
TeamLRN

TeamLRN

Game
Programming
Tricks of the

Trade

TeamLRN

This page intentionally left blank

TeamLRN

Game
Programming
Tricks of the

Trade

Lorenzo D. Phillips Jr., Editor

André LaMothe, Series Editor

TeamLRN

© 2002 by Premier Press, a division of Course Technology. All rights reserved. No part of this book
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage or retrieval system without written permission
from Premier Press, except for the inclusion of brief quotations in a review.

Premier Press, Inc. is a registered trademark of Premier Press, Inc.

The Premier Press logo and related trade dress are trademarks of Premier Press, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners.

Publisher: Stacy L. Hiquet
Marketing Manager: Heather Hurley
Managing Editor: Sandy Doell
Acquisitions Editor: Emi Smith
Project Editor: Argosy Publishing
Editorial Assistants: Margaret Bauer and Elizabeth Barrett
Marketing Coordinator: Kelly Poffenbarger
Technical Reviewer: André LaMothe
Interior Layout: Argosy Publishing
Cover Design: Mike Tanamachi
CD-ROM Producer: Carson McGuire

All trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software
manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trade-
marks from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the Internet is an ever-
changing entity. Some facts may have changed since this book went to press.

ISBN: 1-931841-69-1
Library of Congress Catalog Card Number: 2001099848
Printed in the United States of America
02 03 04 05 BA 10 9 8 7 6 5 4 3 2 1
Premier Press, a division of Course Technology
2645 Erie Avenue, Suite 41
Cincinnati, Ohio 45208

TeamLRN

I dedicate this book to Sayun, Lorenzo IV, Tylen, and to
the rest of my other family and friends.

—Lorenzo D. Phillips, Jr.

TeamLRN

Foreword

I started programming games over 25 years ago, and although I have been on both
sides of the business, that is, the development side and the business side, I can say
wholeheartedly, I much prefer making games to selling them! The game business is
like magic to me. Although, I am practically as old as Yoda compared to many of the
new young game programmers, all these years have clarified in my mind that I sim-
ply love making and playing games. Video games are the most impressive artistic
accomplishments of our generation. They are the fusion of science, art, sound,
music, and prose. And the cool thing has been watching them grow from nothing to
photo-real simulations that have you blinking your eyes saying, “that looks real!”

I remember the very first game that I played—Pong. Shortly after, I played Space
War in an arcade in Oak Ridge Mall, San Jose, CA. I was amazed by these games. I
couldn’t believe my eyes; it was like magic, but better, since it was real. It was real,
and I could learn how to do it. So I decided that I would spend my life learning
how to do it, and I have pretty much done that.

In my travels, I have met the most interesting people you can imagine, from Bill
Gates to Steve Wozniak. I had lunch with the guy who invented Defender, and sat
in a dark room and talked about DOOM with John Carmack. I can say without a
doubt there’s nothing in the world I would rather do. And now with the turn of the
century behind us, it’s up to you, the next generation of game developers, to take
games to the places that we all dream about.

I admit I would much rather make games than write books, but writing books is
much more constructive and more meaningful to me, personally, than writing
games. However, I am eager to start creating games as I did in the ’80s and early
’90s. But, for now, I still have a few tricks up my sleeve, and this book is one of
them.

When I first came up with the idea for a compilation book, the first comment to
me was “the Game Programming Gems series is doing well, and in fact, you are one of
the co-authors!” True, but this book is completely different. Personally, I have never
gotten that much out of books that have small 1- to 5-page articles. I believe that a
compilation book needs to have coherent and complete chapters wherein explain a
topic to a point that the reader really learns how to do it. So, my goal was to have a

TeamLRN

compilation book with hefty 20- to 50-page chapters that are complete, more in-
depth, and written in tutorial style. Additionally, I wanted a cohesive look and feel
to them.

With all that said, this book hits the mark. It’s the first in our series of compilation
books, but I think that it more than delivers its weight in Pentiums. There are some
really interesting subjects covered in this book from advanced mathematics to
scripting, as well as topics like OpenGL, 2D, Skyboxes, Optimizations techniques,
Assembly Language, and so on. Each topic is a complete treatise on the subject, not
just introductions or little blurbs that leave you wondering.

Of course, the authors are to thank for the content, but Lorenzo Phillips, the man-
aging editor of the book, is to thank for making this idea a reality. If you’re reading
this book and have worked on any kind of engineering job in your life, you will
appreciate the incredible complexity of getting people to do their jobs on time.
Now, try getting 15 to 20 people to all do their jobs on time and do it with consis-
tency—that’s a miracle. Lorenzo is really the person who I feel should get the most
“props”—without his determination and hard work, this book would just be anoth-
er idea and would never have come to fruition.

Lastly, as someone with experience in the trenches, and now that I have your atten-
tion, I would like to leave you with some real advice about making games—or mak-
ing anything for that matter. This stuff is hard—really hard. If you are serious about
it, then, as I have said many times, forget about having fun, forget about vacations,
forget about that cute blonde next door—it’s not going to happen (especially the
cute blonde). You simply don’t have time for anything, but work, work, and work.
Talk is cheap; don’t waste your time on web boards describing your newest game,
engine, technology, whatever—spend your time making it!

Remember, the few short moments of free time we have fade away all too quickly,
and reality sets in. All those things you wanted to do, thought you would do, never
get done. So while you have the chance, do everything you can and finish it.
Whatever it is. . .

André LaMothe

“Surrounded by 14 computers in his laboratory and one of them is getting impatient!”

viiForeword

TeamLRN

Acknowledgments

Wow, my first book project is finally complete! There are so many people to thank
that I hope I don’t forget anyone, but please know that if I forgot you, it was not
intentional.

First and foremost, I have to thank my mother, Novella Phillips, for her guidance,
love, and support and for keeping me out of harm’s way all these years. I love you,
Mom. I’d like to thank my wife, Sayun Phillips, for her love, her support, and for
growing with me over the years. I thank you for making sure that I ate during those
long stretches of no sleep and for the times when we just chilled out and played
Tetris against each other. I love you, babe. I’d like to thank my sister, Sharnell
Phillips, for being the greatest big sister a little brother could ever ask for. I must
thank the little people in my life (that is, the kids), starting with Lorenzo IV and
Tylen, my two sons, for their unconditional love, Jordan and Shane for the endless
hours of game play on the PCs and consoles, and Tessa for all of the laughter she
provides on a daily basis. To round out the family acknowledgements, I’d like to
thank Joe and Kurt (my brothers-in-law), Su (my sister-in-law), and Myong (my
mother-in-law), for being the best in-laws a man could hope for when two families
are joined by marriage.

I have to thank my man André LaMothe for getting me involved in the game indus-
try in the way I have always envisioned, for introducing me to book writing, for
picking me to grow businesses with, and for simply being a great friend. I’d like to
thank Emi Smith and Morgan Halstead for putting up with me and my authors and
for being such nice people to work with. Emi, you have also grown into a good
friend, and I know I still owe you a glass of wine –SMILE-. I have to thank all of the
authors because without them this book would not have been possible. Thanks to
all of you for your hard work and dedication to make the project a reality. I hope
the project has been enjoyable for each of you, and I would love to work with you
all on future book projects.

Finally, I would like to thank all of the gamers around the world for sharing my
love and passion for creating and playing games.

—Lorenzo D. Phillips Jr.

TeamLRN

About the Authors

Lorenzo D. Phillips Jr. is a gamer at heart and is involved in game development in
every aspect. He spends hours upon hours developing and writing games. He is the
Founder and President of RenWare, Inc. and is the Chief Development Officer of
Xtreme Games, LLC and Nurve Networks, LLC. He has 10+ years of experience in
the Information Technology community. He has performed a wide range of duties
that include software development, analysis and design, networking, database, qual-
ity assurance, and most recently configuration management. He is formally educat-
ed and holds an associate’s degree in Computer Science, a bachelor’s degree in
Business and Information Systems, and a master’s degree in Computers and
Information Systems.

Kevin Hawkins is co-author of OpenGL Game Programming and a software engineer
at Raydon Corporation in Daytona Beach, FL. He is working on his master’s degree
in Software Engineering at Embry-Riddle University, where he obtained his bache-
lor’s degree in Computer Science and played on the intercollegiate baseball team.
Kevin is also the co-founder and CEO of www.gamedev.net, the leading online com-
munity for game developers. When he’s not toying with the computer, he can be
found playing guitar, reading, bodyboarding, and playing baseball. He was drafted
by the Cleveland Indians in the 35th round of the 2002 Major League Baseball
Amateur Draft.

Ernest Pazera is a self-taught programmer, starting at age 13 with a TRS-80 includ-
ing a tape deck. A month later, he was already writing video games. Before long Mr.
Pazera couldn’t imagine himself doing anything but game programming. Mr.
Pazera is one of the developers who helped create one of the most popular and
respected game development sites on the Web: www.gamedev.net. He is the moder-
ator of an isometric/hexagonal forum on the site and has extensive experience
with game development.

Wendy Jones is currently a game programmer with Humongous Entertainment in
Seattle. She is currently focusing her professional attention on next-generation
console projects, and her personal attention on her three children. In the past, she
has done everything from tech support to web development to interface design in
her eight short years in the computer industry.

TeamLRN

Trent Polack is a high school senior who has been programming in various lan-
guages since he was nine years old. Other than programming, he is interested
in sports, reading, and just enjoying life! He is also the cofounder of
www.CodersHQ.com, a site with a wealth of game programming tutorials and
demos.

Born and raised in Seattle Washington, Ben Humphrey knew he wanted to be a
game programmer since childhood. He has been programming since he was very
young. Right out of high school he applied and was accepted to DigiPen Institute
of Technology, which at the time was only accepting around 100 people. After leav-
ing DigiPen, he was picked up by Infogames Interactive where he is currently work-
ing. During that time, Ben also had the opportunity to teach C++ for a year at
Bellevue Community College. Aside from his day job as a game programmer, he
is also the co-web host of www.GameTutorials.com, which has hundreds of tutorials
that teach game programming from the ground up, all the way to advanced 3-D
concepts.

Heather Holland is a software engineer for Navsys in Colorado Springs. In her free
time, she works on small shareware games, moderates a forum at www.gamedev.net,
and plays her MMORPG of the month way too much.

Jeff Wilkinson is a game programmer at Terminal Reality, Inc. He received his
degree from DigiPen Institute of Technology.

Dave Astle is a game programmer at Avalanche Software in Salt Lake City. He is
also one of the owners and operators of www.gamedev.net, where he has been
actively involved in the game development community for over three years. He co-
authored OpenGL Game Programming and has contributed to several other game
development books.

Alex Varanese, alex@xenonstudios.com.

Mason McCuskey is the leader of Spin Studios (www.spin-studios.com), an indepen-
dent game studio currently hard at work on a brand new game. Mason has been
programming games since the days of the Apple II. He has also written a book
(Special Effects Game Programming), along with a bunch of articles on the glorious
craft of coding and designing games. He likes programming games more than
wrestling Siberian grizzlies.

André LaMothe has been involved with gaming for more than 25 years and is still
the best-selling game programming author in the world (he wants someone to take
over soon!). He holds degrees in Mathematics, Computer Science, and Electrical
Engineering. Additionally, he is founder and CEO of Xtreme Games LLC, Nurve

x About the Authors

TeamLRN

Networks LLC, and eGameZone Netwoks LLC. He is also the creator of the “not-
for-profit” Xtreme Games Developers conference www.xgdc.com, which is a game
developer conference that everyone can enjoy because of its affordable price.

Richard Benson is a software engineer at Electronic Arts Los Angeles. He can be
reached at rbenson@earthlink.net.

Chris Hobbs is a senior software engineer for Flying Blind Technologies. The com-
pany is focused on developing software for the blind and visually impaired. He has
also worked with storage technology, game development, and educational software
over the course of his 5 years as a professional programmer. In his spare time, Chris
is currently working on a product that merges his experience from the educational
software and game development industries. He is married and expecting his first
child in July of 2002.

xiAbout the Authors

TeamLRN

Contents at a Glance

Introduction xxiv

Section 1: Game
Programming Development
Tricks 1
Trick 1: Software Configuration
Management in the Game
Industry 3

Trick 2: Using the UML in Game
Development 21

Trick 3: Building an Application
Framework 51

Trick 4: User Interface
Hierarchies 81

Trick 5: Writing Cross-Platform
Code 119

Section 2: General Game
Programming Tricks . . 139
Trick 6: Tips from the
Outdoorsman’s Journal . . . 141

Trick 7: In the Midst of 3-D,
There’s Still Text 169

Trick 8: Sound and Music:
Introducing WAV and MIDI
into Your Game 217

Trick 9: 2D Sprites 253

Trick 10: Moving Beyond OpenGL
1.1 for Windows 279

Trick 11: Creating a Particle
Engine 307

Trick 12: Simple Game
Scripting 329

Section 3: Advanced Game
Programming Tricks . . 453
Trick 13: High-Speed Image
Loading Using Multiple
Threads 455

Trick 14: Space Partitioning with
Octrees 485

Trick 15: Serialization Using
XML Property Bags 535

Trick 16: Introduction to Fuzzy
Logic 567

Trick 17: Introduction to
Quaternions 591

Trick 18: Terrain Collision with
Quadtrees 625

Trick 19: Rendering Skies . . 657
Trick 20: Game Programming
Assembly Style 681

TeamLRN

Section 4: Appendices
Appendix A: Introduction to
DevStudio 913

Appendix B: C/C++ Primer
and STL 933

Appendix C: C++ Keywords . 985
Appendix D: Resources on the
Web 987

Appendix E: ASCII Table . . . 991
Appendix F: What’s on the
CD-ROM 997

Index 1001

xiiiContents at a Glance

TeamLRN

Contents

Introduction xxiv

Section 1: Game
Programming Development
Tricks 1

Trick 1: Software Configuration
Management in the Game
Industry 3

Introduction4
What Is Software Configuration
Management (SCM)? 4

A Brief History on SCM 5
SCM Concepts and Functions 6
Is SCM Important? 8

The Software Development Life
Cycle (SDLC) 9

Software Development Models 9
Software Development Phases 11

SDLC Pitfalls 16
Communication Breakdown 17
Artifact Update Conflicts 17

The Importance of SCM 17
Conclusion:
The Future of SCM 19

Trick 2: Using the UML in Game
Development 21

Introduction 22
What Will Be Covered? 22
The Unified Modeling
Language 23

Use Cases . 23

Class Diagrams 25
Interaction Diagrams 28
Activity Diagrams 29
Statechart Diagrams 31
Packages . 32

Integrating the UML and Game
Development 33

Build the Requirements Traceability
Matrix . 33

Identify Use Cases 35
Establish the Packages 38
Create Initial Class Diagrams 40
Develop State Transition Diagrams . . 41
Produce Package Interaction

Diagrams . 42
The Transition from Analysis to

Design . 43
Update Class Diagrams 44
Update Interaction Diagrams 45
Refinement and Iteration 47
The Move to Implementation 47

Summary and Review 47
Where to Go from Here 48
Conclusion 49

Trick 3: Building an Application
Framework 51

Introduction 52
Why Use an Application
Framework? 53

Why Roll Your Own? 54
Identify Your Needs 55

The CApplication Design 56
The CEventHandler Design 58
The CMessageHandler Design 60

TeamLRN

Implementation of a Simple
Application Framework 63

Implementation of CMessageHandler 64
Implementation of CApplication 65
Implementing CEventHandler 68

A Sample Program 75
The Design of CTestApplication 75
The Design of CTestEventHandler . . . 76
The Implementation of

CTestApplication 77
The Implementation of

CTestEventHandler 78
How Do We Benefit? 79
Summary 80

Trick 4: User Interface
Hierarchies 81

Introduction 82
The Role of UI 83
UI Design Considerations 84

The Widget Tree 84
Z Ordering . 86
Notification . 86
Appearance . 87
Focus . 87

Widget Members 88
Widget Member Functions 90

Static Member Accessors 90
Indirect Static Member Accessors . . . 92
Nonstatic Member Accessors 93
Constructors and Destructors 94
Displaying Widgets 95
Receiving Input 95
Notification . 96

Class Definition 98
CWidget Implementation 101

Getters, Setters, and Other Simple
Member Functions 101

Other Member Functions 104
And Now for the Payoff 113

CTestEventHandler 114
CTestWidget 115

Summary 117

Trick 5: Writing Cross-Platform
Code 119

Introduction 120
Why Develop Cross-Platform
Code? .120

Planning for a Cross-Platform
Product 121

Problems Between Platforms . .122
Programming for Multiple
Platforms 124

The #if defined Directive 124
The typedef Keyword 125
Always Use sizeof() 126

What Is an Abstraction Layer? . .126
Why Use an Abstraction Layer? 127
For What Systems Would We Want to

Create an Abstraction Layer? 127
Designing an Abstraction Layer 128
Deriving from the Abstraction Layer 130
Explaining the Derived Layer 135
Using the Derived Layer 135

In Conclusion 137

Section 2: General Game
Programming Tricks . . 139

Trick 6: Tips from the
Outdoorsman’s Journal . . . 141

Introduction: Life in the Great
Outdoors 142

What You Will Learn 142
Height Maps 101 142
Making the Base Terrain Class .144
Loading and Unloading a Height
Map .147

The Brute Force of Things 150
Getting Dirty with Textures! . . .153

xvContents

TeamLRN

Adding Light to Your Life 159
Lost in the Fog 162
Fun with Skyboxes 163
Going Further: Deeper into the
Wilderness 166

Conclusion: Back to the
Indoors? 167

Bibliography 167

Trick 7: In the Midst of 3-D,
There’s Still Text 169

Introduction 170
What Will Be
Learned/Covered 171

How Our Adventure Game
Works .172

First Things First—
Let’s Get Ta Steppin’ 173

“Whatchu Lookin’ At?” 177
How Can We Have a Frag Count Without

Any Monsters? 180
Examining the Code 183

Version 1—Mobility and Collision
Detection 183

Version 2—Taking a Look Around . . 194
Version 3—Adding Player and Enemy

Data . 201
Summary and Review 212
Where to Go from Here 214
Conclusion 216

Trick 8: Sound and Music:
Introducing WAV and MIDI into
Your Game 217

Introduction 218
A Quick Overview of WAV 218

The Format Chunk 219
The Data Chunk 220

A Look at MIDI 220
The MIDI File Header 220

Track Chunks 220
Let’s Play: Simply Win32 221
Playing MIDI Using Win32 222
Sound in DirectX 226

Creating the DirectSound Object . . . 227
Cooperative Levels: Getting Along with

Other Application Processes on Your
System . 228

Working with Sound Buffers 229
Secondary Sound Buffers 229
Getting Ready to Use

CreateSoundBuffer() 230
Reading WAV Files 231
MMIO Commands and Structures . . 232
Using MMIO to Load a WAV 235
Using CreateSoundBuffer 239
Playing the Secondary Buffers 241

MIDI with DirectMusic 243
Initializing the

IDirectMusicPerformance 245
Creating an IDirectMusicPort 246
Setting Up the IDirectMusicLoader . 246
Loading a Song 247
Playing a Song 249
Stopping a Song 250
Checking for Play Status 250
Releasing a Segment 250
Conclusion: Shutting Down

DirectMusic 251

Trick 9: 2-D Sprites 253
Introduction 254
What You Will Learn 254

Image Loading 254
DirectDraw Basics 259
Transparency with Sprites 264
Drawing and Moving Sprites 265

Basic Collision Detection with
Sprites 273

Summary 276
Chapter Conclusion 276

xvi Contents

TeamLRN

Trick 10: Moving Beyond OpenGL
1.1 for Windows 279

Introduction 280
The Problem 281
OpenGL Extensions 282

Extension Names 283
What an Extension Includes 284
Extension Documentation 286

Using Extensions 287
Querying the Name String 288
Obtaining the Function’s Entry

Point . 288
Declaring Enumerants 290
Win32 Specifics 290

Extensions, OpenGL 1.2 and 1.3,
and the Future 291

What You Get 292
OpenGL 1.2 292
OpenGL 1.3 294
Useful Extensions 295

Writing Well-Behaved Programs
Using Extensions 298

Choosing Extensions 298
What to Do When an Extension Isn’t

Supported 300
The Demo 301
Conclusion 306
Acknowledgments 306
References 306

Trick 11: Creating a Particle
Engine 307

Introduction 308
What You Will Learn from This
Fun-Filled Particle Adventure .308

Sounds Great . . . What’s a Particle
Engine? 309

Billboarding 314
Interpolation and Time-Based
Movement 316

Designing the Particle System
API .318

Designing the Particle Wrapper 325
Summary: Reminiscing About Our
Little Particles 327

Going Further: How to Get More
in Touch with Your Inner

Particle 327
Conclusion: The End Is Here . .328
References 328

Trick 12: Simple Game
Scripting 329

Introduction 330
Designing the Language 331

Basic Instructions 334
Arithmetic . 334
String Processing 335
Branching . 335
Host API . 336
Miscellaneous 337
Directives . 337
Comments . 338

Building the Compiler 338
An Overview of Script Compilation . 340
Putting It All Together 362

Implementing the Compiler . . .365
A Small String-Processing Library . . 365
File I/O Functions 372
Program Structure of the

Compiler 373
Tokenization 378
Parsing . 396

The Runtime Environment 410
Fundamental Components of the

Runtime Environment 411
Storing a Script in Memory 413
Loading the Script 417
Overview of Script Execution 419
Implementing Opcodes 421

xviiContents

TeamLRN

Communication with the Game
Engine . 425

Timeslicing . 432
The Script Runtime Console . . .435
Summary 443
Where to Go from Here 444

New Instructions 444
New Data Types 444
Script Multitasking 445
Higher Level Functions/Blocks 445
Block Comments 447
A Preprocessor 447
Escape Characters 448
Read Instruction Descriptions from an

External File 449
Forcing Variable Declarations 450
One Last Improvement 451

Section 3: Advanced
Game Programming
Tricks 453

Trick 13: High-Speed Image
Loading Using Multiple
Threads 455

Introduction 456
Thread Basics 456

What’s a Thread? 456
What Is Multithreading? 456
Starting a Thread 458
Waiting for a Thread to Finish 460
Race Conditions 461
Atomic Operations 463
Critical Sections 464
Producers and Consumers 466
Semaphores to the Rescue 468
Programming Semaphores 469
CProducerConsumerQueue 471

Introducing CResourceLoader .475
The Big Idea 476
Tasks . 477

Queuing Up Tasks 478
Beginning the Loading Process 478
The Secondary Threads 479

The Payoff 481
Simulating Work 481
The Evils of Cache When Evaluating Disk

Performance 482
Catching Performance Data 482

Conclusion (Where to Go from
Here) .484

Trick 14: Space Partitioning with
Octrees 485

Introduction 486
What Will Be Learned/Covered 487
How an Octree Works 488

Describing the Frustum 490
When to Stop Subdividing 492
How to Draw an Octree 493

Examining the Code 494
Getting the Scene’s Dimensions 497
Creating the Octree Nodes 500
Setting Up New Nodes for

Recursion 506
Getting a Child Node’s Center 508
Assigning Vertices to the End Node . 510
Drawing the Octree 511
Destroying the Octree 513
Implementing Frustum Culling 514
Calculating the Frustum Planes 519
Adding Frustum Culling to Our

Octree . 527
Summary and Review 531
Where to Go from Here 532
Conclusion 533

Trick 15: Serialization Using XML
Property Bags 535

Introduction 536
What is XML? 537
A Sample Data File 538

xviii Contents

TeamLRN

A Bag is Born 539
STL Multimaps 541
Implementing the Bag 542
Adding Data Elements 545

Translating Special Characters 546
Adding Nonstring Elements 549
Adding Bags 549

Getting Elements 550
Getting Strings 550
Getting Other Data Types 551
Getting Bags 552

Saving and Loading Bags 553
Saving Bags . 553
Loading Bags 555

Other Operations 558
An Assignment Operator and a Copy

Constructor 560
Merging . 562

Conclusion: OK, But Is This Really
XML? .565

Enhancements and Exercises . .565

Trick 16: Introduction to Fuzzy
Logic 567

Introduction 568
Standard Set Theory 568
Fuzzy Set Theory 570
Fuzzy Linguistic Variables and

Rules . 572
Fuzzy Manifolds and Membership . . 575
Fuzzy Associative Matrices 579
Processing the FAM with the Fuzzified

Inputs . 583
Conclusion = {.1 beginning,
.5 middle, .99 end} 590

Trick 17: Introduction to
Quaternions 591

Introduction 592
Complex Number Theory 592
Hyper Complex Numbers 599

Applications of Quaternions . . .608
Building a Simple Quaternion
Engine 612

Purpose . 624
Conclusion . 624

Trick 18: Terrain Collision with
Quadtrees 625

Introduction 626
What Will Be Covered 627
The Quadtree 632

The CQuadtreeNode class 634
Building Up the Quadtree 636
CQuadtreeNode::AddFace() 638
Explanation of

RayIntersectTriangle() 644
Cleaning Up 648
Design Decisions and Performance . 649
Other Uses for Quadtrees 651
The Demo . 653

Summary and Review 655
Where to Go from Here 655
Conclusion 655
References 655

Trick 19: Rendering Skies . . 657
Introduction 658
What You Will Learn 658
Skyboxes 660

What Is a Skybox? 660
Representing a Skybox 660
Orienting a Skybox 662
Rendering a Skybox 663
Putting It All Together 666

Skydomes 667
Creating the Skydome 667
Skydome Textures 668
Rendering a Skydome 669

Skyplanes 669
Creating the Skyplane 669
Rendering the Skyplane 670

xixContents

TeamLRN

xx Contents

Other Variations 670
Improvements 671

Animation . 671
Multiple Layers 672
Sliding . 672

Generating Skybox Textures . . .672
Have the Artist Make Them 672
Find Preexisting Textures 673
Create Them Using Terragen 673

The Demo 677
What You’ve Learned 677
Where to Go Now 678
Conclusion 678

Trick 20: Game Programming
Assembly Style 681

Introduction 682
What Is This All About? 682
Who Is the Target Audience? 682
What Do I Need? 682

Why Assembly Language? 683
Win32 ASM Basics 684

MOV Instruction 684
ADD and SUB Instructions 684
MUL and DIV Instructions 685

The Design Document 686
Code Framework 687
Conclusion 698
MASM HL Syntax? 695
Getting a Game Loop Running
700

Connecting to Direct Draw 704
Our Direct Draw Library 705
Our Bitmap Library 715
A Game . . . Well, Sort Of 725
Conclusion 731
Direct Input Is a Breeze 732
Timing and Windoze 739
The Menu System 747

Putting the Pieces Together . . .752
Conclusion 761
Stepping to the Plate 763
Mr. Structure 768
The New Shape Maker 768
Update Takes a Few Practice
Swings 773

Let’s Get Moving 782
Time to Clear the Bases 799
The Final Batters 803
The Loop and His Team 810
Conclusion 820
Rotation Solution 821
The Sound Module 828
One Big Headache 835
Screen Transitions 847
Putting More Pieces Together . .856
Conclusion 873
Next Piece, Please 875
I Can’t See It! 880
The New Text 885
Scoring and Levels 891
Conclusion 897
Storing Your Life 898
Come On, Lucky Number 7 . . .905
Conclusion 909

Section 4: Appendices
Appendix A: Introduction to
DevStudio 913

Creating a Project and
Workspace 915

Adding Source-Code Files 918
Setting Compiler Options 920

Setting the Warning Level 922
Setting the Optimization Level 923
Turning on Runtime Type

Identification (RTTI) 924

TeamLRN

Library and Include Search
Paths .925

Per-Project Search Paths 925
Global Search Paths 926

Linking in the DirectX
Libraries 928

Building and Running
Programs 929

Debugging 929
Breakpoints . 930
Stepping Through Code 930
Watches . 930
Debug Output 931

Accessing Help 932
Conclusion: DevStudio
Wrap-Up 932

Appendix B: C/C++ Primer
and STL 933

Selected C++ Topics 934
Inline Functions 935
Namespaces 936
Dynamic Memory Allocation the

C++ Way . 939
Polymorphism and Pure Virtual

Functions 942
Exception Handling 950
C++ Style Casting 959
Run-Time Type Identification

(RTTI) . 962
Templates . 966

The Standard Template Library
(STL) .969

What Is the STL and Why Should I
Care? . 970

STL Strings . 970
STL Vectors 972
STL Maps . 977

STL Summary 983
About the Example Programs . .984
Exercises 984

Appendix C: C++ Keywords . 985

Appendix D: Resources on the
Web 987

SCM Sites 988
Game Development Sites: Best of the
Best .988

Downloads, News, and Reviews .989
Game Conferences 990

Appendix E: ASCII Table . . . 991

Appendix F: What’s on the
CD-ROM 997

The CD-ROM GUI 998
CD-ROM File Structure 998
System Requirements 998
Installation 999

Index 1001

xxiContents

TeamLRN

xxii Letter from the Series Editor

Letter from the
Series Editor

This book has been a long time in the making. My original motivation for
wanting a game programming tricks compilation book was that although
there are other compilation books on the market they simply try and cover
too many topics. The results are a collection of 50-60 authors that only
have a few pages each to cover topics that simply take much more time to
do justice to. Therefore, my goal with this book was to create more of a
collection of complete tutorials of game programming tricks that had
enough page count each to really make a dent in the subject area.
Additionally, I wanted to create a template of sorts, so that as you're read-
ing each trick or tutorial you see a familiar structure rather than a smor-
gasbord of layouts.

Game Programming Tricks of the Trade fills a gap between the game pro-
gramming bibles that are 1000+ pages of the same thing, and the other
compilation books that use the shotgun approach. I think that by the time
you complete this book you will have a strong theoretical and practical
grasp of every single subject covered. And let me tell you some of the
demos are pretty cool! Make sure to check out the quadtree and scripting
engine demos for sure.

This book covers a lot of interesting ground, moreover there are actual
complete code listings, and working demos! You aren’t going to see com-
ments like, “this is how you would do it, I leave it to you…” Rather, you are
going to see how to do it, and then it will be done! Furthermore, the
authors really made an effort to make the book as cool as possible, no
stuffy talk, no trying to impress or confuse the readers, but just plain brain
to brain coverage of some of the most interesting facets of game program-
ming that are discussed in many game programming books, but never
really covered in a complete manner.

In conclusion, this book is a must for any level of game programmer, I
guarantee you will get something out of even if you’re starting out or you
just finished HALO II! You can’t know everything!

TeamLRN

xxiiiLetter from the Series Editor

Additionally, we would love to hear your feedback on Game Programming
Tricks of the Trade and what topics you would like to see covered in the
future, so feel free to email me personally at gds_suggestions@hotmail.com
with any ideas for material you would like covered in the next volume.
These books are for you, so you might as well have a say in it!

Sincerely,

André LaMothe

Series Editor

TeamLRN

Introduction

by Lorenzo D. Phillips Jr.,
www.renwareinc.com,

lorenzo.phillips@renwareinc.com

Welcome to Game Programming Tricks of the Trade! This book is a compilation of
“tricks” that you can use when you are making games. Each trick provides you with
a unique tip that you can add to your games. You can even use a combination of
tricks if you like. The tricks that are taught in this book are a combination of
OpenGL and DirectX. This will ensure that we have something for all of you game
programmers out there.

I should point out that this book is not intended to be a complete resource for
game programming, OpenGL, or DirectX. Rather, it is a collection of techniques
that will serve as a guide for you.

This book is organized into three parts:

1. Part I, Game Programming Development Tricks, provides you with some
needed foundation to make you an effective game programmer. Topics
include cross-platform game programming, application frameworks, and so
on. There is even a chapter included that discusses configuration manage-
ment. Configuration management is becoming more and more popular in
the industry and it is important to know what it is and how it will help you
with your game programming projects. If you plan to deal with larger compa-
nies, you should definitely look into the configuration management move-
ment.

2. Part II, General Game Programming Tricks, is a compilation or techniques
mainly for beginners at heart. The topics covered are those that you will not
be able to do without for larger scale game projects. After all, if you do not
understand 2D then how do you expect to learn and understand 3D?

3. Part III, Advanced Game Programming Tricks, is filled with tricks that will
help you create games that are optimized. It will also help you create intelli-
gent life forms that will make your game players quake in their boots once
the enemy is hot on their trail. There is also a complete tutorial on how to
develop a game using Assembly Language. Now you tell me, what other book

TeamLRN

covers Assembly Language game programming? And in case you happen to
know of one, you tell me if what you found will result with a completed game
at the end of the reading.

In addition to the techniques taught throughout this book, the CD-ROM has a col-
lection of source code, demos, and games. So, without any further delay, let’s jump
right into the first trick and get started on your journey to enhancing your game
programming skills.

In short, there is enough information in here to be useful to anyone interested in
game programming. I know there are complaints from the advanced community
about books not having enough advanced information. Well, I ask those of you in
that crowd to stick with this series, because if this one does not have what you are
looking for, you can believe one of the future books will! In fact, one is already in
the planning stages.

Either way, I hope you enjoy the book as the authors and I put a lot of effort into
this project because we believe in sharing game programming information so that
the level of quality in the games continues to get better!

xxvIntroduction

NOTE
Due to some of the formatting constraints of
the book, you may see some of the source code
fall onto the next line and indent three spaces.
We have all tried our very best to ensure that
the code is still in a format that will not cause
errors in the compilers. However, if you type or
enter the code from the book in via the key-
board, please be sure to place the code on a sin-
gle line so the compiler will recognize it correct-
ly or in most cases you can refer to the CD-
ROM and copy and paste the code you need.

TeamLRN

This page intentionally left blank

TeamLRN

SECTION 1

Game
Programming
Development
Tricks

TeamLRN

Welcome to Game Programming Tricks of the Trade!
As you may have guessed, this is the first of three
sections. This section is made up of five chapters
all of which cover some aspect of game program-
ming development tricks. You will learn how to cre-
ate platform independent source code. You will also
learn to create a flexible user interface and an
application framework. Since the game industry has
started taking a more serious look at software con-
figuration management, there is even an introduc-
tory chapter on this topic. Part I is meant to help
you with good game programming practices that
will save you a lot of time and a lot of heartache.

So without any further delay, let’s jump right in and
get started on your journey to becoming a better
game programmer!

TeamLRN

TRICK 1

Software
Configuration

Management
in the Game

Industry
Lorenzo D. Phillips Jr.,

www.renwareinc.com,
lorenzo.phillips@renwareinc.com

TeamLRN

Introduction
Here we are about to discuss one of the most hated topics in software develop-
ment—Software Configuration Management (SCM). Maybe it’s not that much of a
hated topic, but it is truly a discipline that no one seems to have time to implement
properly. SCM is often viewed as additional overhead that will cause the project to
slip its schedule, or it’s simply just seen as a pain in the butt. This is the farthest
thing from the truth. If done properly, SCM is one of the major factors in success-
fully delivering your product on time and under budget. But, as with most things, if
it is not implemented appropriately it can be disastrous!

This chapter will introduce the game world to the SCM discipline. Well, maybe not
introduce it, but rather make an effort to discuss what SCM really is at a high level.
This chapter, however, will not make an attempt to cover SCM in too much depth
because this topic could easily generate a book of several hundred pages. This chap-
ter will cover what SCM is, a typical Software Development Life Cycle (SDLC), the
pitfalls of SDLC, and the importance of the SCM role on every project. So, without
further hesitation, let’s jump right in and figure out what true SCM is all about.

What Is Software
Configuration Management
(SCM)?
Simply stated, SCM is the process of bringing control to a software development
effort.

We can always expect some level of confusion any time a number of individuals get
together. The larger the group is, the greater the chance of confusion or miscom-
munication. The software development world is producing some of the most com-
plex applications and systems ever seen. Because of this fact, SCM is needed more
than ever. SCM is the art of identifying, tracking, and controlling the changes to
the software or system being built. It is becoming more and more common that
software releases are being produced in a faster timeframe. This means there is lit-
tle room for error and that defects are being reported more quickly. With this type

4 1. Software Configuration Management

TeamLRN

of acceleration, it is important that a clear line of communication is established so
that everyone on the project knows exactly where the project is and what is going
on at all times.

But where did SCM come from? How long has it been around? What functions do
SCM serve? And, why is it so important? I will attempt to answer these questions in
the following subsections.

A Brief History on SCM
It is understood by many that SCM got its start in the U.S. defense industry. Back in
those days, software applications were small and their level of sophistication was
fairly simple (or at least as simple as it could be for that time period). But, as with
most everything in life, things began to change and grow in new directions. The
software applications became more complex and the project teams began to grow
in size. It became virtually impossible to use the existing processes and procedures
with the existing staff because design changes and the overall production of the
product was too much for a single person or small group of people to control.

As time passed, computers became a hot item and the applications that automated
many tasks on the computer became more and more visible. Of course, this was
great for the software industry, but with this growth came public demand. The
demands for new software features opened the door for other software firms to enter
the software development industry with new and improved products that constantly
took advantage of the latest technologies. As a result, the project team dynamics
changed. There were more people with diverse backgrounds that needed to commu-
nicate well with others in order to understand the vision of the project. You no
longer had a small team of experts, but a large team of entry-level employees mixed
in with those expert employees. As with any communication, the larger the group,
the less effective communication can become. Just like the old grapevine example.
You can start a rumor and if the group is small that rumor stands a good chance of
staying intact. In addition, if the rumor started to change, the group communicating
was small enough to correct any misunderstandings. However, in larger groups the
rumor would not be in its original form by the time it reached every single person.
Since the group is much larger, not everyone speaks to everyone, so there would be
no corrective action taken to keep the rumor in its original format.

The growing demands of the public forced the software developers to automate
more and more tasks, which translates to new or improved functionality. The
changing dynamic of the project team itself results in poor communication. Now,
let’s throw in new technological paradigms, like Internet-based software, and the

5What Is Software Configuration Management?

TeamLRN

faster release cycles that society demands and we have a potential mess on our
hands. The result of all this is software that has too many bugs in it or that does not
function as requested. So, how do we manage all of this? We control this chaos
through the proper use and application of SCM.

SCM Concepts and Functions
Many people in the world think they really understand what SCM is and what pur-
pose it serves. Of course, a very high percentage of people are totally wrong. I have
been in numerous organizations, both large and small, implementing SCM.
Following, I have listed some of the statements or thoughts I have come across
from those that claim to know all about SCM.

• SCM can be done by a developer or the development team lead.

• SCM gets in the way of productive work.

• I don’t need SCM because I know exactly what is to be developed.

• Our software never has bugs in it when we release it.

• All we need is version control because that is what SCM is all about.

If you know anything about SCM, then you are probably laughing at the previous
statements because you have heard these comments before or because they are sim-
ply that ridiculous.

First of all, I have to point out that SCM is a discipline! Just like software develop-
ment is a discipline and testing is a discipline. Unless you have been trained or
have experience in this discipline, you are not qualified to create, manage, or
enforce it. As a discipline, SCM has a set of rules that applies to the project based
on the SCM analysis work that has been performed. That’s right! There is an analy-
sis phase in the SCM discipline. How do you expect to create, manage, and enforce
the rules if you do not have a solid understanding of why those rules need to exist?

Second, SCM is more than simple version control of the project artifacts. There is a
piece of the puzzle called Change Control, which makes the previously mentioned
third bullet point sound absurd. Does the development team fully expect to under-
stand every detail of the application in the beginning? Do they not expect the origi-
nal requirements of the application to change at all?

Finally, SCM does not get in the way of productive work. In fact, SCM enhances the
ability of the project to work productively and gives management an easy way to track
the project’s progress and perform an audit any time it feels the need to do so. With
SCM, the project manager does not have to hunt down the information or spend

6 1. Software Configuration Management

TeamLRN

long periods of time putting something together for those unplanned meetings.
Many of the SCM tools available today handle things like reporting with ease, but I
will talk more about that later on in the chapter. So, let’s talk about some of the basic
concepts of SCM, just so we are on the same page for the rest of the chapter.

We have already established that SCM is a discipline, but what is the basic function
of the SCM organization? SCM identifies the configuration items and then docu-
ments their physical and functional characteristics. The configuration items can be
things like documentation, source code modules, third-party software, data, and so
on. All of these items make up the software product. At that point, SCM documents
their physical characteristics, such as size, function, and libraries, as well as func-
tional characteristics, such as what each artifact’s purpose (or function) is and their
features. This is not a complete list, of course, but I think you will get the point.

Once the functional and physical characteristics have been documented, it is time
to baseline the artifacts and control any changes to them. Any changes to these arti-
facts must go through the established change control process that the Change
Control Board (CCB) oversees for the duration of the project. Control is often mis-
taken as prevention. The goal of SCM is not to prevent work from being done, but
rather to control the work or changes made to project artifacts. A typical process
would be that anyone that desires to change an artifact or a collection of artifacts
must submit a Change Request (CR) to the CCB for review. This review is essential
to controlling the changes made on the project because it prevents scope creep
and minimizes the impact to the schedule and budget.

The CCB will approve, postpone, or reject the CR. If the CR is approved, then it
will be assigned a project resource to be implemented for the next build and, even-
tually, tested to ensure it was implemented properly and did not break any existing
functionality. If it is postponed, then it simply goes into a holding queue and will
be reviewed again at a later time. If the CR is rejected, then it goes into another
queue with a justification as to why it was rejected. This cycle would go on for the
duration of the project. Again, this is a simple example of a process and, as with
most processes, is not meant to work for every project. It was merely an example to
provide you with some idea of what a process could entail. However, it demon-
strates that there is a change control process that is documented and enforced for
every project. Each CR is documented and tracked throughout its life cycle. This is
an effective communication method and it ensures that:

1. Each person on the project is aware of proposed changes, the state of each
such request, and which build the requests are associated with, and

2. That the information is readily available to all project members at any time.

7What Is Software Configuration Management?

TeamLRN

Lastly, SCM is the point of verification for the product. This means that the SCM
organization is responsible for ensuring that each release is consistent with the
requirements and the design it is being developed from. In short, SCM ensures
that what was developed matches exactly with what was specified at the beginning
of the project by the customer. And believe me, there is nothing more embarrass-
ing than doing a demo or presentation to your customer and having them tell you
that the system you are showing them is not the one they specified. Not to mention
the millions of dollars they paid you for the project or that you did not find out
until the very end that you wasted your time and effort developing the wrong
system.

Is SCM Important?
SCM plays a major role in the successful delivery of the product or system. SCM
creates, controls, and enforces the rules necessary to be successful. Changes are
tracked and SCM performs audits at major (and sometimes minor) milestones to
ensure that the application is evolving according to the plan and design that has
been established. Believe it or not, SCM saves money! With the proper implementa-
tion of SCM, the proper tracking, reviewing, and auditing take place. If these activi-
ties were not in place, then the cost of communication breakdown, delivery of the
wrong systems, and so on, would be great. It is common knowledge that the longer
it takes to catch or identify any problems, the more it will cost. For example, if a
problem with the requirements is identified in the requirements gathering phase,
then the level of effort to correct the problem is small because you are still in that
phase and thus, an update to the requirement is made to fix the issue. If the prob-
lem is not discovered until after development has begun, then the problem is
much larger because now it needs to be fixed in three different places at a mini-
mum. It has to be fixed in the source code (and any associated documentation),
the design, and the requirement itself. A manager of mine always says, “Why don’t
we have time to do it right, but we always have time to do it over?” This is in
response to requirement requests, design, or code reviews. The response he always
received was that there was not enough time or that the schedule would not allow
for it. I say that those projects have bad project managers and are already in serious
jeopardy. The concern is how to explain to upper-management why the project
plan is longer than projected. However, I would rather explain to upper-manage-
ment that the project plan is longer because we want to do it right, rather than
have to explain why my project is several million dollars over the projected budget!

In short, just know that SCM—in its simplest form—will save you time and money if
it is implemented properly. And without it, you will continue the trends you are

8 1. Software Configuration Management

TeamLRN

familiar with currently—working long hours and weekends, missed deadlines, scope
creep, delivery of an incorrect system, projects that are way over budget and sched-
ule, and other unexplainable events that no one ever seems to know what happened.

The Software Development
Life Cycle (SDLC)
The Software Development Life Cycle (SDLC) has been around for many, many
years! It is a well-defined process that has many success stories—but true success
comes only when SDLC is implemented properly. SDLC is similar to SCM in that it
is made up of a set of rules in order to accomplish a goal, which, in this case, is to
deliver a product. The next two sections will talk about the various models and typi-
cal phases of SDLC.

Software Development Models
Over the years, SDLC has evolved to meet the needs of the industry and take
advantage of new and evolving technology. New and improved technology has
forced the industry to constantly review and evaluate the effectiveness of the exist-
ing models to ensure they provide what is needed to be successful. Every software
product has a lifetime that starts in response to a need and evolves until it becomes
obsolete. Models implement certain phases for the life of the software and they also
dictate the order the phases are to be executed. The standard phases are discussed
in more detail in the next subsection, so for now, let’s focus on the different types
of models.

The Waterfall Model
The waterfall model is a linear approach to software development. The phases that
one would implement in this model are done in a sequential fashion. The next one
cannot officially start until the current phase is completed.

The waterfall model was accepted because of its ease-of-use and it was visually easy
to follow (especially for management- or business-type people).

Most humans function in some orderly fashion to the degree that they perform
one task and then another, but they only begin the next task after the current task
is complete. This model also allowed management to plan to visibly determine
where each phase began and ended. This model also uses the concept of “freezing”

9The Software Development Life Cycle

TeamLRN

artifacts. For example, after the requirements phase is complete, you would
“freeze” the requirements so they would not change. The same is true for the
design. After the design phase is complete, the design would be “frozen” so that it
would not change. This is a good concept and it gave the project members the con-
fidence that they were actually achieving their goals.

It became apparent, however, that this model could only be used for certain types
of software development. The software development process can be quite complex
and the waterfall model cannot be used to represent the complexities very easily.
Furthermore, this type of model did lend itself very well to risk management. By
this, I mean that problems were often found in the later phases when it was more
expensive to correct them. This is not to say that this is a bad model, but to simply
point out that it has its purpose and its limitations. These things should be
reviewed carefully for each project to determine if the model can be implemented
to the degree that it enhances the success of the project, not hinder that success.

The Spiral Model
The spiral model differs from the waterfall method in that its beginning and end
are not really visible. Instead, this model gives the project members the feeling of a
never-ending project because there was constant refinement and enhancement to
the software. One of the key concepts of this model is the assessment of risk at
established intervals. The thought here is that because risks were identified, a cor-
rective action could be taken to counteract those risks. Another key concept is the
review before proceeding to the next cycle in the spiral. This also allowed project
management to assess the “lessons learned,” so that corrective action could be
taken in the next cycle to improve anything that did not work in the last cycle. This
model is also good for modular development and is viewed as a transformation of
an application into a production system, but again, the downfall is that project
members did not really view an end to a project that implemented this model.

The Iterative Model
This is the model I use most often at my company. However, I promise to remain
objective in my description of this model. The Iterative Model’s key concept is that
every phase is implemented in each iteration. Better yet, this model lends itself to
incremental development of a system. I find that this works well for my game devel-
opment projects because I can develop a set of requirements based on a piece of
the design, and test it until that functionality is working according to the specs. I
can then repeat this process until I have the finished product of a market-ready

10 1. Software Configuration Management

TeamLRN

game. For example, in iteration 1, I can construct the entire game world and make
sure everything looks as expected. In iteration 2, I can create the player and other
creatures to make the world come alive. This process would continue until the
entire game is developed.

This model takes the best of the waterfall and spiral models and allows for risk
identification and corrective action to be taken during and prior to the next itera-
tion. However, it also offers clear and well-defined beginnings and endings to each
iteration, as well as the project as a whole. What more can you ask of a model?

The Other Models
No discussion would be complete without at least mentioning some of the other
models being used in the industry. Who am I to break tradition?

The Prototype Model is an approach that gives the developer and end user a
graphical method of communication. Based on initial conversations, the develop-
ment team will construct a prototype and present that to the end user. The end
user can then evaluate the prototype and make the necessary requests for changes.
The prototype will evolve from this process until it is finished and represents the
needs of the end user.

The Operation Model is based on algorithms rather than implementation. To suc-
cessfully implement this model, it is extremely important that the specifications be
accurately captured because the specifications have to be executable once they are
complete. If you have not heard of this model, then you probably do not spend too
much time using CASE tools. This model thrives on its ability to develop systems
for different environments. The downside is accurately capturing the specifications
so that the resulting system is the desired system.

The Component Assembly Model is known for its ability to reduce software devel-
opment time. This is because this model takes advantage of existing components,
more commonly known as reusability. The resulting system is made of components
either from in-house libraries, third-party libraries, or existing systems.

Software Development Phases
Now that we have talked about the various software development models, it is time
to discuss the phases that each model uses. I have to point out that this section uses
the typical phases on a project. This section is not meant to state that all projects
use each of these phases. Some projects might combine some of these phases or
may not use some of the phases being discussed. Again, this is meant to give you a

11The Software Development Life Cycle

TeamLRN

little bit of background so that you can understand what the weaknesses are and
why SCM is needed. So, without any further delays, let’s jump in and talk about the
phases of the models.

The Project Startup Phase
The project startup aspect is often overlooked as a phase or is not counted as a
phase. I feel that this is an important phase because it is where the review of the
project takes place and it officially marks your effort as a funded project. During
this phase, the project contracts are constructed and reviewed, the project mem-
bers are recruited, and a project plan is constructed. Other activities are the for-
malization of project standards and templates for documentation. The purpose for
counting this as a phase is because this is where SCM should come into the project
picture. SCM has to be involved from this point forward if the project wants to have
a high-level of confidence of the SCM implementation. It is so sad that this is not
an accepted fact because rarely is SCM in the picture at this point of the project.
The perception of many people is that SCM gets involved right before the develop-
ment of the software begins. But think about it; SCM has to begin in this phase
because key decisions are being made here. Decisions regarding the direction of
the project, the standards that will be enforced, and the templates that will go
under version control all appear in this phase. There are already artifacts that need
to be identified (i.e., configuration identification) and tracked. And because those
artifacts need to be identified and tracked, they need an environment setup so that
they can be tracked. This is also where the SCM plan comes into play. The SCM
plan is constructed by the SCM group to capture some of the initial information
that will become vital to the success of the project. So as you can see, if SCM is not
involved in this phase, then the group is already behind. Another point to be made
here is that key project members begin to meet and make decisions for the project.
These individuals may not know it yet, but they will evolve into the Configuration/
Change Control Board (CCB).

The Requirements Phase
This is the phase where the work that will be done is defined—meaning the busi-
ness analysts will meet with the end users. The interaction between the end users
and the business analysts will evolve in one of two ways. If the resulting application
is created from scratch, then the interaction is that of requirements gathering. If
there is an existing system that requires enhancements or new features, then the
interaction begins with understanding the existing system and then capturing the
requirements of the new and improved system. Some industry veterans classify this

12 1. Software Configuration Management

TeamLRN

interaction as capturing the functional specification. Another aspect of this interac-
tion is to capture the non-functional requirements. Non-functional requirements
can be the capturing of information, for example, the frequency of system and data
backups, the backup and restore process, the up time of the system, the availability
of those systems and the network, the requirements for planned downtime or out-
ages, hardware specs, and so on.

Once these requirements have been defined and documented in the Requirements
Definition Document (RDD), they are reviewed and, upon approval, baselined into
the SCM repository. This process is known as the creation of the functional baseline.

The Analysis Phase
Now that the requirements of the system have been defined and documented in
the RDD, it is time to create and evaluate the potential solutions that meet those
requirements. This information is captured in the Systems Analysis Document
(SAD). If the proposed solutions use any commercial off-the-shelf (COTS) prod-
ucts, then the analysts must also create a usability plan. The information stored in
the usability plan simply compares a variety of packages that might be a potential
fit for the proposed solutions. Some of the criteria used to determine the effective-
ness of COTS products in a solution are cost effectiveness, the flexibility/scalability
of the product, the amount of customization that the product allows, and so on.

Another key activity in this phase is the review of the SCM plan, the RDD, and the
project plan. Dates may need to be shifted and the project budget may need to be
adjusted based on the solution that is chosen. Of course, some of these items may
have already been approved, signed off, and baselined in the SCM repository, so
any changes made to them would need to be approved. This responsibility would
fall on the trusty shoulders of those key individuals I talked about in the Project
Startup Phase earlier. At this point, they still may not be calling themselves the
CCB, but the group and its responsibilities are evolving in that direction.

The High-Level Design Phase
In this phase, an effort is made to begin to model the proposed system. The result
of this effort is the system architecture diagram. Sometimes a prototype is gener-
ated to graphically demonstrate to the end user what the proposed system will look
like at the end, but this is not always the case. The main element of this phase is
the system architecture diagram, which addresses questions like whether or not the
system will be modeled as a client/server, mainframe, or distributed system archi-
tecture. It also answers questions regarding what technology will be used, how the

13The Software Development Life Cycle

TeamLRN

network will be set up, and how data will be transferred throughout the system.
Another task that is commonly handled in this phase is the construction and nor-
malization of the database.

The output of this phase is the high-level design document. Now, some people
might say that activities such as the creation of the system test plan and system test
cases are generated here, while some others may argue that the system test activities
occur immediately following the finalization of the requirements. Again, this is not
meant to be a means to an end and things can (and usually do) differ from project-
to-project. However, it is essential to have the high-level design when this phase
ends. Of course, any existing documentation can be reviewed at this point and
changes to those documents can be made if approved through the established
change control process. But at a bare minimum, the high-level design document
must be reviewed, approved, and added to the baseline.

The Low-Level Design Phase
This phase picks up right where the last phase left off. The low-level phase is a
phase that is typically combined with the high-level design phase, but I like to sepa-
rate the two because they each serve a different purpose. The main purpose of the
high-level design phase is to model the system. The focus of this phase is to create
the specifications for each program or module in the system. The program logic is
captured, the inputs, outputs, and system messages are determined, and the pro-
gram specification document is prepared. The unit test plan is also prepared at this
point.

Of course, the output of this phase is the low-level design document. The review of
the other documentation is performed and any changes required to those artifacts
are subject to approval through the change control process.

The end of this phase brings about another important event. The allocated base-
line is created. This baseline basically represents the logical evolution from the
functional baseline and the link between the design process and the development
process.

The Development/Construction Phase
This is the phase that everyone knows and sometimes tries to skip directly to,
bypassing the previous phases. The SCM team should have evolved the SCM envi-
ronment to the point that it is ready for the workload that accompanies this phase.
All of the SCM client software should be installed at this point and all of the

14 1. Software Configuration Management

TeamLRN

processes should be in full swing. Those key people I mentioned a couple of times
before are now known as the CCB (if they aren’t already). And the system or soft-
ware application is developed. All of the various project groups are involved at this
point. This is the phase that has the most communication between all of the pro-
ject members. It is very important to enforce the predefined processes and project
standards to ensure the project stays on track.

The output of this phase is the unit tested components that make up the system at
key points in time. The amount of artifacts under SCM control also increases quite
a bit. Such artifacts can include all source code, test results, documentation that is
associated with each release, and so on.

The Testing Phase
The activities of this phase basically surround the testing of the system or software
application. The test plans that were generated based on the requirements are used
to test that the system is doing what is required. I listed this phase as the testing
phase because this is another one of the phases that can be combined or broken
out into smaller pieces. This phase is commonly known as the system test of inte-
gration test phase. However, activities such as regression testing are not uncommon
here. This phase can also be broken into alpha and beta testing phases. The alpha
and beta testing phases are common in the game industry and are heavily relied
upon.

The cycle between the development and testing phases is repeated until:

1. there are no bugs in the release, or

2. the product is 100% completed.

In either case, there is also a testing process known as User Acceptance Testing
(UAT). This is when the product is released to the customer for testing to ensure
that the product does what the customer expects and wants it to do. I don’t think
UAT is all that common in the game industry unless someone pays for the ground-
up development effort, but it is a big part of the testing phase nonetheless.

Once the system or product has been successfully tested and the necessary audits
(functional and physical) have been performed to ensure that this release of the
product meets the established specification, a product baseline is created. A prod-
uct baseline simply captures a version of the product in a point in time. The prod-
uct baseline would include the associated documentation like user manuals, release
notes, and so on.

15The Software Development Life Cycle

TeamLRN

The Maintenance Phase
Now I know we all want to believe that we write perfect code and deliver systems
that function absolutely according to the customer’s requirements and without any
bugs in them, but the reality is that software developments are huge undertakings.
The chances of 100 percent customer satisfaction are about as good as Halle Berry
seeing me and falling madly in love with me. Basically, it is not going to happen.
There will always be bugs that will need to be fixed. There will always be requests
for enhancements from the customer. And there will always be new features that
can be added (especially to take advantage of new technology).

This is also where the SCM group can measure its level of success. If things were
done properly, then the documentation that shows how to use the system will be
readily available. The documentation that needs to go to the help desk folks will be
provided to that team to assist them in troubleshooting the system. In short, what-
ever is needed in this phase should be accessible and very little time should be
spent searching for the documents, product components, or bug fixes. And finally,
if there is ever a need to reproduce the product or a particular version of the prod-
uct, then all of that should be a snap.

Software Development Phases
Summary
Okay, Okay, I know that was long and drawn out, but how can you understand the
value of SCM if you do not understand the SDLC? Forgive me, but I must point out
one more time that the models, phases, and the definitions in this section are
generic in nature. Some phases can be combined and some can be broken out.
The activities listed for each phase are not a complete list and some activities can
occur in different phases. This section was merely to give you some insight into the
SDLC so that you would understand what I am going to discuss in the next two sec-
tions—the pitfalls of SDLC and the importance of SCM based on those pitfalls.

SDLC Pitfalls
On projects with more than one person, anything can happen and typically does.
There are times when the wrong SDLC model is selected and implemented and
that can cause problems. However, the issues I discuss in this section deal more
with problems that can occur even if you select the appropriate model and define
the proper phases for your project. Read on and discover the issues that plague
every project sooner or later.

16 1. Software Configuration Management

TeamLRN

Communication Breakdown
I feel that communication is the very foundation of any successful project. Why?
Because no matter what model you choose, phases you define, or tools you select, it
does not matter if the communication is bad. You can have the best process in the
world, but if it is not properly communicated and understood, then it will fail the
project because people are not using it as it was intended.

Numerous studies have been done on effective communication (both verbal and
body language) and one thing everyone agrees on is that effective communication
is a very complex system. If you have two people, you drastically increase the com-
munication process because there are now two speakers and two listeners. This
opens the door for something that is not commonly seen when there is a single
person—interpretation. Anything that you say or do is subject to interpretation
when two or more people are involved in the communication process. Now add in
a project with 30 members performing large scale development.

Other things that tend to add to the communication breakdown are the different
backgrounds of the project members. The different races, genders, skill levels, edu-
cational backgrounds, and so on, all play an important role in the communication
breakdown. The result, of course, is total chaos.

Artifact Update Conflicts
This problem can be minor when the project team is made up of a few people.
However, it grows out of control quickly as more and more resources are added to
the project. If two project members have copies of a single file and they both
update it, how do those changes get tracked? If that file is stored in a shared loca-
tion and is copied back by each person when he or she is done, then one of the set
of changes will be overwritten. Furthermore, these types of conflicts can result in
bad builds of the software of a bad delivery of the product documentation. A lot of
time will be wasted troubleshooting these types of issues. The number of resources
that would have to be involved to figure it out would be costly both from a time
and money standpoint.

The Importance of SCM
In a previous section, I touched briefly on the importance of SCM. Or rather I
answered the question, “Is SCM important?” You may ask yourself why there is
another section that basically addresses the same thing. Well, the importance of

17The Importance of SCM

TeamLRN

SCM needs to be understood and the fallacies need to be put to rest. I want to
ensure that you walk away with a different outlook on SCM. I want you to think
about SCM a little more and compare what is in this chapter to some of your per-
sonal experiences. Plus, at this point, you should have a better understanding of
SDLC and the problems that pop up on all projects at some point in time.

The most common question asked of me when I perform SCM consulting is, “What
can you do for me?” SCM can dramatically increase the success of your current pro-
ject when implemented correctly. It also gives you an easy way to track the progress
of your project, as well as provides a mechanism for you to track the evolution of
the product. SCM is not an overhead to the project as many people tend to claim
and it is not so large that it impacts the project’s productivity.

The following is a list of reasons why SCM is vital to the success of any project
regardless of size and complexity. SCM provides:

• A mechanism to control the chaos experienced on most projects.

• A method of reducing wasted manhours.

• A way of controlling the complexity and demands placed on the project and
its product.

• An increased method of deploying quality software products by reducing the
number of bugs in the system.

• Faster problem identification and problem resolution.

• A level of comfort that the system that is being built is the system that was
defined in the requirements and system architecture diagram.

• Traceability of all project artifacts and changes to those artifacts.

• And, contrary to popular belief, SCM even helps to lower the cost of develop-
ing the system or product.

The list could go on and on, but I think you get the point. The benefits of imple-
menting SCM on your projects by far outweigh the negatives. By being organized
and knowing where things are on your project, you save time and money. There is
no other argument required! Organization has been, and always will be, more effi-
cient and cost effective than chaos. Okay, except for those rare and extreme cases
that one may find on The X-Files. But you get my meaning. It is time to stop arguing
and just do it like the Nike commercials always tell us.

18 1. Software Configuration Management

TeamLRN

Conclusion: The Future of
SCM
SCM is here to stay and there will always be a need for it as long as software devel-
opment exists. SCM is still maturing and evolving as new technology emerges and
consumers continue to demand more and more features out of the software. So are
the SCM tools that support the discipline. But let me digress from traditional SCM
and its future and talk a little bit about SCM in the game industry. Since I am an
avid gamer, I follow the trends of SCM in the game industry. I see a lot of conversa-
tion taking place on bulletin boards and in chat rooms about this topic now. I have
seen game-related books go from a paragraph to a couple of pages to a full section
within a chapter regarding SCM. These are exciting times for us SCM people that
have a true passion for game development.

This chapter just touched on some of the basic concepts of SCM and made an
effort to point out the benefits of implementing an SCM strategy on your project.
SCM is much more than using SourceSafe for version control of your source code!
It is a full-blown discipline that deserves its respect. No one can prove that SCM is
costly, inefficient, and a major overhead. Those that believe that either do not
know what they are talking about or did not understand the SCM discipline well
enough to implement it properly in their projects or organizations. I really hope
that the game industry continues its current path to SCM implementations. On the
surface, I think it is long overdue. Personally, I just get tired of reading about
games that I get excited for and can’t wait until they hit the market, only to read a
couple of magazine issues later that the project was canned or delayed for an addi-
tional six months. I am certain that a high percentage of the reasons why these
games never make it to the market or experience significant delays is the lack of
SCM control to ensure that things stay on track and that the delivery dates do not
slip.

It is really that simple of a solution. Well, nothing is really simple, but you get my
meaning. Take the time up front to implement an SCM solution that will satisfy
your project needs and be sure to see it through to the end. Most game titles have
million dollar budgets and will take over a year to develop into a market-ready
product. It absolutely kills us hard-core game players and game programmers when
we have to wait longer before we can play a game we know we would enjoy, if it
even makes it to the market at all.

19Conclusion: The Future of SCM

TeamLRN

This page intentionally left blank

TeamLRN

TRICK 2

Using the
UML in

Game
Development

Kevin Hawkins, GameDev.net,
kevin@gamedev.net

TeamLRN

Introduction
As other sectors of the software industry begin to recognize the importance of soft-
ware engineering best practices, the games industry is lagging behind. Those who
try to rationalize the industry’s lack of progress say that games involve too much
creativity and that it is impossible to control such an ad-hoc and chaotic process.
The reality is that these arguments are the exact reason why some of software engi-
neering’s best practices need to be incorporated into game-development processes.

The Unified Modeling Language (UML) is one such best practice that has taken the
rest of the software industry by storm. It is now the standard object-oriented
modeling language, after going through a standardization process with the Object
Management Group (OMG). Starting as a unification of the methods of Grady
Booch, Jim Rumbaugh, and Ivar Jacobson, the UML has expanded to become a
well-defined and invaluable tool to the object-oriented software-development world.

Booch, Rumbaugh, and Jacobson have also developed a unified process called the
Rational Unified Process (RUP), which makes extensive use of the UML. You don’t
have to use the RUP to use the UML because the UML is entirely independent of
any software-development process, but you are welcome to take a look to see if the
RUP is of any use in your organization.

In the meantime, you’ll be presented with a lightweight process in this chapter that
will help put the UML in the context of game development. This is not meant to
be a primer on UML; rather, it’s a look at how you can use the UML as an effective
analysis and design tool in your game-development process.

What Will Be Covered?
This chapter will first provide an overview of the Unified Modeling Language,
including use cases, interaction diagrams, class diagrams, activity diagrams, and
statechart diagrams. There is an assumption that you have had some sort of expo-
sure to UML at some point in the past or that you at least have more extensive
UML materials readily available for you to reference. Complete coverage of the
UML is impossible in a single chapter such as this, but you should at least get a
decent understanding of what is going on through the overview.

22 2. Using the UML in Game Development

TeamLRN

After the overview, you will begin to see the real meat of the chapter as the UML is
applied to a game-development process. You’ll see what diagrams to use, when to
use them, and how they’re beneficial for modeling the design of your game.

The Unified Modeling
Language
Although there is an abundance of notations and methods for object-oriented
analysis and design of software, the Unified Modeling Language has emerged as
the standard notation for describing object-oriented models. The UML allows you
to model just about any type of application, including games, running on any type
of operating system and in any programming language. Of course, its natural use is
for object-oriented languages and environments such as Java, C++, and C#, but it
can be used for modeling non-Object-Oriented (non-OO) applications as well, albeit
in a restricted sense.

The latest version of UML at the time of this writing, UML 1.4, supports eight types
of diagrams divided into three categories: static structure diagrams, dynamic behav-
ior diagrams, and model management diagrams.

• Basic UML diagrams include the use of case diagram and static class diagram.

• Dynamic behavior diagrams include the interaction diagram, activity diagram,
collaboration diagram, and statechart diagram.

• Implementation diagrams include component diagrams and deployment
diagrams.

Most software-development methodologies do not use all of the UML diagrams
when developing a software product, and chances are you will not want to use all of
the diagrams in your game-development process either. Although the UML is much
too broad to be covered in the space given here (the UML specification itself is
over 550 pages!), let’s take a brief look at a few of the more common diagrams and
specifications in more detail.

Use Cases
A use case defines the behavior of a system by specifying a sequence of actions and
interactions between actors and the software system. An actor represents a stimulus
to the software system. It can be an external user or event, or the software itself can
create it internally. Some examples of use cases in a first-person-shooter game

23The Unified Modeling Language

TeamLRN

might be “Player Shoots Gun,” “Enemy Gets Shot,” and “Player Opens Door.”
These are very simple examples, but hopefully you see where this is going.

The use cases for a software system are shown in a use case diagram. In the use case
diagram, actors are depicted as stick figures, and a use case is drawn as an ellipse.
Figure 2.1 shows a sample use case diagram.

The diagram might look wonderful, but it really doesn’t have any meaning other
than to provide a clear definition of the actors and the use cases they interact with.
In reality, a use case is not complete without a corresponding use case scenario. The
use case scenario describes the steps required for the completion of a use case.
There is no standard format for use case scenarios, but they generally include the
following items:

24 2. Using the UML in Game Development

Figure 2.1

A sample use case diagram

TeamLRN

Although the UML does not have a specific naming convention for use cases, it typ-
ically is a good idea to create a specific format. For example, the “Player Shoots
Gun” use case follows the format of Actor Action Subject. In this particular format,
the actor is the actor that gets value from the use case, the action is the primary
action that the actor is performing, and the subject is the primary subject on which
the use case is performing. This format is what you’ll be using in the rest of this
chapter, but you can choose any format that works best for you.

The entire purpose of the use case is to capture requirements. Although the major-
ity of your use cases should be generated during the initial phases of a project, you
will discover more as you proceed through development. Every use case is a poten-
tial requirement, so you need to keep an eye out for them. Remember that you
can’t plan to deal with a requirement until you have captured it.

One question you may already be asking is, “How many use cases should I have?”
The reality is that there have been projects of the same size and style that have had
anywhere from 10 to more than 100 use cases. The answer is (as with most other
things in software engineering) to use what works best for you.

There is a bit more to use cases than what has been covered here, so if you feel the
need to explore use cases further, make sure you check out some of the references
at the end of this chapter.

Class Diagrams
The class diagram is probably the one diagram people think of when they think of
the UML. As a static view of the system, it describes the types of objects in the soft-
ware system and the relationships among them, including the attributes and

25The Unified Modeling Language

Item Description

Use case name The name of the use case

Overview A high-level description of the use case

Primary scenario The primary steps required for completion of the use case

Alternative scenarios Alternative steps that might occur during the execution of
a use case

Exceptions Any failure conditions that might occur and how the soft-
ware should respond

TeamLRN

operations of a class and the constraints applied to the relationships between
classes. Class diagrams are typically used to present two different perspectives of
your software system:

• Conceptual. In this perspective, you are drawing a diagram that represents
the concepts in the domain you are working with. While the concepts will
naturally lead to implementation classes, there is not normally a direct map-
ping. The conceptual model should be drawn without regard to the pro-
gramming language that might implement it.

• Implementation. The implementation, or design, perspective is a diagram
with the real classes and full implementation of the software system. It is the
most commonly used perspective.

Perspective is not part of the standard UML, but it’s a proven technique for creat-
ing a solid design of your software. The conceptual perspective is normally used
during the object-oriented analysis phase of the development process, whereas the
implementation perspective is used during the design and implementation phases.

Class diagrams typically use three types of relationships:

• Aggregation. This relationship focuses on one class being “made up of” a set
of other classes. An example would be a Car class containing four Tire classes.

• Inheritance. This relationship focuses on similarities and differences between
classes. It exists between a superclass and its subclasses. An example would be
a BMW class and a Ford class inheriting from a Car class.

26 2. Using the UML in Game Development

NOTE
According to Martin Fowler (see UML Distilled [Addison-Wesley
Pub. Co., 1999]), there is one more perspective of importance to
class diagrams: the specification perspective. In this perspective, you
define the interfaces of the software, not the implementation. If
this doesn’t make sense immediately, keep in mind that the key to
object-oriented programming is to program to a class’s interface
and not its implementation.This concept is not easily seen
because of the influence of object-oriented languages. If you would
like to see some good discussion on the topic, look in the first
chapter of Design Patterns: Elements of Reusable Object-Oriented
Software (Addison-Wesley, 1995).

TeamLRN

• Association. In this context, an association is any non-aggregation/inheri-
tance relationship in which there is multiplicity and navigability between
classes. For example, a Person class “drives 0..* (zero or more)” Car classes.

Figure 2.2 shows a sample class diagram with all of these relationships.

Another addition to the class diagram, particularly in more recent years, is the idea
of constraints and assertions. An assertion is a boolean statement that should always
evaluate to true; when it evaluates to false, you have a defect. In recent times, the
OMG has been working to produce a formal language to define constraints called
the Object Constraint Language (OCL). The OCL is making class diagrams more
complete and well defined, but it’s a rather lengthy topic and not suitable for this
chapter. Check out the OMG Web site (see the URL at the end of this chapter) for
more information on the OCL.

One of the dangers of class diagrams is that you can actually get too detailed and
too specific in implementation details too early, such that it becomes difficult to
make changes and update the models. To help prevent this, make sure you focus
on the conceptual perspective first in an object-oriented analysis phase. Then, as
you are further able to determine the operation and design of the system, you can
move to the implementation perspective with more detail.

27The Unified Modeling Language

Figure 2.2

A class diagram with aggregation,
inheritance, and association relationships

TeamLRN

Interaction Diagrams
Interaction diagrams model the dynamic behavior of a group of objects involved in a
single use case. They show which classes and methods are required and the order
in which they are executed to satisfy the use case. There are two types of interac-
tion diagrams: sequence diagrams and collaboration diagrams. These diagrams are
very similar to each other in that they accomplish the same thing, but they do have
some minor differences. In this chapter, we are only going to discuss sequence dia-
grams, but it is worth investigating collaboration diagrams elsewhere.

Figure 2.3 shows a sample sequence diagram. In this diagram, we are modeling the
“Player Shoots Gun” use case mentioned earlier in the chapter.

As you can see, objects are shown as boxes at the top of a dashed vertical line called
the object’s lifeline. The lifeline represents the object’s life during the sequence
interaction. A box on the lifeline is called an activation box and indicates that the
object is active.

Arrows between lifelines represent the messages sent between objects, and the
ordering sequence of the messages is read from top to bottom of the diagram page.
Conditions may also be specified for arrows between objects. An object may call
itself with a self-call arrow, which is shown by sending the message arrow back to the
same lifeline. There is also a dashed return arrow, which is used to indicate a return
from a previously called message. You typically only use the return arrow when it

28 2. Using the UML in Game Development

Figure 2.3

The sequence diagram for the
“Player Shoots Gun” use case

TeamLRN

helps clarify the sequence design. Also of note is the “X” at the end of an object’s
lifeline. It marks object deletion.

You can also use sequence diagrams for concurrent processes, which some people
may find particularly useful in game development. Figure 2.4 shows an example of
a sequence diagram of concurrent processes and activations.

In Figure 2.4, you can see that asynchronous messages between objects are indi-
cated by a half-arrowhead. These asynchronous messages can create a new thread,
create a new object, or communicate with a thread already running.

As you can see, interaction diagrams are a great way to look at the behavior of
objects in a use case. They’re very simple to create and easy to understand without
looking into much detail, but they do have the drawback of not being able to pro-
vide a precise definition of the behavior of a use case.

Activity Diagrams
Activity diagrams focus on the sequencing of activities, or processes, in a use case or
several use cases. They are similar to a flowchart, but they differ in that they sup-
port parallel activities and synchronization, whereas a flowchart depicts sequential
execution. Typically, activity diagrams are used to provide a graphical view of a use
case scenario, and they are particularly useful when you want to show how several
use case behaviors interact. Figure 2.5 shows an activity diagram of the “Player
Shoots Gun” use case.

29The Unified Modeling Language

Figure 2.4

A sequence diagram
of concurrent
processes and
activations

TeamLRN

Conditional behavior in activity diagrams is shown by branches and merges. Branches
are similar to if-then-else statements in which, if a condition is true, execution flows
in one direction; otherwise, it flows in another direction. Merges mark the end of a
conditional branch.

Parallel behavior in activity diagrams is shown by forks and joins. When a fork is
shown, all of the fork’s outputs execute at the same time (in parallel). A join marks
the end of a fork.

If you are going to use multiple use cases in an activity diagram, you can do so
through the use of swimlanes. Each use case has its own swimlane, and any activities
involved with a specific use case go in that use case’s swimlane. You have to be care-
ful, though, because things can get very confusing with complex diagrams.

30 2. Using the UML in Game Development

Figure 2.5

An activity diagram

TeamLRN

As previously mentioned, activity diagrams are best used when analyzing use cases.
They help provide a graphical overview of the use case and possibly use case inter-
actions, which is much more understandable than the text in use case scenarios.

Activity diagrams will not be used in this chapter, but feel free to explore your
options with them in your own development.

Statechart Diagrams
A statechart diagram is used to describe the behavior of an object and all its possible
states. The statechart diagram essentially defines a finite state machine, where
events control the transitions from one state to another. In object-oriented meth-
ods, statecharts typically are used to describe the behavior of a single class as
opposed to the entire system. Figure 2.6 shows a sample statechart diagram.

If you decide to use statechart diagrams, keep in mind that you don’t need to draw
them for every class in the software system. You should only use statechart diagrams
for those classes that have some sort of state machine style of behavior, where draw-
ing the statechart diagram will help you gain better understanding of what’s hap-
pening. Also, in relation to game development, statechart diagrams are particularly
useful for artificial intelligence system development.

31The Unified Modeling Language

Figure 2.6

A statechart diagram
for an enemy in a
game

TeamLRN

Packages
The UML package (also called a category) is used to decompose a large software sys-
tem into smaller ones. Inside each package is a set of related classes that make it
up, but you can also have subpackages inside a package if your system needs to be
decomposed in such a way. You can think of the software system itself as a single,
high-level package, with everything else in the system contained in it. For instance,
in a game, you might have a sound system package, a graphics package, a network-
ing package, a main system package, and an input package, but all of these pack-
ages combine to form the entire game system.

You can also show the interactions and relationships between packages through
dependencies, just like you do for class diagrams. If any dependency exists between
any classes in any two packages, there’s a dependency between the packages. There
is not a standard diagram for showing packages, so you typically use a high-level
class diagram that shows only the packages and their dependencies. Some people
call these diagrams package diagrams; others call them category diagrams. Through
the remainder of this chapter, they will be referred to as package diagrams. Figure
2.7 shows a sample package diagram.

32 2. Using the UML in Game Development

Figure 2.7

A sample package
diagram

TeamLRN

Packages and package diagrams can be as detailed and complex as you desire, so
feel free to explore the topic further than what is covered here. They are particu-
larly useful for minimizing dependencies across your software system while also
providing a high-level view of your system architecture. Some developers even use
packages instead of classes for primary unit testing. As with most of the elements in
the UML, use what works best for you and your organization.

This concludes a brief overview of some of the UML’s more common diagrams and
techniques. Now it’s time for the fun part of seeing how you can apply the UML in
a game-development process.

Integrating the UML and
Game Development
To keep things simple, a Pong game is going to be used to show how you can apply
the UML to design your game software. The complete design is not going to be
shown, but key ideas and diagrams will be so that you can get an idea of how the
process works. The assumption is that you know what Pong is, but if you don’t, read
up on your video game history and learn about a tennis-like game with two paddles
and a ball.

With Pong fresh on your mind, let’s begin!

Build the Requirements
Traceability Matrix
As with any software product, you need to know what you’re going to build before
you start to build it. This information, called the requirements, should be in a
design document or some other specification (that is, a requirements specification)
that becomes the cornerstone for the rest of the product’s development. Granted,
requirements evolve throughout a product’s development (especially with games),
so you’re not going to be able to define all of them at first. As the project develop-
ment continues, however, you need to keep track of changes to the requirements
and make sure you are designing and developing your product according to the
specified requirements. One particular tool that helps with this is the Requirements
Traceability Matrix (RTM).

The RTM provides an easy way for you to trace through your analysis and design to
ensure that you are building the software, or game, to the requirements. A simple

33Integrating the UML and Game Development

TeamLRN

RTM might have columns for the requirement, the build number in which the
requirement is to be implemented, and the use case, package, and class that will
handle the requirement. Figure 2.8 shows a sample RTM form.

Let’s apply the RTM to our Pong example. All you need to do is put the require-
ments in the RTM, as partially shown in Figure 2.9.

Easy enough, right? Now you need to prioritize the requirements by build number.
A build is a set of functionality to be built by a specific date. Since Pong is relatively
small in size and effort, the majority of functionality can be developed completely
in Build 1. In Build 2, the input and audio functionality is completed along with
the win/lose conditions to complete the game. Naturally, more complex games
would have more requirements resulting in more builds, but as with many software-

34 2. Using the UML in Game Development

Figure 2.8

A sample
Requirements
Traceability Matrix
form

Figure 2.9

The Pong requirements
applied to the RTM

TeamLRN

engineering practices, this is something to experiment with and to derive your own
conclusions on.

Now that requirements have been defined and build numbers determined, we have
a foundation from which to begin the analysis and design phases of the develop-
ment process.

Identify Use Cases
In this phase, the requirements specified in the RTM are used to identify use
cases. A use case diagram is then created to provide a visual representation of the
actor–use case interactions. Use case scenarios are then created for each use case to
describe the processes and activities involved in fulfilling a use case. There does not
have to be a use case for every requirement, but make sure you specify enough use
cases to have a thorough understanding of what you are trying to do.

When creating use cases, the first thing you need to do is identify the actors. Some
developers stick with the rather inflexible notion that an actor is strictly external to
the software. You may already be seeing the problem with this definition when
applying it to games—the player would be the only actor.

A better, or at least more flexible, way to define an actor is anything that requests
some sort of functionality. In a game, this might be the player, an enemy, or an
item. In the Pong example, the actors can be the players and the ball. The defini-
tion of an actor is entirely up to you, but make sure the definition you choose gives
you enough flexibility to properly determine the actors in your software.

Once the actors have been determined, you can begin to extract the use cases from
the requirements. In the Pong example, Requirement 1.5 from the RTM deals with
when the ball passes a player and the corresponding win/lose conditions. From this
requirement, the following use cases can be derived:

• Player Wins Game

• Player Loses Game

• Ball Passes Player

To keep things organized, it is desirable to number the use cases as well. To do so,
just prepend “UC#”, where # is the number of the use case. For instance, in the
Pong example, the first defined use case is “UC1_Player Wins Game.”

You’ll add each of these use cases to the RTM with the requirement it satisfies.
Figure 2.10 shows how the Pong RTM will look after adding the use cases to the
RTM.

35Integrating the UML and Game Development

TeamLRN

Now we can create a use case diagram illustrating the interactions between the
actors and the use cases. In the Pong example, we can also show a generalization
from the Player actor to the Left Player and Right Player actors. Figure 2.11 shows
the Pong use case diagram.

36 2. Using the UML in Game Development

Figure 2.10

The Pong RTM after
adding use cases

Figure 2.11

The Pong use case
diagram

TeamLRN

Each use case needs a use case scenario that specifies the steps required for com-
pletion of a use case. Scenarios were covered earlier in this chapter, so instead of
discussing how to go about creating a scenario, look at Figure 2.12 as an example.
It shows the use case scenario “UC1_Player Wins Game” from the Pong example.

As another example (including how to invoke another use case), Figure 2.13 shows
the “UC6_Ball Passes Player” use case scenario.

At this point you may be wondering, “Why do I need to include use cases in game
development? I really don’t see much value in them for helping me develop my
game.” Honestly, you may not need them, but you might find parts of them useful
in determining a game’s story line, how the player moves around, and especially
actor interactions within the game world, among other things. Use cases are

37Integrating the UML and Game Development

Figure 2.12

Use case scenario for the
“UC1_Player Wins Game”
use case

Figure 2.13

Use case scenario for the
“UC6_Ball Passes Player”
use case

TeamLRN

considered to be part of the analysis phase of development, and that is exactly what
you are doing here: You are analyzing your game and determining how you want
your game to look, act, and feel. Although you cannot predetermine all of these
characteristics at this point in development, using use cases in your development
process will help you get a better feel for what it is you are trying to create in your
game.

Establish the Packages
In this phase, you develop a package list, allocate the packages to use cases in the
RTM, and create the system package diagram. As previously mentioned, a package
is essentially a collection of cohesive units. It can be a collection of classes, a subsys-
tem, or even a collection of other packages.

The first thing you need to do is determine some candidate package names by
looking at the actors and subjects in the use cases and using them as the candidate
package names. Look for similarities in functionality, inheritance hierarchies (“Is
this package a kind of another package?”), and aggregation hierarchies (“Is this
package made up of another package?”). The roots of inheritance and aggregation
hierarchies tend to be the names of packages. You may also find similarities in
functionality that do not fit anywhere else, in which case you might want to create
your own package named after the similarity.

The following is a list of the package names from the Pong example:

• Input

• Graphics

• Audio

• DirectX

• OpenGL

• Game Logic

The problem with using such a simple example as Pong becomes evident when try-
ing to create package names—there just isn’t very much to such a simple game!
Hopefully, you will see the benefits of using packages beyond such a simple example.

In any case, the next step is to allocate these packages to use cases. Why do you do
this? You need to allocate responsibility for use case development to the appropri-
ate packages. This is a fairly easy step because all you do is go back to the use
case(s) from which you got the package name. Figure 2.14 shows the updated Pong
RTM.

38 2. Using the UML in Game Development

TeamLRN

Now that you have the packages defined, you need to specify how they relate
through a system package diagram (SPD). This diagram is very much like a class dia-
gram in how it shows dependencies and relationships between packages. Figure
2.15 shows the system package diagram for the Pong example.

39Integrating the UML and Game Development

Figure 2.14

The partial Pong RTM
after allocating
packages to use cases

Figure 2.15

The system package diagram for Pong

TeamLRN

Create Initial Class Diagrams
The next phase involves creating initial class diagrams for each package defined in
the previous phase. You should also keep in mind that these initial diagrams should
stay focused on the problem domain only, meaning you don’t need to include
language-specific features, design patterns, or other detailed design specifications.
Probably the best way to show this is through an example, so take a look at Figure
2.16, which shows the initial class diagram for the Game Logic package.

You can, of course, add methods and attributes to the classes you created for the
class diagram. You can also specify the access rights for the methods and attributes
if you know what they should be at this point in the process.

The next part of this phase could be considered optional, depending on your soft-
ware organization and development process. After creating the class diagrams, you
create the class specifications for each class. In the class specification, you specify a
description of the class, the list of class attributes and methods with descriptions,
and any other items that may pertain to a particular project. As with any other doc-
ument, the primary purpose of the class specifications is to provide a communica-
tion tool for development teams. If you are a solo developer, you might not need

40 2. Using the UML in Game Development

Figure 2.16

The package class
diagram for the
Game Logic package

TeamLRN

the class specifications unless you just want a well-documented design. Again, as
with most software engineering practices, use what works best for you.

Develop State Transition Diagrams
State transition diagrams (STDs) typically are used to define the states of entities in
the game world, but they can also be used to represent the internal behavior of a
class. An example of an entity for which you may want to create an STD would be
the Ball actor in the Pong example. The Ball can be in one of four states: no con-
tact, paddle contact, wall contact, and behind paddle. Figure 2.17 shows the Ball
STD from the Pong example.

An example of using an STD to represent the internal behavior of a class can be
seen through the CPongGame class. This particular class represents the core of the
game and controls everything from the gameplay to the menus. One of the attrib-
utes for the CPongGame class is an attribute called gameState. This particular attribute
is called a state attribute because it has a set of values that represents the life cycle of
the CPongGame class. These state values are main menu, play game, options menu, and
scores screen. Figure 2.18 shows the CPongGame class STD.

41Integrating the UML and Game Development

Figure 2.17

The Ball state
transition diagram

TeamLRN

Produce Package Interaction
Diagrams
Package interaction diagrams (PIDs) provide a high-level view of the dynamic behav-
ior between packages and their messages from the point of view of use cases. In use
cases, an actor generates an event to the system, typically requesting some opera-
tion in response. The request event is what initiates the PID between the actor and
the game system (that is, packages). For example, the PID for the “UC1_Player
Wins Game” use case has the Player actor sending a “Move Paddle” message to the
Game Logic package, along with the Ball actor sending a “Move Ball” message. The
Game Logic package then sends a “Check Collision” message to itself to see if the ball
collides with a paddle or wall or goes behind a paddle, before it sends itself a
“Declare Winner” message to declare a winner of the game. All of this is shown in
the PID for this use case in Figure 2.19.

42 2. Using the UML in Game Development

Figure 2.18

The CPongGame class gameState STD

Figure 2.19

The “UC1_Player Wins
Game” PID

TeamLRN

Another good example of a PID from the Pong example is the PID for the
“UC4_Player Moves Down” use case. In this PID, the Player actor sends a “Move
Down” message to the Input package, which then sends a “Move Paddle Down” mes-
sage to the Game Logic package. The Game Logic package splits execution at this point
by sending a “Draw Paddle” message to the Graphics package and a “Paddle Move
Sound” message to the Sound and Music package. Figure 2.20 shows the UC4 PID.

Package interaction diagrams are an important part of understanding a game’s
behavior because they help isolate and illustrate operations that an actor requests
from the game’s packages.

The Transition from Analysis to
Design
At this point in the process, you’ve reached a critical—yet oftentimes blurry—time
in which you transition from problem and domain object-oriented analysis (OOA) to
actual software object-oriented design (OOD) and implementation. You go from view-
ing the design as a set of logical entities to viewing it as more of a concrete and
physical implementation of your game.

Because of the nature of this development process with UML, there is a fine line
between analysis and design. For instance, you’re mapping logical entities from
OOA to implementation entities in OOD without any real changes in the design,
simply a refinement. This means that the Ball class you created in OOA will map to
the Ball class in OOD, but you might make some changes with respect to language
implementation, use of design patterns, and of course going into more detail for
the design specification itself.

43Integrating the UML and Game Development

Figure 2.20

The “UC4_Player Moves
Down” PID

TeamLRN

As you may already be able to see, refinement becomes key at this point. Once you
reach the OOD phase, you don’t create many new diagrams unless you realize that
you missed something in the OOA phase, and even then you would want to per-
form some sort of analysis before refining an implementation design.

But that’s enough talk for now. Let’s move on and take a look at how you go about
refining and transitioning from OOA to OOD through the Pong example.

Update Class Diagrams
The first thing you should do when transitioning to OOD is take a look at the static
view of your game system design through the class diagrams. Again, you are not
introducing any new diagrams or specifications in this phase; you are refining your
previous diagrams and specifications by adding more detail.

Some possible refinements of the class diagrams and specifications are as follows:

• Addition of parameterized classes, collection classes, and abstract classes

• Specification of access rights for attributes and methods

• Introduction and refinement of existing design patterns

• Identification of new association relationships

Figures 2.21 and 2.22 show the differences between the class diagram for the Game
Logic package in the OOA phase and the OOD phase, respectively.

44 2. Using the UML in Game Development

Figure 2.21

The Game Logic OOA PCD

TeamLRN

As you can see, some refinement was added to the OOD PCD, including some
dependencies to the graphics, audio, and input subsystems. Types for attributes
were also specified, and although they are not shown in this particular example,
you can also specify parameters and return types for methods as well.

Update Interaction Diagrams
Once the static view of the design is completed through the class diagrams, it’s time
to move on to the dynamic design of the game system with interaction diagrams. In
this phase, you refine the package interaction diagrams created during OOA to
include classes. The resulting product is called a class interaction diagram (CID).

In the CID, you illustrate the collaborative behavior of the classes you’ve discovered
by specifying the messages that are passed between these classes. Through this

45Integrating the UML and Game Development

Figure 2.22

The Game Logic

OOD PCD

TeamLRN

refinement, you are trying to provide the level of detail necessary for implementa-
tion of the design.

Figures 2.23 and 2.24 show the PID and CID of the “UC4_Player Moves Down” use
case, respectively.

46 2. Using the UML in Game Development

Figure 2.23

The “UC4_Player
Moves Down” PID

Figure 2.24

The “UC4_Player
Moves Down” CID

TeamLRN

Refinement and Iteration
The OOD phases of updating class diagrams and interaction diagrams are really
one big loop of refinement and iteration. You aren’t going to create a design you
are happy with your first time through the phases, and chances are you aren’t
going to do it the second time through either. The idea is to refine and iterate
through these phases until you find a design that fits your criteria for providing a
baseline to move on to the implementation phases.

There is such a thing as overdesign, but at the same time, you can also underde-
sign. You and your team must decide when a design is complete, but don’t short-
change yourself with an inadequate design. Ideally, you want to be able to minimize
the number of changes you’ll make to your documented design once you go into
the implementation phases. Backtracking and making changes to previously devel-
oped material costs time, and everyone knows that time is money!

The Move to Implementation
Once you feel that your design is sufficient, it’s time to head into the “fun” part of
development—coding. There are many different ways in which you can transition
your design to code, and it seems that every development team does this differ-
ently, so do what works for you. Some suggest that you should create the class inter-
faces and a skeleton of the class implementation that you fill in as development
progresses; others suggest that you develop entire classes at once before moving
onto the next class. Again, do what works for you. Remember, however, that if you
change anything in your design while coding, you need to go back to your design
on paper and make changes accordingly. You’ll thank yourself for keeping every-
thing well documented.

Summary and Review
Well, that completes your brief look at how you can use the UML in your game-
development process. This is only one view of how to use UML, though. There are
plenty of other processes and methodologies created for object-oriented analysis
and design. How about a quick review?

You start off your analysis by defining use cases and creating use case scenarios that
specify the steps required to fulfill the use case. Then you establish the packages
and the system package diagram that defines the high-level architecture design of
the game system.

47Summary and Review

TeamLRN

Next you create class diagrams inside each package and state diagrams for state
attributes inside the classes. Then you produce the package interaction diagrams
from use cases that illustrate the behavior and collaboration across packages.

At this point, you begin the transition from object-oriented analysis to object-
oriented design, where you begin an iterative process of updating the class dia-
grams for the static view of your design and the interaction diagrams for the
dynamic view. You continue this cycle until you reach a point that is deemed suffi-
cient, and then you move onto the implementation, or coding, phase.

Once at the coding phase, you are on your own for how you want to map the
design to code. There are many different published methods for accomplishing
this task, so choose the methods you like.

One thing that is not discussed in this chapter is testing. This is primarily because
testing varies from project to project and from team to team. Typically, though,
you’ll want to generate unit tests for each package (and possibly for each class), but
this really depends on your team and project. Naturally, you cannot test general
gameplay issues, but the technical aspects of the game software can be tested very
well.

Where to Go from Here
If this chapter has sparked some interest for using UML in game development,
there are several resources you can check out for more general UML information,
techniques, and discussions. Not much has been published in terms of UML’s
application specifically to game development, but hopefully, with this chapter and
some of your own brainstorming, you’ll be able to find something that works for
you and your team.

Books

Booch, Grady, Jacobson, Ivar, Rumbaugh, J., The Unified Modeling Language User
Guide. Boston: Addison-Wesley, 1998.

Texel, P., and Charles Williams, Use Cases Combined with Booch/OMT/UML. Upper
Saddle River: Prentice Hall, 1997.

Web Sites

Object Management Group: www.omg.org

Rational Software: www.rational.com

48 2. Using the UML in Game Development

TeamLRN

Software Engineering Institute: www.sei.cmu.edu

Brad Appleton’s Software Engineering: www.enteract.com/~bradapp/

Software Development Magazine: www.sdmagazine.com

GameDev.net Software Engineering: www.gamedev.net/reference/

UML Tools

Rational Rose by Rational Software: www.rational.com

ArgoUML, a free Java-based cognitive CASE tool: www.argouml.com

Dia, a diagram tool with UML support: www.lysator.liu.se/~alla/dia/dia.html

Conclusion
The Unified Modeling Language is a very broad topic and is difficult to discuss
extensively in such a short chapter, but hopefully you’ve gained, if anything, a bet-
ter understanding of how you can use the UML as a communication and design
tool in your game-development process. Some people may not feel the need to use
UML and be this elaborate in their process, and that’s fine, but if you’ve found
yourself redesigning, reworking, recoding, and re-other things, maybe you should
give UML a chance. The rest of the software industry is giving new ideas a chance,
so why shouldn’t the game industry?

49Conclusion

TeamLRN

This page intentionally left blank

TeamLRN

TRICK 3

Building an
Application
Framework

Ernest S. Pazera,
ernestpazera@msn.com

TeamLRN

Introduction
Just as an object lesson, go start up your compiler and write, from scratch, a mini-
mal Win32 application. Nothing fancy, just a WinMain and a window procedure. No,
really. Go ahead and do it. I’ll wait.

Are you back? Okay, now count the lines. For myself, I was able to do it with 39
lines of code. No blank lines, no comments, with one statement per line, and with
braces each getting its own line. I’m certain that if I had wanted to get clever with
it, I probably could have gotten it down to 30 lines or so, but that’s not really the
point here.

I just wrote 39 lines of code, and it gives me a window that does nothing (well, to
be honest, my window can be moved around, it has a Close button, and so on), so
to be more accurate, I wrote 39 lines that gave me a window that doesn’t do any-
thing special. In fact, these 39 lines are almost identical to the code I usually write
when I’m making a WIN32 application.

For the sake of discussion, here are the 39 lines I wrote:

#include <windows.h>
const char* WINDOWTITLE=”Example Window Title”;
const char* WINDOWCLASSNAME=”Example Window Class Name”;
WNDCLASS g_WndCls;
HWND g_hWnd=NULL;
LRESULT CALLBACK TheWindowProc(HWND hWnd,UINT uMsg,WPARAM wParam,LPARAM lParam)
{

switch(uMsg)
{

case WM_DESTROY:
PostQuitMessage(0);
return(0);

default:
return(DefWindowProc(hWnd,uMsg,wParam,lParam));

}
}
int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,

int nShowCmd)
{

memset(&g_WndCls,0,sizeof(WNDCLASS));

52 3. Building an Application Framework

TeamLRN

g_WndCls.hbrBackground=(HBRUSH)GetStockObject(BLACK_BRUSH);

g_WndCls.hCursor=(HCURSOR)LoadCursor(NULL,MAKEINTRESOURCE(IDC_ARROW));
g_WndCls.hInstance=hInstance;
g_WndCls.lpfnWndProc=TheWindowProc;
g_WndCls.lpszClassName=WINDOWCLASSNAME;
g_WndCls.style=CS_DBLCLKS|CS_HREDRAW|CS_VREDRAW|CS_OWNDC;
RegisterClass(&g_WndCls);

g_hWnd=CreateWindowEx(0,WINDOWCLASSNAME,WINDOWTITLE,WS_VISIBLE|WS_BORDER|WS_CAPTION|W
S_SYSMENU,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,NULL,NULL,hInstan
ce,NULL);

MSG msg;
for(;;)
{

if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{

if(msg.message==WM_QUIT) break;
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
return(msg.wParam);

}

Undoubtedly, at some point you also got sick of writing
this same exact code over and over again. Maybe you
have a file with all the basic code in it and just cut and
paste it when you create a new application. Or, like me,
maybe you wrote an application framework. And so, we
are brought to the topic of discussion: building applica-
tion frameworks.

Why Use an Application
Framework?
Three words: Rapid Application Development (RAD). I don’t care what kind of appli-
cations you are writing, whether they’re business applications, games, level editors,
or whatever. Ideally, you’d like to spend less time actually making them. If you start

53Why Use an Application Framework?

NOTE
You can find the pre-
ceding application on
the accompanying
CD-ROM if you really
want to take the time
to look at it. It is enti-
tled appframe1.

TeamLRN

from scratch each time you make an application, you are spending more time than
you need to on each application.

Instead, invest some time building a solid and flexible framework that you can use
to quickly build other applications. If you spend 100 hours developing a robust,
extensible framework that you can use to cut your development time for other pro-
jects in half, after a while, the time spent on the framework will pay for itself.

Let me give you a quick example. Whenever I write a book, the very first sample
program I write will typically take me an hour (sometimes less). This is usually just
a simple application that gets a window up and running, again doing nothing spe-
cial. Thereafter, I copy the source code from that example and use it to build other
examples. After the first example, it typically only takes me about 15 minutes (tops)
to make something new based on what has gone before.

This is why engines and other frameworks already exist. If you are building a busi-
ness application for Windows, you’d be a fool not to make use of the power of
Microsoft Foundation Classes (MFC). If you are writing a high-end, bleeding-edge
game, you’d be a fool not to use one of the commercially available engines that are
out there.

Why Roll Your Own?
Okay, by now it should be pretty obvious that you should use an application frame-
work. What may be a little less obvious is why you would want to make your own
and not use one that is already available, like MFC or some game engine.

I am speaking from a focus of writing games and, more importantly, writing small-
ish games that are likely to be distributed as shareware or as a part of a game bun-
dle on the racks of better computer stores everywhere.

In this situation, MFC is ill suited. It is a bloated framework that can do just about
everything under the sun. However, most of its functionality will go unused in your
games, so the extra bloat is just wasted space. A commercial engine isn’t a great
idea either because there’s a high cost to make use of the engine, and you are a
hungry developer just trying to make a buck or two.

Even if you aren’t the small-time developer to whom I am writing, rolling your own
application framework is a good idea because of what you will learn by doing so.
Every other framework/engine is built on much the same principles, and by going
ahead and doing it yourself, you will have a much easier time learning a different
framework because you have already gone through how something similar works

54 3. Building an Application Framework

TeamLRN

internally. If it takes you less time to get used to a new framework or engine, you’ve
again saved time and added value to yourself as a developer.

Identify Your Needs
I’m going to take you through writing the core classes of an application framework.
Since this is a book in which I only get a few pages to show you something, we
won’t be making a cutting-edge 3-D engine today.

What we will do, however, is get the pesky code that haunts every single Windows-
based application . . . namely WinMain and the window procedure.

Programming is, as it has always been, a problem-solving endeavor. You start with a
problem that you need to solve and then program the solution to that problem. So,
the very first step in designing an application framework (or, indeed, any program)
is to identify the problem we need to solve. This will keep us on task and produc-
tive and will keep us from wandering away from the mission.

So, what is the problem that we need to solve? Well, we want to give ourselves the
core classes of an application framework that will allow us the freedom to never
have to write another WinMain or WindowProc again.

Okay, that’s something, but it’s still sort of vague. Now we need to define what ser-
vices WinMain and WindowProc provide us so that we can plan out how we will meet
these needs ourselves.

The WinMain function does a number of things for us. Typically, it sets up a window
class, creates a window, and then pumps messages. The WindowProc function handles
messages received by various windows owned by that application.

From an object-oriented point of view, the WinMain function and the WindowProc func-
tion each embody two separate objects. However, they do communicate with one
another. Also, each function is embodied with a particular Windows object. WinMain
is the embodiment of an HINSTANCE, and WindowProc is the embodiment of an HWND.

WinMain also has an “ownership/parent” role toward the HWND, so this relationship
extends to WindowProc.

And so, to get us started, we shall come up with two classes. One is called
CApplication, and it takes the same responsibility that a WinMain function does (as
well as embodying an HINSTANCE). The other is called CEventHandler, and it takes on
the purposes of a WindowProc function and embodies an HWND.

55Identify Your Needs

TeamLRN

The CApplication Design
We have stated already that CApplication has the duty of doing everything that a
WinMain typically does. We can further state that only one CApplication will exist in a
program, thus making it a singleton. It would be absurd to have more than one
CApplication object at a time. Perhaps we would think differently if we were doing
multithreaded programming, but that sort of thing is beyond the scope of this
small chapter.

So, then, what tasks do we rely on WinMain to do? The WinMain function shown earlier
in this chapter goes through the following steps:

1. Set up and register a window class.

2. Create a window.

3. Pump messages and wait for a quit message.

4. Terminate.

Of course, the application we are looking at is the simplest case. In reality, a WinMain
function does a little bit more than this. It also sets up any application-level
resources (setting up a window class and creating a window count as setting up
application resources), and when no messages are waiting in the message queue, it
will do something else for a little while during the idle state. Finally, it will free any
resources that the program may be using before termination. Therefore, we revise
what a CApplication must do:

1. Initialize application resources (register a window class, create a window, and
so on).

2. Check for a message.

3. If a quit message has occurred, go to step 6.

4. If a nonquit message has occurred, send it to the appropriate message han-
dler and then return to step 2.

5. If no message has occurred, do idle application activities and then return to
step 2.

6. Clean up any resources in use by this application.

7. Terminate.

56 3. Building an Application Framework

TeamLRN

Now we can translate these steps into the beginnings of a class definition for
CApplication. We’ll return to it later, as we are not quite finished yet, but it does give
us a start.

class CApplication
{
private:

//CApplication is a singleton, and the sole instance will have its
pointer

//stored in a static member
static CApplication* s_pTheApplication;
//store the HINSTANCE
static HINSTANCE s_hInstance;

public:
//constructor
CApplication();
//destructor
virtual ~CApplication();
//retrieve the HINSTANCE
static HINSTANCE GetHINSTANCE();
//initialize application resources
virtual bool OnInit();
//idling behavior
virtual void OnIdle();
//pre-termination activities(clean up resources)
virtual void OnTerminate();
//run the application through a static member
static int Execute(HINSTANCE hInstance,HINSTANCE hPrevInstance,

LPSTR lpCmdLine,int nShowCmd);
//retrieve the static application pointer
static CApplication* GetApplication();

};

Based on this class definition, you might have a few questions as to why I made a
particular member static or virtual. I’ll do my best to answer them.

CApplication itself is not meant to be instantiated. Instead, whatever application you
write will be an instance of a child class of CApplication. For example, you might cre-
ate a child class called CMyApplication. After you have done so, you instantiate your
application in the global scope as follows:

CMyApplication TheApp;

57Identify Your Needs

TeamLRN

During the construction of the application, the static member s_pTheApplication will
be set to point to your application. Later, when CApplication::Execute() is called, it
will run your application. This is why the initialization, idling, and cleanup func-
tions are all virtual. They are meant to be overridden.

The CEventHandler Design
And now for CEventHandler, which encapsulates the functionality of a WindowProc and
embodies an HWND. Therefore, a CEventHandler has to do everything that a WindowProc
can do as well as anything that an HWND can do. This is indeed a tall order, and we
won’t completely fill it here. Instead, we will make CEventHandler do the most com-
mon tasks associated with a WindowProc and an HWND, and we’ll leave a way to extend
this behavior later in child classes of CEventHandler.

The key to CEventHandler is that a single instance is bound tightly to a particular HWND
and vice versa. On the CEventHandler side of things, this can easily be done by having
a class member that stores the applicable HWND. On the HWND side, we have to store a
pointer to the instance of the CEventHandler as the extra data with SetWindowLong,
which we will look at a little later on.

Since we don’t really want to duplicate the many functions that work with HWNDs as
part of the CEventHandler class (although there’s nothing to stop you from doing this
if you really want to), we will simply leave a way to access the HWND through the
CEventHandler instance, and then we’ll leave it up to the user of the CEventHandler
class to make use of the functions dealing with HWNDs.

And so, a good start on the design for CEventHandler might look like the following:

class CEventHandler
{
private:

//registered window class
static ATOM s_WndCls;
//associated window handle
HWND m_hWnd;

public:
//constructor
CEventHandler();
//destructor
~CEventHandler();
//conversion operator
operator HWND();

58 3. Building an Application Framework

TeamLRN

//retrieve HWND
HWND GetHWND();
//set HWND
void SetHWND(HWND hWnd);
//event handling function
virtual bool HandleEvent(UINT uMsg,WPARAM wParam,LPARAM lParam);
//event filtering
virtual bool OnEvent(UINT uMsg,WPARAM wParam,LPARAM lParam);
//event handlers: mouse
virtual bool OnMouseMove(int iX,int iY,bool bShift, bool bControl,

bool bLeft, bool bRight, bool bMiddle);
virtual bool OnLButtonDown(int iX,int iY,bool bShift, bool bControl,

bool bLeft, bool bRight, bool bMiddle);
virtual bool OnLButtonUp(int iX,int iY,bool bShift, bool bControl,

bool bLeft, bool bRight, bool bMiddle);
virtual bool OnRButtonDown(int iX,int iY,bool bShift, bool bControl,

bool bLeft, bool bRight, bool bMiddle);
virtual bool OnRButtonUp(int iX,int iY,bool bShift, bool bControl,

bool bLeft, bool bRight, bool bMiddle);
//event handlers: keyboard
virtual bool OnKeyDown(int iVirtKey);
virtual bool OnKeyUp(int iVirtKey);
virtual bool OnChar(TCHAR tchCode);
//event handlers: window creation and destruction
virtual bool OnCreate();
virtual bool OnDestroy();
//repaint
virtual bool OnPaint(HDC hdc,const PAINTSTRUCT* pPaintStruct);
//static member function for creating window class
static void CreateWindowClass();
//static member function for window procedure
static LRESULT CALLBACK WindowProc(HWND hWnd,UINT uMsg,WPARAM

wParam,LPARAM lParam);
};

Now we’ve got something to start with anyway. Certainly, we will want to have more
event handlers in the finished class than the ones we currently have, but what we’ve
got is fine to begin with.

Notice that all of the event-handling functions begin with the letters “On” and are
virtual. (They are meant to be overridden.) Furthermore, they each return a bool.

59Identify Your Needs

TeamLRN

If the event is processed properly, we need to have these functions return true. If
unhandled, the event handlers can return false.

Unfortunately, because of the way Windows works, we will need to create our event
handler before we create our window in order to properly bind the two of them
together.

We could always get around this by using a factory method in derived classes of
CEventHandler.

The CMessageHandler Design
Unfortunately, one part of the design is left out of the classes as we have designed
them thus far. CEventHandler instances, like windows, can have a parent/child rela-
tionship. A CEventHandler can have a CApplication as its parent as well. Currently,
there is no nice way to represent this in our code. Certainly, we could hack
together something that would work most of the time, but that isn’t very elegant.
So, let’s take a look at this new problem and see what we can come up with to solve
it. We need the following features:

• A CEventHandler must be able to be a child of either a CApplication or another
CEventHandler.

• A CApplication is at the root of the parent/child relationship tree. It will
never have a parent but may have many children.

• A child must have some manner of notifying its parent when something is
happening that the parent should know about.

To me, this sounds an awful lot like a need for another class that will be the parent
class of both CApplication and CEventHandler. Since we only need to send messages
down the tree (that is, toward the root), we only need to store a particular object’s
parent.

Here’s what I’ve come up with for a CMessageHandler class:

class CMessageHandler
{
private:

//the parent of this message handler
CMessageHandler* m_pmhParent;

public:
//constructor
CMessageHandler(CMessageHandler* pmhParent);

60 3. Building an Application Framework

TeamLRN

//destructor
virtual ~CMessageHandler();
//set/get parent
void SetMessageParent(CMessageHandler* pmhParent);
CMessageHandler* GetMessageParent();
//handles messages, or passes them down the tree
bool HandleMessage(int MessageID,int argc,void* argv[]);
//triggered when a message occurs
virtual bool OnMessage(int MessageID, int argc, void* argv[])=0;

};

Notice that CMessageHandler::OnMessage has the =0 after it, making this class a pure vir-
tual class. It cannot be instantiated, which is good, because it does nothing on its
own. Now, once we set CApplication and CEventHandler to use CMessageHandler as its
base class, we will also not implement their OnMessage functions, making them pure
virtual classes as well. They aren’t particularly useful on their own either.

For now, let’s take a quick look at how CApplication and CEventHandler were changed
by the addition of the CMessageHandler class as the parent class. First, here’s
CApplication (which really didn’t change all that much):

class CApplication: public CMessageHandler
{
private:

//CApplication is a singleton, and the sole instance will have its
pointer

//stored in a static member
static CApplication* s_pTheApplication;
//store the HINSTANCE
static HINSTANCE s_hInstance;

public:
//constructor
CApplication();
//destructor
virtual ~CApplication();
//retrieve the HINSTANCE
static HINSTANCE GetHINSTANCE();
//initialize application resources
virtual bool OnInit()=0;
//idling behavior
virtual void OnIdle()=0;
//pre-termination activities(clean up resources)

61Identify Your Needs

TeamLRN

virtual void OnTerminate()=0;
//run the application through a static member
static int Execute(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR

lpCmdLine,int nShowCmd);
//retrieve the static application pointer
static CApplication* GetApplication();

};

For the most part, CApplication’s definition remains unchanged. The first line is
modified to represent CMessageHandler’s role as a parent class. The other changes
concern the modification of OnInit, OnIdle, and OnTerminate. I made them into pure
virtual functions. Since OnMessage from CMessageHandler already makes this class a
pure virtual class, requiring that the user implement these three functions doesn’t
really hurt anything.

As for CEventHandler, here’s what it looks like now:

class CEventHandler: public CMessageHandler
{
private:

//registered window class
static ATOM s_WndCls;
//associated window handle
HWND m_hWnd;

public:
//constructor
CEventHandler(CMessageHandler* pmhParent);
//destructor
~CEventHandler();
//conversion operator
operator HWND();
//retrieve HWND
HWND GetHWND();
//set HWND
void SetHWND(HWND hWnd);
//event handling function
virtual bool HandleEvent(UINT uMsg,WPARAM wParam,LPARAM lParam);
//event filtering
virtual bool OnEvent(UINT uMsg,WPARAM wParam,LPARAM lParam);
//event handlers: mouse
virtual bool OnMouseMove(int iX,int iY,bool bShift, bool bControl,

bool bLeft, bool bRight, bool bMiddle);

62 3. Building an Application Framework

TeamLRN

virtual bool OnLButtonDown(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

virtual bool OnLButtonUp(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

virtual bool OnRButtonDown(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

virtual bool OnRButtonUp(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

//event handlers: keyboard
virtual bool OnKeyDown(int iVirtKey);
virtual bool OnKeyUp(int iVirtKey);
virtual bool OnChar(TCHAR tchCode);
//event handlers: window creation and destruction
virtual bool OnCreate();
virtual bool OnDestroy();
//repaint
virtual bool OnPaint(HDC hdc,const PAINTSTRUCT* pPaintStruct);
//static member function for creating window class
static void CreateWindowClass();
//static member function for window procedure
static LRESULT CALLBACK WindowProc(HWND hWnd,UINT uMsg,WPARAM

wParam,LPARAM lParam);
};

In CEventHandler, not only did the first line of the declaration change but also
the constructor. Now, because of polymorphism, you can pass a pointer to a
CApplication (or any derived class) or to a CEventHandler (or any derived class) as the
parent to the CEventHandler’s constructor, and it will set that object as the new
object’s parent.

Implementation of a Simple
Application Framework
There is certainly more we could design for this application framework, but this is
meant to be a quick example to give you ideas, not an exhaustive treatise on appli-
cation frameworks. Therefore, we’ll call the three core classes “good enough” and
implement them.

63Simple Application Network

TeamLRN

Implementation of
CMessageHandler
We’ll start with the base class, CMessageHandler. This is a rather elementary class. It
essentially only stores a single CMessageHandler pointer as a parent. Table 3.1 shows
the more simplistic member function implementations:

As you can see, Table 3.1 only shows you some rather standard getter and setter
functions, and those are no big deal. The only function I had to be careful with was
HandleMessage.

//handles messages, or passes them down the tree
bool CMessageHandler::HandleMessage(int MessageID,int argc,void* argv[])
{

//attempt to handle message
if(OnMessage(MessageID,argc,argv))
{

//message has been handled, return true
return(true);

}
else
{

//message has not been handled
//look for a parent to pass the message to...
if(GetMessageParent())
{

//found a parent
//let parent handle message
return(GetMessageParent()-

>HandleMessage(MessageID,argc,argv));

64 3. Building an Application Framework

Table 3.1 CMessageHandler Member Functions

Function Implementation

CMessageHandler(pmhParent) {SetMessageParemt(pmhParent);}

~CMessageHandler() {}

SetMessageParent(pmhParent) {m_pmhParent=pmhParent;}

GetMessageParent() {return(m_pmhParent);}

TeamLRN

}
else
{

//did not find a parent
//failed to handle message, return

false
return(false);

}
}

}

When a message handler (or any derived class) receives a message, we have to do a
number of different things to get that message handled. First, we must try to han-
dle the message ourselves. If we fail to handle the message on our own, we must try
to pass it along to the parent message handler, if one exists. If no parent exists, the
message remains unhandled. If a parent does exist, we pass it along to the parent.

The parameters for HandleMessage are structured so that there is a unique ID for the
message (MessageID) and then a variable number of void* parameters. There is no
way of knowing how many parameters we might need in the future, so we don’t
want to shoot ourselves in the foot.

Implementation of CApplication
CApplication, like CMessageHandler, is a simply implemented class. All of the data for
this class is static. The only reason why not every member function of CApplication is
static is because, to customize what an application does, we need to make use of vir-
tual functions and polymorphism.

Of the CApplication member functions, OnInit, OnIdle, and OnTerminate are virtual, so
we defer implementation until a derived class.

The static member functions, GetHINSTANCE and GetApplication, return our static
members. They are simple enough that I shouldn’t have to actually show them here
in print.

That leaves us with the constructor, the destructor, and the static member function
Execute. The destructor does absolutely nothing, so we can ignore it.

First, here’s the constructor:

//constructor
CApplication::CApplication():

CMessageHandler(NULL)//initialize message handler parent class

65Simple Application Framework

TeamLRN

{
//check for an instance of CApplication already existing
if(s_pTheApplication)
{

//instance of CApplication already exists, so termi-
nate

exit(1);
}

//set application pointer
s_pTheApplication=this;

}

Since a CApplication-derived object is meant to be declared in the global scope and
furthermore is meant to be a singleton, the constructor for CApplication is con-
cerned with two things. First, it makes certain that the static application pointer has
not already been written to. (This static member starts with a value of NULL.) If an
application has already been created, it causes the program to exit abruptly. Ideally,
you should make some sort of alert system to make this easier to debug.

Second, if nothing has set the application pointer yet, the current application
being initialized becomes the new value. This pointer is used later by Execute to
make everything happen.

//run the application through a static member
int CApplication::Execute(HINSTANCE hInstance,HINSTANCE hPrevInstance,

LPSTR lpCmdLine,int nShowCmd)
{

//set instance handle
s_hInstance=GetModuleHandle(NULL);
//check for application instance
if(!GetApplication())
{

//no application instance, exit
return(0);

}
//attempt to initialize application
if(GetApplication()->OnInit())
{

//application initialized
//quit flag
bool bQuit=false;

66 3. Building an Application Framework

TeamLRN

//message structure
MSG msg;
//until quit flag is set
while(!bQuit)

{
//check for a message
if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{

//a message has occurred
//check for a quit
if(msg.message==WM_QUIT)
{

//quit message
bQuit=true;

}
else
{

//non quit
message

//translate
and dispatch

TranslateMessage(&msg);

DispatchMessage(&msg);
}

}
else
{

//application is idling
GetApplication()->OnIdle();

}
}

//terminate application
GetApplication()->OnTerminate();
//return

return(msg.wParam);
}

else
{

67Simple Application Framework

TeamLRN

//application did not initialize
return(0);

}
}

CApplication::Execute looks very much like what a standard WinMain function looks
like, minus window class creation and window creation. This function uses the static
member function GetApplication to get a hold on whatever instance of a CApplication-
derived class is the running application. Execute is also responsible for setting the sta-
tic HINSTANCE member. Other than that, this function initializes the application, goes
through a message pump (letting the application idle whenever no message is in the
queue), and finally terminates once a quit message has been processed.

Our actual WinMain function (yes, despite our hard work, there still must be a
WinMain) also is part of the CApplication implementation. Quite simply, here it is:

//winmain function
int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,

int nShowCmd)
{

//execute the application
return(CApplication::Execute(hInstance,hPrevInstance,lpCmdLine,nShowCmd));

}

And behold! The mystically magical one-
line WinMain! Everything is handled inside of
CApplication::Execute anyway.

Implementing
CEventHandler
CEventHandler is by far the most complicated
class of the three, but even so, it is not particu-
larly difficult to implement. Most of the functions (specifically those whose names
begin with “On”) are simply stubs and do nothing but return a value. Other func-
tions include the HWND getter and setter, which are no-brainers. The functions that
we really need to examine are HandleEvent, CreateWindowClass, WindowProc, and Create.

We’ll start with CreateWindowClass. This is a static member function that sets up the
window class to be used for all windows created for use with CEventHandler derived
objects.

68 3. Building an Application Framework

NOTE
Just an FYI here: In case you were
curious, this is exactly the same
mechanism that MFC uses to get
rid of WinMain. Our CApplication
class is the equivalent of CWinApp.

TeamLRN

//static member function for creating window class
void CEventHandler::CreateWindowClass()
{

//check for the atom
if(!s_WndCls)
{

//set up window class
WNDCLASSEX wcx;
wcx.cbClsExtra=0;
wcx.cbSize=sizeof(WNDCLASSEX);
wcx.cbWndExtra=0;
wcx.hbrBackground=NULL;
wcx.hCursor=NULL;
wcx.hIcon=NULL;
wcx.hIconSm=NULL;
wcx.hInstance=GetModuleHandle(NULL);
wcx.lpfnWndProc=CEventHandler::WindowProc;
wcx.lpszClassName=”LAVALAMPSARECOOL”;
wcx.lpszMenuName=NULL;
wcx.style=CS_DBLCLKS|CS_HREDRAW|CS_VREDRAW|CS_OWNDC;

//register the class
s_WndCls=RegisterClassEx(&wcx);

}
}

This function checks to see whether the static window class member (s_WndCls) is
NULL (the initial value). If it is, it will create a rather generic window class. Please
don’t laugh at the name I picked for it. After CreateWindowClass is called one time,
the window class is registered already and so the function henceforth does nothing
at all. This is a handy feature considering that each time CEventHandler::Create is
called, this function gets called, as you can see here:

//create a window and associate it with a pre-existing CEventHandler
HWND CEventHandler::Create(CEventHandler* pehHandler,DWORD dwExStyle,LPCTSTR

lpWindowName,DWORD dwStyle,int x,int y,int nWidth,int nHeight,HWND
hWndParent,HMENU hMenu)

{
//create the window class
CreateWindowClass();

69Simple Application Framework

TeamLRN

//create and return the window
return(CreateWindowEx(dwExStyle,(LPCTSTR)s_WndCls,lpWindowName,dwStyle,x,y,nWidth,
nHeight,hWndParent,hMenu,GetModuleHandle(NULL),pehHandler));

}

This function is the only function you should use to create CEventHandler-associated
windows. It has most of the parameters of CreateWindowEx, with the exception of the
class name and the HINSTANCE. An additional parameter is a pointer to a
CEventHandler with which to associate the window.

To see how an HWND and a CEventHandler are associated with one another, we need to
take a look at CEventHandler::WindowProc.

//static member function for window procedure
LRESULT CALLBACK CEventHandler::WindowProc(HWND hWnd,UINT uMsg,WPARAM wParam,

LPARAM lParam)
{

//check for WM_NCCREATE
if(uMsg==WM_NCCREATE)
{

//attach window to event handler and vice versa
//grab creation data
LPCREATESTRUCT lpcs=(LPCREATESTRUCT)lParam;
//grab event handler pointer
CEventHandler* peh=(CEventHandler*)lpcs->lpCreateParams;
//associate event handler with window
peh->SetHWND(hWnd);
//associate window with event handler
SetWindowLong(hWnd,GWL_USERDATA,(LONG)peh);

}
//look up event handler
CEventHandler* peh=(CEventHandler*)GetWindowLong(hWnd,GWL_USERDATA);
//check for a NULL event handler
if(!peh)
{

//use default window procedure
return(DefWindowProc(hWnd,uMsg,wParam,lParam));

}
//check for event filter
if(peh->OnEvent(uMsg,wParam,lParam))

70 3. Building an Application Framework

TeamLRN

{
//event filtered
return(0);

}
else
{

//event not filtered
//attempt to handle event
if(peh->HandleEvent(uMsg,wParam,lParam))
{

//event handled
return(0);

}
else
{

//event not handled
//default processing

return(DefWindowProc(hWnd,uMsg,wParam,lParam));
}

}
}

There are really two parts to this function. One is when WM_NCCREATE occurs. (This
message is sent to the window procedure during the call to CreateWindowEx.) This is
where the CEventHandler and HWND become tied to one another. The CEventHandler
has its HWND set to the window in question, and the HWND gets a pointer to the
CEventHandler placed into its user data with a call to SetWindowLong.

If any other message besides WM_NCCREATE occurs, the function pulls out the
CEventHandler pointer, checks that it is non-null (it can happen), and then tries to
have the CEventHandler object handle the message. First, it sends it to the OnEvent fil-
ter; failing that, it goes to the HandleEvent function. If the event is still not handled,
it defaults to DefWindowProc.

Finally, an event is dispatched to the appropriate handler by
CEventHandler::HandleEvent.

//event handling function
bool CEventHandler::HandleEvent(UINT uMsg,WPARAM wParam,LPARAM lParam)
{

//what message was received?

71Simple Application Framework

TeamLRN

switch(uMsg)
{
case WM_MOUSEMOVE://mouse movement

{
//grab x and y
int x=LOWORD(lParam);
int y=HIWORD(lParam);
//grab button states
bool bLeft=((wParam&MK_LBUTTON)>0);
bool bRight=((wParam&MK_RBUTTON)>0);
bool bMiddle=((wParam&MK_MBUTTON)>0);
//grab shift state
bool bShift=((wParam&MK_SHIFT)>0);
bool bCtrl=((wParam&MK_CONTROL)>0);
//send to event handling function

return(OnMouseMove(x,y,bShift,bCtrl,bLeft,bRight,bMiddle));
}break;

case WM_LBUTTONDOWN://left mouse button press
{

//grab x and y
int x=LOWORD(lParam);
int y=HIWORD(lParam);
//grab button states
bool bLeft=((wParam&MK_LBUTTON)>0);
bool bRight=((wParam&MK_RBUTTON)>0);
bool bMiddle=((wParam&MK_MBUTTON)>0);
//grab shift state
bool bShift=((wParam&MK_SHIFT)>0);
bool bCtrl=((wParam&MK_CONTROL)>0);
//send to event handling function

return(OnLButtonDown(x,y,bShift,bCtrl,bLeft,bRight,bMiddle));
}break;

case WM_LBUTTONUP://left mouse button release
{

//grab x and y
int x=LOWORD(lParam);
int y=HIWORD(lParam);
//grab button states
bool bLeft=((wParam&MK_LBUTTON)>0);
bool bRight=((wParam&MK_RBUTTON)>0);
bool bMiddle=((wParam&MK_MBUTTON)>0);

72 3. Building an Application Framework

TeamLRN

//grab shift state
bool bShift=((wParam&MK_SHIFT)>0);
bool bCtrl=((wParam&MK_CONTROL)>0);
//send to event handling function

return(OnLButtonUp(x,y,bShift,bCtrl,bLeft,bRight,bMiddle));
}break;

case WM_RBUTTONDOWN://right mouse button press
{

//grab x and y
int x=LOWORD(lParam);
int y=HIWORD(lParam);
//grab button states
bool bLeft=((wParam&MK_LBUTTON)>0);
bool bRight=((wParam&MK_RBUTTON)>0);
bool bMiddle=((wParam&MK_MBUTTON)>0);
//grab shift state
bool bShift=((wParam&MK_SHIFT)>0);
bool bCtrl=((wParam&MK_CONTROL)>0);
//send to event handling function

return(OnRButtonDown(x,y,bShift,bCtrl,bLeft,bRight,bMiddle));
}break;

case WM_RBUTTONUP://right mouse button release
{

//grab x and y
int x=LOWORD(lParam);
int y=HIWORD(lParam);
//grab button states
bool bLeft=((wParam&MK_LBUTTON)>0);
bool bRight=((wParam&MK_RBUTTON)>0);
bool bMiddle=((wParam&MK_MBUTTON)>0);
//grab shift state
bool bShift=((wParam&MK_SHIFT)>0);
bool bCtrl=((wParam&MK_CONTROL)>0);
//send to event handling function

return(OnRButtonUp(x,y,bShift,bCtrl,bLeft,bRight,bMiddle));
}break;

case WM_KEYDOWN://key press
{

//send to event handler
return(OnKeyDown(wParam));

}break;

73Simple Application Framework

TeamLRN

case WM_KEYUP://key release
{

//send to event handler
return(OnKeyUp(wParam));

}break;
case WM_CHAR://character generated

{
//send to event handler
return(OnChar(wParam));

}break;
case WM_CREATE://window created

{
return(OnCreate());

}break;
case WM_DESTROY://window destroyed

{
return(OnDestroy());

}break;
case WM_PAINT://repaint

{
//begin painting
PAINTSTRUCT ps;
HDC hdc=BeginPaint(GetHWND(),&ps);

//call handler
OnPaint(hdc,&ps);

//end painting
EndPaint(GetHWND(),&ps);
return(true);

}break;
default://any other message

{
//not handled
return(false);

}break;
}

}

This function operates just like a WindowProc without actually being one. It is missing
the HWND parameter, but that is easily retrieved with a call to GetHWND, as shown in the

74 3. Building an Application Framework

TeamLRN

WM_PAINT handler. This function not only checks to see what event occurred, it also
removes the applicable data from wParam and lParam before sending it off to the indi-
vidual event-handling function. At the CEventHandler level, all of the event-handling
functions, like OnMouseMove and OnKeyDown, just return false so that default processing
can occur. The exception to this rule is OnPaint, which returns true even though it
doesn’t matter what it returns. All WM_PAINT messages are minimally handled.

In a derived class, you could add new events to handle and simply call
CEventHandler::HandleEvent in the default block of the switch statement. See? It’s
extensible.

A Sample Program
The following sample program can be found on the accompanying CD-ROM. It is
entitled appframe2.

As they currently exist, CMessageHandler, CApplication, and CEventHandler are useless
because they are all pure virtual classes and cannot be instantiated. To make use of
them, we need to derive some classes that implement the pure virtual functions. At a
bare minimum, we need a derived class of CApplication and a derived class of CEvent-
Handler. For this test case, I have created CTestApplication and CTestEventHandler.

The Design of CTestApplication
In our sample program, we simply want to create a window. Just so that this window
responds to some sort of input, when the Esc key is pressed, we want the window to
close and the application to terminate.

The only things we need to add to CTestApplication are a constructor and destructor
(neither of which have to do anything in particular) and functions that implement
OnMessage, OnInit, OnIdle, and OnTerminate. So, the definition for CTestApplication
should look something like this:

class CTestApplication : public CApplication
{
private:

//main event handler
CTestEventHandler* m_pehMain;

public:
//constructor
CTestApplication();

75A Sample Program

TeamLRN

//destructor
virtual ~CTestApplication();
//implement pure virtual functions(message handler)
bool OnMessage(int MessageID,int argc,void* argv[]);
//implement pure virtual functions(application)
bool OnInit();
void OnIdle();
void OnTerminate();

};

Our window will be controlled through a CTestEventHandler object, and even though
we haven’t yet designed that class, we know we will eventually need to store a
pointer to it. Since we aren’t making use of the message-handling functionality
inherent in CMessagehandler, we know that the OnMessage function will basically do
nothing except return a value. Similarly, since there is no idling activity for this
application, OnIdle will wind up simply a stub function. So, really, only OnInit and
OnTerminate need to have anything in them.

The Design of CTestEventHandler
Now this is some cool stuff. With CTestEventHandler, we only have to have a few mem-
ber functions overridden. We first need a constructor, which will create the window
and associate the window with the object being created. We also have to implement
the OnMessage function from CMessageHandler, even though it will do nothing.

Other than that, we need only concern ourselves with the events we will be process-
ing, namely OnKeyDown (to check for an Esc keypress) and OnDestroy (to post a quit
message).

class CTestEventHandler : public CEventHandler
{
public:

//constructor
CTestEventHandler(CMessageHandler* pmhParent);
//destructor
virtual ~CTestEventHandler();
//implement message handling function
bool OnMessage(int MessageID,int argc,void* argv[]);
//override key press handler
bool OnKeyDown(int iVirtKey);
//override destroy window handler
bool OnDestroy();

76 3. Building an Application Framework

TeamLRN

};

This definition is a whole lot shorter than CEventHandler. Most of our events can
undergo default processing, which is already handled by the CEventHandler imple-
mentation of the events. (This is why the individual event handlers are not pure vir-
tual functions.) We only need to override the handlers that we actually need to deal
with.

The Implementation of
CTestApplication
The implementation for CTestApplication is so short that I can put the entire code
here:

#include “TestApplication.h”
//constructor
CTestApplication::CTestApplication()
{
}
//destructor
CTestApplication::~CTestApplication()
{
}
//implement pure virtual functions(message handler)
bool CTestApplication::OnMessage(int MessageID,int argc,void* argv[])
{

//simply return false
return(false);

}
//implement pure virtual functions(application)
bool CTestApplication::OnInit()
{

//create new event handler
m_pehMain= new CTestEventHandler(this);
//return true
return(true);

}
void CTestApplication::OnIdle()
{

//do nothing
}

77A Sample Program

TeamLRN

void CTestApplication::OnTerminate()
{

//destroy event handler
delete m_pehMain;

}
//global application
CTestApplication TheApp;

There are only three items to which you should pay particular attention. First, dur-
ing CTestApplication::OnInit, a CTestEventHandler is created and then the function
returns true, allowing CApplication::Execute to continue with the application.
Second, CTestApplication::OnTerminate destroys the CTestEventHandler (since it was
dynamically created in OnInit). Third, after the implementation of CTestApplication,
a single variable of type CTestApplication is created called TheApp. The actual name of
this variable is unimportant, but this declaration causes the entire framework to do
its job.

The Implementation of
CTestEventHandler
The implementation of CTestEventHandler is only a few lines longer than the imple-
mentation of CTestApplication.

#include “TestEventHandler.h”
//constructor
CTestEventHandler::CTestEventHandler(CMessageHandler* pmhParent):

CEventHandler(pmhParent)//initialize parent class
{

//create a window
CEventHandler::Create(this,0,”Test

Application”,WS_VISIBLE|WS_CAPTION|WS_SYSMENU|WS_BORDER,0,0,320,240,NULL,NULL);
}
//destructor
CTestEventHandler::~CTestEventHandler()
{
}
//implement message handling function
bool CTestEventHandler::OnMessage(int MessageID,int argc,void* argv[])
{

//by default, return false
return(false);

78 3. Building an Application Framework

TeamLRN

}
//override key press handler
bool CTestEventHandler::OnKeyDown(int iVirtKey)
{

//check for escape key
if(iVirtKey==VK_ESCAPE)
{

//destroy the window
DestroyWindow(GetHWND());
//handled
return(true);

}
//not handled
return(false);

}
//override destroy window handler
bool CTestEventHandler::OnDestroy()
{

//post a quit message
PostQuitMessage(0);
//handled
return(true);

}

Essentially, the destructor and OnMessage functions can be ignored because they do
nothing in particular. Notable functions include the constructor (which creates a
window to associate with the event-handler object) and the handlers for OnKeyDown
and OnDestroy. In the case of OnKeyDown, it simply checks for an escape key. If it detects
one, it destroys the window (which causes OnDestroy to be called). Finally, OnDestroy
posts a quit message to the event queue, which allows CApplication::Execute to get out
of the event loop and terminate.

How Do We Benefit?
Now, if you are like me, you would have gone into the sample program, counted
the lines in CTestApplication.h/cpp and CTestEventHandler.h/cpp, and seen that there
are way more than double the lines of code compared to the beginning of the
chapter. You would have scoffed and told me where to go for suggesting that by
doubling the number of lines you are somehow working less.

79How Do We Benefit?

TeamLRN

But I never promised there would be fewer lines of code. I simply stated that you
could get work done much faster if the core code that existed in all applications
did not have to be rewritten each time.

The code for CMessageHandler, CEventHandler, and CApplication will never, ever need to
be modified. You can derive classes from them all day long, and they’ll serve you
well. In addition, they have organized the core of your application rather well.
Event handlers no longer require that you go into a gigantic switch, monkey
around with a case here and there, and manipulate the wParam and lParam values to
get the information you need. Certainly, the implementation of CEventHandler that I
showed here could stand to have many more of the window message constants han-
dled, but it’s a decent start, and you could put in handlers for those other mes-
sages. Most importantly, you only have to implement that case one time and then
use it ever after.

Right now, if I were to give you an assignment to take these core classes and build a
small doodling application that draws white on a black background when the left
mouse button is pressed, you could quickly throw it together with a derived class of
CApplication and CEventHandler. You’d simply have to override OnPaint, OnMouseMove,
and perhaps OnLButtonDown and OnLButtonUp.

Summary
Although this chapter gives you a decent application framework (albeit a very sim-
ple one), it is not intended to tell you how you should organize your code, nor is
this framework necessarily the best framework to use in all cases. What you should
get out of this chapter is ideas on how to build your own framework. Likely, many
of the ideas you’ve seen here are ones you will want to follow. The framework I pre-
sented here is a simplified version of the framework I use in my “real” code. There
is much, much more you can do with it to make it a nice, robust framework—
usable for just about anything you need.

80 3. Building an Application Framework

TeamLRN

TRICK 4

User
Interface

Hierarchies
Ernest S. Pazera,

ernestpazera@msn.com

TeamLRN

Introduction
A couple of years back, I was working on a value title (its name is not important). I
started the day before the due date (never a good sign), and one of the items I was
tasked with was to maintain the custom user interface (UI) system.

To give a small amount of background on exactly how it had to work, this game ran
under Windows and used DirectX. (The graphics were run through DirectDraw.)
The input was all gained through DirectInput. All of the drawing was done through
the game’s graphics “engine.” The controls—including window frames, buttons,
text, and so on—were all resources loaded into the game, and a simple function
call would add whatever graphic was needed to the queue, which would be updated
each frame.

As I was looking through the code for the UI system, my heart began to sink. This
game had originally been written in C and then moved into C++ by taking groups
of functions and putting a class around them. Each user interface element (win-
dow, button, text box, check box, horizontal scroll bar) was hard-coded as far as
how it worked, and each window simply had an array (an array!) of 10 of each of
the UI controls.

To make things worse, all of the input from a UI window and its controls was han-
dled through a single function. That’s right, a single function for all the different
types of windows that could be called up in the game.

Now, I have been an object-oriented programmer for some time, and looking at
the state of this user interface system just made me feel how wrongly designed it
was. Obviously, not a whole lot of thought was put into it by the programmer who
had worked on it before me. (That programmer had been fired, which was why I
now had the task of working with it.)

To me, it seemed as though a UI system is a natural thing to which to apply object-
oriented techniques. There is a master UI control (representing the entire screen),
and each window would be a child of that master control. Buttons, text boxes, check
boxes, and other widgets would be child controls of the windows, ad nauseam.

Essentially, this required that I rewrite the entire UI system (while at the same time
not breaking the code, which worked even though it was kludgey). I learned a lot
in the process. Most notably, I learned what not to do when making a UI system. In

82 4. User Interface Hierarchies

TeamLRN

this chapter I hope to pass on the lessons I learned while working on that project
so that you can avoid the same pains.

The Role of UI
Many game developers seem to think that a user interface is a trivial piece of the
game and that as long as they can cobble together something really quick to do the
job, they are done. This has caused the downfall of many games (especially in the
value market). A klunky interface has caused many players to simply stop playing
because they had to wrestle with the game to do what they wanted to get done.

Let’s think about this logically for a moment. A computer game or console game is
a piece of interactive entertainment. The key word here is “interactive.” If we just
wanted entertainment, we’d go out and rent a DVD, right?

To be interactive, a game has to respond to the player, the player then responds to
the game, and so on. Without this interactivity, it’s not a game.

Now, how can the game respond to the player? The player must, naturally, have some
manner of communicating with the game. This takes the form of some sort of input
device: a keyboard, a mouse, a gamepad, or any number of other input devices.

Another aspect of this is giving feedback to the player and letting him know that he
has accomplished something or that he has failed to do something. Both positive
and negative reinforcement will help the player gain better control over what he is
doing in the game.

An example of this sort of feedback is just moving the mouse around. As the player
moves the mouse, the cursor moves proportionally to how far the mouse has moved.
Since we all use computers so much these days, it’s easy to forget just how important
that type of feedback is. We communicate with the computer by moving the mouse,
and the computer responds by moving the cursor. Communication goes two ways.

Furthermore, there is other feedback that should be present. If the primary con-
trolling device for the game is the mouse, then when the mouse is over something
with which the player can interact, there should be some sort of feedback to show
him that. Perhaps the text on a button changes its color or a red outline appears
around an object in the game, indicating that if the player clicks on that object
something will happen.

So, a user interface is not just buttons and windows and little icons. It is the com-
munication pipeline between the player and the game, and vice versa. It should be

83The Role of UI

TeamLRN

obvious to anyone that making a UI system is anything but trivial. Instead, it is per-
haps the most important aspect of your game. Sure, those Bézier surfaces are neat,
your particle effects are spectacular, and the rendering of your 3-D world is breath-
taking. But if you trivialized your UI system, you might as well just quit and go into
film school.

UI Design Considerations
A good user interface system, despite all I have said so far, is not all that hard to
design and implement. No, I am not contradicting myself here. A UI system is still
a nontrivial piece of work, but like all other programming tasks, it is a problem-
solving endeavor. If you just put a little effort into solving the problem and think
about things in an organized manner rather than just throwing something
together, you’ll do just fine.

In the remainder of this chapter, we will be concentrating on performing the “nor-
mal” tasks of a UI—namely, things like windows, buttons, text boxes, and the like.
Collectively, I refer to these things as “UI widgets” and, more often than not, simply
“widgets.”

I am making a separation here between interacting with these widgets and interact-
ing with the game itself. When a window pops up on the screen and the user inter-
acts with it instead of what is going on in the game itself, the UI preempts input
from the game. That means that if user input is going to the UI system, it should
not be filtering into the game afterward. With some widgets (like a full-screen status
window), this might require that you pause what is going on in the game while the
user fidgets with the UI. Other times this is not the case, and gameplay progresses
even as the user plays with the UI (like in a real-time strategy game, when you are
giving commands to a unit by pressing buttons off to the side of the screen).

The Widget Tree
Such a UI system is also hierarchical in nature. One widget will contain any num-
ber of other widgets, like a window that contains buttons to press. An individual
button widget may not contain any other widgets at all. Also, there must be a single
master widget that acts as the root of the tree from which all other widgets grow.
The master widget (or, if you prefer, the “widget king”), doesn’t really do anything
on its own. It simply keeps the UI system together. Consider Figure 4.1.

84 4. User Interface Hierarchies

TeamLRN

In Figure 4.1, A represents the entire screen, or the master widget. B and F repre-
sent “window” widgets. C, D, and G through L represent “button” widgets, and E
represents a “label” widget containing textual information or perhaps a picture of
something.

Just from looking at it, it is reasonably obvious that B and F are both “contained” by
A; that C, D, and E are “contained” by B; and that G through L are “contained” by
F. The relationship is shown in tree form in Figure 4.2.

This sort of relationship is best represented as a parent/child relationship. A would
then be the parent of B and F, and so on. In a hierarchy like this, it is paramount
that any particular widget in the tree must be able to communicate with both its
parent as well as its children, so there will need to be some mechanism in place to
keep track of both of these things, and here is why.

85UI Design Considerations

Figure 4.1

A sample UI layout

Figure 4.2

A tree view of the UI
hierarchy

TeamLRN

The UI tree is used for two tasks. One task is to display whatever graphics are asso-
ciated with the various widgets currently in existence. The other task is to trap user
input to any of the widgets in the tree.

Z Ordering
Now we get into the concept of Z order. Certain widgets will be “closer” to the user
than other widgets. Widget A, the master widget, is the farthest back and remains
so at all times. All of its children are “in front” of it, just as all of their children are
“in front” of them. Most of the time, this is not a problem. However, if two children
of the same widget overlap on the screen, the one that is drawn last will appear to
be “in front” of the one that was drawn first.

Why is this important? Because if the user interacts with a widget, he expects that
the widget “closest” to him is the one with which he is interacting, even if two wid-
gets overlap. Therefore, you have to be careful in how you handle input and how
you handle displaying the widgets.

When updating the UI system on the display, you start at the root (the master wid-
get) and follow this procedure:

1. Redraw the widget’s background onto its own bitmap.

2. Redraw all child widgets in order from the first created to the last created.

3. Display the widget on its parent’s bitmap.

It is important here that each widget get its own drawing area. Certainly, this can be
done in other ways, but this is the way I have chosen for this chapter. I’m not saying
that it is the one true way. You might instead just want child widgets to draw directly
to the screen. The order remains the same.

When sending input to the UI system, the process is reversed, as follows:

1. Check all child widgets in order from the last created to the first created to
see if input has been intercepted.

2. Check this widget for input interception.

To simplify these concepts, you will want to draw your widgets from back (farthest
from user) to front (nearest to user) but check for input from front to back.

Notification
Another common task for a widget is to notify its parent that some event has
occurred. You might have a window widget that contains two button widgets, one

86 4. User Interface Hierarchies

TeamLRN

that says OK and one that says Cancel. The button widgets only have information
pertaining to what they need to do. They know what text to display, and they typi-
cally will have an ID number of some sort. (For the sake of discussion, the OK but-
ton has an ID of 1, and the Cancel button has an ID of 2.) The buttons don’t have
a clue about what happens when they are clicked; they only know how to recognize
when this occurs. When one of them is clicked, it notifies its parent, indicating
what its button ID is. It is then up to the window to make sense of that information
and pass down a new message to its own parent, indicating which button was
pressed. This sort of thing typically filters down to the master widget, which com-
municates to the application that a particular command has been given through
the UI system, and the application responds to that command.

Appearance
Now we get to what a particular widget might look like. Of course, each type of wid-
get will look different from another type of widget. After all, a text box looks differ-
ent than a button, which looks different than a check box, and so on. Basically what
we are looking for here is how the appearance of a widget is similar to all other wid-
gets. We get down to this basic level of sameness and put that into our design.

A widget, while theoretically it can have any shape and size, is probably most easily
implemented as consisting of a rectangular area. Computers that make use of
raster displays are well suited to rectangles rather than shapes like ovals or poly-
gons. Plus, if we really feel a need to do so, we can still use a bounding rectangle
and only draw to portions of the image that are the actual shape of the image, so
we can have ovals and polygons if we really want.

The rectangular areas have a couple of aspects. First, a widget will have a position.
This position will be in relation to its parent. Since it is convenient to do so, the
position will record the upper-left corner of the rectangle. The other aspect is size,
which we will store as the width and height of the widget.

Focus
Human beings and computers, although they can perform many tasks, can only
perform one task at a time. When you are running applications on your computer,
such as a spreadsheet, a word processor, a game, and a calculator, certainly all of
these things are running on the computer at the same time, but you are only going
to use one of them at a time and switch between them. You are “focused” on a sin-
gle task, even though you are switching back and forth between tasks.

87UI Design Considerations

TeamLRN

A similar concept applies to a user interface and the widgets that make it up. If
there are two window widgets, you will only interact with one of them at a time. If
you are typing information into a text box, only that text box should receive key-
board input, and all other widgets that might take keyboard input should be cir-
cumvented. This is the concept of input focus and/or input capture.

When you move the mouse over a button and press the left mouse button, the but-
ton will be the only widget to receive mouse input until you have released the left
mouse button. If you release the left button while still inside of the widget, what-
ever action was to take place after clicking the button should occur. If you move
the mouse outside of the widget, the action is canceled.

Most of the time, the idea of focus can be handled by the Z order of widgets. The
widget at the top of the tree will receive input before other controls. Under certain
circumstances, however, you need to override this behavior by having a particular
widget “capture” input from one of the input devices, like for a text box or for a
button when you press the left mouse button.

Widget Members
Now that we have really taken a look at the needs of a UI hierarchy, we can start to
solidify it into a class definition. I like to start with what kind of data is abstracted
(that is, members) and then work out what kinds of operations (that is, member
functions) are required for everything to work properly.

From the previous discussion, we can determine that, at a bare minimum, the fol-
lowing pieces of information are needed if we want to take care of all of the design
considerations:

1. A pointer to the widget’s parent

2. An ordered container for all of the widget’s children

3. A bitmap buffer/drawing context onto which the widget will be drawn and
from which the widget can be drawn onto other widgets or the screen

4. The position and size of the widget

5. Static pointers to the widgets that currently have keyboard or mouse focus

Further, we must have a way, within this set of data, to determine the difference
between the master widget and all other widgets. For our purposes, we can simply
say that the master widget has a NULL parent, but we shall also provide a static
pointer to the master widget.

88 4. User Interface Hierarchies

TeamLRN

So, if we were calling our class CWidget, this is one way to represent each of the data
items:

class CWidget
{

CWidget* m_pParentWidget; //pointer to parent widget
std::list<CWidget*> m_lstChildWidgets; //list of child widgets
HDC m_hDC; //drawing context handle
HBITMAP m_hbmWidget; //bitmap data for the widget’s appearance
HBITMAP m_hbmOld; //required for storing the old bitmap from a memory

DC
RECT m_rcBounds; //size and position of the widget
static CWidget* s_pKeyboardFocus; //keyboard focus widget
static CWidget* s_pMouseFocus; //mouse focus widget
static CWidget* s_pMasterWidget; //main widget
static std::list<CWidget*> s_lstDeleteList; //list of widgets to

delete
static std::list<CWidget*> s_lstMoveList; //list of widgets to move in

the z order
static CWidget* s_pMouseHover; //pointer to the widget over which the

mouse is hovering
static HWND s_hWnd; //window with which the master widget communicates

};

There are a few static members—namely s_lstDeleteList, s_lstMoveList,
s_pMouseHover, and s_hWnd—that I did not discuss as a part of the design considera-
tion. These are necessary because of the way the hierarchy is structured. During
input processing and during displaying, we have to recursively loop through lists of
children. If we have a need to move a widget to the top of a list or if we delete an
item while in the midst of moving through these lists, we can start to have problems
like a widget skipping its turn or getting two turns in the recursive loop. To combat
this, whenever a widget is to be destroyed, instead of simply destroying it right then
and there, we move it to the delete list (s_lstDeleteList) and process the delete list
only after we have looped through all of the widgets in the tree. Similarly, when we
want to move a widget to the top of its parent’s Z order, we simply place it on the
list and then process all of the moves once we have gone through all of the widgets
in the tree. This makes things much less messy codewise.

The s_pMouseHover member is meant to represent the widget over which the mouse
is currently hovering. Often, if hovering over a button, we would like to change the
color of the button or the text on the button to give feedback to the user that click-
ing here will do something.

89Widget Members

TeamLRN

Finally, s_hWnd is a window handle. Since the main widget will be interacting with a
window, it cannot permanently have a Handle of a Device Context (HDC) to work
with. Instead, it must borrow one before doing any drawing and must return it
when done drawing. If you were implementing a UI system in DirectX, this would
be replaced by a pointer to the back buffer.

One thing you might wonder about is my choice of the STL list template as the
container for child widgets and for the delete list and move list. This was not the
only possible container to use, of course. The other option was to use an STL vec-
tor. Both of these containers are resizable, and with an unknown number of chil-
dren, this is necessary. I found vector to be a poor choice for two reasons. First, the
strength of vector, which is that it provides fast random access into the container,
goes unused. When going through a child list, we will simply be starting at one end
and processing through to the other end, so random access is of no importance.
Second, the slowness of insertion into a vector is not a good thing. We will only be
adding children to the end of the list, so vector makes a poor choice.

There is, of course, a slight problem with using the STL list template. When a wid-
get is removed from the child list, it will have to be iteratively searched for. Of
course, this would also be true in the case of vector, and the lookup would take just
as much time, so in conclusion, using list instead of vector is still not a bad choice.

Widget Member Functions
As you have probably been able to tell, I’m big into being object-oriented. As a
result, I’m also a believer in encapsulation, so I tend not to have any data members
that can be directly accessed by the user of a class. So, naturally, I would implement
CWidget’s member functions with a number of getter and setter functions. Your style
might differ, so for your own UI system, you can implement it anyway you like. I’m
not one to tell anybody that my way is the one true way. Suffice it to say, however,
that I am going to make all of the data members private.

Static Member Accessors
This class has seven static members, and since they all need to be private, they need
accessors. Some of the static members are read-only (or rather, read-mostly), so
those setters will have to be private or protected rather than public. The getters,
however, will almost universally be public.

90 4. User Interface Hierarchies

TeamLRN

And so, here is the scheme I have come up with for static member accessors. The
data members are not listed here so that we can focus on only the member func-
tions we are discussing.

class CWidget
{
private:

static void SetHWND(HWND hWnd);//sets s_hWnd
static void SetMasterWidget(CWidget* pWidget);//sets s_pMasterWidget

protected:
static HWND GetHWND();//retrieves s_hWnd
static void SetKeyboardFocus(CWidget* pWidget);//sets s_pKeyboardFocus
static void SetMouseFocus(CWidget* pWidget);//sets s_pMouseFocus
static void SetMouseHover(CWidget* pWidget);//sets s_pMouseHover
static std::list<CWidget*>& GetDeleteList();//retrieve s_lstDeleteList
static std::list<CWidget*>& GetMoveList();//retrieves s_lstMoveList

public:
static CWidget* GetMasterWidget();//retrieves s_pMasterWidget
static CWidget* GetKeyboardFocus();//retrieves s_pKeyboardFocus
static CWidget* GetMouseFocus();//retrieves s_pMouseFocus
static CWidget* GetMouseHover();//retrieves s_pMouseHover

};

For those of you keeping score, Table 4.1 shows each static member and whether
the getter and setter are public, protected, or private. In a moment, I will describe
my reasoning for each of these decisions.

91Widget Member Functions

Table 4.1 Static Member Accessor Accessibility

Member Getter Setter

s_pKeyboardFocus Public Protected

s_pMouseFocus Public Protected

s_pMasterWidget Public Private

s_lstDeleteList Protected N/A

s_lstMoveList Protected N/A

s_pMouseHover Public Protected

s_hWnd Protected Private

TeamLRN

Two of the setters, the ones for s_pMasterWidget and for s_hWnd, are private and there-
fore will only be accessible by the member functions of CWidget itself. The reason
for this is simply because there will never be a need for anything but CWidget to set
these values. Eventually, we will have a constructor for creating the master widget,
and this constructor will take care of the master widget pointer as well as the main
window handle.

The rest of the setters have protected access. There simply is no need for the user
of the class to directly manipulate these values. It should be all handled within the
class and derived classes directly. The delete list and move list simply don’t have set-
ters. A setter is unnecessary in those cases.

For the getters, the delete list, the move list, and s_hWnd are protected. CWidget and
its derived classes may have a need to look at these members, but looking at them
outside of the class is not useful and can be dangerous.

The rest of the getters are public and can be examined at any time.

Indirect Static Member Accessors
Several of the static members of CWidget are simply pointers to various CWidgets.
These include s_pKeyboardFocus, s_pMouseFocus, s_pMouseHover, and s_pMasterWidget.
With the current few member functions we have come up with thus far, for a widget
to determine whether it is the one that has mouse focus, you would have to use the
following code:

if(GetMouseFocus()==this)
{

//this widget has mouse focus
}

There is similar code to check and see whether the widget is the master control,
has keyboard focus, or is the widget over which the mouse is hovering. I dislike
code like the preceding example. Ideally, we should have some additional nonstatic
member functions to check for these things, as follows:

class CWidget
{
public:

bool HasMouseFocus();//checks if this widget has mouse focus
bool HasKeyboardFocus();//checks if this widget has keyboard focus
bool HasMouseHover();//check to see if this widget is the mouse hover

widget

92 4. User Interface Hierarchies

TeamLRN

bool IsMaster();//checks to see if this is the master widget
};

In my opinion, calling these member functions is a great deal more readable than
doing an if with a ==this following it. These are indirect static member accessors.

Another set of indirect static member accessors is the manner in which we place a
widget onto the delete list or the move list. In normal code, with the current acces-
sors we have, it would look something like this:

//first, ensure that this widget isn’t already on the list
GetDeleteList().remove(this);
//add this widget to the delete list
GetDeleteList().push_back(this);

Again, this code is a little unwieldy. For one thing, it is a two-step process and
should only be a one-step thing. So, let’s add a couple of member functions to
automate this for us.

class CWidget
{
public:

void Close();//add this widget to the delete list
void BringToTop();//add this widget to the move list

};

Again, it is much more readable to simply tell a widget to close itself than to add it
to a list directly (and a similar idea for moving the widget).

Nonstatic Member Accessors
There are six nonstatic members of CWidget: m_pParentWidget, m_lstChildWidgets, m_hDC,
m_hbmWidget, m_hbmOld, and m_rcBounds. Only a few of these members require direct pub-
lic access. Of these members, m_pParentWidget and m_hDC need public getter functions.
The m_rcBounds member requires indirect public getters (to retrieve position and size
information but not the RECT itself) as well as public accessors to manipulate position.
(I prefer to keep controls a fixed size.) The rest of the members should only have
protected access. Derived classes may need to look at them, but the user of the class
should not need to. So, for nonstatic member accessors, this is what I’ve come up with:

class CWidget
{
protected:

HDC& DC();//return reference to m_hDC

93Widget Member Functions

TeamLRN

HBITMAP& Bitmap();//return reference to m_hbmWidget
HBITMAP& OldBitmap();//return reference to m_hbmOld
RECT& Bounds();//return reference to m_rcBounds
std::list<CWidget*>& ChildList();//return reference to child list

public:
void SetParent(CWidget* pWidget);//set new parent widget
CWidget* GetParent();//retrieve parent widget
bool HasParent();//returns true if parent is non-null
void AddChild(CWidget* pWidget);//add a child to the list
bool RemoveChild(CWidget* pWidget);//remove a child from the list
bool HasChild(CWidget* pWidget);//check for a child’s existence
bool HasChildren();//check to see if this widget has any children
int GetX();//return x position (relative to parent)
int GetY();//return y position (relative to parent)
void SetX(int iX);//set x position(relative to parent)
void SetY(int iY);//set y position(relative to parent)
int GetWidth();//return the width of the widget
int GetHeight();//return the height of the widget
int GetLeft();//retrieve the left coordinate(global coordinates)
int GetRight();//retrieve the right coordinate(global coordinates)
int GetTop();//retrieve the top coordinate(global coordinates)
int GetBottom();//retrieve the bottom coordinate(global coordinates)
HDC GetDC();//return the m_hDC

};

We are starting to rack up quite a number of member functions for CWidget! So far,
these have only been accessor functions, not functions that make CWidget do its job
yet. I told you that this task is nontrivial!

Constructors and Destructors
As far as construction and destruction are concerned, we will need two separate
constructors: one for constructing a master widget and one for constructing a non-
master widget. A master widget has no parent and is associated with a window han-
dle. A nonmaster widget has a parent and also requires a position and size. The
destructor is just like any other destructor. Therefore:

class CWidget
{
public:

CWidget(HWND hWnd);//master widget constructor
CWidget(CWidget* pWidgetParent,int iX, int iY, int iWidth, int

94 4. User Interface Hierarchies

TeamLRN

iHeight);//nonmaster widget constructor
virtual ~CWidget();//destructor
static void Destroy();//destroy the master widget

};

The destructor of CWidget is responsible for cleaning up not only the widget in ques-
tion but also all child widgets, so completely cleaning up the UI hierarchy is simply
a matter of destroying the master widget. The static member function Destroy will
allow us to do that without having a pointer to the master widget.

Displaying Widgets
One of the primary tasks of our UI hierarchy is to get the widgets to properly display.
Each widget will know how to redraw and display itself. At the same time, though,
the user of the UI hierarchy should be able to update the entire widget tree with a
single call, and this call should not require having a pointer to the master widget.

Prior to the hierarchy displaying itself, any widgets on the delete list and move list
should be taken care of. This might sound like a complicated process, but it can be
simply implemented with only three functions.

class CWidget
{
public:

void Display();//displays the widget and all child widgets
virtual void OnRedraw();//redraws the widget
static void Update();//updates all widgets

};

In derived classes of CWidget, only OnRedraw needs to be overridden. The Display func-
tion loops through all children and redraws them. When making use of CWidget,
you need only call CWidget::Update(), and the entire hierarchy will be redrawn. The
call to Update will also get rid of any widgets currently on the delete list and will
move any widgets currently on the move list.

Receiving Input
As far as input processing is concerned, there are only eight types of events that we
are really concerned with: key presses, key releases, character generation, mouse
moves, left-mouse-button presses, left-mouse-button releases, right-mouse-button
presses, and right-mouse-button releases. If we really wanted to, we could add left

95Widget Member Functions

TeamLRN

and right double-clicks, middle-mouse-button-events, and mouse wheel events, but
we’ll keep it simple for the moment.

Since our Windows application gets its events through WndProc, we will need to use
the UI hierarchy as an event filter of sorts. If the UI system processes the event, we
need not process it further. Also, we need only send the event data to the master
control (although this will be a static function, so we won’t need to have the master
widget’s pointer to do this), and it will send the event data up the hierarchy and
attempt to handle it.

class CWidget
{
public:

bool HandleEvent(UINT uMsg,WPARAM wParam,LPARAM lParam);
virtual bool OnKeyDown(int iVirtKey);//handle a key press
virtual bool OnKeyUp(int iVirtKey);//handle a key
virtual bool OnChar(TCHAR tchCode);//handle character generation
virtual bool OnMouseMove(int iX,int iY,bool bLeft, bool

bRight);//mouse movement
virtual bool OnLButtonDown(int iX,int iY,bool bLeft,bool

bRight);//left button press
virtual bool OnRButtonDown(int iX,int iY,bool bLeft,bool

bRight);//right button press
virtual bool OnLButtonUp(int iX,int iY,bool bLeft,bool bRight);//left

button release
virtual bool OnRButtonUp(int iX,int iY,bool bLeft,bool

bRight);//right button release
static bool FilterEvent(UINT uMsg,WPARAM wParam,LPARAM lParam);//send

event to master control
};

Tying CWidget’s event filter will now be an easy task. With the data from a window mes-
sage, you simply send it to CWidget::FilterEvent, and if this function returns true, you do
no further processing. If it returns false, the application or game should process it.

Notification
Finally, we have to put in member functions for the task of notification. For this,
I’m going to cheat a little bit and borrow some code from another part of this book
(Trick 3, “Building an Application Framework”). I am going to borrow all three of
the core classes presented there (it’ll make life easier . . . trust me) but especially
CMessageHandler, from which we will make CWidget a derived class.

96 4. User Interface Hierarchies

TeamLRN

So, for a brief rehash, here is CMessageHandler:

class CMessageHandler
{
private:

//the parent of this message handler
CMessageHandler* m_pmhParent;

public:
//constructor
CMessageHandler(CMessageHandler* pmhParent);
//destructor
virtual ~CMessageHandler();
//set/get parent
void SetMessageParent(CMessageHandler* pmhParent);
CMessageHandler* GetMessageParent();
//handles messages, or passes them down the tree
bool HandleMessage(int MessageID,int argc,void* argv[]);
//triggered when a message occurs
virtual bool OnMessage(int MessageID, int argc, void* argv[])=0;

};

This class already has provisions for sending messages down a hierarchy. It also
already has a parent/child type of structure but not one as rich as the one CWidget
uses. Another reason we want to use CMessageHandler as a base class for CWidget is so
we can set up the application and/or event handler to be the recipient of messages
from the UI system.

Because of this, we do need to change one of CWidget’s constructors. Since we are
using the application framework and we need to supply all widgets (even the mas-
ter widget) with a message parent, we should change this:

CWidget::CWidget(HWND hWnd);//master widget constructor

to this:

CWidget::CWidget(CEventHandler* pehParent);//master widget constructor

We can grab the HWND from the event handler, so we don’t actually need the window
handle supplied to the widget. Also, the event handler will be the message parent
of the master widget, so proper notification can take place. Neat. Figure 4.3 shows
how the basic object hierarchy will work.

At the top of Figure 4.3 is the application, the root of the object tree. It is the par-
ent of the event handler, which represents our main window. The event handler, in

97Widget Member Functions

TeamLRN

turn, is the parent of the master widget, which is the ultimate parent of all other
widgets. The important thing here is that there is a line of communication possible
between a child control six steps down the line and the application itself.

Class Definition
Now, before we move on to actual implementation, let’s take one final look at the
class definition of CWidget. So far, we have only looked at bits and pieces, and it
would be nice to finally see it all put together.

class CWidget: public CMessageHandler
{
private:

CWidget* m_pParentWidget; //pointer to parent widget
std::list<CWidget*> m_lstChildWidgets; //list of child widgets
HDC m_hDC; //drawing context handle
HBITMAP m_hbmWidget; //bitmap data for the widget’s appearance
HBITMAP m_hbmOld; //required for storing the old bitmap from a memory

DC
RECT m_rcBounds; //size and position of the widget
static CWidget* s_pKeyboardFocus; //keyboard focus widget
static CWidget* s_pMouseFocus; //mouse focus widget
static CWidget* s_pMasterWidget; //main widget
static std::list<CWidget*> s_lstDeleteList; //list of widgets to

98 4. User Interface Hierarchies

Figure 4.3

The object hierarchy using the application framework

TeamLRN

delete
static std::list<CWidget*> s_lstMoveList; //list of widgets to move in

the z order
static CWidget* s_pMouseHover; //pointer to the widget over which the

mouse is hovering
static HWND s_hWnd; //window with which the master widget communicates
static void SetHWND(HWND hWnd);//sets s_hWnd
static void SetMasterWidget(CWidget* pWidget);//sets s_pMasterWidget

protected:
HDC& DC();//return reference to m_hDC
HBITMAP& Bitmap();//return reference to m_hbmWidget
HBITMAP& OldBitmap();//return reference to m_hbmOld
RECT& Bounds();//return reference to m_rcBounds
std::list<CWidget*>& ChildList();//return reference to child list
static HWND GetHWND();//retrieves s_hWnd
static void SetKeyboardFocus(CWidget* pWidget);//sets s_pKeyboardFocus
static void SetMouseFocus(CWidget* pWidget);//sets s_pMouseFocus
static void SetMouseHover(CWidget* pWidget);//sets s_pMouseHover
static std::list<CWidget*>& GetDeleteList();//retrieve s_lstDeleteList
static std::list<CWidget*>& GetMoveList();//retrieves s_lstMoveList

public:
CWidget(CEventHandler* pehParent);//master widget constructor
CWidget(CWidget* pWidgetParent,int iX, int iY, int iWidth, int

iHeight);//nonmaster widget constructor
virtual ~CWidget();//destructor
bool HasMouseFocus();//checks if this widget has mouse focus
bool HasKeyboardFocus();//checks if this widget has keyboard focus
bool HasMouseHover();//check to see if this widget is the mouse hover

widget
bool IsMaster();//checks to see if this is the master widget
void SetParent(CWidget* pWidget);//set new parent widget
CWidget* GetParent();//retrieve parent widget
bool HasParent();//returns true if parent is non-null
void AddChild(CWidget* pWidget);//add a child to the list
bool RemoveChild(CWidget* pWidget);//remove a child from the list
bool HasChild(CWidget* pWidget);//check for a child’s existence
bool HasChildren();//check to see if this widget has any children
int GetX();//return x position (relative to parent)
int GetY();//return y position (relative to parent)
void SetX(int iX);//set x position(relative to parent)
void SetY(int iY);//set y position(relative to parent)

99Class Definition

TeamLRN

int GetWidth();//return the width of the widget
int GetHeight();//return the height of the widget
int GetLeft();//retrieve the left coordinate(global coordinates)
int GetRight();//retrieve the right coordinate(global coordinates)
int GetTop();//retrieve the top coordinate(global coordinates)
int GetBottom();//retrieve the bottom coordinate(global coordinates)
HDC GetDC();//return the m_hDC
void Display();//displays the widget and all child widgets
virtual void OnRedraw();//redraws the widget
void Close();//add this widget to the delete list
void BringToTop();//add this widget to the move list
bool HandleEvent(UINT uMsg,WPARAM wParam,LPARAM lParam);
virtual bool OnKeyDown(int iVirtKey);//handle a key press
virtual bool OnKeyUp(int iVirtKey);//handle a key
virtual bool OnChar(TCHAR tchCode);//handle character generation
virtual bool OnMouseMove(int iX,int iY,bool bLeft, bool

bRight);//mouse movement
virtual bool OnLButtonDown(int iX,int iY,bool bLeft,bool bRight);//left

button press
virtual bool OnRButtonDown(int iX,int iY,bool bLeft,bool

bRight);//right button press
virtual bool OnLButtonUp(int iX,int iY,bool bLeft,bool bRight);//left

button release
virtual bool OnRButtonUp(int iX,int iY,bool bLeft,bool bRight);//right

button release
virtual bool OnMessage(int MessageID, int argc, void* argv[]);
static bool FilterEvent(UINT uMsg,WPARAM wParam,LPARAM lParam);//send

event to master control
static void Update();//updates all widgets
static CWidget* GetMasterWidget();//retrieves s_pMasterWidget
static CWidget* GetKeyboardFocus();//retrieves s_pKeyboardFocus
static CWidget* GetMouseFocus();//retrieves s_pMouseFocus
static CWidget* GetMouseHover();//retrieves s_pMouseHover
static void Destroy();//destroy the master widget

};

Yes, this class is absolutely huge, but do not dismay. The vast majority of the mem-
ber functions in CWidget are getters and setters or do other tasks that are so simple
that they typically only take up one or two lines of code.

100 4. User Interface Hierarchies

TeamLRN

CWidget Implementation
Now that we’ve given proper thought to how CWidget should behave, it is finally time
to implement. The code you are about to look at took about four hours of work (and
an approximately equal amount of time testing and monkeying around with it).

Getters, Setters, and Other Simple
Member Functions
Most of the functions, as I stated earlier, are simply implemented. Tables 4.2
through 4.4 show them all categorized. In Table 4.2, you can see all of the static
member accessors, direct and indirect.

101CWidget Implementation

Table 4.2 Static Member Accessors (Direct and Indirect)
Function Implementation

CWidget::SetHWND {s_hWnd=hWnd;}

CWidget::GetHWND {return(s_hWnd);}

CWidget::SetMasterWidget {s_pMasterWidget=pWidget;}

CWidget::GetMasterWidget {return(s_pMasterWidget);}

CWidget::IsMaster {return(this==GetMasterWidget());}

CWidget::SetKeyboardFocus {s_pKeyboardFocus=pWidget;}

CWidget::GetKeyboardFocus {return(s_pKeyboardFocus);}

CWidget::HasKeyboardFocus {return(this==GetKeyboardFocus());}

CWidget::SetMouseFocus {s_pMouseFocus=pWidget;}

CWidget::GetMouseFocus {return(s_pMouseFocus);}

CWidget::HasMouseFocus {return(this==GetMouseFocus());}

CWidget::SetMouseHover {s_pMouseHover=pWidget;}

CWidget::GetMouseHover {return(s_pMouseHover);}

CWidget::HasMouseHover {return(this==GetMouseHover());}

CWidget::GetDeleteList {return(s_lstDeleteList);}

CWidget::Close {GetDeleteList().remove(this);
GetDeleteList().push_back(this);}

continues

TeamLRN

In Table 4.3 (by far the largest group of functions), you can see the nonstatic mem-
ber accessors. Many of these are indirect, like the member functions dealing with
position and size information.

102 4. User Interface Hierarchies

Table 4.3 Nonstatic Member Accessors (Direct and
Indirect)

Function Implementation

CWidget::DC {return(m_hDC);}

CWidget::Bitmap {return(m_hbmWidget);}

CWidget::OldBitmap {return(m_hbmOld);}

CWidget::Bounds {return(m_rcBounds);}

CWidget::ChildList {return(m_lstChildWidgets);}

CWidget::GetParent {return(m_pParentWidget);}

CWidget::HasParent {return(GetParent()!=NULL);}

CWidget::AddChild {ChildList().remove(pWidget);
ChildList().push_back(pWidget);}

CWidget::RemoveChild {if(HasChild(pWidget)) {ChildList().remove(pWidget);
return(true);}return(false);}

CWidget::HasChild {std::list<CWidget*>::iterator
iter=std::find(ChildList().begin(),ChildList().e
nd(),pWidget);return(iter!=ChildList().end());}

CWidget::HasChildren() {return(!ChildList().empty());}

CWidget::GetX {return(Bounds().left);}

CWidget::GetY {return(Bounds().top);}

Table 4.2 Static Member Accessors (Direct and Indirect)
(continued)

Function Implementation

CWidget::GetMoveList {return(s_lstMoveList);}

CWidget::BringToTop {GetMoveList().remove(this);
GetMoveList().push_back(this);}

TeamLRN

Next we have the functions in Table 4.4, which show the simple implementation for
event- and message-handling functions. In all of these cases, the functions are just
stubs. They only return a default value.

103CWidget Implementation

Table 4.4 Event Handlers/Message Handlers

Function Implementation

CWidget::OnKeyDown {return(false);}

CWidget::OnKeyUp {return(false);}

CWidget::OnChar {return(false);}

CWidget::OnMouseMove {return(!IsMaster());}

CWidget::OnLButtonDown {return(!IsMaster());}

CWidget::OnRButtonDown {return(!IsMaster());}

CWidget::OnLButtonUp {return(!IsMaster());}

CWidget::OnRButtonUp {return(!IsMaster());}

CWidget::OnMessage {return(false);}

Table 4.3 Nonstatic Member Accessors (Direct and
Indirect)

Function Implementation

CWidget::SetY {OffsetRect(&Bounds(),0,iY-Bounds().top);}

CWidget::GetWidth {return(Bounds().right-Bounds().left);}

CWidget::GetHeight {return(Bounds().bottom-Bounds().top);}

CWidget::GetLeft {if(HasParent()){return(GetX()+GetParent()-
>GetLeft());}else{return(0);}}

CWidget::GetRight {return(GetLeft()+GetWidth());}

CWidget::GetTop {if(HasParent()){return(GetY()+GetParent()-
>GetTop());}else{return(0);}}

CWidget::GetBottom {return(GetTop()+GetHeight());}

CWidget::GetDC {return(m_hDC);}

CWidget::SetX {OffsetRect(&Bounds(),iX-Bounds().left,0);}

TeamLRN

Finally, Table 4.5 has the rest of the simply implemented functions. These are all
static and typically will be the only members used outside of the class itself (other
than constructors and destructors). Each of these functions in some way accesses
the master widget.

Other Member Functions
We are left with six member functions: the two constructors, the destructor,
CWidget::Display, CWidget::OnRedraw, and CWidget::HandleEvent. These functions do
most of the work needed for widgets to exist.

Master Widget Constructor
The master widget has to be constructed like any other widget. However, it does get
a special constructor. If you later want to change some of the behavior of the mas-
ter widget, you can derive a new class and use the master widget constructor in the
initializer list. In this way, you can have totally different class hierarchies for the
master widget and nonmaster widgets.

CWidget::CWidget(CEventHandler* pehParent)://master widget constructor
CMessageHandler(pehParent),
m_pParentWidget(NULL),
m_lstChildWidgets(),
m_hDC(0),
m_hbmWidget(0),
m_hbmOld(0),
m_rcBounds()
{

SetHWND(*pehParent);
SetMasterWidget(this);
GetClientRect(GetHWND(),&Bounds());

104 4. User Interface Hierarchies

Table 4.5 Other Static Member Functions

Function Implementation

CWidget::FilterEvent {if(GetMasterWidget()){return(GetMasterWidget()-
>HandleEvent(uMsg,wParam,lParam));}return(false);}

CWidget::Update {if(GetMasterWidget()){GetMasterWidget()->Display();}}

CWidget::Destroy {if(GetMasterWidget()){delete GetMasterWidget();}}

TeamLRN

HDC hdcScreen=::GetDC(NULL);
DC()=CreateCompatibleDC(hdcScreen);
Bitmap()=CreateCompatibleBitmap(hdcScreen,Bounds().right,Bounds().bot-

tom);
OldBitmap()=(HBITMAP)SelectObject(DC(),Bitmap());
ReleaseDC(NULL,hdcScreen);

}

During testing, I decided to go with a double-buffered approach to updating my
widgets, and so the master constructor, while it sets the static HWND to which it will do
its updates, also creates a bitmap and HDC onto which it does drawing. If you were
writing a game, you would access this HDC to do your screen updates, and you would
then tell the master widget to update itself (but this would require overriding the
default behavior in OnRedraw, as we will see a little later).

The size of the master control becomes the size of the client area of the window
(which is as it should be).

Nonmaster Widget Constructor
Nonmaster widgets are created with fewer lines (since there is no need to grab a
window handle):

CWidget::CWidget(CWidget* pWidgetParent,int iX, int iY, int iWidth, int
iHeight)://nonmaster widget constructor

CMessageHandler(pWidgetParent),
m_pParentWidget(NULL),
m_lstChildWidgets(),
m_hDC(0),
m_hbmWidget(0),
m_hbmOld(0),
m_rcBounds()
{

SetRect(&Bounds(),iX,iY,iX+iWidth,iY+iHeight);
HDC hdcScreen=::GetDC(NULL);
DC()=CreateCompatibleDC(hdcScreen);
Bitmap()=CreateCompatibleBitmap(hdcScreen,iWidth,iHeight);
OldBitmap()=(HBITMAP)SelectObject(DC(),Bitmap());
ReleaseDC(NULL,hdcScreen);
SetParent(pWidgetParent);

}

105CWidget Implementation

TeamLRN

Like the master widget, a nonmaster widget creates a bitmap and an HDC. Since it
isn’t associated with a window, however, the size has to be set in the call to the con-
structor itself.

Destructor
Most of CWidget’s destructor is concerned with cleaning up its resources. The
destructor is also tasked with causing the destruction of all of the widget’s child
widgets.

CWidget::~CWidget()//destructor
{

while(HasChildren())
{

std::list<CWidget*>::iterator iter=ChildList().begin();
CWidget* pWidget=*iter;
delete pWidget;

}
SelectObject(DC(),OldBitmap());
DeleteDC(DC());
DeleteObject(Bitmap());
SetParent(NULL);
if(HasMouseFocus()) SetMouseFocus(NULL);
if(HasKeyboardFocus()) SetKeyboardFocus(NULL);
if(HasMouseHover()) SetMouseHover(NULL);
if(IsMaster()) SetMasterWidget(NULL);

}

Finally, right at the end of the destructor, there are a series of checks to make sure
that the mouse focus, keyboard focus, mouse hover, and master control always
point to valid data, and if they don’t, they are set to NULL. It would be disastrous if
the mouse focus widget was destroyed and the pointer was not set to NULL.

Default OnRedraw
The default behavior of OnRedraw is simply to fill the widget’s DC with black.

void CWidget::OnRedraw()//redraws the widget
{

RECT rcFill;
SetRect(&rcFill,0,0,GetWidth(),GetHeight());
FillRect(DC(),&rcFill,(HBRUSH)GetStockObject(BLACK_BRUSH));

}

106 4. User Interface Hierarchies

TeamLRN

This function is simple enough, and I’ll speak no more of it.

CWidget::Display
The Display function is the second longest function implementation in CWidget (the
longest being HandleEvent, which is up next). The reason for this is that there is
special processing depending on whether or not the control is the master.

When CWidget::Display is called on the master widget, it will go through and take care
of the move list and delete list in that order. It moves all widgets currently in the
move list to the top of their respective Z orders, and then it goes through all of the
items on the delete list and destroys them. The reason it takes care of the move list
first is so that if a widget is on both lists, it won’t be destroyed before it is moved.

void CWidget::Display()//displays the widget and all child widgets
{

if(IsMaster())
{

CWidget* pWidget;
while(!GetMoveList().empty())
{

pWidget=*GetMoveList().begin();
GetMoveList().remove(pWidget);
pWidget->SetParent(pWidget->GetParent());

}
while(!GetDeleteList().empty())
{

pWidget=*GetDeleteList().begin();
GetDeleteList().remove(pWidget);
delete pWidget;

}
}
OnRedraw();
std::list<CWidget*>::iterator iter;
CWidget* pChild;
for(iter=ChildList().begin();iter!=ChildList().end();iter++)
{

pChild=*iter;
pChild->Display();

}
if(IsMaster())

107CWidget Implementation

TeamLRN

{
HDC hdcDst=::GetDC(GetHWND());
BitBlt(hdcDst,0,0,GetWidth(),GetHeight(),DC(),0,0,SRCCOPY);
ReleaseDC(GetHWND(),hdcDst);

}
else
{

BitBlt(GetParent()-
>GetDC(),GetX(),GetY(),GetWidth(),GetHeight(),DC(),0,0,SRCCOPY);

}
}

Master widget or not, the next step is to redraw the widget by calling OnRedraw. After
that, a widget will draw any child widgets that happen to exist (in order from lowest
to highest Z order). Finally, the widget updates its parent. In the case of the master
control, this means writing its bitmap onto the window. In any other case, this sim-
ply means a write of its own bitmap onto its parent’s bitmap with BitBlt.

CWidget::HandleEvent
Welcome to the nightmare that is CWidget::HandleEvent, the most evil function in the
whole darn thing. CWidget has 54 member functions, and all but six of them are
one- or two-liners that took perhaps a whole minute each to write. That takes all of
about 45 minutes, maybe an hour if you add in time to write comments. CWidget, as
I said, took about four hours to implement, however. If 90 percent of the class took
only an hour, where did the other three hours go?

I’ll tell you: About an hour was spent on the constructors, destructors, and Display and
OnRedraw functions. The other two hours were spent on HandleEvent. Properly routing
events is nontrivial. Here is the result of my two hours. (See you in a few pages!)

bool CWidget::HandleEvent(UINT uMsg,WPARAM wParam,LPARAM lParam)
{

if(IsMaster())
{

switch(uMsg)
{
case WM_MOUSEMOVE:
case WM_LBUTTONDOWN:
case WM_LBUTTONUP:
case WM_RBUTTONDOWN:
case WM_RBUTTONUP:

108 4. User Interface Hierarchies

TeamLRN

{
if(GetMouseFocus())
{

SetMouseHover(GetMouseFocus());
switch(uMsg)
{

case WM_MOUSEMOVE:
{

return(GetMouseFocus()->OnMouseMove(LOWORD(lParam)-GetMouseFocus()-
>GetLeft(),HIWORD(lParam)-GetMouseFocus()-
>GetTop(),(wParam&MK_LBUTTON)>0,(wParam&MK_RBUTTON)>0));

}break;
case WM_LBUTTON-

DOWN:
{

return(GetMouseFocus()->OnLButtonDown(LOWORD(lParam)-GetMouseFocus()-
>GetLeft(),HIWORD(lParam)-GetMouseFocus()-
>GetTop(),(wParam&MK_LBUTTON)>0,(wParam&MK_RBUTTON)>0));

}break;
case WM_RBUTTONDOWN:

{
return(GetMouseFocus()->OnRButtonDown(LOWORD(lParam)-GetMouseFocus()-

>GetLeft(),HIWORD(lParam)-GetMouseFocus()-
>GetTop(),(wParam&MK_LBUTTON)>0,(wParam&MK_RBUTTON)>0));

}break;
case WM_LBUTTONUP:

{
return(GetMouseFocus()->OnLButtonUp(LOWORD(lParam)-GetMouseFocus()-

>GetLeft(),HIWORD(lParam)-GetMouseFocus()-
>GetTop(),(wParam&MK_LBUTTON)>0,(wParam&MK_RBUTTON)>0));

}break;
case WM_RBUTTONUP:

{
return(GetMouseFocus()->OnRButtonUp(LOWORD(lParam)-GetMouseFocus()-

>GetLeft(),HIWORD(lParam)-GetMouseFocus()-
>GetTop(),(wParam&MK_LBUTTON)>0,(wParam&MK_RBUTTON)>0));

}break;
}

}
}break;

case WM_KEYDOWN:

109CWidget Implementation

TeamLRN

case WM_KEYUP:
case WM_CHAR:

{
if(GetKeyboardFocus())
{

switch(uMsg)
{

case WM_KEYDOWN:
{

return(GetKeyboardFocus()->OnKeyDown(wParam));
}break;

case WM_KEYUP:
{

return(GetKeyboardFocus()->OnKeyUp(wParam));
}break;

case WM_CHAR:
{

return(GetKeyboardFocus()->OnChar(wParam));
}break;

}
}

}break;
default:

{
return(false);

}break;
}
SetMouseHover(NULL);

}
std::list<CWidget*>::reverse_iterator iter;
for(iter=ChildList().rbegin();iter!=ChildList().rend();iter++)
{

CWidget* pChild=(*iter);
if(pChild->HandleEvent(uMsg,wParam,lParam))
{

return(true);
}

}
if(IsMaster()) return(false);
switch(uMsg)

110 4. User Interface Hierarchies

TeamLRN

{
case WM_MOUSEMOVE:

{
POINT ptHit;
ptHit.x=LOWORD(lParam);
ptHit.y=HIWORD(lParam);
RECT rcHit;

SetRect(&rcHit,GetLeft(),GetTop(),GetRight(),GetBottom());
if(PtInRect(&rcHit,ptHit))
{

if(!GetMouseHover())
SetMouseHover(this);

return(OnMouseMove(LOWORD(lParam)-GetLeft(),HIWORD(lParam)-GetTop(),
(wParam&MK_LBUTTON)>0,(wParam&MK_RBUTTON)>0));

}
}break;

case WM_LBUTTONDOWN:
{

POINT ptHit;
ptHit.x=LOWORD(lParam);
ptHit.y=HIWORD(lParam);
RECT rcHit;

SetRect(&rcHit,GetLeft(),GetTop(),GetRight(),GetBottom());
if(PtInRect(&rcHit,ptHit))
{

if(!GetMouseHover())
SetMouseHover(this);

return(OnLButtonDown(LOWORD(lParam)-GetLeft(),HIWORD(lParam)-
GetTop(),(wParam&MK_LBUTTON)>0,(wParam&MK_RBUTTON)>0));

}
}break;

case WM_LBUTTONUP:
{

POINT ptHit;
ptHit.x=LOWORD(lParam);
ptHit.y=HIWORD(lParam);
RECT rcHit;

SetRect(&rcHit,GetLeft(),GetTop(),GetRight(),GetBottom());
if(PtInRect(&rcHit,ptHit))
{

111CWidget Implementation

TeamLRN

if(!GetMouseHover())
SetMouseHover(this);

return(OnLButtonUp(LOWORD(lParam)-GetLeft(),HIWORD(lParam)-GetTop(),
(wParam&MK_LBUTTON)>0,(wParam&MK_RBUTTON)>0));

}
}break;

//right button press
case WM_RBUTTONDOWN:

{
POINT ptHit;
ptHit.x=LOWORD(lParam);
ptHit.y=HIWORD(lParam);
RECT rcHit;

SetRect(&rcHit,GetLeft(),GetTop(),GetRight(),GetBottom());
if(PtInRect(&rcHit,ptHit))
{

if(!GetMouseHover())
SetMouseHover(this);

return(OnRButtonDown(LOWORD(lParam)-GetLeft(),HIWORD(lParam)-
GetTop(),(wParam&MK_LBUTTON)>0,(wParam&MK_RBUTTON)>0));

}
}break;

case WM_RBUTTONUP:
{

POINT ptHit;
ptHit.x=LOWORD(lParam);
ptHit.y=HIWORD(lParam);
RECT rcHit;

SetRect(&rcHit,GetLeft(),GetTop(),GetRight(),GetBottom());
if(PtInRect(&rcHit,ptHit))
{

if(!GetMouseHover())
SetMouseHover(this);

return(OnRButtonUp(LOWORD(lParam)-GetLeft(),HIWORD(lParam)-GetTop(),
(wParam&MK_LBUTTON)>0,(wParam&MK_RBUTTON)>0));

}
}break;

case WM_KEYDOWN:
{

return(OnKeyDown(wParam));

112 4. User Interface Hierarchies

TeamLRN

}break;
case WM_KEYUP:

{
return(OnKeyUp(wParam));

}break;
case WM_CHAR:

{
return(OnChar(wParam));

}break;
}
return(false);

}

You made it through the code! Yes, it’s much like a trackless desert in there, and
the listing doesn’t even include any of the comments I have in the real code.
Essentially, there are three parts to CWidget::HandleEvent: focus trapping, child trap-
ping, and dispatching.

During focus trapping (which only occurs for the master widget), if a mouse event
has occurred and there is a mouse focus widget, the input goes directly to the mouse
focus widget without going through normal channels. Similarly, if a keyboard event
has occurred and there is a keyboard focus widget, the input goes directly there.

During child trapping (which happens in either master or nonmaster widgets), we
loop through all of the child widgets (in reverse Z order) and have the children
attempt to handle the input.

If HandleEvent makes it all the way to the dispatch portion, the message in question
is examined and sent to the proper event-handling function, and the return value
there is handed down to the caller.

Now, all of this is handled iteratively and recursively by a single call to the master wid-
get’s HandleEvent function. This is what happens when CWidget::FilterEvent is called.

And Now for the Payoff
All of this hard work, and now what? Well, I’m about to show you. Go ahead and grab
CApplication, CMessageHandler, and CEventHandler from the CD under Trick 3 on “Building
an Application Framework.” Add CWidget and let’s put together a small demo.

On the accompanying CD-ROM, you can find this example under UIControls1.
There you will find the full implementation of CWidget as described in the text in

113And Now for the Payoff

TeamLRN

this chapter. In addition to that and the core classes of the application framework,
there are three other classes: CTestApplication, CTestEventHandler, and CTestWidget.
The CTestApplication class is identical to the one found in Trick 3, so I’ll discuss it
no more. CTestEventHandler and CTestWidget are specially designed and implemented
to demonstrate the capabilities of CWidget (or, more importantly, the flexibility of
CWidget’s extensible design).

CTestEventHandler
The CTestEventHandler class is designed and implemented to interface with a CWidget
master control.

class CTestEventHandler : public CEventHandler
{
private:

CWidget* m_pMasterWidget;
public:

CTestEventHandler(CMessageHandler* pmhParent);
virtual ~CTestEventHandler();
bool OnMessage(int MessageID,int argc,void* argv[]);
bool OnDestroy();
bool OnPaint(HDC hdc,const PAINTSTRUCT* pPaintStruct);
bool OnEvent(UINT uMsg,WPARAM wParam,LPARAM lParam);
CWidget* GetMasterWidget();

};

The OnMessage and OnDestroy functions are much as you would expect them to be.
OnMessage simply returns false, and this function only exists so that CTestEventHandler
can be instantiated. OnDestroy posts a quit message so that the application can
terminate.

The GetMasterWidget function is simply an accessor to the member function
m_pMasterWidget. This is not strictly necessary because you could simply use the
GetMasterWidget static member function of CWidget to accomplish the same thing.
I provided it here simply as a convenience.

So, we are left with the constructor (during which the master widget is created as
well as a few other widgets), the destructor (during which the entire widget tree is
destroyed), the OnPaint handler (during which the widget tree is displayed and
updated), and finally the OnEvent handler (which allows the widget tree to filter out
events it may need).

114 4. User Interface Hierarchies

TeamLRN

Said another way, I only needed to place four minor ties into another class for that
class to interface with the CWidget UI hierarchy: one for creation, one for destruc-
tion, one for updating, and one for event handling. Now that system is pretty easy
to interface with if I do say so myself. You can take a look at the implementation of
CTestEventHandler on the accompanying CD-ROM.

CTestWidget
Now we’ve come to CTestWidget, and the luster of the UI hierarchy will shine before
you. Here is the CTestWidget class definition:

class CTestWidget : public CWidget
{
private:

HBRUSH m_hbrBackground;
HBRUSH m_hbrOld;
HPEN m_hpenOutline;
HPEN m_hpenOld;
HPEN m_hpenHilite;

public:
CTestWidget(CWidget* pWidgetParent,int iX, int iY, int iWidth, int

iHeight);
virtual ~CTestWidget();
void OnRedraw();
bool OnLButtonDown(int iX,int iY,bool bLeft,bool bRight);
bool OnLButtonUp(int iX,int iY,bool bLeft,bool bRight);

};

Behold the compactness of CTestWidget! Of 54 member functions, I only need to
override five, and the only reason this class is so large is because of the numerous
GDI objects needed for background and foreground colors.

CTestWidget is a simple, humble widget (it’s only a test widget), so don’t expect it to
do much. It does, however, manage to do something: When the mouse pointer is
hovering over it, it will be highlighted with yellow, and if you click on it, it captures
mouse input. While the left mouse button is down, all input goes to it. If you
release the left button while the mouse is inside of the widget, the widget will put
itself on the delete list, later to be destroyed during the next widget tree update.

All of that from five little functions? You bet, and the implementations aren’t that
complex either, as you can see here:

115And Now for the Payoff

TeamLRN

CTestWidget::CTestWidget(CWidget* pWidgetParent,int iX, int iY, int iWidth, int
iHeight):

CWidget(pWidgetParent,iX,iY,iWidth,iHeight),
m_hbrBackground(NULL),
m_hbrOld(NULL),
m_hpenOutline(NULL),
m_hpenOld(NULL),
m_hpenHilite(NULL)
{

m_hbrBackground=CreateSolidBrush(RGB(128,128,128));
m_hpenOutline=CreatePen(PS_SOLID,0,RGB(192,192,192));
m_hpenHilite=CreatePen(PS_SOLID,0,RGB(255,255,0));
m_hbrOld=(HBRUSH)SelectObject(DC(),m_hbrBackground);
m_hpenOld=(HPEN)SelectObject(DC(),m_hpenOutline);

}
CTestWidget::~CTestWidget()
{

SelectObject(DC(),m_hbrOld);
SelectObject(DC(),m_hpenOld);
DeleteObject(m_hbrBackground);
DeleteObject(m_hpenOutline);
DeleteObject(m_hpenHilite);

}
void CTestWidget::OnRedraw()
{

if(HasMouseHover())
{

SelectObject(DC(),m_hpenHilite);
}
else
{

SelectObject(DC(),m_hpenOutline);
}
RECT rcFill;
CopyRect(&rcFill,&Bounds());
OffsetRect(&rcFill,-rcFill.left,-rcFill.top);
Rectangle(DC(),rcFill.left,rcFill.top,rcFill.right,rcFill.bottom);

}
bool CTestWidget::OnLButtonDown(int iX,int iY,bool bLeft,bool bRight)
{

SetMouseFocus(this);

116 4. User Interface Hierarchies

TeamLRN

return(true);
}
bool CTestWidget::OnLButtonUp(int iX,int iY,bool bLeft,bool bRight)
{

if(HasMouseFocus())
{

SetMouseFocus(NULL);
if(iX>=0&&iY>=0&&iX<GetWidth()&&iY<GetHeight())

//close the window
Close();

}
return(true);

}

As you casually glance through the implementation, count how many of the lines of
code are there simply to deal with the ugliness of GDI rendering. (Here’s a clue:
It’s almost all of the lines in CTestWidget’s implementation.) Only a small handful of
CWidget member function calls sprinkle the big pile of GDI. If you were using a dif-
ferent rendering API, the implementation would be even shorter.

Summary
By now, the benefit of a well-designed UI hierarchy should be obvious. We never
have to touch the implementation of CWidget again. It will be there for all time. But
what CWidget allows us to do is derive child classes for which we can customize the
behavior. Typically, this only means overriding OnRedraw and a few of the event-
handling functions. The identity of a control is based solely on what it looks like
and how it responds to input.

Another aspect of the UI hierarchy shown in this chapter was the idea of notifica-
tion. The needed code is already in place, but there has been no example of how
to make use of it. (I only have so many pages that I’m allowed to consume and only
so much time in which to write them.)

Right now, using CWidget, you would not have a hard time writing a class that emu-
lates the behavior of a button. You’d simply change OnRedraw and a few of the event-
handling functions and then add a few notifications. The same goes for just about
any type of control. None of them is terribly difficult to implement once you’ve got
a core UI system in place. The rest is all customization.

117Summary

TeamLRN

This page intentionally left blank

TeamLRN

TRICK 5

Writing
Cross-

Platform
Code

Wendy Jones,
Humongous Entertainment,

www.humongous.com

TeamLRN

Introduction
You’ve been given the task of writing the next 3-D first-person shooter. The only
problem is that your publisher wants you to write it for both the PC and the
Playstation 2. Well, you could always write the version for the PC and worry about
the pain of porting it to the Playstation 2 later, or you could develop your title for
both platforms at the same time.

Cross-platform development isn’t new to the world of software, but it’s becoming
more common in the game industry. No longer are developers and publishers con-
tent with releasing their latest game on a single platform. They want a wider audi-
ence, and they obtain it by porting their title across multiple systems. With the
power of today’s PCs and the popularity of console systems, games are reaching a
record number of people, and publishers are perfectly happy to cash in on that
market. Writing cross-platform code makes your game portable and more easily
converted to whatever system is required.

Why Develop Cross-Platform
Code?
So, why would we want to write cross-platform code? Why would we want to spend
the extra time and effort up front, just to allow our game to run on different
machines?

First and foremost, the possible market for your game title is greatly expanded. If
you choose to create a game for only the Nintendo GameCube, you’re restricting
the possible audience and sales to only gamers owning that system. Porting your
game to PCs or other consoles on the market enables your game to reach its full
potential in the marketplace and hopefully its financial goals as well.

The second reason is less development time and lower cost when planning on
releasing different versions of your game. Sure, we can write our game to run on
the PC and write platform-specific to handle manipulating and rendering our
graphics, but what happens when it comes time to port it to the Xbox? All the
platform-specific code has to be ripped out and replaced with the same platform-

120 5. Writing Cross-Platform Code

TeamLRN

specific code for the new system. We’d spend countless hours of development time
just searching for all the pieces of code that reference the PC system. Then comes
the task of actually replacing these sections; of course, we’re assuming that the two
systems work the same way. For example, writing a game for Microsoft Windows
requires that our main game loop listen for messages coming from the operating
system to keep the multitasking working correctly. Writing a game for a console sys-
tem, however, skips the Windows messaging and focuses squarely on running your
game loop. If we took this into account during the initial development cycle, we
wouldn’t have to spend this time replacing entire sections of code. A second draw-
back with porting after the fact is loss of momentum in the marketplace. Everyone
may be hyping your PC product, but while they’re waiting for the Xbox version,
their interest is slowly fading. By the time the port is complete, there may no
longer be an interest in your game.

Third, writing cross-platform code creates more portable source code base. While
developing for one platform, the compiler may not catch errors in your code, or it
may behave differently on separate systems. Sometimes due to the amount of mem-
ory or resources available on a particular system, overwriting a section of RAM with-
out initializing it first can crash the system, whereas another system might allow the
operation to complete successfully. Testing and debugging code on multiple sys-
tems helps us catch our own logic errors more readily. For instance, the debuggers
used under Windows commonly are more mature and useful than the ones avail-
able for console systems. In this case, even if a Windows version isn’t ever going to
be seeing a release outside of your company, maintaining a PC version can help out
in the debugging and testing process.

The final reason for cross-platform code is quality. If your development team is
going to create only the first version of a game and then allow the port to other sys-
tems to be handled by a third-party, your game quality is going to suffer. By creat-
ing your code to be run on different systems from the start, the ports are kept
in-house, and the quality of your game can me maintained.

Planning for a Cross-
Platform Product
When you’re designing your game with the goal of running it on multiple plat-
forms, there are a few things to keep in mind before making the decision to start
the development process. Remember that not all popular platforms are created
equally, so you need to do your research first.

121Planning for a Cross-Platform Product

TeamLRN

Console systems are great for titles such as fighting games, but will your PC role-
playing game really translate well? For example, if you are planning to create a mas-
sive, multiplayer, role-playing game for the PC and also want the same title for the
Nintendo GameCube, is the system really suited to the task? Here are a few ques-
tions you might want to ask yourself:

• Is the system powerful enough?

• Can the graphics and gameplay really be faithfully reproduced on the target
platform?

• Will going from a mouse-and-keyboard input system on the PC hinder the
users’ ability to enjoy your game when they’re restricted to a gamepad?

• If the game involves online play, will PC and console gamers be able to play
online together?

Problems Between
Platforms
Even after deciding for which platforms we’re going to develop, there are still a few
more things we need to look at. Each system is usually based on different hardware
architectures. For example, a standard PC is normally based on an Intel processor
that follows the 80×86 instruction set, whereas console systems can have a radically
different architecture, as in the Sony Playstation 2. It is based on a proprietary
processor with a unique instruction set. The instruction set isn’t the only thing you
have to worry about when comparing the
processors in a system. The way the
processor stores its data is also important.
There are two ways in which current
processors store their information; these
ways are represented by the terms big-
endian and little-endian.

Big-endian architectures consider the left-
most bytes (the lower address bytes) to be
the most significant. In little-endian archi-
tectures, the rightmost (or higher)
address bytes are considered most
significant.

122 5. Writing Cross-Platform Code

TIP
The number 25 (binary 00000100
00000001) is stored in the following
way:

Big–Endian

Byte 00–00000100

Byte 01–00000001

Little–Endian

Byte 00–00000001

Byte 01–00000100

TeamLRN

In game programming, this problem can arise when loading in data files for a par-
ticular platform. If a binary data file was created on the PC (little-endian architec-
ture) and then loaded on a system using the Motorola 68000 processor (big-endian
architecture) without accounting for the differences, the data we would be reading
in would be mixed up. In this case, your code would have to support byte swapping
for the data file loader. The following code demonstrates how to swap the bytes for
an unsigned long (which, in this example, is 4 bytes). This is not a very fast piece of
code, but it should demonstrate the concept clearly.

unsigned long byteSwap(unsigned long value)
{

unsigned long newValue = 0;
char* pcurValue = (char *)&value;
char* pnewValue = (char *)&newValue;

pnewValue[0] = pcurValue;[3]
pnewValue[1] = pcurValue;[2]
pnewValue[2] = pcurValue;[1]
pnewValue[3] = pcurValue[0];

return newValue;
}

I’ll explain how this bit of code works. The byteSwap function is passed an unsigned
long 4-byte value. Within the function, two new variables are declared as character
pointers. pcurValue is initialized to the value passed to the byteSwap function, while
pnewValue is initialized to zero. Since these two variables are character pointers, we
can access each byte within them by using normal array notation. The first slot in
pnewValue is set to the last slot of pcurValue. The next slot of pnewValue, slot 1, is then
set to the second-from-the-last slot of pcurValue, and so on, until all the bytes have
been dealt with. The function then returns newValue, which is holding the byte
swapped value.

The hardware architecture of the targets’ platforms isn’t the only worry when deal-
ing with cross-platform code. The differences in compilers for each platform can
also cause problems. When dealing with standard C++ code under Microsoft Visual
Studio, it’s common to include #pragma statements, which are directives telling the
compiler how to handle certain errors or how to compile a bit of code. For exam-
ple, the following line of code tells the compiler to link in the opengl32.lib file dur-
ing the link process.

#pragma comment (lib, “opengl32.lib”);

123Problems Between Platforms

TeamLRN

This eliminates the need to add the LIB file to the link section of the project.
While this is well and good when using MSVC, trying to compile this code under
another compiler may fail because other compilers may not support the #pragma
directive. When attempting to write portable code, it’s best to leave these instruc-
tions within the makefile.

The easiest way to eliminate problems with your code across different compilers is
to restrict yourself to the ANSI C/C++ standard. Microsoft Visual Studio has the fol-
lowing suggestions when trying to restrict your code to the ANSI standard when
coding under Windows:

• Do not use the MFC library. Call the Win32 APIs directly.

• Disable Microsoft extensions.

• Use the iostream library from the ANSI Standard C++ library.

• Use the Standard Template Library (STL)

Programming for Multiple
Platforms
Now that we’ve seen some of the differences between platforms and some of the
pitfalls we have to watch out for, what can we do to make sure our code is portable?
Most of the ways to keep your code portable are very simple to implement. By tak-
ing advantage of some of the built-in features of C and C++, we can keep a clean
and cross-platform code base.

The #if defined Directive
One of the simplest ways to keep your code portable is to use the #if defined direc-
tive to create a conditional block of code. The #if defined directive checks to see if
a specific constant has been defined and then compiles the code within the block.
For instance, if compiling an application for Windows, you must deal with calling
WinMain as the entry point to your application. Under a console system or DOS, only
calling main() is required. So, how do we use #if defined to solve this problem?
Look at the following example:

// Checking to see if we are running under Windows
#if defined(WINDOWS)
#include <windows.h>
#endif

124 5. Writing Cross-Platform Code

TeamLRN

#if defined (WINDOWS)
// we’re under windows so use WinMain
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)
#else
// we’re not under Windows, so use the standard call to main()
int main()
#endif
{

return 0;
}

This piece of code uses #if defined to check whether the constant WINDOWS has been
defined. If it has been defined, #if is flagged as true, and the code following #if is
compiled (as shown in the declaration of main()). If the constant WINDOWS has not
been defined, the code following the #else is compiled.

The typedef Keyword
Typedef is used to basically create your own data types. During cross-platform devel-
opment, you may find that an integer on one platform is 4 bytes, while on another
platform it’s only 2 bytes. If you use the default int data type, you may find yourself
not having enough room to fit your data. Instead, you can create your own data
types that will alleviate this problem. For example, on a platform that supports
4-byte integers, you would define your own type like this:

typdef int Myint;

On the platform where to get the same 4-byte precision you must use an unsigned
long, you would define your type like this:

typedef unsigned long Myint;

Most systems you come across will normally support the same size data types, but
occasionally you’ll come across a system that is completely different and causes elu-
sive bugs. These types of bugs are difficult to track down.

Here’s a sample header file called types.h that shows some common uses for creat-
ing your own data types.

/***
* types.h
***/

125Programming for Multiple Platforms

TeamLRN

#ifndef TYPES_H
#define TYPES_H

// here we define the types
typdef unsigned char Mybool;
typdef int Myint;
typedef signed char Mychar;

#endif
/**/

Always Use sizeof()
As previously explained, data types can be different sizes across platforms. If there
is any spot in your code where you assume a certain number of bytes for a data
type, go back and replace it with a call to sizeof(). Sizeof() returns the correct
number of bytes for a data type based on the platform on which it’s running. For
instance, to display the size of an integer, we would use the following code:

printf(“Number of bytes for an integer is %d\n”, sizeof(int));

What Is an Abstraction
Layer?
Abstraction layers are one of the more complicated—and yet powerful—ideas you
can use to keep your game project portable. During the development process,
you’ll come across certain subsystems that will have to be platform-specific.
Whether you’re developing for consoles or just keeping to the PC, at some point
you’re going to have to call a piece of the hardware layer. This is where abstraction
layers come into play.

An abstraction layer is basically just a small API that you create that sits between
your game code and the hardware API layer. This allows you to keep any platform-
specific calls separate from your actual game code (see Figure 5.1).

126 5. Writing Cross-Platform Code

TeamLRN

Why Use an Abstraction Layer?
Using an abstraction layer within your code brings you benefits other than just
portability. New hardware can be supported more easily. By keeping all the hard-
ware-specific code separate, it’s a simple matter of defining a new layer and adding
the support within it. The game code needs no changes and doesn’t need to know
that the underlying hardware has been changed.

It’s also a simple matter to change between multiple implementations within a
layer. For instance, writing two versions of your graphic layer—one supporting
Direct3D and the other supporting OpenGL—would give you the option of switch-
ing between the two during runtime. Users could be given the option of choosing
which rendering engine to use for their system.

For What Systems Would We Want
to Create an Abstraction Layer?
When planning your code design, a couple of systems that immediately come to
mind would be useful to split out as an abstraction layer.

• Video subsystem. This includes any initialization of the video hardware and
the drawing of anything to the screen. For instance, if you’re creating a title
on the PC, creating an abstraction layer above both OpenGL and DirectX
would allow your game to run using either API.

• Audio subsystem. Not every platform plays music or sound effects the same
way, but it’s useful to be able to only use a standard call from your game
code. An abstraction layer for audio would include functions such as
playsound(), stopstound(), and playbackgroundMusic() just to start. With this
layer in place, no matter what sound system the hardware supports, your
main game code still makes the same call.

127What Is an Abstraction Layer?

Graphic
System

Sound
System

Input
System

Game Code

Abstraction Layer

Hardware API

Figure 5.1

An abstraction layer is used to keep the game code
from making platform-specific calls

TeamLRN

• Input subsystem. Another obvious subsystem is input. PCs have keyboards,
mice, and gamepads available, but most console systems only have the
gamepad. Keeping standard functions within your main loop for checking
button presses keeps your code from getting confused with handling all the
different ways in which the input can originate. For example, creating a layer
to handle input from both the PC keyboard and a gamepad keeps your game
code from having to deal with either specifically. Your game code would only
have to worry about checking for the direction in which the player wants to
go. For example, if the layer handled reading from a gamepad, it would only
have to return the values for left, right, up, or down. The game code
wouldn’t care how the values were obtained.

Designing an Abstraction Layer
At this point, you should have the general idea of what an abstraction layer is and
what it’s used for. Now we’ll go through the process of designing a simple layer. I
chose the graphic layer because it’s one of the more common and useful systems.
The first thing we do is create an abstract parent class from which we derive the lay-
ers. The following is the prototype for the class:

/***
* GraphicSystem.h
***/
#if !defined(GRAPHICSYSTEM_H)
#define GRAPHICSYSTEM_H
class GraphicSystem
{
public:

virtual void render() = 0;
virtual void closeGraphicSystem() = 0;
virtual bool initGraphicSystem(HWND hWnd) = 0;

void setScreenResolution(int width, int height);
GraphicSystem();
virtual ~GraphicSystem();

private:
static int screenHeight;
static int screenWidth;
HWND m_hWnd;

};
#endif

128 5. Writing Cross-Platform Code

TeamLRN

The GraphicSystem class has three private variables defined: screenHeight and
screenWidth (which are used to hold the resolution of the video mode) and m_hWnd
(which holds the handle to the main application window).

There are also three pure virtual functions defined that must be overridden in any
class that inherits from GraphicSystem.

The first is initGraphicSystem, which will be used to handle the creation of the ren-
der area of the application window. We pass in the hWnd (main application handle)
because systems like OpenGL and DirectX use this during their initialization
procedures.

The next function is closeGraphicSystem. This function handles the cleanup and
releasing of any memory we’ve used during our application.

The final function is render. Render is called once per frame and handles the actual
updating of the screen.

The code associated with this class is very minimal because its main use is just to be
overridden and to provide the framework for any child classes. The implementa-
tion of the GraphicSystem class is as follows:

/***
* GraphicSystem.cpp
* Parent abstraction layer class
***/
#include “GraphicSystem.h”

// constructor
GraphicSystem::GraphicSystem()
{
}
// destructor
GraphicSystem::~GraphicSystem()
{
}
// initializes the graphic system
// returns true if the system is initialized properly
// this class is meant to be overridden in a child class
bool GraphicSystem::initGraphicSystem(HWND hWnd)
{

m_hWnd = hWnd;
return true;

}

129What Is an Abstraction Layer?

TeamLRN

// closes down the graphic system and releases any memory that we used
// this class is meant to be overridden in a child class
void GraphicSystem::closeGraphicSystem()
{
}

// sets the two private variables screenWidth and screenHeight
// these two variables represent the resolution of the
// application window
void GraphicSystem::setScreenResolution(int width, int height)
{

screenWidth = width;
screenHeight = height;

}
// render is called once per frame. This is where the actual
// graphics will be drawn
// this class is meant to be overridden in a child class
void GraphicSystem::render()
{
}

The purpose of the code in the GraphicSystem.cpp file is just to provide default
implementations of the class functionality. One function is provided that doesn’t
get overridden by inheriting from this class: setScreenResolution. This function takes
two parameters (both integers), representing the width and height of the applica-
tion window.

Deriving from the Abstraction
Layer
The next step is to actually create an implementation based on the parent class
GraphicSystem. Since this code is meant to run on the PC, the first system we will
support will be OpenGL.

OpenGL, along with Direct3D, has become the de facto standard for 3-D on the
PC. OpenGL eliminates the need for applications to deal with most 3-D and
graphic code themselves. By providing a standard API, applications can be written
to OpenGL without worrying about what hardware it’s running on. OpenGL has
been available for the PC for a couple of years and has really helped push the
graphic accelerator market.

130 5. Writing Cross-Platform Code

TeamLRN

Since we chose OpenGL for the first layer, we need to create a prototype for a child
class inheriting from GraphicSystem. The following is the code representing the
openGLSystem.h file.

/***
* openGLSystem.h
***/
#if !defined(OPENGLSYSTEM_H)
#define OPENGLSYSTEM_H
#include “GraphicSystem.h”
class openGLSystem : public GraphicSystem
{
public:

virtual ~openGLSystem();
openGLSystem();

bool initGraphicSystem(HWND hWnd);
void closeGraphicSystem();
void render();

private:
// handle device context

HDC hDC;

// handle rendering context
HGLRC hRC;

};
#endif

As you can see from the class definition, we are inheriting from the GraphicSystem
class.

Class openGLSystem: public Graphic System

The new class is also making sure to define the pure virtual functions required by
the parent class. The code implementation of these functions will be placed in the
openGLSystem.cpp file.

bool initGraphicSystem(HWND hWnd);
void closeGraphicSystem();
void render();

You’ll also notice two new private variables that are not part of the parent class.

131What Is an Abstraction Layer?

TeamLRN

HDC hDC;
HGLRC hRC;

These two variables hold a handle to the device context and a handle to the ren-
dering context for the application window.

/***
* openGLSystem.cpp
***/
#include “openGLSystem.h”

/* OpenGL specific includes */
#include <gl\gl.h>
#include <gl\glu.h>

/* constructor and destructor */
openGLSystem::openGLSystem()
{
}
openGLSystem::~openGLSystem()
{
}
/***
* initGraphicSystem
* init the OpenGL graphic system
***/
bool openGLSystem::initGraphicSystem(HWND hWnd)
{
// holds the chosen pixel format

GLuint PixelFormat;

GraphicSystem::initGraphicSystem(hWnd);
Static PIXELFORMATDESCRIPTOR pfd = {

sizeof(PIXELFORMATDESCRIPTOR),
1, // Version Number
PFD_DRAW_TO_WINDOW | // Format Must Support Window
PFD_SUPPORT_OPENGL | // Format Must Support OpenGL
PFD_DOUBLEBUFFER, // Double Buffering
PFD_TYPE_RGBA // Request An RGBA Format
16, // Select Our Color Depth
0, 0, 0, 0, 0, 0, // Color Bits Ignored
0, // No Alpha Buffer

132 5. Writing Cross-Platform Code

TeamLRN

0, // Shift Bit Ignored
0, // No Accumulation Buffer
0, 0, 0, 0, // Accumulation Bits Ignored
16, // 16Bit Z-Buffer
0, // No Stencil Buffer
0, // No Auxiliary Buffer
PFD_MAIN_PLANE, // Main Drawing Layer
0, // Reserved
0, 0, 0 // Layer Masks Ignored

};

// check for the device context
if (!(hDC = GetDC(hWnd))) {

closeGraphicSystem();
return false;

}

// Did Windows Find A Matching Pixel Format?
if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) {

closeGraphicSystem();
return false;

}

// Can we set the pixel Format?
if(!SetPixelFormat(hDC, PixelFormat, &pfd)) {

closeGraphicSystem();
return false;

}

// can we get the rendering context?
if (!(hRC = wglCreateContext(hDC))) {

closeGraphicSystem();
return false;

}

// attempt to activate the rendering context
if(!wglMakeCurrent(hDC, hRC)) {

closeGraphicSystem();
return false;

}
// we successfully have OpenGL initialized

133What Is an Abstraction Layer?

TeamLRN

return true;
}

/***
* render
* performs all the OpenGL rendering to the screen
***/
void openGLSystem::render()
{

// clear the buffers
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Ensure we’re working with the model matrix.
glMatrixMode(GL_MODELVIEW);

// load in the identity matrix
glLoadIdentity();

// swap the double buffers
SwapBuffers(hDC);

}

/***
* closeGraphicSystem
* close the OpenGL graphic system and performs cleanup
***/
void openGLSystem::closeGraphicSystem()
{

// check for the rendering context
// if it exists, let’s release it
if (hRC) {

// make this the current context
wglMakeCurrent(NULL, NULL);

// delete the rendering context
wglDeleteContext(hRC);

// Set to NULL
hRC = NULL;

}

134 5. Writing Cross-Platform Code

TeamLRN

// try to release the device context
if (hDC && !ReleaseDC(m_hWnd, hDC)) {

hDC = NULL;
}

}

Explaining the Derived Layer
This section is just a very simple implementation of a derived layer. We’re only sup-
porting the bare minimum of functionality that you would want, but it’s enough to
explain the abstraction layer concept. Explaining in detail the OpenGL code in the
preceding section isn’t within the scope of this chapter. Now let’s see how this layer
works.

We start first by overriding the initGraphicSystem function. This function is created
to take care of initializing OpenGL and preparing the application window for
drawing.

Next we implemented the render function. This is where the main drawing for this
layer takes place. The game itself will be given the task of sorting all the visible
polygons into a format that the OpenGL layer will render.

Finally, we implemented the closeGraphicSystem function. Within this function, the
device contexts we created are released back to the system. This is just our basic
cleanup function.

Using the Derived Layer
Now it’s time to put the layer we created to some use. We’re going to create some
code that allows switching between the OpenGL layer that we created in the last
section and another layer supporting Direct3D.

The following code shows how to instantiate the gfxSystem object and call the func-
tions defined within it.

#include <windows.h>
#include “GraphicSystem.h”

// defined if we want to use OpenGL rendering
#define USE_OPENGL 1

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

135What Is an Abstraction Layer?

TeamLRN

{
// Windows Message Structure
MSG msg;

#ifdef USE_OPENGL
// use the OpenGL system
openGLSystem *gfxSystem = new openGLSystem();

#else
// use the Direct3D system
directXSystem *gfxSystem = new direct3DSystem();

#endif

// initialize the graphic system we chose
gfxSystem->initGraphicSystem(hWnd);
// loop control variable
bool done = false;

// main loop
while(!done)
{

// are there any windows messages waiting?
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

// if so, check what they are
if (msg.message == WM_QUIT) {

done = true;
}
else {

TranslateMessage(
&msg);

DispatchMessage(
&msg);

}
}

// otherwise, let’s just do the rendering loop
else

{
// render to the window
gfxSystem->render();

}
}

136 5. Writing Cross-Platform Code

TeamLRN

// shutdown the graphic system
gfxSystem->closeGraphicSystem();

// check for the existence of the gfxSystem
// delete the pointer
if (gfxSystem)
delete gfxSystem;

return (msg.wParam);

The key to this code is actually the two lines nestled between #ifdef and #endif just
within WinMain.

#ifdef USE_OPENGL
// use the OpenGL system
openGLSystem *gfxSystem = new openGLSystem();

#else
// use the Direct3D system
directXSystem *gfxSystem = new direct3DSystem();

#endif

The compiler checks to see if a constant USE_OPENGL has been defined. If so, the
code creates an object based on OpenGL rendering. If the constant has not been
defined, the code defaults to creating the object with the Direct3D system. A
pointer gfxSystem is created that refers to the rendering system. The rest of the
code at this point doesn’t have to worry about what system is being used. All the
proceeding calls refer directly to the pointer we created.

In Conclusion
The techniques we’ve described so far are just the tip of the iceberg when doing
cross-platform development. Doing a search on the Web will give you a much
greater understanding of the usefulness of keeping your code portable. With the
growing popularity of Linux as a computing platform and the decreasing lifetime
of console systems, the need for portable code going forward is only going to grow.

137In Conclusion

TeamLRN

This page intentionally left blank

TeamLRN

SECTION 2

General
Game
Programming
Tricks

TeamLRN

If you are reading this, then you have successfully
made your way through Part I. At this point, you
should have a clear understanding of some basic
fundamentals that you can use for the rest of this
book. Heck, you should be able to use what you
have learned thus far for any of your game pro-
gramming projects!

Part II will begin introducing some concepts that
you will find useful for your game programming
endeavors. You will cover topics such as OpenGL
game programming, sound and music, 2D Sprite cre-
ation, and so on. There is even a special trick that
instructs you on how to create text-based adven-
ture games for you die-hard Zork fans out there. I
hope it is a nice addition to the book and that it
helps the beginners get their feet wet by program-
ing a simple game to show off to their friends.

Are curious juices flowing yet? Well, let’s satisfy
that craving by moving right along into Part II.

TeamLRN

TRICK 6

Tips from the
Outdoorsman’s

Journal
Trent Pollack

TeamLRN

Introduction: Life in the
Great Outdoors
Ahhhh, everyone loves the outdoors . . . Well, maybe not everyone. Maybe the peo-
ple with allergies loathe it, and maybe the people with really sensitive eyes don’t like
it either. So, let me rephrase that: Everyone loves a good outdoor image! That will be
the goal for this chapter: to take your knowledge of creating an outdoor world from
nil to being able to create a fully interactive and dynamic outdoor world.

What You Will Learn
In this chapter, you’ll learn all about creating an outdoor world. I’m just going to
give you a general overview. My goal for this chapter is to ease you into a wide vari-
ety of subjects and then give you links for how to make your implementation of
that subject cooler and more complex. I’ll start with an explanation about terrain,
with an emphasis on height map manipulation, and then I’ll tell you how to render
that height map using brute force terrain. Brute force is definitely not the best
choice for a terrain algorithm, but I want to keep things simple. I will then talk
about texturing that terrain (using a multipass algorithm that I came up with).
Then I’ll introduce you to a very cool yet simple terrain lighting algorithm called
“Slope Lighting.”

Next on the ultrafun list is adding some environmental effects to your outdoor
world. I will discuss the advantages of using fog, and then I’ll give you another way
to make a cool outdoor environment even cooler: skyboxes!

Height Maps 101
Imagine you have a grid of vertices that extends along the X-axis and the Z-axis. In
case your mind is seriously lacking in the imagination department, I was nice enough
to make an image of what your mind should have conjured up (see Figure 6.1).

Now that’s a pretty boring image! How exactly are we going to go about making it
more, well, terrain-ish? The answer is by using a height map. A height map, at least

142 6. Tips from the Outdoorsman’s Journal

TeamLRN

in our case, is a series of unsigned char values (perfect for grayscale images) we will
be creating at runtime, or in a paint program, that defines the height values for a
boring grid of vertices. Now, for a quick example, check out the height map in
Figure 6.2. Once we load it and apply it to our terrain, the grid in Figure 6.1 will
transform into the beautiful (well, sorta) terrain you see in Figure 6.3.

143Height Maps 101

Figure 6.1

A grid of vertices with
nondefined height
values

Figure 6.2

The 128×128 height map
used to create Figure 6.3

Figure 6.3

A brute force terrain
image created using
the height map in
Figure 6.2

TeamLRN

Granted, it looks pretty boring without any cool textures or lighting, but hey, we
need to start somewhere. As I was previously explaining, height maps give us the
power to shape a boring grid of vertices into a magnificent landscape. The ques-
tion is, what exactly are they? Normally, a height map is a grayscale image in which
each pixel represents a different height value. Dark colors represent a low height,
and lighter colors represent a higher elevation. Look again at Figures 6.2 and 6.3.
Notice how the 3-D terrain (in Figure 6.3) corresponds exactly to the height map
(in Figure 6.2), with everything from the peaks to the ditches and even the colors?
That’s what we want our height maps to do: give us the power to mold a grid of ver-
tices to create the terrain we want.

Now, in our case, the file format for our height maps is going to be the RAW for-
mat. (Though most of the demos create height maps dynamically, I included the
option to save/load height maps using the RAW format.) I chose this format simply
because it is incredibly simple to use, and since the RAW format only contains
pure data, it is easy to load in and to use. Because we are using a grayscale RAW
image, that just makes everything so much easier! Before we load a grayscale RAW
image, we have a couple of things to do. First we need to create a simple data struc-
ture that can represent a height map. What we need for this structure is a buffer of
unsigned char variables (we need to be able to allocate the memory dynamically)
and a variable to keep track of the height map’s size. Simple enough, eh? Well,
here it is:

struct SHEIGHT_DATA
{

unsigned char* m_pucData; //the height data
int m_iSize; //the height size (must be a power of 2)

};

Making the Base Terrain
Class
Now, before we go any further, we need to create a base class from which we can
derive a specific terrain implementation. (For this chapter, it’s a brute force imple-
mentation, but I’m hoping you’ll take a look at “Going Further: Deeper into the
Wilderness” a bit later in this chapter and will implement your own more compli-
cated algorithm.) We do not want the user to actually create an instance of this
class; we just want this class to be a common parent for a variety of terrain
implementations.

144 6. Tips from the Outdoorsman’s Journal

TeamLRN

So far, all we need in our base
class is three variables: an
instance of SHEIGHT_DATA, a
height scaling variable (which
will let us dynamically scale the
heights of our terrain), and a
size variable (which should be
exactly the same as the size
member of SHEIGHT_DATA, or
something is seriously screwed
up). As far as functions go, we
need some height map manipu-
lation functions and the func-
tions needed for the fractal
terrain generation algorithms
we talked about earlier. Here is
what I came up with:

class CTERRAIN
{

protected:
SHEIGHT_DATA m_heightData; //the height data

float m_fHeightScale; //scaling variable

public:
int m_iSize; //must be a power of two

bool LoadHeightMap(char* szFilename, int iSize);
bool SaveHeightMap(char* szFilename);
bool UnloadHeightMap(void);

//———————————————————————————————
// Name: CTERRAIN::SetHeightScale - public
// Description: Set the height scaling variable
// Arguments: -fScale: how much to scale the terrain
// Return Value: None
//———————————————————————————————
inline void SetHeightScale(float fScale)

145Making the Base Terrain Class

NOTE
The CTERRAIN class is what we C++ junkies
like to refer to as an abstract class.An
abstract class is a class that functions as a
common interface for all of its children.1

Think of it this way:A mother has red hair
but a boring personality, and although her
children all have red hair, each has a distinct
personality that is incredibly entertaining.
The same applies to an abstract class.
Although it is boring by itself, its traits carry
on to its children, and those children can
define more “exciting” behavior for
themselves.

TeamLRN

{ m_fHeightScale= fScale; }

//———————————————————————————————
// Name: CTERRAIN::SetHeightAtPoint - public
// Description: Set the true height value at the given point
// Arguments: -ucHeight: the new height value for the point
// -iX, iZ: which height value to retrieve
// Return Value: None
//———————————————————————————————
inline void SetHeightAtPoint(unsigned char ucHeight, int iX, int iZ)
{ m_heightData.m_ucpData[(iZ*m_iSize)+iX]= ucHeight; }

//———————————————————————————————
// Name: CTERRAIN::GetTrueHeightAtPoint - public
// Description: A function to set the height scaling variable
// Arguments: -iX, iZ: which height value to retrieve
// Return Value: An float value: the true height at
// the given point
//———————————————————————————————
inline unsigned char GetTrueHeightAtPoint(int iX, int iZ)
{ return (m_heightData.m_ucpData[(iZ*m_iSize)+iX]); }

//———————————————————————————————
// Name: CTERRAIN::GetScaledHeightAtPoint - public
// Description: Retrieve the scaled height at a given point
// Arguments: -iX, iZ: which height value to retrieve
// Return Value: A float value: the scaled height at the given
// point.
//———————————————————————————————
inline float GetScaledHeightAtPoint(int iX, int iZ)

{ return ((float)(m_heightData.m_ucpData[(iZ*m_iSize)+iX]
)*m_fHeightScale); }

CTERRAIN(void)
{ }
~CTERRAIN(void)
{ }

};

Not too shabby, huh? Well, that’s our “parent” terrain class. Every other implemen-
tation we develop will be derived from this class. I put quite a few height map

146 6. Tips from the Outdoorsman’s Journal

TeamLRN

manipulation functions in the class just to make things easier for both the users
and us. I included two height retrieval functions for a reason: Although we, as the
developers, will use the true function most often, the user will be using the scaled
function most often (to perform collision detection). We will use the set height
function when we get to deformation later in the book. With that said, let’s discuss
the height map loading/unloading functions.

Loading and Unloading a
Height Map
I’ve been talking about both of these routines for a while now, and I think it’s
about time that we finally dive straight into them. These routines are very simple,
so don’t make them any harder than they should be. All we are doing is some sim-
ple C-style file I/O.

The best place to begin is with the load-
ing routine because you can’t unload
something without it being loaded. So,
let’s get to it! All we need are two argu-
ments for the function: the file name
and the size of the map. Inside the func-
tion, we want to make a FILE instance
(so we can load the requested height
map), and then we want to check to
make sure the class’s height map
instance is not already loaded with
information. If it is, we’ll call the
unloading routine and continue about
our business. Here is the code for what we
just discussed:

bool CTERRAIN::LoadHeightMap(char* szFilename, int iSize)
{

FILE* pFile;

//check to see if the data has been set
if(m_heightData.m_pucData)

UnloadHeightMap();

147Loading and Unloading a Height Map

NOTE
I tend to stick with C-style I/O
because it is so much easier to read
than C++-style I/O. It’s as simple as
that, so if you are really a true C++
junkie and absolutely loathe the “C
way of doing things,” feel free to
change the routines to true C++! On
the other hand, I really like C++-style
memory operations, so if you’re a
true C-junkie, change those!

TeamLRN

Okay, next we need to just open the file, and then allocate memory in our height
map instance’s data buffer (m_heightData.m_pucData), and check to make sure that
the memory was allocated correctly, and that something didn’t go horribly wrong
(which is always possible, I mean, sometimes I just turn my computer on, and the
next minute it decides to format itself, go figure).

//allocate the memory for our height data
m_heightData.m_pucData= new unsigned char [iSize*iSize];

//check to see if memory was successfully allocated
if(m_heightData.m_pucData==NULL)
{

//something is seriously wrong here
printf(“Could not allocate memory for%s\n”, szFilename);
return false;

}

And for the next-to-last step in our loading process, and definitely the most impor-
tant, we are going to load in the actual data, and place it in our height map
instance’s data buffer. And finally, we are going to close the file, set some of the
class’s instances, and print a success message!

//read the heightmap into context
fread(m_heightData.m_pucData, 1, iSize*iSize, pFile);

//Close the file
fclose(pFile);

//set the size data
m_heightData.m_iSize= iSize;
m_iSize = m_heightData.m_iSize;

//yahoo! The heightmap has been successfully loaded
printf(“Loaded %s\n”, szFilename);
return true;

}

That’s it for the loading routine. Now we’ll move on to
the unloading routine before I lose your attention! The
unloading procedures are very simple. All we have to do

148 6. Tips from the Outdoorsman’s Journal

NOTE
The height map saving
routine is almost the
exact same thing as
the loading routine.
Basically, all that needs
to be done is replace
fread with fwrite.Yup,
that’s all there is to it!

TeamLRN

is check to see if the memory has actually been allocated. If it has, delete it. That’s
all there is to it!

bool CTERRAIN::UnloadHeightMap(void)
{

//check to see if the data has been set
if(m_heightData.m_pucData)
{

//delete the data
delete[] m_heightData.m_pucData;

//reset the map dimensions also
m_heightData.m_iSize= 0;

}

//the height map has been unloaded
printf(“Successfully unloaded the height map\n”);
return true;

}

I said a while back that we were going to be creating most of our height maps
dynamically. How do we do that? I’m glad you asked. (Even if you didn’t, I’m still
going to explain it!) What we are going to do is use one of two fractal terrain gen-
eration algorithms (both from the first volume of Game Programming Gems): fault
formation2 or midpoint displacement3. Because the two chapters in Gems explain
the concepts infinitely better than I could ever hope of doing, I’m going to refer
you to those chapters. But that doesn’t mean that I didn’t include code. Check out
the following functions:

void CTERRAIN::NormalizeTerrain(float* fpHeightData);
void CTERRAIN::FilterHeightBand(float* fpBand, int iStride, int iCount, float

fFilter);
void CTERRAIN::FilterHeightField(float* fpHeightData, float fFilter);

bool CTERRAIN::MakeTerrainFault(int iSize, int iIterations, int iMinDelta, int
iMaxDelta, int iIterationsPerFilter, float fFilter);

bool CTERRAIN::MakeTerrainPlasma(int iSize, float fRoughness);

In Figure 6.4, I created some quick examples of height maps using the midpoint
displacement (MakeTerrainPlasma) creation function, with varying roughness as
specified.

149Loading and Unloading a Height Map

TeamLRN

The Brute Force of Things
Rendering terrain using brute force is incredibly simple and provides the best
amount of detail possible. Unfortunately, it is the slowest of all the algorithms pre-
sented in this book. Basically, if you have a height map of 64×64 pixels, the terrain,
when rendered using brute force, will consist of 64×64 vertices in a regular repeat-
ing pattern (see Figure 6.5).

In case you didn’t immediately recognize it, we will be rendering each row of ver-
tices as a trianglular strip, simply because it is the most logical way to render the
vertices. I mean, you wouldn’t exactly want to render them as individual triangles
or as a triangle fan, would you?

For this chapter’s first demo, I’m keeping things as simple as possible. So, for
“lighting,” we are just going to keep things, well, as simple as possible. The color
for the vertex will be based on its height, so all vertices will be shades of gray. That’s

150 6. Tips from the Outdoorsman’s Journal

Figure 6.4

Height maps
generated using
the midpoint
displacement
algorithm, with
varying levels of
roughness

Figure 6.5

A 6×6 patch of brute force terrain vertices

TeamLRN

all that there is to rendering terrain using brute force. Here is a quick snippet
(using OpenGL) to show how we will be rendering the terrain:

void CBRUTE_FORCE::Render(void)
{

unsigned char ucColor;
int iZ;
int iX;

//loop through the Z-axis of the terrain
for(iZ=0; iZ<m_iSize-1; iZ++)
{

//begin a new triangle strip
glBegin(GL_TRIANGLE_STRIP);

//loop through the X-axis of the terrain
//this is where the triangle strip is constructed
for(iX=0; iX<m_iSize-1; iX++)
{

//use height-based coloring (high-points are
//light, low points are dark)
ucColor= GetTrueHeightAtPoint(iX, iZ);

//set the color with OpenGL, and render the point
glColor3ub(ucColor, ucColor, ucColor);
glVertex3f(iX, GetScaledHeightAtPoint(iX, iZ), iZ);

//use height-based coloring (high-points are
//light, low points are dark)
ucColor= GetTrueHeightAtPoint(iX, iZ+1);

//set the color with OpenGL, and render the point
glColor3ub(ucColor, ucColor, ucColor);
glVertex3f(iX, GetScaledHeightAtPoint(iX, iZ+1), iZ+1);

}

//end the triangle strip
glEnd();

}
}

151The Brute Force of Things

TeamLRN

Yup, that’s all that there is to it. Now, do yourself a favor and check out
OutdoorDemo_1 on the accompanying CD located in the folder associated with
this chapter (i.e.,
Chapter 06). It’s a
nice demo with a
ton of cool stuff to
do, and there is
even a nice little
height map “mini
map” up in the cor-
ner. Here are the
controls and a
screenshot of the
demo (see Figure
6.6):

Now, have some
fun with that demo
and meet me back
here for some tex-
ture fun when
you’re done.

152 6. Tips from the Outdoorsman’s Journal

Key Function

q or Escape Quit the program

w/s Move forward/backward

d/s Strafe right/left

h Save the current height map in the demo’s
directory

n Switch to wireframe mode

m Switch to “fill” mode

f Form a new height map using fault formation

p Form a new height map using midpoint
displacement

=/- Increase/decrease mouse sensitivity

]/[Increase/decrease movement speed

Figure 6.6

A screenshot from
OutdoorDemo_1

TeamLRN

Getting Dirty with Textures!
Sure, our terrain is great and all, but it still is seriously lacking in two areas: light-
ing, for one, and even more obviously, it lacks good textures! I mean, when was the
last time you walked through a grayscale mountain?! So, we obviously have some
work to do. I’m going to keep things very simple but also very cool. And although
the approach I’m going to be presenting is probably not the best, it is very simple
to implement. So, let’s get started.

I’m going to be doing all of the texturing in this demo using some very simple
methods. All we are going to be doing is stretching one texture (two a bit later)
across the entire patch of terrain, which is easier than it sounds. Remember that
texture coordinates are in a range of zero to one, so basically, all we have to do is
take the current vertex we are rendering and divide it by the maximum length of
the terrain. If we are rendering vertex (64, 32) in a 128×128 patch of terrain, that
would provide us with the texture coordinate (64/128, 32/128) or (0.50, 0.25). So,
all we are going to do (right now at least) is stretch a base grass texture (see Figure
6.7) across a patch of terrain, as in Figure 6.8.

Now for the fun part. The previous texture method was pretty trivial, but I can’t
make it that easy for you, can I? Notice the screenshot in Figure 6.8. Sure, it’s pretty
and all, but it looks a little . . . mountainous, doesn’t it? Though when was the last

153Getting Dirty with Textures!

Figure 6.7

The grass base texture for
the textured terrain

TeamLRN

time you saw a mountain completely covered in grass?! So, what we are going to do
is have a little bit of fun with multipass rendering. We are going to be making two
different texture passes: one for the base grass texture and one to apply a moun-
tain texture based on height. To do this, we’ll be increasing the alpha value of the
vertex to be rendered as its height increases. Therefore, a vertex with a height
value of 255 will be completely opaque, while a vertex with a height value of 32 will
be barely noticeable.

Here’s the exact same explanation, except this time I’ll give it a bit more detail. As
I said, we are going to be making two separate rendering passes. To do this, we are
going to split the render function into three different sections: the base texture
pass, the “mountain” pass, and finally a nontexture pass, just in case no textures are
passed in the function’s argument list. (Yes, I think this requires a code run-
through.)

//———————————————————————————————
// Name: CBRUTE_FORCE::Render - public
// Description: Render the terrain height field
// Arguments: -texTile1: the base texture to be used in the first pass
// -texTile2: the additional texture
// Return Value: None
//———————————————————————————————
void CBRUTE_FORCE::Render(IMAGE texTile1, IMAGE texTile2)
{

154 6. Tips from the Outdoorsman’s Journal

Figure 6.8

The texture in Figure
6.7 applied to a
patch of terrain

TeamLRN

float fTexLeft;
float fTexBottom;
float fTexTop;
float fColor;
int z;
int x;

The three tex variables are used for holding our texture coordinate generation for
the current vertices being rendered. The other variables serve the same function as
they did in the preceding section. Now let’s go over the first section of the new ren-
dering function. First we want to check to see if a base texture was even provided
(both of the function arguments default to zero) because why would we want to
waste a texture pass on something that’s not getting textured? It’s lunacy, I tell you!
We then will bind the texture and render everything.

//make the first rendering pass
if(texTile1)
{

//bind the first texture (base texture)
glBindTexture(GL_TEXTURE_2D, texTile1);

//loop through the Z-axis of the terrain
for(z=0; z<m_iSize-1; z++)
{

//begin a new triangle strip
glBegin(GL_TRIANGLE_STRIP);

//loop through the X-axis of the terrain
//this is where the triangle strip is constructed
for(x=0; x<m_iSize-1; x++)
{

//calculate the texture coordinates
fTexLeft = (float)x/m_iSize;
fTexBottom= (float)z/m_iSize;
fTexTop = (float)(z+1)/m_iSize;

//use height-based coloring (high-points are
//light, low points are dark)
fColor= GetTrueHeightAtPoint(x, z)/255.0f;

//set the color with OpenGL, and render the point

155Getting Dirty with Textures!

TeamLRN

glColor4f(fColor, fColor, fColor, 1.0f);
glTexCoord2f(fTexLeft, fTexBottom);
glVertex3f(x, GetScaledHeightAtPoint(x, z), z);

//use height-based coloring (high-points are
//light, low points are dark)
fColor= GetTrueHeightAtPoint(x, z+1)/255.0f;

//set the color with OpenGL, and render the point
glColor4f(fColor, fColor, fColor, 1.0f);
glTexCoord2f(fTexLeft, fTexTop);
glVertex3f(x, GetScaledHeightAtPoint(x, z+1), z+1);

}

//end the triangle strip
glEnd();

}
}

Now, if that looks completely new to you, you obviously haven’t been paying atten-
tion to what I’ve been writing, which hurts my feelings. But before I go cry and
wallow in self-pity, I’m going to explain what is different from the old rendering rou-
tine. What should be most obvious are the three lines where we calculate the tex-
ture coordinates, but you already know how to do that because I did such an
excellent job of explaining the calculations earlier—or didn’t you listen to that
either? The only other change present here is the two calls to glTexCoord2f, and
those are pretty self-explanatory. So, now that we covered that, we need to move on
to the second section of the rendering routine.

//make the second rendering pass
if(texTile2)
{

//bind the second texture (for higher areas on the terrain)
glBindTexture(GL_TEXTURE_2D, texTile2);

//loop through the Z-axis of the terrain
for(z=0; z<m_iSize-1; z++)
{

//begin a new triangle strip
glBegin(GL_TRIANGLE_STRIP);

156 6. Tips from the Outdoorsman’s Journal

TeamLRN

//loop through the X-axis of the terrain
//this is where the triangle strip is constructed
for(x=0; x<m_iSize-1; x++)
{

//calculate the texture coordinates
fTexLeft = (float)x/m_iSize;
fTexBottom= (float)z/m_iSize;
fTexTop = (float)(z+1)/m_iSize;

//use height-based coloring (high-points are
//light, low points are dark)
fColor= GetTrueHeightAtPoint(x, z)/255.0f;

//set the color with OpenGL, and render the point
glColor4f(fColor, fColor, fColor, fColor);
glTexCoord2f(fTexLeft, fTexBottom);
glVertex3f(x, GetScaledHeightAtPoint(x, z), z);

//use height-based coloring (high-points are
//light, low points are dark)
fColor= GetTrueHeightAtPoint(x, z+1)/255.0f;

//set the color with OpenGL, and render the point
glColor4f(fColor, fColor, fColor, fColor);
glTexCoord2f(fTexLeft, fTexTop);
glVertex3f(x, GetScaledHeightAtPoint(x, z+1), z+1);

}

//end the triangle strip
glEnd();

}
}

The only difference here from the last section, in case you didn’t notice, is in the
alpha value that we pass for glColor4f, which defines the visibility of the second tex-
ture we are adding to the image. Remember that the higher the height value, the
more opaque the second texture is. So, if we had a low value of 27, for example, it
would be textured like a nice grassy field, but if we had a higher value of 227, it
would be textured like a rugged mountaintop. Figure 6.9 shows the additional tex-
ture, and Figure 6.10 shows the multitextured version of Figure 6.8.

157Getting Dirty with Textures!

TeamLRN

That’s all the information I’m going to give you about texturing in this chapter. If
my nice little texturing technique was too simple or too slow for you, check out
some of the excellent references in the section “Going Further: Deeper into the
Wilderness” later in this chapter. In fact, I implore that you go check them out
right now because making multiple passes for terrain isn’t just a very fast technique;
it’s great for quick-and-dirty projects in which you need some good-looking results.

158 6. Tips from the Outdoorsman’s Journal

Figure 6.9

The additional texture for
the terrain, just a rock
texture that is repeated over
and over

Figure 6.10

The multitextured
version of Figure 6.8

TeamLRN

Adding Light to Your Life
Adding lighting to an outdoor world can make a huge difference in the overall
mood and environment projected from your rendered scene. The lighting for the
last couple of demos was, well, seriously flawed. It is probably the most unrealistic
model possible. We just cannot have that, so I think it’s about time for us to get to
work on making a new lighting system for our outdoor world. For this task, we are
going to use a very cool method called “Slope Lighting.”4

To slope light terrain, all we are going to do is retrieve the height from the vertex
next to the current vertex (which direction to go will be dictated by the light’s
direction) and then subtract it by the current vertex’s height. The only kicker of
the whole algorithm is that the light’s direction must be in increments of 45
degrees. For instance, the direction of the light in the demo (OutdoorDemo_3) is
(1, 1), but we could move it 90 degrees and give it a direction of (–1, 1), as seen in
Figure 6.11.

Now, does that look good, or does that look good? Yeah, that’s what I thought!
Anyway, let’s do a code run-through and re-explain some of the concepts we just
touched on in more detail. First of all, our slope-lighting system does all of its cal-
culations per frame, so we might as well give the user as much power in customiz-
ing the lighting system as we can. To do this, we add a few variables to the ol’
CTERRAIN class:

CVECTOR m_vecLightColor; //the color of the light
float m_fLightSoftness; //the light softness
float m_fMinBrightness; //minimum shading value
float m_fMaxBrightness; //maximum shading value

159Adding Light to Your Life

Figure 6.11

Left image: Slope-
lighted terrain with
a light direction of
(1, 1)

Right image: Slope-
lighted terrain with
a light direction of
(–1, 1)

TeamLRN

int m_iDirectionX; //X-direction of the light
int m_iDirectionZ; //Z-direction of the light
bool m_bDoSlopeLighting; //is slope lighting enabled/disabled?

These are all the variables we need. We also need to create a pair of functions to
enable/disable slope lighting and one to customize the lighting system, but those
are all very self-explanatory. What I want to concentrate on is the function that will
be calculating the shading value for a pair of (X, Z) values.

//———————————————————————————————
// Name: CTERRAIN::CalculateSlopeLighting - public
// Description: Calculates the shading value using the Slope
// algorithm (Charlie Van Noland)
// Arguments: -x, z: the vertex to calculate lighting for
// Return Value: A floating point value: the shading level for a
// vertex
//———————————————————————————————
float CTERRAIN::CalculateSlopeLighting(int x, int z)
{

float fShade;

//if slope lighting is not enabled, then just return a very
//bright color value (white)
if(!m_bDoSlopeLighting)

return 1;

//ensure that we won’t be stepping over array boundaries by
//doing this
if(z>=m_iDirectionZ && x>=m_iDirectionX)
{

//calculate the shading value using the “slope
//lighting” algorithm
fShade= 1-(GetTrueHeightAtPoint(x-m_iDirectionX,

z-m_iDirectionZ) -
GetTrueHeightAtPoint(x, z))/m_fLightSoftness;

}

//if we are, then just return a very bright color value (white)
else

fShade= 1;

160 6. Tips from the Outdoorsman’s Journal

TeamLRN

//clamp the shading value to the min/max brightness boundaries
if(fShade<m_fMinBrightness)

fShade= m_fMinBrightness;
if(fShade>m_fMaxBrightness)

fShade= m_fMaxBrightness;

//return the final shading value
return fShade;

}

The most important part of this nice little snippet is the middle, where we calculate
fShade. That is basically the whole slope lighting algorithm in one simple segment.
Given the light direction, all we have to do is calculate the difference between the
height of the vertex passed as an argument from the vertex before it (in the direc-
tion of the light). Here’s a slight analogy: In a tightly packed city, there are some
huge skyscrapers, and your little flower shop resides right next to one. Let’s say the
sun is directly behind the building from your point of view. Wouldn’t things around
you be a lot darker than if you were directly in front of the huge skyscraper (where
you could receive the sun’s rays in full)? Well, that’s exactly what is going on here.
In case you’re more of a visual learner, check out Figure 6.12.

161Adding Light to Your Life

Figure 6.12

The slope lighting algorithm, using the
building analogy

TeamLRN

Now, for a better display of how a patch of terrain would get shaded, check out
Figure 6.13. I didn’t bother texturing the terrain at all, so you can see the full effect
of how a blank patch of terrain would be shaded. Cool, huh?

That’s all that there is to slope lighting. I told you it was an easy algorithm to use,
and yet it still provides great-looking results. It’s all so exciting! Go check out
OutdoorDemo_3 to see slope lighting in action. The controls for the demo are the
exact same as they have been for the last couple. Next on the list is fog. Yes, fog!

Lost in the Fog
I’m not going into complicated fog issues here. I just want to discuss some of the
benefits of fog and give you a simple demo to check out. I didn’t use any compli-
cated techniques to render the fog. I just used the API’s hardware-accelerated fog
features—nothing too great, but hey, it works!

Adding fog greatly increases the realism of an outdoor system. (Of course, you’d
want to implement a better system than the one described here to be even more
realistic. See the section “Going Further: Deeper into the Wilderness” later in this
chapter.) Depending on how dense you make the fog, it can greatly change the
mood of the entire scene. It also helps give the viewer a better sense of depth in
the 3-D scene. Finally, fog helps hide the far clipping plane; once an object
becomes completely absorbed in the fog, you might as well just clip it! So, you see,

162 6. Tips from the Outdoorsman’s Journal

Figure 6.13

A nontextured but
slope-lit patch of
terrain

TeamLRN

fog has other benefits in addition to its aesthetic value, so it’s very worth your while
to spend a bit of time making your fog system very high quality. Check out
OutdoorDemo_4 for a simple implementation, just so you can see the benefits of
fog that were previously listed (see Figure 6.14).

Fun with Skyboxes
A skybox is just that, a box with a series of textures that together form a complete
sky image. Remember when you were a little kid and your teacher made you cut
out a series of little boxes that connected to form a cube? Well, that’s basically what
you’re going to be doing here, except that little cube is a bit more complicated. It
looks a little like Figure 6.15.

Now what we have to do is “cut” those images out and “glue” them together to make
a nice-looking area surrounding our terrain. This isn’t nearly as hard as it sounds.
How many people, for their first 3-D project, made a simple cube? I’m hoping that
most of you started out with something similar. The concept barely changes here
except the position is a bit different, and you’re adding textures to that simple cube.

To render the skybox, we just need six textures for the sides of the skybox, the cen-
ter of the skybox (this should be the position of the camera), the minimum vertex
of the skybox, and the maximum vertex of the skybox. Yup, that’s all that we need!
Check out Figure 6.16 for a visual list of the requirements.

163Fun with Skyboxes

Figure 6.14

A patch of terrain
covered in fog

TeamLRN

164 6. Tips from the Outdoorsman’s Journal

Figure 6.15

A series of textures
that make up a
skybox

Figure 6.16

Visual requirements
needed to render a skybox

TeamLRN

We want the skybox to move along with the camera (we don’t want the user to walk
into a mountain that looks like it should still be an eternity away!), so we’ll update
the center of the skybox with the camera’s position every frame. Also, skyboxes
have one huge advantage that I have not discussed up to this point. If we disable
depth testing and render the skybox directly after updating the view matrix (using
our camera’s utility function), we can eliminate the need to clear the color buffer
(though we still need to clear the depth buffer). This provides a very large speed
increase and makes a skybox both pretty and economical for our cause.

To render the skybox, you will want to “push” the current view matrix onto the
stack and then translate to the skybox’s center. You then would proceed to render
the box using the min/max vertices, remembering to provide texture coordinates
for each vertex (it’s sort of important!). Alas, there’s no code run-through this time
because the code is very simple to understand and is rather repetitive to read. So,
go ahead and check out OutdoorDemo_5 in Figure 6.17. Note how I changed the
color of the slope lighting system to go along with the skybox textures. Now we are
done with our fun outdoor world walkthrough . . . *dramatic music plays as light-
ning flares in the background and an evil maniacal laughter is heard*

165Fun with Skyboxes

Figure 6.17

Terrain rendered
with a skybox
used to provide
the backdrop

TeamLRN

Going Further: Deeper into
the Wilderness
Brute force is definitely not the way to go for terrain rendering. Sure, it looks good
and all, but it really is not practical in the slightest. Here are some great links that
will give you information on more complicated, continuous-level-of-detail (CLOD)
algorithms that are all very, very nice:

www.gamasutra.com/features/20000228/ulrich_01.htm

www.llnl.gov/graphics/ROAM/

http://gamasutra.com/features/20000403/turner_01.htm

www.flipcode.com/tutorials/tut_geomipmaps.shtml

For all of the demos in this chapter, I used a dynamic height map, so it was hard to
predefine a texture map for it. I left out some stuff about how to generate good-
looking texture maps ahead of time, so here are some good resources for doing
that:

www.flipcode.com/tutorials/tut_terrtex.shtml

www.flipcode.com/tutorials/tut_proctext.shtml

My texture “tile” technique was okay, but it was far from fast and did not take
advantage of hardware multitexturing at all. Jeff Lander, however, implemented a
good-looking texture “tile” technique. A graphics card with at least three texture
units is needed for good performance, but it’s an interesting read nevertheless.

www.delphi3d.net/articles/printarticle.php?article=terraintex.htm

Finding a good terrain-lighting tutorial is definitely not an easy task. Fortunately,
Game Developer Magazine is a very, very, very great resource. If you haven’t subscribed
to it yet, do yourself a favor and go get it. Check out the July 2001 issue, which con-
tains an article called “Photorealistic Terrain Lighting in Real Time” by Naty
Hoffman and Kenny Mitchell. The article describes two very good terrain-lighting
algorithms and is definitely worth a look.

Since my fog explanation and demo weren’t the greatest, here is a recent article
about rendering volumetric fog:

www.gamasutra.com/features/20011003/boyd_pfv.htm

166 6. Tips from the Outdoorsman’s Journal

TeamLRN

I know how much of a pain it is to generate skybox textures. In case you don’t know
how much of a pain it is, let me tell you: It’s a pain! Some nice guys had the idea of
making a tool whose sole purpose is to make the creation process easier. This tool
is called “Skypaint,” and you can check it out at the following site:

www.wasabisoft.com/

Conclusion: Back to the
Indoors?
This chapter was a short whirlwind of topics related to outdoor world program-
ming. There’s so much more to cover, though, that it’s impossible to fit it all into
one short chapter. With that said, I’m hoping you have enjoyed this chapter thor-
oughly and are interested in a few of the variety of applicable topics. I’m also hop-
ing you will continue your research into the world of outdoor world programming
by using the links in the preceding section. Go off into the vast wilderness and con-
tinue your research!

Bibliography
1Gamma, E., et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Boston: Addison-Wesley, 1994.
2Shankel, Jason. “Fractal Terrain Generation—Fault Formation.” Game

Programming Gems. Rockland: Charles River Media, 2000.
3Shankel, Jason (2000). “Fractal Terrain Generation—Midpoint Displacement.”

Game Programming Gems. Rockland: Charles River Media, 2000.
4Van Noland, Charlie. “‘Slope Lighting’ Terrain.”

www.gamedev.net/reference/articles/article1436.asp, 2002.

167Conclusion: Back to the Indoors?

TeamLRN

This page intentionally left blank

TeamLRN

TRICK 7

In the Midst
of 3-D,
There’s

Still Text
Ben Humphrey, GameTutorials,

www.GameTutorials.com

TeamLRN

Introduction
In the age of advanced computer graphics and realism, many people forget the
time (or weren’t born yet) when games were just ASCII characters printed on the
screen. With the creativity of a good writer, you were immersed in the fantastic
world of text. There was no need for intense graphics cards that could pull off real-
time masterpieces, and the only roadblock for a game designer was his own imagi-
nation. When someone thinks of text adventure games, what comes to mind is
usually Zork, Spell Bound, or MUDDs (multiuser Dungeons and Dragons), to name a
few. These are usually the first types of games that a game programmer attempts
because they are so easy to create with one person and yet are incredibly fun, offer-
ing endless possibilities for creative game play.

For those of you who were born after 1985 or were lost with Amelia Earhart in the
Bermuda Triangle, you might not know what constitutes a “text adventure.” Let me
explain. A text adventure is a game played by reading the text on the screen and typ-
ing commands into a DOS/UNIX-like prompt. There usually are no graphics in
these games, unless they’re created with ASCII characters. To maneuver around the
world, you type directions such as north, south, up, down, east, west, left, or right.
Think of it as reading a book, but you are the captain of the hero, as in a “Choose
Your Own Adventure” book. Each room or area you are in generally is described to
you in a few sentences. For example:

“The hallway off to your right is guarded by a bunch of rocks that appear impassible. A sob-
bing woman is kneeling down with her seemingly lifeless daughter. The earthquake continues
to rumble. You’d better get out of here fast!

Directions [north right south]”

After reading the room’s description, you then have the option of performing
some task in that room, such as attacking an enemy, taking an object, dropping an
object, looking at an object, or perhaps talking to a character that resides in the
room. If you decide not to interact with anything or if there is nothing to do in that
room, there is usually a list of valid directions in which you can go. After you manu-
ally type in the direction and hit Return, you either advance to a new room or area,
or the game displays a message as to why you can’t go that way.

170 7. In the Midst of 3-D, There’s Still Text

TeamLRN

Though many text adventures might not use any form of graphics other than the
pixels of which the font is comprised, some add color to different parts of the text
to make it more interesting to the eye. MUDDs are a perfect example of this tech-
nique to spice up what the viewer is seeing. As color became more popular, so did
colored pictures of ASCII graphics. Surprisingly enough, one can make a pretty
detailed representation of an image by using some color and the characters on the
keyboard. There are many programs that actually take in an image and convert it
to text. It’s uncanny when you load it into your word processor and change the
font to a small size—it looks almost identical to the picture! Unfortunately, we
won’t be delving into ASCII graphics in any of the following versions of our text
adventure.

In the following sections, I will show you how to create a modular text adventure,
which in the end will allow you to create a whole new game just by changing a text
file. If you’re a C/C++ programmer who is interested in making a text adventure
but don’t know where to begin, this is for you! It doesn’t matter if you lack strong
programming skills or just need a simple design to get you going—everything will
be discussed here.

What Will Be
Learned/Covered
Instead of throwing the source code of a finished, basic text adventure at you all at
once, I will divide the final outcome into three different versions. Each of these ver-
sions will be a separate project on the accompanying CD-ROM to follow along with.
Keep in mind that we will not cover every major aspect of a text adventure, but the
base I provide should be enough to get you going toward creating the rest.
Sometimes beginners just need a push in the right direction, and that’s what I’m
going to provide.

The first version will focus on getting the world up and running and being able to
walk around with collision detection. After sparking your interest with that simple
step, we will move on to the second version, which will add the capability to look at
objects in the room that the character is currently in. This allows the user to find
out more information about the room through interaction without being forced to
read it all in a long paragraph. The final version will demonstrate adding enemies
to your world. We will also add the basic fighting code. This should give you a base
to do the rest of the text adventure yourself. By seeing how everything is set up, you

171What Will Be Learned/Covered

TeamLRN

will be able to pick up where I leave off. Near the end, I will discuss where to go
from here and will provide some ideas for how to implement those ideas.

I am quite happy about the modularity of this design and how you can create a
whole new game just by changing the data in the text file. That’s not to say that the
idea is anything compared with professional games—I would imagine most games
that are developed allow this option within their level editors—but I am excited to
share this simple idea with others who don’t have much experience with program-
ming and who need a boost to get their first game up and running. You can then
apply these simple concepts to more advanced games that you make in the future.

Another large benefit to creating the game with one text file is that once you cre-
ate your first game, you need only distribute the executable once and then the text
file for each new game you make. This is also a cool thing to do with a little
brother or sister who can’t program but who wants to make his or her own games.
All you need to do is just teach them how to set up the text file. You’ll be surprised
by how little code is used to create such a cool result.

To follow this chapter, you will need to be somewhat comfortable with the basics of
programming. Some of these basics include functions, references, while loops,
structures, and especially file input. The source code discussed will be in C++ cre-
ated with Microsoft’s Visual Studio. For more examples and to gain a better under-
standing of these concepts, you can check out a large collection of C++ tutorials at
www.GameTutorials.com if you happen to find yourself lost while reading. Let’s
jump right in.

How Our Adventure Game
Works
In this section, we will go over the design plan for how the game will work. The
code in this chapter isn’t as important as the theory behind it because everyone has
his own way of programming an idea. With this in mind, before the code is intro-
duced, I will go over each of the three stepping-stone versions that we will create. If
you want to follow along with each version of the text adventure explanations and
source code separately (and not confuse yourself with the other two versions before
you fully understand the theory and implementation of the first), I suggest you
read the overall description behind the first version, skip down to the implementa-
tion, and then come back and do the same for the second and third. Just to clarify
for those of you who might be fairly new to programming terminology, when I say
implementation, I am referring to the actual C++ code.

172 7. In the Midst of 3-D, There’s Still Text

TeamLRN

First Things First—Let’s Get Ta
Steppin’
Before you can create any type of adventure game, you need a world to move
around in. This important part of the game is what we’ll be covering first. Just so
we are on the same page of understanding what is being mentioned, the areas in
our world will be called rooms.

Describing a Room
A room will consist of a place where the main character is able to go, and it will ini-
tially have a room name and room description. In each room, there will also be a
list of directions in which the player can and can’t go, though he won’t always know
this information by the room description. For instance, some room descriptions
might explicitly say something about a certain direction—perhaps that it is blocked
off or that something exists off in that direction—whereas other descriptions may
omit any details regarding directions.

A good text adventure usually will try to be as descriptive as possible so that players
can immerse themselves in the world. A great description also helps the gamer
become familiar with each room so that he knows where he is going and where he
has been. It’s a lot easier sometimes when playing a 2-D adventure game to orient
yourself in the world, due to all the different colors and recognizable landmarks.

The rooms will be read from a text file simply titled World.txt. The file will be set
up so that we can add unlimited rooms to our game without ever having to touch a
bit of code. At the end of this first version, we will be able to move around the
rooms with collision detection and view the room descriptions.

Our First Room Block
The basic premise of our game text file is to create room blocks that tell us every-
thing there is to know about that room. Let’s look at a sample room block:

<Middle>
You step into a house where you are nearly
blinded by the light shining through the window.
You have been searching for your friend who was captured.
The trail has led you to this mansion.
There is a door in every direction.*
<north> Top
<east> Right

173How Our Adventure Game Works

TeamLRN

<south> Bottom
<west> Left

The top header is the room’s name, “Middle.” We put the brackets (< >) around it
to make it more obvious that it’s a new room. The next paragraph is the room’s
description. I hope you are looking at these descriptions and thinking that you
could write something 10 times better in your sleep. Notice at the end of the
description that there is an asterisk (*). This tells us that the room description is
done. You will see why this is important when we get to the code.

The next four lines in the block are the room names that are located in each asso-
ciated direction. For example:

<north> Top

The <north> indicates the direction, and Top is the name of the room in that
direction.

What if there isn’t a room in a certain direction? In that situation, a None goes in
place of the room name, as follows:

<north> None

This means that no room is in the north direction, and we can’t go that way. This is
how our simple collision detection works. Looking back at our original room block,
if the user types “north”, the game will already have the room name that is north of
the current room stored in our room structure (which I will introduce later). The
game will then look in the level file (World.txt) for a room header entitled <Top>
and then will read its room data. As you can imagine, you can link rooms to other
rooms without touching any extra code.

Another special keyword is End. If a room is titled “End,” we know that the charac-
ter has reached the end of the game. After the room is loaded, we check the room
name for this reserved keyword. If the room bares this name, we display a quit mes-
sage and exit from the program after the user hits a key. This is a simple solution,
but most likely you will eventually want to give the user some options before quit-
ting the game, like possibly loading a new game or starting once again from the
beginning.

If there is an “End,” there must be a beginning right? Well, yes, as a matter of fact
there is. At the top of the game text file, there is this:

<start> Middle

174 7. In the Midst of 3-D, There’s Still Text

TeamLRN

The <start> section tells us that the room given after it will be the room in which
the player ends up when the game begins. For instance, the room after the section
is Middle. That will be the room block that is loaded first and displayed to the
screen. Instead of creating a <start> section, you could just put the starting room as
the first room block, but eventually, if you put in the option to save games, the
starting room won’t always be the beginning room (just some foresight you might
want to think about).

Moving the Character from Room to Room
It’s great that we understand a bit about the room block, but how does the move-
ment really work? This is most likely one of the biggest stumbling blocks for begin-
ners who are creating a text adventure. Should we load in the whole text file? No,
that is definitely not needed. Since we are only displaying one room to the screen,
there is no need to load more than one room at a time. This means that we will be
loading from the file every time the character advances to a new room.

If you wanted to get really advanced, you could cache the rooms you have already
visited or only the rooms that are visited more than once, but it isn’t necessary. The
only problem I foresee is if your game file is so huge that it takes three seconds to
read from it between each room. In this case, you would just split up the levels into
different files. Probably only a few more lines of code would be added to remedy
this. You could then put a <File> section in the room block that would tell you
which file to load from for the next room(s).

Getting back to the actual movement, how do you move the character to the next
room once the action “north” is specified? Well, since we load all the data for the
room we are currently in, we have the room name that is to the north of the cur-
rent room. All we need to do is search for that room header in the game file. For
instance, if the <north> section that was read in for the current room looked like
this:

<north> Hallway2

We’d know that the room header is going to look like this:

<Hallway2>

We just have to add on the < and > characters to each end of the room name and
then search for that string in the file. Once we find it, we know that the next line
should hold the rest of the block information for that room. That’s how it works.
Simple enough, huh? This way, we only have to have one structure in code that
holds the current room information read in. There’s no need for a huge array that

175How Our Adventure Game Works

TeamLRN

stores a bunch of rooms and their information, a simple concept for a beginning
game programmer.

Mapping Out Your Game
As with any good game that is created, you are going to want to design it first. I sug-
gest that you create a visual map on paper that has the rooms and their links to
every other room. This will save you a lot of time when creating the world text file
because you won’t have to try to visualize the whole map and where rooms should
go—it’s right in front of you already done. Take a look at Figure 7.1.

Instead of creating your game levels on-the-fly, it’s better to map them out first to
get a visual idea of level design. Figure 7.1 is an example of one such map. We rep-
resent the rooms with 3-D boxes with the name of each room imprinted on its
front. Of course, for your game, you will want to be more descriptive than just giv-
ing room numbers. You don’t want such ambiguous names because it won’t be

176 7. In the Midst of 3-D, There’s Still Text

Figure 7.1

Map layout

TeamLRN

clear what part of the world you are in. Names such as Desert1, Desert2, Oasis,
Cottage5, Castle Entrance, and so on, will help you fully grasp what your world will
be like before you create the text file.

Notice the lines that link from one room to another. This shows in which directions
you can go from that room as well as which room(s) each direction leads to.
Microsoft PowerPoint is a great tool for creating such maps. It has a wide variety of
2-D/3-D shapes and connectors that are easy to use and read.

The commands available in the first version are as follows:

look north south east west help quit.

You can imagine what they do, but let’s list them here just in case:

• look Displays the room description again

• north, south, east, and west Moves the player in that direction

• help Displays a list of all of the commands available

• quit Umm . . . I forgot what this one does . . .

“Whatchu Lookin’ At?”
This phrase does pose a good question regarding our text adventure. To extract
more information from our rooms, we are going to need to be able to ask the
game questions about certain things we see. Realistically, if we enter into a room or
area, our eyes most likely peer around to learn more about our surroundings, pos-
sibly focusing on something or someone that might catch our eye or pique our
interest. By allowing the player to investigate further into what he sees, the game
becomes that much more real and enjoyable to play. This option is what we intro-
duce in the next version of our text adventure.

Adding A <look> Section to Our Room
Block
To allow the user to more closely examine things in a room, we need to add a new
section to our room block entitled <look>. Adding onto our previous room block,
take a look at the following new additions (which are italicized):

<Middle>
You step into a house where you are nearly
blinded by the light shining through the [window].
You have been searching for your friend who was captured.

177How Our Adventure Game Works

TeamLRN

The trail has led you to this mansion.
There is a door in every direction.*
<north> Top
<east> Right
<south> Bottom
<west> Left
<look> 1 window

<Middle|window>
The light pierces your eyes, causing you to wince in pain each time you look

directly at the window.*

Let’s dissect the new additions. First notice the new section in the room block:

<look> 1 window

The 1 tells us that there is only one thing to look at in the room. If there was a 0,
that would mean there are no keywords to read in. The remaining information in
that section is the word that the player is able to view. The “view” keyword will be a
new command to add to our previous commands. When the user types “view”, a
prompt is given to have him type in the word he wishes to look at. If the word is
valid, the description of that thing will be displayed on the screen; otherwise, an
error message is displayed that indicates there is nothing to look at by that name.
Keep in mind that we know which words can be viewed or not because we will read
in all of the keywords when we read in the room information for the first time.

Adding a View Block
So, where does the description of the thing that was viewed come from? Let’s look
at the new header block that was added:

<Middle|window>
The light pierces your eyes, causing you to wince in pain each time you look

directly at the window.*

We will call this the view block. Like the room block, the view block has a header
and a description. However, it does not have any subsections attached to it. At the
end of this chapter, I will give some suggestions for things you might want to add to
it, but for now, we just want a description.

178 7. In the Midst of 3-D, There’s Still Text

TeamLRN

Unlike the room block header, the view block header has two words separated by a
pipe character (|), which is right below the Backspace key on most keyboards. The
first word is the room name in which the object resides. The word after the separa-
tor is the actual keyword being viewed. Keep in mind that we do not read this infor-
mation in when we load a new room. This view block is only read in when the user
tries to view that keyword. This is so that we don’t have to load in all the view
descriptions at once—we can only view one at a time anyway. Once again, you
would probably want to change this if the game file was large enough to justify
doing so.

If the player tries to view something, we store the keyword he typed in and then
start concatenating some information. In pseudo code, we want to have something
like this:

strViewHeader = ”<” + strCurrentRoom + “|” + strKeyword + “>”;

The result of this string gives us the view block header that we can then search for
in the file. After finding that line, the next line is the description to be displayed,
which can then be read in. It also must have an asterisk (*) at the end of the
description, just like the room description. This is because we are using the func-
tion getline(), which allows us to read in a string from the file until a certain char-
acter is reached. It can be any character you decide, but I chose the asterisk. Keep
in mind that this view block can be anywhere in the game file, but it’s good to put
it in the same area as the room to which it refers.

Looking at the room description of our newly updated room block, you’ll notice
that there are brackets around the window keyword.

...blinded by the light shining through the [window].

This has no significance other than letting the player know which words can be fur-
ther investigated. Some people might not want to play a game in which they have
to guess almost every word on the screen to see if it has any extra information. You
might want to do both, however. Some words can be secret, and some can be
obvious.

179How Our Adventure Game Works

TeamLRN

How Can We Have a Frag Count
Without Any Monsters?
Who says that only first-person shooters can have frag counts? Okay, okay, so we
won’t implement a frag counter in our text adventure, but we will introduce mon-
sters into the final mix. After all, as my grandma always says, “If I ain’t killing some-
thing, I ain’t happy.” Keep in mind that when I use the term “monster,” I am
referring to the threat to our character in our game. In your game, you might call
it a person or another entity.

Adding a Monster to Our Room Block
Very similar to the <look> section we added in the previous version, we want to add
an <enemy> section that holds the enemy (if any) in the current room. Examine a
sample room block with the following new section:

<Attic>
Entering into the upper loft of the house, a cool air runs through
your body as if a warning. Something is definitely wrong here.
Your heartbeat seems to be imitating one of a squirrels’.
There is nowhere to go but back down.*
<north> None
<east> None
<south> Bedroom
<west> None
<look> 0
<enemy> goblin

<Attic|goblin>
<Health> 135
<Damage> 17
<Attack> The goblin claws your face off.*

In this example, there is nothing to look at, denoted by the 0 in the <look> section.
There is, however, an enemy to fight. The <enemy> section works somewhat similarly
to the <look> section. The only difference is that we only allow one enemy per
room. I’ll let you add the code to allow more than one. It should work exactly like
the view keywords. Just put a number in front of the first enemy’s name to specify
how many there are.

180 7. In the Midst of 3-D, There’s Still Text

TeamLRN

Since we only have one monster per room, we can read in the monster’s informa-
tion immediately upon reading in the room. In our text adventure, the monster
will attack right when the player enters the room. In a good game, you want the
enemies to have different characteristics, but I chose to not complicate the code by
adding things you can do yourself. I provide the shell and base; you provide the
cool stuff.

Adding a Monster Block
Closely related to the view block, we want to create an enemy block that will store all
the information about the monster. Observe the following block:

<Attic|goblin>
<Health> 135
<Damage> 17
<Attack> The goblin claws your face off.*

The first line in this block is the header that stores the room that the monster is in,
along with the name of the monster.

<Attic|goblin>

Looking back on what we learned in the previous version, you can just concatenate
the appropriate information to form the header string to be searched for within
the game file. Once the header is found, the next three lines can be read in.

The remaining three lines are pretty self-explanatory. The first line holds the mon-
ster’s health, the next line holds the damage that the monster takes off the player
each time they strike, and the remaining line is the attack message printed out to
the screen every time. This information is read in and stored in the monster struc-
ture we will create. Of course, in your game, you should add a bunch more quali-
ties that the monster should have, but once again, we will stick to a base to which
you can later add on.

Adding the Player Information
In the previous section, we mentioned that the monster had a damage attribute
that took off health from the player. For us to take off health, there first has to be a
player. In this final version of the text adventure (at least for our purposes), we will
add the player information to the top of the game file.

<Name> Troy
<health> 275

181How Our Adventure Game Works

TeamLRN

<weapon> dagger
<damage> 21
<Start> Middle

This information will be read in when we start the game. The player’s name,
health, weapon, and weapon damage will be loaded. Notice that the starting room
is directly underneath the player data. For our purposes, the player won’t be able
to choose his name or information, but it will be the same every time. These stats
and information will all be loaded into the player structure, which we will create in
this version. I will talk more about incorporating saved games and such near the
end of the chapter.

A new keyword will be added to our command list regarding the character’s infor-
mation. We will be able to type “status” and have all the player information dis-
played. That way, we at least know our current health so that we don’t unwittingly
go into battle with two hit points (hp).

“Hey, Take That Sword Out of My
Stomach or I’m Tellin’ Mom!”
So far, there has been mention of battles in our game, but how are they going to
work? I’ll tell you one thing: The battle scenes in our game are going to make the
movie Braveheart seem like a nursery rhyme. Okay, maybe not, but don’t worry. You
can add on to them later. As a matter of fact, the monotony of our battles is going
to be so great that it will force you to make them better for fear of getting beat up
by your gaming audience.

The battle between the player and the monster begins immediately upon entering
the room, assuming there is an enemy in the room. Surprisingly, the monster will
attack first. Health from the player is taken according to the monster’s damage stat.
Then it’s the player’s turn to inflict damage. Depending on his damage stat, the
monster loses some health after each blow. As this is going on, messages are being
flashed to the screen about who lost what and the current health of each. This con-
tinues to go on until someone is dead. Fun, huh? I know, I know, but it should give
you the desire to fix it.

In fact, there are no missed attacks, no random damages taken, and no stirring bat-
tle music—just pure brute force. You can imagine the emotions that will be evoked
as your eyes glaze over each new status update after every successive attack. I rec-
ommend having some food and water nearby in case you become so engrossed in
the game that you can’t break yourself away from the computer to open the fridge.

182 7. In the Midst of 3-D, There’s Still Text

TeamLRN

Examining the Code
Now that we have introduced our design for the game, let’s transfer it from
thought to action. This section will go through all three versions of our text adven-
ture’s code and will shed some light on its meaning. Once again, after you finish
each version, I would suggest that you go back and reread the next version’s theory
in the previous section. This will give you a fresh view of what’s going on before div-
ing into the code. I will, however, try to repeat as much as seems fit to help you bet-
ter follow along.

Version 1—Mobility and Collision
Detection
Get your shoes on because we’ll be running around in no time (and yes, I give you
permission to use this line on a blind date). Since there is only one source file for
the first two versions, just assume we are discussing Main.cpp unless otherwise
stated. In the final stepping stone, we will separate the game code into its own
source and header file.

Creating the Room Structure and
Defines
The following code is probably the most important since it will initialize GAME_FILE
to the file that contains the data for the game world.

// This is a #define for our game file.
#define GAME_FILE “World.txt”

The level data will be read from a text file called World.txt. You can change this to
whatever name you want, most likely the name of your game. It is a good idea to
change the extension to .lev or something similar so that it’s not so obvious that it’s
a text file. It’s important to make sure that this file is in the same directory as the
executable when running it outside your visual compiler, if you have one. I person-
ally use Visual Studio C++.

// Defines to make our return values from GetInput() more clear
#define STILL_PLAYING 1
#define QUIT 0

GetInput() is a function that handles our input from the user. It will return QUIT if
we typed “quit”; otherwise, it returns STILL_PLAYING to let our main loop know to

183Examining the Code

TeamLRN

keep going. It’s a good idea to always use #defines or constants, not numbers. That
is what separates good, clean, readable code from bad code.

// This is our room structure, which holds the current room information
struct tRoom
{

string strCurrentRoom; // The current room we are in
string strRoomDescription; // The current room description
string strRoomNorth; // The room name that is to the north
string strRoomEast; // The room name that is to the east
string strRoomSouth; // The room name that is to the south
string strRoomWest; // The room name that is to the west

};

We need to know what the current room’s name is, the current room’s description,
and what room names are off in each direction. We do not read in the whole level
at the beginning, just the current room’s information. When moving in a direction,
we just search the game file (World.txt) for the room name that is in the direction
we went. Then we read its information and start all over again in the loop. Notice
that we put a t in front of Room to show that it’s a structure. It’s a good idea to get in
the habit of doing this. If this were a class, we would call it CRoom. That is what many
professionals try to use as a coding standard, but each project lead varies. It is not
as important to follow the conventions I mention as to choose a convention and
stick with it.

An str is also put in front of our variable names that are of type “string.” Some peo-
ple use sz (an old C standard). Next let’s take a look at the main() function so that
you see what is going on.

Defining Our main()
Now let’s take a look at our main() function. This function is the workhorse of the
entire program, so it is important to understand it.

// This is our main function that runs the program
int main()
{

The file pointer and room structure instances are created in main() and then passed
down through our functions to eliminate global variables. We will be using the C++
ifstream class to read from our game file.

// Create our file stream that will be open and read the file

184 7. In the Midst of 3-D, There’s Still Text

TeamLRN

ifstream fin;

// Create our room structure. This will hold all of our room data.
tRoom room;

Once we have our important variables created, we then open the game file and
check whether it was found and could be opened. Once the file is open, the output
file stream should be pointing to the beginning of the file.

// Open the World.txt file
fin.open(GAME_FILE);

// Check if the file was found, if not, quit the program
if(fin.fail())
{

// Display an error message and return -1 (Quit the program)
cout << “Unable to find World.txt” << endl;
return -1;

}

If we get here, we know that we found our game file, so let’s read in the starting
room. The starting room should be at the very top of the game file, as follows:

<Start> Middle

The <Start> word is just to make the game file more readable. We don’t care about
that when we are reading in the starting room; we just want the Middle part, which
is the name of the first room block that should be read in. Since we don’t want the
<Start> string, we can’t use getline(); otherwise, it would read in the whole line, and
we would have to parse it ourselves. To get around this, we read in one word at a
time. When we read in the first word, it will be <Start>. Then the next word can be
read in, which will store the name of the room in which the character will start.
The room.strCurrentRoom variable of our tRoom structure will store the starting room.
Notice in the following code that we use it twice. The first time we read in the
<Start> word, which is then stored in room.strCurrentRoom. Then we write over that
with Middle. It’s the same thing as if we did cin >> num >> num. If we typed in 10, hit
return, typed in 12, and then hit return, num would equal 12 because it overwrote
the 10.

// Store the starting room in our strCurrentRoom variable
fin >> room.strCurrentRoom >> room.strCurrentRoom;

185Examining the Code

TeamLRN

After the starting room is determined, we want to find that room block in the text
file to read its information. The information consists of the room description and
the room names in each direction. Our next step is to display the room description
to the screen.

// Pass the file stream and room data in to read the room data
GetRoomInfo(fin, room);

// Once the room data is read, display the current room description
DisplayRoom(room);

The following is our main game loop. It consists of an infinite while loop, with our
GetInput() function returning a QUIT or a STILL_PLAYING value. If the return value ==
QUIT, we break from the main loop. So far, our game loop is just taking input from
the user. There are no intros, cut scenes, level changes, and so on. This is the most
basic game loop.

// Start our main game loop
while(1)
{

// Get the input from the user and check game status
if(GetInput(fin, room) == QUIT)

break; // Quit the main loop
}

If we get here, the game is over and the player must have quit. The cleanup always
comes last. When you are done using the file pointer, you need to close the file. I
put a little delay before the program quits, allowing the user to see what happened.

// Close the file
fin.close();

// Delay the program for 3 seconds before quitting.
Sleep(3000);

// Return from main (Quit the program)
return 0;

}

Seeing the main game loop hopefully helps you better understand the use of the
next functions we will be going over. How about we start with the easiest one,
DisplayRoom()?

186 7. In the Midst of 3-D, There’s Still Text

TeamLRN

// This function shows the room description of our current room
void DisplayRoom(tRoom &room)
{

// Use cout to display the room description of the current room
cout << room.strRoomDescription << endl << endl;

}

DisplayRoom() will get called every time we enter “look” or enter into another
room. Since we have all of our data stored in the room structure, we pass it in
and query its strRoomDescription variable. This variable, among others, is set in our
GetRoomInfo() function, which we will go over next.

Reading in the Room Block’s Data
Now we begin to see how the room information gets read in from the file and
stored in our room structure.

// This reads the current room information into our room structure
void GetRoomInfo(ifstream &fin, tRoom &room)
{

// Create some temporary strings for reading in data from world.txt
string strLine = “”;
string strTemp = “”;

This function will be called when we start the game and then every time we move
to another room. We only store the current room’s data, so we need to load the
next room’s information when we move to it. The following creates a string that
will store the room name with the < and > brackets around it. We need to do this
because, in the text file we are reading from, it has the room blocks with brackets
around it. This makes it more readable as a header. So, by adding < and > to each
side of room.strCurrentRoom, it would turn Middle into <Middle>.

// Save the current room with an appropriate header
string strRoom = “<” + room.strCurrentRoom + “>”;

First we want to return the file pointer to the beginning of the file. This way, we get
a clean start when searching the file for the designed room block.

// Set the file stream to the beginning and reset EOF flag
fin.seekg(NULL,ios::beg);
fin.clear();

Next it’s time to start looking for the current room and read in its data. Here is the
plan:

187Examining the Code

TeamLRN

Since we start at the beginning of the file each time, we want to read in each line of
the file, starting at the beginning, and then check whether that line is equal to the
room block we are looking for (such as <Middle>). If it is, we want to read in the
“Middle” room’s description. We do this by using getline(), and we stop reading
characters when we hit an asterisk (*) symbol, which should be placed at the end
of every room description in the text file. This allows us to read in multiple
lines of text for the room description, but we needed a character to tell us
when to stop reading. We will store the room description paragraph in our
room.strRoomDescription variable. After the room description is loaded, we want to
read in the rooms that are north, south, east, and west from the room being read
in. The room names are stored after the direction block, as in <north> Top.

This tells us that to the north there is a room called “Top.” Of course, these aren’t
good names, but in a game, you can make them more descriptive like “Hallway,”
“Library,” and so on. We want to store the room names in each of the associated
variables, depending on the direction. That means, for instance, that the Top in
<north> Top should be stored in strRoomNorth. Since we don’t want the <north> string,
we can’t use getline(); otherwise, it would read in the whole line. To get around
this, we read in one word at a time. When we read in the first word, it will be
<north>. Then we can finally read in the next word, which will store the name of the
room. This is coded in the following with fin >> strTemp >> room.strRoomNorth;.

We use strTemp to read in the <north> string, and then we store the next word in
strRoomNorth. We want to do this for every direction. Once we finish reading in
the last direction (west), we return from the function because we no longer
need to read from the file anymore. Finally, the current room’s description
(strRoomDescription) is displayed, and we are now in the new room.

// Read in every line until we find the desired room header
while(getline(fin, strLine, ‘\n’))
{

// Check if we found the room header we are looking for
if(strLine == strRoom)
{

// Read in the room description until we hit the ‘*’
// symbol, telling us to stop.
getline(fin, room.strRoomDescription, ‘*’);

// Read past the direction blocks (I.E. <north>) and store
// the room name for that direction.
fin >> strTemp >> room.strRoomNorth;

188 7. In the Midst of 3-D, There’s Still Text

TeamLRN

fin >> strTemp >> room.strRoomEast;
fin >> strTemp >> room.strRoomSouth;
fin >> strTemp >> room.strRoomWest;

// Stop reading from the file because we got everything we
// wanted. The room info was read in so let’s return.
return;

}
}

}

I think GetRoomInfo() is the hardest part of the code to conceptualize. Once you
grasp this, everything else is linear and obvious.

Handling Game Input
Moving on, we know that our main game loop calls GetInput(), but let’s dissect this
function and figure out what is going on. Bascially, GetInput() displays a prompt,
waits for input, and then grabs the input and sends it through an if/else statement
to check what command is desired.

This is the main control function that is called every time in the game loop. It dis-
plays a prompt, asks for the user’s input, and then handles the desired command.
If we want to quit the game, we return QUIT; otherwise, we return STILL_PLAYING.

// This handles our game input
int GetInput(ifstream &fin, tRoom &room)
{

// Create a variable to hold the user’s input
string strInput = “”;

The next couple of lines print a prompt out to the screen and grab the input. The
rest of the function is just a large if/else statement to handle the command typed
in.

// Display a simple prompt
cout << endl << “: “;

// Read in the user’s input
cin >> strInput;

Just by looking at the comments, you can figure out exactly what the giant if/else
statement is doing. If we type “look”, display the room description. If we type any

189Examining the Code

TeamLRN

direction, move us to that room if there is a room to move to. If we type “help”, dis-
play the available commands. Obviously, if we type “quit”, return QUIT and leave the
program. Finally, if the user types in something that is not recognized, we want to
tell him so. I chose to just use the famous “Huh???” remark.

if(strInput == “look”) // Check if the user typed “look”
{

// Display the current room’s description
DisplayRoom(room);

}
else if(strInput == “north”) // Check if the user typed “north”
{

// Move to the room that is to the north (if it’s a valid move)
Move(fin, room, room.strRoomNorth);

}
else if(strInput == “east”) // Check if the user typed “east”
{

// Move to the room that is to the east (if it’s a valid move)
Move(fin, room, room.strRoomEast);

}
else if(strInput == “south”) // Check if the user typed “south”
{

// Move to the room that is to the south (if it’s a valid move)
Move(fin, room, room.strRoomSouth);

}
else if(strInput == “west”) // Check if the user typed “west”
{

// Move to the room that is to the west (if it’s a valid move)
Move(fin, room, room.strRoomWest);

}
else if(strInput == “quit”) // Check if the user typed “quit”
{

// Display a quit message and return QUIT to end our game loop
cout << “Did you give up already?” << endl;
return QUIT;

}
// Check if the user typed “help” or “?”
else if(strInput == “help” || strInput == “?”)
{

// Display a list of commands
cout << endl << “Commands: look north south help quit” << endl;

190 7. In the Midst of 3-D, There’s Still Text

TeamLRN

}
else // Otherwise we didn’t recognize the command typed in
{

// Display a message indicating that we don’t
// understand what the user wants
cout << endl << “Huh???” << endl;

}

// Return the default value saying that we still are playing
return STILL_PLAYING;

}

Moving from Room to Room
There is one more function we haven’t covered yet, and that is Move(). This was cre-
ated because the code needed to check if we can go in the desired direction was
the same. The parameters are the file stream, the room structure, and the room
name we are trying to find. If you look back to where it’s called in GetInput(), you
will see that we pass in the strings that store the room name for each direction,
such as strRoomNorth. Remember that these variables hold the name of the room in
that direction, so that is what we want to pass in to GetInput() for strRoom.

// This checks if we can move in a certain direction
void Move(ifstream &fin, tRoom &room, string strRoom)
{

First we want to check if the room that was passed in to strRoom was a valid room.
Remember that if the room == “None”, there was no room in that direction.

// Check if the room is a valid room
if(strRoom == “None”)
{

// Display a message that we can’t go in that way and stop
cout << “You can’t go that way!” << endl;
return;

}

If we get here, the room name must be valid, and we should move to that room.
Before reading in the new room from our game file, we want to set strCurrentRoom
to the new room. After reading in the new room’s data, the room description can
be displayed.

// Set the current room to the new room we are moving to

191Examining the Code

TeamLRN

room.strCurrentRoom = strRoom;

// Load the new room’s data and store it in our room structure
GetRoomInfo(fin, room);

// Display the current room
DisplayRoom(room);

Once the room is loaded and the room description is displayed, we want to see if
this is the final room in our game. This is done by checking whether the just-
loaded room name bares the name of “End.” That’s our special keyword that we
reserved. If we are at the end, we want to display a quit message and exit() the
game.

// Check if we are at the end room
if(strRoom == “End”)
{

// Display a quit message
cout << “Press any key to quit the game...\n”;

// Wait for the player to hit any key
getch();

// Exit the game by using the system function
//exit() and pass in a return value of 0
exit(0);

}
}

This concludes the code for our first version of the text adventure. Soon everyone
will be dying to play your new game! Let me provide a recap of how the game file is
set up:

<Start> Middle // This is the room that we will start at

The next block is the room block. The name of the room is surrounded in <>
brackets to show that it’s a header. This makes it easy to spot. The next few lines
hold the room description. After the room description, there is an asterisk (*) sym-
bol to show that it’s done. That way, we can do a getline() and get multiple lines of
text. The next four lines hold the rooms that are in each direction.

If there is not a room in a particular direction, we use the word “None” instead of
putting in a room name. If we try to go north and the <north> section has the room

192 7. In the Midst of 3-D, There’s Still Text

TeamLRN

name “None,” it will tell us that we can’t go that way. That’s it! We can add as many
rooms as we want in this way without touching any code. This makes it so the code
is not dependent on the names of the rooms. That is why we read in the start
room. It’s incredibly modular.

<Middle>
You step into a house where you are nearly
blinded by the light shining through the window.
You have been searching for your friend who was captured.
The trail has led you to this mansion.
There is a door in every direction.*
<north> Top
<east> Right
<south> Bottom
<west> Left

Demonstrating a Test Run
Let’s go through a test run of how this will work. Let’s say we are at the start of the
game. We will read in the starting room as “Middle.” Then we search through the
entire file for a room header called <Middle>. (Remember that we add the <>’s to
the room name when searching.) We read in the data for the room and then dis-
play the room description to the screen. It should look like this:

You step into a house where you are nearly

blinded by the light shining through the window.

You have been searching for your friend who was captured.

The trail has led you to this mansion.

There is a door in every direction.:

There is a prompt (:) that awaits our input. Let’s say we type “north” and hit
Return. Since we have the room name that is stored in the strRoomNorth variable of
our room object, we make sure it isn’t “None.” We know that it’s “Top,” so now we
need to reset the file pointer to start at the beginning of the file. We are searching
for the line <Top>. We check the first line. No, that’s that starting room. Then we
check the next. No, that’s an empty line. And then the next . . . No, that’s the
<Middle> room, and so on. Eventually, we get to the line that says <Top>. We then
read in its data because we know that we found the right room. See the following:

<Top>

193Examining the Code

TeamLRN

As you get closer to the second story of the mansion, the sounds of someone
struggling can be heard more distinctly. There is no turning back now.
One door is to the south and one is to the north up a stairwell.*
<north> End
<east> None
<south> Middle
<west> None

Now we are in the “Top” room. We display the room description on the screen and
once again wait at the prompt for user input. Our only options are to go south and
north. As you can see, east and west have “None” as the room name, meaning we
can’t go that way. Notice that there is a room with the name “End.” This will always
be the last room in our game. That way, you can always have an ending room for
the game to be over (for mazes and such). We could have made a block at the top
of the game file like the <start>: . . . <end> Attic and checked whether the
strEndRoom == strCurrentRoom, but I like checking for a room named “End” better.

This pretty much sums up the first version of our simple text adventure. Before
going on, I suggest that you try and code this yourself. That way, you will more fully
grasp the next sections. With this simple version, you can already create a maze
that has a beginning and an ending. Give it a shot.

Version 2—Taking a Look Around
In this next version, we will show how to allow the player to view something in the
current room/area. It could be a person, an object, or anything else you can think
of that the gamer will want to examine. To accomplish this new feature, let’s look at
the changes to our code that are needed to make it happen.

The first thing that needs to be added is a #define, which is used to restrict the max-
imum amount of things to look at in a room. I chose three as an arbitrary number.
You can increase this to whatever you want. This means we will only be able to look
at three different things in a room. If we have more than three keywords in the
game file, it will read in only three and will ignore the rest. Our new #define is then
used to allocate an array to hold all the viewable keywords in the room. To get
around this restriction, you could just dynamically allocate the array when reading
in the room. I chose not to since it might confuse others who aren’t familiar with
such techniques yet. This stores the size of our strLookArray

#define MAX_LOOKS 3

194 7. In the Midst of 3-D, There’s Still Text

TeamLRN

New Additions to Our Room Structure
Next, two new variables will need to be added to our tRoom structure.

struct tRoom
{

string strCurrentRoom;
string strRoomDescription;
string strRoomNorth;
string strRoomEast;
string strRoomSouth
string strRoomWest;

Here we create an array with the size of MAX_LOOKS (3). That means we can hold
three keywords for each room (for example, “floor,” “creature,” and “darkness”).
We then need a variable to store the description of that keyword, like we do for the
room description. Once we choose a keyword to look at, we first make sure it’s in
the strLookArray[] and then search the game file for its description.

As a reminder, we don’t read in all of the view descriptions when loading the room,
just their keywords. The description is only loaded when the player chooses to view
something. If that keyword is valid, the description is loaded from the file.

// This holds the names of the things to look at in the room
string strLookArray[MAX_LOOKS];

// This holds the description of the thing we look at
string strLookDescription;

};

Reading In Our New Section
Moving on to the next function, let’s revisit GetRoomInfo(). With the new data added
to our structure, there needs to be some code to read it in. Since the <look> section
is what is going to be parsed, the code must go after the sections of the adjacent
room names are read (being that the section is after these).

void GetRoomInfo(ifstream &fin, tRoom &room)
{

...

while(getline(fin, strLine, ‘\n’))
{

195Examining the Code

TeamLRN

if(strLine == strRoom)
{

...
fin >> strTemp >> room.strRoomWest;

Assuming that the <west> section is right before the <look> section in your text file,
this is where we read in the keywords for the current room. Take a look at the first
room’s look block:

<look> 1 window

We obviously need to read past the <look> word as we did with all the others, but
then we need to read in how many keywords there are in this room. That is what
the 1 is for. Since there is only one keyword, window, we put a 1 right after the <look>
word. If we had two keywords like window and mansion, we would put a 2 instead of a
1, as follows:

<look> 2 window mansion

In the following, we use the strTemp string to read past the <look> word, and then we
use a local created integer count to read in the number of keywords. Before we read
in the keywords, we want to initialize the strLookArray. That way, if one room only
has one keyword, we won’t be able to look at two of the three keywords in the last
room. This would cause a weird problem. Once we have the number of keywords,
we need to do a loop that reads them into the strLookArray a word at a time. Notice
that we mod (%) the count by MAX_LOOKS. This is so that we don’t read in more than
three keywords. If we read in four, the program would crash because we went out-
side the array boundaries.

// Create some local variables to use for counters
int count = 0, i = 0;

// Read past the “<look>” word and store keyword count
fin >> strTemp >> count;

// Go through and initialize all the indices in the array.
// This could also be done with a simple call to memset().
for(i = 0; i < MAX_LOOKS; i++)
{

// Initialize the current index to nothing
room.strLookArray[i] = “”;

}

196 7. In the Midst of 3-D, There’s Still Text

TeamLRN

After the strLookArray is initialized, loop through and read in the keywords until all
have been read. Also, make sure we don’t read in more than our strLookArray can
hold by using the % operator.

for(i = 0; i < count % MAX_LOOKS; i++)
{

// Store the keyword into the index of our strLookArray
fin >> room.strLookArray[i];

}

return;
}

}
}

Adding the View Command
The data from the room block should now be able to be read. The view descrip-
tions are still missing, however. These are only loaded when the player tries to view
something using the view command, which is to be added to this second version.
Our input function, GetInput(), will need to have a new else if() statement to allow
the new command.

int GetInput(ifstream &fin, tRoom &room)
{

...

// Check if the user typed “view”
else if(strInput == “view”)
{

If the player chooses view, we want to prompt him to type in the keyword he wants
to look at. Next, we check whether that keyword is in our list of keywords for the
room. If it is, the description is read in from the game file and is displayed; other-
wise, an error message is given saying that there is nothing to look at with that
name.

Though we haven’t covered the CheckLook() function, this basically searches our
strLookArray for the keyword that the player types in. This way, we don’t search the
file for a keyword that doesn’t even exit. The function returns true if that word is in
our array, false if it’s not. There are two other functions we haven’t looked at yet,
GetLookInfo() and DisplayLook(). Obviously, DisplayLook() just prints out the

197Examining the Code

TeamLRN

strLookDescription, whereas GetLookInfo() finds the view header in the game file and
reads in its description.

// Display a prompt and read in the player’s keyword to look at
cout << “What do you want to look at? “;
cin >> strInput;

// Check if what we typed in was valid in the room
if(CheckLook(room, strInput))
{

// Read in and display the description for the keyword
GetLookInfo(fin, room, strInput);
DisplayLook(room.strLookDescription);

}
else
{

// Display an error message due to an invalid keyword
cout << “I don’t see anything like that...” << endl;

}
}

}

Determining a Valid View Keyword
This next function, CheckLook(), is called after the player types in “view” and has
chosen the keyword he wants to look at. It then searches through the strLookArray
to make sure what is being viewed is in the current room. If it is, it returns true;
otherwise, it returns false.

Here is an example run-through: Let’s say we read in the keywords for a room in a
log cabin. There happens to be two keywords: “fork” and “chair.” Let’s say the
player chooses to look at “bed.” It will then go through the whole strLookArray, fail
to find “bed,” and then return false, which will appropriately display a mistake mes-
sage to the screen.

The room structure is passed in to CheckLook(), along with the keyword that the
player wanted to look at.

bool CheckLook(tRoom &room, string strLook)
{

// Go though all the slots in our strLookArray and check if the
// word we are trying to look at is in this room’s keywords.

198 7. In the Midst of 3-D, There’s Still Text

TeamLRN

for(int i = 0; i < MAX_LOOKS; i++)
{

// Return TRUE if the desired word is in the current index
if(strLook == room.strLookArray[i])

return true;
}

// If we get here, we know that the keyword isn’t in the list
return false;

}

Almost identical to DisplayRoom(), DisplayLook() prints the description of what the
player just looked at to the screen. This only gets called if CheckLook() verifies that
the viewed keyword was valid. A simple cout is all it takes.

void DisplayLook(string strLookDescription)
{

// Print the look description out to the screen
cout << endl << strLookDescription << endl;

}

Reading in the View Block
The final addition to this version of our text adventure is the GetLookInfo() func-
tion. This is literally a rip-off of GetRoomInfo(), except that we don’t need to read in
the room names in each direction. All that we get from this function is the look
description, found directly underneath the view header. The view header is similar
to the room header, except that it also stores the current room’s name that the key-
word found. For instance, if a keyword “tub” were in the room named “bathroom,”
the room header would look like this:

<bathroom|tub>

There is a pipe character between the two words for aesthetics; it doesn’t mean any-
thing other than as a separator. You can use any syntax you want to make it under-
standable.

Since this function is very similar to GetRoomInfo(), we do the same types of things.
The algorithm to get the look description is this: Go through every line in the
game file and check whether it’s the view block header that contains our desired
description. Once the right header is reached, the description can then be read.

void GetLookInfo(ifstream &fin, tRoom &room, string strLook)

199Examining the Code

TeamLRN

{
// Create a string to hold each line that we read in
string strLine = “”;

// Set the file pointer at the beginning of the file

fin.seekg(NULL,ios::beg);
fin.clear();

// Read in a line at a time until we find the desired header
while(getline(fin, strLine, ‘\n’))
{

Here we check every line to see if it’s the desired view header we want. Remember
that we need to add the brackets <> and ‘|’ between the room name and the key-
word to create the full string, like it’s stored in the text file.

// Check if the current line is the desired header
if(strLine == “<” + room.strCurrentRoom + “|” + strLook + “>”)
{

If we get here, we just read in the right header (<Room1|jacket>). Now let’s read in
the description. Just like the room description, we do a getline() that reads all the
characters of the description until we hit an asterisk (*) character, which tells us we
are at the end of the description.

getline(fin, room.strLookDescription, ‘*’);

// Leave this function since we read the description.
return;

}
}

}

That’s it for version two. Though it might have seemed like a lot of code was added
in this version, in retrospect, it was really very similar to the code we added in the
previous version. The next addition to our text adventure gets a bit more compli-
cated. Be sure you understand and are comfortable with the previous ones before
moving on.

200 7. In the Midst of 3-D, There’s Still Text

TeamLRN

Version 3—Adding Player and
Enemy Data
This stands as the final version for our text adventure. Note that this does not
mean you are done, just that you can now get started (in a sense). Don’t forget to
check near the end of this chapter for some further enhancements that can be
done to make it a more robust game.

Still adding on to the previous version, a couple of new functions and classes will
be added to our code. The new additions will allow us to battle monsters and
define an actual player. I have moved the classes and our room structure, along
with all the #defines and #includes into a header file called Main.h. Our Main.cpp
now includes Main.h to reference this data.

Adding More Defines and
Monster/Player Classes
First let’s go over the new #defines that have been added. These #defines are exactly
like the STILL_PLAYING and QUIT defines, except we will be using them for the out-
come of fighting the monsters. New #defines were created to be more descriptive
than “true” and “false.” After a battle is over, one of these constants will be
returned from AttackPlayer().

#define PLAYER_STILL_ALIVE 1
#define PLAYER_IS_DEAD 0

This is our newly created player class. An instance of this class is created in
Main.cpp, which holds the player’s information. We created a bunch of data access
functions to set and query the player’s data. The functions should be very straight-
forward in what they do. Though there isn’t much in the player class now, you most
likely will want to add more functions for the player’s inventory, party members,
and so on.

class CPlayer {
public:

void SetName(string strPlayerName) { m_strName = strPlayerName; }
void SetHealth(int playerHealth) { m_health = playerHealth; }
void SetWeapon(string strWeapon) { m_strWeapon = strPlayerWeapon; }
void SetDamage(int playerDamage) { m_damage = playerDamage; }

string GetName() const { return m_strName; }
string GetWeapon() const { return m_strWeapon; }

201Examining the Code

TeamLRN

int GetDamage() const { return m_damage; }
int GetHealth() const { return m_health; }

private:
string m_strName; // This stores the player’s name
int m_health; // This stores the player’s health
string m_strWeapon; // This stores the name of the player’s weapon
int m_damage; // This stores the weapon’s inflicted damage

};

This is our newly created monster class. An instance of this class is created in our
tRoom structure. A bunch of data access functions were created to set and query the
monster’s data. The functions should be very straightforward in what they do.
Though there isn’t much in the monster class now, you will add more functions for
the monster’s AI, inventory, and so on.

class CMonster {
public:

void SetName(string strMonsterName) { m_strName = strMonsterName; }
void SetAttackMessage(string strMessage)

{ m_strAttackMessage = strMessage; }
void SetHealth(int monsterHealth) { m_health = monsterHealth; }
void SetDamage(int monsterDamage) { m_damage = monsterDamage; }

string GetName() const { return m_strName; }
string GetAttackMessage() const { return m_strAttackMessage; }
int GetHealth() const { return m_health; }
int GetDamage() const { return m_damage; }

private:
string m_strName; // This stores the monster’s name
string m_strAttackMessage; // The monster’s attack message
int m_health; // This stores the monster’s health
int m_damage; // This stores the weapon’s damage

};

Notice the “C” in front of both the CMonster and CPlayer class definitions. This is a
popular convention to show that these are classes. Also, the “m_” prefix before
each of the class member variables indicates that these variables are member vari-
ables. This way, when you are writing code inside of a member function definition,
it’s obvious which variables are part of the class and which are passed in or local.
Once again, I would like to reiterate that this convention is encouraged, but if it

202 7. In the Midst of 3-D, There’s Still Text

TeamLRN

makes you want to vomit or kill people, you can pick a convention and stick to it.
It’s good to keep in mind that conventions, like most reasonable rules, are made
for the purpose of helping you, not hindering you.

One thing you will eventually want to add to these classes is a constructor and pos-
sibly a deconstructor. Though our classes are small and simple now, if you intend to
go any further with this code, it will get quite complex. For starters, a basic con-
structor that initializes all the member variables would be appropriate.

Adding Our Final Additions to the
Room Structure
Since we added some new classes to our game, there also needs to be some extra
data added to our tRoom structure. The first variable is an instance of the CMonster
class. Remember that our game design specifies that there is only one monster per
room. You will want to make an array of CMonsters if you want more than one. The
bMonsterInRoom boolean tells us whether there is a monster in the room to attack. This
variable will be explained more later on in “Reading in the Monster Block” section.
Ideally, you eventually want to turn the tRoom structure into a CRoom class that has all
the room functions as member functions and also uses member variables.

struct tRoom
{

...
string strLookDescription;

CMonster monster; // Our monster data for this room
bool bMonsterInRoom; // This tells us if a monster is in the room

};

A few improvements were added to our main() function. Now that there is a player
structure, we need to fill in its data. This information is stored at the top of the
game file. The GetPlayerInfo() function will be used to locate and read in this data,
which will be covered later in “Reading in the Player Data.” Like the instance of
our tRoom structure, the instance of our CPlayer class is declared locally in our main()
and then is passed down to each function where appropriate.

Finishing Up Our main()
The final notable enhancement to our main() function is the call to AttackPlayer().
In our main loop, this is called to see if the player perhaps died from a monster in

203Examining the Code

TeamLRN

battle. It returns either PLAYER_IS_ALIVE or PLAYER_IS_DEAD. You’ll notice that it’s called
every frame, but what if there isn’t a monster in the room? Well, there is a check at
the top of the function to return PLAYER_IS_ALIVE if there isn’t a monster around.
Ideally, the check could be outside of the function so that it doesn’t have to enter
the function, but I chose to stick to a cleaner main(), especially since it’s a small text
adventure. As your main game loop gets larger, you will want to create another
function that encapsulates it all to avoid a cluttered main().

If there is a monster in the room, either the player or it will fight to the death. The
winner of the battle is determined by the return value of AttackPlayer(). If the
player is dead, the while loop is broken and we quit the game.

int main()
{

// Read in the game file and make sure we found it
...

// Create an instance of our player class to hold our player’s data
CPlayer player;

// Since the player data is at the very beginning, we can just read
// it in immediately without any searching.
GetPlayerInfo(fin, player);

// Initialize the flag that tells us if there is a monster in the
// room. This should most likely be done in a constructor.
room.bMonsterInRoom = false;

// Read in the starting room name, read in that room block, then
// display the first room’s description to the screen like normal.
...

// Start our main game loop
while(1)
{

// Get the input from the user and check game status
if(GetInput(fin, room, player) == QUIT)

break; // Quit the main loop

Once again, this function is called to handle the battle scenes. If there is a monster
in the current room, this function will loop continuously until either the player or
the monster is dead. If you die, the game is over; otherwise, you keep on truckin’.

204 7. In the Midst of 3-D, There’s Still Text

TeamLRN

if(AttackPlayer(room, player) == PLAYER_IS_DEAD)
break;

}

// Close the file, do a delay, then return a success
...

}

Reading in the Monster Block
To have a monster in our game, it needs to have data. That data is read in from the
game text file in the GetMonsterInfo() function. The parameters passed in are the
file stream, the room, and name of the monster. One of the differences between
getting the monster info and getting the look descriptions is that the monsters have
three blocks of information. Let’s look at a full monster block:

• <Right|goblin> This is the header we search for.

• <Health> 125 This is the health of the monster.

• <Damage> 12 This is the damage that the monster inflicts on the player.

• <Attack> The goblin claws your face.* This is the attack message.

If you know how to read in a room block, this works just the same. As with the look
header, we check for the monster header in the exact same way. A sample header
would be as follows:

<Forest2|goblin>

The room name is Forest2 and the monster’s is goblin. In steps, it becomes the
following:

“<” + room.strCurrentRoom + “|” + strMonsterName + “>” =
“<room.strCurrentRoom|strMonsterName>” =
“<Forest2|goblin>”

Take a look at the code that handles all this:

void GetMonsterInfo(ifstream &fin, tRoom &room, string strMonsterName)
{

// Create a string to hold each line that we read in
string strLine = “”;

// Reset the file stream to the beginning of the file
fin.seekg(NULL,ios::beg);
fin.clear();

205Examining the Code

TeamLRN

It seems like a good idea to set the name of the new monster here because we obvi-
ously know there is a monster in the current room now, and we have it’s name.

// Set the monster’s name
room.monster.SetName(strMonsterName);

// Read in every line of the file until we reach the end
while(getline(fin, strLine, ‘\n’))

{

// Check if the current line read in is the monster header
if(strLine==”<” + room.strCurrentRoom+”|”+strMonsterName + “>”)
{

// Create an integer to store the health and damage
int data = 0;

// Read in the health of the monster
fin >> strLine >> data;

// Set the health of our monster
room.monster.SetHealth(data);

// Read in and assign the monster’s damage
fin >> strLine >> data;
room.monster.SetDamage(data);

// Read past the “<Attack>” word
fin >> strLine;

// Read the attack description until we hit a ‘*’
getline(fin, strLine, ‘*’);

// Assign the attack message to our monster
room.monster.SetAttackMessage(strLine);

// Stop reading from the file and quit this function
return;

}
}

}

206 7. In the Midst of 3-D, There’s Still Text

TeamLRN

Reading in the Player Data
To read in the player data, our GetPlayerInfo() function is used. Unlike the other
Get*Info() functions, we don’t need to search for the player data because we know
that it’s right at the beginning of the file. Just like every block of data in the game
file, the player data is read in the same. You will want to read past the first word
and then store what’s after it.

void GetPlayerInfo(ifstream &fin, CPlayer &player)
{

// Create some local variables to store data from the file
string strWord;
int data = 0;

// Reset the file stream pointer to the beginning of the file
fin.seekg(NULL,ios::beg);
fin.clear();

// Read in the player’s name
fin >> strWord >> strWord;

// Set the player’s name by its data access member function
player.SetName(strWord);

// Store the first word, then use the integer to store the health.
fin >> strWord >> data;

// To set the player’s health, pass it into SetHealth()
player.SetHealth(data);

// Read in and store the player’s weapon name
fin >> strWord >> strWord;
player.SetWeapon(strWord);

// Read in and store the player’s damage
fin >> strWord >> data;
player.SetDamage(data);

}

207Examining the Code

TeamLRN

Handling the New Status Command
When the player types “status”, DisplayPlayer() will be called to print out the player’s
details. Notice that the data access functions are being used instead of player.strName.
This might seem silly now, but it is a safer way to program. A const is also put in front
of the parameter CPlayer &player to ensure that we don’t accidentally change any-
thing. References are being used so that the player structure is not copied onto the
stack; a pointer or “reference” to the memory address of the data is used instead.

void DisplayPlayer(const CPlayer &player)
{

// Display our player’s status to the screen
cout << “Name: “ << player.GetName() << endl;
cout << “Health: “ << player.GetHealth() << endl;
cout << “Weapon: “ << player.GetWeapon() << endl;
cout << “Damage: “ << player.GetDamage() << endl;

}

Speaking of the status command, let’s add the code to our GetInput() function to
allow this to happen in the game.

int GetInput(ifstream &fin, tRoom &room, CPlayer &player)
{

// Display the prompt and read in the input
...

...
// Check if the user typed “status”
else if(strInput == “status”)
{

// Display the player’s current status
DisplayPlayer(player);

}
...

}

Reading in the New Section in Our
Room Block
With a new <enemy> section added to our room block, more data will need to be
read in each time the player enters a new room. This new section is read just like
the room names in each direction:

<enemy> goblin

208 7. In the Midst of 3-D, There’s Still Text

TeamLRN

We will read past the first word and then read and store the next word, goblin.
When there is not a monster in the room, None will substitute for the monster’s
name. Once it’s determined whether there is a monster in the room, we need to
read in its data immediately afterward because he is probably going to clobber us.
The following is the code that needs to be added to our GetRoomInfo() function to
read in the new section in our room block.

void GetRoomInfo(ifstream &fin, tRoom &room)
{

// Go to the beginning of the file and set up local variables
...

while(getline(fin, strLine, ‘\n’))
{

if(strLine == strRoom)
{

// Read in the standard room block information
...

// Read in the monsters name, if any
fin >> strTemp >> strTemp;

// Check If there was no monster in the room
if(strTemp == “None”)
{

// Set our monster flag to false and return
room.bMonsterInRoom = false;
return;

}

// We must have a monster in the room
room.bMonsterInRoom = true;

After we know that there is a monster in this room, we then need to search for the
monster header and read in its info. The file stream, room structure, and header
are passed in to our GetMonsterInfo() function.

// Find the monster header and read in its info
GetMonsterInfo(fin, room, strTemp);

}
}

}

209Examining the Code

TeamLRN

Writing the Battle Code
This next function is probably the most complicated function in this program. To
simplify the code so that no one gets lost, the battle sequence is not random and
does not take off random damages. Though this would have been pretty easy to
add, I chose to leave it out. It will give you something to do yourself that isn’t too
hard. Let’s go over some pseudo code for the algorithm used for battle:

while(there is a monster in the room)
{

The monster attacks first and subtracts its weapon damage from the player’s
health

The player then attacks and subtracts his/her weapon damage from the monster’s
health

Now we check:

if(the player is dead)
we return PLAYER_IS DEAD and the game is over

else if(the monster is dead)
display a victory message and set bMonsterInRoom to false

}

If the player and monster are still alive, it will continue to loop until at least one of
them is dead. Pretty simple, huh? It doesn’t get any easier than that. It would be
fun to see what you guys come up with for your fighting sequences.

int AttackPlayer(tRoom &room, CPlayer &player)
{

// Check if there is a monster in the room
while(room.bMonsterInRoom)
{

// Before the monster attacks, display its attack message
cout << room.monster.GetAttackMessage() << endl;

Subtract the monster’s damage from our health because we just got hit. The result
of player.GetHealth() - room.monster.GetDamage() will then be passed in to SetHealth(),
which will change the player’s health to a lower number.

// Take health from the player, according to the monster stats
player.SetHealth(player.GetHealth() -room.monster.GetDamage());

210 7. In the Midst of 3-D, There’s Still Text

TeamLRN

// Display our current health
cout << “You now have “ << player.GetHealth()

<< “ health.” << endl;

// Display our attack message before we pound the enemy
cout << “You attack the “ << room.monster.GetName()

<< “ with your “ << player.GetWeapon() << “ for “
<< player.GetDamage() << “ hit points!” << endl;

// Subtract our damage from the monster’s health
room.monster.SetHealth(room.monster.GetHealth() –

player.GetDamage());

// Display the monster’s status
cout << “It now has “ << room.monster.GetHealth()

<< “ health.” << endl;

// Our health is less than 0 (we died)...
if(player.GetHealth() <= 0)
{

// Display a defeating message and quit the game
cout << “You are dead!” << endl;
return PLAYER_IS_DEAD;

}
// Else if the monster is dead...
else if(room.monster.GetHealth() <= 0)
{

// Display our victory and set bMonsterInRoom to false
cout << “You killed the “

<< room.monster.GetName() << “!” << endl;

room.bMonsterInRoom = false;
}

// Put in a delay between each round
Sleep(1500);

}

// The monster didn’t stand a chance, so return our ALIVE define
return PLAYER_STILL_ALIVE;

}

211Examining the Code

TeamLRN

That’s it! You now have the knowledge to start on your own text adventure! Do you
feel that funny feeling in your tummy? If so, you’re pretty weird . . . It won’t take
you long to get bored of the game as we currently have it, so don’t delay in build-
ing on it to create your own text adventure masterpiece.

Summary and Review
Though it seems as if I repeated myself many times throughout this chapter, let’s
go over everything we accomplished here. The point of this chapter was to show
you how to set up a simple modular text adventure. Many times, we need to be
shown how to do things in order to get our brain started; that is what was intended.
Just remember, don’t expect a sweet game from our final version. It should just be
used as a base to start from. You will want to either work off of the code or just use
some of the ideas to create your own from scratch.

This chapter broke up the task of creating a text adventure into three versions. The
first version showed how to allow the player to walk around the world with collision
detection. To store the world, a text file was used that had room blocks with all the
pertinent information for that room. A room or area was where the player cur-
rently resided in the game. Each room had a section for north, south, east, and
west that gave a room name that was off in that area. If there was no room in that
direction, it was replaced with “None.” This allowed us to know whether the charac-
ter was able to move in that direction. Also in the first version, the player was able
to type “help” to get a list of available commands.

The second version of our game added an option to view things in the room. A
new section was added to the room block, giving the number of viewable things
and their names. When the player tried to look at something, the name of the
thing being looked at was first checked in our list; if found, the description of the
viewed item was read from our game file and displayed to the screen. This required
us to add the view command to the player’s available options.

A text adventure isn’t complete without some threat or resistance, and this is why
our final version added the capability to fight monsters. Once again, a new section
was added to our room block, storing the name of the monster in the room; other-
wise, it would have “None.” At the time the player entered the room, the monster’s
data was loaded and then initiated an attack. The battle continued until someone
died. If the player died, the game would be over.

Let me now try to speak to some of your thoughts or questions:

212 7. In the Midst of 3-D, There’s Still Text

TeamLRN

What if I don’t understand all of this stuff?

That’s okay! You don’t need to understand it all right now. As long as you can add
to it, you should be fine. Once you start to build on it, many things will come
together in your mind, and it will become clearer to you. If you don’t understand
most of it, I suggest starting with a simple game first. Try a simple number-guessing
game and then work up from there.

Is this the only way to do this?

Absolutely not. The intent of this chapter was not so much to give you source code
to use but to give you ideas as to how you might be able to build a text adventure
yourself. As your game gets bigger, many more things will need to be added and
moved around (or possibly redone, for that matter). Don’t stress out about the
code; just make sure you understand the basic concepts of how the game functions.
There is a famous saying that if you ask six programmers how to code something,
you are likely to get six different answers.

I can’t imagine ever thinking of something like this on my own. Am I doomed to program-
ming databases in a damp cellar?

I doubt it. (Well, unless maybe that’s where your computer is.) Programming takes
a colossal amount of devoted time. If you stick with it, you are bound to get better.
Some people get better faster than others. I figure that, as long as you enjoy it
enough to continue doing it, you usually can’t go wrong. In my case, it took me a
while to get the hang of it, but one day—after intense study and dedication—my
brain just popped into the right place. From then on it only got better.

Can I call you if I need help on creating something for my game?

Probably not.

If not, can I call your mom?

I guess so . . . But she wouldn’t be able to help you very much.

Well, where can I go for help then?

If you check out any of the popular sites like www.GameDev.net,
www.GameTutorials.com, or www.FlipCode.com, they have great message boards
being used by thousands of people who have gone through the same things you
have and would love to help.

213Summary and Review

TeamLRN

Where to Go from Here
Obviously, this game lacks much. Let’s take a look at a list of things that could or
should be added to make it more robust. The player should be able to . . .

• Pick up and drop objects

• Save/load games

• Encrypt game files or save in binary

• Add party members

• Add NPCs (nonplayer characters: villagers, townsmen, and so on)

• Add music (FMOD or BASS libraries, which support most formats)

• Add a menu system that allows for mouse navigation

• Add intelligent monsters (shy, aggressive, random)

• Add roaming monsters that don’t stay in the same room

• Add a Lose keyword like End for rooms that lose the game

• Add action IDs to the view and monster blocks

• Add trap doors that bring you to another room

• Add networking for multiplayer games such as MUDDs

These are just some ideas to get the juices flowing in that nerdy brain of yours. I
would like to comment on some of these, starting with the save game options. This
is one of the most popular options that people want to add to their game. To do
this, I suggest first creating a file like <playername>.sav to holds the player’s data.
For instance, the basics would be:

<Name> Dartanion
<CurrentRoom> Temple
<Health> 255
<Weapon> Axe
<Damage> 45
<Inventory> 6 potion potion key3 pouch muffin muffin

This data would be at the top of the save file for the player. You wouldn’t need to
store the objects/weapon/armor information in the save file, just the name. When
the player is loaded, it would then fill in that information by searching the original
game file for that name. Next, whenever the player picks up an object or kills a
monster, have it write some information about that room block:

<Corridor>

214 7. In the Midst of 3-D, There’s Still Text

TeamLRN

<enemy> none
<objects> 2 shield bow

If the player then picks up one of the objects or a monster walks into the room, it
could say:

<Corridor>
<enemy> troll
<objects> 1 bow

This means that, before you write any new room block data to the player’s save
game file, be sure to first check whether it’s already there.

Another important part of the game that I want to mention is the sound/music.
You can go to www.FMOD.org and get an excellent library that allows you to play
almost every popular sound format there is. You can find some tutorials on how to
use this library at www.GameTutorials.com.

The last item I thought I should talk about is the action IDs. Let’s say you want to
have something special happen after you talk to someone or enter a room. For
instance, if you talk to the Mage in the temple, you want a door to now open some-
where in the game. Possibly, you also might want to have it trigger someone else to
tell you something new. This can be done with action numbers. You would want to
add an <action> section to the NPC (nonplayer character) section and the room
block section. It could look like this:

<action> 152

You could have an array like this in your game:

bool g_actionArray[MAX_ACTIONS];

When the player comes across an action number, that number is then used to
index into the g_actionArray[] and sets the index to true. If you want to have some-
thing happen only if a certain action is set, you just need to query whether that
needed action number in the global array is true. Perhaps then you would want to
also add a <neededAction> section to the NPC block.

For cases that require a lot of special code, you would create a function as follows:

void HandleAction(int action);

All actions that are found could be passed in to this function to handle special
things such as cut scenes. This should be enough to get your mind on the right
page.

215Where to Go from Here

TeamLRN

Conclusion
Hopefully the ideas discussed here were helpful enough to get your mind thinking
in the right direction. I suggest that you try to re-create the game from scratch with
your own code, just using the theory of how it works to guide you. If you intend to
build on the base I provided, you might find yourself stuck because you didn’t cre-
ate the original code, and you might not understand it all.

In addition to my day job as a game programmer, I also am the co-Web host of
www.GameTutorials.com. Our site has well over 200 tutorials that teach C or C++
from the ground up, all the way to advanced 3-D concepts. If you find that this
game was too easy for you, there are enough tutorials on the site to get you where
you want to go.

216 7. In the Midst of 3-D, There’s Still Text

TeamLRN

TRICK 8

Sound and
Music:

Introducing
WAV and
MIDI into

Your Game
Heather “felisandria” Holland,
GameDev.net, www.gamedev.net

TeamLRN

218 8. Sound and Music

Introduction
Sound and music are the polish that makes your game look professional and com-
plete. Particle effects, sprites, and rendering might look spiffy, but the player won’t
be entirely immersed unless he can hear the rounds firing into the creepily moan-
ing creature currently making a virtual attempt at eating his brain. In this chapter,
we’re going to look at some of the file formats used to store sound and music data,
and we’ll examine some relatively simple ways to turn that data into what you hear
coming out of the speakers.

We are going to start off by discussing the WAV and MIDI file formats and how to
glean from them the information you will need to turn those bytes into something
playable. Once we are familiar with the data involved, we will look at a range of
techniques from the very simple Win32 API and MCI versions to the more complex
DirectSound and DirectMusic libraries. So, without further ado, let’s dive directly
into the data files and take a look at what we start out with . . . a RIFF file.

A Quick Overview of WAV
WAV is the most common sound file format for Windows. As with most standard
Windows multimedia files, it generally uses a Resource Interchange File Format
(RIFF). We’re going to take a quick look at what a native Windows WAV file looks
like. You probably won’t need any of this information if you’re doing very simple
sound work, but if you decide you want to put all your sound files in one big data
file to be clever, you will need to know the file format to do that properly.

All RIFF files start off with an 8-byte RIFF header, indicating that they are RIFF files
and giving the file length. If you open a WAV file in Notepad or Visual Studio, you
will see the letters “RIFF” followed by a 4-byte (DWORD) indication of how long
the file is, minus the 8-byte header. The next 4 bytes give the type; for a WAV file,
this will be “WAVE.” Now that it has been established that this is, indeed, a RIFF file
and the length and type of RIFF file have been established, the remainder of the
file is broken into chunks. Each chunk begins with an 8-byte header that indicates
the type of chunk (format, data, and so on) and the length of the chunk, not

TeamLRN

counting the chunk header. We’re going to look specifically at format and data
chunks because those are the important ones for our purposes.

The Format Chunk
In WAV files, there must always be a format chunk before the data chunk. The for-
mat chunk can be recognized by the “fmt ” (note the space) in the first 4 bytes of
the chunk header. The second 4 bytes are a DWORD indicating the length of this
format chunk, not counting the 8-byte chunk header. The rest of the format chunk
can be read as follows:

struct {
WORD wFormatTag;
WORD wChannels;
DWORD dwSamplesPerSec;
DWORD dwAvgBytesPerSec;
WORD wBlockAlign;

}

• wFormatTag This gives the WAV format category of the data chunk, indicating
the compression type. If wFormatTag is 1, no compression is being used (nor-
mal Pulse Code Modulation). If compression is used, additional information
will be appended to the format and in a fact chunk to allow for appropriate
decompression. Too many types of compression are available to list them
here. Most of the WAV files you use will not be compressed, especially if you
produce them yourself.

• wChannels 1 for mono, 2 for stereo. Keep in mind that DirectSound is much
better at handling mono waveforms.

• dwSamplesPerSec The sampling frequency of the waveform. Commonly used
values are 11025, 22050, and 44100. Frequencies other than the three com-
mon ones are allowed but are not encouraged.

• dwAvgBytesPerSec The average bytes per second for transferal of the waveform.

• wblockAlign The size of a single sample frame, in bytes. This can be calcu-
lated using the following formula:
wChannels • (wBitsPerSample % 8)

For a 16-bit mono waveform, the number would be 2 (4 bytes required per block);
for stereo 16-bit waveforms, it would be 4.

219A Quick Overview of WAV

TeamLRN

The Data Chunk
The ID for a data chunk is “data,” found in the first 4 bytes of the chunk header.
The second 4 bytes, as always, are the chunk size not counting the 8 bytes of
header. From there until the end of the chunk (which you can find by looking at
the handy chunk size indicator), the rest is the actual waveform.

A Look at MIDI
MIDI files (.mid) are broken into chunks like WAV files. MIDI files contain a
header chunk followed by track chunks. Each instrument, voice, staff, and so on,
has its own track. Unlike WAV files, which involve sampling, MIDI first specifies the
voice or instrument to be used on a track and then gives information such as note
on, note off, pressure, and so on . . . much like a music box or player piano records
notes.

The MIDI File Header
The MIDI file header starts with the 4 byte “MThd,” which identifies this as a MIDI
file, followed by 4 bytes giving the length of the header not counting the 8-byte
header indicator. The header length will always be 6 bytes.

In the 6 bytes of the header, the first 2 bytes describe file format. File formats are as
follows:

• 0––single track. Only one track to worry about.

• 1––multiple tracks, synchronous. Several tracks, all starting at the same time.

• 2––multiple tracks, asynchronous. Several tracks, potentially starting at dif-
ferent times.

The second 2 bytes give the number of tracks. The third pair of bytes gives the
number of ticks per quarter note.

Track Chunks
Track chunks start with “MTrk” and contain MIDI events (as previously described).
Each MIDI event consists of 4 bits of command identifier (note on, note off, and so
on) followed by 4 bits that indicate on which MIDI channel it should be executed.
In addition to “normal” MIDI events, meta-events can be present. Meta-events con-
tain information such as key changes, text (to allow a description to be physically

220 8. Sound and Music

TeamLRN

inserted within the file), lyrics, track instrument names, cues, markers, tempo, and
other information not directly related to track events. I could spend an entire chap-
ter on everything a MIDI file can contain, but I won’t . . . we need to play them!

Let’s Play: Simply Win32
The simplest way to get sound and music in your games is merely to use the Win32
APIs. Granted, they have some glaring problems that we’ll discuss later, but if all
you really need is the occasional sound—and perhaps a little MIDI tune playing in
the background—Win32 API sound will work.

“How simple is it?” you ask. Well, to play a WAV file, all you have to do is include
winmmsystem.h and then use this function:

BOOL PlaySound(
LPCSTR pszSound, // specifies the sound to play
HMODULE hmod, // handle to the executable containing the resource
DWORD fdwSound // control flags

);

The pszSound can be an alias to a system sound, a resource, or a WAV file, depend-
ing on the flag settings in fdwSound. The handle hmod is only required if you are
using a resource; otherwise, it should be NULL. If you want to use a system alias,
fdwSound should contain SND_ALIAS. If the sound is part of a resource contained in
the executable, fdwSound should contain SND_RESOURCE. If you just want to use a WAV
file, fdwSound should use the SND_FILENAME flag. If none of these flags is specified,
PlaySound will use the pszSound first to search the WIN.INI for a matching alias, then
to search for a matching resource, and then it will attempt to use it as a file name.

When trying to find your sound, PlaySound will search (in this order) the current
directory, the Windows directory, the Windows system directory, the directories
listed in the Path environment variable, and then the list of directories mapped in
a network. If for some reason PlaySound is unable to find a sound that matches the
pszSound, it will play the default system event sound. If you do not want PlaySound to
play the default system event sound when it cannot find the specified pszSound,
SND_NODEFAULT will instruct it to merely return silently.

fdwSound contains several other useful flags in addition to the ones used to specify
the source of the sound. Two of the more important flags are SND_SYNC and
SND_ASYNC. When SND_SYNC is used, PlaySound will wait until the sound is played
entirely before it returns. SND_ASYNC returns immediately once the sound starts

221Let’s Play: Simply Win32

TeamLRN

playing. In general, it is best to use SND_ASYNC because it will allow subsequent
sounds to play immediately, preempting currently playing sounds. Using SND_SYNC
will cause sounds to queue up and will likely make sounds that are the result of an
event in your game appear to be very out of place. If you don’t want currently play-
ing sounds to yield to more recently triggered sound events but you do want your
sounds to play asynchronously, using SND_NOSTOP will cause the newer sound events
to return FALSE without playing anything.

Another interesting flag is SND_PURGE. Rather than playing a sound, SND_PURGE stops
all sounds specified by pszSound. If pszSound is NULL, all sounds are stopped. If you
want a sound to loop repeatedly, simply use the SND_LOOP flag.

Playing MIDI Using Win32
Win32 can play MIDI using the media control interface (MCI) contained in the
Software Development Kit (SDK). Keep in
mind that this is dependent on your
sound card.

MCI is a generic interface for multime-
dia devices and is used to both record
and play. We are going to look primarily
at the commands necessary to play
MIDI using MCI, but keep in mind that
MCI is capable of quite a bit more than
simply playing MIDI files. MCI fires
notification messages when it encounters
certain events, such as reaching the end of a MIDI file.

The following is a function I wrote for a little peg game. It wasn’t complex enough
to use DirectX (the graphics were all GDI), and I wanted it to work on NT, so I
used the MCI MIDI player.

void CGameBoard::PlayMusic()
{

UINT deviceID;
DWORD dwReturn;
MCI_OPEN_PARMS openParms;
MCI_PLAY_PARMS playParms;
char buff[100];

222 8. Sound and Music

CAUTION
MIDI files sound different with differ-
ent sound cards because the voices
are generally stored on the card
itself and the MCI commands use
those voices.This is unlike DirectX,
which emulates the Roland sound
fonts.

TeamLRN

openParms.lpstrDeviceType = “sequencer”;
openParms.lpstrElementName = “pegmusic.mid”;
if (dwReturn = mciSendCommand(NULL, MCI_OPEN,

MCI_OPEN_TYPE|MCI_OPEN_ELEMENT|MCI_WAIT,
(DWORD)(LPVOID)&openParms))

{
mciGetErrorString(dwReturn, buff, sizeof(buff));
MessageBox(buff, “ERROR”, MB_OK|MB_ICONEXCLAMATION);
return;

}
deviceID = openParms.wDeviceID;
playParms.dwCallback = (DWORD)m_hWnd;
if (dwReturn = mciSendCommand(deviceID, MCI_PLAY, MCI_NOTIFY,

(DWORD)(LPVOID)&playParms))
return;

m_deviceID = deviceID;
m_playParms = playParms;

}

As you can see, it’s relatively straightforward. The MCI commands open the MIDI
device (your sound card) and use it to play the MIDI file (in my case,
pegmusic.mid).

MCI_OPEN_PARMS is the structure that gives necessary information for the MCI_OPEN com-
mand to initialize the MIDI device. As you can see, the MIDI device is specified by
setting the lpstrDeviceType to “sequencer.” The MIDI file that we are initializing it to
play is specified in lpstrElementName.

The generic MCI send command is as follows:

MCIERROR mciSendCommand(
MCIDEVICEID IDDevice, // the device to send this to, NULL for MCI_OPEN
UINT uMsg, // the message to send
DWORD fdwCommand, // command flags
DWORD dwParam // command parameters

);

With these specified, we send the command to initialize as follows:

mciSendCommand(
NULL, // IDDevice is always NULL for an MCI_OPEN command
MCI_OPEN, // we are initializing the specified device
MCI_OPEN_TYPE|MCI_OPEN_ELEMENT|MCI_WAIT, // command flags

223Playing MIDI Using Win32

TeamLRN

(DWORD)(LPVOID)&openParms // These are the parameters we specified above
);

The MCI_OPEN_TYPE flag specifies that the type name or constant can be found in the
lpstrDeviceType member of the MCI_OPEN_PARMS structure. The flag MCI_OPEN_ALIAS
could be used instead if lpstrAlias were being used to specify the device, or
MCI_OPEN_TYPE_ID could be used if the device were specified in the lpstrDeviceType
member. MCI_OPEN_ELEMENT states that there is a file name in the lpstrElementName. If
the driver is to interpret the value in lpstrElementName as something internal to the
driver, MCI_OPEN_ELEMENT_ID should be used instead, though with MIDI it is doubtful
that you will do so. MCI_WAIT specifies that the open operation should finish before
the function returns.

Now that we have initialized the device, we are ready to send the command to play.
MCI commands are generic, so the command to play and the command to initial-
ize look very similar. Because we want the music to loop, we are going to set up a
notification message that will fire when the song ends. We are going to put our
MCI notification handlers in the game window’s message handlers, so we specify
the handle to the window as the dwCallback of the MCI_PLAY_PARMS. We send the MCI
command as follows:

mciSendCommand(
deviceID, // the device ID we initialized in MCI_OPEN
MCI_PLAY, // specify that this is a play command
MCI_NOTIFY, // instruct MCI to notify when the song finishes playing
(DWORD)(LPVOID)&playParms // the play parameters we gave

);

We did not specify MCI_WAIT this time because we want the game to work while the
music plays. The song has started playing; it won’t bother us until the notification
that it’s run out of MIDI to play. You will note that we stored the device ID and the
play parameters for later use.

But, you say, what if I want to shut my music off?

Well, that’s quite simple. All you need to do is tell MCI to shut that device off. You
can specify which device to shut off in the first parameter if you want, but person-
ally, this is the only thing I’m using MCI for, so I’m just going to shut MCI off
wholesale:

mciSendCommand(MCI_ALL_DEVICE_ID, MCI_CLOSE, NULL, NULL);

224 8. Sound and Music

TeamLRN

This both stops and closes the initialized device. All you have to do to restart it is
call your PlayMusic function to initialize the device and play the music again. Be
sure to use this command to shut everything down when the user exits your game.

Let’s look at the notification messages now so that we can restart the song when we
are notified by MCI that it’s run out of MIDI to play. I’m not going to tell you how
to catch the notification message because, depending on whether you’re using
pure Win32 or MFC, it will change. I’m going to assume that you can handle any
Windows messages that get fired at you. As you can see, you can catch several notifi-
cation messages from MCI other than the “done” notification. I’m just going to
handle restarting the music because the appropriate reaction to the examples I’ve
given of a notification indicating failure or the playback being superseded is up to
you.

LONG CGameBoard::OnMciNotify(UINT wFlags, LONG lDevId)
{

MCI_PLAY_PARMS playParms;
playParms.dwFrom = 0;
switch(wFlags) {

case MCI_NOTIFY_SUCCESSFUL:
playParms.dwCallback = (DWORD)m_hWnd;
mciSendCommand(lDevId, MCI_PLAY, MCI_NOTIFY|MCI_FROM,

(DWORD)(LPVOID)&playParms);
break;

case MCI_NOTIFY_FAILURE:
// MCI has notified us of a failure.
break;

case MCI_NOTIFY_SUPERSEDED:
// MCI has notified us that its play has been superseded.
break;

}
return 0L;

}

The device has already been initialized and wasn’t closed, so we don’t have to per-
form the MCI_OPEN again. As you can see, the dwFrom value has been set to zero in the
MCI_PLAY_PARMS. This ensures that the position in the MIDI file is set to the begin-
ning so that we are ready to play it again. The device ID that is registering a suc-
cessful completion message is given to us in the message, which is very handy. We
make sure our MCI_PLAY_PARMS dwCallback value will still send notifications to this
window, and then we send a command to start playing again. This time, to be sure

225Playing MIDI Using Win32

TeamLRN

that the song starts playing again in the right spot, we use the MCI_FROM flag to
instruct MCI to use the dwFrom value in the play parameters.

Sound in DirectX
DirectSound uses DSound.lib when you include DSound.h. It can handle any num-
ber of recording formats, but it will help a great deal if you create or reformat all
your sounds to have the same bits per sample and frequency. If you don’t,
DirectSound will have to convert all your samples to 22KHz 8-bit, which is both
slow and likely to sound weird. DirectSound sounds best when using mono, so save
some memory and storage space and use mono rather than stereo. DirectSound
does have 3-D sound capability, but I won’t be discussing the use of it here because
it is very complicated and rarely used. The DirectX SDK documentation is a good
reference if you are interested in attempting it.

As with most of DirectX, when using DirectSound, you will be talking to your sound
card as an object. If you have more than one sound card, you can detect and enu-
merate them to get their globally unique identifiers (GUIDs) and pick which one
you want to use as your sound device, but generally speaking, you will ignore the
detection part and simply work with the default sound card for the system.
Obviously, DirectSound will sound best on sound cards that have DirectSound dri-
vers, but the DirectSound libraries can emulate the drivers. Granted, this will be a
bit slower, but as long as your user has the DirectSound libraries, the sound card
and the computer will still be able to make the noise you want.

As usual when using DirectX, to use DirectSound, you have to create the appropri-
ate COM object and then get the interfaces you need. The objects and interfaces
are as follows:

• IUnknown This is the usual base COM object.

• IDirectSound This is the main COM object, representing the sound card itself.
If you want to represent more than one sound card, you will need an
IDirectSound for each of them.

• IDirectSoundBuffer These represent the actual sounds and the mixing hard-
ware. You will have one primary buffer and probably several secondary
buffers. The primary buffer is the buffer that is playing and being mixed by
either emulation or hardware (preferably hardware). Secondary buffers are
sounds that are stored to be played using the primary buffer in the future,
and they can be held either in the sound RAM on your sound card or in sys-

226 8. Sound and Music

TeamLRN

tem memory. You can make as many secondary buffers as you want until you
run out of memory. When you want to play the sounds in the secondary
buffers, you just feed them into the primary sound buffer.

• IDirectSoundCapture This interface is used to capture and record sounds. You
probably won’t need this unless you’re doing something really special in your
game that requires the player to actually talk through a microphone to the
computer. I’m not going to cover this functionality because it’s unlikely that
you’ll need it.

• IDirectSoundNotify This is another interface you probably won’t use. It is set
up to send notification messages to DirectSound in response to certain
events, but in games, you will usually just want to ship the sound off to play
and forget about it.

Now that we’ve looked at the objects and interfaces, let’s get to the meat of it and
look at the actual initialization and use of DirectSound.

Creating the DirectSound Object
I’m going to assume that most games will merely want to use the default sound
card rather than checking the system to detect and enumerate multiple sound
cards, setting up GUIDs for each of them, and deciding which one you want to use.
So, let’s look at DirectSoundCreate.

HRESULT DirectSoundCreate(
LPGUID lpGuid, // guid of the sound card, use NULL to get the default device
LPDIRECTSOUND •lpDS, // interface pointer to the object
IUnknown FAR •pUnkOuter) // this will always be NULL

If we’re using the default device, the call will look something like this:

LPDIRECTSOUND lpds;
// DirectSound object pointer, you might want to store this to use later and
eventually release when you shut down

if (DirectSoundCreate(NULL, &lpds, NULL) != DS_OK)
{ // do your error handling }

Keep in mind that you are responsible for the LPDIRECTSOUND object you created, so
when you are done using DirectSound entirely (probably around the time you shut
your game down), be sure to use the following:

lpds->Release();

227Sound in DirectX

TeamLRN

Cooperative Levels: Getting Along
with Other Application Processes
on Your System
Now that we have a DirectSound object, we need to decide whether or not we’re
going to make it play nice with other application processes on your system that
might also want to use the sound card. There are four basic cooperation levels that
range from having hardly any control over the primary buffer to having total con-
trol over the primary buffer. Microsoft generally suggests that you play nice and
share with other applications, but you don’t absolutely have to.

• DSSCL_NORMAL With this setting, DirectSound will create a default primary
buffer set to 22KHz 8-bit stereo. DirectSound won’t let you have permission
to write to the primary buffer. Your game will be allowed to play sounds when
it has focus but so will the other applications you might have running.

• DSSCL_PRIORITY This setting should be used if you want to be able to change
the mixer settings of the primary buffer, change the primary buffer’s data
format, or do something complicated like in-memory compaction.

• DSSCL_EXCLUSIVE This setting gives you control over the primary buffer much
like Priority mode, but your application must be in the foreground for any
sound it makes to be heard.

• DSSCL_WRITEPRIMARY This gives you complete control over the primary buffer. It
is the highest priority, and you probably won’t use it unless you decide to
write your own sound mixer. If you use this setting, you’d better know what
you’re doing because you can easily distort or even crash the sound for your
application and whatever else you have running.

To set the cooperation level, call SetCooperativeLevel from the interface of your
main DirectSound object. SetCooperativeLevel looks like this:

HRESULT SetCooperativeLevel(
HWND hwnd, // handle of the window you’re playing sounds for
DWORD dwLevel) // one of the above cooperative levels

If you want to set your game to the DDSCL_NORMAL cooperative level, it would look like
this:

if (lpds->SetCooperativeLevel(m_hWnd, DSSCL_NORMAL) != DS_OK)
{ // do your error handling here }

228 8. Sound and Music

TeamLRN

Now we have our game all set up with a primary sound buffer initialized and a
cooperative level set, and we’re cleaning up after ourselves when we’re done. It’s
time to use it to actually play something!

Working with Sound Buffers
Unless you set your cooperative level to DSSCL_WRITEPRIMARY, DirectSound will make
you a primary sound buffer to use. As previously discussed, the default primary
sound buffer is 22 KHz 8-bit stereo. If you want to use something other than this,
you will need to set your cooperative level to at least DSSCL_PRIORITY and then set the
data format you want for the primary buffer.

Secondary Sound Buffers
These buffers are the sounds you want to play, but they are not currently playing.
Size doesn’t matter as long as you have enough memory to hold them all in your
sound RAM and system memory.

There are two basic types of secondary buffers: static and streaming. Generally
speaking, you will be using static sound buffers because they are relatively small
buffers that you will want to play again and again, such as the sound of a bullet
being fired or a footstep. Streaming buffers are for the huge sound files you want
to play, such as CD audio or a narrator voiceover of an intro movie. You wouldn’t
have enough room to store the entire sound file in a static buffer, so the data
chunks are constantly read out of the file, streamed to the DirectSound buffer to
play, and then released in a manner very similar to streaming audio you find on the
Web. This keeps you from running out of memory when playing the truly huge
sound files.

To make it easier to do static and streaming buffers, DirectSound uses circular
buffering. Sounds are stored into circular buffers, and DirectSound keeps track of
a play cursor and a write cursor. The write cursor is slightly ahead of the play cursor
and is the point in the buffer in which new data is being read in from the file. The
play cursor is the point at which the buffer is being played. This allows you to simul-
taneously read in and play your sounds. There will be a slight lapse between where
it is reading and where it is playing, but you will never notice because you won’t be
looking directly at the memory. Most of the time, you won’t care when using sound
in games because you will probably store your sounds in a static buffer for a while
before you find it necessary to play them.

229Sound in DirectX

TeamLRN

Getting Ready to Use
CreateSoundBuffer()
When you use CreateSoundBuffer, an LPDIRECTSOUNDBUFFER is created and initialized for
your use. To make one, we must first fill a DirectSoundBuffer struct with the informa-
tion DirectSound needs to properly create the buffer. The LPDSBUFFERDESC is as
follows:

typedef struct
{

DWORD dwSize; // size of this description buffer
DWORD dwFlags; // creation control flags, as described below
DWORD dwBufferBytes; // size of the actual sound buffer, in bytes
DWORD dwReserved; // not currently used
LPWAVEFORMATEX lpwfxFormat; // wave format, described below

} DSBUFFERDESC, *LPDSBUFFERDESC;

The creation control flags (dwFlags) that you can use to describe your buffer are as
follows:

• DSBCAPS_CTRLALL This “all control” flag was removed from DirectX, but I men-
tion it because some old code might contain it and be impossible to build as
a result. I assume this was done because each control flag you add slows
down the sound processing, so the DirectSound developers decided to make
you specify each control flag.

• DSBCAPS_CTRLDEFAULT This default flag once specified DSBCAPS_CTRLFREQUENCY_
DSBCAPS_CTRLPAN| DSBCAPS_CTRLVOLUME, but like DSBCAPS_CTRLALL, it has been
removed.

• DSBCAPS_CTRLFREQUENCY This gives the buffer frequency control capability.

• DSBCAPS_CTRLPAN This gives the buffer pan (left to right) control capability.

• DSBCAPS_CTRLVOLUME This gives the buffer volume control capability.

• DSBCAPS_LOCDEFER This allows the buffer to be assigned to a hardware or soft-
ware resource when AcquireResources is called or at playtime.

• DSBCAPS_LOCHARDWARE This tells DirectX to use hardware mixing for this buffer.

• DSBCAPS_LOCSOFTWARE This tells DirectX to use software mixing for this buffer
and place it in software memory.

230 8. Sound and Music

TeamLRN

• DSBCAPS_PRIMARYBUFFER This indicates that this buffer is the primary buffer.
Unless you’re sure you know what you’re doing and are using
DSSCL_WRITEPRIMARY, don’t make one of these.

• DSBCAPS_STATIC This specifies that this is a static sound buffer.

The next structure we need to be concerned with to load our secondary buffer is
the WAVEFORMATEX struct so that we can supply CreateSoundBuffer() with the proper
lpwfxFormat. You will note that much of the information in the WAVEFORMATEX is con-
tained in the RIFF file header as previously discussed, and that’s where we will be
getting it. The WAVEFORMATEX struct is as follows:

typedef struct
{

WORD wFormatTag; // describes the wave file’s format, you will usually use
WAVE_FORMAT_PCM

WORD nChannels; // number of audio channels involved, 1 for mono, 2 for stereo
DWORD nSamplesPerSecond; // samples per second
DWORD nAvgBytesPerSec; // average data rate in bytes per second
WORD nBlockAlign; // (nAvgBytesPerSec/nSamplesPerSecond) • nChannels
WORD wBitsPerSample; // bits per sample
WORD cbSize; // don’t need this, set it to 0

}WAVEFORMATEX;

]

Most of the information in this WAVEFORMATEX is information we will be getting
directly from the file, so it’s time to look at reading the file so we can populate it.

Reading WAV Files
Now that we know what we need for our sound buffer, let’s take a look at extracting
the information to set it up from a standard WAV file. Keep in mind the WAV RIFF
discussion from earlier in this chapter. Using the information I gave you there, you
could write your own parser, but why bother when Microsoft has been so kind as to
write one for you? The multimedia I/O interface (MMIO) that will let you load
WAV files can be used when you include mmsystem.h and link to winmm.lib.

As I showed you in the RIFF file, the format is based on chunks. We need to extract
the header chunk and use the information there to set up our wave format parame-
ters for the buffer. Then we need to get the data chunk for our actual sound buffer.
MMIO is very handy for this because it is capable of parsing the wave format
parameters for us.

231Sound in DirectX

TeamLRN

MMIO Commands and Structures
A few basic MMIO structures are used to extract data from a file. The first one you
will need to be familiar with is HMMIO, which is basically a handle to the file from
which you intend to extract information. The file can be a standard file, an in-
memory file, or part of a custom storage system.

The second important structure is MMIOINFO, which deals with the file itself. This
specifies the type of file, the state of the file, and other information. You will not
need to use this structure unless you are doing something special—such as making
your own data files for all your sounds—that would require you to tell MMIO
where to start reading for that particular chunk of RIFF information. Therefore, I
will give a brief overview and suggest you look at the MSDN documentation if you
need to do more. The MMIOINFO struct looks like this:

typedef struct {
DWORD dwFlags; // flags specifying how the file was opened
FOURCC fccIOProc; // four-character code defining the I/O procedure
LPMMIOPROC plOProc; // address of the file’s I/O procedure
UINT wErrorRet; // error value if mmioOpen fails
HTASK hTask; // local I/O procedure handle
LONG cchBuffer; // size of the file’s I/O buffer in bytes
HPSTR pchBuffer; // address of the file’s I/O buffer
HPSTR pchNext; // address of the next location to be read or written
HPSTR pchEndWrite; // location 1 byte past the last location that can be

written
LONG IBufOffset; // reserved
LONG IDiskOffset; // current position in bytes from the beginning of the file
DWORD adwInfo[4]; // state information of the I/O procedure
DWORD dwReserved1; // reserved
DWORD dwReserved2; // reserved
HMMIO hmmio; // handle of the opened file

} MMIOINFO;

The third important MMIO structure is MMCKINFO. This struct contains “chunk” infor-
mation pertaining to the RIFF file you’re working with. The MMCKINFO struct looks
like this:

typedef struct {
FOURCC ckid; // chunk identifier
DWORD cksize; // size of the data in the chunk, not including the identifier or

chunk size

232 8. Sound and Music

TeamLRN

FOURCC fccType; // format type as discussed in the RIFF file information
previously

DWORD dwDataOffset; // offset of this chunk’s data member from the beginning of
the file

DWORD dwFlags; // either 0 or MMIO_DIRTY to indicate changes in chunk length
and the need to update

} MMCKINFO;

You probably noticed the FOURCC data type. As you read in the RIFF file synopsis,
chunk headers, type indicators, and so on, are four letters long. FOURCC, or four-
character code, is merely four characters’ worth of space designed to hold those
strings, such as “WAVE,” “fmt ” (note the space), “data,” and others. To easily con-
vert, we can use mmioFOURCC. If, for example, we wanted to convert “WAVE” to FOURCC,
we would use the following:

FOURCC fccWAVE = mmioFOURCC(‘W’,’A’,’V’,’E’);

Before we take a broader look at the actual parsing of it, let’s look briefly at the
MMIO commands we will be using to load things from the file. A few standard
commands will let you move easily through the WAV file, parsing out the data you
need and storing it for later use.

To begin parsing a file, we first need to open it. To do so, we use the following:

HMMIO mmioOpen(
LPSTR szFilename, // file name or other indicator
LPMMIOINFO, // unless you are doing something special, this should be NULL to

merely open the specified file
DWORD dwOpenFlags, // flags for the open operation

};

There are several options for dwOpenFlags. The purpose for which the file is opened
is specified by MMIO_READ, MMIO_WRITE, and MMIO_READWRITE. We will be opening the
file to read the sound into a buffer, so we will use MMIO_READ. We will also use
MMIO_ALLOCBUFF to specify that we want to use buffered I/O. The default buffer is 8k,
which should be fine for our purposes. To open a sound file with the name speci-
fied by the CString fileName and to store the resulting MMIO handle, we would use
the following:

hFile = mmioOpen(fileName.GetBuffer(0), NULL, MMIO_READ| MMIO_ALLOCBUF);

Once the file is open, several commands are used to move about the file and to
extract the information from it. We will move around in the file using mmioDescend
and mmioAscend and then extract the data using mmioRead. So, to get the information

233Sound in DirectX

TeamLRN

we need, we are going to use mmioDescend, mmioRead, and mmioAscend repeatedly until
we have extracted everything we need to know.

To search for and descend into a RIFF chunk to get the information from it, we use
mmioDescend, which looks like this:

MMRESULT mmioDescend(
HMMIO hmmio, // MMIO file handle returned by mmioOpen
LPMMCKINFO lpck, // information on the chunk we’re looking for
LPMMCKINFO lpckParent, // parent chunk in which to search for this chunk
UINT wFlags // search flags

);

Appropriate values of wFlags include MMIO_FINDCHUNK to look for RIFF chunk identi-
fiers, MMIO_FINDLIST to look for chunks with the LIST identifier, and MMIO_FINDRIFF to
look for the RIFF identifier chunk. The first flag we will use is MMIO_FINDRIFF so that
we can figure out where to start in the RIFF file we’ve opened. From there, we will
use MMIO_FINDCHUNK to find chunks of the type we’ve specified in the fccType member
of our MMCKINFO struct.

Now that we’re in the chunk from which we want to extract information, we need
to read the information, so we use mmioRead, which looks like this:

LONG mmioRead(
HMMIO hmmio, // MMIO file handle returned by mmioOpen
HPSTR pch, // address of the buffer to contain the data we read
LONG cch // number of bytes to read from the file

);

The pch is simply an address, so we can read the file into any type of structure
we want. Later on, we’re going to read the file’s information directly into a
WAVEFORMATEX structure for the format and a buffer for the sound data.

Once we have the data we need from the chunk we’re looking at, we need to
ascend so that we can descend into another chunk. We use mmioAscend to do this,
and it looks like the following:

MMRESULT mmioAscend(
HMMIO hmmio, // MMIO file handle returned by mmioOpen
LPMMCKINFO lpck, // this should match mmioDescend’s lpck
UINT wFlags // reserved, must be zero

);

234 8. Sound and Music

TeamLRN

Once we’ve done all the ascending and descending we need to do and have
extracted all the data we need (or if we run into an error we can’t recover from),
it’s time to close the file. We do this by using mmioClose, which looks like this:

MMRESULT mmioClose(
HMMIO hmmio, // MMIO file handle returned by mmioOpen
UINT wFlags // flags for close operation

);

For our purposes, wFlags will usually be 0. The other allowed value is MMIO_FHOPEN,
which should be used if the file was opened using a non-MMIO file handle so that
the standard file handle can remain open while only the MMIO file handle is
closed.

Now that we’ve discussed the MMIO commands we will be using to extract data, it’s
time to look at an actual example of loading a WAV file using MMIO.

Using MMIO to Load a WAV
The following is an excerpt from a sound library I wrote. It takes a file name and
uses it to load a CSoundWAV, which is a class I designed to represent an actual WAV
file in a format that I can use with DirectSound.

CString m_szFileName; // name of the file to load
UINT m_nResID; // name of the resource to load
WAVEFORMATEX *m_FormatEx; // wave format info
void *m_pByte; // pointer to data, from disk = NULL

DWORD m_dwLength; // length of data
HMODULE m_hModule; // module to load resource from

BOOL m_bResource; // resource flag
BOOL m_bValid; // valid flag

As you can see, I store pertinent information such as the file name from which I
loaded the buffer, the WAVEFORMATEX that will be read in the load from the file
header, the data buffer that contains the actual sound, the data length, and a few
other tidbits that might prove useful.

In parsing and loading the information contained in the WAV file, the following
MMIO functions are used. The CDSoundWAV’s Load function is as follows. I have thor-
oughly commented it, and it’s fairly self-explanatory. Using MMIO, we are finding
and parsing the RIFF header information and storing it in our WAVEFORMATEX, as well

235Sound in DirectX

TeamLRN

as finding the actual sound data and storing it into a character array to be used
later.

BOOL CDSoundWAV::Load(CString fileName)
{

m_szFileName = fileName;

WAVEFORMATEX formatEx;

DWORD bufSize1 = 0;
DWORD bufSize2 = 0;

// file handle
HMMIO hFile;

// chunks
MMCKINFO primary;
MMCKINFO secondary;
// set up the primary chunk
primary.ckid = (FOURCC)0;
primary.cksize = 0;
primary.fccType = (FOURCC)0;
primary.dwDataOffset = 0;
primary.dwFlags = 0;
// secondary needs the same stuff so copy it over
secondary = primary;

// buffers for storage
UCHAR •tempBuffer = NULL;
UCHAR •buffer1 = NULL;
UCHAR •buffer2 = NULL;

// open the file
// check for validity
if ((hFile = mmioOpen(fileName.GetBuffer(0), NULL, MMIO_READ|MMIO_ALLOCBUF)) ==
NULL)
{

MessageBox(NULL, “Failed to open the .WAV file.”, “Load Failed”,
MB_OK|MB_ICONEXCLAMATION);
return FALSE;

}

236 8. Sound and Music

TeamLRN

// find the WAV file notice
primary.fccType = mmioFOURCC(‘W’,’A’,’V’,’E’);

// make sure it is a real WAV file
if (mmioDescend(hFile, &primary, NULL,MMIO_FINDRIFF))
{

// doh! close it.
mmioClose(hFile,0);
MessageBox(NULL, “.WAV file corrupt.”, “Load Failed”,

MB_OK|MB_ICONEXCLAMATION);
return FALSE;

}

// find the format section
secondary.ckid = mmioFOURCC(‘f’,’m’,’t’,’ ‘);
if (mmioDescend(hFile, &secondary, &primary, 0))
{

// no format? close it.
mmioClose(hFile,0);
MessageBox(NULL, “.WAV format corrupt.”, “Load Failed”,

MB_OK|MB_ICONEXCLAMATION);
return FALSE;

}
// read WAV format info
if (mmioRead(hFile, (char•)&formatEx, sizeof(formatEx)) != sizeof(formatEx))
{

// something else is wrong
mmioClose(hFile,0);
MessageBox(NULL, “Incorrect FormatEx size.”, “Load Failed”,

MB_OK|MB_ICONEXCLAMATION);
return FALSE;

}
// make sure it’s PCM format
if (formatEx.wFormatTag != WAVE_FORMAT_PCM)
{

// so close, and yet so far...
mmioClose(hFile,0);
MessageBox(NULL, “Incorrect .WAV format.”, “Load Failed”,

MB_OK|MB_ICONEXCLAMATION);
return FALSE;

237Sound in DirectX

TeamLRN

}

// we have a format. time to get the data...
if(mmioAscend(hFile,&secondary,0))
{

// error. here we go again.
mmioClose(hFile,0);
MessageBox(NULL, “MMIO ascending error.”, “Load Failed”,

MB_OK|MB_ICONEXCLAMATION);
return FALSE;

}

// trolling for data
secondary.ckid = mmioFOURCC(‘d’,’a’,’t’,’a’);

if (mmioDescend(hFile,&secondary,&primary,MMIO_FINDCHUNK))
{

// no data
mmioClose(hFile,0);
MessageBox(NULL, “MMIO descending error.”, “Load Failed”,

MB_OK|MB_ICONEXCLAMATION);
return FALSE;

}

// everything is just peachy, read the data.
// allocate memory for the temporary buffer
m_pByte = (void•)malloc(secondary.cksize);

// read the .WAV data
int check = mmioRead(hFile,(char•)m_pByte,secondary.cksize);

// close the file
mmioClose(hFile,0);
//m_pByte = (LPBYTE)tempBuffer;
m_dwLength = secondary.cksize;

// set up the wave format
m_FormatEx = new WAVEFORMATEX;
memset((void•)m_FormatEx, 0, sizeof(WAVEFORMATEX));
memcpy((void•)m_FormatEx, (void•)&formatEx, sizeof(WAVEFORMATEX));

238 8. Sound and Music

TeamLRN

return TRUE;
} // end CDSoundWAV::Load

We now have a WAVEFORMATEX populated with everything we know from the file and a
large buffer full of actual sound data. We can now use all the data we extracted to
create our sound buffer so that we can play it in our game.

Using CreateSoundBuffer
The first thing we need to do is put our WAVEFORMATEX information into a DSBUFFERDESC
so that we can use it to specify the buffer information DirectSound needs. So let’s
make one. The soundWAV referred to is the class into which we read all the informa-
tion from the file using MMIO. It knows the length of the file we read that can be
accessed using GetDataLength, as well as the WAVEFORMATEX of the file we loaded that we
can get using GetWAVFormat.

DSBUFFERDESC bufferDesc; // this will be our buffer description
DWORD length;

// first, we allocate enough memory to hold a DSBUFFERDESC
memset(&bufferDesc, 0, sizeof(DSBUFFERDESC));

// next, we ask the class we used to load the file how long the data is
bufferDesc.dwBufferBytes = soundWAV->GetDataLength();

// set up the buffer flags for panning, volume, and frequency control
// also put in the flags to specify that this is a static buffer in software memory
bufferDesc.dwFlags = DSBCAPS_CTRLPAN | DSBCAPS_CTRLVOLUME | DSBCAPS_CTRLFREQUENCY |

DSBCAPS_STATIC | DSBCAPS_LOCSOFTWARE;

// the size of the buffer will be… the size of the buffer struct, naturally
bufferDesc.dwSize = sizeof(DSBUFFERDESC);

// retrieve the WAVEFORMATEX from the class we loaded it into
bufferDesc.lpwfxFormat = soundWAV->GetWAVFormat();

Now that we have our buffer description all set up and ready, let’s create the sound
buffer. We’ll use CreateSoundBuffer, which looks like this:

HRESULT CreateSoundBuffer(
LPCDSBUFFERDESC lpcDSBuffDesc, // the buffer description we just made
LPLPDIRECTSOUNDBUFFER lplpDSBuff, // actual sound data

239Sound in DirectX

TeamLRN

IUnknown FAR •pUnkOuter // always NULL
};

Once we’ve created the buffer, we will lock it so that we can copy our sound infor-
mation into it, and then we’ll unlock it so that it can be used. Earlier, we discussed
the fact that DirectSound uses circular buffers, which makes things a little more
complex than just copying data over. The command to lock the buffer for writing is
as follows:

HRESULT Lock (
DWORD dwOffset, // write cursor offset in bytes
DWORD dwBytes, // number of bytes you want to lock
LPVOID lpAudioPtr1, // returns a pointer to the first buffer portion
LPDWORD lpdwAudioBytes1, // bytes in first buffer portion
LPVOID lpAudioPtr2, // returns a pointer to the second buffer portion
LPDWORD lpdwAudioBytes2, // bytes in second buffer portion
DWORD dwFlags // locking flags

);

The dwFlags can be either DSBLOCK_FROMWRITECURSOR, which locks the buffer for the
value of dwBytes from the write cursor, or DSBLOCK_ENTIREBUFFER, which locks the
entire buffer for writing. We aren’t streaming, so we can use DSBLOCK_ENTIREBUFFER,
which is much easier. The DSBLOCK_ENTIREBUFFER flag will simply ignore the dwBytes
value. We will also be making things easier by setting our second buffer portions as
NULL because locking the entire buffer makes that portion unnecessary.

Once our buffer is locked and we can write to it, we’re going to memcopy the infor-
mation we got for the sound buffer from the file. Then we need to unlock the
buffer (using UnLock) so that we can use it, like this:

HRESULT Unlock(
LPVOID lpAudioPtr1, // first buffer portion from Lock
DWORD dwAudioBytes1, // bytes in first buffer portion from Lock
LPVOID lpAudioPtr2, // second buffer portion from Lock
DWORD dwAudioBytes2, // bytes in second buffer portion from Lock

);

So, to populate the buffer using our sound data, we would do the following:

// declare the buffer we’re making
LPDIRECTSOUNDBUFFER soundBuffer = NULL;
// pointer used to hold the buffer portion pointer
void• lpBuffer = NULL;
DWORD length;

240 8. Sound and Music

TeamLRN

// create the buffer. lpSound is our LPDIRECTSOUND object
lpSound->CreateSoundBuffer(&bufferDesc, &soundBuffer, NULL);

// find the data length of the buffer we read in previously so we can copy it
length = soundWAV->GetDataLength();

// copy the information into the new buffer
soundBuffer->Lock(0, length, &lpBuffer,

&length, NULL, NULL, DSBLOCK_ENTIREBUFFER);
memcpy(lpBuffer, soundWAV->GetWAVData(), soundWAV->GetDataLength());
soundBuffer->Unlock(lpBuffer, soundWAV->GetDataLength(), NULL, 0);

Now you can use the sound all you
want. Remember, though, that you cre-
ated this buffer, and you’re responsible
for it. When you’re completely done
with the buffer and that sound will no
longer be needed, you need to clean up
after yourself by releasing the buffer. To
release it, merely use the following:

soundBuffer->Release();

Playing the Secondary Buffers
We went to all the trouble of setting up our secondary buffers; it would be a shame
if we didn’t actually play them, so let’s do so. To play a sound, you use the Play
function (imagine that), which looks like this:

HRESULT Play (
DWORD dwReserved1, // reserved, 0
DWORD dwReserved2, // reserved, 0
DWORD dwFlags // play flags

);

There is only one possible flag, DSBPLAY_LOOPING. As you can guess, it tells
DirectSound to play the sound repeatedly until you tell it to stop. For our sound
buffer that we set up earlier, if we wanted to play the sound once, we would use the
following:

soundBuffer->Play(0, 0, 0);

241Sound in DirectX

CAUTION
Keep in mind that this entirely
destroys the sound buffer, so only do
this when you are sure you won’t
need the sound again.

TeamLRN

Simple, isn’t it? Let’s look at a few other things you might want to do to a sound.
For instance, you might want to stop a sound after it’s started playing but before it’s
done, or you might want to stop a sound that you told to loop indefinitely. Simply
use the Stop function, which looks like this:

HRESULT Stop();

Again, it’s very simple and to the point. To stop the sound we just started up, we
would use:

soundBuffer->Stop();

If you remember back to when we first set up our buffer, we specified DSBCAPS_-
CTRLPAN | DSBCAPS_CTRLVOLUME | DSBCAPS_CTRLFREQUENCY, which means we can control
the pan, volume, and frequency of our sounds. These are fun things to play with,
so let’s look at how to change the values.

DSBCAPS_CTRLPAN lets you pan a sound from left to right. The function for it looks like
this:

HRESULT SetPan(LONG lPan);

The value of lPan can range from –10,000 to 10,000 and indicates the decibel split
between the left and the right in hundredths of a decibel. A value of –10,000 would
indicate an attenuation of 100dB in the right speaker, whereas a value of 10,000
would indicate an attenuation of 100dB in the left speaker. A 0 in the lPan value
indicates that both speakers are at the same attenuation level, so they will be
equally at full volume; otherwise, one speaker will be at full volume and the other
will be attenuated. An lPan of 3,500 would mean that the right speaker is at full vol-
ume, while the left speaker is attenuated by 35.00dB.

DSBCAPS_CTRLVOLUME lets you mess with the volume levels of sound. DirectSound can-
not actually amplify sounds for you, so you will need to plan for the fact that you
can make sounds softer than full volume but not louder. The function for changing
volume is as follows:

HRESULT SetVolume(LONG lVolume);

The amount of attenuation is specified by lVolume in hundredths of a decibel. This
value can range from 0, which is full volume with no attenuation, to –10,000, which
is a 100dB attenuation.

DSBCAPS_CTRLFREQUENCY lets you change a sound’s frequency. This can give you some
great sound variety without needing a bunch of buffers to do it. Changing the fre-

242 8. Sound and Music

TeamLRN

quency of a sound clip of someone speaking can give you a range between
“munchkin” and “Jabba the Hut” with minimal effort. To change frequency, use the
following:

HRESULT SetFrequency(DWORD dwFrequency);

The new frequency, in hertz, is the value of dwFrequency. The allowable range is 100
Hz to 100,000 Hz. The higher the frequency, the higher the pitch will be. To set
your sound back to the original frequency, use DSBFREQUENCY_ORIGINAL for dwFrequency,
and DirectSound will set the buffer back to the frequency it was at when you cre-
ated it. It’s important to note that using this command to change the frequency
will not change the format of the sound buffer, and you are not allowed to use
SetFrequency on the primary sound buffer.

MIDI with DirectMusic
Now that we have sounds, it’s time to add a little music. With DirectMusic, it is very
important to cooperate with the DirectSound primary sound buffer. When using
DirectMusic, keep in mind that it wasn’t introduced to DirectX until version 6.0,
which means that Windows NT will not support it. The functionality of DirectMusic
is truly massive, but we’re going to look at how to simply play a MIDI file using
DirectMusic because that’s probably what you’re going to want to do in your game.
The nice thing about DirectMusic is that it uses the Microsoft Software Synthesizer
unless you specifically instruct otherwise, which is fantastic because it means your
MIDI files are going to be using the same Roland sound fonts regardless of what
computer they’re on. Finally, musicians can stop stressing about how terrible their
MIDIs might sound using the voices on different sound cards!

DirectMusic is the very first pure COM component in DirectX, which means you
don’t have to worry about any libraries. You do need to know the header files,
which are dmkctrl.h, dmusicc.h, dmusicf.h, and dmusici.h.

Like DirectSound, DirectMusic has several important interfaces to consider. The
following are the COM interfaces and objects we will be using:

• IDirectMusic This is the main DirectMusic interface, but you won’t be
directly using it. It will be created by default in the creation of
IDirectMusicPerformance, which will be the actual interface you use while
manipulating MIDI.

243MIDI with DirectMusic

TeamLRN

• IDirectMusicPerformance This is your main interface. It controls and manipu-
lates all the musical data and creates the default main IDirectMusic object
automatically when you create the performance.

• IDirectMusicLoader Microsoft was kind enough to give us this interface, which
will take care of loading our MIDI files for us so that we won’t have to go
mucking about with MMIO again.

• IDirectMusicPort This is the port at which you direct your MIDI data stream.
Usually this will be the Microsoft Software Synthesizer unless you decide to
use a hardware-accelerated port found via enumeration.

• IDirectMusicSegment This is the actual data chunk from your MIDI file repre-
senting the music. We’re going to make a structure to contain this and the
IDirectMusicSegmentState (along with a few other interesting tidbits of data), so
we can make a whole bunch of these for as many MIDI songs as we want to
play.

• IDirectMusicSegmentState This keeps track of the current status of the data in
the segment.

Since DirectMusic is pure COM, we start with a call to CoInitialize(). This goes in
the constructor of the DirectMusic class you’re making and looks like this:

if (FAILED(CoInitialize(NULL)))
{

MessageBox(NULL, “Initialization of MIDI COM object failed.”, “Constructor
Failed”, MB_OK|MB_ICONEXCLAMATION);
m_bValid = FALSE;
return;

}

That wasn’t so bad. Now that COM is initialized, it’s time to start using it by creat-
ing the DirectMusic performance. I’ve previously set up a member variable in my
DirectMusic class that keeps track of my IDirectMusicPerformance, which was declared
as follows:

IDirectMusicPerformance •m_Performance; // primary DirectMusicPerformance object

I initialized the m_Performance to NULL in my constructor because we need the
CoCreateInstance to give me the pointer it creates for my performance. Keep in
mind that when this CoCreateInstance is called, a hidden IDirectMusic interface is also
created, but we don’t need to worry about it.

if (FAILED(CoCreateInstance(CLSID_DirectMusicPerformance, NULL, CLSCTX_INPROC,
IID_IDirectMusicPerformance, (void••)&m_Performance)))

244 8. Sound and Music

TeamLRN

{
MessageBox(NULL, “Failed to create performance.”, “Constructor Failed”,
MB_OK|MB_ICONEXCLAMATION);
m_bValid = FALSE;
return;

}

Initializing the
IDirectMusicPerformance
Now that we have an IDirectMusicPerformance, we need to initialize it. This is the
important part if you decide to use DirectMusic and DirectSound together. The
Init function looks like this:

HRESULT Init(IDirectMusic•• ppDirectMusic,
LPDIRECTSOUND pDirectSound,
HWND hWnd);

We didn’t make our own IDirectMusic, so we can pass in a NULL for ppDirectMusic.

Does the LPDIRECTSOUND look familiar? It should because it’s the same thing as the
DirectSound primary buffer we were working with back in the DirectSound section.
If you are using DirectSound and DirectMusic together, you absolutely must set up
DirectSound first and keep track of your LPDIRECTSOUND to use it in this Init call. If
you aren’t using DirectSound and DirectMusic together, pass in a NULL for
pDirectSound, and DirectMusic will create an IDirectSound itself.

For our hWnd, we simply use our game’s main window as usual.

This is what my Init looks like:

if (FAILED(m_Performance->Init(NULL, m_lpPrimaryDSound, m_hWnd)))
{

MessageBox(NULL, “Failed to init.”, “Constructor Failed”,
MB_OK|MB_ICONEXCLAMATION);
m_bValid = FALSE;
return;

}

The m_lpPrimaryDSound is the DirectSound buffer from the DirectSound section,
which I stored previously as a member variable, along with the m_hWnd representing
our game’s main window.

245MIDI with DirectMusic

TeamLRN

Creating an IDirectMusicPort
Now all we need is to create a port to which to stream our data, and then we can
get on with the loading and playing of MIDI files. Creating an IDirectMusicPort is as
simple as the other things we’ve done so far. All we need to do is tell the perfor-
mance to add a port to itself, as follows:

if (FAILED(m_Performance->AddPort(NULL)))
{

MessageBox(NULL, “Failed to add port.”, “Constructor Failed”,
MB_OK|MB_ICONEXCLAMATION);
m_bValid = FALSE;
return;

}

The NULL specifies the use of a default port instead of one we set up ourselves. You
can set up your own port if you’d like using the IDirectMusicPerformance, but if you
do you’ll need to activate it, assign the block of channels, and (when you’re done)
remove it. If you use the default port, DirectMusic will take care of that for you.

Setting Up the IDirectMusicLoader
We now have all the pieces ready to start working with our MIDI files. Naturally, the
first thing we want to do is set up the IDirectMusicLoader so that we can load a MIDI
file; otherwise, we’ll have nothing to play. To get a loader, we’ll need to venture yet
again deep into COM territory and make a CoCreateInstance call for it.

I’ve already set up an IDirectMusicLoader member variable in my class header, as
follows:

IDirectMusicLoader •m_Loader; // loader for MIDI files

As with the performance member variable, I set this one to NULL in the constructor
for my MIDI class as well. The CoCreateInstance call looks like this:

if (FAILED(CoCreateInstance(CLSID_DirectMusicLoader, NULL, CLSCTX_INPROC,
IID_IDirectMusicLoader, (void••)&m_Loader)))

{
MessageBox(NULL, “Failed to create loader.”, “Constructor Failed”,
MB_OK|MB_ICONEXCLAMATION);
m_bValid = FALSE;
return;

}

246 8. Sound and Music

TeamLRN

Now that we have our loader initialized, we need to load our segments into a struct
we can use to keep track of our songs and their states. I’ve set up a structure called
MIDISong to store this information, as well as a few enum values in MIDIState to indi-
cate the song’s current state.

enum MIDIState{ MIDI_OPEN, MIDI_LOADED, MIDI_PLAYING };

struct MIDISong
{
IDirectMusicSegment •segment; // the segment containing a complete song
IDirectMusicSegmentState •segmentState; // the state of this segment
int id; // the id number of this song
MIDIState state; // the current state of this song

};

Loading a Song
Now that we have a MIDISong struct, we can use our loader to load in the informa-
tion contained in our MIDI file. This is the loading code from my DirectMusic
wrapper. As you can see, I have an array for my MIDI segments called m_SongArray.
I’m passing in the file name of the MIDI I want to load into an open segment in
my array.

int CDMIDIWrap::LoadSong(CString fileName)
{

IDirectMusicSegment• pSegment = NULL;

int slot = -1;

// find an open slot
for (int i = 0; i < NUM_SONGS; i++)
{
if (m_SongArray[i].state == MIDI_OPEN)
{

slot = i;
break;

}
}

if (slot == -1)
return -1;

247MIDI with DirectMusic

TeamLRN

// deal with the crazy wide character stuff
WCHAR wideFileName[_MAX_PATH];
MultiByteToWideChar(CP_ACP,MB_PRECOMPOSED,fileName.GetBuffer(0),
-1,wideFileName,_MAX_PATH);

// set up a description structure
DMUS_OBJECTDESC ddDesc;
//DD_INIT_STRUCT(ddDesc);
ddDesc.dwSize = sizeof(DMUS_OBJECTDESC);
ddDesc.guidClass = CLSID_DirectMusicSegment;
wcscpy(ddDesc.wszFileName, wideFileName);
ddDesc.dwValidData = DMUS_OBJ_CLASS|DMUS_OBJ_FULLPATH;

// set up load object
if (FAILED(m_Loader->GetObject(&ddDesc, IID_IDirectMusicSegment,

(void••)&pSegment)))
{

MessageBox(NULL, “Failed loading object.”, “Load Failed”,
MB_OK|MB_ICONEXCLAMATION);
return -1;

}

// set segment parameters to standard MIDI
if (FAILED(pSegment->SetParam(GUID_StandardMIDIFile,-1,0,0,(void•)m_Performance)))
{

MessageBox(NULL, “Failed setting standard parameter.”, “Load Failed”,
MB_OK|MB_ICONEXCLAMATION);
return -1;

}

// set download parameter
if (FAILED(pSegment->SetParam(GUID_Download,-1,0,0,(void•)m_Performance)))
{

MessageBox(NULL, “Failed setting download parameter.”, “Load Failed”,
MB_OK|MB_ICONEXCLAMATION);
return -1;

}

m_SongArray[slot].segment = pSegment;
m_SongArray[slot].segmentState = NULL;

248 8. Sound and Music

TeamLRN

m_SongArray[slot].state = MIDI_LOADED;

return slot;
} // end CDMIDIWrap::LoadSong

Playing a Song
Now that we have a MIDI segment loaded and ready to go, it’s time to ask
DirectMusic to play it for us. To do this, we use IDirectMusicPerformance’s
PlaySegment, which looks like this:

HRESULT PlaySegment(
IDirectMusicSegment• pSegment, // the segment to play
DWORD dwFlags, // play flags, which will be 0 most of the time
_int64 i64StartTime, // when to start playing
IDirectMusicSegmentState•• ppSegmentState); // tracks the playing state

I play the songs in my m_SongArray by passing in the index of the song to play, as
follows:

BOOL CDMIDIWrap::PlaySong(int songIndex)
{

// if there is a song playing, shut it off
if (m_nCurrentSong != -1)

StopSong();

// play the desired segment
m_Performance->PlaySegment(m_SongArray[songIndex].segment, 0, 0,

&m_SongArray[songIndex].segmentState);
m_SongArray[songIndex].state = MIDI_PLAYING;

// save the index
m_nCurrentSong = songIndex;

return TRUE;
} // end CDMIDIWrap::PlaySong

As you can see, I make sure that my MIDISong state is set to MIDI_PLAYING to keep track
of it. I also keep track of what song I’m playing by keeping track of the index of the
song in m_nCurrentSong.

249MIDI with DirectMusic

TeamLRN

Stopping a Song
Once you start playing a song, you will probably eventually want to make it stop
playing. To do so, we use IDirectMusicPerformance’s Stop function, which looks like
this:

HRESULT Stop(
IDirectMusicSegment• pSegment, // segment to be stopped
IDirectMusicSegmentState• pSegmentState, // state of the segment
MUSIC_TIME mtTime, // indicates when to stop it
DWORD dwFlags); // control flags

The dwFlags variable will again usually be 0. The pSegmentState isn’t important, so we
can pass a NULL. Here is my wrapper’s StopSong:

BOOL CDMIDIWrap::StopSong()
{
m_Performance->Stop(m_SongArray[m_nCurrentSong].segment, NULL, 0, 0);
m_SongArray[m_nCurrentSong].state = MIDI_LOADED;
m_nCurrentSong = -1;
return TRUE;

} // end CDMIDIWrap::StopSong

I kept track of the current song playing in m_nCurrentSong, so all I need to do is pass
that segment from my m_SongArray to ask that it be stopped. I set my song state back
to MIDI_LOADED to indicate that that array slot is loaded but isn’t currently playing,
and I set my m_nCurrentSong to –1 to indicate that no song is currently being played.

Checking for Play Status
The third thing we might find useful while using MIDI is to check on the current
state of a segment. To do this, we use IDirectMusicPerformance’s IsPlaying, as follows:

if (m_Performance->IsPlaying(m_SongArray[index], NULL) == S_OK)
// the segment is playing

else
// the segment is not playing

Releasing a Segment
When you are entirely done with a segment and don’t intend to play it ever again,
you need to release the resources. This is done using IDirectMusicSegment’s SetParam

to unload the instrument data and then using IDirectMusicSegment’s Release to

250 8. Sound and Music

TeamLRN

release the interface pointer. The following is my wrapper’s UnloadSegment function,
which releases the resources by index.

BOOL CDMIDIWrap::UnloadSegment(int index)
{
if (m_SongArray[index].state == MIDI_PLAYING)

StopSong();

if (m_SongArray[index].state != MIDI_LOADED)
return TRUE;

m_SongArray[index].segment->SetParam(GUID_Unload, -1, 0, 0, (void•)m_Performance);
m_SongArray[index].segment->Release();
m_SongArray[index].segment = NULL;

m_SongArray[index].state = MIDI_OPEN;

return TRUE;
} // end CDMIDIWrap::UnloadSegment

Note that I first check to see if the song is playing, and if so, I stop it. I then unload
the instrument data, release the segment, and set my state to MIDI_OPEN to indicate
that that array slot is open to have a new song loaded into it.

Conclusion: Shutting Down
DirectMusic
When you are entirely done with DirectMusic, you must close down the perfor-
mance object and loader and any segments you still have loaded. This is my MIDI
wrapper destructor, in which I shut everything down.

CDMIDIWrap::~CDMIDIWrap()
{
// stop the currently playing song
StopSong();

// shut down the segments
for (int i = 0; i < NUM_SONGS; i++)
{

if (m_SongArray[i].state == MIDI_LOADED)
{

251MIDI with DirectMusic

TeamLRN

// unload the instruments
UnloadSegment(i);

}
}

// shut down the performance
if (m_Performance != NULL)
{
m_Performance->CloseDown();
m_Performance->Release();

}

// shut down the loader
if (m_Loader != NULL)
m_Loader->Release();

// shut down the COM
CoUninitialize();

} // end CDMIDIWrap::~CDMIDIWrap

Everything I allocated is released at this point

In this chapter, you learned the techniques necessary to use WAV and MIDI files in
the games that you create. Using these basic techniques will add life to your game
and get the game player more submerged into your game world. Let’s face it, a
game simply is not a game without sound and music! So, use the tricks you have
learned in this chapter to enhance your games and the players game experience.
Trust me, you will be glad that you took the extra time to add this important aspect
to your game.

252 8. Sound and Music

TeamLRN

TRICK 9

2-D Sprites
Jeff Wilkerson

TeamLRN

Introduction
If you have ever played a video game before (and I’ll take the Vegas odds that you
have), you in some way, shape, or form have interacted with sprites. It seems nowa-
days the word sprite is synonymous with 2-D. Since 3-D games are currently the
“rage,” one might falsely think that they don’t need to know or care about sprites.
This simply isn’t the case. Sprites are used in 2-D and 3-D games alike.

So what exactly is a sprite? Well, in its most basic form, a sprite is an image that
moves about the screen. Yep, that’s right, a sprite is essentially a piece of artwork.
Nothing tricky, nothing fancy, just a 2-D rectangular image. The way sprites typically
relate to games is when multiple bitmaps are combined in a sequential fashion to
create an animation. Animations are then strung together to create a “character.” It
is not uncommon to refer to this final “character” as a sprite. I’ll be referring to a
sprite as an individual image and a character throughout this chapter.

After reading through this chapter and carousing through its source code, you’ll
have enough knowledge to make your own sprite engine. Then, making a sprite-
based game will be a hop, skip, and a jump away.

What You Will Learn
If the title didn’t tip you off, this chapter will be about sprites. You can expect to
learn the following concepts:

• How to annually load bitmaps

• DirectDraw basics

• Transparency with sprites

• Drawing and moving of sprites

• Basic collision detection with sprites

Image Loading
We know a sprite contains images, so it’s kind of important that we know how to
load an image. In our case, the image is a 24-bit .bmp file. Windows provides a

254 9. 2-D Sprites

TeamLRN

pretty straightforward Application Programmer’s Interface (API) to load .bmp files.
We’re not going to use it though. Why you ask? In the long run, it gives us a lot
more flexibility if we load it ourselves. We’ll create a class, CImage to handle this
loading task for us. Once we have this class in place, we could easily add methods
to load other file formats that Windows does not have an API for. Additionally, by
loading our own images, we get a pointer to the pixel bits. With a pointer to the
pixel bits, we can alter the image at runtime before we give it to DirectDraw if we
so desire. If we wanted to load an image and then invert it, we could do this with
relative ease. If we just loaded the image using a Win32 API, we’d only get a HANDLE
to the bitmap and consequently could not directly manipulate the pixel data.

Since our sprite is contained in a 24-bit .bmp file, let’s take a look at Figure 9.1 to
see what the file layout for a .bmp file looks like:

The bitmap file header contains the following: file type, size of bitmap in bytes, and
an offset into the file where the pixel bits begin.

The bitmap info header contains the following: width of image, height of image,
number of bits per pixel, and other information that we really don’t care about.

Lastly, the pixel bits are the actual pixel data. Depending on the bit depth of the
image this pixel data will either be indexes into a palette of colors or RGB data.
Since our bitmap is 24-bits, it has 24-bits per pixel. That means every pixel in the
bitmap has 8-bits (8-bits = 1-byte) for the red component, 8-bits for the green com-
ponent, and 8 bits for the blue component. Typically, each pixel is thought of as an
RGB value where R, G, and B are in the range of 0–255.

The .bmp file format is pretty simple. This is one of the reasons I chose this format
for our sprite. Also it is viewable/modifiable in Microsoft Paint, which comes stock
on any Microsoft operating system.

255What You Will Learn

Figure 9.1

Bitmap file format

TeamLRN

Okay, so we know the basics of how a .bmp file is laid out. Now we can talk about
how to load one. First we’ll create a class, CImage, to handle the loading/creation of
24-bit bitmaps. The class definition looks like this:

class CImage {

public:

CImage(); // Constructor()

inline int getWidth() const { return width; }
inline int getHeight() const { return height; }
inline int getChannels() const { return channels; }
inline int getStride() const { return stride; }
inline HDC getHDC() const { return hdc; }

// Creates a blank CImage of specified width, height and channels
bool setCImage(int width, int height, int channels);

// Loads a 24-bit .bmp with specified file_name
bool loadBitmap(char *file_name);

// Returns a pointer to the beginning of a line of pixels specified by
“which_line”
inline uchar* getLinePtr(int which_line);

~CImage(); // Deconstructor()

private:

int width, height; // Width/Height of CImage
int channels;// Number of channels in CImage
int stride; // Number of bytes (including padding) in a line of pixels (DWORD
aligned)

HBITMAP hbitmap; // Handle to a CImage
HBITMAP old_bmp; // Handle to “previous bitmap”
HDC hdc; // Handle to a CImage’s device context
uchar *pixels_bits; // Pointer to the pixel bits

void freeCImage(); // Releases all memory associated with CImage
};

256 9. 2-D Sprites

TeamLRN

Now that we have our CImage class, the next step is reading in the .bmp file data. We
need to start at the top of the bitmap, naturally, and read in the bitmap file header
and the bitmap file info in that order.

BITMAPFILEHEADER bmp_fileheader;

// Read the BITMAPFILEHEADER
fread(&bmp_fileheader, sizeof(BITMAPFILEHEADER), 1, bmp_file);

BITMAPINFOHEADER bmp_infoheader;

// Read the BITMAPINFOHEADER
fread(&bmp_infoheader, sizeof(BITMAPINFOHEADER), 1, bmp_file);

Once we have these structures we’ll create an “empty bitmap” in memory for us to
fill in. This requires a couple of quick definitions of channels and stride. A bitmap’s
channels are equal to its bits per pixel divided by 8. So a 24-bit .bmp file has three
channels (24÷8 = 3).

The stride of a bitmap is the total length in bytes of one complete line of pixels. In
general, the total length of a line of pixels equals the width of the bitmap multi-
plied by the channels of the bitmap. So an 8×8, 24-bit image would have 24 bytes of
information for each line of pixels (each R, G, and B is one byte of information).
Refer to the one in Figure 9.2.

However, Windows forces the .bmp layout to be DWORD aligned (divisible evenly
by 4). This means if we have an 11×11 bitmap, Windows adds a padding byte and
effectively makes the bitmap 12×11. Therefore, the stride of a bitmap refers to the
total length of a line of pixels.

257What You Will Learn

Figure 9.2

Pixel layout

TeamLRN

So to create an “empty” bitmap, we first need to create a device context compatible
to the one currently being used to draw our window. We will select our newly cre-
ated bitmap into the compatible device context so it will have the capability of
being drawn to the screen.

// Create a compatible HDC
hdc = CreateCompatibleDC(NULL);

Next we need to decide what the width, height, and channels of our bitmap are
going to be. We’ll assume the dimensions are being passed in.

// Set width, height, and channels
width = w;
height = h;
channels = c;

Now we can calculate the stride of bitmap. Remember it must be DWORD aligned.

// Calculate the stride of the bitmap.
stride = width * channels;

while((stride % 4) != 0)
stride++;

We’ve filled in some defining attributes of our bitmap; it’s time to actually make it.
We’ll start by filling a BITMAPINFO structure that stipulates how our bitmap should be
created.

// BITMAPINFO for filling
BITMAPINFO bmp_info = {0};

// We’ll initialize the parameters that we care about
bmp_info.bmiHeader.biSize = sizeof(BITMAPINFOHEADER); // Must be set
bmp_info.bmiHeader.biWidth = width;
bmp_info.bmiHeader.biHeight = height;
bmp_info.bmiHeader.biPlanes = 1; // Must be set
bmp_info.bmiHeader.biBitCount = channels * 8;
bmp_info.bmiHeader.biCompression = BI_RGB; // No compression

Once we have our BITMAPINFO filled in, we can make our bitmap.

// Create the bitmap aka DIB Section (Device Independent Bitmap Section)
hbitmap = CreateDIBSection(hdc, &bmp_info, DIB_RGB_COLORS, (void**)&pixels_bits, 0,

0);

258 9. 2-D Sprites

TeamLRN

This function call will return two things: a valid bitmap handle in hbitmap and a
pointer to the pixel data in pixel_bits.

We are almost finished. Lastly, we loop over the pixel data and fill our newly cre-
ated bitmap.

// Calculate the number of pixel bytes per line
unsigned int bytes_per_line = width * channels;

// Calculate the number of “padding” bytes
unsigned int padding = stride - bytes_per_line;

// Loop over all the pixel data
for(int y = 0; y < height; y++)
{

// Get the current line
uchar *line_ptr = getLinePtr(y);

// Read the precise number of bytes that the line requires into the bitmap
fread(line_ptr, bytes_per_line, 1, bmp_file);

// Skip over any padding bytes
fseek(bmp_file, padding, SEEK_CUR);

} // end of for(int y = 0; y < height; y++)

After reading all the pixel data we’ll be loaded. Now the party can officially start.

DirectDraw Basics
DirectDraw allows us “direct” access to the hardware for drawing (blitting) to the
screen. To create a simple DirectDraw application these are the four general steps
you follow:

1. Create a DirectDraw interface.

2. Create surfaces to draw on.

3. Create a clipper for the DirectDraw surfaces.

4. Blit to the screen.

259What You Will Learn

TeamLRN

Step #1
Creating a DirectDraw interface is pretty straightforward. First we need to create an
instance of a “base” DirectDraw object. Upon getting a valid DirectDraw object, we
can query it for a DirectDraw interface. This interface is how we will communicate
with DirectDraw for creation of our surfaces and clipper.

LPDIRECTDRAW lpdd = NULL; // Empty DirectDraw object

// Creates the DirectDraw object
DirectDrawCreate(NULL, &lpdd, NULL);

The first parameter, NULL, is the globally unique identifier (GUID) that repre-
sents the display driver to use for our DirectDraw object. By passing in NULL, we
are saying, “Use the default display driver.” The second parameter is the
DirectDraw object that is to be filled. The last parameter is one of Microsoft’s
famous “expansion parameters” (that never seem to get used). It must be NULL.

Once we have a valid DirectDraw object, we query it for a valid DirectDraw inter-
face. Different versions of DirectDraw allow for creation of different interfaces.
However, all interfaces are backwards compatible. Meaning DirectX 7.0 can com-
pile and run DirectX 3.0 but not vice-versa.

Here we query for the interface that we want. The interface will be stored in
“lpdd2.”

lpdd->QueryInterface(IID_IDirectDraw2,(void**)&lpdd2);

Now that we received the interface we want, we can get rid of the base DirectDraw
object.

lpdd->Release(); // It’s served its purpose lets get rid of it

Lastly, we need to set the cooperative level. The cooperative level answers the ques-
tion “How is the DirectDraw application going to behave?” We want our application
to act like a normal window so will set the cooperative level to “normal.”

lpdd2->SetCooperativeLevel(hwnd,DDSCL_NORMAL);

Step #2
We have our DirectDraw interface, but now we need something to draw on. We are
going to create three surfaces. One will be the primary surface. This surface will
essentially be the screen. The second surface will be our back buffer. This back
buffer will be the surface we do all the drawing of a particular frame to FIRST.

260 9. 2-D Sprites

TeamLRN

Once the back buffer is filled it will be drawn to the primary buffer. Last we will
have a generic “draw” buffer. We will use this to draw each frame of animation of
our sprite to.

When creating a surface in DirectDraw, you have to fill out a structure named
DDSURFACEDESC. This structure describes how you want your surface created.
For the primary surface we will do the following:

// DirectDraw surface descriptor
DDSURFACEDESC surf_desc = {0};

// Init the fields for the primary surface
surf_desc.dwSize = sizeof(DDSURFACEDESC); // Has to be set
surf_desc.dwFlags = DDSD_CAPS;
surf_desc.ddsCaps.dwCaps = DDSCAPS_VIDEOMEMORY | DDSCAPS_PRIMARYSURFACE;

The dwFlags parameter says, “These members of the DDSURFACEDESC have been filled
with valid data.” As you can see, we indeed fill the ddsCaps member with valid data.
The ddsCaps variable is itself a set of flags. The two flags we set it to say, “First this
surface will be created in video memory (i.e., in display memory). Second, this sur-
face will be a primary surface (i.e., what is drawn to the screen).”

// Create the primary surface
lpdd2->CreateSurface(&surf_desc,&pri_surface,NULL);

Before we create the back and general draw surfaces, we need to slightly modify
our surface descriptor.

surf_desc.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;
surf_desc.dwWidth = width;
surf_desc.dwHeight = height;
surf_desc.ddsCaps.dwCaps = DDSCAPS_VIDEOMEMORY | DDSCAPS_OFFSCREENPLAIN;

Once again we set dwFlags so that it stipulates what data members of DDSURFACEDESC
we are going to fill with valid data. This time we will fill the dwWidth, dwHeight, and
ddsCaps members with valid information. The dwWidth and dwHeight variables will be
filled with the width and height of our surface. The width and height of our back
and draw surfaces will be the same as the width and height of our window. The
flags we set the ddsCaps to say, “The surface will be created in video memory and it
will be a rectangular area of memory (conceptually) for drawing to.”

It is important to note that surface creation could fail. If video memory is already
full, you won’t be able to create new surfaces in it. To create surfaces in system
memory change the DDSCAPS_VIDEOMEMORY flag to DDSCAPS_SYSTEMMEMORY. Now for the

261What You Will Learn

TeamLRN

sample sprite application provided, it only tries to build the surfaces in video mem-
ory. The reason being is that we are only creating three surfaces and they should all
easily fit in video memory. When creating a game, however, you’d most likely want
to allow creation of any surfaces besides the primary surface in either video or sys-
tem memory.

Step #3
A DirectDraw clipper object will “clip” our surface(s) to the rectangular area of our
window. Creating a clipper only requires a function call.

DirectDrawCreateClipper(0,&clipper,NULL);

With our clipper created, we can set the clipper to the window we want our sur-
faces’ clipped to.

clipper->SetHWnd(0,hwnd);

Now that our clipper is set up, we simply assign it to all of our surfaces.

pri_surface->SetClipper(clipper);
back_surface->SetClipper(clipper);
draw_surface->SetClipper(clipper);

Now all the surfaces should be clipped to the dimensions of our window. Really,
you only need a clipper if the application is going to be windowed, but creating a
clipper on a full-screen application shouldn’t hurt anything. Additionally, the back
and draw surfaces should have been created with the windows dimensions and
therefore would not need to be clipped. We’ll always set all of the surfaces’ clippers
anyway just to be ultra-safe.

Step #4
Finally, we have our DirectDraw object set up and ready for action. There are two
main ways we will draw with our surfaces. The first way will involve getting the sur-
faces’ device context and using standard Win32 functions to draw to it. The second
involves drawing from one DirectDraw surface to another.

Getting the device context of a surface is really easy.

HDC draw_hdc = NULL;

// Fills draw_dc with the draw_surface’s device context
draw_surface->GetDC(&draw_hdc);

262 9. 2-D Sprites

TeamLRN

Once we have a surfaces’ HDC, we can draw using any good ole’ Win32 function
such as BitBlt(). When we complete the drawing process, we need to release the
device context.

draw_surface->ReleaseDC(draw_hdc);

Releasing the device context is a must. Failure to do so could result in your applica-
tion locking up or things getting drawn in an extremely bizarre fashion.

Now we know how to fill a surface using common Window functions such as
BitBlt(). Drawing from surface to surface is not much more complicated.

The first thing we want to do is fill a DDBLTFX structure. This structure simply
explains how the blit from surface to surface is to be carried out. The following is
how we set up our DDBLTFX when we draw from our draw_surface to our back_surface.

DDBLTFX ddbltfx = {0}; // Blit parameters

// Fill the DDBLTFX fields we care about
ddbltfx.dwSize = sizeof(DDBLTFX); // Must always be set
ddbltfx.dwDDFX = DDBLTFX_NOTEARING;
ddbltfx.ddckSrcColorkey = color_key;

Setting the dwDDFX to DDBLTFX_NOTEARING, means that when we draw to the screen we
never want to tear the image. Tearing is a visual atrocity produced when the screen
refresh rate is out of sync with an application’s frame rate. The top portion of the
current frame is displayed at the same time the bottom portion of the last frame is
being displayed resulting in a virtual tear in the screen. So setting this flag prevents
this from happening at all costs. Now color_key is our transparency color to use dur-
ing the blit. I’ll talk at a much greater length about transparency colors in the next
section of this chapter. We have our DDBLTFX structure filled with the pertinent infor-
mation so we can actually blit one surface to the other.

// Blit the draw_surface to the back_surface
back_surface->Blt(NULL, draw_surface, NULL, DDBLT_WAIT | DDBLT_KEYSRCOVERRIDE,

&ddbltfx);

The first parameter, NULL, is the RECT specifying the destination of the blit. By pass-
ing in NULL we’re saying use the entire area of the destination surface for the blit.
The second parameter, draw_suface, is the source for the blit. It’s what we are draw-
ing. The third parameter, NULL, is the RECT specifying the source area for the blit.
Again by passing NULL, we are saying use the entire source area for the blit.
DDBLT_WAIT and DBLT_KEYSRCOVERRIDE are two flags that govern how the blit should be

263What You Will Learn

TeamLRN

carried out. They basically say, if we can’t blit because the hardware is already draw-
ing, wait until it is done and then blit. Also, when we do get to blit, use the source
surface transparency color in the DDBLTFX structure passed in. Lastly, ddbltfx is
the structure we filled with the transparency color and the flag stipulating we don’t
want any tearing.

Those are the four basic steps in creation of a DirectDraw application. It’s really
quite simple once you get your feet wet. Everything we’ve talked about here is uti-
lized in the sample source code provided.

Before we move on to transparency colors, we need to make sure you can compile
a DirectDraw application. Because everybody has his or her own custom setup, it’s
impossible to say one way or another why something would compile on one per-
son’s machine but not on another’s. For a majority of people, the sample source
code should compile verbatim. However, if you cannot get the sprite sample to
compile, follow these steps:

1. Search for these files on your computer: ddraw.lib, dxguid.lib, and ddraw.h. If
you cannot find all three of these files on your computer, you need to down-
load the latest edition of DirectX.

2. Copy each of these files and paste them in the local directory of your project.

3. Change the angled brackets (<>’s) around ddraw.h (included in DDrawObj.h) to
quotation marks. So the line that includes ddraw.h should look like this:
#include “ddraw.h.”

That should do it. Recompile and make sure any unresolved externals and other
linking errors are resolved. If you are still having compiler problems, there’s a 99%
chance it has to do with an error other than not being able to link to the needed
files for a DirectDraw application.

Transparency with Sprites
Because drawing to the screen requires the use of rectangles, this creates a prob-
lem when wanting to make a sprite of nonrectangular shape. To get around this,
the artists and/or programmers agree on a color that will be the transparency color.
A transparency color is an RGB value that does not get displayed when an image is
drawn to the screen. Two typical transparency colors are solid black and bright
pink. Once you have an image with a transparency color, you can then perform a
transparent blit. A transparent blit is the rendering of an image to the screen in
which all pixels whose color is equivalent to a preset transparency color are skipped

264 9. 2-D Sprites

TeamLRN

and not drawn.

Some confuse transparent blitting with alpha blending. Alpha blending is a tech-
nique that uses the alpha channel of an image (only 32-bit images have a true
alpha channel) to determine the opacity of the image. Therefore, a pixel with an
alpha value of 0 will be drawn completely transparent. A pixel with an alpha value
of 255 will be drawn completely opaque. Alpha blending is completely separate
from transparent blitting; however, you can achieve transparency using alpha
blending, although it’s slower.

For our application I picked, RGB (215,0,215) as our transparency color (which
happens to be a bright pinkish color). It’s extremely easy to see this color com-
pared to the rest of the sprite image. DirectDraw handles transparency by having
you set a color key. In Step #4 of the overview of DirectDraw basics, we used a vari-
able color_key to set the transparency color for Blt(). In general, a color key is the
value to use for transparency during a blit. You declare a color key in DirectDraw
by doing the following:

DDCOLORKEY color_key; // Transparency color key

A DDCOLORKEY contains a low and high value, allowing you to set a range of trans-
parency colors if you so choose. For our purposes, and in general, it’s probably best
to stick to one transparency color for an entire application. It’s also a good idea to
have this color be symmetrical (i.e., the red and blue components are the same
value).

To set the transparency color we do the following:

COLORREF trans_color = RGB(215,0,215);

color_key.dwColorSpaceHighValue = (DWORD)trans_color;
color_key.dwColorSpaceLowValue = (DWORD)trans_color;

The compiler expects the high value and low value to be DWORDs, so we have to
typecast to keep it happy.

If you have forgotten how to perform a transparent blit in DirectDraw, flip back a
few pages and you will find the answers to your questions.

Drawing and Moving Sprites
All right, we’ve done all the back work and now we’re ready for some good old-
fashioned sprite-drawing pleasure. First, lets take a look at the CSprite class.

265What You Will Learn

TeamLRN

class CSprite {

public:

// Constructor
CSprite();

// Data Access Functions *****

int getDir() const { return dir; }

int getX() const { return x_pos; }
int getY() const { return y_pos; }

int getWidth() const { return width; }
int getHeight() const { return height; }

HDC getHDC() const { return image.getHDC(); }

// ***** End of Data Access Functions
// Initializes CSprite data
bool initSpriteData(int init_dir, int x, int y, int init_x_vel, int init_y_vel,

int desired_fps, char *file_name, int num_frames);

void setDir(int new_dir); // Set direction of CSprite
void setXVel(int new_x_vel); // Set the velocity in the x direction
void setYVel(int new_y_vel); // Set the velocity in the y direction

void move(); // Moves the sprite in its current direction

bool canMove(int dir, const RECT &collide_rect, uchar type = BOUNDARY);

int getSrcX() const; // Returns the x coord of where to blit from in CImage
int getSrcY() const; // Returns the y coord of where to blit from in CImage

private:

CImage image; // The image that contains all “frames” of the CSprite

int dir; // CSprite’s direction

266 9. 2-D Sprites

TeamLRN

int cur_frame; // Current frame
int max_frames; // Maximum number of frames
float fps; // Number of frames of animation per second to display

int width; // Width of CSprite
int height; // Height of CSprite

int x_pos; // Upper left x coord of CSprite on the screen
int y_pos; // Upper left y coord of CSprite on the screen

int x_vel; // Velocity in the x direction (horizontally)
int y_vel; // Velocity in the y direction (vertically)

void updateFrame(); // Updates to the next frame
bool timeToUpdateFrame(); // Returns true if it’s time to update the frame,

false otherwise

// Returns true if CSprite HAS NOT COLLIDED with the bounding area specified by
// rect (assumes CSprite was initally inside this area), false otherwise

bool boundsCheck(const RECT &rect, int x, int y);

// Returns true if CSprite HAS NOT COLLIDED with rect, false otherwise
bool rectAreaCheck(const RECT &rect, int x, int y);

};

Hopefully that doesn’t look too daunting. I swear it’s really easy. Before we get into
what each method specifically does, lets talk about our sprite character a little bit.
Our sprite is a creature that has four directions it can move in north, west, south,
and east. For each direction it can move in, there are four frames of animation.
Our sprite is contained in only one image. This means we must be able to parse out
the correct frame of animation based upon the sprite’s animation state. Our CSprite
class provides us with a painless way to do that. The class is quite flexible but there
are some rules that must be followed.

1. Animations sequences in the image must be arranged in the following order:
north, west, south, and east. However, if you want to add other directions, it’s
a piece of cake.

267What You Will Learn

TeamLRN

2. The CSprite may have only one transparency color.

3. All animation sequences must be comprised of an equal number of anima-
tion frames. We’ll talk about a simple way to alter this later.

4. Each animation frame should be the same width and height. Although it’s
not essential for the CSprite class to operate, each animation frame of the
sprite should also be contained in the smallest enclosing rectangular area as
possible.

Figure 9.3 illustrates our sprite layout.

As long as we follow those simple rules, the CSprite class will allow us the ability to
do quite a few things. With it we can draw sprites, moves sprites around on the
screen, cycle through a sprite’s animation frames, increase or decrease the velocity
at which a sprite moves, increase or decrease the frame rate of the sprite’s anima-
tions, and check for bounding and box collision.

So without any further ado, let’s go through each of the CSprites starting from the
top. We’ll skip the constructor and data access functions because it’s painfully obvi-
ous what they do. So, first up is the initSpriteData() method.

// Initializes CSprite data
void initSpriteData(int init_dir, int x, int y, int init_x_vel, int init_y_vel, int

desired_fps, char *file_name, int num_frames);

268 9. 2-D Sprites

Figure 9.3

A sample sprite page used for animation

TeamLRN

As the name implies, this initializes all the variables of the CSprite. What gets initial-
ized (in order of being passed into the method) is the following: the initial direc-
tion the sprite is heading, the starting upper-left x and y coordinates of the sprite,
the starting velocities the CSprites move down the x and y axes, the frame rate
between sprite animations, the name of the file storing the CSprite image, and last
but not least, the number of animation frames for the CSprite.

For our sprite to be displayed correctly, it is imperative that the image is laid out as
shown in Figure 9.4.

The sprite image layout can be thought of as the following grid:

Each animation set (for instance, all the frames that constitute walking north) is a
row in the grid. The first frame of animation (starting on the left) corresponds to
column zero in the grid. The last frame of animation (ending on the right) corre-
sponds to the third column in the grid. When we reach the last frame of anima-
tion, we will wrap around back to the beginning, so the last frame needs to sync up
with the first frame of animation.

The three set methods in our CSprite do the following:

void setDir(int new_dir); // This sets the direction are sprite is
facing/traveling in. Valid directions for our sprite are north, west, south and
east

269What You Will Learn

Figure 9.4

A sprite page in grid format

TeamLRN

void setXVel(int new_x_vel); // This method sets the velocity that our sprite
for traveling the “x-axis” (horizontally)

void setYVel(int new_y_vel); // This method sets the velocity that our sprite
for traveling the “y-axis” (vertically)

If you think back to the math class that you frequently skipped to go to the beach,
you might recall the notion of velocity. Basically all velocity is, in this context, is
how fast or slow we are going to move in a certain direction. So, for instance, the
higher our x velocity, the faster the sprite will travel right and left. If either velocity
is ever set to a negative value, the controls will reverse. If the CSprite’s x velocity is
–5, it will push the key to move our sprite to the right.

The next method in the CSprite is the move method.

void move(); // Moves the sprite in it’s current direction

The move method simply moves the CSprite in the direction it’s heading by the spec-
ified amount of the CSprite’s x and y velocities. Let’s suppose our CSprite’s upper-
left coordinate is located at (5,5) and it’s x and y velocity are both 2. We press a key
to move the CSprite one unit to the right. The CSprite’s resulting upper-left position
would be (7,5). See, simple algebra is useful.

Continuing down, the next method is canMove().

bool canMove(int dir, const RECT &collide_rect, uchar type = BOUNDARY);

Let’s break down each parameter:

• dir—the direction you want to check (north, west, south, east)

• collide_rect—the rectangular area you want to use for determining if a
collision happened or not

• type—the type of collision check you want to perform

So, to sum it up, the canMove() method returns true if the sprite can move in the
specified direction using the specified collision RECT, utilizing the specified collision
check. Yeah, that’s a mouthful all right. The beauty is that you can add your own
collision types (for instance, collision with a circle) really quickly and easily. We will
talk more about collision later on.

We are down to the final two public methods of our CSprite. These methods’ imple-
mentation are extremely easy, but absolutely vital to the sprite being displayed
correctly.

270 9. 2-D Sprites

TeamLRN

int getSrcX() const; // Returns the x coord of where to blit from in CImage
int getSrcY() const; // Returns the y coord of where to blit from in CImage

If you recall, we said the image and its layout that defines our sprite can be thought
of as a grid like Figure 9.4.

All animation sequences start at the left (column 0) and end at the right (column
3). Because each sprite is the exact same width and height (64×64) we can easily
deduce the upper-left x coordinate by the following equation:

Sprites current frame * width of sprite;

So say we’re heading north and we are on frame two of the animation. The equa-
tion would give us this as our source x for blitting (see Figure 9.5):

2 *64 (width of sprite) = 128

In a similar fashion, we can easily calculate the upper-left y coordinate to begin blit-
ting from. The equation for this is:

Sprites current direction * height of sprite;

We define the directions our sprite can move as follows:

#define NORTH 0
#define WEST 1
#define SOUTH 2
#define EAST 3

Notice how that matches exactly the row numbers in the grid layout of our image.
Thus, if we were heading south, the equation to obtain the upper-left y coordinate
would give us:

2 * 64 (height of sprite) = 128

Hopefully, the reasons we imposed certain rules on the layout of the sprite image
are becoming much clearer. It is imperative to set some structure on how the image
is laid out or a ton of extra work would have to be done on the programming side
of things.

271What You Will Learn

Figure 9.5

Sprite offset example

TeamLRN

Now it’s time to discuss private methods. The boundsCheck() and rectAreaCheck() get
explained in the next section of this chapter so we’re only going to talk about
updateFrame() and timeToUpdateFrame() right now.

void updateFrame(); // Updates to the next frame

The updateFrame() function simply updates the current frame count. When the
frame count equals the maximum number of frames, it gets set back to zero.

// Returns true if it’s time to update the frame, false otherwise
bool timeToUpdateFrame();

This method is used to determine if it’s time to draw the frame or not. It might not
seem obvious why we need to have a timer for every frame of animation, so let’s go
over a quick example of why we do. Say my sprite has four frames of animation.
Your final application runs at a solid 30 frames-per-second. That means your anima-
tion sequence will run 30/4 times-per-second. That comes out to 7.5 times through
the entire animation sequence every second! Chances are that’s much faster than
what you want. Thus, our CSprite has the ability to set the frame rate for advancing
to the next animation frame. There’s not a set rule for stipulating what the frame
rate should be for a sprite. Through a little empirical analysis, I found that having
the frame rate equal to the maximum number of frames of the sprite worked best
for the look I was going for. You’ll just have to play to get the look you want.

That pretty much wraps up the CSprite class. Any method we didn’t specifically dis-
cuss should be self-explanatory. Of course, the full implementation and additional
comments are provided in the source code of the CD.

There is one thing that seems to be missing—how in the heck do we draw the
sprite? Well, as you’ve noticed, the CSprite class doesn’t handle the actual drawing
of the sprite. We use our DDrawObj for all drawing routines. However, the CSprite
gives us all the information needed to fill in a BitBlt() call when filling the draw
surface of our DDrawObj. Following is an example of a BitBlt() function that draws
our sprite to the draw surface.

BitBlt(draw_hdc, sprite.getX(), sprite.getY(), sprite.getWidth(), sprite.getHeight(),
sprite.getHDC(), sprite.getSrcX(), sprite.getSrcY(), SRCCOPY);

Let’s break this code down by argument:

• draw_hdc—The first argument of BitBlt() is where we want to draw to. It is our
destination device context. For the sprite demo, this is our DDrawObj’s draw
surface.

272 9. 2-D Sprites

TeamLRN

• sprite.getX()—The second argument of BitBlt() is the upper-left x coordi-
nate of the rectangular area to draw to. If you look at the definition for
CSprite, this is exactly what getX() returns.

• sprite.getY()—The third argument of BitBlt() is the upper-left y coordinate
of the rectangular area to draw to. Again, this is exactly what getY() in CSprite

returns.

• sprite.getWidth()—The fourth argument of BitBlt() is the width of the desti-
nation rectangle for drawing to. The width will always correspond to the
width of our sprite.

• sprite.getHeight()—The fifth argument of BitBlt() is the height of the desti-
nation rectangle for drawing to. The height will always correspond to the
height of our sprite.

• sprite.getHDC()—The sixth argument of BitBlt() is where we want to draw
from. It is our source device context. For our sprite demo this will always be
the CSprite’s HDC.

• sprite.getSrcX()—The seventh argument of BitBlt() is the upper-left x coor-
dinate of where we want to draw from. This vertical offset into the sprite
image is determined by the sprite’s current animation state. We’ll talk more
on this later.

• sprite.getSrcY()—The eighth argument of BitBlt() is the upper-left y coordi-
nate of where we want to draw from. This horizontal offset into the sprite
image is determined by the sprite’s current animation state. Again, more on
this later.

• SRCCOPY—The final argument to BitBlt() is the ROP (Raster-Operation Code).
This particular ROP means, “Copy the source rectangular area directly to the
destination rectangular area.”

That wraps up everything necessary for moving and displaying a sprite. Be sure to
check out the source code provided so you can see everything we’ve talked about
up to this point in action.

Basic Collision Detection
with Sprites
Well, we are able to load a sprite, display a sprite, and move a sprite around the
screen. We need one more element in place before we have a great base for a
kickin’ 2-D side-scroller—collision detection. When you are dealing with sprites,

273Basic Collision Detection with Sprites

TeamLRN

there are two major types of collision detection you work with: boundary collision
detection and rectangular area collision detection. Boundary collision detection is when
you have a sprite inside a rectangular boundary and check to make sure that it is
still contained within that boundary after a sprite moves. This is a lot easier to
implement than it is to articulate in a sentence. The following illustration (Figure
9.6) shows exactly what we are checking for.

Basically we’re just keeping a box (the rectangle that defines the sprite) inside
another bigger box (the window in our case). The code to do this is completely
painless. Assuming rect is the bounding rectangle we are checking, (x,y) is the
upper-left corner of the sprite, and width and height are the width and height of
the sprite, this is all you have to do:

if(x < rect.left) // Check left X coordinate
return false;

if(x + width > rect.right) // Check right X coordinate
return false;

if(y < rect.top) // Check top Y coordinate
return false;

if(y + height > rect.bottom) // Check bottom Y coordinate
return false;

return true;

The other commonly used collision type when dealing with sprites is rectangular
area collision. This is also commonly referred to as bounding box collision.

274 9. 2-D Sprites

Figure 9.6

Collision detection

TeamLRN

Rectangular area collision occurs when one rectangle (the rectangle that defines
the sprite) intersects another rectangular (this could be pretty much anything you
want). The following illustration shows what we are checking for:

Luckily, just like boundary collision, the code to do this is painless. Assuming rect is
the rectangle you want to check collision with, (x,y) is the upper-left corner of the
sprite, and width and height are the width and height of the sprite, all you have to
do is this:

// RECT of CSprite in screen coordinates
RECT sprite_rect = {x, y, x + width, y + height};

RECT temp;

// This handy dandy Win32 function will determine if the RECT’s “sprite_rect”
and “rect”

// collide or not — Additionally, if there is a collision, “temp” will get
filled with the

// RECT that defines the area of the collision
if(IntersectRect(&temp,&sprite_rect,&rect))

return false;

return true;

Isn’t collision easy with sprites? When you add physics to the equation that’s when
things get a little more complicated, but basic collision detection is really quite sim-
ple. The demo on the CD has the source code to do both boundary and rectangu-
lar area collision although it only uses boundary in the application itself.

275Basic Collision Detection with Sprites

Figure 9.7

Bounding box collision
detection

TeamLRN

Summary
Doesn’t it feel good to be a sprite guru? Once you begin work on the next great
sidescroller, it’s good to know some performance results that are obtainable.

The sprite demo provided on the CD produced the following frame rates:

Assuming you go on to make a full-fledge sprite-based video game, you can expect
your end frame rates to be lower. Additional sprites, collision checks, sound, AI,
etc., will eat away at your frame rate.

Chapter Conclusion
In case every last word on the previous pages didn’t get etched into your memory,
here is a quick summary of the more important points the chapter covered.

• Bitmaps (.bmp files) are comprised of three main parts: the bitmap file
header, the bitmap info header, and the bitmap’s pixel bits.

• A bitmap’s number of channels defines the number of bytes per pixel that
bitmap has.

• A bitmap’s stride is the total number of bytes contained in one line of pixels.
The stride of a bitmap will always be dword aligned.

• Loading our own images manually is important. It provides us with the flexi-
bility to load other file types that are not handy and APIs allow us to manipu-
late the images with code if we so desire.

• There are four main parts to a DirectDraw application: create a DirectDraw
interface, create DirectDraw surfaces, create a DirectDraw clipper, and blit to
the screen.

• A transparency color is an RGB value that represents a color that will appear
transparent (i.e., not drawn to the screen) in an image. This color is also
referred to as a color key.

276 9. 2-D Sprites

Figure 9.8

Frame rate
information per
system

TeamLRN

If you yearn for more information (and don’t we all?), the following Web sites
should help you out:

http://gamedev.net/

http://www.gametutorials.com/

http://www.flipcode.com/

With the knowledge gathered here and at the aforementioned sites, you should be
a 2-D sprite master in no time at all. Happy coding!!!

277Chapter Conclusion

TeamLRN

This page intentionally left blank

TeamLRN

TRICK 10

Moving
Beyond

OpenGL 1.1
for Windows

Dave Astle, GameDev.net,
www.gamedev.net

TeamLRN

280 10. Moving Beyond OpenGL 1.1 for Windows

Introduction
Once you’ve been programming with OpenGL for Windows for a while, you’ll
probably notice that the headers and libraries you’re using are old. Dig around in
the gl.h header, and you’ll see the following:

#define GL_VERSION_1_1 1

This means you’re using OpenGL 1.1, which was released in 1996. In the world of
graphics, that’s ancient! If you’ve been paying attention, you know that the current
OpenGL specification is 1.3 (at the time of this writing). OpenGL 1.4 should be
released later this year, with 2.0 following soon after. Obviously, you need to update
your OpenGL headers and libraries to something more recent.

As it turns out, the most recent headers and libraries for Windows correspond
to . . . OpenGL 1.1. That’s right, the files you already have are the most recent ones
available.

This, of course, presents a problem. Although you can do some impressive things
with OpenGL 1.1, to take full advantage of modern consumer graphics hardware,
you’re going to need functionality available through more recent versions, as well
as features available through extensions (but we’ll get to that in a bit). The ques-
tion, then, is how to access newer features when your headers and libraries are
stuck at OpenGL 1.1. The purpose of this chapter is to answer that question.

In this chapter, I will do the following:

• Explain in greater detail why you need to take some extra steps to use any-
thing beyond OpenGL 1.1

• Explain OpenGL’s extension mechanism and how it can be used to access
OpenGL 1.2 and 1.3 functionality

• Give you an overview of the new options available in OpenGL 1.2 and 1.3
and a look at some of the most useful extensions

• Give you some tips for using extensions while ensuring that your game will
run well on a wide range of systems

• Provide a demo showing you how to use the techniques described

TeamLRN

The Problem
If you’re new to OpenGL or have only needed the functionality offered in OpenGL
1.1, you may be confused about what the problem is, so let’s clarify.

To develop for a given version of OpenGL on Windows, you need three things.
First, you need a set of libraries (opengl32.lib and possibly others such as glu32.lib)
and headers (gl.h, and so on) corresponding to the version you’d like to use.
These headers and libraries contain the OpenGL functions, constants, and other
things you need to compile and link an OpenGL application. Second, the system
on which you intend to run the application needs to have an OpenGL dynamic
link library (OpenGL32.dll) or OpenGL runtime library. The runtime needs to be
for either the same or a more recent version of OpenGL as the headers and
libraries you’re using. Ideally, you will also have a third component called an
Installable Client Driver (ICD). An ICD is provided by the video card drivers to
allow for hardware acceleration of OpenGL features as well as possible enhance-
ments provided by the graphics vendor.

So, let’s look at these three things and see why you have to jump through a few
hoops to use anything newer than OpenGL 1.1:

• Headers and libraries. As I mentioned in the introduction, the latest versions
of the OpenGL headers and libraries available from Microsoft correspond
to version 1.1. If you look around on the Internet, you may come across
another OpenGL implementation for Windows created by Silicon
Graphics (SGI). SGI’s implementation also corresponds to OpenGL 1.1.
Unfortunately, this implementation is no longer supported by SGI. In addi-
tion, the Microsoft implementation is based on it, so you really gain nothing
by using it. Where does that leave us?

Well, there is reason to hope that someone will release up-to-date libraries.
Although (to my knowledge) no one has committed to doing so, several par-
ties have discussed it. Microsoft is the obvious candidate, and despite years of
promising and not delivering, it appears that the company has taken an
interest in the recently proposed OpenGL 2.0. Whether that interest will lead
to action remains to be seen, but given the large number of graphics worksta-
tions running Windows NT and Windows 2000, it’s not beyond the realm of
possibility.

Besides Microsoft, there have apparently been discussions among the mem-
bers of OpenGL’s Architectural Review Board (ARB) to provide their own

281The Problem

TeamLRN

implementation of the headers and libraries. At present, though, this is still in
the discussion stage, so it may be a while before we see anything come of it.

• The runtime. Most versions of Windows (the first release of Windows 95
being the exception) come with a 1.1 runtime. Fortunately, this isn’t really as
important as the other elements. All that the runtime does is guarantee a
baseline level of functionality and allow you to interface with the ICD.

• The ICD. This is the one area where you’re okay. Most hardware vendors
(including NVIDIA and ATI) have been keeping up with the latest OpenGL
standard. For them to be able to advertise that their drivers are compliant
with the OpenGL 1.3 standard, they have to support everything included in
the 1.3 specification (though not necessarily in hardware). The cool thing
about this is that the ICD contains the code to do everything in newer ver-
sions of OpenGL, and we can take advantage of that.

The thing that’s important to note here is that although the headers and libraries
available don’t directly enable you to access newer OpenGL features, the features
do exist in the video card drivers. You just need to find a way to access those fea-
tures in your code. You do that by using OpenGL’s extension mechanism.

OpenGL Extensions
As you’re aware, the graphics industry has been moving at an alarmingly rapid pace
for many years now. Today, consumer-level video cards include features that were
only available on professional video cards (costing thousands of dollars) a few years
ago. Any viable graphics API has to take these advances into account and provide
some means to keep up with them. OpenGL does this through extensions.

If a graphics vendor adds a new hardware feature that it wants OpenGL program-
mers to be able to take advantage of, it simply needs to add support for the feature
in its ICD and then provide developers with documentation as to how to use the
extension. This is oversimplifying a bit, but it’s close enough for our purposes. As
an OpenGL programmer, you can then access the extension through a common
interface shared by all extensions. You’ll learn how to do this in the “Using
Extensions” section later in this chapter, but for now let’s look at how extensions
are identified and what they consist of.

282 10. Moving Beyond OpenGL 1.1 for Windows

TeamLRN

Extension Names
Every OpenGL extension has a name by which it can be precisely and uniquely
identified. This is important because hardware vendors frequently introduce exten-
sions with similar functionality but very different semantics and usage. You need to
be able to distinguish between them. For example, both NVIDIA and ATI provide
extensions for programmable vertex and pixel shaders, but they bear little resem-
blance to each other. So, if you want to use pixel shaders in your program, it isn’t
enough to find out whether the hardware supports pixel shaders. You have to be
able to specifically ask whether NVIDIA’s or ATI’s version is supported and then
handle each appropriately.

All OpenGL extensions use the following naming convention:

PREFIX_extension_name

The PREFIX is there to help avoid naming conflicts. It also helps identify the devel-
oper of the extension or, as in the case of EXT and ARB, its level of promotion.
Table 10.1 lists most of the prefixes currently in use. The extension_name identifies
the extension. Note that the name cannot contain any spaces. Some sample
extension names are ARB_multitexture, EXT_bgra, NV_vertex_program, and
ATI_fragment_shader.

283OpenGL Extensions

Table 10.1 OpenGL Extension Prefixes

Prefix Meaning/Vendor

ARB Extension approved by OpenGL’s Architectural Review Board
(first introduced with OpenGL 1.2)

EXT Extension agreed on by more than one OpenGL vendor

3DFX 3dfx Interactive

APPLE Apple Computer

ATI ATI Technologies

ATIX ATI Technologies (experimental)

HP Hewlett-Packard

continues

TeamLRN

What an Extension Includes
You now know what an extension is and how extensions are named. Next let’s turn
our attention to the relevant components of an extension. There are four parts of
an extension that you need to deal with.

284 10. Moving Beyond OpenGL 1.1 for Windows

Table 10.1 OpenGL Extension Prefixes (continued)

Prefix Meaning/Vendor

INTEL Intel Corporation

IBM International Business Machines

KTX Kinetix

NV NVIDIA Corporation

MESA www.mesa3d.org

OML OpenML

SGI Silicon Graphics

SGIS Silicon Graphics (specialized)

SGIX Silicon Graphics (experimental)

SUN Sun Microsystems

SUNX Sun Microsystems (experimental)

WIN Microsoft

CAUTION
Some extensions share a name but have a different prefix.
These extensions generally are not interchangeable because
they may use entirely different semantics. For example,
ARB_texture_env_combine is not the same thing as EXT_tex-
ture_env_combine. Rather than making assumptions, be sure
to consult the extension specifications when you’re unsure.

TeamLRN

Name Strings
Each extension defines a name string, which you can use to determine whether
the OpenGL implementation supports it. By passing GL_EXTENSIONS to the
glGetString() method, you can get a space-delimited buffer containing all the exten-
sion name strings supported by the implementation.

Name strings are generally the name of the extension preceded by another prefix.
For core OpenGL name strings, this is always GL_ (for example, GL_EXT_texture_
compression). When the name string is tied to a particular Windows system, the pre-
fix will reflect which system that is (for example, Win32 uses WGL_).

Functions
Many (but not all) extensions introduce
one or more new functions to OpenGL.
To use these functions, you’ll have to
obtain their entry point, which requires
that you know the name of the func-
tion. This process is described in detail
in the “Using Extensions” section later
in this chapter.

The functions defined by the extension follow the naming convention used by the
rest of OpenGL, namely glFunctionName(), with the addition of a suffix using the
same letters as the extension name’s prefix. For example, the NV_fence extension
includes the functions glGetFencesNV(), glSetFenceNV(), glTestFenceNV(), and so on.

Enumerants
An extension may define one or more enumerants. In some extensions, these enu-
merants are intended for use in the new functions defined by the extension (which
may be able to use existing enumerants as well). In other cases, they are intended
for use in standard OpenGL functions, thereby adding new options to them. For
example, the ARB_texture_env_add extension defines a new enumerant, GL_ADD. This
enumerant can be passed as the params parameter of the various glTexEnv() func-
tions when the pname parameter is GL_TEXTURE_ENV_MODE.

The new enumerants follow the normal OpenGL naming convention (that is,
GL_WHATEVER), except that they are suffixed by the letters used in the extension
name’s prefix, such as GL_VERTEX_SOURCE_ATI.

285OpenGL Extensions

NOTE
Some extensions may define more
than one name string.This would be
the case if the extension provided
both core OpenGL functionality and
functionality specific to the Windows
system.

TeamLRN

Using new enumerants is much simpler than using new functions. Usually, you will
just need to include a header defining the enumerant, which you can get from
your hardware vendor or from SGI. Alternately, you can define the enumerant
yourself if you know the integer value it uses. This value can be obtained from the
extension’s documentation.

Dependencies
Very few extensions stand completely
alone. Some require the presence of
other extensions, while others take this
a step further and modify or extend
the usage of other extensions. When
you begin using a new extension, you
need to read the specification and
understand the extension’s
dependencies.

Speaking of documentation, you’re probably wondering where you can get it, so
let’s talk about that next.

Extension Documentation
Although vendors may (and usually do) provide documentation for their exten-
sions in many forms, one piece of documentation is absolutely essential—the speci-
fication. These are generally written as plain text files and include a broad range of
information about the extension, such as its name, version number, dependencies,
new functions and enumerants, issues, and modifications/additions to the OpenGL
specification.

The specifications are intended for use by developers of OpenGL hardware or
ICDs and, as such, are of limited use to game developers. They’ll tell you what the
extension does but not why you’d want to use it or how to use it. For that reason,
I’m not going to go over the details of the specification format. If you’re interested,
Mark Kilgard has written an excellent article about it that you can read at
www.opengl.org.1

As new extensions are released, their specifications are listed in the OpenGL
Extension Registry, which you can find at the following URL:

http://oss.sgi.com/projects/ogl-sample/registry/

286 10. Moving Beyond OpenGL 1.1 for Windows

TIP
Extensions don’t need to define both
functions and enumerants (though
many do), but they’ll always include at
least one of the two.There wouldn’t
be much point to an extension that
didn’t include either!

TeamLRN

This registry is updated regularly, so it’s a great way to keep up with the newest
additions to OpenGL.

For more detailed descriptions of new extensions, your best bet is the Web sites of
the leading hardware vendors. In particular, NVIDIA2 and ATI3 both provide a
wealth of information, including white papers, PowerPoint presentations, and
demos.

Using Extensions
Finally, it’s time to learn what you need to do to use an extension. In general, there
are three steps you need to take:

1. Determine whether or not the extension is supported.

2. Obtain the entry point for any of the extension’s functions you want to use.

3. Define any enumerants you’re going to use.

Let’s look at each of these steps in greater detail.

287Using Extensions

CAUTION
Including links to Web sites in a
book is dangerous because they
can change frequently.The links
I’ve included here have remained
constant for a while, so I hope they
are relatively safe. If you find a bro-
ken link, you should be able to visit
www.opengl.org and find the
new location of the information.

NOTE
Extensions that are promoted to be
part of the core OpenGL specifica-
tion may be removed from the
Extension Registry.To obtain infor-
mation about these, you’ll have to
refer to the latest OpenGL
specification.4

CAUTION
Before checking for extension availability and obtaining
pointers to functions, you must have a current rendering
context. In addition, the entry points are specific to each
rendering context, so if you’re using more than one,
you’ll have to obtain a separate entry point for each.

TeamLRN

Querying the Name String
To find out whether or not a specific extension is available, first get the list of all of
the name strings supported by the OpenGL implementation. To do this, you just
need to call glGetString() using GL_EXTENSIONS, as follows:

char• extensionsList = (char•) glGetString(GL_EXTENSIONS);

After this executes, extensionsList points to a null-terminated buffer containing the
name strings of all the extensions available to you. These name strings are sepa-
rated by spaces, including a space after the last name string.

To find out whether or not the exten-
sion you’re looking for is supported,
you’ll need to search this buffer to see
if it includes the extension’s name
string. I’m not going to go into great
detail about how to parse the buffer
because there are many ways to do so.
It’s something that at this stage in your
programming career you should be
able to do without much effort. One
thing you need to watch out for,
though, is accidentally matching a sub-
string. For example, if you’re trying to use the EXT_texture_env extension and the
implementation doesn’t support it but does support EXT_texture_env_dot3, then call-
ing something like

strstr(“GL_EXT_texture_env”, extensionsList);

is going to give you positive results, making you think that the EXT_texture_env
extension is supported when it’s really not. The CheckExtension() function in the
demo program included on the accompanying CD-ROM shows one way to avoid
this problem.

Obtaining the Function’s Entry
Point
Because of the way in which Microsoft handles its OpenGL implementation, calling
a new function provided by an extension requires that you request a function
pointer to the entry point from the ICD. This isn’t as bad as it sounds.

288 10. Moving Beyond OpenGL 1.1 for Windows

NOTE
I’m casting the value returned by
glGetString() because the function
actually returns an array of unsigned
chars. Since most of the string
manipulation functions I’ll be using
require signed chars, I do the cast
once now instead of doing it many
times later.

TeamLRN

First of all, you need to declare a function pointer. If you’ve worked with function
pointers before, you know that they can be pretty ugly. If you haven’t, here’s an
example:

void (APIENTRY • glCopyTexSubImage3DEXT) (GLenum, GLint, GLint, GLint, GLint, GLint,
GLint, GLsizei, GLsizei) = NULL;

Now that you have the function pointer, you can attempt to assign an entry point to
it. This is done using the wglGetProcAddress() function:

PROC wglGetProcAddress(LPCSTR lpszProcName);

The only parameter is the name of the function for which you want to get the
address. The return value is the entry point of the function if it exists; otherwise,
it’s NULL. Since the value returned is essentially a generic pointer, you need to cast
it to the appropriate function pointer type.

Let’s look at an example using the function pointer previously declared:

glCopyTexSubImage3DEXT =
(void (APIENTRY •) (GLenum, GLint, GLint, GLint, GLint, GLint, GLint, GLsizei,

GLsizei))
wglGetProcAddress(“glCopyTexSubImage3DEXT”);

And you thought the function pointer declaration was ugly.

You can make life easier on yourself by using typedefs. In fact, you can obtain a
header called glext.h that contains typedefs for most of the extensions out there.
This header can usually be obtained from your favorite hardware vendor (for
example, NVIDIA includes it in its OpenGL SDK) or from SGI at the following
URL:

http://oss.sgi.com/projects/ogl-sample/ABI/glext.h

Using this header, the preceding code becomes:

PFNGLCOPYTEXSUBIMAGE3DEXTPROC glCopyTexSubImage3DEXT = NULL;
glCopyTexSubImage3DEXT = (PFNGLCOPYTEXSUBIMAGE3DEXTPROC)

wglGetProcAddress(“glCopyTexSubImage3DEXT”);

Isn’t that a lot better?

As long as wglGetProcAddress() doesn’t return NULL, you can freely use the function
pointer as if it were a normal OpenGL function.

289Using Extensions

TeamLRN

Declaring Enumerants
To use new enumerants defined by an extension, all you have to do is define the
enumerant to be the appropriate integer value. You can find this value in the
extension specification. For example, the specification for the EXT_texture_lod_bias
says that GL_TEXTURE_LOD_BIAS_EXT should have a value of 0x8501, so somewhere, prob-
ably in a header (or possibly even in gl.h), you’d have the following:

#define GL_TEXTURE_LOD_BIAS_EXT 0x8501

Rather than defining all these values yourself, you can use the glext.h header, men-
tioned in the preceding section, because it contains all of them for you. Most
OpenGL programmers I know use this header, so don’t hesitate to use it yourself
and save some typing time.

Win32 Specifics
In addition to the standard extensions
that have been covered so far, there are
some that are specific to the Windows
system. These extensions provide addi-
tions that are very specific to the win-
dowing system and the way it interacts
with OpenGL, such as additional
options related to pixel formats. These
extensions are easily identified by their
use of WGL instead of GL in their
names. The name strings for
these extensions normally aren’t
included in the buffer returned by
glGetString(GL_EXTENSIONS), although
a few are. To get all of the Windows-
specific extensions, you’ll
have to use another function,
wglGetExtensionsStringARB(). As the ARB
suffix indicates, it’s an extension itself
(ARB_extensions_string), so you’ll have to
get the address of it yourself using
wglGetProcAddress(). Note that, for some
reason, some ICDs identify this as

290 10. Moving Beyond OpenGL 1.1 for Windows

CAUTION
Normally, it’s good practice to check
for an extension by examining the
buffer returned by glGetString()
before trying to obtain function
entry points. However, it’s not strictly
necessary to do so. If you try to get
the entry point for a nonexistent
function, wglGetProcAddress() will
return NULL, and you can simply
test for that.The reason I’m men-
tioning this is because to use
wglGetExtensionsStringARB(), that’s
exactly what you have to do. It
appears that with most ICDs, the
name string for this extension,
WGL_ARB_extensions_string, doesn’t
appear in the buffer returned
by glGetString(). Instead, it is
included in the buffer returned by
wglGetExtensionsStringARB()! Go
figure.

TeamLRN

wglGetExtensionsStringEXT() instead, so if you fail to get a pointer to one, try the
other. The format of this function is as follows:

const char• wglGetExtensionsStringARB(HDC hdc);

Its sole parameter is the handle to
your rendering context. The func-
tion returns a buffer similar to that
returned by glGetString(GL_EXTEN-
SIONS), the only difference being
that it only contains the names of
WGL extensions.

Just as there is a glext.h header for
core OpenGL extensions, there is
a wglext.h for WGL extensions.
You can find it at the following
link:

http://oss.sgi.com/projects/ogl-sample/ABI/wglext.h

Extensions, OpenGL 1.2 and
1.3, and the Future
At the beginning of this chapter, I said that OpenGL 1.2 and 1.3 features could be
accessed using the extensions mechanism, which I’ve spent the last several pages
explaining. The question, then, is how you go about doing that. The answer, as you
may have guessed, is to treat 1.2 and 1.3 features as extensions. When it comes
right down to it, that’s really what
they are because nearly every
feature that has been added to
OpenGL originated as an
extension. The only real differ-
ence between 1.2 and 1.3 fea-
tures and “normal” extensions
is that the former tend to be
more widely supported in hard-
ware because, after all, they are
part of the standard.

291Extensions, OpenGL 1.2 and 1.3, and the Future

NOTE
Some WGL extension string names
included in the buffer returned by
wglGetExtensionsStringARB() may also
appear in the buffer returned by
glGetString().This is because those exten-
sions existed before the creation of the
ARB_extensions_string extension, so their
name strings appear in both places to
avoid breaking existing software.

NOTE
Sometimes an extension that has been
added to the OpenGL 1.2 or 1.3 core specifi-
cation will undergo slight changes, causing
the semantics and/or behavior to be some-
what different from what is documented in
the extension’s specification.You should
check the latest OpenGL specification to
find out about these changes.

TeamLRN

The next update to OpenGL will probably be 1.4. It most likely will continue the
trend of promoting successful extensions to become part of the standard, and you
should be able to continue to use the extension mechanism to access those fea-
tures. After that, OpenGL 2.0 will hopefully make its appearance, introducing some
radical changes to the standard. Once 2.0 is released, new headers and libraries
may be released as well, possibly provided by the ARB. These will make it easier to
use new features.

What You Get
As you can see, using OpenGL 1.2 and 1.3 (and extensions in general) isn’t a terri-
bly difficult process, but it does take some extra effort. You may be wondering what
you can gain by using them, so let’s take a closer look. The following sections list
the features added by OpenGL 1.2 and 1.3, as well as some of the more useful
extensions currently available. With each feature, I’ve included the extension you
can use to access it.

OpenGL 1.2
3-D textures allow you to do some really cool volumetric effects. Unfortunately, they
require a significant amount of memory. To give you an idea, a single 256×256×256
16-bit texture will use 32MB! For this reason, hardware support for them is rela-
tively limited, and because they are also slower than 2-D textures, they may not
always provide the best solution. They can, however, be useful if used judiciously.
3-D textures correspond to the EXT_texture3D extension.

BGRA pixel formats make it easier to work with file formats that use blue-green-red
color-component ordering rather than red-green-blue. Bitmaps and Targas are two
examples that fall in this category. BGRA pixel formats correspond to the EXT_bgra
extension.

Packed pixel formats provide support for packed pixels in host memory, allowing you
to completely represent a pixel using a single unsigned byte, short, or int. Packet
pixel formats correspond to the EXT_packed_pixels extension, with some additions
for reversed component order.

Normally, since texture mapping happens after lighting, modulating a texture with
a lit surface will “wash out” specular highlights. To help avoid this effect, the
Separate Specular Color feature has been added. This causes OpenGL to track the

292 10. Moving Beyond OpenGL 1.1 for Windows

TeamLRN

specular color separately and apply it after texture mapping. Separate specular
color corresponds to the EXT_separate_specular_color extension.

Texture coordinate edge clamping addresses a problem with filtering at the edges of tex-
tures. When you select GL_CLAMP as your texture wrap mode and use a linear filtering
mode, the border will get sampled along with edge texels, which are the 3-D equiv-
alent to pixels. Texture coordinate edge clamping causes only the texels that are
part of the texture to be sampled. This corresponds to the SGIS_texture_edge_clamp
extension (which normally shows up as EXT_texture_edge_clamp in the GL_EXTENSIONS
string).

Normal rescaling allows you to automatically scale normals by a value you specify.
This can be faster than renormalization in some cases, although it requires uniform
scaling to be useful. This corresponds to the EXT_rescale_normal extension.

Texture LOD control allows you to specify certain parameters related to the texture
level of detail used in mipmapping to avoid popping in certain situations. It can
also be used to increase texture transfer performance because the extension can be
used to upload only the mipmap levels visible in the current frame instead of
uploading the entire mipmap hierarchy. This matches the SGIS_texture_lod
extension.

The Draw Element Range feature adds a new function to be used with vertex arrays.
glDrawRangeElements() is similar to glDrawElements(), but it lets you indicate the range
of indices within the arrays you are using, allowing the hardware to process the
data more efficiently. This corresponds to the EXT_draw_range_elements extension.

The imaging subset is not fully present in all OpenGL implementations because it’s
primarily intended for image-processing applications. It’s actually a collection of
several extensions. The following are the ones that may be of interest to game
developers:

• EXT_blend_color allows you to specify a constant color that is used to define
blend weighting factors.

• SGI_color_matrix introduces a new matrix stack to the pixel pipeline, causing
the RGBA components of each pixel to be multiplied by a 4×4 matrix.

• EXT_blend_subtract gives you two ways to use the difference between two
blended surfaces (rather than the sum).

• EXT_blend_minmax lets you keep either the minimum or maximum color
components of the source and destination colors.

293What You Get

TeamLRN

OpenGL 1.3
The multitexturing extension was promoted to ARB status with OpenGL 1.2.1 (the
only real change in that release), and in 1.3, it was made part of the standard.
Multitexturing allows you to apply more than one texture to a surface in a single
pass; this is useful for many things such as lightmapping and detail texturing. It was
promoted from the ARB_multitexture extension.

Texture compression allows you either to provide OpenGL with precompressed data
for your textures or to have the driver compress the data for you. The advantage of
the latter is that you save both texture memory and bandwidth, thereby improving
performance. Compressed textures were promoted from the ARB_compressed_textures
extension.

Cube map textures provide a new type of texture consisting of six 2-D textures in the
shape of a cube. Texture coordinates act like a vector from the center of the cube,
indicating which face and which texels to use. Cube mapping is useful in environ-
ment mapping and texture-based diffuse lighting. It is also important for pixel-
perfect dot3 bump mapping, as a normalization lookup for interpolated fragment
normals. It was promoted from the ARB_texture_cube_map extension.

Multisampling allows for automatic antialiasing by sampling all geometry several
times for each pixel. When it’s supported, an extra buffer is created that contains
color, depth, and stencil values. Multisampling is, of course, expensive, and you
need to be sure to request a rendering context that supports it. It was promoted
from the ARB_multisampling extension.

The texture add environment mode adds a new enumerant that can be passed to
glTexEnv(). It causes the texture to be additively combined with the incoming frag-
ment. This was promoted from the ARB_texture_env_add extension.

Texture combine environment modes add a lot of new options for the way textures are
combined. In addition to the texture color and the incoming fragment, you can
also include a constant texture color and the results of the previous texture
environment stage as parameters. These parameters can be combined using
passthrough, multiplication, addition, biased addition, subtraction, and linear
interpolation. You can select combiner operations for the RGB and alpha compo-
nents separately. You can also scale the final result. As you can see, this addition
gives you a great deal of flexibility. Texture combine environment modes were pro-
moted from the ARB_texture_env_combine extension.

294 10. Moving Beyond OpenGL 1.1 for Windows

TeamLRN

The texture dot3 environment mode adds a new enumerant to the texture combine
environment modes. The dot3 environment mode allows you to take the dot
product of two specified components and place the results in the RGB or RGBA
components of the output color. This can be used for per-pixel lighting or bump
mapping. The dot3 environment mode was promoted from the ARB_texture_env_dot3
extension.

Texture border clamp is similar to texture edge clamp, except that it causes texture
coordinates that straddle the edge to sample from border texels only rather than
from edge texels. This was promoted from the ARB_texture_border_clamp extension.

Transpose matrices allow you to pass row major matrices to OpenGL, which normally
uses column major matrices. This is useful not only because it is how C stores 2-D
arrays but because it is how Direct3D stores matrices; this saves conversion work
when you’re writing a rendering engine that uses both APIs. This addition only
adds to the interface; it does not change the way OpenGL works internally.
Transpose matrices were promoted from the ARB_transpose_matrix extension.

Useful Extensions
At the time of this writing, 269 extensions were listed in the Extension Registry.
Even if I focused on the ones actually being used, I couldn’t hope to cover them
all, even briefly. Instead, I’ll focus on a few that seem to be the most important for
use in games.

Programmable Vertex and Pixel
Shaders
It’s generally agreed that shaders are the future of graphics, so let’s start with them.
First of all, the terms vertex shader and pixel shader are in common usage because of
the attention they received with the launch of DirectX 8. However, the OpenGL
extensions that you use for them have different names. On NVIDIA cards, vertex
shaders are called vertex programs and are available through the NV_vertex_program
extension. Pixel shaders are called register combiners and are available through
the NV_register_combiners and NV_register_combiners2 extensions. On ATI cards,
vertex shaders are still called vertex shaders and are available through the
EXT_vertex_shader extension. Pixel shaders are called fragment shaders and are
available through the ATI_fragment_shader extension.

295What You Get

TeamLRN

If you’re unfamiliar with shaders, a quick overview is in order. Vertex shaders allow
you to customize the geometry transformation pipeline. Pixel shaders work later in
the pipeline and allow you to control how the final pixel color is determined.
Together, the two provide incredible functionality. I recommend that you download
NVIDIA’s Effects Browser to see examples of the things you can do with shaders.

Using shaders can be somewhat problematic right now due to the fact that NVIDIA
and ATI handle them very differently. If you want your game to take advantage of
shaders, you’ll have to write a lot of special-case code to use each vendor’s method.
At the ARB’s last several meetings, this has been a major discussion point. There is
a great deal of pressure to create a common shader interface. In fact, it is at the
core of 3D Labs’ OpenGL 2.0 proposal. Hopefully, the 1.4 specification will address
this issue, but the ARB seems to be split as to whether a common shader interface
should be a necessary component of 1.4.

Compiled Vertex Arrays
The EXT_compiled_vertex_arrays extension adds two functions that allow you to lock
and unlock your vertex arrays. When the vertex arrays are locked, OpenGL assumes
that their contents will not be changed. This allows OpenGL to make certain opti-
mizations such as caching the results of vertex transformation. This is especially
useful if your data contains large numbers of shared vertices or if you are using
multipass rendering. When a vertex needs to be transformed, the cache is checked
to see if the results of the transformation are already available. If they are, the
cached results are used instead of recalculating the transformation.

The benefits gained by using compiled vertex arrays (CVAs) depend on the data
set, the video card, and the drivers. Although you generally won’t see a decrease in
performance when using CVAs, it’s quite possible that you won’t see much of an
increase either. In any case, the fact that they are fairly widely supported makes
them worth looking into.

WGL Extensions
A number of available extensions add to the way Windows interfaces with OpenGL.
Here are some of the main ones:

• ARB_pixel_format augments the standard pixel format functions
(DescribePixelFormat, ChoosePixelFormat, SetPixelFormat, and GetPixelFormat), giv-
ing you more control over which pixel format is used. The functions allow
you to query individual pixel format attributes and allow for the addition of

296 10. Moving Beyond OpenGL 1.1 for Windows

TeamLRN

new attributes that are not included in the pixel format descriptor structure.
Many other WGL extensions are dependent on this extension.

• ARB_pbuffer adds pixel buffers, which are off-screen (nonvisible) rendering
buffers. On most cards, these buffers are in video memory, and the operation
is hardware accelerated. They are often useful for creating dynamic textures,
especially when used with the render texture extension.

• ARB_render_texture depends on the pbuffer extension. It is specifically
designed to provide buffers that can be rendered to and used as texture data.
These buffers are the perfect solution for dynamic texturing.

• ARB_buffer_region allows you to save portions of the color, depth, or stencil
buffers to either system or video memory. This region can then be quickly
restored to the OpenGL window.

Fences and Ranges
NVIDIA has created two extensions, NV_fence and NV_vertex_array_range that can
make video cards(based on the NVIDIA chipsets) use vertex data much more effi-
ciently than they normally would.

According to NVIDIA, the vertex array range extension is currently the fastest way
to transfer data from the application to the GPU. Its speed comes from the fact
that it allows the developer to allocate and access memory that usually can only be
accessed by the GPU.

Although not directly related to the vertex array range extension, the fence exten-
sion can help make it even more efficient. When a fence is added to the OpenGL
command stream, it can then be queried at any time. Usually it is queried to deter-
mine whether it has been completed yet. In addition, you can force the application
to wait for the fence to be completed. Fences can be used with vertex array range
when there is not enough memory to hold all of your vertex data at once. In this
situation, you can fill up available memory, insert a fence, and when the fence has
completed, repeat the process.

Shadows
There are two extensions, SGIX_shadow and SGIX_depth_texture, that work together to
allow for hardware-accelerated shadow-mapping techniques. The main reason I
mention these is that there are currently proposals in place to promote these
extensions to ARB status. In addition, NVIDIA is recommending that they be
included in the OpenGL 1.4 core specification. Because they may change

297What You Get

TeamLRN

somewhat if they are promoted, I won’t go into detail as to how these extensions
work. They may prove to be a very attractive alternative to the stencil shadow tech-
niques presently in use.

Writing Well-Behaved
Programs Using Extensions
Something you need to be very aware of when using any extension is that it is
highly likely that someone will run your program on a system that does not support
that extension. It’s your responsibility to make sure that, when this happens, your
program behaves intelligently rather than crashing or rendering garbage to the
screen. In this section, you’ll learn several methods to help you ensure that your
program will get the best possible results on all systems. The focus is on two areas:
how to select which extensions to use and how to respond when an extension
you’re using isn’t supported.

Choosing Extensions
The most important thing you can do to ensure that your program runs on as
many systems as possible is to choose your extensions wisely. The following are
some factors you should consider.

Do You Really Need the Extension?
A quick look at the Extension Registry will reveal that there are a lot of different
extensions available, and new ones are being introduced on a regular basis. It’s
tempting to try many of them out just to see what they do. If you’re coding a demo,
there’s nothing wrong with this, but if you’re creating a game that will be distrib-
uted to a lot of people, you need to ask yourself whether the extension is really
needed. Does it make your game run faster? Does it make your game use less video
memory? Does it improve the visual quality of your game? Will using it reduce your
development time? If the answer to any of these is yes, the extension is probably a
good candidate for inclusion in your product. On the other hand, if it offers no sig-
nificant benefit, you may want to avoid it altogether.

298 10. Moving Beyond OpenGL 1.1 for Windows

TeamLRN

At What Level of Promotion Is the
Extension?
Extensions with higher promotion levels tend to be more widely supported. Any
former extension that has been made part of the core 1.2 or 1.3 specification will
be supported in compliant implementations, so they are the safest to use (1.2 more
than 1.3 because it’s been around longer). ARB-approved extensions (the ones that
use the ARB prefix) aren’t required to be supported in compliant implementa-
tions, but they are expected to be widely supported, so they’re the next safest.
Extensions using the EXT prefix are supported by two or more hardware vendors
and are thus moderately safe to use.
Finally, vendor-specific extensions are
the most dangerous. Using them gener-
ally requires that you write a lot of
special-case code. They often offer sig-
nificant benefits, however, so they
should not be ignored. You just have to
be especially careful when using them.

Who Is Your Target Audience?
If your target audience is hardcore gamers, you can expect that they are going to
have newer hardware that will support many, if not all, of the latest extensions, so
you can feel safer using them. Moreover, they will probably expect you to use the
latest extensions; they want your game to take advantage of all the features they
paid so much money for!

If, on the other hand, you’re targeting casual game players, you’ll probably want to
use very few extensions, if any.

When Will Your Game Be Done?
As mentioned earlier, the graphics industry moves at an extremely quick pace. An
extension that is only supported on cutting-edge cards today may enjoy widespread
support in two years. Then again, it may become entirely obsolete, either because it
is something that consumers don’t want or because it gets replaced by another
extension. If your ship date is far enough in the future, you may be able to risk
using brand-new extensions to enhance your game’s graphics. On the other hand,
if your game is close to shipping or if you don’t want to risk possible rewrites later
on, you’re better off sticking with extensions that are already well supported.

299Writing Well-Behaved Programs

NOTE
There are times when a vendor-
specific extension can be completely
replaced by an EXT or ARB exten-
sion. In this case, the latter should
always be favored.

TeamLRN

What to Do When an Extension
Isn’t Supported
First of all, let’s make one thing very clear. Before you use any extension, you need
to check to see if it is supported on the user’s system. If it’s not, you need to do
something about it. What that “something” is depends on a number of things (as
we’ll discuss here), but you really need to have some kind of contingency plan. I’ve
seen OpenGL code that just assumes that the needed extensions will be there. This
can lead to blank screens, unexpected rendering effects, and even crashes. Here
are some of the possible methods you can use when you find that an extension isn’t
supported.

Don’t Use the Extension
If the extension is noncritical or if there is simply no alternate way to accomplish
the same thing, you may be able to get away with just not using it at all. For exam-
ple, compiled vertex arrays (EXT_compiled_vertex_array) offer potential speed
enhancements when using vertex arrays. The speed gains usually aren’t big enough
to make or break your program, though, so if they aren’t supported, you can use a
flag or some other means to tell your program to not attempt to use them.

Try Similar Extensions
Because of the way in which extensions evolve, it’s possible that the extension
you’re trying to use is present under an older name. For example, most ARB exten-
sions used to be EXT extensions or vendor-specific extensions. If you’re using a
vendor-specific extension, there may be extensions from other vendors that do
close to the same thing. The biggest drawback to this solution is that it requires a
lot of special-case code.

Find an Alternate Way
Many extensions were introduced as more efficient ways to do things that could
already be done using only core OpenGL features. If you’re willing to put in the
effort, you can deal with the absence of these extensions by doing things the “old
way.” For instance, most things that can be done with multitexturing can be done
using multipass rendering and alpha blending. In addition to the additional code
you have to add to handle this, your game will run slower because it has to make
multiple passes through the geometry. That’s better than not being able to run the

300 10. Moving Beyond OpenGL 1.1 for Windows

TeamLRN

game at all, and it’s arguably better than simply dumping multitexturing and sacri-
ficing visual quality.

Exit Gracefully
In some cases, you may decide that an extension is essential to your program, possi-
bly because there is no other way to do the things you want to do or because pro-
viding a backup plan would require more time and effort than you’re willing to
invest. When this happens, you should cause your program to exit normally with a
message telling the user what she needs to play your game. Note that if you choose
to go this route, you should make sure that the hardware requirements listed on
the product clearly state what is needed; otherwise, your customers will hate you.

The Demo
I’ve created a simple demo to show you some extensions in action. As you can see
in Figure 10.1, the demo itself is fairly simple—nothing more than a light moving
above a textured surface, casting a light on it using a lightmap. The demo isn’t
interactive at all. I kept it simple because I wanted to be able to focus on the exten-
sion mechanism.

301The Demo

Figure 10.1

Light moving above a textured
surface

TeamLRN

The demo uses seven different extensions. Some of them aren’t strictly necessary,
but I wanted to include enough to get the point across. Table 10.2 lists all of the
extensions in use and how they are used.

302 10. Moving Beyond OpenGL 1.1 for Windows

Table 10.2 Extensions Used in the Demo

Extension Usage

ARB_multitexture The floor in this demo is a single quad with two
textures applied to it: one for the bricks and the
other for the lightmap, which is updated with the
light’s position.The textures are combined using
modulation.

EXT_point_parameters When used, this extension causes point primitives
to change size depending on their distance from
the eye.You can set attenuation factors to deter-
mine how much the size changes, define maxi-
mum and minimum sizes, and even specify that
the points become partially transparent if they go
below a certain threshold.The yellow light in the
demo takes advantage of this extension.The effect
is subtle, but you should be able to notice it
changing size.

EXT_swap_control Most OpenGL drivers allow the user to specify
whether or not screen redraws should wait for
the monitor’s vertical refresh, or vertical sync. If
this is enabled, your game’s frame rate will be lim-
ited to whatever the monitor refresh rate is set
to.This extension allows you to programmatically
disable vsync to get to avoid this limitation.

EXT_bgra Since the demo uses Targas for textures, using this
extension allows the demo to use their data
directly without having to swap the red and blue
components before creating the textures.

ARB_texture_compression Because the demo only uses two textures, it
won’t gain much by using texture compression,
but since it’s easy I used it anyway. I allowed the
drivers to compress the data for me rather than
doing so myself beforehand.

continues

TeamLRN

The full source code to the demo is included on the accompanying CD-ROM, but
there are a couple of functions that I want to look at.

The first is InitializeExtensions(). This function is called at startup, right after the
rendering context is created. It verifies that the extensions used are supported and
gets the function entry points that are needed.

bool InitializeExtensions()
{

if (CheckExtension(“GL_ARB_multitexture”))
{

glMultiTexCoord2f = (PFNGLMULTITEXCOORD2FARBPROC)
wglGetProcAddress(“glMultiTexCoord2fARB”);

glActiveTexture = (PFNGLCLIENTACTIVETEXTUREARBPROC)
wglGetProcAddress(“glActiveTextureARB”);
glClientActiveTexture = (PFNGLACTIVETEXTUREARBPROC)

wglGetProcAddress(“glClientActiveTextureARB”);
}
else
{

MessageBox(g_hwnd, “This program requires multitexturing, which is not supported
by your hardware”, “ERROR”, MB_OK);
return false;

}

if (CheckExtension(“GL_EXT_point_parameters”))
{

303The Demo

EXT_texture_edge_clamp Again, this extension wasn’t strictly necessary, but
the demo shows how easy it is to use.

SGIS_generate_mipmap GLU provides a function, gluBuild2DMipMaps, that
allows you to specify just the base level of a
mipmap chain and automatically generates the
other levels for you.This extension performs
essentially the same function with a couple of
exceptions. First, it is a little more efficient.
Second, it will cause all of the mipmap levels to be
regenerated automatically whenever you change
the base level.This can be useful when using
dynamic textures.

TeamLRN

glPointParameterfvEXT = (PFNGLPOINTPARAMETERFVEXTPROC)
wglGetProcAddress(“glPointParameterfvEXT”);
}

if (CheckExtension(“WGL_EXT_swap_control”))
{

wglSwapIntervalEXT = (PFNWGLSWAPINTERVALEXTPROC)
wglGetProcAddress(“wglSwapIntervalEXT”);
}

if (!CheckExtension(“GL_EXT_bgra”))
{

MessageBox(g_hwnd, “This program requires the BGRA pixel storage format, which
is not supported by your hardware”, “ERROR”, MB_OK);
return false;

}

g_useTextureCompression = CheckExtension(“GL_ARB_texture_compression”);
g_useEdgeClamp = CheckExtension(“GL_EXT_texture_edge_clamp”);
g_useSGISMipmapGeneration = CheckExtension(“GL_SGIS_generate_mipmap”);

return true;
}

As you can see, there are two extensions that the demo requires: multitexturing
and BGRA pixel formats. Although I could have provided alternate ways to do both
of these things, doing so would have unnecessarily complicated the program. The
point parameter and swap control extensions aren’t required, so I don’t exit if they
aren’t present. Instead, where they are used, I check to see if the function pointer
is invalid (that is, set to NULL). If so, I simply don’t use the extension. I use a simi-
lar approach with the texture compression, texture edge clamp, and generate
mipmap extensions. Since all three of these extensions only introduce new enum-
rants, I set global flags to indicate whether or not they are supported. When they
are used, I check the flag; if they aren’t supported, I use an alternate method. For
texture compression, I just use the normal pixel format; for texture edge clamp, I
use normal clamping instead; and if the generate mipmaps extension isn’t sup-
ported, I use gluBuild2DMipmaps().

The other function I want to look at is the CheckExtension() function, which is used
repeatedly by InitializeExtensions().

bool CheckExtension(char• extensionName)

304 10. Moving Beyond OpenGL 1.1 for Windows

TeamLRN

{
// get the list of supported extensions
char• extensionList = (char•) glGetString(GL_EXTENSIONS);

if (!extensionName || !extensionList)
return false;

while (extensionList)
{

// find the length of the first extension substring
unsigned int firstExtensionLength = strcspn(extensionList, “ “);

if (strlen(extensionName) == firstExtensionLength &&
strncmp(extensionName, extensionList, firstExtensionLength) == 0)

{
return true;

}

// move to the next substring
extensionList += firstExtensionLength + 1;

}

return false;
}

This function gets the extensions string and then parses each full extension name
string from it, comparing each to the requested extension. Notice that I’m finding
each string by looking for the next space to be sure that I don’t accidentally match
a substring.

This function doesn’t check for WGL extensions at all, although it could easily be
modified to do so. The code in the demo is not intended to be optimal, nor is it
intended to be the “best” way to use extensions. Some people like to make exten-
sion function pointers global (as I have done) so that they can be used just like
core OpenGL functions anywhere in your program. Others like to put class wrap-
pers around them. Use whatever means you prefer. The demo was intentionally
kept as straightforward as possible so that you could easily understand it and take
out the parts that interest you.

305The Demo

TeamLRN

Conclusion
You’ve now seen how you can use OpenGL’s extensions to use the latest features
offered by modern video cards. You’ve learned what some of these features are and
how your game can benefit from them. You’ve also seen ways in which you can get
the most out of extensions without unnecessarily limiting your target audience.

Now that you have a basic understanding of extensions, I encourage you to spend
some time researching them and experimenting on your own. You may find that
some of them enable you to significantly improve the efficiency and visual quality
of your games.

Acknowledgments
I’d like to thank Alexander Heiner and Mark Shaxted for reviewing this chapter
and correcting some minor inaccuracies and for suggesting ways to make it more
complete. I’d also like to thank my wife, Melissa, for making me look like a better
writer than I really am.

References
1Mark Kilgard, “All About Extensions,” www.opengl.org/developers/code/
features/OGLextensions/OGLextensions.html
2NVIDIA Corporation, NVIDIA Developer Relations, http://developer.nvidia.com/
3ATI Technologies, ATI Developer Relations, www.ati.com/na/pages/resource_
centre/dev_rel/devrel.html
4OpenGL Architectural Review Board, OpenGL 1.3 Specification,
www.opengl.org/developers/documentation/specs.html

306 10. Moving Beyond OpenGL 1.1 for Windows

TeamLRN

TRICK 11

Creating a
Particle

Engine
Trent Polack

TeamLRN

Introduction
Particle engines are probably the coolest and most useful tools in a programmer’s
special effects toolbox. Using a well-designed particle engine, a programmer can
create fire, smoke, vapor trails, explosions, colored fountains, and an infinite num-
ber of other possibilities. The hard part is designing a simple, easy-to-use, and flexi-
ble particle engine that can create these effects with almost no effort on the user’s
part. That is our goal for this chapter.

I’m going to assume that you know C and some simple C++ and are familiar with
vectors. The sample programs will all use OpenGL, but I made sure to minimize
the amount of calls needed, therefore making it easier to port to other APIs. I am
also using Microsoft Visual C++ 6.0.

What You Will Learn from
This Fun-Filled Particle
Adventure
We will be designing and implementing what looks to be two different particle
engines; the first will be something similar to the Particle System API1, and the
“second” will be a wrapper over our API. The Particle System API will have very
OpenGL-like syntax and is a pretty low-level way of creating several particle effects
(using an emission function or using a per-particle creation function). The wrap-
per will be a class that encases all of the Particle System API’s functionality and
makes it more object-oriented (for those who absolutely loathe straight C). When
I’m explaining both the API and the wrapper (the API mostly, though), it may
seem like I’m just teaching you how to use my Particle System API, but that’s not
really the intent. I’m teaching you how I went about creating it, so if you want to do
something like it, you will know my thought process when I created each function.
I will not be providing the source code to most of the functions later on in the text;
that’s a lot of code, and I’m not really a huge fan of code dumps.

308 11. Creating a Particle Engine

TeamLRN

Sounds Great . . . What’s a
Particle Engine?
I’m guessing it’s kind of hard to create a particle engine without knowing exactly
what one is, so just in case you do not know, let’s go over the history of where they
came from and what exactly they do. If you’d like to see a good particle simulator,
check out Richard Benson’s “Particle Chamber” demo2. If you are already a particle
veteran, feel free to skip to the section “Designing the Particle System API” later in
this chapter. The next few sections are a complete introduction to particle engines.

The whole idea behind particle engines started back in 1982. The person we have
to thank for all of our particle goodness is a man by the name of William T.
Reeves.3 He wanted to come up with an approach to render “fuzzy” things, such as
explosions and fire, dynamically. The following is a list of what Reeves said needs to
be done to implement such a thing:

• New particles are generated and placed into the current particle engine.

• Each new particle is assigned its own unique attributes.

• Any particles that have outlasted their life span are declared “dead.”

• The current particles are moved according to their scripts.

• The current particles are rendered.

This is exactly how we are going to make our particle engine. And now, I’ll describe
what a particle engine actually is. A particle engine is a “manager” of several indi-
vidual particles, which in our case are very small objects that have a certain set of
attributes (which we’ll get to in a second). A particle is emitted from an emitter,
which is a certain location or boundary in 3-D space, and the particle moves in a
set path unless acted on by an outside force (like gravity) from its conception to its
“death.” (All of this can be seen visually in Figure 11.1). The particle engine man-
ages an emitter (or group of emitters) and all the particles that are currently alive.
(Why would you want to waste processing power on a dead particle?)

By now, I bet you’re asking yourself, “But what does it all mean?” I’ll answer that
question momentarily, but for now, we need to continue on with a bit more about
the individual particles. Each particle possesses a set of attributes that will define
how it acts and looks. Let’s make a little list about the attributes we want each parti-
cle to have:

• Life span. How long the particle will live

• Current position. The particle’s current position in 2-D/3-D space

309Sounds Great . . . What’s a Particle Engine?

TeamLRN

• Velocity. The particle’s direction and speed

• Mass. Used to accurately model particle motion

• Color. The current color of the particle (RGB triplet)

• Translucency. The current transparency, alpha, value of the particle

• Size. The particle’s visual size

• Air resistance. The particle’s susceptibility to friction in the air

Each of these attributes is pretty obvious in its meaning, but you may be a little con-
fused as to why we have mass and then also have size. Well, the mass of the particle
is used to accurately calculate the particle’s momentum (we also use the particle’s
current velocity in this calculation), whereas the size is the actual visual size of the
particle (height, width, and depth). We also want the simulation to look physically
realistic, and a particle under normal conditions would not be immune to friction
while traveling through the air—hence, the air resistance variable.

Now let’s do a simple implementation. We first need to set up our data structures.
We also need the individual particle structure and the particle engine (manager of
particles). The particle structure should be easy enough to design, and I’ll let you fig-
ure that out on your own (or if you need a bit of guidance, check out the first sample
program and code), but I’ll guide you through the creation of the actual engine.

310 11. Creating a Particle Engine

Figure 11.1

The relationship between particles
and a particle emitter

TeamLRN

First, we are going to need an array of particles. (For simplicity’s sake, I’m not mak-
ing the array dynamic . . . at least not yet! *evil maniacal laughter*) Once we have
the array of particles, we need to make a copy of all the attributes for a particle and
put the copies in the engine class. We do this so that, when we create a new parti-
cle, we have a value to which to set the particle’s matching attribute. Get it? If you
don’t, you will soon. Here is our engine class, as of right now:

class CPARTICLE_ENGINE
{

private:
SPARTICLE p_particles[NUM_PARTICLES];
int p_iNumParticlesOnScreen;

//engine attributes
CVECTOR p_vForces;

//base attributes
float p_fLife;
CVECTOR p_vPosition;

float p_fMass;
float p_fSize;

CVECTOR p_vColor;
float p_fFriction;

};

Notice that I left out the alpha variable; I did that because, right now, we are just
basing the particle’s translucency on the particle’s life. If the particle has just
started out, it is opaque; as it slowly nears its end, it will become more translucent.

Now we need to create some functions for our class. Since our array is preallocated,
we really do not need any initiation functions to find out how many particles the
user wants in his system, and we really do not need a shutdown function either.
(We will need both later on, though.) All we need is a function to create a single
particle, an update function, a rendering function, and some attribute customiza-
tion functions. The customization functions are pretty self-explanatory, so I will not
waste the space here to show them. (You can just check them out in the first
demo’s code.) That means we only need to create three functions.

311Sounds Great . . . What’s a Particle Engine?

TeamLRN

First, let’s look at the particle creation function. We are going to have the user pass
the particle’s velocity, and the function will create it. At the outset of the function,
we are going to loop through all of the particles and try to find out if it is alive; if
we cannot, we exit the function. If a particle is found, it is created. It’s so simple
that it’s almost scary. Here is the function’s code:

l_iChoice= -1;

for(i=0; i<NUM_PARTICLES; i++)
{

if(p_particles[i].pu_fLife<=0.0f)
{

l_iChoice= i;
break;

}
}

if(l_iChoice==-1)
return;

p_particles[l_iChoice].pu_fLife= p_fLife;

p_particles[l_iChoice].pu_vPosition= p_vPosition;

p_particles[l_iChoice].pu_vVelocity.Set(a_fVelX, a_fVelY, a_fVelZ);

p_particles[l_iChoice].pu_vColor= p_vColor;
p_particles[l_iChoice].pu_fAlpha= 1.0f;

p_particles[l_iChoice].pu_fSize= p_fSize;
p_particles[l_iChoice].pu_fMass= p_fMass;

p_particles[l_iChoice].pu_fFriction= p_fFriction;

Now we’ll move on to the update function. In this function, we need to update
each particle from the last frame. First we need to subtract the particle’s life by one
(since one frame has gone by), and then we’ll check to make sure it’s not dead. If
it’s dead, there’s no point in updating that particle. If the particle is alive, we need
to move the particle’s position based on the particle’s momentum (which is the
particle’s velocity multiplied by the particle’s mass). Then we need to update the
alpha value (the particle’s current life divided by the class’s base/max life). Finally,

312 11. Creating a Particle Engine

TeamLRN

we are going to update the velocity, and take into account friction and gravity.
Check out the following code:

for(i=0; i<NUM_PARTICLES; i++)
{

p_particles[i].pu_fLife-= 1;

if(p_particles[i].pu_fLife>0.0f)
{

l_vMomentum= p_particles[i].pu_vVelocity * p_particles[i].pu_fMass;

p_particles[i].pu_vPosition+= l_vMomentum;

p_particles[i].pu_fAlpha= p_particles[i].pu_fLife/p_fLife;

//Now it’s time for the external forces to take their toll
p_particles[i].pu_vVelocity*= 1-p_particles[i].pu_fFriction;
p_particles[i].pu_vVelocity+= p_vForces;

}
}

Now it’s time for rendering. I won’t show the exact code for the rendering process
because I want this explanation to remain API independent, but all we are going to
do for the first demo is render the particle as a single-colored, nontextured, alpha-
blended pixel. You will want to turn off depth testing for this, by the way; otherwise,
your results will not look as good as they could—or they may be just plain ugly.
That’s all there is to rendering . . . for now.

Okay, I know I said we only needed to work on those three functions, but I lied. We
need one more function to make something worth looking at. What we are going
to do is create a function that will create an explosion of particles. Check out the
following:

while(—a_iNumParticles>0)
{

l_fYaw = RANDOM_FLOAT*PI*2.0f;
l_fPitch= DEG_TO_RAD(RANDOM_FLOAT*(rand()%360));

vCreateParticle((cosf(l_fPitch))*a_fMagnitude,
(sinf(l_fPitch)*cosf(l_fYaw))*a_fMagnitude,
(sinf(l_fPitch)*sinf(l_fYaw))*a_fMagnitude);

}

313Sounds Great . . . What’s a Particle Engine?

TeamLRN

Okay, that’s it! You are well on your way to becoming a particle master. Go witness
the fruit of your labor in the first particle demo (press E to see the explosion of
particles) or just check out Figure 11.2, which is a screenshot of the demo we just
worked to create.

The next step is to add texture support to your particle engine. Getting the parti-
cles textured is easy, but it means we have to switch from rendering single pixels to
rendering two triangles per particle. This change comes with two small problems.
The first and most important problem is that two triangles are far more processor-
intensive (slower), which will hurt your overall frame rate. The second problem is
that you need to align the textured squares to coincide with the viewer’s point of
view; this is called billboarding and is discussed in the next section.

Billboarding
Billboarding is when you need to align a two-dimensional object (like a square) so that
it will always face the user. To do this, you need to get the current matrix from the
rendering API and extract the Up vector and Right vector from it. I’m assuming that

314 11. Creating a Particle Engine

Figure 11.2

Particles being
rendered as alpha-
blended pixels (from
ParticleDemo_1)

TeamLRN

the matrix is 4×4, and I’m also assuming that you are putting it in a single array of 16
floating-point variables. (Since this is what OpenGL needs, you would need to adapt
this to another API if you are not using OpenGL.) Figure 11.3 shows how you would
extract the correct information for the vectors.

Here it is in code form:

up Vector= (matrix[0], matrix[4], matrix[8])
right Vector= (matrix, matrix[5], matrix[9])

Now you need to apply the Up and Right vectors to our square’s four points, as
follows:

BillboardedTopRight = ((RightVector+UpVector) *
ParticleSize)+ParticlePosition;

BillboardedTopLeft = ((UpVector -RightVector)*
ParticleSize)+ParticlePosition;

BillboardedBottomRight= ((RightVector-UpVector) *
ParticleSize)+ParticlePosition;

BillboardedBottomLeft = ((RightVector+UpVector) *-
ParticleSize)+ParticlePosition;

315Billboarding

Figure 11.3

Extracting the Up and Right
vectors from a matrix (in
1D array form)

TeamLRN

It’s as easy at that. Now all you have to do is texture it like you would a normal
quad, and you’ll have textured particles that always face the viewer. Go ahead and
check out the second demo (see Figure 11.4) to see what the particles look like
now. (Again, press E to see the explosion of particles.)

Pretty spiffy, eh? As cool looking as the particles might be, though, we still have a
couple more things to cover: variable interpolation and time-based movement and
updating.

Interpolation and Time-
Based Movement
Interpolation, as used here, is when we take a current value and slowly change it to a
certain end value. For instance, you may want a particle to start out being pure
orange, but as it grows older, you may want it to turn more reddish (like fire
flames). You also may want to have a particle start out at a relatively small size but
expand as it ages (like smoke). The possibilities are endless.

First we need to add a few “counter” variables to the particle structure for the size,
color, and alpha variables. These are the variables that will combine with the cur-
rent color/size/alpha every frame to slowly produce the ending value. Once the
counter variables have been added, we need to edit the base attributes within the
engine class, and instead of what we had before, we need to make starting

316 11. Creating a Particle Engine

Figure 11.4

Particles being
rendered as alpha-
blended, textured,
triangle strips (from
ParticleDemo_2)

TeamLRN

size/color/alpha variables and ending ones. What we are going to be doing is set-
ting the particle’s initial size/color/alpha to the engine’s starting equivalent, and
then we are going to figure out the counter variable with the following equation:

Counter= (EndValue-CurrentValue)/ParticlesLife;

Then all you have to do is add the counter to the particle’s current value
(size/color/alpha), and the particle’s starting value will slowly change over to the
ending value. Finally, the last item in our informational tour of the world of parti-
cles is time-based movement. All we have to do is add an argument to our update
function that represents a time step, which is how far to advance the simulation per
frame. (You can make this variable based on the number of frames per second so
that, no matter how slow things get, the simulation will continue as if nothing hap-
pened; it just will not look as smooth.) In this case, 1 represents a single frame.
Here is our new update function:

for(i=0; i<NUM_PARTICLES; i++)
{

p_particles[i].pu_fLife-= 1;

if(p_particles[i].pu_fLife>0.0f)
{

l_vMomentum= p_particles[i].pu_vVelocity * p_particles[i].pu_fMass;

p_particles[i].pu_vPosition+= l_vMomentum*a_fTimeStep;

p_particles[i].pu_vColor+= p_particles[i].pu_vColorCounter*a_fTimeStep;
p_particles[i].pu_fAlpha+= p_particles[i].pu_fAlphaCounter*a_fTimeStep;

p_particles[i].pu_vSize+= p_particles[i].pu_vSizeCounter*a_fTimeStep;

//Now it’s time for the external forces to take their toll
p_particles[i].pu_vVelocity*= 1-p_particles[i].pu_fFriction;
p_particles[i].pu_vVelocity+= p_vForces*a_fTimeStep;

}
}

Notice that all addition operations are affected by the time step. Also notice, how-
ever, that I did not change the friction operation because multiplying that by the
time step variable will screw things up big time. (For an experiment, multiply the
friction by the time step anyway and see what happens.) Now, if you check out par-
ticle demo number three (see Figure 11.5), you will see our old green explosion

317Interpolation and Time-Based Movement

TeamLRN

turn into smoke as time goes on. I also changed the speed of the whole simulation
a bit, by passing 2 to the update function instead of the default of 1. This will make
the simulation play out twice as fast as normal. Now, just for fun, look again at the
screenshots from the first couple of demos and then look at Figure 11.5. See how
far you’ve advanced in just a few pages?

Designing the Particle
System API
Now that you are a particle expert, we can get to the really fun stuff. First we will
design the Particle System API (since we need it done before we can write a wrap-
per over it). The idea came to me late, late, late one night that it would be cool if
people could call a few quick functions (like OpenGL’s immediate calls: glVertex,
glColor, and so on) that would customize, render, and update a particle engine with
ease. After coding a very rough implementation of the Particle System API, a few
guys told me that it had already been done (which did not make me too happy—I
thought I was being completely original!).4 This did not stop me from working on
the Particle System API night and day, though, and even now it still is not done.
(Well, maybe it is, but I wanted to leave some stuff for you guys to mess around
with and add.) It is extremely powerful and incredibly fun to just play around with.
So, without further interruption, let’s design!

318 11. Creating a Particle Engine

Figure 11.5

Particles being
rendered as alpha-
blended, textured,
triangle strips,
along with value
interpolation (from
ParticleDemo_3)

TeamLRN

We’re going to start with a simple flowchart (see Figure 11.6). The chart will show
how we’d like the user to be able to use the API (and the wrapper later on, for that
matter). Things like initiation and shutdown will be done at the start/end of the
program (respectively), and the rest of the operations will be in real time.

First I created the particle structure as something to build off of (I like to start
small and build up), and the particle structure is exactly the same as it was in the
third particle demo, except with a new name: SPAPI_PARTICLE. Next I created the
general particle engine structure. (Remember that we are designing the Particle
System API using C-style syntax, which means no classes.) It looks like this:

typedef struct SPAPI_ENGINE_TYP
{

unsigned int pu_uiID;

//Particles
SPAPI_PARTICLE* pu_pParticles;
Int pu_iMaxParticles;
int pu_iNumParticlesOnScreen;

} SPAPI_ENGINE, *SPAPI_ENGINE_PTR;

319Designing the Particle System API

Figure 11.6

An API flowchart

TeamLRN

I’m betting that right about now you are wondering what the point of the ID vari-
able is. Well, it’s a very simple and nifty little concept, if I do say so myself. I wanted
to make things as easy as possible for the user, so instead of the user having any
access to the variables of this structure, I made a little layer of abstraction over it. I
predefined a certain number of engines (PAPI_MAX_ENGINES) that will be put into a
global array for the Particle System API to access in its routines. Then I did this:

typedef unsigned int PAPI_ENGINE;

PAPI_ENGINE is the variable that the user will be using to create, bind (select as the
current particle engine), and destroy various engines. If you are familiar with
OpenGL’s way of handling textures, this should start feeling like familiar territory.
Knowing OpenGL’s texture system will make this explanation easier, but either way,
it’s still not a hard concept. Let me take a bit of time to explain how engine cre-
ation will function within our API. First you would call a creation function (in our
case, pGenEngine) and supply the amount of particles you would like to create and a
pointer to your engine instance. If we wanted to create a PAPI_ENGINE named pEngine

and have it contain 1,000 particles, all we would have to do is this:

pGenEngine(1000, &pEngine);

Simple enough! Now that engine is filled with memory for 1,000 particles. Within
that function, we are allocating memory for our particle buffer using new/delete,
which is very handy. (Yes, I know I’m using C++ in C-oriented code, but hey, I make
my code as easy as possible to understand, and if that means using an odd mixture
of C and C++, so be it.) After doing this, the Particle System API will make
PAPI_ENGINE equal to the current engine number, and from then on, PAPI_ENGINE
refers to that engine in the global engine array. When you call pBindEngine, you are
actually just setting the global “current engine” variable to your engine ID. We also
need a function to clean up the memory that we previously allocated (for the parti-
cles), so I created pDeleteEngine. All it does is clear the particle buffer memory and
set the engine’s members so that it can be used for a new particle engine later on. I
also created some helpful functions to retrieve the current engine ID, to reset the
maximum number of particles in the current engine, and to see how many parti-
cles are currently being rendered (the number of particles onscreen).

Next we need to create a series of customization functions. These functions will be
like OpenGL’s immediate calls, and if you are unfamiliar with those, let me give
you a very brief explanation. OpenGL has immediate calls that you can use to cus-
tomize things about the current polygon being rendered. For instance, calling
glColor4f(. . .) will set the API’s current color values to the color values passed in
the function, and every polygon rendered (considering that the function is never

320 11. Creating a Particle Engine

TeamLRN

called again) will be that color. That is what our “immediate mode” functions will
be doing. We will make a “current attribute” structure, create a global instance of
that, and our customization functions will edit its members.

typedef struct SPAPI_ATTRIBUTES_TYP
{

float pu_fLife1;
float pu_fLife2;

CVECTOR pu_vVelocity1;
CVECTOR pu_vVelocity2;
float pu_fMass1;
float pu_fMass2;

CVECTOR pu_vStartColor1;
CVECTOR pu_vStartColor2;
CVECTOR pu_vEndColor1;
CVECTOR pu_vEndColor2;

CVECTOR pu_vStartSize1;
CVECTOR pu_vStartSize2;
CVECTOR pu_vEndSize1;
CVECTOR pu_vEndSize2;

float pu_fStartAlpha1;
float pu_fStartAlpha2;
float pu_fEndAlpha1;
float pu_fEndAlpha2;

CVECTOR pu_vGravity;

float pu_fFriction1;
float pu_fFriction2;

CVECTOR pu_vEmitterLightColor;
int pu_iEmitterLight;

int pu_iMaxParticleLightsAllowed;

bool pu_bEmitterLighting;
} SPAPI_ATTRIBUTES, *SPAPI_ATTRIBUTES_PTR;

321Designing the Particle System API

TeamLRN

I’d go through what each individual member means, but we already did that in the
history segment, so I’ll just go through the new ones. First of all, you are probably
wondering why there are two copies of each variable. These two copies are used as
a min/max boundary (that the user sets) so that, if the user wants, no two particle
will ever be alike; needless to say, this is very cool indeed.

All of the new variables are for particle emitter lighting. What you could do for this
is create lighting routines using some type of lighting algorithm. I have things set
up for an emitter light (this is very easy to handle), but for a much more realistic
effect, you would set a light not to the emitter but to each individual particle
(which is how it would be if this was a completely real simulation). Alas, that would
absolutely kill our speed.

To make the customization functions, we need to provide two sets of arguments:
The first set will be the minimum value set, and the second set will be the maxi-
mum value set. Inside the function, we will assign our global attribute instance to
the corresponding function arguments. Here is a sample function that will set the
lifespan of our particles:

void pLife(float a_fLife1, float a_fLife2)
{

g_PAPIAttribs.pu_fLife1= a_fLife1;
g_PAPIAttribs.pu_fLife1= a_fLife2;

}

And that’s how all of the customization functions will look (basically). Probably a
couple of the most important functions of the whole API are the vertex and emis-
sion functions. The pEmit function relies heavily on the pVertex function, so let’s
cover the vertex function first.

The pVertex function creates a particle (with the previously customized attribute
instance) at the coordinates that the user provides. Although this is a very nice way
to handle the particle and can be used to create almost any effect imaginable, it’s
not what the user will be using. This function creates every aspect of a particle, and
the next function (the emission function) uses it to create particles with a specific
geometry in mind, so let’s go there.

The pEmit function, while it looks large, is incredibly easy to use and is very nice.
The user specifies a geometry type from one of the following basic primitives.
(These are not the names that the API uses.) The primitives that the API actually
has code for have a slight description as to how to provide the arguments, but most
of the primitives are going to be left up to an exercise for the reader.

322 11. Creating a Particle Engine

TeamLRN

• A single point: A single ordered triplet is needed.

• A line: Two ordered triplets are needed, one for each of the line’s endpoints.

• A plane

• A triangle

• A rectangle: Two ordered triplets are needed, one for the minimum bound-
ary and one for the maximum.

• A circle

• A sphere

• A cylinder

As an example, here is how you would go about creating seven particles using a line-
shaped emitter, with one endpoint at (0, –7, –25) and one endpoint at (0, –3, –25):

pEmit(PAPI_LINE, 5, 0.0f, -7.0f, -25.0f, 0.0f, -3.0f, -25.0f);

Next on our ultrafun list of things to do is the update function. This function is
very simple; none of the code in it is much different than what we discussed earlier
in the chapter. The only argument that the function takes is a time-step function to
make frame-rate dependent motion possible. (The argument has a default value of
1.0f.) All you have to do is call the function, and all of the particles in the currently
binded system will be updated. It’s that simple. If you feel like murdering a bunch
of newly born particles, there is a function to kill all particles immediately.

Next we need a simple function that will handle particle collision. I wanted some-
thing powerful yet flexible that had support for collision with a ton of primitives
(though I only included collision source for a few primitives; the rest is yet another
exercise for the reader). This function is pCollide, and it’s very similar to the emis-
sion function. It has support for the exact same primitives and the exact same argu-
ments for each primitive. What happens is that when the function is called, it
checks every particle for a collision with the selected primitive (which is defined by
the arguments). If there is a collision, the function performs appropriate collision
response. (I’m not going to go through the physics for this.) Particle demo 4 shows
this in action (along with the rest of the Particle System API), and the final argu-
ment in the collision function (in the demo) controls the bounciness of the parti-
cles when they collide with the surface.

Finally, we can perform the rendering of the particles. Two rendering functions are
available for use. In one, you pass an OpenGL display list (so, if you feel the need,
you could render the particles as a bunch of 3-D models), and in the other, you
select a shape from the following primitives:

323Designing the Particle System API

TeamLRN

• A single pixel

• A line (the length of which depends on the particle’s speed; the faster the
speed, the longer the line)

• A triangle strip (a quad)

And that’s all there is to it! You can now check out the sample demo in Figure 11.7
(ParticleDemo_4). The demo is now a particle fountain, with the particles colliding
against an unseen surface directly below the lowest possible emission point.

324 11. Creating a Particle Engine

Figure 11.7

A particle fountain
with full particle
collision

TeamLRN

Designing the Particle
Wrapper
We are almost done with our complete coverage of particles. Now all that’s left is to
design a wrapper around our previously created Particle System API. This wrapper
is very nice to have around, especially if you’re interested in integrating a particle
engine into your game engine; it’s also nice if you just do not like straight C-style
code.

What we want to do first (after we set up a class skeleton for CPARTICLE_ENGINE, or
whatever you want to call the class) is duplicate the attribute structure from the
Particle System API and put the attribute structures as private variables in the class.
This may seem stupid, but there is a method to my madness. First, we’d have to
bind the engine for every customization function that is called. That’s okay, but it’s
something we would prefer to stay away from. Second, there is a large chance that
the user will have no idea what is going on in the background, so he may customize
one class’s particle engine and then customize about five other classes’ particle
engines before updating, rendering, emitting, and so on. This would completely
screw up the attributes, so I decided that each class needed to have its own vari-
ables. You know what that means—you have to make even more customization
functions. So, I’ll pause a moment while you sigh and get to work. *long pause*

Most of the work for the class involves just copying functions from the Particle
System API and making a nice little wrapper around them. For example, check out
the wrapped rendering function:

void CPARTICLE_ENGINE::
vRender(_pAPIprimitiveENUM a_primitive)

{
pBindEngine(p_engine);
pRenderEnginep(a_primitive);

}

That’s all that there is to most of the functions. For the update function, you’re
going to want to include a call to pGravity because the update function needs those
values to update the particles. You need to make a call to all of the customization
functions (the Particle System API ones) inside the emission function so that the
newly created particles will have all of the correct attributes. Besides that, all you
have to do is copy the functions from the Particle System API and put them inside
the class. Then, in the function definition, you just have to bind the engine and
make the corresponding function call using the Particle System API. That’s mostly
all there is to it.

325Designing the Particle Wrapper

TeamLRN

Now you can just go crazy with your newly created wrapper and make it much more
easy to use from within your game engine. For fun, I created a rainbow effect
(which was very simple to do) and made it a predefined color scheme. Check it out
in Figure 11.8 (ParticleDemo_5). Look how much you’ve learned to do in just a
few simple pages!

326 11. Creating a Particle Engine

Figure 11.8

A rainbow fountain with full
particle collision

TeamLRN

Summary: Reminiscing
About Our Little Particles
We certainly have gotten quite a lot of work done in such a small amount of time!
We started out with a complete introduction to particle engines and then created
our own simple pixel-plotting engine. We then advanced that engine to support
billboarding and texturing. We even advanced the engine by creating a value inter-
polation system and time-based movement. After that fun run-through of particle
engines, we started designing and implementing our own C-style particle engine,
which I called the Particle System API (a very original name). We then went on to
create an object-oriented wrapper over our API.

Going Further: How to Get
More in Touch with Your
Inner Particle
Now that you have completed two different styles of particle engine (well, they are
sort of different), where do you go from here? If you just want to get used to parti-
cle physics, you can mess around with the demos I’ve provided, or the demo I have
listed as reference [2], changing function arguments around and such. If you want
to go a bit deeper but still are not ready to completely design your own engine, you
can add more functionality to the Particle System API and then add support for the
new material inside the wrapper.

If you are convinced that all of this is too simple, you can get into creating very
advanced particle effects and code. Here are some ideas:

• Create a realistic lightning simulator (using only particles).

• Figure out how to create realistic model liquids using particles. (Although
this has been done before, it has not been done real-time, so how is that for
a challenge?)

• Code your own particle routines from scratch.

• Add realistic lighting (not to be confused with lightning) systems.

• Create a scripting system so that the user can define how the particle engine
will act by using an editor or editing the parameters in a text file.

The possibilities are endless! Just be creative and you will no doubt have fun.

327Going Further

TeamLRN

Conclusion: The End Is Here
This has been a very interesting chapter covering almost everything related to par-
ticle effects. You started off learning the very basics and slowly got more advanced
until you created two completely cool pieces of code (the Particle System API and
its object-oriented wrapper). I have provided you with a list of things you can work
on if you really liked this chapter, and the following resources are very interesting
and will give you even more information on particle systems. Once you have the
basics down, your imagination is the limit, so quit reading this right now and go
have some fun!

Trent Polack (ShiningKnight)

Game programmer

ShiningKnight7@hotmail.com

References
1McAllister, David K. “The Design of an API for Particle Systems.”
2Benson, Richard. “Particle Chamber.”

www.dxcplusplus.co.uk/DemoVault/ParticleChamber.zip
3Reeves, William T. “Particle Systems—A Technique for Modeling a Class of Fuzzy

Objects.” ACM Transactions on Graphics, vol. 2, no. 2, pp. 91-108, April 1983.
4Watt, Alan and Fabio Policarpo. 3D Games: Real-Time Rendering and Software

Technology. Boston: Addison-Wesley, 2001.

328 11. Creating a Particle Engine

TeamLRN

TRICK 12

Simple
Game

Scripting
Alex Varanese,

alex@xenonstudios.com

TeamLRN

Introduction
In recent years, scripting has gone from being an esoteric feature of high-end game
engines and applications to one of the most in-demand techniques for game devel-
opers of all classes and skill levels. Whether they’re working for Nintendo and
developing for next-generation console systems or working for McDonald’s and
developing for their Pentium II at home, everyone seems to want to know more
about how scripting engines are designed and implemented.

Although this does have the word “fad” written all over it, scripting is anything but
a mindless trend that people will forget about in six months. It’s a powerful tech-
nique that allows game content to be separated entirely from the underlying
engine. No longer will the details of your plot, characters, and other in-game ele-
ments like weapons and items have to be hard-coded into and compiled with your
game’s source code. Scripting enables these higher-level, game-related entities to
be programmed exclusively in their own separately compiled language that is used
“inside” your game engine rather than running directly on the CPU. In other
words, game logic can be just as modular and swappable as more traditional forms
of media like art, music, and sound, as seen in Figure 12.1.

Ideally, a scripting language should be just as high level and flexible as the lan-
guage used to write the game itself. This usually means that, to develop a scripting

330 12. Simple Game Scripting

Figure 12.1

Game logic can be
just as flexible and as
easily swapped in
and out as other
forms of media such
as graphics and
sound when a
scripting system is in
place

TeamLRN

system, you’ll need to understand the details behind implementing entire lan-
guages like C and C++. This is a massive job, and it is well beyond the scope of the
single chapter we have to work with here—you’d need an entire book at least to do
the subject justice. So we’re going to simplify things just a bit and instead focus on
implementing a simple, lower-level scripting language with syntax based loosely on
Intel’s 80×86 assembly language. The syntax may be more awkward than a pure
High-Level Language (HLL), but it’ll be capable of just about anything, and this
will make it applicable to virtually any game project for which you may need it.

The final product will be compiled with our own homemade compiler to a binary,
bytecode format that can be executed quickly by a runtime environment we’ll design
as well. This runtime environment will be easy to integrate with any game project,
allowing for simple but surprisingly flexible scripting.

In the following pages, we’ll . . .

• Design a low-level but free-form scripting language with a syntax and layout
based primarily on Intel assembly, offering typeless variables that can contain
integers, floats, and strings. One-dimensional arrays will be supported as well.

• Build a compiler capable of reducing any script written in our language to a
compact, binary version that can be loaded by the game engine and exe-
cuted quickly.

• Design and implement a runtime environment capable of executing com-
piled scripts and providing an interface to the game engine itself, allowing its
functions to be called and data to be shared easily.

• Test our scripts on a script runtime console I’ve put together that provides a
simple game programming API. As a final test of our language’s capabilities,
we’ll write an entire game with it and run it on this console.

• Cover a detailed list of ways to improve and expand the finished product to
increase its power and flexibility.

Designing the Language
The natural place to start with a project like this is coming up with the language
itself. The language is obviously a vital piece of the puzzle. Not only do we need to
understand it to write scripts with it in the first place, the compiler must under-
stand it as well to translate the scripts to an executable format.

331Designing the Language

TeamLRN

As previously mentioned, implementing a high-level language like C or C++ is a
huge job and would be far too much to cover here. High-level languages are com-
plex, to say the least, and writing a compiler sophisticated enough to understand
and translate them would take a considerable amount of time. The advantage, how-
ever, would be an incredibly flexible and easy-to-use scripting system that would
provide a language almost identical to the one used to code the engine and that
would thus be the least amount of headache for the programmer in the end.

We’ll compromise a bit, however, and decide to base our language on something a
little simpler. Intel 80×86 assembly language provides the model for a simple but
effective language that provides all the major constructs and features of basic high-
level programming—variables, arrays, conditional logic, and iteration—but with an
extremely fine-grained, simplistic syntax.

To get an idea of what we’re in for and to get your feet wet a bit if you don’t have
any experience with assembly, let’s look at an example. Consider the following
block of C code:

int Y = 32;
for (int X = 0; X < 16; ++ X)

Y += X;

In a nutshell, we’ve declared an integer variable called Y and initialized it to 32. We
then used a for loop and a variable called X to add the numbers 0 through 15 to it.
This is naturally a trivial thing to do with a high-level language like C. In fact, it’s
pretty easy to do in an assembly-like language as well, but you’ll notice a stark con-
trast in the syntax and layout of the program:

Mov 32, Y
Mov 0, X

LoopStart:
Add X, Y
Inc X
Cmp X, 16
JL LoopStart

Quite a difference, eh? If you have no idea what I’m doing here, the preceding is
basically an Intel assembly language version of the original block of C. Notice that
the main difference between assembly code and high-level code is that assembly
only performs one action per line. Each line usually consists of two things: instruc-
tions and operands. These are almost analogous to function calls in that instructions
are like the name of the function and operands are like its parameters. Each
instruction performs a specific task, such as moving memory from one place to

332 12. Simple Game Scripting

TeamLRN

another (Mov), adding two values (Add), or comparing a set of values (Cmp). With this
in mind, let’s examine it line by line.

The first thing I did was use Mov to put the value 32 into Y. I then set X to 0 with
another Mov instruction to prepare the loop counter. The next line is a bit different;
it’s a line label just like the ones offered in C (much to the dismay of computer sci-
ence teachers). This is where the loop will begin (which is why I called it LoopStart),
and it gives us a place to jump back to after each iteration of the loop executes.
The code following the line label is the code that will execute each time through
the loop. All we really need to do is add X to Y and increment our loop counter
(with the Inc instruction). Then, to actually implement the loop logic itself, we sim-
ply need to compare X to 16 (using Cmp) and jump back to LoopStart if it’s less than
16. This is what JL does; it “Jumps if Less than” to the specified line label.

It should now be pretty clear that you can do anything in assembly that you can do
in C; it’s just a bit more work sometimes. The syntax is definitely alien, and you
have to approach algorithms and logic with a slightly different mindset, but every-
thing you need is in there somewhere. The advantage, however, is that the preced-
ing code we looked at is much easier to compile than C. As you’d probably imagine,
it’s really just a matter of extracting the instruction and the value of each operand.

This is more or less what our language will be like. We’ll determine the minimum
set of instructions we need to create a versatile and reasonably powerful language,
and from there it’ll just be a matter of implementing them. Once we have the capa-
bility to move data around and perform basic arithmetic, conditional logic, and
branching, as well as the capability to call game engine functions from within run-
ning scripts, we’ll have enough functionality to do pretty much anything.

Fortunately, I’ve done the work for us. I’ve basically come up with a set of 18
instructions that provides just enough functionality to do anything. It’s not the
most convenient or lavish set of instructions in the world, but it’s clean, orthogonal,
and straightforward. Once you’ve implemented them, you’ll easily be able to add as
many other instructions as you want to create an epic masterpiece of a language.

Before I list the instructions, however, let’s nail down exactly what we want to do
with this language. We’ve already just about covered it, but before we get hip deep
in the nitty-gritties, let’s formally state our objectives:

• The language needs enough instructions to roughly emulate the functional-
ity of a higher-level language like C. This means we need the ability to assign
values to variables (in other words, move memory around) and perform
basic arithmetic. We’ll also need instructions for handling conditional logic
and branching (jumping) to other parts of the script.

333Designing the Language

TeamLRN

• We’d like our variables to be typeless or at least somewhat so. Typeless vari-
ables are variables that don’t have a strict data type. In other words, you can
assign any value to any variable at any time, whether it’s a string value, an
integer, or whatever.

• A wider selection of basic data types would be nice. To cover all the bases,
we’ll make sure to include support for integer, floating-point, and string val-
ues. Strings will be loosely defined and can have any number of characters.
Finally, we’ll throw in one-dimensional arrays just to be complete. As you’ll
see, this is easier than you might think.

• As a last major feature of the language, we need to be able to communicate
with the game engine. As you can imagine, not having this ability would
make the entire scripting system pretty much useless. Basically, we need to be
able to somehow make function calls from the script to the engine and allow
the engine to return values.

• For simplicity’s sake, we’ll allow variables to be used without first being
declared. BASIC users might like this. Arrays will need to be explicitly
declared, however, since the compiler will need to know how many elements
they contain.

So there it is, our fledgling language in a nutshell. Now that we understand exactly
what we need to do, the instruction set I’ve picked out should make sense.

Basic Instructions
Mov Source, Destination

Mov, short for “Move,” is perhaps the most fundamental and commonly used
instruction and is responsible for moving memory around (like the assignment
operator in higher-level languages like C and C++). Mov moves the contents of
Source into Destination. Source can be anything: a memory reference like a variable
or array index, or any immediate value like an integer, string, or float. Destination
must be a memory reference.

Arithmetic
Add Source, Destination
Sub Source, Destination
Mul Source, Destination
Div Source, Destination

334 12. Simple Game Scripting

TeamLRN

These are the arithmetic instructions, and they basically work exactly like Mov. The
only difference is that rather than simply copying the data into Destination, they
perform some basic arithmetic function. They’re pretty self-explanatory: Add adds
Source to Destination, Sub subtracts Source from Destination, and so on. The same
rules that apply to Mov’s operands apply to these. Also, anyone familiar with Intel
80×86 assembly language will notice that these Mul and Div instructions are much
friendlier.

String Processing
Concat Source, Destination
GetSubStr Souce, Index0, Index1, Destination

I’ve really whittled down string processing to the two most basic operations. We’ve
basically got Concat, which concatenates (combines) two strings, and GetSubStr,
which returns a substring of a larger string. You can almost think of these as the
string-processing equivalent of addition and subtraction (more or less). The point
is that virtually any other string-processing operation can be derived from these
two. Concat’s Source operand must either be a variable containing a string value or
an immediate string value. Destination must be memory location. The same holds
for GetSubStr, but Index0 and Index1 can be either immediate integer values or mem-
ory locations.

Branching
Jmp Destination
JG Op0, Op1, Destination
JL Op0, Op1, Destination
JGE Op0, Op1, Destination
JLE Op0, Op1, Destination
JE Op0, Op1, Destination
JNE Op0, Op1, Destination

This rather large collection of instructions provides everything we’ll need for con-
ditional logic and branching. The first thing I should mention is that anyone who’s
familiar with Intel 80×86 assembly will find these to be a bit strange. Essentially,
these jump instructions provide built-in comparison. In other words, you give the
instruction the two operands you want to compare and the destination of the jump
to make if the comparison evaluates to true.

335Designing the Language

TeamLRN

The two operands can be anything, although only certain combinations will make
sense. For example, comparing a string value to an integer or float doesn’t make a
whole lot of sense, so the string will automatically be cast to an integer value of 0.
This won’t produce meaningful results, so such comparisons aren’t recommended.
The last operand, Destination, is unlike any operand we’ve dealt with so far. Rather
than being an immediate value or memory reference, it must be a line label. The
label can be defined anywhere in the code before the jump instruction or after, but
it must be defined somewhere. Also, unlike the 80×86, there are no limits on the
range of a jump. (There’s no need to worry about near and far jump targets.) So,
as an example, if you want to jump to the label MyLabel if X is greater than or equal
to Y, you’d use the following line of code:

JGE X, Y, MyLabel

Simple, eh? The actual jump instructions are as follows: Jmp unconditionally jumps
to the destination, so you’ll want to use this whenever you absolutely must move to
another part of the script in all cases. JG and JL jump if Op0 is greater than Op1 and if
Op0 is less than Op1, respectively. JGE and JLE mean “jump if greater than or equal to”
and “jump if less than or equal to,” respectively. Lastly, JE and JNE round out the
group with “jump if equal” and “jump if not equal.”

Host API
CallHost FunctionIndex, Param0, Param1, Param2, …
GetRetVal Destination

These two functions are designed to interface with the game engine, or the host.
The host is the program that’s actually running the script, and the functions it pro-
vides for interfacing with it are called the Host API. We’ll get to the details of how
the host actually exposes functions to the scripting system later on, but for now all
we need to know is that CallHost calls a host API function based on a function index,
which is simply an integer value that corresponds to one of the host’s functions
(again, just go along with it for now), as well as a variable number of parameters
that can be any type of operand (except line labels). FunctionIndex can be either an
integer immediate value or a memory reference.

The only other real issue when calling host functions is how to handle return val-
ues. In C, for example, return values are simply handled by preceding the function
call with the assignment operator, like this:

X = MyFunc (Y);

336 12. Simple Game Scripting

TeamLRN

Naturally, this doesn’t translate well to our language. To solve this problem, I’ve
added an additional instruction called GetRetVal, which stores the return value of
the most recently called function in Destination, which must be a memory refer-
ence. GetRetVal can be called any time after a function is called.

Miscellaneous
Pause Delay
Exit

The last two instructions in our language are completely unrelated, but I’ve
grouped them together just to make things easier. Pause suspends the script for
Delay milliseconds but is only accurate within about 55 milliseconds due to the way
I’ve implemented it. (This will only affect us in practice, and depending on the
platform for which you develop or the API you use, this might not be an issue at
all.) Exit is probably the simplest instruction of them all and causes the script to
unconditionally terminate. Just throw it in there whenever you know for a fact that
the script should exit at that point. Exit is not required at the end of a script, how-
ever. The runtime environment will interpret a lack of any further instructions as a
sign that the script has terminated.

Directives
With the instruction set out of the way, the next part of the language is its directives.
Directives are instructions for the compiler that help control the code it outputs,
but they are not present at runtime and have no further effect. Our language will
only need one directive, which will be used for declaring arrays. The syntax will
look like this:

Array Identifier [Size]

This directive creates an array called Indentifier with Size elements. Size must be an
immediate integer value; variables and noninteger values are illegal array sizes. To
refer to an array index in your code (which counts as a memory reference, just like
variables), use the typical C-style array syntax. For example:

Mov X, MyArray [3]

Variables can also be used as array indices:

Mov 10, X

337Designing the Language

TeamLRN

Mov Y, MyArray [X]

Comments
The last thing to cover is commenting. Continuing with our trend of using Intel
80×86 assembly as a basic model for our language, we’ll use its comment style as
well. The semicolon (;) denotes a comment and causes anything following it to be
ignored by the compiler. It functions exactly like the // comments in C++.

; This is a comment!
Mov X, Y ; So is this!

So there you have it. Our language is fully designed, and we’re ready to get started
with the implementation. While our ultimate goal is, of course, to write scripts in
this language and run them, the first step toward doing this is compiling them
down to bytecode. Therefore, our next task is writing a compiler that can under-
stand these instructions and produce the executable format that our runtime envi-
ronment will accept.

Building the Compiler
Building a compiler of any sort is a formidable task, and it’s for this reason that
we’ve designed our language the way we have. Without the recursively defined
expressions and structures of higher-level languages to worry about, we won’t have
too much trouble getting our compiler to understand the simple instruction-and-
operand format that our scripts will be written in.

I should also mention up front that we’ll be designing our compiler entirely by
hand. Compiler construction tools like lex and yacc, despite their widespread use in
the implementation of more sophisticated language translators and processors, are
almost overkill for a language like this. Besides, we’ll learn a lot more by doing
everything ourselves.

Before we go any further, it’s also important that we fully understand why we’re
going to be compiling our script code in the first place. It’d definitely be possible
to write a runtime environment that could interpret uncompiled code in real time,
and it’d save us the hassle of writing the compiler altogether. So why bother?

The first and most important reason is that for a piece of software to read and
understand code that looks like this:

Mov 20, X

338 12. Simple Game Scripting

TeamLRN

Add Y [Z], Q
JLE X, Q, Label
Add 1, Z
Div Y [Z], Q

Label:
Concat String0, String1

It has to perform a tremendous amount of string processing and comparisons.
Since strings are inherently more complicated and simply larger than primitive
data types like integers, this is a huge waste of processing power. The end result is a
scripting system that slows down the game engine and therefore makes it far more
prohibitive to speed-critical applications (and what game isn’t speed critical?).

When we compile code, we replace all of those extraneous string values with inte-
ger codes (hence the term bytecode) that represent them in a more compact format.
Instructions are enumerated, mapping each instruction string (like Mov and
GetRetVal), which is called a mnemonic, to a numeric value (like 0, 1, and so on),
called an opcode (see Figure 12.2). The term “opcode” is an abbreviation of “opera-
tion code,” which should make sense—it’s a code that represents the operation per-
formed by the instruction to which it’s mapped. So, if you can imagine a compiler
simply looping through the source code of a script and replacing each instruction
mnemonic with its opcode, you can already see how the result would be easier to
process.

Furthermore, there’s the issue of errors in the source code. What if you acciden-
tally forget to include one of the operands of a given instruction or misspell Mov as
Mpv? If the runtime environment has to deal with these mistakes and typos, it means
the game itself will come to a screeching halt. It also means you’ll have a less-than-
convenient testing ground for errors in your code. Debugging code is enough of a

339Building the Compiler

Figure 12.2

A compiler maps instruction mnemonics to opcodes

TeamLRN

hassle, and you’ll only add insult to injury by forcing yourself to have to play
through the game itself just to invoke the errors in the first place. Compilers
enable you to immediately validate your code, highlighting compile-time errors
with helpful information like the line number of the offending code as well as a
description of what’s wrong. The runtime environment can then assume that the
compiled script has been validated beforehand, can save even more processing
power by not having to worry about checking for code mistakes, and can focus
solely on executing it as quickly as possible.

There are also other benefits, like the fact that compiled code is much smaller than
uncompiled code and thus takes less memory to store, both on the hard drive and
in RAM at runtime. Additionally, uncompiled code is very easy to hack—game play-
ers can hijack human-readable scripts effortlessly, screwing up your game and
reflecting a less-than-polished image. Compiled scripts are simply binary data; with-
out a translator of some sort, the average gamer will have no way to make meaning-
ful changes.

The fact is, there are a million reasons why you should compile your scripts, so now
that you’re convinced, let’s get on with actually doing it!

An Overview of Script Compilation
We’re almost ready to get started, so just like we did with our language, we should
state our objectives for what we want the compiler to do. The most general goal is
simply to reduce handwritten, human-readable code to a purely numeric format
that can be processed quickly and easily by our runtime environment. In a nutshell,
this means that everything we would write as a string in a script, such as the name
of an instruction (Mov, Div, GetSubStr) or the identifier used for a variable or array
(MyVar or MyArray), needs a numeric equivalent that represents the same thing.

The compiled script will be composed of a number of major parts. The first and
most important is the instruction stream, which is a series of compiled instructions
and their operands. The next is the symbol table, which maintains information about
all of the arrays and variables a script may need. In addition to variables, we’ll also
need the string table, which stores every immediate string value used in the script
(this will make more sense later). Lastly, the label table keeps track of the targets of
branching instructions based on the labels to which they point (which are really
just reduced to indices into the instruction stream).

340 12. Simple Game Scripting

TeamLRN

Compiling a Basic Instruction Stream
We’ll get started by generating the basics of the instruction stream. The first order
of business here is to simply assign every instruction a numeric index (in other
words, its corresponding opcode) that we can use to store it internally. This can be
expressed as a table and looks like Table 12.1:

This means that the first and most basic thing our compiler will do is simply scan
through this table every time it reads a new instruction, find the opcode to which it
maps, and write that as an integer value out to the executable file. Doing this alone

341Building the Compiler

Table 12.1 Opcode-Instruction Mappings

Opcode Instruction

0 Mov

1 Add

2 Sub

3 Mul

4 Div

5 Concat

6 GetSubStr

7 Jmp

8 JG

9 JL

10 JGE

11 JLE

12 JE

13 JNE

14 CallHost

15 GetRetVal

16 Pause

17 Exit

TeamLRN

would give us a stream of bytecode, a series of opcodes that perform the same overall
operations as the original script but in a much smaller and convenient format.

In fact, this would be a complete compiler if not for the operands. Naturally, the
opcodes themselves are only so useful—with the exception of the Exit instruction,
every opcode needs to be followed by its operands. Without them, we wouldn’t
know what to do with it at runtime.

So let’s think about this for a second. What we really need to figure out now is
every possible form that an operand can take. Once we know these, we can figure
out how to translate them. Speaking in high-level terms, we can expect the follow-
ing types of operands:

• Integer immediate values (8, 64, 32768)

• Floating-point immediate values (3.14159, 2.7828)

• String immediate values (“Hello, world!”, “256”, “_l33th4x0r_”)

• Variable memory reference (X, Y, MyVar)

• Array memory reference with immediate index (MyArray [16])

• Array memory reference with variable index (MyArray [MyVar])

• Labels (MyLabel)

All counted, our language supports seven possible operand types. If you combine
this with what we already know about instructions, we can assume that almost every
line of a given script will take on the following form (although the operand count
will certainly vary):

Instruction Operand0, Operand1, Operand2

I say almost every line because certain lines won’t be instructions; they might be
array declarations, line labels, or even extraneous stuff like whitespace and com-
ments. We’ll worry about these special cases in a little bit; for now, let’s think about
what we want to convert these operands into exactly.

Integer operands are dead simple. There’s really nothing we can do to reduce or
simplify their format; they’re already numbers and that’s that. Integer operands are
written exactly as they are to the executable file. (Of course, they’ll initially be read
from the source file as a string, so we’ll need to convert them to true integer values
before writing them out, but that’s simply accomplished with a call to atoi ().)

Floating-point operands are fairly easy as well. Once we read them in their string
form from the source file, we’ll use atof () to convert them to true float values and

342 12. Simple Game Scripting

TeamLRN

write them directly out to the executable. All we need to do is pass fwrite () a
pointer to the floating-point value and its size, which looks like this:

fwrite (& fFloat, sizeof (float), 1, pFile);

fFloat and pFile are the floating-point value and the pointer to the file out stream,
respectively.

We haven’t yet discussed the precise format of the instruction stream, however, as it
will appear in the executable file. Before continuing, it’d be a good idea to work
this out.

We already know that as each instruction is read, its opcode is determined with a
lookup table. Each instruction in the stream is headed by an opcode. Although you
can use any integer data type you’d like for this (a character, word, double word, or
whatever), we’ll just use the standard 32-bit int. Some would call this wasteful, but
our scripts in the context of this chapter won’t be particularly large to begin with,
and you’re free to change this to whatever you want in your own implementation.
I’m just sticking to ints for pretty much everything to keep things uniform and sim-
ple. We’ll use them as our basic unit of data in a compiled script and will thus refer
to them as words from now on.

The next issue to consider is how the runtime environment, which is what will ulti-
mately read the instruction stream, will know where one instruction begins and
another ends. The simple solution to this problem is to immediately follow the
instruction word with another word that contains the number of operands that will
follow. This will allow the runtime environment to read an opcode and immedi-
ately know how far to read until the next opcode is to be expected.

343Building the Compiler

The true meaning of “word”

The term “word” has gained something of a double meaning over the
years.The technical definition refers to the width of the processor’s
data bus, which is 32-bits in the context of the average Pentium. So
technically, it’s correct for us to refer to our basic 32-bit integer values
as “words.” However, due primarily to the backward compatibility of
the Intel 80X86 platform, which used to be exclusively 16-bit in the
days of real mode,“word” is also frequently used to refer to 16-bit val-
ues, while 32-bit values are known as “double words.”

TeamLRN

This is only part of the puzzle, however. While it’s important to know how many
operands will follow an opcode, it’s just as important that we store information
regarding the type of each operand as well. This is important for two reasons. First,
the runtime environment needs to know how many bytes to physically read to
extract the entire operand. Second, it needs to know what to do with the extracted
data. Obviously, an integer is stored in RAM much differently than a float, so this
needs to be taken into account.

Including the opcode and operands themselves, this means that each instruction in
the instruction stream will consist of four pieces of data, as illustrated in Figure 12.3:

So far, we’ve just copied the operand data in its almost exact form from the source
file and dumped it into the executable file. Although we’ve yet to actually cover the
implementation details of this process, we’ve essentially formed a theoretical com-
piler on paper that can compile instructions and operands with integer or floating-
point immediate values. Not a bad start. This rounds out the basics of the
instruction stream, so let’s move on to the more complex operand types.

Compiling Strings
With the basics of the instruction stream in place, we can move on to the more
complex operand types, which will also introduce us to the remaining parts of the
compiled script such as the string and symbol tables.

The next type of operand to consider is string immediate values. These are han-
dled in almost the same fashion as integers and floats in the sense that there’s no
real conversion to be done; a string will appear in the compiled script in the same
way that it will appear in the uncompiled source code. The difference, however, is
where it will be stored. Rather than cluttering up the instruction stream with poten-
tially huge strings, we’ll store all immediate string values in a separate area known
as the string table. Each string will be placed into the table in the order in which it’s

344 12. Simple Game Scripting

Figure 12.3

A compiled instruction will contain
an opcode word, an opcode count
word, and a variable number of
operands, each of which will consist
of an operand type word and the
operand data itself

TeamLRN

encountered in the script. Every time a string is added to the table, its index will be
calculated (which just means incrementing the index of the previous string), and
this value will be written out to the instruction stream, rather than to the string
itself. This way, instructions need only deal with an index into the string table
rather than the string itself. The end result is that all instructions, regardless of
their operand types, will only consist of a handful of words. Extraneous and bulky
data like string values will be stored elsewhere, and the implementation will be
cleaner overall (see Figure 12.4).

The string table itself will be implemented in the compiler as a linked list. We need
to do this since we have no idea how many strings a script may present, and any
arbitrary limit would probably end up being too restrictive. The string table will
thus consist of two basic data structures. One represents the table itself, keeping
track of things like pointers to the head and tail of the list and the number of
strings it currently holds. There will also be a structure representing a string table
node, which will contain the string itself and its index.

Let’s have a look at the string table structure:

typedef struct _StringTable
{

int iStringCount; // Current number of strings in table
StringTableNode * pHead, // Pointer to head string node
* pTail; // Pointer to tail string node

}
StringTable;

345Building the Compiler

Figure 12.4

The string table separates the
potential clutter of string literal
data from the instruction stream

TeamLRN

It’s pretty basic. iStringCount simply tells us how many strings the table currently
has, while pHead and pTail point to the head and tail nodes of the list. Here’s the
node structure:

typedef struct _StringTableNode
{

_StringTableNode * pPrev, // Pointer to previous string node
* pNext; // Pointer to next string node

char * pstrString; // Pointer to string itself
int iIndex; // Index into the table

}
StringTableNode;

It’s also very straightforward. pPrev and pNext point to the previous and next nodes
in the list. pstrString is the string value itself, and iIndex tells us to which index the
string is mapped. The last step is declaring a global string table for the program to
refer to:

StringTable g_StringTable;

We now need a few functions to manage the list. The main operations we’ll con-
cern ourselves with will be initializing the list when the compiler starts up, freeing it
when the compiler shuts down, adding strings and retrieving their associated
index, and writing the string table to the executable file. Let’s look at initialization
first:

void InitStringTable ()
{

g_StringTable.iStringCount = 0;
g_StringTable.pHead = NULL;
g_StringTable.pTail = NULL;

}

This one’s a no brainer. Simply reset the string count to 0 and nullify the head and
tail pointers. Let’s knock out the deallocation routine as well while we’re at it:

void FreeStringTable ()
{

StringTableNode * pCurrString = g_StringTable.pHead,
* pNextString;

for (int iCurrStringIndex = 0;
iCurrStringIndex < g_StringTable.iStringCount;
++ iCurrStringIndex)

346 12. Simple Game Scripting

TeamLRN

{
pNextString = pCurrString->pNext;
free (pCurrString->pstrString);
free (pCurrString);
pCurrString = pNextString;
}

}

The list is freed in a loop that runs from the head pointer to the tail pointer, using
the string count to determine how far to go. At each iteration of the loop, the
pointer to the next node in the list is saved, and the string and node structures are
freed from memory. The saved pointer is then used to traverse to the next node,
and the process continues.

Now that we can initialize and free our string table, let’s take a look at what’s perhaps
the most complex operation, adding a string to the table and returning its index:

int AddStringToStringTable (char * pstrString)
{

int iIndex = g_StringTable.iStringCount;
// Is this the first string in the table?
if (! g_StringTable.iStringCount)
{

g_StringTable.pHead = (StringTableNode *) malloc (sizeof (
StringTableNode));

g_StringTable.pTail = g_StringTable.pHead;
g_StringTable.pHead->pNext = NULL;

g_StringTable.pHead->pPrev = NULL;
g_StringTable.pHead->pstrString = (char *) malloc (strlen (

pstrString) + 1);
strcpy (g_StringTable.pHead->pstrString, pstrString);
g_StringTable.pHead->iIndex = iIndex;

}
// If not, add it to the tail of the list
else
{

StringTableNode * pOldTail = g_StringTable.pTail;
g_StringTable.pTail = (StringTableNode *) malloc (sizeof (

StringTableNode));
g_StringTable.pTail->pNext = NULL;
g_StringTable.pTail->pPrev = pOldTail;
g_StringTable.pTail->pstrString = (char *) malloc (strlen (

347Building the Compiler

TeamLRN

pstrString) + 1);
strcpy (g_StringTable.pTail->pstrString, pstrString);
g_StringTable.pTail->iIndex = iIndex;
pOldTail->pNext = g_StringTable.pTail;

}
++ g_StringTable.iStringCount;
return iIndex;

}

Although this is a simple function overall, there are two particular cases we should
discuss. If the string is the first in the list, we need to make sure to line up the
pointers properly by assigning both the head and tail members of the string table
structure. Otherwise, we need to use the table’s tail pointer to find out where to
insert the new string. Space for the node structure itself is first allocated, and the
string passed to the function is copied to it. The index of the string is simply deter-
mined by checking the current string count. The string count is then incremented
and the function returns, passing the index back to the caller. This general process
can be seen in Figure 12.5.

Before wrapping up, let’s quickly cover the last and perhaps most important string
table operation: writing the entire table out to the executable file. It’s a pretty sim-
ple function, and it looks like this:

void WriteStringTableToExec ()
{

// Write the string count first
WriteIntToBinFile (g_StringTable.iStringCount, g_pExecFile);
// Write each string length, followed by the string itself
StringTableNode * pCurrString = g_StringTable.pHead;
for (int iCurrStringIndex = 0;

348 12. Simple Game Scripting

Figure 12.5

Adding a string found in the
source code to the string
table

TeamLRN

iCurrStringIndex < g_StringTable.iStringCount;
++ iCurrStringIndex)
{

WriteIntToBinFile (strlen (pCurrString->pstrString),
g_pExecFile);

for (unsigned int iCurrCharIndex = 0;
iCurrCharIndex < strlen (pCurrString->pstrString); ++ iCurrCharIndex)
WriteCharToBinFile (
pCurrString->pstrString [iCurrCharIndex], g_pExecFile);

pCurrString = pCurrString->pNext;
}

}

The first step is writing a word containing the string count. The contents of the
table themselves are then written out, starting from the head node and traversing
the list until the tail is reached. At each step, a word containing the length of the
string is written out, followed by the string itself (which is written character by
character).

To sum things up, the string table is just a linked list of strings that are read from
the script table and added in the order they’re encountered. Whenever a string is
added to the table, its index is returned to the caller.

That wraps up the implementation of the string table. With the table in place, we
can now easily solve the problem of compiling immediate string variables. All that’s
necessary is a call to AddStringToStringTable () every time a new string is found in
the source, and then you write the returned index to the instruction stream.

Things are moving along pretty well. We’ve now reached a point at which our theo-
retical compiler can process instructions as well as operands of all three immediate

349Building the Compiler

OPTIMIZATION TIP
Although I haven’t implemented it here, the string table could be opti-
mized for memory by checking all incoming strings against the existing
strings in the table. If the string to be added is already present, the original
string’s index could be returned to the caller, and the new string could be
discarded.There’s no need to keep multiple copies of the same string.The
only question to ask, of course, is how often you expect this to happen. If
you find yourself writing scripts with the same string immediate values
being used often, it might be worth considering.

TeamLRN

data types. The last major piece of the puzzle is the processing of memory refer-
ences and labels, so let’s get to it.

Compiling Memory References—
Variables and Arrays
With the exception of handling branching instructions, the last major problem to
work out is how to process memory references. Memory references can be a rather
complicated part of compiler construction, but we’ll take a fairly simplified route
and handle variables and arrays with relative ease.

To get things started, let’s talk about basic variables. A variable in our language, as
previously mentioned, is completely typeless. This means that there’s no such thing
as an integer variable, a string variable, or whatever. All variables can be assigned all
data types and that’s that. To further simplify things, we won’t even require our
scripts to contain variable declarations. Variables are brought into existence imme-
diately as they’re used, which makes things easier for the script writer and even for
us in a few ways.

The first thing we need to understand about variables is how they’re going to be
stored in compiled scripts and what that compiled information will mean to the
runtime environment. At runtime, when our scripts are being executed, the mem-
ory that variables refer to will be a large, contiguous region known as the heap. All
variables and arrays will be stored here, and therefore any given variable is really
just a symbolic name for an index into the heap, as you can see in Figure 12.6.
Each element of the heap has enough memory to contain any of the possible data
types that a variable can have. This is an advantage for us. Since typeless variables
are all the same size, it means we can maintain a simple counter to track the index
in the heap to which each variable maps.

350 12. Simple Game Scripting

Figure 12.6

Variables are really
just symbolic names
for the indices

TeamLRN

In other words, think of it like this. The following block of script code would
declare three variables: X, Y, and Z.

Mov 16, X
Mov 32, Y
Mov 64, Z

As our compiler reads through the source code, it will encounter these variables in
the order they were used. It’ll find X first, Y second, and Z third. This means that if
we start at the first index of the heap, index zero, and increment the index after
every new variable is found, X will point to the first heap element, Y will point to the
second, and Z will point to the third. We can then throw away the variable name
itself and simply write the heap index out to the executable file. At runtime, the
environment will use these indices to interact with the heap as our executable code
performs various operations like arithmetic and moving memory around. So now,
even though we write code that looks like this:

Mov 16, X
Mov 32, Y
Add Y, X
Mov 2, Z
Div Z, X

Our compiler will produce code that looks like this (assume that any number
inside the brackets is a heap index):

Mov 16, [0]
Mov 32, [1]
Add [1], [0]
Mov 2, [2]
Div [2], [0]

We can think of the overall logic like this:

• Move the value of 16 into heap index 0 (X).

• Move the value of 32 into heap index 1 (Y).

• Add heap index 1 (Y) to heap index 0 (X).

• Move the value of 2 into heap index 2 (Z).

• Divide heap index 0 (X) by heap index 2 (Z).

351Building the Compiler

TeamLRN

Now that we understand how variables become heap indices, it’s clear that we’re
going to need a data structure similar to the string table to hold them. This struc-
ture will perform nearly the same operations—we’ll pass it a variable identifier that
it’ll add to the table, returning the heap index. It’s known as the symbol table
because it stores information regarding the program’s symbols (“symbol” being a
synonym for “identifier”). The only major difference between this and the string
table is that we must check every addition to the table against all previous entries to
determine whether or not this is the first time the identifier has been encountered.
Remember that the first time the memory reference is detected we add it to the
table, but any subsequent encounters shouldn’t be added. Rather, the Add () func-
tion should simply note that the identifier has already been added and return the
heap index it’s associated with. If we fail to do this, the following code would tech-
nically contain two separate variables called X and would not behave as expected:

Mov 32, X
Add Y, X

We’re almost ready to see the implementation of the symbol table, but before we
get into it, we should first address the issue of array references. Arrays themselves
are really just variables that take up more space; an array of 16 elements can be
thought of as 16 variables or, in other words, 16 consecutive heap indices. This is
illustrated in Figure 12.7. The only thing that complicates matters is indexing the
array. When an array index is used as an operand, we can expect one of two things:
The index will be expressed either as an integer immediate value or as a variable.
In the first case, all we have to do is send the array identifier to the symbol table
and retrieve its index. This is known as the base index and lets us know where the

352 12. Simple Game Scripting

To stack or not to stack, that is the question

Anyone familiar with traditional compiler construction and the general
structure of how programs are executed may be wondering where the
stack is. Since our language doesn’t support functions of its own (its
only interaction with functions is calling the host API, which is obviously
different), there’s no need for a stack.All code runs at the same level,
and thus a central heap from which all variables and arrays can be
indexed makes more sense.

TeamLRN

array begins in the heap. We then add the integer immediate value, known as the
relative index, to this base index to retrieve the absolute index, which is the actual
value we want. So, for example, imagine we declare an array of 16 elements . . .

Array MyArray [16]

. . . and reference it with an integer immediate as follows:

Mov MyArray [8], Y

MyArray would be added to the heap at some offset, which we’ll call X. The supplied
index was 8, which means that the final index into the heap that we want to move
into Y is X + 8. This is the value we’ll write out to the instruction stream. (Of course,
the value of X will be known, so this will be resolved to a single integer value.)

Things get slightly more complicated, however, when a variable is used to index an
array. In this case, we have two heap indices to add: the base index of the offset and
the index of the variable. The problem with this is that there’s no way to tell at
compile time to what value that second index will point. We know that the first
index will always be the base index of the array, but the value of the variable is sim-
ply an element in the heap, which is only known at runtime. Thus, we won’t be
able to put a completely resolved index into the instruction stream at compile time.
Rather, operands that involve an array indexed with a variable will be compiled
down to the base index and the index of the variable that’s being used for index-
ing. Then, at runtime, the environment will extract the base index, use the variable
index to look up an element in the heap, and add that value to determine the final
index. Phew!

Now that we’ve got everything sorted out, let’s take a look at the implementation of
the symbol table. The actual data structures will be nearly identical to that of the
string table, save for a few added fields.

353Building the Compiler

Figure 12.7

An array is just a linear series of
variables collectively referred to with a
single name

TeamLRN

As with the symbol table, we’ll have both symbol nodes and a general table struc-
ture, as follows:

typedef struct _SymbolTableNode
{

_SymbolTableNode * pPrev, // Pointer to previous symbol node
* pNext; // Pointer to next symbol node

char * pstrIdent; // Identifier
int iIndex; // Index into the table
int iSize; // Size (used for arrays)

}
SymbolTableNode;

Basically, all you need to pay attention to is the string member that contains the
identifier (symbol) itself, the index into the heap that it maps to, and the size. As I
mentioned, all variables are the same size due to their typeless nature, but since
arrays are treated more or less as collections of simple variables, they make use of
the field.

typedef struct _SymbolTable
{

int iSymbolCount; // Current number of symbols
SymbolTableNode * pHead, // Pointer to head symbol node

* pTail; // Pointer to tail symbol node
}

SymbolTable;

This is even more inconsequential. Virtually nothing has changed from the string
table with the exception of the names of each field. Obviously, iSymbolCount is now
the number of symbols in the table.

354 12. Simple Game Scripting

We’ll end up developing a number of structures that are all based on
similar linked lists. C++ users may want to instead base them on a sin-
gle, generic, linked-list implementation such as one provided by the
STL. C users can certainly derive these from a more generic set of
structures and functions as well. I’ve taken the more redundant path
for readability but would highly recommend a more streamlined
approach in your own projects.

TeamLRN

The initializing and freeing of the symbol table is handled in pretty much the exact
same way as the string table, so there’s no need to examine these functions as well.
To recap the process, however, initialization simply sets the symbol count to 0 and
the head and tail pointers to NULL. Freeing loops through each symbol in the table
frees both the identifier string and the node structure itself.

Things get interesting when we add to the symbol table. Once again, the process is
nearly identical to adding to the string table, but we first need to make sure that
the identifier being added doesn’t already exist somewhere. If it does, we simply
return that index; otherwise, we add the new one and return the new index.

Let’s take a look at the code:

int AddSymbolToSymbolTable (char * pstrIdent,
int iSize, int * iTableIndex)

{
// Check for pre-existing record of symbol
SymbolTableNode * pSymbolNode;
if (pSymbolNode = GetSymbolNode (pstrIdent))
{

if (iTableIndex)
* iTableIndex = pSymbolNode->iIndex;

return 0;
}
// It’s a new addition, so determine its index
int iIndex = 0;
// Add symbol to table
if (! g_SymbolTable.iSymbolCount)
{

g_SymbolTable.pHead = (SymbolTableNode *)
malloc (sizeof (SymbolTableNode));

g_SymbolTable.pTail = g_SymbolTable.pHead;
g_SymbolTable.pHead->pNext = NULL;
g_SymbolTable.pHead->pPrev = NULL;
g_SymbolTable.pHead->pstrIdent =

(char *) malloc (strlen (pstrIdent) + 1);
strcpy (g_SymbolTable.pHead->pstrIdent, pstrIdent);

g_SymbolTable.pHead->iIndex = iIndex;
g_SymbolTable.pHead->iSize = iSize;

}
else
{

355Building the Compiler

TeamLRN

iIndex = g_SymbolTable.pTail->iIndex + g_SymbolTable.pTail->iSize;
SymbolTableNode * pOldTail = g_SymbolTable.pTail;
g_SymbolTable.pTail = (SymbolTableNode *)

malloc (sizeof (SymbolTableNode));
g_SymbolTable.pTail->pNext = NULL;
g_SymbolTable.pTail->pPrev = pOldTail;
g_SymbolTable.pTail->pstrIdent = (char *)

malloc (strlen (pstrIdent) + 1);
strcpy (g_SymbolTable.pTail->pstrIdent, pstrIdent);
g_SymbolTable.pTail->iIndex = iIndex;
g_SymbolTable.pTail->iSize = iSize;
pOldTail->pNext = g_SymbolTable.pTail;

}
// Increment the symbol count and return the index
++ g_SymbolTable.iSymbolCount;
if (iTableIndex)

iTableIndex = iIndex;
return 1;

}

As previously mentioned, the first step is to make sure the identifier isn’t already
present in the table. If it is, its index is simply returned to the caller and the func-
tion exits early. Otherwise, the typical process is followed for adding a new node,
and the newly created index is returned.

The next detail to cover regarding arrays is the directive for declaring them. As we
just saw, our language accepts array declaration with the following syntax:

Array Identifier [Size]

The size of the array must be an immediate value; variables are not allowed. Also,
we’ll add a rule stating that all arrays must be declared before the code begins.
Although we could easily get around this, it’s sometimes good to enforce certain
coding practices. It’s only going to lead to clutter if scripts can define arrays arbi-
trarily within the code blocks.

Whenever a new Array directive is found, the identifier and the size are passed to
AddSymbolToSymbolTable (). The heap index will then be incremented by the size of
the array (instead of by one), so the next symbol added to the table, whether it’s
another array or a variable, will index into the heap after all of the array’s ele-
ments. So if you write a script that looks like this:

Array MyArray0 [256]

356 12. Simple Game Scripting

TeamLRN

Array MyArray1 [512]
Mov 72, X

MyArray0 will occupy heap indices 0 to 255, MyArray1 will take 256 to 767, and Y will
point to heap element 768. Another subtle advantage of forcing array declarations
to precede code, which is really just a superficial thing, is that all arrays will be con-
tiguous and start from the bottom of the heap. All variables will then be added to
the heap afterward, leading to a more organized heap overall.

The last detail to mention about the symbol table is how it’s written out to the exe-
cutable file. It’s funny because this will probably end up being the easiest part of
the entire compilation process. Believe it or not, the only thing we need to store in
the executable is a word containing the final size of the heap after all variables and
arrays have been counted. In other words, there’s no “table” to store at all.

The reason for this is simple. Since all variables are typeless and arrays are simply
treated as contiguous groups of variables, there’s no real information to store. The
only information we need to retain about each specific variable is the heap index to
which it’s mapped, but those have already been stored in the instruction stream and
will be handled automatically by the runtime environment. In other words, if we
define 3 variables, we’ll have a heap size of 3. Each variable will be indexed in the
script, so heap indices 0 to 2 will be passed as operands to the instructions that the
runtime environment processes and that’ll be that. Simple, eh? All the runtime envi-
ronment needs to know is to make room for three variables, and it takes it on faith
that all indices will be used for something throughout the lifespan of the script.

Compiling Label
Declarations
and Branch
Instructions
The last aspect of our theoretical
compiler (which, by the way, will
be implemented in reality soon
enough, so just sit tight) is the com-
pilation of label declarations and
branch instructions.

Branching and labels manifest
themselves in two forms in source
code. First, certain lines simply

357Building the Compiler

NOTE
You’ll notice that even though writing the
symbol “table” to the executable file
is simply a matter of writing a single
word, I’ve stored it in a function called
WriteSymbolTableToExec () anyway.This is
simply so you can expand it further in the
future if need be. If you end up supporting
more sophisticated variables or data types,
you might need to end up storing a table of
variable information after all.You may even
want to make your language typed, in
which case a description of each variable in
the script may come in handy.

TeamLRN

declare labels. Second, certain instructions (in the case of our language, only the
branching J* instructions) actually accept line labels as operands. Much like strings
and identifiers, a third table will be constructed to keep track of labels as they’re
found in the source. Each entry in the table will require two major pieces of infor-
mation: the label string and its index into the instruction stream.

Compiling labels is a mostly straightforward job. When a new label is found, it’s
added to the label table along with its place in the instruction stream. Of course,
the actual label itself is discarded during the compilation phase since there’s no
need for it at runtime. Instead, each label is assigned to an index (again, just like
strings and symbols) that maps it to various jump instructions. This table is then
written to the executable file along with the other tables we’ve been maintaining.

The one kink, however, is what to do about label operands. In many cases it’s no
big deal; you simply find the label in the label table and write its instruction index
to the instruction stream. This only works in cases in which the label was defined
before the operand that referred to it, however. What are we going to do if a label is
defined 10 lines down from where it’s used as an operand in a jump instruction, as
shown in Figure 12.8?

Although this is perfectly legal (and necessary for a number of forms of iterative
techniques and algorithms), it does make things a bit trickier for the compiler. We
certainly can’t prohibit scripts from doing this; being able to jump forward in code
is a necessity. Fortunately, the solution is simple. Every time a label is encountered
as our compiler scans through the source code, whether it’s a declaration or an
operand, it’s added to the label table. However, its instruction index is only added
to the table when it’s found in the form of a declaration. If a label is initially
encountered as an operand, its instruction index field is left blank until the decla-

358 12. Simple Game Scripting

Figure 12.8

A jump instruction may present a given label as an operand
before it gets defined

TeamLRN

ration is found. Then, when the declaration finally pops up, the Add () function for
the label table informs us that the label has already been found and that all we
need now is the instruction index of the declaration. By the time the entire source
file has been scanned, we’ll have matched up every label with its instruction index.
The only two things to watch for are multiple definitions of the same label and
labels that are referred to as operands but never defined. Both of these will result
in compile-time errors.

As you can see, labels and jumps aren’t particularly hard to deal with. The only
thing to remember is that labels can be defined anywhere relative to the operands
by which they may be referred to, so we have to think in parallel when scanning the
source file. At any time, we could find either a label declaration or an operand,
and we need to be prepared to handle each.

Let’s finish this section up by taking a look at the code behind the label table.
Again, we use a linked list to dynamically store our list of labels as we progress
through the source code. First up is the node structure:

typedef struct _LabelTableNode
{

_LabelTableNode * pPrev, // Pointer to previous label node
* pNext; // Pointer to next label node

char * pstrLabel; // Pointer to label
int iInstrOffset; // Instruction the label points to
int iIndex; // Index into the label table
int iFoundType; // How was this label found?

}
LabelTableNode;

You’ll notice that the final implementation has four major data members. pstrLabel
is obviously the label string. iInstrOffset is the offset into the instruction stream,
which will tell our runtime environment where to reroute the program when jump
instructions are executed. iIndex is the index that will be used to map jump
operands to the label. iFoundType will require a bit of explanation, however. As previ-
ously mentioned, labels can appear in any order, either as their formal declaration
or as operands in jump instructions. Although both cases involve adding the label
to the table, we need to keep track of how the label was found the last time we saw
it. iFoundType can thus be assigned one of two values: FOUND_AS_DEF, which means it
was found as a definition, or FOUND_AS_OP, which means it was found as an operand.
The reason for this is that if a label is found as a definition, we need to make sure
this is the first time. If a label is added to the table as a definition and iFoundType
already equals FOUND_AS_DEF, a label redefinition error has occured.

359Building the Compiler

TeamLRN

The label table structure is again exactly like that of the string and symbol tables. It
simply manages the current number of labels stored in the table, as well as pointers
to the head and tail nodes of the list. The same goes for the initialization and free-
ing of the table; it’s the same routine as the string and symbol tables.

Let’s now shift our focus to the only really complicated part of dealing with labels—
the AddToLabelTable () function.

int AddToLabelTable (char * pstrLabel, int iInstrOffset, int iFoundType)
{

LabelTableNode * pCurrLabel = g_LabelTable.pHead;
// First look for a previous entry of the label
for (int iCurrLabelIndex = 0; iCurrLabelIndex < g_LabelTable.iLabelCount; ++

iCurrLabelIndex)
{

if (stricmp (pCurrLabel->pstrLabel, pstrLabel) == 0)
{

// If the label is found, set its instruction
// offset. Return whether or not it’s been found as
// a definition
if (iInstrOffset != -1)

pCurrLabel->iInstrOffset = iInstrOffset;
if (iFoundType == FOUND_AS_DEF)

if (pCurrLabel->iFoundType == FOUND_AS_DEF)
return -1;

else
pCurrLabel->iFoundType = FOUND_AS_DEF;

return pCurrLabel->iIndex;
}
pCurrLabel = pCurrLabel->pNext;

}
// Otherwise, add it to the table
int iIndex = g_LabelTable.iLabelCount;
if (! g_LabelTable.iLabelCount)
{

g_LabelTable.pHead = (LabelTableNode *) malloc (sizeof (
LabelTableNode));

g_LabelTable.pTail = g_LabelTable.pHead;
g_LabelTable.pHead->pNext = NULL;
g_LabelTable.pHead->pPrev = NULL;
g_LabelTable.pHead->pstrLabel = (char *) malloc (strlen (

360 12. Simple Game Scripting

TeamLRN

pstrLabel) + 1);
strcpy (g_LabelTable.pHead->pstrLabel, pstrLabel);
g_LabelTable.pHead->iInstrOffset = iInstrOffset;
g_LabelTable.pHead->iIndex = iIndex;
g_LabelTable.pHead->iFoundType = iFoundType;

}
else
{

LabelTableNode * pOldTail = g_LabelTable.pTail;
g_LabelTable.pTail = (LabelTableNode *) malloc (sizeof (

LabelTableNode));
g_LabelTable.pTail->pNext = NULL;
g_LabelTable.pTail->pPrev = pOldTail;
g_LabelTable.pTail->pstrLabel = (char *) malloc (strlen (

pstrLabel) + 1);
strcpy (g_LabelTable.pTail->pstrLabel, pstrLabel);
g_LabelTable.pTail->iInstrOffset = iInstrOffset;
g_LabelTable.pTail->iIndex = iIndex;
g_LabelTable.pTail->iFoundType = iFoundType;
pOldTail->pNext = g_LabelTable.pTail;

}
++ g_LabelTable.iLabelCount;
return iIndex;

}

Much like the Add () functions for symbol and string tables, the real brunt of the
function is simply a matter of adding the label to the table, and the code is pretty
much the same. The only part worth noting is the first block of code in the func-
tion; it determines how the label has been found in the source code and how to
process the parameters it’s been passed. It starts off by looping through each label
until the label in question is found. It then checks the value of the passed instruc-
tion offset. If it’s not –1, it’s interpreted as a valid offset and is written to the label’s
instruction offset member. It then determines whether or not a label redefinition
has occurred by comparing the passed iFoundType to the one currently stored in the
label’s node.

The last function to cover handles the writing of the table to the executable file
and looks like this:

void WriteLabelTableToExec ()
{

// Write label count

361Building the Compiler

TeamLRN

WriteIntToBinFile (g_LabelTable.iLabelCount, g_pExecFile);
// Write each label index and offset
LabelTableNode * pCurrLabel = g_LabelTable.pHead;
for (int iCurrLabelIndex = 0; iCurrLabelIndex < g_LabelTable.iLabelCount; ++

iCurrLabelIndex)
{

if (pCurrLabel->iInstrOffset == -1 && pCurrLabel->iFoundType ==
FOUND_AS_OP)

{
char pstrErrorMssg [1024];
sprintf (pstrErrorMssg, “Undefined label ‘%s’”, pCurrLabel-

>pstrLabel);
ExitOnSourceError (pstrErrorMssg, 0, 0, -1);

}
WriteIntToBinFile (pCurrLabel->iIndex, g_pExecFile);
WriteIntToBinFile (pCurrLabel->iInstrOffset, g_pExecFile);
pCurrLabel = pCurrLabel->pNext;

}
}

The function really just writes out each label index and its offset into the instruction
stream. The runtime environment then uses the indices to map jump instruction
operands to instruction stream offsets, but we’ll learn more about that later on.

Putting It All Together
The last step in working out the details of our theoretical compiler is basically
putting together everything we’ve covered so far. So let’s summarize everything
we’ve discussed up to this point and pin down the exact format of the executable
format we’ve pieced together.

Although I’ve presented the generation of the instruction stream as a “first step” of
sorts, it’s really a constant task that lasts through the entire process of compilation.
The string, symbol, and label tables are all created during the generation of the
instruction stream, not after (as can be seen in Figure 12.9). Everything is really
happening in parallel. The only time we can make distinctions in terms of what
comes before what is in the order of these four blocks of information as they are
written out in the executable file. So let’s have a look at that.

362 12. Simple Game Scripting

TeamLRN

The format for our compiled scripts will be extremely simple. It’ll start with the
instruction stream, followed by the symbol table, then the string table, and finally
the label table.

The instruction table will begin with a single word that tells us how many instruc-
tions are in the stream, followed by the stream itself. Each instruction in the stream
consists of an opcode, an operand count word, and then the operands themselves.
Each operand is composed of an operand type word and the operand’s data. As we
saw earlier, there are seven different types of operands. The value of the operand
type word can be any of the following constants:

OP_TYPE_INT
OP_TYPE_FLOAT
OP_TYPE_STRING
OP_TYPE_MEMORY
OP_TYPE_ARRAY_INDEX_IMMEDIATE
OP_TYPE_ARRAY_INDEX_VARIABLE
OP_TYPE_LABEL

After the operand type word is the operand data itself. This is equally simple in
most cases. Integer operands (OP_TYPE_INT) are simply a word containing the integer
value. Floating-point values (OP_TYPE_FLOAT) are pretty much the same thing; the 4
bytes that make up the float data type (depending on your platform) are simply

363Building the Compiler

Figure 12.9

The instruction stream, symbol
table, string table, and label
table

TeamLRN

written out as binary data. Strings (OP_TYPE_STRING) are also single words; they exist
as operands only in the form of indices into the string table. Labels (OP_TYPE_LABEL)
are the same thing, just single-word indices into the label table. Rounding out the
simpler operands are variables (OP_TYPE_MEMORY); they’re just single words containing
an index into the heap.

Arrays are more involved. Arrays with integer immediate values as their indices
(OP_TYPE_ARRAY_INDEX_IMMEDIATE) are stored as two words. The first is the base index
(an index into the heap that points to the start of the array), and the second is the
relative index (an integer value that is added to the base index to point out a spe-
cific array element). Both indices could actually be added together at compile time
and written to the file as a single value, but I decided against this to keep things
more readable.

Arrays with variables as their indices (OP_TYPE_ARRAY_INDEX_VARIABLE) are also stored as
two words, both of which are heap indices. The first is the array’s base index; the
second points to the relative index, which at runtime must be added to it to find
the absolute index.

This is everything we need to know about the instruction stream. As previously
mentioned, the symbol table immediately follows the stream. As we learned, how-
ever, all we really need to keep track of is the heap size, so the next step in writing
the executable file is just a matter of writing a single word containing the heap size
after the last word of the stream.

The string table isn’t such a free ride. The first word of the table is the number of
strings that will follow. The string data immediately follows this word, composed of
two members: a single word containing the length of the current string and a char-
acter stream making up the string itself.

The last information in the executable is the label table, which is composed of a
single word that contains the number of labels in the table, followed by a series of
index-offset pairs. The index of the pair is a single word that is used to map its off-
set to operands in jump instruction operands. The offset is another single word,
the value of which determines to which instruction the runtime environment
should jump to reach the location the label represents.

That’s everything. At this point our theoretical compiler is complete, and you
should understand (for the most part) all of the major steps involved in converting
human-readable script code to a more compact and efficient bytecode format.

364 12. Simple Game Scripting

TeamLRN

The next step, finally, is discussing the actual real-world implementation of the
compiler. Fortunately for us, the knowledge we’ve armed ourselves with in the last
few sections will prepare us well for constructing the actual program.

Implementing the Compiler
It’s been easy to discuss the conversion of our script code to executable code in
high-level terms, but there’s a big difference between saying something like “First
read the instructions and then read each operand” and actually doing it. Now that
we’ve seen the overview of our strategy for compiling script code, we’re going to
learn how the breakdown, analysis, and extraction of the information our script
code is trying to convey will actually be implemented.

The first thing to understand is that the entire script file can be thought of as one
big string. From the perspective of a piece of software, it’s simply an arbitrary
stream of characters that could just as likely be the script to the behavior of an
enemy in the second dungeon of your RPG as it could be an excerpt from The Age
of Spiritual Machines. It’s our job, then, to make our compiler understand how to
break up this incoming stream of text and make sense of it. This, of course, will
ultimately lead to the ability to translate it.

The upshot to all of this is that we’ve got a significant amount of string processing
ahead of us. Virtually every individual operation required to compile our scripts
will involve processing string data and attempting to analyze and transform its con-
tents. This means that our first order of business will be putting together a small
library of string-handling functions. While the standard C libraries do provide a
decent number of routines for this task, we’ll need a few more and will end up
rewriting a few of the simpler ones just for consistency with other functions we’ll
write.

A Small String-Processing Library
In this section, we’ll put together a small but useful library of string-processing rou-
tines. We’re building them now because we’ll need them to construct our compiler
later, but unfortunately, this means not every function we code now will make
immediate sense. I’m going to do my best to explain why each is necessary as we
cover them, but don’t worry too much if you can’t understand just yet why some-
thing is necessary. Everything will be explained somewhere down the line.

365Implementing the Compiler

TeamLRN

One common operation we’ll find ourselves performing time and time again is
determining whether or not a given character or string is of a certain type (that is,
whether or not it’s numeric, alphanumeric, whitespace, or whatever). So let’s start
off by writing a few functions that will allow us to determine the type of a given
chararacter.

First up will be a simple function called IsCharWhitespace (). This will return 1 if the
given character is a space, a tab, or a new line:

int IsCharWhitespace (char cChar)
{

if (cChar == ‘ ‘ || cChar == ‘\t’ || cChar == ‘\n’)
return 1;

else
return 0;

}

Since our language will be free form, we’ll allow the user to put any amount of white-
space between relevant characters and strings like commas, identifiers, values, and
so on. This means that the following line of code […]

Mov X, 10

[…] is considered equivalent to this:

Mov X ,10

IsCharWhitespace () will help us easily skip over this whitespace, allowing us to focus
instead on the stuff we’re really after. Next up is IsCharNumeric (), which will tell us
whether or not a given character is a numeral between 0 and 9.

int IsCharNumeric (char cChar)
{

if (cChar >= ‘0’ && cChar <= ‘9’)
return 1;

else
return 0;

}

When reading numeric values in from the source file, we’ll make heavy use of this
function to ensure that each character forming the number is valid.

In addition to numbers, however, we’ll also be reading in identifiers, which can be
strings consisting of underscores, characters, and numerals. Any character that can

366 12. Simple Game Scripting

TeamLRN

fall into one of these three groups is considered a valid identifier character, accord-
ing to the function IsCharIdent ():

int IsCharIdent (char cChar)
{

if ((cChar >= ‘0’ && cChar <= ‘9’) ||
(cChar >= ‘A’ && cChar <= ‘Z’) ||
(cChar >= ‘a’ && cChar <= ‘z’) ||
cChar >= ‘_’)

return 1;
else

return 0;
}

A third type of entity to watch for when parsing source code is delimiters, which
are usually single characters that denote either the beginning or the end of a cer-
tain type of data. Examples of delimiters include the brackets surrounding array
indices and the commas that separate operands. IsCharDelimiter () helps us deter-
mine whether or not a given character is a delimeter:

int IsCharDelimiter (char cChar)
{

if (cChar == ‘:’ || cChar == ‘,’ || cChar == ‘“‘ ||
cChar == ‘[‘ || cChar == ‘]’ ||

IsCharWhitespace (cChar))
return 1;

else
return 0;

}

This wraps up the functions we’ll need for testing individual characters. With that
out of the way, let’s have a look at some functions for processing full strings.

When dealing with source code, it’s often convenient to be able to easily strip a
given string of its whitespace. As you’re probably starting to suspect, whitespace will
be frequently dealt with as our compiler is built. TrimWhitespace () will help us out
by removing the spacing on either side of a given string and returning the trimmed
version.

void TrimWhitespace (char * pstrString)
{

unsigned int iStringLength = strlen (pstrString);
unsigned int iPadLength;

367Implementing the Compiler

TeamLRN

unsigned int iCurrCharIndex;
if (iStringLength > 1)
{

// First determine whitespace quantity on the left
for (iCurrCharIndex = 0; iCurrCharIndex < iStringLength;

++ iCurrCharIndex)
if (! IsCharWhitespace (pstrString [iCurrCharIndex]))

break;
// Slide string to the left to overwrite whitespace

iPadLength = iCurrCharIndex;
if (iPadLength)

{
for (iCurrCharIndex = iPadLength;

iCurrCharIndex < iStringLength; ++ iCurrCharIndex)
pstrString [iCurrCharIndex - iPadLength]

= pstrString [iCurrCharIndex];

for (iCurrCharIndex = iStringLength - iPadLength;
iCurrCharIndex < iStringLength;
++ iCurrCharIndex)

pstrString [iCurrCharIndex] = ‘ ‘;
}

// Terminate string at the start of right hand whitespace

for (iCurrCharIndex = iStringLength - 1;
iCurrCharIndex > 0;
— iCurrCharIndex)

{
if (! IsCharWhitespace

(pstrString [iCurrCharIndex]))
{

pstrString [iCurrCharIndex + 1] = ‘\0’;
break;

}
}

}
}

The function works by scanning through the string from left to right to determine
where the beginning of the string’s content is (in other words, the location of the

368 12. Simple Game Scripting

TeamLRN

first nonwhitespace character). Once found, it then runs through the remaining
characters, one by one, and slides them over, effectively overwriting the extraneous
whitespace. It then scans through the string again, this time from the right to left,
and writes a null terminating character (‘\0’) just after the first nonwhitespace
character it finds.

Next let’s look at IsStringWhitespace (), which scans through a string with
IsCharWhitespace () to determine whether or not it’s composed entirely of white-
space:

int IsStringWhitespace (char * pstrString)
{
if (! pstrString)

return 0;

if (strlen (pstrString) == 0)
return 1;

for (unsigned int iCurrCharIndex = 0;
iCurrCharIndex < strlen (pstrString);
++ iCurrCharIndex)

if (! IsCharWhitespace (pstrString [iCurrCharIndex]))
return 0;

return 1;
}

While we’re at it, we’ll make full-string versions of all our character analysis func-
tions. To start things off, let’s build a function that can determine whether or not a
string is an identifier around IsCharIdent (). The function’s called IsStringIdent ()
and looks like this:

int IsStringIdent (char * pstrString)
{
if (! pstrString)

return 0;

if (strlen (pstrString) == 0)
return 0;

if (pstrString [0] >= ‘0’ && pstrString [0] <= ‘9’)
return 0;

369Implementing the Compiler

TeamLRN

for (unsigned int iCurrCharIndex = 0;
iCurrCharIndex < strlen (pstrString);
++ iCurrCharIndex)

if (! IsCharIdent (pstrString [iCurrCharIndex]))
return 0;

return 1;
}

All it does is loop through each character in the string and make sure it’s a valid
identifier character. Before doing so, however, it makes sure that the first character
in the string isn’t a number, which would render the identifier invalid.

We’ll want some functions for determining whether or not a string is a numeric
value as well, but when we’re dealing with full strings, we have a few more situa-
tions to look out for. We’ll need to differentiate between integers and floating-point
values, so we’ll make two different routines. First let’s look at the integer version:

int IsStringInteger (char * pstrString)
{
if (! pstrString)

return 0;

if (strlen (pstrString) == 0)
return 0;

unsigned int iCurrCharIndex;

for (iCurrCharIndex = 0;
iCurrCharIndex < strlen (pstrString);
++ iCurrCharIndex)

if (! IsCharNumeric (pstrString [iCurrCharIndex])
&& ! (pstrString [iCurrCharIndex] == ‘-’))

return 0;

for (iCurrCharIndex = 1;
iCurrCharIndex < strlen (pstrString);
++ iCurrCharIndex)

if (pstrString [iCurrCharIndex] == ‘-’)
return 0;

370 12. Simple Game Scripting

TeamLRN

return 1;
}

The function starts by scanning through the string and making sure every character
is a valid character in an integer (which simply means being either a digit or a pos-
sible negative sign). It then checks every character in the string past the first to
make sure it’s not a negative sign since this can only occur at the first character.
Validating floating-point values isn’t much harder; it’s really just a matter of adding
a check for the radix point:

int IsStringFloat(char * pstrString)
{

if (! pstrString)
return 0;

if (strlen (pstrString) == 0)
return 0;

// First make sure we’ve got only numbers and radix points

unsigned int iCurrCharIndex;

for (iCurrCharIndex = 0;
iCurrCharIndex < strlen (pstrString);
++ iCurrCharIndex)

if (! IsCharNumeric (pstrString [iCurrCharIndex]) &&
! (pstrString [iCurrCharIndex] == ‘.’) &&

! (pstrString [iCurrCharIndex] == ‘-’))
return 0;

// Make sure only one radix point is present

int iRadixPointFound = 0;

for (iCurrCharIndex = 0;
iCurrCharIndex < strlen (pstrString);
++ iCurrCharIndex)

if (pstrString [iCurrCharIndex] == ‘.’)
if (iRadixPointFound)

return 0;
else

371Implementing the Compiler

TeamLRN

iRadixPointFound = 1;

for (iCurrCharIndex = 1;
iCurrCharIndex < strlen (pstrString);
++ iCurrCharIndex)

if (pstrString [iCurrCharIndex] == ‘-’)
return 0;

if (iRadixPointFound)
return 1;
else

return 0;
}

The logic is really the same here as it was in IsStringInteger (); the only major dif-
ference is that the initial scan through the string considers radix points valid. It
then performs another scan through the string to determine that no more than
one radix point is present.

That’s everything we’ll need in the way of string processing. As long as we’re here,
however, we might as well throw in a few more basic helper functions.

File I/O Functions
Just to round out our little library, we’ll throw in some really quick file I/O func-
tions that will make it a bit easier to write primitive data types to files:

int WriteCharToBinFile (char cChar, FILE * pFile)
{

fwrite (& cChar, sizeof (char), 1, pFile);
return sizeof (char);

}

int WriteIntToBinFile (int iInt, FILE * pFile)
{

fwrite (& iInt, sizeof (int), 1, pFile);
return sizeof (int);

}

int WriteFloatToBinFile (float fFloat, FILE * pFile)
{

fwrite (& fFloat, sizeof (float), 1, pFile);

372 12. Simple Game Scripting

TeamLRN

return sizeof (float);
}

These should all be pretty self-explanatory. Each simply writes a given primitive
data type to a file and returns the size of the written data in bytes. (The reasons for
this will become clear later.)

Program Structure of the Compiler
Now that we’ve got our library of helper functions out of the way, we can finally
start thinking about how we’re going to lay out the compiler as a program. The
first thing to consider is the program’s general flow, which fortunately will be rela-
tively simple.

I’ll be implementing the compiler as a basic Win32 console application, although it
could just as easily be written in DOS or Linux since command-line utilities are
pretty much all the same and use the same standard C library. The user will tell the
compiler which source file he wants to compile by passing its file name as a
command-line argument.

The flow of the program more or less will work out like this:

1. A “logo” will be printed to the screen, containing the title of the program
and credit information (just to make it look official).

2. The program will check to see if a command-line argument has been passed.
If so, this will be interpreted as the file name of the script that the user wants
to compile. If no command-line arguments are present, some simple usage
information will be printed explaining how to interact with the program, and
the program will exit.

3. As long as the command line contained at least one argument, its value will
be considered the source file name. The file name will first be checked to
determine whether or not the user included a file extension. Our compiler
will accept script files with an .ss extension (meaning source script) and pro-
duce compiled scripts with an .es extension (meaning executable script). If a
file extension is found, the source file is opened. If not, the proper extension
is appended. The source file will be opened for ASCII reading, while the exe-
cutable file will be opened (or, more accurately, created) for binary writing.
The name of the executable file is always the same as the source file name,
with the proper extension. If the file name is invalid, a file I/O error is
reported to the user and the program exits.

373Implementing the Compiler

TeamLRN

4. The instruction set list will be initialized for use by the parser. Basically, at
this point we’re going to build a list of each instruction our compiler will rec-
ognize, along with relevant information such as the number of operands
each instruction takes as well as what type these operands must be. You’ll
learn more about this later.

5. The symbol, string, and label tables will be initialized. We’ve already seen
how this works.

6. The compilation process will begin. Each line of the source file will be read
from the file, stripped of all extraneous whitespace as well as its comments,
and compiled. As we’ve learned, this step can also involve additions to the
symbol, string, and label tables. During this step, compile-time errors may
occur and will be reported to the user, causing the program to abort. As each
line of code is processed, it’s written out to the file, thus generating the
instruction stream.

7. With the fully compiled instruction stream now generated and written out to
the executable file, the symbol, string, and label tables will also be written
out.

8. Finally, some basic statistics will be printed to the screen, listing the number
of lines processed and the number of instructions, variables, strings, and
labels found. A success message will be printed as well, letting the user know
the file name of the executable script that is now ready to use.

9. The program will close the file handles of both the source file and the exe-
cutable and will finally exit.

If all goes well, we should have ourselves a finished script by the time this process
exits. At this point, we’ve seen the source behind our modest library of helper func-
tions and the full implementations of the symbol, string, and label tables. Now
we’re going to move through the entire implementation of the compiler from start
to finish, using the general process previously outlined as something of a guide to
keep us on track.

Printing the Logo and Usage
Information
This step obviously has nothing to do with compiler implementation per se, but it’s
a good place to start since there’s nothing to it. First let’s take a look at the top of
the compiler’s main () function:

374 12. Simple Game Scripting

TeamLRN

main (int argc, char * argv [])
{

PrintLogo ();

// If no command line arguments are present,
// show usage screen and exit

if (argc < 2)
{

PrintUsage ();
return 0;

}
...

As previously stated, the program prints out its logo and then checks to see if the
source file name was included. If not, it prints the usage information and exits. The
logo and usage functions look like this:

void PrintLogo ()
{

printf (“Mini Script Compiler v1.0\n”);
printf (“Copyright (C) 2002 Paper Street Soap Company\n”);
printf (“All rights reserved.\n”);
printf (“\n”);

}

void PrintUsage ()
{

printf (“Usage: Compiler [Filename]\n”);
printf (“\n”);
printf (“Notes\n”);
printf (“\t- Extension is optional on filenames.\n”);

}

With that out of the way, we can move on to the rest of main ():

...

// Initialize the instruction list
InitInstrList ();

// Open up the source and executable files and compile
if (! OpenFiles (argv [1]))

375Implementing the Compiler

TeamLRN

ExitOnError (“File I/O error”);
else

CompileSourceScript ();

// Close everything up and shut down
CloseFiles ();

return 0;
}

For now we’re going to skip InitInstrList (), so let’s move on to the call to
OpenFiles (). When passed the file name of the source script, this function will do a
number of things for us such as validating the presence of a file extension, deriving
the file name of the executable, opening both files in the proper modes, and
returning an error status. Let’s have a look:

int OpenFiles (char * pstrFilename)
{

// Validate filenames (append file extensions if necessary)
strupr (pstrFilename);
strcpy (g_pstrSourceFilename, pstrFilename);

if (! strstr (g_pstrSourceFilename, SCRIPT_SOURCE_EXT))
{

strcat (g_pstrSourceFilename, SCRIPT_SOURCE_EXT);
strcpy (g_pstrExecFilename, pstrFilename);
strcat (g_pstrExecFilename, SCRIPT_EXEC_EXT);

}
else
{

for (int iCurrCharIndex = strlen (pstrFilename) - 1;
iCurrCharIndex > 0;
— iCurrCharIndex)

{
if (pstrFilename [iCurrCharIndex] == ‘.’)

break;
}

strncpy (g_pstrExecFilename, pstrFilename,
iCurrCharIndex);

g_pstrExecFilename [iCurrCharIndex] = ‘\0’;

376 12. Simple Game Scripting

TeamLRN

strcat (g_pstrExecFilename, SCRIPT_EXEC_EXT);
}

// Open files
g_pSourceFile = fopen (g_pstrSourceFilename, “r”);
if (! g_pSourceFile)

return 0;

g_pExecFile = fopen (g_pstrExecFilename, “wb”);
if (! g_pExecFile)

return 0;

return 1;
}

When this function returns, we check its error status and proceed if everything
went okay. If not, however, we need to print out a fatal I/O error report and exit.
This brings up the need for our first error-handling function, the rather simple
ExitOnError ():

void ExitOnError (char * pstrErrorMssg)
{

printf (“\n”);
printf (“Fatal Error: %s.\n”, pstrErrorMssg);
printf (“\n”);

exit (0);
}

Simply pass it the error message, and it’ll print it to the screen and exit. If OpenFiles
() succeeds, however, we start our journey into the belly of the beast by calling the
mammoth, awe-inspiring CompileSourceScript (). This large function is responsible
for nearly the entire compilation process, so we’re going to step through it in
chunks rather than looking at it all at once. We’ll also make a number of stops
along the way to check out some other functions.

In fact, there’s so much going on in CompileSourceScript () that we’re going to take
a quick detour and learn about the first and most basic capability of the compiler: a
process called tokenization.

377Implementing the Compiler

TeamLRN

Tokenization
Tokenization is the process of breaking up a stream of text into its constituent parts,
known as tokens. For example, consider the phrase “Hello, world!” When written
out normally, it looks like this:

Hello, world!

However, when tokenized (a process that our brain does automatically when read-
ing), each chunk of the sentence is isolated and can be expressed like this:

Hello
,
world
!

This means that there are four tokens in the phrase: the two words (“Hello” and
“world”), a comma, and an exclamation point. Notice that the whitespace wasn’t
included. This is because whitespace isn’t considered a token of its own; rather, it’s
a simple way to separate tokens. Since its only purpose is to delimit pieces of infor-
mation, it carries no relevant information of its own and is thus ignored. This is
why free-form languages like C, C++, and even ours allow such flexible use of white-
space—because it’s not relied on for anything other than a separation of elements.

Anyway, you’ll notice that the four tokens we extracted each provided a small piece
of information. In the context of sentences and speech, “Hello” tells us that the fol-
lowing sentence is going to be a greeting, the comma tells us to pause slightly,
“world” tells us to whom the greeting is directed, and the exclamation point
implies a certain sense of friendly enthusiasm. This information is gathered not
only from the tokens themselves but also the order in which they were presented.
Note that the following wouldn’t make quite as much sense, even though the same
tokens were used:

world ,! Hello

Now, to finally answer a question that was raised earlier in the chapter, this is pre-
cisely how we can extract specific things from a line of code, such as the instruction
and individual operands. All of these things—instructions, integer values, strings,
variables, everything—are tokens and are separated by other tokens (and white-
space). So, for example, imagine the following line of code:

Mov “This is a string”, MyArray [63]

When broken down into its constituent tokens, it’d look like this:

378 12. Simple Game Scripting

TeamLRN

Mov
“
This is a string
“
,
MyArray
[
63
]

Let’s analyze each token like we did with the preceding sentence. The first token is
the instruction, which tells us that we are not processing an array declaration or a
line label. We know it’s an instruction for two reasons: The token ahead of it is not
a colon, which would indicate a line label, and the token itself is not Array, which
would indicate an array declaration. By the process of elimination, we can be sure
that an instruction is the only other thing this line could be.

Whatever the next token is, it must be either the first operand or part of the first
operand (assuming that this particular instruction requires an operand, which Mov
certainly does). This is confirmed by reading the next token, which, indeed, is a
quote. This tells us that we’re dealing with a string, so we know that the next token
is the string value itself, and the token after that is the closing quote. Once we’ve
finished the string, we know that the first operand is finished, so a comma must
come next. It indeed does, and once we’ve read that, we know the next operand is
on the way.

The second operand consists of four tokens: an identifier, an opening bracket, an
integer value, and a closing bracket. By the time we’ve read the first token, we
know that we’re dealing with a memory reference because it’s an identifier. We still
don’t know it’s an array, though. Until we read the next token, we’ll probably think
it’s just a variable. The next token in the stream, however, is an open bracket, so we
know for sure that an array index is in the works. Once we know this, we can read
the next two tokens and expect the first to be either an integer index (as it is) or a
variable index. We can expect the next token in either case to be the closing
bracket. After that, we’ll attempt to read another token and be told that we’ve
reached the end of the line. This is fine and simply means that we’re done and can
proceed to the next line in the script.

The process we just glossed over is essentially the secret to building a simple com-
piler like ours. In a nutshell, the idea is to read a token and attempt to determine
what sort of code you’re processing based on that token’s type. This, in turn, gives
you an idea of what to expect from future tokens as well as what information

379Implementing the Compiler

TeamLRN

exactly is being carried on those tokens. The more tokens you read, the less guess-
work you have to do, and the surer you can be of what you’re dealing with. Tokens
also provide an elegant and simple way to handle compile-time errors. If the closed
bracket after the 63 token wasn’t found, we’d easily know that the array index was
malformed and could provide a reasonably useful error for the user.

Something to note, however, is that tokenization isn’t quite as easy as you might
think. It’s a bit more complicated than simply breaking up the line based on the
whitespace; for example, recall the string token in the preceding example, which
looked like this:

This is a string

Notice that there are three separate spaces within this token, but the tokenizer was
smart enough to know not to cut the token off at the first one. This is because it
knew, based on the previous token (which was a quotation mark), that it was deal-
ing with a string, and it read every character until the closing quote was found.
These sorts of details can make tokenization a tricky process.

With that said, let’s solidify our understanding of tokenization by going over the
process from start to finish.

Implementing the Tokenizer
Tokenization is indeed a tricky process, as previously mentioned. While at first
glance it seems like a simple issue of splitting up a string at each space, it is indeed
far more complicated. Our tokenizer needs to understand every supported token
type and be prepared for all of the possible ways in which tokens can be separated
from one another. As you’ll see, this isn’t always a simple matter of whitespace.

Token Types
The first thing we should do, as always, is identify what we’re working with.
Specifically, let’s consider all of the possible types of tokens that our tokenizer
needs to be able to process.

TOKEN_TYPE_INT

These are simple integer values—in other words, any string of digits with an
optional negative sign in front.

TOKEN_TYPE_FLOAT

380 12. Simple Game Scripting

TeamLRN

These are floating-point values, which follow the same rules as integer tokens
except they can contain one radix point.

TOKEN_TYPE_STRING

String tokens are special cases because a string, as we know it, requires three sepa-
rate tokens to properly express. Since this single token cannot also include the
quotation mark tokens that surround it, a string token is defined as simply a string
of characters. All characters are valid in strings, including whitespace and special
delimiters such as brackets and colons.

TOKEN_TYPE_IDENT

Identifiers are defined as strings of alphanumeric characters and underscores,
although they cannot begin with a number.

TOKEN_TYPE_COLON

TOKEN_TYPE_OPEN_BRACKET

TOKEN_TYPE_CLOSE_BRACKET

TOKEN_TYPE_COMMA

TOKEN_TYPE_QUOTE

These are the single-character tokens, and they are usually used as delimiters for
other larger tokens. They’re pretty self-explanatory in terms of what they consist of,
but let’s quickly review their function. Colons always follow line label definitions,
opening and closing brackets are used for array declarations as well as indexing,
commas are used to separate instruction operands, and quotes always surround
string tokens.

As you can see, this means we have nine different types of tokens to prepare for.

Tokenizer Basics
So now let’s think about how tokenization will actually work. At each iteration of
the main loop of the compiler, the next line of code will be fetched from the
source script, and tokens will be requested from it. This means our tokenizer, given
a single line of code, needs to be able to break it down into its constituent parts,
taking all nine of our established token types into account.

To get started, let’s consider an extremely basic tokenizer job. Assume you’re given
the following string and are asked to break it up into tokens:

Token0 Token1 Token2

381Implementing the Compiler

TeamLRN

This is simply a matter of scanning through the line and breaking it up at each
space. The end result provides the following tokens:

Token0
Token1
Token2

A pseudocode example of such a simple tokenizer might look like this:

function GetNextToken (string SourceLine)
{
static int Index = 0;
string Token = “”;
char Char;

while (TRUE)
{
Char = SourceLine [Index];
++ Index;
if (Char != ‘ ‘)
strcat (Token, Char);
else
return Token;
}
}

This simple function starts by defining a few variables. The static integer Index is a
pointer to the current character in the source string. It’s static so that the function
can be called multiple times and still keep track of its position in SourceLine. A
blank token string is then defined as well as a character that will be used to hold
the current character.

The function then loops through the string, starting from Index and continuing
until a space is found. Each time it loops, it checks the current character to see if
it’s a space, and if it’s not, the character is appended to the token. If it is, the token
is returned and the function exits. It should be clear that this function will indeed
identify and return the three tokens properly.

Now that we understand a basic example of tokenization, let’s kick things up a
notch and see how our current tokenizer implementing holds up. Imagine that we
now want to tokenize strings that contain variable amounts of whitespace, such as
the following:

Token0 Token1 Token2 Token3

382 12. Simple Game Scripting

TeamLRN

There are only four tokens, but the string is rather long due to a large number of
spaces. Free-form languages allow exactly this, however, so we’ll certainly need to
know how to handle it. If you think the current tokenizer is up for the job, you’re
wrong. While the first token (Token0) will be returned properly, every space charac-
ter following it will be returned as well, considered by the function to be a valid
token. As we’ve learned, this is unacceptable; whitespace is never considered a
token but rather a simple means to separate them.

So why does our tokenizer screw up? More importantly, why does it only screw up
after the first token is read? To understand why, let’s look again at the main loop of
the function:

while (TRUE)
{
Char = SourceLine [Index];
++ Index;
if (Char != ‘ ‘)
strcat (Token, Char);
else
return Token;
}

Notice that as soon as the first character is read, we immediately check to see
whether or not it was a space. After the first token is read, there exists a number of
spaces between it and the next token, which means that each of these spaces will
immediately cause the tokenizer to return as they’re read. Thus, the tokenizer will
step through each space, compare it to ‘ ‘, and return it, thinking its job is done.

Naturally, this is a problem. We need to refine our tokenizer to understand one
thing—that tokens may often be preceded by an indefinite amount of whitespace.
In other words, the tokenizer needs to read all the way through the following string
(quotes added to illustrate the presence of whitespace):

“ Token1”

To process the second token correctly, we can add another loop to our function,
like this:

function GetNextToken (string SourceLine)
{
static int Index = 0;
string Token = “”;
char Char;

383Implementing the Compiler

TeamLRN

while (TRUE)
{
Char = SourceLine [Index];
++ Index;
if (! IsCharWhitespace (Char));
break;
}

while (TRUE)
{
Char = SourceLine [Index];
++ Index;
if (Char != ‘ ‘)
strcat (Token, Char);
else
return Token;
}
}

This simple addition makes all the difference in the world. Now, whenever
GetNextToken () is called, it first scans through all preceding whitespace until it runs
into its first nonwhitespace character. When it does, it knows that the actual token
itself is now ready to be processed and terminates the loop. The second loop can
then scan through all of the nonwhitespace characters, assembling the token, and
once again return when the next whitespace character is encountered.

The output of our second implementation of the tokenizer on the spaced-out
string will look like this:

Token0
Token1
Token2
Token3

Now we’re making some progress! We now understand how to tokenize strings of
variable amounts of whitespace. The problem is, what do we do when two tokens
aren’t separated by any whitespace at all? For example, consider the following line
of script code:

Mov X, Y

Our current tokenizer would produce the following output:

384 12. Simple Game Scripting

TeamLRN

Mov
X,
Y

X and the comma have been lumped together into a single token. While we under-
stand that commas are considered to be their own tokens and should not be com-
bined with any of their neighbors, this erroneous result shouldn’t come as a
surprise. Our current tokenizer is only designed to recognize whitespace as a token
delimiter. It doesn’t have any clue that the comma can also mean the current token
has ended, so how do we fix this?

Well, we could simply do this to our main loop:

while (TRUE)
{
Char = SourceLine [Index];
++ Index;
if (Char != ‘ ‘ && Char != ‘,’)
strcat (Token, Char);
else
return Token;
}

Although the output would be different, it still wouldn’t be correct:

Mov
X
Y

The token is no longer a part of the X, but that’s because it’s gone altogether.
Although the token may not provide us with a huge amount of information, we still
need to ensure that it was present in the code, and therefore our current imple-
mentation of GetNextToken () is unacceptable. This isn’t the only problem, however.
Imagine we then passed the tokenizer this line:

Mov X, Y[Q]

Or this even-more-condensed line:

Mov X,Y[Q]

We’ve now got six tokens lined up next to each other without a single space.
Although we could start adding all of these delimiting characters to our main loop,
we’ll simply use one of our handy string-processing helper functions from earlier:

while (TRUE)

385Implementing the Compiler

TeamLRN

{
Char = SourceLine [Index];
++ Index;
if (! IsCharDelimiter (Char))
strcat (Token, Char);
else
return Token;
}

This slick little function now lets us test for all possible delimiters as well as more
intelligent whitespace (since it includes tabs and new lines as whitespace charac-
ters). Our tokenizer is now capable of intelligently isolating tokens regardless of
how they’re separated, but we still have one problem, which is illustrated in the
following line of code:

Mov X, Y

Even with our latest GetNextToken () implementation, the output is still:

Mov
X
Y

Where does that comma keep running off to? The answer is simple: We increment
the index after every character is read, whether or not that character becomes part
of the token. The problem is that after X is read, the tokenizer hits the comma and
exits. Before doing so, however, it increments the index, and the next time the
function is called, it’s already on the Y. The end result is that the comma is never
even considered, and we get a missing token. This isn’t just a problem with com-
mas. All one-character tokens, including one-character identifiers, numeric values,
and so on, are susceptible to this issue. Simply put, the solution is to only incre-
ment the index when the character is added to the token:

while (TRUE)
{
Char = SourceLine [Index];
if (! IsCharDelimiter (Char))
{
strcat (Token, Char);
++ Index;
}
else
return Token;

386 12. Simple Game Scripting

TeamLRN

}

Of course, the results will be correct now:

Mov
X
,
Y

Our tokenizer is now almost working properly, but there are still a few features to
add and a handful of kinks to work out. For example, what if we wanted to tokenize
the following line:

Mov “This is a string!”, MyString

Our current tokenizer would produce the following results:

Mov
“
This
is
a
string
“
,
MyString

Whoa! Where’d all those extra tokens come from? This is a string is just one
token—a string token—right? Not according to the rules we’ve programmed into
our current tokenizer. Unfortunately, there’s simply no extra rule we can add to it
to tell it whether or not the current token is a string since a string is allowed to con-
tain the very characters we use to delimit tokens in the first place.

The only way to solve this problem is to add a currently missing feature: the capa-
bility to not only extract a token but to determine its type. After a token is read,
we’d like to send not only the string itself back to the caller, but also a variable that
is set to whatever type of token that string contains.

The problem of determining a token’s type is not particularly difficult to address,
and it’ll end up helping us figure out how to manage string tokens. In fact, with
the exception of strings, tokens are quite easy to analyze and identify. Once the
token is complete, a few elementary checks will answer the question nicely.

387Implementing the Compiler

TeamLRN

The first thing to ask is whether or not the token is a single character. If it is, a sim-
ple switch statement will tell us which delimiting character it is (if any), and we can
consider our job complete:

if (strlen (Token) == 1)
{
switch (Token)
{

case ‘:’:
TokenType = TOKEN_TYPE_COLON;
return;

case ‘[‘:
TokenType = TOKEN_TYPE_OPEN_BRACKET;
return;

case ‘]’:
TokenType = TOKEN_TYPE_CLOSE_BRACKET;
return;

case ‘,’:
TokenType = TOKEN_TYPE_COMMA;
return;

case ‘“‘:
TokenType = TOKEN_TYPE_QUOTE;
return;

}
}

Easy, huh? This immediately knocks out five token types. The rest of the tokens will
fall through the switch and be subject to further checks. With the single-character
tokens out of the way, the next step is to identify the longer, more complex tokens.
Fortunately, our string-processing helper functions once again come to the rescue.
The following block of code should be pretty much self-explanatory:

if (IsStringInteger (Token))
{

TokenType = TOKEN_TYPE_INTEGER;
return;

}

388 12. Simple Game Scripting

TeamLRN

if (IsStringFloat (Token))
{

TokenType = TOKEN_TYPE_FLOAT;
return;

}

if (IsStringIdent (Token))
{
TokenType = TOKEN_TYPE_IDENT;
return;
}

As you can see, it’s simply a matter of passing the token string to our various
IsString* () functions. If it passes any of these tests, it’s clearly a string of that type
and therefore a token of that type as well. Now, being that this is pseudocode, the
exact nature of the TokenType is somewhat ambiguous. In practice, this would have
to be global for the caller to access it, of course. And since we’re now returning two
variables to the caller (both the token and the token type), we might as well wrap
them up in a struct of some sort and create a global instance of it. We’ll come back
to this in a second. First let’s see if we can’t budge that string token issue a bit.

There’s still no good way to check for a string token based on the contents of the
token alone. There’s no way to tell from within the tokenizer whether or not a
delimiting character is actually separating tokens, or simply another character in a
string that we don’t realize we’re tokenizing. To solve the problem, we need to be
able to check the type of the previous token. Why? Because if the previous token was
a quotation mark, we can be sure that we’re dealing with a string. We then enter a
different loop than usual, one that adds every character to the current token until
another quotation mark, and only another quotation mark, is found. We then set
the token type for TOKEN_TYPE_STRING and presto.

The only problem is, how do we know what the last token was? That information
isn’t currently saved anywhere, so it’s lost by the time the next call to GetNextToken
() is made. This brings us back to the idea of creating a global struct that maintains
all sorts of data on the current status of the tokenizer. It might look something like
this:

struct Tokenizer // The current state of the tokenizer
{
string Token; // The token itself
int Type; // The type of the token
int Index; // The token’s index into the source line

389Implementing the Compiler

TeamLRN

}

Tokenizer g_Tokenizer; // Declare a global instance

In addition to keeping track of the current token and token type, it could also keep
track of the previous token and its respective type. Then our tokenizer can simply
refer to this previous token information when processing the current one to deter-
mine whether or not it should attempt to process a string token. We might then
create two data structures—one to represent a token and the other to represent the
tokenizer itself—like this:

struct Token // Describes a single token
{
string Token; // The token itself
int Type; // The type of the token
int Index; // The token’s index into the source line
}

struct Tokenizer // Current tokenizer
{
Token CurrentToken, // Current and previous tokens
PreviousToken;
}

The only problem is the issue of RewindTokenStream (), which is a function that essen-
tially moves the tokenizer back to the previous token. This function hasn’t been
introduced yet, but we’ll learn about it in the next section. Until then, just take it
on faith that the capability to move back to the previous token in the stream is nec-
essary at times. This function works by moving the information on the previous
token into the current one. In other words:

CurrentToken.Token = PreviousToken.Token;
CurrentToken.Type = PreviousToken.Type;
CurrentToken.Index = PreviousToken.Index;

The problem is that even after rewinding the token stream, we may want to check
the status of the previous token. Unfortunately, the previous token of the previous
token won’t exist. To better explain this, consider tokenizing the following line of
sample code:

Ident 256 3.14159

There are three tokens here: an identifier, an integer, and a float. After the first call
to GetNextToken () is made, our tokenizer will look like this:

390 12. Simple Game Scripting

TeamLRN

g_Tokenizer.CurrentToken.Token = “Ident”;
g_Tokenizer.CurrentToken.Type = TOKEN_TYPE_IDENT;
g_Tokenizer.PreviousToken.Token = NULL;
g_Tokenizer.PreviousToken.Type = 0;

After the second pass of the tokenizer, the first token will become the previous
token, and the next token will become the current one:

g_Tokenizer.CurrentToken.Token = “256;
g_Tokenizer.CurrentToken.Type = TOKEN_TYPE_INTEGER;
g_Tokenizer.PreviousToken.Token = “Ident”;
g_Tokenizer.PreviousToken.Type = TOKEN_TYPE_IDENT;

After yet another pass, the first token will be lost entirely, and the second token will
become the previous token:

g_Tokenizer.CurrentToken.Token = “3.14159;
g_Tokenizer.CurrentToken.Type = TOKEN_TYPE_FLOAT;
g_Tokenizer.PreviousToken.Token = “256”;
g_Tokenizer.PreviousToken.Type = TOKEN_TYPE_INTEER;

So far, this isn’t a problem. But what happens if we suddenly need to rewind the
token stream? The previous token would be moved into the current token’s slot,
but what would happen to the previous token slot? With no data to move into it,
it’d simply be nullified:

g_Tokenizer.CurrentToken.Token = “256;
g_Tokenizer.CurrentToken.Type = TOKEN_TYPE_INTEGER;
g_Tokenizer.PreviousToken.Token = NULL;
g_Tokenizer.PreviousToken.Type = 0;

This will pose a serious problem if we need to check the previous token for any rea-
son. The solution here is to maintain an array of three tokens that will allow us to
rewind the token stream a single time and be assured that both the current and
previous tokens will be valid. To reiterate, this will only allow us to rewind the token
stream once (but as we’ll see in the next few sections, this is all we need).

So here’s the final psuedocode version of the tokenizer struct:

struct Tokenizer
{
string CurrentLine;
int CurrentLineNumber;
int CurrentInstruction;
Token Tokens [3];
}

391Implementing the Compiler

TeamLRN

You’ll notice that in addition to adding an array of three tokens, I’ve also added
three new members. They hold the current line itself, the current line number, and
the type of the current instruction. These will all come in handy later and help
group things better.

So, with the three-token array in place, we’ve got enough information to handle
string tokens. The idea is that before the next token is processed, we check the “cur-
rent” token (which is actually the last token since a new call to GetNextToken () has
already begun, it just hasn’t moved the tokens back yet) to see if it’s a quotation
mark. If it is and the “previous” token is not a string, it can only mean that the
token we’re about to process is the string.

The next step is to “advance” the token stream, which pushes every token in our
three-token array back by one. This frees up the CurrentToken slot, which will of
course be filled after the tokenizer finishes its work. With that said, let’s have a look
at the final strategy for our tokenizer:

function GetNextToken ()
{

// Determine whether or not we’re dealing with a string

int TokenType = -1;

if (g_Tokenizer.Tokens [2].Token == ‘“‘ &&
g_Tokenizer.Tokens [1].Type == TOKEN_TYPE_STRING)

TokenType == TOKEN_TYPE_STRING;

// Advance the token stream

g_Tokenizer.Tokens [0] = g_Tokenizer.Tokens [1];
g_Tokenizer.Tokens [1] = g_Tokenizer.Tokens [2];

// Scan through potential initial whitespace

int Index;
char Char;
string Token;

while (TRUE)
{

Index = g_Tokenizer.Tokens [2].Index;
Char = g_Tokenizer.CurrentLine [Index];

392 12. Simple Game Scripting

TeamLRN

if (! IsCharWhitespace (Char)));
break;
++ g_Tokenizer.Tokens [2].Index;
}

// Process a string token

if (TokenType == TOKEN_TYPE_STRING)
{
while (TRUE)
{

Index = g_Tokenizer.Tokens [2].Index;
Char = g_Tokenizer.CurrentLine [Index];
if (Char != ‘“‘)
strcat (Token, Char);
else
return Token;
}
}

// Process a nonstring token

else
{
while (TRUE)
{

Index = g_Tokenizer.Tokens [2].Index;
Char = g_Tokenizer.CurrentLine [Index];
if (! IsCharDelimiter (Char))
strcat (Token, Char);
else
return Token;

}
}

g_Tokenizer.Tokens [2].Token = Token;

// Identify the token type

// If it’s a string we can exit immediately

393Implementing the Compiler

TeamLRN

if (TokenType == TOKEN_TYPE_STRING)
{

g_Tokenizer.Tokens [2].Type = TOKEN_TYPE_STRING;
return;

}

// Check single-character tokens

if (strlen (Token) == 1)
{
switch (Token)
{

case ‘:’:
g_Tokenizer.Tokens [2].Type

= TOKEN_TYPE_COLON;
return;

case ‘[‘:
g_Tokenizer.Tokens [2].Type
= TOKEN_TYPE_OPEN_BRACKET;

return;

case ‘]’:
g_Tokenizer.Tokens [2].Type
= TOKEN_TYPE_CLOSE_BRACKET;

return;

case ‘,’:
g_Tokenizer.Tokens [2].Type

= TOKEN_TYPE_COMMA;
return;

case ‘“‘:
g_Tokenizer.Tokens [2].Type

= TOKEN_TYPE_QUOTE;
return;

}
}

// Finally, check longer tokens

394 12. Simple Game Scripting

TeamLRN

if (IsStringInteger (Token))
{
g_Tokenizer.Tokens [2].Type

= TOKEN_TYPE_INTEGER;
return;

}

if (IsStringFloat (Token))
{
g_Tokenizer.Tokens [2].Type
= TOKEN_TYPE_FLOAT;

return;
}

if (IsStringIdent (Token))
{
g_Tokenizer.Tokens [2].Type
= TOKEN_TYPE_IDENT;
return;
}
}

To sum it all up, our finished tokenizer first starts by checking previous token infor-
mation to determine whether or not a string is currently being processed. It then
advances the token stream by pushing each token in the three-token array back by
one, making room for the next token. The initial whitespace is then scanned
through to allow for free-form code, at which point we scan in the token itself. If
the token is a string, we read unconditionally until a quotation mark is encoun-
tered. Otherwise, we read until the next delimiting character of any sort. Finally,
the complete token is identified. If we already know it’s a string, we can exit imme-
diately; otherwise, we have to perform a series of simple checks and set the token
type based on the results.

That’s pretty much everything we’ll need to know about tokenization, so let’s move
on to the next level of our compiler.

395Implementing the Compiler

TeamLRN

Parsing
As previously mentioned, we can think of the source code as one big string or one
big stream of characters. With the help of the tokenizer, though, we’ll now be able
to think of it in slightly higher-level terms. In other words, we can now think of the
source file as a token stream (see Figure 12.10). At any time, we can request the next
token by making a call to GetNextToken (), and the token itself as well as its type will
be returned.

This allows us to parse the incoming source code easily. A token stream allows us to
quickly and easily scan the source file and attempt to understand it, and by “under-
stand,” I mean make sense of the tokens as they’re read. The process of reading in
tokens and attempting to interpret their meaning is called parsing and is the real
secret to building a simple compiler like the one we need for our language.

In addition to GetNextToken (), I’ve also provided a helper function for each type of
token:

int ReadInteger ();
int ReadNumeric ();
int ReadIdent ();
int ReadColon ();
int ReadOpenBracket ();
int ReadCloseBracket ();
int ReadComma ();
int ReadQuote ();

These simple functions attempt to read a specific type of token and return 1 if they
succeed or 0 if either the token stream runs out (in other words, if the end of the

396 12. Simple Game Scripting

Figure 12.10

A character stream is abstracted to a token
stream with the help of a tokenizer

TeamLRN

line has been reached) or the read token was not of the desired type. Obviously,
call ReadInteger () when you want to read an integer token from the stream, call
ReadColon () when you want to read a colon from the stream, and so on. As an
example of working with these functions, let’s look at some pseudocode for reading
an array in terms of its tokens:

if (! ReadIdentifier ()) Error ();
if (! ReadOpenBracket ()) Error ();
if (! ReadNumeric () && ! ReadIdentifier ()) Error ();
if (! ReadCloseBracket ()) Error ();

Simply put, we first attempt to read the array’s identifier, then the open bracket,
then either a numeric index or a variable index, and finally the closed bracket. At
each point, if the proper token is not found, a compile-time error is reported. The
preceding code can be used to validate array references and will intelligently point
out any errors it finds, at the proper location. If we apply this to every possible
piece of data we can expect to find in a script, we’ll have built a piece of software
fully capable of understanding our scripting language. Cool, huh?

As mentioned, our compiler will occasionally have to look ahead in the token
stream to get a better idea of what it’s dealing with. This is simple; it’s just a matter
of making another call to either GetNextToken () or one of the Read* () helper func-
tions. The problem, though, is that you’ll often want to move the token stream
back to where it was after looking ahead. For example, if you’ve just read an identi-
fier and want to know if it’s an array or a variable, you’d look ahead one token by
calling ReadOpenBracket (). If the function returns 1, the identifier is for an array,
and you can proceed to read out the rest of its tokens. If you don’t find an open
bracket, however, it means that the identifier was for a variable, and you now need
to somehow restore things to the way they were to continue your work. To do this,
simply call RewindTokenStream (), which will do exactly that—move the stream back
by one token again.

Parsing is the real work behind compilation and is ultimately how we’re going to
interpret and validate the code as we compile scripts. In fact, to understand the
actual code behind the compiler, we must first familiarize ourselves with the pars-
ing process of each major element of code that our scripts can present. These “ele-
ments” are the three different types of code lines we accept:

• Array declarations

• Labels

• Instructions

397Implementing the Compiler

TeamLRN

Array declaration and label lines follow the exact same format in all cases, but
instruction lines can assume many forms. Specifically, there can be any number of
operands, and the actual form of each operand differs wildly, as we’ve seen when
discussing them. Since our language supports seven types of operands, there are
ultimately 10 elements of code we need to plan for when thinking about the design
of our parser.

To get things started, let’s first look at the parsing of an array declaration. Array
declarations always take on the following form:

Array <Identifier> [<Integer>]

The <> signs mean that the term they surround will be replaced by an actual value
or string in practice. This means that in all array declarations, the first token is the
string Array, the second is the identifier that names the array, the third is the open-
ing bracket, the fourth is an integer value that describes the size of the array, and
the fifth is the closing bracket. Therefore, pseudocode for parsing an array would
look like this:

GetNextToken ();
if (Token == “Array”)
{
GetNextToken ();
Ident = Token;
if (! IsStringIdent (Token))
Error (“Invalid identifier.”);

if (! ReadOpenBracket ())
Error (“[expected.”);

if (! ReadInteger ())
Error (“Invalid array size.”);

Size = atoi (Token);

if (! ReadCloseBracket ())
Error (“] expected.”);

AddSymbol (Ident, Size);
}

Let’s assume, by the way, that Token is a global string variable that is updated with
each call to GetNextToken () to contain the current token. As you can see, parsing
can be rather simple, at least in this case. The tokenizer makes it incredibly easy to

398 12. Simple Game Scripting

TeamLRN

grab the information we need—like the array’s identifier (Ident) and it’s size
(Size)—to pass to the symbol table.

Line labels are even easier and look like this:

<Identifier>:

It’s simply an identifier followed by a colon. The actual parser looks like this:

GetNextToken ();
Label = Token;
if (ReadColon ())
AddLabel (Label);
else
RewindTokenStream ();

Label processing is possible entirely because of the capability to rewind the token
stream after looking ahead. After reading a token, it’s saved temporarily in Label in
the event that we are in fact dealing with a line label. We can test this by attempting
to read a colon with a call to ReadColon (). If the next token is in fact a colon, we’re
obviously dealing with a token and can add the label to the label table. If a colon is
not read, we’re clearly dealing with a token of some other sort and must rewind the
token stream to perform other token checks.

This leaves one last type of code line to parse, but it’s the most complex by far.
Instructions can take on a number of forms, most of which are rather detailed, so
let’s start with the basics and move slowly. First let’s attempt to define the general
form of an instruction:

<Instruction> <Operand0>, <Operand1>, <Operand2>

Of course, there can be any number of operands, so an instruction could just as
easily look like one of the following:

<Instruction> <Operand>
<Instruction>
<Instruction> <Operand0>, <Operand1>

So far, this seems reasonably simple to parse. Just read in the instruction and then
attempt to read in any operands. If the token stream ends just after the instruction,
it means the instruction didn’t take any operands. If it ends after an operand (but
not after a comma), it means that the last operand read was the final one accepted
by the instruction. The problem, though, is that there are seven different types of
operands. Before we can hope to parse instructions, we’ll have to understand how
to parse them individually.

399Implementing the Compiler

TeamLRN

The first and simplest operands are integer and floating-point immediate values,
which are both single-token operands and look like this:

<Integer>
<Float>

IsStringInteger () and IsStringFloat () are all we’ll need to validate them. A single
call to ReadNumeric (), which attempts to read either an integer or float token, will
suffice. Next up are string operands, which consist of three tokens:

“<String>”

Remember that both the opening and closing quotes are tokens of their own. Any
character that lies between the two quotes is considered part of the string token.
Our tokenizer will have to be smart enough to know that only the closing quote
can terminate this token, not whitespace or a delimiting character like an opening
bracket. Here’s how to parse string operands:

if (! ReadQuote ())
Error (“\” expected.”);

GetNextToken ();
String = Token;
if (! ReadQuote ())

Error (“\” expected.”);
AddString (String);

Remember that all string immediate values are added to the string table. Next in
line are variable operands, which are almost as easy as integers and floats since they
only consist of a single token:

<Identifer>

Thus, they can be read with a single call to GetNextToken (), so let’s have a look:

GetNextToken ();
if (! IsStringIdent (Token))

Error (“Invalid identifier.”);
Ident = Token;
AddSymbol (Ident, 1);

Notice that after validating the identifier, it’s added to the symbol table with a size
of 1. This is because, if you recall, all variables are typeless and are thus the same
size. Only arrays can take on sizes larger than a single variable.

Speaking of arrays, they form the next two operand types we need to handle and
look like this:

400 12. Simple Game Scripting

TeamLRN

<Identifier> [<Integer> | <Identifier>]

Notice the use of the | symbol, which means “or.” In the case of this description of
array operands, it means that the index can be either an integer or a variable, as
we’ve learned throughout our discussion of our language’s semantics. This descrip-
tion can be implemented like this:

GetNextToken ();
if (! IsStringIdent (Token))

Error (“Invalid identifier.”);
Ident = Token;
if (! ReadOpenBracket ())

Error (“[expected.”);
GetNextToken ();
if (IsStringInteger ())

ArrayIndex = atoi (Token);
else if (IsStringIdent ())

HeapIndex = AddSymbol (Token, 1);
else

Error (“Invalid array index.”);
if (! ReadCloseBracket ())

Error (“] expected.”);

It’s definitely a slightly more complicated operand to parse, but it’s still nothing we
can’t handle. In fact, the worst of the operands is most definitely over because pars-
ing label operands is almost criminally easy:

<Identifier>

In fact, the description of this particular operand is really the same as variable
operands, so the parsing can’t be much more complex:

GetNextToken ();
if (! IsStringIdent ())

Error (“Invalid label.”);
AddLabel (Token, FOUND_AS_OP);

Remember that we have to tell the label table that the label was found as an
operand as opposed to a declaration. This will be very important when it comes
time to write the label table to the executable and we have to make sure that all
labels are properly declared.

Now that we understand how to parse each operand, there’s the matter of applying
it to our instruction parser. I’d also like to point out once again that this is

401Implementing the Compiler

TeamLRN

pseudocode we’re dealing with here, so a lot of the function names I’ve been using
are not the ones we’ll see in the actual code. They’re just simple approximations.
Let’s have a look the general breakdown of instruction parsing:

GetNextToken ();
if (! IsInstruction (Token))

Error (“Invalid instruction.”);
else

for (each operand)
{
if (the current operand is not the first)
if (! ReadComma ())

Error (“, expected.”);

GetNextToken ();
switch (Token.Type)
{

case TOKEN_TYPE_INTEGER:
// Read integer operand

case TOKEN_TYPE_FLOAT:
// Read float operand

case TOKEN_TYPE_STRING:
// Read string operand

case TOKEN_TYPE_IDENT:
// Read label, variable or array
// operand

}
}

Since we’ve already seen how each operand is parsed, I’ve left them out of the pre-
ceding source code to make things easier to follow. Essentially, it works like this:
First a token is read, and we perform some test to determine whether or not it’s in
fact a valid instruction. (We’ll create a list of instructions later on that we can
search to determine this.) Once we know we’ve got a valid instruction, the next
step is to read its operands. At each iteration of the operand-reading loop, we first
check to see whether or not we’re parsing the first operand. If we aren’t, we know
that a comma must be the next token since commas are used as operand delimiters
but only appear after the first. Once we’ve validated that the comma is present (if

402 12. Simple Game Scripting

TeamLRN

necessary), we get the next token and consider this the first piece of the operand
itself. If this token turns out to be numeric, we know we’ve got an integer or float-
ing-point immediate value and can immediately process it. If we read a quote, we
then read the next two tokens. The first token of the two is the string itself,
whereas the second should be the closing quote. (We saw this just a moment ago in
our string operand parser.) Finally, we check for an identifier token, which implies
that we’ve got either a memory reference (variable or array index) or a label to
parse.

A Generic Instruction Parsing Loop
So those are the basics of parsing an instruction. You may have noticed a few loose
ends, however. Namely, how do we know how many operands a given instruction
requires and, worse still, what each operand type is? We need to know this to prop-
erly flag compile-time errors; otherwise, bizarre code like this would slip right
through:

Mov
Add 16, 8
Exit MyLabel

Naturally, the preceding code doesn’t make any sense, but without some way to vali-
date both the number types of the operands following an instruction, we’d have no
way to stop it. Also, we clearly need to determine whether the instruction itself is
valid, and we also somehow need to determine its opcode. We don’t seem to have
any of this information readily available as our compiler is laid out thus far.

We do have everything we need to fully parse an instruction and its operands, so
you may be wondering why we don’t just hard-code each instruction into the main
parsing loop. The end result would basically look like this:

Parsing Loop
{

switch (Current Instruction)
{
case “Mov”:
Read Source Operand;
Read Destination Operand;

case “Jmp”:
Read Destination Label Operand;

403Implementing the Compiler

TeamLRN

case “GetSubStr”:
Read Source String Operand
Read Index0 Operand
Read Index1 Operand
Read Destination String Operand

case “Exit”:
}
}

This would certainly work, but the code will end up being rather redundant, and
it’ll be considerably awkward to make changes to the language after the compiler is
finished. Adding or removing instructions, or even changing the format of existing
ones, will involve direct changes that must be made to the main loop. I personally
can’t stand coding this way and have opted for a more generic solution.

Rather than hard-coding each instruction into the compiler itself, we’ll simply cre-
ate a generic loop that can parse and validate any instruction by referring to a list
or table that describes the language. This way, the language can be easily modified
later by simply adding, removing, or changing existing entries in this data struc-
ture, and the parsing code itself can remain generic and unchanged.

To do this, we must first determine exactly what information we’ll need to know to
describe a given instruction and then create a data structure based on that descrip-
tion. Finally, an array of these structures will be created, and our instruction list will
be ready to work with.

When we compile an instruction, the most important pieces of information are as
follows:

• The number of required operands

• Whether or not optional, extra operands are accepted

• The data type of each required operand

• The opcode to write to the executable

So basically, if we can create an array of instructions, each defined with this struc-
ture, our generic parsing loop will simply use this list to validate the contents of the
incoming source file. Let’s take a look at the structure we’ll use to describe an
instruction:

#define MAX_INSTR_COUNT 32
#define MAX_INSTR_MNEMONIC_LENGTH 16
#define MAX_OP_COUNT 8

404 12. Simple Game Scripting

TeamLRN

typedef struct _Instr
{
char pstrInstrMnemonic [MAX_INSTR_MNEMONIC_LENGTH];
int iOpCount;
int iExtraOpsAllowed;
int iOpType [MAX_OP_COUNT];
}

Instr;

Instr g_InstrList [MAX_INSTR_COUNT];

pstrInstrMnemonic contains the actual instruction string itself; this is used to match
up the current instruction token with the proper index of the list. iOpCount simply
tells us how many operands the instruction requires. iExtraOpsAllowed tells us
whether or not extra operands are allowed, and iOpType is an array that contains a
bit field for each operand. The bitfield is a series of flags that relate to specific data
types, so each element of the array contains all of the data types that the operand it
relates to can accept.

To really make this list useful, however, we need a simple interface for adding
entries to it. This will boil down to a function called SetInstr (), which sets an
instruction’s mnemonic, operand count, and whether or not it accepts extra
operands. Here’s an example for the Mov instruction:

SetInstr (INSTR_MOV, “Mov”, 2, 0);

INSTR_MOV is a constant containing Mov’s opcode (which is 0). Mov is obviously the
instruction mneomonic, 2 is the number of its required parameters (source and
destination in this case), and 0 states that no extra operands are necessary.

SetInstr () looks like this (not surprisingly):

void SetInstr (int iInstr, char * pstrInstrMnemonic, int iOpCount,
int iExtraOpsAllowed)

{
strcpy (g_InstrList [iInstr].pstrInstrMnemonic,

pstrInstrMnemonic);
g_InstrList [iInstr].iOpCount = iOpCount;
g_InstrList [iInstr].iExtraOpsAllowed = iExtraOpsAllowed;

}

405Implementing the Compiler

TeamLRN

Once the instruction is set, we need to also tell the instruction list what sort of data
types are acceptable for each operand. Since these are stored as bitfields, it’s simply
a matter of performing a bitwise or operation on a number of the following con-
stants (which we’ve seen before):

#define OP_TYPE_INT 1
#define OP_TYPE_FLOAT 2
#define OP_TYPE_STRING 4
#define OP_TYPE_MEMORY 8
#define OP_TYPE_LABEL 16

So, in the case of Mov, which accepts a source operand of any type other than label
and a destination operand that must be a memory reference, we’d set it’s operand
data types with the following code:

g_InstrList [INSTR_MOV].iOpType [0] = OP_TYPE_INT |
OP_TYPE_FLOAT | OP_TYPE_STRING | OP_TYPE_MEMORY;

g_InstrList [INSTR_MOV].iOpType [1] = OP_TYPE_MEMORY;

With that in mind, let’s take a look at the first few instructions defined in
InitInstrList (), a function called by main () to initialize this instruction list before
compilation begins.

void InitInstrList ()
{

// —— Main ———————————-

// Mov Source, Destination

SetInstr (INSTR_MOV, “Mov”, 2, 0);
g_InstrList [INSTR_MOV].iOpType [0] = OP_TYPE_INT |
OP_TYPE_FLOAT | OP_TYPE_STRING | OP_TYPE_MEMORY;

g_InstrList [INSTR_MOV].iOpType [1] = OP_TYPE_MEMORY;

// —— Arithmetic —————————

// Add Source, Destination

SetInstr (INSTR_ADD, “Add”, 2, 0);
g_InstrList [INSTR_ADD].iOpType [0] = OP_TYPE_INT |

OP_TYPE_FLOAT | OP_TYPE_MEMORY;
g_InstrList [INSTR_ADD].iOpType [1] = OP_TYPE_MEMORY;

406 12. Simple Game Scripting

TeamLRN

// Sub Source, Destination

SetInstr (INSTR_SUB, “Sub”, 2, 0);
g_InstrList [INSTR_SUB].iOpType [0] = OP_TYPE_INT |

OP_TYPE_FLOAT | OP_TYPE_MEMORY;
g_InstrList [INSTR_SUB].iOpType [1] = OP_TYPE_MEMORY;

// Mul Source, Destination

SetInstr (INSTR_MUL, “Mul”, 2, 0);
g_InstrList [INSTR_MUL].iOpType [0] = OP_TYPE_INT |

OP_TYPE_FLOAT | OP_TYPE_MEMORY;
g_InstrList [INSTR_MUL].iOpType [1] = OP_TYPE_MEMORY;

// And so on...

This, of course, continues until all 18 of our instructions have been defined. With
these definitions in place, we can now implement an intelligent, generic, instruc-
tion-parsing loop that simply refers to these values to determine how to parse the
incoming token stream. But before we get to that, let’s take a moment and discuss
something that might currently have you confused.

We’ve mentioned “extra operands” quite a few times in the last few pages in
regards to this instruction list. This property of an instruction is quite simple; it
means that after the required operands have all been read in, there can exist 0–N
extra operands, which can be of any data type. Why is this feature useful? Well, con-
sider the CallHost instruction. It’s designed to allow scripts to call the host API to
execute game-engine functions. These functions require parameters, however, and
we don’t know anything about their parameter lists at compile time. So CallHost
accepts one required operand—the function index that you want to call—and the
rest of the operands it finds are considered parameters for whatever that function
happens to be. They can be of any type and in any order. It doesn’t matter to us.
The runtime environment will be responsible for putting these parameters to use;
all we need to do is keep track of them.

Getting back to our instruction-parsing loop, we now have enough information to
plot out its general structure. At each iteration of the main parsing loop, a new line
of script code is read from the source file. Once the possibility of an array declara-
tion, line label declaration, or whitespace is ruled out, we know we have an instruc-
tion on our hands and will basically follow this strategy:

407Implementing the Compiler

TeamLRN

- Write a null word (zero)
int InstructionCount = 0;
Main Parsing Loop
{

// Get next line of script

g_Tokenizer.CurrentLine = GetNextSourceLine ();

// Strip comments

StripComments (g_Tokenizer.CurrentLine);
TrimWhitespace (g_Tokenzier.CurrentLine);

// Handle array declarations, line label declarations, as well as
// whitespace and comments here (not shown)

// Get the instruction mnemonic

GetNextToken ();
String Instruction = g_Tokenizer.Tokens [2].Token;

// Get the index of the instruction

Index = GetInstructionIndex (Instruction);
if (Index == -1)

Error (“Invalid instruction.”);

- Write instruction index (opcode) to instruction stream

// Find out how many operands are required and what their
// types are

int OpCount = g_InstrList [Index].iOpCount;
int ExtraOpsAllowed = g_InstrList [Index].iExtraOpsAllowed;

- Write operand count to instruction stream
- If extra parameters are allowed, write a zero

int ExtraOpCount = 0;

Loop through each operand

408 12. Simple Game Scripting

TeamLRN

{
- If this operand is the second or later, read a comma

- Read operand tokens using parsing techniques discussed
- If operand is not extra, validate its data type
- Write value to instruction stream

++ ExtraOpCount;
}

- If extra parameters were allowed, scan file pointer back
and overwrite operand count word.

++ InstructionCount;
}

- Scan the file pointer back to the start of the file
and write the instruction count

The logic here is simple. First the next line of source is read out, and its comments
and extraneous whitespace are trimmed. The slightly refined line of code is then
tokenized (by first reading the instruction mnemonic) and then each operand.
After the first operand, every subsequent operand must be preceded with a comma
token. After reading an operand, its data type must be validated (unless it’s extra)
since extra operands are not validated by the compiler. Lastly, its value is written to
the instruction stream.

There are a few tricky situations, however. First of all, we agreed earlier that the
instruction stream should be preceded by a word containing the number of instruc-
tions in the stream. The problem is that we don’t know how many instructions are
in the stream until after they’ve been written, at which point we can no longer write
the beginning of the file. The solution is to first write a null word to the exe-
cutable, then move the file pointer back to the beginning of the file after the
instructions have been counted, and finally overwrite the zero with this value.

This problem manifests itself in another form with operands. Normally, we know
how many operands an instruction will require because we’ve decided ahead of
time and have stored this information in the instruction list. However, instructions
that can optionally accept extra operands won’t have a predetermined amount, and
therefore, we need to keep a running count of these operands as they’re parsed. In
this case, we use the same solution: Write a zero out where you’d like the value to
eventually be, parse all of the operands and write them to the instruction stream

409Implementing the Compiler

TeamLRN

while keeping track of the operand count, and finally, rewind the file pointer to the
null word and overwrite it with this new value.

For the most part, this is everything. You’ve now seen how a stream of raw charac-
ter data is converted to a more structured stream of tokens and how those tokens
are then parsed to form coherent language structures like declarations, instruc-
tions, and values.

We’ve also studied the necessity, structure, and implementation of the various data
structures that accompany the compiled instruction stream—namely, the symbol,
string, and label tables. We learned how to add to these tables during the compila-
tion process, how to replace strings and other human-readable elements with pure
binary data, and ultimately, how to form an infinitely more efficient stream of byte-
code and compiled symbol and string data. We also learned how to add finishing
touches like intelligent error handling that not only displays the offending line but
also points out the specific character. All in all, we’ve seen precisely how script
source code becomes an executable.

To finalize what we’ve discussed, I suggest you take a look at the script compiler
I’ve included on the accompanying CD-ROM. It’s a finished, working implementa-
tion of everything we’ve discussed, and although the code is quite a bit more
involved (since it’s more of a real-world application than a demo), it’s definitely
worth exploring a bit. Try writing simple scripts with the instructions we’ve come
up with to see how the process works. Then test the compiler’s error-handling capa-
bilities by purposely screwing up various things just to get a feel for its robustness.

With the compiler figured out, we now need a place to take these executable files
we’ve spent so much time creating. This is what the runtime environment is for.

The Runtime Environment
As important as the compiler is, an executable script by itself isn’t much good. To
truly bring our system to life, we need to provide an environment in which scripts
can interact with memory and execute code. The combination of the CPU and the
operating system on your computer provides this very same environment for your
OS executables (EXEs and DLLs under Win32, for example).

We can trust that the contents of the executable script files are error checked
because this is one of the compiler’s primary objectives. That being said, it’s really

410 12. Simple Game Scripting

TeamLRN

just a matter of unpacking its contents back into memory and deriving some sort of
logic from them.

To understand how this works, let’s think back to the original compilation process
of the instruction stream. If you recall, instruction mnemonics like Mov and Add were
replaced with numeric opcodes, which, as we learned, specify a certain action. For
example, Mov’s opcode is a code that says “move the source operand into the desti-
nation operand,” whereas Exit’s opcode says “terminate the script.” So what this
really all means is that the runtime environment’s most fundamental and impor-
tant responsibility is to simply run through the instruction stream and perform
whatever operation the current opcode specifies.

When these instructions are processed in sequence in real time, the end result is
full execution of our code’s logic, which is our goal exactly. So the first thing we
need to understand is how to organize the contents of an executable in memory so
that it can be most easily processed in sequence.

Fundamental Components of the
Runtime Environment
Just as our compiler was composed of a few large modules (the tokenizer and the
parser) and data structures (the symbol, string, and label tables), the runtime envi-
ronment is best described in terms of a handful of major components as well.

On the most basic level, the contents of an executable script can be broken down
into two categories: code and data. Code is, of course, the instruction stream and
describes the logic of whatever action the script is designed to perform. Data is
equally recognizable as the heap, where all of our variables and arrays are stored.
In addition to the heap is the string table, which contains all of the program’s
string literal values. Together, these two segments of the script provide all the infor-
mation necessary to execute the exact intentions of the script writer.

Execution of the instruction stream works by maintaining a pointer to the current
instruction, which I call the instruction pointer, or IP (although the term program
counter, or PC, is popular as well). The instruction pointer is incremented after
each instruction is executed so that, at every pass through the runtime environ-
ment’s main loop, a new instruction is executed. Although the program is usually
in a state of linear progression through the sequence of opcodes, the branching
(J*) instructions are designed specifically to cause the IP to move around in more

411The Runtime Environment

TeamLRN

intelligent ways. Loops, for example, are implemented by causing IP to move back
to a position it’s already been, thereby executing the same code over again.

The other major aspect of executing code is the actual implementation of the
instructions themselves. This is most commonly handled with a relatively large
switch block. At each iteration of the main loop, the current instruction is executed
as one of many possible cases. Basically, the code is something like this:

switch (CurrentInstruction)
{
case INSTR_MOV:
// Implement Mov
break;

case INSTR_ADD:
// Implement Add
break;

case INSTR_GETSUBSTR:
// Implement GetSubStr
break;

case INSTR_PAUSE:
// Implement pause

break;

case INSTR_EXIT:
// Terminate the script
break;

}

This simple solution allows each instruction to be given its own block of code that
will be run whenever it passes through the instruction stream. Adding instructions
to the runtime environment’s supported language then becomes as easy as adding
a new case to the switch block.

The data-oriented side of things is handled primarily by a data structure called the
heap. The heap is a contiguous region of memory that is indexed like an array by
variables and array indices in the script’s code. Each element, or “index,” of the
heap is a special data structure called a Value, which looks like this:

typedef struct _Value // Represents a value
{

412 12. Simple Game Scripting

TeamLRN

int iType; // Type of value

struct
{

int iInt; // Integer value
float fFloat; // Float value
int iHeapIndex; // Index into the heap

int iHeapOffsetIndex; // Index into the heap pointing to
// an array offset variable

int iStringIndex; // Index into the string table
int iLabelIndex; // Index into the label table

};
}

Value;

This structure is what enables the typeless nature of our language. Since every
index in the heap contains every possible data type, as well as the iType member to
let us determine what specific type is currently in use, any variable in any script can
be given any value without the need for special conversion or casting.

Although this structure should be mostly self-explanatory, let’s take a second to
cover it anyway. iInt and fFloat are the two primitive data types; they store integer
and float immediate values, respectively. iHeapIndex is a base pointer into the heap.
In the case of single variables, this is all you need to determine the variable’s value.
In the case of arrays, this is the array’s base pointer—in other words, the index into
the heap at which the array begins. If the array was indexed with an integer imme-
diate in the original source code, this will be added to iHeapIndex, and this, as with
variables, is the only member you’ll need to index the array element. The final
case, however, in which an array is indexed with both the base index and a relative
index stored in a variable, requires two heap indices. One points to the base of the
array; the other points to the variable in which you’ll find the relative index, which
can be added to the base to produce the absolute index.

Storing a Script in Memory
We have to load a script into memory before we can execute it. While this may
seem trivial at first, it’s actually a fairly intricate operation. A given script file con-
tains a wide range of different types of data, all of which is tightly packed into

413The Runtime Environment

TeamLRN

variable-size fields. This means there will be a significant amount of dynamic alloca-
tion to store them in memory.

A script file contains the following pieces of information (shown in Figure 12.11):

• The instruction stream

• The symbol table (which is really just the size of the heap)

• The string table

• The label table

This means we’ll have four major data structures to prepare before loading scripts.
First up is the instruction stream, which will be the most complex by far. Each
instruction in the stream needs to store a number of pieces of information, which
we’ll wrap up into the Instr structure:

typedef struct _Instr // Describes an instruction
{

int iOpcode; // Instruction opcode
int iOpCount; // Number of operants
Op * pOpList; // Operand list

}
Instr;

414 12. Simple Game Scripting

Figure 12.11

A script laid out in memory

TeamLRN

iOpcode is, of course, the opcode itself, in which iOpCount stores the number of
operands. The operands themselves are stored in a dynamic array of Op’s called
pOpList. So let’s take a look at the Op structure:

struct _Op
{
Value Value;
}

Op;

Our basic implementation won’t need any more information for a given operand
than its Value, but I’ve wrapped this in a larger structure to allow for easier expan-
sion since a more complex scripting system may require more per-operand data.

Moving on, our next objective is the heap. Just as it was when writing the heap to
the executable, “loading” the heap is a pretty easy job since there’s nothing to actu-
ally load in the first place. The compiler’s only output regarding the symbol table is
the size of the heap that will be necessary to facilitate the number and size of the
script’s variables and arrays. This means all we have to do is read the heap size word
from the executable file and use it to allocate an array of that many Values.

Next up is the string table. At first, we may be tempted to simply store the string
table as an array of char pointers. After all, we already know how many strings the
script requires and their sizes. Unfortunately, our two string-processing operands,
Concat and GetSubStr, can both modify existing strings in the string table and add
new strings altogether. When GetSubStr is called, it’s creating a new string based on
the substring of another; this substring will need to be stored somewhere. As a
result, the string table will be a linked list, just as it was in the compiler. Here are its
node and table structs:

typedef struct _StringTableNode
{

_StringTableNode * pPrev, // Pointer to previous string node
* pNext; // Pointer to next string node

char * pstrString; // Pointer to string itself
int iIndex; // Index into the table

}
StringTableNode;

typedef struct _StringTable
{

415The Runtime Environment

TeamLRN

int iStringCount; // Current number of strings in
// table

StringTableNode * pHead, // Pointer to head string node of
// the list

* pTail; // Pointer to tail string node of
// the list
}

StringTable;

Everything here should be self-explanatory. The last structure to deal with is the
label table, which stores both the index of its destination instruction and a label
index to which the operands of branch instructions map:

typedef struct _Label
{

int iIndex; // Label index
int iInstrOffset; // Offset of the target instruction

}
Label;

With all of our individual structures decided on, we need to declare them. We
could simply make a number of global pointers that will hold each of these
dynamic arrays, but I prefer grouping them into a larger structure called Script.
This not only will provide a more logical naming convention, it will also leave
things open for expansion (such as augmenting the system to run multiple scripts
at once, which I describe at the end of this chapter). Script looks like this:

typedef struct _Script
{

Instr * pInstrStream; // Instruction stream
int iInstrCount; // Number of instructions in the

// stream

Value * pHeap; // Heap
int iHeapSize; // Size of the heap

StringTable StringTable; // String table

Label * pLabelTable; // Label table
int iLabelCount; // Number of labels in the table

Value ReturnValue; // Return value from last host

416 12. Simple Game Scripting

TeamLRN

// function call

int iCurrInstr; // Current instruction

int iIsPaused; // Determines whether or not the
// script is currently paused

unsigned int iPauseEndTime; // Time at which the pause will end

int iIsRunning; // Whether or not the script is
// running
}

Script;

In addition to the array pointers themselves, you’ll notice that they’re also accom-
panied by fields that contain their size, such as iInstrCount (the number of instruc-
tions in the stream) and iHeapSize. There are also a few new fields entirely.

ReturnValue is a single Value that holds whatever the most recently called host API
function called. iCurrInstr is our instruction pointer and always lets us know what
the current instruction is. iIsPaused is a flag that keeps track of whether or not the
script is paused due to use of the Pause instruction, and iPauseEndTime is the time at
which the current pause will end. Finally, iIsRunning is a simple flag that determines
whether or not the script is currently being executed.

Loading the Script
So we’ve designed the data structures that will hold a script in memory. Let’s now
think about the actual process of transferring script data from the executable file to
these structures. Naturally, this will be done in the same order as the scripts were
written. First we’ll extract the instruction stream, then the symbol table, and so on.
A more exact depiction of an executable script file can be seen in Figure 12.12.

Just as its data structure is the most complex, the instruction stream is also the most
work to load. The general process is outlined in the following steps:

1. Read the first word of the file; it contains the number of instructions in the
stream. Then allocate an array of Instrs and assign it to the instruction
stream pointer in g_Script. Also, set the iInstrCount field of g_Script to the
number of instructions we just read.

2. For each instruction in the stream, first read the opcode and then the
operand count. Use the operand count to allocate an array of Ops and assign

417The Runtime Environment

TeamLRN

the pointer to this array to the current Instr in the array we just allocated.
Then read through each operand.

3. For each operand, first read the operand type word. This will tell us how to
load the following data. Use a switch to handle the different types of
operands. For integers, floats, and string and label table indices, read them
directly into their corresponding fields in the Value structure for this
operand.

For variable operands, read a single word and store it in iHeapIndex. For array refer-
ences with an integer index, read the first word and store it in iHeapIndex and then
read the second word and add it as well. This will calculate the absolute address of
the array element. Finally, for array references with variable indices, read the
first word and store it in iHeapIndex. Read the second word and store that in
iHeapOffsetIndex.

After reading each operand, set the proper value for the Value structure’s iType
field. Use the operand type constants we established earlier for this:

OP_TYPE_INT

418 12. Simple Game Scripting

Figure 12.12

A more exact depiction of the
script file format

TeamLRN

OP_TYPE_FLOAT
OP_TYPE_STRING
OP_TYPE_MEMORY
OP_TYPE_LABEL

Next we have the symbol table. All that’s necessary here is to read a single word
from the executable and allocate a dynamic array of this many Values. It’s now a
done deal. Remember to also set the size of the heap in g_Script to the appropriate
value.

Following the symbol table is the string table, which is stored in the executable file
as raw string data separated by size headers. The first word in the string table
tells us how many strings are present, so read this first. Store this value in the
iStringCount field of the StringTable structure. Then loop through each string in the
table and read a single word. This word tells us how many characters follow (in
other words, the length of the string). Allocate a new string table node followed by
a new string of the specified length and copy the character data from the exe-
cutable file to it. (By the way, the string table in the runtime environment uses the
same functions as the one in the compiler, so I’m just assuming they’re available
here. You can simply copy them from your compiler’s code and use them in your
runtime environment.)

The final block of data to read from the executable is the label table. To start, read
a single word. This word tells us how many labels to make room for, so allocate an
array of Labels of this size and set g_Script.iLabelCount to this value. Next, for each
label following, read two words. The first is the label index, and the second is the
offset into the instruction stream that this label corresponds to. Store each in its
appropriate field in the Label structure.

That’s all there is to it. We’ve now extracted all of the data from the executable file
and loaded it into a well-defined set of structures, so we’re ready to roll. Now let’s
see how we make it run.

Overview of Script Execution
Scripts are executed in the same way your CPU executes machine code, albeit in a
much more simplified fashion. Starting from the first instruction in our compiled
instruction stream, it executes each opcode and then moves on to the next. Along
the way it will move memory around, perform arithmetic, or even jump to other,
nonsequential opcodes in the stream. All of these actions are performed because of

419The Runtime Environment

TeamLRN

the value of the opcodes themselves. It is in this way that our script finally achieves
execution and is brought to life. Figure 12.13 shows the runtime execution steps.

The opcodes and operands have been loaded, the heap is prepared, and the string
table is full. Since the only real logic of the runtime environment itself is to loop
through each instruction of the stream, the real work lies in the implementation of
each individual opcode. For example, the runtime environment itself doesn’t know
how to move values around in memory, add numbers, concatenate strings, or any-
thing really. All it knows how to do is move to the next opcode and use that as the
criteria for a giant switch construct, the cases of which contain the code that causes
its individual instruction to function. The pseudocode for our runtime environ-
ment thus looks like this:

IP = 0;
while (1)
{
switch (InstructionStream [IP])
{

case MOV:
// Implement Mov

case ADD:
// Implement Add

case CALLHOST:
// Implement CallHost

case EXIT:
return;

420 12. Simple Game Scripting

Figure 12.13

The runtime environment steps through
the instruction stream and executes
each opcode

TeamLRN

}
++ IP;
if (IP > InstructionCount)

return;
}

This surprisingly simple model is really all that’s necessary to execute the compiled
code of our scripts. The IP starts at zero, is evaluated at every iteration of the main
loop to execute the current opcode, and is then incremented so that the next itera-
tion will execute the next instruction. Finally, we also check to make sure we
haven’t passed the last opcode in the stream; if we have, we take this as a sign to
terminate the script (as if the Exit instruction were encountered.)

The only thing left to understand about building a runtime environment is the
implementation of the opcodes themselves.

Implementing Opcodes
As our runtime environment scans through the instruction stream, it’ll use the cur-
rent opcode as the criteria of a switch block, which will route execution to a block
of code designed to handle that specific instruction. These blocks of code are the
very heart of the runtime environment itself. Without these opcode implementa-
tions, our scripts wouldn’t be functional in any way.

Generally speaking, there are a few major things that almost all instructions must
do. First and foremost, they need to access the values of their operands. This is
analogous to a function referencing its parameters. They also need to access, mod-
ify, and add values to the heap and string table (especially since their operands are
likely to point to such values). Some operands may also need the capability to move
the instruction pointer around.

I don’t have the room to cover the implementation of all 18 opcodes in our script-
ing system, so I’ll instead just cover a few. Figure 12.14 provides a visual interpreta-
tion of their basic functionality as well. Fortunately, the functionality of almost all
of these opcodes is relatively simple, so you shouldn’t have much trouble filling in
the rest on your own. To get started, let’s take a look at what is probably the most
common and fundamental instruction: Mov.

Mov works by moving the value of a source operand into a destination operand. The
easy part about this is that the destination operand is always a memory reference.

421The Runtime Environment

TeamLRN

(Nothing else would make sense. Immediate values are constants, and constants, by
their name alone, can’t be changed.) This means that once we know where the des-
tination operand is pointing, we just need to determine exactly what the value of
the source operand is and move it there.

Resolving the heap index of the destination operand is easy. The operand is most
likely going to be a simple variable, so all you’ll usually need to do is read the
iHeapIndex member of the operand’s Value structure. The same goes for array refer-
ences with integer indices (although to be honest, we won’t even know from our
perspective since an array index is treated the same as a variable by the runtime
environment). The only other case is array references with variable indices, in
which case we must read from the heap to produce the final, absolute heap index
we want. The first thing we do is read the operand’s iHeapIndex member, which is
the array’s base index. We then read iHeapOffsetIndex and use this value as an index
into Heap, from which we read the corresponding Value structure. We then take this
value and add it to the value we read from iHeapOffsetIndex.

422 12. Simple Game Scripting

Figure 12.14

Various opcodes, expressed visually

TeamLRN

We’re going to end up doing this quote often since almost every instruction can
accept memory references as operands, so let’s put it all into a function:

int ResolveMemoryOp (Op Op)
{

int iHeapIndex = Op.Value.iHeapIndex;

if (Op.iType == OP_TYPE_ARRAY_INDEX_VARIABLE)
iHeapIndex += g_Script.pHeap [Op.Value.iHeapOffsetIndex].iInt;

return iHeapIndex;
}

ResolveMemoryOp () is a simple function that accepts an Op and returns the fully
resolved, absolute index to which it points.

Getting back to the Mov operand itself, we now need to think about how to move
the value of the source operand into its destination. In the case of immediate val-
ues like integers, floats, and string indices, we can simply copy the source operand’s
Value member directly into the heap index we got from the destination operand:

DestIndex = ResolveMemoryOp (DestOp);

case OP_TYPE_INT:
case OP_TYPE_FLOAT:
case OP_TYPE_STRING:
{
g_Script.Heap [DestIndex] = SourceOp.Value;
}
break;

Simple, huh? The other case to consider is when the source
operand is a memory operand. In this case, we need to once
again resolve a memory operand and use that heap index to
retrieve a Value structure and assign it to the destination heap
index.

default:
{

Value = g_Script.Heap [ResolveMemoryOp (SourceOp)];
g_Script.Heap [DestIndex] = Value;
}

423The Runtime Environment

NOTE
In practice, the
operands will
not be named
SourceOp and
DestOp. Rather,
they’ll be indices
in an operand
array associated
with the current
instruction’s Instr
structure.

TeamLRN

And that’s how Mov works. The cool thing about the instructions is that they’re also
the basis for all of the arithmetic instructions work, like Add and Mul. The only dif-
ference, of course, is that they also apply a binary operator of some sort rather than
just assigning the value of the source to the source. Also, there are issues of casting
to worry about. For example, while we specifically do not allow addition of strings
and numerics, what would happen if the script tried adding a float to an integer?
Surely this needs to be supported, but some manual casting will need to be done
beforehand to make sure the proper data types are being used when the arithmetic
operation takes place.

Let’s shift our focus now to the branching instructions. For simplicity’s sake, we’ll
take a look at the Jmp instruction, which unconditionally jumps to the destination
label.

The logic for Jmp is really quite simple: First read the single operand it accepts,
which is a line label. Use its value (which is a label index) to find the label in the
label table and set IP to point to this new instruction index. Here’s an example:

LabelIndex = Op.Value.LabelIndex;
DestInstr = GetLabelByIndex (LabelIndex);
g_Script.iCurrInstr = DestInstr;

The only missing part here is GetLabelByIndex (), but this is yet another simple func-
tion, so let’s just check it out real fast:

int GetLabelByIndex (int iIndex)
{

for (int iCurrLabelIndex = 0;
iCurrLabelIndex < g_Script.iLabelCount;
++ iCurrLabelIndex)

if (g_Script.pLabelTable [iCurrLabelIndex].iIndex
== iIndex)

return g_Script.pLabelTable
[iCurrLabelIndex].iInstrOffset;

return NULL_INDEX;
}

This function loops through each label in the label table until it matches up the
supplied index. It then returns the value of the label, which is an offset into the
instruction stream.

424 12. Simple Game Scripting

TeamLRN

As you can see, branching is nothing more than changing the value of the instruc-
tion pointer, at least in the case of Jmp. Combine this with our knowledge of how
Mov works, and we’ve got enough understanding to move memory around and per-
form conditional branching, which is the very foundation of programming to begin
with. Well, we almost do, that is.

The only other aspect of branching is, of course, the comparison itself, which is
how logic works in the first place. This is a simple addition to the logic in Jmp’s
implementation, however. For example, if you want to implement JGE, the logic is
the same as it was behind an unconditional jump, except that the jump is only exe-
cuted if a given comparison evaluates to true. In the case of JGE, it’d look like this:

if (Op0.Value.iInt >= Op1.Value.iInt)
// Jump

The other branch instructions are just different Boolean expressions, so that’s all
you need to keep in mind when implementing them. There is one other detail,
however. Like Mov, this function will require some level of casting to properly com-
pare similar but not identical data types like integers and floats.

This should be enough basic understanding of instruction implementation to put
together the rest. Just about everything can be broken down into terms of moving
memory around and jumping based on conditional logic, so the things we’ve
learned here should help you out when fleshing out our language with the rest of
our 18 opcodes. Now that we’ve got that under control, let’s move on to what really
makes this whole script system worth building in the first place—the interface to
the game engine and the host API.

Communication with the Game
Engine
Despite the complexities of the compiler and the runtime environment, the truth
of the matter is that the only reason any of us are involved in all this to begin with
is so we can script games. As a result, the game engine itself is really the most impor-
tant figure in this whole situation when you think about it, so naturally, the inter-
face between it and the scripting system is extremely important.

Without such an interface, what would our scripts be capable of? They’d be quite
mute—perfectly capable of “thinking” and executing within their own little world
but totally unable to communicate with anyone or anything around them. The
game engine would never know they were there, nor would the players. So to justify

425The Runtime Environment

TeamLRN

the amount of work we’ve put in so far, we must certainly provide a way for game-
engine functions to be called from within the script and return values.

This is a tricky problem, however. I mean, after all, how would the runtime environ-
ment have any idea what a function’s name is? If we declare a function in the game
engine like this . . .

void MyFunc ()
{
// Whatever
}

. . . and somehow try to call that function from within a script, perhaps by passing
the function name as an operand to CallHost like this . . .

CallHost MyFunc

. . . how is the implementation for the CallHost instruction going to use the func-
tion name to make anything happen? Function names aren’t retained at runtime,
so there’s not much that it can do. We’re therefore going to need some other way
to specify a game engine function from within the script that can be resolved by
the runtime environment, as in Figure 12.15.

One simple way to do this is with an array of function pointers. The game engine
“registers” a function with the script runtime environment by adding a pointer to it
to this array. An integer value is then sent as the single required operand to
CallHost, which is used as an index into the array. The function pointer at that par-
ticular array element is then invoked, and the function originally specified in the

426 12. Simple Game Scripting

Figure 12.15

Scripts call the game engine’s host API
functions and receive return values

TeamLRN

script is ultimately executed. This is a simple and straightforward solution that is
easy to implement and reasonably easy to use.

This does bring with it some downsides, however. First, each function that the game
engine registers with the script system must have the same signature, meaning that
it accepts the same parameters and returns the same value (which will have to be
void; you’ll learn more about how to return values in a moment). However, this can
be overcome easily by passing each function an array of Values. The typeless nature
of the Value structure allows values and memory references from the script to be
easily passed to the host API function. The array is then unpacked from within the
function, and the parameters are used just like normal. This process is illustrated in
Figure 12.16

Return values are an equally easy hack. Since we can’t use the built-in return key-
word to return a value directly to a script, we can instead make a macro that wraps
return and sets the value of g_Script’s ReturnValue member. The GetRetVal instruction
will then simply assign ReturnValue to a given memory location, and the return value
problem will be solved.

So let’s look at some code. First of all, let’s look at how this function pointer array
will actually be coded:

typedef struct _HostFunc
{

void (* HostFunc)(Value * ParamList,
int iParamCount);

}
HostFunc;

427The Runtime Environment

Figure 12.16

Calling a game engine function
from a script

TeamLRN

I’ve simply wrapped the appropriate function pointer in a struct called HostFunc

(which you can expand later on if you like). An array of these structures will then
be declared:

HostFunc g_HostAPI [MAX_HOST_API_SIZE];

Any value can be used for MAX_HOST_API_SIZE as long as it’s not too restricting. I use
128, which is probably complete overkill, but you never know.

Notice that the function pointer accepts two parameters: a pointer to an array of
parameters and the number of parameters in the array. This is strikingly similar to
the way console applications pass command-line parameters to the program, so it
should look familiar.

Next we’re going to need a function that the game engine can call to register one
of its own host API functions:

int AddFuncToHostAPI (void (* HostFunc)
Value * pParamList, int iParamCount))
{

for (int iCurrHostFuncIndex = 0;
iCurrHostFuncIndex < MAX_HOST_API_SIZE;
++ iCurrHostFuncIndex)

{
if (! g_HostAPI [iCurrHostFuncIndex].HostFunc)
{

g_HostAPI [iCurrHostFuncIndex].HostFunc = HostFunc;
return iCurrHostFuncIndex;

}
}

return -1;
}

This function scans through the host API array and finds the first NULL pointer.
Upon finding it, it sets the value to the function pointer passed and returns the
index (not that it’s of much use to the game engine). It returns –1 if there wasn’t
room to add the new function.

So now we can add and store the functions that make up the game engine’s host
API. The only real challenges left are how to call these functions from the script

428 12. Simple Game Scripting

TeamLRN

and pass them parameters, and the details of how to write the host API functions
themselves so that they can properly interact with the runtime environment.

First let’s think about how the CallHost instruction is going to work. Really, this is a
simple process. We read the first operand, which is an index into the array of func-
tion pointers, and find out what function we need to call. After the first operand
should be a word that tells us how many extra operands follow. Since each host API
function can conceivably accept any number of parameters (including none), we
need to allocate this array dynamically. To do this, we simply allocate one Value for
each extra operand.

We then loop through the operands, adding them to the newly allocated Value
array. Then we call the function using the supplied function pointer and pass it
both a pointer to the Value array and the number of elements (parameters) in the
array. Here’s the basic idea:

ParamCount = Instr.OpCount;

if (ParamCount > 1)
{
ParamList = (Value *) malloc (ParamCount * sizeof (Value));
for (Op = 0; Op < ParamCount; ++ Op)

ParamList [Op - 1] = Ops [Op]
}
HostFunc = Ops [0];
if (g_HostAPI [HostFunc].HostFunc)

g_HostAPI [HostFunc].HostFunc (ParamList, ParamCount);

if (ParamList)
free (ParamList);

The block of code starts by determining how many operands there are. Since any
call to CallHost must at least contain one operand (the host function index), we
know that the operand count is actually the parameter count plus one. We then
loop through each parameter and store it in the new array. The function pointer is
then called, we free the parameter list, and by this point, the game engine function
has already run and returned.

Returning values is easy. The host API function will set g_Script.ReturnValue itself,
leaving it up to the script to use GetRetVal to retrieve it. As previously mentioned,
this instruction is really just mov except that it always moves a specific memory ref-
erence into the destination. As a result, there’s no need to cover it again.

429The Runtime Environment

TeamLRN

Rounding off our discussion on calling the host API, we should take a look at
exactly how such a function is written. Since our usual methods of parameter refer-
encing and return values have been effectively limited, we must instead write our
own code to simulate these facilities. Although there’s nothing particularly hard
about referencing an index of the pParamList array, I’ve created a few helper macros
to make it seem even more transparent. Each is used to extract a parameter of a
given data type based on a specified index:

#define GetIntParam(iParamIndex) \
pParamList [iParamIndex].iInt

#define GetFloatParam(iParamIndex) \
pParamList [iParamIndex].fFloat

#define GetStringParam(iParamIndex) \
GetStringByIndex (pParamList [iParamIndex].iStringIndex)

As you can see, the integer and floating-point macros aren’t the most useful things
in the world, but the string macro definitely helps since it masks the function call
to GetStringByIndex.

Returning values is just as simple. Three functions were written, each for returning
a separate data type. They look like this:

void _ReturnInt (int iInt)
{

g_Script.ReturnValue.iType = OP_TYPE_INT;
g_Script.ReturnValue.iInt = iInt;

}

void _ReturnFloat (float fFloat)
{

g_Script.ReturnValue.iType = OP_TYPE_FLOAT;
g_Script.ReturnValue.fFloat = fFloat;

}

void _ReturnString (char * pstrString)
{

g_Script.ReturnValue.iType = OP_TYPE_STRING;
g_Script.ReturnValue.iStringIndex =

AddStringToStringTable (pstrString);
}

430 12. Simple Game Scripting

TeamLRN

These functions work simply by setting the value and type of the ReturnValue mem-
ber, with the exception of _ReturnString, which also has to create a new string for
the string table and put the index into the return value member. You’ll notice I
preceded each of these three functions with underscores. This is because the func-
tions themselves are not intended to be used. Rather, they should be called by the
following three macros:

#define ReturnInt(iInt) \
{ \

_ReturnInt (iInt); \
return; \

}

#define ReturnFloat(fFloat) \
{ \

_ReturnFloat (fFloat); \
return; \

}

#define ReturnString(pstrString) \
{ \

_ReturnString (pstrString); \
return;

}

The problem with the original functions is that they didn’t cause their calling func-
tion to return, so you’d have to type this every time you used one:

_ReturnInt (MyInt);
return;

This is just corny. With this method, however, the following […]

ReturnInt (MyInt);

[…] is all that’s necessary. So let’s take a look at some of these helper functions in
action. To demonstrate, I’ll code a simple function that can add two integers and
return the result:

void Add (Value * pParamList, int iParamCount)
{
int X = GetIntParam (0),

Y = GetIntParam (1);

431The Runtime Environment

TeamLRN

int Sum = X + Y;

ReturnInt (Sum);
}

AddFuncToHostAPI (Add);

It’s simple but very cool. This function can then be called from the script like this:

Mov Op0, 128
Mov Op1, 256
CallHost 0, Op0, Op1
GetRetVal Sum

If all goes well, Sum should equal 384. And that, my friends, is what communication
with the game engine is all about.

Timeslicing
The last thing we should think about with regard to the runtime environment is
exactly how it will run alongside the game engine. Since the ultimate goal of a
script is usually to provide control over a given in-game entity, we need scripts to
somehow run at the same time as the game engine without intruding.

Although there are a number of ways to do this, including a true multithreaded
approach in which the scripting system runs in one thread and the game engine
runs in another, we’ll go with something a bit simpler and simulate threads of our
own.

Naturally, any game is going to be based around a main loop of some sort, and this
is even truer if you’ve designed your game in terms of a finite state machine. So,
obviously, whatever we do to wedge our scripting system into the game engine, it’s
going to have something to do with the main loop. The question, though, is exactly
how.

One very simple way is to write scripts designed to be run entirely at each iteration
of the loop. In other words, the script provides an “extension” to the loop that
allows it to do its own thing after the game engine has done whatever it’s interested
in for that frame. The problem with this approach, though, is that it’s a bit rigid.
Scripts must be written in a certain way and become part of the main game loop
rather than existing in their own space and being able to create a main loop of
their own.

432 12. Simple Game Scripting

TeamLRN

To solve this problem, we’re going to use a technique called timeslicing. Timeslicing
is commonly used in operating systems and multitasking/multithreading kernels in
general. The idea is that, given a number of different tasks or threads that must all
run concurrently, the only real way to simulate this is to run each of them for a very
brief period of time over and over. This is more or less what we’ll do for our scripts.
At each iteration of the main game loop, a function will be called that executes the
currently loaded script for a given number of milliseconds. The end result will
appear to be handling both the game engine and the script simultaneously (see
Figure 12.17).

The actual implementation of this technique is very simple and only requires a
timer function of some sort be available. (I’m using the Win32 API’s GetTickCount
().) Now let’s assume you currently have a function called RunScript () that runs the
script from start to finish when called. Obviously, this won’t work as-is. We need to
somehow integrate this with the game engine’s main loop, and running the entire
script every time isn’t going to work. So we’ll expand RunScript () a bit to accept a
parameter now: a duration, expressed in milliseconds, that will tell the function
how long it should execute the script before returning. The key, of course, is that
the IP and heap are not reset after each call to the function; rather, they gradually
advance through the script over the course of multiple function calls.

RunScript () will, of course, execute script code by performing a loop that handles
opcodes and increments the instruction pointer. The only real change that needs
to be made to support timeslicing is a comparison of the current tick count to the
tick count at which the function must return. Here’s some pseudocode:

void RunScript (int Duration)

433The Runtime Environment

Figure 12.17

Round-robin-style timeslicing can
make the game engine and script
appear to be running concurrently

TeamLRN

{
int ExitTime = GetTickCount () + Duration;

while (1)
{
if (GetTickCount () > ExitTime)
break;
switch (Instructions [IP])
{
// Implement opcodes
}

++ IP;
}
}

The main game loop would then look something like this:

main ()
{

Init ();
while (1)
{
// Handle game logic
HandleFrame ();
// Run script timeslice
RunScript (TIMESLICE_DURATION);
}

ShutDown ();

return;
}

Presto! Instant timeslicing. The actual value of TIMESLICE_DURATION is up to you, so
experiment with different durations and see what suits you. I personally use around
60 milliseconds, which works out since GetTickCount () is only accurate to about 55
milliseconds or so. Your implementation may be more accurate, so feel free to try
something more precise if this is the case.

With that, we’re more or less finished. The compiler compiles, the runtime envi-
ronment runs, and now we’ve taken a quick look at how to integrate it all with a
game engine. I now suggest you take the time to flip through the source to my

434 12. Simple Game Scripting

TeamLRN

included runtime environment. Like the compiler, it’s quite a bit more complex
and dense overall, but it’s a working implementation that may prove useful.

The Script Runtime Console
Finally, we have a finished language, compiler, and runtime environment! This is
certainly a considerable accomplishment, but we really won’t be sure it’s complete
until we’ve had a chance to thoroughly test it. Although we could make a small
console application that provides some sort of functional API for our runtime envi-
ronment library and run test scripts with it, I have something slightly more interest-
ing in mind.

The whole point of building this language was to provide a scripting system for our
games, so I’ve come up with something a bit more appropriate for game program-
mers. While I can’t provide a full game engine to script, I have constructed a small
Windows application that provides a basic game programming API (see Figure
12.18). In a nutshell, the program is a loop that blits a back buffer to the window at
each iteration. Just before blitting, it draws a full-screen background to the back

435The Script Runtime Console

Figure 12.18

The runtime console and its interface

TeamLRN

buffer as well as a number of sprites. Finally, each iteration of the loop ends by
allowing a loaded script to run for a brief timeslice.

The functions that the program exposes to the script are as follows:

API_LoadBG (String Filename)

This loads a 512×384 .bmp file that will be drawn to the back buffer each frame as
a full-screen background.

API_LoadSprite (Sting Filename, Integer XSize, Integer YSize);

This loads a .bmp file of the supplied dimensions (XSize × YSize) and returns a
handle to bitmap.

API_SetSprite (Integer SpriteHandle, Integer BitmapHandle)

This assigns the given bitmap to the specified sprite. The bitmap handle is
returned from LoadSprite (), while the sprite handle is up to the script.

API_MoveSprite (Integer SpriteHandle, Integer X, Integer Y)

This moves the specified sprite to X, Y. Since the runtime console automatically
updates the game window, MoveSprite () immediately takes effect when it’s called.

API_SetSpriteVisibility (Integer SpriteHandle, Integer IsVisible)

This sets the specified sprite’s visibility. A 1 means make the sprite visible, and 0
means make the sprite invisible. All sprites are invisible by default, so any sprites
that the script creates must be manually turned on with this function.

API_IsKeyDown (Integer ScanCode)

This returns 1 if the specified key is down; otherwise, it returns 0.

API_LoadSample (String Filename)

This loads the specified .wav file and returns a handle to the sample.

API_PlaySample (Integer Handle)

This plays the specified sample.

As you can see, the API is pretty basic, but it’s enough to put together some cool lit-
tle demos. A script can use these functions to load and manipulate graphics and
sound. Since the runtime console automatically runs the script and updates the
screen in parallel, you can write an entire game by coding its logic as a looping
script. The two loops will execute alongside one another, and the end result will be
an interactive game demo, albeit a rather simplistic one.

436 12. Simple Game Scripting

TeamLRN

To illustrate this concept, I’ve written a paddleball game in our language (see
Figure 12.19). It wasn’t a particularly difficult job, and the end result is really quite
cool. Here’s the source, followed by a brief explanation.

; Project.
; Paddleball
; Abstract.
; Remake of the arcade game of unmentioned name.
; Date Created.
; 4.23.2002
; Author.
; Alex Varanese

; —— Give the functions symbolic constants

Mov 0, LoadBG
Mov 1, LoadSprite
Mov 2, SetSprite
Mov 3, MoveSprite

437The Script Runtime Console

Figure 12.19

Paddleball in
action!

TeamLRN

Mov 4, SetSpriteVisibility
Mov 5, IsKeyDown
Mov 6, LoadSample
Mov 7, PlaySample

; —— Set up some basic constants

Mov 200, KEY_UP
Mov 208, KEY_DOWN

Mov 511, SCREEN_X_MAX
Mov 383, SCREEN_Y_MAX

Mov 480, CPU_X0
Mov 495, CPU_X1
Mov 20, PLAYER_X0
Mov 35, PLAYER_X1

; —— Load background

CallHost LoadBG, “gfx/bg.bmp”

; —— Load sprites

CallHost LoadSprite, “gfx/player_paddle.bmp”,
15, 56

GetRetVal PlayerPaddleHandle
CallHost LoadSprite, “gfx/cpu_paddle.bmp”, 15, 56
GetRetVal CPUPaddleHandle
CallHost LoadSprite, “gfx/ball.bmp”, 16, 16
GetRetVal BallHandle

; —— Load samples

CallHost LoadSample, “sound/bounce.wav”
GetRetVal BounceHandle
CallHost LoadSample, “sound/buzzer.wav”
GetRetVal BuzzerHandle

438 12. Simple Game Scripting

TeamLRN

; —— Set up sprites

Mov 192, PlayerY
Mov 192, CPUY

Mov 256, BallX
Mov 192, BallY
Mov 1, BallVelX
Mov 1, BallVelY

Mov 0, PlayerSpriteHandle
Mov 1, CPUSpriteHandle
Mov 2, BallSpriteHandle

CallHost SetSprite, PlayerSpriteHandle, PlayerPaddleHandle
CallHost SetSprite, CPUSpriteHandle, CPUPaddleHandle
CallHost SetSprite, BallSpriteHandle, BallHandle

CallHost MoveSprite, PlayerSpriteHandle, PLAYER_X0, PlayerY
CallHost MoveSprite, CPUSpriteHandle, CPU_X0, CPUY
CallHost MoveSprite, BallSpriteHandle, BallX, BallY

CallHost SetSpriteVisibility, PlayerSpriteHandle, 1
CallHost SetSpriteVisibility, CPUSpriteHandle, 1
CallHost SetSpriteVisibility, BallSpriteHandle, 1

; —— Main game loop

LoopStart:

; —— Move ball

Add BallVelX, BallX
Add BallVelY, BallY
CallHost MoveSprite, BallSpriteHandle, BallX, BallY

; —— Handle ball collision detection

Mov BallX, TempBallX ; Take the ball’s
size into account

Mov BallY, TempBallY

439The Script Runtime Console

TeamLRN

Add 16, TempBallX
Add 16, TempBallY

; —— Check to see if it hit a paddle

JL BallX, PLAYER_X0, SkipPlayerHit
JG BallX, PLAYER_X1, SkipPlayerHit
Mov PlayerY, PlayerY0
Sub 23, PlayerY0
Mov PlayerY, PlayerY1
Add 23, PlayerY1
JL TempBallY, PlayerY0, SkipPlayerHit
JG BallY, PlayerY1, SkipPlayerHit
Mov BallVelX, Temp
Mov 0, BallVelX
Sub Temp, BallVelX
CallHost PlaySample, BounceHandle

SkipPlayerHit:

JL TempBallX, CPU_X0, SkipCPUHit
JG TempBallX, CPU_X1, SkipCPUHit
Mov CPUY, CPUY0
Sub 23, CPUY0
Mov CPUY, CPUY1
Add 23, CPUY1
JL TempBallY, CPUY0, SkipCPUHit
JG BallY, CPUY1, SkipCPUHit
Mov BallVelX, Temp
Mov 0, BallVelX
Sub Temp, BallVelX
CallHost PlaySample, BounceHandle

SkipCPUHit:

; —— Check to see if it made it past a paddle

JG TempBallX, SCREEN_X_MAX, RestartGame
JL BallX, 0, RestartGame
Jmp SkipRestartGame

RestartGame:
CallHost PlaySample, BuzzerHandle

440 12. Simple Game Scripting

TeamLRN

Mov 256, BallX
Mov 192, BallY
Mov 1, BallVelX
Mov 1, BallVelY
Pause 800
Jmp LoopStart

SkipRestartGame:

; —— Check to see if it hit the top or bottom of screen

JGE BallY, 0, SkipClipBallYMin
Mov BallVelY, Temp
Mov 0, BallVelY
Sub Temp, BallVelY
CallHost PlaySample, BounceHandle

SkipClipBallYMin:

JLE TempBallY, SCREEN_Y_MAX, SkipClipBallYMax
Mov BallVelY, Temp
Mov 0, BallVelY
Sub Temp, BallVelY
CallHost PlaySample, BounceHandle

SkipClipBallYMax:

; —— Handle player input

CallHost IsKeyDown, KEY_UP
GetRetVal KeyState
JNE KeyState, 1, SkipMovePlayerUp
Sub 2, PlayerY
JGE PlayerY, 0, SkipMovePlayerUp
Mov 0, PlayerY

SkipMovePlayerUp:

CallHost IsKeyDown, KEY_DOWN
GetRetVal KeyState
JNE KeyState, 1, SkipMovePlayerDown
Add 2, PlayerY
JLE PlayerY, 327, SkipMovePlayerDown
Mov 327, PlayerY

SkipMovePlayerDown:

441The Script Runtime Console

TeamLRN

; —— Move CPU paddle

Mov BallY, CPUY
Sub 23, CPUY

JGE CPUY, 0, SkipClipCPUUp
Mov 0, CPUY

SkipClipCPUUp:

JL CPUY, 327, SkipClipCPUDown
Mov 327, CPUY

SkipClipCPUDown:

; —— Update paddle positions

CallHost MoveSprite, PlayerSpriteHandle,
PLAYER_X0, PlayerY

CallHost MoveSprite, CPUSpriteHandle, CPU_X0, CPUY

Jmp LoopStart

The script starts by assigning function indices to variables to allow us to refer to
them symbolically. You’ll find this to be a rather useful technique as you write
scripts of your own.

It then proceeds to load all of the graphics and sound with LoadBG (), LoadSprite (),
and LoadSample (), facilitated by the CallHost instruction. The three sprites needed
by the game—the two paddles and the ball—are then initialized and assigned their
respective bitmaps. Some basic variables are initialized as well, such as the position
of each paddle and the ball as well as the ball’s horizontal and vertical velocity.

The main game loop then begins. It starts by moving the ball by adding its velocity
to its X, Y location. Collision detection is then handled, which is a somewhat
involved process. First, ball-paddle collisions are checked, which means comparing
the top and bottom corners of the ball to the sides of each paddle. If it’s within this
rectangular region, the ball is bounced in the opposite direction. If the ball has
moved too far past either paddle, the ball is reset, a buzzer sound is played, and a
new game begins automatically. The last check for collision detection is with the
top and bottom of the screen, which simply causes it to bounce in a new vertical
direction.

442 12. Simple Game Scripting

TeamLRN

The player’s input is handled with a few calls to IsKeyDown (), and the position of the
player’s paddle is updated accordingly. The CPU paddle’s “AI,” if you can even call it
that, is simply to follow the ball’s vertical position, thus making it impossible to
defeat. This particular game, it seems, is less about victory and more about survival.

Finally, an unconditional jump is made back to the start of the loop, allowing the
game to run indefinitely. We don’t need to worry about exiting the script since the
runtime console gives the user plenty of ways to do this.

I definitely suggest that you check out the console, which is included on the accom-
panying CD-ROM. Check out the included paddleball executable, paddle.es, as well
as the source file, paddle.ss. Try making changes to the game and see how it works.
(Maybe you can actually give it some decent AI.)

Summary
Phew! Was that a long road or what? In only one chapter, we’ve learned enough
about basic scripting to completely implement a low-level language of our own
design by creating a functional compiler and runtime environment. We saw how
instructions and operands work together in low-level languages, how to implement
three basic data types (as well as variables and arrays), how tokenization and simple
parsing can be used to interpret and understand human-readable script code, and
of course, how to reduce this code to a binary bytecode format that can be quickly
executed by the runtime environment.

We also learned the all-important lesson of interfacing our scripting system’s run-
time environment with the game engine itself, allowing the two to communicate via
function calls. Our runtime environment was able to load executable scripts of our
own format and execute them by implementing 18 basic opcodes that allowed us to
approximate anything we could do in a higher-level language like C.

Finally, we took our system out for a spin with the script runtime console I pro-
vided, and we saw how an entire game could be written using our new language
alone. Obviously, if it’s capable of implementing a nearly complete version of pad-
dleball, it can certainly provide enough functionality to script our games. The only
question left is, what now?

443Summary

TeamLRN

Where to Go from Here
While our finished product is indeed impressive and will undoubtedly prove useful
when applied to real-world game projects, I have tried to stress as much as possible
that this is an extremely basic implementation. I only had so much room to cover
the full design and implementation of this bad boy, so there was quite a lot I had to
leave out. Fortunately, I’ve got a list of instructions to share with you in the hopes
that you’ll be inspired to implement them yourself.

New Instructions
While the 18 instructions we’ve implemented so far are certainly useful and provide
the core functionality we need to perform basic logic, there are countless other
instructions we could add to make the language even more powerful and convenient.

First of all, consider adding a set of bitwise instructions that would allow basic bit-
wise operations to be performed on integer values. You never know when these
might come in handy.

It should also not be forgotten that we have what is perhaps the most basic set of
string-processing instructions imaginable. As a result, you may want to flesh it out a
bit. To get the ball rolling, try implementing two new string instructions: GetChar
and SetChar. These return and set the value of individual string characters, respec-
tively. The functionality of both of these instructions can be emulated now but is
far less convenient.

Games are loaded with data of all sorts, so you may want to consider adding to our
arsenal of arithmetic instructions. To get your gears turning, start off by adding the
following: Inc and Dec, which increment and decrement values, respectively; Neg,
which negates a value (positive numbers become negative and vice versa); and Exp,
which performs exponents.

New Data Types
Although the three data types we currently support certainly cover the major bases,
it’d be nice to add a few extras, like Boolean. With a Boolean data type, TRUE and
FALSE constants would be directly understood by the compiler, allowing you to use
them instead of 1 and 0 (which are far less intuitive). Consider the following:

CallHost SetSpriteVisibility 0, 1

or

444 12. Simple Game Scripting

TeamLRN

CallHost SetSpriteVisiblity, 0, TRUE

It’s pretty safe to say that the latter reads better. The trick to adding this new type is
adding a few new tokens such as OP_TYPE_BOOL, which can be further broken down
into OP_TYPE_TRUE and OP_TYPE_FALSE. Of course, the instruction list should also accept
Boolean as an operand data type.

Script Multitasking
Currently, the runtime environment only allows one script to be loaded at once.
This works fine for small demos like the runtime consoles, but large-scale games
can often have tens or even hundreds of entities all alive and kicking at the same. If
each of these entities is scripted, we certainly need the ability to load and run N
number of scripts at once.

You’ll notice that I designed our runtime environment with this in mind ahead of
time. The entire script is encapsulated in the global structure g_Script, which
means that the first step toward allowing multiple scripts to exist in memory at
once is to make this an array of Scripts rather than just a single instance.

Once you can load multiple scripts, your best bet for running them concurrently
would be to allow RunScript () to accept another parameter that tells it from which
script in the array to work. By following the example set in the script runtime console
(the source for which can be found on the accompanying CD-ROM), simply take a
round-robin approach and run every currently loaded script for a brief number of
milliseconds every time your game’s loop executes. This is illustrated in Figure 12.20.

Higher Level Functions/Blocks
Although our scripting language is indeed low level, there are plenty of easy ways to
make it seem a bit higher level without redesigning it completely. Namely, you
could try adding the functionality of functions or blocks, which can then be called
by name from other parts of the script. An example might look like this:

Function SayHello
{
CallHost PrintText, “Hello!”
}
Mov 8, Counter
LoopStart:

Call SayHello

445Where to Go from Here

TeamLRN

Sub 1, Counter
JG Counter, 0, LoopStat

This simple example creates a function called SayHello that is called using a new
instruction called Call, eight times in a loop. Assuming the host has provided a
function called PrintText () that prints a string of text to the screen or console, this
script would produce the following output:

Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!

Naturally, the Call instruction simply moves IP to point to the first instruction in
the specified function. Of course, before doing so, it would have to somehow pre-
serve the current instruction pointer so that, when the called function terminated,
execution could resume where it left off. This is known as a return address. This is all
fine and good when only one function is called, but what if another function is

446 12. Simple Game Scripting

Figure 12.20

Running multiple scripts at once is
similar to running a single script
alongside the game engine

TeamLRN

called from the first function? How would we manage multiple return addresses?
The answer is what is known as a call stack, which maintains a list of return
addresses in the form of a stack. Whenever a function is called, a new return
address is pushed on to the top of the call stack. When a function exits, it pops the
top address off and uses this to find its way back. This allows for all sorts of interest-
ing function-related behavior, including recursion. This might be considered a
somewhat advanced idea for extending the language, however, and I unfortunately
can’t go into much more detail here.

The list of ideas goes on and on, too. In addition to simply allowing blocks of code to
be grouped by name and called from other parts of the script, you can also add func-
tionality to allow both parameters and return values to be passed to and from func-
tions. This involves placing more data on the call stack, making things quite a bit
more complicated, but the end result will get you ever closer to a C-style language.

Finally, consider the idea of registering script-defined functions with the host pro-
gram in the same way that the host registers functions with the script. This would
allow the host to call specific parts of the script, which is known as a callback. This
can come in handy in event-based programming when individual script functions
are assigned specific events to which to react.

Block Comments
The ; comments we currently use get the job done, but they aren’t the friendliest
thing in the world when you want to jot down a large, multiline comment (like
credits and title information) at the top of your script. To solve this, consider
adding block comments like the /* Comment */ notation used in C and C++.

A Preprocessor
Although this is a rather large job, the results can be incredible. A preprocessor
could be added to your script system that would function much like the one we
know and love in C. Most notably, it could be used to combine various files at com-
pile time by way of an Include directive of some sort.

To understand how useful this can be, consider the technique I showed you in the
paddleball script of assigning host API function indices to variables. Imagine now
that you’ve got 20 script files for your game, all of which use these same functions
and thus declare the same variables. You’ve now got 20 copies of the same code
floating around, which will make it very difficult to make changes. Imagine if you

447Where to Go from Here

TeamLRN

suddenly want to add or remove a function from the host API. You’ll have to make
the change in 20 places.

With a preprocessor, you can isolate the variable declarations you want to share
among your 20 scripts in a separate file called FunctionSymbols.ss that might sim-
ply contain this:

Mov 0, MovePlayer
Mov 1, PrintText
Mov 2, PlaySoundFX

You can include it in each of the 20 files using a preprocessor directive that might
look like this:

Include “FunctionSymbols.ss”

CallHost MovePlayer, 10, 20
CallHost PlaySoundFX GUNSHOT

Not only does this save you the typing of having to declare your variables in 20 dif-
ferent files, it also just looks cleaner. At compile time, the preprocessor will scan
through the source file, looking for instances of the Include directive. Whenever it
finds one, it’ll extract the file name, open the contents of that file, and replace the
Include line with those contents. The compiler will never know the difference, but
you’ll gain quite a bit of organization as a result.

Escape Characters
Currently, strings are defined as three tokens: opening and closing quotation marks
and the string itself. But what happens if you want to create a string value that con-
tains a quotation mark? How will the compiler know that it’s part of the string
rather than the end of it? The answer is to implement escape characters, which allow
the script writer to tell the compiler specifically that a given character should be
ignored by the tokenizer.

Imagine that you want to assign a variable the following string variable:

Mov “He screamed, “NOOO!!!””, MyString

The problem is that you need to use quotation marks within the string, but the tok-
enizer won’t be able to tell which quotes are part of the string value itself and
which delimit the operand’s beginning and end. With escape characters, however, a
special character is recognized by the tokenizer when tokenizing strings that basi-
cally says, “The character immediately following me should be ignored.” In C and

448 12. Simple Game Scripting

TeamLRN

many other high-level languages, this special character is the backslash (\). So,
using escape characters, we can rewrite the preceding line like this . . .

Mov “He screamed, \”NOOO!!!\””, MyString

[…] and everything will compile just fine. The reason is that, when the tokenizer is
parsing the string, it’s on the lookout for the backslash. When it finds it, it ignores
the next character, effectively preventing it from being tripped up by it. The back-
slashes themselves are not considered part of the string, so you don’t have to worry
about them being visible if the string in question is printed by the host program to
the screen or whatever. Rather, they simply serve as notes to the tokenizer to help it
parse your string more intelligently.

The last detail, however, is what to do about backslashes themselves. They may be
useful in letting us denote special uses of the quotation mark to the compiler, but
what do we do if we actually want to put a real backslash into our string? For exam-
ple, imagine the following line of code if the compiler supported escape sequences:

Mov “D:\Graphics\Image.BMP”, Filename

Characters G and I would be treated like escape characters, and the backslashes
themselves would be ignored. This obviously wouldn’t work well if we tried using
this variable to load a file. The answer is to repeat the backslash twice everywhere
you want to use it once. The first backslash is the escape character as usual, but the
tokenizer knows that if another backslash is found immediately after it, we’re trying
to tell it that we just want to use the second one. So, the preceding line of code
would be rewritten as follows and work just as expected:

Mov “D:\\Graphics\\Image.bmp”, Filename

Read Instruction Descriptions from
an External File
This is a simple but highly useful improvement to consider for our scripting system.
As things stand currently, the only way to change the language that our compiler
understands is to change the code that populates the instruction list. This works
well enough and is certainly easy to do, but it does require a full recompile for the
changes to take effect.

A more elegant solution would be to store these instructions in a separate file that
the compiler reads in when it starts up. This would allow us to change the language
as frequently as we wanted without ever recompiling the compiler itself. One detail
to note, however, is that you might want to consider storing the instruction list in a

449Where to Go from Here

TeamLRN

linked list as opposed to an array since the compiler won’t know how many instruc-
tions the file will define.

Forcing Variable Declarations
Currently, only arrays need be defined so that the compiler can immediately tell
how much space to allocate for them. We purposely did not impose this convention
for variables, however, because coders often find it convenient to simply imply the
declaration of a variable by immediately using it, especially when writing smaller
scripts and test code.

Problems can arise from this, however. Since the compiler doesn’t require any
mention of a variable before its use, a subtle typo could cause a bizarre logic error
that would be incredibly difficult to track down. Consider the following code:

Mov 16, MyValue
Add 32, MyValue
Mul 2, MyValue
Mov 32, MyOtherValue
Add MyVolue, MyOtherValue

The error here may be hard to spot, but it’s definitely there. In the last line, we add
MyVolue to MyOtherValue, which is obviously a misspelling of the real variable, MyValue.
Although the outcome of this script is expected to be that MyOtherValue is set to 128,
it will actually remain at 32 since the final line will declare a new variable called
MyVolue, immediately initialize it to zero, and add it to MyOtherValue.

I can say from extensive experience with a number of languages that allow immedi-
ate use of nondeclared variables that logic errors involving identifier typos can be a
nightmare and are extremely frustrating when they’re finally solved. However, the
ease of use of these languages still has its advantages.

As a result, I suggest that you add the option to force all variables to be declared. Per-
haps this could be another compiler directive called something like ForceDeclar. Any
program that contains this directive would force all variables to be declared with
another directive, perhaps called Var. Thus, our preceding script would look like this:

ForceDeclar

Var MyValue
Var MyOtherValue

Mov 16, MyValue

450 12. Simple Game Scripting

TeamLRN

Add 32, MyValue
Mul 2, MyValue
Mov 32, MyOtherValue
Add MyVolue, MyOtherValue

The last line would then be caught by the compiler, calmly alerting you that you’ve
used an undeclared variable and saving you hours, days, or maybe even weeks of
frustrating debugging sessions:

Error: Line 10
Undeclared identifier ‘MyVolue’

Add MyVolue, MyOtherValue
^

Slick, huh?

This is pretty much everything I can think of off the top of my head, but it should
be plenty to keep you busy. In addition to the ideas I’ve listed here, I certainly
encourage you to try coming up with your own improvements and expansions as
well. As you use your scripting system, you’ll undoubtedly notice ways in which it
could be improved or redesigned to better fit your games, and it’s important that
you take these details seriously. As long as you keep your script system in a constant
state of evolution, you’ll keep your efficiency and productivity at the maximum and
eventually will create the perfect language for your needs, truly making it an invalu-
able part of your gamedev arsenal.

One Last Improvement
Well, there is one last thing I should mention. Throughout this chapter, I’ve made
numerous references to higher-level, C-like scripting languages. We’ve learned that
they’re extremely powerful but also extremely sophisticated internally and thus dif-
ficult to develop at best. Although this is true, I think everyone should learn how
they work at some point or another because the lessons learned in their develop-
ment can be applied to countless other forms of programming. Besides, creating
your own high-level language is a huge accomplishment and allows you to do all
sorts of amazing things.

If you’d like to pursue this, you might be interested to know that I’ve also written a
separate book dedicated to the topic of developing scripting systems called Game
Scripting Mastery (part of the Premier Press Game Development Series, just like this
one). It’s a comprehensive, step-by-step guide to the process of creating your own

451Where to Go from Here

TeamLRN

C-style language from the ground up. If you’ve found the work we’ve done in this
chapter interesting, you’ll probably find quite a lot to like in Game Scripting Mastery.
You may even find that a lot of what we’ve learned here will be directly applicable.

452 12. Simple Game Scripting

TeamLRN

SECTION 3

Advanced
Game
Programming
tricks

TeamLRN

If you are reading this then you are probably quite
the game programmer! Do you think you have
learned everything you need to know? I hope not
because Part III gets into some heavy-duty topics
that any elite game programmer must know! Have
you ever wondered how to creating a scripting lan-
guage that can be used in your games? How about
increasing the load time of your resource files?
Part III covers these topics and much more! In this
section you will learn how to make your character
creations smarter by implementing fuzzy logic AI.
You will also learn how to create game environ-
ments that are so realistic that you will forget that
it is computer generated. These are just a few of
the many topics covered in this section.

I have tried to add an element of surprise to each
section and this section is no different. The last
section contained a rare look into how to create
text-based adventure games. Now, I have seen
some books that cover Assembly Language and I’ve
even seen some books cover the use of Assembly
Language in games. But I don’t recall ever seeing a
book that covered pure Assembly Language game
programming! In fact, once you are done reading
that chapter, you will have created a fully function-
al game! And it will be in pure Assembly Language!

With the tricks in this section, you will be able to
say that you are on your way to becoming a mem-
ber of the elite group of game programmers. So,
what are you waiting for? Read on to get started!

TeamLRN

TRICK 13

High-Speed
Image

Loading
Using

Multiple
Threads

Mason McCuskey, Spin Studios,
www.spin-studios.com

TeamLRN

Introduction
Most of the games I’ve seen have insanely long loading screens that occur fairly fre-
quently throughout the game. Don’t get me wrong—I understand that there’s a
price to pay for the jaw-dropping visuals and stunning sound effects. But I don’t
want to wait any longer than I have to. Unfortunately, some developers inadver-
tently release games with needlessly long load times because they don’t understand
the power of multithreading.

This chapter will look at how to speed up load times by using multiple threads.
You’ll learn the basic concepts of multithreading, how to create threads, how to
ensure that your code is thread safe, and most importantly, how to reduce the time
it takes that little progress bar to move from left to right.

Thread Basics
Before you start coding the optimized loading functions, you need to understand
the basics of working with multiple threads. That’s what this section is for. Keep in
mind that I don’t have the space in this chapter to cover everything you could pos-
sibly do with the thread, so I’m only explaining what you’ll need to understand the
optimized loading code.

What’s a Thread?
Simply put, a thread is a path of execution through your program. Let me explain
this with an analogy. Imagine your program is a recipe for donuts (yum, donuts).
The cook who “runs” that recipe to create the donuts is like a thread. He starts at
the top of your recipe (your main function or thread entry point) and uses the ingre-
dients he has as he follows your directions for making donuts. The path he takes
through your recipe is his path of execution.

What Is Multithreading?
In the old days, everything was single threaded—there was only one cook in the
kitchen. In a multithreaded program, there are several cooks in the kitchen. Each

456 13. High-Speed Image Loading

TeamLRN

cook is following a central copy of your recipe. They all have their own ingredients,
and they’re all doing exactly the same thing because they’re all reading off the
same recipe.

“That’s all fine and good,” you say, “but how is this beneficial?” Imagine that there’s
a line in the donut recipe that says, “Deep fry for 10 minutes.” The cook follows
exactly what’s in the recipe, so he
plops the donuts into the oil and
waits for 10 minutes. During this
time, the entire productivity of the
kitchen comes to a complete stand-
still. The only thing happening is
that the donuts are frying, even
though it’s entirely possible that
something else could be done in
the meantime.

I’ve just given you an analogy for a
single-threaded program. When the
CPU encounters an instruction that
takes a long time to execute (for
example, reading a whole bunch of
bytes off the hard drive), it stops,
and your entire computer waits for
those bytes to move off the drive
and into RAM.

Now here’s an analogy for a multi-
threaded program. Everything’s
pretty much the same; the cooks are
still dumb, but now there are two of
them. So, while one’s sitting around
waiting for the donuts to fry, the
other can still progress with his
recipe as usual. Of course, if both
cooks need the oven, there’s a prob-
lem, and you’ll learn how to deal
with that later. But assuming that
one cook is slightly behind the
other, that cook can work while the

457Thread Basics

TIP
There is a disadvantage to multithread-
ing:You’re using more memory.You have
to load the entire file into memory
before you start processing it, whereas
in a single-threaded model you could
process the data as you read it.

It’s important to keep in mind here that
hard drives, when compared to CPUs,
are wicked slow.This means that in the
time it takes to read one byte from the
drive, you could process several bytes in
memory.

That’s why multithreading is useful, and
it’s why multithreaded game-loading
code will go faster than its single-thread-
ed counterpart. Single-threaded code
wastes time by not doing something
while the bytes are being read, whereas
multithreaded code can keep working as
the bytes trickle in from the drive.

Of course, unless you have two CPUs,
you’re not really doing two things at
once. Internally, the OS is alternating
very quickly between the two threads.
The OS also knows when one thread is
waiting on something (like a byte to
come in from a drive), and it is smart
enough to ignore the waiting thread and
concentrate on other threads until the
byte comes in.

TeamLRN

other is waiting, and more work in the kitchen can be accomplished in the same
amount of time.

Loading resources from a disk into a game involves two distinct steps: getting the
bytes off the hard drive and converting them into a format the game likes. For
example, a texture in memory must be in a certain color depth, whereas on disk it
might be arranged differently and might even contain a different color depth.
Loading that image requires getting it from the disk and then performing any
color depth or other processing on it.

Starting a Thread
Enough theory. Let’s look at some actual multithreaded source code.

Multithreaded source code has one thing that single-threaded source code does
not: a call to the CreateThread Win32 API function. To get multiple threads running,
simply call CreateThread with a pointer to a function that the new thread should start
running. For example:

// create first thread
threadhandle = CreateThread(

NULL, // security attributes, NULL = default
0, // stack size, 0 = default
MyThreadProc, // function thread starts in
NULL, // parameter for the function
0, // flags
&tid1); // where to put the new thread’s ID

The preceding code creates a new thread that begins running the function
MyThreadProc. MyThreadProc looks like this:

DWORD WINAPI MyThreadProc(LPVOID param)
{

/* do something */
return(0); // thread exit code = 0

}

This is a normal function that returns a DWORD and takes as input a void pointer. The
WINAPI is just a synonym for _ _stdcall, which tells the compiler the calling conven-
tion for this function. You need WINAPI; otherwise, the compiler will complain about
you trying to give CreateThread a pointer to a non _ _stdcall function.

458 13. High-Speed Image Loading

TeamLRN

As you can see,
MyThreadProc returns zero.
When the thread hits this
line, it dies in exactly the
same way that a single-
threaded program dies
when it gets to the end of
main(). The return value
from MyThreadProc

becomes the thread’s
exit code, which other
threads can look up.

The single parameter to
MyThreadProc is automati-
cally set to the same
value given in the call to
CreateThread. If you want
to pass more than one
parameter to a thread
entry point, you’ll need
to make a class that con-
tains whatever you need
and then pass the
address of that class as
the LPVOID parameter.
Inside the thread func-
tion, you can reinter-
pret_cast the LPVOID
back into a pointer to the
class and extract what
you need.

If the thread is success-
fully created, CreateThread
gives you back a HANDLE
that you can use to iden-
tify the thread later.

459Thread Basics

TIP
Most of the time, C++ programmers will want a
thread to start at a certain member function of a cer-
tain object.This is easy—just pass the this pointer to
the class you want and have the thread entry point
function immediately call a certain method using that
pointer. For example:

class CFoo
{

public:
/* other stuff goes here */
DWORD ThreadStart() { /* do multithreaded stuff!
*/ }
void Start();
unsigned long m_tid; // thread ID

};
DWORD WINAPI FooEntryPoint(LPVOID param)
{

CFoo *foo = reinterpret_cast<CFoo *>(param);
return(foo->ThreadStart());

}
void CFoo::Start() {

CreateThread(NULL, 0, FooEntryPoint, this, 0,
&m_tid);

}
void main(void)
{

CFoo foo;
foo.Start();

}

In this snippet, you can see how the code passes this
as the parameter to the thread starting function
FooEntryPoint. FooEntryPoint then casts the void point-
er back to a CFoo pointer and calls the ThreadStart
method of that pointer. Presto, multithreaded objects!

TeamLRN

Waiting for a
Thread to
Finish
Once your main thread creates all the
different subthreads, it’s very com-
mon to want that main thread to just
wait until all the other threads have
finished.

You could implement this using a
while loop and the Sleep API call, as
follows:

// create thread
HANDLE threadhandle = CreateThread(NULL, 0, ThreadProc, this, 0, &tid);
// the child thread sets the m_ThreadDone
// variable to true when it’s finished
while (!m_ThreadDone) {

Sleep(100);
}

There are a couple of serious problems with this, however. For starters, your pro-
gram could potentially pause for close to 100 milliseconds if the child thread com-
pletes right after the main thread checks the m_ThreadDone variable. This could lead
to incredibly slow programs if this thread wait code is in a loop that runs many
times. Second, the main thread is burning CPU cycles doing nothing, CPU cycles
that the child thread(s) could use to complete their work faster.

Here’s a better way to do the same thing:

// create thread
HANDLE threadhandle = CreateThread(NULL, 0, ThreadProc, this, 0, &tid);
WaitForSingleObject(threadhandle, INFINITE);
// close thread
CloseHandle(threadhandle);

This code uses the WaitForSingleObject Win32 API call. WaitForSingleObject doesn’t
return until the thread whose handle you gave it terminates. The INFINITE parame-
ter is actually a timeout in milliseconds. In this case, the code is prepared to wait
forever, but you could also wire it so that WaitForSingleObject returns after a certain

460 13. High-Speed Image Loading

CAUTION
It’s vital that you close the handle that
CreateThread gives you when you’re done
using it. Many programmers assume
that the system will automatically clean
up a thread handle when you return
from the thread’s entry point.This is
incorrect.You need to explicitly close
(via CloseHandle) all threads that you
create; otherwise, your application will
leak thread handles, which could eventu-
ally cause a system crash.

TeamLRN

number of milliseconds. You can check the return value of WaitForSingleObject to
determine whether it returned because the thread whose handle you gave died or
because the timeout was hit—consult your MSDN documentation.

This is better because, here, you’re telling the OS explicity, “Pause this thread until
the other thread finishes.” This allows the OS to ignore that thread and give more
CPU cycles to the child thread. The OS knows when the child thread finishes and
at that point restores your main thread.

There’s also a WaitForMultipleObjects API call that takes an array of handles instead
of just one:

// create 3 threads
HANDLE threadhandles;
threadhandles[0] = CreateThread(NULL, 0, ThreadProc, this, 0, &tid);
threadhandles[1] = CreateThread(NULL, 0, ThreadProc, this, 0, &tid);
threadhandles = CreateThread(NULL, 0, ThreadProc, this, 0, &tid);
// wait for all 3 threads to finish
WaitForMultipleObjects(3, threadhandles, true, INFINITE);
// close all 3 threads
CloseHandle(threadhandles[0]);
CloseHandle(threadhandles[1]);
CloseHandle(threadhandles);

Here you give WaitForMultipleObjects the
size of your handle array, the handle
array itself, and a boolean specifying
whether you want the function to return
when all threads die (true) or when any
one thread dies (false). Again, you can
check the return value to determine exactly why it returned.

Race Conditions
Before you get much further, you need to understand what race conditions are and
how to prevent them from occurring. Race conditions are the bane of the multi-
threading programmer’s existence. They are what cause random crashes that are
incredibly difficult to debug. So let’s learn how to avoid creating them. After all,
the only code that’s truly bug free is the code that doesn’t exist!

To learn what a race condition is, fire up the RaceCondition sample program on
the accompanying CD-ROM. The idea behind the sample program is very simple:

461Thread Basics

TIP
You can also use WaitForSingleObject
and WaitForMultipleObjects to wait
for things other than threads dying.
You’ll see how to use it for sema-
phores later in this chapter.

TeamLRN

to output alternating pound signs (#) and dots (.). The program has a problem,
however, and doesn’t do what you’d expect it to.

Here’s the source that the threads in the RaceCondition sample program use:

char g_lastchar = ‘#’;
DWORD WINAPI UnprotectedThreadProc(LPVOID param)
{

int count=0;
while (count < 1000) {

if (g_lastchar == ‘.’) {
printf(“#”);
g_lastchar = ‘#’;

}
else {

printf(“.”);
g_lastchar = ‘.’;

}
count++;

}
return(0);

}

The RaceCondition sample program has two threads running the preceding code.
As you can see, the code tries to print alternating pound/dot characters using two
threads. You’d expect to end up with a bunch of characters alternating, like this:

#.

Unfortunately, this isn’t what happens. Run the program, and you’ll instead see
output like this:

#.#.#.#..#.#.#.##.#.#.#.#..#.#..#.##.#.##.#.#.#.#.#.#.##.#.#.#.#

The pattern is interrupted by random occurrences of two dots or two pound signs.
What’s going on here?

The problem is that g_lastchar can change in between the time the code tests it and
the time sets it again.

For example, see Figure 13.1. The two threads both test g_lastchar at the same
time, which causes the second thread to output a dot even though the first thread
has already output a dot.

462 13. High-Speed Image Loading

TeamLRN

The preceding code isn’t thread safe—it won’t always work as you expect it to.
Programmers refer to this situation as a race condition.

Formally defined, a race condition exists when the output of your program depends
on the execution order of your threads (that is, if your program relies on threads
entering or exiting functions at a certain time or changing variables at a certain
time). For the preceding code to work consistently, the threads must never enter at
precisely the same time.

Atomic Operations
To get the code to work, what you really need is a way to say, “Hold on, thread 2.
Thread 1 is currently doing something and can’t be interrupted.” You want each
thread to wait until the other thread has flip-flopped the g_lastchar variable.

In other words, you need a certain segment of code (an “operation”) to be
“atomic.” A yawn is a good example of an atomic operation. Once you start one, it
can’t be interrupted until it’s done. (Sorry if I made you yawn just then.) Atomic
operations are a way to guarantee that once you start something, all other threads
are going to wait for you to finish, thus avoiding chaos.

463Thread Basics

Figure 13.1

An example of a
race condition

TeamLRN

Critical
Sections
One of the most common ways
to deal with a race condition is
to use a critical section. A critical
section, simply put, allows you to
make anything you want into an
atomic operation. Simply mark
the beginning and end of the
critical section of code, and the
OS makes sure that only one
thread is within that critical sec-
tion at any given time.

This is sort of like reducing a highway from four lanes to one. Just as only one car
can move through that section of highway at a time, you’re mandating that only
one thread can move through that section of code at a time. The other threads will
wait until it’s their turn.

Returning to the pound and dot example,
here’s how you would use a critical section to
get the pattern you want:

DWORD WINAPI ProtectedThreadProc(LPVOID param)
{

int count=0;
while (count < 1000) {

::EnterCriticalSection(&g_CriticalSection);
if (g_lastchar == ‘.’) {

printf(“#”);
g_lastchar = ‘#’;

}
else {

printf(“.”);
g_lastchar = ‘.’;

}
::LeaveCriticalSection(&g_CriticalSection);
count++;

}
return(0);

}

464 13. High-Speed Image Loading

TIP
Quite frequently in multithreaded program-
ming, you need to be able to increment and
decrement variables (and test their values)
atomically.This is the foundation upon which
all of the other multithreaded mechanisms
(critical sections, semaphores, and so on) are
based. If you’re doing serious multithreaded
programming, you need to understand these
atomic increment/decrement functions
(InterlockedIncrement and
InterlockedDecrement).

TIP
You should only use critical
sections where you absolute-
ly need them.The more you
use them, the more you cut
into the benefits provided by
multithreading. Make your
one-lane highways as short as
possible.

TeamLRN

This ProtectedThreadProc is identical to the UnprotectedThreadProc in the previous sec-
tion, with the exception of the EnterCriticalSection and LeaveCriticalSection API
calls. Together, these two functions define the critical section of code. The OS
keeps track (using atomic increment/decrement) of whether there’s a thread
inside the critical section. The EnterCriticalSection function won’t return until the
thread that called it can enter the critical section.

Also, it’s important to note that once you’re in a critical section, the only way out is
to call LeaveCriticalSection. A critical section lives on even if you return from a
function, throw an exception,
or even end a thread!

You might be wondering
why the code passes
g_CriticalSection into the
EnterCriticalSection and
LeaveCriticalSection calls.
Without going into
too much detail,
g_CriticalSection is the vari-
able that the OS is using to
keep track of whether
there’s a thread in the criti-
cal section. It’s a global vari-
able, defined as follows:

CRITICAL_SECTION
g_CriticalSection;

The CRITICAL_SECTION type is defined by Win32. It’s a structure that contains some
internal variables that the OS needs, things like the handle to the thread that’s cur-
rently inside the critical section, how many times it’s recursed in there, and so on.

There’s a subtle difference that you should be aware of, however: g_CriticalSection
is not a critical section. A critical section is a segment of code guarded by enter and
leave calls. The g_CriticalSection variable is a structure, and that structure has a
somewhat misleading name. If it were up to me, I would have called it
CRITICAL_SECTION_TRACKING_INFO or something because it’s really a collection of things
that the OS uses to track what thread is inside a critical section.

It is possible to use g_CriticalSection to keep track of two completely different criti-
cal sections of code. You can’t do it if the code blocks nest or if there’s a chance

465Thread Basics

CAUTION
Imagine what would happen if you entered a
critical section and then never left it. One
thread could get in, but all other threads in
your program would be locked out at the
front gates, and your program would hang.
Thankfully, it’d be a “nice” hang. It wouldn’t be
using any CPU power because all of its threads
would be stuck (blocked) at the critical section.

By the way, programs that have all their
threads blocked, with no opportunity to get
them unblocked, are called zombies.They truly
are like the living dead.

TeamLRN

that two different threads can run inside the two different critical sections at the
same time, so it’s risky behavior. Programmers therefore tend to only use a given
CRITICAL_SECTION structure to keep track of one specific critical section.

You must initialize this structure (by calling the InitializeCriticalSection Win32 API
call) before you attempt to enter a critical section using it:

InitializeCriticalSection(&g_CriticalSection);

Similarly, you must use another Win32 API call to delete the structure when you’re
done using it:

DeleteCriticalSection(&g_CriticalSection);

Producers and Consumers
You’re on a roll. You understand what a critical section is and know when and
where to use one. Now let’s look at a different type of multithreading problem: the
producer/consumer problem.

466 13. High-Speed Image Loading

TIP
Cool programmers use C++ critical section objects because they
make initialization, usage, and cleanup a snap.The constructor initial-
izes the critical section and then immediately enters it; the destruc-
tor leaves the critical section and then deletes it.

This allows you to declare critical section objects statically and have
their scope automatically become a critical section. For example:

void MyFunction(void)
{

/* do some non-critical-section stuff */
{

CCriticalSection mysection;
// critical section initialized and entered!
/* do some critical section stuff */
// critical section is left and deleted when
// mysection goes out of scope

}
/* do more non-critical-section stuff */

}

TeamLRN

I used donuts for the last example, so here’s a new setting: a grocery store on
Saturday morning. For those of you who don’t know, in American grocery stores,
Saturday morning is when the free samples come out. Customers can grab samples
of specific brands of bread, cheese, sausage, and so on, from plates scattered
throughout the store. If you walk around long enough, you could free sample your
way to a pretty decent breakfast.

Zoom in on the bakery and specifically the plate of free cookies on the counter. On
one side of the counter are the producers—the grocery store staff tasked with mak-
ing sure that there are always cookies on the plate. On the other side are the
consumers—the customers looking to snag an early morning treat.

Returning to code, the cookie plate itself can be represented by an STL vector of
CCookie objects:

std::vector<CCookie> m_CookiePlate;

Okay, that’s easy enough. Now let’s say there are three producers and 20 consumers
(because grocery stores are always chronically understaffed). The producers might
have code that looks like this:

DWORD WINAPI ProducerThread(LPVOID param)
{

std::vector<CCookie> *pCookiePlate =
reinterpret_cast<std::vector<CCookie> *>(param);

while (StoreIsOpen()) {
if (pCookiePlate->size() < 12) {

// Make a new cookie and put it on the plate.
pCookiePlate->push_back(CCookie());

}
}
return(0);

}

In the preceding code, you can see what the producers are trying to do. Whenever
the plate contains less than 12 cookies, they put a new cookie on the plate.

The customers might have a brain like this:

DWORD WINAPI ConsumerThread(LPVOID param)
{

std::vector<CCookie> *pCookiePlate =
reinterpret_cast<std::vector<CCookie> *>(param);

while (Hungry()) {

467Thread Basics

TeamLRN

if (pCookiePlate->size() > 0) {
// there’s a cookie on the plate! Grab it
CCookie mycookie = pCookiePlate[pCookiePlate->size()-1];
// pull the cookie off the plate
pCookiePlate->pop_back();

}
}
return(0);

}

These are greedy customers. If there is a cookie on the plate, they take it. Of
course, the action of taking the cookie is not very realistic. The code doesn’t really
take the cookie; instead, it makes a copy of it and deletes the original.

These two thread functions look okay on the surface, but they hide a bunch of seri-
ous problems. For starters, give yourself extra credit if you noticed that there’s no
critical section ensuring that only one thread can mess with the cookie vector at
one time. Imagine if a producer pushed a cookie onto the vector at the exact same
time a customer was pulling one off. Who knows what weird memory errors
you’d get!

Here’s another problem: Both the producer and the consumer can burn CPU
cycles doing nothing. If there are already a dozen cookies on the plate, the pro-
ducer code does nothing but loop around an empty “while loop,” taking CPU
cycles away from the consumers. Conversely, if there are no cookies in the vector,
the consumer is burning cycles.

Here’s the most insidious problem, however: Imagine what happens when two con-
sumers both try to grab for the last cookie. This is a horrible race condition. In real
life, humans automatically compensate for this sort of thing: Your eyes see another
person’s hand make off with the treat, and you abort your grab process. But
threads don’t have eyes. There’s no way for one consumer to know whether
another consumer thread has grabbed the last cookie, so there’s the possibility for
both threads to grab the same C++ object and begin messing with the same areas of
memory. This is a recipe for disaster.

Semaphores to the Rescue
What the code needs is a semaphore. A semaphore, like a critical section, is a device
you can use to keep the threads of your program under control. Semaphores are
used to count things. Specifically, they’re used to count how many things are cur-
rently available.

468 13. High-Speed Image Loading

TeamLRN

There are two things that you can tell a semaphore to do. First, you can tell it to
add a certain amount to its count. Producers do this—when the producer code cre-
ates a new cookie, it adds one to the semaphore’s count.

Conversely, you can also tell a semaphore to decrease its count. This is a little dif-
ferent, though. For starters, you can only decrease by one. Also, the decrease oper-
ation performs the following logic:

// if the current count of this semaphore > 1,
// subtract one and return

// else
// wait until it is at least 1
// subtract one and return

// endif

So the Subtract function is more like a “Subtract one if you can; otherwise, wait
until there’s something to subtract and then subtract that” function.

Are you starting to see how semaphores are useful? Essentially, the producers add
to the semaphore, and the consumers do the subtract-if-you-can-but-wait-if-you-can’t
logic. Of course, the logic of the semaphore is an atomic operation, so there’s no
chance of one thread modifying a variable at the wrong time.

Programming Semaphores
The only question left then is “How do I put semaphores into my code?”

Creating Semaphores
To start out, create a semaphore using the Win32 API call CreateSemaphore:

HANDLE hSemaphore = CreateSemaphore(
NULL, // security attributes
0, // initial count
10, // maximum count
NULL // name (if sharing between processes)

);

Every semaphore has a maximum allowable value. Continuing with the cookie
example, this maximum value is akin to the maximum number of cookies on the
plate. If you try to add more when the semaphore’s at its maximum, the API call
fails.

469Thread Basics

TeamLRN

If you plan on sharing a semaphore between programs, you can also specify a
unique name for it (since the handle variables won’t go across process boundaries).

Destroying Semaphores
To get rid of a semaphore, simply close its handle:

CloseHandle(hSemaphore); // buh-bye!

Releasing a Semaphore (Adding to It)
The naming conventions get somewhat tricky here. When you want to add a certain
amount to the semaphore, it’s called releasing a semaphore. You can remember this
by thinking of it this way: Whenever you add value to a semaphore, you potentially
release other threads from their wait-until-the-semaphore-is-greater-than-zero status.

The Win32 API call is named ReleaseSemaphore:

bool result = (ReleaseSemaphore(hSemaphore, 1, NULL) != 0);

As you can see, ReleaseSemaphore returns nonzero if the specified amount was added
successfully (that is, if the
semaphore didn’t hit
its maximum value);
otherwise, it returns
false. The three para-
meters to the API call
are the semaphore
handle, the amount to
add, and an optional
pointer to a long int

that receives the old
value of the sema-
phore. Most of the
time, you don’t care
about this and can
leave the last parameter
as NULL, as in the preceding example.

470 13. High-Speed Image Loading

TIP
In the semaphore release example line, notice the
trick to convert an int to a bool:

int someinteger = 5;
bool badbool = someinteger; // issues a compiler

warning
bool goodbool = (someinteger != 0); // no warning

If you just assign an int to a bool, the compiler will
issue a warning.After all, a bool isn’t the same as an
int.A clever trick is to test the int against zero and
put the result of that test (which is either true or
false) into a bool.

TeamLRN

Subtracting One from a Semaphore
(Wait for It!)
Now that you can add, let’s learn how to taketh away. Believe it or not, you subtract
one from a semaphore by using the WaitForSingleObject or WaitForMultipleObjects

API call explained earlier. These API calls magically know (based on the handles
you give them) if something’s a semaphore and will automatically subtract one
from the semaphore.

CProducerConsumerQueue
As you can see, there is a bit of work you must do to ensure that a producer/con-
sumer system behaves in a thread-safe manner. Fortunately, you can create a class
that contains that work.

All of the additional things you must do come into play when you’re putting ele-
ments into or pulling them out of a queue. So it makes sense to make a special
queue class. Also, since you want this queue class to be able to handle any data
type, it makes sense to templatize it:

template <class Type>
class CProducerConsumerQueue {

/* fun stuff here */
};

This section will walk you through filling in the fun stuff here comment. There are
essentially four core operations that this class needs: initializing the queue, adding
and removing elements, and shutting down the queue.

Initializing the Queue
The queue doesn’t need much in the way of initialization. It uses one critical sec-
tion to control access to the underlying STL queue object and uses an event to tell
the threads when it is being shut down (more on that in the next section).

Here’s the code from the constructor:

CProducerConsumerQueue(int maxcount) {
::InitializeCriticalSection(&m_cs);
m_Handle[SemaphoreID] = ::CreateSemaphore(NULL, 0, maxcount, NULL);
m_Handle[TerminateID] = ::CreateEvent(NULL, TRUE, FALSE, NULL);

}

471Thread Basics

TeamLRN

You should notice two things here. First, the constructor expects a single parame-
ter, maxcount. This is akin to the maximum number of cookies that can be on the
plate. It’s the starting value of our semaphore. As consumers pick off items from
the queue, the semaphore value will decrease until it hits zero, and then threads
will have to start waiting.

472 13. High-Speed Image Loading

TIP
Coming up with a good initial value for your queue semaphore
involves estimating whether your producers will generally be faster
than your consumers or vice versa.Assume that producers are
faster than consumers. In this case, it makes sense to choose a large
semaphore value so that your producers have room to keep the
array full. Of course, it doesn’t have to be terribly big. Even if a con-
sumer takes the last value from the queue, you can probably pro-
duce another one in short order. However, a large value can give you
buffer protection.

Incidentally, it’s for this same reason that portable CD players used
to advertise how big their antishock buffers were.A CD player can
read bytes much faster than speakers can play them, meaning the
CD’s “producer” (the laser) is much faster than its “consumer” (the
speaker). Big buffers give the laser more time to recover when it
loses track of where it is, and this increases the odds of it being able
to right itself and fill the queue back up before the speaker ever
runs out of data to play.

Conversely, if it takes longer to produce than to consume, you can
go with a pretty small value because the odds are good that you’ll
never be able to fill your queue anyway. Unless the consumers stall
for some reason, there will generally always be a consumer ready
and waiting to take a newly produced object.

In a resource loader, usually the producer is much slower than the
consumer because the producer has to read from disk.There can be
exceptions (if the process of interpreting a certain file type takes a
long time), but in general, I’ve found that a small value (four or five)
works well.

TeamLRN

Adding an Element to the Queue
Here’s the code that handles adding elements onto the end of the queue:

bool AddToBack(Type type) {
::EnterCriticalSection(&m_cs);

m_Queue.push(type);
bool result = (::ReleaseSemaphore(

m_Handle[SemaphoreID], 1, NULL) != 0);

if(!result) {
OutputDebugString(\nWarning, queue full!”);
m_Queue.pop();

}
else {

char str[256];
_snprintf(str, 256,

“\nItem Added! Items in queue: %d”, m_Queue.size());
OutputDebugString(str);

}
::LeaveCriticalSection(&m_cs);

return result;
}

The whole method is protected by a critical section. The code starts by pushing the
object onto the back of the STL queue. Next it calls ReleaseSemaphore to raise the
count of the semaphore by one. If ReleaseSemaphore fails, it means that the sema-
phore is already at its maximum value. If this happens, to keep the semaphore and
queue size in sync, the object that was just added must be removed from the STL
queue.

Next the method uses the Win32 API function OutputDebugString to output a debug
message. Debug messages are cool because they go directly to the Visual Studio
Debug Output Window, so you can see the queue filling up in real time.

Finally, the code leaves the critical section and returns whether or not the object
was added successfully.

473Thread Basics

TeamLRN

Removing an Element from the Queue
Here’s the code that pulls an element off the front of the queue:

bool RemoveFromFront(Type &t) {
ProducerConsumerQueueIDs result =

(ProducerConsumerQueueIDs)WaitForMultipleObjects(2,
m_Handle, FALSE, INFINITE);

if (result == SemaphoreID) {
bool result=true;
::EnterCriticalSection(&m_cs);
try {

if (m_Queue.size()) {
t = m_Queue.front();

m_Queue.pop();
}
else {

result = false;
}

} catch(...) { }
char str[256];
_snprintf(str, 256, “\nItem Removed! Items in queue: %d”,

m_Queue.size());
OutputDebugString(str);
::LeaveCriticalSection(&m_cs);
return result;

}
return(NULL);

}

This code is a little more complex than AddToBack, but it’s still nothing terribly com-
plex. First the code waits for two handles: the semaphore handle and the terminate
event handle. When either of these handles is ready (that is, if the semaphore has a
count of at least one or the terminate event handle is set), WaitForMultipleObjects
returns, and the code checks the return value to determine which handle caused
WaitForMultipleObjects to come back.

If WaitForMultipleObjects came back because of the semaphore, the code enters a
critical section, pops the frontmost object off the queue, and assigns it to the refer-
ence given to it. Remember that WaitForMultipleObjects automatically decrements
the semaphore count, so things stay in sync.

474 13. High-Speed Image Loading

TeamLRN

The code then outputs a debug message, leaves the critical section, and returns
whether or not it was able to grab an object.

Notice the importance of the terminate event here. Without the terminate event,
the only way to get RemoveFromFront to return after you called it would be to add an
object to the queue and increment (release) the semaphore. This isn’t optimal.
However, by using the terminate handle, we can force RemoveFromFront to bail out
without having to mess with the semaphore.

Shutting Down the Queue
The Terminate function is the one responsible for setting the terminate event:

void Terminate() {
::SetEvent(m_Handle[TerminateID]);

}

Hasta la vista, baby! When m_Handle[TerminateID] is set, it frees up all consumer
threads potentially stuck waiting for the semaphore to rise above zero. This, com-
bined with some logic on the consumer side that tells them to quit when they don’t
get any more objects back, allows us to cancel the whole producer/consumer setup
at any time.

CProducerConsumerQueue Wrapup
What I’ve described for you here is the basic core of a virtual cookie plate. There
are many other things you can add onto this class, and I encourage you to spend
time adding the features that you think are worthwhile.

Having a class such as this in your “programmer’s toolbox” can really come in
handy. Since most multithreaded problems involve some variant of the
producer/consumer algorithm, this class could quickly become one of your most
treasured multithreaded weapons.

Introducing
CResourceLoader
Whew! That was a whirlwind tour of threading and producer/consumer queues,
but it gave you everything you need to understand this next section, in which you
learn how to implement a multithreaded (and wicked fast!) resource loader.

475Introducing CResourceLoader

TeamLRN

The Big Idea
The design of the resource loader is relatively straightforward, although it does
involve several small classes. At the core of the whole system is the idea that there’s
a loader (CResourceLoader) that operates on tasks (CResourceLoaderTask). Each task
contains all the information needed to load one resource from disk. Specifically,
each task contains the file name of the item to load as well as a pointer to a base-
class object that knows how to read it and where to put it in memory.

This base class is what allows the resource loader to work on any type of file. All of
the details about what the file is and how to interpret it go inside the “loadable
object” base class, CLoadableObject. CLoadableObject is simply an interface; it contains
nothing except pure virtual functions. To load a specific type of resource, you need
to derive a new class from this base class and fill in the functions (see Figure 13.2).

Each task also contains a variable that indicates what the loader is currently doing
to the task:

enum eResourceLoaderTaskState {
TASKSTATE_QUEUED = 0,
TASKSTATE_LOADING,
TASKSTATE_LOADED,
TASKSTATE_FAILED

};

The valid values here are TASKSTATE_QUEUED, which means the bytes from the file
haven’t been read yet; TASKSTATE_LOADING, which means the bytes have been read and
are currently being interpreted; and TASKSTATE_LOADED, which means the resource is
ready to go. Of course, if something happens while loading or interpreting the file,
there’s always TASKSTATE_FAILED.

476 13. High-Speed Image Loading

Figure 13.2

Deriving different
types of loaders
from a common
CLoadableObject

base class

TeamLRN

The loader works in a two-phase process. In the first phase, you repeatedly call
AddTask to give it a big list of all the stuff you want loaded. Once you’ve given the
loader all your tasks, you say go, and the second phase begins. In this phase, the
loader goes through your task list and loads the resources.

Tasks
The CResourceLoaderTask object is pretty dumb, as objects go. It’s really more like a
structure that only CResourceLoader can manipulate. This is because all of its data
members are protected, but it declares CResourceLoader as a friend:

class CResourceLoaderTask
{
public:

friend class CResourceLoader;
CResourceLoaderTask() { m_State = TASKSTATE_QUEUED; }

CResourceLoaderTask(string filename, CLoadableObject *obj) {
m_State = TASKSTATE_QUEUED;
m_Filename = filename;
m_Object = obj;

}
virtual ~CResourceLoaderTask() { }

protected:
eResourceLoaderTaskState m_State;
string m_Filename;
CLoadableObject *m_Object;
CByteBlock m_Data;

};

As you know, in C++, a “friend” class has access to protected and private members
and methods. Here we use the friend mechanism to ensure that the only thing that
can manipulate a CResourceLoaderTask is a CResourceLoader.

A couple of other things are worthy of notice as well. Each task object contains a
CByteBlock called m_Data. A CByteBlock is essentially a memory-mapped file. It’s
responsible for loading a file from disk and storing its contents. This allows you to
separate loading data and interpreting data into two distinct operations. Load the
data into the byte block and then give that byte block to another function that
interprets it somehow (creates a texture, or a sound effect, and so on).

477Introducing CResourceLoader

TeamLRN

The m_Object member of CResourceLoaderTask is a pointer to an object that knows
how to interpret the byte block and where to put it. For example, if you wanted to
load a texture, m_Object would point to your texture class, which would contain a
pointer to the texture memory that would be filled in when your texture class’s
load function was called.

Queuing Up Tasks
The first thing you’ll want to do with this loader is give it some things to load. You
do this through the AddTask function:

void CResourceLoader::AddTask(CResourceLoaderTask &task)
{

::EnterCriticalSection(&m_Tasks_cs);

m_Tasks.push_back(task);
::LeaveCriticalSection(&m_Tasks_cs);

}

This is fairly straightforward. The code uses a critical section to ensure that only
one thread is accessing the task’s array.

Beginning the Loading Process
Once all tasks have been added, the user of the code calls BeginLoading to start the
loading process. Here’s what BeginLoading looks like:

void CResourceLoader::BeginLoading()
{

ResetEvent(m_EverythingDoneEvent);
// start producer & consumer threads
if (NULL == ::CreateThread(NULL, 0,

LoaderThreadStartProc, (LPVOID)this, 0,
&m_LoaderThreadID)) {
throw(“can’t create loader thread!”);

}
if (NULL == ::CreateThread(NULL, 0,

ProcessorThreadStartProc, (LPVOID)this, 0,
&m_ProcessorThreadID)) {
throw(“can’t create processor thread!”);

}
}

478 13. High-Speed Image Loading

TeamLRN

As you can see, this is where the producer and consumer threads are started.
Before they’re started, however, the code resets an event handle called
m_EverythingDoneEvent. To understand why that’s there, we need to look at another
method: WaitUntilFinished.

void CResourceLoader::WaitUntilFinished()
{

WaitForMultipleObjects(1, &m_EverythingDoneEvent, FALSE, INFINITE);
}

When the loading is in full swing, there are actually three threads running amok in
our process: the consumer and producer threads and also the main thread of the
application (the thread that called BeginLoading). Different games may want to do
different things with their main thread. Some might prefer to have the main thread
keep pumping out frames or possibly display a progress bar.

Other games might not want to do anything with their main thread while things
are being loaded. If there are only
a couple of megabytes to load, it
really isn’t worth your time to
put up a load screen and
progress bar. For those situations,
you can call the WaitUntilFinished
function.

WaitUntilFinished does just that—
it pauses the main thread until
everything’s loaded. It knows
when everything’s loaded when
the m_EverythingDoneEvent is set
(by the consumer thread). This
is thread communication (or syn-
chronization) at its most basic.

The Secondary Threads
At this point, you should be fairly comfortable with the organization of
CResourceLoader. Now let’s take a peek at how the producer and consumer threads
work.

The producer thread’s job is simple: get the bytes off the drive and store them in
the task object. Here’s how the code looks:

479Introducing CResourceLoader

TIP
It’s very easy to tell when you need to use
a synchronization object (such as an event)
to communicate between threads.You
probably need one whenever you find your-
self tempted to write something like this:

while (ready == false) { Sleep(1000); }

Never use the dreaded while loop wait
(also known as a busy wait).Always use
thread synchronization objects (events,
semaphores, and so on) instead.

TeamLRN

void CResourceLoader::LoaderThread_Entry()
{

for (int q=0; q < GetNumTasks(); q++) {
CResourceLoaderTask *task = &m_Tasks[q];
if (!task->m_Data.Load(task->m_Filename)) {

task->m_State = TASKSTATE_FAILED;
}
else {

task->m_State = TASKSTATE_LOADING;
m_Queue.AddToBack(task);

}
}
m_Queue.Terminate();

}

There’s nothing terribly complex here. The loader thread loops through each and
every task in the m_Tasks array. It tells the CByteBlock object of each task to load the
data off the drive. If that works, it sets the state of the task to TASKSTATE_LOADING
because, at this point, the task is about halfway loaded (if you pretend that the two
steps to loading are “load from disk” and “interpret”). It then puts the task on the
CProducerConsumerQueue so that the consumer thread can pick it off when it’s ready.

If something goes wrong, the thread sets the task’s state to TASKSTATE_FAILED and
doesn’t add it to the queue.

Now turn your attention to the consumer:

void CResourceLoader::ProcessorThread_Entry()
{

CResourceLoaderTask *task = NULL;
while (m_Queue.RemoveFromFront(task)) {

if (task) {
task->m_Object->Load(task->m_Data);
task->m_State = TASKSTATE_LOADED;

}
}
SetEvent(m_EverythingDoneEvent);

}

This thread picks things off the front of the producer/consumer queue. It calls the
Load method of the m_Object abstract base class to interpret the data and sets the
task’s state to TASKSTATE_LOADED when it’s done. When all objects have been inter-
preted, it sets the “everything’s done” event.

480 13. High-Speed Image Loading

TeamLRN

The Payoff
After all this work, you no doubt want to see the system in action. This section
explains how to write a good test program so that you can see for yourself why you
went to all this multithreading trouble. If you like, follow along by firing up the
ResourceLoader test program in your IDE.

Simulating Work
The first question you need to answer is, “What kind of things should I load in my
test application?” You could decide to load all sorts of nifty files: textures, sounds,
levels, whatever. For the purposes of the ResourceLoader test program, though, I
decided to keep things simple and create a “dummy” object so that I wouldn’t have
to write any code to actually interpret data files.

class CDummyResource : public CLoadableObject {
public:

bool Load(CByteBlock &data);
bool Unload() { m_Data.resize(0); return(true); }

protected:
vector<unsigned char> m_Data;

};
bool CDummyResource::Load(CByteBlock &data)
{

// this is a dummy loader, so let’s just increment each byte then store
// it in our array.
//m_Data.reserve(data.GetSize());
for (int q=0; q < data.GetSize(); q++) {

unsigned char c = 0; data.ReadByte(c);
m_Data.push_back(c);

}
Sleep(50);
return(true);

}

This is about as dumb as one can get and still have a worthwhile test bed to see how
the multithreading performs. I derive a CDummyResource class from CLoadableObject.
My dummy class pretends to interpret a byte block by copying memory in a very
slow way. Also, to simulate all the other processing that may occur during interpre-
tation of data, I made my dummy resource sleep for 50 milliseconds. I figured this
was fairly realistic.

481The Payoff

TeamLRN

The Evils of Cache When
Evaluating Disk Performance
Sometimes our modern operating systems make writing simple benchmarking pro-
grams a real pain. In this case, I wanted to simulate the worst possible case when it
came to loading game data. I wanted to pretend that this was the very first time the
game had been loaded so that no data files were already inside the operating sys-
tem’s disk cache.

This was easier said than done. By default, Windows caches any file you read or
write. This completely skewed the results of my testing! So I had to implement a
version of CByteBlock’s Load method that explicitly told Windows not to cache the
data it was reading. This meant using the relatively low-level CreateFile and ReadFile

API calls and specifying the FILE_FLAG_NO_BUFFERING flag, which tells Windows not to
cache the data.

Of course, it didn’t stop there. It turns out that to use FILE_FLAG_NO_BUFFERING, you
must follow a couple of rules: Your reads must be memory aligned on multiples of
the drive’s sector size, and you can only read in multiples of the drive’s sector size. I
eliminated some of this pain by making my sample data files exactly 1MB in size,
but I still had to use the Win32 VirtualAlloc and VirtualFree API calls to allocate
memory that was aligned properly. What a drag!

Anyway, the upshot to all this is that you probably should not use CByteBlock as writ-
ten in a real game. It’s optimized for the special case of testing the worst possible
loading situation. A real byte block load method would want disk caching, so it
could be much simpler.

Catching Performance Data
Once the dummy resource and the specialized CByteBlock were written, it was time
to fire the whole thing up and start capturing some performance data.

Figure 13.3 shows a graph I captured using Windows XP’s performance monitor
application.

This graph shows how active my hard drive was when I was running the single-
threaded segment of the test program. I loaded about 100MB of data using a single
thread, alternatively calling CByteBlock’s Load method (to get the bytes off the disk)
and CDummyResource’s Load method (to interpret the bytes).

482 13. High-Speed Image Loading

TeamLRN

As you can see, the hard drive stays fairly busy, but it’s not pegged at 100 percent.
This is because I’m only using a single thread, so the hard drive has to wait every so
often while my one thread is interpreting the data. This is bad because it’s telling
us that we’re not reading data from the drive as quickly as we can.

Compare that graph to Figure 13.4, which shows how the drive behaves in the mul-
tithreaded producer/consumer algorithm.

483The Payoff

Figure 13.3

Disk read
performance with a
single-threaded
loading algorithm

Figure 13.4

Disk read perfor-
mance with a multi-
threaded loading
algorithm

TeamLRN

Here you can see that the drive is constantly busy throughout the load process. In
this situation, the bottleneck is truly the speed of the drive. We have ample time to
process data “in the background” on another thread.

The end result is significantly faster load times. In my tests, my single-threaded test
took roughly 26 seconds, whereas my multithread code did the same job in 18
seconds—8 seconds less or about 30 percent faster. Before you start rushing out to
implement multithreaded loads, though, realize that my tests exemplify the worst-
case scenario. It’s quite possible that a multithreaded load function would be just as
slow as—and potentially slightly slower than—a single-threaded counterpart.

You should test things out for yourself, but in most cases, you’ll find that multi-
threading is the way to go.

Conclusion (Where to Go
from Here)
Congratulations, you now know the basics. Of course, what I’ve provided in this
chapter is a very simple loader. There are several enhancements you could make
to it:

• You could add functions that would report back how many tasks are com-
plete so that you could display an accurate progress bar.

• You could add a function that would reload everything. This is useful when
you’re using DirectX because if the user switches to another program, some
of your resources could get lost.

• You could add a function that would immediately stop the loading process.
This would let you put a Cancel button up for players in case they acciden-
tally hit something that causes a lengthy load process.

• You could use this object as a basis for a truly background loader (that is, a
loader that reads resources as they are needed). This would allow you to cre-
ate huge levels because you could load in segments of the level as the player
traveled to them.

Remember to always try to keep your load times as short as possible. You’ll have
more fun writing fast code, and your players will have more fun since they won’t
have to wait for unoptimized load code!

484 13. High-Speed Image Loading

TeamLRN

TRICK 14

Space
Partitioning

with
Octrees

Ben Humphrey, GameTutorials,
www.GameTutorials.com

TeamLRN

Introduction
In the last decade, 3-D games have captivated gamers of all ages. With the eye-
popping effects and realistic worlds that gamers crave and expect, developers are
always pushing the limits of real-time rendering. There are numerous genres, such
as first-person shooters, 3-D adventures, and real-time strategy games, to name a
few, that demand huge, elaborate worlds to roam around and discover. Currently,
there is absolutely no way you can pass all the level data down your 3-D pipeline at
the same time and expect to get anything over two frames per second, and that
doesn’t even include rendering your characters or the AI going on in the back-
ground. You need some way of only rendering the data your camera can see. There
are a few ways of doing this, and many factors suggest that you should use one tech-
nique or another, or perhaps even a mixture of several.

The technique discussed in this chapter is an octree. An octree is a way of subdivid-
ing 3-D space, also known as space partitioning. It allows you to only draw the part of
your world/level/scene that is in your frustum (camera’s view). It can also be used
for collision detection. Usually, an octree is implemented with an outside scene,
whereas a Binary Space Partitioning (BSP) tree seems to be more appropriate for
indoor levels. Some engines incorporate both techniques because parts of their
worlds consist of both indoor and outdoor scenes.

Let me reiterate why space partition is necessary. Assume you created a world for
your game, and it was composed of more than 200,000 polygons. If you did a loop
and passed in every one of those polygons—on top of your characters’ polygons
each time you render the scene—your frame rate would come to a crawl. If you
had a nice piece of hardware such as a new Geforce card, it might not be as horri-
ble. The problem is that you just restricted anyone from viewing your game that
doesn’t have a $300+ graphics card. Sometimes, even though you have a really nice
video card, the part that slows down your game a considerable amount is the loop
you use to pass in that data. Wouldn’t it be great if there were a way to render only
the polygons that the camera was looking at? This is the beauty of an octree. It
allows you to quickly find the polygons that are in your camera’s view and draw
only them, ignoring the rest.

486 14. Space Partitioning with Octrees

TeamLRN

What Will Be
Learned/Covered
This chapter will further explain what an octree is, how it’s created, when to stop
subdividing, how to render the octree, and frustum culling. It also will provide
some ideas on collision detection once we have the world partitioned. With the
examples and source code given, you should be able to understand what an octree
is and how to create your own. We will be using a terrain model created in 3D
Studio Max to demonstrate the space partitioning. The terrain’s data is stored as
just vertices, which are stored in an ASCII text file (terrain.raw) like so:

// This would be the first point/vertex in the triangle (x, y, z)

-47.919212 -0.990297 47.910084

// This would be the second point/vertex in the triangle (x, y, z)

-45.841671 -1.437729 47.895947

// This would be the third point/vertex in the triangle (x, y, z)

-45.832878 -1.560482 45.789059

etc...

// The next vertex would be the first one of the second triangle in the list

Instead of writing some model-loading code, I chose to simply read in straight ver-
tices so that anyone can understand what is going on in the source code. This also
cuts the code virtually in half and makes it easier to follow. The file was created by
loading a 3DS file into one of my loaders and then using fprintf() instead of
glVertex3f() in the rendering loop to save the vertex data to a file. After the first
frame, I quit the program. Most likely, you would not model the terrain; you have a
height map instead. That way, you can use terrain-rendering techniques to more
efficiently render what you need to. With that aside, it seemed like a good example
to show space partitioning with a less complicated world.

We will create two different applications that build off of one another. The first one
will simply load the terrain, create the octree from the given vertices, and then
draw everything. There will be no frustum culling because this will be added to the

487What Will Be Learned/Covered

TeamLRN

next application. For those of you who aren’t familiar with the term “frustum
culling,” it refers to checking whether something is in our 3-D view (the camera’s
view). If it is, we draw it; otherwise, we ignore it. This is a fundamental part of the
octree. You’ll learn more about this later in the chapter.

The source code provided is in C++, using Win32 and OpenGL as the API. It’s
assumed that you are comfortable with the Win32 API or at least OpenGL. If you
haven’t ever programmed in Win32, don’t stress. The octree code has nothing to
do with it, other than the fact that our application uses it to create and handle the
window. You should be able to put Octree.cpp and Octree.h independently in your
own C++ framework, though the source code is intended to teach rather than be a
robust class. Since we are working with OpenGL, the axis referred to when point-
ing up will be the Y-axis. This chapter is considered to be somewhat of an advanced
topic; therefore, it is assumed that the reader has a basic grasp of 3-D math and
concepts. This includes understanding vectors, matrices, and standard linear alge-
bra equations. Before we dive into the code, let’s get a basic understanding of how
octrees work.

How an Octree Works
An octree works in cubes, eight cubes to be exact. Initially, the octree starts with a
root node that has an axis-aligned cube surrounding the entire world, level, or
scene. Imagine an invisible cube around your whole world (see Figure 14.1). A
node in an octree is an area defined by a cube, which references the polygons that
are inside of that cube. This is how we keep track of partitions. When we refer to a
cube’s minimum and maximum boundaries, we are indirectly talking about the
region of 3-D space that the polygons reside in.

488 14. Space Partitioning with Octrees

Figure 14.1

The bounding box around the world,
which is also the root node in the
octree

TeamLRN

This root node now stores all the polygons in the world. Currently, this wouldn’t do
us much good because it will draw the whole thing. We want to subdivide this node
into eight parts (hence the word octree). Once we subdivide, there should be eight
cubes inside the original root node’s cube. That means four cubes on top and four
on the bottom. Take a look at Figure 14.2. Keep in mind that the yellow lines out-
lining each node would not be there. The lines were added to provide a visual idea
of the nodes and subdivisions.

We have now divided the world into eight parts with just one subdivision. Can you
imagine how effective this would be if we had two, three, or four subdivisions? Well,
now what? We subdivided the world, but where does that leave us? Where does the
speed come from that I mentioned? Let’s say the camera is in the middle of the
world, looking toward the back-right corner (see Figure 14.3). If you look at the
lines, you will notice that we are only looking at four of the eight nodes in the
octree. These nodes include the two back-top and -bottom nodes. This means we

489How an Octree Works

Figure 14.2

The first subdivision in the octree tree

Figure 14.3

We only need to draw the nodes that
our camera can see

TeamLRN

would only need to draw the polygons stored in those nodes. How do we check
which nodes are in our view? This is pretty easy if you have frustum culling.

Describing the Frustum
In 3-D, you have a camera with a field of view (FOV). This determines how far you
can see to the left and right of you. The camera also has a near and far clipping
plane. This means that the camera can only see what is between the near and far
clipping planes and between the side planes created by the FOV. These six created
planes are what is known as our frustum planes. A frustum can best be understood
by imagining an infinite pyramid (see Figure 14.4). The pyramid is created from
the field of view perspective. The eye of the camera is at the tip of the bottomless
pyramid. Now imagine the near and far clipping planes inserted into the pyramid,
creating a polyhedron (see Figure 14.5).

The region inside of this object is our frustum. Anything outside of that region is
not visible to our camera. This is the area in 3-D that we will be checking to see if

490 14. Space Partitioning with Octrees

Figure 14.4

The infinite pyramid created
from the camera’s field of view

Figure 14.5

The frustum is the camera’s
field of view, sliced by the near
and far clipping planes

TeamLRN

any of the nodes in our octree intersect it. If a node is partially or fully inside this
space (in our viewing frustum), all of its associated polygons are drawn. We check
to see if a node intersects the frustum by its invisible cube that surrounds it. Instead
of checking whether each polygon is in the frustum, we just need to check the cube
that surrounds the polygons. This is where the speed is. The math for collision
between two boxes is easy and fast. Once we know that a node is in our view, we can
render it. One thing that hasn’t been mentioned is that the node must be an end
node. That means the node does not have any children nodes assigned to it. Only
end nodes hold polygonal data.

In Figure 14.3, we basically just cut down the amount we need to draw by 50 percent.
Remember that this was just one subdivision of our world. The more subdivisions,
the more accuracy we will achieve (to a point). Of course, we don’t want too many
nodes because it could slow us down a bit with all that recursion. Looking back at
Figure 14.3, even though we aren’t looking at every polygon in the top-back nodes,
we still would render them all. Each subdivision gets us closer to a better approxima-
tion of which polygons are really in our frustum, but there will be a few hitchhikers
that straggle in. Our job is to eliminate as many of those as we can without compro-
mising the overall efficiency when rendering the octree. Hopefully, this is starting to
make sense. Let’s subdivide yet another level. Take a look at Figure 14.6.

You’ll notice something different about Figure 14.6 from the last subdivision. This
level of subdivision didn’t create eight cubes inside of each of the original eight
cubes. The top and bottom parts of the original eight nodes aren’t subdivided. This
is where we get into the nitty-gritty of the octree-creation process. You always try to
subdivide a node into eight more nodes, but if there are no triangles stored in that
area, we disregard that node and don’t allocate any memory for it. This way, we

491How an Octree Works

Figure 14.6

The second subdivision of the terrain
only creates nodes that contain vertices

TeamLRN

don’t create a node that has no data in it. The further we subdivide, the more the
nodes shape the original world. If we went down another level of subdivision, the
cubes would form a closer resemblance to the scene.

To further demonstrate this, take a look at Figure 14.7. There are two spheres in
this scene but on completely opposite sides. Notice that in the first subdivision
(left), it splits the world into only two nodes, not eight. This is because the spheres
only reside in two of the nodes. If we subdivide two more times (right), it more
closely forms over the spheres. This shows that nodes are only created where they
need to be. A node will not be created if there are no polygons occupying its space.

When to Stop Subdividing
Now that we understand how the subdivision works, we need to know how to stop it
so that it doesn’t recur forever. There are a few ways in which we can do this:

• We can stop subdividing the current node if it has a triangle (or polygon)
count that is less than a max triangle count that we define. Let’s say, for
instance, we choose 100 for the max. That means that before we subdivide
the node, it will check to see if the total amount of triangles it has contained
in its area is less than or equal to the max triangle count on which we
decided. If it is less than or equal to the max, we stop subdividing and assign
all those triangles to that node. This node is now considered to be an end
node. Note that we never assign any triangles to a node unless it’s the end
node. If we subdivide a node, we do not store the triangles in that node;
instead, we store them in its children’s nodes, or their children’s nodes, or
even their children’s, and so on. This will make more sense when we go over
how we draw the octree.

492 14. Space Partitioning with Octrees

Figure 14.7

When subdividing,
only nodes that
have vertices
stored in their
cube’s dimensions
are created

TeamLRN

• Another way to check whether we want to stop subdividing is if we subdivide
past a certain level of subdivisions. We could create a max subdivision level
like 10, and if we recurse above that number, we stop and assign the triangles
in the cube’s area to that node. When I say “above that number,” I mean 11
levels of subdivision.

• The last check we can perform is to see if the nodes exceed a max node vari-
able. Let’s say we set this constant variable to 500. Every time we create a
node, we increment the “current nodes created” variable. Then, before we
create another node, we check whether our current node count is less than
or equal to the max node count. If we get to 501 nodes in our octree, we
should not subdivide that node; instead, we should assign its current trian-
gles to it.

I personally recommend the 1st and 2nd methods.

How to Draw an Octree
Once the octree is created, we can then draw the nodes that are in our view. The
cubes don’t have to be all the way inside our view, just a little bit. That is why we
want to make our triangle count in each node somewhat small, so that if we have a
little corner of a node in our frustum, it won’t draw thousands of triangles that
aren’t visible to our camera. To draw the octree, you start at the root node. We
have a center point stored for each node and a width. This is perfect to pass into a
function, as follows:

// This takes the center point of the cube (x, y, z) and its size (width / 2)
bool CubeInFrustum(float x, float y, float z, float size);

This will return true or false, depending on whether the cube is in the frustum. If
the cube is in the frustum, we check all of its nodes to see if they are in the frus-
tum; otherwise, we ignore that whole branch in the tree. Once we get to a node
that is in the frustum but does not have any nodes under it, we want to draw the
vertices stored in that end node. Remember that only the end nodes have vertices
stored in them. Take a look at Figure 14.8 to see a sample run-through of the
octree. The shaded nodes are the ones that were in the frustum. The white cubes
are not in the frustum. This shows the hierarchy of two levels of subdivision.

493How an Octree Works

TeamLRN

Examining the Code
By now, you should have a general idea of what an octree is and how it works in
theory. Let’s explore the code that will create and use an octree. In the first sample
application, we will demonstrate how to create the octree from a list of vertices and
then draw every single node. There will not be any frustum culling added so that
we can focus on the actual creation and basic rendering process. Here is the proto-
type for the octree class we will be using:

// This is our octree class
class COctree
{

public:

// The constructor and deconstructor
COctree();
~COctree();

// This returns the center of this node
CVector3 GetCenter() { return m_vCenter; }

// This returns the triangle count stored in this node
int GetTriangleCount() { return m_TriangleCount; }

// This returns the width of this node (A cube’s dimensions are the same)
float GetWidth() { return m_Width; }

494 14. Space Partitioning with Octrees

Figure 14.8

The hierarchy of two levels of subdivision
in the terrain

TeamLRN

// Returns true if the node is subdivided, possibly making it an end node
bool IsSubDivided() { return m_bSubDivided; }

// This sets the initial width, height and depth for the whole scene
void GetSceneDimensions(CVector3 *pVertices, int numberOfVerts);

// This subdivides a node depending on the triangle and node width
void CreateNode(CVector3 *pVertices,

int numberOfVerts, CVector3 vCenter, float width);

// This goes through each node and then draws the end node’s vertices.
// This function should be called by starting with the root node.
void DrawOctree(COctree *pNode);

// This frees the data allocated in the octree and restores the variables
void DestroyOctree();

private:

// This initializes the data members
void InitOctree();
// This takes in the previous nodes center, width and which node ID that
// will be subdivided
CVector3 GetNewNodeCenter(CVector3 vCenter, float width, int nodeID);

// Cleans up the subdivided node creation process, so our code isn’t HUGE!
void CreateNewNode(CVector3 *pVertices, vector<bool> pList,

int numberOfVerts, CVector3 vCenter, float width,
int triangleCount, int nodeID);

// This Assigns the vertices to the end node
void AssignVerticesToNode(CVector3 *pVertices, int numberOfVerts);

// This tells us if we have divided this node into more subnodes
bool m_bSubDivided;

// This is the size of the cube for this current node
float m_Width;

// This holds the amount of triangles stored in this node
int m_TriangleCount;

495Examining the Code

TeamLRN

// This is the center (X, Y, Z) point for this node
CVector3 m_vCenter;

// This stores the triangles that should be drawn with this node
CVector3 *m_pVertices;

// These are the eight child nodes that branch down from this current node
COctree *m_pOctreeNodes[8];

};

Let me explain the member variables in the class first. m_bSubDivided tells us whether
the node has any children. We query this boolean when we are drawing to let us
know whether its data needs to be rendered or whether we should recurse further
and render its children’s data. The width of our node is stored in m_Width. This is
used in conjunction with the center of the node, m_vCenter, to determine whether
the node intersects the viewing frustum. When looping through our vertices to ren-
der the octree, we query m_TriangleCount for the amount of vertices we have. We say
that 3 * m_TriangleCount = the number of vertices since we are using triangles as our
polygons. The CVector3 data type is our simple vector class that has the + and –
operators overloaded with member variables:

float x, y, z;

Notice that we create an array of eight COctree pointers. This array will hold point-
ers to each of the node’s children. Not all nodes have eight children or any chil-
dren for that matter. All nodes are created on a need-to-subdivide basis.

The member functions are pretty straightforward, but I will give a brief description
of the important ones. GetSceneDimensions() is called before we create the octree.
This goes through and finds the center point and width of the entire scene/level/
world. Once we find the initial center point and width of the world, we can then
call CreateNode(), which recursively creates the octree.

By now, the octree should be created (assuming the world as we know it didn’t col-
lapse and you are in a pit of lava), so we can call DrawOctree() in our render loop.
Starting at the root node, DrawOctree() recurses down the tree of nodes and draws
the end nodes. Eventually, this will use frustum culling but not until later. Last but
not least, we use DestroyOctree() to free and initialize the data again. Usually you
wouldn’t use this function as the client, but in this application, we can manipulate
some of the octree variables on-the-fly, such as g_MaxTriangles and g_MaxSubdivisions.
Once we change these, we need to re-create the tree from the new restrictions.

496 14. Space Partitioning with Octrees

TeamLRN

You’ll learn more about these variables later, but before I move into discussing the
function definitions, I would like to brush by one more class for our debug lines:

// This is our debug lines class to view the octree visually
class CDebug
{

public:

// This adds a line to our list of debug lines
void AddDebugLine(CVector3 vPoint1, CVector3 vPoint2);

// Adds a 3-D box with a given center, width, height and depth to our list
void AddDebugBox(CVector3 vCenter, float width, float height, float depth);

// This renders all of the lines
void RenderDebugLines();

// This clears all of the debug lines
void Clear();

private:

// This is the vector list of all of our lines
vector<CVector3> m_vLines;

};

This class was designed to visualize the octree nodes. It’s frustrating if you can’t see
what is going on. As you can see, it just draws lines and boxes. I won’t go into the
details of these functions because they aren’t vital to our understanding of the
octree, but the source code is commented well enough if you care to peruse it.

Getting the Scene’s Dimensions
Looking back at Figure 14.1, you’ll see the root node’s dimensions represented by
a yellow, wireframe cube. Let’s explore how we calculated these initial dimensions
in GetSceneDimensions(). For the full source code, refer to Octree.cpp of the first
application.

void COctree::GetSceneDimensions(CVector3 *pVertices, int numberOfVerts)
{

497Examining the Code

TeamLRN

We pass in the list of vertices and the vertex count to get the center point and
width of the whole scene. Later, we use this information to subdivide our octree.
Depending on the data structures you use to store your world data, this will vary. In
the following code, the center point of the scene is calculated. All you need to do is
add all the vertices and then divide that total by the number of vertices added up
to find the average for x, y, and z. If you can determine the average test score of a
list of high school students’ grades, it works the same way. So all the x’s get added
together, and then y’s, and so on. This doesn’t mean you add them to form a single
number, but three separate floats (totalX, totalY, totalZ).

Notice that we are adding two CVector3’s together, m_vCenter and pVertices[i]. If you
look in the CVector3 class, I overloaded the + and – operators to handle these opera-
tions correctly. It cuts down on code instead of adding the x, and then the y, and
then the z separately. At the end of GetSceneDimensions(), there will be no return val-
ues, but we will be setting the member variables m_Width and m_vCenter.

// Go through all of the vertices and add them up to find the center
for(int i = 0; i < numberOfVerts; i++)
{

// Add the current vertex to the center variable (operator overloaded)
m_vCenter = m_vCenter + pVertices[i];

}

// Divide the total by the number of vertices to get the center point.
// We could have overloaded the / symbol but I chose not to because we
// rarely use it in the code.
m_vCenter.x /= numberOfVerts;
m_vCenter.y /= numberOfVerts;
m_vCenter.z /= numberOfVerts;

Now that we have the center point, we want to find the farthest distance from it.
We can subtract every vertex from our new center and save the farthest distance in
width, height, and depth (in other words x, y, and z). Once we get the farthest
width, height, and depth, we then check them against each other. Whichever one is
higher, we use that value for the cube width of the root node.

// Go through all of the vertices and find the max dimensions
for(i = 0; i < numberOfVerts; i++)
{

// Get the current dimensions for this vertex. abs() is used
// to get the absolute value because it might return a negative number.
int currentWidth = abs(pVertices[i].x - m_vCenter.x);

498 14. Space Partitioning with Octrees

TeamLRN

int currentHeight = abs(pVertices[i].y - m_vCenter.y);
int currentDepth = abs(pVertices[i].z - m_vCenter.z);

// Check if the current width is greater than the max width stored.
if(currentWidth > maxWidth) maxWidth = currentWidth;

// Check if the current height is greater than the max height stored.
if(currentHeight > maxHeight) maxHeight = currentHeight;

// Check if the current depth is greater than the max depth stored.
if(currentDepth > maxDepth) maxDepth = currentDepth;

}

Once the max dimensions are calculated, we multiply them by two because this will
give us the full width, height, and depth. Otherwise, we just have half the size since
we are calculating from the center of the scene. After we find the max dimensions,
we want to check which one is the largest so that we can create our initial cube
dimensions from it. First we check if the maxWidth is the largest and then maxHeight;
otherwise, it must be maxDepth. It won’t matter if any of them are equal since we use
the >= (greater than or equal to) logical operand. If the maxWidth and maxHeight were
equal yet larger than maxDepth, the first if statement would assign maxWidth as the
largest:

// Get the full width, height, and depth
maxWidth *= 2; maxHeight *= 2; maxDepth *= 2;

// Check if the width is the highest and assign that for the cube dimension
if(maxWidth >= maxHeight && maxWidth >= maxDepth)

m_Width = maxWidth;

// Check if height is the highest and assign that for the cube dimension
else if(maxHeight >= maxWidth && maxHeight >= maxDepth)

m_Width = maxHeight;

// Else it must be the “depth” or it’s the same value as the other ones
else

m_Width = maxDepth;
}

After finding the root node width, we can now start to actually create the octree.
From the client side, this just takes one call of the CreateNode() function.

499Examining the Code

TeamLRN

Creating the Octree Nodes
This is our main function that creates the octree. We will recurse through this func-
tion until we finish subdividing. This is because we either subdivided too many lev-
els or divided all of the triangles up. The parameters needed for this function are
the array of vertices, the number of vertices, and the center point and width of the
current node.

void COctree::CreateNode(CVector3 *pVertices,
int numberOfVerts, CVector3 vCenter, float width)

{

When calling CreateNode() for the first time, we will pass in the center and width
of the root node. That is why we need to call GetSceneDimensions() before this
function, so that we have the initial node’s data to pass in. In the opening of this
function, some variables need to be set. We create a local variable to hold the
numberOfTriangles, and we set the member variables m_Width and m_vCenter to the data
passed in. Though in the beginning the root node will already have the width and
center set, the other nodes won’t.

// Create a variable to hold the number of triangles
int numberOfTriangles = numberOfVerts / 3;

// Initialize the node’s center point. Now we know the center of this node.
m_vCenter = vCenter;

// Initialize the node’s cube width. Now we know the width of this node.
m_Width = width;

To get a visual idea of what is going on in our octree, we add the current node’s
cube data to our debug box list. This way, we can now see this node as a cube when
we render the boxes. Since it’s a cube, we can pass in the node’s width for the
width, height, and depth parameters for AddDebugBox(). g_Debug is our global instance
of the CDebug class.

g_Debug.AddDebugBox(vCenter, width, width, width);

Before we subdivide anything, we need to check whether we have too many trian-
gles in this node and haven’t subdivided above our max subdivisions. If not, we
need to break this node into potentially eight more nodes. Both of the given
conditions must be true to subdivide this node. Initially, g_MaxSubdivisions and
g_CurrentSubdivisions are 0, which means that the if statement will be false until
we increase g_MaxSubdivisions. While running the octree application, we can

500 14. Space Partitioning with Octrees

TeamLRN

increase/decrease the levels of subdivision by pressing the + and – keys. This is
great because it allows us to see the recursion happening in real time. To
increase/decrease the maximum number of triangles in each node, we press the F5
and F6 keys.

if((numberOfTriangles > g_MaxTriangles) &&
(g_CurrentSubdivision < g_MaxSubdivisions))

{

Since this node will be subdivided, we set its m_bSubDivided member variable to true.
This lets us know that this node does not have any vertices assigned to it, but its
nodes have vertices stored in them (or their nodes, and so on). Later in
DrawOctree(), this variable will be queried when the octree is being drawn.

m_bSubDivided = true;

A dynamic list will need to be created for each new node to store whether a trian-
gle should be stored in its triangle list. For each index, it will be a true or false to
tell us if that triangle is in the cube of that node. The Standard Template Library
(STL) vector class was chosen as the list data type because of its flexibility. I hope
it’s obvious in the following code that I chose not to display all eight lines of code
for the list initialization. Refer to the source code that accompanies this book for
the remaining code.

// Create the list of booleans for each triangle index
vector<bool> pList1(numberOfTriangles); // TOP_LEFT_FRONT node list
vector<bool> pList2(numberOfTriangles); // TOP_LEFT_BACK node list
vector<bool> pList3(numberOfTriangles); // TOP_RIGHT_BACK node list
// Etc... up to pList8
...

// Create a variable to cut down the thickness of the code below
CVector3 vCtr = vCenter;

If you are uncomfortable with STL, you can dynamically allocate the memory your-
self with a pointer to a bool. For example:

bool *pList1 = new bool [numberOfTriangles];
// Etc...

You’ll notice in the comments that we have constants such as TOP_LEFT_FRONT and
TOP_LEFT_BACK. These belong to the eOctreeNodes enum, which was created to assign
an ID for every section of the eight subdivided nodes, which also happens to be an

501Examining the Code

TeamLRN

index into the m_pOctreeNodes array. Looking at numbers like 0, 1, 2, 3, 4, 5, 6, and 7
hardly creates readable code. Keep in mind that these enum constants are assum-
ing that we visualize being in front of the world and looking down the –z axis, with
positive y going up and positive x going to the right.

enum eOctreeNodes
{

TOP_LEFT_FRONT, // 0
TOP_LEFT_BACK, // 1
TOP_RIGHT_BACK, // etc...
TOP_RIGHT_FRONT,
BOTTOM_LEFT_FRONT,
BOTTOM_LEFT_BACK,
BOTTOM_RIGHT_BACK,
BOTTOM_RIGHT_FRONT

};

Following the creation of our eight lists, the next step will be to check every vertex
passed in to see where its position is according to the center of the current node.
(That is, if it’s above the center to the left and back, it’s the TOP_LEFT_BACK.)
Depending on the node, the node’s pList* index is set to true. This will tell us later
which triangles go to which node.

You might catch that this will produce doubles in some nodes. Some triangles will
intersect more than one node, right? You generally have two options in this situation.
Either you can split the triangles along the node’s plane they are intersecting, or you
can ignore it and assume there will be some hitchhikers that won’t be seen when ren-
dering. Each of these choices has its own benefits and drawbacks. When splitting the
triangles, you create more polygons in your world. Depending on how the world is
set up, the split could increase your polygons in your scene by a disastrous number.
You will also need to recalculate the face and UV coordinate information for each
new polygon created. Some splits will just create one new triangle, whereas others
will create two. See Figure 14.9 for examples of different splits along a plane.

You can imagine that it will create two new triangles more often than one. In many
cases, the split will create a four-sided polygon, which means you will need to trian-
gulate it to make two triangles from the quad. Of course, this assumes that you only
want to deal with triangles. To me, this makes perfect sense for a BSP tree, but it’s
not completely necessary for an octree.

Instead of splitting the polygons, we just save the indices in a vertex array in our
list. This completely eliminates the need to recalculate any face or UV data, and it

502 14. Space Partitioning with Octrees

TeamLRN

cuts out a big chunk of code for splitting and triangulating polygons. The problem
with this method is that it can potentially draw two of the same triangles at the
same time, which will cause pointless overlapping of triangles.

For this last method, when passing the world data into our CreateNode() function to
be subdivided, we could store the world model information in the root node and
pass a pointer to it down to each node when drawing the octree. This would allow
us to free the model that was passed in after creating the octree, or we could
instead not free the model after creating the octree and pass down a pointer to the
world model through DrawOctree(), which could be potentially error prone, along
with needing constant access to that model. Since we do not deal with any face
information besides the vertices of our terrain, our octree code simply copies the
vertices to each end node, allowing us to free the terrain data immediately after
creating the octree if so desired. Another benefit of storing face indices is that it
allows you more easily to render the octree using vertex arrays.

The following “for” loop will be used in checking each vertex to see in which sec-
tion it lies, according to the current node’s center. You’ll notice that we divide the
current vertex index i by 3 because there are three points in a triangle. If the ver-
tex indexes 0 and 1 are in a node section, both 0 / 3 and 1 / 3 are 0, which will set
the 0th index of the pList*[] to true twice, which doesn’t hurt. When we get to
index 3 of pVertices[], we will then be checking index 1 of the pList*[] array (3 / 3
= 1). We do this because we want a list of the triangle indices in each child node
list, not the vertex indices. This is most likely better understood by looking at the
code. In a nutshell, we just store the index to the triangle in the pList* versus the

503Examining the Code

Figure 14.9

When splitting a polygon over a plane,
it’s more likely that three polygons will
be created rather than two

TeamLRN

index of the vertices. Later, in CreateNewNode(), we will use this data to extract the
vertices into a new list to check in the newly created child node, of course, only if
any triangles are in that node’s section.

for(int i = 0; i < numberOfVerts; i++)
{

// Create a variable to cut down the thickness of the code
CVector3 vPt = pVertices[i];

// Check if the point lines within the TOP LEFT FRONT node
if((vPt.x <= vCtr.x) && (vPt.y >= vCtr.y) && (vPt.z >= vCtr.z))

pList1[i / 3] = true;

// Check if the point lines within the TOP LEFT BACK node
if((vPt.x <= vCtr.x) && (vPt.y >= vCtr.y) && (vPt.z <= vCtr.z))

pList2[i / 3] = true;

// Check if the point lines within the TOP RIGHT BACK node
if((vPt.x >= vCtr.x) && (vPt.y >= vCtr.y) && (vPt.z <= vCtr.z))

pList3[i / 3] = true;

// Etc... up to pList8
...

}

Right before this node is subdivided, we need to add up how many triangles we
found in each section. With a simple for loop to go through the total number of
triangles, this is very easy. If the current index in the pList*[] is true, we simply
increase the triangle count stored in a local variable for each list. This could obvi-
ously be optimized if needed by incorporating it into the previous code, but it pro-
vides a bit more clarity down here.

// Create a variable for each list that holds how many triangles
// were found for each of the 8 subdivided nodes.
int triCount1 = 0; int triCount2 = 0;
int triCount3 = 0; int triCount4 = 0;

int triCount5 = 0; int triCount6 = 0;
int triCount7 = 0; int triCount8 = 0;

// Go through each of the lists and increase the
// triangle count for each node.
for(i = 0; i < numberOfTriangles; i++)

504 14. Space Partitioning with Octrees

TeamLRN

{
// Increase the triangle count for each
// node that has a “true” for the index i.
if(pList1[i]) triCount1++; if(pList2[i]) triCount2++;
if(pList3[i]) triCount3++; if(pList4[i]) triCount4++;
if(pList5[i]) triCount5++; if(pList6[i]) triCount6++;
if(pList7[i]) triCount7++; if(pList8[i]) triCount8++;

}

Next comes the dirty work. We need to set up the new node and pass in the trian-
gles that are in its area, along with the new center point and width. Through recur-
sion, we subdivide this node into eight more nodes but only if triCount* is greater
than 0. It would be pointless and a waste of memory to allocate a new node if there
were no triangles stored in that space. I created a function called CreateNewNode()
that handles all the setup work since it needs to happen eight times.

The data passed in to CreateNewNode() is the initial list of vertices to this node, the
newly created list of triangle indices, the number of initial vertices, the center
point, the width, the triangle count of the associated pList* that we just calculated,
and finally, the ID for this node’s section. Remember that the IDs are from the
eOctreeNodes enum stored in octree.h. The ID acts as the index into the
m_pOctreeNodes array.

// Create the subdivided nodes if necessary and then
// recurse through them. The information passed into CreateNewNode() is
// essential for creating the new nodes. We pass in one of the 8 ID’s
// so it knows how to calculate it’s new center.
CreateNewNode(pVertices, pList1, numberOfVerts,

vCenter, width, triCount1, TOP_LEFT_FRONT);
CreateNewNode(pVertices, pList2, numberOfVerts,

vCenter, width, triCount2, TOP_LEFT_BACK);
CreateNewNode(pVertices, pList3, numberOfVerts,

vCenter, width, triCount3, TOP_RIGHT_BACK);
// Etc... up to pList8
...

}

If there was no need to subdivide this node and the check proved false, we skip
all the recursive code and just assign the vertices to this current node. The
AssignVerticesToNode() function handles this procedure. The required parameters
are the array of vertices and the vertex count.

else

505Examining the Code

TeamLRN

{
// Assign the vertices to this node since we reached an end node
AssignVerticesToNode(pVertices, numberOfVerts);

}
}

Setting Up New Nodes for
Recursion
This function helps us set up the new node being created. We only want to create a
new node if there were triangles found in its area of 3-D space. If no triangles were
found in this node’s cube, we ignore it and don’t create a node. First we check
whether triangleCount is greater than zero before continuing; otherwise, we return
from the function. Once we know that there are triangles to use, memory can be
allocated for an array of CVector3’s that will hold the vertices found in this node’s 3-
D region.

void COctree::CreateNewNode(CVector3 *pVertices, vector<bool> pList,
int numberOfVerts, CVector3 vCenter, float width,
int triangleCount, int nodeID)

{

To fill in the new array of vertices, we create a loop that checks every vertex to see
if its triangle index was set to true. The triangle index is calculated by taking the
current vertex index i and dividing it by 3. A separate counter is held to store the
current index into the pNodeVertices[] array. Each time a new vertex is found in the
region, it’s assigned to the pNodeVertices[] array and the index counter is increased
by 1. As you can see, once a triangle index is found to be in the node’s list, the next
three vertices will be assigned in a row, which make up the triangle found.

// Check if the first node found some triangles in it, else, return
if(triangleCount <= 0) return;

// Allocate memory for the triangles found in this node
CVector3 *pNodeVertices = new CVector3 [triangleCount * 3];

// Create a counter to count the current index of the new node vertices
int index = 0;

// Go through all the vertices and assign the vertices to the node’s list
for(int i = 0; i < numberOfVerts; i++)

506 14. Space Partitioning with Octrees

TeamLRN

{
// If this current triangle is in the node, assign its vertices to it
if(pList[i / 3])
{

pNodeVertices[index] = pVertices[i];
index++;

}
}

Now comes the initialization of the node. First we allocate memory for our new
node and then get its center point. Depending on the nodeID, GetNewNodeCenter()
knows which center point to pass back from a simple switch statement.

// Allocate a new node for the octree
m_pOctreeNodes[nodeID] = new COctree;

// Get the new node’s center point depending on the nodeID
// (nodeID: meaning, which of the 8 subdivided cubes).
CVector3 vNodeCenter = GetNewNodeCenter(vCenter, width, nodeID);

Before and after we recurse further down into the tree, we keep track of the level
of subdivision we are in. This way, we can restrict it. When creating your own
octree, this isn’t necessary. I threw this in to help us visualize the octree by being
able to change the max levels of subdivision. Now we are ready to recurse.

With a call to CreateNode(), we step down another level of subdivision in our tree.
The new parameters passed in are the new vertices, the total number of vertices
(triangleCount * 3), and the new center and width of the newly created node.
The width / 2 is passed in because we just cut in half our region we are dealing with.
Once we return from subdividing this current node, we can delete the vertices
passed in because they are no longer needed. In the function AssignVerticesToNode(),
new memory is allocated to store the assigned vertices to each node. The initial ver-
tices passed in from our world are not deleted in the octree code but can be released
once the octree is created.

// Increase the current level of subdivision
g_CurrentSubdivision++;

// Recurse through this node and subdivide it if necessary
m_pOctreeNodes[nodeID]->CreateNode(pNodeVertices, triangleCount * 3,

vNodeCenter, width / 2);

// Decrease the current level of subdivision

507Examining the Code

TeamLRN

g_CurrentSubdivision—;

// Free the allocated vertices for the triangles found in this node
delete [] pNodeVertices;

}

Getting a Child Node’s Center
Previously in CreateNewNode(), we called GetNewNodeCenter() to obtain the new nodes
center. This function takes an enum ID and returns the new subdivided nodes cen-
ter, depending on the center and width of its parent node, passed in as vCenter
and width. The node ID is given to a switch statement to determine how the new
center should be calculated. Once the new node’s center is found, we return it at
the bottom.

CVector3 COctree::GetNewNodeCenter(CVector3 vCenter, float width, int nodeID)
{

Calculating the new center is fairly simple. First you want to get the distance that
the new center is from the original center. To do this, just divide the current center
by 4. Now, if we want to find the TOP_LEFT_BACK node’s center, we would say:

vNodeCenter ={vCenter.x - distance, vCenter.y + distance, vCenter.z - distance}

Figure 14.10 shows an example of this in 2-D, assuming the parent node has a width
of 100. If we divide the width by 4 we get 25, which is the distance from the center

508 14. Space Partitioning with Octrees

Figure 14.10

To find the center point of a new
child node, we divide the width of the
current node by 4 and then add or
subtract that result from the center,
depending on the desired child node

TeamLRN

point to the new node. Since we are dealing with the TOP_LEFT_BACK, we subtract that
distance from the center’s x, add the distance to the center’s y, and then subtract the
distance from the center’s z to get the 3-D position for the new node’s center.

// Initialize the new node center
CVector3 vNodeCenter(0, 0, 0);

// Create a dummy variable to cut down the code size
CVector3 vCtr = vCenter;

// Store the distance the new node center will be from the center
float distance = width / 4.0f;

// Switch on the ID to see which subdivided node we are finding the center
switch(nodeID)
{

case TOP_LEFT_FRONT:
// Calculate the center of this new node
vNodeCenter = CVector3(vCtr.x - distance,

vCtr.y + distance, vCtr.z + distance);
break;

case TOP_LEFT_BACK:
// Calculate the center of this new node
vNodeCenter = CVector3(vCtr.x - distance,

vCtr.y + distance, vCtr.z - distance);
break;

case TOP_RIGHT_BACK:
// Calculate the center of this new node
vNodeCenter = CVector3(vCtr.x + distance,

vCtr.y + distance, vCtr.z - distance);
break;

// Etc... up to BOTTOM_RIGHT_FRONT
...

}

// Return the new node center
return vNodeCenter;

}

509Examining the Code

TeamLRN

Assigning Vertices to the End
Node
Until now, we have just been playing hot potato by passing off the vertices to every-
one else. When an end node is determined and we don’t need to subdivide any
more, the vertices can then be assigned. Once again, end nodes are determined in
our CreateNode() function by the following test:

if((numberOfTriangles > g_MaxTriangles) &&
(g_CurrentSubdivision < g_MaxSubdivisions))

{
// This node must not be an end node, so subdivide it further...
// ...

}
else
{

// An end node is found, so assign the vertices to it.
// ...

}

In the “else” scope, the function AssignVerticesToNode() is called. As the function
suggests, the end node is put in charge over its vertices. This is one of our smallest
functions in the octree class, but let’s go over what it’s doing.

void COctree::AssignVerticesToNode(CVector3 *pVertices, int numberOfVerts)
{

All that’s going on here is we are setting our m_bSubDivided flag to false, setting our
m_TriangleCount member variable to the number of triangles that will be stored, allo-
cating memory for the new vertices, and then doing a memcopy() to copy all the ver-
tex data into the newly allocated memory. New memory is allocated (instead of just
having m_pVertices point to the vertex data passed in) so that we are not dependent
on the memory of the original vertex data loaded in at the beginning. We will free
the memory of the original vertices but have the end nodes keep their own mem-
ory. This is done so that each node is responsible for its own memory; otherwise,
we could be freeing the same memory twice later on.

Note that instead of the end nodes storing the actual vertices, another way of doing
this is to have them just store indices into an array of vertices and face data. This
way, we won’t have to cut up the information, which makes you have to recalculate
the face indices for your world/level. This was discussed earlier in the CreateNode()
function definition.

510 14. Space Partitioning with Octrees

TeamLRN

// Since we did not subdivide this node we want to set our flag to false
m_bSubDivided = false;

m_TriangleCount = numberOfVerts / 3;

// Allocate enough memory to hold the needed vertices for the triangles
m_pVertices = new CVector3 [numberOfVerts];

// Initialize the vertices to 0 before we copy the data over to them
memset(m_pVertices, 0, sizeof(CVector3) * numberOfVerts);

// Copy the passed in vertex data over to our node vertex data
memcpy(m_pVertices, pVertices, sizeof(CVector3) * numberOfVerts);

// Increase the amount of end nodes created (Nodes with vertices stored)
g_EndNodeCount++;

}

Drawing the Octree
Partitioning the octree was the hard part, but now you get to see how easily the
nodes are drawn. The DrawOctree() function was created just for this purpose. Using
recursion, the octree is drawn starting at the root node and then working down
through the children until the end nodes are reached. These are the only nodes
that have vertices assigned to them; therefore, they are the only nodes to be ren-
dered. In this version of DrawOctree(), every single end node is drawn, regardless of
whether it’s inside or outside the frustum. This will be changed when we cover frus-
tum culling.

void COctree::DrawOctree(COctree *pNode)
{

We should already have the octree created before we call this function. This goes
through all nodes until it reaches their ends and then draws the vertices stored in
those end nodes. Before we draw a node, we check to make sure it is not a subdi-
vided node (from m_bSubdivided). If it is, we haven’t reached the end and need to
keep recursing through the tree. Once we get to a node that isn’t subdivided, we
draw its vertices.

// Make sure a valid node was passed in; otherwise go back to the last node
if(!pNode) return;

511Examining the Code

TeamLRN

// Check if this node is subdivided. If so, then we need to draw its nodes
if(pNode->IsSubDivided())
{

// Recurse to the bottom of these nodes and draw
// the end node’s vertices, Like creating the octree,
// we need to recurse through each of the 8 nodes.
DrawOctree(pNode->m_pOctreeNodes[TOP_LEFT_FRONT]);
DrawOctree(pNode->m_pOctreeNodes[TOP_LEFT_BACK]);
DrawOctree(pNode->m_pOctreeNodes[TOP_RIGHT_BACK]);
DrawOctree(pNode->m_pOctreeNodes[TOP_RIGHT_FRONT]);
DrawOctree(pNode->m_pOctreeNodes[BOTTOM_LEFT_FRONT]);
DrawOctree(pNode->m_pOctreeNodes[BOTTOM_LEFT_BACK]);
DrawOctree(pNode->m_pOctreeNodes[BOTTOM_RIGHT_BACK]);
DrawOctree(pNode->m_pOctreeNodes[BOTTOM_RIGHT_FRONT]);

}
else
{

// Make sure we have valid vertices assigned to this node
if(!pNode->m_pVertices) return;

// Since we can hit the left mouse button and turn wire frame on/off,
// we store a global variable to hold if we draw lines or polygons.
// g_RenderMode will either be GL_TRIANGLES or GL_LINE_STRIP.
glBegin(g_RenderMode);

// Turn the polygons green
glColor3ub(0, 255, 0);

// Store the vertices in a local pointer to keep code more clean
CVector3 *pVertices = pNode->m_pVertices;

// Go through all of the vertices (the number of triangles * 3)
for(int i = 0; i < pNode->GetTriangleCount() * 3; i += 3)
{

Before we render the vertices, we want to calculate the face’s normal of the current
polygon. That way, when lighting is turned on, we can see the definition of the ter-
rain more clearly. In reality, you wouldn’t do this in real time. To calculate the face
normal, we use the cross product on two of the current triangles sides, which
returns an orthogonal vector, and then we normalize this vector to find the desired
normal of that face.

512 14. Space Partitioning with Octrees

TeamLRN

// Here we get a vector from two sides of the triangle
CVector3 vVector1 = pVertices[i + 1] - pVertices[i];
CVector3 vVector2 = pVertices[i + 2] - pVertices[i];

// Then we need to get the normal by the 2 vector’s cross product
CVector3 vNormal = Cross(vVector1, vVector2);

// Now we normalize the normal so it is a unit vector (length of 1)
vNormal = Normalize(vNormal);

// Pass in the normal for this triangle for the lighting
glNormal3f(vNormal.x, vNormal.y, vNormal.z);

// Render the first point in the triangle
glVertex3f(pVertices[i].x, pVertices[i].y, pVertices[i].z);

// Render the next point in the triangle
glVertex3f(pVertices[i + 1].x,

pVertices[i + 1].y, pVertices[i + 1].z);

// Render the last point in the triangle to form the triangle
glVertex3f(pVertices[i + 2].x,

pVertices[i + 2].y, pVertices[i + 2].z);
}

// Quit Drawing
glEnd();

}
}

Destroying the Octree
With C++, freeing the octree is easy. In our COctree class, we call DestroyOctree() in
the deconstructor. When the root node goes out of scope or is destroyed manually,
DestroyOctree() will be called. Inside of this function, we go through all the eight
potential children associated with the dying node. If the child has allocated mem-
ory, we “delete” it. This in turn calls the child node’s deconstructor, which repeats
the process on the node’s children. In a way, this creates its own type of recursion
to go through all the nodes until we reach the end nodes and then frees the

513Examining the Code

TeamLRN

memory from the bottom up. The root node will not leave DestroyOctree() until all
of its subdivided children have been destroyed.

void COctree::DestroyOctree()
{

// Free the triangle data if it’s not NULL
if(m_pVertices)
{

delete m_pVertices;
m_pVertices = NULL;

}

// Go through all of the nodes and free them if they were allocated
for(int i = 0; i < 8; i++)
{

// Make sure this node is valid
if(m_pOctreeNodes[i])
{

// Free this array index. This will call the deconstructor,
// which will free the octree data correctly. This allows
// us to forget about a complicated clean up
delete m_pOctreeNodes[i];
m_pOctreeNodes[i] = NULL;

}
}

// Initialize the octree data members
InitOctree();

}

Until now, we have explained the very basics of what it takes to create an octree. In
the next section, we will tackle the awe and mystery of implementing the frustum
culling.

Implementing Frustum Culling
An octree without frustum culling is about as useful as a Corvette without a gas
pedal. Sure, the outside looks all nice and pretty. It even gives you the image that
you can use it to cruise down the highway at great speeds. Only after you turn it on
and shift into first do you realize that you aren’t going anywhere. It is now deter-
mined that there is no way to move the car, and as a matter of fact, the experience

514 14. Space Partitioning with Octrees

TeamLRN

leaves you a bit disgruntled. This is how it is without that one function call that
checks the octree’s end nodes against the frustum. The increase in vertices drawn
even makes the rendering of the world a bit slower. Moving on to the next applica-
tion, we will add the metaphorical gas pedal to our car.

Though the code needed to handle frustum culling is small, it requires that you
understand a bit of math. Since we are dealing with planes, the plane equation will
be instrumental in calculating frustum intersection. More of the math will be
explained later, but let me first introduce you to our frustum class. The frustum
code is stored in Frustum.cpp and Frustum.h in the second octree sample applica-
tion accompanying this book.

// This will allow us to create an object to keep track of our frustum
class CFrustum {

public:

// Call this every time the camera moves to update the frustum
void CalculateFrustum();

// This takes a 3-D point and returns TRUE if it’s inside of the frustum
bool PointInFrustum(float x, float y, float z);

// This takes a 3-D point and a radius and returns TRUE if the sphere is inside
of the frustum
bool SphereInFrustum(float x, float y, float z, float radius);

// This takes the center and half the length of the cube.
bool CubeInFrustum(float x, float y, float z, float size);

private:

// This holds the A B C and D values for each side of our frustum.
float m_Frustum[6][4];

};

The CFrustum class stores an array of 6 by 4 and of type float for its only member
variable. The dimensions are such that we have six sides of our frustum, with an A,
B, C, and D for each side’s plane equation. Instead of storing 3-D points for our frus-
tum, we just describe it by its planes. Initially, we need to calculate the frustum by
calling CalculateFrustum(). If the camera moves, the frustum must once again be

515Examining the Code

TeamLRN

recalculated to reflect the new frustum planes. Either you can make sure this func-
tion is called when the user has any movement, or in the case of a first-person
shooter, it’s rare that the camera will not be moving, so you could decide to just
ignore the checks and calculate it every frame. Though it’s not a CPU hog to calcu-
late the frustum, it does have some multiplication, division, and square root opera-
tions that can be avoided if it’s not necessary to do so.

Once the frustum is calculated, we are all set from there. We can now start query-
ing potential points, spheres, and cubes in the frustum. To check if a point lies in
the frustum, we could make a call to the following:

// (x, y, z) being the potential point
bool bInside = g_Frustum.PointInFrustum(x, y, z);

To check if a sphere is inside of the frustum, we call our sphere function as follows:

// (xyz) being the center of the sphere and (radius) being the sphere’s radius
bool bInside = g_Frustum.SphereInFrustum(x, y, z, radius);
Finally, to check if a cube lies inside of the frustum, we use:
// (x, y, z) being the cube’s center and also the cube’s width / 2
bool bInside = g_Frustum.CubeInFrustum(x, y, z, cubeWidth / 2);

To make the code more clear, two enums are created for each index of the rows
and columns of the m_Frustum member variable. The first enum, eFrustumSide, is asso-
ciated with each index into the sides of the frustum; the second, ePlaneData, corre-
sponds to the four variables needed to describe each side’s plane using the plane
equation.

// Create an enum of the sides so we don’t have to call each side 0, 1, 2, ...
// This way it makes it more intuitive when dealing with frustum sides.
enum eFrustumSide
{

RIGHT = 0, // The RIGHT side of the frustum
LEFT = 1, // The LEFT side of the frustum
BOTTOM = 2, // The BOTTOM side of the frustum
TOP = 3, // The TOP side of the frustum
BACK = 4, // The BACK side of the frustum
FRONT = 5 // The FRONT side of the frustum

};

// Instead of using a number for the indices of A B C and D of the plane, we
// want to be more descriptive.
enum ePlaneData

516 14. Space Partitioning with Octrees

TeamLRN

{
A = 0, // The X value of the plane’s normal
B = 1, // The Y value of the plane’s normal
C = 2, // The Z value of the plane’s normal
D = 3 // The distance the plane is from the origin

};

The Plane Equation
If the mention of the plane equation has confused you, we will address this right
now. What is the plane equation? What is it used for? Why do we need it for frus-
tum culling? These might be some of the questions you are asking yourself. In most
collision detection, besides the basic 2-D bounding rectangle or sphere-to-sphere
collision, you need to use the plane equation. The plane equation is defined as
follows:

Ax + By + Cz + D = 0 meaning A*x + B*y + C*z + D = 0

Vector (A, B, C) represents the plane’s normal, where (x, y, z) is the point on the
plane. D relates to the distance the plane is from the origin. The result is a single
number, such as a double or float. The preceding equation is basically saying that
by the plane’s normal and its distance from the plane, the point (x, y, z) lies on
that plane. The right-hand result is the distance that the point (x, y, z) is from the
plane. Since it’s 0, that means it is on that plane. If the result were a positive value,
that would tell us that the point is in front of the plane by that positive distance; if
it were a negative number, the point would be behind the plane by that negative
distance. How do we know what is the front and back of the plane? Well, the front
of the plane is the side from which the normal is pointing out.

As a simple example of the usage of the plane equation, let’s go over how we would
check whether a line segment intersects a plane. If we have a plane’s normal and its
distance from the origin, plus the two points that make up the line segment, we
should be fine. Simply check the distance that the first point of the line is from the
described plane and then check the distance that the second point of the line is
from the plane. If both of the distances from the plane are positive or negative, the
line did not intersect because they are both either in front of or behind the plane.
If the distances have opposite signs, however, there was a collision. For example,
let’s say we have the normal of the plane being described as (0, 1, 0), with a dis-
tance of 5 from the origin. So far, our equation is as follows:

0*x + 1*y + 0*z + 5 = ???

517Examining the Code

TeamLRN

The only thing left is to fill in the (x, y, z) point that we are testing against the
plane. Just looking at the equation so far, we know that the polygon is pointing
straight up and that the x and z values of the point will be superfluous in determin-
ing which side the point is on. For our line segment, we will use the points (–3, 6,
2) and (1, –6, 2) to demonstrate some actual values (see Figure 14.11).

Take a look at the equation now:

distance1 = 0*–3 + 1*6 + 0*2 +5
distance1 = 11

Point 1 of the line segment has a distance of 11 from the plane (in front of the
plane).

distance2 = 0*1 + 1*–6 + 0*2 +5
distance2 = –1

Point 2 of the line segment has a distance of –1 from the plane (behind the plane).

Once we have the two distances, to check whether the line segment collided with the
plane, we can multiply them. If the result is greater than zero, there was no collision.
This is because there must be a negative distance, indicating that one of the points is
on the opposite side of the other point. We might also have a distance of 0, which
tells us that our point lies on the plane. When distance1 * distance2 is computed, we
get –11. The result is not greater than zero, so there is an intersection of the given
line segment and plane. If you understand these concepts, you will be able to under-
stand how the intersection tests against the frustum work as well.

518 14. Space Partitioning with Octrees

Figure 14.11

Demonstrating the plane equation when
calculating the collision with a line
segment and a plane

TeamLRN

Calculating the Frustum Planes
Your initial feelings about calculating the frustum might be that it is complicated
and crazy math. This is not so. The math is simple, but it does require knowledge
of matrices. First let’s answer some of the basic questions that might arise.

What constitutes our frustum?

To do frustum culling, we don’t need the coordinates that make up our frustum.
All we need is the six planes for each side of the frustum box. This box is created
from our field of view and perspective, along with the near and far clipping planes
sliced into that view. The area in between these planes is our frustum. For our pur-
poses, we just need the normals of each plane, including the distance each plane is
from the origin. With this information, it allows us to fill in the plane equation.

What information do I need to calculate the frustum planes?

The information needed is the current model view and projection matrix. In
OpenGL, this is easily obtained by a call to glGetFloatv() with the appropriate para-
meters passed in. Let us review what the purpose of these two matrices is. The
model view matrix holds the camera orientation. When you rotate or translate your
camera with calls to glRotatef() and glTranslatef(), you are affecting the model view
matrix. A call to gluLookAt() allows you to manually set this matrix with a position,
view, and up vector.

When rendering your scene, unless you specify otherwise, the model view matrix
usually is loaded as the affected matrix. If you want to go to orthographic mode or
change your perspective, the projection matrix needs to be loaded. To get a better
understanding of these matrices, let’s relate them to a real-life example. Imagine
yourself holding a handheld camera. Whenever you walk, kneel, or rotate the cam-
era, you are affecting the model view matrix. The point at which you start messing
around with the buttons on your camera—such as the field of view, focal length, or
perhaps you pop on a fish-eye lens—this effects the projection matrix.

What do I do with the model view and projection matrices once I get them?

Once you have the model view and projection matrices, you multiply them. We will
call this resultant matrix M. Matrix M is now defined as follows:

[m0 m1 m2 m3]
[m4 m5 m6 m7]
[m8 m9 m10 m11]

M = [m12 m13 m14 m16]

519Examining the Code

TeamLRN

The next step is then to multiply M against the six OpenGL clipping coordinate
planes. This matrix will be called P. The OpenGL specifications say that clipping is
done in clip coordinate space. Geometry is given to OpenGL in object coordinates,
and OpenGL transforms them by the model view matrix into eye space, where it per-
forms some operations such as lighting and fog. These coordinates are then trans-
formed by the projection matrix into clip coordinates. OpenGL clips all geometry in
this coordinate space. The volume used for clipping is defined by these six planes:

A B C D
[–1 0 0 1] Right Plane
[1 0 0 1] Left Plane
[0 –1 0 1] Top Plane
[0 1 0 1] Bottom Plane
[0 0 –1 1] Front Plane

P = [0 0 1 1] Back Plane

These are the clip coordinate planes that OpenGL actually uses for clipping. This
happens before doing the perspective division and the view port transformation,
followed by scan conversions into the frame buffer. The result of matrix M and P

concatenated will be called F, which will hold the object coordinate clipping planes
(or in other words, our frustum). Matrix F will store the A, B, C, and D values for
each side of the frustum. To simplify F, we don’t actually need to do the full matrix
multiplication. Taking into account that much of the multiplication will be can-
celled out due to the 1s, –1s, and 0s in matrix P, there is no reason to do it in the
first place. This saves us quite of bit of cycles on the CPU. For example, take the
calculations needed for the first element in F:

A = –1 * m0 + 0 * m1 + 0 * m2 + 1 * m3

Watch as we break this down:

A = –1 * m0 + 0 * m1 + 0 * m2 + 1 * m3
A = –1 * m0 + 1 * m3
A = –m0 + m3
A = m3 – m0

As you can see, the multiplication was completely eliminated from our equation.
This goes for all the calculations. Some elements will be addition, and some will be
subtraction. Matrix F can then be defined as follows:

[m3 – m0 m7 – m4 m11 – m8 m15 – m12]
[m3 + m0 m7 + m4 m11 + m8 m15 + m12]
[m3 – m1 m7 – m5 m11 – m9 m15 – m13]

520 14. Space Partitioning with Octrees

TeamLRN

[m3 + m1 m7 + m5 m11 + m9 m15 + m13]
[m3 – m2 m7 – m6 m11 – m10 m15 – m14]

F = P * M = [m3 + m2 m7 + m6 m11 + m10 m15 + m14]

To get a better understanding of what is going on, I recommend going through
each element and seeing for yourself the simplification in action. That way, when
you see the code, it won’t be confusing why it’s doing what it is doing. There is one
final thing we need to do for us to correctly define our frustum, and that is normal-
ize the frustum planes we receive. Our NormalizePlane() function was created just for
this purpose. Enough theory, let’s move into the code.

void CFrustum::CalculateFrustum()
{

float prj[16]; // This will hold our projection matrix
float mdl[16]; // This will hold our model view matrix
float clip[16]; // This will hold the clipping planes

// glGetFloatv() is used to extract information about our OpenGL world.
// Below, we pass in GL_PROJECTION_MATRIX to get the projection matrix.
// It then stores the matrix into an array of [16].
glGetFloatv(GL_PROJECTION_MATRIX, prj);

// Pass in GL_MODELVIEW_MATRIX to abstract the current model view matrix.
// This also stores it in an array of [16].
glGetFloatv(GL_MODELVIEW_MATRIX, mdl);

Now that we have our model view and projection matrix, if we combine these two
matrices, it allows us to extract the clipping planes from the result. To combine two
matrices, we multiply them. Usually you would have your matrix class do this work
for you, but instead of creating one just for this instance, I chose to do the matrix
multiplication out in the open. The result is stored in our clip[] array.

clip[0] = mdl[0] * prj[0] + mdl[1] * prj[4] +
mdl[2] * prj[8] + mdl[3] * prj[12];

clip[1] = mdl[0] * prj[1] + mdl[1] * prj[5] +
mdl[2] * prj[9] + mdl[3] * prj[13];

clip[2] = mdl[0] * prj[2] + mdl[1] * prj[6] +
mdl[2] * prj[10] + mdl[3] * prj[14];

clip[3] = mdl[0] * prj[3] + mdl[1] * prj[7] +
mdl[2] * prj[11] + mdl[3] * prj[15];

521Examining the Code

TeamLRN

clip[4] = mdl[4] * prj[0] + mdl[5] * prj[4] +
mdl[6] * prj[8] + mdl[7] * prj[12];

clip[5] = mdl[4] * prj[1] + mdl[5] * prj[5] +
mdl[6] * prj[9] + mdl[7] * prj[13];

clip[6] = mdl[4] * prj[2] + mdl[5] * prj[6] +
mdl[6] * prj[10] + mdl[7] * prj[14];

clip[7] = mdl[4] * prj[3] + mdl[5] * prj[7] +
mdl[6] * prj[11] + mdl[7] * prj[15];

clip[8] = mdl[8] * prj[0] + mdl[9] * prj[4] +
mdl[10] * prj[8] + mdl[11] * prj[12];

clip[9] = mdl[8] * prj[1] + mdl[9] * prj[5] +
mdl[10] * prj[9] + mdl[11] * prj[13];

clip[10] = mdl[8] * prj[2] + mdl[9] * prj[6] +
mdl[10] * prj[10] + mdl[11] * prj[14];

clip[11] = mdl[8] * prj[3] + mdl[9] * prj[7] +
mdl[10] * prj[11] + mdl[11] * prj[15];

clip[12] = mdl[12] * prj[0] + mdl[13] * prj[4] +
mdl[14] * prj[8] + mdl[15] * prj[12];

clip[13] = mdl[12] * prj[1] + mdl[13] * prj[5] +
mdl[14] * prj[9] + mdl[15] * prj[13];

clip[14] = mdl[12] * prj[2] + mdl[13] * prj[6] +
mdl[14] * prj[10] + mdl[15] * prj[14];

clip[15] = mdl[12] * prj[3] + mdl[13] * prj[7] +
mdl[14] * prj[11] + mdl[15] * prj[15];

Next we can find the sides of the frustum, being defined by a normal and a dis-
tance. To do this, we take the resultant matrix from the preceding and multiply it
by the six clipping coordinate planes. Remember that the multiplication cancels
itself out. This means we can just avoid it and use the simplified equation gener-
ated without the multiplication. The frustum planes extracted will be stored in the
m_Frustum member variable.

// This will extract the RIGHT side of the frustum
m_Frustum[RIGHT][A] = clip[3] - clip[0];
m_Frustum[RIGHT][B] = clip[7] - clip[4];
m_Frustum[RIGHT][C] = clip[11] - clip[8];
m_Frustum[RIGHT][D] = clip[15] - clip[12];

// This will extract the LEFT side of the frustum

522 14. Space Partitioning with Octrees

TeamLRN

m_Frustum[LEFT][A] = clip[3] + clip[0];
m_Frustum[LEFT][B] = clip[7] + clip[4];
m_Frustum[LEFT][C] = clip[11] + clip[8];
m_Frustum[LEFT][D] = clip[15] + clip[12];

// This will extract the BOTTOM side of the frustum
m_Frustum[BOTTOM][A] = clip[3] + clip[1];
m_Frustum[BOTTOM][B] = clip[7] + clip[5];
m_Frustum[BOTTOM][C] = clip[11] + clip[9];
m_Frustum[BOTTOM][D] = clip[15] + clip[13];

// This will extract the TOP side of the frustum
m_Frustum[TOP][A] = clip[3] - clip[1];
m_Frustum[TOP][B] = clip[7] - clip[5];
m_Frustum[TOP][C] = clip[11] - clip[9];
m_Frustum[TOP][D] = clip[15] - clip[13];

// This will extract the BACK side of the frustum
m_Frustum[BACK][A] = clip[3] - clip[2];
m_Frustum[BACK][B] = clip[7] - clip[6];
m_Frustum[BACK][C] = clip[11] - clip[10];
m_Frustum[BACK][D] = clip[15] - clip[14];

// This will extract the FRONT side of the frustum
m_Frustum[FRONT][A] = clip[3] + clip[2];
m_Frustum[FRONT][B] = clip[7] + clip[6];
m_Frustum[FRONT][C] = clip[11] + clip[10];

m_Frustum[FRONT][D] = clip[15] + clip[14];

After the A, B, C, and D values for each side of the frustum have been stored, we want
to normalize that normal and distance. The function NormalizePlane() was created
to take in the frustum data and the index into the side that needs to be
normalized.

NormalizePlane(m_Frustum, RIGHT);
NormalizePlane(m_Frustum, LEFT);
NormalizePlane(m_Frustum, TOP);
NormalizePlane(m_Frustum, BOTTOM);
NormalizePlane(m_Frustum, FRONT);
NormalizePlane(m_Frustum, BACK);

}

523Examining the Code

TeamLRN

Our NormalizePlane() function is defined as follows:

void NormalizePlane(float frustum[6][4], int side)
{

Here we calculate the magnitude of the normal to the plane (point A B C).
Remember that (A, B, C) is that same thing as the normal’s (X, Y, Z). To calculate
the magnitude, you use the equation magnitude = sqrt(x^2 + y^2 + z^2).

float magnitude = (float)sqrt(frustum[side][A] * frustum[side][A] +
frustum[side][B] * frustum[side][B] +
frustum[side][C] * frustum[side][C]);

// Divide the plane’s values by its magnitude.
frustum[side][A] /= magnitude;
frustum[side][B] /= magnitude;
frustum[side][C] /= magnitude;
frustum[side][D] /= magnitude;

}

The remaining code enables us to make checks within the frustum. For example,
we could check to see if a point, a sphere, or a cube lies inside of the frustum. Due
to the fact that all of our planes point inward (the normals are all pointing inside
the frustum), we can then state that if a portion of our geometry is in front of all of
the planes, it’s inside the area of our frustum.

If you have a grasp of the plane equation (A*x + B*y + C*z + D = 0), the rest of this
code should be quite obvious and easy to figure out yourself. The first check we will
cover is whether a given point is inside of our frustum. The algorithm is to find the
distance from the point to each of the six frustum planes. If any of the distances
returned a result that is less than or equal to zero, the point must be outside of the
frustum. Since the distance formula returns a positive number when we are in front
of a plane and all of our frustum planes face inward, it is impossible to be behind
or on one of the planes and be inside. The point is defined by (x, y, z).

bool CFrustum::PointInFrustum(float x, float y, float z)
{

// Go through all the sides of the frustum
for(int i = 0; i < 6; i++)
{

// Calculate the plane equation and check if
// the point is behind a side of the frustum
if(m_Frustum[i][A] * x + m_Frustum[i][B] * y +

m_Frustum[i][C] * z + m_Frustum[i][D] <= 0)

524 14. Space Partitioning with Octrees

TeamLRN

{
// The point was behind a side, so it ISN’T in the frustum
return false;

}
}

// The point was inside of the frustum
return true;

}

Checking if a sphere is inside of a frustum is almost identical to checking a point,
except now we have to deal with a radius around that point. The point being tested is
the center of the sphere. The point might be outside of the frustum, but it doesn’t
mean that the rest of the sphere is. It could be half and half. Instead of checking
whether the distance is less than 0, we need to add on the radius to the 0. Let’s say the
equation produced –2, which means the center of the sphere is the distance of 2
behind the plane. Well, what if the radius was 5? The sphere is still inside, so we would
say if(-2 < -5), we are outside. In that case, it’s false, so we are inside of the frustum
by a distance of 3. The sphere is defined by its center point (x, y, z) and it’s radius.

bool CFrustum::SphereInFrustum(float x, float y, float z, float radius)
{

// Go through all the sides of the frustum
for(int i = 0; i < 6; i++)
{

// If the sphere’s center is farther away from
// the plane than the size of the radius
if(m_Frustum[i][A] * x + m_Frustum[i][B] * y +

m_Frustum[i][C] * z + m_Frustum[i][D] <= -radius)
{

// The distance was greater than the radius
// so the sphere is outside of the frustum
return false;

}
}

// The sphere was inside of the frustum!
return true;

}

Testing a cube against the frustum is a bit more work, but it’s not too much more
complicated. Basically, what is going on is that we are given the center of the cube and

525Examining the Code

TeamLRN

half the length. Think of it like a radius. Next we check each point of the cube and
see if it is inside the frustum. If a point is found in front of a side, we skip to the next
side. If we get to a plane that does not have a point in front of it, it will return false.

Note that this will sometimes say that a cube is inside the frustum when it isn’t. This
happens when all the corners of the cube are not behind any one plane. This is
rare and shouldn’t affect the overall rendering speed. To make this completely
accurate, you would have to test the eight corners of the frustum against the six
planes that make up the sides of the bounding box. If the bounding box is axis
aligned, you can forget the box’s planes and perform simple greater-than or less-
than tests for each corner of the frustum. Since our octree cubes are axis aligned,
this would be a good place for some optimization. The cube being passed in is
defined with the center point being (x, y, z) and half of its width as the size.

bool CFrustum::CubeInFrustum(float x, float y, float z, float size)
{

// Go through the frustum planes and make sure that at
// least 1 point is in front of each plane
for(int i = 0; i < 6; i++)
{

if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y - size) +
m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0)
continue;

if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y - size) +
m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0)
continue;

if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y + size) +
m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0)
continue;

if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y + size) +
m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0)
continue;

if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y - size) +
m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0)
continue;

if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y - size) +
m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0)
continue;

if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y + size) +
m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0)
continue;

526 14. Space Partitioning with Octrees

TeamLRN

if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y + size) +
m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0)
continue;

// If we get here, there was no point in the cube that was in
// front of this plane, so the whole cube is behind this plane
return false;

}

// By getting here it states that the cube is inside of the frustum
return true;

}

This completes the frustum class. Though we won’t be using the point and sphere
tests, it doesn’t hurt to include them for a greater understanding of frustum
culling. The next step is to incorporate the frustum culling with our octree.

Adding Frustum Culling to Our
Octree
To add frustum culling to our octree, we need to jump back to Octree.cpp and cen-
ter our attention around the DrawOctree() function. We left the code like this:

void COctree::DrawOctree(COctree *pNode)
{

// Make sure a valid node was passed in; otherwise go back to the last node
if(!pNode) return;
// Check if this node is subdivided. If so, then we
// need to recurse and draw it’s nodes
if(pNode->IsSubDivided())
{

// Subdivide farther down the octree
...

}
else
{

// Render the end node
...

}
}

527Examining the Code

TeamLRN

Without frustum culling, the octree was drawing every single end node. Let’s fix
this problem.

void COctree::DrawOctree(COctree *pNode)
{

// Make sure a valid node was passed in; otherwise go back to the last node
if(!pNode) return;
// Make sure its dimensions are within our frustum
if(!g_Frustum.CubeInFrustum(pNode->m_vCenter.x, pNode->m_vCenter.y,

pNode->m_vCenter.z, pNode->m_Width / 2))
{

return;
}
// If this node is subdivided, then we need to recurse and draw its nodes
if(pNode->IsSubDivided())
{

// Subdivide farther down the octree
...

}
else
{

// Render the end node
...

}
}

With a simple addition to our code, the effects are exponentially positive. The code
just implemented assures us that an end node’s vertices will only be drawn when its
cube’s dimensions lie partially or fully inside the planes of our frustum. A global
instance of the CFrustum class, g_Frustum, is created in our Main.cpp to allow the
octree to access the current frustum information. Calling our CubeInFrustum() func-
tion, we pass in the end node’s center (x, y, z), along with half of its width. This
width is then used in conjunction with the center point to find the cube’s eight
points.

Assuming our test returned a true, the end node’s assigned vertices would be
passed into OpenGL to be rendered. Remember that this will only work if the frus-
tum has been calculated prior to this test. If we move our attention to Main.cpp, we
can see where this is being done. Instead of calculating the frustum only when the
camera moves, I ignore this optimization and throw it in the main RenderScene()
function. All it takes is a simple call to CalculateFrustum() from our global g_Frustum

528 14. Space Partitioning with Octrees

TeamLRN

variable. It’s important to note that this must be done after we position the camera.
In this case, the frustum is calculated after gluLookAt(), which is used to manipulate
the model view matrix (camera orientation matrix).

void RenderScene()
{

// Clear The Screen And The Depth Buffer
// and initialize the model view matrix
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();

// Position our camera’s orientation
gluLookAt(g_Camera.m_vPosition.x,

g_Camera.m_vPosition.y, g_Camera.m_vPosition.z,
g_Camera.m_vView.x, g_Camera.m_vView.y, g_Camera.m_vView.z,
g_Camera.m_vUpVector.x,
g_Camera.m_vUpVector.y, g_Camera.m_vUpVector.z);

// Each frame we calculate the new frustum. Really, you
// only need to calculate the it when the camera moves
g_Frustum.CalculateFrustum();

After the frustum is calculated for the current camera orientation, we are free to
check geometry against it. This is exactly what will need to happen when drawing
our octree. In the following, a global instance of the COctree class makes a call to
DrawOctree(). Due to the recursive nature of the function, it passes an address to the
global octree object as the root node, which will be the first node checked to see if
there is a collision. Lastly, the debug lines are drawn to visualize the octree nodes,
and then the back buffer is flipped to the foreground to update the screen.

// Draw the octree, starting with the root node and recursing down.
// When we get to the end nodes we will draw the vertices assigned to them.
g_Octree.DrawOctree(&g_Octree);

// Render the cubed nodes to visualize the octree (in wire frame mode)
g_Debug.RenderDebugLines();

// Swap the back buffers to the foreground with our global hDC
SwapBuffers(g_hDC);
...

}

529Examining the Code

TeamLRN

When discussing the DrawOctree() code earlier in the chapter, it was mentioned that
the octree obviously must be created before attempting to draw it, but where does
this happen? At the top of Main.cpp, our Init() function is defined. This is defined
as follows:

void Init(HWND hWnd)
{

// Initialize OpenGL
...

// This loads the vertices for the terrain
LoadVertices();

Before the octree is created, it is essential to find the bounding box of the scene.
The bounding box will actually be a cube dimension, described by its width. This
way, we just store a cube width for each node. A list of vertices and the vertex
count need to be passed in to determine the surrounding cube, which is set in
LoadVertices(). In our case, the terrain vertices (g_pVertices) and vertex count
(g_NumberOfVerts) are simply stored in a global variable that is initialized from
LoadVertices(). Ideally, this information would come from the scene object that
holds the loaded world/level.

Most likely, you will want to just pass in the scene object for CreateNode() and
GetSceneDimensions() instead of vertices. Following the calculation of the scene’s
dimension, we can then create the octree by using our CreateNode() function.
Through recursion, this will prepare our octree to be drawn. Notice that we pass in
the center and width of the root node. This center and width will be the starting
point to then subdivide from.

// Calculate the surrounding cube width from the center of our scene
g_Octree.GetSceneDimensions(g_pVertices, g_NumberOfVerts);

// Here we pass in the information to create the root node. This will then
// recursively subdivide the root node into the rest of the nodes.
g_Octree.CreateNode(g_pVertices, g_NumberOfVerts, g_Octree.GetCenter(),

g_Octree.GetWidth());

...
}

530 14. Space Partitioning with Octrees

TeamLRN

When creating your own octree class according to your data structures that are
being used for the scene, here are more appropriate function parameters for
CreateNode():

void CreateNode(COctree *pCurrentNode, CModel *pModel);

This way, you just need to pass in the current node that is being subdivided, along
with the scene or model object. Once again, I would like to reiterate that this
octree class was created to help understand the concept of an octree. A more use-
ful class will need to be tailored to the data structures you are working with. No
complex scene stores just vertices. There are UV coordinates, texture maps, nor-
mals, and a bit more data that needs to be subdivided along with the vertices. Once
again, storing just face vertices will eliminate the need to cut up the model’s data
and will make it easy for rendering the octree with vertex arrays.

Summary and Review
Well, this pretty much covers the octree code. Let’s briefly review everything that
has been discussed. We learned that an octree is used to divide a world/level/scene
into sections. The reason we do this is to have a way to draw only what is necessary.
It allows us to check these sections against our frustum. We also learned that a frus-
tum is a region in space that represents what our camera can see.

A frustum has six sides that are created from our field of view, sliced by our per-
spective near and far planes. This usually is graphically displayed as a tapered box.
These six planes can be calculated by multiplying our projection and model view
matrices and then multiplying this resultant matrix by OpenGL’s clipping coordi-
nate planes. Each node in the octree will have a cube width and center point to
pass into our CubeInFrustum() function. This will determine whether that node is
indeed inside of our frustum and has data that needs to be drawn. Remember that
the frustum needs to be calculated at least every time the camera moves; otherwise,
the frustum culling won’t work correctly.

The octree is created by first finding out the initial scene’s dimensions and then
calling CreateNode() to recursively subdivide the polygon data from the starting cen-
ter and width of the root node. There are a few options to choose from when sec-
tioning off the data to different nodes. The first option is to check whether any of
the vertices in a triangle reside in the node being tested; if so, pass a copy of that
polygon’s data to store in that node or the node’s children. A second approach is
not to simply copy the polygon’s data to be stored in that node, but to split that
polygon across the node’s planes and then possibly triangulate the new pieces. The

531Summary and Review

TeamLRN

third choice is to only store face indices in the end nodes, which index into the
original model’s face array. This seems to be the easiest technique to manage the
octree, yet each method has its benefits and drawbacks. It is up to you to choose
which one works best for you.

When subdividing our world, we need to know when to stop. This can be con-
trolled with a constant number of max polygons that can be stored in each end
node. For instance, if we chose to have a maximum of 1,000 polygons in each end
node, the nodes would then continue to be subdivided as long as there were more
than 1,000 in that node. Once the current node contained less than or equal to
1,000 polygons, it would then become an end node, and no more subdivision
would take place for that child.

To draw the octree with frustum culling, we simply start with the root node as the
current node. First we check to see if the current node’s cube dimensions intersect
our frustum. If the node is in our camera’s view, we check to see if it has any chil-
dren. If they exist, the node’s children are also checked against the frustum; other-
wise, it must be an end node, which stores the polygon data to be drawn. This data
can either be actual polygonal information or indices into the original scene
object’s face arrays.

Cleaning up the octree is quite simple. If a deinitialization function is created to go
through each of the node’s children and free them, it can be called in the node’s
deconstructor. This in effect handles the recursive memory deallocation for us.

Where to Go from Here
An octree isn’t just for rendering; it can be used for collision detection as well.
Since collision detection varies from game to game, you will want to pick your own
algorithm for checking whether your character or object collided with the world. A
sample method might be to create a function that allows you to pass in a 3-D point
with a sphere radius into your octree. This function would return the vertices that
are found around that point with the given radius. The point you would pass in
could be the center point of your character or object. Once you get the vertices
that are in that area of your character or object, you can do your more intense col-
lision calculations.

Octrees don’t have to be just for collision in large worlds; they can be quite useful
when testing collision against high poly objects that don’t conform nicely to a
bounding box or sphere. Suppose you are creating a game in outer space that

532 14. Space Partitioning with Octrees

TeamLRN

includes high poly spaceships. When you shoot a missile at the ship, you can mini-
mize the polygons tested against the missile by assigning an octree to the ship. Of
course, for optimum speed, the missile and ship would test their surrounding
spheres until there was a collision between the two spheres, at which time the
octree would come into play to get greater precision.

Though space partitioning is vital knowledge when it comes to real-time rendering,
it is hard to find much information on it besides the famous BSP tree technique.
With first-person shooters being quite popular, the BSP tree method seems to be
the most prevalent technique discussed.

If you want to see if you grasp the concept of creating an octree, try making a sim-
ple application that allows you to load a scene with texture information from any
popular 3-D file format and then subdivide it. It should be obvious that you would
not use function calls such as glVertex3f() to render the data but should pass the
data through vertex arrays and displays lists. This will increase your rendering
speed drastically as your worlds get bigger.

Conclusion
Hopefully, this chapter has been effective in explaining the concepts and benefits
of space partitioning with octrees. Although the theory and implementation of an
octree are somewhat straightforward, it helps to have a reference to test your own
assumptions as to how it can be done. On a side note, I would like to thank Mark
Morley and Paul Martz for their help with the frustum culling.

In addition to my day job as a game programmer, I also am the co-Web host of
www.GameTutorials.com. Our site has well over 200 tutorials that teach C or C++
from the ground up, all the way to advanced 3-D concepts. You can even find a few
tutorials on octrees there as well. The last octree tutorial demonstrates loading a
world from a .3ds file and partitioning it. This code was too huge to fit into this
chapter, but it is still a great example of a real-world implementation. When you
visit the site, it will be little wonder why it gets around a million hits a month.

533Conclusion

TeamLRN

This page intentionally left blank

TeamLRN

TRICK 15

Serialization
Using XML
Property

Bags
Mason McCuskey, Spin Studios,

www.spin-studios.com

TeamLRN

Introduction
After spending last year writing about game programming instead of doing game
programming, I decided it was time for me to get back to what I really love: making
video games. To better facilitate that, I decided to spend some time enhancing my
game engine. One of the things I wanted to do was improve the file format in
which I stored sprite and animation data. The current format worked, but over
time I had built up a wish list for a truly flexible and easily extendible file format.
My wish list included things like the following:

• The file format must be human readable, and editable with a text editor.
That way, I could quickly tweak animation speeds and such without having to
rely on a custom editing program.

• The file format must be expandable. If I finish coding the base file format
and then I realize that I’ve forgotten something, I want the capability to
quickly add the missing part back in while still maintaining backwards
compatibility.

• The file format must be able to contain a wide variety of data types.
Animation data can consist of integers as well as color data, rectangles, x/y
offsets, 3-D vectors, and so on. I want a file format that can handle all of
these without trouble.

• The file format must be able to support an unlimited number of properties,
organized into an unlimited number of categories and subcategories. In
other words, I want something like the Windows Registry, where you can cre-
ate as many folders and subfolders as you want and can store as many things
as you want in each folder.

One idea that was especially interesting to me was to use an XML-like format for
storing my animation data. The goals of XML are closely related to my wish list, so
it made sense to capitalize on the design of the XML standard, even if I didn’t fol-
low it to the letter.

536 15. Serialization Using XML Property Bags

TeamLRN

What Is XML?
XML (an acronym for eXtensible Markup Language) is quickly gaining popularity
among software developers as a standard for data serialization (that is, the saving
and loading of data). XML can be used in software in any industry; in this chapter,
we’re going to take a peek at how it can be used in game development.

XML, as its name implies, is a markup language (similar to HTML) that is capable
of being extended in many different ways. A really simplistic way of thinking of an
XML file is as a beefed-up INI file. An INI file stores program settings and configu-
ration data in the form of key=value pairs organized under [section] headings. XML
also stores data but in a style similar to HTML: The data is squished between
<start> and </start> delimiters (see Figure 15.1).

To use XML, you need to write what is known as an XML parser. The job of the
parser is to read an XML file (also called an XML document) and convert it to a
data structure that the program can actually use. Parsers come in two main flavors:
validating and nonvalidating. A validating parser makes sure that the given XML
document is valid for the specific context at hand. Let’s say you have two XML doc-
uments. One contains baseball stats; the other holds accounting data. If your
accounting program has a validating parser, it knows when you try to feed it base-
ball stats and issues an error message. Even though the baseball stats document has
the correct XML syntax, it’s not the right type of data for the situation at hand.
The validating parser realizes this when it reads the file, and it errors out.

537What Is XML?

Figure 15.1

INI and XML files
formats

TeamLRN

Nonvalidating parsers, on the other hand, don’t know or care about what the docu-
ment contains. As long as the document has the correct XML syntax, a nonvalidating
parser is happy. Of course, when your accounting program asks for a data element
called the “year-to-date interest” and no such data element exists in the baseball file,
errors will occur. The difference is that with a validating parser you can detect errors
like this immediately when the document is loaded. A nonvalidating parser can’t do
this. It doesn’t know that anything is wrong until another part of the code asks for
something that does not exist.

We’re going to concentrate on nonvalidating parsers, in part because they’re easier
to write and in part because I decided that I didn’t need the strength of a full-
fledged validating parser for my video games.

A Sample Data File
Here’s an example of a file I wanted to use to store my animation data:

<AnimSeq1.00>
<Name>Turtle (Test!)</Name>
<Loop>Forward</Loop>
<Defaults>

<Image>
<ColorKey>&RGB(0,0,0)</ColorKey>
<DrawOffset>&xy(0,0)</DrawOffset>

</Image>
<Delay>20</Delay>
</Defaults>

<Frame>
<Image>

<File>turtle_01.bmp</File>
<ColorKey>&RGB(255,0,255)</ColorKey>

</Image>
<Delay>20</Delay>

</Frame>
<Frame>

<Image>
<File>turtle_02.bmp</File>

</Image>
<Delay>20</Delay>

</Frame>
</AnimSeq1.00>

538 15. Serialization Using XML Property Bags

TeamLRN

In this file, you can see several things. The first thing you should notice is that it
looks a lot like HTML. We have named tags, <Image>, and corresponding end tags,
</Image>, arranged in a hierarchy. <Name> is a child of <AnimSeq1.00>, and <Image> is a
child of <Defaults>. All of these elements serve to group individual pieces of data.
For example, the name of the bitmap file for an image is embedded inside a <File>
tag. Together with the <ColorKey> and <DrawOffset> tags, the <File> tag forms an
<Image> element.

Another thing you should notice is that tag names can be duplicated. This data file
represents an animation with two frames, so it contains two <Frame> elements. This
will be important later on when you learn what STL structure to use for this.

A Bag Is Born
I once played a wizard in Advanced Dungeons & Dragons (AD&D), so my design
was inspired by the very useful Bag of Holding that any good wizard can’t be with-
out. A Bag of Holding is a special pouch that can hold anything your wizardly heart
desires (even other Bags of Holding,
although one night we lost many min-
utes debating whether this is true).
Since CBagOfHolding was difficult to type,
I decided to name my class CPropBag
instead. The remainder of this chapter
teaches you how to implement and use
CPropBags.

One of the first things you need to
decide when implementing your bag is
what data types it will store. Of course,
you’ll probably want it to store the
basics: strings, ints, and floats. But you
might also have more advanced data types such as 3-D vectors, rectangles, colors,
(x,y) coordinates, and so on.

You first need to figure out how you’re going to store all of these elements. After
all, if you don’t know how to store a single rectangle on disk, you’ll be lost when it
comes to storing a whole bag full of rectangles.

Programmers know that almost anything can be stored inside a string. For exam-
ple, assume you have a CRect class that you use to store rectangles. CRect contains

539A Bag Is Born

TIP
You’re going to be using the STL
throughout this article. If you’re
unfamiliar with it, STL is an abbrevi-
ation for Standard Template Library
(STL). STL provides several data-
structure classes as well as several
general-purpose classes and func-
tions.Think of it as a C++ extension
to the C runtime library.

TeamLRN

four members—m_x1, m_y1, m_x2, and m_y2—representing the four corner points of
the rectangle. Given that, you could easily store a rectangle into a string by doing
something like the following:

class CRect {
public:

int m_x1, m_y1, m_x2, m_y2;

string ToString() {
stringstream stream;
stream << “&rect(“ << m_x1 << “,” << m_y1 << “,”

<< m_x2 << “,” << m_y2 << “)”;
return(stream.str());

}
};

Here you can see how a C++ stringstream object makes short work of formatting the
rectangle’s elements into a string. You let the stringstream do all the dirty work and
then just convert it to a string on its way out of the method. You end up with a
string that looks like this:

&rect(50,75,125,225);

When you need the original rectangle back, you could just as easily parse the string
and read the four original data elements:

class CRect {
. . .
bool FromString(string str) {

vector<string> tokens;
MakeUpperCase(str); // establishes case-insensitivity
Tokenize(str, tokens, “(,)”);
if (tokens[0] == “&RECT”) {

m_x1 = atoi(tokens.c_str());
m_y1 = atoi(tokens.c_str());
m_x2 = atoi(tokens.c_str());
m_y2 = atoi(tokens[4].c_str());
return(true);

}
return(false); // unknown format

}
};

540 15. Serialization Using XML Property Bags

TIP
If stringstream freaks you out,
there are several other alterna-
tives you can use, including the
tried and true sprintf.You
should use snprintf instead of
sprintf, however, so you can
ensure that you never overflow
your string buffer.

TeamLRN

The heart of this FromString method is the Tokenize call. Tokenize splits a single string
into a vector of strings based on any number of delimiters (in this case, the open-
ing and closing parentheses and the comma). If you’re curious about how the
Tokenize function works, trace through the sample program in the debugger. It’s
not hard to figure out.

The point is, using that sort of code, you can reduce practically anything into a
string. If you do this for all the other primitive data elements, you can reduce the
complexity of the property bag a great deal. For example, you could store (x,y) val-
ues and colors like this:

&xy(10,20)
&rgb(200,0,100)

Instead of worrying about ints, floats,
colors, vectors, and so on, now there are
just two types of properties: single string
properties and property bags (which
we’ll look at in a moment).

STL Multimaps
Now that you know how to make essentially anything into a string and get it back
again, you’re almost ready to start coding the bag class. However, you first need to
decide on a data structure that will hold the bag’s contents. Underneath the hood,
will the bag store things in an array (STL vector)? How about an STL list or STL
deque?

As it turns out, there is one STL data structure that’s particularly well suited to our
bag. That data structure is called a hash, or STL map. A map, as its name implies,
“maps” one thing to another. For example, imagine you have a list of books (repre-
sented by a CBook class) and a list of authors (represented by STL strings). You
could use an STL map to map the authors to their books. Similarly, we can use an
STL map to associate tags with data.

STL maps come in two flavors: std::map and std::multimap. The difference between
the two is that in an std::map, each key can be mapped to only one value. In an
std::multimap, each key can be associated with several values (see Figure 15.2). In
the author/book example, an std::multimap would be more appropriate. Since the
same author can write more than one book, you’d want each author name to be
able to map to more than one book class.

541STL Multimaps

TIP
If you’re an experienced C++ pro-
grammer, you may want to use the
streaming operators, << and >>,
instead of explicitly making ToString
and FromString methods.

TeamLRN

If you look back at the sample data file, you can see that it has multiple values for
one tag (in particular, <Frame>). To get this functionality, you’ll need to use an
std::multimap.

Implementing the Bag
You now know that the bag will use a multimap under the hood, and you know that
you’ll be mapping tags (which are strings) to the values they contain. So you know
the data type for the keys in your map: strings. But what data type do you use for
the values? Since you just learned that practically anything can be stored in a string,
you might be tempted to use strings for the values. However, there’s a more power-
ful way that involves polymorphism.

You can use polymorphism to cleanly store any type of property in an STL map. We
know that the value of any given tag will be either a primitive element (which we
can store in a string) or an entire bag. So let’s make a base class and derive a cou-
ple of classes from it:

542 15. Serialization Using XML Property Bags

Figure 15.2

std::map and
std::multimap

Examples

TeamLRN

class CPropItem
{
public:

. . .
};
class CPropString : public CPropItem
{

. . .
};
class CPropBag : public CPropItem
{

. . .
};

In this code, you can see that I’ve created a CPropItem base class and have derived
from it two other classes: CPropString and CPropBag. This makes it really easy for a
CPropBag to store both individual properties (CPropItem) as well as other CPropBags
because, to the STL map, they look exactly the same.

Now you’re ready to set up the STL map, as in the following code:

typedef multimap<string, CPropItem **> PropertyMap;

This line of code tells the compiler that a PropertyMap is an STL multimap of strings to
CPropItem pointers. This means that our keys are strings, and our values are pointers
to CPropItem classes.

Okay, now that you’ve set up the class hierarchy, it’s time to think about what pure
virtual functions are common to both CPropBag and CPropString. In other words,
what do both CPropBag and CPropString do but do differently?

For starters, they can both save themselves to a string. This is easier for CPropString
than for CPropBag. So you can make a Save function:

virtual string Save(int indentlevel=0) const = 0;

You’ll learn about this function later. For now, it’s enough to know that both
CPropString and CPropBag have it. This means that saving an entire bag is simple; all
you need to do is loop through and call Save for each CPropItem in the bag.
Polymorphism hides the fact that CPropString and CPropBag save differently.

While you’re at it, go ahead and add a couple of equality operators, too. Equality
operators will be useful to programs that use CPropBag, and unfortunately, you can’t
rely on the default equality operators provided by the compiler because the

543Implementing the Bag

TeamLRN

compiler will just compare raw memory, and raw memory will always be different
because your pointers will always point to different things. Here are the pure vir-
tual equality operators:

virtual bool operator==(const CPropItem &r) = 0;
bool operator!=(const CPropItem &r) { return(!((*•this) == r)); }

As you can see, writing an inequality operator is easy—just call the equality opera-
tor and negate the result. However, the equality operator is a little more complex,
so you’ll learn the specifics of that later. For now, just realize that it’s there.

544 15. Serialization Using XML Property Bags

CAUTION
You must use pointers when storing several different derived classes in an STL
map (and really, in any STL data structure). If we used CPropItems instead of
CPropItem pointers, every object we put inside the map would be “sliced” down
into a CPropItem object.We wouldn’t be able to tell which things in the map
were CPropStrings and which were CPropBags. Everything would be a CPropItem.

With pointers, however, we can use runtime type identification (RTTI) to deter-
mine whether a given CPropItem pointer is really a CPropString or a CPropBag:

CPropItem **data = /** something, we dunno. **/;
CPropBag **bag = dynamic_cast<CPropBag **>(data);
CPropString **str = dynamic_cast<CPropString **>(data);
if (NULL != bag) { /** it’s a bag! **/ }
if (NULL != str) { /** it’s a string! **/ }

In the preceding code, the one thing that makes it all happen is the
dynamic_cast. Dynamic casting is a new C++ way of casting. Instead of brute
forcing the cast (using something like bag = (CPropBag **)data), dynamic casting
says,“Hey, Mr. Compiler, if this object is really a pointer to a bag, then cast it;
otherwise, put NULL in my pointer.” In the preceding code, if data really is a
bag, the compiler will set the bag pointer equal to the data pointer. If data isn’t a
bag, the compiler will set bag equal to NULL.

You can’t do this unless you have a CPropItem pointer to begin with, so remem-
ber that whenever you want to store several different kinds of objects (all
derived from a common base) in an STL container, you must use pointers to
ensure that the objects don’t get sliced on their way in.

TeamLRN

Adding Data Elements
Now that you know how the classes are organized, I’ll bet you’re anxious to start
adding elements. To do that, you need some new CPropBag methods:

class CPropBag : public CPropItem
{
public:

/** other stuff snipped! **/
void Add(string key, string data, bool convert = true);
void Add(string key, int data);
void Add(string key, float data);
void Add(string key, CRGB data);
void Add(string key, CRect data);
void Add(string key, CXY data);
void Add(string key, CPropBag &data);

};

CPropBag now contains overloaded functions for all the different data types you can
add. In practice, there are many more than just these, but these will serve to show
you the overall pattern.

You’ll learn how to add strings first because they’re the easiest:

void CPropBag::Add(string key, string data, bool convert)
{

CPropString **newprop = new CPropString(data, convert);
newprop->SetName(key);
m_Data.insert(make_pair(key, newprop));

}

This is fairly easy. The code takes a tag name (key) and a value for that tag (data)
and puts it in the map. It does this by making a new CPropString out of the given
data string, telling that CPropString its name, and then adding it to our STL
multimap.

If you haven’t used STL maps before, you may not have encountered the make_pair
function. The make_pair function is part of STL, and it simply takes any two things
and returns an object that contains both of them. STL maps, contrary to what you
might expect, don’t store separate key and value lists. Instead, they package both
keys and values together into one object and then store a list of those objects (see
Figure 15.3).

545Adding Data Elements

TeamLRN

Translating Special Characters
The only thing that does any work here is the constructor of CPropString. Before
you learn about it, however, you should know that there’s one caveat to adding data
elements—you need to translate special characters. You are using three special
characters: the ampersand (&) character, which you use to denote the start of a
specific data type (as in &rgb or &rect), and the left and right chevrons (< and >,
also known as the greater than and less than signs), which you use to denote the
beginning and end of key names.

Because these three characters mean specific things, you can’t have them floating
around inside your data. For example, consider the following lines:

$7 & 8 are > 6$
<playername>Joe Hac|<er</playername>

Both of these keys are attached to data that contains your special characters. It
wouldn’t be good if the game crashed on Joe because your property file loader
accidentally interpreted his cool hacker “K” as the beginning of another key.

546 15. Serialization Using XML Property Bags

Figure 15.3

A view into an STL
map

TeamLRN

So you need to somehow deal with special characters. For example, you could use
the HTML standard & in place of an ampersand character and the < and >

strings in place of the chevrons:

$7 & 8 are > 6$
<playername>Joe Hac|<er</playername>

Using these codes, you’ve ensured that < and > will never appear in raw data and
that, whenever an & appears, it will be followed either by “amp” (to denote itself) or
by some other characters that identify a data type (like &rgb or &rect). Of course,
this only works if your code remembers to convert to and from these codes
correctly.

Now that you have a plan of attack, here’s the CPropString constructor:

class CPropString {
/** other stuff left out **/
CPropString(string data, bool convert = true) {

SetData(data, convert);
}
void SetData(string d, bool convert) {

if (convert) MakeStringSafeForPropBag(d);
m_Data = d;
m_Converted = convert;

}
};

The real work here is accomplished by SetData, which is called by the constructor.
Notice that there’s a boolean parameter, convert. This parameter tells SetData
whether or not it should convert the <, >, and & characters to their respective
codes. You need this because some methods of CPropBag need to manipulate the
strings of their bag, and if conversion were always on, these methods would be
needlessly complex. By having a boolean (with a default true value), you help your-
self use the CPropString class correctly while still maintaining flexibility for special
situations.

The only thing interesting about the code for SetData itself is the
MakeStringSafeForPropBag method. (Hey, laugh at the long name if you want, but real-
ize also that you already know exactly what the method does!)

Here are the details of MakeStringSafeForPropBag:

void CPropString::MakeStringSafeForPropBag(string &str)
{

547Adding Data Elements

TeamLRN

// replace all &’s with &
Replace(str, string(“&”), string(“&”));
// replace all <’s with <
Replace(str, string(“<”), string(“<”));
// replace all >’s with >’s
Replace(str, string(“>”), string(“>”));

}

This code relies heavily on a function called Replace. Since STL doesn’t provide a
very good string-replacement function, I had to augment it by writing my own
Replace function, which you can find inside PrimitiveDataElements.cpp. I’m not going
to talk about Replace here except to say that it looks through the first parameter
(which is a reference) and replaces all instances of the second parameter with the
third parameter. The MakeStringSafeForPropBag method is using it to convert <, >,
and & into their respective codes.

Of course, you also need the other function—the one that converts the codes back
into characters. Here it is:

void CPropString::RestoreOrigFromSafeString(string &str)
{

// replace all & with &
Replace(str, string(“&”), string(“&”));
// replace all < with <
Replace(str, string(“<”), string(“<”));
// replace all > with >
Replace(str, string(“>”), string(“>”));

}

Nothing special is going on
here. This code is just doing
the opposite of what
MakeStringSafeForPropBag did.
Using these methods, you’re
able to ensure that special
characters are handled
correctly.

548 15. Serialization Using XML Property Bags

TIP
You could make your bag more robust by
enhancing the MakeStringSafeForPropBag and
RestoreOrigFromSafeString methods so that
they dealt with non-ASCII characters (per-
haps by converting them to their hex-code
equivalents).This would allow your bag to
store binary data, which might be cool for
storing encrypted passwords and whatnot
inside property files.

TeamLRN

Adding Nonstring Elements
Whew! Now that you know how to deal with special characters, you can learn how
to store other, nonstring data elements. Here’s how to store an integer:

void CPropBag::Add(string key, int data)
{

stringstream stream;
stream << data;
Add(key, stream.str());

}

Nothing to it! This code just streams the int into a string and then calls the Add
overload for strings we just wrote.

Here’s a rectangle, which is a little more complex:

void CPropBag::Add(string key, CRect data)
{

CPropString **newprop = new CPropString(data.ToString(), false);
newprop->SetName(key);
m_Data.insert(make_pair(key, newprop));

}

Notice that this code is calling the rectangle’s ToString method that you learned
about earlier. Notice also that the code specifies false for the CPropString construc-
tor’s conversion parameter. Think about this for a moment—the string that the
rectangle gives back to you looks something like &rect(10,20,50,70). If you didn’t
supply false to the constructor, it would take that string and convert the ampersand
to &, giving you &rect(10,20,50,70). This would later screw up the rectangle’s
FromString method because it would be
looking for &rect, not &rect. This is
why you need the capability to turn off
special-character conversion.

Other data types play out in essentially
the same way.

Adding Bags
Adding a bag is different than adding a string element:

void CPropBag::Add(string key, CPropBag &data)
{

549Adding Data Elements

TIP
In fact, the various Add overloads are
so similar that you might consider
writing a template for them.

TeamLRN

CPropBag **newbag = new CPropBag();
**newbag = data;
m_Data.insert(make_pair(key, newbag));

}

Here the code is relying on the bag’s overloaded assignment operator (which you’ll
learn about in a few sections) to make a copy of the bag and then add that to its
internal m_Data map. The assignment operator makes a copy of all the contents of
the bag, so that one simple assignment operator could generate a lot of work.

Getting Elements
At this point, you can add virtually anything you want to a CPropBag, but you still
need to learn how to retrieve the elements you’ve added. It’s time to take a look at
CPropBag’s Get overloads, starting with the string overload.

Getting Strings
The following code snippet demonstrates how to retrieve string information.

bool CPropBag::Get(string key, string &dest, int instance)
{

if (m_Data.find(key) == m_Data.end()) return(false);
PropertyMap::iterator iter = m_Data.lower_bound(key);
for (int q=0; q < instance; q++) iter++;

550 15. Serialization Using XML Property Bags

TIP
Notice that this Add overload takes a CPropBag reference to the data
instead of just a CPropBag. If the code didn’t take a reference, you’d need
to write a copy constructor that behaved identically to the assignment
operator.The compiler would use this copy constructor to make a copy
of the bag as you entered the Add method.This is wasteful.That bag
copy is a temporary variable and is only going to live until you return
from the method, so it doesn’t make sense to copy it. Be careful—C++
programs can lose a lot of speed like this.A simple optimization is to go
through your methods and make any parameter that’s currently an
object be a reference to an object instead. If you wanted to get really
fancy, you could make them const references, which would prevent the
methods from modifying the referenced objects in any way.

TeamLRN

dest = iter->second->Save();
return(true);

}

The parameters for the Get function are pretty much what you’d expect. There’s
key, also known as the stuff in between the < >’s, and dest, a reference to a string
that Get puts the value into. (Remember that this is the string overload—other Gets
will have different dests.) The final parameter, instance, is only useful if you have
two or more keys with the same name. It tells the function which instance of the
key you want.

The first thing the code does is a sanity check. If no key with the given name exists,
the method returns false. If it does exist, the code moves on and grabs the first key
with the given name. (That’s what the lower_bound method of multimap does—look it
up in the docs for more details.)

The next line moves the iterator received from the lower_bound function to the
requested instance of key. Now, it would be great if you could just write the
following:

PropertyMap::iterator iter = m_Data.lower_bound(key)+instance;

Unfortunately, STL multimaps don’t support this because of the way they store their
data internally. Instead, you can use a for loop to “bounce along” the map until you
land at the instance you want. This is what’s going on here.

Remember that make_pair function? It takes any two things and makes a class out of
them. The class has two members: first, which is the first thing, and second, which
is the second thing. In this case, first is a string (the key), and second is a pointer to
a CPropItem (the value). Once the iterator lands on the requested instance of the
requested key, it simply calls the Save method of second. Polymorphism takes care of
the rest. If this thing that the iterator’s on is a CPropString, you get that string; if it’s
a bag, the bag saves itself to a string and gives that to you. Cool, isn’t it?

Getting Other Data Types
The other Get overloads build on the string overload you just learned about. Here’s
a floating point example:

bool CPropBag::Get(string key, float &dest, int instance)
{

string str;
if (!Get(key, str, instance)) return(false);

551Getting Elements

TeamLRN

dest = atof(str.c_str());
return(true);

}

As you can see, all of the real work
is done by the string overload of
Get. The function gets the key as a
string and then calls the C runtime
library function atof to convert
that string to a float. Nothing to it!

Getting Bags
Now it’s time to look at the third type of Get overload. Here’s how to pull one bag
out from another:

bool CPropBag::Get(string key, CPropBag &dest, int instance)
{

if (m_Data.find(key) == m_Data.end()) return(false);
PropertyMap::iterator iter = m_Data.lower_bound(key);
for (int q=0; q < instance; q++) iter++;
CPropBag **bag = dynamic_cast<CPropBag **>(iter->second);
if (NULL == bag) return(false);
dest = **bag;
return(true);

}

This method’s a close cousin to the string overload with one exception: the
dynamic_cast that happens once the iterator points to the correct value. You’ve
learned about a method that can convert a
bag to a string (Save), but there’s no
method that can convert a string to a bag
(or at least, I didn’t see a need to write
one). So we need to explicitly check that
the given key really does map to a CPropBag
and not a CPropString. If it does, all is well.
The code makes the given reference point
at that bag and returns true. If it’s not a
CPropBag, it returns false.

552 15. Serialization Using XML Property Bags

TIP
There are more C++ ways to convert a
string to a float—for example, through
stringstream—but I grew up in C, and
sometimes you’ve just got to return to
your old-school roots. Besides, adding a
string stream would needlessly compli-
cate things.All we need is one float, not
several separated by whitespace!

TIP
You might consider adding a
method that will turn a string into
a bag.This would give you the
capability to eliminate a layer of
tags for elements that only contain
one value.This might be handy in
certain situations.

TeamLRN

Saving and Loading Bags
Of course, none of the techniques you’ve learned so far will do any good if you
can’t save and load CPropBags. Let’s start with the Save function since it’s the easier
of the two.

Saving Bags
Here’s the code that saves our bag to disk:

string CPropBag::Save(int indentlevel) const
{

string out;
string indent(indentlevel, ‘\t’);
for (PropertyMap::const_iterator i = m_Data.begin();

i != m_Data.end(); i++) {
CPropItem **data = (**i).second;
string key = (**i).first;
string line, dataformat;
CPropBag **bag = dynamic_cast<CPropBag **>(data);
line = data->Save((bag) ? indentlevel+1 : indentlevel);
stringstream withname;
if (bag) {

withname << indent << “<” << key << “>” << endl
<< line << indent << “</” << key << “>” << endl;

}
else {

withname << indent << “<” << key << “>” << line
<< “</” << key << “>” << endl;

}
out += withname.str();

}
return(out);

}

There’s a bit of recursion at play here.
First, the code uses the only parameter,
indentlevel (which defaults to zero), and
creates a string that indents by that num-
ber of tabs.

553Saving and Loading Bags

TIP
The STL string has a handy con-
structor that allows you to con-
struct a string that’s nothing but a
single character. For example, the
following line creates a string that
contains “***************”:

string stars(10, ‘**’);

Impress your friends with this silly
STL trick!

TeamLRN

Next the bag begins to loop through each of the elements in its m_Data multimap.
For each element, it determines whether it’s a CPropBag or a CPropString. Then it
calls the elements Save method. If it’s a bag, the code increments the indent level
on the way in.

This is where the recursion lives. If the CPropItem in question is actually a CPropBag,
the code will recurse down into that bag and start the whole thing over, only with
an additional level of indentation. This is powerful, and it’s important that you
understand how this works. If you’re confused, trace through it in the debugger
using a simple bag until you understand it.

Save gives back a string representation of
the element. The next few lines take the
element’s key and the string representa-
tion and format them. If the element is a
bag, it puts the key and the string repre-
sentation on different lines, like this:

<key>
[string representation of data]

</key>

If the element is a CPropString, it puts
everything on one line, like this:

<key>[string representation of data]</key>

Finally, after it has done this for each of
its data elements, the bag returns the fin-
ished string.

The Save function for CPropString is con-
siderably more simple:

string CPropString::Save(int indentlevel)
const { return(m_Data); }

Gotta love that it’s a one-liner! Since the
CPropString’s data is already in string for-
mat, it doesn’t have to do anything to
Save it.

554 15. Serialization Using XML Property Bags

TIP
Bonus! The bag saved out its con-
tents in alphabetical order, even
though you never explicitly told it to.
An STL map is a template class, and
one of its template arguments speci-
fies how to sort its contents. Sorting
the contents as they are added actu-
ally makes looking up a value for a
particular key wicked fast. Under the
hood, the STL map is using a tree
structure, and that requires a sorting
function to balance the tree.The
default template argument for sort-
ing is an alphabetical sort, so the
map automatically alphabetizes the
key/value pairs as you add them.This
is nifty, but if for some reason you
want to sort a different way, you can
override the template arguments
when you declare the map and make
it use a different built-in mechanism,
or you can roll your own from
scratch.

TeamLRN

Loading Bags
Loading is more complex than saving and requires a flowchart (see Figure 15.4).

Here’s how the flowchart looks in code:

bool CPropBag::LoadFromString(string data)
{

m_Data.clear();
enum eElanPropBagReadState {

SearchingForOpenTag = 0,
ReadingOpenTag = 1,
ReadingTagContents = 2,

555Saving and Loading Bags

Figure 15.4

A “Loading” flowchart

TeamLRN

} curstate = SearchingForOpenTag;
string tagname, tagvalue, closetag;

for (string::iterator iter = data.begin();
iter != data.end(); ++iter) {

unsigned char b = **iter;
switch(curstate) {
case SearchingForOpenTag:

if (b == ‘<’) {
// we’ve found our open tag!
curstate = ReadingOpenTag;

}
break;

case ReadingOpenTag:
if (b == ‘>’) {

// end of tag
curstate = ReadingTagContents;
closetag = string(“</”) + tagname + string(“>”);

}
else tagname += b;
break;

case ReadingTagContents:
tagvalue += b;
if (tagvalue.find(closetag) != string::npos) {

Replace(tagvalue, closetag, string(“”));
PutTagIntoBag(tagname, tagvalue);
curstate = SearchingForOpenTag;
tagname = “”; tagvalue = “”;

}
break;

}
}
return(true);

}

This code takes a string and converts it to a CPropBag. The Load code is based on a
state machine with three states: SearchingForOpenTag, ReadingOpenTag, and
ReadingTagContents. This means that as the code loops through each character of the
string it was given, it can be searching for an opening tag (a <), reading a key
name, or reading the data that goes with a key.

556 15. Serialization Using XML Property Bags

TeamLRN

The code starts in the SearchingForOpenTag state. The only thing that the case state-
ment for this state cares about is whether the current character is a <. If it is, the
code moves to the ReadingOpenTag state. If not, it does nothing, and the character is
discarded. This lets you put as much whitespace between tags as you need.

Once it gets to the ReadingOpenTag state, the code starts paying attention to the char-
acters, adding each character to a tagname variable. If it finds a >, it knows that the
opening tag is over. It also knows what the closing tag will look like because the
closing tag is always in the form </opentag>. Finally, it moves to the
ReadingTagContents state. The opening tag is complete; now it’s time to start reading
the data.

The ReadingTagContents state just puts each character into another variable, tagvalue.
It does this until the entire close tag gets put in tagvalue. If it finds the closing tag
in tagvalue, it’s time for the real work to start. It now knows both the key (tagname)
and its associated value (tagvalue), so it can add that element to the m_Data mul-
timap. The PutTagIntoBag function accomplishes this. Once it does, the code clears
out the tagname and tagvalue variables and goes back to the SearchingForOpenTag state.
This continues until the entire string is parsed.

The only remaining piece to this puzzle is the PutTagIntoBag method. Here’s how it
looks:

bool CPropBag::PutTagIntoBag(string tagname, string tagvalue)
{

// a < and > mean it’s a bag within a bag
if (tagvalue.find(“<”) != string::npos &&

tagvalue.find(“>”) != string::npos) {
// it’s a bag.
CPropBag **newbag = new CPropBag;
newbag->LoadFromString(tagvalue);
m_Data.insert(make_pair(tagname, newbag));

}
else {

// it’s a primitive data type.
CPropString **newstr = new CPropString(tagvalue, false);
newstr->SetName(tagname);
m_Data.insert(make_pair(tagname, newstr));

}
return(true);

}

557Saving and Loading Bags

TeamLRN

This code gets a tagname and a tagvalue—the key and value for the new data ele-
ment. The first thing it does is determine whether the tagvalue is another bag.
If there are any < or > characters in the tagvalue, the code knows it’s a bag.
(Remember that any < or > in the actual data should be converted to their > or
< codes.) If the code finds < or >, the recursion happens: The code calls the
LoadFromString method of a newly created CPropBag, and the whole thing starts all
over for the data inside tagvalue.

If there are no < or > characters, the code knows it’s not a bag, and things are eas-
ier. It creates a new CPropString from the tagvalue and inserts it into the m_Data mul-
timap. Notice that, again, we turn off the special character conversion because we
don’t want any >, <, or & codes that already exist in tagvalue to get turned
into &gt, &lt, or &amp.

Other Operations
Now that you have the basics mastered, you can round out your property bag with a
few useful, although not unconditionally needed, methods. In this section, you’ll
learn how to compare bags, merge them, and copy them.

Testing for Equality
Testing for equality is fairly easy, but like most other bag operations, it involves a
bit of recursion. Recall that when you wrote the class declarations for CPropItem,
CPropString, and CPropBag, you declared a virtual operator== method. Now you’ll learn
how to implement that method, starting with the implementation for CPropString:

class CPropString : public CPropItem
{

/** other stuff omitted **/
bool operator==(const CPropItem &r) {

try {
const CPropString &rStr = dynamic_cast<const CPropString &>(r);
return(m_Data == rStr.m_Data);

} catch(...) { return(false); }
}

};

That’s fairly painless. At the core, all you do is compare the data members of the
two CPropStrings. However, the whole thing is wrapped by a try/catch handler. This

558 15. Serialization Using XML Property Bags

TeamLRN

is because of dynamic_cast. Recall that dynamic_cast sets your pointer to NULL if it
isn’t of the type to which you’re casting. This works for pointers, but in C++, you
can’t have a reference that points to NULL. So, instead of setting your reference to
NULL, dynamic_cast throws an exception. We need to catch that exception because
it can crash the system if it goes uncaught. Here, if the code catches an exception,
it can infer that r, the thing to which it’s comparing itself, isn’t a CPropString, so it
returns false.

Now take a peek at CPropBag’s equality operator:

class CPropBag : public CPropItem
{

/** other stuff omitted **/

bool operator==(const CPropBag &r);
bool operator==(const CPropItem &r) {

try {
const CPropBag &rBag = dynamic_cast<const CPropBag &>(r);
return((**this) == rBag);

} catch(...) { return(false); }
}

};

As you can see, there are two equality operators: one that compares the bag to a
CPropItem and one that compares the bag to another CPropBag. The CPropItem over-
load is virtually identical to the CPropString equality operator, except that it
dynamic_casts to a CPropBag instead of a CPropString. Here’s the other overload:

bool CPropBag::operator==(const CPropBag &r)
{

if (r.m_Data.size() != m_Data.size()) return(false); // that was easy
PropertyMap::const_iterator riter = r.m_Data.begin();
PropertyMap::const_iterator liter = m_Data.begin();
for (; riter != r.m_Data.end() && liter != m_Data.end();

++riter, ++liter) {
if ((liter->first) != (riter->first)) return(false);
if (**(liter->second) != **(riter->second)) return(false);

}
return(true);

}

559Other Operations

TeamLRN

This starts easy. The code says, “If my
multimap isn’t the same size as his mul-
timap, we’re obviously different,” and
returns false. From there, it gets more
complex. The code needs to loop and
compare each element in its multimap
against the element at that same posi-
tion in the other bag’s multimap. Since
the two multimaps have the same alpha-
betical sort mechanism, this is safe. The
instant it finds two elements whose keys
or values don’t equal each other, it
returns false. If it makes it all the way
through its contents, it knows that it’s
equal to the other guy and returns true.
Notice that this code uses the CPropString
equality operator you just learned.

An Assignment Operator and a
Copy Constructor
Pun alert: Another useful thing to have in our bag of tricks is the capability to copy
a bag—that is, to be able to assign one bag to another by overloading the equals
operator:

CPropBag emptybag;
CPropBag fullbag;
// add some stuff...
fullbag.Add(“item1”, “data1”);
fullbag.Add(“item2”, “data3”);
fullbag.Add(“item3”, “data3”);
// make empty bag full!
emptybag = fullbag;

By default, C++ will provide you with an equals operator for every class you create.
The “default” assignment operator simply treats your class as a struct and copies
the memory:

// the C++ operator= does this. Not good!
memcpy(&emptybag, &fullbag, sizeof(CPropBag));

560 15. Serialization Using XML Property Bags

TIP
Notice the use of const_interator in
the operator== method. Since the
code has been handed a reference to
a const CPropBag, it can’t use a normal
iterator because doing so might break
the “constness” of the parameter
(because standard iterators allow you
to read as well as change the data to
which they point).The const_iterator,
on the other hand, provides read-only
access, so you can use it on const
objects.

TeamLRN

On the surface this may look fine, but it’s not. Because the bag class contains point-
ers to other things, you can’t simply copy the pointer values. All of a sudden two bags
would point to the same thing, and when one bag deleted the memory to which the
pointer pointed, the other bag’s pointer would become invalid. In effect, the first
bag would have pulled the rug out from under the second bag, and the second bag
would not access any data when it tried to do anything with the pointer because it
would be trying to access memory that had already been freed.

So you need to write code for what’s known as a deep copy. Instead of just copying
memory “on the surface,” a deep copy makes a copy of everything that a class con-
tains.

It might also be useful to give your CPropBags a copy constructor. Here’s how to kill
both those requirements with one method:

class CPropBag : public CPropItem
{

/** other stuff omitted **/
public:

CPropBag(const CPropBag &r) { Init(); Copy(r); }
CPropBag &operator=(const CPropBag &r) { Copy(r); return(**this); }

private:
// stuff that’s common to all constructors goes here
void Init() { }
void Copy(const CPropBag &r);

};

This code illustrates a common C++ trick—using a common Copy method as the
brains for both the copy constructor and the assignment operator. And now, here’s
Copy:

void CPropBag::Copy(const CPropBag &r)
{

Clear(); // empty this bag
string rsave = r.Save();
LoadFromString(rsave);

}

Were you expecting more recursion? No need! Your bags already know how to save
themselves to a string and how to load themselves from a string, so the easiest way
to copy one bag to another is to save the old bag to a string and load that string
back into the new bag. Nifty!

561Other Operations

TeamLRN

Merging
When I wrote the first version of my animation sequence file, I made it very simple:
For every frame, I specified an image file, a color key, and a delay. When I went to
use this in a real game, however, I realized pretty quickly that my animation
sequence files were needlessly large. For example, I tended to use the same color
key for all the frames of an animation. Why was I explicitly specifying the color key
on each and every frame?

I realized that a better way would be to specify defaults for the animation frames up
front and write the code so that it used those defaults unless I explicitly provided a
different value. If you look back to the sample file, you can see that I have a
<Defaults> section that contains the same keys as each individual <Frame>. Individual
<Frame> tags only contain keys that deviate from the defaults inside the <Defaults> tag.

Implementing this in code requires a method that will merge one bag with another.
Once you have that method, it’s easy to merge each <Frame> tag with the <Defaults>
tag and then send the merged bag off to the Image Loading Code (see Figure 15.5).
For the cost of writing one method, you gain a tremendous amount of flexibility.

562 15. Serialization Using XML Property Bags

Figure 15.5

Sending data to the image loading code

TeamLRN

The Merge method looks like this:

void CPropBag::Merge(const CPropBag &newstuff, bool overwrite)
{

for (PropertyMap::const_iterator newiter = newstuff.m_Data.begin();
newiter != newstuff.m_Data.end(); ++newiter) {

CPropString **pStr = dynamic_cast<CPropString **>(newiter->second);
CPropBag **pBag = dynamic_cast<CPropBag **>(newiter->second);
if (pStr) {

// if it doesn’t already exist here, or if overwrite is set,
if (m_Data.find(newiter->first) != m_Data.end() || overwrite) {

// add it to this bag
Remove(newiter->first);
Add(newiter->first, pStr->GetData(), false);

}
}
if (pBag) {

// if it doesn’t exist, just add the bag (easy!)

563Other Operations

Table 15.1 Merge Method Logic

Old Element New Element Overwrite Action

string string T Replace old string
with new string

string string F Do nothing

string bag T Remove the old
string, put in the
new bag

string bag F Do nothing

bag string T Remove the old
bag, put in the new
string

bag string F Do nothing

bag bag T Recurse

bag bag F Recurse

TeamLRN

564 15. Serialization Using XML Property Bags

PropertyMap::iterator origbagiter = m_Data.find(newiter->first);
if (origbagiter == m_Data.end()) Add(newiter->first, **pBag);
else {

// it exists, so we need to recurse into the subbag
CPropBag **origbag =

dynamic_cast<CPropBag **>(origbagiter->second);
if (origbag) origbag->Merge(**pBag, overwrite);
else {

// it’s a string, and we have a bag...
// if we should overwrite, do so.
if (overwrite) {

Remove(newiter->first);
Add(newiter->first, **pBag);

} // if
} // else (!origbag)

} // else (origbagiter != m_Data.end())
} // if pBag

} // for loop
}

This code takes as input a bag to merge in and a boolean specifying whether to
overwrite any keys that may already be present. It loops on each element of the
given bag newstuff and takes different action based on whether that element is a
CPropString or a CPropBag (see Table 15.1).

If it’s a string, it looks at the overwrite flag and determines whether it should add
the string. If so, it calls Add to add the element (specifying that special codes should
not be converted).

If the element is a bag, two things can happen. If the corresponding bag is not
already here, Merge simply adds the new bag by calling the bag overload of Add. If,
however, the bag already exists, Merge calls itself (whoo-hoo, more recursion!). You
don’t want to completely replace the original bag with the bag in newstuff. You want
to Merge it, so you need the recursion.

Now for the final case. Let’s say the original bag contains a <test> key with a string
for its data. Now say that newstuff contains a <test> key that’s a bag. In this situation,
the code checks overwrite. If it’s true, it removes the old value (in this example, the
string) and puts in the new value (in this example, the bag).

TeamLRN

Processing continues like this for each element until all elements have been
merged.

Conclusion: OK, But Is This
Really XML?
You now know how to do essentially everything you need to do with property bags,
but you may be asking yourself, “Self, did I just write a nonvalidating XML parser?”
The answer is “yes and no” or, more precisely, “not a complete one.” XML has fea-
tures above and beyond what you’ve coded here (for example, the capability to
specify a NULL element using <Keyname/>). However, what you’ve written should do
nicely for most game-programming tasks.

If you feel you need to add the other features of XML, I encourage you to do so.

Enhancements and
Exercises
The way to property bag nirvana that I’ve just described isn’t the only way; it was
simply the best way given my design constraints. Since your design constraints are
undoubtedly different, I encourage you to come up with your own design to
accomplish the same functionality. Here are a few things you can try:

• Use templates. Most of the Add and Get methods of CPropBag are identical
except for the data type on which they operate. See if you can figure out how
to use templates to eliminate the large chunks of cut-and-pasted code pre-
sent in the sample program.

• Use copy-on-write. Recall that our assignment operator copies the entire con-
tents of one bag to another and that the compiler will implicitly call our
bag’s copy constructor when we pass bags (not bag references) to methods.
You might consider implementing a copy-on-write mechanism; instead of
copying the bag contents right then and there, the assignment operator
would set a flag saying, “Hey, if anything tries to modify this bag, you need to
make a copy first.” Copy-on-write is a great technique that professional C++
programmers use, mainly so that they can use objects, instead of references
of objects, as parameters.

565Enhancements and Exercises

TeamLRN

• Implement a derivative of CPropBag that doesn’t allow multiple keys. It isn’t
that hard.

• Implement the complete XML feature set, making the property bag code a
complete implementation of the XML standard.

• Last but not least, feel free to use property bags in your own games to reduce
the chore of saving and loading data.

566 15. Serialization Using XML Property Bags

TeamLRN

TRICK 16

Introduction
to Fuzzy

Logic
André LaMothe,

ceo@xgames3d.com

TeamLRN

Introduction
So what is fuzzy logic? Fuzzy Logic is a method of analyzing sets of data such that
the elements of the sets can have partial inclusion. Most people are used to Crisp
Logic where something is either included or it isn’t in any particular set. For exam-
ple, if I were to create the sets child and adult, I would fall into the adult category
and my 7-year-old nephew would be part of the child category. That is crisp logic.

Fuzzy logic on the other hand, allows objects to be contained within a set even if
they aren’t totally in the set. For example, I might say that I am 10% part of the
child set and 100 percent part of the adult set. Similarly, my nephew might be 2%
included in the adult set and 100% included in the child set. These are fuzzy val-
ues. Also, you’ll notice that the individual set inclusions don’t have to add up to
100%. They can be greater or less since they don’t represent probabilities, but
rather are included in different classes. However, when we are talking about proba-
bilities, the probability of an event or state in different classes must add to 1.0 for
all the events that make up that class.

The cool thing about Fuzzy Logic is that it allows you to make decisions that are
based on fuzzy, error, or noise-ridden data. These decisions are usually correct and
much better than possible with crisp logic. With a crisp logic system you can’t even
begin to think about doing this since every function I have ever seen in C/C++ or
any other language has a specific number of inputs and outputs. If you’re missing a
variable or input, then it won’t work, but with fuzzy systems, the system can still
function and function well, just like a human brain. I mean, how many decisions
do you make each day that feel fuzzy to you? You don’t have all the facts, but you’re
still fairly confident of the decision?

Well, that’s the 2-cent tour of fuzzy logic and its applications to Artificial
Intelligence (AI) are obvious in the areas of decision making, behavioral selections,
and input/output filtering. With that in mind, let’s take a look at the various ways
fuzzy logic is implemented and used.

Standard Set Theory
A standard set is simply a collection of objects. To write a set, use a capital letter to
represent it and then place the elements contained in the set between braces and

568 16. Introduction to Fuzzy Logic

TeamLRN

separated by commas. Sets can consist of anything: names, numbers, colors,
whatever. Figure 16.1 illustrates a number of standard sets. For example, set
A={3,4,5,20} and set B={1,3,9}. Now there are many operations that we can per-
form on these sets, as shown below:

• Element of “∈”: When talking about a set, you might want to know if an
object is contained within the set? This is called set inclusion. Hence, if you
wrote 3 ∈ A, reads; “3 an element of A” that would be true, but 2 ∈ B is not.

• Union “∪”: This operator takes all the objects that exist in both sets and
adds them into a new set. If an object appears in both sets initially, then it is
only added to the new set once. Hence, A ∪ B = {1,3,4,5,9,20}.

• Intersection “∩”: This operator takes only the objects that are in common
between the two sets. Therefore, A ∩ B = {3}.

• Subset of “⊂”: Sometimes you want to know if one set is wholly contained in
another? This is called set inclusion or subset of. Therefore, {1,3} ⊂ B, which
reads “the set {1,3} is a subset of B. However, A ⊄ B, which reads “A is not a
subset of B”.

Ok, that’s a little set theory for you. Nothing complicated, just some terminology
and symbols. Everyone works with set theory every
day—they just don’t know it. However, the one
thing I want you to get from this section is that
standard sets are exact. Either “it’s a fruit or it’s
not,” “either 5 is in the set, or it’s not.” This is not
the case with fuzzy set theory.

569Introduction

Figure 16.1

Some simple sets

TIP
Usually a slash “/” or prime
“ ' ”symbol means “NOT” or
“complement,” “invert,” etc.

TeamLRN

Fuzzy Set Theory
The problem with computers is that they are exact machines and we continually
use them to solve inexact or fuzzy problems—or at least try to. In the 1970s, com-
puter scientists started applying a technique of mathematics called Fuzzy Logic or
Uncertainty Logic to software programming and problem solving. Hence, the fuzzy
logic that we are talking about here is really the application of fuzzy set theory and
its properties. Therefore, let’s take a look at the fuzzy version of everything we just
learned about with standard set theory.

First, when talking about fuzzy set theory, we don’t focus so much on the objects in
the set any more. This means that the objects are in the set, but we focus on the
degree of membership any particular object has within a certain class. For example,
let’s create a fuzzy class or category (see Table 16.1)called “Computer Special FX.”
Then, let’s take a few of our favorite movies (mine at least) and estimate how much
each of them is in the fuzzy class “Computer Special FX.”

Do you see how fuzzy this all is? Although “The Matrix” had some really killer
computer-generated FX, the entire movie “Antz” was computer-generated, so I have
to be fair. However, do you agree with all these? If “Antz” is totally computer-gener-
ated and has a running time of two hours, but “Forrest Gump” has only five min-
utes total of mixed real life and computer-generated imagery. Hence, is it fair to
rate it at 20%? I don’t know. That’s why we are using fuzzy logic. Anyway, we write
each fuzzy degree of membership as an ordered pair of the form:

{candidate for inclusion, degree of membership}

Therefore, for our movie example we would write:

{Antz, 1.00}

570 16. Introduction to Fuzzy Logic

Table 16.1 Degree of Membership for Killer Movies

Movie Degree of Membership in Class

Antz 100%

Forrest Gump 20%

Terminator 75%

Aliens 50%

The Matrix 90%

TeamLRN

{Forrest Gump, 0.20}

{Terminator, 0.75}

{Aliens, 0.50}

{The Matrix, 0.9}

Finally, if we had the fuzzy class “Rainy,” what would you include “today” as? Here it
is: {today, 0.00}—blue skies and bikinis in California!

Now, we can add a little more abstraction and create a full fuzzy set. A fuzzy set (in
most cases) is an ordered collection of the degrees of membership (DOM) of a set of
objects in a specific class. For example, in the class “Computer Special FX” we have
the set composed of the degrees of membership:

A={1.0, 0.20, 0.75, 0.50, 0.90}

One entry for each movie respectively—each of the variables represents the DOM
of each of the movies as listed in Table 16.1, so order counts! Now, suppose that we
have another set of movies that all have their own degrees of membership as:

B={0.2, 0.45, 0.5, 0.9, 0.15}.

Now, let’s apply some of our previously learned set operations and see the results.
However, before we do there is one caveat—since we are talking about fuzzy sets
which represent degrees of membership or fitness vectors of a set of objects, then
many set operations must have the same number of objects in each set. This will
become more apparent when you see what the set operators do below.

• Fuzzy Union “∪”: The union of two fuzzy sets is the MAX of each element
from the two sets. For example, with fuzzy sets:

A={1.0, 0.20, 0.75, 0.50, 0.90}

B={0.2, 0.45, 0.5, 0.9, 0.15}

The resulting fuzzy set would be the max of each pair:

A ∪ B = {MAX(1.0,0.2), MAX(0.20,0.45), MAX(0.75,0.5), MAX(0.90,0.15)}

= {1.0,0.45,0.75, 0.90}

• Fuzzy Intersection “∩”: The intersection of two fuzzy sets is just MIN of each
element from the two sets. For example, with fuzzy sets:

A={1.0, 0.20, 0.75, 0.50, 0.90}

B={0.2, 0.45, 0.5, 0.9, 0.15}

A ∩ B = {MIN(1.0,0.2), MIN(0.20,0.45), MIN(0.75,0.5), MIN(0.90,0.15)}

= {0.2,0.20,0.5, 0.15}

571Introduction

TeamLRN

Subsets and elements of fuzzy sets have less meaning than with standard sets, so I’m
skipping them; however, the complement of a fuzzy value or set is of interest. The
complement of a fuzzy variable with degree of membership x is (1–x), thus, the
complement of A written A' is computed as:

A = {1.0, 0.20, 0.75, 0.50, 0.90}

Therefore,

A' = {1.0 – 1.0, 1.0 – 0.20, 1.0 – 0.75, 1.0 – 0.50, 1.0 – 0.90}

= {0.0, 0.8, 0.25, 0.5, 0.1}

I know this is killing you, but bear with me.

Fuzzy Linguistic Variables and
Rules
Alrighty then! Now that you have an idea of how to refer to fuzzy variables and sets,
let’s take a look at how we are going to use them in game AI? Ok, the idea is that
we are going to create an AI engine that uses fuzzy rules and then applies fuzzy
logic to inputs and then outputs fuzzy or crisp outputs to the game object being
controlled. Take a look at Figure 16.2 to see this graphically.

Now, when you put together normal conditional logic, you create a number of
statements or a tree with propositions of the form:

if X AND Y then Z

or

if X OR Y then Z

The (X,Y) variables, if you recall, are called the antecedents and Z is called the conse-
quence. However, with fuzzy logic, X and Y are Fuzzy Linguistic Variables or FLVs.
Furthermore, Z can also be an FLV or a crisp value. The key to all this fuzzy stuff is
that X and Y represent fuzzy variables and, hence, are not crisp. Fuzzy propositions

572 16. Introduction to Fuzzy Logic

Figure 16.2

The Fuzzy I/O
System

TeamLRN

of this form are called Rules and ultimately are evaluated in a number of steps. We
don’t evaluate them like this:

if EXPLOSION AND DAMAGE then RUN

And just do it if EXPLOSION is TRUE and DAMAGE is TRUE. Instead, with fuzzy
logic the rules are only part of the final solution, the fuzzification and de-fuzzification
is what gets us our final result. It’s shades of truth we are interested in.

FLVs represent fuzzy concepts that have to do with a range. For example, let’s say
that we want to classify the distance from the player and AI object with 3 different
fuzzy linguistic variables (names basically). Take a look at Figure 16.3; it’s called a
Fuzzy Manifold or surface and is composed of three different triangular regions
which I have labeled as follows:

NEAR: Domain range (0 to 300)

CLOSE: Domain range (250 to 700)

FAR: Domain range (500 to 1000)

The input variable is shown on the X-axis and can range from 0 to 1000; this is
called the Domain. The output of the fuzzy manifold is the Y-axis and ranges from
0.0 to 1.0 always. For any input value xi (which represents range to player in this
example), you compute the degree of membership (DOM) by striking a line verti-
cally as shown in Figure 16.4 and computing the Y value(s) at the intersection(s)
with each fuzzy linguistic variable’s triangular area.

573Introduction

Figure 16.3

A Fuzzy Manifold
composed of range
FLVs

TeamLRN

Each triangle in the fuzzy surface represents the area of influence of each fuzzy lin-
guistic variable (NEAR, CLOSE, FAR). In addition, the regions all overlap a little—
usually 10–50 percent. This is because when NEAR becomes CLOSE and CLOSE
becomes FAR, I don’t want the value to instantly switch. There should be a little
overlap to model the fuzziness of the situation. This is the idea of fuzzy logic.

So, let’s recap here for a
moment. We have rules that
are based on fuzzy inputs
from the game engine, envi-
ronment, etc. These rules
may look like normal condi-
tional logic statements, but
must be computed using
fuzzy logic since they are
really FLVs that classify the
input(s) with various
degrees of membership.

Furthermore, the final results of the fuzzy logic process may be converted into dis-
crete crisp values such as: “fire phasers,” “run,” “stand still,” or converted into con-
tinuous values such as a power level from 0–100. Or you might leave it fuzzy for
another stage of fuzzy processing.

574 16. Introduction to Fuzzy Logic

Figure 16.4

Computing the
degree of
membership of a
domain value in one
or more FLVs

NOTE
You have already seen something like this kind of
technique used to select states in a previous FSM
example; the range to a target was checked and
forces the FSM to switch states, but in the exam-
ple with FSMs, we used crisp values without over-
lap or fuzzy computations.There was an exact
range that the crisp FSM AI switches from EVADE
to ATTACK or whatever, but with fuzzy logic, it’s a
bit blurry.

TeamLRN

Fuzzy Manifolds and Membership
It’s all coming together— just hang in there. All right, now we know that we are
going to have a number of inputs into our fuzzy logic AI system. These inputs are
going to be classified into one or more (usually more) fuzzy linguistic variables (that
represent some fuzzy range). We are then going to compute the degree of member-
ship for each input in each of the FLV’s ranges. In general, at range input xi, what is
the degree of member in each fuzzy linguistic variable NEAR, CLOSE, and FAR?

Thus far, the fuzzy linguistic variables are areas defined by symmetrical triangles.
However, you can use asymmetrical triangles, trapezoids, sigmoid functions, or
whatever. Take a look at Figure 16.5 to see other possible FLV geometries. In most
cases, symmetrical triangles (symmetrical about the Y-axis) work fine. You might
want to use trapezoids though if you need a range in the FLV that is always 1.0. In
any case, to compute the degree of membership (DOM) for any input xi in a partic-
ular FLV, you take the input value xi and then project a line vertically and see
where it intersects the triangle (or geometry) representing the FLV on the Y-axis,
and this is the DOM.

Computing this value in software is easy. Let’s assume that we are using a triangular
geometry for each FLV with the left and right starting points defining the triangle
labeled min_range, max_range as shown in Figure 16.6. Then to compute the DOM
of any given input xi the following algorithm can be used:

575Introduction

Figure 16.5

Typical fuzzy
linguistic variable
geometries

TeamLRN

// first test if the input is in range
if (xi >= min_range && xi <= max_range)

{
// compute intersection with left edge or right
// always assume height of triangle is 1.0

float center_point = (max_range + min_range)/2;

// compare xi to center
if (xi <= center_point)
{
// compute intersection on left edge
// dy/dx = 1.0/(center – left)
slope = 1.0/(center_point – min_range);

degree_of_membership = (xi – min_range) * slope;

} // end if
else
{
// compute intersection on right edge
// dy/dx = 1.0/(center – right)
slope = 1.0/(center_point – max_range);

degree_of_membership = (xi – max_range) * slope;

576 16. Introduction to Fuzzy Logic

Figure 16.6

The details of
computing degree of
membership (DOM)
for a FLV

TeamLRN

} // end else

} // end if
else // not in range

degree_of_membership = 0.0;

Of course, the function can be totally optimized, but I wanted you to see what was
going on. If we had used a trapezoid instead, then there would be three possible
intersection regions to compute rather than two: the left edge, the plateau, and the
right edge.

In most cases, you should have at least three fuzzy linguistic variables. If you have
more, try to keep the number odd so there is always one variable that is centered;
otherwise, you might have a “trough” or hole in the center of the fuzzy space. In
any case, let’s take a look at some examples of computing the degree of member-
ship of our previous fuzzy manifold shown in Figure 16.3. Basically, for any input xi,
you project a line vertically and determine where it intersects each of the FLVs in
the fuzzy manifold; however, the line might intersect more than one FLV and this
needs to be resolved, but first let’s get some DOMs.

Assume that we have input ranges xi = {50,75,250,450, 550,800} as shown in Figure
16.7, then the degrees of membership for each FLV; NEAR, CLOSE, FAR, can be
computed with the algorithm or read off graphically and are in Table 16.2.

577Introduction

Figure 16.7

Our range manifold
with a number of
inputs

TeamLRN

Studying the values, there are a number of interesting
properties. First, note that for any input value xi the results
of membership don’t add up to 1.0. Remember, these are
degrees of membership, not probabilities, so this is alright.
Secondly, for some xi’s the degree of membership falls
within one or two different fuzzy variables. There could
have as easily been cases that an input fell into all three
regions (if I made the triangles big enough). The process of selecting the size
(range) of each triangle is called “tuning” and sometimes you may have to do this
repeatedly to get the results you want. I tried to pick ranges that worked out nice
for examples, but in real life you may need more than three FLVs and they may not
have nice end points that are all multiples of 50!

As an example of creating a fuzzy manifold for some input and a number of FLVs
check out FUZZY01.CPP|EXE on the CD-ROM; it allows you to create a number of
fuzzy linguistic variables, that is, categories for some input domain. Then you can
input numbers and it will give you the degree of membership for each input. It’s a
console application, so compile appropriately. Furthermore, the data printed for
membership is also normalized to 1.0 each time. This is accomplished by taking
each DOM and dividing by the sum of DOMs for each category.

At this point we know how to create a fuzzy manifold for an input xi that is com-
posed of a number of ranges that each are represented by a fuzzy linguistic vari-
able. Then we select an input in the range and compute the degree of membership
for each FLV in the manifold to come up with a set of numbers for that particular
input. This is called fuzzification. Now, the real power of fuzzy logic comes into play

578 16. Introduction to Fuzzy Logic

Table 16.2 Computations of Degree of Membership
for “Range” Manifold

Input “Range to target” xi DOMs NEAR CLOSE FAR

50 0.33 0.0 0.0

75 0.5 0.0 0.0

250 0.33 0.0 0.0

450 0.0 0.88 0.0

550 0.0 0.66 0.20

800 0.0 0.0 0.80

NOTE
This step is called
the fuzzification
process.

TeamLRN

when we fuzzify two or more variables then connect them with “if” rules and see
the output. To accomplish this step in our example, we have to first come up with
another input to fuzzify—let’s call it the “power level” of the AI bot that we are
moving around. Figure 16.8 shows the fuzzy manifold for the power level input.
The fuzzy linguistic variables are:

WEAK: Domain Range (0.0 to 3.0)

NORMAL: Domain Range (2.0 to 8.0)

ENERGIZED: Domain Range (6.0 to 10.0)

Notice that this fuzzy variable domain is from 0–10.0 rather than 0–1000 as is the
range to player. This is totally acceptable. In addition, I could have added more
than three FLVs, say five, but three makes the problem symmetric. To process both
fuzzy variables we need to construct a rule base and then create a fuzzy associative
matrix. Let’s talk about that next.

Fuzzy Associative Matrices
Fuzzy associative matrices or FAMs are used to “infer” a result from two or more
fuzzy inputs and a given rule base and output a fuzzy or crisp value. Figure 16.9
shows this graphically. In most cases, FAMs deal with only two fuzzy variables since
this can be laid out in a 2-D matrix; one variable represents each axis, and each
entry in the matrix is the logical proposition of the form:

if Xi AND Yi then Zi

579Introduction

Figure 16.8

The fuzzy manifold
for the power level

TeamLRN

Or,

if Xi OR Yi then Zi

where Xi is the fuzzy linguistic variable on the X-axis, Yi is the fuzzy linguistic variable
on the Y-axis, and Zi is the outcome—which may be a fuzzy variable or crisp value.

So, to build the FAM, we need to know the rules and the outputs to put in each
one of the matrix entries. Hence, we need to make a rule base and decide on an
output variable that is either crisp or linear. A crisp output would be:

{“ATTACK”, “WANDER”, “SEARCH”}

while a linear output might be a thrust level from 0 to 10. Obtaining both is rela-
tively the same. In either case, we will have to defuzzify the output of the FAM and
find the output.

We’re going to cover examples of both a crisp singular output and an example that
outputs a value in a range. However, much of the setup is the same. Anyway, let’s
do the example that computes a range as the final output first.

580 16. Introduction to Fuzzy Logic

Figure 16.9

Using a fuzzy
associative matrix

TeamLRN

Step 1: Select your inputs and define the FLVs and build your manifolds.

The inputs to our fuzzy system are the range to the player and the power level of
the AI controlled bot.

Input X: Range to player.

Input Y: Powel level of self.

Referring back to Figures 16.3 and 16.8, these are the fuzzy manifolds that we are
using.

Step 2: Create a rule base for the inputs that tie them to an output.

The rule base is nothing more than a collection of logical propositions of the form
“if X AND Y then Z” or “if X OR Y then z.” This makes a difference when computing
the FAM outputs though. A logical AND means “minimum of the set” while a logi-
cal OR means “maximum of the set” when dealing with fuzzy set theory. For now,
we will use all ANDs, but I’ll explain how to use ORs later.

In general, if you have two fuzzy inputs and each input has m FLVs, then the fuzzy
associative matrix will have dimension mxm. And since each element represents a
logical proposition this means we need 9 rules (3×3 = 9) that define all possible
logical combinations and the output for each. However, this is not necessary.
If you only have 4 rules, then the other outputs are just set to 0.0 in the FAM.
Nevertheless, I will use up all 9 slots in our example to make it more robust. For an
output I’m going to use the fuzzy output “thrust level” which I’m going to make a
fuzzy variable that is made up of the following fuzzy categories (FLVs):

OFF: Domain Range (0 to 2)

ON HALF: Domain Range (1 to 8)

ON FULL: Domain Range (6 to 10)

The fuzzy manifold is shown for these FLVs in Figure 16.10. Note that the output
could have more categories, but I decided to pick three.

Here are my somewhat arbitrary rules for the fuzzy manifold:

Input 1: Distance to Player.

NEAR

CLOSE

FAR

Input 2: Power Level of Self.

581Introduction

TeamLRN

WEAK

NORMAL

ENERGIZED

Output: Internal navigational thrust level, i.e, speed.

OFF

ON HALF

ON FULL

Rules: These aren’t necessarily functional, just examples.

if NEAR AND WEAK then ON HALF
if NEAR AND NORMAL then ON HALF
if NEAR AND ENERGIZED then ON FULL
if CLOSE AND WEAK then OFF
if CLOSE AND NORMAL then ON HALF
if CLOSE AND ENERGIZED then ON HALF

if FAR AND WEAK then OFF
if FAR AND NORMAL then ON FULL
if FAR AND ENERGIZED then ON FULL

These rules are heuristic in nature and impart knowledge from an “expert” about
what he wants the AI to do in these conditions. Although they may seem somewhat
contradictory, I did think about them for about two minutes, so there was actual

582 16. Introduction to Fuzzy Logic

Figure 16.10

The output of fuzzy
manifold for the
thrust level

TeamLRN

thought put into this example! Seriously, now that we have the rules, we can finally
fill the fuzzy associative matrix in completely as shown in Figure 16.11 and we are
ready to rock and roll.

Processing the FAM with
the Fuzzified Inputs
To use the FAM you do the following:

Step 1: Get the crisp inputs for each fuzzy variable and fuzzify them by comput-
ing their DOM for each FLV. For example, say that we have the following
inputs:

Input 1: Distance to player = 275

Input 2: Power level = 6.5

To fuzzify these, you input them into the two fuzzy manifolds and compute the
degree of membership for each fuzzy variable for each input. See Figure 16.12.

583Introduction

Figure 16.11

The FAM, complete
with all the rules

TeamLRN

For Input 1 = 275, the degree of membership of each FLV is:

NEAR: 0.16
CLOSE: 0.11

FAR: 0.0

For Input 2 = 6.5, the degree of membership of each FLV is:

WEAK: 0.0

NORMAL: 0.5

ENERGIZED: 0.25

584 16. Introduction to Fuzzy Logic

Figure 16.12

Some inputs plugged into
the fuzzy variables

TeamLRN

At this point, we refer to the fuzzy associative matrix and test the rule in each cell
to see what its output value is based on the above fuzzy values. Of course, many of
the FAM’s cells will be 0.0 since two of the FLVs (one from each input) are 0.0.
Look at Figure 16.13. It depicts our FAM, along with all the cells that have non-zero
outputs shaded in. Now, here comes the tricky part.

Each one of those cells in the FAM represents a rule. For example, the upper left-
hand cell represents:

if NEAR AND WEAK then ON HALF

So to evaluate this rule, we take the antecedents and test them using a MIN() rule
for the logical AND. In this case, we have that NEAR = 0.16 and WEAK = 0.0, hence:

if (0.16) AND (0.0) then on HALF

which is computed using the MIN() function as:

(0.16) ∧ (0.0) = (0.0)

585Processing the FAM with the Fuzzified Inputs

Figure 16.13

The fuzzy associative
matrix showing active
cells and their values

TeamLRN

Thus, the rule doesn’t fire at all. On the other hand, let’s take a look at the rule:

if CLOSE AND ENERGIZED then ON HALF

That really means:

if (0.11) AND (0.25) then ON HALF

Computed using the MIN() function is:

(0.11) ∧ (0.25) = (0.11)

Ah hah! The rule “ON HALF” fires at a level of 0.11, so we place that value in the
FAM associated with the rule “ON HALF” at the intersection of CLOSE and ENER-
GIZED. We continue this process for the whole matrix until we have found all nine
entries. This is shown in Figure 16.13.

At this point, we are finally ready to defuzzify the FAM. This can be accomplished
in a number of ways. Basically, we need a final crisp value that represents the thrust
level from (0.0 to 10.0). There are two main ways to compute this: We can use the
disjunction or MAX() method to find the value or we can use an averaging technique
based on the “fuzzy centroid.” Let’s take a look at the MAX() method first.

Method 1: The MAX Technique
If you look at the FAM data, basically we have the following fuzzy outputs:

OFF: (0.0)

ON HALF: {0.16, 0.11, 0.16}, use sum which is 0.43

ON FULL: (0.16)

Note that the rule ON HALF has fired within three different outputs; thus, we have
to make a decision what we want to do with the results. Should we add them, aver-
age them, or max them? It’s really up to you. For this example, let’s take sum: 0.16
+ 0.11 + 0.16 = 0.43.

This is still fuzzy, but looking at the data, it looks like ON HALF has the strongest
membership, so it makes sense to just go with that, or mathematically:

output = MAX(OFF, ON HALF, ON FULL)

= MAX(0.0, 0.43, 0.16) = 0.43

or using the disjunction operator ∨:

(0.0) ∨ (0.43) ∨ (0.16) = (0.43)

586 16. Introduction to Fuzzy Logic

TeamLRN

And that’s it. We simply multiply (0.43) times the scale of the output and that’s the
answer:

(0.43) × (10) = (4.3)

Final Output: Set the thrust to (4.3).

The only problem with this method is that even though we are taking the variable
that has the most membership, its total “area of influence” in the fuzzy space may
be very small. For example, a 40 percent NORMAL is definitely stronger than a 50
percent WEAK. See my point? Hence, it might be better to plug some of the values
into the output fuzzy manifold for (OFF, ON HALF, ON FULL), compute the area
of influence and then compute the centroid of the whole thing and use that as the
final output?

Method 2: The Fuzzy Centroid
To find the fuzzy centroid you do the following: Take the fuzzy values for each FLV
in the output.

OFF: (0.0)

ON HALF: (0.43) {note: could also use average value of .14}

ON FULL: (0.16)

Then plug them into the Y-axis of the FLV diagram and fill in the area for each.
This is shown in Figure 16.14. Then you add the areas up and find the centroid of
the resulting geometric shape. As you can see there are two ways to add the areas
up: overlap and additive. Overlapping loses a bit of information, but is easier some-
times. The Additive technique is more accurate. The centroids of each method
have been computed on the bottom half of Figure 16.14. That’s great, but the com-
puter isn’t a piece of graph paper, so how do you compute the centroid?

Basically, we need to perform a numerical integration (that’s a calculus term). All it
means is that we want to find the center of area of this fuzzy area object, we need
to sum up each piece of the object and its contribution to the total and then divide
by the total area. Or mathematically, we want to do this:

Domain
∑ di * domi
i__________________
Domain
∑ domi
i

587Processing the FAM with the Fuzzified Inputs

TeamLRN

where di is the input value for the domain and domi is the degree of membership of
that value. This is much easier to explain with a real example. In our example, the
output domain is from 0.0 to 10.0. This represents the thrust level. Ok, so we need
a loop variable di that loops from 0 to 10. Then, at each interval of the loop, we are
going to compute the degree of membership that particular di is in the merged
geometry, shown in Figure 16.15. However, since each triangle has a certain height
now that was cut off by the original values:

OFF: (0.0)

ON HALF: (0.14)

ON FULL: (0.16)

We have to compute the degree of membership with a trapezoid rather than a tri-
angle, but that’s not too bad. So here’s the pseudocode:

sum = 0.0;

588 16. Introduction to Fuzzy Logic

Figure 16.14

Finding the area and
the centroids
graphically in the
fuzzy manifold

TeamLRN

total_area = 0.0;

for (int di = 0; di<=10; di++)
{
// compute next degree of membership and add to
// total area
total_area = total_area + degree_of_membersip(di);

// add next contribution of the shape at position di
sum = sum + di * degree_of_membership(di);

} // end for

// finally compute centroid
centroid = sum/total_area;

And the thing to remember is that the function degree_of_membership() is taking the
generic values (0..10) and plugging them into the merged output fuzzy manifold
that is a result of plugging the fuzzy values:

OFF: (0.0)

ON HALF: (0.14)

ON FULL: (0.16)

into the output variable and finding the area of influence of each one. Finally,
reading off Figure 16.15, we see the output is approximately 5.6. If we compare this
to the previous MAX() method of 4.3, they are almost identical. The 5.6 is probably
“more” correct, but it’s not worth the work in most cases. As you can see, using the
MAX() method sure is a lot easier and most of the time works just as well as the
centroid.

As far as computing a crisp value rather than a linear value for the final output
that’s easy. Just use the MAX() method and pigeonhole the output. Or you could
select the output domain to be 0,1,2,3,4 and have exactly five crisp output com-
mands. It’s all about scale.

589Processing the FAM with the Fuzzified Inputs

TeamLRN

Conclusion = {.1 beginning, .5
middle, .99 end}
Well, that about wraps it up concerning fuzzy logic. This has already turned out a
lot longer than I wanted, but the idea of fuzzy logic is simple; it’s the actual imple-
mentation that is detailed. Anyway, no demo this time, but look on the CD-ROM in
the AI subdirectories for a commercial fuzzy logic demo program.

590 16. Introduction to Fuzzy Logic

Figure 16.15

Computing the final
crisp output from the
fuzzy centroid

TeamLRN

TRICK 17

Introduction
to

Quaternions
by André LaMothe,
ceo@xgames3d.com

TeamLRN

Introduction
Quaternions were invented in the 1800s by the mathematician William Rowan
Hamilton (if you study graph theory you should be familiar with Hamiltonian
Paths). Quaternions weren’t specially designed for 3-D graphics (obviously), but
they have found their application in a couple of areas of 3-D graphics that are well
suited for 3-D camera control, and smooth 3-D interpolation; in addition, they can
be stored very compactly. In this chapter, we are going to cover the basics of quater-
nions and their applications to 3-D games. The following topics will be addressed:

• General complex number theory

• Hyper complex numbers and quaternions

• Basic mathematical operations using quaternions

• 3-D rotation using quaternions

• A simple quaternion math library

• Building a quaternion lab

Complex Number Theory
Quaternions are based on complex numbers that are a bit abstract to understand.
And, of course, they don’t really mean anything in the real world, they only exist
mathematically. However, complex numbers are a tool that can be used to repre-
sent mathematical ideas that don’t work with real numbers. With that in mind, first
we are going to take a look at basic complex number theory and then move on to
quaternions and their mathematical properties. We’ll also look at how quaternions
are applied in computer graphics and games. With that in mind, let’s begin . . .

The set of real numbers R consists of all numbers in the interval [–∞, +∞]. Easy
enough, but take a look at these equations.

x = sqrt(4) = 2
x = sqrt(1) = 1
x = sqrt(–1) = ???

The third equation is the problem. We don’t have a number in the set of real num-
bers for the square root of –1 since there is no number that, when multiplied by
itself, is equal to –1. You might say, –1? But –1 × –1 = 1, so that’s not correct. We
need a new number to solve this problem that has the property we are looking for.

592 17. Introduction to Quaternions

TeamLRN

That property is the square equal to (–1). We will call this number the Imaginary
number i (or j for electrical engineers). Based on this we have the following rule:

let i=sqrt(–1).

And then,

i*i = –1

So now we can compute things like sqrt(-4), which would be:

sqrt(-4) = 2*i

since,

(2*i)*(2*i) = 4*i2 = 4*-1 = –4

Now, the cool thing about the imaginary number i is that you can think of it as a
variable or coefficient. All the rules of standard algebra still hold. You just pretend
i is a variable like “x” and do what you would normally do, then, at some point,
whenever you see i2 terms you can convert them to (–1)’s if you wish to simplify.
For example, look at the following sum:

3 + 5*i + 3*i2 – 10 + 6*i

Collecting terms we get,

= 3*i2 + 5*i + 6*i + 3 – 10
= 3*i2 + 11*i – 7
= 3*(-1) + 11*i – 7
= -3 + 11*i – 7
= -10 + 11*i

Nothing unordinary there. But, the imaginary number by itself is pretty boring, so
mathematicians came up with the concept of a complex number, which is the sum of
a real number and an imaginary one. Mathematically, a complex number looks like
this:

z = (a + b*i)

a is called the Real Part (RP), and b is called the Imaginary Part (IM). Since a and b
can never be added together due to the imaginary coefficient of b, you can also
think of complex numbers as points in the Complex-Plane as shown in Figure 17.1.

As a convention, most people call the x-axis the real part and the y-axis the imagi-
nary part. Thus, we have a geometrical interpretation of complex numbers based
on the vector basis:

z = a*(1,0) + b*(0,i)

593Complex Number Theory

TeamLRN

Now, I want to come back to this concept a little later, so keep it in mind. However,
let’s look at the operations on complex numbers and see how to add, subtract, mul-
tiply, and divide.

Complex Scalar Multiplication/Division
Multiplication of a scalar and a complex number is performed on a component by
component basis as follows:

Given,

z1 =(a+b*i)
k*z1 = k*(a+b*i) = (k*a + (k*b)*i)

Example:

3*(2+5*i) = (6 + 15*i)

That is, the scalar simply distributes over the complex number. Division, of course
is similar, since you can think of it as multiplication by the inverse.

Complex Addition and Subtraction
To add or subtract complex numbers, you simply add or subtract the real and the
imaginary parts separately as follows:

594 17. Introduction to Quaternions

Figure 17.1

The complex plane

TeamLRN

Given,

z1 =(a+b*i)
z2 =(c+d*i)
z1 + z2 = (a+b*i) + (c+d*i) = ((a+c) + (b+d)*i)

Example:

(3 + 5*i) + (12 – 2*i) = (15 + 3*i)

Complex Additive Identity
Also, the additive identity in complex numbers, that is, the complex number that
when added to any other complex number is that number, is (0+0*i) since:

(0+0*i) + (a+b*i) = (0+a + (0+b)*i) = (a+b*i)

Complex Additive Inverse
The complex additive inverse, that is, the number that when added to any other
complex number is the additive identity (0 + 0*i) is z*=(–a – b*i), for any complex
number z=(a + b*i) since:

(a + b*i) + (-a – b*i) = (a-a) + (b-b)*i) = (0 + 0*i)

Complex Multiplication
Now for the fun part! Multiplying complex numbers is actually very easy. Let’s do it
and pretend that i is a variable, as we have before.

z1 = (a+b*i)
z2 = (c+d*i)
z1*z2 = (a+b*i) * (c+d*i)

= (a*c + a*d*i + b*c*i + b*d*i2)

Noting that i2= –1 and collecting terms,

= (a*c + (a*d+b*c)*i + b*d*(-1))

Collecting terms once again,

= ((a*c-b*d) + (a*d+b*c)*i)

595Complex Number Theory

TeamLRN

Therefore, we see that the real part equals (a*c – b*d), and the imaginary part
equals (a*d + b*c). Let’s do an example:

Example:

(1+2*i) * (–3 + 3*i) = ((–3–6) + (–6+3)*i) = (–9 - 3*i)

Complex Division
Division of complex numbers can be accomplished using brute force; for example,
we can compute the quotient of two complex numbers z1/z2 in the following way:

z1 = (a+b*i)
z2 = (c+d*i)

(a+b*i)
z1/z2 =

(c+d*i)

If c=0 or d=0, then the division is trivial, but if neither c nor d is equal to 0, then we are
at a bit of an impasse. The question is how to perform the division, so that the result is
in the form (a + b*i) once again. The trick is to clear the denominator first and turn it
into a pure scalar; this way we can simply divide the scalar into the real part and imagi-
nary part of the numerator. To turn the denominator into a pure scalar, we must multi-
ply by the complex conjugate, usually denoted by superscript asterisk “*”.

The complex conjugate of z=(a + b*i) is z*=(a – b*i). When we multiply a complex
number and its conjugate the result is always a pure real number. Take a look:

Given,

z=(a+b*i)

Then,

z * z* =
(a+b*i) * (a-b*i) = (a2 + a*b*i – a*b*i – b2*i2)

= (a2 + b2)

Cool huh? Now with this trick we can convert the quotient problem into a more
palatable form.

Given the quotient of two complex numbers,

(a+b*i)

(c+b*i)

596 17. Introduction to Quaternions

TeamLRN

We can always multiply by 1 and not change the results, so let’s multiply by the
complex conjugate of the denominator over itself:

(a+b*i) (c-d*i)
*

(c+d*i) (c-d*i)

Lot’s of steps go here . . .

(a*c+b*d) ((b*c-a*d)*i)
= (+)

(a2 + b2) (a2 + b2)

Ugly as it may seem, rest assured it’s of the form (a+b*i).

Multiplicative Inverse
The last mathematical object we need to make complex numbers a closed set is a
multiplicative inverse. That is, a complex number that when multiplied by another
results in “1,” where “1” in complex numbers is equal to (1+0*i). If you think about
it long enough, you will definitely see that we can use the complex conjugate in
some way. Let’s just try the obvious and write an equation to see what happens. We
want the following:

(a+b*i) * (c+d*i) = (1+0*i)

Amazingly, the multiplicative inverse of z=(a+b*i) is just:

1
1/z =

(a+b*i)

But, the problem is that we no longer have something in the form (real_part +
imaginary_part*i). We have the inverse of the form, so we need to reform the previ-
ous function so it’s of the form (a + b*i). We can use the multiplication by the com-
plex conjugate to find them resulting in:

1 (a-b*i) a b
= + * i

(a+b*i) (a-b*i) (a2 + b2) (a2 + b2)

Gnarly huh? So what this means is that if you are given the complex number
(a+b*i), it’s inverse is 1/(a+b*i), but if you need the real part and imaginary part,
then you need to use the equation above.

597Complex Number Theory

TeamLRN

Complex Numbers as Vectors
Last but not least, I want to revisit the representation of complex numbers and
show you another way of thinking of them (if you haven’t already figured it out).
Complex numbers can also be thought of as vectors in a 2-D plane. If you take a
look at Figure 17.2, we plotted an imaginary number on a 2-D Cartesian plane with
the real part as the x-coordinate and the imaginary part as the y-component. So
there’s no reason why we can’t think of imaginary numbers as vectors with the
basis:

z = a*(1,0) + b*(0,i)

Or more compactly,

z = <a,b>

where a is the real part and b is the imaginary part. Figure 17.2 shows our new rep-
resentation in vector form.

The cool thing about representing complex numbers as vectors is that we can trans-
form them as vectors with the results turning out all perfectly valid. Moreover, rep-
resenting complex numbers as vectors allows us to better visualize an abstract
mathematical notion such as complex numbers and to thus “see” relationships that
might otherwise elude us in their pure mathematical form.

598 17. Introduction to Quaternions

Figure 17.2

Complex numbers in
a unit vector form

TeamLRN

Norm of a Complex Number
Many times we want to know the length of the vector represented by a complex
number or the magnitude, in other words. Of course, this doesn’t make much
sense in a purely mathematical sense, but when we think of complex numbers as
vectors in space, it’s very natural and easy to understand. Anyway, the norm of a
complex number can be computed in the following ways:

Hyper Complex Numbers
Quaternions are nothing more than hyper complex numbers. Hyper complex num-
bers can really mean anything mathematically, but usually it means a complex num-
ber that has more than one imaginary component. In our case, we are going to
refer to hyper complex numbers with one real part and three imaginary
parts––otherwise known as Quaternions.

A quaternion can be written in many ways, but in general it’s of the form:

599Hyper Complex Numbers

Given,

z = a+b*i

Then,

|z| = sqrt(a2+b2)

Also, take a look at the product of any complex number
and its conjugate:

Given,

z = a+b*i, z* = a-b*i

Then,

z * z* = a2+ b*i – b*i + b2 = a2+b2

Therefore, the norm is also equal to,

|z| = sqrt(z * z*)

Equation 17.1

q = q0 + q1*i + q2*j + q3*k

Or

q = q0 + qv, where qv = q1*i + q2*j + q3*k

Equation 17.2

The form of a quaternion

TeamLRN

And i=<1,0,0>, j=<0,1,0>, k=<0,0,1> and <q0,q1,q2,q3> are all real numbers and
<i,j,k> are all imaginary numbers and form the vector basis of the quaternion q.
Moreover, q0 is real and has no imaginary coefficient.

Also, the imaginary basis <i,j,k> has some interesting properties. It can be thought
of as a 3-D mutually perpendicular set of unit vectors in an imaginary coordinate
system that locates points in <i,j,k> space as shown in Figure 17.3. But, the interest-
ing thing about <i,j,k> is the following relationship:

600 17. Introduction to Quaternions

Figure 17.3

The hyper complex
basis interpreted as a
3-D system

i2 = j2 = k2 = –1 = i*j*k

Equation 17.3

The quaternion basis products

ICON MATH: Note that I am bolding the imaginary basis i, j, k; thus,
we would think they are vectors, and they are, but they can also be
thought of as variables.The point is, they have a dualism to them
and sometimes it’s appropriate to think of them in their vector
form, but sometimes it’s not.The point is, I may switch back and
forth especially when I am using the i,j,k alone and showing relation-
ships among them.

TeamLRN

Which seems almost reasonable, the “ = i*j*k” part takes a little getting used to, but
it’s correct. And of course, you can manipulate the relationship to arrive at the
following:

Given,

i2 = j2 = k2 = -1 = i*j*k

Therefore,

i = j*k = -k*j

j = k*i = -i*k

k = i*j = -j*i

This intuitively seems right since the cross product of any two perpendicular vec-
tors in an orthonormal basis should be perpendicular to the vectors themselves or
the third vector in a 3-D orthonormal basis. And, if we invert the order of multipli-
cation, then we should see (and we do see that) an inversion or sign flip.

At this point, I want to lay down some conventions about writing quaternions; oth-
erwise, we are going to get caught up in notation. Many people like to write quater-
nions using lowercase letters to represent them, but break them up into real and
imaginary parts where they represent the imaginary part as a vector like this:

q = q0 + qv

where,

qv = q1*i + q2*j + q3*k

So q0 is the real part, qv is the imaginary part, and q is a vector <q1, q2, q3>. That’s
cool, but I don’t like the fact that q, the quaternion itself, is non-bold. It’s confus-
ing since it’s a 4-tuple itself, so we are going to use the notation that quaternions
are represented in lowercase bold and the vector part is also in lowercase bold.
Here’s an example:

a = -1 + 3*i + 4*j + 5*k

Which in pure vector form is:

a = <-1, 3, 4, 5>

Or in real-vector form is:

a = q0 + qv

601Hyper Complex Numbers

TeamLRN

Where q0 = -1, and qv= <3,4,5> = 3*i + 4*j + 5*j.

The point is that we are obviously going to use arrays to represent quaternions in
real life and the first number will always be the real part and the remaining three
numbers will always be the imaginary coef-
ficients of <i,j,k>. Moreover, from now
on, I want to start getting you into the
habit of representing quaternions in the
format:

q = q0 + x*i + y*j + z*k

Or in another way,

q = q0 + <x,y,z> . <i,j,k>

That is simply referring to the real part as q0 and the imaginary part as qv = <x,y,z>
which gives us a little more to grasp onto when relating quaternions to 3-D space.
But, depending on what we are doing, we may flip from one representation to
another, but I think you get the point.

Now, the cool thing about quaternions or any hyper complex number system is that
the mathematics of addition, multiplication, inverses, etc., are all the same as in
standard complex number theory, but with more elements. Hence, we really
already know how to do this stuff, but we just have to take into consideration that
we now have three imaginary components rather than 1 as we did with basic com-
plex numbers or complex numbers of “rank 1.”

Now let’s take a look at the basic operations that we might need to perform on
quaternions when doing calculations—I’m going to go fast since this should all be
obvious at this point.

Quaternion Addition & Subtraction
Addition or subtraction of quaternions is accomplished by adding or subtracting
the real part and the imaginary part just as with normal complex numbers.

Example:

q = q0 + qv
p = p0 + pv

q + p = (q0+p0) + (qv+pv)

Example:

602 17. Introduction to Quaternions

NOTE
Note that we are taking advantage of
the vector property of <i,j,k>.

TeamLRN

q = 3 + 4*i + 5*j + 6*k = <3,4,5,6> in vector form.
p = -5 + 2*i + 2*j – 3*k = <-5,2,2,-3> in vector form.

q + p = (3 + -5) + ((4 + 2)*i + (5 + 2)*j + (6 + -3)*k)
= -2 + 6*i + 7+j + 3*k

As you can see, the writing of the imaginary coefficients is getting rather tedious,
and we could have just written:

<3,4,5,6> + <-5,2,2,-3> = <-2,6,7, 3>.

However, we have to be careful since this works for addition and subtraction, but
for multiplication we need to recall that the last three components are complex
and we do have to watch out for oversimplification. Therefore, keep the quater-
nions in a form that at least keeps the real and imaginary parts separate.

Additive Inverse and Identity
The additive inverse of any quaternion q is the number that when added to q
results in 0; this is surprisingly just –q. That is:

Given,

q = q0 + qv

The additive inverse is just:

-q = -q0 - qv

Since,

q - q = (q0-q0)+ (qv- qv) = 0 + 0*i + 0*j + 0*j

And the additive identity or “0” in quaternion math must be:

q = 0 + 0*i + 0*j + 0*k = <0,0,0,0>.

Quaternion Multiplication
Addition and subtraction are always easy, huh? It’s multiplication that ruins the
party every time! And this is no exception! However, since quaternions are nothing
more than hyper complex numbers based on real numbers with imaginary coeffi-
cients, we should be able to just multiply them out, taking into consideration the
imaginary coefficients in the products and keeping track of them. Let’s just try it
and see what happens?

Given,

603Hyper Complex Numbers

TeamLRN

p = p0 + p1*i + p2*j + p3*k = p0 + pv
q = q0 + q1*i + q2*j + q3*k = q0 + qv

Then,

p*q = (p0 + p1*i + p2*j + p3*k) * (q0 + q1*i + q2*j + q3*k)
= p0*q0 +
p0*q1*i + p1*q2*j + p2*q3*k +
p1*i*q0 + p1*i*q1*i + p1*i*q2*j + p1*i*q3*k +
p2*j*q0 + p2*j*q1*i + p2*j*q2*j + p2*j*q3*k +
p3*k*q0 + p3*k*q1*i + p3*k*q2*j + p3*k*q3*k

If you have a good eye, you should see some structure to this product—maybe a
cross product here and there, and a dot product? Keep that in mind while we col-
lect terms and use Equation 17.4 to simplify the imaginary product terms:

= p0*q0 +
p0*q1*i + p1*q2*j + p2*q3*k +
p1*q0*i + p1*q1*i

2 + p1*i*q2*j + p1*i*q3*k +
p2*j*q0 + p2*q1*j*i + p2*q2*j

2 + p2*q3*j*k +
p3*q0*k + p3*q1*k*i + p3*q2*k*j + p3*q3*k

2

At this point there are a lot of ways to format
these products, but I will stop here and show
you this equation:

And since dot products always result in
scalars and cross-products in vectors, the first
term (p0*q0 – (pv . qv)) is the real part r0 and
the term (p0*qv + q0*pv + pv × qv) is the
vector or imaginary part rv. I have to admit
that quaternion multiplication is a very ugly
thing in mathematics!

604 17. Introduction to Quaternions

Given,

p = p0 + p1*i + p2*j + p3*k = p0 + pv

q = q0 + q1*i + q2*j + q3*k = q0 + qv

Then,

r = p*q = (p0*q0 – (pv · qv)) + (p0*qv + q0*pv + pv × qv)

= r0 + rv

Equation 17.4

Formula for
quaternion products

NOTE
The “×” operator is the standard
vector cross-product and is cal-
culated on the vector imaginary
part of the quaternion as if the
imaginary part was a standard
3-tuple vector.

TeamLRN

Also, note that the multiplicative identity, that is, the analog of “1” in quaternion
math is:

q1 = 1 + 0*i + 0*j + 0*k

This is true since any q * q1 = q = q1 * q.

Quaternion Conjugate
Computing the conjugate of a quaternion q, q* is accomplished in the same man-
ner as with complex numbers; you simply invert the sign of the imaginary compo-
nent qv.

And take a look at the product of q and q*; it’s rather interesting (using Equation
17.4 to perform the multiplication):

Interestingly, the product is simply the square of each term. This property will
come in handy when we deal with computing the norm and inverse of a
quaternion.

605Hyper Complex Numbers

Given,

q = q0 + q1*i + q2*j + q3*k = q0 + qv

The complex conjugate is computed by inverting the sign of
the imaginary part:

q* = q0 – q1*i – q2*j – q3*k = q0 – qv

Equation 17.5

Computation of
complex conjugate

q * q* = (q0 + qv) * (q0 + (–qv))

= q0*q0 – (qv . (–qv)) + q0*qv + q0*(-qv) + (qv x (–qv))

= q0
2 + q1

2 + q2
2 + q3

2 + (q0*qv – q0*qv) + (0)

= q0
2 + q1

2 + q2
2 + q3

2

Equation 17.6

The quaternion-
conjugate product

TeamLRN

Norm of a Quaternion
The norm of a quaternion is computed in the same manner as a complex number is:

Multiplicative
Inverse
The multiplicative inverse of a quater-
nion is of special importance to us since
it can be used to simplify quaternion
rotation. In fact, everything we have
learned up until now is going to come
to the single focus of rotating a vector
using quaternions, and the inverse is
needed for this operation. So put on your thinking cap and check it out.

Given a quaternion q, we want to find another quaternion q-1 such that the follow-
ing statement is true:

q*q-1 = 1 = q-1*q

Now, don’t blink and watch this:

Let’s multiply each side by the complex conjugate q*:

(q * q-1) * q*= 1 = (q-1 * q) * q* = q*

Since the products in parentheses are 1, we know that 1 multiplied by the conju-
gate and the conjugate multiplied by 1 are both the conjugate, so we haven’t
changed anything or created a false statement. Alright, now’s the cool part. Let’s
stare at this a minute and see if we can figure out what the inverse is. Do you see it?
Let’s look at the right side alone that is:

(q-1 * q) * q* = q*

606 17. Introduction to Quaternions

Given,

q = q0 + q1*i + q2*j + q3*k = q0 + qv

Then,

|q| = sqrt(q0
2+q1

2+q2
2+q3

2) = sqrt(q * q*)

And of course,

|q|2 = (q0
2 + q1

2 + q2
2 + q3

2) = (q * q*)

Equation 17.7

Norm of a
quaternion

NOTE
Note that (q * q*) = (q* * q) is the
product of a quaternion and its con-
jugate is order-independent, but in
general q*p π p*q.Also, note that q +
q* = 2*q0.

TeamLRN

or,

q-1 * (q * q*)= q*

But,

(q * q*) = |q|2

So the final result is:

Furthermore, if q is a unit quaternion, then |q|2 = 1, we can further simplify the
inverse to this:

Pretty cool, huh? The above equation is the whole reason that makes using quater-
nions to perform rotations even thinkable. Thus, most of the time we will assume
that all quaternions are unit quaternions, so we can use the above equation without
a problem.

Applications of Quaternions
After all that work learning about quaternions, they probably seem just like interest-
ing mathematical objects with little or no real use to us. However, the fact is that
quaternions are very useful for a couple functions in 3-D graphics: rotation and
interpolation of rotations from one to another, as shown in Figure 17.4. Referring to
the figure, you see two camera directions defined by two set of angles relative to the
x-y-z axis camera1 = (α1, φ1, θ1) and camera2 = (α2, φ2, θ2). How we point the camera
in those directions is unimportant, but what if we wanted to smoothly interpolate
from the orientation of camera1 to camera2? Could we linearly interpolate based on
the angles? A number of problems can occur when you do this, such as jerky motion
and loss of a degree of freedom when the camera happens to align on an axis.

Quaternions, by their 4-D nature, can handle this problem much more elegantly
than standard angles and rotation matrices; however, they are a bit slower, but

607Hyper Complex Numbers

q–1 = q*/|q|2
Equation 17.8a

Inverse of a quaternion

q–1 = q*

Equation 17.8b

Inverse of a unit quaternion

TeamLRN

worth it. The technique is usually called SLERP (spherical linear interpolation).
That is interpolating from one quaternion to another where the initial and end
points of the interpolation are camera1, and camera2, as shown in Figure 17.4. But,
we are getting way ahead of ourselves; first we need to learn how to perform rota-
tions with quaternions.

Quaternion Rotation
Alright, at some point you might wonder which operators can be represented by
quaternion transformations; in other words, can they do anything interesting? The
answer is yes; one of those interesting and useful operations is the ability to rotate a
vector v. The math in unimportant to arrive at the results, just algebra really, but in
the end we get something like given a vector v=<x,y,z> which in quaternion form
we will call vq=<0,x,y,z> in 3-D (we use a dummy 0=q0, so that we can use v as a
quaternion), and a unit quaternion q, the following operations will rotate vq:

608 17. Introduction to Quaternions

Right Handed System

a. vq' = q* * vq * q, clockwise rotation

b. vq ' = q * vq * q*, counterclockwise rotation

Left Handed System

c. vq' = q * vq * q*, clockwise rotation

d. vq ' = q* * vq * q, counterclockwise rotation

Equation 17.9

Quaternion rotation

Figure 17.4

Interpolation from
one orientation to
another

TeamLRN

So vq is a vector encoded in a quater-
nion with q0=0, and q is a quaternion,
but what exactly does q represent?
Meaning, what’s its relationship to the
x-y-z axis and vq? You’re going to love
this—q defines both the axis of rotation
and the angle θ to rotate about the axis!
Of course, the result vq' is technically a 4-D vector or a quaternion, but the first
component, q0 will always be zero, thus, we just throw it away and think of the last 3
elements as just a vector in 3-D representing the original vector v after rotation.

If you have ever tried to rotate a 3-D object around an arbitrary axis, you know it’s
not that easy, it takes a lot of work to figure it out, but now it’s very easy. The axis
that the quaternion q defines along with the angle isn’t that obvious, but it’s not
that bad. Referring to Figure 17.5, we see that for a given unit quaternion q = q0 +
qv, the axis of rotation is just the line defined by the vector part qv and the angle of
rotation θ is encoded in q0 using the following transforms:

609Applications of Quaternions

NOTE
We can use q* in this operator only
for unit quaternions, otherwise, you
must use the full inverse of q.

Figure 17.5

A geometrical
interpretation of a
rotation quaternion

q = cos(q/2) + sin(q/2)*vq

Thus,

q0= cos(q/2) and qv = sin(q/2)* vq

Equation 17.10

Conversion of axis and angle to quaternion

TeamLRN

Now, what if you don’t have a vector
that you want to rotate around, but have
the standard Euler rotation angles?
Then you can create a quaternion from
the angles by generating one of the
products:

qfinal = qxq*qyq*qzq
= qxq*qzq*qyq
= qyq*qxq*qzq
= qyq*qzq*qxq
= qzq*qxq*qyq
= qzθ*qyθ*qxθ <-most common transform.

Where xq refers to the pitch (angle parallel to the x-axis), yq refers to the yaw (angle
parallel to the y-axis), and zq refers to the roll (angle parallel to the z-axis) as shown
in Figure 17.6. Most people use the last transform most commonly in 3-D engines,
but all are just as valid. In any case, once you have the order of transforms, then
you can plug in the following formulas for the quaternions qxq, qyq, qzq and per-
form the multiplication to arrive at qfinal:

610 17. Introduction to Quaternions

NOTE
Of course, qv must be a unit vector
itself, so that q remains a unit
quaternion.

Figure 17.6

Yaw, pitch, and roll

TeamLRN

So to rotate a vector v using the Euler form, you are really doing this for the exam-
ple of roll, yaw, pitch:

vq’(0,x’,y’,z’) =(qzq*qyq*qxq)* vq * (qzq*qyq*qxq)
*

Where vq=<0,x,y,z>, the initial vector or point we want to rotate cast into quater-
nion form.

Of course, you only need to compute the product in parentheses once. And since
each of the factors qxq, qyq, qzq, is of the form:

q(i,j,k) = cos(θ/2) + sin(θ/2)*(i,j,k)

The product of terms of this form have a lot of cancellations, thus the product
qzθ*qyθ*qxθ, for example, ends up looking like:

q0 = cos(zθ/2)*cos(yθ/2)*cos(xθ/2) + sin(zθ/2)*sin(yθ/2)*sin(xθ/2)
q1 = cos(zθ/2)*cos(yθ/2)*sin(xθ/2) - sin(zθ/2)*sin(yθ/2)*cos(xθ/2)
q2 = cos(zθ/2)*sin(yθ/2)*cos(xθ/2) + sin(zθ/2)*cos(yθ/2)*sin(xθ/2)
q3 = sin(zθ/2)*cos(yθ/2)*cos(xθ/2) - cos(zθ/2)*sin(yθ/2)*sin(xθ/2)

611Applications of Quaternions

qxq = cos(xq/2) + sin(xq/2)*i + 0*j + 0*k

q0 = cos(xq/2), qv = <sin(xq/2), 0, 0>

qyq = cos(yq/2) + 0*i+ sin(yq/2)*j + 0*k

q0 = cos(yq/2), qv = <0, sin(yq/2), 0>

qzq = cos(zq/2) + 0*i + 0*j + sin(zq/2)*k

q0 = cos(zq/2), qv = <0,0,sin(zq/2)>

Equation 17.11

Euler angles to
quaternion

NOTE
Note that each quaternion in the products can be
thought of as an individual rotation operation, but it
takes much less work to multiply quaternions than
matrices.Therefore, if you find yourself doing a lot of
matrix multiplies in a loop, you might be able to opti-
mize it by converting to quaternions, doing all the matrix
operations in quaternion form and then converting back.

TeamLRN

Building a Simple Quaternion
Engine
The next thing we are going to do is create a set of library functions to manipulate
quaternions and implement basic quaternion rotation at the very least, so you can
see how to rotate a point in 3-D space using quaternions. The only problem is that
we need a few support data structures and functions, but of course we don’t have
room or time to cover vectors and the functions for them, hence, you will have to
refer to the listings on the CD for the vector functions. However, there’s nothing
that isn’t blatantly obvious when you look at the names of the functions in the code
listings that make up the quaternion functions. Nevertheless, at the very least,
here’s the VECTOR3D structure that we use in the functions:

typedef struct VECTOR3D_TYP
{
union

{
float M[3]; // array indexed storage
// explicit names
struct

{
float x,y,z;
}; // end struct

}; // end union
} VECTOR3D, POINT3D, *VECTOR3D_PTR, *POINT3D_PTR;

With that in mind, let’s agree on a quaternion representation next. Basically, all we
need to do is track four values: one real, and three imaginary; let’s call them q0,
q1, q2, q3, thus, we can write any quaternion as the sum:

q = q0 + q1*i + q2*j + q3*k

Or

q = q0 + qv, where qv = q1*i + q2*j + q3*k

So basically we need to keep track of four floating point numbers. Additionally, we
might like to access them in different ways to optimize our algorithms. The data
structure QUAT below implements this functionality with a number of unions:

typedef struct QUAT_TYP
{
union

612 17. Introduction to Quaternions

TeamLRN

{
float M[4]; // array indexed storage w,x,y,z order

// vector part, real part format
struct

{
float q0; // the real part
VECTOR3D qv; // the imaginary part xi+yj+zk
};

struct
{
float w,x,y,z;
};

}; // end union
} QUAT, *QUAT_PTR;

With this structure we can access the quaternion as an array, as a real and a vector,
and as four unique identifiers. This makes writing various algorithms a snap!
Anyway, let’s take a look at all the functions I have written to help you in your quest
of quaternion domination:

Function Prototype
void VECTOR3D_Theta_To_QUAT(QUAT_PTR q, VECTOR3D_PTR v, float theta);

Functional Listing
void VECTOR3D_Theta_To_QUAT(QUAT_PTR q, VECTOR3D_PTR v, float theta)
{
// initializes a quaternion based on a 3-D direction vector and angle
// note the direction vector must be a unit vector
// and the angle is in rads

float theta_div_2 = (0.5)*theta; // compute theta/2

// compute the quaternion, note this is from Chapter 4
// pre-compute to save time
float sinf_theta = sinf(theta_div_2);

q->x = sinf_theta * v->x;
q->y = sinf_theta * v->y;
q->z = sinf_theta * v->z;

613Building a Simple Quaternion Engine

TeamLRN

q->w = cosf(theta_div_2);

} // end VECTOR3D_Theta_To_QUAT

Purpose
void VECTOR3D_Theta_To_QUAT() creates a rotation quaternion based on a direc-
tion vector v, and an angle theta. Referring back to Figure 17.5 see this construc-
tion. This function is primarily used to create quaternions for rotations of points.
Note that the direction vector v must be a unit vector.

Example
// create the vector to rotate about
// in this case the diagonal of the unit cube
// for octant 1
VECTOR3D v={1,1,1};
QUAT qr;
// normalize v
VECTOR3D_Normalize(&v);
float theta = DEG_TO_RAD(100); // 100 degrees
// create a rotation quaternion about v
// with angle theta
VECTOR3D_Theta_To_QUAT(&q, &v,theta);

Function Prototype
void EulerZYX_To_QUAT(QUAT_PTR q, float theta_z, float
theta_y, float theta_x);

Functional Listing
void EulerZYX_To_QUAT(QUAT_PTR q, float theta_z, float theta_y, float theta_x)
{
// this function initializes a quaternion based on the zyx
// multiplication order of the angles that are parallel to the
// zyx axis respectively, note there are 11 other possibilities
// this is just one, later we may make a general version of the
// the function

// precompute values
float cos_z_2 = 0.5*cosf(theta_z);
float cos_y_2 = 0.5*cosf(theta_y);

614 17. Introduction to Quaternions

TeamLRN

float cos_x_2 = 0.5*cosf(theta_x);

float sin_z_2 = 0.5*sinf(theta_z);
float sin_y_2 = 0.5*sinf(theta_y);
float sin_x_2 = 0.5*sinf(theta_x);

// and now compute quaternion
q->w = cos_z_2*cos_y_2*cos_x_2 + sin_z_2*sin_y_2*sin_x_2;
q->x = cos_z_2*cos_y_2*sin_x_2 - sin_z_2*sin_y_2*cos_x_2;
q->y = cos_z_2*sin_y_2*cos_x_2 + sin_z_2*cos_y_2*sin_x_2;
q->z = sin_z_2*cos_y_2*cos_x_2 - cos_z_2*sin_y_2*sin_x_2;

} // EulerZYX_To_QUAT

Purpose
void EulerZYX_To_QUAT() creates a rotation quaternion based on the Euler angles
parallel to the z,y, and x axes, respectively. This is your basic camera transform. Of
course there are a total of six ways (permutations = 3!) to multiply x*y*z together,
but this is the most common. Use this function to convert your Euler rotation
angles to a quaternion.

Example
QUAT qzyx;

// create rotation angles
float theta_x = DEG_TO_RAD(20);
float theta_y = DEG_TO_RAd(30);
float theta_z = DEG_TO_RAD(45);

// create rotation quaternion
EulerZYX_To_QUAT(&qzyx,theta_z,theta_y,theta_x);

Function Prototype
void QUAT_To_VECTOR3D_Theta(QUAT_PTR q, VECTOR3D_PTR v, float *theta);

Functional Listing
void QUAT_To_VECTOR3D_Theta(QUAT_PTR q, VECTOR3D_PTR v, float *theta)
{
// this function converts a unit quaternion into a unit direction
// vector and rotation angle about that vector

615Building a Simple Quaternion Engine

TeamLRN

// extract theta
*theta = acosf(q->w);

// pre-compute to save time
float sinf_theta_inv = 1.0/sinf(*theta);

// now the vector
v->x = q->x*sinf_theta_inv;
v->y = q->y*sinf_theta_inv;
v->z = q->z*sinf_theta_inv;

// multiply by 2
theta=2;

} // end QUAT_To_VECTOR3D_Theta

Purpose
void QUAT_To_VECTOR3D_Theta() converts a unit rotation quaternion into a unit
3-D vector and a rotation angle theta about that vector. This function is basically
the opposite of VECTOR3D_Theta_To_QUAT().

Example
QUAT q;
// assume q now has a unit rotation quaternion in it

// storage for the vector and angle
float theta;
VECTOR3D v;

// now convert the quat to a vector and an angle
QUAT_To_VECTOR3D_Theta(&q, &v, &theta);

Function Prototype
void QUAT_Add(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qsum);

Purpose
void QUAT_Add() adds the quaternions q1 and q2 and stores the sum in qsum.

616 17. Introduction to Quaternions

TeamLRN

Example
QUAT q1 = {1,2,3,4}, q2 = {5,6,7,8}, qsum;
// add em
QUAT_Add(&q1, &q2, &qsum);

Function Prototype
void QUAT_Sub(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qdiff);

Purpose
void QUAT_Sub() subtracts the quaternion q2 from q1 and stores the difference in
qdiff.

Example
QUAT q1 = {1,2,3,4}, q2 = {5,6,7,8}, qdiff;
// subtract em
QUAT_Sub(&q1, &q2, &qdiff);

Function Prototype
void QUAT_Conjugate(QUAT_PTR q, QUAT_PTR qconj);

Purpose
void QUAT_Conjugate() computes the conjugate of the quaternion q and returns in
qconj.

Example
QUAT q = {1,2,3,4}, qconj;
// compute conjugate
QUAT_Conjugate(&q, &qconj);

Function Prototype
void QUAT_Scale(QUAT_PTR q, float scale, QUAT_PTR qs);

Purpose
void QUAT_Scale() scales the quaternion q by the factor scale and stores the result
in qs.

617Building a Simple Quaternion Engine

TeamLRN

Example
QUAT q = {1,2,3,4}, qs;
// scale q by 2
QUAT_Scale(&q, 2, &qs);

Function Prototype
void QUAT_Scale(QUAT_PTR q, float scale);

Purpose
void QUAT_Scale() scales the quaternion q by the factor scale in place, that is modi-
fies q directly.

Example
QUAT q = {1,2,3,4};
// scale q by 2
QUAT_Scale(&q, 2);

Function Prototype
float QUAT_Norm(QUAT_PTR q);

Purpose
float QUAT_Norm(QUAT_PTR q) returns the norm the quaternion q, that is, its
length.

Example
QUAT q = {1,2,3,4};

// whats the length of q?
float qnorm = QUAT_Norm(&q);

Function Prototype
float QUAT_Norm2(QUAT_PTR q);

Purpose
float QUAT_Norm2(QUAT_PTR q) returns the norm squared of the quaternion q,
that is, its length squared. This function is useful since many times we need
norm of a quaternion squared, thus, calling QUAT_Norm2() rather than calling

618 17. Introduction to Quaternions

TeamLRN

QUAT_Norm() and then squaring the return value saves us both a sqrt() call and a
multiply.

Example
QUAT q = {1,2,3,4};

// whats the length of q*q?
float qnorm2 = QUAT_Norm2(&q);

Function Prototype
void QUAT_Normalize(QUAT_PTR q, QUAT_PTR qn);

Purpose
void QUAT_Normalize() normalizes the
quaternion q and sends the result back
in qn.

Example
QUAT q = {1,2,3,4}, qn;

// normalize q
QUAT_Normalize(&q, &qn);

Function Prototype
void QUAT_Normalize(QUAT_PTR q);

Purpose
void QUAT_Normalize() normalizes the quaternion q in place, that is, modifies q
itself.

Example
QUAT q = {1,2,3,4};
// normalize q in place
QUAT_Normalize(&q);

Function Prototype
void QUAT_Unit_Inverse(QUAT_PTR q, QUAT_PTR qi);

619Building a Simple Quaternion Engine

NOTE
Remember, all rotation quaternions
must be unit quaternions.

TeamLRN

Purpose
void QUAT_Unit_Inverse() computes the inverse of the quaternion q and returns the
result in qi. However, q must be a unit quaternion for the function to work since
the function is based on the fact that the inverse of a unit quaternion is its conju-
gate.

Example
QUAT q = {1,2,3,4}, qi;
// normalize q first
QUAT_Normalize(&q);
// now compute inverse
QUAT_Unit_Inverse(&q, &qi);

Function Prototype
void QUAT_Unit_Inverse(QUAT_PTR q);

Purpose
void QUAT_Unit_Inverse() computes the inverse of the quaternion q in place modify-
ing q. However, q must be a unit quaternion for the function to work since the
function is based on the fact that the inverse of a unit quaternion is its conjugate.

Example
QUAT q = {1,2,3,4};

// normalize q first
QUAT_Normalize(&q);

// now compute inverse
QUAT_Unit_Inverse(&q);

Function Prototype
void QUAT_Inverse(QUAT_PTR q, QUAT_PTR qi);

Purpose
void QUAT_Inverse() computes the inverse of a general non-unit quaternion q and
returns the result in qi.

620 17. Introduction to Quaternions

TeamLRN

Example
QUAT q = {1,2,3,4}, qi;

// now compute inverse
QUAT_Inverse(&q, &qi);

Function Prototype
void QUAT_Inverse(QUAT_PTR q);

Purpose
void QUAT_Unit_Inverse() computes the inverse of a general non-unit quaternion q
in place modifying q.

Example
QUAT q = {1,2,3,4};

// now compute inverse
QUAT_Inverse(&q);

Function Prototype
void QUAT_Mul(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qprod);

Functional Listing
void QUAT_Mul(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qprod)
{
// this function multiplies two quaternions

// this is the brute force method
//qprod->w = q1->w*q2->w - q1->x*q2->x - q1->y*q2->y - q1->z*q2->z;
//qprod->x = q1->w*q2->x + q1->x*q2->w + q1->y*q2->z - q1->z*q2->y;
//qprod->y = q1->w*q2->y - q1->x*q2->z + q1->y*q2->w - q1->z*q2->x;
//qprod->z = q1->w*q2->z + q1->x*q2->y - q1->y*q2->x + q1->z*q2->w;

// this method was arrived at basically by trying to factor the above
// expression to reduce the # of multiplies

float prd_0 = (q1->z - q1->y) * (q2->y - q2->z);
float prd_1 = (q1->w + q1->x) * (q2->w + q2->x);

621Building a Simple Quaternion Engine

TeamLRN

float prd_2 = (q1->w - q1->x) * (q2->y + q2->z);
float prd_3 = (q1->y + q1->z) * (q2->w - q2->x);
float prd_4 = (q1->z - q1->x) * (q2->x - q2->y);
float prd_5 = (q1->z + q1->x) * (q2->x + q2->y);
float prd_6 = (q1->w + q1->y) * (q2->w - q2->z);
float prd_7 = (q1->w - q1->y) * (q2->w + q2->z);

float prd_8 = prd_5 + prd_6 + prd_7;
float prd_9 = 0.5 * (prd_4 + prd_8);

// and finally build up the result with the temporary products
qprod->w = prd_0 + prd_9 - prd_5;
qprod->x = prd_1 + prd_9 - prd_8;
qprod->y = prd_2 + prd_9 - prd_7;
qprod->z = prd_3 + prd_9 - prd_6;

} // end QUAT_Mul

Notice that at first, I was using the brute force method of multiplying the quater-
nions by the definition of multiplication (16 multiplies, 12 additions), then with
some algebra, I simplified the multiplication to 9 multiplies and 27 additions.
Normally, you might think this is better, but on floating point processors, that may
not be the case.

Purpose
void QUAT_Mul() multiplies the quaternion q1*q2 and stores the result in qprod.

Example
QUAT q1={1,2,3,4}, q2={5,6,7,8}, qprod;

// multiply q1*q2
QUAT_Mul(&q1, &q2, qprod);

Function Prototype
void QUAT_Triple_Product(QUAT_PTR q1, QUAT_PTR

q2, QUAT_PTR q3, QUAT_PTR qprod);

Purpose
void QUAT_Triple_Product() multiplies the three quaternions q1*q2*q3 and stores the
result in qprod. This function is useful for rotating points since the transform

622 17. Introduction to Quaternions

CAUTION
The product q1*q2 is not equal
to q2*q1 unless q1 or q2 is the
multiplicative identity. Hence,
multiplication is non-commu-
tative for quaternions in
general.

TeamLRN

(q*)*(v)*(q) and (q)*(v)*(q*) are triple products that rotate vectors or points.
This function is very useful in performing rotation as shown in the example.

Example
// lets rotate the vector/point (5,0,0)
// around the z-axis 45 degrees

// Step 1: create the rotation quaternion
VECTOR3D vz = {0,0,1};

QUAT qr, // this will hold the rotation quaternion
qrc; // this will hold its conjugate

// create the rotation quaternion
VECTOR3D_Theta_To_QUAT(&qr, &vz, DEG_TO_RAD(45));

// now its conjugate
QUAT_Conjugate(&qr, &qrc);

// now create a point to rotate with the q0
// element equal to 0 and the x,y,z as the point
QUAT qp={0,5,0,0};

// now we do the rotation which will rotate
// p about the z-axis 45 degrees, of course
// the rotation axis could have been anything
QUAT_Triple_Product(&qr, &qp, &qrc, &qprod);

// now the result will still have q0=0,
// so we can just extract the point from the
// x,y,z elements of the quaternion

Function Prototype
void QUAT_Print(QUAT_PTR q, char *name);

Purpose
void QUAT_Print() prints out a quaternion with the given name to the error file.

623Building a Simple Quaternion Engine

TeamLRN

Example
QUAT_Print(&q);

As a demo of some of the quaternion functions check out QUATERNION01.CPP|
EXE. Figure 17.7 shows a screen shot of the application running; basically, you can
input a couple of quaternions, and vectors, and then manipulate them with the
library functions. Try entering in a rotation quaternion along with a vector and
then rotate the vector and see if the results are correct!

Conclusion
At this point, you should have a good working knowledge of quaternions, what they
are, and how they can be applied to operations, such as rotation. Of course, the
real power of quaternions comes into play when we use them to represent camera
operations, taking advantage of the fact that a quaternion can hold both a direc-
tion and rotation angle around that direction.

624 17. Introduction to Quaternions

Figure 17.7

A quaternion lab in
all its glory

TeamLRN

TRICK 18

Terrain
Collision

with
Quadtrees

By Richard Benson,
rbenson@earthlink.net

TeamLRN

Introduction
Modern 3-D video games are always pushing the limits of today’s computer hard-
ware. The environments that we play in are using more and more polygons in
order to achieve as much realism as possible. This is especially true of games that
take place outdoors with large sections of terrain for the player to explore. Given
the nature of terrain being organic and non-uniform, it takes a large number of
polygons to represent it accurately. While high polygon counts can make the envi-
ronments look great, they can really stress the hardware that the game is running
on. The cost of rendering high polygon count environments can be assisted greatly
by modern 3-D video cards. This doesn’t mean that we don’t need to worry about
the costs of rendering all those polygons; it’s just not the focus of this chapter. Our
main focus for this chapter is how we go about doing accurate collision detection
with these environments without bringing the system to a crawl.

The problem is that most 3-D video games are real-time applications. That means
that we have to maintain 30–60 frames per second to keep the game flowing
smoothly. In order to maintain 30 frames per second, all of our calculations and
renderings have to be finished in approximately 33.3 milliseconds. And 60 frames
per second would only give you half of that time: approximately 16.6 milliseconds.
Combine that with the high polygon count environments and you’ve got a chal-
lenge ahead of you. Here’s an extreme example of the problem. Let’s say your envi-
ronment has 150,000 polygons and you’re trying to maintain 60 frames per second.
Even with only one player in the game, you’ll have to check 9,000,000 polygons to
see if the player has collided with them. On average, only half of the polygons will
have to be checked before a collision is found. This means that on average we’re
still checking 4,500,000 polygons per second. That’s insane! What we need is a way
to quickly rule out polygons that the player has no chance of colliding with before
the costly collision detection calculation is performed.

One of the available solutions is an organizational technique called spatial partition-
ing. Spatial partitioning works by dividing space into discrete regions. This makes it
easy to disregard polygons before the costly collision detection tests are performed
on them. For this chapter, we’ll be discussing a specific type of spatial partitioning
known as the quadtree.

626 18. Terrain Collision with Quadtrees

TeamLRN

What Will Be Covered
This chapter will explain what a quadtree is and why the quadtree is the spatial par-
tition of choice for outdoor environments. You will learn how to build a quadtree
from a set of polygons, how to quickly find polygons in the vicinity of where you’re
checking and how to find an intersection point within those polygons. We will go
over various design decisions associated with quadtrees, including the choices that
were made for the quadtree implementation described in this chapter. Also, let me
state that this quadtree implementation has been purposely simplified to make the
material accessible to someone who’s never dealt with quadtrees or any spatial par-
titioning techniques, for that matter. Also the terms polygons and triangles will be
used interchangeably in this chapter since we only support three-sided polygons
(triangles).

For this chapter, we will be using the right-handed coordinate system shown in
Figure 18.1. The x and y axes make up the ground plane and the positive z axis
is up.

Introduction to Trees
As mentioned previously, a quadtree is a specific type of spatial partitioning. Most
of the techniques for spatial partitioning use data structures that are often referred
to as trees.

A tree, for our needs, is defined as a collection of nodes. Just think of each node as a
container. The contents of the nodes are irrelevant for right now. Usually, the tree

627What Will Be Covered

Figure 18.1

The coordinate
system used for this
chapter

TeamLRN

starts off with one node that is called the root. The way the tree is organized is that
every node has links to other nodes. These links are often referred to as branches.
For the most part, branches can only be traversed in one direction. In reference to
Figure 18.2, the branches would align top to bottom. When a node has branches to
other nodes below it, it is often called the parent node. Consequently, the nodes it
links to are known as its child nodes or children. If a node doesn’t have any child
nodes, it is called a leaf node. If for every node in the tree, there are an equal num-
ber of nodes below it, then the tree is said to be balanced. Balanced trees produce
the fastest search times. This is because as you go down farther into the tree, you
are decreasing the remaining nodes exponentially.

One last term associated with trees is depth. Every time you follow a branch deeper
into the tree, your depth increases by one. For example, the leaf nodes in Figure
18.2 at the bottom are all at a depth of two. Okay, that should be enough informa-
tion about trees to get you through the rest of the chapter. Let’s get back to spatial
partitioning.

Spatial Partitioning
The term Spatial Partitioning describes a technique for organizing objects in 3-D
space by their location. Three of the most popular forms of spatial partitioning are
BSP(Binary Space Partition) trees, octrees, and quadtrees. Each of these techniques

628 18. Terrain Collision with Quadtrees

Figure 18.2

An abstract representation of a
tree

TeamLRN

works by collecting all of the objects in the world (whether they’re game objects or
polygons) and then recursively putting the objects in smaller regions until some
limit is reached. For BSP trees, this limit is usually that we don’t have any more
polygons to sort. For octrees and quadtrees, the limiting factor is often that the tree
has reached a maximum depth or that each node has a minimal amount of objects.

BSP Trees
The word binary can be defined as “consisting of two parts.” This holds true for a
BSP because it recursively splits the world into two half spaces. It starts by picking
one plane that will divide the world into two half spaces. One half space is on the
positive side of the plane and one half space is on the negative side of the plane.
Then for each half space, we pick a new plane that divides it into two half spaces,
and so on. Note that in Figure 18.3, Plane D has been chosen as the first splitting
plane of the BSP tree. That left us with two sets of planes remaining, ABC and EFG.
For each one of those sets, we pick the plane that best divides in half. As you can
see by the BSP tree on the right side of Figure 18.3, we chose B to split ABC and F
to split EFG.

A visual representation of the tree is also shown. In practice, BSP trees are much
more complex than shown here, but this will do for the sake of instruction. Indoor
environments often use BSP trees since the walls of the environment can be used as
the splitting planes for the tree.

629What Will Be Covered

Figure 18.3

An overhead view of
polygons before BSP
tree is built

TeamLRN

Octrees
Octrees usually start with a cube that contains all the objects in the world. To build
the octree, we divide the first cube into eight equally sized cubes. Then for each
one of the new eight cubes, we split the cube into eight octants as necessary.

Since octrees cover all three dimensions equally, they are a good general method
for spatial partitioning 3-D objects and/or geometry. We’ll see in a second why
quadtrees are a better choice for when the environment is mostly terrain (see
Figure 18.4).

Quadtrees
Similarly to octrees, quadtrees start with a region that contains all the objects in the
environment. The way that quadtrees differ from octrees is that quadtrees use a 2-D
square instead of a 3-D cube as their bounding region. To build a quadtree you
start with the bounding region (see Figure 18.5) and split it into four equally sized
regions. Then you recursively split each of the squares into four equally sized
squares (quadrants) as needed.

Refer to Figure 18.6, which is an overhead view of a piece of terrain. Since typical
terrain has no overlapping polygons, there is only one contact point for a given x,y
coordinate. This is a perfect candidate for a quadtree.

630 18. Terrain Collision with Quadtrees

Figure 18.4

This is how an octree
gets divided

TeamLRN

631What Will Be Covered

Figure 18.5

This is how a
quadtree gets
divided; the
corresponding
quadtree is also
shown

Figure 18.6

Overhead view of a
sample piece of
terrain

TeamLRN

The Quadtree
The best way to think of the quadtree is from a top-down perspective. Look at
Figure 18.7. In our demo, our terrain has 8,192 polygons (triangles). We use a 64
by 64 grid and each grid section has two polygons: 64 × 64 × 2 = 8192. Imagine
yourself at the top of our quadtree that contains 8,192 polygons. Now given the x
and y coordinates you want to test, you move down the tree one level by comparing
the x and y coordinates with the midpoint of the current node (the root). Let’s say
you calculate that you need to go down to the upper-left quadrant. The amazing
thing is that you just reduced the polygons you have to test to 2,048. That’s a reduc-
tion of 75 percent! That’s the magic of a quadtree. The deeper you go down in the
tree, the more you are narrowing your search.

The CQuadtree Class
Let’s begin this section by taking a look at the CQuadtree class.

class CQuadtree
{
public:

CQuadTree(float minX, float maxX, float minY, float maxY);
~CQuadTree();

632 18. Terrain Collision with Quadtrees

Figure 18.7

The lower we go
down in the tree, the
less polygons we
have to interact with

TeamLRN

void AddFace(CVector3& v0, CVector3& v1, CVector3& v2);
bool Intersect(float x, float y, float& height, CVector3& normal);

private:
CQuadTreeNode* m_root;

};

This is our quadtree class. As you can see there’s not much to it. Its main purpose
is really just an interface for CQuadtreeNode, which we will discuss shortly. The most
important element is m_root, which is the link that connects us to the entire tree.
Let’s look at the constructor for CQuadtree.

CQuadtree::CQuadtree(float minX, float maxX, float minY, float maxY)
{

// Create a root node that covers the extents of the quadtree.
// Note that the last parameter is the depth of the node. Since
// it’s the root node, we set the depth to zero.
m_root = new CQuadTreeNode(minX, maxX, minY, maxY, 0);

// verify that our allocation worked
assert(m_root);

}

The only way to create an instance of CQuadtree is by passing the extents of the area
that the quadtree will cover. We create a new node and assign it to our m_root
pointer.

At this point the quadtree is ready to be used. We have one node that encompasses
the extents of the quadtree. What we’ll do then is split that node into smaller
nodes as we add polygons to the tree. Note that the last parameter of the
CQuadtreeNode constructor is the depth of the node being created. Since we are cre-
ating the root node, we tell it to set its depth to 0.

// verify that our allocation worked
assert(m_root);

Since the rest of the code assumes that m_root is a valid pointer, we need to stop
executing if the allocation of the root node fails. This is what the assert() is for. If
m_root is NULL after we try and create a new CQuadtreeNode instance, our code will
stop execution. Let’s move on to the CQuadtreeNode class.

633The Quadtree

TeamLRN

The CQuadtreeNode Class
Now let’s examine the CQuadtreeNode class.

class CQuadtreeNode
{

// CQuadtree needs access to our data and functions.
friend class CQuadtree;

private:
// Constructor / Destructor.
CQuadtreeNode(float minX, float maxX, float minY, float maxY);
~CQuadTreeNode();

// Intersect will find the polygon that intersects the
// x,y coordinate given.
bool Intersect(float x, float y, float& height, CVector3& normal);
// AddFace adds the polygon described by the three vertices to
// the quadtree.
void AddFace(CVector3& v0, CVector3& v1, CVector3& v2);

// STL List of pointers to TreeFace data.
// This is the polygon data contained in this CQuadtreeNode.
list<TreeFace*> m_PolyList;

// x,y extents of this node
float m_minX;
float m_minY;
float m_maxX;
float m_maxY;

// pointers to our four children
CQuadtreeNode* m_pChild_UL;
CQuadtreeNode* m_pChild_UR;
CQuadtreeNode* m_pChild_LL;
CQuadtreeNode* m_pChild_LR;

// The depth of this quadtree node within the quadtree
// We’ll need this since we’re always going to add polygons
// to the bottom-most quadtree nodes.

634 18. Terrain Collision with Quadtrees

TeamLRN

int m_depth;
};

The CQuadtreeNode class is the heart of our quadtree implementation. This is where
we have all the data that we’re storing in the nodes, as well as the information that
allows us to traverse them quickly. At the top, you’ll notice that we’ve declared
CQuadtree as a friend class. This will give
the main quadtree access to the nodes
of the tree and keep the code from
being filled with lots of accessory rou-
tines. m_PolyList is a Standard Template
Library (STL) list of pointers to our
poly information. This is where we will
store any polygons that belong to this
QuadtreeNode.

Then we have m_minx, m_minY, m_maxX and
m_maxY. These are the min and max val-
ues that describe the extents of this
node in the x,y plane. We will use these
extents to determine the sizes and loca-
tions of our children. We will also be
using these extents to quickly traverse the quadtree, looking for the quadtree node
that contains the point we’re checking. The four pointers to the children of this
quadtree node are declared as four separate pointers; one to each quadrant. This
makes the code a little easier to follow. It’s perfectly valid for these pointers to be
NULL, so we’ll need to check their validity before we try and access them at run-
time. Figure 18.8 shows a visual representation of a quadtree node.

CQuadtreeNode* m_pChild_UL; // Upper Left
CQuadtreeNode* m_pChild_UR; // Upper Right
CQuadtreeNode* m_pChild_LL; // Lower Left
CQuadtreeNode* m_pChild_LR; // Lower Right

635The Quadtree

NOTE
STL is the Standard Template
Library. It is a portable, fast, and effi-
cient set of common routines and
data structures.We use the List
template as a means to store point-
ers to polygon data in each quadtree
node.The List template is a linked
list implementation which allows us
to easily add and remove nodes as
well as making it easy to access the
polygon data for a given quadtree
node.

TeamLRN

Building Up the Quadtree
Once we’ve declared an instance of the quadtree, we can start adding polygons to
it. We start by passing the three vertices of the triangle to the AddFace() method of
our quadtree.

void CQuadTree::AddFace(CVector3& v0, CVector3& v1, CVector3& v2)
{

// calculate the min and max extents for this triangle
float minX = __min(v0.x(), __min(v1.x(), v2.x()));
float maxX = __max(v0.x(), __max(v1.x(), v2.x()));

float minY = __min(v0.y(), __min(v1.y(), v2.y()));
float maxY = __max(v0.y(), __max(v1.y(), v2.y()));

// verify that the vertices all fit within the extents of the quadtree
assert((minX >= m_root->m_minX) && (maxX <= m_root->m_maxX) &&

(minY >= m_root->m_minY) && (maxY <= m_root->m_maxY));

m_root->AddFace(v0, v1, v2);
}

First, we need to determine if the triangle fits entirely in the quadtree’s root node.
Remember when we called the constructor for CQuadtree, we told it how big to make

636 18. Terrain Collision with Quadtrees

Figure 18.8

A visual
representation of
CQuadTreeNode

TeamLRN

the quadtree. So as long as the size was calculated correctly for the set of polygons
in the environment, every polygon should fit. Checking to see if every polygon fits
in the quadtree’s root node before adding it is overkill but I thought it would help
for someone who was trying out the quadtree code for the first time. This way
instead of the quadtree not working, they’ll get an assert if they try to add any poly-
gons that don’t fit.

Once the quadtree calls AddFace() for the root node, we start passing the polygon
down through the tree, creating new nodes as necessary until we find the node
where we want to store it. One problem we have to deal with when adding polygons
to the quadtree is what to do when a polygon doesn’t fit exactly within a quadtree
node. For example, in Figure 18.9, the polygon touches all four quadtree nodes.
We have three options to choose from:

1. Split the polygon into smaller polygons that fit entirely within the quadtree
nodes. This option creates more polygons and is more complicated than the
other two.

2. Leave the polygon in the current node and don’t pass it down farther in the
tree. Using this option will often leave a lot of the polygons in the root node
and will decrease the benefits of storing the polygons in a quadtree.

3. Add the polygon to every quadtree node that it touches. This method is sim-
ple but will waste some memory and computer processing unit time. In order
to keep things as simple as possible, we will use this method.

In order to simplify the process of determining which quadrants to add the poly-
gon to, we calculate a bounding box that
surrounds the polygon. We then call
the root node’s AddFace() method,
which if you’ll remember is the
node that is as big as the entire tree.
Then what AddFace() will do is figure
out from the bounding box which
quadrants the polygon is touching
and pass the polygon down to them.

It should be noted that this method
has its flaws and will sometimes add
a polygon to a quadtree node that it

637The Quadtree

NOTE
A fourth option is often used when
the quadtree is used to store game
objects.That option entails using loose
boundaries for the quadtree nodes.1

The best way to visualize this is to
think of adding the game object to
the quadrant that it’s closest to fitting
in or the quadrant that most of the
object is in. Using loose boundaries,
the edges of the quadrants overlap
and therefore are no longer discrete
or separate from each other.

TeamLRN

shouldn’t, but it simplifies the code enough that I thought it was better to use this
method. To see this problem better, refer to Figure 18.9. You can see that if v0 and
v1 were moved over to the right a little, the triangle would not intersect the LL
quadrant at all. But in that case, the bounding box of the triangle would still inter-
sect quadrant LL and as such the polygon would be added to LL. The only prob-
lems this causes is a waste of memory and some wasted Computer Processing Unit
(CPU) time if we’re testing polygons that aren’t in our quadrant. Now that we
know how we figure out which nodes to pass the polygon to, let’s see what happens
from there.

CQuadtreeNode::AddFace()
Moving right along, let now examine CQuadtreeNode::AddFace().

void CQuadtreeNode::AddFace(CVector3& v0, CVector3& v1, CVector3& v2)
{

// The depth of this node is as deep as we want to go
// Add the poly to this node and return.
if (m_depth >= MAX_DEPTH)
{

638 18. Terrain Collision with Quadtrees

Figure 18.9

This is the bounding box that
encloses the triangle; using the
bounding box, we can determine
which quadrants to insert the
triangle into

TeamLRN

TreeFace* newFace = new TreeFace(v0, v1, v2);
m_PolyList.push_back(newFace);
return;

}

float minX = __min(v0.x(), __min(v1.x(), v2.x()));
float maxX = __max(v0.x(), __max(v1.x(), v2.x()));

float minY = __min(v0.y(), __min(v1.y(), v2.y()));
float maxY = __max(v0.y(), __max(v1.y(), v2.y()));

// determine which quadrants are touched by a bounding box
// surrounding the triangle.
// Upper Left
bool UL = ((minX < halfX) && (minY < halfY));
// Upper Right
bool UR = ((maxX > halfX) && (minY < halfY));
// Lower Left
bool LL = ((minX < halfX) && (maxY > halfY));
// Lower Right
bool LR = ((maxX > halfX) && (maxY > halfY));

// only create a child if the bounding box of the poly touches it
if (UL)
{

if (!m_pChild_UL)
{

m_pChild_UL = new CQuadTreeNode(m_minX, halfX, m_minY, halfY,
m_depth+1);

assertt(m_pChild_UL);
}
m_pChild_UL->AddFace(v0, v1, v2);

}

if (UR)
{

if (!m_pChild_UR)
{

m_pChild_UR = new CQuadTreeNode(halfX, m_maxX, m_minY, halfY,

639The Quadtree

TeamLRN

m_depth+1);
assert(m_pChild_UR);

}
m_pChild_UR->AddFace(v0, v1, v2);

}

if (LL)
{

if (!m_pChild_LL)
{

m_pChild_LL = new CQuadTreeNode(m_minX, halfX, halfY, m_maxY,
m_depth+1);

assert(m_pChild_LL);
}
m_pChild_LL->AddFace(v0, v1, v2);

}

if (LR)
{

if (!m_pChild_LR)
{

m_pChild_LR = new CQuadTreeNode(halfX, m_maxX, halfY, m_maxY,
m_depth+1);

assert(m_pChild_LR);
}
m_pChild_LR->AddFace(v0, v1, v2);

}

return;
}

The first thing we do is check to see if we are at the maximum depth of the tree.
The maximum depth is a predetermined value that will vary for different environ-
ments. For the purposes of our implementation, I decided to add polygons to the
bottom of the tree because the terrain we’re dealing with is fairly uniform. This will
maximize the effectiveness of the quadtree by keeping it fairly balanced. If the ter-
rain you’re dealing with isn’t uniform, you may benefit by maintaining a polygon
limit per quadtree node. Then if you overflow that node, you can pass polygons
down to your children.

640 18. Terrain Collision with Quadtrees

TeamLRN

If we’re not at the maximum depth of the tree, then we continue on and calculate
which child quadtree nodes we will pass this polygon down to. We calculate the
bounding region of the triangle as shown in Figure 18.9. Then we perform a series
of tests to see which quadrants the bounding box touches. We store a Boolean
value for each quadrant. Once we’ve done this we start looking at the Boolean val-
ues to determine which child quadtree nodes to send this polygon down to. If the
Boolean value for a quadrant is true, then we test to see if we already have a valid
pointer to this child. If we don’t have a valid pointer, then this is the first time
we’ve attempted to add a polygon to this child and so we create a new CQuadtreeNode
and assign our pointer to that child.

You’ll notice that I’ve placed assert() calls in every location where we try to create
new quadtree nodes. If for some reason we can’t allocate a new CQuadtreeNode for
this quadrant, then the code will assert and we’ll know something has gone wrong.

Once we’ve added all of our polygons to the quadtree, we can start to use it for its
intended use, terrain collision.

Finding an Intersection
So we have a quadtree that will allow us blazingly fast access to the polygon data of
the terrain. Here’s our first attempt at putting it to use. A typical need for a
quadtree that contains terrain data is for it to tell us the height at a specific coordi-
nate in the x,y plane.

While we’re at it, we’ll have the quadtree tell us the normal of the surface at the
point of intersection. That way we can do things like determine if the terrain is
too steep for a player to climb, accurately model the velocity of an object sliding
on the terrain, etc. The function that we call to get all this information is
CQuadtree::Intersect(). It returns a Boolean value to tell us whether or not it found
a polygon below the given x,y coordinate. If it returns true, then height will be the
z coordinate of intersection and normal will contain the surface normal of the
polygon at the point of intersection. Here’s the implementation:

bool CQuadTree::Intersect(float x, float y, float& height, CVector3& normal)
{

// Verify that our quadtree covers the coordinate they’re looking for.
// This doesn’t guarantee that there is a poly at this coordinate, it
// just makes the rest of the code simpler since we know it’s in our
// range.
if ((x < m_root->m_minX) || (x > m_root->m_maxX)) return false;

641The Quadtree

TeamLRN

if ((y < m_root->m_minY) || (y > m_root->m_maxY)) return false;

return m_root->Intersect(x, y, height, normal);
}

CQuadtree::Intersect() starts by checking to see if the x,y coordinate we passed in is
inside the extents of the quadtree. If the x,y coordinate is not inside the extents of
the root quadtree node, then we return false which tells us that there is no polygo-
nal data below that x,y coordinate. Once CQuadTree::Intersect() determines that the
coordinate we’re checking is within its extents, it calls CQuadtreeNode::Intersect()
which will start a recursive chain of node traversals.

bool CQuadTreeNode::Intersect(float x, float y, float& height,
CVector3& normal)

{
float halfX = (m_minX + m_maxX) * 0.5f;
float halfY = (m_minY + m_maxY) * 0.5f;

// Upper
if (y < halfY)
{

// Upper Left
if (x < halfX)
{

if (m_pChild_UL)
return m_pChild_UL->Intersect(x, y, height, normal);

}
// Upper Right
else
{

if (m_pChild_UR)
return m_pChild_UR->Intersect(x, y, height, normal);

}
}
// Lower
else
{

// Lower Left
if (x < halfX)
{

if (m_pChild_LL)

642 18. Terrain Collision with Quadtrees

TeamLRN

return m_pChild_LL->Intersect(x, y, height, normal);
}
// Lower Right
else
{

if (m_pChild_LR)
return m_pChild_LR->Intersect(x, y, height, normal);

}
}

// We need to pick a starting location for our trace.
// The Z value doesn’t matter. RayIntersectTriangle() can handle
// the case where the polygon is above the start of the ray.
CVector3 start(x, y, 0);
// A vector straight down
CVector3 dir(0, 0, -1);

// no children, look within our own list of tris
list<TreeFace*>::iterator it = m_PolyList.begin();

CVector3 v0, v1, v2;
for (/* no init */; it != m_PolyList.end(); ++it)
{

v0 = (*it)->v0;
v1 = (*it)->v1;
v2 = (*it)->v2;

if (RayIntersectTriangle(start, dir, v0, v1, v2, height, normal))
return true;

}

return false;
}

Now that CQuadTree has temporarily handed off control to us, let’s start walking the
tree. Since every node breaks up into quadrants, we pre-calculate the middle of our
node in x and y. Now we can easily determine which quadrant the search coordi-
nate is in. First we check the y coordinate to see if we’re looking in the upper or
lower half. Once we determine that, we only have two choices, left or right. When
we’ve determined the quadrant the point is in, we try and traverse the child node
for that quadrant. If we don’t have a child node for that quadrant, then this is as

643The Quadtree

TeamLRN

deep in the tree as we can go. Now we need to look at all the triangles that we are
responsible for and see if any of them intersect the coordinate being searched for.
For our tests we will use a Ray–Triangle intersection test as shown in Figure 18.10.

A Ray has a starting point and a direction, but no endpoint. It continues on from
its starting point indefinitely.

The Ray needs a starting location and a direction. The x and y coordinates for the
starting location are simple, in fact they were given to us. The question is, what z
value do we choose? You’ll be happy to know that for the algorithm we use, it
doesn’t matter. I’ll explain this shortly when we talk about the algorithm for
Ray–Triangle intersection.

Explanation of
RayIntersectTriangle()
The following source code will aid in the explanation of the RayIntersectTriangle().

bool RayIntersectTriangle(CVector3& P, CVector3& Dir, CVector3& v0,
CVector3& v1, CVector3& v2, float& height, CVector3& normal)
{

// Compute two edges from the three vertices passed in.
CVector3 edge1(v1 - v0), edge2(v2 - v0);

644 18. Terrain Collision with Quadtrees

Figure 18.10

An example of a successful Ray–Triangle intersection
test

TeamLRN

// Compute normal of triangle by crossing two edges
// Note: we’ll need to normalize this before exit
//
// The caret symbol ^ is the cross product for our CVector3 class.
normal = CVector3(edge1 ^ edge2);
normal.Normalize();

// Ray equation
// Q = P + t*Dir
//
// Plane equation
// Ax + By + Cz + D = 0
//
// normal.Q + D = 0
// normal.(P + t*Dir) + D = 0
// normal.P + t*normal.Dir + D = 0
//
// t = -(D + normal.P)
// ———————-
// normal.Dir
//
// For any plane, D is the distance from the origin to the plane.
// By definition, D can be computed by calculating the negative
// of the normal dotted with any vertex on the plane.
// D = -normal.vertex0
//
// The pipe symbol | is the dot product for our CVector3 class.
float D = -normal | v0;

// denominator = Normal.Dir
float denominator = normal | Dir;

// Check if ray is parallel with the plane of the triangle
// Keep in mind the denominator can’t be zero or extremely close to zero
// or when we divide numerator by denominator we could get division
// by zero or exceeed the limits of float.
if (fabs(denominator) < 0.0001f)

return false;

645The Quadtree

TeamLRN

// numerator = -(Normal.P + D)
float numerator = -((normal | P) + D);

// t tells us how far from P along Dir we intersect the plane of the
// triangle. Note that t can be negative if the intersection point
// is behind P from the perspective of Dir.
float t = numerator / denominator;

// Start at P and move along t units in the direction of Dir to
// find the intersection point Q.
//
// Q = P + t * Dir
CVector3 Q = P + Dir.Scale(t);

// Calculate the edges of our triangle in the correct order
// for our winding.
CVector3 e1(v1-v0), e2(v2-v1), e3(v0-v2);

// Now that we have Q and we know it’s on the plane of the triangle
// let’s test to see if it’s on the inside edge of each side.

// calculate a normal for edge e1
CVector3 edgeNormal = e1 ^ normal;

// Determinant = N.(Q-Vertex of Edge)
// Determinant > 0 : Q is on the outside of the current edge.
// Determinant = 0 : Q is on the current edge.
// Determinant < 0 : Q is on the inside of the current edge.
Determinant = edgeNormal | (Q – v0);

// if Q is outside of any of the edge planes, we are done.
if (Determinant > 0.001f) return false;

// Q is on the inside of edge E1, now check E2
edgeNormal = E2 ^ normal;
Determinant = edgeNormal | (Q - v1);

// if Q is outside of any of the edge planes, we are done.
if (Determinant > 0.001f) return false;

646 18. Terrain Collision with Quadtrees

TeamLRN

// Q is on the inside of edge E2 and E1, now check E3
edgeNormal = E3 ^ normal;
Determinant = edgeNormal | (Q - v2);

// if Q is outside of any of the edge planes, we are done.
if (Determinant > 0.001f) return false;

// Q is on inside of all three edges of triangle.

// Now that we’re sure that Q is an intersection with this triangle,
// set the height value we return to the z value of Q
height = Q.z();

return true;
}

Let me start by saying that this implementation of a Ray versus Triangle Inter-
section test is by no means the fastest or cleanest version available. I chose this
method since the code is very straightforward and easy to explain. Given a starting
location, a direction, and a triangle, this function can tell us if there was an inter-
section with the triangle. It will also store the height and normal at the point of
intersection in the variables we passed in if an intersection is found.

The first part of the function is really just a Ray–Plane intersection test.2 We first
test to make sure that the ray and the plane aren’t parallel. If they are parallel,
then an intersection will never occur and we return false. If they aren’t parallel,
then we calculate Q, which is the point at with the ray intersects the plane of the
triangle. Let me reiterate that Q isn’t guaranteed to be on the triangle (as shown in
Figure 18.11), it’s only guaranteed to be in the same plane as the triangle. Once

647The Quadtree

Figure 18.11

Check to see if a point on
the plane of a triangle is
actually within the triangle

TeamLRN

we’ve calculated Q, we then have to test to see if it falls within the triangle we’re
testing. We again reference the plane equation. For each edge of the triangle, we
calculate the plane that has a normal perpendicular to the normal of the triangle.
This can be seen as the “Plane of Edge” in Figure 18.11.

If we calculate a vector from Q to a point on this edge plane and dot it with the
normal of the plane, we have the determinant. The determinant is really just the
distance from Q to the edge plane. If the determinant is zero, then Q on the edge
plane is therefore on the edge of the triangle. If the determinant is greater than
zero, then the point is on the positive side of the edge plane and is not inside the
triangle. Finally, if the determinant is less than zero, then the point is on the inside
of the edge plane. In Figure 18.11, Q will have a determinant greater than zero
when tested with the right edge of the pictured triangle and will be rejected. If Q is
on the inside of each edge plane, then Q is guaranteed to be inside the triangle.

Now, let’s talk about how we go about cleaning up the quadtree after we’re done
with it.

Cleaning Up
The following is a code snippet of a destructor that will help us with the cleanup
process for a CQuadtree.

CQuadtree::~CQuadTree()
{

delete m_root;
}

When we delete the pointer to a CQuadtree or when it goes out of scope, the destruc-
tor for CQuadtree will be called. All we have to do at this point is delete the root
node, which starts a recursive chain reaction that will clean up the entire tree and
all the geometry data it holds. This is possible due to the recursive nature of the
tree and some elegant coding in the destructor for CQuadtreeNode.

CQuadtreeNode::~CQuadtreeNode()
{

// we need an iterator to the first element in our PolyList so that
// we can delete them in order.
list<TreeFace*>::iterator it = m_PolyList.begin();

// keep deleting until our iterator is at the end of the list
while (it != m_PolyList.end())

648 18. Terrain Collision with Quadtrees

TeamLRN

{
// *it gives us the pointer that we allocated in AddFace()
// Since we created it, we are responsible for deleting it.
delete *it;
// The erase() method of an STL List has the benefit that
// it gives you an iterator to the node after the one
// you’re deleting.
it = m_PolyList.erase(it);

}
// Every node is only responsible for its children.
// Deleting our children will cause them to delete their children
// and so on. Verify each pointer isn’t NULL before deleting.
if (m_pChild_UL) delete m_pChild_UL;
if (m_pChild_UR) delete m_pChild_UR;
if (m_pChild_LL) delete m_pChild_LL;
if (m_pChild_LR) delete m_pChild_LR;

}

As far as cleanup goes, the destructor for CQuadtreeNode is the workhorse of it all. It
walks through the list of polygons and deletes them; nothing too fancy there. Now
we get to the recursive nature of the cleanup process. In order to fully understand
how the cleanup works, it’s important to keep in mind that each node is only
responsible for deleting its children and the geometry data it holds. So when a
node deletes one of its children, that child node’s destructor is called. Then the
child node deletes its children and this happens till we get all the way down to the
last node without children. It’s situations like this that make recursion seem ele-
gant. You code a few simple rules and execute them and all of a sudden the entire
tree has been deleted and all memory returned back to the system.

Design Decisions and Performance
Now let’s talk about some of the various decisions that need to be made before you
decide how to use a quadtree for your terrain.

Square Quadtree Nodes
Most quadtree implementations force the quadtree nodes to be square and for
their dimensions to be powers of two. Keeping the quadtree nodes square helps
keep the distribution even among the x and y axes which helps performance. Also,

649The Quadtree

TeamLRN

if the quadtree nodes are square, you don’t have to do as much work to determine
the extents of each node (since the width and height are the same size). I decided
not to force the quadtree nodes to be square for our implementation since it puts
limitations on the shape of the environments that the quadtree will fit. However,
you don’t want the width and height of the quadtree node to differ by too much
though or performance will start to suffer slightly. If you have environments that
aren’t close to being square, then you may want to consider using multiple
quadtrees to partition it.

Copying Polygon Data Versus Pointing
to Polygon Data
It’s up to you to decide how you want the quadtree to reference the polygon data
that it contains. Some implementations choose to store pointers to the polygon
data. This will save memory and also allow a few other benefits. As you’ll see later
in the demo, if you store pointers to the vertex data, then your tree will still be
valid even if the z values of your polygons change. This can be quite useful for a
surface like water where you change the height values of the vertices in real time to
simulate the motion of the water.

Another option is to copy the polygon data to the quadtree nodes. The benefit of
doing this is that you can separate the quadtree from the actual geometry. If you
wanted to, you could copy all your data to the quadtree nodes and then get rid of
the original polygon data. Now you can have your quadtree render your geometry
for you. More benefits of this will become clearer later when we discuss frustum
culling.

Cache Misses
It should be noted that although quadtrees usually increase our performance, they
can have performance issues of their own if not profiled on a per application basis.
One reason for this is that traversing the branches of the tree and accessing those
pointers can cause cache misses. Cache misses can hurt performance on hardware
that really depends on the cache performance to keep things going fast. Always test
your code to find out what your bottlenecks are.

If cache misses are a problem for you, another option is a method called Direct
Access QuadtreeLlookup.3 This will only work if the nodes of the quadtree were allo-
cated as a contiguous array of nodes and if the tree is full and perfectly balanced.

650 18. Terrain Collision with Quadtrees

TeamLRN

Without getting into too much detail, the basic idea is that all of the leaf nodes are
at the same level in the tree and are accessed the same as a grid. We can figure out
algorithmically which quadtree node we need to access given the x,y coordinate
without traversing the tree.

Depth Versus Breadth
Another way to make the quadtrees performance better is to keep the depth of the
nodes as small as possible. So instead of our example where we always add the poly-
gons at the same depth of the tree, we would add polygons to the deepest quadtree
node that completely contained them and not push them down to a lower level
unnecessarily. This works well for terrain where you have a large variation in the
size of the polygons. The large polygons can be stored higher up in the tree and as
such we can often find the polygons we’re looking for sooner.

Non-uniform Splitting
One last option I’d like to mention is non-uniform splitting. Notice that when we
split the quadtree node into four smaller quadrants, we always split it into four
equally sized regions. This is done by splitting it in half both vertically and horizon-
tally. If the polygons or objects you’re partitioning in your quadtree aren’t distrib-
uted uniformly, you may not get optimal performance. Remember from earlier that
we like to keep things balanced. So what you can do is find a center point that
splits the objects or polygons so that there is an equal amount in each quadrant.

Other Uses for Quadtrees
One important thing to understand about quadtrees is the relationship between
the parent and child nodes. Since the child nodes of a parent are just small regions
within the parent, the parent’s extents surround all of its children. Whether you
realize it or not we’ve been using that property to our advantage for our collision
detection scheme in this chapter. If you can’t collide with a parent node (by check-
ing its extents), then you can’t collide with any of its children. The same property
can be taken to visibility determination schemes as well. By using a technique
called frustum culling with a quadtree, you can greatly minimize the number of ele-
ments you have to draw.

651The Quadtree

TeamLRN

Frustum Culling
Frustum culling is a technique whereby you throw away anything that the camera
can’t see. Frustum is the volume that contains everything the camera can see and
culling is a term that means, “Something picked out from others. . .”. 3-D engines
usually use frustum culling on an object-by-object basis. But since we’ve organized
all of our polygons into a quadtree, we can frustum cull our quadtree nodes and
save a lot of unnecessary computation.

In Figure 18.12, you can see the camera is located in the upper-right corner. The
light gray triangle is an overhead view of the camera’s view frustum. This represents
everything that the camera can see. All of the white quadtree nodes aren’t visible to
the camera’s view frustum and so we don’t have to draw any of the polygons associ-
ated with them.

652 18. Terrain Collision with Quadtrees

Figure 18.12

Overhead view of a
quadtree; a camera’s
frustum which shows
which quadtree
nodes would be
visible and which
wouldn’t

TeamLRN

Frustum culling with quadtrees has another benefit as well. Similarly to not having
to draw any polygons whose quadtree node isn’t visible, any polygons whose
quadtree node is completely visible won’t have to be clipped to the view frustum.
Actually with our current quadtree implementation we would still have to check
polygons with the top and bottom planes of the view frustum since our quadtree
nodes have no notion of height. However, if you added a minimum and maximum
height value to each quadtree node, you could get away without checking the top
and bottom frustum planes as well. Just remember that this benefit is only available
for quadtree nodes that are completely visible to the camera’s view frustum and so
no edge of the quadtree node can intersect it.

The Demo
The demo for this chapter, shows a quadtree in action. In the demo, a green ball is
supported by a large piece of terrain. A few interesting things to note are that the z
values of the vertices are changing in real time similar to waves in water. This does-
n’t affect the organization of the quadtree since we only care about the location of
the vertices in the x,y plane.

The reason that the tree maintains accurate height information for the terrain
while it’s moving is that for the demo, I chose to have the quadtree store pointers
to the vertex data of the terrain instead of copying it. That way, any changes that
are made to the vertices of the terrain will be detectible by the quadtree. Of course
we can’t change the location of the vertices in the x,y plane or we will invalidate
the entire quadtree and it will be useless.

The white boxes that you see are the extents of the quadtree nodes that are
“touched” as we find the intersection point of the ball with the terrain. You’ll
notice that there is one large white square which surrounds all of the terrain; this is
the root node. The smaller white squares within the root node are the rest of the
quadtree nodes we traverse while going deeper into the tree. The most important
thing to note is that only the polygons beneath the smallest white square (the poly-
gons of the leaf nodes) are being checked for collision against the location of the
ball. In Figure 18.13, the green ball is slightly up and to the right of the center of
the terrain. Notice that there are eight triangles below the smallest quadtree node.

653The Quadtree

TeamLRN

For the purposes of the demo, the terrain is built up algorithmically at runtime.
The vertices are created and stored in a vertex list. Then a face list is built up that
references the vertices from the face list. Then after all the vertices and faces are
constructed, the faces (triangles) are added to the quadtree one by one. If you
don’t like the idea of building the quadtree at runtime, you can build the quadtree
offline and save it out to a file. Then your application can load up your quadtree
from the file during startup.

Compiling the Demo
The source code for the demo should compile fine with Visual C++ 6.0. The demo
uses OpenGL as the renderer for the terrain, quadtree nodes, etc. To compile the
demo simply start Visual C++, open the “GL Quadtree” workspace, and hit F7.

Running the Demo
To run the demo, double-click the .exe file or use the Run option in Windows.
Your machine will have to have OpenGL support for the application to run, but
this should be standard for any machine running Windows 98, Windows ME,
Windows 2000, or Windows XP. Once you choose to run full screen or windowed,
the demo will start. The keys that are available during the demo are these:

A,Z Camera zoom in and out

E,D Shove the ball along the Y axis

S,F Shove the ball along the X axis

Space Causes the ball to jump if it’s on the ground.

Left, Right: Moves the camera along the X axis

Up, Down: Moves the camera along the Z axis

Home, End: Pitches the camera up and down

Esc: Exits the demo

I’d like to take this time to thank NeHe for his terrific OpenGL tutorials and for
his NeHeGL 1 Basecode that was used for this demo. NeHe’s OpenGL site is
located at

http://nehe.gamedev.net

654 18. Terrain Collision with Quadtrees

TeamLRN

Summary and Review
So we can now show that for terrain data with no overlap in the horizontal plane,
the quadtree is a perfect way to minimize the time it takes to test for collisions.
We’ve seen that quadtrees are simple to work with, but at the same time have many
options to give them diversity. You’ve learned how to build a quadtree from a set of
triangles and how to find where you’ve collided with them given an overhead x,y
coordinate. Also, I’ve shown how to find the intersection point of a ray and a trian-
gle as well as the normal at the intersection point.

Where to Go from Here
There are many other uses for quadtrees and countless variations in how they are
implemented. Try a quick search on www.google.com using “quadtree” as the
search criteria to further explorer the possibilities of the quadtree.

Also, there are some good tutorials on quadtrees online. Here are a few places I
know of.

http://www.vterrain.org

www.flipcode.com

www.gamedev.net

Conclusion
As long as games keep pushing the limits of the hardware they run on, we’ll always
need ways to simplify the data we work with. I hope this article has shown you the
simplicity, elegance, and usefulness of the quadtree for dealing with terrain data.
Even though collision detection was the main focus of this chapter, I hope my brief
mention of frustum culling helps you to see that there are many more ways to ben-
efit from using quadtrees.

655Conclusion

TeamLRN

References
1Ulrich, “Loose Octrees,” Game Programming Gems, Charles River Media, 2000,
pp. 444–453.
2Eric Lengyel, Mathematics for 3D Game Programming & Computer Graphics,
Charles River Media, 2002, pp. 117–118.
3Matt Pritchard, “Direct Access Quadtree Lookup,” Game Programming Gems 2,
Charles River Media, 2001, pp. 394–401.

656 18. Terrain Collision with Quadtrees

TeamLRN

TRICK 19

Rendering
Skies

Dave Astle, GameDev.net,
dave@gamedev.net

TeamLRN

Introduction
If you’ve ever thought about creating an outdoor environment in your game, a
potential problem may have occurred to you: How do you create an infinite world
with finite geometry? If the player has a clear view of his surroundings, he should
be able to see things off in the distance such as hills, mountains, the ocean, and
other elements making up a sort of background. If the player can fly or otherwise
attain a high elevation, a much larger area may be visible. In another kind of out-
door environment—in space—the player should be able to see extremely distant
objects such as stars and nebulas.

One solution to this problem would be to make your world extremely big.
Unfortunately, this would be very expensive in terms of both performance and the
time required by your artists to populate the world. Unless you’re going to allow
the player to explore this much bigger area (which usually isn’t the case), the addi-
tional expense isn’t worth it.

A good solution in many cases is to use a skybox or one of its variations. A skybox
provides you with a way to fake distant scenery by using static images that are tex-
ture mapped to a cube completely surrounding the player. This is somewhat of a
hack, but as my graphics professor used to say, everything in graphics is a hack.
The only thing that matters is that the final results look good and believable.

Many commercial games have used skyboxes very effectively, as shown in Figures
19.1 and 19.2.

What You Will Learn
This chapter will show you how to make your outdoor setting look more “real”
through the use of skyboxes and related approaches. Specifically, this chapter will
cover:

• Skyboxes

• Skydomes

• Skyplanes

• Other variations of skyboxes

658 19. Rendering Skies

TeamLRN

• Creating or otherwise obtaining textures for your skybox

• Improvements to add realism

659What You Will learn

Figure 19.1

A skybox of a
cityscape from The
Cranes map in
Unreal Tournament

Figure 19.2

An outdoor skybox
from the demo of
Serious Sam:The
Second Encounter

TeamLRN

Most of the information covered here will be API independent, but because the
demo provided for this chapter uses OpenGL, I will cover some OpenGL-specific
details. Most of the concepts should be easily portable to DirectX Graphics or any
other API you may be using.

Skyboxes
Of all the sky representations covered in this chapter, skyboxes are the easiest to
implement and understand. They also have a lot in common with the other meth-
ods covered, so let’s start with them.

What Is a Skybox?
A skybox is a cube that completely surrounds the player and appears to completely
surround the game world. Typically, a distant scene is projected onto the skybox
using texture mapping. To maintain the illusion, the following criteria are necessary:

• The player should never be able to get close to the skybox, much less pass
through it.

• The skybox shouldn’t be clipped by the near or far clipping planes.

Now that you have a conceptual understanding of what a skybox is, let’s look at the
details involved with implementing one.

Representing a Skybox
Skyboxes are typically represented as a cube that’s aligned with the world’s coordinate
axes, as shown in Figure 19.3. There are several popular naming conventions for the
faces of the cube. The most common is to use front, back, left, right, up, and down (or top
and bottom). The only drawback to this scheme is that the names can be ambiguous
since the concepts of front, back, left, and right are relative to the player’s orientation
(up and down may be as well). To avoid this problem, another common practice is to
name each face according to the world coordinate axis it corresponds to, meaning
xpos, xneg, ypos, yneg, zpos, and zneg. In this chapter and in the included demo program,
I’ll use the former convention with the assumption that “front” corresponds to the
negative z-axis.

Each face of the cube is represented as either a quad or triangle pair. The sides of
the cube provide surfaces to which six texture maps are applied. The textures, of
course, must be specifically created for use in a skybox. In addition to portraying

660 19. Rendering Skies

TeamLRN

distant scenery, the textures must be designed so that they smoothly transition into
each other when arranged on the inside of the cube. Otherwise, seams between the
textures will appear, destroying the illusion. This is one of the reasons why it’s
important to agree on a naming convention early on and stick to it. As long as you
and the person creating the textures are using the same names, you should have no
problem aligning the textures as intended.

The quality of your skybox depends entirely on the quality of the textures you use.
However, no matter how good your textures are, they are going to look bad if they
are stretched or shrunk. This happens whenever the projected size of a texel is not
equal to the size of one screen pixel. To minimize this effect, you can determine in
advance how big your textures should be using the following formula:

skybox texture width = screen width / tan (field of view angle / 2)

This is also displayed visually in Figure 19.4.

So, for example, if the screen resolution is 800×600 with a 75-degree field of view,
the preceding formula becomes:

800 / tan (60 / 2)

This evaluates to about 1,042. Since textures need to have dimensions that are a
power of 2, this could be dropped to 1,024.

661Skyboxes

Figure 19.3

A skybox cube centered on and aligned
with the world coordinate axes

TeamLRN

It should be immediately obvious, though, that using an ideal resolution won’t
always be possible. In the example just given, you’d need six 1024×1024 textures.
Using 32-bit textures, you’ll need 24MB to store those textures in video memory. It
gets worse as the resolution gets higher. At 1600×1200 with a 60-degree field of
view, you’d need textures that are 2048×2048, consuming 96MB. Even if you reduce
these amounts by using 8- or 16-bit textures and by using texture compression, all
but the newest cards would have a hard time keeping all of those textures in video
memory. And as if that’s not bad enough, you have to account for the fact that
most games allow players to change the resolution to whatever their video card sup-
ports, and many games allow players to change the field of view, such as by zoom-
ing with a sniper rifle. To get the best results at all possible resolution/field-of-view
combinations, you’d have to have many different skybox texture sizes available.
This is starting to sound ugly.

In reality, it’s usually not practical to attempt to obtain the best results all of the
time. Most games will simply use the largest skybox texture size possible given the
game’s requirements. Therefore, the formula provided works best as a loose guide.
Texture sizes of 512×512 or 256×256 seem to offer the best combination of quality
and size, at least on current hardware.

Orienting a Skybox
For a skybox to create a convincing illusion, it must be correctly placed in the world.
It needs to be positioned so that the player and the world are both completely con-
tained within it, and it needs to respond correctly to the camera orientation.

662 19. Rendering Skies

Figure 19.4

Determining the optimum texture size based
on the screen width and field of view

TeamLRN

Position
One approach to ensure that the entire world is contained within the skybox is to
create it as a bounding box for the world, centered on the world origin. However,
there are some problems with this approach. First, as the player moves closer to the
edge of the world, it will become apparent that the skybox is flat, destroying the
illusion. Second, unless the player is relatively close to the skybox, the far clip plane
will clip it. There are ways to get around these problems (such as setting the far
clip plane to infinity), but there is a better way.

As it turns out, the skybox doesn’t really have to contain the world. It just has to
look like it contains the world. To accomplish this, the skybox can be drawn as a box
centered on the camera. The size of the box doesn’t matter as long as it’s big
enough to not get clipped by the near clip plane and small enough to not get
clipped by the far clip plane.

By doing this, you ensure that the skybox completely encloses the player and that
the player can never get close to the skybox. It is, in essence, infinitely far away
from the player. The problem, of course, is that it doesn’t appear to contain the
entire world yet. Only a small portion of the world is inside the skybox. The rest of
the world is actually blocked out by it—not what you wanted!

This problem is easy to fix. The skybox is blocking out the rest of the world
because the values written to the depth buffer because of it are closer than most of
the world. All you have to do to prevent this is turn off depth buffer writes while
rendering the skybox. Doing so will make it impossible for the skybox to occlude
anything else in the world. Problem solved.

Rotation
Although the position of the skybox should remain fixed with respect to the cam-
era, it should respond normally to rotations. There are several ways to accomplish
this. One option is to position the skybox after setting up the camera, in which case
the skybox must be translated by the camera’s position to keep it centered on the
camera. A second option is to position the skybox before setting up the camera, in
which case you have to rotate it according to the camera’s orientation. A slight
modification of the latter would be to simply push the modelview matrix stack, set
up the appropriate rotations, and then pop the matrix stack, in which case it
doesn’t matter whether you set the camera up before or after the skybox. All of
these approaches are valid, so use whichever method you prefer. The demo pro-
gram included with this chapter uses the first method.

663Skyboxes

TeamLRN

Rendering a Skybox
With the skybox properly positioned and oriented, the next step is to render it.
The skybox will normally be rendered before everything else, though this isn’t
always a requirement. There are several important steps involved with the render-
ing of the skybox that should be followed for the best results.

Disable States
When rendering the skybox, there are several states that should be turned off,
some because they are required for the skybox to work correctly and some because
they aren’t necessary.

The one state that definitely has to be turned off is depth buffer writes. If the sky-
box is not the first thing rendered, you also must disable the depth test. Even if
your skybox is the first thing rendered (which is recommended when possible),
turning off the depth test may give a slight performance boost.

Depending on how your game engine is structured, other states may be enabled
that aren’t necessary for the skybox. Some of
these states may produce undesirable visual
results, and even if they don’t, they can incur
a performance hit. This list of unnecessary
states includes lighting, alpha blending, and
fog. There may be others, depending on your
game. Unless your game engine is structured
in such a way that you can be sure none of
these states is enabled when entering your
skybox rendering routine, you should disable
them prior to rendering.

Set Texture States
The next step is to be sure that your textures are set up correctly. Most of the setup
actually occurs during texture creation and not within the rendering function, but
I’ll cover everything here for convenience.

During setup, an appropriate filtering mode must be chosen. Point sampling only
works well if the texture size is always a close match for the screen resolution, and
as pointed out earlier, this is not often possible. At the other end of the scale,
mipmapping produces good results, but it’s overkill. The textures will always be

664 19. Rendering Skies

TIP
Because a skybox completely
encloses the scene, there is no
longer a need to clear the color
buffer every frame.The skybox
effectively clears it for you.
Don’t waste processor cycles
doing redundant work.

TeamLRN

about the same distance from the camera, so only one mipmap level will ever be
used. Why waste video memory? That leaves bilinear filtering, which is almost
always the right choice.

When using bilinear filtering, the texture wrap mode must be set correctly to prevent
seams from appearing at the edges of the skybox. This can happen because when
sampling pixels at the edge of the texture, two pixels are taken from the edge, and
two pixels are taken from somewhere else. What does “somewhere else” mean? It
depends on the texture wrap mode. If the texture repeats, those two pixels come
from the opposite edge. If the texture just clamps, the samples will come from the
border color. Neither is desirable since both will result in colors being added to the
edge that aren’t supposed to be there, usually resulting in visible seams.

OpenGL provides a texture wrap mode called GL_CLAMP_TO_EDGE that provides the
needed behavior. It causes samples taken at the edge to only use colors on that
edge. The only downside to this mode is that it was introduced in OpenGL 1.2, and
thus it has to be treated as an extension (at least on Windows). That said, it seems
to be fairly widely supported, so use it whenever possible.

An alternative approach would be to set your texture coordinates slightly inside the
edge of the texture. So if your texture is 512×512, instead of using 0.0 and 1.0 for
texture coordinates, use 1/512 and 511/512. This method was used in Quake 2.
The only catch is that because the skybox textures are designed to smoothly transi-
tion between neighbors, this method can also produce seams (though not quite as
visible). To prevent this, you can simply generate skybox textures that are two pixels
smaller (for example, 510×510) and then create a one-pixel border that repeats the
edge.

The last texture state you need to worry about is the texture environment mode.
Because the texture doesn’t need to be combined with the surface of the cube in
any way, the environment mode can be set to replace.

Render Texture-Mapped Cube
Once all of the rendering states are set up, rendering the skybox is easy. You just
need to render the six quads (or the equivalent) with texture coordinates applied.
For each quad, you enable the appropriate texture and then draw the quad. The
quads are drawn centered on the world origin, each parallel to one of the coordi-
nate planes and at a distance placing it anywhere between the near and far clipping
planes. That’s all there is to it.

665Skyboxes

TeamLRN

Restore State Settings
Before rendering the skybox, you disabled many states including lighting, fog,
depth buffer writes, and so on. Once rendering is complete, you should restore all
of these state settings to their previous values. You could simply enable everything
that you disabled, but this can introduce bigger problems since you could enable
states that aren’t needed or wanted by other portions of your game.

One solution would be to save all of the old state settings and then restore them to
their previous values when you’re done. If you’re using OpenGL, this is a good
time to take advantage of the attribute stack. At the beginning of your rendering
routine, before modifying any states, call
glPushAttribs() with the appropriate flags
set. Once the rendering is complete, call
glPopAttribs() and you’re done.

Of course, the best solution would be to
build some kind of state management into
your engine. State changes are often
expensive, so whenever possible you should
avoid making unnecessary ones. The dis-
cussion of a state management component
is well beyond the scope of this chapter,
but it’s something to think about.

Putting It All Together
Let’s review the steps involved in using a skybox. At initialization, you’d do some-
thing like the following:

1. Create and load six textures.

2. For each texture, set the texture wrap mode to clamp to edge.

3. For each texture, set the texture filter to bilinear.

When rendering, the following steps should be followed:

1. Set up the camera.

2. Translate by the camera’s position.

3. Save the current state settings.

4. Disable lighting, fog, blending, and everything else you don’t need.

666 19. Rendering Skies

TIP
Try placing your skybox rendering
code inside a display list.You
should be able to see a small per-
formance improvement because
of all the state changes.Vertex
arrays, on the other hand, aren’t
likely to help due to the limited
amount of geometry.

TeamLRN

5. Disable the depth test.

6. Set the texture combine mode to replace.

7. Render the six sides of the cube using the appropriate textures.

8. Restore the old state settings.

These steps can be easily converted into code. Because the steps for the other
methods are almost identical to these, they won’t be repeated.

Skydomes
Skydomes are perhaps the most popular alternative to skyboxes. A skydome is simi-
lar to a skybox in concept, except that a sphere (or, more commonly, a hemi-
sphere) is used instead of a cube, as shown in Figure 19.5. Skydomes are often
more convenient to use when an animated background is used (such as a sun or
clouds moving across the sky) since the transition across the surface of a sphere is
easier to make smooth.

Creating the Skydome
The fundamental component of the skydome is, of course, the sphere itself. There
are a number of algorithms to choose from to create your sphere, so use whichever
you prefer. I’m not going to cover any of them in detail in this chapter, but the
demo program includes a method that has worked well for me.

667Skydomes

Figure 19.5

The outside
wireframe view of a
skydome

TeamLRN

Regardless of which method you choose, you will usually create your sphere once at
the beginning of your game and then reuse that data rather than re-creating it every
frame. In addition, there are several parameters you should be able to control:

• Resolution. Because the sphere will be unlit, textured, and viewed from the
inside, the triangles it’s made up of can be relatively large with little or no
loss in visible quality. Still, you’ll want to be able to control the number of tri-
angles and use it for your needs with a resolution parameter. The resolution
can be described as a single parameter or as one for the latitude and one for
the longitude (such as the stacks and slices parameters in several of the GLU
quadrics routines).

• Radius. As with skyboxes, the radius of the sphere doesn’t matter. It just
needs to fall between the near and far clip planes.

• Horizontal sweep. This value ranges from 0 to 180 degrees and determines
the range of the sphere in the horizontal direction. For example, a value of
90 degrees would produce a hemisphere.

Skydome Textures
As with a skybox, textures play a key role in a skydome’s quality. However, texturing
a sphere is a bit more complicated than texturing a cube. The two most common
methods are using cube maps and using a single texture that may be repeated.
Let’s look at each method in detail.

Cube Maps
Cube maps consist of six different textures that are treated as a single texture. They
are most commonly used in environment mapping. Cube map texture coordinates
use three components (called s, t, and r) that represent a vector starting at the cen-
ter of the object and passing through the point being textured. This vector is used
to find a point on the cube map texture, which essentially encloses the object to
which the texture is being applied.

Using a cube map for a skydome is a natural choice. Because the skydome is a
sphere centered on the camera origin, the texture coordinates can easily be gener-
ated just by using the coordinates of each vertex making up the sphere. In addi-
tion, the textures made for skyboxes work perfectly as cube map textures, with one
catch. Normally, cube map textures are applied to the outside of an object. For the
skydome, the textures will be viewed from the inside. As a result, they will be mir-
rored. To compensate, either the s-coordinate or the r-coordinate must be inverted.

668 19. Rendering Skies

TeamLRN

Single Texture
For a simpler background, such as basic animated clouds, using a single texture
can often be a better solution. This texture may even be repeated. The only chal-
lenge involved with using a single texture is that you must generate texture coordi-
nates for each point on the sphere yourself.

Rendering a Skydome
Other than the fact that the geometry itself is a bit more complex, rendering a sky-
dome follows the same steps as rendering a skybox. After the camera is set up, the
skydome is translated to the camera’s position, all unnecessary states are disabled,
and then the skydome is rendered. Because the skydome will use many more trian-
gles than the skybox, it makes sense to render it using triangle strips and/or vertex
arrays.

Skyplanes
Skyplanes provide a nice alternative to skydomes and skyboxes because they are
remarkably easy to animate. In truth, a skyplane is not a true plane because it is not
flat. Instead, it is represented as a plane with the corners pulled down, as shown in
Figure 19.6. Note that because skyplanes do not completely surround the camera,
they can only be used when some kind of ground plane is present.

669Skyplanes

Figure 19.6

The outside
wireframe view of a
skyplane

TeamLRN

Creating the Skyplane
As with a skydome, the geometry for a skyplane should be created at startup and
saved for use later. In concept, creating a skyplane is much like creating a plane.
However, because the corners are pulled down, the height at each point must be
lowered by an amount that’s dependent on the distance from the center of the
plane. In most cases, you’ll want to be able to control the exact shape of the sky-
plane. Here are some of the properties you may want to control:

• The resolution of the mesh representing the skyplane.

• The number of times to repeat the texture over the skyplane.

• The radius of the circle completely enclosing the skyplane.

• The height of the top, or peak, of the skyplane.

• The height of the middle of the edges of the skyplane. For lack of a better
name, this will be referred to as the horizon height.

The importance of the last of these properties might not be obvious. Because the
skyplane doesn’t completely enclose the camera, you need to be sure that whatever
portion of the background isn’t filled by the skyplane is filled by the ground,
mountains, or whatever else you’re using. Since you generally know the minimum
height of the ground or mountains, you can set the horizon height to be equal to
or lower than this to ensure that no gaps appear between the ground and the sky.

With these properties in mind, let’s look at the steps involved in the creation of the
skyplane.

First, use the radius to determine the size of the skyplane. This can easily be
obtained using the Pythagorean theorem. The size of the plane can then be
divided by the resolution to determine the distance between each vertex in the
plane. Using this information, a mesh containing (resolution + 1) * 2 vertices is
created. Texture coordinates can generally be created as if the skyplane were flat,
although this can lead to distortion if there is a high degree of curvature.

When generating vertex coordinates, the x- and z-coordinates are easy since the
vertices are evenly spaced in the x and z directions. The y-coordinates are a little
trickier because they need to take into account the desired peak and horizon
heights. To generate the y-coordinate, the following formula can be used:

y = peak height – (peak height [–] horizon height)/ (_ plane size)2 * (x2 + z2)

670 19. Rendering Skies

TeamLRN

Rendering the Skyplane
Not surprisingly, other than the fact that the geometry itself is different, rendering
a skyplane is no different from rendering a skydome or skyplane. Of course, if
you’re going to animate the skyplane, this is where you’d do it. See the
“Animation” section later in this chapter for details.

Other Variations
Although skyboxes, skydomes, and skyplanes are the most popular ways to create a
backdrop for your world, there are other methods you can use such as skycylinders
and hybrids (that is, a skybox with an intersecting skyplane for animated clouds).
Although I’m not going to cover any of these alternate methods in detail, the point
you should take away is that if one of the given methods doesn’t satisfy your needs,
you should be able to modify the basic principles described here to create your
own solution.

Improvements
The methods discussed so far are straightforward, and despite being fairly simple,
they can produce results that are very good looking. As you’d expect, though, many
things can be done to improve your skyboxes. I’ll cover a few of them here.

Animation
One of the biggest drawbacks in using skyboxes is that no matter how good they
look, they are static. Eventually, the player will notice that the background doesn’t
change, and the illusion you’ve created will become weaker. Adding some form of
animation to your skybox can help prevent this. Let’s look at a few animation
examples.

Dynamic Clouds
Skyboxes commonly include clouds, and since clouds in the real world move, yours
should, too. If you are using a skyplane or a single texture on a skydome, you can
easily make your clouds move by modifying the texture matrix stack. In each frame,

671Improvements

TeamLRN

when rendering your skybox, select the texture matrix stack and translate by a small
amount. Alternatively, if you’re using a skydome, you could rotate the dome instead.

For an even greater degree of realism, the cloud texture itself can be dynamically
generated using your favorite noise algorithm. That way, the clouds not only are
moving, they’re changing in shape and size over time—just like real clouds!

Celestial Bodies
Having the sun or moon move across the sky is another effective method of adding
realism. Rather than changing the base texture, a separate texture is created and
combined with the background using multitexturing as it moves across the sky. This
method generally works best with skydomes or skyplanes.

Multiple Layers
Instead of using a single skybox, several layers can be used to create a greater illu-
sion of depth. Each layer is centered on the same point, but they are drawn from
the outside in at slightly decreasing distances, with the results blended together.
This method is especially useful in creating multilayer, animated clouds.

Sliding
All of the methods discussed so far assume that the skybox is centered on the cam-
era. This is done to ensure that the player is never able to get close to or pass
through the skybox. The only downside to this approach is that it requires that the
scenery depicted on the skybox be fairly distant. Otherwise, the players will begin
to notice that no matter how far they move, their position relative to distant objects
doesn’t change.

An alternative to this is to use sliding skyboxes. The skybox is still attached to the
camera, but as the player moves, the skybox’s position relative to the camera also
moves slightly. For this to work correctly, you need to know the maximum extents
to which the player can move in the world to be sure that the player can never pass
through the sides of the skybox.

This method can also be combined with multiple layers to create a sort of 3-D par-
allax scrolling.

672 19. Rendering Skies

TeamLRN

Generating Skybox Textures
One of the keys to having a good-looking sky-
box is to have a great set of textures. This
section will cover the ways in which these
textures can be obtained and will provide
a tutorial for creating your own using
Terragen.

Have the Artist
Make Them
If you’re working as part of a team, the artists will almost certainly create the sky-
box textures. Programs like 3D Studio Max and Bryce have support for skybox
texture creation built in since they are essentially cubic environment maps.
Unfortunately, I don’t have the space to cover the details of skybox texture creation
with these programs, but if your artist is familiar with the software, he or she should
be able to produce them fairly easily.

Find Preexisting Textures
Because popular games like Quake 2, Quake 3, Unreal, and Half-Life have used sky-
boxes, many Web sites catering to the mod community contain archives of skybox
textures. A few of the better sites are listed at the end of this chapter. Although these
textures are often free to use (even in commercial projects), it may be difficult to
find exactly what you need for your game. They work quite well for demos, though,
and if nothing else, they can give you a good idea of what skybox textures look like.

Create Them Using Terragen
Terragen is a tool used for creating terrain. It’s free for use in noncommercial pro-
jects and is inexpensive otherwise. It also provides a way to create your own skybox
textures from scratch with little or no artistic ability. Because it’s so easy to use, I’m
going to provide a brief tutorial of the steps required to create skybox textures
using Terragen.

673Generating Skybox Textures

NOTE
If you’re using anything other than
standard skyboxes, you may want
to create a plug-in to help make
your artist’s life easier by automat-
ically compensating for distortion.

TeamLRN

Installing Terragen
I’ve included a copy of Terragen (the most recent version available at the time of
publication) on the accompanying CD-ROM for this book. You can see if there’s an
even more recent version at the Terragen home page at www.planetside.co.uk/
terragen/.

Installation is a quick and painless process. Once you’re done, you’re ready to start
creating skybox textures.

Generating Terrain
When Terragen starts, you’ll see a screen that looks something like Figure 19.7.

The first thing to do is click on the Generate Terrain button in the Landscape win-
dow. This will bring up the Terrain Genesis window, which looks like Figure 19.8.

This is where you set the parameters that control how the terrain is generated. For
the purposes of this tutorial, the default settings will be used, so I’m not going to
go into detail about what each of them does. In fact, because Terragen provides a
wide range of settings, I’m not going to be able to cover most of them in this tutor-
ial. I’m just going to focus on the ones that are absolutely necessary for skybox tex-

674 19. Rendering Skies

Figure 19.7

Terragen:An
inexpensive tool used
for creating terrains

TeamLRN

ture generation. To get the most out of Terragen, read the documentation and do
some experimentation.

Go ahead and click on the Generate Terrain button in the Terrain Genesis window.
You’ll see the heightmap produced in the Landscape window. If you want a differ-
ent heightmap, click on Generate Terrain again, changing the settings as desired.
When you’re satisfied, close the Terrain Genesis window and return to the
Landscape window.

At this point, you can further adjust your terrain by using one of the sculpting
tools, combining it with another terrain, or applying a surface map. If you like, feel
free to try some of these things before moving to the next step.

Rendering the Textures
You’re now ready to render the skybox textures, so select the Rendering Control
window shown in Figure 19.9. Click on the Render Preview button to get an idea of
what the final image will look like.

The next step is to set the size and quality of your rendering in the Rendering
Control window. First, move the Detail slider all the way to the right to ensure
the highest quality. Then click on the Settings button and set the Cloud and
Atmosphere sliders to high accuracy. Finally, set the image size. Since the image
will be used as a square texture, I suggest that you set both dimensions to the same
power of two. The resolution you pick depends on the requirements of your game
or demo. Larger textures will look better but consume more video memory. Either
256×256 or 512×512 will work well in most situations.

675Generating Skybox Textures

Figure 19.8

The Terrain Genesis
window

TeamLRN

The last step is to set up the camera. First, click on the Camera Settings button, set
the Zoom/Magnification level to 1, and then click on the Close button. This will
ensure a 90-degree field of view. Next, set the head, pitch, and bank Camera
Orientation settings to 0. The camera is now pointing in the forward direction of
your skybox, and you’re ready to render.

Now that everything is set up, the first texture can be rendered. Click on Render
Image. The terrain will start rendering in a new window. Once the image is com-
plete (which may take several minutes), save the image
and move on to the next view. The only thing that
needs to be changed to get the other views is the
Camera Orientation. Be careful not to change anything
else; otherwise, your textures won’t line up. To get the
left, back, and right textures, set the head angles to 90,
180, and 270, respectively, and leave the pitch and bank
at 0. When generating the top and bottom textures, the
pitch angle must be set to 90 and –90, respectively. It
doesn’t matter what the head angle is set to as long as
it’s a multiple of 90, but the value you pick will affect
the way in which your game orients the top and bottom
textures, so be consistent.

676 19. Rendering Skies

TIP
Generating multiple
skybox textures this
way can get tedious.
Although I don’t have
the space to cover it
here,Terragen provides
a scripting language in
which you can auto-
mate the process and
ease the pain.

Figure 19.9

The Rendering Control
window

TeamLRN

When you’re done, your set of textures should look something like Figure 19.10.

The Demo
The accompanying CD-ROM for this book includes a program (shown in Figure
19.11) that demonstrates the major principles covered in this chapter. It includes
an implementation for a skybox, a skydome, and a skyplane with an animated tex-
ture. The program allows you to change between the three modes, view them in
wireframe mode, and remove the terrain to get an unobstructed view. Full source
code, written in C++ using OpenGL, is included. Instructions for the demo are
included on the CD-ROM.

I encourage you to take the demo program and improve it by using some of the
ideas suggested in this chapter or by using ideas you come up with on your own.

What You’ve Learned
In this chapter, you learned about three common methods for generating back-
grounds for your 3-D world. You should now be comfortable with using skyboxes,
skydomes, and skyplanes. You know where to go to find textures to use with your

677What You’ve Learned

Figure 19.10

A set of skybox
textures

TeamLRN

skyboxes, and you can even generate them on your own. You almost certainly have
ideas for improving on the ideas presented here.

Where to Go Now
The following papers, Web sites, and articles provide additional information on sky-
boxes and related issues that you may find interesting:

Sky Domes, Luis R. Sempé, October 2001, available online at
www.spheregames.com

Sky Domes, Tim Smith, September 1999, available online at www.flipcode.com

Sky and Atmospheric Rendering resources at
www.vterrain.org/Atmosphere/index.html

In addition, an advanced series on sky-rendering techniques should appear soon
on GameDev.net as part of the Hardcore Game Programming column. Be sure to
look for it.

Conclusion
This chapter has provided enough foundational material to enable you to begin
experimenting on your own. The methods discussed here provide excellent results

678 19. Rendering Skies

Figure 19.11

Real-time skies from
an upcoming game
(image courtesy of
Virtual Tales
Entertainment)

TeamLRN

and have been used in many commercial games, but improvements can always be
made. Here are some things to try:

• Combine skyboxes with dynamic cloud generation using Perlin noise.

• Integrate your skyboxes with other effects such as lens flares, planetary boies
moving across the sky (and possibly affecting the lighting of the world), and
atmospheric effects like rain or lightning.

• Investigate ways to improve performance, such as performing some kind of
occlusion testing on the skydome or skyplane.

Sky rendering is a very active area of research in computer graphics, and this chap-
ter has only scratched the surface of the techniques currently being used and
researched. Games will soon include amazingly realistic skies created dynamically
in real time, such as the one shown in Figure 19.11. An animated sky can add
greatly to the realism of your outdoor game, so I encourage you to do some
research and experimentation in this area.

679Conclusion

TeamLRN

This page intentionally left blank

TeamLRN

TRICK 20

Game
Programming

Assembly
Style

Chris Hobbs

TeamLRN

WIN32 ASM—PART 1

Introduction
This section contains an updated version of the article series that appeared on
GameDev and in GIG News. The series followed the development of a game in
pure assembly language, of all things, and has been updated for this book. I know
all of you are as excited about this as I am, so I will try to keep the introductory
phase brief. Instead of laying every single thing out to you in black and white, I will
try to answer the questions that are asked most often, and the details will appear as
we—and the game—progress. Feel free to follow along with the source code pro-
vided on the accompanying CD-ROM.

What Is This All About?
This is about the development of a complete game, SPACE-TRIS, in 100-percent
assembly language. We will be covering numerous aspects of game development
and examining their implementation in assembly language under Windows . . .
from design and code framework to graphics and sound.

Who Is the Target Audience?
This section is meant for anybody who wants to learn something they may not have
known before. Since the game is a relatively simple Tetris clone, it is great for the
beginner. Also, given that not many people are even aware that it is possible to
write for Windows in assembly language, this section is also great for the more
advanced developers out there.

What Do I Need?
The only requirement is the ability to read. However, if you want to assemble the
source code and experiment with changes to the game, you need a copy of MASM
6.12+. You can download a package called MASM32 that will have everything that
you need and then some. Here is the link: www.movsd.com.

682 20. Game Programming Assembly Style

TeamLRN

Why Assembly Language?
Many of you are probably wondering why anybody in his right mind would write in
pure assembly language—especially in the present, when optimizing compilers is
the “in” thing and everybody knows that VC++ is bug free, right? What about those
myths about assembly language being hard to read, nonportable, and extremely
difficult to learn? In the days of DOS, these arguments were very valid ones. In
Windows, though, they are simply myths left over from the good old days of DOS,
and I might as well address them one at a time.

First, assembly language is, in fact, hard to read. But for that matter so is C or even
Visual Basic. The readability results from the skill of the programmer and her thor-
oughness in commenting the code. This is especially true of C++. Which is easier to
read: assembly code that progresses one step at a time (for example, move a vari-
able into a register, move a different variable into another register, multiply) or
C++ code that can go through multiple layers of virtual functions that were inher-
ited? No matter what language you are in, commenting is essential. Use it and you
won’t have any trouble reading source code in any language. Remember, just
because you know what it means doesn’t mean that everybody else does also.

Second, the portability issue is quite often raised as a supposedly valid argument
against assembly. Well, assembly language is not portable to other platforms.
However, there is a way around this that allows you to write for any x86 platform,
but that is way beyond the scope of this chapter. Besides, a good 80 to 90 percent
of the games written are for Windows anyway. This means that the majority of your
code is specific to DirectX or the Win32 API; therefore, you won’t be porting with-
out a huge amount of work anyway. If you want a truly portable game, don’t bother
writing for DirectX at all. Go get a decent multiplatform development library.

Finally, there is the issue of assembly language being extremely difficult to learn.
Although there is no real way for me to prove to you that it is easy, I can offer you
the basics—in just a few pages—that have helped many people learn it, even those
who had never seen a line of assembly language before. Writing Windows assembly
code, especially with MASM, is very easy. It is almost like writing some C code. If
you give it a chance, I am certain you won’t be disappointed.

683Why Assembly Language?

TeamLRN

Win32 ASM Basics
If you are already familiar with assembly language in the Windows platform, you
may want to skip this section. For those of you who aren’t, this may be a bit boring
but hang with it—this is very important stuff. To save time and space, I will pre-
sume that you are at least familiar with the x86 architecture. There aren’t very
many instructions that you will be using often, so I will simply cover the ones we
care about for this project.

MOV Instruction
This instruction moves a value from one location to another. You can only move
from register to register, memory to register, or register to memory. You cannot
move from one memory location to another memory location directly; it must be
placed in a register first.

Examples:

MOV EAX, 30
MOV EBX, EAX
MOV my_var1, EAX
MOV DWORD PTR my_var, EAX
MOV EBX, EAX
MOV my_var1, EAX
MOV DWORD PTR my_var1, EAX

The first example moves the value 30 into the EAX register. The second example
moves the current value in EAX into the EBX register. The third example moves
the value of EAX into the variable my_var1. The fourth example moves the value of
EAX into the ADDRESS pointed to by my_var1. We need to use the DWORD speci-
fier so that the assembler knows how much memory to move: 1 byte (BYTE), 2
bytes (WORD), or 4 bytes (DWORD).

ADD and SUB Instructions
These two instructions perform addition and subtraction. Their use is quite intu-
itive. Remember, however, you cannot operate on two memory locations at the
same time.

684 20. Game Programming Assembly Style

TeamLRN

Examples:

MOV EAX, 30
MOV EBX, EAX
MOV my_var1, EAX
ADD EAX, 30
SUB EBX, EAX

The first example adds 30 to the current value in the EAX register. The second
example subtracts the value in the EAX register from the value in the EBX register.

MUL and DIV Instructions
These two instructions perform integer multiplication and integer division. Their
use is a little more complicated than the other instructions.

Examples:

MOV EAX, 30
MOV EBX, EAX
MOV my_var1, EAX
MOV EAX, 10
MOV ECX, 30
MUL ECX
XOR EDX, EDX
MOV ECX, 10
DIV ECX

The preceding examples first load EAX with 10 and ECX with 30. EAX is always the
default multiplicand, and you get to select the other multiplier. When performing
a multiplication, the answer is stored in EAX:EDX. It only goes into EDX if the
value is larger than the EAX register. When performing a divide, you must first
clear the EDX register. This can be done with the XOR instruction. This instruc-
tion performs an Exclusive OR and, if done on itself, will zero the register. After
the divide, the answer is in EAX, with the remainder in EDX (if any exists).

Of course, there are many more instructions, but those should be enough to get
you started. We will probably only be using a few others, but they’re fairly easy to
figure out once you have seen the main ones.

Next we need to deal with the calling convention. We will be using the Standard
Call calling convention because that is what the Win32 API uses. This means that
we will push parameters onto the stack in right-to-left order, but we aren’t

685Win32 ASM Basics

TeamLRN

responsible for clearing the stack afterward. Everything will be completely transpar-
ent to you, however, because we will be using the pseudo-op INVOKE to make our
calls. Calling convention knowledge is a good detail to have. Research it more if
you feel inclined, although we won’t need that detail for this project.

The final thing I need to inform you about is the high-level syntax that MASM pro-
vides. These are constructs that allow you to create If-Then-Else and For loops in
assembly, with C-like expressions. They are easiest to illustrate once we have some
code; therefore, you won’t see them just yet. But they are there . . . and they make
life infinitely easier.

These are enough basics to get you going. The rest will come together as we take a
look at the source code and see how assembly can be applied to game program-
ming topics. Now that we have that out of the way, we can work on designing the
game and creating a code framework for it.

The Design Document
Now it’s time for something a lot more fun—designing the game. This process is
often neglected simply because people want to start writing code as soon as they
have an idea. Although that approach can work for some people, it often does not.
And if it does work, you often end up recoding a good portion of your game
because of a simple oversight. Therefore, we will cover exactly how to create a
design document that you will be able to stick to and that will end up helping you
with your game.

To begin, you need to have an idea of what you want the game to be and how you
want the game played. In our case, this is a simple Tetris clone, so there isn’t too
much we need to cover in the way of game play and such. In many cases, though,
you will need to describe the game play as thoroughly as possible. This will help
you to see if your ideas are feasible or if you are neglecting something important.

The easy part is finished, so now we need to come up with as many details as possi-
ble. Are we going to have a scoring system? Are we going to have load/save game
options? How many levels are there? What happens at the end of a level? Is there
an introductory screen? These are the kinds of questions you should be asking
yourself as you work on the design of the game. Another thing that might help you
is to storyboard or flow chart the game on a piece of paper or your computer. This
will allow you to see how the game is going to progress at each point, and this is
especially helpful for adventure-type games.

686 20. Game Programming Assembly Style

TeamLRN

Once you have all of the details complete, it is time to start sketching the levels out.
How do you want the screens to appear? What will the interfaces look like? This
doesn’t have to be precise just yet, but it should give you a realistic idea of what the
final versions will look like. I also tend to break out my calculator and estimate
pixel coordinates at this point. I have actually run out of room while creating the
menu screen before. It was my own fault for not calculating the largest size that my
text could be, and it took a few hours to redo everything. The moral is to plan
ahead.

The final stage is just sort of a cleanup phase. I like to go back and make sure
that everything is the way I want it to be. Take a few days’ break from your game
beforehand. This will give you a fresh viewpoint when you come back to it later.
Oftentimes, you will stare at the document for so long that something extraordinar-
ily simple will be glanced over and not included in your plan, such as how many
points everything is worth or the maximum number of points users can fit in their
score (not that I have ever found out halfway through the game that the player
could obtain more points than the maximum score allowed or anything like that).

Whether you choose to use the process I have outlined or one of your own making,
it is imperative that you complete this step. I have never been one for wasted effort.
I do it right the first time if possible and learn from my mistakes and the mistakes
of others. If this weren’t necessary, I wouldn’t do it. So do yourself a favor and com-
plete some type of design document, no matter how simple you think your game is
going to be.

Code Framework
The final preparation step is something that I like to call code framework. This is
where you lay out your blank source code modules and fill them with comments
detailing the routines that will go into them and the basic idea behind how they
operate. If you think you are perfect and have gotten every detail in your design
document, you can probably skip this step. For those of you who are cautious like
me, give this phase a whirl. It helps you see how all of the pieces will fit together
and more importantly if something has been neglected or mistakenly included.
Then, if something needs to be adjusted, you won’t have to deal with the possibility
of ruining code while rearranging things. I have found this to be a great trick to
keep things ordered and interfaces well thought out.

687Code Framework

TeamLRN

Here is an example of the framework I am speaking
about for the SPACE-TRIS example. You can see that
nothing much goes into it, just an overview of the mod-
ule more or less. These things get slightly more com-
plex when developing modules with specific interfaces
because those interfaces should be well documented.

;###
;###
; ABOUT SPACE-TRIS:
;
; This is the main portion of code. It has WinMain and performs all
; of the management for the game.
;
; - WinMain()
; - WndProc()
; - Main_Loop()
; - Game_Init()
; - Game_Main()
; - Game_Shutdown()
;
;
;###
;###

;###
;###
; THE COMPILER OPTIONS
;###
;###

.386

.MODEL flat, stdcall
OPTION CASEMAP :none ; case sensitive

688 20. Game Programming Assembly Style

TIP
Any line that starts
with a semicolon is a
comment in assembly
language.

TeamLRN

;###
;###
; THE INCLUDES SECTION
;###
;###

;==
; This is the include file for the Windows structs,
; unions, and constants
;==
INCLUDE Includes\Windows.inc

;==
; These are the Include files for Window calls
;==
INCLUDE \masm32\include\comctl32.inc
INCLUDE \masm32\include\comdlg32.inc
INCLUDE \masm32\include\shell32.inc
INCLUDE \masm32\include\user32.inc
INCLUDE \masm32\include\kernel32.inc
INCLUDE \masm32\include\gdi32.inc

;====================================
; The Direct Draw include file
;====================================
INCLUDE Includes\DDraw.inc

;===
; The Libs for those included files
;==
INCLUDELIB \masm32\lib\comctl32.lib
INCLUDELIB \masm32\lib\comdlg32.lib
INCLUDELIB \masm32\lib\shell32.lib
INCLUDELIB \masm32\lib\gdi32.lib
INCLUDELIB \masm32\lib\user32.lib
INCLUDELIB \masm32\lib\kernel32.lib

;===
; Include the file that has our prototypes
;===

689Code Framework

TeamLRN

INCLUDE Protos.inc

;###
;###
; LOCAL MACROS
;###
;###

szText MACRO Name, Text:VARARG
LOCAL lbl
JMP lbl
Name DB Text,0
lbl:

ENDM

m2m MACRO M1, M2
PUSH M2
POP M1

ENDM

return MACRO arg
MOV EAX, arg
RET

ENDM

RGB MACRO red, green, blue
XOR EAX,EAX
MOV AH,blue
SHL EAX,8
MOV AH,green
MOV AL,red

ENDM

hWrite MACRO handle, buffer, size
MOV EDI, handle
ADD EDI, Dest_index
MOV ECX, 0
MOV CX, size
ADD Dest_index, ECX
MOV ESI, buffer
movsb

690 20. Game Programming Assembly Style

TeamLRN

ENDM

hRead MACRO handle, buffer, size
MOV EDI, handle
ADD EDI, Spot
MOV ECX, 0
MOV CX, size
ADD Spot, ECX
MOV ESI, buffer
movsb

ENDM

;##
;##
; Variables we want to use in other modules
;##
;##

;##
;##
; External variables
;##
;##

;##
;##
; BEGIN INITIALIZED DATA
;##
;##

.DATA

;##
;##
; BEGIN CONSTANTS
;##
;##

691Code Framework

TeamLRN

;##
;##
; BEGIN EQUATES
;##
;##

;=================
;Utility Equates
;=================

FALSE EQU 0
TRUE EQU 1

;##
;##
; BEGIN THE CODE SECTION
;##
;##

.CODE

start:

;##
; WinMain Function
;##

;##
; End of WinMain Procedure
;##

;##
; Main Window Callback Procedure — WndProc
;##

692 20. Game Programming Assembly Style

TeamLRN

;##
; End of Main Windows Callback Procedure
;##

;==
;==
; THE GAME PROCEDURES
;==
;==

;##
; Game_Init Procedure
;##

;##
; END Game_Init
;##

;##
; Game_Main Procedure
;##

;##
; END Game_Main
;##

;##
; Game_Shutdown Procedure
;##

693Code Framework

TeamLRN

;##
; END Game_Shutdown
;##

;######################################
; THIS IS THE END OF THE PROGRAM CODE #
;######################################
END start

Conclusion
This ends the preparation phase. At this point, we are ready to start looking at
some code in the next section. Feel free to scour the Internet and find more
resources relating to the Win32 assembly language basics I have introduced here.
More information is not needed, however, to follow along with the development of
SPACE-TRIS. I will be teaching everything that’s needed as we progress, but a more
extensive knowledge of the instructions in the x86 architecture will be useful for
experimenting on your own (which I definitely recommend).

694 20. Game Programming Assembly Style

TeamLRN

WIN32 ASM—PART 2
So far, we’ve discussed many basics of Win32 ASM programming, introduced you to
the game we will be creating, and guided you through the design process. Now it is
time to take it a few steps further. First, I will cover in depth the high-level con-
structs of MASM that make it extremely readable (at generally no performance
cost) and that make it as easy to write as C expressions. Then, once we have a solid
foundation in our assembler, we will take a look at the game loop and the main
Windows procedures in the code. With that out of the way, we will take a peek at
Direct Draw and the calls associated with it. Once we understand how DirectX
works, we can build our Direct Draw library. After that, we will build our bitmap file
library. Finally, we will put it all together in a program that displays our loading
game screen and exits when you hit the Esc key.

It is a tall order, but I am pretty sure we can cover all of these topics in this chapter.
Remember: If you want to compile the code, you need the MASM32 package (or at
the very least a copy of MASM 6.11+).

If you are already familiar with high-level MASM syntax, I would suggest skipping
the next section. However, those of you who are rusty or who have never even
heard of it should head on to the next section. There you will learn more than you
will probably ever need to know about this totally cool addition to our assembler.

MASM HL Syntax?
I am sure many of you have seen an old DOS assembly language listing. Take a
moment to recall that listing and picture the code. Scary? Well, 9 times out of 10 it
was scary. Most ASM programmers wrote very unreadable code simply because that
was the nature of their assembler. It was littered with labels and JMPs and all sorts of
other mysterious things. Try stepping through it with your mental computer. Did
you crash? Yeah, don’t feel bad. It’s just how it is. Now, that was the 9 out of 10 . . .
what about that 1 out of 10? What’s the deal with that one? Well, those are the pro-
grammers who coded macros to facilitate high-level constructs in their programs.

695MASM HL Syntax?

TeamLRN

For once, Microsoft did something incredibly useful with MASM 6.0. It built the
HL macros that smart programmers had devised into MASM as pseudo-ops.

If you aren’t aware of what this means, I will let you in on it. Assembly code in
MASM is now just as readable and as easy to write as C. This, of course, is just my
opinion, but it is an opinion shared by thousands and thousands of ASM coders. So
now that I have touted its usefulness, let’s take a look at some C constructs and
their MASM counterparts.

IF-ELSE IF-ELSE

C Version:

if(var1 == var2)
{

// Code goes here ...
}
else
if(var1 == var3)
{

// Code goes here ...
}
else
{

// Code goes here ...
}

MASM Version:

MOV my_var1, EAX
.if (var1 == var2)

; Code goes here ...
.elseif (var1 == var3)

; Code goes here ...
.else

; Code goes here ...
.endif

DO-WHILE

C Version:

do
{

// Code goes here ...

696 20. Game Programming Assembly Style

TeamLRN

}while(var1 == var2);

MASM Version:

MOV my_var1, EAX
.repeat

; Code goes here ...
.until (var1 == var2)

WHILE

C Version:

while(var1 == var2)
{

// Code goes here ...
}

MASM Version:

MOV my_var1, EAX
.while (var1 == var2)

; Code goes here ...
.endw

These are the constructs we can use in our code. As you can see, they are extremely
simple and allow for nice, readable code—something assembly language has long
been without. There is no performance loss for using these constructs, at least
none that I’ve found. They typically generate the same JMP and CMP code that a pro-
grammer would if he were writing it manually. So feel free to use them in your
code as you see fit—they are a great asset.

There is one other thing we should discuss, and that is the psuedo-ops that allow us
to define procedures/functions easily: PROTO and PROC. These allow us to write func-
tions without having to deal with the stack issues normally associated with assem-
bler programming. Using them is really simple. To begin with, just as in C, you
need to have a prototype. In MASM, this is done with the PROTO keyword. Here are
some examples of declaring prototypes for your procedures:

;==================================
; Main Program Procedures
;==================================
WinMain PROTO :DWORD,:DWORD,:DWORD,:DWORD
WndProc PROTO :DWORD,:DWORD,:DWORD,:DWORD

697MASM HL Syntax?

TeamLRN

The preceding code tells the assembler that it should expect a procedure by the
name of WinMain and one by the name of WndProc. Each of these has a parameter list
associated with it. They both happen to expect four DWORD values to be passed to
them. For those of you using the MASM32 package, you already have all of the
Windows API functions prototyped; you just need to include the appropriate
include file. But you need to make sure that any user-defined procedure is proto-
typed in this fashion.

Once we have the function prototyped, we can create it. We do this with the PROC
keyword. Here is an example:

;##
; WinMain Function
;##
WinMain PROC hInstance :DWORD,

hPrevInst :DWORD,
CmdLine :DWORD,
CmdShow :DWORD

;===========================
; We are through
;===========================
return msg.wParam

WinMain endp
;##
; End of WinMain Procedure
;##

By writing our functions in this manner, we can access all passed parameters by the
name we give to them. The preceding function is WinMain without any code in it.
You will see the code in a minute. For now, though, pay attention to how we set up
the procedure. Also notice how it allows us to create much cleaner-looking code,
just like the rest of the high-level constructs in MASM.

Getting a Game Loop
Running
Now that we all know how to use our assembler and some of the useful features
contained in it, let’s get a basic game shell up and running.

698 20. Game Programming Assembly Style

TeamLRN

The first thing we need to do is get set up to enter into WinMain(). You may be won-
dering why the code doesn’t start at WinMain() like in C/C++. The answer is that in
C/C++ it doesn’t start there either. The code we will write is generated for you by
the compiler; therefore, it is completely transparent to you. We will most likely do it
differently than the compiler, but the premise will be the same. So here is what we
will code to get into the WinMain() function:

.CODE

start:
;==================================
; Obtain the instance for the
; application
;==================================
INVOKE GetModuleHandle, NULL
MOV hInst, EAX

;==================================
; Is there a commandline to parse?
;==================================
INVOKE GetCommandLine
MOV CommandLine, EAX

;==================================
; Call the WinMain procedure
;==================================
INVOKE WinMain,hInst,NULL,CommandLine,SW_SHOWDEFAULT

;==================================
; Leave the program
;==================================
INVOKE ExitProcess,EAX

The only thing that may seem a little confusing is why we MOV EAX into a variable at
the end of an INVOKE. The reason is that all Windows functions (and C functions, for
that matter) place the return value of a function/procedure in EAX. So we are effec-
tively doing an assignment statement with a function when we move a value from
EAX into something. This preceding code is going to be the same for every Windows
application that you write. At least, I have never had need to change it. The code
simply sets everything up and ends it when we are finished. Also notice that we use

699Getting a Game Loop Running

TeamLRN

the start label to tell the assembler where processing should begin, and everything
is placed in the .code section.

If you follow the code, you will see that it calls WinMain() for us. This is where things
can get a bit confusing, so let’s have a look at the code first.

;##
; WinMain Function
;##
WinMain PROC hInstance :DWORD,

hPrevInst :DWORD,
CmdLine :DWORD,
CmdShow :DWORD

;====================
; Put LOCALs on stack
;====================
LOCAL wc :WNDCLASS

;==
; Fill WNDCLASS structure with required variables
;==
MOV wc.style, CS_OWNDC
MOV wc.lpfnWndProc,OFFSET WndProc
MOV wc.cbClsExtra,NULL
MOV wc.cbWndExtra,NULL
m2m wc.hInstance,hInst ;<< NOTE: macro not mnemonic
INVOKE GetStockObject, BLACK_BRUSH
MOV wc.hbrBackground, EAX
MOV wc.lpszMenuName,NULL
MOV wc.lpszClassName,OFFSET szClassName
INVOKE LoadIcon, hInst, IDI_ICON ; icon ID
MOV wc.hIcon,EAX
INVOKE LoadCursor,NULL,IDC_ARROW
MOV wc.hCursor,EAX

;================================
; Register our class we created
;================================
INVOKE RegisterClass, ADDR wc

700 20. Game Programming Assembly Style

TeamLRN

;===
; Create the main screen
;===
INVOKE CreateWindowEx,NULL,

ADDR szClassName,
ADDR szDisplayName,
WS_POPUP OR WS_CLIPSIBLINGS OR \
WS_MAXIMIZE OR WS_CLIPCHILDREN,
0,0,640,480,
NULL,NULL,
hInst,NULL

;===
; Put the window handle in for future uses
;===
MOV hMainWnd, EAX

;====================================
; Hide the cursor
;====================================
INVOKE ShowCursor, FALSE

;===
; Display our Window we created for now
;===
INVOKE ShowWindow, hMainWnd, SW_SHOWDEFAULT

;=================================
; Intialize the Game
;=================================
INVOKE Game_Init

;==
; Check for an error if so leave
;==
.IF EAX != TRUE

JMP shutdown
.ENDIF

701Getting a Game Loop Running

TeamLRN

;===================================
; Loop until PostQuitMessage is sent
;===================================
.WHILE TRUE

INVOKE PeekMessage, ADDR msg, NULL, 0, 0, PM_REMOVE
.IF (EAX != 0)

;===================================
; Break if it was the quit message
;===================================
MOV EAX, msg.message
.IF EAX == WM_QUIT

;======================
; Break out
;======================
JMP shutdown

.ENDIF

;===================================
; Translate and Dispatch the message
;===================================
INVOKE TranslateMessage, ADDR msg
INVOKE DispatchMessage, ADDR msg

.ENDIF

;================================
; Call our Main Game Loop
;
; NOTE: This is done every loop
; iteration no matter what
;================================
INVOKE Game_Main

.ENDW

shutdown:

;=================================
; Shutdown the Game
;=================================
INVOKE Game_Shutdown

702 20. Game Programming Assembly Style

TeamLRN

;=================================
; Show the Cursor
;=================================
INVOKE ShowCursor, TRUE

getout:
;===========================
; We are through
;===========================
return msg.wParam

WinMain endp
;##
; End of WinMain Procedure
;##

This is quite a bit of code and is rather daunting at first glance. But let’s examine it
a piece at a time. First we enter the function. Notice that the local variables (in this
case, a WNDCLASS variable) get placed on the stack without you having to code any-
thing. The code is generated for you; you can declare local variables like in C.
Thus, at the end of the procedure, we don’t need to tell the assembler how much
to pop off of the stack. It is done for us also. Then we fill in this structure with vari-
ous values and variables.

Next we make some calls to register our
window class and create a new window.
Then we hide the cursor. You may want
the cursor, but for our game we do not.
Now we can show our window and try to
initialize our game. We check for an
error after calling the Game_Init() proce-
dure. If there were an error, the func-
tion would not return true, and this
would cause our program to jump to the shutdown label. It is important that we
jump over the main message loop. If we do not, the program will continue execut-
ing. Also, make sure you do not just return out of the code; there still may be some
things that need to be shut down. It is good practice in ASM, as in all other lan-
guages, to have one entry point and one exit point in each of your procedures.
This makes debugging easier.

703Getting a Game Loop Running

NOTE
Note the use of m2m.This is because, in
ASM, you are not allowed to move a
memory value to another memory
location without placing it in a register
or on the stack first. So this macro
pushes it onto the stack and then pops
it into the desired register.

TeamLRN

Now for the meat of WinMain(): the message loop. For those of you who have never
seen a Windows message loop before, here is a quick explanation. Windows main-
tains a queue of messages that the application receives, whether from other appli-
cations, user-generated, or internal. To do anything, an application must process
messages. These tell you that a key has been pressed, that the mouse button has
been clicked, or that the user wants to exit your program. If this were a normal
program and not a high-performance game, we would use GetMessage() to retrieve a
message from the queue and act on it.

The problem, however, is that if there are no messages, the function waits until it
receives one. This is totally unacceptable for a game. We need to be constantly per-
forming our loop, no matter what messages we receive. One way around this is to
use PeekMessage() instead. PeekMessage() will return zero if it has no messages; other-
wise, it will grab the current message off the queue.

What this means is that, if we have a message, it will get translated and dispatched
to our callback function. Furthermore, if we do not have a message waiting, the
main game loop will be called instead. Now here is the trick: By arranging the code
just right, the main game loop will be called—even if we process a message. If we
don’t do this, Windows could process thousands of messages while our game loop
wouldn’t execute once!

Finally, when a quit message is passed to the queue, we will jump out of our loop
and execute the shutdown code. And that is the basic game loop.

Connecting to Direct Draw
Now we are going to get a little bit advanced, but only for this section. Unfortunately,
there is no cut-and-dry way to view DirectX in assembly, so I am going to explain it
briefly, show you how to use it, and then forget about it. This is not that imperative to
know about, but it helps if you at least understand the concepts.

The very first thing you need to understand is the concept of a virtual function table.
This is where your call really goes, to be blunt about it. The call offsets into this
table and from it selects the proper function address to jump to. What this means
to you is that your call to a function is actually a call to a simple lookup table that is
already generated. In this way, DirectX (or any other type library such as DirectX)
can change functions in a library without you ever having to know about it.

Once we have gotten that straight, we can figure out how to make calls in DirectX.
Have you guessed how yet? The answer is that we need to mimic the table in some

704 20. Game Programming Assembly Style

TeamLRN

way so that our call is offset into the virtual table at the proper address. We start by
simply having a base address that gets called, which is a given in DirectX libraries.
Then we make a list of all functions for that object, appending the size of their
parameters. This is our offset into the table. Now we are all set to call the functions.

Calling these functions can be a bit of work. First you have to specify the address of
the object on which you want to make the call. Then you have to resolve the virtual
address and finally push all of the parameters onto the stack, including the object,
for the call. Ugly, isn’t it? For that reason, a set of macros is provided that will allow
you to make calls for these objects fairly easily. I will only cover one since the rest
are based on the same premise. The most basic one is DD4INVOKE. This macro is for a
Direct Draw 4 object. It is important to have different invokes for different versions
of the same object. If we didn’t, wrong routines would be called since the virtual
table changes as it adds/removes functions from the libraries.

The idea behind the macro is fairly simple. First you specify the function name,
then the object name, and then the parameters. Here is an example:

;==
; Now create the primary surface
;==
DD4INVOKE CreateSurface, lpdd, ADDR ddsd, ADDR lpddsprimary, NULL

The preceding line of code calls the CreateSurface() function on a Direct Draw 4
object. It passes the pointer to the object, the address of a Direct Draw Surface
Describe structure, the address of the variable to hold the pointer to the surface,
and finally NULL. This call is an example of how we will interface to DirectX in this
chapter. Now that we have seen how to make calls to DirectX, we need to build a
small library for us to use. This will be covered in the next section.

Our Direct Draw Library
We are now ready to start coding our Direct Draw library routines. The logical start-
ing place would be to figure out what kinds of routines we will need for the game.
Obviously, we want an initialization and shutdown routine, and we are going to
need a function to lock and unlock surfaces. Also, it would be nice to have a func-
tion to draw text, and since the game is going to run in 16bpp mode, we will want a
function that can figure out the pixel format for us. It also would be a good idea to
have a function that creates surfaces, one that loads a bitmap into a surface, and a
function to flip our buffers for us. That should cover it, so lets get started.

705Our Direct Draw Library

TeamLRN

The first routine we will look at is the initialization routine. This is the most logical
place to start, especially since the routine has just about every type of call we will be
using in Direct Draw. Here is the code:

;##
; DD_Init Procedure
;##
DD_Init PROC screen_width:DWORD, screen_height:DWORD, screen_bpp:DWORD

;===
; This function will setup DD to full screen exclusive
; mode at the passed in width, height, and bpp
;===

;=================================
; Local Variables
;=================================
LOCAL lpdd_1 :LPDIRECTDRAW

;=============================
; Create a default object
;=============================
INVOKE DirectDrawCreate, 0, ADDR lpdd_1, 0

;=============================
; Test for an error
;=============================
IF EAX != DD_OK

;======================
; Give err msg
;======================
INVOKE MessageBox, hMainWnd, ADDR szNoDD, NULL, MB_OK

;======================
; Jump and return out
;======================
JMP err

.ENDIF

706 20. Game Programming Assembly Style

TeamLRN

;===
; Let’s try and get a DirectDraw 4 object
;===
DDINVOKE QueryInterface, lpdd_1, ADDR IID_IDirectDraw4, ADDR lpdd

;===
; Did we get it??
;===
.IF EAX != DD_OK

;==============================
; No so give err message
;==============================
INVOKE MessageBox, hMainWnd, ADDR szNoDD4, NULL, MB_OK

;======================
; Jump and return out
;======================
JMP err

.ENDIF

;===
; Set the cooperative level
;===
DD4INVOKE SetCooperativeLevel, lpdd, hMainWnd, \

DDSCL_ALLOWMODEX OR DDSCL_FULLSCREEN OR \
DDSCL_EXCLUSIVE OR DDSCL_ALLOWREBOOT

;===
; Did we get it??
;===
.IF EAX != DD_OK

;==============================
; No so give err message
;==============================
INVOKE MessageBox, hMainWnd, ADDR szNoCoop, NULL, MB_OK

;======================
; Jump and return out
;======================

707Our Direct Draw Library

TeamLRN

JMP err

.ENDIF

;===
; Set the Display Mode
;===
DD4INVOKE SetDisplayMode, lpdd, screen_width, \

screen_height, screen_bpp, 0, 0

;===
; Did we get it??
;===
.IF EAX != DD_OK

;==============================
; No so give err message
;==============================
INVOKE MessageBox, hMainWnd, ADDR szNoDisplay, NULL, MB_OK

;======================
; Jump and return out
;======================
JMP err

.ENDIF

;================================
; Save the screen info
;================================
m2m app_width, screen_width
m2m app_height, screen_height
m2m app_bpp, screen_bpp

;==
; Setup to create the primary surface
;==
DDINITSTRUCT OFFSET ddsd, SIZEOF(DDSURFACEDESC2)
MOV ddsd.dwSize, SIZEOF(DDSURFACEDESC2)
MOV ddsd.dwFlags, DDSD_CAPS OR DDSD_BACKBUFFERCOUNT;
MOV ddsd.ddsCaps.dwCaps, DDSCAPS_PRIMARYSURFACE OR \

DDSCAPS_FLIP OR DDSCAPS_COMPLEX

708 20. Game Programming Assembly Style

TeamLRN

MOV ddsd.dwBackBufferCount, 1

;==
; Now create the primary surface
;==
DD4INVOKE CreateSurface, lpdd, ADDR ddsd, ADDR lpddsprimary, NULL

;===
; Did we get it??
;===
.IF EAX != DD_OK

;==============================
; No so give err message
;==============================
INVOKE MessageBox, hMainWnd, ADDR szNoPrimary, NULL, MB_OK

;======================
; Jump and return out
;======================
JMP err

.ENDIF

;==
; Try to get a backbuffer
;==
MOV ddscaps.dwCaps, DDSCAPS_BACKBUFFER
DDS4INVOKE GetAttachedSurface, lpddsprimary, ADDR ddscaps, \

ADDR lpddsback

;===
; Did we get it??
;===
.IF EAX != DD_OK

;==============================
; No so give err message
;==============================
INVOKE MessageBox, hMainWnd, ADDR szNoBackBuffer, NULL, MB_OK

709Our Direct Draw Library

TeamLRN

;======================
; Jump and return out
;======================
JMP err

.ENDIF

;==
; Get the RGB format of the surface
;==
INVOKE DD_Get_RGB_Format, lpddsprimary

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

DD_Init ENDP
;##
; END DD_Init
;##

This code is fairly complex, so let’s see what each individual section does.

The first step is that we create a default Direct Draw object. This is nothing more
than a simple call with a couple of parameters.

Also notice how we check for an error
right afterward. This is very important
in DirectX. In the case of an error, we
merely give a message and then jump to
the error return at the bottom of the
procedure. It’s not the most advanced
error handling, but it will work for our
purposes.

710 20. Game Programming Assembly Style

NOTE
Since the DirectDraw is not based
on an already-created object, the
function is not a virtual one.
Therefore, we can call it like a nor-
mal function using invoke.

TeamLRN

The second step is that we query for a Direct Draw 4 object. (You can query for a
higher version if you like.) If this succeeds, we then set the cooperative level and
the display mode for our game. Nothing major, but don’t forget to check for
errors.

The next step is to create a primary surface for the object we have. If that succeeds,
we create the back buffer. The structure that we use in this call—and other DirectX
calls—needs to be cleared before using it. This is done in a macro, DDINITSTRUCT,
that is included in the DDraw.inc file.

The final thing we do is call the routine that determines the pixel format for our
surfaces. All of these pieces fit together in initializing our system for use.

The next routine we will look at is the pixel format obtainer. This is a fairly
advanced routine, so I wanted to make sure to cover it. Here is the code:

;##
; DD_Get_RGB_Format Procedure
;##
DD_Get_RGB_Format PROC surface:DWORD

;===
; This function will setup some globals to give us info
; on whether the pixel format of the current display mode
;===

;====================================
; Local variables
;====================================
LOCAL shiftcount :BYTE

;================================
; get a surface description
;================================
DDINITSTRUCT ADDR ddsd, sizeof(DDSURFACEDESC2)
MOV ddsd.dwSize, sizeof(DDSURFACEDESC2)
MOV ddsd.dwFlags, DDSD_PIXELFORMAT
DDS4INVOKE GetSurfaceDesc, surface, ADDR ddsd

;==============================
; fill in masking values
;==============================

711Our Direct Draw Library

TeamLRN

m2m mRed, ddsd.ddpfPixelFormat.dwRBitMask ; Red Mask
m2m mGreen, ddsd.ddpfPixelFormat.dwGBitMask ; Green Mask
m2m mBlue, ddsd.ddpfPixelFormat.dwBBitMask ; Blue Mask

;====================================
; Determine the pos for the red mask
;====================================
MOV shiftcount, 0
.WHILE (!(ddsd.ddpfPixelFormat.dwRBitMask & 1))

SHR ddsd.ddpfPixelFormat.dwRBitMask, 1
INC shiftcount

.ENDW
MOV AL, shiftcount
MOV pRed, AL

;=======================================
; Determine the pos for the green mask
;=======================================
MOV shiftcount, 0
.WHILE (!(ddsd.ddpfPixelFormat.dwGBitMask & 1))

SHR ddsd.ddpfPixelFormat.dwGBitMask, 1
INC shiftcount

.ENDW
MOV AL, shiftcount
MOV pGreen, AL

;=======================================
; Determine the pos for the blue mask
;=======================================
MOV shiftcount, 0
.WHILE (!(ddsd.ddpfPixelFormat.dwBBitMask & 1))

SHR ddsd.ddpfPixelFormat.dwBBitMask, 1
INC shiftcount

.ENDW
MOV AL, shiftcount
MOV pBlue, AL

;===
; Set a special var if we are in 16 bit mode
;===
.IF app_bpp == 16

712 20. Game Programming Assembly Style

TeamLRN

.IF pRed == 10
MOV Is_555, TRUE

.ELSE
MOV Is_555, FALSE

.ENDIF
.ENDIF

done:
;===================
; We completed
;===================
return TRUE

DD_Get_RGB_Format ENDP
;##
; END DD_Get_RGB_Format
;##

First we initialize our description structure and make a call to get the surface
description from Direct Draw. We place the masks that are returned in global vari-
ables because we will want to use them in all kinds of places. A mask is a value that
you can use to set or clear certain bits in a variable/register. In our case, we use
them to mask off the unnecessary bits so that we can access the red, green, or blue
bits of our pixel individually.

The next three sections of code are used to determine the number of bits in each
color component. For example, if we had set the mode to 24bpp, there would be 8
bits in every component. The way we determine the number of bits it needs to be
moved is by shifting each mask to the right by 1 and ANDing it with the number 1.
This allows us to effectively count all the bits we need to shift by to move our com-
ponent into its proper position. This works because the mask is going to contain a
1 where the bits are valid. So by ANDing it with the 1, we are able to see if the bit
was turned on or not because the number 1 will leave only the first bit set and turn
all others off.

Finally, we set a variable that tells us whether the video mode is 5-5-5 or 5-6-5. This
is extremely important since 16bpp mode can be either, and we do not want our
pictures to have a green or purple tint on one machine and look fine on another!

The last function I want to cover in our Direct Draw library is the text drawing
function. This uses GDI, so I figured I should at least give it a small explanation.

713Our Direct Draw Library

TeamLRN

;##
; DD_Draw_Text Procedure
;##
DD_Draw_Text PROC surface:DWORD, text:DWORD, num_chars:DWORD,

x:DWORD, y:DWORD, color:DWORD

;===
; This function will draw the passed text on the passed
; surface using the passed color at the passed coords
; with GDI
;===

;===
; First we need to get a DC for the surface
;===
DDS4INVOKE GetDC, surface, ADDR hDC

;===
; Set the text color and BK mode
;===
INVOKE SetTextColor, hDC, color
INVOKE SetBkMode, hDC, TRANSPARENT

;===
; Write out the text at the desired location
;===
INVOKE TextOut, hDC, x, y, text, num_chars

;===
; release the DC we obtained
;===
DDS4INVOKE ReleaseDC, surface, hDC

done:
;===================
; We completed
;===================
return TRUE

DD_Draw_Text ENDP

714 20. Game Programming Assembly Style

TeamLRN

;##
; END DD_Draw_Text
;##

Following this code is relatively simple. First we get the device context (DC) for our
surface. In Windows, drawing is typically done through these DCs. Thus, if you
want to use any GDI function in Direct Draw, the first thing you have to do is get
the DC for your surface. Then we set the background mode and text color using
basic Windows GDI calls. Now we are ready to draw our text; again, we just make a
call to the Windows function TextOut(). There are many others; this is just the one
that I chose to use. Finally, we release the DC for our surface.

The rest of the Direct Draw routines follow the same basic format and use the same
types of calls, so they shouldn’t be too hard to figure out. The basic idea behind all
of the routines is the same: We want to encapsulate the functionality we need into
some services that still allow us to be flexible. Now it’s time to write the code to
handle our bitmaps that go into these surfaces.

Our Bitmap Library
We are now ready to write our bitmap library. We will start like the Direct Draw
library by determining what we need. As far as I can tell right now, we should be
good with two simple routines: a bitmap loader and a draw routine. Since we will
be using surfaces, the draw routine should draw onto the passed surface. Our
loader will load our special file format, which I will cover in a moment. That should
be it; there isn’t that much that is needed for bitmaps nowadays. DirectX is how
most manipulation occurs, especially since many things can be done in hardware.
With that in mind, we will cover our unique file format.

Normally, creating your own file format is a headache and isn’t worth the trouble.
In our case, however, it greatly simplifies the code, and I have provided the conver-
sion utility with the package on the accompanying CD-ROM. This format is proba-
bly one of the easiest you will ever encounter. It has five main parts: Width, Height,
BPP, Size of Buffer, and Buffer. The first three give information on the image. I have
our library set up for 16bpp only, but implementing other bit depths would be
fairly easy. The fourth section tells us how large of a buffer we need for the image,
and the fifth section is that buffer. Having our own format not only makes the code
we need to write a lot easier, it also prevents other people from seeing our work
before they are meant to see it! Now, how do we load this crazy format?

715Our Bitmap Library

TeamLRN

;##
; Create_From_SFP Procedure
;##
Create_From_SFP PROC ptr_BMP:DWORD, sfp_file:DWORD, desired_bpp:DWORD

;===
; This function will allocate our bitmap structure and
; will load the bitmap from an SFP file. Converting if
; it is needed based on the passed value.
;===

;=================================
; Local Variables
;=================================
LOCAL hFile :DWORD
LOCAL hSFP :DWORD
LOCAL Img_Left :DWORD
LOCAL Img_Alias :DWORD
LOCAL red :DWORD
LOCAL green :DWORD
LOCAL blue :DWORD
LOCAL Dest_Alias :DWORD

;=================================
; Create the SFP file
;=================================
INVOKE CreateFile, sfp_file, GENERIC_READ,FILE_SHARE_READ, \

NULL,OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,NULL
MOV hFile, EAX

;===============================
; Test for an error
;===============================
.IF EAX == INVALID_HANDLE_VALUE

JMP err
.ENDIF

;===============================
; Get the file size
;===============================
INVOKE GetFileSize, hFile, NULL

716 20. Game Programming Assembly Style

TeamLRN

PUSH EAX

;================================
; test for an error
;================================
.IF EAX == -1

JMP err
.ENDIF

;==
; Allocate enough memory to hold the file
;==
INVOKE GlobalAlloc, GMEM_FIXED, EAX
MOV hSFP, EAX

;===================================
; test for an error
;===================================
.IF EAX == 0

JMP err
.ENDIF

;===================================
; Put the file into memory
;===================================
POP EAX
INVOKE ReadFile, hFile, hSFP, EAX, OFFSET Amount_Read, NULL

;====================================
; Test for an error
;====================================
.IF EAX == FALSE

;========================
; We failed so leave
;========================
JMP err

.ENDIF

717Our Bitmap Library

TeamLRN

;===================================
; Determine the size without the BPP
;===================================
MOV EBX, hSFP
MOV EAX, DWORD PTR [EBX]
ADD EBX, 4
MOV ECX, DWORD PTR [EBX]
MUL ECX
PUSH EAX

;======================================
; Do we allocate a 16 or 24 bit buffer
;======================================
.IF desired_bpp == 16

;============================
; Just allocate a 16-bit
;============================
POP EAX
SHL EAX, 1
INVOKE GlobalAlloc, GMEM_FIXED, EAX
MOV EBX, ptr_BMP
MOV DWORD PTR [EBX], EAX
MOV Dest_Alias, EAX

;====================================
; Test for an error
;====================================
.IF EAX == FALSE

;========================
; We failed so leave
;========================
JMP err

.ENDIF

.ELSE
;==
; This is where code for 24 bit would go
;==

718 20. Game Programming Assembly Style

TeamLRN

;============================
; For now just return an err
;============================
JMP err

.ENDIF

;====================================
; Setup for reading in
;====================================
MOV EBX, hSFP
ADD EBX, 10
MOV EAX, DWORD PTR[EBX]
MOV Img_Left, EAX
ADD EBX, 4
MOV Img_Alias, EBX

;====================================
; Now let’s start converting values
;====================================
.WHILE Img_Left > 0

;==================================
; Build a color word based on
; the desired BPP or transfer
;==================================
.IF desired_bpp == 16

;==
; Read in a byte for blue, green and red
;==
XOR ECX, ECX
MOV EBX, Img_Alias
MOV CL, BYTE PTR [EBX]
MOV blue, ECX
INC EBX
MOV CL, BYTE PTR [EBX]
MOV green, ECX
INC EBX
MOV CL, BYTE PTR [EBX]
MOV red, ECX

719Our Bitmap Library

TeamLRN

;=======================
; Adjust the Img_Alias
;=======================
ADD Img_Alias, 3

;================================
; Do we build a 555 or a 565 val
;================================
.IF Is_555 == TRUE

;============================
; Build the 555 color word
;============================
RGB16BIT_555 red, green, blue

.ELSE
;============================
; Build the 565 color word
;============================
RGB16BIT_565 red, green, blue

.ENDIF

;================================
; Transfer it to the final buffer
;================================
MOV EBX, Dest_Alias
MOV WORD PTR [EBX], AX

;============================
; Adjust the dest by 2
;============================
ADD Dest_Alias, 2

.ELSE
;==
; This is where code for 24 bit would go
;==

;============================
; For now just return an err
;============================

720 20. Game Programming Assembly Style

TeamLRN

JMP err

.ENDIF

;=====================
; Sub amount left by 3
;=====================
SUB Img_Left, 3

.ENDW

;====================================
; Free the SFP Memory
;====================================
INVOKE GlobalFree, hSFP

done:
;===================
; We completed
;===================
return TRUE

err:
;====================================
; Free the SFP Memory
;====================================
INVOKE GlobalFree, hSFP

;===================
; We didn’t make it
;===================
return FALSE

Create_From_SFP ENDP
;##
; END Create_From_SFP
;##

The code starts out by creating the file (which, in Windows, is how you open it)
and then retrieves the file size. This allows us to allocate enough memory to load in

721Our Bitmap Library

TeamLRN

our entire file. The process of reading in the file is fairly simple; we just make a
call. As usual, the most important parts are those that check for errors.

Once the file is in memory, we compute the size of the desired image based on the
width and height in our header and the desired_bpp level that was passed in to the
function. Then we allocate yet another buffer with the information we calculated.
This is the buffer that is kept in the end.

The next step is the heart of our load function. Here we read in 3 bytes (since our
pictures are stored as 24-bit images) and create the proper color value (5-6-5 or 5-5-
5) for the buffer. We then store that value in the new buffer we just created. We loop
through all pixels in our bitmap and convert each to the desired format. The conver-
sion is based on a predefined macro. You could also implement the function by
using the members we filled when we called the function to get the pixel format.
This second way would allow you to have a more abstract interface to the code, but
for our purposes, it was better to see what was really happening to the bits.

At the completion of our loop, we free the main buffer and return the address of
the buffer with our converted pixel values. If an error occurs at any point, we jump
to our error code, which frees the possible buffer we could have created. This is to
prevent memory leaks. And . . . that’s it for the load function.

Once the bitmap is loaded into memory, we need to be able to draw it onto a
Direct Draw surface. Whether we are loading it in permanently or just drawing a
quick picture onto the back buffer should not matter. Let’s look at a function that
draws the passed bitmap onto our passed surface. Here is the code:

\;##
; Draw_Bitmap Procedure
;##
Draw_Bitmap PROC surface:DWORD, bmp_buffer:DWORD, lPitch:DWORD,

bpp:DWORD

;===
; This function will draw the BMP on the surface.
; the surface must be locked before the call.
;
; It uses the width and height of the screen to do so.
; I hard-coded this in just ‘cause ... okay.
;
; This routine does not do transparency!
;===

722 20. Game Programming Assembly Style

TeamLRN

;===========================
; Local Variables
;===========================
LOCAL dest_addr :DWORD
LOCAL source_addr :DWORD

;===========================
; Init the addresses
;===========================
MOV EAX, surface
MOV EBX, bmp_buffer
MOV dest_addr, EAX
MOV source_addr, EBX

;===========================
; Init counter with height
;
; Hard-coded in.
;===========================
MOV EDX, 480

;=================================
; We are in 16 bit mode
;=================================

copy_loop1:
;=============================
; Setup num of bytes in width
;
; Hard-coded also.
;
; 640*2/4 = 320.
;=============================
MOV ECX, 320

;=============================
; Set source and dest
;=============================
MOV EDI, dest_addr
MOV ESI, source_addr

723Our Bitmap Library

TeamLRN

;======================================
; Move by DWORDS
;======================================
REP movsd

;==============================
; Adjust the variables
;==============================
MOV EAX, lPitch
MOV EBX, 1280
ADD dest_addr, EAX
ADD source_addr, EBX

;========================
; Dec the line counter
;========================
DEC EDX

;========================
; Did we hit bottom?
;========================
JNE copy_loop1

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Draw_Bitmap ENDP
;##
; END Draw_Bitmap
;##

724 20. Game Programming Assembly Style

TeamLRN

This function is a little bit more advanced than some of the others we have seen, so
pay close attention. We know, as assembly programmers, that if we can get every-
thing into a register, things will be faster than if we have to access memory. In that
spirit, we place the starting source and destination addresses into registers.

We then compute the number of WORDS in our line. We can divide this number by 2
so that we have the number of DWORDS in a line. I have hard-coded this number since
we will always be in 640×480×16 for our game. This number is placed in the ECX
register. The reason for this is that our next instruction MOVSD can be combined with
the REP label. This will move a DWORD, decrement ECX by 1, compare ECX to ZERO, if not
equal, then MOVE A DWORD, and so on, until ECX is equal to zero. In short, it is like hav-
ing a “For” loop with the counter in ECX. As we have the code right now, it is mov-
ing a DWORD from the source into the destination until we have exhausted the
number of DWORDS in our line. At that point, it does this over again until we have
reached the number of lines in our height (480 in our case).

These are our only two functions in the bitmap module. They are short and sweet.
More importantly, now that we have our bitmap and Direct Draw routines coded,
we can write the code to display our loading game screen!

A Game . . . Well, Sort Of
The library routines are complete, and we are now ready to plunge into our game
code. These are the routines that control the main setup, shutdown, the flow of the
game, and the windows messages—in other words, all of the core logic needed for
your game. We will start by looking at the initialization function since it is called
first in our code.

;##
; Game_Init Procedure
;##
Game_Init PROC

;===
; This function will setup the game
;===

;==
; Initialize Direct Draw — 640, 480, bpp
;==

725A Game . . . Well, Sort Of

TeamLRN

INVOKE DD_Init, 640, 480, screen_bpp

;====================================
; Test for an error
;====================================
.IF EAX == FALSE

;========================
; We failed so leave
;========================
JMP err

.ENDIF

;======================================
; Read in the bitmap and create buffer
;======================================
INVOKE Create_From_SFP, ADDR ptr_BMP_LOAD, ADDR szLoading, screen_bpp

;====================================
; Test for an error
;====================================
.IF EAX == FALSE

;========================
; We failed so leave
;========================
JMP err

.ENDIF

;===================================
; Lock the Direct Draw back buffer
;===================================
INVOKE DD_Lock_Surface, lpddsback, ADDR lPitch

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================

726 20. Game Programming Assembly Style

TeamLRN

JMP err

.ENDIF

;===================================
; Draw the bitmap onto the surface
;===================================
INVOKE Draw_Bitmap, EAX, ptr_BMP_LOAD, lPitch, screen_bpp

;===================================
; Unlock the back buffer
;===================================
INVOKE DD_Unlock_Surface, lpddsback

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

;=====================================
; Everything okay so flip displayed
; surfaces and make loading visible
;======================================
INVOKE DD_Flip

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

727A Game . . . Well, Sort Of

TeamLRN

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Game_Init ENDP
;##
; END Game_Init
;##

This function plays the most important part in our game so far. In this routine, we
make the call to initialize Direct Draw. If this succeeds, we load in our loading
game bitmap file from disk. After that, we lock the back buffer. This is very impor-
tant to do since we will be accessing the memory directly. After it is locked, we can
draw our bitmap onto the surface and then unlock it. The final call in our proce-
dure is to flip the buffers. Since we have the bitmap on the back buffer, we need it
to be visible. Therefore, we exchange the buffers. The front goes to the back, and
the back goes to the front. At the completion of this call, our bitmap is now visible
onscreen. One thing that may be confusing here is why we didn’t load the bitmap
into a Direct Draw surface. The reason is that we will only be using it once, so there
was no need to waste a surface.

Next on our list of things to code is the Windows callback function itself. This func-
tion is how we handle messages in Windows. Anytime we want to handle a message,
the code will go in this function. Take a look at how we have it set up currently.

;##
; Main Window Callback Procedure — WndProc
;##
WndProc PROC hWin :DWORD,

uMsg :DWORD,
wParam :DWORD,
lParam :DWORD

728 20. Game Programming Assembly Style

TeamLRN

.IF uMsg == WM_COMMAND
;===========================
; We don’t have a menu, but
; if we did this is where it
; would go!
;===========================

.ELSEIF uMsg == WM_KEYDOWN
;=======================================
; Since we don’t have a Direct Input
; system coded yet we will just check
; for escape to be pressed
;=======================================
MOV EAX, wParam
.IF EAX == VK_ESCAPE

;===========================
; Kill the application
;===========================
INVOKE PostQuitMessage,NULL

.ENDIF

;==========================
; We processed it
;==========================
return 0

.ELSEIF uMsg == WM_DESTROY
;===========================
; Kill the application
;===========================
INVOKE PostQuitMessage,NULL
return 0

.ENDIF

;===
; Let the default procedure handle the message
;===
INVOKE DefWindowProc,hWin,uMsg,wParam,lParam

729A Game . . . Well, Sort Of

TeamLRN

RET

WndProc endp
;##
; End of Main Windows Callback Procedure
;##

The code is fairly self-explanatory. So far, we only deal with two messages: the
WM_KEYDOWN message and the WM_DESTROY message. We process the WM_KEYDOWN message
so that the user can hit Esc and exit our game. We will be coding a Direct Input sys-
tem, but until then we needed a way to quit the game. The one thing you should
notice is that any messages we do not deal with are handled by the default process-
ing function: DefWindowProc(). This function is defined in Windows already. You just
need to call it whenever you do not handle a message.

We aren’t going to look at the game’s main function simply because it is empty. We
haven’t added any solid code to our game loop yet. Everything is prepared, how-
ever, so that next time we can get to it. That leaves us with the shutdown code:

;##
; Game_Shutdown Procedure
;##
Game_Shutdown PROC

;==
; This shuts our game down and frees memory we allocated
;==

;===========================
; Shutdown DirectDraw
;===========================
INVOKE DD_ShutDown

;==========================
; Free the bitmap memory
;==========================
INVOKE GlobalFree, ptr_BMP_LOAD

done:
;===================
; We completed
;===================

730 20. Game Programming Assembly Style

TeamLRN

return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Game_Shutdown ENDP
;##
; END Game_Shutdown
;##

Here we make the call to shut down our Direct Draw library, and we also free the
memory we allocated earlier for the bitmap. We could have freed the memory else-
where, and maybe next time we will. Things are a bit easier to understand, how-
ever, when all of your initialization and cleanup code is in one place.

As you can see, there isn’t that much game specific code in our game source code.
The majority resides in our modules, such as Direct Draw. This allows us to keep
our code clean, and any changes we may need to make later on are much easier
since things aren’t hard-coded inline. Anyway, the end result of what you have just
seen is a loading screen that is displayed until the user hits the Esc key. And that—
primitive though it may be—is our game so far.

Conclusion
We covered a lot of material in this section. We now have a bitmap library and a
Direct Draw library for our game. These are core modules that you should be able
to use in any game of this type. By breaking up the code like this, we are able to
keep our game code separate from the library code. You do not want any module
to be dependent on another module. Furthermore, the way we designed these
modules will carry over into our other modules. Consistency in code is a very good
thing.

Next we continue our module development with Direct Input and the creation of a
menu system. These two things should keep us busy.

731Conclusion

TeamLRN

WIN32 ASM—PART 3
Now, if I remember correctly, which I do, the preceding section completed our
loading game screen for SPACE-TRIS. This means we have a Direct Draw library
and a bitmap library but not much else. We had to use the WM_KEYDOWN message to
process our input, and we just got the privilege of looking at a loading game
screen. That was it.

Well, that’s about to change. First, we are going to get a Direct Input library devel-
oped. After that, we will code some advanced timing routines and develop the
menu code. Finally, we will take a look at the new game loop and how it had to be
changed.

We will be covering a lot of code in this part of the chapter, so you may want to
review the basic concepts in earlier sections if you are new to Win32 ASM program-
ming. Otherwise, keep plugging along, and we will get started with our Direct
Input routines.

Direct Input Is a Breeze
Are you ready? Good. For all intents and purposes, Direct Input code has the same
basic format as our Direct Draw code. The more you use DirectX, the more you will
notice that it’s all the same, just with different parameters. Anyway, we will want to
put together an initialization routine and a shutdown routine. We also are going to
look at the coding of a routine to handle reading the keyboard. The accompanying
code has routines for the mouse in it as well, but because we don’t care about the
mouse in our game, I won’t be covering it. It is there, however, so feel free to use it
if you’d like.

To start with, I guess you are going to want to see the Direct Input initialization
routine.

;##
; DI_Init Procedure
;##

732 20. Game Programming Assembly Style

TeamLRN

DI_Init PROC

;===
; This function will setup Direct Input
;===

;=============================
; Create our direct Input obj
;=============================
INVOKE DirectInputCreate, hInst, DIRECTINPUT_VERSION, ADDR lpdi,0

;=============================
; Test for an error creating
;=============================
.IF EAX != DI_OK

JMP err
.ENDIF

;=============================
; Initialize the keyboard
;=============================
INVOKE DI_Init_Keyboard

;=============================
; Test for an error in init
;=============================
.IF EAX == FALSE

JMP err
.ENDIF

;=============================
; Initialize the mouse
;=============================
INVOKE DI_Init_Mouse

;=============================
; Test for an error in init
;=============================
.IF EAX == FALSE

JMP err
.ENDIF

733Direct Input Is a Breeze

TeamLRN

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; Give the error msg
;===================
INVOKE MessageBox, hMainWnd, ADDR szNoDI, NULL, MB_OK

;===================
; We didn’t make it
;===================
return FALSE

DI_Init ENDP
;##
; END DI_Init
;##

This code isn’t very complex at all. It starts by creating the main Direct Input
object. This is the object you use to derive all of the device objects and such. Just a
single call is all it takes. We pass it the address of the variable, the version of Direct
Input to use, and the instance of our application. Then we call routines to set up
our keyboard and mouse. Thus, we need to take a peek at the routine that initial-
izes the keyboard.

;##
; DI_Init_Keyboard Procedure
;##
DI_Init_Keyboard PROC

;===
; This function will initialize the keyboard
;===

;===========================
; Now try and create it
;===========================

734 20. Game Programming Assembly Style

TeamLRN

DIINVOKE CreateDevice, lpdi, ADDR GUID_SysKeyboard, ADDR lpdikey, 0

;============================
; Test for an error creating
;============================
.IF EAX != DI_OK

JMP err
.ENDIF

;==========================
; Set the coop level
;==========================
DIDEVINVOKE SetCooperativeLevel, lpdikey, hMainWnd, \

DISCL_NONEXCLUSIVE OR DISCL_BACKGROUND

;============================
; Test for an error querying
;============================
.IF EAX != DI_OK

JMP err
.ENDIF

;==========================
; Set the data format
;==========================
DIDEVINVOKE SetDataFormat, lpdikey, ADDR c_dfDIKeyboard

;============================
; Test for an error querying
;============================
.IF EAX != DI_OK

JMP err
.ENDIF

;===================================
; Now try and acquire the keyboard
;===================================
DIDEVINVOKE Acquire, lpdikey

735Direct Input Is a Breeze

TeamLRN

;============================
; Test for an error acquiring
;============================
.IF EAX != DI_OK

JMP err
.ENDIF

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

DI_Init_Keyboard ENDP
;##
; END DI_Init_Keyboard
;##

The first thing this code does is attempt to create the keyboard device. Remember
that, like the Direct Draw object, the Direct Input object is generic, and other
things must be created off of it (such as keyboard devices). Once you have created
the object, you will need to set the cooperative level on it. In our case, we would
like to have exclusive use of it.

Now that the keyboard’s cooperative level set is set, we can inform Direct Input of
the type of data it will receive. For the keyboard, this is c_dfDIKeyboard. The final
step in initializing our keyboard is acquiring it. This is the step that most people
tend to forget. Currently, we have an object that we have told to accept keyboard
data and take exclusive access of the keyboard. But we have not told it that it has
permission to take control of the object. So, we make a call and that’s that.

We are now ready to use the application. That means we need to have a look at the
code to read the keyboard—unless, of course, you would prefer to simply make a
call and never see the code in your life. Oh my! What kind of programmer are you?
I can’t believe you just thought that! Here’s the code anyway:

736 20. Game Programming Assembly Style

TeamLRN

;##
; DI_Read_Keyboard Procedure
;##
DI_Read_Keyboard PROC

;==
; This function will read the keyboard and set the input state
;==

;============================
; Read if it exists
;============================
.IF lpdikey != NULL

;========================
; Now read the state
;========================
DIDEVINVOKE GetDeviceState, lpdikey, 256, ADDR keyboard_state
.IF EAX != DI_OK

JMP err
.ENDIF

.ELSE
;==
; keyboard isn’t plugged in, zero out state
;==
DIINITSTRUCT ADDR keyboard_state, 256
JMP err

.ENDIF

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

737Direct Input Is a Breeze

TeamLRN

DI_Read_Keyboard ENDP
;##
; END DI_Read_Keyboard
;##

This code first tests to see whether we have a valid object. If not, it could be for a
number of reasons, such as the keyboard not being plugged in or maybe a bad
port. This is unlikely to happen, but it’s better to be safe than sorry.

If we are valid, the code reads the device. In the case of the keyboard, all entries
are cleared and are only set if the key has been actively pressed down at the time of
the read. If so, the keyboard constant associated with that key is set to TRUE; other-
wise, it is left as FALSE. The key constants are defined in the DInput.inc file.
Examples are DIK_J, DIK_N, and so on.

Finally, the only thing left to do is shut down the Direct Input stuff. That can be
done with the following routine:

;##
; DI_ShutDown Procedure
;##
DI_ShutDown PROC

;===
; This function will close down Direct Input
;===

;=============================
; Shutdown the Mouse
;=============================
DIDEVINVOKE Unacquire, lpdimouse
DIDEVINVOKE Release, lpdimouse

;=============================
; Shutdown the Keyboard
;=============================
DIDEVINVOKE Unacquire, lpdikey
DIDEVINVOKE Release, lpdikey

;==================================
; Shutdown the Direct Input object
;==================================

738 20. Game Programming Assembly Style

TeamLRN

DIINVOKE Release, lpdi

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

DI_ShutDown ENDP
;##
; END DI_ShutDown
;##

This code unacquires the devices we acquired during initialization and then
releases them. It then releases the main Direct Input object that we created. That is
all that needs to be done during the shutdown process.

Direct Input is one of the easiest portions of DirectX to write code in. There are
very few calls you need to make, and most of them are really straightforward (with
the exception of that “acquire” thing). The advantage is that we now have a high-
performance input system to use and do not have to rely on Windows messages to
bring us our needed information.

With Direct Input completely out of the way, we have what we need to code our
menu system. Before we get to that, however, let’s make a brief sojourn to the land
of timing to see what kind of havoc we can INVOKE.

Timing and Windoze
Timing. Without it, your game will do some very weird things. From roller-coaster
frame rates to objects that move too quickly, it all can be traced back to timing.
Unfortunately, finding good documentation on timing in Windows can be a chore.
Typically, you will uncover a function named GetTickCount(). Since this function
deals with milliseconds, it appears to be perfect for our needs. The only problem is
that it’s very inaccurate and unreliable. So, we dig a little further and come up with

739Timing and Windoze

TeamLRN

timeGetTime() in the multimedia library of Windows. This is a much better function,
it is more reliable, and it still works with milliseconds, which is what we need.

It kind of makes you wonder, though. If we are writing high-performance games,
shouldn’t we have a “high-performance” timer? Indeed, we do. Getting it to work
nicely, however, can be a bit of a trick. But we will cover that in a moment.

First, what are our functionality needs? Obviously, we will want a function to initial-
ize our timing system. We also will want one to return the current time and one to
delay for the amount of time you pass in to it. Then we will want to add timer rou-
tines to control our frame rate. Of course, we will need one to start a timer and
one to wait until the specified amount of time has elapsed. That should be it.

Here is the code for the Init_Time() function:

;##
; Init_Time Procedure
;##
Init_Time PROC

;===
; This function will find out if we can use the HP timer
; and will set the needed vars to use it
;===

;===
; Get the timer Frequency, at least try to.
;===
INVOKE QueryPerformanceFrequency, ADDR HPTimerVar

.IF EAX == FALSE
;===================
; Set to use no HP
;====================
MOV UseHP, FALSE
JMP done

.ENDIF

;==
; We can use it so set the Var and Freq
;==

740 20. Game Programming Assembly Style

TeamLRN

MOV UseHP, TRUE
MOV EAX, HPTimerVar
MOV HPTimerFreq, EAX
MOV ECX, 1000
XOR EDX, EDX
DIV ECX
MOV HPTicksPerMS, EAX

done:
;===================
; We completed
;===================
return TRUE

Init_Time ENDP
;##
; END Init_Time
;##

This code performs the task of finding out whether we have a high-performance
timer on the system to use. If not, it falls back on timeGetTime() since that is guaran-
teed to be there. We start out by calling the function QueryPerformaceFrequency(). If
this succeeds, we have a high-performance timer on the system, and this call
returns the frequency of it. If not, we set the things up to not use the HP timer.

Presuming we do have one, the code saves the timer frequency and calculates the
number of ticks per millisecond. The reason for this value is that the HP timer may
have a resolution far smaller than 1 millisecond. So, we need to determine how
many ticks of the HP timer are equal to 1 millisecond. That is all the setup proce-
dure needs to do to get things ready.

The next function we will cover is Start_Time(). This function is used to start a timer
with the variable you pass in to it. This will be used to control our frame rate, as
you will see later.

;##
; Start_Time Procedure
;##
Start_Time PROC ptr_time_var:DWORD

;===
; This function will start our timer going and store

741Timing and Windoze

TeamLRN

; the value in a variable that you pass it the ADDR of
;===

;==
; Are we using the Highperformance timer
;==
.IF UseHP == TRUE

;==================================
; Yes. We are using the HP timer
;==================================
INVOKE QueryPerformanceCounter, ADDR HPTimerVar
MOV EAX, HPTimerVar
MOV EBX, ptr_time_var
MOV DWORD PTR [EBX], EAX

.ELSE
;==================================
; No. Use timeGetTime instead.
;==================================

;==================================
; Get our starting time
;==================================
INVOKE timeGetTime

;=================================
; Set our variable
;=================================
MOV EBX, ptr_time_var
MOV DWORD PTR [EBX], EAX

.ENDIF

done:
;===================
; We completed
;===================
return TRUE

Start_Time ENDP

742 20. Game Programming Assembly Style

TeamLRN

;##
; END Start_Time
;##

The code is relatively simple. If we have access to the high-performance timer, we
make a call to QueryPerformanceCounter(). If not, we make the call to timeGetTime()
instead. The only thing that may be confusing is the notation used to store the
value that these functions return:

MOV EBX, ptr_time_var
MOV DWORD PTR [EBX], EAX

What this code does is move the value of ptr_time_var into the register EBX. In this
case, ptr_time_var is the address of a variable that was passed in to hold the starting
time. Next, the code moves the value of register EAX into the address that EBX con-
tains. In assembly, that is what [XXX] means—“the address of”. The DWORD PTR will
let the assembler know that we will be moving a DWORD and that [EBX] is a pointer.
This will effectively store the value EAX in the location pointed to by ptr_time_var.

The final timing function we will go over here is Wait_Time(). This is the sister func-
tion for Start_Time(). Together, they are used to control our game’s frame rate.

;##
; Wait_Time Procedure
;##
Wait_Time PROC time_var:DWORD, time:DWORD

;===
; This function will wait for the passed time in MS based
; on the distance from the passed start time. It returns
; time it took the loop to complete in MS
;===

;==
; Are we using the Highperformance timer
;==
.IF UseHP == TRUE

;==================================
; Yes. We are using the HP timer
;==================================

743Timing and Windoze

TeamLRN

;==================================
; Adjust time for frequency
;==================================
MOV EAX, 1000
MOV ECX, time
XOR EDX, EDX
DIV ECX
MOV ECX, EAX
MOV EAX, HPTimerFreq
XOR EDX, EDX
DIV ECX
MOV time, EAX

;================================
; A push so we can pop evenly
;================================
PUSH EAX

again1:
;================================
; Pop last time or misc push off
;================================
POP EAX

;======================================
; Get the current time
;======================================
INVOKE QueryPerformanceCounter, ADDR HPTimerVar
MOV EAX, HPTimerVar

;======================================
; Subtract from start time
;======================================
MOV ECX, time_var
MOV EBX, time
SUB EAX, ECX

;======================================
; Save how long it took
;======================================
PUSH EAX

744 20. Game Programming Assembly Style

TeamLRN

;======================================
; Go up and do it again if we were not
; yet to zero or less than the time
;======================================
SUB EAX, EBX
JLE again1

;==
; Pop the final time off of the stack
;==
POP EAX

;==
; Adjust it to MS
;==
MOV ECX, HPTicksPerMS
XOR EDX, EDX
DIV ECX

.ELSE
;==================================
; No. Use timeGetTime instead.
;==================================

;================================
; A push so we can pop evenly
;================================
PUSH EAX

again:
;================================
; Pop last time or misc push off
;================================
POP EAX

;======================================
; Get the current time
;======================================
INVOKE timeGetTime

745Timing and Windoze

TeamLRN

;======================================
; Subtract from start time
;======================================
MOV ECX, time_var
MOV EBX, time
SUB EAX, ECX

;======================================
; Save how long it took
;======================================
PUSH EAX

;======================================
; Go up and do it again if we were not
; yet to zero or less than the time
;======================================
SUB EAX, EBX
JLE again

;==
; Pop the final time off of the stack
;==
POP EAX

.ENDIF

;=======================
; return from here
;=======================
RET

Wait_Time ENDP
;##
; END Wait_Time
;##

This routine is probably the most complex of the timing routines. What it does is
wait for the passed-in amount of time to elapse past the starting time that was
passed in. In other words, if your start time was 100 and you told it to wait for 50,
the function would not return until the current time was >= 150. It returns the
actual elapsed time between finish and start.

746 20. Game Programming Assembly Style

TeamLRN

Let’s view this code one section at a time.

First, if we can use the HP timer, we do. If not, we fall back to the default timer.
This code first converts the passed-in time to the same frequency as the HP timer.
It does this by dividing 1,000 by the passed time. This gives it a number relative to
times per second. Then it divides the frequency by that number to retrieve the
equivalent amount of time needed at our HP frequency level. This is done by way
of setup because it determines the “finish” time for the function. It saves this value
on the stack so that we can pop evenly in our loop.

Next, it enters our main compare loop. It
POPs the value of elapsed time off the
stack to clear it.

We then retrieve the current value of the
counter. We subtract the start value from
the current value to calculate the time
that has elapsed so far. We then save this “time” by pushing it onto the stack.

Now we can subtract the wait time from the elapsed time. If the result is less than
zero, we haven’t waited long enough, so we do the preceding step again.
Otherwise, we continue on down to the next step.

Here we POP the elapsed time off the stack and divide that by however many ticks
were in a millisecond. That allows us to return a millisecond value even if we use
the high-performance timer.

The code for if we do not have a high-performance timer does the same exact
thing, but it doesn’t perform the conversions because the function is in millisec-
onds by default and can’t be changed.

That’s it for timing. The other two functions merely perform variations of the two
routines we just covered. Therefore, I am not going to cover those. I’ll leave it to
you to take a look-see at them and comprehend what they do.

The Menu System
A menu can be a complex thing in a game. Lucky for us, it’s not. The general idea
is to provide some sort of selection process for features of your game. Most of the
time, this will consist of drawing a bitmap and having another “selector” bitmap
drawn on top to choose an item or feature for the game. I have chosen to do this a
little bit differently. Instead of having a selector, I am simply going to have certain

747The Menu System

NOTE
During the first iteration, this value is
not the elapsed time but the finish
time.

TeamLRN

keys correspond to the choices in the menu, kind of like the good old days of DOS
but different.

The other important consideration is how you want to set up your system. Do you
want the code to go into a “menu loop” and never return until the user makes a
selection? Or do you want to call the menu function over and over again? In the
case of Windows, the second choice is a million times better since we need to
process messages. If we had coded in the first manner, the user could hit Alt+Tab
while we are in the menu code, and we would potentially crash at some point. So,
we are going to set up the second type of system.

The initialization and shutdown routines are noth-
ing you haven’t seen before. All they do is load in
our two menu bitmaps. One of them is for the
main menu, and one is for the file menu. The shut-
down code simply frees their associated memory
that we allocated.

The interesting code is in the Process_XXXX_Menu() functions. We will look in detail at
the Process_Main_Menu() function. So, as usual, here is the code for that procedure:

;##
; Process_Main_Menu Procedure
;##
Process_Main_Menu PROC

;===
; This function will process the main menu for the game
;===

;=================================
; Local Variables
;=================================

;===================================
; Lock the DirectDraw back buffer
;===================================
INVOKE DD_Lock_Surface, lpddsback, ADDR lPitch

;============================
; Check for an error
;============================

748 20. Game Programming Assembly Style

NOTE
The game does not have
Alt+Tab support yet.This
will come in a later version
of the code in this chapter.

TeamLRN

.IF EAX == FALSE
;===================
; Jump to err
;===================
JMP err

.ENDIF

;===================================
; Draw the bitmap onto the surface
;===================================
INVOKE Draw_Bitmap, EAX, ptr_MAIN_MENU, lPitch, screen_bpp

;===================================
; Unlock the back buffer
;===================================
INVOKE DD_Unlock_Surface, lpddsback

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

;=====================================
; Everything okay so flip displayed
; surfaces and make loading visible
;======================================
INVOKE DD_Flip

;============================
; Check for an error
;============================
.IF EAX == FALSE

749The Menu System

TeamLRN

;===================
; Jump to err
;===================
JMP err

.ENDIF

;==
; Now read the keyboard to see if they have pressed
; any keys corresponding to our menu
;==
INVOKE DI_Read_Keyboard

;=============================
; Did they press a valid key
;=============================
.IF keyboard_state[DIK_N]

;======================
; The new game key
;======================
return MENU_NEW

.ELSEIF keyboard_state[DIK_G]
;======================
; The game files key
;======================
return MENU_FILES

.ELSEIF keyboard_state[DIK_R]
;======================
; Return to game key
;======================
return MENU_GAME

.ELSEIF keyboard_state[DIK_E]
;======================
; The exit game key
;======================
return MENU_EXIT

750 20. Game Programming Assembly Style

TeamLRN

.ENDIF

done:
;===================
; We completed w/o
; doing anything
;===================
return MENU_NOTHING

err:
;===================
; We didn’t make it
;===================
return MENU_ERROR

Process_Main_Menu ENDP
;##
; END Process_Main_Menu
;##

An interesting routine, isn’t it? Okay . . . maybe not. If interesting is what you want,
though, I doubt you will find it in code (unless you are really weird like I am).
Anyway, what does it do?

The answer in simple terms is this: It starts out by locking the back buffer and
drawing our menu bitmap onto it. Then it unlocks the back buffer and flips sur-
faces so that we can see it. This is boring, not to mention the fact that it is nothing
new. But wait . . . there on the next line. See it? Yes! Something we haven’t covered!

We get to call one of our Direct Input routines, DI_Read_Keyboard(). If you recall, this
function gets the state of every key on the keyboard. So, when we make this call,
everything is set for us to check and see which keys were pressed. We do this by just
checking the key values we care about. They can be in any order you want, but be
aware that, the way it is coded right now, the code will only perform the code for
one value, even if two valid keys are hit. This is because the keys are in one huge
IF-ELSE statement. So, at the first valid entry, the code falls in, executes, and
leaves—forgetting all about the other keys it needed to check. Thus, if you
want/need to support multiple key presses, make every “character check” a sepa-
rate IF statement and set flags so that you can process based on the combination
the user entered.

751The Menu System

TeamLRN

We check each key on which we want information. If the key has been pressed, we
return a value that corresponds to what was pressed. For example, if the user hits
the N key for a new game, we will return the value MENU_NEW to the caller. These val-
ues are known as equates and are defined at the top of the code module in the sec-
tion entitled “EQUATES.” They are the equivalent of #DEFINE in C. They do nothing
more than let you, as a programmer, associate a value to a string of characters for
readability.

Finally, if nothing was pressed that we care about, we just return a value reflecting
that. The same applies if an error occurs in the code.

This same method has been used for the Process_File_Menu() function. There are
many other ways to handle menus, and a little creativity will expose them to you.
This setup is fairly straightforward, however, and I kind of like it. So, that is what we
are using. We have now tied the Direct Input code to our menu system. All that we
have left to do is tie the menu and timer code we just wrote to our main game loop
somehow.

Putting the Pieces Together
We are almost finished. It’s time to tie all of the little things we did together into
one, nice, neat package. So, we will start off with the game initialization routine.

;##
; Game_Init Procedure
;##
Game_Init PROC

;===
; This function will set up the game
;===

;==
; Initialize Direct Draw — 640, 480, bpp
;==
INVOKE DD_Init, 640, 480, screen_bpp

;====================================
; Test for an error
;====================================
.IF EAX == FALSE

752 20. Game Programming Assembly Style

TeamLRN

;========================
; We failed so leave
;========================
JMP err

.ENDIF

;======================================
; Read in the bitmap and create buffer
;======================================
INVOKE Create_From_SFP, ADDR ptr_BMP_LOAD, ADDR szLoading, screen_bpp

;====================================
; Test for an error
;====================================
.IF EAX == FALSE

;========================
; We failed so leave
;========================
JMP err

.ENDIF

;===================================
; Lock the DirectDraw back buffer
;===================================
INVOKE DD_Lock_Surface, lpddsback, ADDR lPitch

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

753Putting the Pieces Together

TeamLRN

;===================================
; Draw the bitmap onto the surface
;===================================
INVOKE Draw_Bitmap, EAX, ptr_BMP_LOAD, lPitch, screen_bpp

;===================================
; Unlock the back buffer
;===================================
INVOKE DD_Unlock_Surface, lpddsback

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

;=====================================
; Everything okay so flip displayed
; surfaces and make loading visible
;======================================
INVOKE DD_Flip

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

;======================================
; Initialize Direct Input
;======================================

754 20. Game Programming Assembly Style

TeamLRN

INVOKE DI_Init

;====================================
; Test for an error
;====================================
.IF EAX == FALSE

;========================
; We failed so leave
;========================
JMP err

.ENDIF

;==
; Initialize the timing system
;==
INVOKE Init_Time

;======================================
; Initialize Our Menus
;======================================
INVOKE Init_Menu

;====================================
; Test for an error
;====================================
.IF EAX == FALSE

;========================
; We failed so leave
;========================
JMP err

.ENDIF

;===================================
; Set the game state to the menu
; state since that is our first stop
;===================================
MOV GameState, GS_MENU

755Putting the Pieces Together

TeamLRN

;==========================
; Free the bitmap memory
;==========================
INVOKE GlobalFree, ptr_BMP_LOAD

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Game_Init ENDP
;##
; END Game_Init
;##

This routine has had a little bit of alteration since you last saw it. First we added
some calls. We added one to initialize our timing system, one for our menu system,
and one for our Direct Input library. We also deleted the loading game screen at
the end of the routine. This is so that we do not have memory being used by a
bitmap that will never be seen again. The main thing to notice, though, is the addi-
tion of a global variable called GameState. This variable holds the current state of the
game. At the end of the game initialization routine, we set this variable to the value
GS_MENU. This lets our main game loop know what state to process. There are equiva-
lents for all states in the game.

That’s pretty much all that has been altered for the initialization. The shutdown
code has been altered to call the shutdown routines for the Direct Input module
and for the menu module. The only other changes we had to make were in the
main game loop. Actually, we didn’t have to change anything since the routine was
empty the last time we saw it.

Here is the new main game loop:

;##
; Game_Main Procedure
;##

756 20. Game Programming Assembly Style

TeamLRN

Game_Main PROC

;==
; This is the heart of the game it gets called over and over
; even if we process a message!
;==

;===
; Local Variables
;===
LOCAL StartTime :DWORD

;====================================
; Get the starting time for the loop
;====================================
INVOKE Start_Time, ADDR StartTime

;==
; Take the proper action(s) based on the GameState variable
;==
.IF GameState == GS_MENU

;=================================
; We are in the main menu state
;=================================
INVOKE Process_Main_Menu

;=================================
; What did they want to do
;=================================
.IF EAX == MENU_NOTHING

;=================================
; They didn’t select anything yet
; so don’t do anything
;=================================

.ELSEIF EAX == MENU_ERROR
;==================================
; This is where error code would go
;==================================

.ELSEIF EAX == MENU_NEW

757Putting the Pieces Together

TeamLRN

;==================================
; They want to start a new game
;==================================

.ELSEIF EAX == MENU_FILES
;==================================
; They want the file menu
;==================================
MOV GameState, GS_FILE

.ELSEIF EAX == MENU_GAME
;==================================
; They want to return to the game
;==================================

.ELSEIF EAX == MENU_EXIT
;==================================
; They want to exit the game
;==================================
MOV GameState, GS_EXIT

.ENDIF

.ELSEIF GameState == GS_FILE
;=================================
; We are in the file menu state
;=================================
INVOKE Process_File_Menu

;=================================
; What did they want to do
;=================================
.IF EAX == MENU_NOTHING

;=================================
; They didn’t select anything yet
; so don’t do anything
;=================================

.ELSEIF EAX == MENU_ERROR

758 20. Game Programming Assembly Style

TeamLRN

;==================================
; This is where error code would go
;==================================

.ELSEIF EAX == MENU_LOAD
;==================================
; They want to load game
;==================================

.ELSEIF EAX == MENU_SAVE
;==================================
; They want to save their game
;==================================

.ELSEIF EAX == MENU_MAIN
;==================================
; They want to return to main menu
;==================================
MOV GameState, GS_MENU

.ENDIF

.ELSEIF GameState == GS_PLAY
;=================================
; We are in the gameplay mode
;=================================

.ELSEIF GameState == GS_DIE
;=================================
; We died so perform that code
;=================================

.ENDIF

;===================================
; Wait to synchronize the time
;===================================
INVOKE Wait_Time, StartTime, sync_time

759Putting the Pieces Together

TeamLRN

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Game_Main ENDP
;##
; END Game_Main
;##

The first thing you should notice about the code is that it is wrapped in calls to
Start_Time() at the top and Wait_Time() at the bottom. These calls control our frame
rate. I have it set to 25fps, or 40 milliseconds. Thus, 25 frames per second (or
thereabouts) is the fastest our game will ever run. This is one of the most basic
methods of game control, and it basically locks our game to a reasonable rate so
that it will run the same on all systems that are powerful enough to reach 25fps.
Weaker systems are out of luck, but those should be few and far between with this
style of game.

Next, we have one large IF-ELSE statement that selects the proper game state based
on our global variable that we dedicated for that purpose. So, whether we want to
run a menu or perform the death code, it is all right there to manage it.

Inside our GS_MENU and GS_FILE states is their corresponding code. They make the
calls to the correct menu-processing function and react based on the value
returned to them. There’s nothing fancy in this section, just simple IF-ELSE state-
ments.

The new game loop is nothing more than a state manager. It simply looks at what
the current state is and performs the code based on that state. All games have
something very (if not exactly) similar in their core. This is the heart of the game,
and without it, you would have nothing more than inactive modules, just like we
had before this section.

760 20. Game Programming Assembly Style

TeamLRN

Conclusion
Yes! We have a really nice, clean setup that is just begging for the actual game code.
I, for one, am getting tired of all these setup modules.

In the next section, we will cover some more advanced material. In fact, we will hit
on almost everything involved in the game play code itself, including basic anima-
tion, the loop, and structure setup.

The other thing I should mention is that this game is incomplete. I know that this
is obvious, but many of you are probably wondering why there aren’t any transi-
tions, sounds, or cool FX in the game yet. The answer is because we haven’t gotten
to it, and we have to crawl before we can walk. Honestly, I plan to cover it all. So,
for those of you who are more advanced and think I am going way too slow, just
hang in there.

761Conclusion

TeamLRN

WIN32 ASM—PART 4
To this point, we have made some good progress. We have a nice framework for
our game to sit in, and more importantly, we are all set to create the actual game.
Coincidentally, that’s just what we are going to do in this section. So, instead of just
“good” progress, be prepared for some extraordinary progress.

Here’s the current lineup:

Leading off today is Animation. He is a very important player on our team, so we
want him up first. Without him, we won’t be able to play at all.

Next, we have Mr. Structures. Mr. S, as he is often called, has the job of keeping
everything organized. He is the guy in the dugout often stacking things or keeping
track of statistics. He plays a more important role later in the season when we start
playing “real games” and keeping score.

Third, we have the New Shape maker. He is responsible for setting things up for
the later players. He is often overlooked since he works behind the scenes.

Batting cleanup for us is Update. Update is a big boy. He has many responsibilities
but does a great job of delegating things he needs to other people. Often known as
our power hitter, he is the most recognized of all members.

Batting fifth and sixth for us are twins Move Shape and Rotate Shape. They are the
ones we rely on to keep things going. If they strike out, we know something has
gone amiss somewhere along the line.

The seventh in our lineup is Line Test. He typically will clear the bases . . . but only
if certain conditions are met.

The eighth and ninth positions are filled by another set of twins, Draw Grid and
Draw Shape. They are the publicity freaks on the team, and they make sure the
fans can see everything that is happening.

Our Manager is of course “the loop.” He is the leader and holds everything
together. It is his job to dictate what needs to be done and to make sure nobody
fails. He will not hesitate to act on any error and is very demanding; he likes to
make sure everything is done on his clock.

762 20. Game Programming Assembly Style

TeamLRN

We have a good, solid team and are ready to take a look at their statistics, back-
ground, and of course, how they think. Are you ready? Play ball!

Stepping to the Plate
Animation is a very complicated player. He can play in many different ways and has
numerous styles. On our team, he has adopted the style commonly referred to as
“preset.” This means that everything he does was determined before the game even
started. This occurred in the initialization section, of course.

In our game, we have single blocks that are selected at random. These random
blocks are used with random shapes. The shapes that exist are the same ones as in
the original Tetris. The animation sequences needed by the shapes are relatively
simple—you merely rotate the shapes. Therefore, I had the following three choices
when deciding how to animate them:

• I could make bitmaps of every shape prebuilt and rotate them at runtime as
needed.

• I could do the same as in the preceding except prerotate them and then save
many bitmaps and cycle through them at runtime as they are needed.

• I could build every shape from a block and use some sort of table to tell me
how the shape is to be built for that frame.

Because of speed and size, I decided to go
with the third method. It is a little bit more
complex, but I think the speed gain and size
drop are worth it.

Now that we know what we want, how do we
accomplish it? The first thing I did was sit
down with a piece of paper to determine the
patterns available. Then I took those patterns, encapsulated them into mini grids,
and made them represent either ON or OFF states, depending on whether a block was
in that position. Here is an example for a square:

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

763Stepping to the Plate

NOTE
As a programmer, if you have the
capability to make a piece of code
more robust, more user friendly,
smaller, or faster, then do so.

TeamLRN

Notice that the grid is 4×4. This is because the largest a shape can be is four
squares wide or tall. The 1s are the places where the blocks are, and the zeros are
empty locations.

With that gigantic list built, I needed a way to organize them into lookup tables.
The decision was to pad the left of each line with four zeros and thus get an 8×4
grid. I could then use an array of 4 bytes for each frame where a single bit repre-
sented a block. This caused a 2-byte waste for every block, yet it made the code
about 100,000 times easier to understand.

The table access is really simple. We just offset into the table according to the
shape we want. Then we offset into that address by the frame we want. Every shape
has four frames no matter what, and all are aligned to 4 bytes. So, we can easily
adjust our “frame pointer” with a few simple arithmetic operations.

This is how Animation works in our game. You simply tell him when to adjust to a
new frame and he does. Need a new shape? No problem, just point him where it is,
and he will know what to do.

Here is our internal lookup table:

;===
; Here is our shape table it contains every possible
; combination of values for the different shapes.
; In order to give us the correct shape for every
; possible rotation.
;===

ShapeTable \ ; Here is our square
\

DB 00000000b ; Position 1
DB 00000110b
DB 00000110b
DB 00000000b

DB 00000000b ; Position 2
DB 00000110b
DB 00000110b
DB 00000000b

DB 00000000b ; Position 3
DB 00000110b
DB 00000110b
DB 00000000b

764 20. Game Programming Assembly Style

TeamLRN

DB 00000000b ; Position 4
DB 00000110b
DB 00000110b
DB 00000000b

; Here is our Line

DB 00001000b ; Position 1
DB 00001000b
DB 00001000b
DB 00001000b

DB 00000000b ; Position 2
DB 00000000b
DB 00000000b
DB 00001111b

DB 00000001b ; Position 3
DB 00000001b
DB 00000001b
DB 00000001b

DB 00001111b ; Position 4
DB 00000000b
DB 00000000b
DB 00000000b

; Here is our Pyramid

DB 00001110b ; Position 1
DB 00000100b
DB 00000000b
DB 00000000b

DB 00001000b ; Position 2
DB 00001100b
DB 00001000b
DB 00000000b

DB 00000000b ; Position 3
DB 00000100b
DB 00001110b

765Stepping to the Plate

TeamLRN

DB 00000000b

DB 00000001b ; Position 4
DB 00000011b
DB 00000001b
DB 00000000b

; Here is our L

DB 00001000b ; Position 1
DB 00001000b
DB 00001100b
DB 00000000b

DB 00000000b ; Position 2
DB 00000010b
DB 00001110b
DB 00000000b

DB 00000110b ; Position 3
DB 00000010b
DB 00000010b
DB 00000000b

DB 00001110b ; Position 4
DB 00001000b
DB 00000000b
DB 00000000b

; Here is our Backwards L

DB 00001100b ; Position 1
DB 00001000b
DB 00001000b
DB 00000000b

DB 00000000b ; Position 2
DB 00001000b
DB 00001110b
DB 00000000b

DB 00000001b ; Position 3
DB 00000001b

766 20. Game Programming Assembly Style

TeamLRN

DB 00000011b
DB 00000000b

DB 00001110b ; Position 4
DB 00000010b
DB 00000000b
DB 00000000b

; Here is our Backwards Z

DB 00000100b ; Position 1
DB 00000110b
DB 00000010b
DB 00000000b

DB 00000110b ; Position 2
DB 00001100b
DB 00000000b
DB 00000000b

DB 00000100b ; Position 3
DB 00000110b
DB 00000010b
DB 00000000b

DB 00000110b ; Position 4
DB 00001100b
DB 00000000b
DB 00000000b

; Here is our Z

DB 00000010b ; Position 1
DB 00000110b
DB 00000100b
DB 00000000b

DB 00001100b ; Position 2
DB 00000110b
DB 00000000b
DB 00000000b

DB 00000010b ; Position 3

767Stepping to the Plate

TeamLRN

DB 00000110b
DB 00000100b
DB 00000000b

DB 00001100b ; Position 4
DB 00000110b
DB 00000000b
DB 00000000b

Mr. Structure
Oh, yes . . . Mr. Structure. He often looks like a container, but in our game he is
spread out. It is his responsibility to hold the x and y coordinates, the current
shape, the current shape block to use, and the current frame. He has just a few
variables to keep things semi-organized.

As previously mentioned, he will have a larger job when it comes to keeping score
and managing any other statistics.

He is a really open guy, global to be precise. He doesn’t mind helping people and,
of course, will let anybody know what he knows.

The declarations for him are in Shapes.asm and, for the time being, are relatively
simple.

Because Mr. Structure is so open, bad things can possibly happen. It is your job, as a
programmer, to make sure that those bad things can never happen. If you let him
be corrupted in some manner, your whole game might go down the toilet.

The New Shape Maker
With the dreary setup stuff behind us, we are ready for the New Shape maker. His
responsibility is fairly straightforward, so let’s take a look at the code before I start
explaining things.

;##
; New_Shape Procedure
;##
New_Shape PROC

768 20. Game Programming Assembly Style

TeamLRN

;==
; This function will select a new shape at random
; for the current shape
;==

;======================================
; First make sure they haven’t reached
; the top of the grid yet
;
; Begin by calculating the start of
; the very last row where the piece
; is initialized at ... aka (5,19)
;======================================
MOV EAX, 13
MOV ECX, 19
MUL ECX
ADD EAX, 5
MOV EBX, BlockGrid
ADD EAX, EBX
MOV ECX, EAX
ADD ECX, 4

;==========================
; Loop through and test the
; next 4 positions
;==========================
.WHILE EAX <= ECX

;=====================
; Is this one filled?
;=====================
MOV BL, BYTE PTR [EAX]
.IF BL != 0

;===================
; They are dead
;===================
JMP err

.ENDIF

769The New Shape Maker

TeamLRN

;=================
; Inc the counter
;=================
INC EAX

.ENDW

;=============================
; Use a random number to get
; the current shape to use
;
; For this we will just use
; the time returned by the
; Get_Time() function
;=============================
INVOKE Get_Time

;=============================
; Mod this number with 7
; since there are 7 shapes
;=============================
MOV ECX, 7
XOR EDX, EDX
DIV ECX
MOV EAX, EDX

;=============================
; Multiply by 16 since there
; are 16 bytes per shape
;=============================
SHL EAX, 4

;=============================
; Use that number to select
; the shape from the table
;=============================
MOV EBX, OFFSET ShapeTable
ADD EAX, EBX
MOV CurShape, EAX

770 20. Game Programming Assembly Style

TeamLRN

;=============================
; Use a random number to get
; the block surface to use
;
; For this we will just use
; the time returned by the
; Get_Time() function
;=============================
INVOKE Get_Time

;=============================
; And this result with 7
; since there are 8 blocks
;=============================
AND EAX, 7

;================================
; Use it as the block surface
;================================
MOV CurShapeColor, EAX

;================================
; Initialize the Starting Coords
;================================
MOV CurShapeX, 5
MOV CurShapeY, 24

;================================
; Set the Current Frame Variable
;================================
MOV CurShapeFrame, 0

done:
;=======================
; They have a new piece
;=======================
return TRUE

err:

771The New Shape Maker

TeamLRN

;===================
; They died!
;===================
return FALSE

New_Shape ENDP
;##
; END New_Shape
;##

Do you see what I am doing with the code? You should start having at least a gen-
eral idea when looking at the code segments. If not, start studying more. That
means writing code, not staring at mine!

To start with, we check the area directly under where we want the block to start to
see if there are blocks already in there. If so, they died. It is a really simple concept.
No more room on grid = DEATH!

Next we grab some random numbers to use for the block texture and the shape. I
chose to just use the Get_Time() function that we have. We’ll write a true random-
number generator later in this chapter. For now, this function call will serve our
purposes.

To get a number between zero and six, we divide by seven and take the remainder.
(This is placed in EDX after a DIV.) This way, the highest number we could have is six
and the lowest is zero, which is perfect since we have seven shapes to choose from.

We do something a bit different for the blocks. Instead of performing a MOD opera-
tion, we AND the number with N-1, where N is the number you would normally MOD
with. This only works for numbers that are powers of two, however. We are taking
advantage of another bit manipulation operation to speed things up.

The next step is to merely initialize the starting X and Y coordinates along with the
starting frame to use.

That is all we need to do to create a new shape during the game. Once this func-
tion is finished, everything is set up to start moving and manipulating the current
shape, whatever it may be.

772 20. Game Programming Assembly Style

TeamLRN

Update Takes a Few
Practice Swings
Update is our power hitter. He has the job of handling all updates. Let’s take a look
at exactly what he does.

;##
; Update_Shape Procedure
;##
Update_Shape PROC

;==
; This function will update our shape ... or
; drop it down by a grid notch and test for
; a collision with the grid
;==

;========================
; Can we move down???
;========================
INVOKE Test_Collision
.IF EAX == TRUE

;=======================
; NO... we hit something
;=======================

;=============================
; Place the piece in the grid
;=============================
INVOKE Place_In_Grid

;=========================
; Jmp & Return with False
;=========================
JMP err

.ELSE
;===========================
; yes we can drop down
;===========================

773Update Takes a Few Practice Swings

TeamLRN

;=================================
; Drop our piece down by a notch
;=================================
DEC CurShapeY

.ENDIF

done:
;===================
; We hit nothing
;===================
return TRUE

err:
;===================
; We hit something
;===================
return FALSE

Update_Shape ENDP
;##
; END Update_Shape
;##

Wow! For somebody so important, he sure doesn’t do very much. Almost like real
life, what do you think?

To begin with, we make a call to test the collision status of the current shape. If the
call returns TRUE, we cannot move the shape any more and need to place it in the
grid. So, he makes a call to Place_In_Grid(). However, if the call returns FALSE, we
can still move the shape. So, we drop it down a notch by decrementing the Y coor-
dinate of the shape.

The last thing we need to do is return to our manager and tell him whether we
succeeded or failed. Before we continue, though, let’s take a closer look at
Test_Collision() and Place_In_Grid() since they are the ones who really do the work.

;##
; Place_In_Grid Procedure
;##
Place_In_Grid PROC

774 20. Game Programming Assembly Style

TeamLRN

;==
; This function will place the current shape
; into the grid
;==

;===========================
; Local Variables
;===========================
LOCAL DrawY: DWORD
LOCAL DrawX: DWORD
LOCAL CurRow: DWORD
LOCAL CurCol: DWORD
LOCAL CurLine: DWORD
LOCAL CurGrid: DWORD

;===================================
; Get the Current Shape Pos
;===================================
MOV EBX, CurShape
MOV EAX, CurShapeFrame
SHL EAX, 2
ADD EBX, EAX
MOV CurLine, EBX

;===================================
; Set the Starting Row and Column
; for the placement of the block
;===================================
MOV EAX, CurShapeX
MOV EBX, CurShapeY
MOV DrawX, EAX
MOV DrawY, EBX

;===================================
; Loop through all four rows
;===================================
MOV CurRow, 0
.WHILE CurRow < 4

;=====================================
; Loop through all four Columns
;=====================================

775Update Takes a Few Practice Swings

TeamLRN

MOV CurCol, 4
.WHILE CurCol > 0

;===============================
; Shift the CurLine Byte over
; by our CurCol
;===============================
MOV ECX, 4
SUB ECX, CurCol
MOV EBX, CurLine
XOR EAX, EAX
MOV AL, BYTE PTR [EBX]
SHR EAX, CL

;===============================
; Is it a valid block?
;===============================
.IF (EAX & 1)

;============================
; Yes it was a valid block
;============================

;=============================
; Calculate the Block in our
; BlockGrid to place it in
;=============================
MOV EAX, DrawY
MOV ECX, 13
MUL ECX
MOV EBX, DrawX
ADD EBX, CurCol
DEC EBX
ADD EAX, EBX
MOV ECX, BlockGrid
ADD EAX, ECX

;=============================
; Store the Color in the Block
; add one since we let 0 mean
; the block is empty
;=============================
MOV EBX, CurShapeColor

776 20. Game Programming Assembly Style

TeamLRN

INC EBX
MOV BYTE PTR [EAX], BL

.ENDIF

;=====================
; Dec our col counter
;=====================
DEC CurCol

.ENDW

;=======================
; Inc the CurLine
;=======================
INC CurLine

;====================
; decrement Y coord
;====================
DEC DrawY

;====================
; Inc the row counter
;====================
INC CurRow

.ENDW

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

777Update Takes a Few Practice Swings

TeamLRN

Place_In_Grid ENDP
;##
; END Place_In_Grid
;##

;##
; Test_Collision Procedure
;##
Test_Collision PROC

;==
; This function will test for a collision between
; the grid and the current shape
;==

;==============================
; Local Variables
;==============================
LOCAL Index: DWORD
LOCAL Adjust: DWORD

;==
; Loop through and find the first block
; in each of the four columns
;
; NOTE: 0 = RIGHT 3 = LEFT
;==
MOV Index, 0
.WHILE Index < 4

;==
; Start at the bottom of the Current Frame
;==
MOV EBX, CurShape
MOV EAX, CurShapeFrame
SHL EAX, 2
ADD EBX, EAX
ADD EBX, 3

778 20. Game Programming Assembly Style

TeamLRN

;===
; Now loop until we have a one in the
; current column we are working on or we
; reach the top
;==
MOV Adjust, 4
.WHILE Adjust > 0

;=======================
; Get the Current Line
;=======================
XOR EAX, EAX
MOV AL, BYTE PTR [EBX]

;=======================
; Adjust by the Column
;=======================
MOV ECX, Index
SHR EAX, CL

;=========================
; Was there a block there
;=========================
.IF (EAX & 1)

;======================
; Yes there was a block
;======================

;=============================
; Have we hit Bottom
;=============================
MOV EAX, CurShapeY
SUB EAX, Adjust
INC EAX ; Off by 1 syndrome
.IF EAX == 0

;================
; Bottom of grid
;================
JMP done

.ENDIF

779Update Takes a Few Practice Swings

TeamLRN

;===========================
; Calculate the Block right
; under it on the grid
;===========================
DEC EAX ; Move Under it
MOV ECX, 13
MUL ECX
ADD EAX, CurShapeX
ADD EAX, 3
SUB EAX, Index
MOV ECX, BlockGrid
ADD ECX, EAX

;===========================
; Does the Block have one
; underneath it on the grid?
;===========================
MOV AL, BYTE PTR [ECX]
.IF AL != 0

;===========================
; We had a valid collision
;===========================
JMP done

.ENDIF

.ENDIF

;=================================
; No Block — Previous Line Please
;=================================
DEC EBX

;===============================
; Decrement the Adjust counter
;===============================
DEC Adjust

.ENDW

780 20. Game Programming Assembly Style

TeamLRN

;==================================
; Next Column Please!
;==================================
INC Index

.ENDW

err:
;===================
; We didn’t collide
;===================
return FALSE

done:
;===================
; We collided
;===================
return TRUE

Test_Collision ENDP
;##
; END Test_Collision
;##

The Place_In_Grid() function is the simpler of the two, so let’s cover that one first. It
moves to the location in grid memory based on where our current shape is located.
Once there, it simply loops through every row in the frame, and if there is a block
in that bit position, it sets the block to TRUE by indicating the current block texture
+ 1. The reason we had to do texture + 1 is because we use zero to indicate that no
blocks are there.

Test_Collision() is not quite so simple. It loops through all four columns and,
inside that, loops through all four rows of the current frame. It then tests the bit at
its own (row, col) location. If there is a bit turned ON there, it checks whether or not
the grid has a block in the position directly under it. If it fails this test on any bit,
the block cannot be moved, so we return TRUE. Otherwise, at the end there have
been no collisions, and we return FALSE. At this point, we also check to see if it is at
the bottom of the grid. This constitutes the same thing as having a block under-
neath it.

781Update Takes a Few Practice Swings

TeamLRN

As you can see, although Update() is
very important to our team, he has
so much to do that you always want
to have him to delegate his responsi-
bilities out to others. Then just let
him pretend to do what he is sup-
posed to do.

Let’s Get
Moving
Now that we have a piece to play with, we need to do just that—play with it. Get
your minds out of the gutter and look at the code!

;##
; Rotate_Shape Procedure
;##
Rotate_Shape PROC

;===
; This function will rotate the current shape it tests
; to make sure there are no blocks already in the place
; where it would rotate.
;
; NOTE: It is missing the check for out of the grid on
; rotation. That is left for the time being as an
; exercise.
;
; My solution will be shown in the next section.
;===

;================================
; Local Variables
;================================
LOCAL Index: DWORD
LOCAL CurBlock: DWORD
LOCAL Spot: BYTE

782 20. Game Programming Assembly Style

NOTE
In case you missed my crude attempt at
symbolism, here is a quick explanation.
You never want to make functions that do
many things.The ideal is to only have
them accomplish one, maybe two things.
Let a manager-type function make calls,
test for errors, and things like that.

TeamLRN

;================================
; Are they at the last frame?
;================================
.IF CurShapeFrame == 3

;=====================================
; Yep ... make sure they can rotate
;=====================================

;===
; Adjust to the current Block they are at
;===
MOV EAX, CurShapeY
MOV ECX, 13
MUL ECX
ADD EAX, CurShapeX
ADD EAX, BlockGrid
MOV CurBlock, EAX

;==
; Loop through all four rows of our Shape
;==
MOV Index, 0
.WHILE Index < 4

;=======================
; Get the current line
;=======================
MOV EBX, CurShape ; Same as Frame 0
ADD EBX, Index
XOR ECX, ECX
MOV CL, BYTE PTR [EBX]
MOV Spot, CL

;==============================
; Test all 4 of the valid bits
;==============================

;=====================
; Position 4
;=====================
.IF (Spot & 8) ; 2^3

783Let’s Get Moving

TeamLRN

;=======================
; Test this on the Grid
;=======================
MOV EAX, CurBlock
.IF (BYTE PTR [EAX]) != 0

;======================
; Failed! Can’t rotate
;======================
JMP err

.ENDIF

.ENDIF

;=================
; Inc our CurBlock
;=================
INC CurBlock

;=====================
; Position 3
;=====================
.IF (Spot & 4) ; 2^2

;=======================
; Test this on the Grid
;=======================
MOV EAX, CurBlock
.IF (BYTE PTR [EAX]) != 0

;======================
; Failed! Can’t rotate
;======================
JMP err

.ENDIF

.ENDIF

;=================
; Inc our CurBlock
;=================

784 20. Game Programming Assembly Style

TeamLRN

INC CurBlock

;=====================
; Position 2
;=====================
.IF (Spot & 2) ; 2^1

;=======================
; Test this on the Grid
;=======================
MOV EAX, CurBlock
.IF (BYTE PTR [EAX]) != 0

;======================
; Failed! Can’t rotate
;======================
JMP err

.ENDIF

.ENDIF

;=================
; Inc our CurBlock
;=================
INC CurBlock

;=====================
; Position 1
;=====================
.IF (Spot & 1) ; 2^0

;=======================
; Test this on the Grid
;=======================
MOV EAX, CurBlock
.IF (BYTE PTR [EAX]) != 0

;======================
; Failed! Can’t rotate
;======================
JMP err

.ENDIF

785Let’s Get Moving

TeamLRN

.ENDIF

;========================
; Drop Down by a line
; plus the amount we
; Incremented over by
;========================
SUB CurBlock, 16

;========================
; Increment our Index
;========================
INC Index

.ENDW

;=======================
; Ok ... start over
;=======================
MOV CurShapeFrame, 0

.ELSE
;=====================================
; NO ... make sure they can rotate
;=====================================

;===
; Adjust to the current Block they are at
;===
MOV EAX, CurShapeY
MOV ECX, 13
MUL ECX
ADD EAX, CurShapeX
ADD EAX, BlockGrid
MOV CurBlock, EAX

;==
; Loop through all four rows of our Shape
;==
MOV Index, 0
.WHILE Index < 4

786 20. Game Programming Assembly Style

TeamLRN

;=======================
; Get the current line
;=======================
MOV EBX, CurShape
MOV EAX, CurShapeFrame
INC EAX ; Get to new frame
SHL EAX, 2
ADD EBX, Index
ADD EBX, EAX
MOV CL, BYTE PTR [EBX]
MOV Spot, CL

;==============================
; Test all 4 of the valid bits
;==============================

;=====================
; Position 4
;=====================
.IF (Spot & 8) ; 2^3

;=======================
; Test this on the Grid
;=======================
MOV EAX, CurBlock
.IF (BYTE PTR [EAX]) != 0

;======================
; Failed! Can’t rotate
;======================
JMP err

.ENDIF

.ENDIF

;=================
; Inc our CurBlock
;=================
INC CurBlock

787Let’s Get Moving

TeamLRN

;=====================
; Position 3
;=====================
.IF (Spot & 4) ; 2^2

;=======================
; Test this on the Grid
;=======================
MOV EAX, CurBlock
.IF (BYTE PTR [EAX]) != 0

;======================
; Failed! Can’t rotate
;======================
JMP err

.ENDIF

.ENDIF

;=================
; Inc our CurBlock
;=================
INC CurBlock

;=====================
; Position 2
;=====================
.IF (Spot & 2) ; 2^1

;=======================
; Test this on the Grid
;=======================
MOV EAX, CurBlock
.IF (BYTE PTR [EAX]) != 0

;======================
; Failed! Can’t rotate
;======================
JMP err

.ENDIF

.ENDIF

788 20. Game Programming Assembly Style

TeamLRN

;=================
; Inc our CurBlock
;=================
INC CurBlock

;=====================
; Position 1
;=====================
.IF (Spot & 1) ; 2^0

;=======================
; Test this on the Grid
;=======================
MOV EAX, CurBlock
.IF (BYTE PTR [EAX]) != 0

;======================
; Failed! Can’t rotate
;======================
JMP err

.ENDIF

.ENDIF

;========================
; Drop Down by a line
; plus the amount we
; Incremented over by
;========================
SUB CurBlock, 16

;========================
; Increment our Index
;========================
INC Index

.ENDW

;========================
; OK ... just increment
;========================

789Let’s Get Moving

TeamLRN

INC CurShapeFrame

.ENDIF

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Rotate_Shape ENDP
;##
; END Rotate_Shape
;##

;##
; Move_Shape Procedure
;##
Move_Shape PROC Direction:DWORD

;==
; This function will move the shape in the
; desired direction
;==

;===========================
; Local Variables
;===========================
LOCAL CurCol: DWORD
LOCAL CurRow: DWORD
LOCAL CanMove: DWORD

790 20. Game Programming Assembly Style

TeamLRN

;====================================
; Set CanMove to true; it will
; be false later if we can’t move
;====================================
MOV CanMove, TRUE

;==
; Perform the Tests based on direction they want
;==
.IF Direction == MOVE_LEFT

;====================================
; They want to move to the left
;====================================

;====================================
; Find the Leftmost column with a
; valid block inside of it
;====================================
MOV CurCol, 0
.WHILE CurCol < 4

;==========================
; Calculate Our Mask
;==========================
MOV EAX, 1
MOV ECX, 3 ; Start from the Left
SUB ECX, CurCol
SHL EAX, CL
MOV EDX, EAX
PUSH EDX

;===========================
; Go through all 4 rows
;===========================
MOV CurRow, 0
.WHILE CurRow < 4

;===============================
; Get the Current Line of Blocks
;===============================
MOV EBX, CurShape
MOV EAX, CurShapeFrame
SHL EAX, 2

791Let’s Get Moving

TeamLRN

ADD EBX, EAX
ADD EBX, CurRow
XOR ECX, ECX
MOV CL, BYTE PTR [EBX]

;========================
; Test the Mask and the
; current line of blocks
;========================
POP EDX
PUSH EDX
.IF (EDX & ECX)

;====================
; There was a Block
;====================

;====================
; Calculate the
; block’s X value
;====================
MOV EAX, CurShapeX
ADD EAX, CurCol

;====================
; Can we move?
;====================
.IF EAX == 0

;=============
; Nope
;=============
MOV CanMove, FALSE

.ELSE
;========================
; Calculate the block to
; the left of us
;========================
MOV EAX, CurShapeY
SUB EAX, CurRow
MOV ECX, 13
MUL ECX

792 20. Game Programming Assembly Style

TeamLRN

ADD EAX, CurShapeX
ADD EAX, CurCol

; 1 to the Left
DEC EAX
MOV ECX, BlockGrid
ADD ECX, EAX
MOV AL, BYTE PTR [ECX]

;======================
; Are we blocked?
;======================
.IF AL != 0

;================
; We are blocked
;================
MOV CanMove, FALSE

.ENDIF

.ENDIF

.ENDIF

;===========================
; Inc our current row
;===========================
INC CurRow

.ENDW

;===========================
; Clean Off the stack
;===========================
POP EDX

;===========================
; Inc our current column
;===========================
INC CurCol

.ENDW

793Let’s Get Moving

TeamLRN

;==================================
; Can we Still Move
;==================================
.IF CanMove == TRUE

;=======================
; yes we can
;=======================
DEC CurShapeX

.ENDIF

.ELSEIF Direction == MOVE_RIGHT
;====================================
; They want to move to the right
;====================================

;====================================
; Find the Rightmost column with a
; valid block inside of it
;====================================
MOV CurCol, 4
.WHILE CurCol > 0

;==========================
; Calculate Our Mask
;==========================
MOV EAX, 1
MOV ECX, 4 ; Start from the Right
SUB ECX, CurCol
SHL EAX, CL
MOV EDX, EAX
PUSH EDX

;===========================
; Go through all 4 rows
;===========================
MOV CurRow,0
.WHILE CurRow < 4

;===============================
; Get the Current Line of Blocks
;===============================

794 20. Game Programming Assembly Style

TeamLRN

MOV EBX, CurShape
MOV EAX, CurShapeFrame
SHL EAX, 2
ADD EBX, EAX
ADD EBX, CurRow
XOR ECX, ECX
MOV CL, BYTE PTR [EBX]

;========================
; Test the Mask and the
; current line of blocks
;========================
POP EDX
PUSH EDX
.IF (EDX & ECX)

;====================
; There was a Block
;====================

;====================
; Calculate the
; block’s X value
;====================
MOV EAX, CurShapeX
ADD EAX, CurCol
DEC EAX

;====================
; Can we move?
;====================
.IF EAX == 12

;=============
; Nope
;=============
MOV CanMove, FALSE

.ELSE
;========================
; Calculate the block to
; the right of us
;========================

795Let’s Get Moving

TeamLRN

MOV EAX, CurShapeY
SUB EAX, CurRow
MOV ECX, 13
MUL ECX
ADD EAX, CurShapeX

; Already one to the right
ADD EAX, CurCol
MOV ECX, BlockGrid
ADD ECX, EAX
MOV AL, BYTE PTR [ECX]

;======================
; Are we blocked?
;======================
.IF AL != 0

;================
; We are blocked
;================
MOV CanMove, FALSE

.ENDIF

.ENDIF

.ENDIF

;===========================
; Inc our current row
;===========================
INC CurRow

.ENDW

;===========================
; Clean Off the stack
;===========================
POP EDX

796 20. Game Programming Assembly Style

TeamLRN

;===========================
; dec our current column
;===========================
DEC CurCol

.ENDW

;==================================
; Can we Still Move
;==================================
.IF CanMove == TRUE

;=======================
; yes we can
;=======================
INC CurShapeX

.ENDIF

.ELSEIF Direction == MOVE_DOWN
;====================================
; They want to move the piece down
;====================================

;====================================
; Test for a collision
;====================================
INVOKE Test_Collision
.IF EAX == FALSE

;============================
; It is safe to drop a notch
;============================
DEC CurShapeY

.ENDIF

.ELSE
;====================================
; They passed an invalid direction
;====================================
JMP err

797Let’s Get Moving

TeamLRN

.ENDIF

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Move_Shape ENDP
;##
; END Move_Shape
;##

—

These two functions, Rotate_Shape() and Move_Shape(), are pretty big, so it is good
that they are twins. Despite their size, what they do is fairly cut and dried. Let’s
cover, just in general, what it is that they do.

The rotate function first decides whether it is at the last frame. If so, it has code to
wrap it around for the entire test; otherwise, it just uses the next frame. Then it
loops through all of the bits, finding the
valid ones just like Test_Collision(). If
there is already a bit set in the place
where the shape would be, it is not
allowed to move and the call fails.

Back to the code at hand: Move_Shape().
This function will move the shape to the
left or to the right, depending on the
value passed into it. It merely tests the
bits once again, only this time we have
to find the leftmost or rightmost valid
bit in each row. Then we check the grid

798 20. Game Programming Assembly Style

NOTE
There is not code to check for out of
bounds on the grid. So, if you rotate
at a corner, you may slide out of the
grid and into the background area.
This has been left as an exercise for
you. I wanted to see something inter-
active come out of this section, and I
decided that this would be as good a
place as any to start asking for it. I
will present my solution in the next
section. Compare yours to mine at
that time.

TeamLRN

block to the left or right and see if it is empty. Accordingly, either we move it or we
don’t, and then we return to the caller.

There isn’t much else to talk about in this section. You have seen how to access
everything many times now. The only thing that changes is what we need to access
or the order in which we test stuff. These are the kinds of things that need to be
resolved at design time.

Time to Clear the Bases
When it comes time to clear the grid, we call on Line_Test. This function will return
TRUE if it clears a line. It will return FALSE if it doesn’t have a valid line on the grid.
Examine its contents.

;##
; Line_Test Procedure
;##
Line_Test PROC

;==
; This function will test to see if they earned a
; line ... if so it will eliminate that line
; and update our grid of blocks
;==

;==========================
; Local Variables
;==========================
LOCAL CurLine: DWORD
LOCAL CurBlock: DWORD

;===============================
; Start at the Base of the Grid
;===============================
MOV CurLine, 0

;=================================
; Loop through all possible Lines
;=================================
.WHILE CurLine < (GRID_HEIGHT - 4)

799Time to Clear the Bases

TeamLRN

;===================================
; Go to the base of the current line
;===================================
MOV EAX, CurLine
MOV ECX, 13
MUL ECX
ADD EAX, BlockGrid

;==================================
; Loop through every block,
; testing to see if it is valid
;==================================
MOV CurBlock, 0
.WHILE CurBlock < (GRID_WIDTH)

;==========================
; Is this Block IN-Valid?
;==========================
MOV BL, BYTE PTR [EAX]
.IF BL == 0

;===================
; Yes, so break
;===================
.BREAK

.ENDIF

;======================
; Next Block
;======================
INC EAX

;======================
; Inc the counter
;======================
INC CurBlock

.ENDW

800 20. Game Programming Assembly Style

TeamLRN

;==============================
; Did our inner loop go all
; of the way through??
;==============================
.IF CurBlock == (GRID_WIDTH)

;============================
; Yes. That means it was
; a valid line we just earned
;============================

;===================================
; Calculate How much memory to move
; TOTAL - Amount_IN = TO_MOVE
;===================================
MOV EBX, (GRID_WIDTH * (GRID_HEIGHT -5))
MOV EAX, CurLine
MOV ECX, 13
MUL ECX
PUSH EAX
SUB EBX, EAX

;============================
; Move the memory one line
; up to our current line
;============================
POP EAX
ADD EAX, BlockGrid
MOV EDX, EAX
ADD EDX, 13

;==============================
; Move the memory down a notch
;==============================
INVOKE RtlMoveMemory, EAX, EDX, EBX

;============================
; Jump down and return TRUE
;============================
JMP done

801Time to Clear the Bases

TeamLRN

.ENDIF

;==============================
; Increment our Line counter
;==============================
INC CurLine

.ENDW

err:
;===================
; We didn’t get one
;===================
return FALSE

done:
;===================
; We earned a line
;===================
return TRUE

Line_Test ENDP
;##
; END Line_Test
;##

The code loops through every line in our grid memory and tests for blocks. If it
finds that a grid location is empty, it continues with the next line. If every location
has a valid block inside of it, the function moves all of the memory above it
to the row that had the line. It does this by calling the Win32 API function
RTLMoveMemory().

We have it return after every valid line it finds and eliminates because, when we
want to keep score, it will be easier to track how many lines they earn. It is always a
good thing to keep future expansion in mind while programming.

802 20. Game Programming Assembly Style

TeamLRN

The Final Batters
Our two final hitters are the publicity hounds Draw_Shape() and Draw_Grid(). The fol-
lowing is their code.

;##
; Draw_Shape Procedure
;##
Draw_Shape PROC

;===
; This function will draw our current shape at its
; proper location on the screen
;===

;===========================
; Local Variables
;===========================
LOCAL DrawY: DWORD
LOCAL DrawX: DWORD
LOCAL CurRow: DWORD
LOCAL CurCol: DWORD
LOCAL CurLine: DWORD
LOCAL XPos: DWORD
LOCAL YPos: DWORD

;===================================
; Get the Current Shape Pos
;===================================
MOV EBX, CurShape
MOV EAX, CurShapeFrame
SHL EAX, 2
ADD EBX, EAX
MOV CurLine, EBX

;===================================
; Set the Starting Row and Column
; for the drawing
;===================================
MOV EAX, CurShapeX
MOV EBX, CurShapeY

803The Final Batters

TeamLRN

MOV DrawX, EAX
MOV DrawY, EBX

;===================================
; Loop through all four rows
;===================================
MOV CurRow, 0
.WHILE CurRow < 4

;=====================================
; Loop through all four Columns if
; the Y Coord is in the screen
;=====================================
MOV CurCol, 4
.WHILE CurCol > 0 && DrawY < 20

;===============================
; Shift the CurLine Byte over
; by our CurCol
;===============================
MOV ECX, 4
SUB ECX, CurCol
MOV EBX, CurLine
XOR EAX, EAX
MOV AL, BYTE PTR [EBX]
SHR EAX, CL

;===============================
; Is it a valid block?
;===============================
.IF (EAX & 1)

;============================
; Yes, it was a valid block
;============================

;=============================
; Calculate the Y coord
;=============================
MOV EAX, (GRID_HEIGHT - 5)
SUB EAX, DrawY
MOV ECX, BLOCK_HEIGHT
MUL ECX
MOV YPos, EAX

804 20. Game Programming Assembly Style

TeamLRN

;=============================
; Calculate the X coord
;=============================
MOV EAX, DrawX
ADD EAX, CurCol
DEC EAX
MOV ECX, BLOCK_WIDTH
MUL ECX
ADD EAX, 251
MOV XPos, EAX

;=============================
; Calculate the surface to use
;=============================
MOV EAX, CurShapeColor
SHL EAX, 2
MOV EBX, DWORD PTR BlockSurface[EAX]

;=============================
; Blit the block
;=============================
DDS4INVOKE BltFast, lpddsback, XPos, YPos, \

EBX, ADDR SrcRect, \
DDBLTFAST_NOCOLORKEY OR DDBLTFAST_WAIT

.ENDIF

;=====================
; Dec our col counter
;=====================
DEC CurCol

.ENDW

;=======================
; Inc the CurLine
;=======================
INC CurLine

805The Final Batters

TeamLRN

;====================
; decrement Y coord
;====================
DEC DrawY

;====================
; Inc the row counter
;====================
INC CurRow

.ENDW

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Draw_Shape ENDP
;##
; END Draw_Shape
;##

;##
; Draw_Grid Procedure
;##
Draw_Grid PROC

;===
; This function will draw our grid. If the value is zero
; there is no block; otherwise the value is the block#
;===

806 20. Game Programming Assembly Style

TeamLRN

;====================
; Local Variables
;====================
LOCAL CurRow: DWORD
LOCAL CurCol: DWORD
LOCAL CurBlock: DWORD
LOCAL YPos: DWORD
LOCAL XPos: DWORD

;============================
; Start the current block at
; the beginning of our grid
;============================
MOV EAX, BlockGrid
MOV CurBlock, EAX

;============================
; Initialize the current row
;============================
MOV CurRow, 0

;=============================
; Loop through all of our rows
;=============================
.WHILE CurRow < (GRID_HEIGHT - 4)

;================================
; Initialize the current column
;================================
MOV CurCol, 0

;=============================
; Loop through all of our cols
;=============================
.WHILE CurCol < GRID_WIDTH

;========================
; Is there a Block here
;========================
XOR EAX, EAX
MOV EBX, CurBlock
MOV AL, BYTE PTR [EBX]

807The Final Batters

TeamLRN

.IF AL != 0
;=============================
; Yes there was a block here
;=============================

;=============================
; Get the surface to use
;=============================
DEC EAX
SHL EAX, 2
MOV EBX, DWORD PTR BlockSurface[EAX]

;=============================
; Calculate the Y coord
;=============================
MOV EAX, (GRID_HEIGHT - 5)
SUB EAX, CurRow
MOV ECX, BLOCK_HEIGHT
MUL ECX
MOV YPos, EAX

;=============================
; Calculate the X coord
;=============================
MOV EAX, CurCol
MOV ECX, BLOCK_WIDTH
MUL ECX
ADD EAX, 251
MOV XPos, EAX

;=============================
; Blit the block
;=============================
DDS4INVOKE BltFast, lpddsback, XPos, YPos, \

EBX, ADDR SrcRect, \
DDBLTFAST_NOCOLORKEY OR DDBLTFAST_WAIT

;==============================
; Did we succeed?
;==============================
.IF EAX == DDERR_SURFACELOST

808 20. Game Programming Assembly Style

TeamLRN

;======================
; We lost the surface
;======================

.ELSEIF EAX != DD_OK
;======================
; We failed in some way
;======================
JMP err

.ENDIF

.ENDIF

;========================
; Inc the Current Block
;========================
INC CurBlock

;========================
; Increment the Cur column
;========================
INC CurCol

.ENDW

;====================
; Increment the row
;====================
INC CurRow

.ENDW

done:
;===================
; We completed
;===================
return TRUE

err:

809The Final Batters

TeamLRN

;===================
; We didn’t make it
;===================
return FALSE

Draw_Grid ENDP
;##
; END Draw_Grid
;##

If you have been able to keep up with this series so far, this code should be a breeze
to understand. Both of them do the same basic thing. The only difference between
the two is that one operates on the current shape and the other draws everything
currently in the grid.

The basic idea is to loop through every bit in the frame for the shape or every byte
for the grid. (You should be very used to this looping concept by now.) Then we
use either the current shape color or the number stored in the grid to access the
proper block texture to use. The rest involves a call to draw the surface on the back
buffer.

The one thing you need to make sure you don’t forget, however, is that you need
to convert from grid to screen coordinates. If you do not, everything will be drawn
at the left-hand side with a lot of overlap.

Also, keep in mind that since we use the DX blitting function, the back buffer must
not be locked prior to the call. If you did lock it, make sure you unlock it before
you make the call; otherwise, you will crash.

That is all our functions do, and more importantly, it is all we need to have on our
team for the time being. Now it is the Manager’s job to get the game running for
us. So, let’s go investigate “The Loop.”

The Loop and His Team
The loop is a very complex manager. He does his best to organize things, though.
He has state variables (that way, he doesn’t process what he doesn’t need to), and
he also uses many different timers to make sure things are getting done. Here’s a
look at his innards.

810 20. Game Programming Assembly Style

TeamLRN

;##
; Game_Main Procedure
;##
Game_Main PROC

;==
; This is the heart of the game; it gets called over and over
; and even if we process a message!
;==

;===
; Local Variables
;===
LOCAL StartTime :DWORD

;====================================
; Get the starting time for the loop
;====================================
INVOKE Start_Time, ADDR StartTime

;==
; Take the proper action(s) based on the GameState variable
;==
.IF GameState == GS_MENU

;=================================
; We are in the main menu state
;=================================
INVOKE Process_Main_Menu

;=================================
; What did they want to do
;=================================
.IF EAX == MENU_NOTHING

;=================================
; They didn’t select anything yet
; so don’t do anything
;=================================

.ELSEIF EAX == MENU_ERROR

811The Loop and His Team

TeamLRN

;==================================
; This is where error code would go
;==================================

.ELSEIF EAX == MENU_NEW
;==================================
; They want to start a new game
;==================================

;=============================
; Re-Init the grid
;=============================
INVOKE Init_Grid

;=============================
; Get a new Starting Shape
;=============================
INVOKE New_Shape

;====================================
; Get starting time for the input
;====================================
INVOKE Get_Time
MOV Input_Time, EAX

;====================================
; Get starting time for the updates
;====================================
INVOKE Get_Time
MOV Update_Time, EAX

;===============================
; Set the Game state to playing
;===============================
MOV GameState, GS_PLAY

.ELSEIF EAX == MENU_FILES
;==================================
; They want the file menu
;==================================
MOV GameState, GS_FILE

812 20. Game Programming Assembly Style

TeamLRN

.ELSEIF EAX == MENU_GAME
;==================================
; They want to return to the game
;==================================

;===============================
; Set the Game state to playing
;===============================
MOV GameState, GS_PLAY

.ELSEIF EAX == MENU_EXIT
;==================================
; They want to exit the game
;==================================
MOV GameState, GS_EXIT

.ENDIF

.ELSEIF GameState == GS_FILE
;=================================
; We are in the file menu state
;=================================
INVOKE Process_File_Menu

;=================================
; What did they want to do
;=================================
.IF EAX == MENU_NOTHING

;=================================
; They didn’t select anything yet
; so don’t do anything
;=================================

.ELSEIF EAX == MENU_ERROR
;==================================
; This is where error code would go
;==================================

.ELSEIF EAX == MENU_LOAD

813The Loop and His Team

TeamLRN

;==================================
; They want to load game
;==================================

.ELSEIF EAX == MENU_SAVE
;==================================
; They want to save their game
;==================================

.ELSEIF EAX == MENU_MAIN
;==================================
; They want to return to main menu
;==================================
MOV GameState, GS_MENU

.ENDIF

.ELSEIF GameState == GS_PLAY
;=================================
; We are in the gameplay mode
;=================================

;===============================
; Load the main bitmap into the
; back buffer
;===============================
INVOKE DD_Load_Bitmap, lpddsback, ptr_BMP_MAIN, \

640, 480, screen_bpp

;=====================================
; Is it time to process input yet?
;=====================================
INVOKE Get_Time
SUB EAX, INPUT_DELAY
.IF EAX > Input_Time

;==================
; It is time.
;==================

814 20. Game Programming Assembly Style

TeamLRN

;==
; Read the Keyboard
;==
INVOKE DI_Read_Keyboard

;================================
; What do they want to do
;================================
.IF keyboard_state[DIK_ESCAPE]

;========================
; The return to menu key
;========================
MOV GameState, GS_MENU

.ELSEIF keyboard_state[DIK_UP]
;======================
; Rotate the shape
;======================
INVOKE Rotate_Shape

.ELSEIF keyboard_state[DIK_DOWN]
;======================
; Move the shape down
;======================
INVOKE Move_Shape, MOVE_DOWN

.ELSEIF keyboard_state[DIK_LEFT]
;======================
; Move the shape left
;======================
INVOKE Move_Shape, MOVE_LEFT

.ELSEIF keyboard_state[DIK_RIGHT]
;======================
; Move the shape Right
;======================
INVOKE Move_Shape, MOVE_RIGHT

.ENDIF

815The Loop and His Team

TeamLRN

;============================
; Get a New Input Time
;============================
INVOKE Get_Time
MOV Input_Time, EAX

.ENDIF

;=====================================
; Is it time to update the shape yet?
;=====================================
INVOKE Get_Time
SUB EAX, UPDATE_DELAY
.IF EAX > Update_Time

;==================
; It is time.
;==================

;===============================
; Update the current shape
;===============================
INVOKE Update_Shape

;===============================
; Did we not succeed at updating
;===============================
.IF EAX == FALSE

;=======================
; They had a collision
;=======================

;=======================
; Test for a line
;=======================
INVOKE Line_Test

;=======================
; Did they earn one?
;=======================
.WHILE EAX == TRUE

816 20. Game Programming Assembly Style

TeamLRN

;================
; They got one
;================

;=================
; Test for another
;=================
INVOKE Line_Test

.ENDW

;=======================
; Start a new piece
;=======================
INVOKE New_Shape

;=======================
; Did we make it?
;=======================
.IF EAX == FALSE

;===============
; They died!
;===============
MOV GameState, GS_DIE

.ENDIF

.ENDIF

;============================
; Get a New Update Time
;============================
INVOKE Get_Time
MOV Update_Time, EAX

.ENDIF

;===============================
; Draw our current grid
;===============================

817The Loop and His Team

TeamLRN

INVOKE Draw_Grid

;===============================
; Draw our current shape
;===============================
INVOKE Draw_Shape

;===============================
; Flip the buffers
;===============================
INVOKE DD_Flip

.ELSEIF GameState == GS_DIE
;=================================
; We died so perform that code
;=================================

;=================================
; Wait for a couple of seconds so
; they know that they have died
;=================================
INVOKE Sleep, 2000

;=================================
; ReInit the Grid
;=================================
INVOKE Init_Grid

;=================================
; Get a New shape
;=================================
INVOKE New_Shape

;=================================
; Back to the Main Menu
;=================================
MOV GameState, GS_MENU

.ENDIF

818 20. Game Programming Assembly Style

TeamLRN

;===================================
; Wait to synchronize the time
;===================================
INVOKE Wait_Time, StartTime, sync_time

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Game_Main ENDP
;##
; END Game_Main
;##

As you can see, if the user selects to have a new game, “loop” makes a bunch of
calls. First he makes a call to initialize our grid and then one to create a new shape.
Next he makes a couple of calls to get the starting time for input and the starting
time for updates, and then finally he sets the game state to playing.

We have now entered the game. Every frame, he draws the bitmap onto the back
buffer and decides if it is time to process some input. If so, he makes a call to
process the input and then reacts based on the keys that are pressed. With that
completed, he reinitializes the input time. Otherwise, if enough time hasn’t passed,
he skips the input phase altogether.

The same thing is done with updating. He first finds out if it is time. If enough
time has not yet elapsed, he skips over the updating and makes calls to draw every-
thing. If it has, he calls the update function and reacts to what Update has to tell
him. If Update fails, that means it is time for a new shape. But first we call the test
to see if there are valid lines. We keep doing this until no more valid lines exist,
and then we create the new shape and reinitialize our update time.

819The Loop and His Team

TeamLRN

During this time, if the call to create a new shape fails, the user has died and the
game state is set to reflect that. Finally, he updates the display by flipping our pri-
mary and back buffers. Then he does it all over again, synchronizing it to the
desired frame rate.

The one thing I want to comment on here is the use of time-based updates. This is
a very crucial part of developing a game. If we had updated the input every frame,
things would be flying everywhere, and the user would be in a state of shock. The
same thing applies to updating the shapes. Also, your machine may achieve 100fps,
and yet another machine might only be able to do 25fps. This means that, if you
are using frame-based code, the game will look/react in different ways across the
two machines.

By using time, you can come close to a guarantee that it will look the same across
all capable machines. The reason for this is that time, unlike a frame rate, cannot
change across machines. The rate at which a second occurs is the same no matter
what you run it on.

The code we have here is a simple implementation of this premise. You can defi-
nitely get more complex. Still, this code works and works well for what it needs to do.

Conclusion
I told you we would cover a lot of material! We now have a fully working—albeit
limited—game to show for all this work. It has all the rudimentary elements it
needs. The only thing the game lacks is the bells and whistles that make it pretty.

The next sections are going to cover those bells and whistles. We will be covering
Direct Sound implementation, adding screen transitions, and I will show you my
answer for the rotation clipping code.

In the meantime, experiment with some things we haven’t done yet or even just try
tweaking some things that we have. Everybody has to start someplace and some-
time. There is no time and place better to do so than the present. At worst, you will
crash your game, and we have all done that. The important thing is to try and to
learn.

820 20. Game Programming Assembly Style

TeamLRN

WIN32 ASM—PART 5
Until the last section, SPACE-TRIS was not even a game; it was merely an exercise
in coding modules. Well, now we have a game that is working, and it is just ugly.
Sadly enough, though, we are back to coding modules. The good news is these
modules will pretty things up by a large margin.

The modules we will be covering today are Direct Sound (yuck!) and screen transi-
tions (yay!). The Direct Sound module isn’t going to be anything too complex; it’s
just a simple sound effects manager that allows you to play, stop, delete, add, or set
variables on the sounds themselves. The screen transitions module is going to con-
sist of one main function that gets called, and then a transition is selected at ran-
dom to perform.

The game also needed a way to check for an out-of-bounds occurrence while rotat-
ing pieces. You guys were working on it like I told you too, right? Yeah, I’m sure.
Anyway, I will present my quick hack of a solution in a few moments. First, however,
I want to say that I am going to be glossing over many of the things we have already
covered in past sections. For instance, in the Direct Sound module, you have
already seen how to check for an error, so I won’t be explaining that again. If you
skipped ahead, do yourself a favor and skim the beginning if you need to. This isn’t
your favorite TV series where you can just pop by on any old day and know exactly
what is going on. We are going to be moving at warp speed through a lot of things.
All I am really going to provide now is an overview of the techniques I use. It is up
to you to understand them.

With that said, let’s get right down to business with that solution to the rotation
problem.

Rotation Solution
The solution to our rotation problem is fairly straightforward. Basically, we already
have all of the routines we need. What we have to know is if, at any given frame,
the current piece is out of bounds—and MoveShape() does this for us. So, the fix we
have is a simple one. We can just call that routine with the frame it would be on
next, right? Wrong. That’s what I tried at first because it seemed to make sense. But
there is a hidden problem with that method.

821Rotation Solution

TeamLRN

The problem lies in the fact that any piece could already be out of bounds when
you adjust the frame. Move_Shape() only tells you if you can move the shape to the
left or right and does so if it can. If we fake our next frame for that call, it may suc-
ceed because it is already out of bounds by one column if it was on the edges previ-
ously. This means we need a way to prevent it from ever being out of bounds to
begin with.

The solution is to move it in toward the center by one column beforehand. Then,
when we make the call, the shape is guaranteed to be on the edge or in the middle,
never outside the grid. The way we decide if we can go to the next frame is by see-
ing if the X coordinate sent before we made the call matches the one we have after
the call. If it does, that means the shape can be rotated. If they don’t match, the
shape cannot be rotated.

This method has the advantage of eliminating the need for any other code. The
Move_Shape() function will not succeed if something else is blocking its move.
Therefore, we do not need to do any other tests on the shape to see if other blocks
are in the way. We just need that simple call based on the next frame. So, we not
only solved the problem, we made the routine shorter in the process.

;##
; Rotate_Shape Procedure
;##
Rotate_Shape PROC

;===
; This function will rotate the current shape; it tests
; to make sure there are no blocks already in the place
; where it would rotate.
;===

;================================
; Local Variables
;================================
LOCAL Index: DWORD
LOCAL CurBlock: DWORD
LOCAL Spot: BYTE

;=================================
; Make sure they are low enough
;=================================

822 20. Game Programming Assembly Style

TeamLRN

.IF CurShapeY > 21
JMP err

.ENDIF

;================================
; Are they at the last frame?
;================================
.IF CurShapeFrame == 3

;=====================================
; Yep ... make sure they can rotate
;=====================================

;==
; We will start by seeing which half of
; the grid they are currently on; that way
; we know how much to move the shape
;===
.IF CurShapeX < 6

;===========================
; They are on the left half
; of the grid
;===========================

;=============================
; So start by moving them one
; coord right and saving the
; old coordinate
;=============================
PUSH CurShapeX
INC CurShapeX

;=============================
; Now adjust the frame to what
; it would be
;=============================
MOV CurShapeFrame, 0

;=============================
; Try to move them to the left
;=============================
INVOKE Move_Shape, MOVE_LEFT

823Rotation Solution

TeamLRN

;=============================
; If we succeeded then the old
; X will be equal to the new
; X coordinate
;=============================
MOV EAX, CurShapeX
POP CurShapeX
.IF EAX == CurShapeX

JMP done
.ELSE

;================
; Can’t rotate
;================
MOV CurShapeFrame, 3
JMP err

.ENDIF

.ELSE
;===========================
; They are on the right half
; of the grid
;===========================

;=============================
; So start by moving them one
; coord left and saving the
; old coordinate
;=============================
PUSH CurShapeX
DEC CurShapeX

;=============================
; Now adjust the frame to what
; it would be
;=============================
MOV CurShapeFrame, 0

824 20. Game Programming Assembly Style

TeamLRN

;=============================
; Try & move them to the right
;=============================
INVOKE Move_Shape, MOVE_RIGHT

;=============================
; If we succeeded then the old
; X will be equal to the new
; X coordinate
;=============================
MOV EAX, CurShapeX
POP CurShapeX
.IF EAX == CurShapeX

;================
; Can rotate
;================
JMP done

.ELSE
;================
; Can’t rotate
;================
MOV CurShapeFrame, 3
JMP err

.ENDIF

.ENDIF

.ELSE
;=====================================
; NO ... make sure they can rotate
;=====================================

;==
; We will start by seeing which half of
; the grid they are currently on; that way
; we know how much to move the shape
;===
.IF CurShapeX < 6

825Rotation Solution

TeamLRN

;===========================
; They are on the left half
; of the grid
;===========================

;=============================
; So start by moving them one
; coord right and saving the
; old coordinate
;=============================
PUSH CurShapeX
INC CurShapeX

;=============================
; Now adjust the frame to what
; it would be
;=============================
INC CurShapeFrame

;=============================
; Try to move them to the left
;=============================
INVOKE Move_Shape, MOVE_LEFT

;=============================
; If we succeeded then the old
; X will be equal to the new
; X coordinate
;=============================
MOV EAX, CurShapeX
POP CurShapeX
.IF EAX == CurShapeX

;================
; Can rotate
;================
JMP done

.ELSE
;================
; Can’t rotate
;================

826 20. Game Programming Assembly Style

TeamLRN

DEC CurShapeFrame
JMP err

.ENDIF

.ELSE
;===========================
; They are on the right half
; of the grid
;===========================

;=============================
; So start by moving them one
; coord left and saving the
; old coordinate
;=============================
PUSH CurShapeX
DEC CurShapeX

;=============================
; Now adjust the frame to what
; it would be
;=============================
INC CurShapeFrame

;=============================
; Try & move them to the right
;=============================
INVOKE Move_Shape, MOVE_RIGHT

;=============================
; If we succeeded then the old
; X will be equal to the new
; X coordinate
;=============================
MOV EAX, CurShapeX
POP CurShapeX
.IF EAX == CurShapeX

;================
; Can rotate
;================

827Rotation Solution

TeamLRN

JMP done

.ELSE
;================
; Can’t rotate
;================
DEC CurShapeFrame
JMP err

.ENDIF

.ENDIF

.ENDIF

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Rotate_Shape ENDP
;##
; END Rotate_Shape
;##

The Sound Module
The sound module for this game is pretty simple. It merely presents an interface to
load WAV files, play the sounds, delete them, and edit properties about them.
However, there are a few tricky things to watch out for in the module.

The first thing I want to illustrate is how to create an array of structures. Take a
look at the following modified code snippet.

828 20. Game Programming Assembly Style

TeamLRN

;###
;###
; STRUCTURES
;###
;###

;=============================
; this holds a single sound
;=============================
pcm_sound STRUCT

dsbuffer DD 0 ; the ds buffer for the sound
state DD 0 ; state of the sound
rate DD 0 ; playback rate
lsize DD 0 ; size of sound

pcm_sound ENDS

;============================
; max number of sounds in
; the game at once
;============================
MAX_SOUNDS EQU 16

;===
; Our array of sound effects
;===
sound_fx pcm_sound MAX_SOUNDS dup(<0,0,0,0>)

You will notice that any time we declare a structure, we need to use angle brackets
or curly braces (not shown) for them. The numbers inside consist of the members
of your structure and nothing more. Whatever you place there is what things get
initialized to. Also, pay attention to how the structure is defined. It consists of nor-
mal variable declarations in between a couple of keywords and a tag to give it a
name.

Of special note is that you must use another set of braces or brackets if you want to
have nested structures. The way we get an array with a structure is the same as any
other variable. We use the number we want followed by the DUP pseudo command
and then, in parentheses, what you want the values initialized to.

We are going to skip over the DS_Init() and DS_Shutdown() procedures since they do
the same exact things as the other DX counterparts. Instead, let’s take a look at
Play_Sound().

829The Sound Module

TeamLRN

;##
; Play_Sound Procedure
;##
Play_Sound PROC id:DWORD, flags:DWORD

;===
; This function will play the sound contained in the
; id passed in along with the flags which can be either
; NULL or DSBPLAY_LOOPING
;===

;==============================
; Make sure this buffer exists
;==============================
MOV EAX, sizeof(pcm_sound)
MOV ECX, id
MUL ECX
MOV ECX, EAX
.IF sound_fx[ECX].dsbuffer != NULL

;=================================
; We exists so reset the position
; to the start of the sound
;=================================
PUSH ECX
DSBINVOKE SetCurrentPosition, sound_fx[ECX].dsbuffer, 0
POP ECX

;======================
; Did the call fail?
;======================
.IF EAX != DS_OK

;=======================
; Nope, didn’t make it
;=======================
JMP err

.ENDIF

;==============================
; Now, we can play the sound
;==============================

830 20. Game Programming Assembly Style

TeamLRN

DSBINVOKE Play, sound_fx[ECX].dsbuffer, 0, 0, flags

;======================
; Did the call fail?
;======================
.IF EAX != DS_OK

;=======================
; Nope, didn’t make it
;=======================
JMP err

.ENDIF

.ELSE
;======================
; No buffer for sound
;======================
JMP err

.ENDIF

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Play_Sound ENDP
;##
; END Play_Sound
;##

This is the routine we use to start a sound playing. You can pass it flags to alter how
it sounds. As far as I know, there are only two options for the flags. If you pass in

831The Sound Module

TeamLRN

NULL, it plays the sound once. If you pass in DSBPLAY_LOOPING, it will play the sound
repeatedly.

The routine begins by checking that the sound has a valid buffer associated with it.
If so, it sets the position of that sound to the beginning and then makes a call to
begin playing it with whatever flags were passed in.

The only thing worth illustrating in this
routine is how the structure element is ref-
erenced. To begin with, we obtain the size
of the structure and multiply that by the
ID of the sound to give us our position in
the array. Then, to reference a member,
you treat it just like you would in
C/C++ . . . StructName[position].member.

The next three routines allow you to set the volume, frequency, and pan of a
sound. There is nothing to these routines; they are just wrappers for the Direct
Sound function calls. If you want to use anything but Set_Sound_Volume(), however,
you need to tell Direct Sound that you want those attributes enabled when you load
the sound. This is done by passing in DSBCAPS_CTRL_PAN or DSBCAPS_CTRLFREQ, respec-
tively. If you do not specify these flags when you load your sound, you will not be
able to manipulate those items.

The next two functions are for stopping sounds from playing. One will stop the
specific sound you pass in, and the other will stop all of the sounds from playing.
Here is the code from the module. Once again, these are merely wrapper functions
to shield you from the DX headache.

;##
; Stop_Sound Procedure
;##
Stop_Sound PROC id:DWORD

;===
; This function will stop the passed-in sound from
; playing and will reset its position
;===

;==============================
; Make sure the sound exists
;==============================

832 20. Game Programming Assembly Style

NOTE
It is important not to forget to
multiply the element you want to
access by the size of the structure.
Arrays are contiguous in memory.

TeamLRN

MOV EAX, sizeof(pcm_sound)
MOV ECX, id
MUL ECX
MOV ECX, EAX
.IF sound_fx[ECX].dsbuffer != NULL

;==================================
; We exist so stop the sound
;==================================
PUSH ECX
DSBINVOKE Stop, sound_fx[ECX].dsbuffer
POP ECX

;=================================
; Now reset the sound position
;=================================
DSBINVOKE SetCurrentPosition, sound_fx[ECX].dsbuffer, 0

.ENDIF

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Stop_Sound ENDP
;##
; END Stop_Sound
;##

;##
; Stop_All_Sounds Procedure
;##
Stop_All_Sounds PROC

833The Sound Module

TeamLRN

;===
; This function will stop all sounds from playing
;===

;==============================
; Local Variables
;==============================
LOCAL index :DWORD

;==============================
; Loop through all sounds
;==============================
MOV index, 0
.WHILE index < MAX_SOUNDS

;==================================
; Stop this sound from playing
;==================================
INVOKE Stop_Sound, index

;================
; Inc the counter
;================
INC index

.ENDW

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Stop_All_Sounds ENDP

834 20. Game Programming Assembly Style

TeamLRN

;##
; END Stop_All_Sounds
;##

Notice that Stop_All_Sounds() is just a wrapper function for our Stop_Sound() routine.
We simply iterate through our array, making a call to stop every sound. The routine
to actually stop the sound makes a call to stop and reset the current position if the
buffer is a valid one.

Delete_Sound() and Delete_All_Sounds() are remarkably similar to the sound-stopping
functions. The only difference is that you make a different function call to DX. In
the sound module, Delete_Sound() will call Stop_Sound() first to make sure the sound
isn’t trying to be played while you are trying to delete it. The interesting thing
about these two functions is that you do not personally have to release any of your
sounds if you don’t want to. During shutdown of Direct Sound, all the sounds you
loaded will be deleted. If you have reached your maximum in sounds and want to
free one up, however, you will need to manually delete it.

There is also a function named Status_Sound() that is yet another wrapper routine.
It is used when you need to find out if a sound is still playing or has stopped
already. You will see this function put to use later on.

Now that 90 percent of that stupid module is out of the way, we need to move on to
the final 10 percent of that code, the Load_WAV() procedure.

One Big Headache
Loading file formats is always a pain. Loading a WAV file proves to be no different.
It is a long function that probably could have been broken up a little bit better, but
for now it will have to do. It works and that is all I am concerned about. So, have a
gander at it.

;##
; Load_WAV Procedure
;##
Load_WAV PROC fname_ptr:DWORD, flags:DWORD

;===
; This function will load the passed in WAV file;
; it returns the id of the sound, or -1 if failed
;===

835One Big Headache

TeamLRN

;==============================
; Local Variables
;==============================
LOCAL sound_id :DWORD
LOCAL index :DWORD

;=================================
; Init the sound_id to -1
;=================================
MOV sound_id, -1

;=================================
; First we need to make sure there
; is an open id for our new sound
;=================================
MOV index, 0
.WHILE index < MAX_SOUNDS

;========================
; Is this sound empty??
;========================
MOV EAX, sizeof(pcm_sound)
MOV ECX, index
MUL ECX
MOV ECX, EAX
.IF sound_fx[ECX].state == SOUND_NULL

;===========================
; We have found one, so set
; the id and leave our loop
;===========================
MOV EAX, index
MOV sound_id, EAX
.BREAK

.ENDIF

;================
; Inc the counter
;================
INC index

836 20. Game Programming Assembly Style

TeamLRN

.ENDW

;======================================
; Make sure we have a valid id now
;======================================
.IF sound_id == -1

;======================
; Give err msg
;======================
INVOKE MessageBox, hMainWnd, ADDR szNoID, NULL, MB_OK

;======================
; Jump and return out
;======================
JMP err

.ENDIF

;=========================
; Set up the parent “chunk”
; info structure
;=========================
MOV parent.ckid, 0
MOV parent.ckSize, 0
MOV parent.fccType, 0
MOV parent.dwDataOffset, 0
MOV parent.dwFlags, 0

;============================
; Do the same with the child
;============================
MOV child.ckid, 0
MOV child.ckSize, 0
MOV child.fccType, 0
MOV child.dwDataOffset, 0
MOV child.dwFlags, 0

;======================================
; Now open the WAV file using the MMIO
; API function
;======================================

837One Big Headache

TeamLRN

INVOKE mmioOpen, fname_ptr, NULL, (MMIO_READ OR MMIO_ALLOCBUF)
MOV hwav, EAX

;====================================
; Make sure the call was successful
;====================================
.IF EAX == NULL

;======================
; Give err msg
;======================
INVOKE MessageBox, hMainWnd, ADDR szNoOp, NULL, MB_OK

;======================
; Jump and return out
;======================
JMP err

.ENDIF

;===============================
; Set the type in the parent
;===============================
mmioFOURCC ‘W’, ‘A’, ‘V’, ‘E’
MOV parent.fccType, EAX

;=================================
; Descend into the RIFF
;=================================
INVOKE mmioDescend, hwav, ADDR parent, NULL, MMIO_FINDRIFF
.IF EAX != NULL

;===================
; Close the file
;===================
INVOKE mmioClose, hwav, NULL

;=====================
; Jump and return out
;=====================
JMP err

838 20. Game Programming Assembly Style

TeamLRN

.ENDIF

;============================
; Set the child id to format
;============================
mmioFOURCC ‘f’, ‘m’, ‘t’, ‘ ‘
MOV child.ckid, EAX

;=================================
; Descend into the WAVE format
;=================================
INVOKE mmioDescend, hwav, ADDR child, ADDR parent, NULL
.IF EAX != NULL

;===================
; Close the file
;===================
INVOKE mmioClose, hwav, NULL

;=====================
; Jump and return out
;=====================
JMP err

.ENDIF

;=================================
; Now read the wave format info in
;=================================
INVOKE mmioRead, hwav, ADDR wfmtx, sizeof(WAVEFORMATEX)
MOV EBX, sizeof(WAVEFORMATEX)
.IF EAX != EBX

;===================
; Close the file
;===================
INVOKE mmioClose, hwav, NULL

;=====================
; Jump and return out
;=====================
JMP err

839One Big Headache

TeamLRN

.ENDIF

;=================================
; Make sure the data format is PCM
;=================================
.IF wfmtx.wFormatTag != WAVE_FORMAT_PCM

;===================
; Close the file
;===================
INVOKE mmioClose, hwav, NULL

;=====================
; Jump and return out
;=====================
JMP err

.ENDIF

;=================================
; Ascend up one level
;=================================
INVOKE mmioAscend, hwav, ADDR child, NULL
.IF EAX != NULL

;===================
; Close the file
;===================
INVOKE mmioClose, hwav, NULL

;=====================
; Jump and return out
;=====================
JMP err

.ENDIF

;============================
; Set the child id to data
;============================
mmioFOURCC ‘d’, ‘a’, ‘t’, ‘a’
MOV child.ckid, EAX

840 20. Game Programming Assembly Style

TeamLRN

;=================================
; Descend into the data chunk
;=================================
INVOKE mmioDescend, hwav, ADDR child, ADDR parent, MMIO_FINDCHUNK
.IF EAX != NULL

;===================
; Close the file
;===================
INVOKE mmioClose, hwav, NULL

;=====================
; Jump and return out
;=====================
JMP err

.ENDIF

;===================================
; Now allocate memory for the sound
;===================================
INVOKE GlobalAlloc, GMEM_FIXED, child.ckSize
MOV snd_buffer, EAX
.IF EAX == NULL

;===================
; Close the file
;===================
INVOKE mmioClose, hwav, NULL

;=====================
; Jump and return out
;=====================
JMP err

.ENDIF

;=======================================
; Read the WAV data and close the file
;=======================================
INVOKE mmioRead, hwav, snd_buffer, child.ckSize

841One Big Headache

TeamLRN

INVOKE mmioClose, hwav, 0

;================================
; Set the rate, size, & state
;================================
MOV EAX, sizeof(pcm_sound)
MOV ECX, sound_id
MUL ECX
MOV ECX, EAX
MOV EAX, wfmtx.nSamplesPerSec
MOV sound_fx[ECX].rate, EAX
MOV EAX, child.ckSize
MOV sound_fx[ECX].lsize, EAX
MOV sound_fx[ECX].state, SOUND_LOADED

;==========================
; Clear the format struc
;==========================
INVOKE RtlFillMemory, ADDR pcmwf, sizeof(WAVEFORMATEX), 0

;=============================
; Now fill our desired fields
;=============================
MOV pcmwf.wFormatTag, WAVE_FORMAT_PCM
MOV AX, wfmtx.nChannels
MOV pcmwf.nChannels, AX
MOV EAX, wfmtx.nSamplesPerSec
MOV pcmwf.nSamplesPerSec, EAX
XOR EAX, EAX
MOV AX, wfmtx.nBlockAlign
MOV pcmwf.nBlockAlign, AX
MOV EAX, pcmwf.nSamplesPerSec
XOR ECX, ECX
MOV CX, pcmwf.nBlockAlign
MUL ECX
MOV pcmwf.nAvgBytesPerSec, EAX
MOV AX, wfmtx.wBitsPerSample
MOV pcmwf.wBitsPerSample, AX
MOV pcmwf.cbSize, 0

842 20. Game Programming Assembly Style

TeamLRN

;=================================
; Prepare to create the DS buffer
;=================================
DSINITSTRUCT ADDR dsbd, sizeof(DSBUFFERDESC)
MOV dsbd.dwSize, sizeof(DSBUFFERDESC)

; Put other flags you want to play with in here such
; as CTRL_PAN, CTRL_FREQ, etc or pass them in

MOV EAX, flags
MOV dsbd.dwFlags, EAX
OR dsbd.dwFlags, DSBCAPS_STATIC OR DSBCAPS_CTRLVOLUME \

OR DSBCAPS_LOCSOFTWARE
MOV EBX, child.ckSize
MOV EAX, OFFSET pcmwf
MOV dsbd.dwBufferBytes, EBX
MOV dsbd.lpwfxFormat, EAX

;=================================
; Create the sound buffer
;=================================
MOV EAX, sizeof(pcm_sound)
MOV ECX, sound_id
MUL ECX
LEA ECX, sound_fx[EAX].dsbuffer
DSINVOKE CreateSoundBuffer, lpds, ADDR dsbd, ECX, NULL
.IF EAX != DS_OK

;===================
; Free the buffer
;===================
INVOKE GlobalFree, snd_buffer

;=====================
; Jump and return out
;=====================
JMP err

.ENDIF

;==================================
; Lock the buffer so we can copy
; our sound data into it
;==================================

843One Big Headache

TeamLRN

MOV EAX, sizeof(pcm_sound)
MOV ECX, sound_id
MUL ECX
MOV ECX, EAX
DSBINVOKE mLock, sound_fx[ECX].dsbuffer, NULL, child.ckSize,

ADDR audio_ptr_1, ADDR audio_length_1, ADDR audio_ptr_2,\
ADDR audio_length_2, DSBLOCK_FROMWRITECURSOR

.IF EAX != DS_OK
;===================
; Free the buffer
;===================
INVOKE GlobalFree, snd_buffer

;=====================
; Jump and return out
;=====================
JMP err

.ENDIF

;==============================
; Copy first section of buffer and
; then the second section
;==============================

; First buffer
MOV ESI, snd_buffer
MOV EDI, audio_ptr_1
MOV ECX, audio_length_1
AND ECX, 3
REP movsb
MOV ECX, audio_length_1
SHR ECX, 2
REP movsd

; Second buffer
MOV ESI, snd_buffer
ADD ESI, audio_length_1
MOV EDI, audio_ptr_2
MOV ECX, audio_length_2
AND ECX, 3
REP movsd

844 20. Game Programming Assembly Style

TeamLRN

MOV ECX, audio_length_2
SHR ECX, 2
REP movsd

;==============================
; Unlock the buffer
;==============================
MOV EAX, sizeof(pcm_sound)
MOV ECX, sound_id
MUL ECX
MOV ECX, EAX
DSBINVOKE Unlock, sound_fx[ECX].dsbuffer, audio_ptr_1,

audio_length_1, audio_ptr_2, audio_length_2
.IF EAX != DS_OK

;===================
; Free the buffer
;===================
INVOKE GlobalFree, snd_buffer

;=====================
; Jump and return out
;=====================
JMP err

.ENDIF

;===================
; Free the buffer
;===================
INVOKE GlobalFree, snd_buffer

done:
;===================
; We completed
;===================
return sound_id

err:
;===================
; We didn’t make it
;===================

845One Big Headache

TeamLRN

return -1

Load_WAV ENDP
;##
; END Load_WAV
;##

The code is fairly simple, but it is long. I will skim over the first few parts since they
are just setting things up. The code starts out by finding the first available sound in
our array. If it finds none, it issues an error and then returns to the caller. Once we
have a valid sound ID to hold our new sound, we can start playing with the file and
setting up the structures for use.

We start by initializing the structures to 0 to make sure we don’t have any leftover
remnants from previous loads. When that is complete, we get to open up our WAV
file using the multimedia I/O functions found in the Winmm.lib file.

Once the file is opened successfully, we descend into the internals of the file. This
merely takes us to relevant sections in the header so that we can set up our struc-
tures for loading. A few sections need to be traversed, and then we are ready to get
the WAV format information, which is the actual header we will need.

With our WAV header information intact, we can ascend up the file and then down
into our data chunk. Once “inside,” we allocate memory for our data and then
grab it with the mmioRead() function. Finally, we can close the file, and the ugly part
is over.

Next we do some more setting of values in structures and clearing things out. It’s
all stuff you have seen before, so it should look familiar by now. We are getting
ready to create the sound buffer with all these assignments.

Normally, I would just say “Here is
where we create the sound buffer,” but
there is something very weird going on
here. Have you noticed that we aren’t
able to pass in the sound buffer parame-
ter? The reason is that we need to pass
in the address. So, the line right before
the call uses the Load Effective Address
(LEA) instruction to obtain the address
of our variable. The reason for this is
just a quirk in the INVOKE syntax, and it’s
something we need to work around. By

846 20. Game Programming Assembly Style

NOTE
Another small thing you might want to
jot down is that we can’t use EAX to
hold that value.The reason is that the
macro I defined, DSBINVOKE, uses EAX
when manipulating things.This, howev-
er, is the only reason. Normally, you
could use it without trouble. Never for-
get that macros are just direct replace-
ments into your code, even if they
don’t make sense.

TeamLRN

loading the address before the call, we can place it in the modified invoke state-
ment without any trouble.

Once we have our buffer created, we lock it, copy the memory over to the new
buffer locations, and then unlock it. One thing that might seem a little confusing is
the method I have chosen to copy the sound data over. Remember how we copied
using DWORDs in our Draw_Bitmap() routine? If not, go back and refresh your memory
because it is very important. For those of you who do recall, that is almost exactly
what we are doing here.

The only thing that is different is that we have to make sure our data is on a 4-byte
boundary. We do this by ANDing the length with 3 and then moving byte by byte
until we hit zero. At that point, we are on a 4-byte boundary and can move DWORDs
until the end.

It is the same basic concept we have
seen before, only this time we have to
do the checking for alignment ourselves
since the data is not guaranteed to be
on even 4-byte boundaries.

Once all of that is out of the way, we can
free the buffer—along with our headache—and we are finished. The sound is now
loaded in the buffer, and we can return the sound’s ID to the caller so that they
can play the sound later on. One thing I do want to mention is that this WAV
loader should be able to load WAV files of any format (8-bit, 16-bit, stereo, mono,
and so on). Yet only 8-bit sounds can be utilized in the Direct Sound buffers. The
reason is because we only set the cooperative level to normal instead of exclusive.
So, if you want to load in and play 16-bit sounds, you will need to alter the DS_Init()
procedure and put Direct Sound into exclusive mode.

With that, our sound module is complete. It is definitely not state-of-the-art, but it
works fine and removes a lot of the DirectX burden that would normally be placed
on us. Luckily, though, we now get to talk about something a lot more fun: screen
transitions.

Screen Transitions
Screen transitions are usually fun to write. Of course, most anything would be fun
after playing with Direct Sound. The screen transition is often one of the most
important things in a game. If you have a lot of places where the view/screen

847Screen Transitions

TIP
Using the AND instruction with N-1,
when N is a power of 2, is the same as
using number MOD N.

TeamLRN

completely changes, a transition is typically needed to smooth things out. You do
not want the user to be “jarred” to the next scene. To the user, a transition is like
riding in a Lexus, whereas having none is like riding an old Harley Davidson. In
other words, you don’t want the user to feel the road; you want him to enjoy the
scenery.

I have taken an interesting approach with the screen transitions in this game. I
decided there would be one main interface function. This function, intelligently
called Transition(), is responsible for selecting a screen transition at random and
calling it. This provides some break from the monotony of calling the same one
over and over again. Of course, I have only provided one simple transition (with
two options); it is your job to write more. All transitions require that the surface
you want to transition from be on the primary buffer and the surface you want to
transition to be on the back buffer.

Here is the code for the interface function:

;##
; Transition Procedure
;##
Transition PROC

;===
; This function will call one of our transitions
; based on a random number. All transitions require
; the primary buffer to be the surface you want
; to transition from and the back buffer to be the
; surface you want to transition to. Both need to
; be unlocked.
;===

;=============================
; Get a random number
;=============================
INVOKE Get_Time

;=============================
; Mod the result with 2
;=============================
AND EAX, 1

848 20. Game Programming Assembly Style

TeamLRN

;=============================
; Select the transition based
; on our number
;=============================
.IF EAX == 0

;==========================
; Perform a Horizontal Wipe
;==========================
INVOKE Wipe_Trans, 6, WIPE_HORZ

;=========================
; Universal error check
;=========================
.IF EAX == FALSE

JMP err
.ENDIF

.ELSEIF EAX == 1
;==========================
; Perform a Vertical Wipe
;==========================
INVOKE Wipe_Trans, 4, WIPE_VERT

;=========================
; Universal error check
;=========================
.IF EAX == FALSE

JMP err
.ENDIF

.ENDIF

done:
;===================
; We completed
;===================
return TRUE

err:

849Screen Transitions

TeamLRN

;===================
; We didn’t make it
;===================
return FALSE

Transition ENDP
;##
; END Transition
;##

The Transition() function grabs a random number by using the same method as
our random shape generator, obtaining the time. This is not the optimum method,
and we will be replacing it with a true random-number generator later on. For now,
however, it will have to do. The proper transition is then made based on the time;
you can play with the parameters if you want. I just selected a couple that didn’t
seem to take away too much of the screen each iteration.

That’s all that is there for the management function. It just keeps things random.
You can still call a transition directly; I just thought it was more interesting to do it
like this. Besides, on a large project, after four to six months of looking at the same
transitions, you would probably be insane.

Now we can look at the actual screen transition, Wipe_Trans(). This routine allows us
to perform either a vertical (top to bottom) or horizontal (left to right) transition,
taking away a width that is passed in each time. So, have a look at the following
code before we continue.

;##
; Wipe_Trans Procedure
;##
Wipe_Trans PROC strip_width:DWORD, direction:DWORD

;===
; This function will perform either a horizontal or
; a vertical wipe, depending on what you pass in for the
; direction parameter. The width of each step is
; determined by the width you pass in to it.
;===

;===
; Local Variables
;===

850 20. Game Programming Assembly Style

TeamLRN

LOCAL StartTime :DWORD

;==
; Set up the source rectangle and the
; destination rectangle
;
; For the first iteration, the strip may
; not be the height passed in. This is to
; make sure we are on an even boundary
; during the loop below
;==
.IF direction == WIPE_HORZ

MOV SrcRect.top, 0
MOV SrcRect.left, 0
MOV EAX, app_width
MOV ECX, strip_width
XOR EDX, EDX
DIV ECX
.IF EDX == 0

MOV EDX, strip_width
.ENDIF
MOV EBX, app_height
MOV SrcRect.bottom, EBX
MOV SrcRect.right, EDX
MOV DestRect.top, 0
MOV DestRect.left, 0
MOV DestRect.bottom, EBX
MOV DestRect.right, EDX

.ELSEIF direction == WIPE_VERT
MOV SrcRect.top, 0
MOV SrcRect.left, 0
MOV EAX, app_height
MOV ECX, strip_width
XOR EDX, EDX
DIV ECX
MOV EAX, app_width
.IF EDX == 0

MOV EDX, strip_width
.ENDIF
MOV SrcRect.bottom, EDX

851Screen Transitions

TeamLRN

MOV SrcRect.right, EAX
MOV DestRect.top, 0
MOV DestRect.left, 0
MOV DestRect.bottom, EDX
MOV DestRect.right, EAX

.ELSE
;==================
; Invalid direction
;==================
JMP err

.ENDIF

;================================
; Get the starting time
;================================
INVOKE Start_Time, ADDR StartTime

;================================
; Blit the strip onto the screen
;================================
DDS4INVOKE BltFast, lpddsprimary, SrcRect.left, SrcRect.top,\

lpddsback, ADDR DestRect, DDBLTFAST_WAIT

;===============================
; Make sure we succeeded
;===============================
.IF EAX != DD_OK

JMP err
.ENDIF

;===
; Now adjust the distance between the left &
; right, or top and bottom, so that the top, or
; left, corner is where the right-hand side was
; at ... and the bottom, or right, is strip_width
; away from the opposite corner.
;===
MOV EAX, strip_width
.IF direction == WIPE_HORZ

852 20. Game Programming Assembly Style

TeamLRN

MOV EBX, SrcRect.right
MOV SrcRect.left, EBX
MOV DestRect.left, EBX
ADD EBX, EAX
MOV DestRect.right, EBX
MOV SrcRect.right, EBX

.ELSEIF direction == WIPE_VERT
MOV EBX, SrcRect.bottom
MOV SrcRect.top, EBX
MOV DestRect.top, EBX
ADD EBX, EAX
MOV DestRect.bottom, EBX
MOV SrcRect.bottom, EBX

.ENDIF

;===================================
; Wait to synchronize the time
;===================================
INVOKE Wait_Time, StartTime, TRANS_TIME

;=====================================
; Drop into a while loop and blit all
; of the strips synching to our
; desired transition rate
;=====================================
.WHILE TRUE

;================================
; Get the starting time
;================================
INVOKE Start_Time, ADDR StartTime

;================================
; Blit the strip onto the screen
;================================
DDS4INVOKE BltFast, lpddsprimary, SrcRect.left, SrcRect.top,\

lpddsback, ADDR DestRect, DDBLTFAST_WAIT

853Screen Transitions

TeamLRN

;===============================
; Make sure we succeeded
;===============================
.IF EAX != DD_OK

JMP err
.ENDIF

;==================================
; Have we reached our extents yet
;==================================
MOV EAX, SrcRect.bottom
MOV EBX, app_height
MOV ECX, SrcRect.right
MOV EDX, app_width
.IF EAX == EBX && ECX == EDX

;======================
; Trans complete
;======================
.BREAK

.ELSE
;======================
; Adjust by the strip
;======================
MOV EAX, strip_width
.IF direction == WIPE_HORZ

ADD SrcRect.left, EAX
ADD SrcRect.right, EAX
ADD DestRect.left, EAX
ADD DestRect.right, EAX

.ELSEIF direction == WIPE_VERT
ADD SrcRect.top, EAX
ADD SrcRect.bottom, EAX
ADD DestRect.top, EAX
ADD DestRect.bottom, EAX

.ENDIF

.ENDIF

854 20. Game Programming Assembly Style

TeamLRN

;===================================
; Wait to synchronize the time
;===================================
INVOKE Wait_Time, StartTime, TRANS_TIME

.ENDW

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Wipe_Trans ENDP
;##
; END Wipe_Trans
;##

Notice that the first thing we do is set up the source and destination rectangles. We
are going to be working with “strips” of the bitmap. I am going to walk you through
exactly what happens when the routine is called.

Pretend the user passed in a 7 for the strip_width parameter and wants a horizontal
transition. The first section finds out if the strip’s width can go evenly into the
screen width. If the strip can go in evenly, it sets the length to be equal to the
width. If it can’t, the remainder is placed in the width. The reason why we place the
remainder in is because the strip is going to have that little strip left over when we
finish. For example, with a 7 and a screen width of 640, you will have 91 sections of
7 and a section of 3 left over. So, for the first strip, we would store a 3 for the width.

Next we blit that small 3-pixel strip over
from the back buffer onto the primary
buffer. With that out of the way, we can
get set up to do blits with a 7-pixel
width. The way we set up is by moving

855Screen Transitions

NOTE
You would do the exact same thing—
except for the height/top/bottom—if
you were doing a vertical wipe.

TeamLRN

the right-hand side of the rectangle over to the left-hand side. Then we add the
strip_width, in this case 7, to the left-hand side to obtain the new right-hand side.
So, for our example, the left coordinate of the rectangles would now have a 3, and
the right coordinate would now have a 10. We need this adjustment since our loop
is only going to work with 7-pixel strips in the bitmap instead of an increasing por-
tion of the bitmap.

We are now ready to delve into our loop. The first thing we do, aside from getting
the starting time, is blit the current strip. (This is why we had to set up the rectan-
gles out of the loop.) Then we check that the right-hand and bottom sides of our
source rectangle are still inside the limits of our screen. If they have met the
extents, we break from the loop because we are finished. If we haven’t yet reached
the edges, we adjust the rectangles. To adjust the rectangles, we add the strip_width
to both the left and right of our source and destination rectangles. By adding to
both sides, we are able to blit in strips of 7 pixels. If we only added to the right-
hand side, we would blit in pixels of 7, 14, 21, and so on. Needless to say, that
would be much, much slower than the way we are doing it. It is almost always faster
to use deltas instead. Finally, we synchronize the time to our desired rate and keep
doing the loop until we are finished.

There isn’t very much to the routine, but it should give you a starting point in mak-
ing screen transitions. Here are some suggestions in case you are lacking in creativ-
ity: Make a modified wipe that would have a bunch of strips at intervals grow to
meet each other, like something you would see with a set of blinds in your house.
Design a transition that zooms in to a single pixel and then zooms out to the new
picture. Create a circular wipe or even a spiral one. There are many good articles
out there on demo effects, and I suggest reading some of them if you find this stuff
interesting. Finally, if you are really desperate for an idea, just go and play a game
and see how its transitions work. Mimicry is one of the first steps in learning.

At any rate, everything in our modules is complete. We now have everything that
we need to pretty up the game. In the next section, we will tie everything into a
nice little bow, just as we always do.

Putting More Pieces
Together
The title to this little section is really accurate. Most programming, at least in some
way, is like a jigsaw puzzle. It is about combining pieces in the manner that works

856 20. Game Programming Assembly Style

TeamLRN

best. Oftentimes, you will obtain a completely different result just by reordering
some of the steps. In this sense, programming is intellectually stimulating. There
are many millions of ways to accomplish any given task. Keep that in mind while
reviewing the code I provide. It isn’t written in blood anywhere that you have to do
things a certain way. At least, I don’t think it is.

The module we are going to look at for the changes is the Menu module. The rea-
son we are using this module is because it makes use of all of our new features.

You should have a glance at the code for the new module before we go any further.

;###
;###
; ABOUT Menu:
;
; This code module contains all of the functions that relate to
; the menu that we use.
;
; There are routines for each menu we will have. One for the main
; menu and one for the load/save menu stuff.
;
; NOTE: We could have combined these two functions into one generic
; function that used parameters to determine the behavior. But by coding
; it explicitly, we get a better idea of what is going on in the code.
;
;###
;###

;###
;###
; THE COMPILER OPTIONS
;###
;###

.386

.MODEL flat, stdcall
OPTION CASEMAP :none ; case sensitive

857Putting More Pieces Together

TeamLRN

;###
;###
; THE INCLUDES SECTION
;###
;###

;==
; These are the Include files for Window stuff
;==
INCLUDE \masm32\include\windows.inc
INCLUDE \masm32\include\comctl32.inc
INCLUDE \masm32\include\comdlg32.inc
INCLUDE \masm32\include\shell32.inc
INCLUDE \masm32\include\user32.inc
INCLUDE \masm32\include\kernel32.inc
INCLUDE \masm32\include\gdi32.inc

;===
; The Libs for those included files
;==
INCLUDELIB \masm32\lib\comctl32.lib
INCLUDELIB \masm32\lib\comdlg32.lib
INCLUDELIB \masm32\lib\shell32.lib
INCLUDELIB \masm32\lib\gdi32.lib
INCLUDELIB \masm32\lib\user32.lib
INCLUDELIB \masm32\lib\kernel32.lib

;====================================
; The Direct Draw include file
;====================================
INCLUDE Includes\DDraw.inc

;====================================
; The Direct Input include file
;====================================
INCLUDE Includes\DInput.inc

;====================================
; The Direct Sound include file
;====================================

858 20. Game Programming Assembly Style

TeamLRN

INCLUDE Includes\DSound.inc

;===
; Include the file that has our protos
;===
INCLUDE Protos.inc

;###
;###
; LOCAL MACROS
;###
;###

m2m MACRO M1, M2
PUSH M2
POP M1

ENDM

return MACRO arg
MOV EAX, arg
RET

ENDM

;###
;###
; Variables we want to use in other modules
;###
;###

;###
;###
; External variables
;###
;###

;=================================
; The DirectDraw stuff
;=================================
EXTERN lpddsprimary :LPDIRECTDRAWSURFACE4

859Putting More Pieces Together

TeamLRN

EXTERN lpddsback :LPDIRECTDRAWSURFACE4

;===
; The Input Device state variables
;===
EXTERN keyboard_state :BYTE

;###
;###
; BEGIN INITIALIZED DATA
;###
;###

.DATA

;===============================
; Strings for the bitmaps
;===============================
szMainMenu DB “Art\Menu.sfp”,0
szFileMenu DB “Art\FileMenu.sfp”,0

;================================
; Our very cool menu sound
;================================
szMenuSnd DB “Sound\Background.wav”,0

;===============================
; PTR to the BMPs
;===============================
ptr_MAIN_MENU DD 0
ptr_FILE_MENU DD 0

;===============================
; ID for the Menu sound
;===============================
Menu_ID DD 0

;======================================
; A value to hold lPitch when locking
;======================================
lPitch DD 0

860 20. Game Programming Assembly Style

TeamLRN

;==
; Lets us know if we need to transition
;==
first_time DD 0

;###
;###
; BEGIN CONSTANTS
;###
;###

;###
;###
; BEGIN EQUATES
;###
;###

;=================
;Utility Equates
;=================

FALSE EQU 0
TRUE EQU 1

;=================
; The Screen BPP
;=================

screen_bpp EQU 16

;=================
; The Menu Codes
;=================

; Generic
MENU_ERROR EQU 0h
MENU_NOTHING EQU 1h

; Main Menu
MENU_NEW EQU 2h
MENU_FILES EQU 3h
MENU_GAME EQU 4h

861Putting More Pieces Together

TeamLRN

MENU_EXIT EQU 5h

; File Menu
MENU_LOAD EQU 6h
MENU_SAVE EQU 7h
MENU_MAIN EQU 8h

;###
;###
; BEGIN THE CODE SECTION
;###
;###

.CODE

;##
; Init_Menu Procedure
;##
Init_Menu PROC

;===
; This function will initialize our menu systems
;===

;=================================
; Local Variables
;=================================

;======================================
; Read in the bitmap and create buffer
;======================================
INVOKE Create_From_SFP, ADDR ptr_MAIN_MENU, ADDR szMainMenu,\

screen_bpp

;====================================
; Test for an error
;====================================
.IF EAX == FALSE

;========================
; We failed so leave
;========================

862 20. Game Programming Assembly Style

TeamLRN

JMP err

.ENDIF

;======================================
; Read in the bitmap and create buffer
;======================================
INVOKE Create_From_SFP, ADDR ptr_FILE_MENU, ADDR szFileMenu,\

screen_bpp

;====================================
; Test for an error
;====================================
.IF EAX == FALSE

;========================
; We failed so leave
;========================
JMP err

.ENDIF

;========================
; Load in the menu sound
;========================
INVOKE Load_WAV, ADDR szMenuSnd, NULL
MOV Menu_ID, EAX

;===============================
; Set first_time to true so that we
; will do a trans when we first
; enter the menu routines
;===============================
MOV first_time, TRUE

done:
;===================
; We completed
;===================
return TRUE

err:

863Putting More Pieces Together

TeamLRN

;===================
; We didn’t make it
;===================
return FALSE

Init_Menu ENDP
;##
; END Init_Menu
;##

;##
; Shutdown_Menu Procedure
;##
Shutdown_Menu PROC

;===
; This function will shut down our menu systems
;===

;=================================
; Local Variables
;=================================

;==========================
; Free the bitmap memory
;==========================
INVOKE GlobalFree, ptr_MAIN_MENU
INVOKE GlobalFree, ptr_FILE_MENU

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

864 20. Game Programming Assembly Style

TeamLRN

Shutdown_Menu ENDP
;##
; END Shutdown_Menu
;##

;##
; Process_Main_Menu Procedure
;##
Process_Main_Menu PROC

;===
; This function will process the main menu for the game
;===

;=================================
; Local Variables
;=================================

;===================================
; Lock the Direct Draw back buffer
;===================================
INVOKE DD_Lock_Surface, lpddsback, ADDR lPitch

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

;===================================
; Draw the bitmap onto the surface
;===================================
INVOKE Draw_Bitmap, EAX, ptr_MAIN_MENU, lPitch, 640, 480, screen_bpp

865Putting More Pieces Together

TeamLRN

;===================================
; Unlock the back buffer
;===================================
INVOKE DD_Unlock_Surface, lpddsback

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

;======================================
; Make sure the Menu sound is playing
;======================================
INVOKE Status_Sound, Menu_ID
.IF !(EAX & DSBSTATUS_PLAYING)

;===================
; Play the sound
;===================
INVOKE Play_Sound, Menu_ID, DSBPLAY_LOOPING

.ENDIF

;=====================================
; Everything okay, so flip displayed
; surfaces and make loading visible
; or call transition if needed
;======================================
.IF first_time == TRUE

INVOKE Transition
MOV first_time, FALSE

.ELSE
INVOKE DD_Flip

.ENDIF

866 20. Game Programming Assembly Style

TeamLRN

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

;==
; Now read the keyboard to see if they have pressed
; any keys corresponding to our menu
;==
INVOKE DI_Read_Keyboard

;=============================
; Did they press a valid key
;=============================
.IF keyboard_state[DIK_N]

;======================
; Stop the menu music
;======================
INVOKE Stop_Sound, Menu_ID

;===============================
; Reset the first time variable
;===============================
MOV first_time, TRUE

;======================
; The new game key
;======================
return MENU_NEW

.ELSEIF keyboard_state[DIK_G]
;===============================
; Reset the first time variable
;===============================

867Putting More Pieces Together

TeamLRN

MOV first_time, TRUE

;======================
; The game files key
;======================
return MENU_FILES

.ELSEIF keyboard_state[DIK_R]
;===============================
; Reset the first time variable
;===============================
MOV first_time, TRUE

;======================
; Stop the menu music
;======================
INVOKE Stop_Sound, Menu_ID

;======================
; Return to game key
;======================
return MENU_GAME

.ELSEIF keyboard_state[DIK_E]
;======================
; Stop the menu music
;======================
INVOKE Stop_Sound, Menu_ID

;======================
; The exit game key
;======================
return MENU_EXIT

.ENDIF

done:
;===================
; We completed w/o
; doing anything
;===================

868 20. Game Programming Assembly Style

TeamLRN

return MENU_NOTHING

err:
;===================
; We didn’t make it
;===================
return MENU_ERROR

Process_Main_Menu ENDP
;##
; END Process_Main_Menu
;##

;##
; Process_File_Menu Procedure
;##
Process_File_Menu PROC

;===
; This function will process the file menu for the game
;===

;=================================
; Local Variables
;=================================

;===================================
; Lock the Direct Draw back buffer
;===================================
INVOKE DD_Lock_Surface, lpddsback, ADDR lPitch

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

869Putting More Pieces Together

TeamLRN

.ENDIF

;===================================
; Draw the bitmap onto the surface
;===================================
INVOKE Draw_Bitmap, EAX, ptr_FILE_MENU, lPitch, 640, 480, screen_bpp

;===================================
; Unlock the back buffer
;===================================
INVOKE DD_Unlock_Surface, lpddsback

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

;======================================
; Make sure the Menu sound is playing
;======================================
INVOKE Status_Sound, Menu_ID
.IF !(EAX & DSBSTATUS_PLAYING)

;===================
; Play the sound
;===================
INVOKE Play_Sound, Menu_ID, DSBPLAY_LOOPING

.ENDIF

;=====================================
; Everything okay, so flip displayed
; surfaces and make loading visible
; or call transition if needed
;======================================
.IF first_time == TRUE

870 20. Game Programming Assembly Style

TeamLRN

INVOKE Transition
MOV first_time, FALSE

.ELSE
INVOKE DD_Flip

.ENDIF

;============================
; Check for an error
;============================
.IF EAX == FALSE

;===================
; Jump to err
;===================
JMP err

.ENDIF

;==
; Now read the keyboard to see if they have pressed
; any keys corresponding to our menu
;==
INVOKE DI_Read_Keyboard

;=============================
; Did they press a valid key
;=============================
.IF keyboard_state[DIK_L]

;======================
; The load game key
;======================
return MENU_LOAD

.ELSEIF keyboard_state[DIK_S]
;======================
; The save game key
;======================
return MENU_SAVE

.ELSEIF keyboard_state[DIK_B]

871Putting More Pieces Together

TeamLRN

;===============================
; Reset the first time variable
;===============================
MOV first_time, TRUE

;======================
; Return to main key
;======================
return MENU_MAIN

.ENDIF

done:
;===================
; We completed w/o
; doing anything
;===================
return MENU_NOTHING

err:
;===================
; We didn’t make it
;===================
return MENU_ERROR

Process_File_Menu ENDP
;##
; END Process_File_Menu
;##

;######################################
; THIS IS THE END OF THE PROGRAM CODE #
;######################################
END

Now I will help you locate all of the new stuff. To begin with, in Init_Menu() we load
in the WAV file for the menu music, and we set a new variable called first_time to
TRUE. I hope the Load_WAV() call is self-explanatory. The new variable, on the other
hand, is probably going to need a quick explanation. Basically, when we are draw-
ing one of the menus, we need a way to find out whether we need to perform a

872 20. Game Programming Assembly Style

TeamLRN

transition or just draw it plain. Since we only want to transition once (upon
entrance), we set up a variable to hold state information.

Looking at the Process_Main_Menu() procedure, we can see how to use the new
routines. After the stuff has been drawn and is ready to be displayed, we call
Status_Sound() with our menu’s music ID. The function returns the status of the
sound, and we AND it with DSBSTATUS_PLAYING to find out if our sound is currently
playing. If it is not yet playing, we make the call to play the sound and pass in DSB-
PLAY_LOOPING so that we don’t have to keep calling Play_Sound(). It is important
that we get the status on any sound that might be looping because, by calling
Play_Sound(), we reset its position to the beginning. It ends up sounding very inter-
esting, and you know right away that you have botched it someplace.

Once the sound is going, we are ready to display our menu screen. If our first_time
variable is still TRUE, we transition in; otherwise, we just draw the screen normal. We
also set the state to FALSE after we transition in so that we don’t keep performing a
transition. The variable also gets reset when certain menu items are selected.

That’s about all for the new stuff. I have scattered things around the Menu module,
and there is some sound stuff in the Shapes module. I showed you how to imple-
ment the new things, which is extremely simple. If you can think of anything else to
add, feel free to do so. It is good practice.

Conclusion
Yet another part of the game is complete. I really hope that you aren’t just reading
these things. Programming is just that, programming. Without practice, no amount
of reading is going to help you.

As always, let me remind you that this code is sample code. It is meant to illustrate
beginning/intermediate techniques. It isn’t fully optimized, although because it is
in pure assembly, it is usually smaller and faster than any compiler could produce
on its own. So, improve the code! With time and practice, you will start fully under-
standing these concepts, and then you will be able to produce optimum code.

Most importantly, take the time to sit back and savor what we have accomplished so
far. In about a week and a half of coding time, which is what I estimate I have actu-
ally spent programming this game, we have the following: an executable that is
under 30KB, a fully working game, a few bells and whistles, and we learned many
new things. If you were somebody who was hesitant about assembly language
before this section, these things should definitely make up your mind for you.

873Conclusion

TeamLRN

Assembly language is still quite useful and should still be considered a viable lan-
guage for producing programs.

In the next section, we will be adding a scoring system and a preview system for the
pieces. These additions will almost make a fully complete game. In the last section,
I will cover some more additions that are a little bit more on the advanced side and
should make the game quite a bit better. Most importantly, these last two sections
will polish the game off.

Finally, take note of the totally awesome sounds that are in the game. After I threw
together a few, I decided that you guys needed something much better, so I con-
tacted Jason Pitt of EvilX Systems (www.evilx.com). Jason, aside from making totally
unique games, has amazing musical talent. If you are a musically challenged pro-
grammer or even just want to take the music in your game to the next level, con-
tact him. You might be surprised at what he can do—I sure was.

874 20. Game Programming Assembly Style

TeamLRN

WIN32 ASM—PART 6
Okay, it’s time to get back to work. In the last section, we added the totally awe-
some sound effects and made some simple screen transitions. I also showed the
solution to the rotation problem we had. It may not sound like much, but trust
me—those things had a significant impact on the game.

In this section, we’ll start off by adding the capability to see the preview piece,
which means we’ll have to add a preview piece to our list of needed data (duh!).
Once that is taken care of, we’ll add the capability to draw text of different font
sizes. The text drawing will take a few new routines and the alteration of an old
one. Then we’ll write the code to draw text for our level, score, and the current
lines we have earned. Finally, we can add the scoring system (along with a primitive
level system) to the game.

Okay, that’s the plan. I suppose I should stop chattering and get to the good stuff.

Next Piece, Please
Integrating a new piece into the “pipeline” was very easy. Basically, what I wanted
was a piece that would stand in line. Then, when the current piece finished drop-
ping, the next piece in line would become current, and the new piece that was just
created would take its place waiting.

I started out by copying all the variables that the current piece had. Then I just
gave them new names to show that they were for the next piece and not the cur-
rent one. Then I needed to alter the New_Shape() procedure. Take a look at the code
I added.

;##
; New_Shape Procedure
;##
New_Shape proc

875Next Piece, Please

TeamLRN

;==
; This function will select a new shape at random
; for the Next shape and will assign the old next
; shape values to the current shape
;==

;=================================
; Do the swaps if this isn’t our
; very first piece of the game
;=================================

again:
.if NextShape != -1

m2m CurShape, NextShape
m2m CurShapeColor, NextShapeColor
m2m CurShapeX, NextShapeX
m2m CurShapeY, NextShapeY
m2m CurShapeFrame, NextShapeFrame

.endif

;======================================
; First make sure they haven’t reached
; the top of the grid yet
;
; Begin by calculating the start of
; the very last row where the piece
; is initialized at ... aka (5,19)
;======================================
mov eax, 13
mov ecx, 19
mul ecx
add eax, 5
mov ebx, BlockGrid
add eax, ebx
mov ecx, eax
add ecx, 4

;==========================
; Loop through and test the
; next 4 positions
;==========================
.while eax <= ecx

876 20. Game Programming Assembly Style

TeamLRN

;=====================
; Is this one filled?
;=====================
mov bl, BYTE PTR [eax]
.if bl != 0

;===================
; They are dead
;===================
jmp err

.endif

;=================
; Inc the counter
;=================
inc eax

.endw

;=============================
; Use a random number to get
; the current shape to use
;
; For this we will just use
; the time returned by the
; Get_Time() function
;=============================
invoke Get_Time

;=============================
; Mod this number with 7
; since there are 7 shapes
;=============================
mov ecx, 7
xor edx, edx
div ecx
mov eax, edx

;=============================
; Multiply by 16 since there
; are 16 bytes per shape
;=============================

877Next Piece, Please

TeamLRN

shl eax, 4

;=============================
; Use that number to select
; the shape from the table
;=============================
mov ebx, offset ShapeTable
add eax, ebx
mov NextShape, eax

;=============================
; Use a random number to get
; the block surface to use
;
; For this we will just use
; the time returned by the
; Get_Time() function
;=============================
invoke Get_Time

;=============================
; And this result with 7
; since there are 8 blocks
;=============================
and eax, 7

;================================
; Use it as the block surface
;================================
mov NextShapeColor, eax

;================================
; Initialize the Starting Coords
;================================
mov NextShapeX, 5
mov NextShapeY, 24

;================================
; Set the Current Frame Variable
;================================

878 20. Game Programming Assembly Style

TeamLRN

mov NextShapeFrame, 0

;====================================
; Go back to the top and load again
; if this was our very first piece
;====================================
.if CurShape == -1

jmp again
.endif

done:
;=======================
; They have a new piece
;=======================
return TRUE

err:
;===================
; They died!
;===================
return FALSE

New_Shape ENDP
;##
; END New_Shape
;##

Notice that the first thing I do is test to see if NextShape is currently –1. I assign
NextShape this value during initialization to show that I need to create two new
shapes, one for the current and one for the next. After that special very first itera-
tion, though, everything runs as normal. I place the values in the next shape into
the current shape’s variables. Then I create everything just as before, except I store
the values in my next shape instead of the current one. At the bottom, I test the
current shape to see if it is –1. If so, I know I need to create another shape, so I
jump back to the top and do it all over again.

The only other modification I had to make was, as I mentioned, during initializa-
tion. At that point, both the current shape and the next shape were set equal to –1
to indicate that they needed to be created.

879Next Piece, Please

TeamLRN

I Can’t See It!
After getting the application to create and store the piece, I just needed a way to
draw it on the screen. I decided to simply modify the existing Draw_Shape() proce-
dure. The idea was to have it either draw the current shape or the next shape,
based on a variable that was passed in. Have a look at the new version.

;##
; Draw_Shape Procedure
;##
Draw_Shape proc UseNext:BYTE

;===
; This function will draw our current shape at its
; proper location on the screen, or it will draw the next
; shape on the screen in the next window
;===

;===========================
; Local Variables
;===========================
LOCAL DrawY: DWORD
LOCAL DrawX: DWORD
LOCAL CurRow: DWORD
LOCAL CurCol: DWORD
LOCAL CurLine: DWORD
LOCAL XPos: DWORD
LOCAL YPos: DWORD

;===================================
; Get the Current Shape Pos
;===================================
.if UseNext == FALSE

mov ebx, CurShape
mov eax, CurShapeFrame

.else
mov ebx, NextShape
mov eax, NextShapeFrame

.endif
shl eax, 2
add ebx, eax

880 20. Game Programming Assembly Style

TeamLRN

mov CurLine, ebx

;===================================
; Set the Starting Row and Column
; for the drawing
;===================================
.if UseNext == FALSE

mov eax, CurShapeX
mov ebx, CurShapeY

.else
mov eax, 2 ; X Coord
mov ebx, 4 ; Y Coord

.endif
mov DrawX, eax
mov DrawY, ebx

;===================================
; Loop through all four rows
;===================================
mov CurRow, 0
.while CurRow < 4

;=====================================
; Loop through all four Columns if
; the Y Coord is in the screen
;=====================================
mov CurCol, 4
.while CurCol > 0 && DrawY < 20

;===============================
; Shift the CurLine Byte over
; by our CurCol
;===============================
mov ecx, 4
sub ecx, CurCol
mov ebx, CurLine
xor eax, eax
mov al, BYTE PTR [ebx]
shr eax, cl

;===============================
; Is it a valid block?
;===============================

881I Can’t See It!

TeamLRN

.if (eax & 1)
;============================
; Yes, it was a valid block
;============================

;=============================
; Calculate the Y coord
;=============================
mov eax, (GRID_HEIGHT - 5)
sub eax, DrawY
mov ecx, BLOCK_HEIGHT
mul ecx
mov YPos, eax

;===========================
; Adjust the Y coord for
; certain shapes in the next
; window since they are off
; of the center
;===========================
.if UseNext == TRUE

mov ecx, NextShape
.if ecx == Offset Square || \

ecx == Offset Line
sub YPos, 7

.elseif ecx == offset Pyramid
add YPos, 15

.else
add YPos, 5

.endif
.endif

;=============================
; Calculate the X coord
;=============================
mov eax, DrawX
add eax, CurCol
dec eax
mov ecx, BLOCK_WIDTH
mul ecx
.if UseNext == FALSE

882 20. Game Programming Assembly Style

TeamLRN

add eax, 251
.else

add eax, 40
;=============================
; Now adjust the X coord on a
; shape-by-shape basis
;=============================
mov ecx, NextShape
.if ecx == offset Square

sub eax, 12
.elseif ecx == offset Line

add eax, 25
.elseif ecx == offset L

add eax, 15
.elseif ecx == offset Back_L

add eax, 15
.elseif ecx == offset Z

sub eax, 15
.elseif ecx == offset Back_Z

sub eax, 15
.endif

.endif
mov XPos, eax

;=============================
; Calculate the surface to use
;=============================
.if UseNext == FALSE

mov eax, CurShapeColor
.else

mov eax, NextShapeColor
.endif
shl eax, 2
mov ebx, DWORD PTR BlockSurface[eax]

;=============================
; Blit the block
;=============================
DDS4INVOKE BltFast, lpddsback, XPos, YPos, \

ebx, ADDR SrcRect, \
DDBLTFAST_NOCOLORKEY or DDBLTFAST_WAIT

883I Can’t See It!

TeamLRN

.endif

;=====================
; Dec our col counter
;=====================
dec CurCol

.endw

;=======================
; Inc the CurLine
;=======================
inc CurLine

;====================
; decrement Y coord
;====================
dec DrawY

;====================
; Inc the row counter
;====================
inc CurRow

.endw

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Draw_Shape ENDP

884 20. Game Programming Assembly Style

TeamLRN

;##
; END Draw_Shape
;##

The start of the code is pretty self-explanatory. It simply decides which variables to
use based on the piece we are drawing. Take note that the coordinates 2 and 4 are
not pixel coordinates. They are the number of 32×32-pixel blocks on the X-axis
and the number of blocks from the bottom on the Y-axis.

There is one major change in the code, and that is where I adjust the position of
the blocks that are drawn. Because the window we are trying to draw them in is
square but our shapes typically aren’t, we needed a way to center them. So, I
decided to hard-code the coordinate adjustments.

I used a special technique to do this, though. You’ll notice that I labeled the start
of each shape’s declaration in the shape table. Remember when we were declaring
the shapes by using bits? Well, all I did was place a label before the start of every
new shape. This is very, very powerful. I am now able to address the middle of a
huge table by name. Needless to say, this adds to the clarity of what would have
been a very difficult thing to understand. This is the equivalent of being able to
name variable[12][12] with an alias in C so that you can access it directly.

Finally, in the main code, we call this
routine both with TRUE and with
FALSE so that we can have both
pieces drawn. Keep in mind that
this routine could have been bro-
ken apart into two routines. We
chose this route simply because
the changes were easy to make and
made sense. The next step is to
modify the drawing routine to let
us change fonts to draw our text.

The New
Text
The text support didn’t require too much alteration. Basically, I wanted to be able
to support drawing the text with GDI in different fonts instead of the system
default. This is something I should have planned from the beginning, but I didn’t.

885The New Text

NOTE
The only exception to this modification was
the square. Because the square was the first
shape, I couldn’t have two names both at
the same place (the first name being, of
course, our variable name ShapeTable). So, at
the end of ShapeTable, I put an equate that
said to treat Square the same as ShapeTable.
In code, I could have easily just used
ShapeTable directly, but then it wouldn’t have
been as clear what I was doing.

TeamLRN

I would like to be able to say I was just saving it for later, but the truth is I plum for-
got about it. Oh well, I guess you’ll get to see it now.

The very first thing we have to do is add in support for selecting and deselecting
certain fonts. In Windows, you specify what font you want to use by selecting it into
your object after you create it. This sounds pretty crazy, but the code is fairly
straightforward. Here are the routines to select and deselect the font.

;##
; DD_Select_Font Procedure
;##
DD_Select_Font PROC handle:DWORD, lfheight:DWORD, lfweight:DWORD,\

ptr_szName:DWORD, ptr_old_obj:DWORD

;===
; This function will create & select the font after
; altering the font structure based on the params
;===

;=================================
; Create the FONT object
;=================================
INVOKE CreateFont, lfheight, 0, 0, 0, lfweight, 0, 0, \

0, ANSI_CHARSET, OUT_DEFAULT_PRECIS, CLIP_STROKE_PRECIS,\
DEFAULT_QUALITY, DEFAULT_PITCH OR FF_DONTCARE, ptr_szName

MOV temp, EAX

;===================================
; Select the font and preserve old
;===================================
INVOKE SelectObject, handle, EAX
MOV EBX, ptr_old_obj
MOV [EBX], EAX

done:
;===================
; We completed
;===================
return temp

err:

886 20. Game Programming Assembly Style

TeamLRN

;===================
; We didn’t make it
;===================
return FALSE

DD_Select_Font ENDP
;##
; END DD_Select_Font
;##

;##
; DD_UnSelect_Font Procedure
;##
DD_UnSelect_Font PROC handle:DWORD, font_object:DWORD, old_object:DWORD

;===
; This function will delete the font object and restore
; the old object
;===

;==================================
; Restore old obj and delete font
;==================================
INVOKE SelectObject, handle, old_object
INVOKE DeleteObject, font_object

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

DD_UnSelect_Font ENDP

887The New Text

TeamLRN

;##
; END DD_UnSelect_Font
;##

This probably doesn’t mean too much to you right now, but here is how the rou-
tines work. To select a font for use, two steps are required. First, we must create a
font object. My select function lets you control three different things: size, weight,
and font name. The size is how large you want it, the weight controls bold and nor-
mal, and the name controls the actual font you use. There are many other parame-
ters that can be played with, and I suggest reviewing the Win32 API calls for those
parameters. The second step is to “select” that font object into the current device
context. The only trick here is that we preserve the old object with the pointer
passed in for that old object. This is all that needs to be done to select a new font.

Our routine to deselect the font is pretty much the same process but in reverse.
First we select our old object back into the device context. This step is important
because we may have had something else in there that we want to restore. When
programming, it is best to abide by the adage that most of our mothers taught us:
“Put it back the way you found it.” Then, after we select the old object, we can
delete our current font object and then are finished.

That is all that there is to selecting a new font to use for drawing. It doesn’t do
much good, however, without some code to put it on the screen.

;##
; Draw_Captions Procedure
;##
Draw_Captions proc

;===
; This function will draw our captions, such as the
; score and the current level they are on
;===

;====================
; Local Variables
;====================
LOCAL hFont :DWORD

888 20. Game Programming Assembly Style

TeamLRN

;=====================================
; Get the DC for the back buffer
;=====================================
invoke DD_GetDC, lpddsback
mov hDC, eax

;====================================
; Set the font to “IMPACT” at the
; size that we need it
;====================================
invoke DD_Select_Font, hDC, -32, FW_BOLD, ADDR szImpact, ADDR Old_Obj
mov hFont, eax

;=============================
; Set up rect for score text
;=============================
mov text_rect.top, 161
mov text_rect.left, 54
mov text_rect.right, 197
mov text_rect.bottom, 193

;=============================
; Draw the Score Text
;=============================
RGB 255, 255, 255
push eax
mov eax, Score
mov dwArgs, eax
invoke wvsprintfA, ADDR szBuffer, ADDR szScore, Offset dwArgs
pop ebx
invoke DD_Draw_Text, hDC, ADDR szBuffer, eax, ADDR text_rect,\

DT_CENTER or DT_VCENTER or DT_SINGLELINE, ebx

;=============================
; Set up rect for Level text
;=============================
mov text_rect.top, 67
mov text_rect.left, 102
mov text_rect.right, 151
mov text_rect.bottom, 99

889The New Text

TeamLRN

;=============================
; Draw the Level Text
;=============================
RGB 255, 255, 0
push eax
mov eax, CurLevel
mov dwArgs, eax
invoke wvsprintfA, ADDR szBuffer, ADDR szLevel, Offset dwArgs
pop ebx
invoke DD_Draw_Text, hDC, ADDR szBuffer, eax, ADDR text_rect,\

DT_CENTER or DT_VCENTER or DT_SINGLELINE, ebx

;=============================
; Set up rect for Lines text
;=============================
mov text_rect.top, 256
mov text_rect.left, 90
mov text_rect.right, 162
mov text_rect.bottom, 288

;=============================
; Draw the Lines Text
;=============================
RGB 255, 255, 0
push eax
mov eax, NumLines
mov dwArgs, eax
invoke wvsprintfA, ADDR szBuffer, ADDR szLines, Offset dwArgs
pop ebx
invoke DD_Draw_Text, hDC, ADDR szBuffer, eax, ADDR text_rect,\

DT_CENTER or DT_VCENTER or DT_SINGLELINE, ebx

;=============================
; Unselect the font
;=============================
invoke DD_UnSelect_Font, hDC, hFont, Old_Obj

;============================
; Release the DC
;============================

890 20. Game Programming Assembly Style

TeamLRN

invoke DD_ReleaseDC, lpddsback, hDC

done:
;===================
; We completed
;===================
return TRUE

err:
;===================
; We didn’t make it
;===================
return FALSE

Draw_Captions ENDP
;##
; END Draw_Captions
;##

I have tried to keep it in the same form as the rest of what I’ve shown you. The
code reads from a few module variables to get the current numbers to draw. It then
makes a call to set the font how we want it. This isn’t anything new, I hope. We
then set our rectangle for the drawing and make the call. If you don’t remember,
wvsprintfA() is a function that is used for formatting a string buffer (almost exactly
like sprintf()).

The other thing I am doing is setting the color we will use. I don’t know about you,
but I prefer to make things a little bit varied so that they stand out.

In short, this routine just calls on a few library routines and pieces things together
as needed. As I mentioned before, programming is like one big jigsaw puzzle. It is
just a matter of finding the right pieces and putting them together correctly. There
is no one right way to do it, and that is why everybody creates different pictures.
Make sense? Remember this fact; it helps when designing things.

Scoring and Levels
It is truly amazing how primitive I made this scoring and level system. The thing
does about as much as the old Atari games, but hey, it is a start.

891Scoring and Levels

TeamLRN

Inside the Line_Test() function, the code increments a variable that tests itself for a
MAX condition. This is where the number of lines is counted. Once that MAX condi-
tion is exceeded, the number of lines gets reset and the level increased. Then, in
our main code, another function we call is the Is_Game_Won() function. It is called to
find out if they have gone over the maximum number of levels in the game. In our
case, the MAX level is 10, but you can make it whatever you would like it to be.

The other function we added was one to keep track of the score. As expected, it is
called Adjust_Score(), and it performs the same type of adjustment that we did for
the levels. The only difference is that if the user exceeds the maximum score, we
simply reset his score to the maximum amount. It’s nothing fancy, but it works as it
is supposed to, which is always a nice side effect. This function is called from the
main module based on how many lines the user achieved in one swoop. So, the
more lines he eliminates at once, the more points he would achieve.

When the user reaches the end of the game, our main code sets the state to GS_WON
and simply restarts. It is in that section that we would perform credits and special
winning sequences. I was lacking in both art and creativity when I coded it, how-
ever, so it just restarts the game.

Here are the Line_Test(), Adjust_Score(), and Is_Game_Won() functions. I’ll let you sort
through the main code yourself and see what alterations I made.

;##
; Line_Test Procedure
;##
Line_Test proc

;==
; This function will test to see if they earned a
; line ... if so, it will eliminate that line
; and update our grid of blocks
;==

;==========================
; Local Variables
;==========================
LOCAL CurLine: DWORD
LOCAL CurBlock: DWORD

;===============================
; Start at the Base of the Grid
;===============================

892 20. Game Programming Assembly Style

TeamLRN

mov CurLine, 0

;=================================
; Loop through all possible Lines
;=================================
.while CurLine < (GRID_HEIGHT - 4)

;===================================
; Go to the base of the current line
;===================================
mov eax, CurLine
mov ecx, 13
mul ecx
add eax, BlockGrid

;==================================
; Loop through every block,
; testing to see if it is valid
;==================================
mov CurBlock, 0
.while CurBlock < (GRID_WIDTH)

;==========================
; Is this Block IN-Valid?
;==========================
mov bl, BYTE PTR [eax]
.if bl == 0

;===================
; Yes, so break
;===================
.break

.endif

;======================
; Next Block
;======================
inc eax

;======================
; Inc the counter
;======================

893Scoring and Levels

TeamLRN

inc CurBlock

.endw

;==============================
; Did our inner loop go all
; of the way through??
;==============================
.if CurBlock == (GRID_WIDTH)

;============================
; Yes. That means it was
; a valid line we just earned
;============================

;===================================
; Calculate how much memory to move
; TOTAL - Amount_IN = TO_MOVE
;===================================
mov ebx, (GRID_WIDTH * (GRID_HEIGHT -5))
mov eax, CurLine
mov ecx, 13
mul ecx
push eax
sub ebx, eax

;============================
; Move the memory one line
; up to our current line
;============================
pop eax
add eax, BlockGrid
mov edx, eax
add edx, 13

;==============================
; Move the memory down a notch
;==============================
invoke RtlMoveMemory, eax, edx, ebx

894 20. Game Programming Assembly Style

TeamLRN

;============================
; Jump down and return TRUE
;============================
jmp done

.endif

;==============================
; Increment our Line counter
;==============================
inc CurLine

.endw

err:
;===================
; We didn’t get one
;===================
return FALSE

done:
;===================
; Play the sound
;===================
invoke Play_Sound, Thud_ID, 0

;==========================
; Adjust their line count
;==========================
inc NumLines
.if NumLines >= MAX_LINES

mov NumLines, 0
inc CurLevel

.endif

;===================
; We earned a line
;===================
return TRUE

895Scoring and Levels

TeamLRN

Line_Test ENDP
;##
; END Line_Test
;##

;##
; Adjust_Score Procedure
;##
Adjust_Score proc amount:DWORD

;==
; This function will adjust the score by the
; passed-in value if possible, adjusting the
; level if necessary
;==
mov eax, amount
add Score, eax
.if Score > MAX_SCORE

mov Score, MAX_SCORE
.endif

done:
;===================
; We earned a line
;===================
return TRUE

Adjust_Score ENDP
;##
; END Adjust_Score
;##

;##
; Is_Game_Won Procedure
;##
Is_Game_Won proc

896 20. Game Programming Assembly Style

TeamLRN

;==
; This function will return TRUE if we have won
; the game and false otherwise
;==

.if CurLevel > MAX_LEVEL
return TRUE

.else
return FALSE

.endif

Is_Game_Won ENDP
;##
; END Is_Game_Won
;##

Conclusion
Whoopie! We are finished with yet another section. So, have you been working on
your different versions like I keep hounding you to? I really hope so, especially
since we are going to get into the final topics in the next section, which is a little
bit more advanced.

The next section will cover saving and loading, and we will utilize a new random-
number-generation scheme. With what we completed in this section, the game is
almost finished. What we do need, other than what we cover in the final section, is
more polished artwork and some extra music and sound effects. Those are the
kinds of things that really finish off a game. The important thing, though, is to be
careful with what you choose. As programmers, we sometimes have views of what
looks nice or sounds good even though the mainstream public (you know, the peo-
ple actually playing your game) doesn’t care an iota about it.

897Conclusion

TeamLRN

WIN32 ASM—PART 7
We are almost finished with SPACE-TRIS. The game has evolved remarkably in the
last two sections, and we are getting to the point at which we can state it is com-
pleted. In fact, that is the goal we are aiming for in this last section.

To begin with, we will cover saving and loading the game out to disk. Then we will
tackle writing a new random-number-generation scheme. Using a call to grab the
current time, although completely functional, is a little antiquated. The saving and
loading will be in a simple format, and the random-number generator will use a
relatively noncomplex algorithm. They will help tidy off what has been a wonderful
game for us to develop.

Once these things are complete, we can sit back and admire our work and the final
product. Until then, I must crack the whip and send us back into the line of fire.

Storing Your Life
One of the most important things in a game is being able to save and load your
position. In our game, we have a menu setup for doing just that. Remember the
Game Files section on the main menu? Well, the menu underneath that option is
where the user will save and load his game. Thus far, we have had no code at all in
the handler, but we are about to change all of that.

First we will take a look at the code that will open a file and save or load the game
based on what the user has selected. This is the snippet of code from the
Game_Main() function inside SPACE_TRIS.asm.

.elseif GameState == GS_FILE
;=================================
; We are in the file menu state
;=================================
invoke Process_File_Menu

898 20. Game Programming Assembly Style

TeamLRN

;=================================
; What did they want to do
;=================================
.if eax == MENU_NOTHING

;=================================
; They didn’t select anything yet,
; so don’t do anything
;=================================

.elseif eax == MENU_ERROR
;==================================
; This is where error code would go
;==================================

.elseif eax == MENU_LOAD
;==================================
; They want to load the saved game
;==================================

;======================================
; Create the file to read from
;======================================
invoke CreateFile, offset szSaveFile, \

GENERIC_READ or GENERIC_WRITE, \
FILE_SHARE_READ, NULL, OPEN_ALWAYS, \
FILE_ATTRIBUTE_NORMAL,NULL

mov hFile, eax

;======================================
; Load the game off of disk
;======================================
invoke Load_State, hFile
.if eax == FALSE

;========================
; Failed to load
;========================

.else
;======================================
; Play sound to show we loaded okay
;======================================

899Storing Your Life

TeamLRN

invoke Play_Sound, Loaded_ID, 0

.endif

;======================================
; Close the handle to the file
;======================================
invoke CloseHandle, hFile

;===============================
; Set the Game state to playing
;===============================
mov GameState, GS_PLAY

.elseif eax == MENU_SAVE
;==================================
; They want to save their game
;==================================

;======================================
; Create the file to write to
;======================================
invoke CreateFile, offset szSaveFile, \

GENERIC_READ or GENERIC_WRITE, \
FILE_SHARE_READ, NULL, OPEN_ALWAYS, \
FILE_ATTRIBUTE_NORMAL,NULL

mov hFile, eax

;======================================
; Save the game off to disk
;======================================
invoke Save_State, hFile
.if eax == FALSE

;========================
; Failed to save
;========================

.else
;======================================
; Play sound to show we saved okay
;======================================
invoke Play_Sound, Saved_ID, 0

900 20. Game Programming Assembly Style

TeamLRN

.endif

;======================================
; Close the handle to the file
;======================================
invoke CloseHandle, hFile

.elseif eax == MENU_MAIN
;==================================
; They want to return to main menu
;==================================
mov GameState, GS_MENU

.endif

.elseif GameState == GS_PLAY

Notice that the first thing we do—whether we want to save or load the file—is make
a call to CreateFile(). This is the Win32 routine that will do the equivalent of
fopen() in C. We give it the basic parameters, telling it we want to read and write to
the file (although we will only use one). Then we make a call to save or load the
game file off of disk.

For the time being, there is only one game file that is used. I am leaving it as an
exercise for you to add the interface and capability for a user to select the file he
wants to save the game into. The method currently used only allows one person to
store his game and only one game at a time. If he tries to save another game, the
file will be overwritten.

We then check for an error. If there is one, a block is left so you can fill in the error
code you want to use. This can range from displaying a message box to throwing
the user into an entirely new screen to deal with the problem. If the user succeeds,
however, we play a sound to let him
know that we loaded, or saved, the
game. These sounds are loaded dur-
ing game initialization.

After we’ve handled the result of the
save or load, we can close the handle
that Windows gave us when we cre-

901Storing Your Life

NOTE
Before anybody says,“Hey Chris, you
sound like a girl!” I want to let you know
that these sounds were generated in a
text-to-speech synthesis engine.

TeamLRN

ated the file. Finally, we can set the state to playing if we are loading the game; that
way, the user goes directly to his loaded game.

Now that we have the framework for the game loading and saving operations, we
can take a look at the code that actually does all of the work for these two tasks.
These are two routines in the Shapes.asm module. We place them in this module
because the variables we need to access (the ones that track the game) are con-
tained here. Browse through these two routines.

;##
; Save_State Procedure
;##
Save_State proc hFile:DWORD

;===
; This function will save the current state of the game
; to the passed-in file handle. It returns true if
; successful and false otherwise.
;===

;===
; Write the user’s score, the current level,
; and the number of lines out to disk
;===

; The Score
invoke WriteFile, hFile, ADDR Score, 4, ADDR numRW, NULL
.if eax == 0

jmp err
.endif

; The current level
invoke WriteFile, hFile, ADDR CurLevel, 4, ADDR numRW, NULL
.if eax == 0

jmp err
.endif

; The number of lines
invoke WriteFile, hFile, ADDR NumLines, 4, ADDR numRW, NULL
.if eax == 0

jmp err
.endif

902 20. Game Programming Assembly Style

TeamLRN

;==
; Save out the current block grid
;==
invoke WriteFile, hFile, BlockGrid, (GRID_WIDTH * GRID_HEIGHT), \

ADDR numRW, NULL
.if eax == 0

jmp err
.endif

;======================
; We finished saving
;======================

done:
return TRUE

err:
return FALSE

Save_State ENDP
;##
; END Save_State
;##

;##
; Load_State Procedure
;##
Load_State proc hFile:DWORD

;===
; This function will load the current state of the game
; from the passed-in file handle. It returns true if
; successful and false otherwise.
;===

;===
; Load the user’s score, the current level,
; and the number of lines off of disk
;===

; The Score
invoke ReadFile, hFile, ADDR Score, 4, ADDR numRW, NULL
.if eax == 0

903Storing Your Life

TeamLRN

jmp err
.endif

; The current level
invoke ReadFile, hFile, ADDR CurLevel, 4, ADDR numRW, NULL
.if eax == 0

jmp err
.endif

; The number of lines
invoke ReadFile, hFile, ADDR NumLines, 4, ADDR numRW, NULL
.if eax == 0

jmp err
.endif

;==
; Load in the current block grid
;==
invoke ReadFile, hFile, BlockGrid, (GRID_WIDTH * GRID_HEIGHT),\

ADDR numRW, NULL
.if eax == 0

jmp err
.endif

;======================
; We finished saving
;======================

done:
return TRUE

err:
return FALSE

Load_State ENDP
;##
; END Load_State
;##

The basic premise of saving or loading a game is really well defined. We want to
save every variable that contains the user’s state information. In this case, these are
the variables that contain the score, the number of lines the user has earned, and

904 20. Game Programming Assembly Style

TeamLRN

the current level he is on. In addition to this basic information, we want to save the
entire grid so that we can re-create the user’s current level when he loads it back
in. Some programmers choose not to do so. The results of not saving the grid are
the equivalent to starting at the beginning of a level in Super Mario Brothers as
opposed to in the middle of one. There’s nothing wrong with either method; I just
wanted to point out the implications of not saving the grid. Some things not saved
that you might also want to save are the current and next piece variables.

The call to actually write or read this
information is nothing complex. We
simply tell it that we want to work with
the passed-in file handle, the address of
the information to read/write, the num-
ber of bytes to read/write, the address
of a variable to hold the actual amount
read/written, and null to specify that we
don’t want any overlapped I/O. Make
sure you specify bytes and not DWORDs. Also notice that since the BlockGrid variable
contains the address of the memory we allocated, we don’t give the call the address
of BlockGrid. Instead, we just pass the variable like normal. If we had done it in the
way the other calls to the read/write file had been done, we would have specified a
point to a pointer and achieved unpredictable results since we wouldn’t have
known what was at the memory address where our BlockGrid DWORD variable was
allocated.

This is all you need to know to save and load files containing the game state infor-
mation. As I previously said, you can add more game variables to get finer game
preservation or fewer game variables to get a rougher preserved state. These are
the type of things your game idea will dictate. Whether or not you want the user to
be able to start in the middle of a level is normally determined by where the save
points in your game are located. In the case of a puzzle game, the user normally
can save at any time, whereas an adventure game typically only allows a save at the
end of a level. It’s your game, so you decide.

Come On, Lucky Number 7
One of the things I have wanted to change since I wrote it was the way our game
obtains random numbers. Currently, we are making a call to get the time and then
using that as the random number. The problem with this method is that it can

905Come On, Lucky Number 7

NOTE
Notice the progression from vari-
ables that allow us to re-create the
level to the finer points that allow us
to re-create the exact state of the
game.Always get the grasp before
you work on the details.

TeamLRN

become very predictable as the time cycles. I have been waiting to write a random-
number generator until we were a little bit more accustomed to assembly language.
Looking back, I could have probably introduced this sooner, but we are going to
look at it now, and that’s all that counts.

There are two functions that I decided to implement: Init_Random() and
Random_Number(). The first initializes the random-number generator with the passed-
in seed. The second function returns a random number. It’s best to keep things
simple. The two routines are in a module called Random.asm. Here are the two
routines in that module.

;##
; Init_Random Procedure
;##
Init_Random proc seed:DWORD

;===
; This function will seed the random-number generator
;===

;==
; Store the seed they want to use
;==
mov eax, seed
mov RandomSeed, eax

done:
;===================
; We completed
;===================
return TRUE

Init_Random ENDP
;##
; END Init_Random
;##

;##
; Random_Number Procedure
;##
Random_Number proc

906 20. Game Programming Assembly Style

TeamLRN

;=======================================
; This retrieves a random 32-bit number
;=======================================

;====================================
; Grab the seed value we last used
;====================================
mov eax, RandomSeed

;====================================
; Multiply by a constant and then adj
; the multiplier to the high 16 bits
;====================================
mov edx, 1103515245
mul edx
shl edx, 16

;===================================
; Add a constant to the random number
; that is in eax and add with carry
; to our randomizing number in edx
;===================================
add eax, 12345
adc edx, 0ffffH

;==================================
; Store our new random number seed
;==================================
mov RandomSeed, eax

;====================================
; Move high 16 bits of random num to
; the low 16 bits
;====================================
shr eax, 16

;====================================
; Clear out everything but the upper
; 16 bits in our randomizing number
;====================================

907Come On, Lucky Number 7

TeamLRN

and edx, 0ffff0000H

;=====================================
; OR the things together and we have
; our new random number
;=====================================
or eax, edx

;===================
; We completed
;===================
ret

Random_Number ENDP
;##
; END Random_Number
;##

The first routine does nothing but store the seed that is provided to initialize the
random-number generator. This routine is called from the game-initialization func-
tion in the main module. We use a call to Get_Time() as the seed for the generator.
Thus, we need to make sure the time is initialized before we initialize the random-
number generator. The seed can be reset at any time during the game with another
call to Init_Random(). Doing so will simply provide a new number to work with dur-
ing the randomizing process.

The second routine is the one we really care about. It is a basic random-number-
generation function. You can find these in numerous algorithm books, so I won’t
spend time covering why it does what it does. This routine, however, does expose
some new instructions that we haven’t yet seen: the bit shifting and add with carry
instructions. You can find basic descriptions of what they do in the preceding com-
ments.

That’s all we needed to do to create a new random-number-generation method. So,
anywhere we are currently using a call to Get_Time() to provide a random number,
we replace it with a call to the new Random_Number() routine instead. There are only a
couple of spots where I had to do this in our code. The first was in the Shapes.asm
module when we generated a new shape.

908 20. Game Programming Assembly Style

TeamLRN

Conclusion
That’s it for SPACE-TRIS. The game is now complete (or at least as complete as I
am going to make it). There are still numerous things you can do to the game. If it
were destined to be a commercial product, you would want to polish off some of
the artwork and provide some more sound effects. Since it isn’t, I’d just focus on
extending some of the game play, perhaps making levels more difficult as they
advance or adding some unusual shapes. Special effects are always fun to write.
Making them happen in real time is sometimes tricky and thus a perfect next step
for the budding assembly language programmer. Go find an interesting algorithm
and set to work implementing it in assembly. By now, you have the tools needed to
make it happen.

Once you are ready, try to undertake the project of writing your own game.
Granted, developing your own game from scratch is a big step for anybody, and in
assembly, it is even bigger. But you have seen firsthand that it can be done. The
hardest part is usually picking a game within your ability level. Most people would
love to write the next Quake-killer, but it is more realistic for indie developers
(especially those working solo) to focus on games that don’t require as many
resources. It is much better to finish an A-quality game than to say you almost
made a AAA-type game.

Throughout this chapter, I have tried to illustrate the advantages of using assembly.
I do realize that assembly will never be a truly mainstream programming language.
I also realize that using assembly in large development houses is a fantasy (or a
nightmare, depending on your skill). For the solo game developer, however, who
writes games because he cares about games and because it is fun, I think assembly
is a very realistic choice. After all, the typical reason for choosing to write games in
the first place is because you love them. And the assembly language programming,
if nothing else, is a labor of love. You will undergo ridicule, contempt, and even
envy. But in the end, you are doing it for yourself and your own reasons.

The market is open and ready for those who are willing to take a chance and
develop a game from start to finish. Sadly, programmers all too often start but
never finish their game ideas. Do yourself a favor and see something through to
completion. It doesn’t matter if it takes years; you will thank yourself in the long
run.

Good luck with your coding endeavors. I wish you nothing but the best in your
search for greatness.

909Conclusion

TeamLRN

This page intentionally left blank

TeamLRN

SECTION 4

Appendices

TeamLRN

This section is filled with additional information that
can also be useful! The appendices provide informa-
tion using VisualStudio, C/C++ and STL primer, C++
keywords, resources on the Web, what can be
found on the CD-ROM, and so on. Be sure to refer
to this section to get help on the C/C++ program-
ming and using the VisualStudio compiler. There is
enough information in this section to get you out of
those rough spots you may encounter from time to
time. Finally, the resources listed in this section
should prove very valuable as they provide you
with links to information beds on the Internet that
will aid you as you continue to grow and push the
limits of game programming.

It has been a fun and exciting journey to this point!
I hope you found the book useful and I wish you
luck on all of your game programming ventures!

TeamLRN

APPENDIX A

Introduction
to

DevStudio
Mason McCuskey, Spin Studios,

www.spin-studios.com

TeamLRN

Note: This appendix originally appeared in the book Special Effects Game Programming
with DirectX 8.0 by Mason McCuskey, published by Premier Press. It’s reprinted here slightly
modified but in its entirety.

“Godzilla. He is a good man . . . and he is a bad man.”

—Unknown

This appendix is for all of you who haven’t had that much experience using the
Microsoft Development Studio (DevStudio, to its friends) to develop applications
for Windows. In this appendix, you’ll learn the basics of creating a project, adding
source-code files, setting up library and include paths, and all the other tasks
needed to create the sample programs for this book.

DevStudio is like Godzilla. It helps out with a lot of things, but in the blink of an
eye, it can turn evil and cause you a lot of grief. On the good side, DevStudio
comes packed with powerful features, all designed to make the life of the program-
mer easier. On the bad side, it also does a remarkably good job of hiding from you
the details of compiling programs. If you’ve done C/C++ development somewhere
else, you’re probably familiar with make files. Make files are not at the forefront of
DevStudio. They are present, but they take a back seat to DevStudio’s GUI for con-
figuring compiler and linker options. You more than likely will never edit a make
file directly. Instead, you’ll make changes to the way in which your source code
compiles and links via myriad dialog boxes, property sheets, and drop-down lists.
Like I said, it’s a double-edged sword.

In this appendix, I’m going to teach you
how to take the source-code files con-
tained on the accompanying CD-ROM
and create from them an executable.

914 A. Introduction to DevStudio

TIP
All of this information applies to
Visual C++ 6.0, but other versions
are very similar.

TeamLRN

Creating a Project and
Workspace
At its core, DevStudio operates on the ideas of projects and workspaces. The
hierarchy looks like Figure A.1. A project contains a collection of source files and
options, and a workspace contains one or more projects.

Most of your workspaces will contain only one project. Most programmers only put
multiple projects into their workspaces if they’re writing a set of DLLs or compo-
nents that function together, and they need quick access to several different code
collections simultaneously.

To write some new code in DevStudio, the first thing you’ll want to do is create a
workspace and project in which that new code will live. You do this by selecting the
New command from the File drop-down menu. This presents you with a dialog
box. Navigate to the Projects tab of this dialog box, and your screen will resemble
Figure A.2.

To create a new project, you must first tell DevStudio what kind of application you
want to create. There are many choices here, but you’ll most likely want to use one
of the following options:

915Creating a Project and Workspace

Figure A.1

A workspace is a
collection of projects,
and a project is a
collection of source
files

TeamLRN

• Win32 Application. This is by far the most common selection. This project
type is used when you’re creating a plain-old Windows application.

• Win32 Console Application. This project creates a console application.
Console applications behave very similarly to old DOS programs. They’re
command-line based, they have a text window in which to do their work, and
that’s about it. They don’t use dialog boxes, and they don’t have a message
pump. If you’re creating a simple program that doesn’t need a GUI, a con-
sole application is the way to go.

• MFC Appwizard (exe). This option is similar to Win32 Application, but it
includes support for the Microsoft Foundation Classes (MFC). MFC is a set
of classes and a framework designed to make it easy to create applications
that conform to most of the user interface standards for Windows. For exam-
ple, if you use MFC, you automatically gain the capability to use a multiple
document interface (MDI) like Word, in which you can open multiple win-
dows from within one “master” window. We don’t use MFC in this book, but
since this is a common choice for heavy-duty GUI applications (and even
some games), I thought I’d mention it here.

Because Ch1p2_NormalWindow is a Windows program that doesn’t use MFC, go
ahead and select the Win32 Application project from the list. Also be sure to give

916 A. Introduction to DevStudio

Figure A.2

The Projects tab of
the New dialog
box

TeamLRN

your project a name (this is also the name of the EXE) and a location before you
click OK.

When you click OK, a new dialog box comes up, asking you if you’d like to create
an empty project, a simple Win32 application, or a typical “Hello World!” applica-
tion (see Figure A.3).

These are shortcuts designed to make your life easier. For example, if you opt to
create a simple Win32 application, DevStudio will give you a project and a source-
code template that’s already put together. If you select a “Hello World!” applica-
tion, DevStudio will create a completely functional program. All you need to do is
compile it; when you run the EXE you’ve compiled, a window containing the text
“Hello World!” will appear on your screen.

That’s all fine and dandy, but since we’ve already got source code and just need a
project, go ahead and select “An empty project” and click Finish. Another dialog
box will come up, summarizing the options you’ve selected. Click OK at this point,
and DevStudio will generate your project and workspace!

917Creating a Project and Workspace

Figure A.3

After inputting a
project name and
clicking OK, you’ll
see this dialog box

TeamLRN

Notice that out on your hard drive, you now have a DSP file and a DSW file for
your project. The DSP file is the project file, and the DSW file is the workspace file.
Both are human readable, so you can load them in a text editor, but you shouldn’t
modify them.

Adding Source-Code Files
Once you have a project and workspace created, you need to add some source
code files to it. If you were creating new code from scratch, you’d again select New
from the File drop-down menu, go to the Files tab, and click C++ Source File or
C++ Header file to create a blank CPP or H file.

If you already have source-code files, however, you can add those directly to your
project. Click the FileView tab on your left. You’ll see a tree view with your work-
space at the top and your project immediately beneath it. Right-click on your pro-
ject, and you’ll be presented with a context menu like the one shown in Figure A.4.

Click Add Files to Project and then browse for the source-code files you want to
add. (You can add multiple files at once by holding down Ctrl or Shift as you click
their names).

918 A. Introduction to DevStudio

Figure A.4

Right-click on your
project, and you’ll
be presented with
this menu

TeamLRN

For Ch1p2_NormalWindow, navigate to the folder containing the source code and
add the one source-code file, Ch1p2_NormalWindow.cpp, to the project.

Now, if you expand the project node in your FileView tree, you’ll see three folders
underneath it: source-code files, header files, and resource files. Under source-code
files, you should see your source file (see Figure A.5). Double-click it and you can
edit it.

919Adding Source-Code Files

Figure A.5

After you insert a source-code
file, it should appear in the
FileView tree

TeamLRN

Setting Compiler Options
Once all of your source-code files have been added, you can turn your attention to
the task of setting the compiler options for your project.

There’s roughly a dozen different ways to get to the Project Settings dialog box that
contains all of your project options. I prefer to get there by right-clicking on the
project in the FileView tree and selecting Settings from the context menu (see
Figure A.6).

920 A. Introduction to DevStudio

Figure A.6

To get to the project settings,
right-click on the project in the
FileView and select Settings

TeamLRN

Figure A.7 shows the Project Settings dialog box.

As you can see, on the left you have the same tree that’s in your FileView. On the
right are a bunch of controls to set the options. Running along the top are a whole
slew of tabs for the various sections of controls.

DevStudio uses two different sets of project settings, one for debug and one for
release. The idea here is that you’ll probably want to compile things differently
depending on whether it’s just a quick build for you to test and debug things or it’s
a finished program that you intend to distribute to your customers (the game
players!).

Most of the time, you’ll be working with debug builds (that is, builds based on the
debug set of project settings). Occasionally, as you’re writing your program, you
should create a release build to guarantee that your project settings are in sync and
that certain compiler settings (optimization, lack of debug information, and so on)
don’t interfere with the behavior of your program. (They shouldn’t, but every so
often they do.)

You can change with which set of project settings you build by selecting Set Active
Configuration from the Build drop-down menu. You’ll be presented with the dialog
box shown in Figure A.8. Select the settings you’d like to make active and then
click OK. You can also do this from the toolbar.

921Setting Compiler Options

Figure A.7

The Project
Settings dialog box

TeamLRN

I’m not going to cover
every single option
you can set. For most
of the settings, the
default values that
DevStudio provided
will work just fine. I
will, however, draw
your attention to the
useful options or to
the options you’ll
more than likely need
to change.

Setting the Warning Level
Usually the default warning level (Level 3) will work just fine, but occasionally
you’ll want to increase or (shame on you!) decrease the warning level of the C++
compiler so that you create the illusion that your code isn’t broken. To do this, go
to the C/C++ tab inside the Project Settings dialog box. Select General from the
Category drop-down list, and your dialog box will change into something like
Figure A.9.

922 A. Introduction to DevStudio

Figure A.8

This configuration
dialog box
appears when you
select Set Active
Configuration

TIP
You’re not limited to just two sets of project settings.
You can create additional sets of settings by selecting
Configurations from the Build drop-down menu and then
clicking the Add button.You usually won’t need to do
this, but I wanted to mention it in case you found your-
self in a weird situation. For example, sometimes you’ll
want to build shareware with different options for regis-
tered and demo versions.You could set up something like
that using four different sets of project settings: demo
debug, demo release, registered debug, and registered
release.

TeamLRN

Immediately below the Category drop-
down list is the drop-down for the warn-
ing level. Choose a new value (higher
numbers mean the compiler is more
strict) to set the warning level you want.

Setting the
Optimization
Level
Immediately next to the Warning level
drop-down list on the C/C++ tab of the Project Settings dialog box is another drop-
down list that controls the optimization level of the compiler. Here you can choose
to optimize for size (that is, make the EXE as small as possible even if it means the
code runs slower) or for speed (make things run fast even if it means a larger
EXE). Needless to say, most of the time you’ll want to set this for speed.

You can also turn optimizations on or off individually. Select Optimizations from
the Category drop-down list, and you’ll be able to enable or disable specific opti-
mization techniques. This is extremely useful because, very rarely, a certain opti-
mization feature might cause your program to crash or behave in strange ways.
(Visual C++ isn’t perfect when it comes to this sort of thing.)

923Setting Compiler Options

Figure A.9

The Project
Settings dialog box
after selecting
General from the
Category drop-
down list

TIP
It’s usually a good idea to check the
“Warnings as errors” check box here
as well. Bad programmers ignore
warnings and face the consequences of
badly written code. Good program-
mers solve the warnings that come up
as if they were compiler errors.

TeamLRN

Turning on Runtime Type
Identification (RTTI)
Some of the sample programs need RTTI turned on to operate correctly. (If you’re
not sure what RTTI is, see Appendix B.) To turn RTTI on, navigate to the C/C++
tab in the Project Settings dialog box. Select C++ Language from the Category
drop-down list, and your dialog box will change into something like Figure A.10.
Make sure the Enable Run-Time Type Identification (RTTI) check box is checked.

924 A. Introduction to DevStudio

Figure A.10

Enabling RTTI is
as easy as
checking this
check box

CAUTION
If you try to use RTTI and the active set of
project settings doesn’t have RTTI enabled,
the compiler will warn you. If you choose to
ignore its warning, your program will more
than likely crash when it comes to the first
chunk of code that uses RTTI.

TeamLRN

Library and Include Search
Paths
One of the most vital things to understand in DevStudio is how it handles search
paths for source-code files, include files, and libraries. For each of the major cate-
gories (source-code files, include files, library files, and so on), there are actually
two completely separate settings. There’s a setting that’s stored in the specific pro-
ject you’re working on and a global setting that applies to all projects.

The per-project settings take precedence over the global settings. That is,
DevStudio only looks at the global settings if it can’t find what it’s looking for using
the per-project settings.

Here’s an example. Let’s say we’ve added a #include “MyHeaderFile.h” directive to
our source code. DevStudio now needs to find this include file. To do this, it first
looks in the same directory as the source file it’s compiling. If it can’t find
MyHeaderFile.h there, it looks in the folders you’ve specified inside the per-project
include file search path (in the order you specified them). If it still can’t find it, it
looks in the global search path for include files (again, in the order you specified).
If it can’t find it even then, it gives up and the compiler spits out an error message.

Here’s how to set up the two different search paths.

Per-Project Search Paths
Per-project search paths are set up through the Project Settings dialog box. You can
set up per-project search paths for include files and for library files.

To set up the include file search path, go to the C/C++ tab and select Preprocessor
from the Category drop-down list (see Figure A.11).

Near the bottom is an edit box labeled “Additional include directories.” Insert your
include directories here, separated by commas.

925Library and Include Search Paths

TeamLRN

To set up the library search path, go to
the Link tab and select Input from the
Category drop-down list. At the bottom
of the dialog box will be an edit box
labeled “Additional library path.” Enter
your search paths here, separated by
commas. (Again, you can use relative
paths.)

Global Search Paths
You set up global search paths in a totally different location. Instead of going to the
Project Settings dialog box, select Options from the Tools drop-down menu. Click
the Directories tab, and your dialog box will look like the one in Figure A.12.

You can alter the global search path by adding or deleting entries from the list box
or by clicking the up and down arrows at the top of the list, which move the cur-
rent selection up or down the list. Change the search path by selecting a different
entry from the combo box labeled “Show directories for.”

926 A. Introduction to DevStudio

Figure A.11

Setting the per-
project search
paths

TIP
You can enter relative paths in this
box.That is, if you always want this par-
ticular project to search a folder one
up from its current location, you can
enter “..\” into the search path box.

TeamLRN

927Library and Include Search Paths

Figure A.12

The Directories
tab of the Options
dialog box

CAUTION
It’s very important that you add the include and library
paths for the DirectX API.Also, it’s vital that these direc-
tories take precedence over the other include and library
files. (That is, they should be at the very top of the list.)
The reason is that DevStudio ships with header and
library files for an older version of DirectX. If you try to
compile DirectX 8 applications without adding the
DirectX 8 header and library paths, everything will
appear to be normal, but you’ll run into all sorts of weird
compiler errors that appear to be errors in the DirectX
code itself.Watch out for this.

TeamLRN

Linking in the DirectX
Libraries
Now that you know all about project options and search paths, it’s time to integrate
DirectX into your project.

The way you do this is by adding some libraries to your linker settings. Table A.1
shows the DirectX libraries you usually need.

928 A. Introduction to DevStudio

Table A.1 DirectX Libraries

Library Name Description

D3D8.lib This library contains the source code to interface with the
Direct3D component of DirectX. If you’re doing Direct3D
programming, you need to link with this.

D3DX8.lib This library contains the D3DX helper functions.You need
to link with this if you use any D3DX items.

DDraw.lib This library contains the DirectDraw interfaces.You won’t
usually need this for 3-D stuff, but if your code is written
for older versions of DirectX and uses DirectDraw, you’ll
need to link with this.

DInput8.lib This library contains the source code to interface with
the DirectInput component of DirectX. If you’re using
DirectInput, you need to link with this.

Dsound.lib This library contains the source code to interface with the
DirectSound component of DirectX. If you’re using
DirectSound, you need to link with this.

Dxerr8.lib This library contains source code to help you use and
translate DirectX error codes (for example, the function
DXGetErrorString8).

D3dxof.lib This library contains routines used to load and save X
files. If you’re using anything from the dxfile.h header, you
need to link with this.

Dxguid.lib This library contains the globally unique identifiers
(GUIDs) for the DirectX components. If you’re using any
part of DirectX, you need to link with this.

TeamLRN

Microsoft provides other DirectX libraries, but you’ll use the ones in the preceding
table most often. For the sample programs in this book, you need to link with din-
put8.lib, d3dx8dt.lib, d3d8.lib, d3dxof.lib, winmm.lib, and dxguid.lib.

Building and Running
Programs
Finally! You’ve set up all your options and are now ready to build and run your-
programs.

The easiest way to do this is to select Build <yourproject> from the Build drop-
down menu. (Don’t worry, you’ll learn the hotkey for Build, F7, very quickly.)

As DevStudio builds, it outputs warnings and errors to your output window at the
bottom of your screen. (If this window isn’t visible, select Output from the View
menu to make it appear.) You can double-click on any error or warning line, and
DevStudio will take you to the appropriate source-code file and line number.

Once you get your program built without any errors, you can choose to run it two
different ways. First, you can launch it from DevStudio by selecting Execute <proj-
name> from the Build drop-down menu. This is the equivalent to double-clicking
the EXE from within Explorer. Your program launches as a completely separate
process, and it doesn’t get wired up to the DevStudio debugger.

The second way to launch the program is by selecting Go from the Start Debug
submenu, which is under the Build drop-down menu. This is the most common
way to run the program, so remember the hotkey (F5). If you run your program
this way, you hook it up to the DevStudio debugger so that you can break into it at
any time.

Debugging
When it comes to integrated debugging, DevStudio really shines. This section will
explain how to accomplish the most basic debugging tasks once you’ve selected Go
from the Start Debug menu. For a complete feature breakdown, refer to the
DevStudio online help.

929Debugging

TeamLRN

Breakpoints
The easiest way to set a breakpoint is to simply right-click the line of the source-
code file at which you’d like to break. Select Insert/Remove breakpoint from the
context menu that appears. Lines that contain a breakpoint have a little red circle
out in their margin.

You can quickly delete all of your breakpoints by selecting Breakpoints from the
Edit drop-down menu and clicking the Remove All button on the dialog box that
appears. You can also set up conditional or data-driven breakpoints from within
this dialog box.

Stepping Through Code
There are four main ways you can step through code:

• Step over. This is the most common way to step. Stepping over means that
you execute the line you’re on and then pause again. You’ll quickly learn the
hotkey for stepping over, F10.

• Step into. This is slightly different than stepping over. If the current line
contains a call to a function, you can use step into to follow the code down
into that function (whereas step over just completes the entire function call
in one step).

• Step out. Use this command to get out of function calls. Step out runs until
you return from the function you’re in. Use it to quickly get out of function
calls once you’ve determined that the bug you’re looking for isn’t in the
function you stepped into.

• Run to cursor. Use this command to skip over large segments of code. When
you select this command, the debugger will execute the code until it arrives
at the line the cursor is at. It will then stop. In a way, this is like a shortcut for
setting a breakpoint, running, and then removing that breakpoint immedi-
ately after you hit it.

Watches
The DevStudio integrated debugger allows you to watch the values of variables
change as your program executes. There are two main windows in DevStudio that
provide access to most of the watch functionality. You’ll find these two windows in
the bottom section of your screen when you’re running a program in debug mode
(see Figure A.13).

930 A. Introduction to DevStudio

TeamLRN

One watch window allows you to enter
any variable names you like. Click on
an empty list entry, type the variable
name you’re interested in, and
DevStudio will show you its value. As
you step through your program,
DevStudio will update this value. It
will turn red when it changes.

The second watch window automati-
cally gives you a view of the variables
you’re probably most interested in.
This includes variables used by the
line of code that’s currently executing
as well as this pointers and function
return values.

Debug Output
One of the most common ways to debug software is to print out diagnostic mes-
sages that let you know what your program is doing when it’s impossible (or just

931Debugging

Figure A.13

The watch
windows appear
when running a
program in the
debugger

TIP
You can also use the memory viewer to
view the contents of raw memory loca-
tions.This is most useful when you need
to look at a huge chunk of data. Because
DevStudio often clips huge strings in the
watch window, to see the entire string,
you’ll need to manually copy its address
into the memory viewer.You access the
memory viewer by selecting Memory
from the Debug Windows submenu
under the View drop-down menu.

TeamLRN

really irritating) to break into a debugger and start stepping through the code.
Microsoft provides support for these diagnostic messages through a Win32 API
function called OutputDebugString. This function takes a single parameter—a string
to send to the debugger. Any messages you push out using OutputDebugString end up
inside your debug output, in your IDE. This allows you to keep tabs on your pro-
gram without having to trace through code.

Accessing Help
I’ve saved the most important discussion for last! DevStudio help is something that
all programmers use very frequently. This is partly because DevStudio itself is huge,
and it takes a long time to get familiar with all of its features.

Thankfully, there are no office assistants in DevStudio. To get help, select Index
from the Help pull-down menu. Also, DevStudio has a comprehensive context-
sensitive help system, so keep an eye out for those little question mark buttons in
the corners of dialog boxes and tool windows. Clicking on one of those will often-
times take you exactly where you need to go.

Conclusion: DevStudio
Wrap-Up
This appendix was a crash course. I didn’t cover everything, but I covered the key
points you need to know to get the most out of this book and DevStudio in general.

The best way to learn DevStudio is simply to use it. The IDE is the lifeblood of a
programmer, and you’ll quickly pick up the shortcuts and tricks by simply using it
frequently. Have fun!

932 A. Introduction to DevStudio

TeamLRN

APPENDIX B

C/C++
Primer and

STL
Mason McCuskey,

Spin Studios,
www.spin-studios.com

TeamLRN

When I was a kid, I loved flying kites. I grew up in suburban Denver, which was
great, but it wasn’t exactly the kite-flying utopia like Chicago or someplace that
would be windier. Frequently, getting a kite
off the ground required my brother’s
help—he’d stand a couple dozen yards
away from me, holding the kite. On my sig-
nal, he would throw the kite up into the
air and I would run as fast as I could away
from him. In this way, we could generate
just enough wind for the kite to rise and
catch an actual breeze.

That’s the purpose of this appendix. To
continue this (cheesy?) analogy, the
goal of this appendix is to give you just
enough knowledge to get you off the
ground and flying high enough to catch
the actual breeze. This appendix isn’t
going to cover everything in C++ and
Standard Template Library (STL); it’s
not really even going to scratch the sur-
face. But, if you’re not very experienced
with these technologies, it’s my hope
that this appendix will give you what
you need to know to understand the
rest of the chapters in this book.

Selected C++ Topics
As I wrote the sample code for this book, I used what many programmers refer to
as a “sane subset” of C++. C++ is a feature-rich language, and every C++ feature is
useful in certain situations. However, the code for this book does not venture into
all of those situations. It does hit some of them, though, so I’m going to devote a
little time to each of these features now. I’ll progress from what I consider the eas-
ier stuff to the more complex features.

934 B. C/C++ Primer and STL

NOTE
This appendix originally appeared in
the book Special Effects Game
Programming with DirectX 8.0, by
Mason McCuskey, published by
Premier Press. It’s reprinted here
slightly modified, but in its entirety.

CAUTION
I’m going to move fast, and won’t
cover each topic in complete detail. If
you’re completely new to a topic, you
should do yourself a favor and devote
more time to it than I have.There are
several great C++ / STL Web sites
(listed on your CD-ROM) that you can
cruise to and learn some of the finer
points.

TeamLRN

Let’s start with inline functions.

Inline Functions
Inline functions are especially valuable to game programmers, because oftentimes
they can speed up the execution of a program. Carefully inlining can give you
some good performance gains (at the expense of executable size, which usually
isn’t an issue with the size of today’s drives).

When you use the C++ keyword inline on a certain function, you’re telling the
compiler that function doesn’t necessarily have to be a function. If it saves time, the
code can be embedded directly into the “caller,” without the need for a function
call.

So essentially, an inline function is C++’s answer to C’s #define. Inline functions
behave exactly like regular functions, with one key difference: When the compiler
comes across an inlined function, it doesn’t create a machine-language subroutine.
Instead, it just places the machine language code for the function directly “inline”
with the rest of the code, just as if you had used #define to make a macro.

In this way, you get the best of both worlds—you get the speed of having the func-
tion’s code directly inline. No time is wasted putting variables onto the call stack
before the function’s called, and popping them off when the function’s done.

Also, since you’re not just doing string substitutions like with #define, you get the
benefit of having the compiler treat your macro as an actual function. To see why
this is handy, take a look at the following code (pardon me if you’ve seen this one):

#define BoundsCheck(a) if (a < -5) a = 2; if (a > 10) a = 10;
void Foo(void) {
int a = 0;
BoundsCheck(++a);
printf(“%d”, a);

}

What does that function print? It looks like it should print 1, right? Bzzt, wrong! It
prints at least 2, sometimes 3. The reason: The compiler is doing simple string sub-
stitution on your #define so you actually wind up with machine language code that
corresponds to this:

void Foo(void) {
int a = 0;
if (++a < -5) ++a = 2;

935Selected C++ Topics

TeamLRN

if (++a > 10) ++a = 10;
printf(“%d”, a);

}

Now it’s easy to spot the gotcha—you didn’t actually mean for a to be incremented
twice—you wanted it to be incremented just once, and then passed to a BoundsCheck
“function.” Here’s equivalent C++ code that works correctly:

inline void BoundsCheck(int &a) {
if (a < -2) a = 2;
if (a > 10) a = 10;

}
void Foo(void) {
int a = 0;
BoundsCheck(++a);
printf(“%d”, a);

}

That code prints 1, which, if you’ll forgive the pun, is more in line with what you’d
expect it to do.

Namespaces
One of the problems with traditional C is that of naming. Frequently in C, you’ll
run into the problem of “name clashing”—essentially, you’ll run out of good
unique names for global functions. Even worse, let’s say you’re writing a C API, in
other words, you’re writing some code and then handing a library (lib file) to
another C developer. Let’s say that C developer has written a global function called
Process, and that you’ve also embedded a global function called Process into your
API library. That’s a problem—the name of your API function is clashing with the
name of the other developer’s function. Unfortunately, the only remedy for this is
for one of you to change your function name, which is no fun.

In C++, however, you can avoid this problem by using namespaces. Essentially, a
namespace is a “folder” for your function and variable names. Just as you can group
files into hierarchies of folders, in C++ you can group functions and variables into
hierarchies of namespaces.

For example, let’s say you’re writing a 3-D game, and you’d like all of the classes for
your 3-D engine grouped together. You’d use a namespace, and write code some-
thing like this:

namespace MyCool3DEngine {

936 B. C/C++ Primer and STL

TeamLRN

void Initialize();
void Terminate();
void Draw();
// other variables, functions and
classes for 3D engine go here.

};

Now, all of the stuff associated with your
3-D engine is contained nice and neat
in a namespace called MyCool3DEngine.

You have two options for accessing the
stuff you’ve put inside a namespace.
First, you can use the scope resolution
operator, ::, like so:

void RunGame(void) {
// initialize 3D engine
MyCool3DEngine::Initialize();
// etc.

}

In the example above, we use the scope resolution operator to get to the Initialize
function contained in the MyCool3DEngine namespace.

Alternatively, you can specify a using namespace line, like so:

using namespace MyCool3DEngine;
void RunGame(void) {
// initialize 3D engine
Initialize();
// etc.

}

This works similar to how a search path works for files. The using namespace line tells
the compiler that if it can’t find a function, it should look for it within the specified
namespace. In the previous example, if the compiler doesn’t find immediately a
function called Initialize, it looks in the namespace MyCool3DEngine.

The using namespace feature is handy, not only because it saves you some keystrokes,
but also because if the name of the namespace changes, you only have to adjust the
code in one place (that is, you only have to change the using namespace line).

937Selected C++ Topics

TIP
You may not realize it, but you’ve
already been dealing with namespaces
regularly. Classes, structures, enums,
and several other things you’re already
familiar with exist within namespaces.
For example, if you have a static
method Foo, of class A, you know you
can’t access Foo from outside class A
without specifying A::Foo.

The keywords class, struct, and enum
do things in addition to creating a
namespace.The namespace keyword
simply creates a namespace, nothing
more.

TeamLRN

You can also “alias” a name-
space. Aliasing allows you to
change the name of a name-
space, which can be handy if
you’re dealing with code that
you can’t change (i.e., code
from other developers or com-
panies). For example, if a com-
pany’s code is irritating you
because it’s named its namespace something huge like
Official3DGraphicsRenderingAPIVersionOne, you can switch that to something easier to
type (say, GFXRenderingAPI) by writing code like this:

namespace GFXRenderingAPI = Official3DGraphicsRenderingAPIVersionOne;

You can also nest namespaces. Think of
the scope resolution operator, ::, as
the equivalent to the backslash in the
file system (it’s not quite as versatile,
but it’s a good analogy for right now).
For example, let’s say you have name-
space A embedded in namespace B,
like so:

namespace A {
namespace B {
void Foo(void);

}
}

You could get to Foo by writing:

A::B::Foo();

So, that’s a namespace—a
simple C++ feature that really
adds a lot to the organization
of your code. Give it a try
sometime—it’s handy!

938 B. C/C++ Primer and STL

TIP
The using namespace line is only valid within
your current scope. For example, if you put a
using namespace line inside a function body, it’s
only valid when you’re inside that function.

Most of the time you’ll put a using namespace
line at the top of your C++ file, at global scope.

TIP
In this way, you not only solve the
name-clashing problem, but you can
also do a better job of isolating your
code from other people’s code. If the
company later changes the name of its
namespace, all you need to change is
this one alias line, and you’re good to
go.

TIP
The C++ Standard Template Library is contained
entirely within a namespace called std. So, fre-
quently in source files that use STL, you’ll see
using namespace std lines, or you’ll see std:: pre-
fixed to STL functions and data types.

TeamLRN

Dynamic Memory Allocation the
C++ Way
I’m painting with broad strokes here, but essentially, programmers have two
options for memory allocation: dynamic and static. A program can allocate differ-
ent amounts of dynamic memory each time it runs; however, it always uses the same
amount of static memory.

When you declare a variable on the stack, that’s a static allocation. Here’s an
example:

char str[256];

Every time this piece of code runs, you get 256 chars. There’s no way to change
how much is allocated, short of cracking open the source code, changing that 256
number to a different value, and then recompiling.

If you don’t know for sure how much memory you’ll need, static allocation
becomes irritating. You have two choices: brace for the worst case, and statically
allocate the maximum number of objects that you’ll support (knowing that you
may only use 3 of those 256 chars), or allocate the memory dynamically.

A Quick Recap of How to Dynamically
Allocate Memory in C
If you’re an experienced C programmer, you’re probably good friends with the C
standard library functions malloc and free. C programmers use these two functions
extensively to perform dynamic memory allocation—that is, to have their programs
allocate various amounts of memory as they run. For example, you might write
something like this:

int iNumberOfCharsNeeded = CalculateNumCharsNeeded();
char *str = (char *)malloc(iNumberOfCharsNeeded);

Using malloc, we can allocate just the right amount of memory that we need. That’s
the C way to do it—malloc and free.

How Not to Dynamically Allocate
Memory in C++
However, because you’re now a C++ programmer, you need to break the malloc and
free habit. malloc and free are C library calls, and as such, they have no clue about

939Selected C++ Topics

TeamLRN

C++. So, based on that piece of information, see if you can spot the bug in the fol-
lowing code:

class MyClass
{
public:
MyClass() { m_Number = 10; }

private:
int m_Number;

};
void main(void)
{
MyClass *newClass = (MyClass *)malloc(sizeof(MyClass));
printf(“%d”, newClass->m_Number);
free(newClass);

}

Looks pretty innocent, right? Careful—contrary to what you’d expect, this program
does not print out 10. In fact, there’s no telling what it will print. The bug is that
malloc, being an old-school C function, doesn’t know about constructors. Sure, it
allocates enough memory to hold a MyClass object, but it doesn’t actually call the
MyClass constructor. So, m_Number never gets initialized to 10.

Proper Dynamic Memory Allocation
in C++
So, what we need is a way to say, “Hey, Mr. Compiler, I’m not just allocating mem-
ory here, I’m actually making a new object, so you need to call its constructor.” The
way we do this is with the new keyword. Here’s the same code, only this time the use
of new has vanquished the bug:

void main(void)
{
MyClass *newClass = new MyClass;
printf(“%d”, newClass->m_Number);
delete newClass;

}

The first thing you should notice is that we’ve replaced the malloc call with new.
That creates the object—notice also there’s no longer a need to cast the return
value from new. Not only does new properly call the constructor for MyClass, it also
hands you back the correct type of pointer, so there’s no more messy casts.

940 B. C/C++ Primer and STL

TeamLRN

So, that’s half the mystery. But we also need to free the object properly—we must
ensure that the destructor (if any) for the object is called. To do this, we use the
delete keyword. The delete keyword works just like free, only it also makes sure the
object’s destructor gets called.

Dynamic Memory Allocation for Arrays
in C++
Now that you’ve got the basics, consider this: let’s say we wanted to create five
MyClass objects. That situation is a bit trickier, so, if you’ll forgive my second bad
pun in this appendix, we need to learn some more “new” stuff.

This time I’ll give you the code up front:

void main(void)
{
MyClass *newClass = new MyClass[5];
for (int q=0; q < 5; q++) {
printf(“%d”, newClass[q].m_Number);

}
delete[] newClass;

}

I’ve changed a couple of things here. First, notice the [5] at the end of the new line.
That tells the C++ compiler that we’re creating five objects, and that we’d like the
constructors to be called for each of those five objects. Correspondingly, the brack-
ets at the end of the delete keyword tell the compiler that it needs to call the
destructors for all the objects in the array (we don’t have to specify the size of the
array when we call delete[]—the compiler remembers how many we allocated in
the first place).

Note also how we get to the indi-
vidual objects inside that array,
just as if newClass were an array of
chars or ints. All we have to do is
put the index we want (in this
example, the variable q) inside
brackets.

Pause for a moment here and
make sure you understand all of
these concepts. Dynamic versus

941Selected C++ Topics

CAUTION
You need to be very careful and ensure that
your news and deletes are in sync.That is,
make sure you use delete to free single
objects and delete[] to delete object arrays.
Otherwise, you’ll get strange memory errors
and probably access violations. Forgetting to
put the brackets on the end of delete when
killing an array of objects is one of the most
common mistakes I’ve seen beginning C++
programmers make.

TeamLRN

static memory allocation is a vital concept that you need to know inside and out in
order to follow the examples in this book.

Polymorphism and Pure Virtual
Functions
When most people think of C++, this is the topic in the forefront of their minds. As
you know, C++ allows you to create classes, which are like structs but with functions,
and the ability to make things private. This is the first thing most C++ programmers
learn.

The second thing is that these classes can be arranged in a hierarchy, and you can
leverage this hierarchy inside your programs to address things in a “generic” man-
ner. For example, say you’re writing a game about animals, and you have three
classes: cat, dog, and fish. Each animal needs to eat, so you write an eat method for
each class. Using a feature of C++ called polymorphism, you can treat the cat, dog,
and fish classes as a generic “animal.” You can tell that “animal” to eat, and C++ will
take care of calling the appropriate function based on the type of object.

This is called polymorphism, one of the three key principles of object-oriented pro-
gramming (the other two key principles are data abstraction and inheritance).
Polymorphism is a noun, meaning “the ability to change into different forms.”
Essentially, that’s what C++ classes can do. If you set up the situation correctly, they
can change into different things without you ever knowing.

Inheritance Versus Aggregation (Is-A
Versus Has-A)
Every C++ class can be derived from no classes (no inheritance), one class (single
inheritance) or from many classes (multiple inheritance). To make one class
“inherit” another, put the inherited class on the declaration line for the new class.
For example, to make class Y inherit class X, write the following:

class X { /* whatever */ };
class Y : public X { /* whatever */ };

That tells the compiler that class Y inherits class X publicly, which means that the
public methods and members of class X are public in class Y. C++ supports other
types of inheritance, but public inheritance is the most common.

942 B. C/C++ Primer and STL

TeamLRN

In the previous example, C++ programmers say that class Y is derived from class X.
In other words, class Y derives some of its functionality (methods and members)
from class X.

Now, applying that to our cat, dog, and fish example: We know that cats, dogs, and
fish are all animals. So, we might want to create a class hierarchy that reflects that:

class CAnimal { /* whatever */ };
class CFish : public CAnimal { /* whatever */ };
class CCat : public CAnimal { /* whatever */ };
class CDog : public CAnimal { /* whatever */ };

That establishes a class hierarchy. The compiler now knows that fish, dog, and cat
classes derive from the animal class (in other words, a fish is an animal, a dog is an
animal, and a cat is an animal. For this reason, object-oriented programmers also
refer to inheritance as an “is-a relationship”—a fish is-a animal, a dog is-a animal,
and a cat is-a animal.

So, that’s an “is-a” relationship. There’s also a “has-a” relationship. For example, we
know that all three types of animals, be they fish, cats, or dogs, have hearts, so we
can say that an animal “has-a” heart:

class CHeart { /* whatever */ };
class CAnimal {
protected:
CHeart m_Heart;

};
class CFish : public CAnimal { /* whatever */ };
class CCat : public CAnimal { /* whatever */ };
class CDog : public CAnimal { /* whatever */ };

In this code, we’ve created a CHeart
class and added a member to CAnimal
called m_Heart. The cat, fish, and dog
classes now automatically get an
m_Heart object, because they derive
from CAnimal. A derived class inherits
the members and methods of its base
(or parent) class.

943Selected C++ Topics

TIP
Note also the protected: keyword.That
tells the compiler that m_Heart is in pro-
tected storage, which means it’s only visi-
ble to methods of CAnimal, and methods
of classes derived from CAnimal. Protected
storage is somewhere between public
(where everything can see the member)
and private (where only that class can see
the member).

TeamLRN

This is called a “has-a” relationship—an animal has-a heart. Some programmers
also refer to “has-a” relationships as “aggregation.”

Virtual Functions
Now that we’ve got hearts for our fish, dog, and cat class, we might decide to give
them a little more life. We know that all animals breathe, so we can easily add a
Breathe function to our code:

class CHeart { /* whatever */ };
class CAnimal {
protected:
void Breathe(void);
CHeart m_Heart;

};
class CFish : public CAnimal { /* whatever */ };
class CCat : public CAnimal { /* whatever */ };
class CDog : public CAnimal { /* whatever */ };

This works, but the problem is that some animals breathe differently than others.
Fish breathe water; cats and dogs prefer air. Having one Breathe function for all
three animal types would force us to perform a switch inside the function, and do
different things depending on what kind of animal we are:

void CAnimal::Breathe(void)
{
if (ThisAnimalIsADog() || ThisAnimalIsACat()) { BreatheAir(); }

944 B. C/C++ Primer and STL

TIP
It can sometimes be tricky to decide between inheritance and aggregation.
I’ve found that using “is-a” and “has-a” in a sentence about the two things in
question often helps me decide whether I should make a new base class and
derive from it, or if I should just give a variable to an existing class. If the
“is-a” sentence makes sense, that means inheritance is the way to go; if the
“has-a” sentence makes more sense that means I should use aggregation.

For example,“a fish is-a heart” sounds silly, but “a fish has-a heart” is reason-
able, so aggregation wins.As a counterexample, we know the animal/fish rela-
tionship is inheritance, because “a fish has-a animal” sounds ridiculous, but
“a fish is-a animal” makes perfect sense.

Keep this in mind as you’re designing your class hierarchies.

TeamLRN

if (ThisAnimalIsAFish()) { BreatheWater(); }
}

There are several painful points in the previous code. For starters, how do we
implement the ThisAnimalIsADog, ThisAnimalIsACat, and ThisAnimalIsAFish functions?
Additionally, if we add new animals, we have to go back to this function and add if
statements. Even worse, if none of the if statements are true, the animal doesn’t
breathe at all!

Polymorphism was designed to solve just this type of problem. C++ contains a fea-
ture called “virtual functions.” Virtual functions are functions, which are defined
for both the base and derived classes. When you call a virtual function of a class,
the compiler looks at the type of class, and automatically calls the correct function.

Let’s see how it looks:

class CHeart { /* whatever */ };
class CAnimal {
protected:
virtual void Breathe(void) { BreatheAir(); }
CHeart m_Heart;

};
class CFish : public CAnimal
{
protected:
void Breate(void) { BreatheWater(); }

};
class CCat : public CAnimal { /* whatever */ };
class CDog : public CAnimal { /* whatever */ };

Here we’ve introduced a couple of things. First, we’ve put the virtual keyword
before the Breathe prototype in CAnimal. This tells the compiler that Breathe is a vir-
tual function. Second, we’ve added a Breathe function to CFish.

Now let’s say we have some code as follows:

void Foo(void)
{
CFish fish;
CDog dog;

dog.Breathe(); // calls CAnimal’s Breathe
fish.Breathe(); // calls CFish’s Breathe

}

945Selected C++ Topics

TeamLRN

That’s polymorphism! When we say dog.Breathe, the compiler knows that dog is of
type CDog. Since CDog doesn’t define a Breathe function, we end up inside CAnimal’s
Breathe function. Conversely, when we call fish.Breathe, the compiler notices that
we’ve created a Breathe function just for CFish, and calls that instead of CAnimal’s
breathe.

Pure Virtuals
At this point our code is starting to become much more object-oriented, but there’s
still something that should be bothering you—not all animals breathe air. For
example, if we added a CEel class, we’d have to make sure to add a Breathe function
for it, otherwise, we’d incorrectly be calling BreatheAir for eels!

Right now we’re saying to the compiler “unless I tell you otherwise, assume that all
animals breathe air.” It might be better if we could say “don’t make any assump-
tions; I will provide a Breathe function for all derived classes.” That way, we could be
sure that each animal is breathing correctly.

This is where the notion of a “pure virtual function” comes into play. A pure virtual
function (or pure virtual, to its friends), is a function that only exists for derived
classes. It has no base class implementation.

You declare one by putting “ = 0” after the function declaration in your class.
Here’s how we’d use one in our code:

class CHeart { /* whatever */ };
class CAnimal {
protected:
virtual void Breathe(void) = 0;
CHeart m_Heart;

};
class CFish : public CAnimal
{
protected:
void Breate(void) { BreatheWater(); }

};
class CCat : public CAnimal
{
protected:
void Breate(void) { BreatheAir(); }

};
class CDog : public CAnimal

946 B. C/C++ Primer and STL

TeamLRN

{
protected:
void Breate(void) { BreatheAir(); }

};

Essentially, the only thing we’ve done here is put an “= 0” in place of
CAnimal::Breathe. That tells the compiler that our Breathe function doesn’t exist
in our base class, but must exist in every class that derives from our base (we
get compile errors if it doesn’t).

One important caveat to creating pure virtual functions: Any class with a pure vir-
tual cannot be instantiated. That is, with the pure virtual inside CAnimal, you can’t
ever create a variable of type CAnimal. This makes sense, because what would the
compiler do if you created a variable of type CAnimal, and then called Breathe on it?
It would have no idea what kind of animal it would be dealing with, so it wouldn’t
know what Breathe function to call.

You can still create references and pointers to that base class, however, and in real-
ity, that’s where the power of polymorphism really shines, because it allows you to
do things like this:

CAnimal *CreateRandomAnimal(void)
{
CAnimal *theAnimal = NULL;
switch(rand() % 3) {
case 0: theAnimal = new CCat(); break;
case 1: theAnimal = new CDog(); break;
case 2: theAnimal = new CFish(); break;

}
return(theAnimal);

}
void Foo(void)
{
CAnimal *pAnimal = CreateRandomAnimal();
pAnimal->Breathe(); // automatically calls the correct function!
delete pAnimal;

}

In the code example above, we’ve got a function that creates a random type of ani-
mal. It returns that random type of animal in a pointer to its base class, CAnimal.
(Remember, you can’t create CAnimals, but you can create pointers to CAnimals).

947Selected C++ Topics

TeamLRN

When Foo tells the new CAnimal pointer to breathe, the compiler automatically
knows which function to call.

Think about how cool that is for a moment. Foo doesn’t know or even care what
type of animal it’s dealing with—it just says Breathe and the compiler does the rest.
In fact, we could add 500 different types of animals, and rewrite CreateRandomAnimal
so that it randomly picked one of those 500 animals, and so long as all 500 animals
derived from CAnimal and all 500 implemented a Breathe function, Foo would work
without us changing one line of its code. That’s the power of polymorphism!

Virtual Destructors
I want to cover one last, very important topic on polymorphism before moving on.
We need to talk about what happens when base and derived classes are destroyed.

Each C++ class has a constructor and destructor, which tell the compiler what to do
when that object is created or destroyed. Normally, if the constructor allocates any
memory for the class, the destructor frees that memory. For example, let’s say we
wanted to create a couple of animal parts dynamically:

class CHeart { /* whatever */ };
class CGills { /* whatever (for the fish) */ };
class CAnimal {
public:
CAnimal() { m_pHeart = new CHeart; }
~CAnimal() { delete m_pHeart; }

protected:
virtual void Breathe(void) = 0;
CHeart *m_pHeart;

};
class CFish : public CAnimal
{
public:
CFish() { m_pGills = new CGills; }
~CFish() { delete m_pGills; }

protected:
void Breate(void) { BreatheWater(); }
CGills *m_pGills;

};
class CCat : public CAnimal
{
protected:

948 B. C/C++ Primer and STL

TeamLRN

void Breate(void) { BreatheAir(); }
};
class CDog : public CAnimal
{
protected:
void Breate(void) { BreatheAir(); }

};

Here you can see I’ve added a couple of things. First, I changed CAnimal so that it
dynamically allocates a heart when it constructs, and deletes that heart when it’s
destroyed. I’ve also added a similar mechanism to Cfish—the fish object now cre-
ates some gills when it’s constructed, and destroys those gills when it’s destroyed.

Unfortunately, there’s a bug in that code, and it’s a sneaky one. Let’s say I have the
same Foo function:

void Foo(void)
{
CAnimal *pAnimal = CreateRandomAnimal();
pAnimal->Breathe(); // automatically calls the correct function!
delete pAnimal;

}

The problem here is that Foo only knows it’s dealing with a CAnimal. So, when it says
delete pAnimal, the CAnimal destructor is called, but not the destructor for any
derived objects. So, if CreateRandomAnimal happens to create a fish, we’ll create a
heart and some gills, but when we call delete, we will end up calling only the
CAnimal destructor, and wind up deleting the heart but not the gills. This is bad
because we leak memory, to say nothing of the spookiness in having some disem-
bodied gills floating around somewhere.

To fix this problem, we need to make the CAnimal destructor virtual. When we add the
virtual keyword to the beginning of the
destructor line, we solve our problem.

The virtual keyword has a slightly differ-
ent meaning when applied to destruc-
tors. Ordinarily, virtual means “Hey, Mr.
Compiler, check the derived classes for
this function, and if you find it down
there, don’t call this one, call the
derived one instead.” But, when applied
to the destructor, the virtual keyword

949Selected C++ Topics

CAUTION
For the reason you’ve just seen, you
should probably play it safe and make
every destructor you create virtual.
You may never derive another class
from a particular class, but if you do
and you don’t have a virtual destruc-
tor, you run the risk of creating really
hard-to-spot memory leaks.

TeamLRN

says “Hey, Mr. Compiler, you need to call the destructor for the derived classes, as
well as the destructor for this object.” C++ does things this way because if both the
base class and the derived class allocate memory, they’ll both need to be called.

Polymorphism Wrap-Up
So, those are the details of polymorphism that you need in order to understand the
code in this book. What I’ve just spoken about is by no means a complete rundown
on the subject. Many books have been written on how to use polymorphism to cre-
ate better-designed programs, and you should definitely check them out if you want
to become a better C++ programmer.

Exception Handling
The next topic I want to glance at is exception handling, and I’ll start by asking a
question: How would you characterize the “robustness” of the programs you’ve writ-
ten before? In other words, do they handle errors gracefully? Do they recover from
abrupt end of files or unexpected data and issue a sensible error message, or do
they simply go down in flames?

Writing a robust program has traditionally been a pain, but a C++ feature called
exception handling can help make it easy. To learn why, let’s first start with an
example.

Life Before Exception Handling
Say someone asks you to write a function that reads a file into memory. You gladly
oblige them, and hammer out a first revision that looks something like this:

void ReadFileIntoMem(char *filename, char **pMemory)
{
int handle = open(filename, O_RDONLY | O_BINARY);
int len = filelength(handle);
(*pMemory) = new char[len+1];
read(handle, *pMemory, len);
close(handle);

}

Pretty easy to write, but not exactly robust. What happens if there’s not enough
memory, and new returns NULL? Crash! What happens if the file name isn’t found?
What happens if there’s a read error? I could go on, but I hope you see my point.
Virtually no error checking is done on this code.

950 B. C/C++ Primer and STL

TeamLRN

So, let’s say you notice that and decide to make a robust ReadFileIntoMem function.
You add some code to check for common errors, like so:

bool ReadFileIntoMem(char *filename, char **pMemory)
{
int handle = open(filename, O_RDONLY | O_BINARY);
if (handle == -1) return(false);
int len = filelength(handle);
if (len == -1) { close(handle); return(false); }
(*pMemory) = new char[len+1];
if (*pMemory == NULL) { close(handle); return(false); }
if (read(handle, *pMemory, len) != len) {
close(handle); return(false);

}
close(handle);
return(true);

}

Now we’re a little more robust. The function will detect most errors and recover
gracefully by returning false, which lets the calling function know that something
went horribly wrong.

The code that does this works great, but it’s now a lot harder to follow than our
first, non-robust version of the function. The error handling logic is essentially
interwoven with the core logic, and it can be difficult to see at a glance what the
function’s doing. Also, we still haven’t caught all of the errors. For example, if file-
name is NULL coming in, we’ll crash.

This painful error-checking problem is a classic irritation of C programming that
C++’s exception handling feature was designed to solve.

The Basics of Exception Handling
Exception handling in C++ works by using three main constructs:

• Try blocks. These are blocks of code that begin with the statement “try {”
and end with “}”. You put code that might bomb inside a try block, effectively
saying to the compiler, “try this.”

• Catch blocks. These are blocks of code that start with “catch”, followed by a
variable declaration, and end with “}”. These come immediately after each
try block, and tell the compiler what to do if something goes wrong.

951Selected C++ Topics

TeamLRN

• Throw statements. When something goes wrong, you “throw” the error by
using the throw keyword. Program flow jumps immediately to the appropriate
catch block. You can throw anything you want—strings, ints, even C++
objects.

Here’s a simple example that illustrates all three constructs:

try {
// do something risky
throw(“An error has occurred!”);

}
catch(const char *e) {
printf(“%s”, e);

}

First, notice the try block. We’ve wrapped the risky code inside a try block, and
we’ve immediately followed that try block with a catch block (catch blocks must
always come right after try blocks). Inside the try block, we’re throwing a string,
which is really a const char pointer.

That catch line may look sort of strange. We’re actually declaring a variable e of
type const char. You can think of e as similar to a parameter of a function. It exists
only within the catch block, and it’s passed by value, not by reference. The com-
piler automatically fills in e with whatever error (of type const char) the throw state-
ment threw. So this example code simply prints out the error string using printf.

Here’s the cool thing about exception handling—you can throw from within a
function and catch outside of that function. For example, the following code is
completely legit:

void Foo(void)
{
throw(“Error in function foo!”);

}
void main(void)
{
try {
Foo();

}
catch(const char *e) {
printf(“%s”, e);

}
}

952 B. C/C++ Primer and STL

TeamLRN

Pretty cool, isn’t it? When Foo throws, program execution jumps up the stack to the
nearest catch statement. That is the core of the power of exceptions. Frequently an
error will occur in some low-level function, and you won’t have enough knowledge of
what’s actually going on to correctly handle the error. In C, your only recourse has
been to communicate that something happened, usually through a return value, and
hope that whoever called you is paying attention to what you’re returning.

Another thing to keep in mind: Really low-level stuff will also throw an exception.
For example, if you access memory that you shouldn’t, an exception will be thrown.
You can catch this exception and attempt to pull up from the nosedive you’re pro-
gram is in. Most standard C++ APIs, including the STL, will also throw exceptions.
Also, when an exception is thrown, any objects you’ve statically allocated are
destroyed appropriately (that is, the stack is “unwound” correctly, so you don’t get
memory leaks).

Catching Different Types and Catching
Everything
You’re not limited to just catching one type of exception. Here’s an example that
catches both strings and integers:

void Foo(void)
{
if (rand() % 2) throw(“Error in function foo!”);
else throw(5);

}
void main(void)
{
try {
Foo();

}
catch(const char *strError) {
printf(“Caught string: %s”, strError);

}
catch(int iError) {
printf(“Caught integer: %d”, iError);

}
}

I’ve modified Foo so that it randomly throws a string or an integer. To accommodate
this, I’ve also added a new catch handler that catches integers instead of strings.

953Selected C++ Topics

TeamLRN

You can also add a special catch statement, which many programmers call a catch
all, that will catch anything for which you haven’t specifically written a catch han-
dler. You create a catch all by putting an ellipsis (three dots) inside the parentheses
of the catch statement, like so:

void Foo(void)
{
switch(rand() % 3) {

954 B. C/C++ Primer and STL

TIP
The type you are catching doesn’t necessarily need to match exactly the type
you’re throwing. For example, if you throw an object of class Derived, and class
Derived is derived from class Base, a catch(Base &e) handler will catch the Derived
class you threw. Once you’re inside the catch block, you can choose to use Run-
Time Type Identification (RTTI, explained in a few pages) to determine what kind
of thing you caught, and act appropriately.

Also, the order you specify the catch statements in matters. Say you have a catch
block for both Base and Derived objects. Be careful: If the Base catch comes before
the Derived catch, any Derived objects you throw will end up in the Base catch,
because it came first. Example:

class Base { /* yada */ };

class Derived : public Base { /* yada */ };

void main(void)

{

try {

throw(Derived());

}

catch(Base &e) {

// Derived is caught here...

}

catch(Derived &e) {

// even though you probably want it caught here.

}

}

For this reason, it’s always a good idea make your first catch blocks very specific,
and put broader catch statements (like base classes) later:

TeamLRN

case 0: throw(“Error in function foo!”);
case 1: throw(5);
case 2: throw(5.08f);

}
}
void main(void)
{
try {
Foo();

}
catch(const char *e) {
printf(“Caught string: %s”, e);

}
catch(int e) {
printf(“Caught integer: %d”, e);

}
catch(...) {
printf(“I caught something, but I have no idea what it is.”);

}
}

In this example, Foo now throws strings,
ints, or floats. The string and int throws
end up in the string and int handler,
but since we haven’t defined a handler
for floats, the float throw ends up in the
catch-all handler.

Nested Try Blocks and Re-Throwing
Exceptions
Yep, you can nest try blocks just like you can nest any other block of code. Here’s
an example:

void main(void)
{
try {
Foo();
try {
throw(“Another Error Occurred”);

}

955Selected C++ Topics

TIP
You can’t declare a variable for your
catch all handler.After all, what type
would it be?

TeamLRN

catch(const char *e) {
printf(“An error occurred after Foo: %s”, e);

}
}
catch(const char *e) {
printf(“Caught string: %s”, e);

}
catch(int e) {
printf(“Caught integer: %d”, e);

}
catch(...) {
printf(“I caught something, but I have no idea what it is.”);

}
}

In this example, the very first catch
handler catches the “Another Error
Occurred” error. You can nest try/catch
blocks as deep as you’d like.

You can also re-throw an exception, if
you catch something and you have no
idea what to do with it. Here’s an exam-
ple of that:

void main(void)
{
try {
Foo();
try {
throw(“Another Error Occurred”);

}
catch(const char *e) {
// our error is caught once here
printf(“An error occurred, and I have no idea what to do”
“ about it, so I’m re-throwing.”);

throw;
}

}
catch(const char *e) {
// our error is caught again here
printf(“Caught string: %s”, e);

956 B. C/C++ Primer and STL

TIP
The typical rule is to catch an error as
close as possible to where it was
thrown.You should catch errors as
soon as you know enough about what’s
going on to properly handle them.

TeamLRN

}
catch(int e) {
printf(“Caught integer: %d”, e);

}
catch(...) {
printf(“I caught something, but I have no idea what it is.”);

}
}

In that example, I changed the inner-
most catch handler, and made it re-
throw the error. The error is caught by
the innermost handler, which prints a
message saying it doesn’t know what to
do with it, and then re-throws. The next
handler up then catches the error. This
is extremely nifty, because it allows you
to log errors and then hand them off
without actually doing anything about
them.

The Do’s and
Don’ts of Using Exceptions
As you now know, exceptions can be a powerful tool. However, just like any tool,
exceptions are not appropriate in all situations. One of the most common errors I
see beginning C++ programmers make is to sprinkle exceptions everywhere in their
code. They throw at the slightest hint of something gone wrong, and often don’t
write catch handlers as close to the error as possible. Ironically, this leads to code
that’s very difficult to follow and debug.

So, here are a few bullet points on the do’s and don’ts of using exceptions:

• Don’t use exceptions as a replacement for errors. An error is an alternate
flow of logic; an exception is truly something out of the ordinary. For exam-
ple, if you prompt users for a password to begin play at a certain level of your
game, and they enter the incorrect password, that’s an error. Your program
takes an alternate path of execution, probably displaying an error like “hey,
your password’s wrong!” and allowing them to enter it again. However, if you
run out of memory while trying to validate their password, that’s an excep-
tion, because it’s something you wouldn’t normally expect to happen.

957Selected C++ Topics

TIP
By the way, when an exception is
thrown, the C++ compiler takes care
of calling the destructors of any
objects that need to be destructed
because you’re moving up in scope.
For example, if you have an object
inside Foo, and you throw, the compiler
will call the object’s destructor, ensur-
ing that memory is cleaned up proper-
ly as you exit the function.

TeamLRN

• Do use exceptions to separate error logic from core logic. Isolate your error-
handling code in a catch block (or many catch blocks), so that you end up
with the exceptional cases separated from the normal cases.

• Don’t use exceptions where a normal switch statement or other program fea-
ture would suffice. Again, you should use exceptions only to handle truly
bizarre events in your code. The normal flow of logic through your program
should be exception-free.

• Don’t just drop a library that uses exceptions into a program that doesn’t. If
you must, surround the library interface with a set of wrapper classes that
catch the exceptions and convert them into whatever non-exception error
handling system you have (return values, global variables, whatever).

• Don’t convert existing, already robust code to use exceptions. Also, as a
corollary to the last item—it’s very tedious and time consuming to take a
robust program that doesn’t use exceptions, and change it so it does. If your
program’s working correctly and robustly already, don’t change it.

• Do use a class hierarchy for exceptions. By this, I mean, create a base class
called CException or something, and derive from it different exception classes
—COutOfMemoryException, CArrayOutOfBoundsException, etc. Use RTTI (discussed
later) to figure out what you’ve caught, or, create a virtual function that
returns the class name of the exception as a string.

• Don’t worry about using exceptions in small programs. If you’re writing a
one-page command-line utility program, exceptions are probably more trou-
ble than what they’re worth. Just because you have a great tool for making
code robust doesn’t mean that all of your code needs to be robust—
oftentimes it’s better to concentrate on the game itself at the expense of the
internal tools. Just make sure that what you’re releasing to your end users,
the players, is robust!

Exception Handling Wrap-Up
Believe it or not, there are many exception-handling topics that I didn’t cover here.
Before you go charging off and using exceptions in your next 3-D engine, you
should spend more time learning about the fine points of their usage. For exam-
ple: What happens if you throw an exception inside a constructor? What happens if
you’re creating an array of objects, and midway through the construction of the
objects, you throw? How many array objects are valid? Can you write a handler for
exceptions that no one catches?

958 B. C/C++ Primer and STL

TeamLRN

Don’t start using exceptions heavily
without first being able to answer those
questions. Exceptions are new, unlike
anything we’ve seen in C, and we need
to move carefully to ensure we’re using
them correctly.

C++ Style Casting
You’re probably intimately familiar with casting—you know, saying to the compiler,
“Yes, I know it’s an integer, but pretend it’s a char, OK?” You’ve probably seen code
like this:

int i = 5;
char c = (char)(i);

Essentially, what you’re doing here is “casting” the value (i) to a char. It’s supposed
to be an int, but by doing a cast you’re saying “stuff this into a char and don’t
complain!”

Also, you’ve probably seen pointer casts, like what you have to do when you use
malloc:

char *str = (char *)malloc(50);

You need the (char *) cast in there because malloc returns a void *, and the com-
piler doesn’t want to automatically convert void *’s into char *’s.

So, that’s how you do it in C, and C++ still allows you to do this form of casting.
But, there are several ugly things about this form of casting:

• It isn’t something for which you can easily search. Say you’ve got a chunk of
code, and you want to know every place where that code is casting. How do
you do that? You can’t just search for parentheses, because they’re used
everywhere. If your search tool doesn’t support wildcards in the search state-
ments, you’re basically out of luck, and even if it does, it’ll errantly find pro-
totypes of functions that take one argument: A cast like (char *) looks the
same as part of a C function prototype, void foo(char *);

• It doesn’t differentiate between dangerous casts and innocent casts. Say
you’ve got a pointer to class D, which derives from class B. Casting your
pointer to (B *) is safe, because we know B is a base class of D. However, cast-
ing your (D *) pointer to, say, (char *), isn’t nearly as safe—in that situation,

959Selected C++ Topics

TIP
STL has several built-in exception
classes that you may find useful. Check
out your STL documentation for
details.

TeamLRN

you’re playing directly with bytes of memory, and that’s risky. In C, you
accomplish both safe and risky casts the same way.

C++ style casting was designed to solve these two main problems. C++ style casts are
obvious, and they differentiate between safe and unsafe casts.

There are four new cast keywords in C++. Table B.1 summarizes them.

960 B. C/C++ Primer and STL

Table B.1 New C++ Casts
Cast Keyword Description

reinterpret_cast Use this cast to do anything.You can use it to convert void point-
ers to floats, convert chars into pointers, and do all sorts of other
risky stuff.

static_cast Use this cast to do “safe” casting, for example, to convert a derived
class pointer into a base class pointer (called “upcasting”).You can
also use it to perform implicit type conversions (stuff the compiler
would have done anyway, like converting an int to a float if you’re
adding it to another float).You can also use static_cast to convert
a void pointer into something more useful.

The compiler won’t let you use a static_cast for anything that’s
really dangerous.To program the safest possible cast, always use
static_cast; don’t use reinterpret_cast until the compiler says
that you must.

dynamic_cast Use this to perform dynamic downcasts (converting from a base
class pointer into a derived class pointer). In other words, you can
use dynamic_cast to ask “Hey Mr. Compiler, does this base point-
er really point to a derived object?”

If it does, the compiler will give you back a pointer to that derived
object. If it doesn’t, the compiler will give you a NULL pointer back.

This cast is a part of doing run-time type identification, which
we’ll talk about a little later.

const_cast Use this to add or remove “const-ness” from something. For
example, if you have a const class and need to convert it to non-
const, you can use this.You can also use it to temporarily make
something const.

You can also use const_cast to add or remove volatility from
something. If you’ve got a volatile object, and you need it not
to be, use const_cast. Or, if you need something volatile,
const_cast is the tool for the job.

TeamLRN

To use the casts, you first type the keyword for the cast you want to use. Put the thing
you want to cast to inside < and > symbols immediately after the cast keyword. Then,
put the stuff you want to cast from inside parentheses immediately after the >. Here’s
an example:

int i = 50;
char *pMemory =

reinterpret_cast<char *>(&i);

That code is functionally
equivalent to the old-school:

int i = 50;
char *pMemory = (char *)(&i);

As you can see, using C++ casts,
it’s possible to easily search for
all “dangerous” casts. Just
search for reinterpret_cast, a
C++ keyword.

Here’s a short example
showing the new C++ casts in the
wild:

class CMyClass : public CMyBaseClass { /* whatever */ };
void foo(const CMyClass *myClass, CMyBaseClass *myBaseClass)
{
// use static cast to convert myclass into my base class
CMyBaseClass *pStaticCastedClass =
static_cast<CMyBaseClass *>(myClass);

// use dynamic cast to see if a base class pointer really
// points to a derived class
CMyClass *pDynamicCastedClass =
dynamic_cast<CMyClass *>(myBaseClass);

if (pDynamicCastedClass) {
printf(“hey, myBaseClass really does point to a CMyClass.”);

}
else {
printf(“nope, myBaseClass doesn’t really point to a CMyClass.”);

}
// use const cast to add or remove constness

961Selected C++ Topics

CAUTION
Be careful using dynamic_casts with references.
When you dynamic_cast a pointer, and the com-
piler can’t safely determine that your cast is
legal, it returns NULL. But, if you’re dynamic_cast-
ing a reference, the compiler can’t simply return
NULL, because references can’t ever be NULL.

So, it throws! Yep, you read that right—the com-
piler will actually throw an exception, of type
bad_cast. If you don’t have a catch-all handler or a
handler specifically for bad_casts, you’re probably
going down in flames. So, be careful any time you
dynamic_cast a reference, and make sure you’ve
got a catch block in case things go wrong.

TeamLRN

CMyClass *pNotConstClass = const_cast<CMyClass *>(myClass);

// use reinterpret cast to do dangerous stuff
char *pClassMemory = reinterpret_cast<char *>(myClass);

}

Run-Time Type Identification (RTTI)
Now that you’ve gotten a grip on C++ casting, we can talk about another C++ fea-
ture—run-time type identification, or RTTI.

As its name implies, RTTI is a C++ feature that allows you to determine what type
an object is. We saw a little of this in the previous section, where we learned that we
can use dynamic_cast to effectively ask the compiler if something is of a given type.
Technically, dynamic_cast is part of RTTI.

RTTI isn’t just about dynamic_cast, however. There’s another equally important key-
word—typeid. The typeid keyword works very similar to how sizeof works—it’s not
really a function, but you use it as if it were. The sizeof “function” returns the size
of whatever you gave it, in bytes. The
typeid “function” gives you an object called
type_info that contains type information
about what you gave it.

Specifically, here’s what type_info contains:

class type_info {
public:

virtual ~type_info();
int operator==(const type_info& rhs)
const;
int operator!=(const type_info& rhs) const;
int before(const type_info& rhs) const;
const char* name() const;
const char* raw_name() const;

private:
/* you can’t see this! */

};

As you can see, this type_info class consists of three functions and two overloaded
operators. Let’s look at each in detail.

962 B. C/C++ Primer and STL

CAUTION
The compiler throws an exception if
you pass NULL into typeid.The excep-
tion is of type bad_typeid. So, make
sure you’ve got a bad_typeid catch
block anywhere you could potentially
be passing NULL into typeid.

TeamLRN

type_info::before
The before method isn’t terribly useful. You use it to determine if one type ID
should be sorted before another. For example, if you have classes X and Y, you
could use the before function to determine if X should come before Y:

if (typeid(X).before(typeid(Y))) { /* X comes before Y! */ }
else { /* Y comes before X! */ }

Like I said, not the most useful thing in the world, but it’s handy in certain
situations.

type_info::name
This method is much more useful. It returns the name of the thing you pass it:

class MyClass { /* yada */ };
void main(void)
{
MyClass x;
printf(“x is a %s.”, typeid(x).name());

}

That code will print “x is a MyClass.”
I’m sure you can find myriad uses for
this: For example, you can save the
name of the class that generates your
saved game files inside the save file itself,
so that you’ll always know what class to use to load it.

type_info::raw_name
This method is very similar to the name method, with one key difference—raw_name

returns the decorated name, which isn’t human readable. The decorated name has
at signs—@—and weird letters all over it, because it’s the name the compiler refers
to the type as internally. Nonetheless, this name may be useful in situations where
you need to compare things.

Overloaded Operators of type_info
The type_info class contains overloads for the == and != operators. These overloads
allow you to compare the types of two objects directly, without having to do string
comparisons on their names (or raw names).

963Selected C++ Topics

TIP
Don’t use the name you get back
from this function to control your
program logic.That is, don’t use it
in if statements, like if (strcmp(type-
id(MyClass).name(), “MyClass”)).A
better way to do that is to use the
overloaded operators that you’ll learn
about momentarily.

TeamLRN

For example:

class MyClass { /* yada */ };
class MyOtherClass { /* yada */ };
void main(void)
{
MyClass x;
MyOtherClass y;

if (typeid(y) == typeid(MyOtherClass)) {
printf(“So far, so good...”);

}
if (typeid(x) != typeid(MyClass)) {
printf(“Something has gone horribly, horribly wrong.”);

}
if (typeid(MyClass) == typeid(MyOtherClass)) {
printf(“Something is still horribly, horribly wrong.”);

}
printf(“x is a %s.”, typeid(x).name());

}

Here you can see that we’re doing some
comparisons to see whether certain vari-
ables are of certain types.

RTTI Wrap-Up
Pretend this sentence contains the stan-
dard disclaimer about how you really
should not use RTTI in your own projects until you know more about it. Here’s
some other questions you can research on your own:

• What does typeid give you if you pass it a template class?

• What does typeid give you if you pass it a void * that actually points to a base
class?

• Does typeid(5) == typeid(int)? Does typeid(5) == typeid(float)?

Templates
C++ supports a powerful feature, called templates, which can really help you out in
certain situations. So, here’s how they work.

964 B. C/C++ Primer and STL

TIP
Keep in mind that dynamic_cast can
tell us the same thing however, dynam-
ic_cast can be slightly slower than
typeid, so only use dynamic_cast when
you want a pointer to the object, and
use typeid when you want to see if an
object is equal to something.

TeamLRN

Template Functions
Let’s say you’re a C programmer who’s just spent the last two months coming up
with the perfect function to swap two integers:

void swap(int *a, int *b)
{
int temp;
temp = *a;
*a = *b;
*b = temp;

}

Now, let’s say you’ve just recently learned about C++ references, so you’ve rewritten
your swap function to be even more glorious:

void swap(int &a, int &b)
{
int temp;
temp = a;
a = b;
b = temp;

}

Pretty nifty. This code is easy to read, and is reasonably optimized. You’ve got your-
self a great tool for swapping integers.

But what about swapping floats? Arrgh! Now you have to create another function,
to handle floats. You know that C++ will let you overload the function name so long
as the parameters are different, so you write an overload for swap that takes floats:

void swap(float &a, float &b)
{
float temp;
temp = a;
a = b;
b = temp;

}

At this point you should be concerned, because you’ve used copy/paste inside your
IDE. Any time you copy and paste code, you should get worried, because you’re
creating two identical functions. If you find a bug in the int version of swap, you’ll
have to go and make the exact same patch to the float version, and that wastes time
(to say nothing of the headaches that come if you forget to update the other

965Selected C++ Topics

TeamLRN

function—if you’ve done a lot of copy paste, you can also waste a lot of time chas-
ing your tail, solving the same bug over and over again for different data types).

This is what C++’s template feature was designed to solve. Templates allow you to
write code that operates on things of any data type—ints, floats, classes, structs,
whatever. You simply tell the compiler what string you’d like to substitute for the
variable type, write your algorithm, and the compiler takes care of “putting in” the
correct types. In other words, you create the “template” for the code, and the com-
piler uses this template, along with a certain data type, to create the actual code.

It’s easier to see in code than explain in words, so here’s a version of swap that will
work for all objects:

template<class T> void swap(T &a, T &b)
{
T temp;
temp = a;
a = b;
b = temp;

}

We start out with the keyword template, which tells the compiler we’re about to
define a template function. Next, we put class T inside a tag, which tells the com-
piler, “Any time you see a T, you should replace it with whatever type is needed.”
Next, we write our function, using T in place of int or float. T is effectively a place-
holder for a variable type.

Now, when we call this function, the compiler automatically plugs in the correct
types. For example, say we call the function like this:

int x=5, y=10;
swap(x, y);

The compiler will automatically instantiate (make) a version of swap that works for
ints. If we say:

double x=5.0, y=10.0;
swap(x, y);

Then it’ll make a version that works for doubles. Pretty cool, isn’t it? We can even
have it generate a version for a class:

CMyClass x, y;
swap(x,y);

966 B. C/C++ Primer and STL

TeamLRN

That will work, provided we’ve overloaded the = operator for CMyClass.

So, that’s what you can do. Here’s what doesn’t work:

CMyClass x; int y;
swap(x,y);

In this situation, we’re trying to use two different data types. As it’s written now, the
swap template won’t accept two different types. However, we could rewrite it so it
does:

template<class T1, class T2> void swap(T1 &a, T2 &b)
{
T1 temp;
temp = a;
a = b;
b = temp;

}

It gets a little trickier to make that
version of swap work—you’d need
to have operator = overloads, or
you’d have to rely on implicit con-
versions (i.e., the compiler auto-
matically knowing how to set an int
equal to a float). I wrote that exam-
ple mainly to show that you could
specify as many different template
parameters (type substitutions) as
you want.

Template
Classes
You’ve now learned how to create
template functions. C++ also lets
you create template classes. Here’s
what that looks like:

template <class T>
class MyTemplateClass
{
public:

967Selected C++ Topics

TIP
The compiler only generates the code that
you need. It doesn’t automatically generate
every possible version of swap or other tem-
plate functions.When you add code that
uses a float version of swap, it creates the
float version.

Because of this, it’s possible that a template
function may compile and link without any
errors at first, but if you go back and use it
for a different type, you may get errors. For
example, if we didn’t have an operator =
overload for a class we were using swap
with, we’d get an error inside swap com-
plaining about us trying to set one class
equal to another.

The Visual C++ compiler (and most other
compilers) will also give you the line of
code that caused the compiler to generate
the errant template function, but it still
sometimes takes a bit of thinking to
deduce exactly what broke and why.

TeamLRN

/* use T for the types of some variables here */
T m_MyData;

};

You declare a template class basically the same way you declare a template function:
You type the keyword template followed by the different template arguments. You
then declare the template class just as you would any other class.

To instantiate a template class, you must give the compiler all the argument types
the template requires. You do this as follows:

MyTemplateClass<int> m_IntClass;
m_IntClass.m_MyData = 5; // m_MyData is of type int
MyTemplateClass<float> m_FloatClass;
m_FloatClass.m_MyData = 5.0f; // m_MyData is of type float

In that example, we’re instantiating a version of MyTemplateClass that uses ints. See
how the template argument just hangs off the class name?

If our class template used more than one type of class, we’d need to separate the
data types by commas:

template <class T1, class T2>
class MyDualTemplateClass
{
public:
/* use T for the types of some variables here */
T1 m_MyData;
T2 m_MyData2;

};
void Foo(void) {
MyTemplateClass<int, float> m_MyClass;
m_MyClass.m_MyData1 = 5; // m_MyData1 is of type int
m_MyClass.m_MyData1 = 5.0f; // m_MyData2 is of type float

}

You can also really warp your head, because you can put template classes in other
template classes:

template <class T>
class MyTemplateClass
{
public:
/* use T for the types of some variables here */

968 B. C/C++ Primer and STL

TeamLRN

T m_MyData;
};
void Foo(void) {
// create a template class that uses a template class that uses
// ints
MyTemplateClass< MyTemplateClass<int> > m_MyClass;
// m_MyClass.m_MyData is of type MyTemplateClass, so it has another
// m_MyData of type int.
m_MyClass.m_MyData.m_MyData = 5;

}

You see this more often than you might think. The STL library includes several
template classes that use other template classes as template arguments. It can get
downright weird trying to think about some of these, so the best advice I can give
you is to simply practice!

C++ Wrap-Up
So, there it is—a quick tour through the C++ features that are used in this book.

I hope this section has given you a deeper understanding of what C++ is all about—
giving the programmers more tools they can use to make their job easier. As I said
before, not all of the C++ features are useful in every situation. An experienced
C++ programmer knows which tools fit the job, and uses only those tools. That
means you shouldn’t waste time using a C++ feature just for the sake of using it—
use the feature because it reduces complexity and makes your life easier.

Also, resist the temptation to add in everything under the sun. Not every function
needs to be virtual, not every program needs to use exceptions, and not everything
needs its own namespace. Pick and choose your weapons carefully, and you’ll be
fine.

The Standard Template
Library (STL)
Now that I’ve given you a crash course in the C++ features you need to understand
this book, it’s time to talk about the other thing you need to know: STL.

969The Standard Template Library (STL)

TeamLRN

What Is the STL and Why Should I
Care?
STL is an acronym for the Standard Template Library. Let’s take that apart word-by-
word. First of all, the STL is standard. The powers that be incorporated it into the
American National Standards Institute (ANSI) standard of C++, so any compiler
that’s ANSI compliant will have a STL library. This is great, because it means that if
you ever need to port your program to Linux or something, you won’t have to
scrap all the code that relies on the STL.

Second, the library uses templates. In fact, some of the most heavy-duty take-no-
prisoners template code I’ve seen resides in the STL. The STL programmers used
templates to make the library as useful as possible. For example, they didn’t just
want to make one algorithm or container class work with just ints, or just floats, or
just chars, so they template-ized the whole thing so that it could work with any class
you can dream up.

Finally, the L in STL means library. Real libraries are huge collections of books.
The STL is a huge collection of container classes and algorithms. You will probably
never use all of the STL in one program, and may never use all of it anywhere. For
that reason, the STL is broken down into several components. You use each com-
ponent by including a specific header file, just like what you’re used to with the C
runtime libraries. Usually, you don’t even have to worry about linking the correct
STL libraries—the compiler takes care of that for you.

We’re going to concentrate on the two types of STL container classes this book
uses: vectors and maps. There are many other container classes (stacks, lists, etc.),
and I encourage you to learn more about them, because they can be useful in
many situations.

STL Strings
One of the most useful things the STL provides is a string class. C programmers
spend a lot of time wrangling fixed-length character arrays—char buf[256] and
such. This can often lead to frustrating buffer overrun—or “I tried to put a six
character string into a five element array”—errors.

C++ string classes solve this problem. The STL library provides a rather lightweight
string class, called string. So, to create a STL string, just type something like this:

std::string strFilename;

970 B. C/C++ Primer and STL

TeamLRN

You can then assign a value to this string as follows:

strFilename = “C:\\test\\myfile.txt”;

The string class takes care of the details of allocating the right amount of memory
to hold the string.

You can figure out how long a string is by using the size method:

printf(“The length of the string \”blah\” is: %d”,
std::string(“blah”).size());

Also notice in that section of code how I created a temporary string object by pass-
ing in a character array to the string constructor.

If you need to convert your string into a character array, use the c_str method:

void Foo(char *strFilename)
{
/* do something with filename */

}
void main(void)
{
std::string str = “SomeFile.txt”;
Foo(str.c_str());

}

That’s essentially
the basics of
using STL
strings. Consult
the STL docu-
mentation to
learn about the
more powerful
features of STL
strings that this
book doesn’t
use.

971The Standard Template Library (STL)

CAUTION
Whenever you want to print a string, and you use the %s tag in
your printf statement, remember to use the c_str method,
otherwise, you’ll get weird printf results, and sometimes pro-
gram crashes!

For example, don’t do this:

printf(“The string is: %s”, strSomeSTLString); // kablooey!

Instead, do this:

printf(“The string is: %s”, strSomeSTLString.c_str());

TeamLRN

STL Vectors
Think of a STL vector as a resizable array. Once you’ve got a STL vector created,
you can add as many items to it as you want (until you run out of memory, of
course), and you can delete any item inside the array without affecting the others.

Making a STL Vector
To create a new vector, all you need to do is declare a variable of that type.
Remember, vector is a template class, so you need to give it the type of stuff you’ll
be storing. For example, to create a vector of ints, write something like this:

std::vector<int> m_ArrayOfInts;

To create a vector of chars, write:

std::vector<char> m_ArrayOfChars;

Or to create a vector of your own classes, write:

std::vector<CMyClass> m_ArrayOfMyClasses;

Adding Items
The vector class allows you to put objects into it in a few different ways. First, there’s
the most common: Just call the push_back method:

std::vector<int> m_ArrayOfInts;
m_ArrayOfInts.push_back(5); // add 5 to array (array is now 5)
m_ArrayOfInts.push_back(3); // add 3 to array (array is now 5, 3)
m_ArrayOfInts.push_back(4); // add 4 to array (array is now 5, 3, 4)

The push_back method puts the new item at the very end of the array. (In case
you’re curious, there’s also pop_back, which removes the last item from the array.)

When you push an item into a STL
vector, you’re actually making a
copy of that item. This is a moot
point when dealing with ints, but
becomes important if you’re using a
vector to store classes.

If you want to insert stuff in the
middle of the array, you can use
insert. The insert method takes two

972 B. C/C++ Primer and STL

CAUTION
Your class needs to implement an opera-
tor = overload in order for this to work,
and if your class allocates memory or con-
tains pointers to different things, you need
to make sure that your overload copies
that memory correctly.

TeamLRN

arguments. The first one specifies where you’d like the item placed. The insert
method will place the item immediately before the one specified. The second argu-
ment is a reference to the item you want to insert.

Here’s an example of insert:

std::vector<int> m_ArrayOfInts;
m_ArrayOfInts.push_back(5); // add 5 to array (array is now 5)
m_ArrayOfInts.push_back(3); // add 3 to array (array is now 5, 3)
// add 4 to the *beginning* of the array
m_ArrayOfInts.insert(m_ArrayOfInts.begin(), 4);
// array is now 4, 5, 3
// add 7 between 5 and 3 (that is, before element 3)
m_ArrayOfInts.insert(m_ArrayOfInts.begin()+2)
// array is now 4, 5, 7, 3

The only thing weird in that code is probably the m_ArrayOfInts.begin()+2 stuff.
Essentially, the begin method returns an iterator. An iterator is a pointer to what-
ever type you’re storing; in this case, it’s an int *. The begin method of vector
returns an iterator that points to the first thing in our vector. Since we want the
third object down, we simply add two to this iterator
and pass that as the location before which we want
the new item inserted.

STL vectors allow you to insert things in many
more ways than I’ve just shown. For example, you
can insert a whole range of blank objects, using
resize or another insert overload. However, most
programmers rarely use more than push_back and
the simple insert overload.

Getting and Editing
Items
Once you got some stuff in the vector, you probably want to get at it. You can do
this in several ways. First and oftentimes easiest: STL vectors overload the brackets
operator, [], allowing you to pretend that your vector is really just an array:

std::vector<int> m_ArrayOfInts;
m_ArrayOfInts.push_back(5); // add 5 to array (array is now 5)
m_ArrayOfInts.push_back(3); // add 3 to array (array is now 5, 3)
if (m_ArrayOfInts[0] != 5) {

973The Standard Template Library (STL)

TIP
This sounds more complex
than it is. Don’t worry,
you’ll become more famil-
iar with iterators after you
have a chance to play with
them in your own
programs.

TeamLRN

printf(“All is not right in the universe.”);
}

You can also loop through the entire vector by doing something like this:

for (std::vector<int>::iterator i = ArrayOfInts.begin();
i != ArrayOfInts.end(); ++i) {

printf(“%d “, *i);
}

That’s a mammoth for statement, but it comes
apart fairly easily. First, we declare an iterator for
a vector of integers, name it i, and set it equal to
the beginning of the vector. We keep looping so
long as i does not equal end. The end method of
vector is very similar to begin, except it gives you
an iterator that’s one past the end of the array.

So, essentially, we’re looping from the beginning
of the vector to the end. Since i is an iterator,
and an iterator is just a fancy pointer to our object, all we have to do inside the for
loop is de-reference the pointer and use it. If you were using classes, you would
probably want to create a reference to that class element, like this:

for (std::vector<CMyClass>::iterator i = ArrayOfClasses.begin();
i != ArrayOfClasses.end(); ++i) {

CMyClass &ThisClass = *i;
/* do whatever you need to here, using ThisClass */

} // next!

That code makes things a little eas-
ier to read, because once you get
into your for loop, you can use a
reference to the class instead of
constantly having to de-reference
the iterator.

Deleting Items
To delete an item from a vector,
use the clear and erase methods.
The clear method kills everything
in the array:

974 B. C/C++ Primer and STL

TIP
Always use ++i instead of i++
when iterating through a
vector. It’s faster, because the
compiler does not have to
create a temporary object
behind the scenes.

CAUTION
Be careful if you add new items, shuffle the
item order, or delete items while you’re
using an iterator to move through the vec-
tor.The insertion and deletion functions
may actually invalidate your iterator, which
will cause you to go tromping off into mem-
ory somewhere, and will probably lead to
an access violation.

Check the STL docs for more information
on how to get around this.

TeamLRN

std::vector<int> m_ArrayOfInts;
m_ArrayOfInts.push_back(5); // add 5 to array (array is now 5)
m_ArrayOfInts.push_back(3); // add 3 to array (array is now 5, 3)
m_ArrayOfInts.clear(); // array is now empty

The erase method, on the other hand, allows you to delete a specific item or a
range of items. STL vectors provide two overloaded erase methods. The first over-
load takes one iterator, and simply deletes that item. The second overload takes two
iterators, and deletes all items between those iterators, including the first iterator
but not the second:

std::vector<int> m_ArrayOfInts;
m_ArrayOfInts.push_back(5); // (array is now 5)
m_ArrayOfInts.push_back(3); // (array is now 5, 3)
m_ArrayOfInts.erase(m_ArrayOfInts.begin()); // (array is now 3)
m_ArrayOfInts.push_back(4); // (array is now 3, 4)
m_ArrayOfInts.push_back(6); // (array is now 3, 4, 6)
// kill everything but the first element
m_ArrayOfInts.erase(m_ArrayOfInts.begin()+1, m_ArrayOfInts.end());
// array now contains 3

The code above shows how to use both erase overloads. Again, note that the end
method does not return an iterator pointing to the last element of the array. It
returns an iterator pointing past the last element of the array.

A Clever Way to Delete Vectors Full of
Derived Objects
Many programmers use STL vectors to store pointers to different classes. For exam-
ple, say you have three classes, CCircle, CTriangle, and CRectangle, all of which derive
from a common base class, CShape. Now, let’s say you need to store an arbitrary
number of circles, triangles, and rectangles. An elegant way to do this is to create a
vector of CShape *’s, dynamically allocate memory for each object, and then add its
pointer to the vector, like so:

class CShape { /* blah */ };
class CCircle: public CShape { /* blah */ };
class CTriangle: public CShape { /* blah */ };
class CRectangle: public CShape { /* blah */ };
void main(void)
{
std::vector<CShape *> shapes;

975The Standard Template Library (STL)

TeamLRN

shapes.push_back(new CCircle());
shapes.push_back(new CTriangle());
shapes.push_back(new CRectangle());
// now, how do you delete these shapes?

}

So, the question is, “how do you delete the shapes you’ve just created?” This is
where the cleverness comes in. For years, I used to write deletion code like this:

for (std::vector<CShape *>::iterator I = shapes.begin();
i != shapes.end(); ++i) {
delete i;

}
shapes.clear();

As it stands, there’s nothing wrong with that code. It gets the job done just great;
however, it’s a bit much to write just to nuke a vector.

Yordan Gruchev, a fellow game programmer, has come up with a better way. He has
used template programming to create an stlwipe function that encapsulates all of
that code. Here’s what stlwipe looks like:

template<class T>
void stlwipe(T &t)
{
//get the first iterator
T::iterator i=t.begin();
//iterate to the end and delete items (should be pointers)
for(; i!=t.end();++i) delete(*i);
//clear the collection (now full of dead pointers)
t.clear();

}

See how that works? Now that we have our template function, we can just call stl-
wipe(shapes) to delete everything from our vector. Pretty slick, isn’t it?

Other Useful Vector Stuff
Now that you know the basics of adding, editing, and deleting elements from a vec-
tor, here are a couple of other useful things you can do:

• You can find out if a vector’s empty by calling the empty method. That
method returns true if the vector’s empty, false otherwise.

976 B. C/C++ Primer and STL

TeamLRN

• You can find out how many items are in the vector by calling the size
method.

• Behind the scenes, the STL vector allocates memory for each item you pass
into it. If you know you’re going to be pushing a whole bunch of items in,
you can tell the vector to make room in advance, so that it does one big
memory allocation instead of fragmenting your memory with several smaller
allocations. The vector method to call to do this is reserve.

STL Vector Wrap-Up
The best way to become familiar with everything a STL vector can do is to simply
crack open the vector header file and look at the class declaration. You’ll see many
more methods than what I’ve covered here, and you’ll probably want to go through
the STL docs (or some STL resources I’ve given at the end of the chapter) to learn
about the stuff not used in this book.

STL Maps
Another critical container class is the STL Map. This section explains what a map
is, and shows you some basics on how to use a map.

What Is a STL Map?
A STL map lets you find a “thing” given a “key.” Maps work in pairs—every item
you put into a map is bound to a key. Once you put these key/item pairs into the
map, you can quickly retrieve an item if you know its key.

For example, say we’re writing a search program for a library. We know that all
books have an ISBN number, so we decide that the ISBN number is the key by
which we’ll retrieve the other book information—author, title, etc. We make a
structure that contains all the book information, like so:

class CBook
{
public:
CBook() { }
CBook(string strAuthor, string strTitle, string strISBNNumber) {
m_strAuthor = strAuthor;
m_strTitle = strTitle;
m_strISBNNumber = strISBNNumber;

}

977The Standard Template Library (STL)

TeamLRN

string m_strAuthor;
string m_strTitle;
string m_strISBNNumber;
/* other info - etc */

};

Then, for each book, we insert a key/value pair into a map (see Figure B.1).

Our key is the ISBN number; our value is the object that goes with that ISBN
number.

Once we’ve got all our keys/values inserted into the map, we can retrieve a struc-
ture full of information about a book simply by supplying the ISBN number to the
map. The map has an internal organization that lets it quickly find the book struc-
ture corresponding to the ISBN number we gave it.

Many programmers use maps to accomplish many different kinds of tasks. The
example I gave above is only one way to use a map. Another way is to create some-
thing resembling a translation table, in which the key and the item the key’s
attached to are the same data type. For example, let’s say we wanted to create a
(very simply) encryption program, which would take a string and jumble the letters
up (A=G, B=Y, and so on, randomly, for the rest of the alphabet). We could use a
map to make the translation easier—our keys could be A-Z, and our values could
be the random letter each key corresponds to. That way, when we needed to
encrypt the message, we could simply ask the map, “hey, what letter is attached to
key B?” The map would hand us back whatever letter we inserted attached to key B,
and to encrypt our string, we’d replace all instances of B in it with that value. When
we wanted to decrypt, we could make a reverse-map, where the keys are the jum-
bled letters and the items are the “real” letters each jumbled letter corresponds to.

If the light bulb still hasn’t come on, let me try to explain maps in terms of another
example, this time with some code to buttress it.

Let’s say you’re writing a multiplayer game. Each player is playing the game from
his own computer, which has its own IP address. Let’s say your networking code just
received an “I quit this game!” message from a certain IP address, and now it needs

978 B. C/C++ Primer and STL

Figure B.1

Our map’s key is the ISBN number; the map value is the
book itself

TeamLRN

to figure out the player name that IP address corresponds to, so that it can display
a message saying “<player> left the game” and take the player out of the game.

That’s the situation—you’ve got an IP address, and you need a player name. One
way to solve this situation is to create a vector of objects, with each object contain-
ing an IP address and a name, like so:

class CPlayerInfoObject {
public:
CIPAddress m_IP;
std::string m_strPlayerName;
/* other player info */

};
std::vector<CPlayerInfoObject> g_vPlayerInfo;

You’d fill this vector up with all the players in the game. Then, when you needed a
player name for a certain IP address, you’d loop through the elements of this vec-
tor until you found the structure you wanted, like so:

std::string GetPlayerNameGivenIPAddress(CIPAddress GivenIP)
{
for (std::vector<CPlayerInfoObject>::iterator i =g_vPlayerInfo.begin();
i != g_vPlayerInfo.end(); i++) {
if (i->m_IP == GivenIP) {
// we’ve found our player! return their name!
return(i->m_strPlayerName);

}
// we didn’t find anything, so return an empty name.
return(“”);
}

This is perfectly acceptable code, but touching every single item isn’t exactly the
fastest way to search for something.

This kind of situation is what maps were designed to solve. The map container can
essentially replace all that slow and error-prone search code:

std::map<CIPAddress, CPlayerInfoObject> g_mPlayerInfo;
std::string GetPlayerNameGivenIPAddress(CIPAddress GivenIP)
{
return(g_mPlayerInfo[GivenIP].m_strPlayerName);

}

979The Standard Template Library (STL)

TeamLRN

The bracket operator [] is overloaded for maps, so that you can put in your key
and get back the corresponding object (or a “blank” object, made with the default
constructor, if the map doesn’t find a match).

So, that’s essentially what a map is. Now let’s look at how to create and use one in
code.

Making a STL Map
To use a map, you must first include the
<map> STL header:

#include <map>

Once you include the header file, creat-
ing a new map is as simple as the
following:

std::map<CKey, CValue> myMap;

Here we’re declaring a new map called
myMap. The map template needs two tem-
plate arguments. The first template
argument is the data type you’d like to
use as a key—in the example above, the
ISBN number was the key. You can use
any data type you like here, including
the built-in data types.

The second template argument is the
“value” data type. This is what you get back when you put in the key. Again, you can
put in any type you want.

Actually, map has four template arguments, but most of the time you can omit the
last two and let the compiler use their default value. In case you’re curious, the
other two arguments specify how to sort things within a map, and how to allocate
memory for the elements in the map.

Adding Items
You might think that the map class would contain two different arrays of objects—
one array for the keys, and another array for the values. However, it doesn’t work
that way. The map stores one array full of std::pair objects.

980 B. C/C++ Primer and STL

TIP
You’ll probably want to disable warn-
ing number 4786 before you include
the map header.The STL map makes
heavy use of templates, and the tem-
plate expansions generate gobs of a
particular compiler warning—4786.
The warning itself isn’t terribly impor-
tant, and it’s next to impossible to
read the output window with it pre-
sent. Luckily you can easily disable the
warning by typing the following:

#pragma warning(disable: 4786)

This will turn off the warning and
allow you to make sense of your com-
piler output once again.

TeamLRN

The std::pair object is a nifty little STL creation; it’s a handy tool for “pairing” two
objects together into one object. Essentially, pair simply contains two objects (of
any type), called first and second. To prove that it’s really that simple, here’s a typi-
cal STL class definition for pair:

template<class T, class U>
struct pair {
typedef T first_type;
typedef U second_type
T first;
U second;
pair();
pair(const T& x, const U& y);
template<class V, class W>

pair(const pair<V, W>& pr);
};

See the first and second objects? This pair object just takes two random classes and
“binds” them together into one structure.

As you’ve probably already surmised by now, we need to “bind” our key and our
value together using std::pair before we can insert it into our map. Fortunately,
there’s a STL function called make_pair that does just that. Here’s an example of
inserting an object into a map:

std::map<std::string, CBook> books;
// declare a new book object
CBook SpecialEffectsBook(“Mason McCuskey”,
“Special Effects Game Programming With DirectX”, “0-7615-3497-0”);

// add it to the map
books.insert(std::make_pair(SpecialEffectsBook.m_strISBNNumber,
SpecialEffectsBook));

Notice the call to make_pair in the code above, to bind the ISBN number of the
book with the book object itself.

Finding Items
STL maps are no fun unless you can use them to find something. Fortunately, find-
ing something in a map is really easy. The first way is to use the find method of
std::map, like so:

map<string, CBook>::iterator it;

981The Standard Template Library (STL)

TeamLRN

it = books.find(strISBN);
if (it == books.end()) { // not found!
cout << “I don’t know about that book.”;

}
else {

CBook &theBook = it->second;
/* etc. */

}

Give the find method a key, and it will return an iterator pointing to the object in
the map with that supplied key, or pointing to end() if there’s no match. As you can
see in the previous code, the iterator doesn’t point to an object of type CBook, it
points to a pair object (remember, when you inserted the object you bound the key
and object together in a pair object). The book object you’re after is the second
member of this pair object.

If you’re in a hurry, you can also use the overloaded bracket operators to find
something:

CBook &theBook = books[strISBN];

The only caveat to using this is that if the
object doesn’t exist in the map, this will
actually create a blank object and associ-
ate it with that key. Note also that the
brackets operator gives you back a refer-
ence to it->second, so there’s no need for
you to do anything extra. Just put in a
key, get back an object—cool, isn’t it?

Deleting Items
You can delete items you’ve previously
added to a map by calling the erase
method. This works the exact same way
it does for a vector—simply pass in an
iterator and that object is deleted.

You can also clear the entire map in
one fell swoop by calling the clear
method.

982 B. C/C++ Primer and STL

TIP
Keep in mind that a map supports
iterators, just as a vector does. So you
can make a for loop from map.begin()
to map.end() and play with each ele-
ment individually, just like a vector.

CAUTION
Again, just like with vectors, be careful
if you add new items, shuffle the item
order, or delete items while you’re
using an iterator to move through the
map.

TeamLRN

MultiMaps
Up until now, we’ve talked only about maps. However, even though we don’t use
them in this book, I feel compelled to mention the map’s sibling. STL provides
another class very similar to a map, called a multimap.

Essentially, the keys in a multimap can be duplicated, whereas in an ordinary map
each key must be unique. For example, the whole ISBN/book database is great for
an ordinary map, because we’re guaranteed that two books can never have the
same ISBN number. However, if you were modeling a school and wanted to key stu-
dents by their last name, you would proba-
bly want to use a multimap, because
there may be several students with the
same last name. (I once knew three
Smiths in my elementary school home-
room alone.) Alternatively, you might
decide to use another piece of ID, one
that more uniquely identifies a student
(say, their Social Security number, for
example).

STL Map Wrap-Up
STL maps, like STL vectors, are a very useful tool that can save you a lot of pro-
gramming time when properly used. By using a map, you’re guaranteed to have a
fast and very-well-tested algorithm for storing and quickly retrieving all sorts of
items. Free working code! Now that’s something that everyone can enjoy.

STL Summary
I realize that it’s probably painful and discouraging to learn all this new STL stuff.
If you’re like most programmers, you’ve probably already got some great tools to
do the STL stuff I’ve covered here. You may be used to a particular C++ string class
or exception hierarchy.

I consider the STL valuable because it’s cross platform and really is part of the C++
standard. So, no matter where you go, as long as you have C++, you have STL.
That’s something that can’t be said for most other array toolboxes.

Also, realize that you can always wrap the STL into a form more suitable for you.
For example, if you’ve been using a string class of your own, there’s no reason why

983STL Summary

TIP
If you’re using a multimap, you can use
the count function to return the
number of items associated with a
specific key.

TeamLRN

you can’t re-implement that string class in terms of STL strings (that is, using a STL
string behind the scenes). That’s a great approach if you’ve already got a large
code-base that’s using a proprietary string class, or if you just like keeping the same
names.

In general, give the STL a chance. It’s a bit ugly at first, but once you spend some
time working with it, the larger pattern to it clicks in, and you see the method to its
madness. At that point, you start really exploiting the power of the STL. All of a
sudden, complex algorithms can be written in one line, using some clever STL
types and templates.

About the Example
Programs
The two example programs for this appendix demonstrate STL vectors and STL
maps.

ChAp1_STLVectorExample: This example program demonstrates STL vectors.
I designed it so that you could step through it with the debugger and watch
the vectors change as things happen.

ChAp1_STLMapExample: This example program demonstrates STL maps.
Again, step through it with the debugger and watch the maps change as things
happen.

Exercises
There are no exercises for this appendix. Becoming familiar with C++ and the STL
is just something that takes practice.

984 B. C/C++ Primer and STL

TeamLRN

APPENDIX C

C++
Keywords

Lorenzo D. Phillips Jr.,
www.renwareinc.com,

lorenzo.phillips@renwareinc.com

TeamLRN

986 C. C++ Keywords

Table C.1 C++ Keywords

auto delete goto register true

bool do if reinterpret_cast try

break double inline return typedef

case dynamic_cast int signed short typeid

cast else long sizeof typename

catch enum mutable static union

char explicit namespace static_cast unsigned

class extern new struct using

const false operator switch virtual

const_cast float private template void

continue for protected this volatile

default friend public throw while

Table C.2 Visual C++ Specific Keywords

_asm _forceinline _single_inheritance

_assume _finally _virtual_inheritance

_based _inline naked

_cdecl _int8 noreturn

_declspec _int16 _stdcall

_dllexport _int32 thread

_dllimport _int64 _try

_except _leave uuid

_fastcall _multiple_inheritance _uuidof

TeamLRN

APPENDIX D

Resources
on the Web

Lorenzo D. Phillips Jr.,
www.renwareinc.com,

lorenzo.phillips@renwareinc.com

TeamLRN

Had enough yet? Or do you crave more information? The following are lists of sites
that I think will cure your appetite. If not, they are enough to get you started.

SCM Sites
Just in case you would like to search for some information on software configura-
tion management (SCM), I have included some links to get you started. The first
link is to my company. It offers SCM services on most commercial and noncommer-
cial tools. Check out the Web site for a complete listing of services provided and
keep an eye on it because we are about to release helpful scripts and white papers
as well. CM Crossroads is a bulletin board system that has discussion areas for most
of the tools you can think of that are available to the public. The remaining links
are to some of the most notable SCM tool vendors.

RenWare, Inc.: www.renwareinc.com

CM Crossroads: www.cmcrossroads.com

Rational: www.rational.com

MERANT: www.merant.com

Serena: www.serena.com

Telelogic: www.telelogic.com

MKS: www.mks.com

Game Development Sites:
Best of the Best
In my opinion, these are some of the best sites you can hope to find. Information is
the key to success, and knowing where to find it increases your chances of being
successful. These sites have all of the information a person could hope to find and
then some. There are numerous tutorials, and some of them even have boards you
can access to discuss game-related topics with your fellow gamers around the world
or simply to chat in a lounge with other gamers while you take a break from the
hours upon hours you’ve just spent playing the latest, hottest titles on the market.

Xtreme Games: www.xgames3d.com

GameDev: www.gamedev.net

988 D. Resources on the Web

TeamLRN

Game Tutorials: www.gametutorials.com

Adrenaline Vault: www.avault.com

Game Institute: www.gameinstitute.com

Game Developer: www.gamedeveloper.net

Gamasutra: www.gamasutra.com

Game Development Search Engine: www.gdse.com

MSDN DirectX: www.microsoft.com/directx

MSDN Visual C++: www.microsoft.com/visualc

OpenGL: www.opengl.org

FlipCode: www.flipcode.com

IsoHex: www.isohex.net

CodeGuru: www.codeguru.com

NeHe Productions: http://nehe.gamedev.net

Downloads, News, and
Reviews
The sites listed here are where you can go to find downloads, news, and reviews. In
short, these sites can keep you up-to-date with the latest gaming news no matter
where you are located in the world. Or you can simply go out and download some
really cool software. It is also worth mentioning that many of the sites in the pre-
ceding section provide the latest in gaming news, but then again, that is why they
are listed as the best of the best.

GamePro: www.gamepro.com

Games Domain: www.gamesdomain.com

Blue’s News: www.bluesnews.com

Download.com: www.download.com

Happy Puppy: www.happypuppy.com

Tucows: www.tucows.com

989Downloads, News, and Reviews

TeamLRN

Game Conferences
Finally, here are some links to some of the best places to be once a year. Although
the Electronic Entertainment Expo (E3) is not technically a game-developer con-
ference, it is the largest conference in the game community, so it deserves to get
mentioned here.

Xtreme Games Developer Conference: www.xgdc.com

Game Developer Conference: www.gdconf.com

Electronic Entertainment Expo: www.e3expo.com

990 D. Resources on the Web

TeamLRN

APPENDIX E

ASCII Table
Lorenzo D. Phillips Jr.,

www.renwareinc.com,
lorenzo.phillips@renwareinc.com

TeamLRN

Decimal Octal Hex Binary Value

000 000 000 00000000 NUL (null character)

001 001 001 00000001 SOH (start of header)

002 002 002 00000010 STX (start of text)

003 003 003 00000011 ETX (end of text)

004 004 004 00000100 EOT (end of transmission)

005 005 005 00000101 ENQ (enquiry)

006 006 006 00000110 ACK (acknowledgment)

007 007 007 00000111 BEL (bell)

008 010 008 00001000 BS (backspace)

009 011 009 00001001 HT (horizontal tab)

010 012 00A 00001010 LF (line feed)

011 013 00B 00001011 VT (vertical tab)

012 014 00C 00001100 FF (form feed)

013 015 00D 00001101 CR (carriage return)

014 016 00E 00001110 SO (shift out)

015 017 00F 00001111 SI (shift in)

016 020 010 00010000 DLE (data link escape)

017 021 011 00010001 DC1 (XON) (device control 1)

018 022 012 00010010 DC2 (device control 2)

019 023 013 00010011 DC3 (XOFF) (device control 3)

020 024 014 00010100 DC4 (device control 4)

021 025 015 00010101 NAK (negative acknowledgment)

022 026 016 00010110 SYN (synchronous idle)

023 027 017 00010111 ETB (end of transmission block)

024 030 018 00011000 CAN (cancel)

025 031 019 00011001 EM (end of medium)

026 032 01A 00011010 SUB (substitute)

027 033 01B 00011011 ESC (escape)

992 E. ASCII Table

TeamLRN

Decimal Octal Hex Binary Value

028 034 01C 00011100 FS (file separator)

029 035 01D 00011101 GS (group separator)

030 036 01E 00011110 RS (request to send)

031 037 01F 00011111 US (unit separator)

032 040 020 00100000 SP (space)

033 041 021 00100001 !

034 042 022 00100010 “

035 043 023 00100011 #

036 044 024 00100100 $

037 045 025 00100101 %

038 046 026 00100110 &

039 047 027 00100111 ‘

040 050 028 00101000 (

041 051 029 00101001)

042 052 02A 00101010 *

043 053 02B 00101011 +

044 054 02C 00101100 ,

045 055 02D 00101101 -

046 056 02E 00101110 .

047 057 02F 00101111 /

048 060 030 00110000 0

049 061 031 00110001 1

050 062 032 00110010 2

051 063 033 00110011 3

052 064 034 00110100 4

053 065 035 00110101 5

054 066 036 00110110 6

055 067 037 00110111 7

993ASCII Table

TeamLRN

Decimal Octal Hex Binary Value

056 070 038 00111000 8

057 071 039 00111001 9

058 072 03A 00111010 :

059 073 03B 00111011 ;

060 074 03C 00111100 <

061 075 03D 00111101 =

062 076 03E 00111110 >

063 077 03F 00111111 ?

064 100 040 01000000 @

065 101 041 01000001 A

066 102 042 01000010 B

067 103 043 01000011 C

068 104 044 01000100 D

069 105 045 01000101 E

070 106 046 01000110 F

071 107 047 01000111 G

072 110 048 01001000 H

073 111 049 01001001 I

074 112 04A 01001010 J

075 113 04B 01001011 K

076 114 04C 01001100 L

077 115 04D 01001101 M

078 116 04E 01001110 N

079 117 04F 01001111 O

080 120 050 01010000 P

081 121 051 01010001 Q

082 122 052 01010010 R

083 123 053 01010011 S

994 E. ASCII Table

TeamLRN

Decimal Octal Hex Binary Value

084 124 054 01010100 T

085 125 055 01010101 U

086 126 056 01010110 V

087 127 057 01010111 W

088 130 058 01011000 X

089 131 059 01011001 Y

090 132 05A 01011010 Z

091 133 05B 01011011 [

092 134 05C 01011100 \

093 135 05D 01011101]

094 136 05E 01011110 ^

095 137 05F 01011111 _

096 140 060 01100000 `

097 141 061 01100001 a

098 142 062 01100010 b

099 143 063 01100011 c

100 144 064 01100100 d

101 145 065 01100101 e

102 146 066 01100110 f

103 147 067 01100111 g

104 150 068 01101000 h

105 151 069 01101001 i

106 152 06A 01101010 j

107 153 06B 01101011 k

108 154 06C 01101100 l

109 155 06D 01101101 m

110 156 06E 01101110 n

111 157 06F 01101111 o

995ASCII Table

TeamLRN

Decimal Octal Hex Binary Value

112 160 070 01110000 p

113 161 071 01110001 q

114 162 072 01110010 r

115 163 073 01110011 s

116 164 074 01110100 t

117 165 075 01110101 u

118 166 076 01110110 v

119 167 077 01110111 w

120 170 078 01111000 x

121 171 079 01111001 y

122 172 07A 01111010 z

123 173 07B 01111011 {

124 174 07C 01111100 |

125 175 07D 01111101 }

126 176 07E 01111110 ~

127 177 07F 01111111 DEL

996 E. ASCII Table

TeamLRN

APPENDIX F

What’s on
the

CD-ROM

TeamLRN

The CD-ROM included with this book contains all of the available source code
from those chapters that had source code, some basic tools, and some very fun
games in demo format.

The CD-ROM GUI
The Graphical User Interface (GUI) for the CD-ROM is HTML-based and has a
nice menu and GUI structure to it. The GUI can be viewed in any browser, but you
would be wise to stick with Netscape 4.0 or later or Internet Explorer 4.0, versions
4.0 or later.

CD-ROM File Structure
The CD-ROM contains three main folders with some goodies contained in the sub-
directories beneath them.

• Demo Games: This folder contains several games that demonstrate the level
of quality that can be achieved with the techniques discussed throughout this
book.

• Source Code: This folder contains the source code for those tricks that used
sample source code to illustrate their point. It should be noted that not all
tricks required source code, and thus, some trick numbers will not be present.

• Tools: This folder contains the essentials to get you started on your way to
making a million dollars! Well, maybe not a million dollars, but the folder
contains the basic tools you will need especially when it comes time to com-
pile your code.

System Requirements
Nowadays, the PCs contain more than enough horsepower to handle the examples
in this book. However, if you’re like me, you may have a couple of older machines
lying around that you still use. So, the minimum requirements you need in order
to work with the source code in this book are as follows:

• CPU: at least 350MHz; however, this would require a top-of-the-line video
card to help handle the load.

• RAM: 32MB RAM, but I would recommend at least 64MB or better.

998 F. What’s on the CD-ROM

TeamLRN

• Video: There are a number of brands still out there, so I would recommend
that you have one with at least 16MB RAM, but the more video RAM your
card has the better because some of the tricks are heavy on the graphics and
rendering.

• CD-ROM, DVD, CD-R, CD-RW Drive: Since the book’s content is stored on
the CD-ROM medium, it only makes sense for you to have one of these dri-
ves so you can access the book’s content.

• Hard Drive: Even if you installed everything on this CD-ROM, you don’t
need a huge hard drive with a ton of disk space for the contents of this book.
A safe number for you is 100MB or more as some of those 3-D models can
get quite hefty.

• Browser: As I mentioned earlier, you should be able to use any browser out
there, but you would be wise to use Internet Explorer and Netscape, versions
4.0 or later.

Installation
If you are like me, then you probably skipped over the previous sections, read this
section, and then went back and reviewed the previous sections while the installa-
tions were executing. Simply install the CD-ROM into your CD-ROM drive. If your
operating system is Windows 95 or greater and you have the autorun feature
enabled, then the menu should appear in your browser automatically. If not, then
you can use My Computer or Windows Explorer to navigate to your CD-ROM drive and
click (or double-click, depending on your computer and mouse settings) on the
MENU.HTM file.

From that point, you should be able to use the menu navigational system to load
whatever you want with ease. However, if you experience problems with the CD-
ROM feel free to email me (TricksoftheTrade@renwareinc.com), so that I can
notify the appropriate personnel at the publishing company.

Now, get on with creating those next million-dollar-best-selling games!

999Installation

TeamLRN

This page intentionally left blank

TeamLRN

A
Absolute index, 353
Abstract class, 145
Abstraction layer

defined, 126–127
deriving from, 130–135
designing, 128–130
reasons for using, 127
systems using, 127–128

Activation box, 26
Activity diagrams, 27–29
Actor, 21, 33
AddDebugBox(), 500
AddFace(), 636–637, 638–641
Adding

nonstring elements, 549
property bags, 549–550

Additive identity, 595, 603
Additive inverse, 595, 603
AddStringToStringTable(), 347–348, 349
AddSymbolToSymbolTable(), 355–356
AddToBack(), 473
AddToLabelTable(), 360–361
Adjust_Score(), 896
After CreateWindowClass, 69
Aggregation, 24
Alpha blending, 265
Alpha testing, 15
Analysis phase, 13

transition from, to design, 41–42
Animation, 671
ANSI, 124
Application frameworks, building

CApplication, 56–58, 61–62, 65–68
CEventHandler, 58–60, 61, 62–63, 68–75
CMessageHandler, 60–63, 64–65
identifying needs, 55

Index

implementation of simple, 63–75
reasons for, 53–55
sample program, 75–79

Application program interface (API), 255
designing particle system, 318–324
host, 336–337

Arrays, memory references, 350–357
Arrows

return, 26
self-call, 26

Artifact update conflicts, 17
ASCII table, 992–996
Assembly language. See Win32 ASM
Assert(), 641
Assertions, 25
AssignVerticesToNode(), 505–506, 507, 510
Association, 25
ATI Technologies, 282, 283, 287
atof(), 342–343
Atomic operations, 463
Audio subsystem, 127

B
Base index, 352–353
Base terrain class, 144–147
Battle code, writing, 210–212
Battle scenes, 182
BeginLoading(), 478–479
Beta testing, 15
Big-endian architectures, 122
Billboarding, 314–316
Binary Space Partitioning (BSP), 486, 628–629
BitBlt(), 263, 272–273
Bitmaps, 292

channels, 257
empty, 257–258
file header, 255

TeamLRN

info header, 255
loading, 254–259
pixel bits, 255
stride, 257

Block comments, 447
Booch, Grady, 20
bool, converting int to, 470
Boolean data type, 444–445
Boundary collision detection, 274
Bounding box collision. See Rectangular area

collision detection
boundsCheck(), 272
Branches, 28
Branch instructions, 357–362, 424–425
Breakpoints, 930
Brute force, 150–152
Build and build numbers, 32–33
Bytecode, 339
byteSwap, 123

C
CalculateFrustum(), 515–516, 528–529
Callback, 447
CallHost, 426, 429
Call stack, 446
canMove(), 270
CApplication, 56–58, 61–62, 65–68
Casting, 961–964
Catching performance data, 482–484
Category. See Package diagrams
CByteBlock, 477, 482
CDebug, 497
CD-ROM, contents of, 998–999
Celestial bodies, 673
CEventHandler, 58–60, 61, 62–63, 68–75
Change Control Board (CCB), 7
Change Request (CR), 7
CheckExtension(), 288
CheckLook(), 197, 198–199
Child trapping, 113
Circular buffers, 229, 240
Class definition, 98–100
Class diagrams, 23–25

Pong example, 38, 42–43

updating, 42–43
Class interaction diagrams (CIDs), 43–44
Clipper objects, 262
CLoadableObject, 476
closeGraphicSystem, 129, 135
CloseHandle, 460, 470
Clouds, 673
CMessageHandler, 60–63, 64–65, 96–97
COctree, 494–497
Code, stepping through, 932
CoInitialize(), 244
Collaboration diagrams, 26
Collision detection, 174

boundary, 274
rectangular area, 274–275
with sprites, 273–275

Color, OpenGL, 292–293
Comments, 338

block, 447
Commercial off-the-shelf (COTS) products, 13
Communication breakdowns, 17
Compilation. See Compilers/compilation
Compiled vertex arrays (CVAs), 296
Compilers/compilation

branch instructions, 357–362
dealing with different, 123–124
instruction stream, 340, 341–344
label declarations, 357–362
label table, 340, 358–362
logo and usage information, printing,

374–377
memory references, 350–357
overview of, 340
program structure of compiler, 373–377
reasons for, 338–340
stacking, 352
string tables, 340, 344–350
summary of, 362–365
symbol table, 340, 352, 353–357

CompileSourceScript(), 377
Complex number theory

addition/subtraction, 594–595
additive identity, 595
additive inverse, 595
defined, 592–594

1002 Index

TeamLRN

division, 596–597
hyper, 599–607
multiplication, 595–596
multiplicative inverse, 597
norm of, 599
scalar multiplication/division, 594
as vectors, 598

Component assembly model, 11
Conceptual perspective, 24
Constants, 861
const_interator, 560
Constraints, 25
Constructor, 65–66
Constructors, widget, 94–95, 104–105
Continuous-level-of-detail (CLOD) algorithms,

166–167
Copy(), 560–561
C++, 172, 934

dynamic memory allocation, 939–942
exception handling, 950–959
inline functions, 935–936
keywords, 986
namespaces, 936–938
polymorphism and pure virtual functions,

942–950
runtime type identification, 962–964
style casting, 959–962
templates, 964–969

CProducerConsumerQueue, 471
CPropBags, 539–541, 543, 545

See also XML property bags
CPropItem, 543
CPropString, 543, 545, 558–559
CQuadtree(), 632–633
CQuadtreeNode(), 634–636
CreateFile, 482
Create_From_SFP, 716–721
CreatNewNode(), 504, 505
CreateNode(), 496, 499–506, 510
CreateSemaphore, 469
CreateSoundBuffer, 230–231, 239–241
CreateThread, 458–459
CreateWindowClass, 69
Creation control flags, 230–231
CResourceLoader, 475–479

CResourceLoaderTask, 476, 477–478
Critical sections, 464–466
Cross-platform code

abstraction layer, 126–135
derive layer, 135–137
planning for, 121–122
problems between platforms, 122–124
programming for multiple platforms, 124–126
why develop, 120–121

CSoundWAV, 235
C-style I/O, 147
CTERRAIN, 145–147
CTestApplication, 75–76, 77–78
CTestEventHandler, 76–77, 78–79, 113–114
CTestWidget, 114–117
CubeInFrustum(), 528
Cube maps, 668
Cubes, octree, 488
CWidget, 89

See also Widget(s)
class definition, 98–100
implementation, 100–113

CWidget::
Display, 104, 106–107
HandleEvent, 104, 108–113
OnRedraw, 95, 104, 106

D
Data chunk, 220
DBLT_KEYSRCOVERRIDE, 263–264
DDBLTFX, 263–264
DDBLT_WAIT, 263–264
DD_Draw_Text, 714–715
DD_Get_RGB_Format, 711–713
DD_Init, 706–710
ddsCaps, 261
DDSCAPS_SYSTEMMEMORY, 261
DDSCAPS_VIDEOMEMORY, 261
DD_Select_Font(), 886–887
DDSURFSCEDESC, 261
DD_UnSelect_Font(), 887–888
Debugging

DevStudio, 929–932

1003Index

TeamLRN

messages, 473, 475
Deep copy, 561
#define, 194, 201–203
DefWindowProc, 71
Degree of membership (DOM), 570, 571
DeleteCriticalSection, 466
Delimiters, 367
Dependencies, OpenGL, 286
Derived layer

defined, 135
using, 135–137

Design
phases, 13–14
transitions from analysis to, 41–42

dest, 551
Destroy, 95
Destroying semaphores, 470
DestroyOctree(), 496, 513–514
Destructors, widget, 94–95, 105–106
Development/construction phase, 14–15
Development Studio (DevStudio), 913–914

adding source-code files, 918–919
building and running programs, 929
compiler options, setting, 920–922
creating a project and workspace, 915–918
debugging, 929–932
help, accessing, 932
linking in DirectX libraries, 928–929
optimization level, setting, 923
runtime type identification, turning on, 924
search paths, 925–927
warning level, setting, 922–923

Diagrams, Unified Modeling Language
activity, 27–29
categories of, 21
class, 23–25, 38, 42–43
interaction, 26–27, 43–44
packages/categories, 30–31, 36–37, 40–41
statechart, 29
use cases, 21–23, 33–36

DI_Init(), 732–734
DI_Init_Keyboard(), 734–736
DI_Read_Keyboard(), 737–738, 751
DirectDraw, 259–264

Direct Draw, connecting to, 704–705
Direct Draw library, 705–715
Directives, 337–338
DirectMusic, MIDI with, 243–252
DirectSound, 226–227

cooperation with other application processes,
228–229

DirectSoundCreate, 227
Direct3D, 127, 129, 130, 135
DirectX, 226–227

libraries, 928–929
DI_ShutDown(), 738–739
Dispatching, 113
Displaying widgets, 95, 106–107
DisplayLook(), 197–198, 199
DisplayRoom(), 186–187
DO-WHILE, 696–697
Draw_Bitmap(), 722–724
Draw_Captions(), 888–891
Draw Element Range, 293
Draw_Grid(), 806–810
Drawing

octrees, 493–494, 511–513
sprites, 265–273

DrawOctree(), 496, 511–513, 527–528, 530
Draw_Shape(), 803–806, 880–885
DSBCAPS

_CTRLFREQUENCY, 242–243
_CTRLPAN, 242
_CTRLVOLUME, 242

DSBFREQUENCY, 243
DSBLOCK_ENTIREBUFFER, 240
DSBLOCK_FROMWRITECURSOR, 240
DSBPLAY_LOOPING, 241
DSBUFFERDESC, 239
DSSCL

_EXCLUSIVE, 228
_NORMAL, 228
_PRIORITY, 228, 229
_WRITEPRIMARY, 228, 229

dwAvgBytesPerSec, 219
DWORD, 458
dwSamplesPerSec, 219
dynamic_cast, 552, 559

1004 Index

TeamLRN

E
else if(), 197
Enemy block, adding, 181
<enemy> section, 180–181, 208–209
EnterCriticalSection, 464, 465
Entry points, obtaining, 288–289
Enumerants, OpenGL, 285–286, 290
Equality operators, 543–544
Equates, 863–864
Error-handling functions, 377
Escape characters, 448–449
Event handlers, 103, 479
Exception handling, 952–961
Execute, 66–68
ExitOnError(), 377
Extensible Markup Language. See XML

F
fdwSound, 221
fFloat, 343, 413
Field of view (FOV), camera, 490
FILE_FLAG_NO_BUFFERING flag, 482
FILE instance, 147
File I/O functions, 372–373
FilterEvent, 96
Floating-point operands, 342–343
Floating points, converting strings to, 551–552
Focus trapping, 113
Fog, 162–163
Forks, 28
Format chunk, 219
FOURCC, 233
Fowler, Martin, 24
FreeStringTable(), 346–347
Frustum

culling, 514–518, 527–531, 651–652
description of, 490–492
planes, calculating, 519–527
planes, defined, 490

Functional baseline, creation of, 13
Functions, OpenGL, 285

obtaining entry points, 288–289

Fuzzy centroid, 589–591
Fuzzy logic

associative matrices (FAM), 579–589
defined, 568
linguistic variables (FLV) and rules, 572–575
manifolds and membership, 575–579
MAX technique 586–587
standard set theory, 568–569

Fuzzy set theory, 570–572
fwrite(), 343

G
Game development web sites, 988–989
Game engine, communication with, 425–432
Game_Init(), 725–728, 752–756
Game_Main(), 756–760, 811–819
Game_Shutdown(), 730–731
g_CriticalSection, 465–466
g_CurrentSubdivisions, 500
Get function, 551–552
GetApplication(), 65, 68
GetDataLength(), 239
GetFloatParam(), 430
GetHWND, 75
GetHINSTANCE, 65
GetInput(), 183–184, 189–191, 197
GetIntParam(), 430
GetLabelByIndex(), 424
getline(), 188
GetLookInfo(), 197, 198, 199–200
GetMasterWidget(), 114
GetMonsterInfo(), 205, 209
GetNewNodeCenter(), 507, 508
GetPlayerInfo(), 207
GetRetVal(), 427, 429
GetRoomInfo(), 187–189, 195, 199, 209
GetSceneDimensions(), 496, 497–499, 500
GetStringByIndex(), 430
GetStringParam(), 430
GetTickCount(), 739
GetWAVFormat, 239
gfxSystem, 135–137
g_lastchar, 462–463

1005Index

TeamLRN

glFunctionName(), 285
glGetFenceNV(), 285
glGetString(), 285, 288
Globally unique identifiers (GUIDs), 226, 260
glSetFenceNV(), 285
glTestetFenceNV(), 285
g_MaxSubdivisions, 496, 500–501
g_MaxTriangles, 496, 501
GraphicSystem, 128–130

H
Hamilton, William Rowan, 592
Hamiltonian Paths, 592
HandleEvent, 71–75

widget, 104, 108–113
HandleMessage, 64–65
Handle of a Device Context (HDC), 90, 104, 105
Hash, 541
Heap, 350
Height maps, 142–144

loading and unloading, 147–150
High-level design phase, 13–14
HINSTANCE, 68
HMMIO, 232, 233
Host API, 336–337
HostFunc, 428
HWND, 70, 71, 97

I
iCurrInstr, 417
IDirectMusic, 243
IDirectMusicLoader, 244, 246–247
IDirectMusicPerformance, 243–244, 245
IDirectMusicPort, 244, 246
IDirectMusicSegment, 244
IDirectMusicSegmentState, 244
IDirectSound, 226
IDirectSoundBuffer, 226–227
IDirectSoundCapture, 227
IDirectSoundNotify, 227
#if defined directive, 124–125
IF-ELSE IF-ELSE, 696

ifstream, 184–185
iHeapIndex, 413, 418
iHeapOffsetIndex, 418
iHeapSize, 417
iInstrCount, 417
iInt, 413
iIsPaused, 417
iIsRunning, 417
Image subset, 293
Implementation perspective, 24
Include files, 858–859
Indirect static member accessors, 92–93
INFINITE, 460
Inheritance, 25
initGraphicSystem, 129, 135
InitializeCriticalSection, 466
Initialized data, 860–861
Initializing queues, 471–472
InitInstrList(), 406–407
Init_Menu(), 862–864
Init_Random(), 908
initSpriteData(), 268–270
InitStringTable(), 346
Init_Time(), 740–741
Inline functions, 935–936
Input focus/capture, 87–88
Input subsystem, 128
Installable client driver (ICD), 281, 282
instance, 551
Instruction pointer (IP), 411–412
Instruction stream, 340, 341–344, 417–419
int, converting to bool, 470
Integer operands, 342
Interaction diagrams, 26–27

updating, 43–44
InterlockedDecrement, 464
InterlockedIncrement, 464
Interpolation, 316–318
Intersections, quadtrees and finding, 641–644
int getSrcX(), 270
int getSrcY(), 271
iPauseEndTime, 417
IsCharDelimiter(), 367
IsCharIdent(), 367, 369

1006 Index

TeamLRN

IsCharNumeric(), 366
IsCharWhitespace(), 366, 369
Is_Game_Won(), 898–899
IsStringFloat(), 371–372
IsStringIdent(), 369–370
IsStringInteger(), 370–371
IsStringWhitespace(), 369
Iterative model, 10–11
IUnknown, 226

J
Jacobson, Ivar, 20
JGE, 425
Jmp, 424
Joins, 28

K
key, 551

L
Label declarations, 357–362
Label table, 340, 358–362, 419
LeaveCriticalSection, 464, 465
Lifeline, object, 26
Light, adding, 159–162
Line_Test(), 799–803, 892–896
Little-endian architectures, 122
LoadFromString, 555–558
Loading

bitmaps, 254–259
property bags, 555–558
scripts, 417–419

Load_State(), 903–904
Load_WAV(), 835–846
Logo and usage information, printing, 374–377
long int, 470
<look> section, 177–178, 196
Low-level design phase, 14
LPDIRECTSOUND, 227, 230, 245
LPDSBUFFERDESC, 230
LPVOID, 459

M
Macros, 861
main(), 184–187, 203–205, 374–376
Maintenance phase, 16
Main Window Callback, 730–732
make_pair, 545, 551
MakeStringSafeForPropBag, 547–548
Mapping games, 176–177
Maps, STL, 977–983
Matrices, transposing, 295
maxcount, 472
MAX_LOOKS, 195, 196
m_bSubDivided, 496
m_Data, 477
Media control interface (MCI), 222–226
memcopy(), 510
Memory

dynamic allocation, 939–943
references, 350–357
storing script in, 413–417

Menu system, 747–752
Merge(), 562–565
Merges, 28
Message handlers, 103
MessageID, 65
m_EverythingDoneEvent, 479
m_hbmOld, 93
m_hbmWidget, 93
m_hDC, 93
m_hWnd, 129
Microsoft

See also Development Studio (DevStudio)
Foundation Classes (MFC), 54, 918
OpenGL, 280–306

MIDI
with DirectMusic, 243–252
file header, 220
playing, using Win32, 222–226
track chunks, 220–221

m_lstChildWidgets, 93
MMCKINFO, 232–233
MMIO (multimedia I/O), 231

_ALLOCBUFF, 233

1007Index

TeamLRN

commands and structures, 232–235
_FINDCHUNK, 234
_FINDLIST, 234
_FINDRIFF, 234
_READ, 233
_READWRITE, 233
using, to load WAV, 235–239
_WRITE, 233

mmioAscend, 233–234
mmioClose, 235
mmioDescend, 233–234
MMIOINFO, 232
mmioRead, 233–234
Mnemonic, 339
m_Object, 478
Monster block

adding, 181
reading in, 205–206

Monster classes, adding, 201–203
Monsters, adding to room block, 180–181
move(), 270
Move(), 191–193
Move_Shape(), 790–798
Moving

a character from room to room, 175–176
from room to room, 191–193
sprites, 265–273

Mov instruction, 405, 421–422, 423–424, 684
m_pParentWidget, 93
m_rcBounds, 93
m_TriangleCount, 496
Multimaps, STL, 541–542
Multimedia I/O. See MMIO
Multiple layers, creating, 672
Multiplicative inverse, 597, 606–607
Multisampling, 294
Multitasking, script, 445–447
Multitexturing, 294
Multithreads/multithreading

advantages and disadvantages of, 457
atomic operations, 463
critical sections, 464–466
defined, 456–458
entry point, 456, 459

example, 481
handle, 460
producer/consumer problem, 466–475
queues, 471–475
race conditions, 461–463
resource loader, 475–479
secondary, 479–480
semaphores, 468–471
starting, 458–459
waiting for finish, 460–461

Music. See Sound and music
m_vCenter, 496, 498, 500
m_Width, 496, 498, 500
MyThreadProc, 458–459

N
Names, OpenGL, 283
Namespaces, 936–938
Name strings, OpenGL, 285
New_Shape(), 768–772, 875–879
Nodes. See Octrees; Quadtrees
Nonstatic member accessors, 93–94, 102
Nonvalidating parser, 537–538
NormalizePlane(), 521, 523–524
Notification

MCI, 225
widget, 86–87, 96–98

NVIDIA Corp., 282, 283, 284, 287, 297–298

O
Object Constraint language (OCL), 25
Object lifeline, 26
Object Management Group (OMG), 20, 25
Object-oriented analysis (OOA), 41–42
Object-oriented design (OOD), 41–43, 45
Octrees

code for, 494–497
defined, 486, 632
destroying, 513–514
drawing, 493–494, 511–513
end nodes, assigning vertices to, 510–511
frustum, 490–492

1008 Index

TeamLRN

frustum culling, 514–518, 527–531
frustum planes, calculating, 519–527
how they work, 488–490
node center, getting a child, 508–509
nodes, creating, 500–506
nodes for recursion, setting up, 506–508
plane equation, 517–518
scene dimensions, obtaining, 497–499
subdividing, when to stop, 492–493

OnDestroy, 76–77, 79, 114
OnEvent, 71, 114
OnIdle, 62, 65, 75, 76
OnInit, 62, 65, 75, 76
OnKeyDown, 75, 76–77, 79
OnMessage, 62, 75, 76, 114
OnMouseMove, 75
OnPaint, 75, 114
OnRedraw, 95, 104, 106
OnTerminate, 62, 65, 75, 76
Opcodes, 339, 341–344, 415, 421–425
OpenFiles(), 376–377
OpenGL, 127, 130–137

Architectural Review Board (ARB), 281–282
headers and libraries, 280, 281–282
installable client driver (ICD), 281, 282
runtime, 281, 282
version 1.2, 292–293
version 1.3, 294–295

OpenGL extensions
choosing, 298–299
demo of, 301–305
dependencies, 286
determining availability of, 288
documentation for, 286–287
enumerants, 285–286, 290
entry points, obtaining, 288–289
fences and ranges, 297
functions, 285
names, 283
name strings, 285
no support for, what to do, 300–301
prefixes, 283–284
role of, 282
shadows, 297–298

vertex and pixel shaders, 295–296
vertex arrays, compiled, 296
wgl, 296–297
Win32, 290–291

Operands, 342–344
Operation model, 1, 129
Operator= = method, 558–560
Outdoor images

adding light, 159–162
base terrain class, 144–147
brute force, 150–152
fog, 162–163
height maps, 142–144, 147–150
resources on, 166–167
skyboxes, 163–165
textures, 153–158

OutputDebugString, 473

P
Package diagrams, 30–31

Pong example, 36–37, 40–41
Package interaction diagrams (PIDs), 40–41, 44
PAPI_ENGINE, 320
Parent/child relationship, 60
Parsers, XML, 537–538
Parsing, 396–410
Particle engines

billboarding, 314–316
defined, 309–314
designing, 318–324
interpolation and time-based movement,

316–318
Particle wrapper, designing, 325–326
pCollide function, 323
pcurValue, 123
pEmit function, 322
pFile, 343
pGravity function, 325
Pixel formats

BGRA, 292
packed, 292

Pixel shaders, 295–296
Place_In_Grid(), 776–780

1009Index

TeamLRN

Plane equation, 517–518
Play cursor, 229
Player classes, adding, 201–203
Player information

adding, 181–182
reading in, 207

PlaySound(), 221, 831–833
pnewValue, 123
Pointers, 544
Polymorphism, 542, 543

C++, 942–950
pParamList, 430
Preprocessors, 447–448
Process_File_Menu(), 869–872
Process_Main_Menu(), 748–751, 865–869
Producer/consumer problem, 466–475
Program counter (PC), 411
Project startup phase, 12
Property bags. See XML property bags
ProtectedThreadProc, 464–465
Prototype model, 11
pszSound, 221, 222
PutTagIntoBag, 557–558
pVertex function, 322

Q
Quadtrees

AddFace(), 636–637, 638–642
applications, 651–652
building, 630–631, 636–638
cleaning up, 648–649
CQuadtree class, 632–633
CQuadtreeNode class, 634–636
defined, 627–628
demo, 653–655
design decisions, 649–651
finding an intersection, 641–644
parts of, 627–628
RayIntersectTraingle(), 644–648

Quaternions
additive identity, 603
additive inverse, 603
applications of, 608–611

building a simple engine, 612–624
complex number theory, 592–599
conjugate, 605
defined, 592
hyper complex numbers, 599–607
mathematical operations using, 594–597,

602–605
multiplicative inverse, 606–607
norm of, 606
rotation, 608–611

Queues
adding element to, 473
CProducerConsumerQueue, 471, 475
initializing, 471–472
removing element from, 474–475
shutting down, 475

Queuing tasks, 478

R
Race conditions, 461–463
Random_Number(), 906–908
Rapid Application Development (RAD). See

Application frameworks, building
Rational Unified Process (RUP), 20
RAW format, 144
RayIntersectTraingle(), 644–648
ReadFile, 482
ReadingOpenTag, 556, 557
ReadingTagContents, 556, 557
Rectangular area collision detection, 274–275
rectAreaCheck(), 272
Reeves, William T., 309
Reference counting, 561
Regression testing, 15
Relative index, 353
ReleaseSemaphore, 470, 473
RemoveFromFront, 474, 475
render, 129, 135
RenderScene(), 528, 529
Replace, 548
Requirements Definition Document (RDD), 13
Requirements phase, 12–13
Requirements Traceability Matrix (RTM), 31–33
Rescaling, 293

1010 Index

TeamLRN

ResolveMemoryOp(), 423
Resource Interchange File Format (RIFF), 218
Resource loader, 475–479
RestoreOrigFromSafeString, 548
Return address, 446
Return arrows, 26
ReturnValue, 417, 427, 430–432
RewindTokenStream(), 390, 397
Rooms

See also Text adventure
describing, 173–175
first room block, 173–175
moving a character from room to room,

175–176
use of term, 173

Rotate_Shape(), 782–790, 822–828
RTLMoveMemory(), 802
Rumbaugh, Jim, 20
Runtime environment, 410–413
Runtime type identification (RTTI), 544, 924,

962–964

S
Save(), 543, 552, 553–554
Save_State(), 902–903
screenHeight, 129
Screen transitions, 847–856
screenWidth, 129
Scripting/script

See also Compilers/compilation
communication with game engine, 425–432
execution, 419–421
file I/O functions, 372–373
implementing opcodes, 421–425
library of string-handling functions, creating,

365–372
loading, 417–419
multitasking, 445–447
parsing, 396–410
reading instructions from external files, 449
role of, 330–331
runtime console, 435–443
runtime environment, 410–413
storing in memory, 413–417

timeslicing, 432–435
tokenization, 378–395

Scripting language
arithmetic, 334–335
branching, 335–336
comments, 338
designing, 331–338
directives, 337–338
host API, 336–337
instructions, 332–333, 334–337
objectives, 333–334
string processing, 335

SearchingForOpenTag, 556, 557
Secondary sound buffers, 229, 241–243
Self-call arrows, 26
Semaphores, 461

creating, 469–470
defined, 468
destroying, 470
releasing/adding to, 470
subtracting from, 471

Sequence diagrams, 26
SetCooperativeLevel, 228
SetData, 547
setDir, 269
SetInstr(), 405
setScreenResolution, 130
SetWindowLong, 71
setXVel, 270
setYVel, 270
Shaders, pixel and vertex, 295–296
Shadows, 297–298
Shutdown_Menu(), 866–867
s_hWnd, 89, 90, 91, 92
Silicon Graphics (SGI), 281
sizeof(), 126
Skyboxes, 163–165

defined, 660
demo, 677
disabling states, 664
orienting, 662–663
rendering, 663–666
representing, 660–662
resources on, 678

1011Index

TeamLRN

restoring states, 664–665
sliding, 672
textures, generating, 672–676
texture states, 664–665

Skydomes
creating, 667–668
defined, 667
rendering, 669
textures, 668

Skyplanes
creating, 669–670
defined, 669
rendering, 670

Sleep(), 460
SLERP (spherical linear interpolation), 608
Sliding skyboxes, 672
Slope lighting, 159–162
s_lstDeleteList, 89, 92
s_lstMoveList, 89, 92
SND

_ALIAS, 221
_ASYNC, 221–222
_FILENAME, 221
_LOOP, 222
_NODEFAULT, 221
_NOSTOP, 222
_PURGE, 222
_RESOURCE, 221
_SYNC, 221, 222

snprintf, 540
Software Configuration Management (SCM)

concepts and functions, 6–8
defined, 4–5
future of, 19
history of, 5–6
importance of, 8–9, 17–18
web sites, 988

Software Development Life Cycle (SDLC)
pitfalls, 16–17
models, 9–11
phases, 11–16

Sound and music
checking play status, 250
cooperation with other application processes,

228–229
DirectSound, 226–227
DirectX, 226–227
loading a song, 247–249
MIDI, 220–221
MIDI with DirectMusic, 243–252
MMIO, 231, 232–235
MMIO to load WAV, 235–239
playing a song, 249
playing MIDI using Win32, 222–226
releasing a segment, 250–251
stopping a song, 250
WAV, 218–220, 231
Win32 API, 221–222

Sound buffers, 229–231, 239–243
Sound module, 828–835
Space partitioning. See Octrees
SPACE-TRIS, 687–694

See also Win32 ASM
Spatial partitioning

See also Quadtrees
defined, 626, 628
forms of, 628–631

Specification perspective, 24
Spiral model, 10
s_pKeyboardFocus, 92
s_pMasterWidget, 91, 92
s_pMouseFocus, 92
s_pMouseHover, 89, 92
sprintf, 540
Sprites

collision detection, 273–275
defined, 254
DirectDraw, 259–264
drawing and moving, 265–273
loading bitmaps, 254–259
resources on, 277
transparency, 264–265

Standard set theory, 568–569
Standard Template Library (STL)

defined, 539, 972
list template, 90, 501, 635
maps, 977–983
multimaps, 541–542

1012 Index

TeamLRN

queue object, 471
strings, 970–971
vectors, 467, 501, 972–977

Start_Time(), 741–743
State attribute, 39
Statechart diagrams, 29
State transition diagrams (STDs), 39–40
Static members, 57–58

accessors, 90–92, 101, 103
Static sound buffers, 229
Static window class member, 69
status command, 208
STL. See Standard Template Library
Stop_All_Sounds(), 833–835
Stop_Sound(), 832–833
str

-LookArray, 195, 196–197, 198
-LookDescription, 198
-Temp, 188
use of, 184

Streaming operators, 541
Streaming sound buffers, 229
String-handling functions, creating a library of,

365–372
Strings

processing, 335
retrieving, 550–551
STL, 970–971
tables, 340, 344–350, 419

stringstream, 540
Swimlanes, 28
switch block, 412, 421
Symbols

ampersand, 546, 547
asterisks, 174, 179, 188, 200
brackets, 174, 179, 187, 200
chevrons/greater than and less than, 546, 547
percent operator, 197
pipe characters, 179, 199, 200, 401
property bags and translating, 546–548
streaming operators, 541

Symbol table, 340, 352, 353–357, 419
System architecture diagram, 13
System package diagram (SPD), 37
Systems Analysis Document (SAD), 13

sz, use of, 184

T
Targas, 292
Tasks, 477–479
TASKSTATE_FAILED, 476
TASKSTATE_LOADED, 476
TASKSTATE_LOADING, 476
TASKSTATE_QUEUED, 476
Templates, C++, 964–969
Terminate(), 475
Terragen, 673–676
Terrain class, 144–147
Test_Collision(), 778–781
Testing phase, 15
Text adventure

battle scenes, 182
collision detection, 174
defined, 170–171
describing a room, 173–175
help resources, 213, 215, 216
<look> section, 177–178
mapping game, 176–177
monster/ememy block, adding, 181
monsters, adding to room block, 180–181
moving a character from room to room,

175–176
player information, adding, 181–182
room block, 173–175
view block, 178–179

Text adventure (version 1)
game input, handling, 189–191
main(), 184–187
moving from room to room, 191–193
room block data, reading in, 187–189
room structure and defines, creating, 183–184
test run, 193–194

Text adventure (version 2)
adding additions to room structure, 195
#define, 194
reading in new section, 195–197
view block, reading in, 199–200
view command, adding, 197–198
view keyword, determining valid, 198–199

1013Index

TeamLRN

Text adventure (version 3)
adding final additions to room structure, 203
adding more defines and monster/player

classes, 201–203
battle code, writing, 210–212
future additions, 214–215
main(), finishing, 203–205
monster block, reading in, 205–206
player data, reading in, 207
room block reading in new section in,

208–209
status command, 208
summary and review, 212–213

Textures, 153–158
border clamp, 295
compression, 294
coordinate edge clamping, 293
cube map, 294
environment modes, 294–295
LOD control, 293
multi, 294
skyboxes and, 664–665, 672–672
skydomes and, 668
3D, 292

Thread
See also Multithreads/multithreading
defined, 456

3D Studio Max, 672
Time-based movement, 316–318
timeGetTime(), 740
Timeslicing, 432–435
timeToUpdateFrame(), 272
Tokenization, 378–395

parsing, 396–410
Tokenize, 541
Token stream, 396
Token types, 380–381
Track chunks, 220–221
Transition(), 848–850
Transparency

color, 264
sprites and, 264–265

Transparent blit, 264–265
Trees. See Quadtrees
TrimWhitespace(), 367–369

Typedef, 125–126

U
Unified Modeling Language (UML)

activity diagrams, 27–29
class diagrams, 23–25, 38, 42–43
coding, 45
development of, 20
interaction diagrams, 26–27, 43–44
packages/categories, 30–31, 36–37, 40–41
refinement and iteration, 45
Requirements Traceability Matrix (RTM),

31–33
resources on, 46–47
role of, 21
statechart diagrams, 29
state transition diagrams, 39–40
transitions from analysis to design, 41–42
use cases, 21–23, 33–36

UnprotectedThreadProc, 462
Update, 95
updateFrame(), 272
Update_Shape(), 773–774
Usability plan, 13
Use case diagrams, 21–23

Pong example, 33–36
Use case scenarios, 22–23, 33
User Acceptance Testing (UAT), 15
User interfaces (UI)

See also Widget(s)
design considerations, 84
role of, 83–84

V
Validating parser, 537
Variable declarations, forcing, 449–451
Variables

external, for game, 859–860
memory references, 350–357

Vectors, STL, 972–977
Vertex arrays, 296

fence extension, 297

1014 Index

TeamLRN

range extension, 297
Vertex shaders, 295–296
Video subsystem, 127
View block, 178–179

reading in, 199–200
View command, adding, 197–198
View keyword, determining valid, 198–199
VirtualAlloc, 482
VirtualFree, 482
Virtual functions

C++, 942–950
table, 706

W
WaitForMultipleObjects, 461, 471, 474
WaitForSingleObject, 460–461, 471
Wait_Time(), 743–746
WaitUntilFinished, 477
Watches, 930–931
Waterfall model, 9–10
WAV

data chunk, 220
format chunk, 219
MMIO to load, 235–239
overview of, 218–219
reading, 231

WAVEFORMATEX, 231, 234, 235–239
wChannels, 219
Web sites, useful, 988–990
wFormatTag, 219
wgl extensions, description of, 296–297
wglGetExtensionsStringARB(), 290
wglGetExtensionsStringEXT(), 290
wglGetProcAddress(), 289, 290
WHILE, 697
While loop, 460, 479
White cursor, 229
Whitespace, 366, 367–369
Widget(s)

appearance, 87
class definition, 98–100
constructors and destructors, 94–95, 104–106
displaying, 95

event/message handlers, 103
implementation, 100–113
indirect static member accessors, 92–93
input focus/capture, 87–88
master widget, constructing, 104
members, 88–90
nonmaster widget, constructing, 105
nonstatic member accessors, 93–94, 102
notification, 86–87, 96–98
receiving input, 95–96
static member accessors, 90–92, 101, 103
tree, 84–86
Z ordering, 86

WindowProc, 70–71
Windows WAV, 218–220
WinMain(), 68, 699–703
Win32 API, 221–222

extensions, 290–291
multithreading and, 458
playing MIDI using, 222–226

Win32 ASM
ADD and SUB instructions, 684–685
bitmap library, writing, 715–725
code framework, 687–694
designing a game, 686–687
Direct Draw, connecting to, 704–705
Direct Draw library, 705–715
direct input, 732–739
game, creation of, 762–820
game code, 725–731
game loop, getting it running, 698–704
high-level syntax, 695–698
loading files, 835–847
menu system, 747–752
MOV instruction, 684
MUL and DIV instructions, 685–686
patterns and lookup table, 763–768
preview piece, 879–879
preview piece, drawing, 880–885
putting pieces together, 856–873
random numbers, obtaining, 905–908
reasons for, 683
rotation solution, 821–828
saving and storing games, 898–905

1015Index

TeamLRN

scoring and levels, 891–897
screen transitions, 847–856
sound module, 828–835
text drawing, 885–891
timing and Windoze, 739–747

Wipe_Trans(), 850–855
WM_PAINT, 75
Words, 343
WriteLabelTableToExec(), 361–362
WriteStringTableToExec(), 348–349

X
XML (eXtensible Markup Language)

data file example, 538–539
defined, 537–538
parsers, 537–538

XML property bags
adding, 549–550
copying one bag to another, 560–562

creation of, 539–541
data elements, adding, 545–546
data elements, getting, 550
data types, getting, 551–552
getting, 552
implementing, 542–544
loading, 555–558
merging, 562–565
nonstring elements, adding, 549
saving, 553–554
STL multimaps, 541–542
strings, getting, 550–551
testing for equality, 558–560
translating special characters, 546–548

Z
Z ordering, 86

1016 Index

TeamLRN

