) = A(1 — 4((x — x0)2 + (y — y0)?)) for any point (xy, o) in the plane. Of
course, if the region of influence does not intersect the level curve defining the object
boundary, no deformation occurs.

The example is also a continuous one. In practice we will have discrete objects,
polygonal objects in the plane (approximations to the level curve object boundaries),
and triangle mesh objects in space (approximations to the level surface object bound-
aries). Given a continuous representation F = 0 of the object boundary, we need to
construct the approximations. This requires extraction of curves or surfaces from
data generated by sampling F on a regular lattice. The curves and surfaces are ex-
tracted from the data using methods from image analysis. Keeping in mind we want
to have a reasonably fast simulation, the deformation D can be defined to be nonzero
within a small region so that only a handful of pixels/voxels will be affected by the
deformation. The level curves/surfaces need be updated only at those pixels/voxels.

4.5.1 LEVEL SET EXTRACTION

A standard isosurface extraction algorithm for a 3D image is the Marching Cubes
algorithm [LC87]. The image is assumed to be defined on a regular lattice of size
Ny x Ny x N, with integer points (x, y, z), where 0 <x < Ny, 0 <y < N;, and
0 < z < N,. The image values themselves are F(x, y, z). An isosurface is of the form
F(x,y, z) = c¢ for some specified level value ¢ where x, y, and z are treated as
continuous variables. A voxel in the image is a rectangular solid whose corners are
eight neighboring lattice points (xg, Yo, Zg), (Xg + 1, ¥9» 2g)> (x> Yo + L, 2g), (xg +
L yo +1, 20); (x05 Yo» 20+ 1)» (%0 + 1, Yo, 2o + D), (x5 Yo + 1, 2o + 1), and (xp +
1, yo + 1, zg + 1). Figure 4.22 illustrates the level surface contained by a single voxel.

The Marching Cubes algorithm analyzes each voxel in the image and determines
if the isosurface intersects it. If so, the algorithm produces a triangle mesh for the
voxel that is intended to approximate that portion of the isosurface inside the voxel.
By selecting a level value that cannot be an image value, for example, by selecting a
noninteger value when the image has only integer values, the voxel analysis requires
determining the signs of G(x, y, z) = F(x, y, z) — ¢ at the eight corners, each sign
positive or negative. If two adjacent corners have opposite signs, and if the image
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-2 ¢

This is an illustration of a level surface F(x, y, z) = 0, a cube whose eight corners
correspond to image samples. Four of the image values are shown, one positive and
three negative. Assuming the image values vary continuously, each edge connecting
a positive and negative value must have a point where the image is zero. The level
surface F(x, y, z) = 0 necessarily passes through those zero-points, as illustrated by
the triangular-shaped surface shaded in gray.

values are assumed to be linear along the edge connecting the corners, the isosurface
G(x, y, z) = 0 must intersect the edge in a single point somewhere along the edge.
The complexity of the surface of intersection is related to the sign changes that occur
on all the edges of the voxel.

The heart of the Marching Cubes algorithm is that only a small number of sign
combinations is possible, two signs at each of eight corners for a total of 256 com-
binations. Each combination is analyzed to determine the nature of the isosurface of
intersection; a triangle mesh is selected to represent that intersection. These meshes
are stored in a table of size 256. The sign analysis for a voxel leads to an index into the
table to select a triangle mesh representing the surface of intersection for that voxel.
The strength of this algorithm is the speed in which the triangle meshes are generated
for the entire isosurface, the performance due to the simplicity of the table lookups.

The Marching Cubes algorithm has two undesirable consequences. The first con-
sequence is that for a typical 3D medical image and typical isosurface, the number
of triangles in the mesh is on the order of a million. The generation of the mesh cer-
tainly requires only a small amount of time, but most rendering systems are slow to
render millions of triangles per frame, even with graphics hardware acceleration. Of
course, the large number of triangles is a problem with any isosurface extraction al-
gorithm that works at the voxel level. The second undesirable consequence is that the
triangle mesh table can lead to topological inconsistencies in the mesh. Specifically,
the two meshes generated at adjacent voxels might have triangles that should share
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edges, but do not, thereby producing holes in the final mesh. How these holes occur
will be discussed later in this section.

One approach that addresses the issue of the large number of triangles is to apply
mesh reduction algorithms to the extracted surface [DZ91, GH97, HDD193, SZL92,
Tur92]. The idea is to extract the triangles at the voxel level, build the triangle mesh
using data structures that store the adjacency information for vertices, edges, and
triangles, then attempt to reduce triangles according to some heuristic. The algorithm
in [GH97] is based on the concept of an edge collapse, where an edge is removed, the
triangles sharing the edge are removed, and the remaining triangles affected by the
removed triangles are modified to preserve the local topology. Although the reduced
meshes are quality representations of the isosurface and can be quickly rendered,
the reduction scheme is computationally expensive, thus offsetting the speed of an
extraction algorithm such as Marching Cubes. In our context of deformable surfaces,
the computation time is kept to a minimum by selecting deformation functions that
require updating only a small subset of voxels in the lattice.

In this section I provide an extraction algorithm that has no ambiguities and pre-
serves the topology of the isosurface itself when the image data within each voxel
has a continuous representation using trilinear interpolation of the image values at
the eight corners. The table lookup of Marching Cubes is replaced by constructing
an edge mesh on the voxel faces. That mesh approximates the intersection of the
isosurface with the faces. The mesh is then triangulated using an extension of an
ear-clipping algorithm for planar polygons [O’R98] to three dimensions. The trian-
gulation does not introduce new points (called Steiner points in the computational
geometry literature), something other researchers have tried in attempts to remove
the topological ambiguities of Marching Cubes. The triangulation is fast and efficient,
but it is also possible to avoid the runtime cost by having a table lookup. The table
has 256 entries, just as in Marching Cubes, but each entry that has potential ambigu-
ities stores multiple triangle meshes. Selection of the correct mesh in the table entry
is based on a secondary index. The concepts are first discussed for 2D images to give
the reader intuition on how the algorithms apply to 3D images.

4.5.2 1SOCURVE EXTRACTION IN 2D IMAGES

A 2D image is assumed to be defined on a regular lattice of size Ny x N; with integer
points (x, ), where 0 < x < Ny and 0 < y < N,. The image values themselves are
F(x, y). An isocurve is of the form F(x, y) = ¢ for some specified level value ¢,
where x and y are treated as continuous variables. A pixel in the image is a rectangle
whose corners are four neighboring lattice points (xg, ¥g), (xg + 1, ¥o), (xg, Yo + 1),
and (xg+ 1, yop + 1). I choose F(x, y) to be a bilinear interpolation of the four
image values Fy, Fjy, Fp, and Fp; at the corners, respectively. The continuous
representation of the image over the entire pixel is given below, where §, = x — x;
andd, =y — yp:
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The 16 possible sign configurations for a pixel.

F(x,y)=(1—=38)((1=38,)Foo+ 8, Fy0) +8,((1 = 8,) Fy; + 8, Fyp) (4.13)

The equation F(x, y) =c is a quadratic equation in x and y when the xy term
appears, a linear equation when xy does not. The isocurves for F when viewed as
a function on all of the plane are either hyperbolas or lines. As in 3D, 1 make the
simplifying assumption that the level value ¢ is chosen not to be an image value.
The isocurves can intersect interior edge points of a pixel, but cannot intersect the
corner points. I also work with G(x, y) = F(x, y) — c and its isocurves generated by
G(x 5 y) =0.

The specialization of Marching Cubes to 2D images is usually referred to as
Marching Squares. The isocurve extraction for G(x, y) = 0 on a pixel is performed
by analyzing the signs of G at the four corners. Since the signs can be only +1 or —1,
there are 16 possible sign configurations. Figure 4.23 shows these.

In the case of sign changes on two edges, clearly we can connect the two edge
points with a line segment. The actual isocurve is either a portion of a hyperbola
or a line segment. In the first case, the segment connecting the two edge points is a
reasonable approximation to the isocurve. In the second case, the segment is exactly
the isocurve. Figure 4.23 shows the approximating segments in the unambiguous
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Figure 4.24

N

N

The three possible resolutions for the ambiguous pixel cases.

cases. However, two cases are ambiguous and are labeled with question marks. The
possible resolutions are shown in Figure 4.24.

The question is how to select which of the three possibilities in Figure 4.24 to
lead to a mesh that is topologically consistent with the isocurves. The answer is based
on an analysis of the quadratic equation G(x, y) = 0 to actually determine what the
isocurves look like. For simplicity, we may consider the problem when 0 < x <1and
0 < y < 1 and where the pixel-image values are (0, 0, Gy), (1, 0, G o), (0, 1, Gy,
and (1, 1, Gy;). The equation is of the form

G(x, y) = ag + ajpx + apry + apxy

where agy = Gop, 419 = G190 — Goo» do1 = Gor — Gop and ay; = Gog — G — Goy +
G ;- Of course the interesting case is when all four edges have sign changes. We may
consider the case Gyy < 0, G1g > 0, Gy; > 0, and G; < 0. The opposite signs case
has a similar analysis. Notice that aqy < 0, a;¢ > 0, ay; > 0, and a;; < 0. The four
edge points where G(x, y) =0 are (0, ), (1, ¥1), (¥p, 0), and (x;, 0). The linear
interpolation will show that

=G0 s __—Ou 5 _ —Ouw

-xo— 1= = ————— VvV, = ____G_lo__
GIO - GOO Gll - GOI GOI - GOO

n=

0=
Gll - GIO

Since a;; # 0, the product a;;G(x, y) is not formally zero and can be factored as

a),G(x, y) = (agoa;; — ap1a10) + (a1 + ayx) (@0 + ap1y)

Moreover, some algebra will show that agga;; — agia1g = GgyG11 — GG o Define
A = GyyG | — GGy I consider the two cases when A is zero or nonzero.

If A =0,thena;;G(x, y) = (ay + a;1x)(a;o + a;1y). The isocurves G = 0 occur
when x = —ag;/a;; and y = —ayp/a;;. The isocurves in the entire plane consist of
the vertical and horizontal lines defined by the two equations. Thus, the right-most
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Two possible configurations for hyperbolic isocurves with pixels superimposed. The
four edge intersections are Py, P, P,, and P; as marked.

pixel in Figure 4.24 shows the isocurve structure within the pixel. In this case the line
segments forming the plus-sign are exactly the isocurves. The center of the plus sign
was not found by edge intersections but is added to the vertex-edge data structure for
storing the edge mesh representing the total isocurve for the image. That is, when a
plus-sign configuration is encountered, we add the four edge intersections and plus-
sign center as vertices to the mesh and we add the four segments to the mesh edges
that connect the edge intersections with the center point.

If A 0, then the isocurves of G =0 are hyperbolas with asymptotes x =
—agy/a;; and y = —a;p/a;;. The two possible graphs are shown in Figure 4.25.

To distinguish which configuration is correct for the given pixel, observe that a
pair of edge points is on the same hyperbolic component whenever the signs of the
expression a,; + a;1x are the same at those points. This test follows from the ob-
servation that points (x, y) on the vertical asymptote satisfy ay, + a;;x = 0. Points
to the right of the vertical asymptote satisfy ag; + a;1x > 0 for Figure 4.25(a) and
ag + a1 x < 0 for Figure 4.25(b). Points to the left of the vertical asymptote have op-
posite sign: ag; + a;1x < 0 for Figure 4.25(a) and ay; + a;1x > 0 for Figure 4.25(b).
Let o (P) denote the sign of ay; + a;,x for point P = (x, y). Some simple computa-
tions produce

o (Py) = Sign(ay;) = Sign(Gg; — Gop) = — Sign(Ggp)
and

o (Py) = Sign(ag; + ayy) = Sign(G; — G = Sign(Ggp)



212 Chapter 4 Deformable Bodies

4.5.3

Now o (P,) = Sign(agy; + a11%y). Some algebra will show that the argument of the
right-hand side is
Go1G1o— GG

G1o— Goo

ag + apxo =

Therefore,
o (Py) =Sign(Gy 1G9 — GG Sign(G g — Gog) = — Sign(A) Sign(G)
Similarly, o (P3) = Sign(agy; + a1,X,), where

GOIGIO — GOOGII
Gll - GOI

ap) +apx; =

Therefore,
0 (P3) =Sign(G1G 19 — GooG11) Sign(G o — Goo) = Sign(A) Sign(Gy)

Each of the four signs is computed and the points are grouped into two pairs, each
pair having the same sign. Equivalently, we may analyze the signs of Sign(Gg)o (P;)
and pair the points accordingly. In this formulation, the modified signs are

Sign(Goplo (Py) = —1
Sign(Gog)or (Py) = +1
Sign(G)a (Py) = — Sign(A)
Sign(Ggp)o (P3) =+ Sign(A)

Clearly, P, and P, can never be paired just as P, and Pj; can never be paired. This
should be clear geometrically from Figure 4.25. We pair (Py, P,) and (P;, P;) when
A > 0or (Py, P;) and (P, P,) when A < 0.

Table 4.4 summarizes all the possible vertex-edge configurations based on analysis
of the bilinear function for the pixel. The signs at the four pixels are written from left
to right and correspond to the signs of Gy, Gg, Ggp, and Gy, in that order. The
sign of A is only relevant in the ambiguous cases, so nothing is listed in this column
in the unambiguous cases. The names Py, P, P,, and P; always refer to edge points
on the edges x =0, x = 1, y = 0, and y = 1, respectively. The center point, if any, is
labeled C.

ISOSURFACE EXTRACTION IN 3D IMAGES

A 3D image is assumed to be defined on a regular lattice of size Ny x N; x N, with
integer points (x, y, z), where 0 < x < Ny, 0 <y < N, and 0 < z < N,. The image
values themselves are F(x, y, z). An isosurface is of the form F(x, y, z) = ¢ for
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Table 4.4  The vertex-edge configurations for a pixel

Signs Sign of A Edges

+ o+
+ —
- 4+

+ 4+ + 4+
+ o+ o+ o+

(
(
(
(
+ (Py> Pp), (P, Ps)
(Py> P3), (Py, Py)
(
(
(

(Po, Py
(Py, P3
(Py, C), (Py, C), (P, C), (P3, C)
(Po, P3), (Py, Py)
+ (Py, Py), (P, Ps)
(
(
(
(

some specified level value ¢, where x, y, and z are treated as continuous variables.
A voxel in the image is a rectangular solid whose corners are eight neighboring lattice
points (xg, Yo, Z)> (Xo + L, Yo, Zo)» (Xg» Yo + 1, Z9), (xo + 1, ¥ + 1, 2g), (X0 Yo» 2o +
D, (xg+ L yp» 2o+ 1), (xg, yo+ 1, zg+ 1), and (xg+ 1, yo + 1, zg + 1). I chose
F(x,y, z) to be a trilinear interpolation of the eight image values, which are Fy,
Fio0, For00 F1100 Foor» Fio1 Forp and Fjp at the corners, respectively. The continuous
representation of the image over the entire voxel follows, where §, = x — xy, §, =
y—ypand §, =z — zg:

F(x,y,2) =1 —-38)((1=8,)((1 = 8;)Fyoo + 8 Fi00)
+ 8, ((1 = 8:) For0 + 8:F110))) (4.14)

+8,((1 = 8,)((1 — 8,) Foor + 8, Fro1) +8,((1 = &,) For1 + 8, F11)))
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Figure 4.26

The equation F(x, y, z) = c is a cubic equation in x, y, and z when the xyz term
appears, a quadratic equation when xyz does not, and a linear equation when none
of xyz, xy, xz, or yz occur. I make the simplifying assumption that the level value ¢
is chosen not to be an image value. The isosurfaces can intersect interior edge points
of any of the 12 edges of a voxel, but cannot intersect the corner points. I also work
with G(x, y, z) = F(x, y, z) — ¢ and its isosurfaces generated by G (x, y, z) = 0.

Table-Based Mesh Selection

As I mentioned in the introduction, the Marching Cubes algorithm is based on the
fact that each corner has an image value that is either positive or negative, leading
to 256 possible sign configurations. The corner sign values are used to construct an
index into a precomputed table of 256 triangle meshes. I discussed the analogy of this
in 2D and showed the ambiguities that arise in two sign configurations. In 2D, rather
than having a precomputed table of 16 edge meshes, we needed a secondary index to
select one of three edge meshes that can occur in each of the two ambiguous cases.
Thus, we have a total of 20 edge meshes from which to select. The same ambiguities
arise in 3D. In fact, the ambiguities have a more serious consequence: the triangle
mesh generated by adjacent voxels can have topological inconsistencies. In particular,
when two voxels share a face that is ambiguous in the 2D sense, the table lookup can
produce triangle meshes that do not properly share edges on the common face. Figure
4.26 illustrates this.

The voxel on the right had its edge points on the ambiguous face paired differently
than the voxel on the left. This leads to a triangle mesh where a pair of triangles
occurs, one triangle from each voxel, but the triangles touch at a single edge point
rather than sharing an entire edge. To remedy this, all we need to do is make sure

Topological inconsistencies introduced in two voxels sharing an ambiguous face.



4.5 Implicit Surface Deformation 215

that the pairing of edge points on ambiguous faces occurs according to the scheme I
constructed for 2D. Interpolating each face bilinearly is consistent with the trilinear
interpolation assumed for the entire voxel.

In the 2D setting, I mentioned that the precomputed table of edge meshes has
a primary and a secondary index. The primary index takes on 16 values, each value
representing a sign configuration for the corners of the pixel. The secondary index
is 0 for the nonambiguous cases; that is, if the primary index corresponds to a non-
ambiguous case, the entry in the table stores a single edge mesh. Assuming the edge
meshes in the table entry are stored as an array with zero-based indexing, the sec-
ondary index of 0 will always locate the correct (and only) mesh. For the ambiguous
case, the secondary index takes on three values that represent whether the quantity
A1 defined earlier is zero, positive, or negative. The table entries for the ambiguous
cases have arrays of three edge meshes.

A similar construction can be applied in 3D. However, the table construction can
be a bit tedious. An ambiguity for a voxel occurs whenever one or more of its faces
is an ambiguous case in 2D. Suppose that exactly one face is ambiguous (e.g., Figure
4.26). Marching Cubes has a single triangle mesh to approximate the isosurface of
the voxel. However, the ambiguous face has one of three possible interpretations,
so the table entry for this case really needs an array of three triangle meshes. As in
2D, a secondary index can be used to select the correct mesh. Now suppose that
exactly two faces are ambiguous. Each face can be resolved in one of three ways, thus
leading to nine possible triangle meshes for the table entry of the given primary index.
Worst case, of course, is that all six faces are ambiguous, requiring a secondary index
that takes on 3° = 729 values. Consequently, the tables will be quite large but still
constructible.

Ear-Clipping—Based Mesh Construction

An alternative to the table lookup is to generate the triangle mesh for each voxel at
runtime. The concept is quite simple. The edge meshes of a voxel are generated for
each face of the voxel. A vertex-edge data structure is used to store the isosurface
points on the edges of the voxel and to keep track of which points are paired by an
edge. The assumptions that the image is trilinearly interpolated on the voxel and that
the level values are not image values guarantee that isosurface points on the voxel
edges share exactly two mesh edges.

If a plus-sign configuration occurs on the face of a voxel, then the center point
of that configuration is added as a vertex of the mesh. That point shares four edges.
Thus, a vertex shares either two or four edges. The triangle generation amounts to
finding a vertex sharing two edges, locating its two adjacent vertices, adding the
triangle formed by those three vertices to a list, then removing the original vertex
and the two edges it shares. If necessary, an edge is added to connect the remaining
adjacent vertices. This process is repeated until no more vertices exist that share
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Figure 4.27
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A voxel and its extracted edge mesh.

exactly two edges. I illustrate with an example. Figure 4.27 shows a voxel and the edge
mesh generated by analyzing the six faces using the 2D algorithm.

Vertices V3 and V5 are centers of plus-sign configurations and share four edges
each. The other vertices share two edges each. Vertex Vj, shares two edges. The ad-
jacent vertices are V| and Vs. The triangle (Vs, V,, V) is added to a list. V;, and its
edges to the adjacent vertices are removed from the edge mesh. A new edge is added
to connect V5 and V. Figure 4.28(a) shows the resulting edge mesh.

V) shares two edges. The adjacent vertices are V5 and V,. The triangle (Vs, V|, V)
is added to the list. V; and its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect V5 and V,. Figure 4.28(b) shows the resulting
edge mesh.

V, shares two edges. The adjacent vertices are V5 and V;. The triangle (Vs, V,, V3)
is added to thelist. V, and its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect V5 and V. Figure 4.28(c) shows the resulting
edge mesh.

V, shares two edges. The adjacent vertices are Vs and V3. The triangle (Vs, Vy, V3)
is added to the list. V, and its edges to the adjacent vertices are removed from the edge
mesh. An edge already exists between V5 and V;, so a new one does not have to be
added. Figure 4.28(d) shows the resulting edge mesh.

Vi shares two edges. The adjacent vertices are Vs and V;. The triangle (Vs, Vg, V)
is added to the list. Vi and its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect V5 and V. Figure 4.28(e) shows the resulting
edge mesh.

V; shares two edges. The adjacent vertices are V5 and V3. The triangle (Vs, V;, V3)
is added to the list. V;; and its edges to the adjacent vertices are removed from the edge
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Figure 4.28 Triangle removal in the edge mesh of Figure 4.27.
mesh. An edge already exists between V5 and V3, so a new one does not have to be
added. Figure 4.28(f) shows the resulting edge mesh.

V5 shares two edges. The adjacent vertices are V5 and Vj. The triangle (V;, Vs, Vo)
is added to the list. V5 and its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect V; and Vj. Figure 4.28(g) shows the resulting
edge mesh.

Finally, V; shares two edges. The adjacent vertices are Vg and V. The triangle
(Vi V3, Vo) is added to the list. V5 and its edges to the adjacent vertices are removed
from the edge mesh. No more vertices exist, so the triangulation is finished. Figure
4.28(h) shows the voxel with all vertices and edges removed.

EXAMPLE An example of implicit surface deformation is provided in the source code on the
4.14 CD-ROM. A deformable body initially in the shape of a sphere is bounced on a
floor. When the body hits the floor, it starts to deform. At the instant of maximum
deformation, the body bounces off the floor and gradually returns to its spherical

CE CODE shape.

BouncingBall

The floor is represented by the xy-plane (z = 0). The spherical body is defined im-
plicitly at time 0 by F(x, y, z) = x>+ y*> + (z — 1) — 1 = 0. The center point of
the body is denoted C() = (¢,(¢), 0, ¢5(¢)) and is a hard-coded path for the pur-
poses of simplifying the demonstration. The body bounces back and forth striking
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(Example 4.14
continued)

the plane in only the points (2, 0, 0) and (—2, 0, 0). At time zero the center is at
(0, 0, 2) and the body is not in contact with the floor. The x-coordinate of the center
is ¢;(t) = 2 sin(xrt/2) for t € [0, 1]. During that same time interval the z-coordinate
is defined as c3(t) = 2 — 2. The body is not in contact with the floor until the time
reaches one. At that instant a time-varying deformation is applied to the body. The
path of the center during the deformation is allowed to be downward only.

A slight complication arises because of the body motion. The body surface can be
defined implicitly using world coordinates, but then F should additionally depend
on t. To avoid this we will use a local coordinate system for the body and define the
deformations within that system. We may therefore consider F (x, y, z) = x> + y> +
(z — 1)? — 1 =0 as defining the body surface in local coordinates but translate the
surface itself to world coordinates when displaying the object.

The time interval of deformation and the actual z-value of the path of the center
depend on how the deformation is defined. Consider using

D(x, v, 231) = { A1 —x? —y? —2%); x2+y%+225 Lte(l,1+d]

0; otherwise
where A(t) = 4(t — 1)(14+d — 1t)/d?. The time interval over which the deformation
is applied is [1, 1 4 d] for some selected duration d > 0. The amplitude A(r) varies
from 0 at time f =1, to 1 at time t = 1+ d/2, back to 0 at time t = 1+ d. The
deformation is implicitly defined by F(x, y, z) + D(x, y, z) = 0, leading to

— 1\ 1-A+ A2
x“+y +(z l—A) = 1= Ay
which is the equation for a sphere. The portion of the original sphere contained
in the region of influence x? + y% + z? < 1 is replaced by a spherical section from
the previously displayed equation. By symmetry, the minimum point of that section
occursatx =y =0,80 zin = (1= v1— A+ A2)/(1— A) € [0, 1/2] for A € [0, 1].
In the limit as A approaches 1, z,,;, approaches 1/2. When that limit is reached, the
deformed section of the body is a flat disk. So that the visual display of the body will
make it appear as if it is in contact with the floor, the locally defined level surface for
the deformed body should be translated downward by subtracting z;, from the z-
coordinates of the vertices. Figure 4.29—also Color Plate 4.29—shows some screen
shots from this application found on the CD-ROM.

The level surface extractor is configured to update only those voxels that are affected
by the deformation. We know by design that only the portion of the body below
z = 1/2 is affected. Moreover, we can limit our search for new voxels that define the
next deformable surface by examining those vertically neighboring voxels intersected
by the current deformable surface, thus taking advantage of continuity in time.
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(b)

A bouncing ball with deformation based on implicit surfaces. Image (a) shows
the bouncing ball with only the implicit surface deformation. Image (b) shows an
additional deformation of nonuniform scaling by applying an affine transformation.
(See also Color Plate 4.29.)
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(Example 4.14
continued)

The deformed ball as constructed here most likely does not look physically realistic.
You would expect a ball hitting the ground to flatten vertically and expand hori-
zontally about its middle. The deformation function we used does not cause that to
happen. Although we could choose a different deformation function and/or increase
the region of influence of the function, a cheaper alternative involving more hacked
physics is to apply a nonuniform scaling to the vertices of the triangle mesh after the
effects of the deformation are calculated. The x- and y-components may be scaled
by a factor o7 > 1. The z-component may be scaled by a factor o, < 1. Figure 4.29(b)
shows some screen shots for the modified physical simulation that uses the affine de-
formation to get nonuniform scaling. =



Plate 3.3 The Foucault pendulum. The figures show the path of the pendulum tip in the horizon-
tal plane. New points on the path are colored white, but the intensity of the older points
along the path gradually decreases. (See page 97.)



Plate 3.7 A ball rolling down a hill. Image (b) shows the path of the center of the ball as it rolls
down the hill. The ball rotates at a speed commensurate with its downhill velocity. (See
page 110.)



Plate 3.14 A mass pulley spring system shown at two different times. The spring expands and com-
presses, and the pulley disk rotates during the simulation. The system stops when a mass
reaches the center line of the pulley or the ground. (See page 128.)

Plate 3.25 Two “snapshots” of a freely spinning top. The black line is the vertical axis. The white line
is the axis of the top. (See page 159.)



Plate 4.2 A rope modeled as a linear chain of springs. Image (a) shows the rope at rest with only
gravity acting on it. Image (b) shows the rope subject to a wind force whose direction
changes by small random amounts. (See page 167.)

Plate 4.4 A cloth modeled as a rectangular array of springs. Wind forces make the cloth flap about.
Notice that the cloth in image (b) is stretched in the vertical direction. The stretching
occurs while the gravitational and spring forces balance out in the vertical direction dur-
ing the initial portion of the simulation. (See page 169.)



Plate 4.6 A gelatinous cube that is oscillating due to random forces. The cube is modeled by a
three-dimensional array of mass connected by springs. (See page 172.)



Plate 4.7 A gelatinous blob that is oscillating due to small, random forces. This blob has the masses
located at the vertices of an icosahedron with additional masses of infinite weight to help
stabilize the oscillations. The springs connecting the blob to the infinite masses are
shown in white. (See page 174.)



Plate 4.15

A skirt modeled by a generalized cylinder surface. Wind-like forces are acting on the skirt
and are applied in the radial direction. Image (a) shows the skirt after wind is blowing it
about. Image (b) shows a wireframe view of the skirt so that you can see it consists of two
closed curve boundaries and is tessellated between. (See page 194.)



Plate 4.17 A water drop modeled as a control point surface of revolution. The surface dynamically
changes to show the water drop forming, separating from the main body of water, then
falling to the floor. The evolution is from left to right and top to bottom. (See page 196.)




Plate 4.18 A closed tube surface whose central axis is a helix. (See page 198.)

Plate 4.19 A wriggling snake modeled as a tube surface whose central curve is a control point curve.
(See page 199.)



Plate 4.20 Free-form deformation. Image (a) shows the initial configuration where all control
points are rectangularly aligned. Image (b) shows that some control points have been
moved and the surface is deformed. The control point shown in red in (b) is the point at
which the mouse was clicked on and moved. (See page 204.)



Plate 4.29 A bouncing ball with deformation based on implicit surfaces. Image (a) shows the
bouncing ball with only the implicit surface deformation. Image (b) shows an additional

deformation of nonuniform scaling by applying an affine transformation. (See page
219.)



Plate 6.1 Two screen shots from the BasicShader application. Image (a) shows a rendering using
just the pixel shader. Image (b) shows a rendering using both the vertex shader and the
pixel shader. (See page 376.)



Plate 6.2

Screen shots from the VertexNoise shader application. (a) Top row: The original model
and its wireframe view. Bottom row: The output of the VertexNoi se shader and its wire-
frame view. The vertex displacement is significantly large. (b) Top row: The vertices dis-
placed with a smaller maximum displacement, but same scale of noise. Bottomn row: The
vertices displaced with the same maximum displacement as in the bottom row of (a), but
with a larger scale noise. (See page 377.)



Plate 6.4 Two screen shots from the skinning application. The bones are randomly generated to
cause the object to continuously deform. The sequence of deformations is from left to
right, top then bottom, within each screen shot. (See page 380.)

Plate 6.5 Two screen shots from the rippling ocean application. The images were captured at two
different times in the simulation. (See page 382.)



Plate 6.7

Plate 6.8

Two screen shots from the refraction shader application. Image (a) shows refraction, but
no reflection. Image (b) shows refraction and reflection. (See page 385.)

Two screen shots from the Fresnel shader application. (See page 387.)
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PHYSICS EN

We arrive at the topic I believe most readers will think of as the heart of game
physics—the physics engine. This chapter describes a general system for han-
dling a collection of rigid bodies, including collision detection and collision response.
The system uses Newton’s second law of motion, F = ma, to control the motion of
objects. The constraint forces are unknown to the system and must be calculated
based on the information that is provided by the collision detection system. A nat-
ural requirement for a general system is that the rigid bodies never interpenetrate. A
model for satisfying the requirement is the impulse-based approach that Brian Mir-
tich [Mir96b] and David Baraff [Bar01] made popular, but by all means this is not
the only approach one can take. My goal is to go into significant detail about the
impulse-based approach so that you

m  Understand the layout of a general physics engine.
m  See what complications arise.

m  Learn to evaluate its strengths and weaknesses.

Other approaches to building a robust physics engine are based on trying to fix
the weaknesses of the previous-generation engine. Once you understand the impulse-
based engine, you should be able to start experimenting with modifications; refer-
ences to other approaches are provided, so you have a nearly endless supply of ideas
to investigate.

A physics engine naturally partitions the physical simulation into two phases,
collision detection and collision response. Collision detection refers to the process of
determining if two bodies are currently intersecting or will intersect at a future time.
Even though we are concerned with nonpenetration, an implementation has to deal

221
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with penetration due to numerical round-off errors. A collision detection system
must be prepared to deal with all cases and report time-zero intersections and/or
penetrations when they occur. The time of intersection is important, especially in the
case of moving objects that are currently not intersecting but will do so at a later time.
The first such time is called the contact time. In many situations just knowing that
two objects will intersect is sufficient information. I refer to this as a test-intersection
query, the end result a Boolean value: true if an intersection will occur, false if not.
In other situations we will want to know where the objects intersect at the time
of contact. The set of intersection points is referred to as the contact set or contact
manifold, the latter term appropriate when the intersection set is not a finite set but
a continuum of points. For example, the intersection set of a box sitting on a table is
the set of points on a face of the box. When the contact set is desired, I refer to this as
a find-intersection query. As you would expect, in most cases a find-intersection query
is more expensive than a test-intersection query for a given pair of objects.

Collision detection is about determining the contact time and the contact set for
two moving objects. At the time they intersect we need to decide how the objects
will continue moving, the collision response, so to speak. For example, if a rigid
ball strikes a flat surface at an angle, you most likely want the ball to bounce away
from the surface. In particular, you will want to reflect the velocity vector through the
normal of the surface so that the angle of incidence is equal to the angle of reflection.
The method of response falls into two categories based on how the objects collide:
colliding contact and resting contact.

General analysis of two rigid bodies is quite intractable for real-time game phys-
ics. The geometric nature of the bodies can be quite complicated, preventing any
reasonable attempt at modeling their dynamics. To simplify matters, we will restrict
our attention to rigid bodies that are convex polyhedra.

Section 5.1 of this chapter is about unconstrained motion. The goal is to show you
the basic design and data structure to represent a rigid body that supports solving the
differential equations of motion for a body that does not interact with other bodies
in its environment. Section 5.2 complicates matters by allowing interaction between
bodies, referred to as constrained motion. Building a robust collision detection and
response system for constrained motion requires a lot of patience because there is a
lot of machinery to understand and implement. Enough pseudocode is provided to
allow you to build a working engine if you choose to do so. Source code is provided
for a rudimentary, working engine that you can experiment with.

Section 5.2.5 proposes a different approach to constrained motion than what
a general-purpose engine provides and one that I think should be investigated. I
propose that an implementation can detect and provide enough information about
the constraints imposed by the contact set found by the collision detection system so
that rather than continually solving Newton’s equations of motion, the system can
construct the Lagrangian equations of motion and switch to the appropriate set of
equations when necessary. This approach is of particular importance when dealing
with frictional forces since Lagrangian dynamics do a better job of incorporating the
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friction into the equations. The paper [Jak01] by Thomas Jakobsen already hints at
this by using projection of the system state variables onto a manifold described by the
constraints.

Handling generally shaped rigid bodies is not tractable for real-time physics on
consumer hardware. Instead, the bodies are restricted to be convex polyhedra (or
unions of convex polyhedra). Collision detection of convex polyhedra is discussed
in Section 5.3. Perhaps it is debatable, but in my opinion this is the hardest part
of a physics engine to implement in a robust manner while not using too much
computational time that is allotted per time frame. I discuss the method of separating
axes because it provides the minimum information needed to test if two objects
overlap, but ample information to actually compute the contact set between two
noninterpenetrating objects.

Section 5.4 is about using spatial and temporal coherence of the rigid body ob-
jects to reduce the amount of time spent detecting collisions. Two basic systems are
mentioned, one using bounding spheres and one using axis-aligned bounding boxes,
the latter more likely to be effective in practice.

Finally, Section 5.5 briefly discusses some variations that researchers have tried
for collision detection or response.

5. 1 UNCONSTRAINED MOTION

For unconstrained motion, Newtonian dynamics may be used rather than Lagrangian
dynamics to establish the equations of motion. The equations of motion for a single
particle of mass m with world position x, world velocity v = %, and world acceleration
a = v =X are in the form of Newton’s second law:

mX =mv =ma = F()

The right-hand side represents all forces applied to the particle. The dependence
on time is indicated just to remind you that the force can change dynamically. This
is a second-order differential equation in x. Numerical differential equation solvers
are typically set up to solve first-order systems. We can transform our single second-
order equation into two first-order equations by allowing the velocity to be one of the
variables: x = v, v = F/m. The vector $(¢) = [x v]T is referred to as the state vector for
the system. The system of differential equations is

a il

dt  dt |V v s

The physical simulation is a matter of updating the state vector over time using the
differential equation solvers.
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Newton’s second law applies equally as well to a system of n particles. If the ith
particle has mass m;, position x;, velocity v;, and applied force F;, then the state vector
is a list of all pairs of positions and velocities, S = [x; v; - - - X, V,,|T, and the system of
differential equations is

X1 X v

v v Ll

s d | ! ! m
dr o

t dt X, X, v,

. F

Va Vn m_n

n

This is conceptually the same as a system of one particle. The numerical differential
equation solver just has to deal with more variables and equations.

A typical game application, though, has rigid bodies that are not single points.
The physical concepts we introduced earlier come into play. Section 2.2.2 showed
us the kinematics for a solid rigid body. In particular, we saw how to construct the
position, velocity, and acceleration vectors for each point P in the solid. We identified
an object center point C. As noted many times, the equations of motion greatly
simplify when that point is chosen to be the center of mass of the object. The path of
the center of mass was denoted by X (¢; €). To work solely with vectors in this section,
we will use the difference x(¢) = X(#; C) — O, where O is the origin of the world. The
velocity of the center of mass measured in world coordinates was denoted by v, (¢).
We will drop the subscript in this section and use just the notation v(z). The position
and velocity are related by

dx(t)
T =v() (5.1)

A restatement of equation (2.56), the linear momentum of the rigid body, is

p(t) =mv(t) (5.2)

where m is the total mass of the body. Since the mass is a constant, we may keep track
of either (linear) velocity or linear momentum in the state of the system. We choose
the state to include x and p. The driving force behind the center of mass is F(z), the
equations of motion provided by Newton’s second law, equation (2.45),

dp(t)

i =F(@) (5.3)

The abstract operations to determine the location of the center of mass given an
applied force F(r) are

1. Compute p from F by integrating equation (5.3).
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2. Compute v from p by dividing by m in equation (5.2).

3. Compute x from v by integrating equation (5.1).

In practice these steps are handled simultaneously by a numerical differential equa-
tion solver.

An analogous set of equations tells us how the orientation matrix R(¢) is affected
by an externally applied torque. The analogy to mass m is the inertia tensor (mass ma-
trix) J defined in equation (2.85). Keep in mind that the inertia tensor is constructed
relative to some coordinate system. In this section we are computing it relative to the
center of mass of the object. The analogy to linear velocity v is the angular velocity w.
The analogy to linear momentum is angular momentum L. The relationship between
angular velocity and the orientation matrix is equation (2.38),

———di'(t) = Skew(w(2))R(t) (5.4)
The relationship between angular momentum and angular velocity is equation
(2.88),

L) =J@®)w(@®) (5.5)

The inertia tensor is measured in world coordinates. Since the object is moving and
rotating, J does vary with time. The driving torque behind the orientation is 7(¢),
the equations of motion provided by equation (2.62),

dL(t) _

ar (1) (5.6)

The abstract operations to determine the orientation of the rigid body given an
applied torque 7(z) are analogous to those for determining the location:

1. Compute L from 7 by integrating equation (5.6).

2. Compute w from L by dividing by J in equation (5.5). The division is in the
matrix sense—you need to multiply by the inverse matrix J ..

3. Compute R from w by integrating equation (5.4).

Recomputing the inertia tensor J (t) and its inverse J ~1(¢) for each time step of
the simulation can be expensive depending on how complex the shape of the rigid
body is. We can eliminate the direct computation by an observation. Recall that
r(t; P) = R@®)b(P), where R(¢) is the orientation matrix and b(?P) is the location
of point P measured in body coordinates. If B denotes the region of space that the
rigid body occupies, the inertia tensor is
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J(@) = / (|r|21 - rrT) dm, Definition of inertia tensor
B

/ (|Rb|21—(Rb)(RbT)) dm,  Definition of r
B

J

= / (|b|2RRT - RbbTRT) dm, Rotations satisfy / = RRT
B

b2 — RbbTRT) dm, Rotation preserves length
(5.7)

=R ( / (Ibl2 - RbbT) dm) RT, R is constant with respect to the integration
B

= R(1)Jooay R®)"

where Jpqy is the inertia tensor measured in the body coordinate frame and is inde-
pendent of time since the body is rigid. The inverse matrix is easy to compute:

J0)7'=R0Jq RO (5.8)

Another observation that leads to a robust implementation is that we can use
quaternions to represent the orientation matrix. Chapter 10 provides a large amount
of background material on quaternions and how they relate to rotations. The main
problem when numerically integrating equation (5.4) over many time steps is that
numerical error builds up, and the computed matrix R(¢) is no longer precisely a
rotation matrix. We may easily correct for this situation. If R(¢) = [fi @i, @,] is the
output of the differential equation solver, Gram-Schmidt orthonormalization may
be applied to its columns to generate a set of orthonormal vectors that become the
columns of the orientation matrix, R(t) = [ug u; u,]. Specifically,

_ 4 0y — (g up)uy
=0 1= % =~
(it [y — (0 - up)u]

Ug U =Up XUy

The orthonormalization does not have to be applied at every step, but often enough
to avoid numerical problems. If ¢(¢) is a quaternion that represents R(¢), and if
w(t) is the (not necessarily unit-length) quaternion that corresponds to the angular
velocity w(z), then the differential equation for g () equivalent to equation (5.4) is

dg(®) _ 1
= 2w(t)q(t) (5.9)

See Chapter 10 for the derivation of this equation. A numerical integration still occurs
and produces an output §(¢) that can be normalized to unit length g () to account
for the numerical round-off errors, but the frequency of normalization can be chosen
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smaller than for rotation matrices. Treating g(¢) as a vector in four dimensions, the
normalization is

th)

q =
I

Q>

where |G| is the length of the input 4-tuple. This normalization is less expensive to
compute than Gram-Schmidt orthonormalization for rotation matrices.
Now to put all this together. For a single rigid body, the state vector is expanded to

x(t)

_ 19
S(t) = p(1) (5.10)

L)

The applied force is F(z) and the applied torque is 7(r). The equations of motion are

X x m~'p
aS_d 1 q|_|4q|_| /2 (5.11)
dt dt|P P F

L L T

The force F(t) and torque 7(¢) are always computable at time 7. The state values for
p(t), q(t),and L(r) at time ¢ are maintained by the physics simulator. The orientation
matrix R(¢) is computed from g (). The angular velocity is determined by equations
(5.5) and (5.8), namely,

w(t) = J7HOL@) = R(0) 05 R TL()

The corresponding quaternion w is computed from w(z). After these calculations we
know all the quantities on the right-hand side of equation (5.11) and can apply the
numerical differential equation solver to compute the values at the next time ¢ + At
for a suitably chosen step size At > 0.

For n rigid bodies, the state vector contains n blocks of values, each block the
position, orientation, linear momentum, and angular momentum of a single rigid
body. The state vector of the entire system is

- x,(0)
a(t)
pi(®)
L)

S(r) = : (5.12)

X, (1)

g, (1)

Pa(?)

LL,(@)
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For the ith rigid body, the applied force is F;(¢) and the applied torque is 7;(¢). The

equations of motion are

[ X, (1)
q:(t)
p1(®)
as a4 | 1O

dr dt 0

qn(t)
Pa(?)

L L, (1)

[ x(2) 7
q,(t)
p1(®)
L)

(1)
gu(t)
A0

L L, () ]

w141/2
F,
L3

m.'p,
®nqn/2
F,

Tn

— -1 -
m; pp

J

=G, S) (5.13)

The nonlinear system of differential equations § = G(t, S) is solved numerically to

compute the state at any time during the physical simulation.

5.1.1 AN ILLUSTRATIVE IMPLEMENTATION

We have seen how to set up the differential equations that model the unconstrained
motion of a rigid body. An implementation of the ideas is provided in [Bar01] using
the C programming language as the basis. Of course, this is just to illustrate the
concepts. Your actual implementation will require a lot more effort to manage all
the rigid body data, and it will have to interact with a collision detection system. The

structure to represent rigid bodies is

struct RigidBody
{

/* constant quantities */

double mass; /* mass of rigid body */

double massinv; /* inverse mass of rigid body */
matrix jbody; /* inertia tensor in body coordinates */
matrix jbodyinv; /* inverse inertia tensor in body coordinates */

/* state variables */

point x; /* position of center of mass */
quaternion q; /* orientation of rigid body q = (w,x,y,z) */
vector p; /* linear momentum */

vector L; /* angular momentum */

/* derived quantities, internal and external use */
matrix R; /* orientation matrix of rigid body */
vector v; /* Tinear velocity */
vector w; /* angular velocity */
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/* derived quantities, for differential equation solver */
matrix jinv; /* inverse inertia tensor in world coordinates */
quaternion halfWQ; /* 0.5*w*q */

/* computed quantities */
vector force, torque;

A global array of bodies is used in the simulation. Before the simulation begins,
the mass and body-coordinate inertia and inverse inertia tensors are computed and
stored in the rigid body structures.

#define NBODIES <number of bodies goes here>
RigidBody body[NBODIES];

void InitializeBodyConstants ()

{
for (i = 0; i < NBODIES; i++)
{

/* The mass and inertia tensor of the body is specific to
the application. Whatever you need these to be, set
those values here. For rigid bodies that are convex
polyhedra, you will want to use the construction
provided in Section 2.5.5, "Mass and Inertia Tensor of
a Solid Polyhedron."

*/

initialize body[i].mass;

initialize body[i].jbody;

body[i].massinv = 1.0/body[i].mass;
body[i].jbodyinv = InvertMatrix(body[i].jbody);

If the rigid bodies are polyhedra, the mass and inertia tensor can be computed
using the algorithm in Section 2.5.5. A function InitializeBodyState() has the re-
sponsibility to initialize the state variables and the derived quantities of the rigid
bodies.

void ComputeDerivedQuantities (RigidBody* rb)

{
rb->R = ConvertToMatrix(rb->q);
rb->jinv = rb->R * rb->jbodyinv*Transpose(rb->R);
rb->v = rb->massinv * rb->p;
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rb->w = rb->jinv * rb->L;
rb->halfWQ = 0.5 * ConvertToQuaternion(rb->w) * rb->q;

void InitializeBodyState ()
{
/* initialized the body values at time t = 0 */
for (i = 0; i < NBODIES; i++)
{
/* state variables, your choice based on application */
initialize body[i].x;
initialize body[i].q;
initialize body[i].p;
initialize body[i].L;

ComputeDerivedQuantities(&body[i]);

The numerical differential equation solver is assumed to accept the input state
as an array of floating point numbers. The decision to represent a rigid body using
the structure RigidBody requires you to copy the state variables into an array for each

rigid body.
void CopyRigidBodyToStateArray (RigidBody* rb, double* s)
{
for (i = 0; 1 <3; i++)
*s++ = rb->x[i]; /* copy position */
for (i = 0; 1 < 4; i++)
*s++ = rb->q[i]; /* copy orientation */
for (i = 0; 1 < 3; i++)
*s++ = rb->p[i]; /* copy linear momentum */
for (i = 0; 1 < 3; i++)
*s++ = rb->L[i]; /* copy angular momentum */
}

The numerical solver computes an output state for the next time step based on
the input state. After doing so, the output state must be copied back into the rigid
body structure. The derived quantities are computed after the copy occurs.

void CopyStateArrayToRigidBody (double* s, RigidBody* rb)
{
for (i = 0; i < 3; i++)
rb->x[i] = *s++; /* copy position */
for (i = 0; 1 < 4; i++)
rb->q[i] = *s++; /* copy orientation */
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for (i = 0; 1 < 3; i++)

rb->p[i] = *s++; /* copy linear momentum */
for (i = 0; i < 3; i++)

rb->L{i] = *s++; /* copy angular momentum */

ComputeDerivedQuantities(rb);

In fact, equation (5.13) is set up so that the numerical solver can calculate output
state for the entire set of rigid bodies. The state array is a single array of sufficient size
to store all rigid body state. We assume two global state arrays, one for the input state
and one for the output state.

/* STATE_SIZE = (sizeof(point) + sizeof(quaternion) +

2 * sizeof(vector)) / sizeof(double) */
#define STATE SIZE 13
double inState[STATE_SIZE], outState[STATE SIZE];

The input state is initialized by

void CopyAl1RigidBodiesToStateArray (double* s)
{
for (i = 0; i < NBODIES; i++)
CopyRigidBodyToStateArray(&body[i],&s[i*STATE_SIZE]);
}

The differential equation solver will generate the output state, which must be copied
back to the rigid bodies.

void CopyStateArrayToAl1RigidBodies (double* s)
{
for (i = 0; i < NBODIES; i++)
CopyStateArrayToRigidBody (&s[i * STATE_SIZE],&body[i]);
}

This copy occurs after each time step in case other parts of the application require
the information. For example, if the rigid body is represented by a triangle mesh
and stored in body coordinates, the position and orientation will be needed by the
graphics system for the model-to-world transformation matrix that is used to display
the object in the world. We will also need a helper function for transferring between
the input and output states.

void CopyQutStateToInState ()

{
memcpy (inState,outState,NBODIES * STATE_SIZE * sizeof(double));
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This allows us to call the numerical solver within a loop, each time feeding it the input
state.

The numerical differential equation solver requires knowing the initial time ¢,
the initial state S(¢), the time step At > 0, and the right-hand side functions G(z, S)
of the state differential equation. The output of the solver is an approximation to
S(t + At). Generic solvers require G to be provided as an array of functions. The
solver in [Bar01] is not quite in this form; rather ours takes advantage of the fact that
the functions to handle a single rigid body are the same for all other rigid bodies. The
solver also assumes a function that computes the force and torque for a rigid body.
Finally, the assumption is that the state information is correct for all rigid bodies for
the current time.

void ComputeForceAndTorque (double t, RigidBody* rb)
{

/* Application-specific calculations that compute the values
rb->force and rb->torque. */

void ComputeG (RigidBody* rb, double* result)
{
for (i = 0; 1 < 3; i++)
*result++ = rb->v[i]; // dx/dt = p/m = v
for (i = 0; i < 4; i++)

*result++ = rb->halfWQ[i]; // dg/dt = w*q/2
for (i =05 i < 3; i+4)

*result++ = rb->force[i]; // dp/dt = F
for (i = 0; i <35 i++)

*presult++ = rb->torque[i]; // dL/dt =T

}

void G (double t, double* input, double* result)
{
/* computation of force/torque require bodies to store
current state */
CopyStateArrayToAl1RigidBodies (input);
for (i = 0; i < NBODIES; i++)
{
ComputeForceAndTorque (t,&body[i]);
ComputeG (&body[i],&result[i * STATE SIZE]);

The differential equation solver is available as a function:
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typedef void (*GFunction)(double, double*, double*);
void Solve (double t, double dt, double* SO, double* S1, GFunction G);

where t is the current time, dt is the time step, SO is the input state, S1 is the output
state, and G is the function corresponding to the right-hand side G(z, S) of the system
of equations. For the sake of illustration, a numerical solver that uses Euler’s method
follows.

void Solve (double t, double dt, double* SO, double* S1,
GFunction G)

G(t,S0,S1);
for (i = 0; i < NBODIES * STATE_SIZE; i++)
S1[i] = SO[i] + dt * S1[i];

In practice you will most likely use a Runge-Kutta fourth-order solver. Moreover, you
will include code for the renormalization of the orientation quaternion after the loop.
Finally, we arrive at the simulation loop, written as a self-contained operation.

void DoSimulation ()

{
InitializeBodyConstants();
InitializeBodyState();
CopyAl1RigidBodiesToStateArray(outState);

double t = <your choice of initial time>;
double dt = <your choice of time step>;
for (int step = 1; step <= maxSteps; step++, t += dt)
{
CopyOutStateToInState();
Solve(t,dt,inState,outState,G);
CopyStateArrayToAT11RigidBodies{outState);
/* display bodies and other application work goes here */

In practice you do not want to tie together the physics and graphics in this manner.
Instead, each iteration of the simulation loop is called within the application’s idle
function to obtain a coarse-level form of time slicing. In that way the various game
systems (graphics, physics, networking, Al, etc.) can be scheduled in an appropriate
manner.
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5.1.2 A PRACTICAL IMPLEMENTATION

SOURCE CODE
RigidBody

Keep in mind that the code and pseudocode shown previously is designed to illustrate
how all the pieces come together in the physics simulation. In practice you will want
an implementation that is object oriented and more efficient than the illustrative one.
Let us take a closer look at the illustrative example.

The main sources of inefficiency are all the copying of data between the RigidBody
structures and the state arrays. Assuming Euler’s method is in use, manually stepping
through the DoSimulation function we have

initialize rigid bodies;

/* copy so that rbvalues == outstate */
CopyAl1RigidBodiesToStateArray (outState);

step = 1;

/* copy so that instate == outstate */
CopyOutStateToInState();

/* called in G, not necessary to do this */
CopyStateArrayToAl1RigidBodies(instate);

/* changed in Solve */
outstate = new values;

/* copy so that rbvalues == outstate */
CopyStateArrayToAl1RigidBodies(outstate);

An invariant of the loop is that the rigid bodies and the output state array always
store the same values. Note that the CopyStateArrayToAl1RigidBodies function call
within the function G is not necessary because the rigid bodies already have the same
values as the input state at that moment. A differential equation solver using multiple
function evaluations, when used in the illustrative code, does require the copy. For
example, the midpoint method uses two function evaluations. The implementation
of the solver for this method is

void Solve (double t, double dt, double* SO, double* SI,
GFunction G)

G(t,S0,51);
for (i = 0; i < NBODIES * STATE_SIZE; i++)
v[i] = sofi] + 0.5 * dt * S1[i];

G(t + 0.5 * dt,v,S1);
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for (i = 0; i < NBODIES * STATE SIZE; i++)

S1[i] = SO[i] + dt * S1[i];
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This solver does require a temporary array V of the same size as the state arrays.

Manually stepping through the simulation:
initialize rigid bodies;

/* copy so that rbvalues == outstate */
CopyAl1RigidBodiesToStateArray (outState);

step = 1;

/* copy so that instate == outstate */
CopyOutStateToInState();

/* called in G, not necessary to do this */
CopyStateArrayToAl1RigidBodies (instate);

V = temporary values;

/* called in G, necessary since rbvalues !=
CopyStateArrayToAl1RigidBodies(V);

/* changed in Solve */
outstate = new values;

/* copy so that rbvalues == outstate */
CopyStateArrayToAl1RigidBodies (outstate);

v ox/

The copy in the first call of 6 is not necessary, but the second one is. The rigid
body values are the same as the input state values after the first call, but the rigid
body values need to be set to temporary V values for the second call. The copy in
that second call guarantees that the computation for force and torque will occur with
the current body values and that the computations in ComputeG will occur with the

current values.

The redundant copy in the first call of G is easily remedied by adding a Boolean

parameter.

void G (bool doCopy, double t, double* input, double* result)

{
if ( doCopy )

CopyStateArrayToAT1RigidBodies (input);
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for (i = 0; i < NBODIES; i++)

{
ComputeForceAndTorque(t,&body[i]);
ComputeG(&body[i],&result[i * STATE SIZE]);

}

Euler’s method calls G(false,t,50,51), whereas the midpoint method calls G(false,
t,50,S1) the first time and G(true,t + 0.5 * dt,V,S1) the second time.

But why are we copying in the first place? The design of the structure RigidBody
is intended to allow public access to human-readable data members. The design of
the state array is to be true to the formulation of equation (5.13). Neither design
is necessary. Instead, we will use an object-oriented approach whereby the interface
hides the representation of the data and allows access to it through public member
functions. The main design goal of our rigid body class is to encapsulate the state
handling to support a simulation of the form:

void DoSimulation ()
{
RigidBody body[n];
for (i = 0; 1 < nj i++)
body[i].Initialize(<parameters>);

double t = <your choice of initial time>;
double dt = <your choice of time step>;
for (int step = 1; step <= maxSteps; step++, t += dt)
{
for (i = 0; i < n; i++)
body[i].Update(t,dt);

/* display bodies and other application work goes here */

The class definition is shown next. The position is X, the orientation as a quater-
nion is Q, the linear momentum is P, the angular momentum is L, the orientation as a
matrix is R, the linear velocity is V, and the angular velocity is W. The mass is mass and
the inertia tensor in body coordinates is inertia. The interface is written in a simpli-
fied manner for illustrative purposes. The actual interface in the source code is more
extensive.

class RigidBody

{
public:
RigidBody (double mass, matrix inertia);
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virtual ~RigidBody ();

void SetState (point X, quaternion Q, vector P, vector L);
void GetState (point& X, quaternion& Q, vector& P, vector& L);

// force/torque function format
typedef vector (*Function)

(
double, // time of application
point, // position
quaternion, // orientation
vector, // linear momentum
vector, // angular momentum
matrix, // orientation
vector, // linear velocity
vector // angular velocity

)s

// for computing external forces and torques
void SetForceFunction (Function force);
void SetTorqueFunction (Function torque);

// Runge-Kutta fourth-order differential equation solver
void Update (double t, double dt);

protected:
// convert (Q,P,L) to (R,V,W)
void Convert (quaternion Q, vector P, vector L,
matrix& R, vector& V, vector& W) const;

// constant quantities
double m_mass, m_invMass;

matrix m_inertia, m_invInertia;

// state variables

vector m X; // position
quaternion m Q; // orientation
vector m_P; // linear momentum
vector m_L; // angular momentum

// derived state variables

matrix m R; // orientation matrix
vector m_V; // linear velocity
vector m_W; // angular velocity
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// force and torque functions
Function m_force;
Function m_torque;

}s

The constructor and the SetState member function make up the initialization
portion of the physical simulation. The conversion from the primary state (quater-
nion orientation, linear momentum, and angular momentum) to the secondary state
(matrix orientation, linear velocity, and angular velocity) is handled via the member
function Convert. The conversions require access to the rigid body mass and inertia
tensor, thus this function is nonstatic.

void RigidBody::Convert (quaternion Q, vector P, vector L,
matrix& R, vector& V, vector& W) const

Q.ToRotationMatrix(R);
V = m_invMass * P;
W =R *m invinertia * Transpose(R) * L;

Rather than having force and torque data members to store the current force
and torque, we use function pointers. The force and torque vectors are required only
during the differential equation update step, so there is no need to store the vectors
with the rigid body. The force and torque functions take as input the current time and
a list of state information. As noted earlier, one of the reasons the illustrative example
code copies data from the state array to the rigid bodies during the multifunction
evaluation differential equation solver is to make sure that the force and torque
are computed with the current state values. These state values persist only for the
lifetime of the update call of the solver since they are only needed temporarily by the
multifunction evaluation algorithm. They may as well be stack variables, the main
consequence being that the global state arrays are no longer necessary; each rigid
body is now responsible for updating itself. The member function Update implements
a Runge-Kutta fourth-order solver.

void RigidBody::Update (double t, double dt)

{
double halfdt = 0.5 * dt, sixthdt = dt / 6.0;
double tphalfdt = t + halfdt, tpdt = t + dt;

vector XN, PN, LN, VN, WN;
quaternion QN;
matrix RN;

// Al = G(t,S0), Bl = SO + (dt / 2) * Al
vector AIDXDT = m_V;
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quaternion AIDQDT = 0.5 * m W * m Q;

vector AIDPDT = m_force(t,m X,m_Q,m P,m_L,m R,m V,m W);
vector AIDLDT = m_torque(t,m X,m_Q,m_P,m_L,m _R,m_V,m W);
XN = m X + halfdt * ALDXDT;

QN = m_Q + halfdt * ALIDQDT;
PN = m P + halfdt * AIDPDT;
LN = m L + halfdt * ALDLDT;

Convert (QN,PN,LN,RN,VN,WN) ;

// A2 = G(t +dt / 2,Bl), B2 = SO + (dt / 2) * A2
vector A2DXDT = VN;

quaternion A2DQDT = 0.5 * WN * QN;

vector A2DPDT = m_force(tphalfdt,XN,QN,PN,LN,RN,VN,HN);
vector A2DLDT = m_torque(tphalfdt,XN,QN,PN,LN,RN,VN,WN);
XN = m X + halfdt * A2DXDT;

QN = m_Q + halfdt * A2DQDT;
PN = m P + halfdt * A2DPDT;
LN = m L + halfdt * A2DLDT;

Convert (QN,PN, LN, RN, VN, WN) ;

// A3 = G(t +dt / 2,B2), B3 = SO + dt * A3

vector A3DXDT = VN;

quaternion A3DQDT = 0.5 * WN * QN;

vector A3DPDT = m_force(tphalfdt,XN,QN,PN,LN,RN,VN,WN);
vector A3DLDT = m_torque(tphalfdt,XN,QN,PN,LN,RN,VN,NN);

XN = m X + dt * A3DXDT;
QN = m Q + dt * A3DQDT;
PN = m_P + dt * A3DPDT;
LN = m L + dt * A3DLDT;

Convert (QN,PN,LN,RN,VN,WN);

// A4 = G(t + dt,B3), S1 = SO + (dt / 6) * (Al + 2 * A2 + 2 * A3 + A4)
vector A4DXDT = VN;

quaternion A4DQDT = 0.5 * WN * QN;

vector A4DPDT = m_force(tpdt,XN,QN,PN,LN,RN,VN,WN);

vector A4DLDT = m_torque(tpdt,XN,QN,PN,LN,RN,VN,NN);

m X =m X + sixthdt * (A1DXDT + 2.0 * (A2DXDT + A3DXDT) + A4DXDT);
m Q = m Q + sixthdt * (A1DQDT + 2.0 * (A2DQDT + A3DQDT) + A4DQDT);
mP =mP + sixthdt * (AIDPDT + 2.0 * (A2DPDT + A3DPDT) + A4DPDT);
mL=mL + sixthdt * (AIDLDT + 2.0 * (A2DLDT + A3DLDT) + A4DLDT);

Convert(m_Q,m_P,m L,m R,m V,m W);

After each call to Update, all rigid body state variables have correct and consistent
information due to the last call to Convert.
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5.2 CONSTRAINED MOTION

The previous section was about the unconstrained motion of rigid bodies that are
assumed not to interact with each other. We used the equations of motion that fol-
low from Newtonian dynamics, a natural choice in the absence of constraints on the
bodies. In realistic applications we, in fact, have to deal with interaction among many
objects. A physics engine must decide what to do when two objects collide. The ap-
proach in [Bar01] is to enforce nonpenetration constraints. When one object collides
with another, the two are not allowed to penetrate into each other. Despite the con-
straints imposed by collisions between objects, the Newtonian approach is still used
to drive the physical simulation. The collision response for objects in contact falls into
two categories based on how the objects collide at a point, either a colliding contact or
a resting contact. When all contact points are known, the differential equation solver
is interrupted during the simulation and the various physical parameters are adjusted
based on the type of contact. The solver is then restarted using the new parameters.
Adjustment of the physical parameters at points of colliding contact requires the in-
troduction of impulsive forces. Adjustment of the physical parameters at points of
resting contact requires computing contact forces. Sections 5.2.1 and 5.2.2 cover these
topics in detail. The Baraff approach is quite popular with people interested in adding
physical simulations to their games, but this approach is not the only way to go about
handling the physics. For example, Section 5.2.5 presents an alternative that is based
on Lagrangian dynamics, a natural choice for dealing with motion in the presence of
constraints.

5.2.1 CoOLLISION POINTS

Let us now define what is meant by colliding contact and resting contact. At a point
of contact of two objects we need to decide how the objects will continue moving, the
collision response, so to speak. For example, if a rigid ball strikes a flat surface at an
angle, you most likely want the ball to bounce away from the surface. In particular,
your natural instinct is to reflect the velocity vector through the normal of the surface
so that the angle of incidence is equal to the angle of reflection. This type of contact
between moving rigid bodies is called colliding contact because the velocities of the
bodies cause them to tend to penetrate into each other. Figure 5.1(a) shows a point
of colliding contact.

The velocity of body A, shown in Figure 5.1(a) as V 4, has direction into the body
B at the point of contact P. If A has zero velocity at P or has velocity perpendicular
to the surface of body B at P, the point of contact is said to be a resting contact. This
situation is shown in part (b) of the figure. The last possibility is that bodies A and B
are separating, as shown in part (c) of the figure. The figure also shows a normal
vector N to the surface of body B at the contact point P. The algebraic quantity
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(®) ©

Figure 5.1

(a) Colliding contact. Body A moves into body B. (b) Resting contact. Body A rests
on body B and attempts neither to move into B nor to separate from B. Body A is
allowed to slide along B. (c) Separation. Body A has a velocity that separates it from
body B.

that distinguishes between the three cases is the magnitude of the velocity V 4 in the
direction of the normal N:

N-V,<0 Colliding contact
N-v,=0 Resting contact (5.14)
N-V,>0 Separation

The dot product N - V4 is the speed of body A in the normal direction.

Recall that we are restricting our attention to rigid bodies in the shape of convex
polyhedra. The contact set between two convex polyhedra is potentially more com-
plicated than just a single point that arises because of a vertex-face intersection. The
set is infinite in the case of edge-face or face-face intersections. To simplify matters we
will work with a reduced contact set that consists only of vertex-face or edge-edge in-
tersections, the latter case only when the edges are not parallel. If the collision system
detects an edge-face intersection, we will record only an edge end point (a vertex) if
it is contained in the face and an edge-edge intersection point if the edge overlaps an
edge of the face. If a face-face intersection is detected, the only recorded points are
vertices of one face contained in the other face or edge-edge intersections, one edge
from each face. Figure 5.2 illustrates this.

The point Py is generated by a vertex of B and a face of A; the point P, is generated
by a vertex of A and a face of B; and points P; and P; are generated by edges of A
and B.

The reduction to a finite point set helps to minimize the time spent in the physical
simulation. However, this is only an approximation to the actual physics. If our target
goal is N frames per second, the computational time available for one frame is 1/N
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Figure 5.2

The reduced contact set for two convex polyhedra A and B.

seconds. If the physics simulation does not use all of this time, ideally we would
calculate the line segment of intersection in an edge-face intersection or the polygon
of intersection in a face-face intersection, then proceed with the collision response
accordingly. We also process the reduced contact set a point at a time. The collision
response becomes dependent on the order and is not quite physically correct. This
can be a problem, especially when a rigid body makes simultaneous contact with two
(or more) other rigid bodies.

5.2.2 COLLISION RESPONSE FOR COLLIDING CONTACT

Let us now formulate how our physics simulation will respond at a point of colliding
contact. Let #, denote the first time of contact between a pair of rigid bodies A and
B. Let P, be the contact point. If the point is a vertex-face intersection, we choose
the convention that the vertex is from the first body and the face is from the second
body. Let N, be the unit-length, outer pointing normal for the face. If the point is an
edge-edge intersection, let Nj be the unit-length cross product of the edge directions.
The vector is chosen to point outside the second body of the pair. For a brief time
interval before the collision, the path of the point on the first body contributing to
the intersection is P4 (¢) for ¢t < 1y, and P 4(¢;) = Py. During that same time interval
the second body is (potentially) moving; the path of the point on it that contributes
to the intersection is Pg(7) for ¢ <1y, and Pg(t;) = Py. Backing up in time, the
normal vector at the point on the second body contributing to the intersection is
N(z), and N(#;) = N. The signed distance between the body points contributing to
the intersection, as measured in the normal direction, is

d(t) =N() - (P4(0) = Pp(1) (5.15)
The velocity component in the normal direction has magnitude

d(1) =N(1t) - (Pat) — Pp(0) + N(1) - (P4(t) — Pp(t)) (5.16)
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At the instant of contact, d(fy) = 0 and d(1p) = N - (P 4(t,) — Ps(t,))- The quantity
d(t,) is exactly what was mentioned in equation (5.14) for determining the type of
contact point that Py, is.

In Section 2.2 on kinematics, we derived the velocity equation for a particle,
namely, equation (2.43). We have two particles in motion, hence two velocity equa-
tions:

j)A =Vyu +WAXrA, 'jDB =Vp +WB><rB (5.17)

where v is the velocity of the center of mass X of body C (C is either A or B), w¢
is the angular velocity of the body about its center of mass, and ro = P — X is the
location of the point relative to the center of mass. Equation (2.43) also had a term
Drc/Dt, but for rigid bodies it is the zero vector. At the contact time, the speed of
Py in the normal direction N is

d(t9) =Ny - (v4(to) + w4 (tg) X 14(tg)) — (vp(tg) +wa(ty) x rp(tp))) (5.18)

All the quantities on the right-hand side of this equation are known during the
physics simulation at the contact time and are stored as part of the state information
of the rigid body, just as in the case of unconstrained motion. Thus, after the collision
detection system reports all contact points, we may iterate over them and determine
which of them are colliding contacts, resting contacts, or separating points.

Impulses

To prevent interpenetration at P, when d (ty) < 0, the relative velocity P 4() — P 5(t)
must be changed in a discontinuous manner. Of course, this is not physically possible
since any forces acting on the bodies takes some time to change the velocity smoothly.

To illustrate, consider a o