


- €D INCLUDED

GAME PROGRANMMING

TRICKS

OF THE

: ] Edited By
ForenzosDRPhillipstr

J‘Irr‘mr

( ) (;A\ i"-.__..1' . ';'! a8 N I : Taps
AndreslfaMothe
CEO Xtreme Games LLC
TeamLRN



il gy WO B ' = S e

S T o TP J
GAME
FPROGRANIMING
TRICKS OF THE
TRADE

N4
- @
=,
Ljiﬂﬂ.ﬂj s e — ——

TTTTTTT



This page intentionally left blank

TeamLRN



g I e RS T e . . W
e — '——"—q —L = I_I—'—'_‘—-_ﬂ..nj |——'|—|_—l—|_r‘; __,—"!:

GAME
FPROGRANMING
TRICKS OF THE

TRADE

Lorenzo . Phillips Jr., Editor

Andrée LaMothe, Series Editor

TTTTTTT



© 2002 by Premier Press, a division of Course Technology. All rights reserved. No part of this book
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage or retrieval system without written permission
from Premier Press, except for the inclusion of brief quotations in a review.

Premier

- Premier Press, Inc. is a registered trademark of Premier Press, Inc.

Press

The Premier Press logo and related trade dress are trademarks of Premier Press, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners.

Publisher: Stacy L. Hiquet

Marketing Manager: Heather Hurley
Managing Editor: Sandy Doell

Acquisitions Editor: Emi Smith

Project Editor: Argosy Publishing

Editorial Assistants: Margaret Bauer and Elizabeth Barrett
Marketing Coordinator: Kelly Poffenbarger
Technical Reviewer: André LaMothe
Interior Layout: Argosy Publishing

Cover Design: Mike Tanamachi

CD-ROM Producer: Carson McGuire

All trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software
manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trade-
marks from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the Internet is an ever-
changing entity. Some facts may have changed since this book went to press.

ISBN: 1-931841-69-1

Library of Congress Catalog Card Number: 2001099848
Printed in the United States of America
02030405BA10987654321

Premier Press, a division of Course Technology

2645 Erie Avenue, Suite 41

Cincinnati, Ohio 45208

TeamLRN



I dedicate this book to Sayun, Lorenzo 1V, Tylen, and to
the rest of my other family and friends.

—Lorenzo D. Phillips, |r.

TeamLRN



S ey cs "'
Foreword

N M =T =1 =

I started programming games over 25 years ago, and although I have been on both
sides of the business, that is, the development side and the business side, I can say
wholeheartedly, I much prefer making games to selling them! The game business is
like magic to me. Although, I am practically as old as Yoda compared to many of the
new young game programmers, all these years have clarified in my mind that I sim-
ply love making and playing games. Video games are the most impressive artistic
accomplishments of our generation. They are the fusion of science, art, sound,
music, and prose. And the cool thing has been watching them grow from nothing to
photo-real simulations that have you blinking your eyes saying, “that looks real!”

I remember the very first game that I played—Pong. Shortly after, I played Space
War in an arcade in Oak Ridge Mall, San Jose, CA. I was amazed by these games. I
couldn’t believe my eyes; it was like magic, but better, since it was real. It was real,
and I could learn how to do it. So I decided that I would spend my life learning
how to do it, and I have pretty much done that.

In my travels, I have met the most interesting people you can imagine, from Bill
Gates to Steve Wozniak. I had lunch with the guy who invented Defender, and sat
in a dark room and talked about DOOM with John Carmack. I can say without a
doubt there’s nothing in the world I would rather do. And now with the turn of the
century behind us, it’s up to you, the next generation of game developers, to take
games to the places that we all dream about.

I admit I would much rather make games than write books, but writing books is
much more constructive and more meaningful to me, personally, than writing
games. However, I am eager to start creating games as I did in the ’80s and early
’90s. But, for now, I still have a few tricks up my sleeve, and this book is one of
them.

When I first came up with the idea for a compilation book, the first comment to
me was “the Game Programming Gems series is doing well, and in fact, you are one of
the co-authors!” True, but this book is completely different. Personally, I have never
gotten that much out of books that have small 1- to 5-page articles. I believe that a
compilation book needs to have coherent and complete chapters wherein explain a
topic to a point that the reader really learns how to do it. So, my goal was to have a

TeamLRN



Foreword vii

compilation book with hefty 20- to 50-page chapters that are complete, more in-
depth, and written in tutorial style. Additionally, I wanted a cohesive look and feel
to them.

With all that said, this book hits the mark. It’s the first in our series of compilation
books, but I think that it more than delivers its weight in Pentiums. There are some
really interesting subjects covered in this book from advanced mathematics to
scripting, as well as topics like OpenGL, 2D, Skyboxes, Optimizations techniques,
Assembly Language, and so on. Each topic is a complete treatise on the subject, not
just introductions or little blurbs that leave you wondering.

Of course, the authors are to thank for the content, but Lorenzo Phillips, the man-
aging editor of the book, is to thank for making this idea a reality. If you’re reading
this book and have worked on any kind of engineering job in your life, you will
appreciate the incredible complexity of getting people to do their jobs on time.
Now, try getting 15 to 20 people to all do their jobs on time and do it with consis-
tency—that’s a miracle. Lorenzo is really the person who I feel should get the most
“props”—without his determination and hard work, this book would just be anoth-
er idea and would never have come to fruition.

Lastly, as someone with experience in the trenches, and now that I have your atten-
tion, I would like to leave you with some real advice about making games—or mak-
ing anything for that matter. This stuff is hard—really hard. If you are serious about
it, then, as I have said many times, forget about having fun, forget about vacations,
forget about that cute blonde next door—it’s not going to happen (especially the
cute blonde). You simply don’t have time for anything, but work, work, and work.
Talk is cheap; don’t waste your time on web boards describing your newest game,
engine, technology, whatever—spend your time making it!

Remember, the few short moments of free time we have fade away all too quickly,
and reality sets in. All those things you wanted to do, thought you would do, never
get done. So while you have the chance, do everything you can and finish it.
Whatever it is. . .

André LaMothe

“Surrounded by 14 computers in his laboratory and one of them is getting impatient!”

TeamLRN



- e
L =l FMle—Td= S e
Acknowledgments

Wow, my first book project is finally complete! There are so many people to thank
that I hope I don’t forget anyone, but please know that if I forgot you, it was not
intentional.

First and foremost, I have to thank my mother, Novella Phillips, for her guidance,
love, and support and for keeping me out of harm’s way all these years. I love you,
Mom. I’d like to thank my wife, Sayun Phillips, for her love, her support, and for
growing with me over the years. I thank you for making sure that I ate during those
long stretches of no sleep and for the times when we just chilled out and played
Tetris against each other. I love you, babe. I’d like to thank my sister, Sharnell
Phillips, for being the greatest big sister a little brother could ever ask for. I must
thank the little people in my life (that is, the kids), starting with Lorenzo IV and
Tylen, my two sons, for their unconditional love, Jordan and Shane for the endless
hours of game play on the PCs and consoles, and Tessa for all of the laughter she
provides on a daily basis. To round out the family acknowledgements, I'd like to
thank Joe and Kurt (my brothers-in-law), Su (my sister-in-law), and Myong (my
mother-in-law), for being the best in-laws a man could hope for when two families
are joined by marriage.

I have to thank my man André LaMothe for getting me involved in the game indus-
try in the way I have always envisioned, for introducing me to book writing, for
picking me to grow businesses with, and for simply being a great friend. I'd like to
thank Emi Smith and Morgan Halstead for putting up with me and my authors and
for being such nice people to work with. Emi, you have also grown into a good
friend, and I know I still owe you a glass of wine —SMILE-. I have to thank all of the
authors because without them this book would not have been possible. Thanks to
all of you for your hard work and dedication to make the project a reality. I hope
the project has been enjoyable for each of you, and I would love to work with you
all on future book projects.

Finally, I would like to thank all of the gamers around the world for sharing my
love and passion for creating and playing games.

—ILorenzo D. Phillips Jr.

TeamLRN



7 il gy RS o ' W
N e T —

About the Authors

Lorenzo D. Phillips Jr. is a gamer at heart and is involved in game development in
every aspect. He spends hours upon hours developing and writing games. He is the
Founder and President of RenWare, Inc. and is the Chief Development Officer of
Xtreme Games, LLC and Nurve Networks, LLC. He has 10+ years of experience in
the Information Technology community. He has performed a wide range of duties
that include software development, analysis and design, networking, database, qual-
ity assurance, and most recently configuration management. He is formally educat-
ed and holds an associate’s degree in Computer Science, a bachelor’s degree in
Business and Information Systems, and a master’s degree in Computers and
Information Systems.

Kevin Hawkins is co-author of OpenGL Game Programming and a software engineer
at Raydon Corporation in Daytona Beach, FL. He is working on his master’s degree
in Software Engineering at Embry-Riddle University, where he obtained his bache-
lor’s degree in Computer Science and played on the intercollegiate baseball team.
Kevin is also the co-founder and CEO of www.gamedev.net, the leading online com-
munity for game developers. When he’s not toying with the computer, he can be
found playing guitar, reading, bodyboarding, and playing baseball. He was drafted
by the Cleveland Indians in the 35th round of the 2002 Major League Baseball
Amateur Draft.

Ernest Pazera is a self-taught programmer, starting at age 13 with a TRS-80 includ-
ing a tape deck. A month later, he was already writing video games. Before long Mr.
Pazera couldn’t imagine himself doing anything but game programming. Mr.
Pazera is one of the developers who helped create one of the most popular and
respected game development sites on the Web: www.gamedev.net. He is the moder-
ator of an isometric/hexagonal forum on the site and has extensive experience
with game development.

Wendy Jones is currently a game programmer with Humongous Entertainment in
Seattle. She is currently focusing her professional attention on next-generation
console projects, and her personal attention on her three children. In the past, she
has done everything from tech support to web development to interface design in
her eight short years in the computer industry.

TeamLRN



X About the Authors

Trent Polack is a high school senior who has been programming in various lan-
guages since he was nine years old. Other than programming, he is interested
in sports, reading, and just enjoying life! He is also the cofounder of
www.CodersHQ.com, a site with a wealth of game programming tutorials and
demos.

Born and raised in Seattle Washington, Ben Humphrey knew he wanted to be a
game programmer since childhood. He has been programming since he was very
young. Right out of high school he applied and was accepted to DigiPen Institute
of Technology, which at the time was only accepting around 100 people. After leav-
ing DigiPen, he was picked up by Infogames Interactive where he is currently work-
ing. During that time, Ben also had the opportunity to teach C++ for a year at
Bellevue Community College. Aside from his day job as a game programmer, he

is also the co-web host of www.GameTutorials.com, which has hundreds of tutorials
that teach game programming from the ground up, all the way to advanced 3-D
concepts.

Heather Holland is a software engineer for Navsys in Colorado Springs. In her free
time, she works on small shareware games, moderates a forum at www.gamedev.net,
and plays her MMORPG of the month way too much.

Jeff Wilkinson is a game programmer at Terminal Reality, Inc. He received his
degree from DigiPen Institute of Technology.

Dave Astle is a game programmer at Avalanche Software in Salt Lake City. He is
also one of the owners and operators of www.gamedev.net, where he has been
actively involved in the game development community for over three years. He co-
authored OpenGL Game Programming and has contributed to several other game
development books.

Alex Varanese, alex@xenonstudios.com.

Mason McCuskey is the leader of Spin Studios (www.spin-studios.com), an indepen-
dent game studio currently hard at work on a brand new game. Mason has been
programming games since the days of the Apple II. He has also written a book
(Special Effects Game Programming), along with a bunch of articles on the glorious
craft of coding and designing games. He likes programming games more than
wrestling Siberian grizzlies.

André LaMothe has been involved with gaming for more than 25 years and is still
the best-selling game programming author in the world (he wants someone to take
over soon!). He holds degrees in Mathematics, Computer Science, and Electrical
Engineering. Additionally, he is founder and CEO of Xtreme Games LLC, Nurve

TeamLRN



About the Authors xi

Networks LLC, and eGameZone Netwoks LLC. He is also the creator of the “not-
for-profit” Xtreme Games Developers conference www.xgdc.com, which is a game
developer conference that everyone can enjoy because of its affordable price.

Richard Benson is a software engineer at Electronic Arts Los Angeles. He can be
reached at rbenson@earthlink.net.

Chris Hobbs is a senior software engineer for Flying Blind Technologies. The com-
pany is focused on developing software for the blind and visually impaired. He has
also worked with storage technology, game development, and educational software
over the course of his 5 years as a professional programmer. In his spare time, Chris
is currently working on a product that merges his experience from the educational
software and game development industries. He is married and expecting his first
child in July of 2002.

TeamLRN



= e . WL

] PO [ [P M, B
Contents at a Glance

|- _._.]_‘] ﬂ_

Introduction . . .......... XX10

Section 1: Game
Programming Development
Tricks . ¢ v v vt vt e e e ens 1

Trick 1: Software Configuration
Management in the Game

Industry . ............... 3

Trick 2: Using the UML in Game
Development . .......... 21

Trick 3: Building an Application

Framework ............ 51
Trick 4: User Interface

Hierarchies ............ 81
Trick 5: Writing Cross-Platform

Code ................ 119

Section 2: General Game

Programming Tricks . . 139
Trick 6: Tips from the
Outdoorsman’s Journal . .. 141
Trick 7: In the Midst of 3-D,
There’s Still Text . . . ... .. 169
Trick 8: Sound and Music:
Introducing WAV and MIDI
wnto Your Game . ....... 217
Trick 9: 2D Sprites . . . . . .. 253

TeamLRN

Trick 10: Moving Beyond OpenGL

1.1 for Windows . . ... ... 279
Trick 11: Creating a Particle

Engine ............... 307
Trick 12: Simple Game

Scripting . ............ 329

Section 3: Advanced Game
Programming Tricks . . 453
Trick 13: High-Speed Image

Loading Using Multiple
Threads . ............. 455
Trick 14: Space Partitioning with
Octrees . . . ............ 485
Trick 15: Serialization Using
XML Property Bags . . . . .. 535
Trick 16: Introduction to Fuzzy
Logic ................ 567
Trick 17: Introduction to
Quaternions . .......... 591
Trick 18: Terrain Collision with
Quadtrees ............ 625

Trick 19: Rendering Skies .. 657

Trick 20: Game Programming
Assembly Style . . . ....... 681



Contents at a Glance xiii

Section 4: Appendices

Appendix A: Introduction to
DevStudio ............ 913

Appendix B: C/C++ Primer
and STL ............. 933

Appendix C: C++ Keywords . 985

Appendix D: Resources on the
Web ................. 987

Appendix E: ASCII Table . . . 991

Appendix F: What’s on the
CDROM ............. 997

TeamLRN



TeamLRN

Introduction . ........... xXX10 Class Diagrams . ................. 25
Interaction Diagrams ............. 28
Section 1: Game Activity Diagrams . ............... 29
. Statechart Diagrams .............. 31
Programmlng Develop ment Packages ............. ... .. ... 32
Tricks . . .............1 Integrating the UML and Game
Development ............... 33
Trick 1: Soﬁware Conﬁguration Build the Requirements Traceability
. Matrix . . ......oooi i 33
Management in the Game Identify Use Cases ............... 35
Industry ............... 3 Establish the Packages ............ 38
Introduction .. ................ 4 Create Initial Class Diagrams . ... ... 40
What Is Software Configuration Develop State Transition Diagrams . . 41
Management (SCM)? 4 Produce Package Interaction
A Brief History on SCM . ........... 5 Diagrams ........... SRERREE 42
SCM Concepts and Functions ....... 6 The Tr.ansmon from Analysis to
Is SCM Important? ................ 8 U 3651g21 ) D """"""""" ii
The Software Development Life pdate fiass DIagrams . . .. ... ...
Cycle (SDLC) 9 Update Interaction Diagrams . ... ... 45
yele WwlLL) e Refinement and Iteration .. ........ 47
Software Development Models . . .. ... 9 The Move to Implementation . .. . . . 47
SDSICJ’f(t:W;fefDlelvelopmem Phases ... 11;) Summary and Review ......... 47
talls = Where to Go from Here ....... 48
Communication Breakdown ...... 17 C lus; 49
Artifact Update Conflicts ......... 17 ONCIUSION. . vv e e e
The Importance of SCM .. .. ... 17 Trick 3: Building an Application
C;’ECIESIOH: £SCM 19 Framework ............ 51
¢ Future of SCM .o Introduction ................ 52
Trick 2: Using the UML in Game  Why Use an Application
Development 27 Frameworkr ................ 53
Introduction ................ 99 ~Why Roll Your Own? .......... 54
What Will Be Covered? ........ 22 IdiﬁtingYO?r 1t\.Ieegs AR i?‘)
. . e CApplication Design . .........
The Unified Modeling The CEventHandler Design ........ 58
Lgnggage """"""""" 222 The CMessageHandler Design . . . ... 60
seCases ................ ...



Contents XV

l——|_|—'—|_.—"|_|_”"IEI—I—|_|"—r

;'_L”_r'"—F =

Implementation of a Simple

Application Framework
Implementation of CMessageHandler 64

Summary

Trick 5: Writing Cross-Platform

Implementation of CApplication . ... 65 Code ................ 119
Implementing CEventHandler . . . . .. 68 Introduction ............... 120
A Sample Program ........... 75 Why Develop Cross-Platform
The Design of CTestApplication ....75 Code? .. ... ... ... ... 120
The Design of CTestEventHandler . . . 76 Plannine for a Cross-Platform
The Implementation of 5
CTestApplication .............. 77 Product .................. 121
The Implementation of Problems Between Platforms 122
CTestEventHandler ............ 78  Programming for Multiple
How Do We Benefit? .......... 79  Platforms ................. 124
Summary ................... 80 The #if defined Directive ......... 124
The typedef Keyword ............ 125
Trick 4: User Interface Always Use sizeof () .............. 126
Hierarchies . ........... 81 What Is an Abstraction Layer? . .126
Introduction ................ 82 Why Use an Abstraction Layer? ... 127
The Role of UL .............. gg ~ For WhatSystems Would We Want to
. . . Create an Abstraction Layer? . ... 127
Ul D651gn Considerations ...... 84 Designing an Abstraction Layer . ... 128
The Wld.get Tree.......ooovvvnns 84 Deriving from the Abstraction Layer 130
Z O.r derlpg """"""""""" 86 Explaining the Derived Layer . . .. .. 135
Notification .. ................... 86 Using the Derived Layer .......... 135
Appearance ............ .. ...... 87 In Conclusion . . . . 137
Focus .......... ... ... 87
wgget ﬁemgem}?- ERSERRRERRE Sg Section 2: General Game
1aget embper Functions ..... . .
Stagtic Member Accessors .......... 90 PI'OgI' ammlng Tricks .. 139
Indirect Static Member Accessors ... 92
Nonstatic Member Accessors . .. .... 93  Trick 6: Tlps ﬁom the
Cf)nstrl.lctors .and Destructors . . ... .. 94 Outdoorsman ’sjournal ... 141
Dlspl.a)'llng Widgets ............... 95 Introduction: Life in the Great
Receiving Input . ................ 95
Notification . . . .................. 96 Outdoors ................. 142
Class Definition .............. 98 WhatYou Will Learn ......... 142
CWidget Implementation . . . .. 101 Height Maps 101 ............ 142
Getters, Setters, and Other Simple Making the Base Terrain Class .144
Member Functions . ........... 101  Loading and Unloading a Height
Other Member Functions . . .. ..... 104 Map ..................... 147
And Now for the Payoff ....... 113 The Brute Force of Th]ngs .. ..150
CTestEventHandler ............. 114 Getting Dirty with Textures! ...153
CTestWidget . .................. 115

TeamLRN



XVi

—I_q—l_'_'Eru_”_l_‘—'—l—l—'l_'nlJ

Contents

Adding Light to Your Life ... .. 159
Lostin the Fog ............. 162
Fun with Skyboxes ........... 163
Going Further: Deeper into the

Wilderness ................ 166
Conclusion: Back to the

Indoors? .................. 167
Bibliography ............... 167
Trick 7: In the Midst of 3-D,

There’s Still Text . . . ... .. 169
Introduction ............... 170
What Will Be

Learned/Covered .......... 171
How Our Adventure Game

Works .................... 172

First Things First—
Let’s Get Ta Steppin’ .......... 173

“Whatchu Lookin” Ae?” . .......... 177
How Can We Have a Frag Count Without
Any Monsters? . .............. 180
Examining the Code
Version 1—Mobility and Collision
Detection ................... 183
Version 2—Taking a Look Around . . 194
Version 3—Adding Player and Enemy

Data ....................... 201
Summary and Review ........ 212
Where to Go from Here ...... 214
Conclusion ................ 216

Trick 8: Sound and Music:
Introducing WAV and MIDI into

Your Game . . .......... 217
Introduction ............... 218
A Quick Overview of WAV . .. .. 218

The FormatChunk .............. 219
The Data Chunk . ............... 220
ALookatMIDI ............. 220
The MIDI File Header ........... 220

TeamLRN

Track Chunks .................. 220
Let’s Play: Simply Win32 ... ... 221
Playing MIDI Using Win32 222
Sound in DirectX ........... 226

Creating the DirectSound Object . . . 227
Cooperative Levels: Getting Along with
Other Application Processes on Your

System ............ .. ... 228
Working with Sound Buffers ...... 229
Secondary Sound Buffers ......... 229
Getting Ready to Use

CreateSoundBuffer() .......... 230
Reading WAV Files .............. 231
MMIO Commands and Structures . . 232
Using MMIO to Load a WAV ...... 235
Using CreateSoundBuffer ........ 239
Playing the Secondary Buffers .. ... 241

MIDI with DirectMusic ....... 243
Initializing the

IDirectMusicPerformance . ..... 245

Creating an IDirectMusicPort . .... 246

Setting Up the IDirectMusicLoader . 246

LoadingaSong ................ 247
PlayingaSong ................. 249
StoppingaSong ................ 250
Checking for Play Status . ......... 250
Releasing a Segment . ............ 250
Conclusion: Shutting Down
DirectMusic ................. 251
Trick 9: 2-D Sprites . ... .. 253
Introduction ............... 254
What You Will Learn ......... 254
Image Loading ................. 254
DirectDraw Basics . .............. 259
Transparency with Sprites . . .... ... 264
Drawing and Moving Sprites ...... 265
Basic Collision Detection with
Sprites . ... ..o 273
Summary .................. 276
Chapter Conclusion ......... 276



XVii

-——|_|—-—|_.—"|J_”‘|5|—l—|_p—r

Contents

;'_L”_r'"—F =

Trick 10: Moving Beyond OpenGL

Designing the Particle System

1.1 for Windows . . ... ... 279 APL ... .. . 318
Introduction . .............. 980 Designing the Particle Wrapper 325
The Problem ............... 981 Summary: Reminiscing About Our
OpenGL Extensions . ........ 989 Little Particles ............. 327

Extension Names ............... 283  Going Further: How to Get More
What an Extension Includes . . . . ... 284 in Touch with Your Inner
Extension Documentation ........ 286 Particle ... ... ... ... . .. ... 397
Using Extensions ............ 287 Conclusion: The End Is Here . .328
Querying the Name String ... ... 288 References ................. 328
Obtaining the Function’s Entry
POiI?t ....................... 288 Trick 12: Simple Game
‘?vf.:clarlng Epumerants ........... 290 Scri 17 tmg ............. 329
in32 Specifics . ......... ... 290 :
Extensions, OpenGL 1.2 and 1.3, Intrpdgctlon ............... 330

and the Future ............ 291 D651gn1ng thg Language ...... 331

Basic Instructions . .............. 334
WhatYou Get .............. 292 Arithmetic . . ... .oooveeenn.. .. 334
OpenGL 1.2 292 String Processing ............... 335
OpenGL 1.3 Tt 294 Branching ..................... 335
Useful Extensions . .............. 295 Host APT . .. 336
Writing Well-Behaved Programs Miscellaneous . ................. 337
Using Extensions ........... 298 Directives ..................... 337
Choosing Extensions ............ 298 Comments . ................... 338
What to Do When an Extension Isn't Building the Compiler ....... 338
Supported .................. 300 An Overview of Script Compilation . 340
TheDemo ................. 301 Putting It All Together ........... 362
Conclusion ................ 306  Implementing the Compiler 365
Acknowledgments ........... 306 A Small String-Processing Library .. 365
References . . ............... 306 File I/O Functions . ............. 372
Program Structure of the
Trick 11: Creating a Particle Compiler ................... 373
En gm € 307 Tokenization ................... 378
. Parsing ....................... 396
Introduction ............... 308 . .

. . The Runtime Environment ... .410

What Y_0u Will L_earn from This Fundamental Components of the

Fun-Filled Particle Adventure .308 Runtime Environment . . ... .... 411
Sounds Great . . . What’s a Particle Storing a Script in Memory ....... 413

Engine? ,,,,,,,,,,,,,,,,,, 309 Loading the Script .............. 417
Billboarding ............... 314 Overview of Script Execution ... ... 419
Interpolation and Time-Based Implementing Opcodes . ......... 421

Movement ................ 316

TeamLRN



Contents
—|—I'|_|_|—'EI'”—”'|—|_.— L]
Communication with the Game
Engine .............. ... .... 425
Timeslicing .................... 432
The Script Runtime Console .. .435
Summary .................. 443
Where to Go from Here ...... 444
New Instructions . . .............. 444
New Data Types . ............... 444
Script Multitasking . ............. 445
Higher Level Functions/Blocks . ... 445
Block Comments ............... 447
A Preprocessor ................. 447
Escape Characters . .............. 448
Read Instruction Descriptions from an
External File . ................ 449
Forcing Variable Declarations ... .. 450
One Last Improvement .......... 451

Section 3: Advanced

Game Programming
Tricks .............453

Trick 13: High-Speed Image
Loading Using Multiple

Threads . ............. 455
Introduction ............... 456
Thread Basics .............. 456

What’s a Thread? ............... 456
What Is Multithreading? ... ....... 456
Starting a Thread ............... 458
Waiting for a Thread to Finish . .. .. 460
Race Conditions ................ 461
Atomic Operations . ............. 463
Critical Sections . ............... 464
Producers and Consumers ........ 466
Semaphores to the Rescue ........ 468
Programming Semaphores ... ..... 469
CProducerConsumerQueue . . ... .. 471
Introducing CResourceL.oader .475
The BigIdea ................... 476
Tasks oo 477

TeamLRN

Queuing Up Tasks .............. 478
Beginning the Loading Process . ... 478
The Secondary Threads .......... 479
The Payoff ................. 481
Simulating Work . ............... 481
The Evils of Cache When Evaluating Disk
Performance ................ 482
Catching Performance Data . .. .. .. 482
Conclusion (Where to Go from
Here) .................... 484
Trick 14: Space Partitioning with
Octrees . . ............. 485
Introduction ............... 486
What Will Be Learned/Covered 487
How an Octree Works ........ 488
Describing the Frustum .......... 490
When to Stop Subdividing ........ 492
How to Draw an Octree .......... 493
Examining the Code ......... 494
Getting the Scene’s Dimensions . . . . 497
Creating the Octree Nodes ....... 500
Setting Up New Nodes for
Recursion . .................. 506
Getting a Child Node’s Center . . ... 508

Assigning Vertices to the End Node . 510

Drawing the Octree ............. 511
Destroying the Octree ........... 513
Implementing Frustum Culling . ... 514
Calculating the Frustum Planes . ... 519
Adding Frustum Culling to Our
Octree ........covveiinvn... 527
Summary and Review ........ 531
Where to Go from Here ...... 532
Conclusion ................ 533
Trick 15: Serialization Using XML
PropertyBags . . ........ 535
Introduction ............... 536
Whatis XML? .............. 537
A Sample Data File .......... 538



;'_Lu_l"_l—l_lF R
ABagisBorn .............. 539
STL Multimaps ............. 541

Implementing the Bag ....... 542
Adding Data Elements ....... 545
Translating Special Characters . . . .. 546
Adding Nonstring Elements . . .. ... 549
Adding Bags ................... 549
Getting Elements . ........... 550
Getting Strings . ................ 550

Getting Other Data Types .. ... .. .. 551

GettingBags . .................. 552
Saving and Loading Bags ... .. 553
Saving Bags .................... 553
Loading Bags .................. 555
Other Operations ........... 558
An Assignment Operator and a Copy
Constructor ................. 560
Merging ...................... 562

Conclusion: OK, But Is This Really
XML?
Enhancements and Exercises . .56b

Trick 16: Introduction to Fuzzy

Logic ................ 567
Introduction ............... 568
Standard Set Theory . ............ 568
Fuzzy Set Theory ............... 570

Fuzzy Linguistic Variables and
Rules....................... 572
Fuzzy Manifolds and Membership .. 575
Fuzzy Associative Matrices
Processing the FAM with the Fuzzified

Inputs ............... ... ... 583
Conclusion = {.1 beginning,
D middle, 99end} ......... 590
Trick 17: Introduction to
Quaternions . .......... 591
Introduction ............... 592
Complex Number Theory .. ... 592
Hyper Complex Numbers ... .. 599

TeamLRN

Contents

Applications of Quaternions .. .608
Building a Simple Quaternion
Engine ................... 612
Purpose ......... ... ... ... ... 624
Conclusion .................... 624

Quadtrees ............ 625
Introduction ............... 626
What Will Be Covered . ....... 627
The Quadtree .............. 632

The CQuadtreeNode class ........ 634
Building Up the Quadtree ........ 636
CQuadtreeNode::AddFace() ...... 638
Explanation of

RayIntersectTriangle() ......... 644
CleaningUp ................... 648

Design Decisions and Performance . 649

Other Uses for Quadtrees ........ 651
The Demo .................... 653
Summary and Review ........ 655
Where to Go from Here ...... 655
Conclusion ................ 655
References ................. 655
Trick 19: Rendering Skies . . 657
Introduction ............... 658
What You Will Learn ......... 658
Skyboxes .................. 660
What Isa Skybox? ............... 660
Representing a Skybox ........... 660
Orienting a Skybox .. ............ 662
Rendering a Skybox ............. 663
Putting It All Together ........... 666
Skydomes .................. 667
Creating the Skydome ........... 667
Skydome Textures .............. 668
Rendering a Skydome ........... 669
Skyplanes .................. 669
Creating the Skyplane ........... 669
Rendering the Skyplane .......... 670

Xix



XX Contents

—|—I'|_|_|—'EI'”—”'|—|_.—|_|_.

LT L

ﬁ‘—'—rﬁ—u—'_ﬁ

Other Variations ............ 670
Improvements .............. 671
Animation . .................... 671
Multiple Layers . ................ 672
Sliding ............. ... ... ..., 672
Generating Skybox Textures . ..672
Have the Artist Make Them . . ... .. 672
Find Preexisting Textures .. ....... 673
Create Them Using Terragen . . .. .. 673
The Demo ................. 677
What You've Learned ........ 677
Where to Go Now ........... 678
Conclusion ................ 678

Trick 20: Game Programming

Assembly Style . . . ....... 681
Introduction ............... 682
What Is This All About? .......... 682
Who Is the Target Audience? ...... 682
What DoINeed? ............... 682
Why Assembly Language? ... .. 683
Win32 ASM Basics ........... 684
MOV Instruction ............... 684
ADD and SUB Instructions ....... 684
MUL and DIV Instructions . . ... ... 685
The Design Document ....... 686
Code Framework ............ 687
Conclusion ................ 698
MASM HL Syntax? .......... 695
Getting a Game Loop Running
700

Connecting to Direct Draw . ...704
Our Direct Draw Library . ... .. 705
Our Bitmap Library ......... 715
A Game . .. Well, Sort Of ..... 725
Conclusion ................ 731
Direct Input Is a Breeze ...... 732
Timing and Windoze ........ 739
The Menu System . .......... 747

TeamLRN

Putting the Pieces Together ...752
Conclusion ................ 761
Stepping to the Plate ......... 763
Mr. Structure ............... 768
The New Shape Maker ....... 768
Update Takes a Few Practice
Swings ... 773
Let’s Get Moving ............ 782
Time to Clear the Bases ...... 799
The Final Batters ............ 803
The Loop and His Team ...... 810
Conclusion ................ 820
Rotation Solution ........... 821
The Sound Module .......... 828
One Big Headache .......... 835
Screen Transitions ........... 847
Putting More Pieces Together . .856
Conclusion ................ 873
Next Piece, Please ........... 875
ICan’tSee It! .............. 880
The New Text .............. 885
Scoring and Levels .......... 891
Conclusion ................ 897
Storing Your Life ............ 398
Come On, Lucky Number 7 905
Conclusion ................ 909
Section 4: Appendices
Appendix A: Introduction to
DevStudio . ........... 913
Creating a Project and
Workspace ................ 915
Adding Source-Code Files .. ... 918
Setting Compiler Options ... .. 920
Setting the Warning Level ........ 922
Setting the Optimization Level ....923
Turning on Runtime Type
Identification (RTTI) .......... 924



;,—l_u_ln_l_,F

Library and Include Search

Paths ................. ... 925
Per-Project Search Paths ... ....... 925
Global Search Paths ............. 926

Linking in the DirectX
Libraries ................. 928
Building and Running
Programs ................. 929
Debugging ................. 929
Breakpoints .. .................. 930
Stepping Through Code ......... 930
Watches . ............. ... ... ... 930
Debug Output ................. 931
Accessing Help ............. 932
Conclusion: DevStudio
Wrap-Up ................. 932
Appendix B: C/C++ Primer
and STL ............. 933
Selected C++ Topics  ......... 934
Inline Functions ................ 935
Namespaces ................... 936
Dynamic Memory Allocation the
C++Way .................... 939
Polymorphism and Pure Virtual
Functions ................... 942
Exception Handling ............. 950
C++ Style Casting ............... 959
Run-Time Type Identification
(RTTI) . oo 962
Templates ..................... 966
The Standard Template Library

(STL) ...t 969

What Is the STL and Why Should I
Care?...... .. .. ... ... .. .. .. 970
STL Strings . ................... 970
STL Vectors ................... 972
STLMaps ......c.oovvnininon .. 977
STL Summary .............. 983
About the Example Programs . .984
Exercises .................. 984

TeamLRN

Contents

Appendix C: C++ Keywords . 985

Appendix D: Resources on the

Web .................
SCM Sites
Game Development Sites: Best of the

Best
Downloads, News, and Reviews .989
Game Conferences

Appendix E: ASCII Table . . . 991
Appendix F: What’s on the

CDROM ............. 997
The CD-ROM GUI .......... 998
CD-ROM File Structure ....... 998
System Requirements ........ 998
Installation ................ 999
Index ................ 1001

xXXi



xXxii Letter from the Series Editor

LETTER FROM THE
SERIES ED1TOR

This book has been a long time in the making. My original motivation for
wanting a game programming tricks compilation book was that although
there are other compilation books on the market they simply try and cover
too many topics. The results are a collection of 50-60 authors that only
have a few pages each to cover topics that simply take much more time to
do justice to. Therefore, my goal with this book was to create more of a
collection of complete tutorials of game programming tricks that had
enough page count each to really make a dent in the subject area.
Additionally, I wanted to create a template of sorts, so that as you're read-
ing each trick or tutorial you see a familiar structure rather than a smor-
gasbord of layouts.

Game Programming Tricks of the Trade fills a gap between the game pro-
gramming bibles that are 1000+ pages of the same thing, and the other
compilation books that use the shotgun approach. I think that by the time
you complete this book you will have a strong theoretical and practical
grasp of every single subject covered. And let me tell you some of the
demos are pretty cool! Make sure to check out the quadtree and scripting
engine demos for sure.

This book covers a lot of interesting ground, moreover there are actual
complete code listings, and working demos! You aren’t going to see com-
ments like, “this is how you would do it, I leave it to you...” Rather, you are
going to see how to do it, and then it will be done! Furthermore, the
authors really made an effort to make the book as cool as possible, no
stuffy talk, no trying to impress or confuse the readers, but just plain brain
to brain coverage of some of the most interesting facets of game program-
ming that are discussed in many game programming books, but never
really covered in a complete manner.

In conclusion, this book is a must for any level of game programmer, I
guarantee you will get something out of even if you're starting out or you
just finished HALO II! You can’t know everything!

TeamLRN



Letter from the Series Editor xXxiii

Additionally, we would love to hear your feedback on Game Programming
Tricks of the Trade and what topics you would like to see covered in the
future, so feel free to email me personally at gds_suggestions@hotmail.com
with any ideas for material you would like covered in the next volume.
These books are for you, so you might as well have a say in it!

Sincerely,

. Qv

André LaMothe

Series Editor

TeamLRN



_W ' s BT S ST
Tl —ulr M= =
Introduction

by Lorenzo D. Phillips Jr.,
www.renwareinc.com,
lorenzo.phillips@renwareinc.com

Welcome to Game Programming Tricks of the Trade! This book is a compilation of
“tricks” that you can use when you are making games. Each trick provides you with
a unique tip that you can add to your games. You can even use a combination of
tricks if you like. The tricks that are taught in this book are a combination of
OpenGL and DirectX. This will ensure that we have something for all of you game
programmers out there.

I should point out that this book is not intended to be a complete resource for
game programming, OpenGL, or DirectX. Rather, it is a collection of techniques
that will serve as a guide for you.

This book is organized into three parts:

1.

Part I, Game Programming Development Tricks, provides you with some
needed foundation to make you an effective game programmer. Topics
include cross-platform game programming, application frameworks, and so
on. There is even a chapter included that discusses configuration manage-
ment. Configuration management is becoming more and more popular in
the industry and it is important to know what it is and how it will help you
with your game programming projects. If you plan to deal with larger compa-
nies, you should definitely look into the configuration management move-
ment.

Part II, General Game Programming Tricks, is a compilation or techniques
mainly for beginners at heart. The topics covered are those that you will not
be able to do without for larger scale game projects. After all, if you do not
understand 2D then how do you expect to learn and understand 3D?

Part III, Advanced Game Programming Tricks, is filled with tricks that will
help you create games that are optimized. It will also help you create intelli-
gent life forms that will make your game players quake in their boots once
the enemy is hot on their trail. There is also a complete tutorial on how to
develop a game using Assembly Language. Now you tell me, what other book

TeamLRN



Introduction XXV

covers Assembly Language game programming? And in case you happen to
know of one, you tell me if what you found will result with a completed game
at the end of the reading.

In addition to the techniques taught throughout this book, the CD-ROM has a col-
lection of source code, demos, and games. So, without any further delay, let’s jump
right into the first trick and get started on your journey to enhancing your game
programming skills.

In short, there is enough information in here to be useful to anyone interested in
game programming. I know there are complaints from the advanced community

about books not having enough advanced information. Well, I ask those of you in
that crowd to stick with this series, because if this one does not have what you are
looking for, you can believe one of the future books will! In fact, one is already in
the planning stages.

Either way, I hope you enjoy the book as the authors and I put a lot of effort into
this project because we believe in sharing game programming information so that
the level of quality in the games continues to get better!

NOTE

Due to some of the formatting constraints of
the book, you may see some of the source code
fall onto the next line and indent three spaces.
We have all tried our very best to ensure that
the code is still in a format that will not cause

errors in the compilers. However, if you type or
enter the code from the book in via the key-
board, please be sure to place the code on a sin-
gle line so the compiler will recognize it correct-
ly or in most cases you can refer to the CD-
ROM and copy and paste the code you need.

TeamLRN



This page intentionally left blank

TeamLRN



SECTION |

GAME
FPROGRANMING
DEVELOPMENT
TRICKS .'




ST s = - s A i

Welcome to Game Programming Tricks of the Trade!
As you may have guessed, this is the first of three
sections. This section is made up of five chapters
all of which cover some aspect of game program-
ming development tricks. You will learn how to cre-
ate platform independent source code. You will also
learn to create a flexible user interface and an
application framework. Since the game industry has
started taking a more serious look at software con-
figuration management, there is even an introduc-
tory chapter on this topic. Part | is meant to help
you with good game programming practices that
will save you a lot of time and a lot of heartache.

So without any further delay, let’s jump right in and
get started on your journey to becoming a better
game programmer!

L
= i 'Hﬂ;

T JJ_'_\J—LF

B G

TeamLRN



& [ Lot ,____1:—_-7_—_-, = : W
e el 1 e e A

TRICK |

S OFTUWARE
CONFIGURATION
IYIANAGEMENT
TN THE GAME
TNDUSTRY

LORENZO Da. PHILLIPS JRay
wwwwwwwwwwwwwwwwwww

TTTTTTT



4 1. Software Configuration Management

Introduction

Here we are about to discuss one of the most hated topics in software develop-
ment—Software Configuration Management (SCM). Maybe it’s not that much of a
hated topic, but it is truly a discipline that no one seems to have time to implement
properly. SCM is often viewed as additional overhead that will cause the project to
slip its schedule, or it’s simply just seen as a pain in the butt. This is the farthest
thing from the truth. If done properly, SCM is one of the major factors in success-
fully delivering your product on time and under budget. But, as with most things, if
it is not implemented appropriately it can be disastrous!

This chapter will introduce the game world to the SCM discipline. Well, maybe not
introduce it, but rather make an effort to discuss what SCM really is at a high level.
This chapter, however, will not make an attempt to cover SCM in too much depth
because this topic could easily generate a book of several hundred pages. This chap-
ter will cover what SCM is, a typical Software Development Life Cycle (SDLC), the
pitfalls of SDLC, and the importance of the SCM role on every project. So, without
further hesitation, let’s jump right in and figure out what true SCM is all about.

What Is Software

Configuration VMianagement
=1\

Simply stated, SCM is the process of bringing control to a software development
effort.

We can always expect some level of confusion any time a number of individuals get
together. The larger the group is, the greater the chance of confusion or miscom-
munication. The software development world is producing some of the most com-
plex applications and systems ever seen. Because of this fact, SCM is needed more
than ever. SCM is the art of identifying, tracking, and controlling the changes to
the software or system being built. It is becoming more and more common that
software releases are being produced in a faster timeframe. This means there is lit-
tle room for error and that defects are being reported more quickly. With this type

TeamLRN



What Is Software Configuration Management? 5

of acceleration, it is important that a clear line of communication is established so
that everyone on the project knows exactly where the project is and what is going
on at all times.

But where did SCM come from? How long has it been around? What functions do
SCM serve? And, why is it so important? I will attempt to answer these questions in
the following subsections.

A Brief History on SCM

It is understood by many that SCM got its start in the U.S. defense industry. Back in
those days, software applications were small and their level of sophistication was
fairly simple (or at least as simple as it could be for that time period). But, as with
most everything in life, things began to change and grow in new directions. The
software applications became more complex and the project teams began to grow
in size. It became virtually impossible to use the existing processes and procedures
with the existing staff because design changes and the overall production of the
product was too much for a single person or small group of people to control.

As time passed, computers became a hot item and the applications that automated
many tasks on the computer became more and more visible. Of course, this was
great for the software industry, but with this growth came public demand. The
demands for new software features opened the door for other software firms to enter
the software development industry with new and improved products that constantly
took advantage of the latest technologies. As a result, the project team dynamics
changed. There were more people with diverse backgrounds that needed to commu-
nicate well with others in order to understand the vision of the project. You no
longer had a small team of experts, but a large team of entry-level employees mixed
in with those expert employees. As with any communication, the larger the group,
the less effective communication can become. Just like the old grapevine example.
You can start a rumor and if the group is small that rumor stands a good chance of
staying intact. In addition, if the rumor started to change, the group communicating
was small enough to correct any misunderstandings. However, in larger groups the
rumor would not be in its original form by the time it reached every single person.
Since the group is much larger, not everyone speaks to everyone, so there would be
no corrective action taken to keep the rumor in its original format.

The growing demands of the public forced the software developers to automate
more and more tasks, which translates to new or improved functionality. The
changing dynamic of the project team itself results in poor communication. Now,
let’s throw in new technological paradigms, like Internet-based software, and the

TeamLRN



b6 1. Software Configuration Management

faster release cycles that society demands and we have a potential mess on our
hands. The result of all this is software that has too many bugs in it or that does not
function as requested. So, how do we manage all of this? We control this chaos
through the proper use and application of SCM.

SCM Concepts and Functions

Many people in the world think they really understand what SCM is and what pur-
pose it serves. Of course, a very high percentage of people are totally wrong. I have
been in numerous organizations, both large and small, implementing SCM.
Following, I have listed some of the statements or thoughts I have come across
from those that claim to know all about SCM.

®* SCM can be done by a developer or the development team lead.
* SCM gets in the way of productive work.

¢ Idon’t need SCM because I know exactly what is to be developed.
®  Our software never has bugs in it when we release it.

e All we need is version control because that is what SCM is all about.

If you know anything about SCM, then you are probably laughing at the previous
statements because you have heard these comments before or because they are sim-
ply that ridiculous.

First of all, I have to point out that SCM is a discipline! Just like software develop-
ment is a discipline and testing is a discipline. Unless you have been trained or
have experience in this discipline, you are not qualified to create, manage, or
enforce it. As a discipline, SCM has a set of rules that applies to the project based
on the SCM analysis work that has been performed. That’s right! There is an analy-
sis phase in the SCM discipline. How do you expect to create, manage, and enforce
the rules if you do not have a solid understanding of why those rules need to exist?

Second, SCM is more than simple version control of the project artifacts. There is a
piece of the puzzle called Change Control, which makes the previously mentioned
third bullet point sound absurd. Does the development team fully expect to under-
stand every detail of the application in the beginning? Do they not expect the origi-
nal requirements of the application to change at all?

Finally, SCM does not get in the way of productive work. In fact, SCM enhances the
ability of the project to work productively and gives management an easy way to track
the project’s progress and perform an audit any time it feels the need to do so. With
SCM, the project manager does not have to hunt down the information or spend

TeamLRN



What Is Software Configuration Management? 7

long periods of time putting something together for those unplanned meetings.
Many of the SCM tools available today handle things like reporting with ease, but I
will talk more about that later on in the chapter. So, let’s talk about some of the basic
concepts of SCM, just so we are on the same page for the rest of the chapter.

We have already established that SCM is a discipline, but what is the basic function
of the SCM organization? SCM identifies the configuration items and then docu-
ments their physical and functional characteristics. The configuration items can be
things like documentation, source code modules, third-party software, data, and so
on. All of these items make up the software product. At that point, SCM documents
their physical characteristics, such as size, function, and libraries, as well as func-
tional characteristics, such as what each artifact’s purpose (or function) is and their
features. This is not a complete list, of course, but I think you will get the point.

Once the functional and physical characteristics have been documented, it is time
to baseline the artifacts and control any changes to them. Any changes to these arti-
facts must go through the established change control process that the Change
Control Board (CCB) oversees for the duration of the project. Control is often mis-
taken as prevention. The goal of SCM is not to prevent work from being done, but
rather to control the work or changes made to project artifacts. A typical process
would be that anyone that desires to change an artifact or a collection of artifacts
must submit a Change Request (CR) to the CCB for review. This review is essential
to controlling the changes made on the project because it prevents scope creep
and minimizes the impact to the schedule and budget.

The CCB will approve, postpone, or reject the CR. If the CR is approved, then it
will be assigned a project resource to be implemented for the next build and, even-
tually, tested to ensure it was implemented properly and did not break any existing
functionality. If it is postponed, then it simply goes into a holding queue and will
be reviewed again at a later time. If the CR is rejected, then it goes into another
queue with a justification as to why it was rejected. This cycle would go on for the
duration of the project. Again, this is a simple example of a process and, as with
most processes, is not meant to work for every project. It was merely an example to
provide you with some idea of what a process could entail. However, it demon-
strates that there is a change control process that is documented and enforced for
every project. Each CR is documented and tracked throughout its life cycle. This is
an effective communication method and it ensures that:

1. Each person on the project is aware of proposed changes, the state of each
such request, and which build the requests are associated with, and

2. That the information is readily available to all project members at any time.

TeamLRN



8 1. Software Configuration Management

Lastly, SCM is the point of verification for the product. This means that the SCM
organization is responsible for ensuring that each release is consistent with the
requirements and the design it is being developed from. In short, SCM ensures
that what was developed matches exactly with what was specified at the beginning
of the project by the customer. And believe me, there is nothing more embarrass-
ing than doing a demo or presentation to your customer and having them tell you
that the system you are showing them is not the one they specified. Not to mention
the millions of dollars they paid you for the project or that you did not find out
until the very end that you wasted your time and effort developing the wrong
system.

Is SCM Important?

SCM plays a major role in the successful delivery of the product or system. SCM
creates, controls, and enforces the rules necessary to be successful. Changes are
tracked and SCM performs audits at major (and sometimes minor) milestones to
ensure that the application is evolving according to the plan and design that has
been established. Believe it or not, SCM saves money! With the proper implementa-
tion of SCM, the proper tracking, reviewing, and auditing take place. If these activi-
ties were not in place, then the cost of communication breakdown, delivery of the
wrong systems, and so on, would be great. It is common knowledge that the longer
it takes to catch or identify any problems, the more it will cost. For example, if a
problem with the requirements is identified in the requirements gathering phase,
then the level of effort to correct the problem is small because you are still in that
phase and thus, an update to the requirement is made to fix the issue. If the prob-
lem is not discovered until after development has begun, then the problem is
much larger because now it needs to be fixed in three different places at a mini-
mum. It has to be fixed in the source code (and any associated documentation),
the design, and the requirement itself. A manager of mine always says, “Why don’t
we have time to do it right, but we always have time to do it over?” This is in
response to requirement requests, design, or code reviews. The response he always
received was that there was not enough time or that the schedule would not allow
for it. I say that those projects have bad project managers and are already in serious
jeopardy. The concern is how to explain to upper-management why the project
plan is longer than projected. However, I would rather explain to upper-manage-
ment that the project plan is longer because we want to do it right, rather than
have to explain why my project is several million dollars over the projected budget!

In short, just know that SCM—in its simplest form—will save you time and money if
it is implemented properly. And without it, you will continue the trends you are

TeamLRN



The Software Development Life Cycle 9

familiar with currently—working long hours and weekends, missed deadlines, scope
creep, delivery of an incorrect system, projects that are way over budget and sched-
ule, and other unexplainable events that no one ever seems to know what happened.

The Software Development
Life Cycle (SIOLLO)

The Software Development Life Cycle (SDLC) has been around for many, many
years! It is a well-defined process that has many success stories—but true success
comes only when SDLC is implemented properly. SDLC is similar to SCM in that it
is made up of a set of rules in order to accomplish a goal, which, in this case, is to
deliver a product. The next two sections will talk about the various models and typi-
cal phases of SDLC.

Software Development Models

Over the years, SDLC has evolved to meet the needs of the industry and take
advantage of new and evolving technology. New and improved technology has
forced the industry to constantly review and evaluate the effectiveness of the exist-
ing models to ensure they provide what is needed to be successful. Every software
product has a lifetime that starts in response to a need and evolves until it becomes
obsolete. Models implement certain phases for the life of the software and they also
dictate the order the phases are to be executed. The standard phases are discussed
in more detail in the next subsection, so for now, let’s focus on the different types
of models.

The Waterfall Model

The waterfall model is a linear approach to software development. The phases that
one would implement in this model are done in a sequential fashion. The next one
cannot officially start until the current phase is completed.

The waterfall model was accepted because of its ease-of-use and it was visually easy
to follow (especially for management- or business-type people).

Most humans function in some orderly fashion to the degree that they perform
one task and then another, but they only begin the next task after the current task
is complete. This model also allowed management to plan to visibly determine
where each phase began and ended. This model also uses the concept of “freezing”

TeamLRN



10 1. Software Configuration Management

artifacts. For example, after the requirements phase is complete, you would
“freeze” the requirements so they would not change. The same is true for the
design. After the design phase is complete, the design would be “frozen” so that it
would not change. This is a good concept and it gave the project members the con-
fidence that they were actually achieving their goals.

It became apparent, however, that this model could only be used for certain types
of software development. The software development process can be quite complex
and the waterfall model cannot be used to represent the complexities very easily.
Furthermore, this type of model did lend itself very well to risk management. By
this, I mean that problems were often found in the later phases when it was more
expensive to correct them. This is not to say that this is a bad model, but to simply
point out that it has its purpose and its limitations. These things should be
reviewed carefully for each project to determine if the model can be implemented
to the degree that it enhances the success of the project, not hinder that success.

The Spiral Maodel

The spiral model differs from the waterfall method in that its beginning and end
are not really visible. Instead, this model gives the project members the feeling of a
never-ending project because there was constant refinement and enhancement to
the software. One of the key concepts of this model is the assessment of risk at
established intervals. The thought here is that because risks were identified, a cor-
rective action could be taken to counteract those risks. Another key concept is the
review before proceeding to the next cycle in the spiral. This also allowed project
management to assess the “lessons learned,” so that corrective action could be
taken in the next cycle to improve anything that did not work in the last cycle. This
model is also good for modular development and is viewed as a transformation of
an application into a production system, but again, the downfall is that project
members did not really view an end to a project that implemented this model.

The Iterative Maoadel

This is the model I use most often at my company. However, I promise to remain
objective in my description of this model. The Iterative Model’s key concept is that
every phase is implemented in each iteration. Better yet, this model lends itself to
incremental development of a system. I find that this works well for my game devel-
opment projects because I can develop a set of requirements based on a piece of
the design, and test it until that functionality is working according to the specs. I
can then repeat this process until I have the finished product of a market-ready

TeamLRN



The Software Development Life Cycle 1n

game. For example, in iteration 1, I can construct the entire game world and make
sure everything looks as expected. In iteration 2, I can create the player and other
creatures to make the world come alive. This process would continue until the
entire game is developed.

This model takes the best of the waterfall and spiral models and allows for risk
identification and corrective action to be taken during and prior to the next itera-
tion. However, it also offers clear and well-defined beginnings and endings to each
iteration, as well as the project as a whole. What more can you ask of a model?

The Other Models

No discussion would be complete without at least mentioning some of the other
models being used in the industry. Who am I to break tradition?

The Prototype Model is an approach that gives the developer and end user a
graphical method of communication. Based on initial conversations, the develop-
ment team will construct a prototype and present that to the end user. The end
user can then evaluate the prototype and make the necessary requests for changes.
The prototype will evolve from this process until it is finished and represents the
needs of the end user.

The Operation Model is based on algorithms rather than implementation. To suc-
cessfully implement this model, it is extremely important that the specifications be
accurately captured because the specifications have to be executable once they are
complete. If you have not heard of this model, then you probably do not spend too
much time using CASE tools. This model thrives on its ability to develop systems
for different environments. The downside is accurately capturing the specifications
so that the resulting system is the desired system.

The Component Assembly Model is known for its ability to reduce software devel-
opment time. This is because this model takes advantage of existing components,
more commonly known as reusability. The resulting system is made of components
either from in-house libraries, third-party libraries, or existing systems.

Software Development Phases

Now that we have talked about the various software development models, it is time
to discuss the phases that each model uses. I have to point out that this section uses
the typical phases on a project. This section is not meant to state that all projects
use each of these phases. Some projects might combine some of these phases or
may not use some of the phases being discussed. Again, this is meant to give you a

TeamLRN



12 1. Software Configuration Management

little bit of background so that you can understand what the weaknesses are and
why SCM is needed. So, without any further delays, let’s jump in and talk about the
phases of the models.

The Project Startup Phase

The project startup aspect is often overlooked as a phase or is not counted as a
phase. I feel that this is an important phase because it is where the review of the
project takes place and it officially marks your effort as a funded project. During
this phase, the project contracts are constructed and reviewed, the project mem-
bers are recruited, and a project plan is constructed. Other activities are the for-
malization of project standards and templates for documentation. The purpose for
counting this as a phase is because this is where SCM should come into the project
picture. SCM has to be involved from this point forward if the project wants to have
a high-level of confidence of the SCM implementation. It is so sad that this is not
an accepted fact because rarely is SCM in the picture at this point of the project.
The perception of many people is that SCM gets involved right before the develop-
ment of the software begins. But think about it; SCM has to begin in this phase
because key decisions are being made here. Decisions regarding the direction of
the project, the standards that will be enforced, and the templates that will go
under version control all appear in this phase. There are already artifacts that need
to be identified (i.e., configuration identification) and tracked. And because those
artifacts need to be identified and tracked, they need an environment setup so that
they can be tracked. This is also where the SCM plan comes into play. The SCM
plan is constructed by the SCM group to capture some of the initial information
that will become vital to the success of the project. So as you can see, if SCM is not
involved in this phase, then the group is already behind. Another point to be made
here is that key project members begin to meet and make decisions for the project.
These individuals may not know it yet, but they will evolve into the Configuration/
Change Control Board (CCB).

The Requirements Phase

This is the phase where the work that will be done is defined—meaning the busi-
ness analysts will meet with the end users. The interaction between the end users
and the business analysts will evolve in one of two ways. If the resulting application
is created from scratch, then the interaction is that of requirements gathering. If
there is an existing system that requires enhancements or new features, then the
interaction begins with understanding the existing system and then capturing the
requirements of the new and improved system. Some industry veterans classify this

TeamLRN



The Software Development Life Cycle 13

interaction as capturing the functional specification. Another aspect of this interac-
tion is to capture the non-functional requirements. Non-functional requirements
can be the capturing of information, for example, the frequency of system and data
backups, the backup and restore process, the up time of the system, the availability
of those systems and the network, the requirements for planned downtime or out-
ages, hardware specs, and so on.

Once these requirements have been defined and documented in the Requirements
Definition Document (RDD), they are reviewed and, upon approval, baselined into
the SCM repository. This process is known as the creation of the functional baseline.

The Analysis Phase

Now that the requirements of the system have been defined and documented in
the RDD, it is time to create and evaluate the potential solutions that meet those
requirements. This information is captured in the Systems Analysis Document
(SAD). If the proposed solutions use any commercial off-the-shelf (COTS) prod-
ucts, then the analysts must also create a usability plan. The information stored in
the usability plan simply compares a variety of packages that might be a potential
fit for the proposed solutions. Some of the criteria used to determine the effective-
ness of COTS products in a solution are cost effectiveness, the flexibility/scalability
of the product, the amount of customization that the product allows, and so on.

Another key activity in this phase is the review of the SCM plan, the RDD, and the
project plan. Dates may need to be shifted and the project budget may need to be
adjusted based on the solution that is chosen. Of course, some of these items may
have already been approved, signed off, and baselined in the SCM repository, so
any changes made to them would need to be approved. This responsibility would
fall on the trusty shoulders of those key individuals I talked about in the Project
Startup Phase earlier. At this point, they still may not be calling themselves the
CCB, but the group and its responsibilities are evolving in that direction.

The High-Level Design Phase

In this phase, an effort is made to begin to model the proposed system. The result
of this effort is the system architecture diagram. Sometimes a prototype is gener-
ated to graphically demonstrate to the end user what the proposed system will look
like at the end, but this is not always the case. The main element of this phase is
the system architecture diagram, which addresses questions like whether or not the
system will be modeled as a client/server, mainframe, or distributed system archi-
tecture. It also answers questions regarding what technology will be used, how the

TeamLRN



19 1. Software Configuration Management

network will be set up, and how data will be transferred throughout the system.
Another task that is commonly handled in this phase is the construction and nor-
malization of the database.

The output of this phase is the high-level design document. Now, some people
might say that activities such as the creation of the system test plan and system test
cases are generated here, while some others may argue that the system test activities
occur immediately following the finalization of the requirements. Again, this is not
meant to be a means to an end and things can (and usually do) differ from project-
to-project. However, it is essential to have the high-level design when this phase
ends. Of course, any existing documentation can be reviewed at this point and
changes to those documents can be made if approved through the established
change control process. But at a bare minimum, the high-level design document
must be reviewed, approved, and added to the baseline.

The Low-Level Design Phase

This phase picks up right where the last phase left off. The low-level phase is a
phase that is typically combined with the high-level design phase, but I like to sepa-
rate the two because they each serve a different purpose. The main purpose of the
high-level design phase is to model the system. The focus of this phase is to create
the specifications for each program or module in the system. The program logic is
captured, the inputs, outputs, and system messages are determined, and the pro-
gram specification document is prepared. The unit test plan is also prepared at this
point.

Of course, the output of this phase is the low-level design document. The review of
the other documentation is performed and any changes required to those artifacts
are subject to approval through the change control process.

The end of this phase brings about another important event. The allocated base-
line is created. This baseline basically represents the logical evolution from the
functional baseline and the link between the design process and the development
process.

The Development/Construction Phase

This is the phase that everyone knows and sometimes tries to skip directly to,
bypassing the previous phases. The SCM team should have evolved the SCM envi-
ronment to the point that it is ready for the workload that accompanies this phase.
All of the SCM client software should be installed at this point and all of the

TeamLRN



The Software Development Life Cycle 15

processes should be in full swing. Those key people I mentioned a couple of times
before are now known as the CCB (if they aren’t already). And the system or soft-
ware application is developed. All of the various project groups are involved at this
point. This is the phase that has the most communication between all of the pro-
ject members. It is very important to enforce the predefined processes and project
standards to ensure the project stays on track.

The output of this phase is the unit tested components that make up the system at
key points in time. The amount of artifacts under SCM control also increases quite
a bit. Such artifacts can include all source code, test results, documentation that is
associated with each release, and so on.

The Testing Phase

The activities of this phase basically surround the testing of the system or software
application. The test plans that were generated based on the requirements are used
to test that the system is doing what is required. I listed this phase as the testing
phase because this is another one of the phases that can be combined or broken
out into smaller pieces. This phase is commonly known as the system test of inte-
gration test phase. However, activities such as regression testing are not uncommon
here. This phase can also be broken into alpha and beta testing phases. The alpha
and beta testing phases are common in the game industry and are heavily relied
upon.

The cycle between the development and testing phases is repeated until:
1. there are no bugs in the release, or
2. the product is 100% completed.

In either case, there is also a testing process known as User Acceptance Testing
(UAT). This is when the product is released to the customer for testing to ensure
that the product does what the customer expects and wants it to do. I don’t think
UAT is all that common in the game industry unless someone pays for the ground-
up development effort, but it is a big part of the testing phase nonetheless.

Once the system or product has been successfully tested and the necessary audits
(functional and physical) have been performed to ensure that this release of the
product meets the established specification, a product baseline is created. A prod-
uct baseline simply captures a version of the product in a point in time. The prod-
uct baseline would include the associated documentation like user manuals, release
notes, and so on.

TeamLRN



16 1. Software Configuration Management

The Maintenance Phase

Now I know we all want to believe that we write perfect code and deliver systems
that function absolutely according to the customer’s requirements and without any
bugs in them, but the reality is that software developments are huge undertakings.
The chances of 100 percent customer satisfaction are about as good as Halle Berry
seeing me and falling madly in love with me. Basically, it is not going to happen.
There will always be bugs that will need to be fixed. There will always be requests
for enhancements from the customer. And there will always be new features that
can be added (especially to take advantage of new technology).

This is also where the SCM group can measure its level of success. If things were
done properly, then the documentation that shows how to use the system will be
readily available. The documentation that needs to go to the help desk folks will be
provided to that team to assist them in troubleshooting the system. In short, what-
ever is needed in this phase should be accessible and very little time should be
spent searching for the documents, product components, or bug fixes. And finally,
if there is ever a need to reproduce the product or a particular version of the prod-
uct, then all of that should be a snap.

Software Development Phases
Summary

Okay, Okay, I know that was long and drawn out, but how can you understand the
value of SCM if you do not understand the SDLC? Forgive me, but I must point out
one more time that the models, phases, and the definitions in this section are
generic in nature. Some phases can be combined and some can be broken out.
The activities listed for each phase are not a complete list and some activities can
occur in different phases. This section was merely to give you some insight into the
SDLC so that you would understand what I am going to discuss in the next two sec-
tions—the pitfalls of SDLC and the importance of SCM based on those pitfalls.

SDOLLC Pitfalls

On projects with more than one person, anything can happen and typically does.
There are times when the wrong SDLC model is selected and implemented and
that can cause problems. However, the issues I discuss in this section deal more
with problems that can occur even if you select the appropriate model and define
the proper phases for your project. Read on and discover the issues that plague
every project sooner or later.

TeamLRN



The Importance of SCM 17

Communication Breakdown

I feel that communication is the very foundation of any successful project. Why?
Because no matter what model you choose, phases you define, or tools you select, it
does not matter if the communication is bad. You can have the best process in the
world, but if it is not properly communicated and understood, then it will fail the
project because people are not using it as it was intended.

Numerous studies have been done on effective communication (both verbal and
body language) and one thing everyone agrees on is that effective communication
is a very complex system. If you have two people, you drastically increase the com-
munication process because there are now two speakers and two listeners. This
opens the door for something that is not commonly seen when there is a single
person—interpretation. Anything that you say or do is subject to interpretation
when two or more people are involved in the communication process. Now add in
a project with 30 members performing large scale development.

Other things that tend to add to the communication breakdown are the different
backgrounds of the project members. The different races, genders, skill levels, edu-
cational backgrounds, and so on, all play an important role in the communication
breakdown. The result, of course, is total chaos.

Artifact Update Conflicts

This problem can be minor when the project team is made up of a few people.
However, it grows out of control quickly as more and more resources are added to
the project. If two project members have copies of a single file and they both
update it, how do those changes get tracked? If that file is stored in a shared loca-
tion and is copied back by each person when he or she is done, then one of the set
of changes will be overwritten. Furthermore, these types of conflicts can result in
bad builds of the software of a bad delivery of the product documentation. A lot of
time will be wasted troubleshooting these types of issues. The number of resources
that would have to be involved to figure it out would be costly both from a time
and money standpoint.

The Importance of SCM

In a previous section, I touched briefly on the importance of SCM. Or rather I
answered the question, “Is SCM important?” You may ask yourself why there is
another section that basically addresses the same thing. Well, the importance of

TeamLRN



18 1. Software Configuration Management

SCM needs to be understood and the fallacies need to be put to rest. I want to
ensure that you walk away with a different outlook on SCM. I want you to think
about SCM a little more and compare what is in this chapter to some of your per-
sonal experiences. Plus, at this point, you should have a better understanding of
SDLC and the problems that pop up on all projects at some point in time.

The most common question asked of me when I perform SCM consulting is, “What
can you do for me?” SCM can dramatically increase the success of your current pro-
ject when implemented correctly. It also gives you an easy way to track the progress
of your project, as well as provides a mechanism for you to track the evolution of
the product. SCM is not an overhead to the project as many people tend to claim
and it is not so large that it impacts the project’s productivity.

The following is a list of reasons why SCM is vital to the success of any project
regardless of size and complexity. SCM provides:

* A mechanism to control the chaos experienced on most projects.

* A method of reducing wasted manhours.

* A way of controlling the complexity and demands placed on the project and
its product.

* Anincreased method of deploying quality software products by reducing the
number of bugs in the system.

¢  Faster problem identification and problem resolution.

* Alevel of comfort that the system that is being built is the system that was
defined in the requirements and system architecture diagram.

*  Traceability of all project artifacts and changes to those artifacts.

* And, contrary to popular belief, SCM even helps to lower the cost of develop-
ing the system or product.

The list could go on and on, but I think you get the point. The benefits of imple-
menting SCM on your projects by far outweigh the negatives. By being organized
and knowing where things are on your project, you save time and money. There is
no other argument required! Organization has been, and always will be, more effi-
cient and cost effective than chaos. Okay, except for those rare and extreme cases
that one may find on The X-Files. But you get my meaning. It is time to stop arguing
and just do it like the Nike commercials always tell us.

TeamLRN



Conclusion: The Future of SCM 19

Conclusion: The Future of
SCM

SCM is here to stay and there will always be a need for it as long as software devel-
opment exists. SCM is still maturing and evolving as new technology emerges and
consumers continue to demand more and more features out of the software. So are
the SCM tools that support the discipline. But let me digress from traditional SCM
and its future and talk a little bit about SCM in the game industry. Since I am an
avid gamer, I follow the trends of SCM in the game industry. I see a lot of conversa-
tion taking place on bulletin boards and in chat rooms about this topic now. I have
seen game-related books go from a paragraph to a couple of pages to a full section
within a chapter regarding SCM. These are exciting times for us SCM people that
have a true passion for game development.

This chapter just touched on some of the basic concepts of SCM and made an
effort to point out the benefits of implementing an SCM strategy on your project.
SCM is much more than using SourceSafe for version control of your source code!
It is a full-blown discipline that deserves its respect. No one can prove that SCM is
costly, inefficient, and a major overhead. Those that believe that either do not
know what they are talking about or did not understand the SCM discipline well
enough to implement it properly in their projects or organizations. I really hope
that the game industry continues its current path to SCM implementations. On the
surface, I think it is long overdue. Personally, I just get tired of reading about
games that I get excited for and can’t wait until they hit the market, only to read a
couple of magazine issues later that the project was canned or delayed for an addi-
tional six months. I am certain that a high percentage of the reasons why these
games never make it to the market or experience significant delays is the lack of
SCM control to ensure that things stay on track and that the delivery dates do not
slip.

It is really that simple of a solution. Well, nothing is really simple, but you get my
meaning. Take the time up front to implement an SCM solution that will satisfy
your project needs and be sure to see it through to the end. Most game titles have
million dollar budgets and will take over a year to develop into a market-ready
product. It absolutely kills us hard-core game players and game programmers when
we have to wait longer before we can play a game we know we would enjoy, if it
even makes it to the market at all.

TeamLRN



This page intentionally left blank

TeamLRN



Cameee——r ':——w—ﬂ_ﬁ_‘—;—‘_”“

e T I [ o N

TRICK 2

LISITNG THE
LJIYIL. 1N

GAME
DEVELOFPMENT

HKEVIN HAWKINSy GAMEDEVaNETy
KEVINEGAMEDEVsNET

TTTTTTT



22 2. Using the UML in Game Development

Introduction

As other sectors of the software industry begin to recognize the importance of soft-
ware engineering best practices, the games industry is lagging behind. Those who
try to rationalize the industry’s lack of progress say that games involve too much
creativity and that it is impossible to control such an ad-hoc and chaotic process.
The reality is that these arguments are the exact reason why some of software engi-
neering’s best practices need to be incorporated into game-development processes.

The Unified Modeling Language (UML) is one such best practice that has taken the
rest of the software industry by storm. It is now the standard object-oriented
modeling language, after going through a standardization process with the Object
Management Group (OMG). Starting as a unification of the methods of Grady
Booch, Jim Rumbaugh, and Ivar Jacobson, the UML has expanded to become a
well-defined and invaluable tool to the object-oriented software-development world.

Booch, Rumbaugh, and Jacobson have also developed a unified process called the
Rational Unified Process (RUP), which makes extensive use of the UML. You don’t
have to use the RUP to use the UML because the UML is entirely independent of
any software-development process, but you are welcome to take a look to see if the
RUP is of any use in your organization.

In the meantime, you’ll be presented with a lightweight process in this chapter that
will help put the UML in the context of game development. This is not meant to
be a primer on UML; rather, it’s a look at how you can use the UML as an effective
analysis and design tool in your game-development process.

What Will Be Covered?

This chapter will first provide an overview of the Unified Modeling Language,
including use cases, interaction diagrams, class diagrams, activity diagrams, and
statechart diagrams. There is an assumption that you have had some sort of expo-
sure to UML at some point in the past or that you at least have more extensive
UML materials readily available for you to reference. Complete coverage of the
UML is impossible in a single chapter such as this, but you should at least get a
decent understanding of what is going on through the overview.

TeamLRN



The Unified Modeling Language e3

After the overview, you will begin to see the real meat of the chapter as the UML is
applied to a game-development process. You'll see what diagrams to use, when to
use them, and how they’re beneficial for modeling the design of your game.

The Unified Modeling
Language

Although there is an abundance of notations and methods for object-oriented
analysis and design of software, the Unified Modeling Language has emerged as
the standard notation for describing object-oriented models. The UML allows you
to model just about any type of application, including games, running on any type
of operating system and in any programming language. Of course, its natural use is
for object-oriented languages and environments such as Java, C++, and C#, but it
can be used for modeling non-Object-Oriented (non-OO) applications as well, albeit
in a restricted sense.

The latest version of UML at the time of this writing, UML 1.4, supports eight types
of diagrams divided into three categories: static structure diagrams, dynamic behav-
ior diagrams, and model management diagrams.

®  Basic UML diagrams include the use of case diagram and static class diagram.

*  Dynamic behavior diagrams include the interaction diagram, activity diagram,
collaboration diagram, and statechart diagram.

*  Implementation diagrams include component diagrams and deployment
diagrams.

Most software-development methodologies do not use all of the UML diagrams
when developing a software product, and chances are you will not want to use all of
the diagrams in your game-development process either. Although the UML is much
too broad to be covered in the space given here (the UML specification itself is
over 550 pages!), let’s take a brief look at a few of the more common diagrams and
specifications in more detail.

Use Cases

A use case defines the behavior of a system by specifying a sequence of actions and
interactions between actors and the software system. An actor represents a stimulus
to the software system. It can be an external user or event, or the software itself can
create it internally. Some examples of use cases in a first-person-shooter game

TeamLRN



4 2. Using the UML in Game Development

might be “Player Shoots Gun,” “Enemy Gets Shot,” and “Player Opens Door.”
These are very simple examples, but hopefully you see where this is going.

The use cases for a software system are shown in a use case diagram. In the use case
diagram, actors are depicted as stick figures, and a use case is drawn as an ellipse.
Figure 2.1 shows a sample use case diagram.

Figure 2.1

O A sample use case diagram

Player Opens Door

X >

Player Player Shoots Gun

D

% Player Kills Enemy
Enemy O

Enemy Gets Shot

The diagram might look wonderful, but it really doesn’t have any meaning other
than to provide a clear definition of the actors and the use cases they interact with.
In reality, a use case is not complete without a corresponding use case scenario. The
use case scenario describes the steps required for the completion of a use case.
There is no standard format for use case scenarios, but they generally include the
following items:

TeamLRN



The Unified Modeling Language 25

Item Description

Use case name The name of the use case

Overview A high-level description of the use case

Primary scenario The primary steps required for completion of the use case

Alternative scenarios Alternative steps that might occur during the execution of
a use case

Exceptions Any failure conditions that might occur and how the soft-

ware should respond

Although the UML does not have a specific naming convention for use cases, it typ-
ically is a good idea to create a specific format. For example, the “Player Shoots
Gun” use case follows the format of Actor Action Subject. In this particular format,
the actor is the actor that gets value from the use case, the action is the primary
action that the actor is performing, and the subject is the primary subject on which
the use case is performing. This format is what you’ll be using in the rest of this
chapter, but you can choose any format that works best for you.

The entire purpose of the use case is to capture requirements. Although the major-
ity of your use cases should be generated during the initial phases of a project, you
will discover more as you proceed through development. Every use case is a poten-
tial requirement, so you need to keep an eye out for them. Remember that you
can’t plan to deal with a requirement until you have captured it.

One question you may already be asking is, “How many use cases should I have?”
The reality is that there have been projects of the same size and style that have had
anywhere from 10 to more than 100 use cases. The answer is (as with most other
things in software engineering) to use what works best for you.

There is a bit more to use cases than what has been covered here, so if you feel the
need to explore use cases further, make sure you check out some of the references
at the end of this chapter.

Class Diagrams

The class diagram is probably the one diagram people think of when they think of
the UML. As a static view of the system, it describes the types of objects in the soft-
ware system and the relationships among them, including the attributes and

TeamLRN



26 2. Using the UML in Game Devel_;:lnmEnt

operations of a class and the constraints applied to the relationships between
classes. Class diagrams are typically used to present two different perspectives of
your software system:

*  Conceptual. In this perspective, you are drawing a diagram that represents
the concepts in the domain you are working with. While the concepts will
naturally lead to implementation classes, there is not normally a direct map-
ping. The conceptual model should be drawn without regard to the pro-
gramming language that might implement it.

¢ Implementation. The implementation, or design, perspective is a diagram
with the real classes and full implementation of the software system. It is the
most commonly used perspective.

NOTE

According to Martin Fowler (see UML Distilled [Addison-Wesley
Pub. Co., 1999]), there is one more perspective of importance to
class diagrams: the specification perspective. In this perspective, you
define the interfaces of the software, not the implementation. If
this doesn’t make sense immediately, keep in mind that the key to

object-oriented programming is to program to a class’s interface
and not its implementation. This concept is not easily seen
because of the influence of object-oriented languages. If you would
like to see some good discussion on the topic, look in the first
chapter of Design Patterns: Elements of Reusable Object-Oriented
Software (Addison-Wesley, 1995).

Perspective is not part of the standard UML, but it’s a proven technique for creat-
ing a solid design of your software. The conceptual perspective is normally used
during the object-oriented analysis phase of the development process, whereas the
implementation perspective is used during the design and implementation phases.

Class diagrams typically use three types of relationships:

®  Aggregation. This relationship focuses on one class being “made up of” a set
of other classes. An example would be a Car class containing four Tire classes.

¢ Inheritance. This relationship focuses on similarities and differences between
classes. It exists between a superclass and its subclasses. An example would be
a BMW class and a Ford class inheriting from a Car class.

TeamLRN



The Unified Modeling Language e/

®  Association. In this context, an association is any non-aggregation/inheri-
tance relationship in which there is multiplicity and navigability between
classes. For example, a Person class “drives 0..* (zero or more)” Car classes.

Figure 2.2 shows a sample class diagram with all of these relationships.

aggregation j Figure 2.2
A class diagram with aggregation,

association '
:BII 5 inheritance, and association relationships

'
<<include>>

150"

Person Car Tire
drives y 1 4
BMW Ford

inheritance lj

Another addition to the class diagram, particularly in more recent years, is the idea
of constraints and assertions. An assertion is a boolean statement that should always
evaluate to true; when it evaluates to false, you have a defect. In recent times, the
OMG has been working to produce a formal language to define constraints called
the Object Constraint Language (OCL). The OCL is making class diagrams more
complete and well defined, but it’s a rather lengthy topic and not suitable for this
chapter. Check out the OMG Web site (see the URL at the end of this chapter) for
more information on the OCL.

One of the dangers of class diagrams is that you can actually get too detailed and
too specific in implementation details too early, such that it becomes difficult to
make changes and update the models. To help prevent this, make sure you focus
on the conceptual perspective first in an object-oriented analysis phase. Then, as
you are further able to determine the operation and design of the system, you can
move to the implementation perspective with more detail.

TeamLRN



28 2. Using the UML in Game Development

Interaction Diagrams

Interaction diagrams model the dynamic behavior of a group of objects involved in a
single use case. They show which classes and methods are required and the order
in which they are executed to satisfy the use case. There are two types of interac-
tion diagrams: sequence diagrams and collaboration diagrams. These diagrams are
very similar to each other in that they accomplish the same thing, but they do have
some minor differences. In this chapter, we are only going to discuss sequence dia-
grams, but it is worth investigating collaboration diagrams elsewhere.

Figure 2.3 shows a sample sequence diagram. In this diagram, we are modeling the
“Player Shoots Gun” use case mentioned earlier in the chapter.

Figure 2.3
The sequence diagram for the
Game un Bullet “Player Shoots Gun” use case
: Player T T T
1 1 1
! Shoot Gun )1 : :
1

Check Collisions :

As you can see, objects are shown as boxes at the top of a dashed vertical line called
the object’s lifeline. The lifeline represents the object’s life during the sequence
interaction. A box on the lifeline is called an activation box and indicates that the
object is active.

Arrows between lifelines represent the messages sent between objects, and the
ordering sequence of the messages is read from top to bottom of the diagram page.
Conditions may also be specified for arrows between objects. An object may call
itself with a self-call arrow, which is shown by sending the message arrow back to the
same lifeline. There is also a dashed return arrow, which is used to indicate a return
from a previously called message. You typically only use the return arrow when it

TeamLRN



The Unified Modeling Language 29

helps clarify the sequence design. Also of note is the “X” at the end of an object’s
lifeline. It marks object deletion.

You can also use sequence diagrams for concurrent processes, which some people
may find particularly useful in game development. Figure 2.4 shows an example of
a sequence diagram of concurrent processes and activations.

In Figure 2.4, you can see that asynchronous messages between objects are indi-
cated by a half-arrowhead. These asynchronous messages can create a new thread,
create a new object, or communicate with a thread already running.

Figure 2.4
- A sequence diagram
Game Single Shot Bullet
Gun of concurrent
: Player : : : processes and
1 1 1 1 activations
1
1 Shoot Gun ! : :
Fire 1
)ﬁ new ) :
1Check
1 1 Collision
1
1
1

: ( dead

1
! X
1

As you can see, interaction diagrams are a great way to look at the behavior of
objects in a use case. They’re very simple to create and easy to understand without
looking into much detail, but they do have the drawback of not being able to pro-
vide a precise definition of the behavior of a use case.

Activity Diagrams

Activity diagrams focus on the sequencing of activities, or processes, in a use case or
several use cases. They are similar to a flowchart, but they differ in that they sup-
port parallel activities and synchronization, whereas a flowchart depicts sequential
execution. Typically, activity diagrams are used to provide a graphical view of a use
case scenario, and they are particularly useful when you want to show how several
use case behaviors interact. Figure 2.5 shows an activity diagram of the “Player
Shoots Gun” use case.

TeamLRN



30 2. Using the UML in Game Development

start Figure 2.5
An activity diagram
Input Shoot
Command
Fire Gun

number of bullets > 0
yes no

Create Show Out
Bullet of Ammo

| ,I( |
Stop Gun

éend

Conditional behavior in activity diagrams is shown by branches and merges. Branches
are similar to if-then-else statements in which, if a condition is true, execution flows
in one direction; otherwise, it flows in another direction. Merges mark the end of a
conditional branch.

Parallel behavior in activity diagrams is shown by forks and joins. When a fork is
shown, all of the fork’s outputs execute at the same time (in parallel). A join marks
the end of a fork.

If you are going to use multiple use cases in an activity diagram, you can do so
through the use of swimlanes. Each use case has its own swimlane, and any activities
involved with a specific use case go in that use case’s swimlane. You have to be care-
ful, though, because things can get very confusing with complex diagrams.

TeamLRN



The Unified Modeling Language 1

As previously mentioned, activity diagrams are best used when analyzing use cases.
They help provide a graphical overview of the use case and possibly use case inter-
actions, which is much more understandable than the text in use case scenarios.

Activity diagrams will not be used in this chapter, but feel free to explore your
options with them in your own development.

Statechart Diagrams

A statechart diagram is used to describe the behavior of an object and all its possible
states. The statechart diagram essentially defines a finite state machine, where
events control the transitions from one state to another. In object-oriented meth-
ods, statecharts typically are used to describe the behavior of a single class as
opposed to the entire system. Figure 2.6 shows a sample statechart diagram.

start Figure 2.6
A statechart diagram
random for an enemy in a
game
d .
Idle il >»{ Walking
low health
player dead player in range regain health
. low health .
Shooting o e >»{ Running

If you decide to use statechart diagrams, keep in mind that you don’t need to draw
them for every class in the software system. You should only use statechart diagrams
for those classes that have some sort of state machine style of behavior, where draw-
ing the statechart diagram will help you gain better understanding of what’s hap-
pening. Also, in relation to game development, statechart diagrams are particularly
useful for artificial intelligence system development.

TeamLRN



32 2. Using the UML in Game Development

Packages

The UML package (also called a category) is used to decompose a large software sys-
tem into smaller ones. Inside each package is a set of related classes that make it
up, but you can also have subpackages inside a package if your system needs to be
decomposed in such a way. You can think of the software system itself as a single,
high-level package, with everything else in the system contained in it. For instance,
in a game, you might have a sound system package, a graphics package, a network-
ing package, a main system package, and an input package, but all of these pack-
ages combine to form the entire game system.

You can also show the interactions and relationships between packages through
dependencies, just like you do for class diagrams. If any dependency exists between
any classes in any two packages, there’s a dependency between the packages. There
is not a standard diagram for showing packages, so you typically use a high-level
class diagram that shows only the packages and their dependencies. Some people
call these diagrams package diagrams; others call them category diagrams. Through
the remainder of this chapter, they will be referred to as package diagrams. Figure
2.7 shows a sample package diagram.

] Figure 2.7
A sample package
Game Logic diagram
Input Graphics Physics
DirectX OpenGL

TeamLRN



Integrating the UML and Game Development 33

Packages and package diagrams can be as detailed and complex as you desire, so
feel free to explore the topic further than what is covered here. They are particu-
larly useful for minimizing dependencies across your software system while also
providing a high-level view of your system architecture. Some developers even use
packages instead of classes for primary unit testing. As with most of the elements in
the UML, use what works best for you and your organization.

This concludes a brief overview of some of the UML’s more common diagrams and
techniques. Now it’s time for the fun part of seeing how you can apply the UML in
a game-development process.

Integrating the UVIL and
Game Development

To keep things simple, a Pong game is going to be used to show how you can apply
the UML to design your game software. The complete design is not going to be
shown, but key ideas and diagrams will be so that you can get an idea of how the
process works. The assumption is that you know what Pong is, but if you don’t, read
up on your video game history and learn about a tennis-like game with two paddles
and a ball.

With Pong fresh on your mind, let’s begin!

Build the Requirements
Traceability Matrix

As with any software product, you need to know what you’re going to build before
you start to build it. This information, called the requirements, should be in a
design document or some other specification (that is, a requirements specification)
that becomes the cornerstone for the rest of the product’s development. Granted,
requirements evolve throughout a product’s development (especially with games),
so you’re not going to be able to define all of them at first. As the project develop-
ment continues, however, you need to keep track of changes to the requirements
and make sure you are designing and developing your product according to the
specified requirements. One particular tool that helps with this is the Requirements
Traceability Matrix (RTM).

The RTM provides an easy way for you to trace through your analysis and design to
ensure that you are building the software, or game, to the requirements. A simple

TeamLRN



34

2.

—|—I'|_|_|—'EI'”—”'|—|_.—|_|_.

Using the UML in Game Development

LT

L

ﬁ‘—'—rﬁ—u—'_ﬁ

RTM might have columns for the requirement, the build number in which the
requirement is to be implemented, and the use case, package, and class that will
handle the requirement. Figure 2.8 shows a sample RTM form.

Requirements Traceability Matrix

Figure 2.8

A sample

Problem Statement

Build #

Use Case Name

Package

Class

Requirements

Traceability Matrix

form

Project
Req. #
1
2|
3
4
5
6
7|
8
9
0
1
2
3
4
5

Let’s apply the RTM to our Pong example. All you need to do is put the require-
ments in the RTM, as partially shown in Figure 2.9.

Requirements Traceability Matrix
Project_Pong

Problem Statement

Build #

Use Case Name

Package

The Pong game shall be
a two player only game.

1

Each player is
represented by a paddle.

1

Req. #
1 1.1
2 1.2
3 1.3

The first player is located
on the left side of the
screen, and the right
player is located on the
right side of the screen.

1

Figure 2.9

The Pong requirements
applied to the RTM

Easy enough, right? Now you need to prioritize the requirements by build number.
A build is a set of functionality to be built by a specific date. Since Pong is relatively
small in size and effort, the majority of functionality can be developed completely
in Build 1. In Build 2, the input and audio functionality is completed along with
the win/lose conditions to complete the game. Naturally, more complex games
would have more requirements resulting in more builds, but as with many software-

TeamLRN



Integrating the UML and Game Development 35

engineering practices, this is something to experiment with and to derive your own
conclusions on.

Now that requirements have been defined and build numbers determined, we have
a foundation from which to begin the analysis and design phases of the develop-
ment process.

iIdentify Use Cases

In this phase, the requirements specified in the RTM are used to identify use

cases. A use case diagram is then created to provide a visual representation of the
actor—use case interactions. Use case scenarios are then created for each use case to
describe the processes and activities involved in fulfilling a use case. There does not
have to be a use case for every requirement, but make sure you specify enough use
cases to have a thorough understanding of what you are trying to do.

When creating use cases, the first thing you need to do is identify the actors. Some
developers stick with the rather inflexible notion that an actor is strictly external to
the software. You may already be seeing the problem with this definition when
applying it to games—the player would be the only actor.

A better, or at least more flexible, way to define an actor is anything that requests
some sort of functionality. In a game, this might be the player, an enemy, or an
item. In the Pong example, the actors can be the players and the ball. The defini-
tion of an actor is entirely up to you, but make sure the definition you choose gives
you enough flexibility to properly determine the actors in your software.

Once the actors have been determined, you can begin to extract the use cases from
the requirements. In the Pong example, Requirement 1.5 from the RTM deals with
when the ball passes a player and the corresponding win/lose conditions. From this
requirement, the following use cases can be derived:

*  Player Wins Game
*  Player Loses Game
e  Ball Passes Player
To keep things organized, it is desirable to number the use cases as well. To do so,

just prepend “UC#”, where # is the number of the use case. For instance, in the
Pong example, the first defined use case is “UCI1_Player Wins Game.”

You’ll add each of these use cases to the RTM with the requirement it satisfies.
Figure 2.10 shows how the Pong RTM will look after adding the use cases to the
RTM.

TeamLRN



36 =

Using the UML in Game Development

—|—I'|_|_|—'EI'”—”'|—|_.—|_|—-I_-I

L

Req. #

Problem Statement

Build #

Use Case Name

_

1.1

The Pong game shall be a two
player only game.

1

1.2

Each player is represented by
a paddle.

1

1.3

The first player is located on
the left side of the screen, and
the right player is located on
the right side of the screen.

1.4

The Pong ball moves at
constant speed around the
game arena until it bounces off
each paddle and the top and
bottom walls (located at the top
and bottom of the screen,
respectively) at an angle equal
to the angle of incidence.

UC7_Ball Hits Wall
UCS5_Player Touches Ball

1.5

If the ball moves past the
vertical line that a paddle lies
on, then the player represented
by that paddle is declared the
loser while the opposite player
is declared the winner.

UC1_Player Wins Game
UC2_Player Loses Game
UC6_Ball Passes Player

ﬁ‘—'—rﬁ—u—'_ﬁ

Figure 2.10

The Pong RTM after
adding use cases

Now we can create a use case diagram illustrating the interactions between the
actors and the use cases. In the Pong example, we can also show a generalization
from the Player actor to the Left Player and Right Player actors. Figure 2.11 shows
the Pong use case diagram.

x

Right Player

Left Player

—C_ D

Player Wins Game

—C_ >

Player Loses Game

Player Moves Up

% O

—

—

—>

Ball Passes Player

Player Touches

Player Moves Down

<
Y
V

Ball Hits Wall

x

Ball

Figure 2.11

The Pong use case
diagram

TeamLRN



;,—l_u_ln_l_,F

Integrating the UML and Game Development

=

Each use case needs a use case scenario that specifies the steps required for com-
pletion of a use case. Scenarios were covered earlier in this chapter, so instead of
discussing how to go about creating a scenario, look at Figure 2.12 as an example.
It shows the use case scenario “UCI1_Player Wins Game” from the Pong example.

Use Case Name: Player Wins Game

Overview:
This use case enables a player to win a game of Pong.

Primary Scenario:

Action System Reaction

1. The first player paddle hits the ball. | 1. The ball moves in the proper direction
as a direct reaction of the ball hitting
the paddle.

2. The ball moves past the paddle of |2. A win event occurs where the first
the second player. player is declared the winner.

3. Gameplay is stopped and “Player 1
is the winner!” is displayed on the screen.

Alternative Scenarios: none
Exceptions: none

As another example (including how to invoke another use case), Figure 2.13 shows

the “UC6_Ball Passes Player” use case scenario.

Use Case Name: Ball Passes Player

Overview:
This use case enables the game ball to pass a player paddle.

Primary Scenario:

Action System Reaction

1. Ball moves in its current direction. | 1. Ball position is updated.

2. Ball reaches vertical location of player| 2. If the player paddle position is located

paddle. at the current ball position, then call
Use Case 5; otherwise, ball position is
updated.

3. Ball moves past player paddle. 3. Use Case 1 and Use Case 2 are
invoked.

Alternative Scenarios: none
Exceptions:

Figure 2.12

Use case scenario for the
“UCI_Player Wins Game”
use case

Figure 2.13

Use case scenario for the
“UC6_Ball Passes Player”
use case

At this point you may be wondering, “Why do I need to include use cases in game
development? I really don’t see much value in them for helping me develop my
game.” Honestly, you may not need them, but you might find parts of them useful
in determining a game’s story line, how the player moves around, and especially
actor interactions within the game world, among other things. Use cases are

TeamLRN

37

l——|_|—'—|_.—"|_|_”"IEI—I—|_|"—r



38 2. Using the UML in Game Development

considered to be part of the analysis phase of development, and that is exactly what
you are doing here: You are analyzing your game and determining how you want
your game to look, act, and feel. Although you cannot predetermine all of these
characteristics at this point in development, using use cases in your development
process will help you get a better feel for what it is you are trying to create in your
game.

Establish the Packages

In this phase, you develop a package list, allocate the packages to use cases in the
RTM, and create the system package diagram. As previously mentioned, a package
is essentially a collection of cohesive units. It can be a collection of classes, a subsys-
tem, or even a collection of other packages.

The first thing you need to do is determine some candidate package names by
looking at the actors and subjects in the use cases and using them as the candidate
package names. Look for similarities in functionality, inheritance hierarchies (“Is
this package a kind of another package?”), and aggregation hierarchies (“Is this
package made up of another package?”). The roots of inheritance and aggregation
hierarchies tend to be the names of packages. You may also find similarities in
functionality that do not fit anywhere else, in which case you might want to create
your own package named after the similarity.

The following is a list of the package names from the Pong example:

e Input

e  Graphics
e Audio

¢ DirectX
¢ OpenGL

*  Game Logic

The problem with using such a simple example as Pong becomes evident when try-
ing to create package names—there just isn’t very much to such a simple game!
Hopetully, you will see the benefits of using packages beyond such a simple example.

In any case, the next step is to allocate these packages to use cases. Why do you do
this? You need to allocate responsibility for use case development to the appropri-
ate packages. This is a fairly easy step because all you do is go back to the use
case(s) from which you got the package name. Figure 2.14 shows the updated Pong
RTM.

TeamLRN



Integrating the UML and Game Development 39

Figure 2.14

4| 1.4| The Pong ball moves at constant speed| 1 | UC7_Ball Hits Wall Game Logic| .
around the game arena untilitbounces| [ UCs_Player Touches Ball The partial Pong RTM
off each paddle and the top and bottom - I .
walls (located at the top and bottom of Gﬂer allocating
the screen, respectively) at an angle
equal to the angle of incidence. packages to use cases

5| 1.5]If the ball moves past the vertical line | 2 | UC1_Player Wins Game |Game Logic|
that a paddle lies on, then the player UC2_Player Loses Game
represented by that paddle is declared -

the loser while the opposite player is UC®_Ball Passes Player
declared the winner.

6| 1.6]Each paddle may only move up and | 1 | UC3_Player Moves Up |Game Logic|
down, or vertically, and may not move UC4_Player Moves Down
horizontally. -

7| 1.7]| The Pong game shall use the keyboard| 1 | UC3_Player Moves Up |Game Logic|

up and down arrows for the second UC4_Player Moves Down|Input
player and the keys ‘A’ and ‘Z’ for the -
first player.

8| 1.8] DirectX will be used for input and audio, | 2 Input
while an option will be available to Sound
choose between DirectX and OpenGL and Music

for graphics rendering. Graphics

Now that you have the packages defined, you need to specify how they relate
through a system package diagram (SPD). This diagram is very much like a class dia-
gram in how it shows dependencies and relationships between packages. Figure
2.15 shows the system package diagram for the Pong example.

Figure 2.15

The system package diagram for Pong
Game Logic

Sound and
Music

Input Graphics

<<subsystem>> <<subsystem>>

DirectX OpenGL

TeamLRN



40 2. Using the UML in Game Development

Create Initial Class Diagrams

The next phase involves creating initial class diagrams for each package defined in
the previous phase. You should also keep in mind that these initial diagrams should
stay focused on the problem domain only, meaning you don’t need to include
language-specific features, design patterns, or other detailed design specifications.
Probably the best way to show this is through an example, so take a look at Figure
2.16, which shows the initial class diagram for the Game Logic package.

Figure 2.16
PongGame The package class
& gameState diagram for the
%Bﬁa&/ers Game Logic package
@ MovePlayers()
9 MoveBall()
@ DeclareWinner()
1 1
2
Ball Player
@position 1 @position
velocity @playerState
@ acceleration
@ ballState < DrawPlayer()
@ MovePlayer()
@ DrawBall()
@ MoveBall()
9 DoCollision()

You can, of course, add methods and attributes to the classes you created for the
class diagram. You can also specify the access rights for the methods and attributes
if you know what they should be at this point in the process.

The next part of this phase could be considered optional, depending on your soft-
ware organization and development process. After creating the class diagrams, you
create the class specifications for each class. In the class specification, you specity a
description of the class, the list of class attributes and methods with descriptions,
and any other items that may pertain to a particular project. As with any other doc-
ument, the primary purpose of the class specifications is to provide a communica-
tion tool for development teams. If you are a solo developer, you might not need

TeamLRN



Integrating the UML and Game Development 41

the class specifications unless you just want a well-documented design. Again, as
with most software engineering practices, use what works best for you.

Develop State Transition Diagrams

State transition diagrams (STDs) typically are used to define the states of entities in
the game world, but they can also be used to represent the internal behavior of a
class. An example of an entity for which you may want to create an STD would be
the Ball actor in the Pong example. The Ball can be in one of four states: no con-
tact, paddle contact, wall contact, and behind paddle. Figure 2.17 shows the Ball
STD from the Pong example.

Game Start Figure 2.17
The Ball state
transition diagram

Move Move Bounce

Behind Hit Paddle Paddle
W No contact H

paddle contact
Win/Lose Event Hit wall Bounce
Wall
Game End contact

An example of using an STD to represent the internal behavior of a class can be
seen through the CPongGame class. This particular class represents the core of the
game and controls everything from the gameplay to the menus. One of the attrib-
utes for the CPongGame class is an attribute called gameState. This particular attribute
is called a state attribute because it has a set of values that represents the life cycle of
the CPongGame class. These state values are main menu, play game, options menu, and
scores screen. Figure 2.18 shows the CPongGame class STD.

TeamLRN



42 2. Using the UML in Game Development

@ Start Figure 2.18
‘Back’ Selected
ack sgecte Load The CPongGame class gameState STD
‘Quit’
Options Main Selected
Menu E‘Options’ Selected| Menu : End
Button Clicked ‘Flay’ Selected
Scores < _| Play
Screen Game Over Game

Produce Package Interaction
Diagrams

Package interaction diagrams (PIDs) provide a high-level view of the dynamic behav-
ior between packages and their messages from the point of view of use cases. In use
cases, an actor generates an event to the system, typically requesting some opera-
tion in response. The request event is what initiates the PID between the actor and
the game system (that is, packages). For example, the PID for the “UC1_Player
Wins Game” use case has the Player actor sending a “Move Paddle” message to the
Game Logic package, along with the Ball actor sending a “Move Ball” message. The
Game Logic package then sends a “Check Collision” message to itself to see if the ball
collides with a paddle or wall or goes behind a paddle, before it sends itself a
“Declare Winner” message to declare a winner of the game. All of this is shown in
the PID for this use case in Figure 2.19.

Figure 2.19
% % The “UCI _Player Wins
Game” PID

Game Logic
: Player : Ball
T T
|
! ! Move Paddle >
1
! Move Ball )
U Check Collision

Declare Winner

TeamLRN



Integrating the UML and Game Development 43

Another good example of a PID from the Pong example is the PID for the
“UC4_Player Moves Down” use case. In this PID, the Player actor sends a “Move
Down” message to the Input package, which then sends a “Move Paddle Down” mes-
sage to the Game Logic package. The Game Logic package splits execution at this point
by sending a “Draw Paddle” message to the Graphics package and a “Paddle Move
Sound” message to the Sound and Music package. Figure 2.20 shows the UC4 PID.

Figure 2.20
The “UC4_Player Moves
Sound Down” PID

Input Game Logic|| Graphics

: Player and Music

1
1 Move Down )1 Move Paddle 1 1

1
Down 1 1 1
Draw Paddle |

} | | 1

1

1

1

I Paddle Move

-

Package interaction diagrams are an important part of understanding a game’s
behavior because they help isolate and illustrate operations that an actor requests
from the game’s packages.

The Transition from Analysis to
Design

At this point in the process, you’ve reached a critical—yet oftentimes blurry—time
in which you transition from problem and domain object-oriented analysis (OOA) to
actual software object-oriented design (OOD) and implementation. You go from view-
ing the design as a set of logical entities to viewing it as more of a concrete and
physical implementation of your game.

Because of the nature of this development process with UML, there is a fine line
between analysis and design. For instance, you’re mapping logical entities from
OOA to implementation entities in OOD without any real changes in the design,
simply a refinement. This means that the Ball class you created in OOA will map to
the Ball class in OOD, but you might make some changes with respect to language
implementation, use of design patterns, and of course going into more detail for
the design specification itself.

TeamLRN



44 2. Using the UML in Game Development

As you may already be able to see, refinement becomes key at this point. Once you
reach the OOD phase, you don’t create many new diagrams unless you realize that
you missed something in the OOA phase, and even then you would want to per-
form some sort of analysis before refining an implementation design.

But that’s enough talk for now. Let’s move on and take a look at how you go about
refining and transitioning from OOA to OOD through the Pong example.

Update (Class Diagrams

The first thing you should do when transitioning to OOD is take a look at the static
view of your game system design through the class diagrams. Again, you are not
introducing any new diagrams or specifications in this phase; you are refining your
previous diagrams and specifications by adding more detail.

Some possible refinements of the class diagrams and specifications are as follows:

* Addition of parameterized classes, collection classes, and abstract classes
*  Specification of access rights for attributes and methods

¢ Introduction and refinement of existing design patterns

* Identification of new association relationships

Figures 2.21 and 2.22 show the differences between the class diagram for the Game
Logic package in the OOA phase and the OOD phase, respectively.

Figure 2.21
PongGame
The Game Logic OOA PCD
gameState
ball
players
@ MovePlayers()
9 MoveBall()

@ DeclareWinner()
1 1

2
Ball Player
@position 1 @position
@velocity @playerState
acceleration
@ ballState @ DrawPlayer()
@ MovePlayer()
@ DrawBall()
@ MoveBall()
@ DoCollision()

TeamLRN



Integrating the UML and Game Development 45

Figure 2.22
CAudioSystem ]
(from Sound and Music) The Game Logic
00D PCD
1
1
ClnputSystem CRenderer
(from Input) ; CPongGame ; (from Graphics)

@m_gameState '
&m_ball : CBall
@m_players[2] : CPlayer

1 @m_inputSys : ClnputSystem | 1
m_rendererSys : CRenderer
@mfsoundSys : CAudioSystem

@ CheckCollisions()
9 MovePlayers()

CBall 1 | ®MoveBall() n CPlayer
1| ®Run() e ~
&m_position 9 DeclareWinner() m_position
@mivelocity @ Getlnput() m_playerState
m_acceleration
_ 1 1 & DrawPlayer()
@m-_baiState > @ MovePlayer()
< DrawBall()
< MoveBall()
9 SetVelocity()
@ GetVelocit :
@ DgC(ilic;ci:é)xgg CLeftPlayer CRightPlayer
& DrawPlayer()| | @DrawPlayer()

As you can see, some refinement was added to the OOD PCD, including some
dependencies to the graphics, audio, and input subsystems. Types for attributes
were also specified, and although they are not shown in this particular example,
you can also specify parameters and return types for methods as well.

Update Interaction Diagrams

Once the static view of the design is completed through the class diagrams, it’s time
to move on to the dynamic design of the game system with interaction diagrams. In
this phase, you refine the package interaction diagrams created during OOA to
include classes. The resulting product is called a class interaction diagram (CID).

In the CID, you illustrate the collaborative behavior of the classes you’ve discovered
by specifying the messages that are passed between these classes. Through this

TeamLRN



46 2. Using the UML in Game Development

refinement, you are trying to provide the level of detail necessary for implementa-
tion of the design.

Figures 2.23 and 2.24 show the PID and CID of the “UC4_Player Moves Down” use
case, respectively.

Figure 2.23
% The “UC4_Player
. Input  |[Game Logic|| Graphics Sdol\ljlnd' Moves Down”PID
: Player n
- : : : a usic
1 ove bown
)1 Movgo%ddle 1 1

I Paddle Move

1

1 1

Draw Paddle |
; | | 1

1

1

1

Figure 2.24

The “UC4_Player
Moves Down” CID

: CPongGame | |: ClnputSystem : CRenderer : CAudioSystem

1
] Update()

Getlnput()

MovePlayers()

DrawPaddle()

PlaySound()

TeamLRN



Summary and Review 47

Refinement and Iteration

The OOD phases of updating class diagrams and interaction diagrams are really
one big loop of refinement and iteration. You aren’t going to create a design you
are happy with your first time through the phases, and chances are you aren’t
going to do it the second time through either. The idea is to refine and iterate
through these phases until you find a design that fits your criteria for providing a
baseline to move on to the implementation phases.

There is such a thing as overdesign, but at the same time, you can also underde-
sign. You and your team must decide when a design is complete, but don’t short-
change yourself with an inadequate design. Ideally, you want to be able to minimize
the number of changes you’ll make to your documented design once you go into
the implementation phases. Backtracking and making changes to previously devel-
oped material costs time, and everyone knows that time is money!

The Move to Implementation

Once you feel that your design is sufficient, it’s time to head into the “fun” part of
development—coding. There are many different ways in which you can transition
your design to code, and it seems that every development team does this differ-
ently, so do what works for you. Some suggest that you should create the class inter-
faces and a skeleton of the class implementation that you fill in as development
progresses; others suggest that you develop entire classes at once before moving
onto the next class. Again, do what works for you. Remember, however, that if you
change anything in your design while coding, you need to go back to your design
on paper and make changes accordingly. You’ll thank yourself for keeping every-
thing well documented.

Summary and Review

Well, that completes your brief look at how you can use the UML in your game-
development process. This is only one view of how to use UML, though. There are
plenty of other processes and methodologies created for object-oriented analysis
and design. How about a quick review?

You start off your analysis by defining use cases and creating use case scenarios that
specify the steps required to fulfill the use case. Then you establish the packages
and the system package diagram that defines the high-level architecture design of
the game system.

TeamLRN



48 2. Using the UML in Game Development

Next you create class diagrams inside each package and state diagrams for state
attributes inside the classes. Then you produce the package interaction diagrams
from use cases that illustrate the behavior and collaboration across packages.

At this point, you begin the transition from object-oriented analysis to object-
oriented design, where you begin an iterative process of updating the class dia-
grams for the static view of your design and the interaction diagrams for the
dynamic view. You continue this cycle until you reach a point that is deemed suffi-
cient, and then you move onto the implementation, or coding, phase.

Once at the coding phase, you are on your own for how you want to map the
design to code. There are many different published methods for accomplishing
this task, so choose the methods you like.

One thing that is not discussed in this chapter is testing. This is primarily because
testing varies from project to project and from team to team. Typically, though,
you’ll want to generate unit tests for each package (and possibly for each class), but
this really depends on your team and project. Naturally, you cannot test general
gameplay issues, but the technical aspects of the game software can be tested very
well.

Where to o from Here

If this chapter has sparked some interest for using UML in game development,
there are several resources you can check out for more general UML information,
techniques, and discussions. Not much has been published in terms of UML’s
application specifically to game development, but hopefully, with this chapter and
some of your own brainstorming, you’ll be able to find something that works for
you and your team.

Books

Booch, Grady, Jacobson, Ivar, Rumbaugh, J., The Unified Modeling Language User
Guide. Boston: Addison-Wesley, 1998.

Texel, P., and Charles Williams, Use Cases Combined with Booch/OMT/UML. Upper
Saddle River: Prentice Hall, 1997.

Web Sites

Object Management Group: www.omg.org

Rational Software: www.rational.com

TeamLRN



Conclusion 49

Software Engineering Institute: www.sei.cmu.edu
Brad Appleton’s Software Engineering: www.enteract.com/~bradapp/
Software Development Magazine: www.sdmagazine.com

GameDev.net Software Engineering: www.gamedev.net/reference/

UML Tools

Rational Rose by Rational Software: www.rational.com
ArgoUML, a free Java-based cognitive CASE tool: www.argouml.com
Dia, a diagram tool with UML support: www.lysator.liu.se/~alla/dia/dia.html

Conclusion

The Unified Modeling Language is a very broad topic and is difficult to discuss
extensively in such a short chapter, but hopefully you’ve gained, if anything, a bet-
ter understanding of how you can use the UML as a communication and design
tool in your game-development process. Some people may not feel the need to use
UML and be this elaborate in their process, and that’s fine, but if you’ve found
yourself redesigning, reworking, recoding, and re-other things, maybe you should
give UML a chance. The rest of the software industry is giving new ideas a chance,
so why shouldn’t the game industry?

TeamLRN



This page intentionally left blank

TeamLRN



Camsee e ':——w—ﬂ_ﬁ_‘—;—‘_”“

e T I [ o N

TRICK 3

EUILDING AN
HrrPLICATION
FRAMEUWORK

ERNEST S« PARAZERAy
ERNESTPAZERA®@MSNCOM

TTTTTTT



52 3. Building an Application Framework

Introduction

Just as an object lesson, go start up your compiler and write, from scratch, a mini-
mal Win32 application. Nothing fancy, just a WinMain and a window procedure. No,
really. Go ahead and do it. I'll wait.

Are you back? Okay, now count the lines. For myself, I was able to do it with 39
lines of code. No blank lines, no comments, with one statement per line, and with
braces each getting its own line. I'm certain that if I had wanted to get clever with
it, I probably could have gotten it down to 30 lines or so, but that’s not really the
point here.

I just wrote 39 lines of code, and it gives me a window that does nothing (well, to
be honest, my window can be moved around, it has a Close button, and so on), so
to be more accurate, I wrote 39 lines that gave me a window that doesn’t do any-
thing special. In fact, these 39 lines are almost identical to the code I usually write
when I'm making a WIN32 application.

For the sake of discussion, here are the 39 lines I wrote:

#Hinclude <windows.h>
const char* WINDOWTITLE="Example Window Title";
const char* WINDOWCLASSNAME="Example Window Class Name";
WNDCLASS g_WndCls;
HWND g_hWnd=NULL;
LRESULT CALLBACK TheWindowProc(HWND hWnd,UINT uMsg,WPARAM wParam, LPARAM 1Param)
{
switch(uMsg)
{
case WM_DESTROY:
PostQuitMessage(0);
return(0);
default:
return(DefWindowProc(hWnd,uMsg,wParam,1Param));

}
int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR 1pCmdLine,
int nShowCmd)

memset (&g_WndC1s,0,sizeof (WNDCLASS));

TeamLRN



Why Use an Application Framework? 53

g_WndCls.hbrBackground=(HBRUSH)GetStockObject (BLACK_BRUSH);

g_WndCls.hCursor=(HCURSOR)LoadCursor(NULL,MAKEINTRESOURCE(IDC_ARROW));
g_WndCls.hInstance=hInstance;
g_WndC1s.1pfnWndProc=TheWindowProc;
g_WndC1s.1pszCTassName=WINDOWCLASSNAME;
g_WndCls.style=CS_DBLCLKS|CS_HREDRAW|CS_VREDRAW|CS_OWNDC;
RegisterClass(&g_WndCls);

g_hWnd=CreateWindowEx(0,WINDOWCLASSNAME ,WINDOWTITLE,WS_VISIBLE|WS_BORDER|WS_CAPTION|W
S_SYSMENU,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,NULL,NULL,hInstan
ce,NULL);
MSG msg;
for(;;)
{
if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{
if(msg.message==WM_QUIT) break;
TranslateMessage(&msg);
DispatchMessage(&msg);

}
return(msg.wParam);

) NOTE

You can find the pre-
ceding application on
the accompanying

Undoubtedly, at some point you also got sick of writing
this same exact code over and over again. Maybe you
have a file with all the basic code in it and just cut and
paste it when you create a new application. Or, like me,

CD-ROM if you really

A want to take the time
maybe you wrote an application framework. And so, we to look at it. It is enti-

are brought to the topic of discussion: building applica- tled appframel.
tion frameworks.

Why Use an Application
Framework?

Three words: Rapid Application Development (RAD). I don’t care what kind of appli-
cations you are writing, whether they’re business applications, games, level editors,
or whatever. Ideally, you’d like to spend less time actually making them. If you start

TeamLRN



54 3. Building an Application Framework

from scratch each time you make an application, you are spending more time than
you need to on each application.

Instead, invest some time building a solid and flexible framework that you can use
to quickly build other applications. If you spend 100 hours developing a robust,
extensible framework that you can use to cut your development time for other pro-
jects in half, after a while, the time spent on the framework will pay for itself.

Let me give you a quick example. Whenever I write a book, the very first sample
program I write will typically take me an hour (sometimes less). This is usually just
a simple application that gets a window up and running, again doing nothing spe-
cial. Thereafter, I copy the source code from that example and use it to build other
examples. After the first example, it typically only takes me about 15 minutes (tops)
to make something new based on what has gone before.

This is why engines and other frameworks already exist. If you are building a busi-
ness application for Windows, you’d be a fool not to make use of the power of
Microsoft Foundation Classes (MFC). If you are writing a high-end, bleeding-edge
game, you’d be a fool not to use one of the commercially available engines that are
out there.

Why Roll Your Own'?

Okay, by now it should be pretty obvious that you should use an application frame-
work. What may be a little less obvious is why you would want to make your own
and not use one that is already available, like MFC or some game engine.

I am speaking from a focus of writing games and, more importantly, writing small-
ish games that are likely to be distributed as shareware or as a part of a game bun-
dle on the racks of better computer stores everywhere.

In this situation, MFC is ill suited. It is a bloated framework that can do just about
everything under the sun. However, most of its functionality will go unused in your
games, so the extra bloat is just wasted space. A commercial engine isn’t a great
idea either because there’s a high cost to make use of the engine, and you are a
hungry developer just trying to make a buck or two.

Even if you aren’t the small-time developer to whom I am writing, rolling your own
application framework is a good idea because of what you will learn by doing so.
Every other framework/engine is built on much the same principles, and by going
ahead and doing it yourself, you will have a much easier time learning a different
framework because you have already gone through how something similar works

TeamLRN



Identify Your Needs 55

internally. If it takes you less time to get used to a new framework or engine, you’ve
again saved time and added value to yourself as a developer.

iIdentify Your Needs

I’'m going to take you through writing the core classes of an application framework.
Since this is a book in which I only get a few pages to show you something, we
won’t be making a cutting-edge 3-D engine today.

What we will do, however, is get the pesky code that haunts every single Windows-
based application . . . namely WinMain and the window procedure.

Programming is, as it has always been, a problem-solving endeavor. You start with a
problem that you need to solve and then program the solution to that problem. So,
the very first step in designing an application framework (or, indeed, any program)
is to identify the problem we need to solve. This will keep us on task and produc-
tive and will keep us from wandering away from the mission.

So, what is the problem that we need to solve? Well, we want to give ourselves the
core classes of an application framework that will allow us the freedom to never
have to write another WinMain or WindowProc again.

Okay, that’s something, but it’s still sort of vague. Now we need to define what ser-
vices WinMain and WindowProc provide us so that we can plan out how we will meet
these needs ourselves.

The WinMain function does a number of things for us. Typically, it sets up a window
class, creates a window, and then pumps messages. The WindowProc function handles
messages received by various windows owned by that application.

From an object-oriented point of view, the WinMain function and the WindowProc func-
tion each embody two separate objects. However, they do communicate with one
another. Also, each function is embodied with a particular Windows object. WinMain
is the embodiment of an HINSTANCE, and WindowProc is the embodiment of an HWND.

WinMain also has an “ownership/parent” role toward the HWND, so this relationship
extends to WindowProc.

And so, to get us started, we shall come up with two classes. One is called
CApplication, and it takes the same responsibility that a WinMain function does (as
well as embodying an HINSTANCE). The other is called CEventHandler, and it takes on
the purposes of a WindowProc function and embodies an HWND.

TeamLRN



56 3. Building an Application Framework

The CApplication Design

We have stated already that CApplication has the duty of doing everything that a
WinMain typically does. We can further state that only one CApplication will exist in a
program, thus making it a singleton. It would be absurd to have more than one
CApplication object at a time. Perhaps we would think differently if we were doing
multithreaded programming, but that sort of thing is beyond the scope of this
small chapter.

So, then, what tasks do we rely on WinMain to do? The WinMain function shown earlier
in this chapter goes through the following steps:

1. Set up and register a window class.

2. Create a window.

3. Pump messages and wait for a quit message.
4. Terminate.

Of course, the application we are looking at is the simplest case. In reality, a WinMain
function does a little bit more than this. It also sets up any application-level
resources (setting up a window class and creating a window count as setting up
application resources), and when no messages are waiting in the message queue, it
will do something else for a little while during the idle state. Finally, it will free any
resources that the program may be using before termination. Therefore, we revise
what a CApplication must do:

1. Initialize application resources (register a window class, create a window, and
So on).

2. Check for a message.
3. If a quit message has occurred, go to step 6.

4. If a nonquit message has occurred, send it to the appropriate message han-
dler and then return to step 2.

5. If no message has occurred, do idle application activities and then return to
step 2.

6. Clean up any resources in use by this application.

7. Terminate.

TeamLRN



Identify Your Needs 57

Now we can translate these steps into the beginnings of a class definition for
CApplication. We’ll return to it later, as we are not quite finished yet, but it does give
us a start.

class CApplication
{
private:
//CApplication is a singleton, and the sole instance will have its
pointer
//stored in a static member
static CApplication* s_pTheApplication;
//store the HINSTANCE
static HINSTANCE s_hInstance;
public:
//constructor
CApplication();
//destructor
virtual ~CApplication();
//retrieve the HINSTANCE
static HINSTANCE GetHINSTANCE();
//initialize application resources
virtual bool OnInit();
//id1ing behavior
virtual void OnlIdle();
//pre-termination activities(clean up resources)
virtual void OnTerminate();
//run the application through a static member
static int Execute(HINSTANCE hInstance,HINSTANCE hPrevInstance,
LPSTR TpCmdLine,int nShowCmd);
//retrieve the static application pointer
static CApplication* GetApplication();
s

Based on this class definition, you might have a few questions as to why I made a
particular member static or virtual. I'll do my best to answer them.

CApplication itself is not meant to be instantiated. Instead, whatever application you
write will be an instance of a child class of CApplication. For example, you might cre-
ate a child class called CMyApplication. After you have done so, you instantiate your
application in the global scope as follows:

CMyApplication TheApp;

TeamLRN



58 3. Building an Application Framework

During the construction of the application, the static member s_pTheApplication will
be set to point to your application. Later, when CApplication::Execute() is called, it
will run your application. This is why the initialization, idling, and cleanup func-
tions are all virtual. They are meant to be overridden.

The CEventHandler Design

And now for CEventHandler, which encapsulates the functionality of a WindowProc and
embodies an HWND. Therefore, a CEventHandler has to do everything that a WindowProc
can do as well as anything that an HWND can do. This is indeed a tall order, and we
won’t completely fill it here. Instead, we will make CEventHandler do the most com-
mon tasks associated with a WindowProc and an HWND, and we’ll leave a way to extend
this behavior later in child classes of CEventHandler.

The key to CEventHandler is that a single instance is bound tightly to a particular HWND
and vice versa. On the CEventHandler side of things, this can easily be done by having
a class member that stores the applicable HWND. On the HWND side, we have to store a
pointer to the instance of the CEventHandler as the extra data with SetWindowLong,
which we will look at a little later on.

Since we don’t really want to duplicate the many functions that work with HWNDs as
part of the CEventHandler class (although there’s nothing to stop you from doing this
if you really want to), we will simply leave a way to access the HWND through the
CEventHandler instance, and then we’ll leave it up to the user of the CEventHandler
class to make use of the functions dealing with HWNDs.

And so, a good start on the design for CEventHandler might look like the following:

class CEventHandler
{

private:
//registered window class
static ATOM s_WndCls;
//associated window handle
HWND m_hWnd;

public:
//constructor
CEventHandler();
//destructor

~CEventHandler();
//conversion operator
operator HWND();

TeamLRN



Identify Your Needs 59

#——1_”JrL_____ﬂ__IEEET"T::= [ E===———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE;““ﬂ____I‘I__Jm__T

//retrieve HWND

HWND GetHWND();

//set HWND

void SetHWND(HWND hWnd);

//event handling function

virtual bool HandleEvent(UINT uMsg,WPARAM wParam,LPARAM 1Param);

//event filtering

virtual bool OnEvent(UINT uMsg,WPARAM wParam,LPARAM TParam);

//event handlers: mouse

virtual bool OnMouseMove(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

virtual bool OnLButtonDown(int iX,int iY,bool bShift, bool bControl,
bool blLeft, bool bRight, bool bMiddle);

virtual bool OnLButtonUp(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

virtual bool OnRButtonDown(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

virtual bool OnRButtonUp(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

//event handlers: keyboard

virtual bool OnKeyDown(int iVirtKey);

virtual bool OnKeyUp(int iVirtKey);

virtual bool OnChar(TCHAR tchCode);

//event handlers: window creation and destruction

virtual bool OnCreate();

virtual bool OnDestroy();

//repaint

virtual bool OnPaint(HDC hdc,const PAINTSTRUCT* pPaintStruct);

//static member function for creating window class

static void CreateWindowClass();

//static member function for window procedure

static LRESULT CALLBACK WindowProc(HWND hWnd,UINT uMsg,WPARAM
wParam, LPARAM 1Param);

s

Now we’ve got something to start with anyway. Certainly, we will want to have more
event handlers in the finished class than the ones we currently have, but what we’ve
got is fine to begin with.

Notice that all of the event-handling functions begin with the letters “On” and are
virtual. (They are meant to be overridden.) Furthermore, they each return a bool.

TeamLRN



60 3. Building an Application Framework

If the event is processed properly, we need to have these functions return true. If
unhandled, the event handlers can return false.

Unfortunately, because of the way Windows works, we will need to create our event
handler before we create our window in order to properly bind the two of them
together.

We could always get around this by using a factory method in derived classes of
CEventHandler.

The CMessageHandler Design

Unfortunately, one part of the design is left out of the classes as we have designed
them thus far. CEventHandler instances, like windows, can have a parent/child rela-
tionship. A CEventHandler can have a CApplication as its parent as well. Currently,
there is no nice way to represent this in our code. Certainly, we could hack
together something that would work most of the time, but that isn’t very elegant.
So, let’s take a look at this new problem and see what we can come up with to solve
it. We need the following features:

e A CEventHandler must be able to be a child of either a CApplication or another
CEventHandler.

®* A CApplication is at the root of the parent/child relationship tree. It will
never have a parent but may have many children.

® A child must have some manner of notifying its parent when something is
happening that the parent should know about.

To me, this sounds an awful lot like a need for another class that will be the parent
class of both CApplication and CEventHandler. Since we only need to send messages
down the tree (that is, toward the root), we only need to store a particular object’s
parent.

Here’s what I’ve come up with for a CMessageHandler class:

class CMessageHandler

{

private:
//the parent of this message handler
CMessageHandler* m_pmhParent;

public:
//constructor
CMessageHandler(CMessageHandler* pmhParent);

TeamLRN



Identify Your Needs b1

#——1_”JrL_____ﬂ__IEEET"T::= [ E===———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE;““ﬂ____I‘I__Jm__T

//destructor

virtual ~CMessageHandler();

//set/get parent

void SetMessageParent(CMessageHandler* pmhParent);

CMessageHandler* GetMessageParent();

//handles messages, or passes them down the tree

bool HandleMessage(int MessageID,int argc,void* argv[]);

//triggered when a message occurs

virtual bool OnMessage(int MessagelID, int argc, void* argv[])=0;
}s

Notice that CMessageHandler::0nMessage has the =0 after it, making this class a pure vir-
tual class. It cannot be instantiated, which is good, because it does nothing on its
own. Now, once we set CApplication and CEventHandler to use CMessageHandler as its
base class, we will also not implement their OnMessage functions, making them pure
virtual classes as well. They aren’t particularly useful on their own either.

For now, let’s take a quick look at how CApplication and CEventHandler were changed
by the addition of the CMessageHandler class as the parent class. First, here’s
CApplication (which really didn’t change all that much):

class CApplication: public CMessageHandler
{
private:
//CApplication is a singleton, and the sole instance will have its
pointer
//stored in a static member
static CApplication* s_pTheApplication;
//store the HINSTANCE
static HINSTANCE s_hInstance;
public:
//constructor
CApplication();
//destructor
virtual ~CApplication();
//retrieve the HINSTANCE
static HINSTANCE GetHINSTANCE();
//initialize application resources
virtual bool OnInit()=0;
//id1ing behavior
virtual void OnIdle()=0;
//pre-termination activities(clean up resources)

TeamLRN



b2 £ -

Building an Application Framework

virtual void OnTerminate()=0;
//run the application through a static member
static int Execute(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR

TpCmdLine,int nShowCmd);

s

//retrieve the static application pointer
static CApplication* GetApplication();

For the most part, CApplication’s definition remains unchanged. The first line is
modified to represent CMessageHandler’s role as a parent class. The other changes
concern the modification of 0nInit, OnIdle, and OnTerminate. I made them into pure
virtual functions. Since OnMessage from CMessageHandler already makes this class a
pure virtual class, requiring that the user implement these three functions doesn’t
really hurt anything.

As for CEventHandler, here’s what it looks like now:

class CEventHandler: public CMessageHandler

{

private:

public:

//registered window class
static ATOM s_WndCls;
//associated window handle
HWND m_hWnd;

//constructor

CEventHandler(CMessageHandler* pmhParent);

//destructor

~CEventHandler();

//conversion operator

operator HWND();

//retrieve HWND

HWND GetHWND();

//set HWND

void SetHWND(HWND hWnd);

//event handling function

virtual bool HandleEvent(UINT uMsg,WPARAM wParam,LPARAM 1Param);
//event filtering

virtual bool OnEvent(UINT uMsg,WPARAM wParam,LPARAM 1Param);
//event handlers: mouse

virtual bool OnMouseMove(int iX,int iY,bool bShift, bool bControl,

bool bLeft, bool bRight, bool bMiddle);

TeamLRN



Simple Application Network 63
;'_Lu_r'_‘—|_|F T | '——I_I_‘_'—'—'_H_”-'E‘—'—l_f‘—r

virtual bool OnLButtonDown(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

virtual bool OnLButtonUp(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

virtual bool OnRButtonDown(int iX,int iY,bool bShift, bool bControl,
bool bLeft, bool bRight, bool bMiddle);

virtual bool OnRButtonUp(int iX,int iY,bool bShift, bool bControl,
bool blLeft, bool bRight, bool bMiddle);

//event handlers: keyboard

virtual bool OnKeyDown(int iVirtKey);

virtual bool OnKeyUp(int iVirtKey);

virtual bool OnChar(TCHAR tchCode);

//event handlers: window creation and destruction

virtual bool OnCreate();

virtual bool OnDestroy();

//repaint

virtual bool OnPaint(HDC hdc,const PAINTSTRUCT* pPaintStruct);

//static member function for creating window class

static void CreateWindowClass();

//static member function for window procedure

static LRESULT CALLBACK WindowProc(HWND hWnd,UINT uMsg,WPARAM
wParam, LPARAM 1Param);

s

In CEventHandler, not only did the first line of the declaration change but also

the constructor. Now, because of polymorphism, you can pass a pointer to a
CApplication (or any derived class) or to a CEventHandler (or any derived class) as the
parent to the CEventHandler’s constructor, and it will set that object as the new
object’s parent.

Implementation of a Simple
Application Framework

There is certainly more we could design for this application framework, but this is
meant to be a quick example to give you ideas, not an exhaustive treatise on appli-
cation frameworks. Therefore, we’ll call the three core classes “good enough” and
implement them.

TeamLRN



64 3. Building an Application Framework

Implementation of
CMessageHandler

We’ll start with the base class, CMessageHandler. This is a rather elementary class. It
essentially only stores a single CMessageHandler pointer as a parent. Table 3.1 shows
the more simplistic member function implementations:

Table 3.1 CMessageHandler Member Functions

Function Implementation
CMessageHandler(pmhParent) {SetMessageParemt (pmhParent);}
~CMessageHandler() {}

SetMessageParent(pmhParent) {m_pmhParent=pmhParent;}
GetMessageParent() {return(m_pmhParent);}

As you can see, Table 3.1 only shows you some rather standard getter and setter
functions, and those are no big deal. The only function I had to be careful with was
HandleMessage

//handles messages, or passes them down the tree
bool CMessageHandler::HandleMessage(int MessagelID,int argc,void* argv[])
{
//attempt to handle message
if(OnMessage(MessagelD,argc,argv))
{
//message has been handled, return true
return(true);

else

//message has not been handled
//Took for a parent to pass the message to...
if(GetMessageParent())
{
//found a parent
//Tet parent handle message
return(GetMessageParent()-
>HandleMessage(MessagelD,argc,argv));

TeamLRN



Simple Application Framework 65

//did not find a parent

//failed to handle message, return
false

return(false);

}

When a message handler (or any derived class) receives a message, we have to do a
number of different things to get that message handled. First, we must try to han-
dle the message ourselves. If we fail to handle the message on our own, we must try
to pass it along to the parent message handler, if one exists. If no parent exists, the
message remains unhandled. If a parent does exist, we pass it along to the parent.

The parameters for HandleMessage are structured so that there is a unique ID for the
message (MessageID) and then a variable number of void* parameters. There is no
way of knowing how many parameters we might need in the future, so we don’t
want to shoot ourselves in the foot.

Implementation of CApplication

CApplication, like CMessageHandler, is a simply implemented class. All of the data for
this class is static. The only reason why not every member function of CApplication is
static is because, to customize what an application does, we need to make use of vir-
tual functions and polymorphism.

Of the CApplication member functions, Onlnit, Onldle, and OnTerminate are virtual, so
we defer implementation until a derived class.

The static member functions, GetHINSTANCE and GetApplication, return our static
members. They are simple enough that I shouldn’t have to actually show them here
in print.

That leaves us with the constructor, the destructor, and the static member function
Execute. The destructor does absolutely nothing, so we can ignore it.

First, here’s the constructor:

//constructor
CApplication::CApplication():
CMessageHandler(NULL)//initialize message handler parent class

TeamLRN



b6 3. Building an Application Framework

//check for an instance of CApplication already existing
if(s_pTheApplication)
{
//instance of CApplication already exists, so termi-
nate
exit(l);

//set application pointer
s_pTheApplication=this;
}

Since a CApplication-derived object is meant to be declared in the global scope and
furthermore is meant to be a singleton, the constructor for CApplication is con-
cerned with two things. First, it makes certain that the static application pointer has
not already been written to. (This static member starts with a value of NULL.) If an
application has already been created, it causes the program to exit abruptly. Ideally,
you should make some sort of alert system to make this easier to debug.

Second, if nothing has set the application pointer yet, the current application
being initialized becomes the new value. This pointer is used later by Execute to
make everything happen.

//run the application through a static member
int CApplication::Execute(HINSTANCE hInstance,HINSTANCE hPrevInstance,
LPSTR TpCmdLine,int nShowCmd)

//set instance handle
s_hInstance=GetModuleHandle(NULL);
//check for application instance
if(!GetApplication())
{
//no application instance, exit
return(0);
1
//attempt to initialize application
if(GetApplication()->0OnInit())
{
//application initialized
//quit flag
bool bQuit=false;

TeamLRN



Simple Application Framework 67

#——1_”JrL_____ﬂ__IEEET"T::= [ E===———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE;““ﬂ____I‘I__Jm__T

//message structure

MSG msg;

//until quit flag is set

while(!bQuit)

{
//check for a message
if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{
//a message has occurred
//check for a quit
if(msg.message==WM_QUIT)
{
//quit message
bQuit=true;
}
else
{
//non quit
message
//translate
and dispatch
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
else
{
//application is idling
GetApplication()->OnIdle();
}

//terminate application
GetApplication()->OnTerminate();
//return

return(msg.wParam);

else

TeamLRN



68 3. Building an Application Framewaork

//application did not initialize
return(0);

}

CApplication::Execute looks very much like what a standard WinMain function looks
like, minus window class creation and window creation. This function uses the static
member function GetApplication to get a hold on whatever instance of a CApplication-
derived class is the running application. Execute is also responsible for setting the sta-
tic HINSTANCE member. Other than that, this function initializes the application, goes
through a message pump (letting the application idle whenever no message is in the
queue), and finally terminates once a quit message has been processed.

Our actual WinMain function (yes, despite our hard work, there still must be a
WinMain) also is part of the CApplication implementation. Quite simply, here it is:

//winmain function
int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR 1pCmdLine,
int nShowCmd)

//execute the application
return(CApplication::Execute(hInstance,hPrevInstance,1pCmdLine,nShowCmd));
}

And behold! The mystically magical one-
line WinMain! Everything is handled inside of NOTE

CApplication::Execute anyway. Just an FYI here: In case you were
curious, this is exactly the same

mechanism that MFC uses to get

lmplementing rid of WinMain. Our CApplication
EEventHandler class is the equivalent of CWinApp.

CEventHandler is by far the most complicated
class of the three, but even so, it is not particu-

larly difficult to implement. Most of the functions (specifically those whose names
begin with “On”) are simply stubs and do nothing but return a value. Other func-
tions include the HWND getter and setter, which are no-brainers. The functions that

we really need to examine are HandleEvent, CreateWindowClass, WindowProc, and Create.

We’ll start with CreateWindowClass. This is a static member function that sets up the
window class to be used for all windows created for use with CEventHandler derived
objects.

TeamLRN



Simple Application Framework 69

#——1_”JrL_____ﬂ__IEEET"T::= [ E===———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE;““ﬂ____I‘I__Jm__T

//static member function for creating window class
void CEventHandler::CreateWindowClass()
{
//check for the atom
if(!ls_WndCls)
{
//set up window class
WNDCLASSEX wcx;
wcx.cbClsExtra=0;
wcx.chSize=sizeof (WNDCLASSEX);
wcx.cbWndExtra=0;
wcx.hbrBackground=NULL;
wex.hCursor=NULL;
wcx.hIcon=NULL;
wcx.hIconSm=NULL;
wcx.hInstance=GetModuleHandle(NULL);
wcx. 1pfnWndProc=CEventHandler: :WindowProc;
wex. TpszClassName="LAVALAMPSARECOOL";
wcx. TpszMenuName=NULL;
wex.style=CS_DBLCLKS|CS_HREDRAW|CS_VREDRAW|CS_OWNDC;

//register the class
s_WndC1s=RegisterClassEx(&wcx);

}

This function checks to see whether the static window class member (s_WndC1s) is
NULL (the initial value). If it is, it will create a rather generic window class. Please
don’t laugh at the name I picked for it. After CreateWindowClass is called one time,
the window class is registered already and so the function henceforth does nothing
at all. This is a handy feature considering that each time CEventHandler::Create is
called, this function gets called, as you can see here:

//create a window and associate it with a pre-existing CEventHandler

HWND CEventHandler::Create(CEventHandler* pehHandler,DWORD dwExStyle,LPCTSTR
TpWindowName,DWORD dwStyle,int x,int y,int nWidth,int nHeight,HWND
hWndParent,HMENU hMenu)

//create the window class
CreateWindowClass();

TeamLRN



70 3. Building an Application Framework

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

//create and return the window
return(CreateWindowEx(dwExStyle, (LPCTSTR)s_WndCls,TpWindowName,dwStyle,x,y,nWidth,
nHeight,hWndParent,hMenu, GetModuTleHandle(NULL),pehHandler));
}

This function is the only function you should use to create CEventHandler-associated
windows. It has most of the parameters of CreatelWindowEx, with the exception of the
class name and the HINSTANCE. An additional parameter is a pointer to a
CEventHandler with which to associate the window.

To see how an HWND and a CEventHandler are associated with one another, we need to
take a look at CEventHandler: :WindowProc

//static member function for window procedure
LRESULT CALLBACK CEventHandler::WindowProc(HWND hWnd,UINT uMsg,WPARAM wParam,
LPARAM T1Param)

//check for WM_NCCREATE

if(uMsg==WM_NCCREATE)

{
//attach window to event handler and vice versa
//grab creation data
LPCREATESTRUCT 1pcs=(LPCREATESTRUCT)1Param;
//grab event handler pointer
CEventHandler* peh=(CEventHandler*)Ipcs->IpCreateParams;
//associate event handler with window
peh->SetHWND(hWnd) ;
//associate window with event handler
SetWindowLong(hWnd,GWL_USERDATA, (LONG)peh);

}

//1o0k up event handler

CEventHandler* peh=(CEventHandler*)GetWindowlLong(hWnd, GWL_USERDATA);

//check for a NULL event handler

if(!lpeh)

{
//use default window procedure
return(DefWindowProc(hWnd,uMsg,wParam,1Param));

}

//check for event filter

if(peh->0nEvent(uMsg,wParam,1Param))

TeamLRN



Simple Application Framework 71

//event filtered
return(0);

else

//event not filtered
//attempt to handle event
if(peh->HandleEvent(uMsg,wParam,1Param))
{
//event handled
return(0);

else

//event not handled
//default processing

return(DefWindowProc(hWnd,uMsg,wParam,1Param));
}

}

There are really two parts to this function. One is when WM_NCCREATE occurs. (This
message is sent to the window procedure during the call to CreateWindowEx.) This is
where the CEventHandler and HWND become tied to one another. The CEventHandler
has its HWND set to the window in question, and the HWND gets a pointer to the
CEventHandler placed into its user data with a call to SetWindowLong.

If any other message besides WM_NCCREATE occurs, the function pulls out the
CEventHandler pointer, checks that it is non-null (it can happen), and then tries to
have the CEventHandler object handle the message. First, it sends it to the OnEvent fil-
ter; failing that, it goes to the HandleEvent function. If the event is still not handled,
it defaults to DefWindowProc.

Finally, an event is dispatched to the appropriate handler by
CEventHandler::HandTeEvent.

//event handling function
bool CEventHandler::HandleEvent(UINT uMsg,WPARAM wParam, LPARAM 1Param)

{
//what message was received?

TeamLRN



72 3. Building an Application Framework

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

switch(uMsg)
{
case WM_MOUSEMOVE://mouse movement
{
//grab x and y
int x=LOWORD(1Param);
int y=HIWORD(1Param);
//grab button states
bool blLeft=((wParamd8MK_LBUTTON)>0);
bool bRight=((wParam&MK_RBUTTON)>0);
bool bMiddle=((wParam&MK_MBUTTON)>0);
//grab shift state
bool bShift=((wParam&MK_SHIFT)>0);
bool bCtrl=((wParam&MK_CONTROL)>0);
//send to event handling function
return(OnMouseMove(x,y,bShift,bCtrl,bLeft,bRight,bMiddle));
}break;
case WM_LBUTTONDOWN://1eft mouse button press
{
//grab x and y
int x=LOWORD(1Param);
int y=HIWORD(1Param);
//grab button states
bool bLeft=((wParam&MK_LBUTTON)>0);
bool bRight=((wParam&MK_RBUTTON)>0);
bool bMiddle=((wParam&MK_MBUTTON)>0);
//grab shift state
bool bShift=((wParam&MK_SHIFT)>0);
bool bCtri=((wParam&MK_CONTROL)>0);
//send to event handling function
return(OnLButtonDown(x,y,bShift,bCtrl,bLeft,bRight,bMiddTe));
}break;
case WM_LBUTTONUP://1eft mouse button release
{
//grab x and y
int x=LOWORD(1Param);
int y=HIWORD(1Param);
//grab button states
bool blLeft=((wParam&MK_LBUTTON)>0);
bool bRight=((wParam&MK_RBUTTON)>0);
bool bMiddle=((wParam&MK_MBUTTON)>0);

TeamLRN



Simple Application Framework 73

#——1_”JrL_____ﬂ__IEEET"T::= [ E===———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE;““ﬂ____I‘I__Jm__T

//grab shift state
bool bShift=((wParam&MK_SHIFT)>0);
bool bCtri=((wParam&8MK_CONTROL)>0);
//send to event handling function
return(OnLButtonUp(x,y,bShift,bCtrl,bLeft,bRight,bMiddTe));
}break;
case WM_RBUTTONDOWN://right mouse button press
{
//grab x and y
int x=LOWORD(1Param);
int y=HIWORD(1Param);
//grab button states
bool blLeft=((wParam&MK_LBUTTON)>0);
bool bRight=((wParam&MK_RBUTTON)>0);
bool bMiddle=((wParam&MK_MBUTTON)>0);
//grab shift state
bool bShift=((wParam&MK_SHIFT)>0);
bool bCtrl=((wParam&MK_CONTROL)>0);
//send to event handling function
return(OnRButtonDown(x,y,bShift,bCtrl,bLeft,bRight,bMiddle));
}break;
case WM_RBUTTONUP://right mouse button release
{
//grab x and y
int x=LOWORD(1Param);
int y=HIWORD(1Param);
//grab button states
bool blLeft=((wParamdMK_LBUTTON)>0);
bool bRight=((wParam&MK_RBUTTON)>0);
bool bMiddle=((wParam&MK_MBUTTON)>0);
//grab shift state
bool bShift=((wParam&MK_SHIFT)>0);
bool bCtrl=((wParam&MK_CONTROL)>0);
//send to event handling function
return(OnRButtonUp(x,y,bShift,bCtrl,bLeft,bRight,bMiddle));
}break;
case WM_KEYDOWN://key press
{
//send to event handler
return(OnKeyDown(wParam));
}break;

TeamLRN



74 3. Building an Application Framework

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

case WM_KEYUP://key release
{
//send to event handler
return(OnKeyUp(wParam));
tbreak;
case WM_CHAR://character generated
{
//send to event handler
return(OnChar(wParam));
}break;
case WM_CREATE://window created
{
return(OnCreate());
}break;
case WM_DESTROY://window destroyed
{
return(OnDestroy());
}break;
case WM_PAINT://repaint
{
//begin painting
PAINTSTRUCT ps;
HDC hdc=BeginPaint(GetHWND(),&ps);

//call handler
OnPaint(hdc,&ps);

//end painting
EndPaint (GetHWND(),&ps);
return(true);
tbreak;
default://any other message
{
//not handled
return(false);
}break;

}

This function operates just like a WindowProc without actually being one. It is missing
the HWND parameter, but that is easily retrieved with a call to GetHWND, as shown in the

TeamLRN



A Sample Program 75

WM_PAINT handler. This function not only checks to see what event occurred, it also
removes the applicable data from wParam and 1Param before sending it off to the indi-
vidual event-handling function. At the CEventHandler level, all of the event-handling
functions, like OnMouseMove and OnKeyDown, just return false so that default processing
can occur. The exception to this rule is OnPaint, which returns true even though it
doesn’t matter what it returns. All WM_PAINT messages are minimally handled.

In a derived class, you could add new events to handle and simply call
CEventHandler::HandleEvent in the default block of the switch statement. See? It’s
extensible.

A Sample Program

The following sample program can be found on the accompanying CD-ROM. It is
entitled appframe2.

As they currently exist, CMessageHandler, CApplication, and CEventHandler are useless
because they are all pure virtual classes and cannot be instantiated. To make use of
them, we need to derive some classes that implement the pure virtual functions. At a
bare minimum, we need a derived class of CApplication and a derived class of CEvent-
Handler. For this test case, I have created CTestApplication and CTestEventHandler.

The Design of CTestApplication

In our sample program, we simply want to create a window. Just so that this window
responds to some sort of input, when the Esc key is pressed, we want the window to
close and the application to terminate.

The only things we need to add to CTestApplication are a constructor and destructor
(neither of which have to do anything in particular) and functions that implement
OnMessage, OnInit, OnIdle, and OnTerminate. So, the definition for CTestApplication
should look something like this:

class CTestApplication : public CApplication
{

private:
//main event handler
CTestEventHandler* m_pehMain;
public:
//constructor
CTestApplication();

TeamLRN



76 3. Building an Application Framework

//destructor
virtual ~CTestApplication();
//implement pure virtual functions(message handler)
bool OnMessage(int MessagelD,int argc,void* argv[]);
//implement pure virtual functions(application)
bool OnInit();
void OnIdle();
void OnTerminate();
s

Our window will be controlled through a CTestEventHandler object, and even though
we haven’t yet designed that class, we know we will eventually need to store a
pointer to it. Since we aren’t making use of the message-handling functionality
inherent in CMessagehandler, we know that the OnMessage function will basically do
nothing except return a value. Similarly, since there is no idling activity for this
application, 0nIdle will wind up simply a stub function. So, really, only OnInit and
OnTerminate need to have anything in them.

The Design of [TestEventHandler

Now this is some cool stuff. With CTestEventHandler, we only have to have a few mem-
ber functions overridden. We first need a constructor, which will create the window
and associate the window with the object being created. We also have to implement
the OnMessage function from CMessageHandler, even though it will do nothing.

Other than that, we need only concern ourselves with the events we will be process-
ing, namely OnKeyDown (to check for an Esc keypress) and OnDestroy (to post a quit
message).

class CTestEventHandler : public CEventHandler

{

public:
//constructor
CTestEventHandler(CMessageHandler* pmhParent);
//destructor

virtual ~CTestEventHandler();

//implement message handling function

bool OnMessage(int MessagelID,int argc,void* argv[]);
//override key press handler

bool OnKeyDown(int iVirtKey);

//override destroy window handler

bool OnDestroy();

TeamLRN



A Sample Program 77

s

This definition is a whole lot shorter than CEventHandler. Most of our events can
undergo default processing, which is already handled by the CEventHandler imple-
mentation of the events. (This is why the individual event handlers are not pure vir-
tual functions.) We only need to override the handlers that we actually need to deal
with.

The Implementation of
L TestApplication

The implementation for CTestApplication is so short that I can put the entire code
here:

finclude "TestApplication.h"
//constructor
CTestApplication::CTestApplication()
{
}
//destructor
CTestApplication::~CTestApplication()
{
}
//implement pure virtual functions(message handler)
bool CTestApplication::0nMessage(int MessagelD,int argc,void* argv[])
{
//simply return false
return(false);
}
//implement pure virtual functions(application)
bool CTestApplication::0nInit()
{
//create new event handler
m_pehMain= new CTestEventHandler(this);
//return true
return(true);
}
void CTestApplication::0nIdle()
{
//do nothing

TeamLRN



78 3. Building an Application Framework

void CTestApplication::0OnTerminate()

{
//destroy event handler
delete m_pehMain;

}

//global application

CTestApplication TheApp;

There are only three items to which you should pay particular attention. First, dur-
ing CTestApplication::0nInit, a CTestEventHandler is created and then the function
returns true, allowing CApplication::Execute to continue with the application.
Second, CTestApplication::0OnTerminate destroys the CTestEventHandler (since it was
dynamically created in OnInit). Third, after the implementation of CTestApplication,
a single variable of type CTestApplication is created called TheApp. The actual name of
this variable is unimportant, but this declaration causes the entire framework to do
its job.

The Implementation of
L TestEventHandler

The implementation of CTestEventHandler is only a few lines longer than the imple-
mentation of CTestApplication.

ftinclude "TestEventHandler.h"

//constructor

CTestEventHandler::CTestEventHandler(CMessageHandler* pmhParent):
CEventHandler(pmhParent)//initialize parent class

{
//create a window
CEventHandler::Create(this,0,"Test
Application" ,WS_VISIBLE|WS_CAPTION|WS_SYSMENU|WS_BORDER,0,0,320,240,NULL,NULL)
}
//destructor
CTestEventHandler::~CTestEventHandler()
{
}

//implement message handling function
bool CTestEventHandler::0nMessage(int MessagelD,int argc,void* argv[])

{
//by default, return false
return(false);

TeamLRN



How Do We Benefit? 79

}

//override key press handler

bool CTestEventHandler::0nKeyDown(int iVirtKey)
{

//check for escape key
if(iVirtKey==VK_ESCAPE)
{
//destroy the window
DestroyWindow(GetHWND());
//handled
return(true);
}
//not handled
return(false);
}
//override destroy window handler
bool CTestEventHandler::0nDestroy()
{
//post a quit message
PostQuitMessage(0);
//handTled
return(true);
}

Essentially, the destructor and 0OnMessage functions can be ignored because they do
nothing in particular. Notable functions include the constructor (which creates a
window to associate with the event-handler object) and the handlers for OnkeyDown
and OnDestroy. In the case of OnKeyDown, it simply checks for an escape key. If it detects
one, it destroys the window (which causes OnDestroy to be called). Finally, OnDestroy
posts a quit message to the event queue, which allows CApplication::Execute to get out
of the event loop and terminate.

How Do We Benefit?

Now, if you are like me, you would have gone into the sample program, counted
the lines in CTestApplication.h/cpp and CTestEventHandler.h/cpp, and seen that there
are way more than double the lines of code compared to the beginning of the
chapter. You would have scoffed and told me where to go for suggesting that by
doubling the number of lines you are somehow working less.

TeamLRN



a0 3. Building an Application Framework

But I never promised there would be fewer lines of code. I simply stated that you
could get work done much faster if the core code that existed in all applications
did not have to be rewritten each time.

The code for CMessageHandler, CEventHandler, and CApplication will never, ever need to
be modified. You can derive classes from them all day long, and they’ll serve you
well. In addition, they have organized the core of your application rather well.
Event handlers no longer require that you go into a gigantic switch, monkey
around with a case here and there, and manipulate the wParam and 1Param values to
get the information you need. Certainly, the implementation of CEventHandler that I
showed here could stand to have many more of the window message constants han-
dled, but it’s a decent start, and you could put in handlers for those other mes-
sages. Most importantly, you only have to implement that case one time and then
use it ever after.

Right now, if I were to give you an assignment to take these core classes and build a
small doodling application that draws white on a black background when the left
mouse button is pressed, you could quickly throw it together with a derived class of
CApplication and CEventHandler. You’d simply have to override OnPaint, OnMouseMove,
and perhaps OnLButtonDown and OnlLButtonUp.

Summary

Although this chapter gives you a decent application framework (albeit a very sim-
ple one), it is not intended to tell you how you should organize your code, nor is
this framework necessarily the best framework to use in all cases. What you should
get out of this chapter is ideas on how to build your own framework. Likely, many
of the ideas you’ve seen here are ones you will want to follow. The framework I pre-
sented here is a simplified version of the framework I use in my “real” code. There
is much, much more you can do with it to make it a nice, robust framework—
usable for just about anything you need.

TeamLRN



-L] i .—-~--—-—-~--—v—¥I U_' I _‘I_._ —.__!.I——r'_‘—|_l_ld_-_'_‘_

e s = =T = P, B
TRICK 4
LISER
ITNTERFACE
H1IERARCHIES
N
L%
;jiﬂﬂﬂj o he— e

TTTTTTT



a2 <. User Interface Hierarchies

Introduction

A couple of years back, I was working on a value title (its name is not important). I
started the day before the due date (never a good sign), and one of the items I was
tasked with was to maintain the custom wuser interface (UI) system.

To give a small amount of background on exactly how it had to work, this game ran
under Windows and used DirectX. (The graphics were run through DirectDraw.)
The input was all gained through Directlnput. All of the drawing was done through
the game’s graphics “engine.” The controls—including window frames, buttons,
text, and so on—were all resources loaded into the game, and a simple function
call would add whatever graphic was needed to the queue, which would be updated
each frame.

As I was looking through the code for the Ul system, my heart began to sink. This
game had originally been written in C and then moved into C++ by taking groups
of functions and putting a class around them. Each user interface element (win-
dow, button, text box, check box, horizontal scroll bar) was hard-coded as far as
how it worked, and each window simply had an array (an array!) of 10 of each of
the UI controls.

To make things worse, all of the input from a Ul window and its controls was han-
dled through a single function. That’s right, a single function for all the different
types of windows that could be called up in the game.

Now, I have been an object-oriented programmer for some time, and looking at
the state of this user interface system just made me feel how wrongly designed it
was. Obviously, not a whole lot of thought was put into it by the programmer who
had worked on it before me. (That programmer had been fired, which was why I
now had the task of working with it.)

To me, it seemed as though a Ul system is a natural thing to which to apply object-
oriented techniques. There is a master Ul control (representing the entire screen),
and each window would be a child of that master control. Buttons, text boxes, check
boxes, and other widgets would be child controls of the windows, ad nauseam.

Essentially, this required that I rewrite the entire Ul system (while at the same time
not breaking the code, which worked even though it was kludgey). I learned a lot
in the process. Most notably, I learned what not to do when making a Ul system. In

TeamLRN



The Role of Ul 83

this chapter I hope to pass on the lessons I learned while working on that project
so that you can avoid the same pains.

The Role of UI

Many game developers seem to think that a user interface is a trivial piece of the
game and that as long as they can cobble together something really quick to do the
job, they are done. This has caused the downfall of many games (especially in the
value market). A klunky interface has caused many players to simply stop playing
because they had to wrestle with the game to do what they wanted to get done.

Let’s think about this logically for a moment. A computer game or console game is
a piece of interactive entertainment. The key word here is “interactive.” If we just
wanted entertainment, we’d go out and rent a DVD, right?

To be interactive, a game has to respond to the player, the player then responds to
the game, and so on. Without this interactivity, it’s not a game.

Now, how can the game respond to the player? The player must, naturally, have some
manner of communicating with the game. This takes the form of some sort of input
device: a keyboard, a mouse, a gamepad, or any number of other input devices.

Another aspect of this is giving feedback to the player and letting him know that he
has accomplished something or that he has failed to do something. Both positive
and negative reinforcement will help the player gain better control over what he is
doing in the game.

An example of this sort of feedback is just moving the mouse around. As the player
moves the mouse, the cursor moves proportionally to how far the mouse has moved.
Since we all use computers so much these days, it’s easy to forget just how important
that type of feedback is. We communicate with the computer by moving the mouse,
and the computer responds by moving the cursor. Communication goes two ways.

Furthermore, there is other feedback that should be present. If the primary con-
trolling device for the game is the mouse, then when the mouse is over something
with which the player can interact, there should be some sort of feedback to show
him that. Perhaps the text on a button changes its color or a red outline appears
around an object in the game, indicating that if the player clicks on that object
something will happen.

So, a user interface is not just buttons and windows and little icons. It is the com-
munication pipeline between the player and the game, and vice versa. It should be

TeamLRN



84 <. User Interface Hierarchies

obvious to anyone that making a Ul system is anything but trivial. Instead, it is per-
haps the most important aspect of your game. Sure, those Bézier surfaces are neat,
your particle effects are spectacular, and the rendering of your 3-D world is breath-
taking. But if you trivialized your Ul system, you might as well just quit and go into
film school.

Ul Design Considerations

A good user interface system, despite all I have said so far, is not all that hard to
design and implement. No, I am not contradicting myself here. A Ul system is still
a nontrivial piece of work, but like all other programming tasks, it is a problem-
solving endeavor. If you just put a little effort into solving the problem and think
about things in an organized manner rather than just throwing something
together, you’ll do just fine.

In the remainder of this chapter, we will be concentrating on performing the “nor-
mal” tasks of a Ul—namely, things like windows, buttons, text boxes, and the like.
Collectively, I refer to these things as “UI widgets” and, more often than not, simply
“widgets.”

I am making a separation here between interacting with these widgets and interact-
ing with the game itself. When a window pops up on the screen and the user inter-
acts with it instead of what is going on in the game itself, the Ul preempts input
from the game. That means that if user input is going to the UI system, it should
not be filtering into the game afterward. With some widgets (like a full-screen status
window), this might require that you pause what is going on in the game while the
user fidgets with the Ul Other times this is not the case, and gameplay progresses
even as the user plays with the UI (like in a real-time strategy game, when you are
giving commands to a unit by pressing buttons off to the side of the screen).

The Widget Tree

Such a Ul system is also hierarchical in nature. One widget will contain any num-
ber of other widgets, like a window that contains buttons to press. An individual
button widget may not contain any other widgets at all. Also, there must be a single
master widget that acts as the root of the tree from which all other widgets grow.
The master widget (or, if you prefer, the “widget king”), doesn’t really do anything
on its own. It simply keeps the Ul system together. Consider Figure 4.1.

TeamLRN



Ul Design Considerations

A Figure 4.1
E A sample Ul layout
|

[ F+—-o

F—

| _H—

C B D [ +—
[ +—«

C— FH—1L

In Figure 4.1, A represents the entire screen, or the master widget. B and F repre-
sent “window” widgets. C, D, and G through L represent “button” widgets, and E
represents a “label” widget containing textual information or perhaps a picture of
something.

Just from looking at it, it is reasonably obvious that B and F are both “contained” by
A; that C, D, and E are “contained” by B; and that G through L are “contained” by
F. The relationship is shown in tree form in Figure 4.2.

A Figure 4.2

/\ A tree view of the Ul

/T\ /FN -
C D E G H | J K L

This sort of relationship is best represented as a parent/child relationship. A would
then be the parent of B and F, and so on. In a hierarchy like this, it is paramount
that any particular widget in the tree must be able to communicate with both its
parent as well as its children, so there will need to be some mechanism in place to
keep track of both of these things, and here is why.

TeamLRN

85



86 <. User Interface Hierarchies

The Ul tree is used for two tasks. One task is to display whatever graphics are asso-
ciated with the various widgets currently in existence. The other task is to trap user
input to any of the widgets in the tree.

Z Ordering

Now we get into the concept of Z order. Certain widgets will be “closer” to the user
than other widgets. Widget A, the master widget, is the farthest back and remains
so at all times. All of its children are “in front” of it, just as all of their children are
“in front” of them. Most of the time, this is not a problem. However, if two children
of the same widget overlap on the screen, the one that is drawn last will appear to
be “in front” of the one that was drawn first.

Why is this important? Because if the user interacts with a widget, he expects that
the widget “closest” to him is the one with which he is interacting, even if two wid-
gets overlap. Therefore, you have to be careful in how you handle input and how
you handle displaying the widgets.

When updating the Ul system on the display, you start at the root (the master wid-
get) and follow this procedure:

1. Redraw the widget’s background onto its own bitmap.
2. Redraw all child widgets in order from the first created to the last created.
3. Display the widget on its parent’s bitmap.

It is important here that each widget get its own drawing area. Certainly, this can be
done in other ways, but this is the way I have chosen for this chapter. I'm not saying
that it is the one true way. You might instead just want child widgets to draw directly
to the screen. The order remains the same.

When sending input to the Ul system, the process is reversed, as follows:

1. Check all child widgets in order from the last created to the first created to
see if input has been intercepted.

2. Check this widget for input interception.

To simplify these concepts, you will want to draw your widgets from back (farthest
from user) to front (nearest to user) but check for input from front to back.

Notification

Another common task for a widget is to notify its parent that some event has
occurred. You might have a window widget that contains two button widgets, one

TeamLRN



Ul Design Considerations 87

that says OK and one that says Cancel. The button widgets only have information
pertaining to what they need to do. They know what text to display, and they typi-
cally will have an ID number of some sort. (For the sake of discussion, the OK but-
ton has an ID of 1, and the Cancel button has an ID of 2.) The buttons don’t have
a clue about what happens when they are clicked; they only know how to recognize
when this occurs. When one of them is clicked, it notifies its parent, indicating
what its button ID is. It is then up to the window to make sense of that information
and pass down a new message to its own parent, indicating which button was
pressed. This sort of thing typically filters down to the master widget, which com-
municates to the application that a particular command has been given through
the Ul system, and the application responds to that command.

Appearance

Now we get to what a particular widget might look like. Of course, each type of wid-
get will look different from another type of widget. After all, a text box looks differ-
ent than a button, which looks different than a check box, and so on. Basically what
we are looking for here is how the appearance of a widget is similar to all other wid-
gets. We get down to this basic level of sameness and put that into our design.

A widget, while theoretically it can have any shape and size, is probably most easily
implemented as consisting of a rectangular area. Computers that make use of
raster displays are well suited to rectangles rather than shapes like ovals or poly-
gons. Plus, if we really feel a need to do so, we can still use a bounding rectangle
and only draw to portions of the image that are the actual shape of the image, so
we can have ovals and polygons if we really want.

The rectangular areas have a couple of aspects. First, a widget will have a position.
This position will be in relation to its parent. Since it is convenient to do so, the
position will record the upper-left corner of the rectangle. The other aspect is size,
which we will store as the width and height of the widget.

Focus

Human beings and computers, although they can perform many tasks, can only
perform one task at a time. When you are running applications on your computer,
such as a spreadsheet, a word processor, a game, and a calculator, certainly all of
these things are running on the computer at the same time, but you are only going
to use one of them at a time and switch between them. You are “focused” on a sin-
gle task, even though you are switching back and forth between tasks.

TeamLRN



a8 <. User Interface Hierarchies

A similar concept applies to a user interface and the widgets that make it up. If
there are two window widgets, you will only interact with one of them at a time. If
you are typing information into a text box, only that text box should receive key-
board input, and all other widgets that might take keyboard input should be cir-
cumvented. This is the concept of input focus and/or input capture.

When you move the mouse over a button and press the left mouse button, the but-
ton will be the only widget to receive mouse input until you have released the left
mouse button. If you release the left button while still inside of the widget, what-
ever action was to take place after clicking the button should occur. If you move
the mouse outside of the widget, the action is canceled.

Most of the time, the idea of focus can be handled by the Z order of widgets. The
widget at the top of the tree will receive input before other controls. Under certain
circumstances, however, you need to override this behavior by having a particular
widget “capture” input from one of the input devices, like for a text box or for a
button when you press the left mouse button.

Widget Members

Now that we have really taken a look at the needs of a UI hierarchy, we can start to
solidify it into a class definition. I like to start with what kind of data is abstracted
(that is, members) and then work out what kinds of operations (that is, member
functions) are required for everything to work properly.

From the previous discussion, we can determine that, at a bare minimum, the fol-
lowing pieces of information are needed if we want to take care of all of the design
considerations:

1. A pointer to the widget’s parent
2. An ordered container for all of the widget’s children

3. A bitmap buffer/drawing context onto which the widget will be drawn and
from which the widget can be drawn onto other widgets or the screen

4. The position and size of the widget
5. Static pointers to the widgets that currently have keyboard or mouse focus

Further, we must have a way, within this set of data, to determine the difference
between the master widget and all other widgets. For our purposes, we can simply
say that the master widget has a NULL parent, but we shall also provide a static
pointer to the master widget.

TeamLRN



Widget Members a9

So, if we were calling our class CWidget, this is one way to represent each of the data
items:

class CWidget

{
CWidget* m_pParentWidget; //pointer to parent widget
std::Tist<CWidget*> m_lstChildWidgets; //1ist of child widgets
HDC m_hDC; //drawing context handle
HBITMAP m_hbmWidget; //bitmap data for the widget's appearance
HBITMAP m_hbm01d; //required for storing the old bitmap from a memory

DC

RECT m_rcBounds; //size and position of the widget

static CWidget* s_pKeyboardFocus; //keyboard focus widget

static CWidget* s_pMouseFocus; //mouse focus widget

static CWidget* s_pMasterWidget; //main widget

static std::1ist<CWidget*> s_lstDeletelist; //1ist of widgets to
delete

static std::Tist<CWidget*> s_lstMovelist; //1ist of widgets to move in
the z order
static CWidget* s_pMouseHover; //pointer to the widget over which the
mouse is hovering
static HWND s_hWnd; //window with which the master widget communicates
s

There are a few static members—namely s_lstDeletelist, s_IstMovelist,
s_pMouseHover, and s_hWnd—that I did not discuss as a part of the design considera-
tion. These are necessary because of the way the hierarchy is structured. During
input processing and during displaying, we have to recursively loop through lists of
children. If we have a need to move a widget to the top of a list or if we delete an
item while in the midst of moving through these lists, we can start to have problems
like a widget skipping its turn or getting two turns in the recursive loop. To combat
this, whenever a widget is to be destroyed, instead of simply destroying it right then
and there, we move it to the delete list (s_IstDeleteList) and process the delete list
only after we have looped through all of the widgets in the tree. Similarly, when we
want to move a widget to the top of its parent’s Z order, we simply place it on the
list and then process all of the moves once we have gone through all of the widgets
in the tree. This makes things much less messy codewise.

The s_pMouseHover member is meant to represent the widget over which the mouse
is currently hovering. Often, if hovering over a button, we would like to change the
color of the button or the text on the button to give feedback to the user that click-
ing here will do something.

TeamLRN



L= [ 1] <. User Interface Hierarchies

Finally, s_hWnd is a window handle. Since the main widget will be interacting with a
window, it cannot permanently have a Handle of a Device Context (HDC) to work
with. Instead, it must borrow one before doing any drawing and must return it
when done drawing. If you were implementing a Ul system in DirectX, this would
be replaced by a pointer to the back buffer.

One thing you might wonder about is my choice of the STL list template as the
container for child widgets and for the delete list and move list. This was not the
only possible container to use, of course. The other option was to use an STL vec-
tor. Both of these containers are resizable, and with an unknown number of chil-
dren, this is necessary. I found vector to be a poor choice for two reasons. First, the
strength of vector, which is that it provides fast random access into the container,
goes unused. When going through a child list, we will simply be starting at one end
and processing through to the other end, so random access is of no importance.
Second, the slowness of insertion into a vector is not a good thing. We will only be
adding children to the end of the list, so vector makes a poor choice.

There is, of course, a slight problem with using the STL list template. When a wid-
get is removed from the child list, it will have to be iteratively searched for. Of
course, this would also be true in the case of vector, and the lookup would take just
as much time, so in conclusion, using list instead of vector is still not a bad choice.

Widget Member Functions

As you have probably been able to tell, I'm big into being object-oriented. As a
result, I’'m also a believer in encapsulation, so I tend not to have any data members
that can be directly accessed by the user of a class. So, naturally, I would implement
CWidget’s member functions with a number of getter and setter functions. Your style
might differ, so for your own Ul system, you can implement it anyway you like. I'm
not one to tell anybody that my way is the one true way. Suffice it to say, however,
that I am going to make all of the data members private.

Static Member Accessors

This class has seven static members, and since they all need to be private, they need
accessors. Some of the static members are read-only (or rather, read-mostly), so
those setters will have to be private or protected rather than public. The getters,
however, will almost universally be public.

TeamLRN



Widget Member Functions =] |

And so, here is the scheme I have come up with for static member accessors. The
data members are not listed here so that we can focus on only the member func-
tions we are discussing.

class CWidget
{
private:
static void SetHWND(HWND hWnd);//sets s_hWnd
static void SetMasterWidget(CWidget* pWidget);//sets s_pMasterWidget
protected:
static HWND GetHWND();//retrieves s_hWnd
static void SetKeyboardFocus(CWidget* pWidget);//sets s_pKeyboardFocus
static void SetMouseFocus(CWidget* pWidget);//sets s_pMouseFocus
static void SetMouseHover(CWidget* pWidget);//sets s_pMouseHover
static std::1ist<CWidget*>& GetDeletelist();//retrieve s_lstDeletelist
static std::1ist<CWidget*>& GetMovelist();//retrieves s_lstMovelist
public:
static CWidget* GetMasterWidget();//retrieves s_pMasterWidget
static CWidget* GetKeyboardFocus();//retrieves s_pKeyboardFocus
static CWidget* GetMouseFocus();//retrieves s_pMouseFocus
static CWidget* GetMouseHover();//retrieves s_pMouseHover
s

For those of you keeping score, Table 4.1 shows each static member and whether
the getter and setter are public, protected, or private. In a moment, I will describe
my reasoning for each of these decisions.

Table 4.1 Static Member Accessor Accessibility

Member Getter Setter
s_pKeyboardFocus Public Protected
s_pMouseFocus Public Protected
s_pMasterWidget Public Private
s_lstDeletelist Protected N/A
s_lstMovelist Protected N/A
s_pMouseHover Public Protected
s_hWnd Protected Private

TeamLRN



= = <. User Interface Hierarchies

Two of the setters, the ones for s_pMasterWidget and for s_hWnd, are private and there-
fore will only be accessible by the member functions of CWidget itself. The reason
for this is simply because there will never be a need for anything but CWidget to set
these values. Eventually, we will have a constructor for creating the master widget,
and this constructor will take care of the master widget pointer as well as the main
window handle.

The rest of the setters have protected access. There simply is no need for the user
of the class to directly manipulate these values. It should be all handled within the
class and derived classes directly. The delete list and move list simply don’t have set-
ters. A setter is unnecessary in those cases.

For the getters, the delete list, the move list, and s_hind are protected. CHidget and
its derived classes may have a need to look at these members, but looking at them
outside of the class is not useful and can be dangerous.

The rest of the getters are public and can be examined at any time.

Indirect Static VMiember Accessors

Several of the static members of CWidget are simply pointers to various CHidgets.
These include s_pKeyboardFocus, s_pMouseFocus, s_pMouseHover, and s_pMasterWidget.
With the current few member functions we have come up with thus far, for a widget
to determine whether it is the one that has mouse focus, you would have to use the
following code:

if(GetMouseFocus()==this)
{

//this widget has mouse focus
}

There is similar code to check and see whether the widget is the master control,
has keyboard focus, or is the widget over which the mouse is hovering. I dislike
code like the preceding example. Ideally, we should have some additional nonstatic
member functions to check for these things, as follows:

class CWidget
{

public:
bool HasMouseFocus();//checks if this widget has mouse focus
bool HasKeyboardFocus();//checks if this widget has keyboard focus
bool HasMouseHover();//check to see if this widget is the mouse hover
widget

TeamLRN



Widget Member Functions g3

bool IsMaster();//checks to see if this is the master widget
}s

In my opinion, calling these member functions is a great deal more readable than
doing an if with a ==this following it. These are indirect static member accessors.

Another set of indirect static member accessors is the manner in which we place a
widget onto the delete list or the move list. In normal code, with the current acces-
sors we have, it would look something like this:

//first, ensure that this widget isn't already on the Tlist
GetDeletelist().remove(this);

//add this widget to the delete Tist
GetDeletelist().push_back(this);

Again, this code is a little unwieldy. For one thing, it is a two-step process and
should only be a one-step thing. So, let’s add a couple of member functions to
automate this for us.

class CWidget
{
public:
void Close();//add this widget to the delete Tist
void BringToTop();//add this widget to the move 1Tist
s

Again, it is much more readable to simply tell a widget to close itself than to add it
to a list directly (and a similar idea for moving the widget).

Nonstatic Miember Accessors

There are six nonstatic members of CWidget: m_pParentWidget, m_1stChildWidgets, m_hDC,
m_hbmWidget, m_hbm01d, and m_rcBounds. Only a few of these members require direct pub-
lic access. Of these members, m_pParentWidget and m_hDC need public getter functions.
The m_rcBounds member requires indirect public getters (to retrieve position and size
information but not the RECT itself) as well as public accessors to manipulate position.
(I prefer to keep controls a fixed size.) The rest of the members should only have
protected access. Derived classes may need to look at them, but the user of the class
should not need to. So, for nonstatic member accessors, this is what I've come up with:

class CWidget
{
protected:
HDC& DC();//return reference to m_hDC

TeamLRN



q4q <. User Interface Hierarchies

HBITMAP& Bitmap();//return reference to m_hbmWidget
HBITMAP& 01dBitmap();//return reference to m_hbm0ld
RECT& Bounds();//return reference to m_rcBounds
std::1ist<CWidget*>& ChildList();//return reference to child Tist
public:
void SetParent(CWidget* pWidget);//set new parent widget
CWidget* GetParent();//retrieve parent widget
bool HasParent();//returns true if parent is non-null
void AddChild(CWidget* pWidget);//add a child to the list
bool RemoveChild(CWidget* pWidget);//remove a child from the Tist
bool HasChild(CWidget* pWidget);//check for a child's existence
bool HasChildren();//check to see if this widget has any children
int GetX();//return x position (relative to parent)
int GetY();//return y position (relative to parent)
void SetX(int iX);//set x position(relative to parent)
void SetY(int iY);//set y position(relative to parent)
int GetWidth();//return the width of the widget
int GetHeight();//return the height of the widget
int GetLeft();//retrieve the Teft coordinate(global coordinates)
int GetRight();//retrieve the right coordinate(global coordinates)
int GetTop();//retrieve the top coordinate(global coordinates)
int GetBottom();//retrieve the bottom coordinate(global coordinates)
HDC GetDC();//return the m_hDC
}s

We are starting to rack up quite a number of member functions for CWidget! So far,
these have only been accessor functions, not functions that make CWidget do its job
yet. I told you that this task is nontrivial!

Constructors and Destructors

As far as construction and destruction are concerned, we will need two separate
constructors: one for constructing a master widget and one for constructing a non-
master widget. A master widget has no parent and is associated with a window han-
dle. A nonmaster widget has a parent and also requires a position and size. The
destructor is just like any other destructor. Therefore:

class CWidget

{

public:
CWidget (HWND hWnd);//master widget constructor
CWidget(CWidget* pWidgetParent,int iX, int iY, int iWidth, int

TeamLRN



Widget Member Functions g5

iHeight);//nonmaster widget constructor
virtual ~CWidget();//destructor
static void Destroy();//destroy the master widget
}s

The destructor of CWidget is responsible for cleaning up not only the widget in ques-
tion but also all child widgets, so completely cleaning up the UI hierarchy is simply
a matter of destroying the master widget. The static member function Destroy will
allow us to do that without having a pointer to the master widget.

Displaying Widgets

One of the primary tasks of our UI hierarchy is to get the widgets to properly display.
Each widget will know how to redraw and display itself. At the same time, though,
the user of the Ul hierarchy should be able to update the entire widget tree with a
single call, and this call should not require having a pointer to the master widget.

Prior to the hierarchy displaying itself, any widgets on the delete list and move list
should be taken care of. This might sound like a complicated process, but it can be
simply implemented with only three functions.

class CWidget

{

public:
void Display();//displays the widget and all child widgets
virtual void OnRedraw();//redraws the widget
static void Update();//updates all widgets

s

In derived classes of CWidget, only OnRedraw needs to be overridden. The Display func-
tion loops through all children and redraws them. When making use of CWidget,
you need only call CWidget::Update(), and the entire hierarchy will be redrawn. The
call to Update will also get rid of any widgets currently on the delete list and will
move any widgets currently on the move list.

Receiving Input

As far as input processing is concerned, there are only eight types of events that we
are really concerned with: key presses, key releases, character generation, mouse
moves, left-mouse-button presses, left-mouse-button releases, right-mouse-button
presses, and right-mouse-button releases. If we really wanted to, we could add left

TeamLRN



= [ = <. User Interface Hierarchies

and right double-clicks, middle-mouse-button-events, and mouse wheel events, but
we’ll keep it simple for the moment.

Since our Windows application gets its events through WndProc, we will need to use
the UI hierarchy as an event filter of sorts. If the UI system processes the event, we
need not process it further. Also, we need only send the event data to the master
control (although this will be a static function, so we won’t need to have the master
widget’s pointer to do this), and it will send the event data up the hierarchy and
attempt to handle it.

class CWidget
{
public:
bool HandleEvent(UINT uMsg,WPARAM wParam,LPARAM TParam);
virtual bool OnKeyDown(int iVirtKey);//handle a key press
virtual bool OnKeyUp(int iVirtKey);//handle a key
virtual bool OnChar(TCHAR tchCode);//handle character generation
virtual bool OnMouseMove(int iX,int iY,bool blLeft, bool
bRight);//mouse movement
virtual bool OnLButtonDown(int iX,int iY,bool blLeft,bool
bRight);//Teft button press
virtual bool OnRButtonDown(int iX,int iY,bool bLeft,bool
bRight);//right button press
virtual bool OnLButtonUp(int iX,int iY,bool blLeft,bool bRight);//left
button release
virtual bool OnRButtonUp(int iX,int iY,bool bLeft,bool
bRight);//right button release
static bool FilterEvent(UINT uMsg,WPARAM wParam,LPARAM 1Param);//send
event to master control
s

Tying CWidget’s event filter will now be an easy task. With the data from a window mes-
sage, you simply send it to CWidget::FilterEvent, and if this function returns true, you do
no further processing. If it returns false, the application or game should process it.

Notification

Finally, we have to put in member functions for the task of notification. For this,
I’'m going to cheat a little bit and borrow some code from another part of this book
(Trick 3, “Building an Application Framework”). I am going to borrow all three of
the core classes presented there (it’ll make life easier . . . trust me) but especially
CMessageHandler, from which we will make CWidget a derived class.

TeamLRN



Widget Member Functions q7

So, for a brief rehash, here is CMessageHandler:

class CMessageHandler
{

private:
//the parent of this message handler
CMessageHandler* m_pmhParent;

public:
//constructor
CMessageHandler(CMessageHandler* pmhParent);
//destructor

virtual ~CMessageHandler();

//set/get parent

void SetMessageParent(CMessageHandler* pmhParent);

CMessageHandler* GetMessageParent();

//handles messages, or passes them down the tree

bool HandleMessage(int MessagelD,int argc,void* argv[]);

//triggered when a message occurs

virtual bool OnMessage(int MessageID, int argc, void* argv[]1)=0;
s

This class already has provisions for sending messages down a hierarchy. It also
already has a parent/child type of structure but not one as rich as the one CWidget
uses. Another reason we want to use CMessageHandler as a base class for CWidget is so
we can set up the application and/or event handler to be the recipient of messages
from the UI system.

Because of this, we do need to change one of CWidget's constructors. Since we are
using the application framework and we need to supply all widgets (even the mas-
ter widget) with a message parent, we should change this:

CWidget::CWidget (HWND hWnd);//master widget constructor
to this:
CWidget::CWidget(CEventHandler* pehParent);//master widget constructor

We can grab the HWND from the event handler, so we don’t actually need the window
handle supplied to the widget. Also, the event handler will be the message parent
of the master widget, so proper notification can take place. Neat. Figure 4.3 shows
how the basic object hierarchy will work.

At the top of Figure 4.3 is the application, the root of the object tree. It is the par-
ent of the event handler, which represents our main window. The event handler, in

TeamLRN



938 <.

User Interface Hierarchies

turn, is the parent of the master widget, which is the ultimate parent of all other
widgets. The important thing here is that there is a line of communication possible
between a child control six steps down the line and the application itself.

Event Handler

Master Control

Child Controls

Figure 4.3

Application The object hierarchy using the application framework

Class Definition

Now, before we move on to actual implementation, let’s take one final look at the
class definition of CWidget. So far, we have only looked at bits and pieces, and it
would be nice to finally see it all put together.

class CWidget: public CMessageHandler

{
private:

DC

CWidget* m_pParentWidget; //pointer to parent widget
std::Tist<CWidget*> m_lstChildWidgets; //1ist of child widgets

HDC m_hDC; //drawing context handle

HBITMAP m_hbmWidget; //bitmap data for the widget's appearance
HBITMAP m_hbmO1d; //required for storing the old bitmap from a memory

RECT m_rcBounds; //size and position of the widget

static CWidget* s_pKeyboardFocus; //keyboard focus widget

static CWidget* s_pMouseFocus; //mouse focus widget

static CWidget* s_pMasterWidget; //main widget

static std::1Tist<CWidget*> s_lstDeletelist; //1ist of widgets to

TeamLRN



Class Definition qQqg

#——1_”JrL_____ﬂ__IEEET"T::= [ E===———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE;““ﬂ____I‘I__Jm__T

delete

static std::1ist<CWidget*> s_lstMovelist; //1ist of widgets to move in
the z order

static CWidget* s_pMouseHover; //pointer to the widget over which the
mouse is hovering

static HWND s_hWnd; //window with which the master widget communicates

static void SetHWND(HWND hWnd);//sets s_hWnd

static void SetMasterWidget(CWidget* pWidget);//sets s_pMasterWidget

protected:
HDC& DC();//return reference to m_hDC
HBITMAP& Bitmap();//return reference to m_hbmWidget
HBITMAP& 01dBitmap();//return reference to m_hbm01d
RECT& Bounds();//return reference to m_rcBounds
std::1ist<CWidget*>& ChildList();//return reference to child Tist
static HWND GetHWND();//retrieves s_hWnd
static void SetKeyboardFocus(CWidget* pWidget);//sets s_pKeyboardFocus
static void SetMouseFocus(CWidget* pWidget);//sets s_pMouseFocus
static void SetMouseHover(CWidget* pWidget);//sets s_pMouseHover
static std::1ist<CWidget*>& GetDeletelist();//retrieve s_lstDeletelist
static std::1ist<CWidget*>& GetMovelist();//retrieves s_lstMovelist
public:

CWidget(CEventHandler* pehParent);//master widget constructor

CWidget(CWidget* pWidgetParent,int iX, int iY, int iWidth, int
iHeight);//nonmaster widget constructor

virtual ~CWidget();//destructor

bool HasMouseFocus();//checks if this widget has mouse focus

bool HasKeyboardFocus();//checks if this widget has keyboard focus

bool HasMouseHover();//check to see if this widget is the mouse hover
widget

bool IsMaster();//checks to see if this is the master widget

void SetParent(CWidget* pWidget);//set new parent widget

CWidget* GetParent();//retrieve parent widget

bool HasParent();//returns true if parent is non-null

void AddChild(CWidget* pWidget);//add a child to the 1ist

bool RemoveChild(CWidget* pWidget);//remove a child from the Tist

bool HasChild(CWidget* pWidget);//check for a child's existence

bool HasChildren();//check to see if this widget has any children

int GetX();//return x position (relative to parent)

int GetY();//return y position (relative to parent)

void SetX(int iX);//set x position(relative to parent)

void SetY(int iY);//set y position(relative to parent)

TeamLRN



100

<. User Interface Hierarchies

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

}s

int GetWidth();//return the width of the widget

int GetHeight();//return the height of the widget

int GetlLeft();//retrieve the Teft coordinate(global coordinates)

int GetRight();//retrieve the right coordinate(global coordinates)

int GetTop();//retrieve the top coordinate(global coordinates)

int GetBottom();//retrieve the bottom coordinate(global coordinates)

HDC GetDC();//return the m_hDC

void Display();//displays the widget and all child widgets

virtual void OnRedraw();//redraws the widget

void Close();//add this widget to the delete Tist

void BringToTop();//add this widget to the move 1list

bool HandleEvent(UINT uMsg,WPARAM wParam,LPARAM TParam);

virtual bool OnKeyDown(int iVirtKey);//handle a key press

virtual bool OnKeyUp(int iVirtKey);//handle a key

virtual bool OnChar(TCHAR tchCode);//handle character generation

virtual bool OnMouseMove(int iX,int iY,bool blLeft, bool
bRight);//mouse movement

virtual bool OnLButtonDown(int iX,int iY,bool blLeft,bool bRight);//left
button press

virtual bool OnRButtonDown(int iX,int iY,bool blLeft,bool
bRight);//right button press

virtual bool OnLButtonUp(int iX,int iY,bool blLeft,bool bRight);//left
button release

virtual bool OnRButtonUp(int iX,int iY,bool blLeft,bool bRight);//right
button release

virtual bool OnMessage(int MessagelD, int argc, void* argv[]);

static bool FilterEvent(UINT uMsg,WPARAM wParam,LPARAM TParam);//send
event to master control

static void Update();//updates all widgets

static CWidget* GetMasterWidget();//retrieves s_pMasterWidget

static CWidget* GetKeyboardFocus();//retrieves s_pKeyboardFocus

static CWidget* GetMouseFocus();//retrieves s_pMouseFocus

static CWidget* GetMouseHover();//retrieves s_pMouseHover

static void Destroy();//destroy the master widget

Yes, this class is absolutely huge, but do not dismay. The vast majority of the mem-
ber functions in CWidget are getters and setters or do other tasks that are so simple
that they typically only take up one or two lines of code.

TeamLRN



CWidget Implementation 101

L Widlget Implementation

Now that we’ve given proper thought to how CWidget should behave, it is finally time
to implement. The code you are about to look at took about four hours of work (and
an approximately equal amount of time testing and monkeying around with it).

Getters, Setters, and Other Simple
Member Functions

Most of the functions, as I stated earlier, are simply implemented. Tables 4.2
through 4.4 show them all categorized. In Table 4.2, you can see all of the static
member accessors, direct and indirect.

Table 4.2 Static Member Accessors (Direct and Indirect)

Function Implementation
CWidget::SetHWND {s_hWnd=hWnd;}
CWidget: :GetHWND {return(s_hWnd);}

CWidget::SetMasterWidget {s_pMasterWidget=pWidget;}
CWidget::GetMasterWidget {return(s_pMasterWidget);}
CWidget::IsMaster {return(this==GetMasterWidget());}
CWidget::SetKeyboardFocus {s_pKeyboardFocus=pWidget;}
CWidget::GetKeyboardFocus {return(s_pKeyboardFocus);}
CWidget::HasKeyboardFocus {return(this==GetKeyboardFocus());}

CWidget::SetMouseFocus {s_pMouseFocus=pWidget;}
CWidget::GetMouseFocus {return(s_pMouseFocus);}
CWidget::HasMouseFocus {return(this==GetMouseFocus());}
CWidget::SetMouseHover {s_pMouseHover=pWidget;}
CWidget::GetMouseHover {return(s_pMouseHover);}
CWidget::HasMouseHover {return(this==GetMouseHover());}
CWidget::GetDeletelist {return(s_lstDeletelist);}
CWidget::Close {GetDeletelist().remove(this);

GetDeleteList().push_back(this);}
continues

TeamLRN



102 <.

User Interface Hierarchies

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

Table 4.2 Static Member Accessors (Direct and Indirect)
(continued)

Function

CWidget:
CWidget:

:GetMovelist
:BringToTop

Implementation
{return(s_1stMovelList);}

{GetMovelList().remove(this);
GetMovelist().push_back(this);}

In Table 4.3 (by far the largest group of functions), you can see the nonstatic mem-
ber accessors. Many of these are indirect, like the member functions dealing with
position and size information.

Table 4.3 Nonstatic Member Accessors (Direct and
Indirect)

Function

CWidget:
CWidget:
CWidget:
CWidget::
CWidget:
CWidget:
CWidget:
CWidget:

CWidget:

CWidget:

CWidget:

CWidget:
CWidget:

:DC
:Bitmap
:01dBitmap

Bounds

:ChildList
:GetParent
:HasParent
:AddChild

:RemoveChild

:HasChild

:HasChildren()

:GetX
:GetY

TeamLRN

Implementation
{return(m_hDC);}

{return(m_hbmWidget);}
{return(m_hbm01d) ;}
{return(m_rcBounds);}
{return(m_1stChildWidgets);}
{return(m_pParentWidget);}
{return(GetParent()!=NULL);}

{ChildList().remove(pWidget);
ChildList().push_back(pWidget);}

{if(HasChild(pWidget)) {ChildList().remove(pWidget);
return(true);}return(false);}

{std::1ist<CWidget*>::iterator
iter=std::find(ChildList().begin(),ChildList().e
nd(),pWidget);return(iter!=ChildList().end());}

{return(!ChildList().empty());}
{return(Bounds().left);}
{return(Bounds().top);}



e

CWidget Implementation 103

[ ::::——j___f———L—ﬂ_;——J1[_‘rL__EEEEEE?““I———J_T__JI——F

Table 4.3 Nonstatic Member Accessors (Direct and
Indirect)

Function

CWidget:
CWidget:
CWidget:
CWidget:

CWidget:
CWidget:

CWidget:
CWidget:
CWidget:

:Sety
:GetWidth
:GetHeight
:Getleft

:GetRight
:GetTop

:GetBottom
:GetDC
:SetX

Implementation

{0ffsetRect(&Bounds(),0,iY-Bounds().top);}

{return(Bounds().right-Bounds().left);}
{return(Bounds().bottom-Bounds().top);}

{if(HasParent()){return(GetX()+GetParent()-
>GetlLeft());}telse{return(0);}}

{return(GetLeft()+GetWidth());}

{if(HasParent()){return(GetY()+GetParent()-
>GetTop());}else{return(0);}}

{return(GetTop()+GetHeight());}
{return(m_hDC);}
{0ffsetRect (&Bounds(),iX-Bounds().left,0);}

Next we have the functions in Table 4.4, which show the simple implementation for
event- and message-handling functions. In all of these cases, the functions are just
stubs. They only return a default value.

Table 4.4 Event Handlers/Message Handlers

Function

CWidget:
CWidget:
CWidget:
CWidget:
CWidget:
CWidget:
CWidget:
CWidget:
CWidget:

:0OnKeyDown
:OnKeyUp
:0nChar
:0nMouseMove
:0nLButtonDown
:0nRButtonDown
:0nLButtonUp
:OnRButtonUp

:0nMessage

TeamLRN

Implementation

{return(false);}
{return(false);}
{return(false);}
{return(!IsMaster());}
{return(!IsMaster());}
{return(!IsMaster());}
{return(!IsMaster());}
{return(!IsMaster());}

{return(false);}



104 <. User Interface Hierarchies

Finally, Table 4.5 has the rest of the simply implemented functions. These are all

static and typically will be the only members used outside of the class itself (other
than constructors and destructors). Each of these functions in some way accesses

the master widget.

Table 4.5 Other Static Member Functions

Function Implementation

CWidget::FilterEvent {if(GetMasterWidget()){return(GetMasterWidget()-
>HandleEvent (uMsg,wParam,1Param));}return(false);}

CWidget::Update {if(GetMasterWidget()){GetMasterWidget()->Display();}}

CWidget::Destroy {if(GetMasterWidget()){delete GetMasterWidget();}}

Other Member Functions

We are left with six member functions: the two constructors, the destructor,
CWidget::Display, CWidget::0nRedraw, and CWidget::HandleEvent. These functions do
most of the work needed for widgets to exist.

Master Widget Constructor

The master widget has to be constructed like any other widget. However, it does get
a special constructor. If you later want to change some of the behavior of the mas-
ter widget, you can derive a new class and use the master widget constructor in the
initializer list. In this way, you can have totally different class hierarchies for the
master widget and nonmaster widgets.

CWidget::CWidget(CEventHandler* pehParent)://master widget constructor

CMessageHandler(pehParent),

m_pParentWidget (NULL),

m_1stChildWidgets(),

m_hDC(0),

m_hbmWidget(0),

m_hbm01d(0),

m_rcBounds ()

{
SetHWND(*pehParent);
SetMasterWidget(this);
GetClientRect(GetHWND(),&Bounds());

TeamLRN



CWidget Implementation 105

HDC hdcScreen=::GetDC(NULL);
DC()=CreateCompatibleDC(hdcScreen);
Bitmap()=CreateCompatibleBitmap(hdcScreen,Bounds().right,Bounds().bot-
tom);
07dBitmap()=(HBITMAP)SelectObject(DC(),Bitmap());
ReleaseDC(NULL,hdcScreen);
}

During testing, I decided to go with a double-buffered approach to updating my
widgets, and so the master constructor, while it sets the static HWND to which it will do
its updates, also creates a bitmap and HDC onto which it does drawing. If you were
writing a game, you would access this HDC to do your screen updates, and you would
then tell the master widget to update itself (but this would require overriding the
default behavior in OnRedraw, as we will see a little later).

The size of the master control becomes the size of the client area of the window
(which is as it should be).

Nonmaster Widget Constructor

Nonmaster widgets are created with fewer lines (since there is no need to grab a
window handle):

CWidget::CWidget(CWidget* pWidgetParent,int iX, int iY, int iWidth, int
iHeight)://nonmaster widget constructor

CMessageHandler(pWidgetParent),

m_pParentWidget (NULL),

m_1stChildWidgets(),

m_hDC(0),

m_hbmWidget(0),

m_hbm01d(0),

m_rcBounds ()

{
SetRect(&Bounds(),iX,iY,iX+iWidth,iY+iHeight);
HDC hdcScreen=::GetDC(NULL);
DC()=CreateCompatibleDC(hdcScreen);
Bitmap()=CreateCompatibleBitmap(hdcScreen,iWidth,iHeight);
01dBitmap()=(HBITMAP)SelectObject(DC(),Bitmap());
ReleaseDC(NULL,hdcScreen);
SetParent(pWidgetParent);

TeamLRN



106 <. User Interface Hierarchies

Like the master widget, a nonmaster widget creates a bitmap and an HDC. Since it
isn’t associated with a window, however, the size has to be set in the call to the con-
structor itself.

Destructor

Most of CWidget’s destructor is concerned with cleaning up its resources. The
destructor is also tasked with causing the destruction of all of the widget’s child
widgets.

CWidget::~CWidget()//destructor
{
while(HasChildren())
{
std::1ist<CWidget*>::iterator iter=ChildList().begin();
CWidget* pWidget=*iter;
delete pWidget;
}
SelectObject(DC(),01dBitmap());
DeleteDC(DC());
DeleteObject(Bitmap());
SetParent(NULL);
if(HasMouseFocus()) SetMouseFocus(NULL);
if(HasKeyboardFocus()) SetKeyboardFocus(NULL);
if(HasMouseHover()) SetMouseHover(NULL);
if(IsMaster()) SetMasterWidget(NULL);
}

Finally, right at the end of the destructor, there are a series of checks to make sure
that the mouse focus, keyboard focus, mouse hover, and master control always
point to valid data, and if they don’t, they are set to NULL. It would be disastrous if
the mouse focus widget was destroyed and the pointer was not set to NULL.

Default OnRedraw
The default behavior of 0nRedraw is simply to fill the widget’s DC with black.

void CWidget::0nRedraw()//redraws the widget

{
RECT rcFill;
SetRect(&rcFill1,0,0,GetWidth(),GetHeight());
Fi1TRect(DC(),&rcFil1, (HBRUSH)GetStockObject (BLACK_BRUSH));

TeamLRN



CWidget Implementation 107

This function is simple enough, and I’ll speak no more of it.

CWiidlget::Display
The Display function is the second longest function implementation in CWidget (the

longest being HandleEvent, which is up next). The reason for this is that there is
special processing depending on whether or not the control is the master.

When CWidget::Display is called on the master widget, it will go through and take care
of the move list and delete list in that order. It moves all widgets currently in the
move list to the top of their respective Z orders, and then it goes through all of the
items on the delete list and destroys them. The reason it takes care of the move list
first is so that if a widget is on both lists, it won’t be destroyed before it is moved.

void CWidget::Display()//displays the widget and all child widgets
{
if(IsMaster())
{
CWidget* pWidget;
while(!GetMovelList().empty())
{
pWidget=*GetMovelist().begin();
GetMovelist().remove(pWidget);
pWidget->SetParent(pWidget->GetParent());
}
while(!GetDeletelist().empty())
{
pWidget=*GetDeletelist().begin();
GetDeletelist().remove(pWidget);
delete pWidget;

1
OnRedraw();
std::1ist<CWidget*>::iterator iter;
CWidget* pChild;
for(iter=ChildList().begin();iter!=ChildList().end();iter++)
{
pChild=*iter;
pChild->Display();
}
if(IsMaster())

TeamLRN



108 <. User Interface Hierarchies

HDC hdcDst=::GetDC(GetHWND());
BitB1t(hdcDst,0,0,GetWidth(),GetHeight(),DC(),0,0,SRCCOPY);
ReleaseDC(GetHWND(),hdcDst);

else

BitB1t(GetParent()-
>GetDC(),GetX(),GetY(),GetWidth(),GetHeight(),DC(),0,0,SRCCOPY);
}
}

Master widget or not, the next step is to redraw the widget by calling OnRedraw. After
that, a widget will draw any child widgets that happen to exist (in order from lowest
to highest Z order). Finally, the widget updates its parent. In the case of the master
control, this means writing its bitmap onto the window. In any other case, this sim-
ply means a write of its own bitmap onto its parent’s bitmap with BitB1t.

LCWidget::HandleEvent

Welcome to the nightmare that is CWidget::HandleEvent, the most evil function in the
whole darn thing. CWidget has 54 member functions, and all but six of them are
one- or two-liners that took perhaps a whole minute each to write. That takes all of
about 45 minutes, maybe an hour if you add in time to write comments. CWidget, as
I said, took about four hours to implement, however. If 90 percent of the class took
only an hour, where did the other three hours go?

I'll tell you: About an hour was spent on the constructors, destructors, and Display and
OnRedraw functions. The other two hours were spent on HandleEvent. Properly routing
events is nontrivial. Here is the result of my two hours. (See you in a few pages!)

bool CWidget::HandleEvent(UINT uMsg,WPARAM wParam,LPARAM 1Param)
{
if(IsMaster())
{
switch(uMsg)
{
case WM_MOUSEMOVE:
case WM_LBUTTONDOWN:
case WM_LBUTTONUP:
case WM_RBUTTONDOWN:
case WM_RBUTTONUP:

TeamLRN



CWidget Implementation 109

#——1_”JrL_____ﬂ__IEEET"T::= [ E===———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE;““ﬂ____I‘I__Jm__T

if(GetMouseFocus())
{
SetMouseHover(GetMouseFocus());
switch(uMsg)
{
case WM_MOUSEMOVE:
{
return(GetMouseFocus()->0nMouseMove(LOWORD(1Param)-GetMouseFocus()-
>GetlLeft(),HIWORD(1Param)-GetMouseFocus()-
>GetTop(), (wParam&MK_LBUTTON)>0, (wParam&MK_RBUTTON)>0));
}break;
case WM_LBUTTON-
DOWN::

return(GetMouseFocus()->0OnLButtonDown (LOWORD(1Param)-GetMouseFocus()-
>GetlLeft(),HIWORD(1Param)-GetMouseFocus()-
>GetTop(), (wParam&MK_LBUTTON)>0, (wParam&MK_RBUTTON)>0));
}break;
case WM_RBUTTONDOWN:
{
return(GetMouseFocus()->0nRButtonDown (LOWORD(1Param)-GetMouseFocus()-
>GetlLeft(),HIWORD(1Param)-GetMouseFocus()-
>GetTop(), (wParam&MK_LBUTTON)>0, (wParam&MK_RBUTTON)>0));
}break;
case WM_LBUTTONUP:
{
return(GetMouseFocus()->OnLButtonUp(LOWORD(1Param)-GetMouseFocus()-
>GetlLeft(),HIWORD(1Param)-GetMouseFocus()-
>GetTop(), (wParam&MK_LBUTTON)>0, (wParam&MK_RBUTTON)>0));
}break;
case WM_RBUTTONUP:
{
return(GetMouseFocus()->OnRButtonUp(LOWORD(1Param)-GetMouseFocus()-
>GetlLeft(),HIWORD(1Param)-GetMouseFocus()-
>GetTop(), (wParam&MK_LBUTTON)>0, (wParam&MK_RBUTTON)>0));
}break;
}

}break;
case WM_KEYDOWN:

TeamLRN



10 <. User Interface Hierarchies

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

switch(uMsg)

case WM_KEYUP:
case WM_CHAR:

if(GetKeyboardFocus())
{

{
case WM_KEYDOWN:
{

return(GetKeyboardFocus()->0nKeyDown(wParam));

}break;
case WM_KEYUP:
{
return(GetKeyboardFocus()->0OnKeyUp(wParam));
}break;

case WM_CHAR:
{

return(GetKeyboardFocus()->OnChar(wParam));

TeamLRN

}break;
}
}
}break;
default:
{
return(false);
}break;
}
SetMouseHover(NULL);

}
std::1ist<CWidget*>::reverse_iterator iter;
for(iter=ChildList().rbegin();iter!=ChildList().rend();iter++)
{

CWidget* pChild=(*iter);

if(pChild->HandTeEvent(uMsg,wParam,1Param))

{

return(true);

}
if(IsMaster()) return(false);
switch(uMsg)



CWidget Implementation m
d"11rf1——————L_;555__7::: T | E:::__7___f___"ﬂ—J"J1f_1rL——555555;—___1--J_1__J‘—-r

{
case WM_MOUSEMOVE:
{

POINT ptHit;
ptHit.x=LOWORD(TParam);
ptHit.y=HIWORD(1Param);
RECT rcHit;

SetRect(&rcHit,GetlLeft(),GetTop(),GetRight(),GetBottom());
if(PtInRect(&rcHit,ptHit))
{
if(!GetMouseHover())
SetMouseHover(this);
return(OnMouseMove (LOWORD(1Param)-GetLeft(),HIWORD(1Param)-GetTop(),
(wParam&MK_LBUTTON)>0, (wParam&MK_RBUTTON)>0));
}
}break;
case WM_LBUTTONDOWN:
{
POINT ptHit;
ptHit.x=LOWORD(1Param);
ptHit.y=HIWORD(1Param);
RECT rcHit;
SetRect(&rcHit,GetLeft(),GetTop(),GetRight(),GetBottom());
if(PtInRect(&rcHit,ptHit))
{
if(!GetMouseHover())
SetMouseHover(this);
return(OnLButtonDown(LOWORD(TParam)-GetLeft(),HIWORD(1Param)-
GetTop(), (wParam&MK_LBUTTON)>0, (wParam&MK_RBUTTON)>0));
}
}break;
case WM_LBUTTONUP:
{
POINT ptHit;
ptHit.x=LOWORD(1Param);
ptHit.y=HIWORD(1Param);
RECT rcHit;
SetRect(&rcHit,GetLeft(),GetTop(),GetRight(),GetBottom());
if(PtInRect(&rcHit,ptHit))
{

TeamLRN



12 <. User Interface Hierarchies

if(!GetMouseHover())

SetMouseHover(this);
return(OnLButtonUp(LOWORD(1Param)-GetLeft(),HIWORD(T1Param)-GetTop(),
(wParam&MK_LBUTTON)>0, (wParam&MK_RBUTTON)>0));
}
}break;
//right button press
case WM_RBUTTONDOWN:
{
POINT ptHit;
ptHit.x=LOWORD(1Param);
ptHit.y=HIWORD(1Param);
RECT rcHit;
SetRect(&rcHit,GetLeft(),GetTop(),GetRight(),GetBottom());
if(PtInRect(&rcHit,ptHit))
{
if(!GetMouseHover())
SetMouseHover(this);

return(OnRButtonDown (LOWORD(1Param)-GetLeft(),HIWORD(1Param)-
GetTop(), (wParam&MK_LBUTTON)>0, (wParam&MK_RBUTTON)>0));
}
}break;
case WM_RBUTTONUP:
{
POINT ptHit;
ptHit.x=LOWORD(1Param);
ptHit.y=HIWORD(1Param);
RECT rcHit;
SetRect(&rcHit,GetlLeft(),GetTop(),GetRight(),GetBottom());
if(PtInRect(&rcHit,ptHit))
{
if(!GetMouseHover())
SetMouseHover(this);
return(OnRButtonUp(LOWORD(1Param)-GetLeft(),HIWORD(T1Param)-GetTop(),
(wParam&MK_LBUTTON)>0, (wParam&MK_RBUTTON)>0));
}
}break;
case WM_KEYDOWN:
{
return(OnKeyDown(wParam));

TeamLRN



And Now for the Payoff 1n3

}break;
case WM_KEYUP:
{
return(OnKeyUp(wParam));
}break;
case WM_CHAR:
{
return(OnChar(wParam));
}break;

}
return(false);
}

You made it through the code! Yes, it’s much like a trackless desert in there, and
the listing doesn’t even include any of the comments I have in the real code.
Essentially, there are three parts to CWidget::HandleEvent: focus trapping, child trap-
ping, and dispatching.

During focus trapping (which only occurs for the master widget), if a mouse event
has occurred and there is a mouse focus widget, the input goes directly to the mouse
focus widget without going through normal channels. Similarly, if a keyboard event
has occurred and there is a keyboard focus widget, the input goes directly there.

During child trapping (which happens in either master or nonmaster widgets), we
loop through all of the child widgets (in reverse Z order) and have the children
attempt to handle the input.

If Hand1eEvent makes it all the way to the dispatch portion, the message in question
is examined and sent to the proper event-handling function, and the return value
there is handed down to the caller.

Now, all of this is handled iteratively and recursively by a single call to the master wid-
get’s HandleEvent function. This is what happens when CWidget::FilterEvent is called.

And Now for the Payoff

All of this hard work, and now what? Well, I'm about to show you. Go ahead and grab
CApplication, CMessageHandler, and CEventHandler from the CD under Trick 3 on “Building
an Application Framework.” Add CWidget and let’s put together a small demo.

On the accompanying CD-ROM, you can find this example under UIControlsl.
There you will find the full implementation of CWidget as described in the text in

TeamLRN



14 <. User Interface Hierarchies

this chapter. In addition to that and the core classes of the application framework,
there are three other classes: CTestApplication, CTestEventHandler, and CTestWidget.
The CTestApplication class is identical to the one found in Trick 3, so I'll discuss it
no more. CTestEventHandler and CTestWidget are specially designed and implemented
to demonstrate the capabilities of CWidget (or, more importantly, the flexibility of
CWidget's extensible design).

CTestEventHandler

The CTestEventHandler class is designed and implemented to interface with a CWidget
master control.

class CTestEventHandler : public CEventHandler

{

private:
CWidget* m_pMasterWidget;

public:
CTestEventHandler(CMessageHandler* pmhParent);
virtual ~CTestEventHandler();
bool OnMessage(int MessagelID,int argc,void* argv[]l);
bool OnDestroy();
pool OnPaint(HDC hdc,const PAINTSTRUCT* pPaintStruct);
bool OnEvent(UINT uMsg,WPARAM wParam,LPARAM 1Param);
CWidget* GetMasterWidget();

}s

The OnMessage and OnDestroy functions are much as you would expect them to be.
OnMessage simply returns false, and this function only exists so that CTestEventHandler
can be instantiated. OnDestroy posts a quit message so that the application can
terminate.

The GetMasterWidget function is simply an accessor to the member function
m_pMasterWidget. This is not strictly necessary because you could simply use the
GetMasterWidget static member function of CWidget to accomplish the same thing.
I provided it here simply as a convenience.

So, we are left with the constructor (during which the master widget is created as
well as a few other widgets), the destructor (during which the entire widget tree is
destroyed), the OnPaint handler (during which the widget tree is displayed and
updated), and finally the OnEvent handler (which allows the widget tree to filter out
events it may need).

TeamLRN



And Now for the Payoff 1ns

Said another way, I only needed to place four minor ties into another class for that
class to interface with the CWidget UI hierarchy: one for creation, one for destruc-
tion, one for updating, and one for event handling. Now that system is pretty easy
to interface with if I do say so myself. You can take a look at the implementation of
CTestEventHandler on the accompanying CD-ROM.

L TestWidget

Now we’ve come to CTestWidget, and the luster of the UI hierarchy will shine before
you. Here is the CTestWidget class definition:

class CTestWidget : public CWidget
{

private:
HBRUSH m_hbrBackground;
HBRUSH m_hbr01d;
HPEN m_hpenQutline;
HPEN m_hpen01d;
HPEN m_hpenHilite;
public:
CTestWidget(CWidget* pWidgetParent,int iX, int iY, int iWidth, int
iHeight);

virtual ~CTestWidget();

void OnRedraw();

bool OnLButtonDown(int iX,int iY,bool bLeft,bool bRight);

bool OnLButtonUp(int iX,int iY,bool bLeft,bool bRight);
}s

Behold the compactness of CTestWidget! Of 54 member functions, I only need to
override five, and the only reason this class is so large is because of the numerous
GDI objects needed for background and foreground colors.

CTestWidget is a simple, humble widget (it’s only a fest widget), so don’t expect it to
do much. It does, however, manage to do something: When the mouse pointer is
hovering over it, it will be highlighted with yellow, and if you click on it, it captures
mouse input. While the left mouse button is down, all input goes to it. If you
release the left button while the mouse is inside of the widget, the widget will put
itself on the delete list, later to be destroyed during the next widget tree update.

All of that from five little functions? You bet, and the implementations aren’t that
complex either, as you can see here:

TeamLRN



116 <. User Interface Hierarchies

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

CTestWidget::CTestWidget(CWidget* pWidgetParent,int iX, int iY, int iWidth, int
iHeight):

CWidget(pWidgetParent,iX,iY,iWidth,iHeight),

m_hbrBackground(NULL),

m_hbr0Td(NULL),

m_hpenOutTine(NULL),

m_hpen01d(NULL),

m_hpenHilite(NULL)

{
m_hbrBackground=CreateSolidBrush(RGB(128,128,128));
m_hpenQutline=CreatePen(PS_SOLID,0,RGB(192,192,192));
m_hpenHilite=CreatePen(PS_SOLID,0,RGB(255,255,0));
m_hbr01d=(HBRUSH)SelectObject(DC(),m_hbrBackground);
m_hpen01d=(HPEN)SelectObject(DC(),m_hpenOutline);

}

CTestWidget::~CTestWidget()

{
SelectObject(DC(),m_hbr0ld);
SelectObject(DC(),m_hpen0ld);
DeleteObject(m_hbrBackground);
DeleteObject(m_hpenQutline);
DeleteObject(m_hpenHilite);

}

void CTestWidget::0nRedraw()

{
if(HasMouseHover())

SelectObject(DC(),m_hpenHilite);

SelectObject(DC(),m_hpenQutline);

RECT rcFill;
CopyRect(&rcFill,&Bounds());
OffsetRect(&rcFill,-rcFill.left,-rcFill.top);
Rectangle(DC(),rcFill.Teft,rcFill.top,rcFill.right,rcFill.bottom);
}
bool CTestWidget::0OnLButtonDown(int iX,int iY,bool bLeft,bool bRight)
{
SetMouseFocus(this);

TeamLRN



Summary nz

return(true);
}
bool CTestWidget::0nLButtonUp(int iX,int iY,bool blLeft,bool bRight)
{
if(HasMouseFocus())
{
SetMouseFocus(NULL);
if(iX>=088&1Y>=08&1X<GetWidth()&&iY<GetHeight())
//close the window
Close();
}
return(true);
}

As you casually glance through the implementation, count how many of the lines of
code are there simply to deal with the ugliness of GDI rendering. (Here’s a clue:
It’s almost all of the lines in CTestWidget’s implementation.) Only a small handful of
CWidget member function calls sprinkle the big pile of GDI. If you were using a dif-
ferent rendering API, the implementation would be even shorter.

Summary

By now, the benefit of a well-designed UI hierarchy should be obvious. We never
have to touch the implementation of CWidget again. It will be there for all time. But
what CWidget allows us to do is derive child classes for which we can customize the
behavior. Typically, this only means overriding OnRedraw and a few of the event-
handling functions. The identity of a control is based solely on what it looks like
and how it responds to input.

Another aspect of the UI hierarchy shown in this chapter was the idea of notifica-
tion. The needed code is already in place, but there has been no example of how
to make use of it. (I only have so many pages that I'm allowed to consume and only
so much time in which to write them.)

Right now, using CWidget, you would not have a hard time writing a class that emu-
lates the behavior of a button. You’d simply change OnRedraw and a few of the event-
handling functions and then add a few notifications. The same goes for just about
any type of control. None of them is terribly difficult to implement once you’ve got
a core Ul system in place. The rest is all customization.

TeamLRN



This page intentionally left blank

TeamLRN



ikl e TP e

-:__‘i_ __!_I——r,—\_|_|_t—'—— =
H{__r_l

A (et R ey

TRICK 5

LI RITING
CROsSS-
PLATFORM
CoDE

TTTTTTT



120 5. Writing Cross-Platform Code

Introduction

You’ve been given the task of writing the next 3-D first-person shooter. The only
problem is that your publisher wants you to write it for both the PC and the
Playstation 2. Well, you could always write the version for the PC and worry about
the pain of porting it to the Playstation 2 later, or you could develop your title for
both platforms at the same time.

Cross-platform development isn’t new to the world of software, but it’s becoming
more common in the game industry. No longer are developers and publishers con-
tent with releasing their latest game on a single platform. They want a wider audi-
ence, and they obtain it by porting their title across multiple systems. With the
power of today’s PCs and the popularity of console systems, games are reaching a
record number of people, and publishers are perfectly happy to cash in on that
market. Writing cross-platform code makes your game portable and more easily
converted to whatever system is required.

Why Develop Cross-Platform
Code”?

So, why would we want to write cross-platform code? Why would we want to spend
the extra time and effort up front, just to allow our game to run on different
machines?

First and foremost, the possible market for your game title is greatly expanded. If
you choose to create a game for only the Nintendo GameCube, you're restricting
the possible audience and sales to only gamers owning that system. Porting your
game to PCs or other consoles on the market enables your game to reach its full
potential in the marketplace and hopefully its financial goals as well.

The second reason is less development time and lower cost when planning on
releasing different versions of your game. Sure, we can write our game to run on
the PC and write platform-specific to handle manipulating and rendering our
graphics, but what happens when it comes time to port it to the Xbox? All the
platform-specific code has to be ripped out and replaced with the same platform-

TeamLRN



Planning for a Craoss-Platform Product 121

specific code for the new system. We’d spend countless hours of development time
just searching for all the pieces of code that reference the PC system. Then comes
the task of actually replacing these sections; of course, we’re assuming that the two
systems work the same way. For example, writing a game for Microsoft Windows
requires that our main game loop listen for messages coming from the operating
system to keep the multitasking working correctly. Writing a game for a console sys-
tem, however, skips the Windows messaging and focuses squarely on running your
game loop. If we took this into account during the initial development cycle, we
wouldn’t have to spend this time replacing entire sections of code. A second draw-
back with porting after the fact is loss of momentum in the marketplace. Everyone
may be hyping your PC product, but while they’re waiting for the Xbox version,
their interest is slowly fading. By the time the port is complete, there may no
longer be an interest in your game.

Third, writing cross-platform code creates more portable source code base. While
developing for one platform, the compiler may not catch errors in your code, or it
may behave differently on separate systems. Sometimes due to the amount of mem-
ory or resources available on a particular system, overwriting a section of RAM with-
out initializing it first can crash the system, whereas another system might allow the
operation to complete successfully. Testing and debugging code on multiple sys-
tems helps us catch our own logic errors more readily. For instance, the debuggers
used under Windows commonly are more mature and useful than the ones avail-
able for console systems. In this case, even if a Windows version isn’t ever going to
be seeing a release outside of your company, maintaining a PC version can help out
in the debugging and testing process.

The final reason for cross-platform code is quality. If your development team is
going to create only the first version of a game and then allow the port to other sys-
tems to be handled by a third-party, your game quality is going to suffer. By creat-
ing your code to be run on different systems from the start, the ports are kept
in-house, and the quality of your game can me maintained.

Planning for a Cross-
Platform Product

When you’re designing your game with the goal of running it on multiple plat-
forms, there are a few things to keep in mind before making the decision to start
the development process. Remember that not all popular platforms are created
equally, so you need to do your research first.

TeamLRN



122 5. Writing Cross-Platform Code

Console systems are great for titles such as fighting games, but will your PC role-
playing game really translate well? For example, if you are planning to create a mas-
sive, multiplayer, role-playing game for the PC and also want the same title for the
Nintendo GameCube, is the system really suited to the task? Here are a few ques-
tions you might want to ask yourself:

* Is the system powerful enough?

®  (Can the graphics and gameplay really be faithfully reproduced on the target
platform?

¢  Will going from a mouse-and-keyboard input system on the PC hinder the
users’ ability to enjoy your game when they’re restricted to a gamepad?

e If the game involves online play, will PC and console gamers be able to play
online together?

Problems Between
Platforms

Even after deciding for which platforms we’re going to develop, there are still a few
more things we need to look at. Each system is usually based on different hardware
architectures. For example, a standard PC is normally based on an Intel processor
that follows the 80x86 instruction set, whereas console systems can have a radically
different architecture, as in the Sony Playstation 2. It is based on a proprietary
processor with a unique instruction set. The instruction set isn’t the only thing you
have to worry about when comparing the

processors in a system. The way the e LT
processor stores its data is also important. TIP
There are two ways in which current ] The number 25 (binary 00000100 [
processors store their information; these 00000001) is stored in the following
ways are represented by the terms big- way:
endian and little-endian. Big-Endian
Big-endian architectures consider the left- Byte 00-00000100
most bytes (the lower address bytes) to be Byte 01-00000001
the most significant. In little-endian archi- Little-Endian
tectures, the rightmost (or higher) Byte 00-00000001
address bytes are considered most ] Byte [
significant. Byte 01-00000100

1 1

TeamLRN



Problems Between Platforms 123

l——|_|—'—|_.—"|_|_”"IEI—I—|_|"—r

g——l“JrL_____L_IEEE__7::=

=

In game programming, this problem can arise when loading in data files for a par-
ticular platform. If a binary data file was created on the PC (little-endian architec-
ture) and then loaded on a system using the Motorola 68000 processor (big-endian
architecture) without accounting for the differences, the data we would be reading
in would be mixed up. In this case, your code would have to support byte swapping
for the data file loader. The following code demonstrates how to swap the bytes for
an unsigned long (which, in this example, is 4 bytes). This is not a very fast piece of
code, but it should demonstrate the concept clearly.

unsigned Tong byteSwap(unsigned long value)
{
unsigned long newValue = 0;
char* pcurValue = (char *)&value;
char* pnewValue = (char *)&newValue;

pnewValue[0] = pcurValue;[3]
pnewValue[1] = pcurValue;[2]
pnewValue[2] = pcurValue;[1]
pnewValue[3] = pcurValue[0];

return newValue;
}

I’ll explain how this bit of code works. The byteSwap function is passed an unsigned
long 4-byte value. Within the function, two new variables are declared as character
pointers. pcurValue is initialized to the value passed to the byteSwap function, while
pnewValue is initialized to zero. Since these two variables are character pointers, we
can access each byte within them by using normal array notation. The first slot in
pnewValue is set to the last slot of pcurValue. The next slot of pnewValue, slot 1, is then
set to the second-from-the-last slot of pcurValue, and so on, until all the bytes have
been dealt with. The function then returns newValue, which is holding the byte
swapped value.

The hardware architecture of the targets’ platforms isn’t the only worry when deal-
ing with cross-platform code. The differences in compilers for each platform can
also cause problems. When dealing with standard C++ code under Microsoft Visual
Studio, it’s common to include #pragma statements, which are directives telling the
compiler how to handle certain errors or how to compile a bit of code. For exam-
ple, the following line of code tells the compiler to link in the opengl32.1ib file dur-
ing the link process.

fipragma comment (1ib, "openg132.1ib");

TeamLRN



124 5. Writing Cross-Platform Code

This eliminates the need to add the LIB file to the link section of the project.
While this is well and good when using MSVC, trying to compile this code under
another compiler may fail because other compilers may not support the #pragma
directive. When attempting to write portable code, it’s best to leave these instruc-
tions within the makefile.

The easiest way to eliminate problems with your code across different compilers is
to restrict yourself to the ANSI C/C++ standard. Microsoft Visual Studio has the fol-
lowing suggestions when trying to restrict your code to the ANSI standard when
coding under Windows:

* Do not use the MFC library. Call the Win32 APIs directly.

¢ Disable Microsoft extensions.

®  Use the iostream library from the ANSI Standard C++ library.
®  Use the Standard Template Library (STL)

Programming for Multiple
Platforms

Now that we’ve seen some of the differences between platforms and some of the
pitfalls we have to watch out for, what can we do to make sure our code is portable?
Most of the ways to keep your code portable are very simple to implement. By tak-
ing advantage of some of the built-in features of C and C++, we can keep a clean
and cross-platform code base.

The #if defined Directive

One of the simplest ways to keep your code portable is to use the #if defined direc-
tive to create a conditional block of code. The #if defined directive checks to see if
a specific constant has been defined and then compiles the code within the block.
For instance, if compiling an application for Windows, you must deal with calling
WinMain as the entry point to your application. Under a console system or DOS, only
calling main() is required. So, how do we use #if defined to solve this problem?
Look at the following example:

// Checking to see if we are running under Windows
#if defined (WINDOWS)

f#include <windows.h>

fendif

TeamLRN



Programming for Multiple Platforms 125

fHif defined (WINDOWS)
// we're under windows so use WinMain
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR 1pCmdLine, int nCmdShow)
felse
// we're not under Windows, so use the standard call to main()
int main()
fendi
{
return 0;
}

This piece of code uses #if defined to check whether the constant WINDOWS has been
defined. If it has been defined, #if is flagged as true, and the code following #if is
compiled (as shown in the declaration of main()). If the constant WINDOWS has not
been defined, the code following the #else is compiled.

The typedef Keyword

Typedef is used to basically create your own data types. During cross-platform devel-
opment, you may find that an integer on one platform is 4 bytes, while on another
platform it’s only 2 bytes. If you use the default int data type, you may find yourself
not having enough room to fit your data. Instead, you can create your own data
types that will alleviate this problem. For example, on a platform that supports
4-byte integers, you would define your own type like this:

typdef int Myint;

On the platform where to get the same 4-byte precision you must use an unsigned
long, you would define your type like this:

typedef unsigned long Myint;

Most systems you come across will normally support the same size data types, but
occasionally you’ll come across a system that is completely different and causes elu-
sive bugs. These types of bugs are difficult to track down.

Here’s a sample header file called types.h that shows some common uses for creat-
ing your own data types.
/*****************************************************

* types.h

*****************************************************/

TeamLRN



126 5. Writing Cross-Platform Code

#ifndef TYPES_H
f#tdefine TYPES_H

// here we define the types
typdef unsigned char Mybool;
typdef int Myint;

typedef signed char Mychar;

fendif

/****************************************************/

Always Use sizeof()

As previously explained, data types can be different sizes across platforms. If there
is any spot in your code where you assume a certain number of bytes for a data
type, go back and replace it with a call to sizeof(). Sizeof() returns the correct
number of bytes for a data type based on the platform on which it’s running. For
instance, to display the size of an integer, we would use the following code:

printf("Number of bytes for an integer is %d\n", sizeof(int));

What Is an Abstraction
Layer?

Abstraction layers are one of the more complicated—and yet powerful—ideas you
can use to keep your game project portable. During the development process,
you’ll come across certain subsystems that will have to be platform-specific.
Whether you're developing for consoles or just keeping to the PC, at some point
you’re going to have to call a piece of the hardware layer. This is where abstraction
layers come into play.

An abstraction layer is basically just a small API that you create that sits between
your game code and the hardware API layer. This allows you to keep any platform-
specific calls separate from your actual game code (see Figure 5.1).

TeamLRN



What Is an Abstraction Layer? 127

Figure 5.1
| Game Code |

| An abstraction layer is used to keep the game code

| Abstraction Layer | from making platform-specific calls

| Hardware API |

Graphic Sound Input
System System System

Why Use an Abstraction Layer?

Using an abstraction layer within your code brings you benefits other than just
portability. New hardware can be supported more easily. By keeping all the hard-
ware-specific code separate, it’s a simple matter of defining a new layer and adding
the support within it. The game code needs no changes and doesn’t need to know
that the underlying hardware has been changed.

It’s also a simple matter to change between multiple implementations within a
layer. For instance, writing two versions of your graphic layer—one supporting
Direct3D and the other supporting OpenGL—would give you the option of switch-
ing between the two during runtime. Users could be given the option of choosing
which rendering engine to use for their system.

For What Systems Would We Want
to Create an Abstraction Layer?

When planning your code design, a couple of systems that immediately come to
mind would be useful to split out as an abstraction layer.

* Video subsystem. This includes any initialization of the video hardware and
the drawing of anything to the screen. For instance, if you’re creating a title
on the PC, creating an abstraction layer above both OpenGL and DirectX
would allow your game to run using either APIL

®  Audio subsystem. Not every platform plays music or sound effects the same
way, but it’s useful to be able to only use a standard call from your game
code. An abstraction layer for audio would include functions such as
playsound(), stopstound(), and playbackgroundMusic() just to start. With this
layer in place, no matter what sound system the hardware supports, your
main game code still makes the same call.

TeamLRN



128

5. Writing Cross-Platform Code

—I_q—l_'_'Eru_”_l_‘—'—l—l—'l_'nlJ

:::T__Ezgj__r_____JwLUJ——1

Input subsystem. Another obvious subsystem is input. PCs have keyboards,
mice, and gamepads available, but most console systems only have the
gamepad. Keeping standard functions within your main loop for checking

button presses keeps your code from getting confused with handling all the

different ways in which the input can originate. For example, creating a layer
to handle input from both the PC keyboard and a gamepad keeps your game
code from having to deal with either specifically. Your game code would only

have to worry about checking for the direction in which the player wants to
go. For example, if the layer handled reading from a gamepad, it would only
have to return the values for left, right, up, or down. The game code
wouldn’t care how the values were obtained.

Designing an Abstraction Layer

At this point, you should have the general idea of what an abstraction layer is and
what it’s used for. Now we’ll go through the process of designing a simple layer. I
chose the graphic layer because it’s one of the more common and useful systems.
The first thing we do is create an abstract parent class from which we derive the lay-
ers. The following is the prototype for the class:

/*********************************************************************

* GraphicSystem.h
*********************************************************************/
fif !defined(GRAPHICSYSTEM_H)
ftdefine GRAPHICSYSTEM_H

class GraphicSystem

{
public:

private:

}s
fendif

TeamLRN

virtual void render() = 0;
virtual void closeGraphicSystem() = 0;
virtual bool initGraphicSystem(HWND hWnd) = 0;

void setScreenResolution(int width, int height);
GraphicSystem();
virtual ~GraphicSystem();

static int screenHeight;
static int screenWidth;
HWND m_hWnd;



What Is an Abstraction Layer? 129

The GraphicSystem class has three private variables defined: screenHeight and
screenWidth (which are used to hold the resolution of the video mode) and m_hWnd
(which holds the handle to the main application window).

There are also three pure virtual functions defined that must be overridden in any
class that inherits from GraphicSystem.

The first is initGraphicSystem, which will be used to handle the creation of the ren-
der area of the application window. We pass in the hind (main application handle)
because systems like OpenGL and DirectX use this during their initialization
procedures.

The next function is closeGraphicSystem. This function handles the cleanup and
releasing of any memory we’ve used during our application.

The final function is render. Render is called once per frame and handles the actual
updating of the screen.

The code associated with this class is very minimal because its main use is just to be
overridden and to provide the framework for any child classes. The implementa-
tion of the GraphicSystem class is as follows:

/*********************************************************************

* GraphicSystem.cpp
* Parent abstraction Tayer class

*********************************************************************/

ffinclude "GraphicSystem.h"

// constructor
GraphicSystem::GraphicSystem()
{
}
// destructor
GraphicSystem::~GraphicSystem()
{
}
// initializes the graphic system
// returns true if the system is initialized properly
// this class is meant to be overridden in a child class
bool GraphicSystem::initGraphicSystem(HWND hWnd)
{
m_hWnd = hWnd;
return true;

TeamLRN



130 5. Writing Cross-Platform Code

// closes down the graphic system and releases any memory that we used
// this class is meant to be overridden in a child class

void GraphicSystem::closeGraphicSystem()

{

}

// sets the two private variables screenWidth and screenHeight
// these two variables represent the resolution of the
// application window
void GraphicSystem::setScreenResolution(int width, int height)
{
screenWidth = width;
screenHeight = height;
}
// render is called once per frame. This is where the actual
// graphics will be drawn
// this class is meant to be overridden in a child class
void GraphicSystem::render()
{
}

The purpose of the code in the GraphicSystem.cpp file is just to provide default
implementations of the class functionality. One function is provided that doesn’t
get overridden by inheriting from this class: setScreenResolution. This function takes
two parameters (both integers), representing the width and height of the applica-
tion window.

Deriving from the Abstraction
Layer

The next step is to actually create an implementation based on the parent class
GraphicSystem. Since this code is meant to run on the PC, the first system we will
support will be OpenGL.

OpenGL, along with Direct3D, has become the de facto standard for 3-D on the
PC. OpenGL eliminates the need for applications to deal with most 3-D and
graphic code themselves. By providing a standard API, applications can be written
to OpenGL without worrying about what hardware it’s running on. OpenGL has
been available for the PC for a couple of years and has really helped push the
graphic accelerator market.

TeamLRN



What Is an Abstraction Layer? 131

Since we chose OpenGL for the first layer, we need to create a prototype for a child
class inheriting from GraphicSystem. The following is the code representing the
openGLSystem.h file.

/*********************************************************************

* openGLSystem.h
*********************************************************************/
#if !defined(OPENGLSYSTEM_H)
ftdefine OPENGLSYSTEM_H
finclude "GraphicSystem.h"
class openGLSystem : public GraphicSystem
{
public:
virtual ~openGLSystem();
openGLSystem();

bool initGraphicSystem(HWND hWnd);
void closeGraphicSystem();
void render();

private:
// handle device context
HDC hDC;

// handle rendering context
HGLRC hRC;

s

ffendif

As you can see from the class definition, we are inheriting from the GraphicSystem
class.

Class openGLSystem: public Graphic System

The new class is also making sure to define the pure virtual functions required by
the parent class. The code implementation of these functions will be placed in the
openGLSystem.cpp file.

bool initGraphicSystem(HWND hWnd);
void closeGraphicSystem();
void render();

You’ll also notice two new private variables that are not part of the parent class.

TeamLRN



132 5. Writing Cross-Platform Code

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

HDC hDC;
HGLRC hRC;

These two variables hold a handle to the device context and a handle to the ren-
dering context for the application window.

/*******************************************************************

* openGLSystem.cpp

*******************************************************************/

finclude "openGLSystem.h"

/* OpenGL specific includes */
f#include <gl\gl.h>
f#include <gl\glu.h>

/* constructor and destructor */
openGLSystem::openGLSystem()
{
}
openGLSystem: :~openGLSystem()
{
}
/*******************************************************************
* initGraphicSystem
* init the OpenGL graphic system
*******************************************************************/
bool openGLSystem::initGraphicSystem(HWND hWnd)
{
// holds the chosen pixel format
GLuint PixelFormat;

GraphicSystem::initGraphicSystem(hWnd);
Static PIXELFORMATDESCRIPTOR pfd = {
sizeof (PIXELFORMATDESCRIPTOR),

1, // Version Number
PFD_DRAW_TO_WINDOW | // Format Must Support Window
PFD_SUPPORT_OPENGL | // Format Must Support OpenGL
PFD_DOUBLEBUFFER, // Double Buffering
PFD_TYPE_RGBA // Request An RGBA Format

16, // Select Qur Color Depth

0, 0, 0, 0, 0, O, // Color Bits Ignored

0, // No Alpha Buffer

TeamLRN



What Is an Abstraction Layer? 133

#——1_”JrL_____ﬂ__IEEET"T::= [ E===———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE;““ﬂ____I‘I__Jm__T

0, // Shift Bit Ignored

0, // No Accumulation Buffer
0, 0, 0, O, // Accumulation Bits Ignored
16, // 16Bit Z-Buffer

0, // No Stencil Buffer

0, // No Auxiliary Buffer
PFD_MAIN_PLANE, // Main Drawing Layer

0, // Reserved

0, 0, 0 // Layer Masks Ignored

// check for the device context

if (!( hDC = GetDC( hWnd ))) {
closeGraphicSystem();
return false;

// Did Windows Find A Matching Pixel Format?

if (1(PixelFormat = ChoosePixelFormat( hDC, &pfd ))) {
closeGraphicSystem();
return false;

// Can we set the pixel Format?
if(!SetPixelFormat( hDC, PixelFormat, &pfd )) {
closeGraphicSystem();
return false;

// can we get the rendering context?

if (!( hRC = wglCreateContext( hDC ))) {
closeGraphicSystem();
return false;

// attempt to activate the rendering context
if(!wgIMakeCurrent( hDC, hRC )) {
closeGraphicSystem();
return false;
}
// we successfully have OpenGL initialized

TeamLRN



134 5. Writing Cross-Platform Code

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

return true;

/*********************************************************************

* render
* performs all the OpenGL rendering to the screen
*********************************************************************/
void openGLSystem::render()
{

// clear the buffers

g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Ensure we're working with the model matrix.
gIMatrixMode(GL_MODELVIEW);

// load in the identity matrix
glloadIdentity();

// swap the double buffers
SwapBuffers(hDC);
}

/*********************************************************************

* closeGraphicSystem
* close the OpenGL graphic system and performs cleanup
*********************************************************************/
void openGLSystem::closeGraphicSystem()
{
// check for the rendering context
// if it exists, let's release it
if ( hRC ) {
// make this the current context
wgTMakeCurrent( NULL, NULL );

// delete the rendering context
wglDeleteContext( hRC );

// Set to NULL
hRC = NULL;

TeamLRN



What Is an Abstraction Layer? 135

// try to release the device context
if (hDC && !ReleaseDC( m_hWnd, hDC )) {
hDC = NULL;

Explaining the Derived Layer

This section is just a very simple implementation of a derived layer. We’re only sup-
porting the bare minimum of functionality that you would want, but it’s enough to
explain the abstraction layer concept. Explaining in detail the OpenGL code in the
preceding section isn’t within the scope of this chapter. Now let’s see how this layer
works.

We start first by overriding the initGraphicSystem function. This function is created
to take care of initializing OpenGL and preparing the application window for
drawing.

Next we implemented the render function. This is where the main drawing for this

layer takes place. The game itself will be given the task of sorting all the visible
polygons into a format that the OpenGL layer will render.

Finally, we implemented the closeGraphicSystem function. Within this function, the
device contexts we created are released back to the system. This is just our basic
cleanup function.

Using the Derived Layer

Now it’s time to put the layer we created to some use. We're going to create some
code that allows switching between the OpenGL layer that we created in the last
section and another layer supporting Direct3D.

The following code shows how to instantiate the gfxSystem object and call the func-
tions defined within it.

f#include <windows.h>
f#include "GraphicSystem.h"

// defined if we want to use OpenGL rendering
ffdefine USE_OPENGL 1

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR 1pCmdLine, int nCmdShow)

TeamLRN



136 5. Writing Cross-Platform Code

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

// Windows Message Structure
MSG msg;

fHifdef USE_OPENGL
// use the OpenGL system
openGLSystem *gfxSystem = new openGLSystem();

felse
// use the Direct3D system
directXSystem *gfxSystem = new direct3DSystem();
fendif
// initialize the graphic system we chose
gfxSystem->initGraphicSystem( hWnd );
// Toop control variable
bool done = false;
// main Toop
while( !done )
{
// are there any windows messages waiting?
if (PeekMessage( &msg, NULL, O, 0, PM_REMOVE ))
{
// if so, check what they are
if (msg.message == WM_QUIT) {
done = true;
}
else {
TransTateMessage(
&msg );
DispatchMessage(
&msg );
}
}
// otherwise, let's just do the rendering Toop
else
{

// render to the window
gfxSystem->render();

TeamLRN



In Conclusion 137

// shutdown the graphic system
gfxSystem->closeGraphicSystem();

// check for the existence of the gfxSystem
// delete the pointer

if ( gfxSystem )

delete gfxSystem;

return (msg.wParam);

The key to this code is actually the two lines nestled between #ifdef and #endif just
within WinMain.

#Hifdef USE_OPENGL

// use the OpenGL system

openGLSystem *gfxSystem = new openGLSystem();
felse

// use the Direct3D system

directXSystem *gfxSystem = new direct3DSystem();
frendi

The compiler checks to see if a constant USE_OPENGL has been defined. If so, the
code creates an object based on OpenGL rendering. If the constant has not been
defined, the code defaults to creating the object with the Direct3D system. A
pointer gfxSystem is created that refers to the rendering system. The rest of the
code at this point doesn’t have to worry about what system is being used. All the
proceeding calls refer directly to the pointer we created.

In Conclusion

The techniques we’ve described so far are just the tip of the iceberg when doing
cross-platform development. Doing a search on the Web will give you a much
greater understanding of the usefulness of keeping your code portable. With the
growing popularity of Linux as a computing platform and the decreasing lifetime
of console systems, the need for portable code going forward is only going to grow.

TeamLRN



This page intentionally left blank

TeamLRN



SECTION 2

GENERAL

GAME
FPROGRANIMING

TRICKS




S T = ' s e R

If you are reading this, then you have successfully
made your way through Part L. At this point, you
should have a clear understanding of some basic
fundamentals that you can use for the rest of this
book. Heck, you should be able to use what you
have learned thus far for any of your game pro-
gramming projects!

Part Il will begin introducing some concepts that
you will find useful for your game programming
endeavors. You will cover topics such as OpenGL
game programming, sound and music, 20 Sprite cre-
ation, and so on. There is even a special trick that
instructs you on how to create text-based adven-
ture games for you die-hard Zork fans out there. 1
hope it is a nice addition to the book and that it
helps the beginners get their feet wet by program-
ing a simple game to show off to their friends.

Are curious juices flowing yet® Well, let’'s satisfy r.rr
that craving by moving right along into Part Il

_ T
———_ {

11 I‘[J_‘_\J—T

TeamLRN



-y il BB E=— ' —=r=1 ____q_f—\__,_ﬁ‘"“
H_JJ

TRICK 6

TIPS FROM THE
OuTDoOoOORSMANTS
JOURNHAL

TRENT PoLLACK

TeamLRN



142 6. Tips from the ODOutdoorsman’s Journal

Introduction: Life in the
Great OQutdoors

Ahhhh, everyone loves the outdoors . .. Well, maybe not everyone. Maybe the peo-
ple with allergies loathe it, and maybe the people with really sensitive eyes don’t like
it either. So, let me rephrase that: Everyone loves a good outdoor image! That will be
the goal for this chapter: to take your knowledge of creating an outdoor world from
nil to being able to create a fully interactive and dynamic outdoor world.

What You Will Learn

In this chapter, you’ll learn all about creating an outdoor world. I’'m just going to
give you a general overview. My goal for this chapter is to ease you into a wide vari-
ety of subjects and then give you links for how to make your implementation of
that subject cooler and more complex. I’ll start with an explanation about terrain,
with an emphasis on height map manipulation, and then I’ll tell you how to render
that height map using brute force terrain. Brute force is definitely not the best
choice for a terrain algorithm, but I want to keep things simple. I will then talk
about texturing that terrain (using a multipass algorithm that I came up with).
Then I'll introduce you to a very cool yet simple terrain lighting algorithm called
“Slope Lighting.”

Next on the ultrafun list is adding some environmental effects to your outdoor
world. I will discuss the advantages of using fog, and then I'll give you another way
to make a cool outdoor environment even cooler: skyboxes!

Height Maps 101

Imagine you have a grid of vertices that extends along the X-axis and the Z-axis. In
case your mind is seriously lacking in the imagination department, I was nice enough
to make an image of what your mind should have conjured up (see Figure 6.1).

Now that’s a pretty boring image! How exactly are we going to go about making it
more, well, terrain-ish? The answer is by using a height map. A height map, at least

TeamLRN



Height Maps 101 143

in our case, is a series of unsigned char values (perfect for grayscale images) we will
be creating at runtime, or in a paint program, that defines the height values for a
boring grid of vertices. Now, for a quick example, check out the height map in
Figure 6.2. Once we load it and apply it to our terrain, the grid in Figure 6.1 will
transform into the beautiful (well, sorta) terrain you see in Figure 6.3.

Figure 6.1
A grid of vertices with
nondefined height
values
Figure 6.2
The 128x128 height map
used to create Figure 6.3
Figure 6.3

A brute force terrain
image created using
the height map in
Figure 6.2

TeamLRN



194 6. Tips from the ODOutdoorsman’s Journal

Granted, it looks pretty boring without any cool textures or lighting, but hey, we
need to start somewhere. As I was previously explaining, height maps give us the
power to shape a boring grid of vertices into a magnificent landscape. The ques-
tion is, what exactly are they? Normally, a height map is a grayscale image in which
each pixel represents a different height value. Dark colors represent a low height,
and lighter colors represent a higher elevation. Look again at Figures 6.2 and 6.3.
Notice how the 3-D terrain (in Figure 6.3) corresponds exactly to the height map
(in Figure 6.2), with everything from the peaks to the ditches and even the colors?
That’s what we want our height maps to do: give us the power to mold a grid of ver-
tices to create the terrain we want.

Now, in our case, the file format for our height maps is going to be the RAW for-
mat. (Though most of the demos create height maps dynamically, I included the
option to save/load height maps using the RAW format.) I chose this format simply
because it is incredibly simple to use, and since the RAW format only contains
*pure* data, it is easy to load in and to use. Because we are using a grayscale RAW
image, that just makes everything so much easier! Before we load a grayscale RAW
image, we have a couple of things to do. First we need to create a simple data struc-
ture that can represent a height map. What we need for this structure is a buffer of
unsigned char variables (we need to be able to allocate the memory dynamically)
and a variable to keep track of the height map’s size. Simple enough, eh? Well,
here it is:

struct SHEIGHT_DATA

{
unsigned char* m_pucData; //the height data
int m_iSize; //the height size (must be a power of 2)

Making the Base Terrain
Class

Now, before we go any further, we need to create a base class from which we can
derive a specific terrain implementation. (For this chapter, it’s a brute force imple-
mentation, but I’'m hoping you’ll take a look at “Going Further: Deeper into the
Wilderness” a bit later in this chapter and will implement your own more compli-
cated algorithm.) We do not want the user to actually create an instance of this
class; we just want this class to be a common parent for a variety of terrain
implementations.

TeamLRN



| ’Niaklng the Base Terrain Class 1945

-.|—|—F = l——l_l_‘—|_|—r|_|_”—|5|—|—|_|"—r

So far, all we need in our base

class is three variables: an NOTE

instance of SHEIGHT_DATA, a The CTERRAIN class is what we C++ junkies

height scaling variable (which like to refer to as an abstract class. An

will let us dynamically scale the abstract class is a class that functions as a
heights of our terrain), and a common interface for all of its children.'
size variable (which should be Think of it this way: A mother has red hair
exactly the same as the size but a boring personality, and although her
member of SHEIGHT_DATA, or children all have red hair, each has a distinct

something is seriously screwed personality that is incredibly entertaining.
The same applies to an abstract class.

Although it is boring by itself, its traits carry
on to its children, and those children can
define more “exciting’” behavior for
themselves.

up). As far as functions go, we
need some height map manipu-
lation functions and the func-
tions needed for the fractal
terrain generation algorithms
we talked about earlier. Here is
what I came up with:

class CTERRAIN
{

protected:
SHEIGHT_DATA m_heightData; //the height data
float m_fHeightScale; //scaling variable
public:
int m_iSize; //must be a power of two

bool LoadHeightMap( char* szFilename, int iSize );
bool SaveHeightMap( char* szFilename );
bool UnloadHeightMap( void );

//

// Name: CTERRAIN: :SetHeightScale - public

// Description: Set the height scaling variable

// Arguments: -fScale: how much to scale the terrain
// Return Value: None

/]

inline void SetHeightScale( float fScale )

TeamLRN



146 6. Tips from the ODOutdoorsman’s Journal

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

{ m_fHeightScale= fScale; }

//

// Name: CTERRAIN::SetHeightAtPoint - public

// Description: Set the true height value at the given point
// Arguments: -ucHeight: the new height value for the point
// -iX, iZ: which height value to retrieve

// Return Value: None

//

inline void SetHeightAtPoint( unsigned char ucHeight, int iX, int iZ)
{ m_heightData.m_ucpDatal( iZ*m_iSize )+iXI= ucHeight; }
//

// Name: CTERRAIN: :GetTrueHeightAtPoint - public

// Description: A function to set the height scaling variable
// Arguments: -iX, iZ: which height value to retrieve

// Return Value: An float value: the true height at

/1 the given point

//

inline unsigned char GetTrueHeightAtPoint( int iX, int iZ )

{ return ( m_heightData.m_ucpDatal( iZ*m_iSize )+iX] ); }
//

// Name: CTERRAIN::GetScaledHeightAtPoint - public

// Description: Retrieve the scaled height at a given point
// Arguments: -iX, iZ: which height value to retrieve

// Return Value: A float value: the scaled height at the given
// point.

//

inline float GetScaledHeightAtPoint( int iX, int iZ )
{ return ( ( float )( m_heightData.m_ucpDatal( iZ*m_iSize )+iX]
)*m_fHeightScale ); }

CTERRAINC void )

{ }
~CTERRAIN(C void )
{ }

s

Not too shabby, huh? Well, that’s our “parent” terrain class. Every other implemen-
tation we develop will be derived from this class. I put quite a few height map

TeamLRN



".Ldéding and Unloading a Height Map 147

manipulation functions in the class just to make things easier for both the users
and us. I included two height retrieval functions for a reason: Although we, as the
developers, will use the true function most often, the user will be using the scaled
function most often (to perform collision detection). We will use the set height
function when we get to deformation later in the book. With that said, let’s discuss
the height map loading/unloading functions.

Loading and Unloading a
Height Map

I’ve been talking about both of these routines for a while now, and I think it’s
about time that we finally dive straight into them. These routines are very simple,
so don’t make them any harder than they should be. All we are doing is some sim-
ple Cstyle file 1/0.

The best place to begin is with the load-

ing routine because you can’t unload NOTE

something without it being loaded. So, I tend to stick with C-style 1/0

let’s get to it! All we need are two argu- because it is so much easier to read
ments for the function: the file name than C++-style 1/O. It’s as simple as
and the size of the map. Inside the func- that, so if you are really a true C++
tion, we want to make a FILE instance junkie and absolutely loathe the “C
(so we can load the requested height way of doing things,” feel free to
map), and then we want to check to change the routines to true C++! On

make sure the class’s height map the other hand, | really like C++-style
instance is not already loaded with memory operations, so if you're a
information. If it is, we’ll call the true C-junkie, change thosel
unloading routine and continue about
our business. Here is the code for what we
just discussed:

bool CTERRAIN::LoadHeightMap( char* szFilename, int iSize )

{
FILE* pFile;

//check to see if the data has been set

if( m_heightData.m_pucData )
UnloadHeightMap( );

TeamLRN



148 6. Tips from the Outdoorsman’s Journal

—l—"|_|_|—'Eru—”_l—|_|—‘|_|-—'l_lLlﬁl_,_ﬁLu_|—l

Okay, next we need to just open the file, and then allocate memory in our height
map instance’s data buffer (m_heightData.m_pucData), and check to make sure that
the memory was allocated correctly, and that something didn’t go horribly wrong
(which is always possible, I mean, sometimes I just turn my computer on, and the
next minute it decides to format itself, go figure).

//allocate the memory for our height data
m_heightData.m_pucData= new unsigned char [iSize*iSizel;

//check to see if memory was successfully allocated

if( m_heightData.m_pucData==NULL )

{
//something is seriously wrong here
printf( "Could not allocate memory for%s\n", szFilename );
return false;

}

And for the next-to-last step in our loading process, and definitely the most impor-
tant, we are going to load in the actual data, and place it in our height map
instance’s data buffer. And finally, we are going to close the file, set some of the
class’s instances, and print a success message!

//read the heightmap into context
fread( m_heightData.m_pucData, 1, iSize*iSize, pFile );

//Close the file
fclose( pFile );

//set the size data NOTE

m_heightData.m_iSize= iSize;

m_iSize = m_heightData.m_iSize; Jiheheighy map sgving

routine is almost the

) exact same thing as
//yahoo! The heightmap has been successfully Toaded

printf( "Loaded %s\n", szFilename );
return true;

the loading routine.
Basically, all that needs
to be done is replace
fread with fwrite.Yup,
That’s it for the loading routine. Now we’ll move on to that’s all there is to it!
the unloading routine before I lose your attention! The
unloading procedures are very simple. All we have to do

}

TeamLRN



Loading and Unloading a Height Map 149

is check to see if the memory has actually been allocated. If it has, delete it. That’s
all there is to it!

bool CTERRAIN::UnloadHeightMap( void )
{
//check to see if the data has been set
if( m_heightData.m_pucData )
{
//delete the data
delete[] m_heightData.m_pucData;

//reset the map dimensions also
m_heightData.m_iSize= 0;

//the height map has been unloaded
printf( "Successfully unloaded the height map\n" );
return true;

}

I said a while back that we were going to be creating most of our height maps
dynamically. How do we do that? I'm glad you asked. (Even if you didn’t, I'm still
going to explain it!) What we are going to do is use one of two fractal terrain gen-
eration algorithms (both from the first volume of Game Programming Gems): fault
formation? or midpoint displacement®. Because the two chapters in Gems explain
the concepts infinitely better than I could ever hope of doing, I'm going to refer
you to those chapters. But that doesn’t mean that I didn’t include code. Check out
the following functions:

void CTERRAIN::NormalizeTerrain( float* fpHeightData );

void CTERRAIN::FilterHeightBand( float* fpBand, int iStride, int iCount, float
fFilter );

void CTERRAIN::FilterHeightField( float* fpHeightData, float fFilter );

bool CTERRAIN::MakeTerrainFault( int iSize, int ilterations, int iMinDelta, int
iMaxDelta, int ilterationsPerFilter, float fFilter );
bool CTERRAIN::MakeTerrainPTlasma( int iSize, float fRoughness );

In Figure 6.4, I created some quick examples of height maps using the midpoint
displacement (MakeTerrainPlasma) creation function, with varying roughness as
specified.

TeamLRN



150 6. Tips from the ODutdoorsman’s Journal
L T ——_ 5 | ﬁ_.—"l_”_l_l

Figure 6.4

Height maps
generated using
the midpoint
displacement

e

of

algorithm, with

Roughness=4.0f Roughness=1.5f Roughness= 1.0f Roughnoss=ﬂ.

varying levels of
roughness

The Brute Force of Things

Rendering terrain using brute force is incredibly simple and provides the best
amount of detail possible. Unfortunately, it is the slowest of all the algorithms pre-
sented in this book. Basically, if you have a height map of 64x64 pixels, the terrain,
when rendered using brute force, will consist of 64x64 vertices in a regular repeat-
ing pattern (see Figure 6.5).

Figure 6.5

A 6x6 patch of brute force terrain vertices

In case you didn’t immediately recognize it, we will be rendering each row of ver-
tices as a trianglular strip, simply because it is the most logical way to render the
vertices. I mean, you wouldn’t exactly want to render them as individual triangles
or as a triangle fan, would you?

For this chapter’s first demo, I'm keeping things as simple as possible. So, for
“lighting,” we are just going to keep things, well, as simple as possible. The color
for the vertex will be based on its height, so all vertices will be shades of gray. That’s

TeamLRN



The Brute Force of Things 151

#——1_”JrL_____ﬂ__IEEET"T::= [ E===———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE;““ﬂ____I‘I__Jm__T

all that there is to rendering terrain using brute force. Here is a quick snippet
(using OpenGL) to show how we will be rendering the terrain:

void CBRUTE_FORCE::Render( void )
{

unsigned char ucColor;

int iZ;

int iX;

//1oop through the Z-axis of the terrain
for( iZ=0; iZ<m_iSize-1; iZ++ )
{
//begin a new triangle strip
g1Begin( GL_TRIANGLE_STRIP );

//1oop through the X-axis of the terrain
//this is where the triangle strip is constructed
for( iX=0; iX<m_iSize-1; iX++ )
{
//use height-based coloring (high-points are
//1ight, Tow points are dark)
ucColor= GetTrueHeightAtPoint( iX, iZ );

//set the color with OpenGL, and render the point
glColor3ub( ucColor, ucColor, ucColor );
glVertex3f( iX, GetScaledHeightAtPoint( iX, iz ), iZ );

//use height-based coloring (high-points are
//1ight, Tow points are dark)
ucColor= GetTrueHeightAtPoint( iX, 1Z+1 );

//set the color with OpenGL, and render the point

glColor3ub( ucColor, ucColor, ucColor );
glVertex3f( iX, GetScaledHeightAtPoint( iX, izZ+1 ), iZ+1 );

//end the triangle strip
glEnd( );

TeamLRN



152 6. Tips from the ODOutdoorsman’s Journal

Yup, that’s all that there is to it. Now, do yourself a favor and check out
OutdoorDemo_1 on the accompanying CD located in the folder associated with
this chapter (i.e.,

Chapter 06). It’s a

nice demo with a Key Function
ton of cool stuff to
do. and there is q or Escape Quiit the program
even a nice little wis Move forward/backward
height map “mini dis Strafe right/left
map” up in the cor-
ner. Here are the h Save the current height map in the demo’s
controls and a LIES b
screenshot of the n Switch to wireframe mode
demo (see Figure m Switch to “fill” mode
6.6):
f Form a new height map using fault formation
Now, have some . . .
p Form a new height map using midpoint

fun with that demo
and meet me back
here for some tex-

displacement

=/- Increase/decrease mouse sensitivity

ture fun when 1T Increase/decrease movement speed
you're done.

Figure 6.6

A screenshot from
OutdoorDemo__|

TeamLRN



= Getting Dirty with Textures! 153

Getting Dirty with Textures!

Sure, our terrain is great and all, but it still is seriously lacking in two areas: light-
ing, for one, and even more obviously, it lacks good textures! I mean, when was the
last time you walked through a grayscale mountain?! So, we obviously have some
work to do. I'm going to keep things very simple but also very cool. And although
the approach I’'m going to be presenting is probably not the best, it is very simple
to implement. So, let’s get started.

I'm going to be doing all of the texturing in this demo using some very simple
methods. All we are going to be doing is stretching one texture (two a bit later)
across the entire patch of terrain, which is easier than it sounds. Remember that
texture coordinates are in a range of zero to one, so basically, all we have to do is
take the current vertex we are rendering and divide it by the maximum length of
the terrain. If we are rendering vertex (64, 32) in a 128x128 patch of terrain, that
would provide us with the texture coordinate (64/128, 32/128) or (0.50, 0.25). So,
all we are going to do (right now at least) is stretch a base grass texture (see Figure
6.7) across a patch of terrain, as in Figure 6.8.

Figure 6.7

The grass base texture for
the textured terrain

Now for the fun part. The previous texture method was pretty trivial, but I can’t
make it that easy for you, can I? Notice the screenshot in Figure 6.8. Sure, it’s pretty
and all, but it looks a little . . . mountainous, doesn’t it? Though when was the last

TeamLRN



154 6. Tips from the ODutdoorsman’s Journal

Figure 6.8

The texture in Figure
6.7 applied to a
patch of terrain

time you saw a mountain completely covered in grass?! So, what we are going to do
is have a little bit of fun with multipass rendering. We are going to be making two
different texture passes: one for the base grass texture and one to apply a moun-
tain texture based on height. To do this, we’ll be increasing the alpha value of the
vertex to be rendered as its height increases. Therefore, a vertex with a height
value of 255 will be completely opaque, while a vertex with a height value of 32 will
be barely noticeable.

Here’s the exact same explanation, except this time I'll give it a bit more detail. As
I said, we are going to be making two separate rendering passes. To do this, we are
going to split the render function into three different sections: the base texture
pass, the “mountain” pass, and finally a nontexture pass, just in case no textures are
passed in the function’s argument list. (Yes, I think this requires a code run-

through.)

/1

// Name: CBRUTE_FORCE: :Render - public

// Description: Render the terrain height field

// Arguments: -texTilel: the base texture to be used in the first pass
// -texTile2: the additional texture

// Return Value: None

/1

void CBRUTE_FORCE::Render( IMAGE texTilel, IMAGE texTilez )
{

TeamLRN



Getting Dirty with Textures! 155

float fTexLeft;
float fTexBottom;
float fTexTop;
float fColor;
int Z;

int X;

The three tex variables are used for holding our texture coordinate generation for
the current vertices being rendered. The other variables serve the same function as
they did in the preceding section. Now let’s go over the first section of the new ren-
dering function. First we want to check to see if a base texture was even provided
(both of the function arguments default to zero) because why would we want to
waste a texture pass on something that’s not getting textured? It’s lunacy, I tell you!
We then will bind the texture and render everything.

//make the first rendering pass

if( texTilel )

{
//bind the first texture (base texture)
g1BindTexture( GL_TEXTURE_2D, texTilel );

//Toop through the Z-axis of the terrain
for( z=0; z<m_iSize-1; z++ )
{
//begin a new triangle strip
g1Begin( GL_TRIANGLE_STRIP );

//Toop through the X-axis of the terrain
//this is where the triangle strip is constructed
for( x=0; x<m_iSize-1; x++ )
{
//calculate the texture coordinates
fTexLeft = ( float )x/m_iSize;
fTexBottom= ( float )z/m_iSize;
fTexTop = ( float )( z+1 )/m_iSize;

//use height-based coloring (high-points are
//1ight, Tow points are dark)
fColor= GetTrueHeightAtPoint( x, z )/255.0f;

//set the color with OpenGL, and render the point

TeamLRN



156 6. Tips from the ODOutdoorsman’s Journal

glColordf( fColor, fColor, fColor, 1.0f );
g1TexCoord2f( fTexLeft, fTexBottom );
glVertex3f( x, GetScaledHeightAtPoint( x, z ), z );

//use height-based coloring (high-points are
//1ight, Tow points are dark)
fColor= GetTrueHeightAtPoint( x, z+1 )/255.0f;

//set the color with OpenGL, and render the point
glColordf( fColor, fColor, fColor, 1.0f );
g1TexCoord2f( fTexLeft, fTexTop );

glVertex3f( x, GetScaledHeightAtPoint( x, z+1 ), z+1 );

//end the triangle strip
glEnd( );

}

Now, if that looks completely new to you, you obviously haven’t been paying atten-
tion to what I’ve been writing, which hurts my feelings. But before I go cry and
wallow in self-pity, I'm going to explain what is different from the old rendering rou-
tine. What should be most obvious are the three lines where we calculate the tex-
ture coordinates, but you already know how to do that because I did such an
excellent job of explaining the calculations earlier—or didn’t you listen to that
either? The only other change present here is the two calls to g1TexCoord2f, and
those are pretty self-explanatory. So, now that we covered that, we need to move on
to the second section of the rendering routine.

//make the second rendering pass

if( texTile2 )

{
//bind the second texture (for higher areas on the terrain)
glBindTexture( GL_TEXTURE_2D, texTile2 );

//Toop through the Z-axis of the terrain
for( z=0; z<m_iSize-1; z++ )
{
//begin a new triangle strip
g1Begin( GL_TRIANGLE_STRIP );

TeamLRN



Getting Dirty with Textures! 157

#——1_”JrL_____ﬂ__IEEET"T::= [ E===———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE;““ﬂ____I‘I__Jm__T

//1oop through the X-axis of the terrain
//this is where the triangle strip is constructed
for( x=0; x<m_iSize-1; x++ )

{

//calculate the texture coordinates
fTexLeft ( float )x/m_iSize;
fTexBottom= ( float )z/m_iSize;
fTexTop = ( float )( z+1 )/m_iSize;

//use height-based coloring (high-points are
//1ight, Tow points are dark)
fColor= GetTrueHeightAtPoint( x, z )/255.0f;

//set the color with OpenGL, and render the point
glColor4f( fColor, fColor, fColor, fColor );
g1TexCoord2f( fTexLeft, fTexBottom );

glVertex3f( x, GetScaledHeightAtPoint( x, z ), z );

//use height-based coloring (high-points are
//1ight, Tow points are dark)
fColor= GetTrueHeightAtPoint( x, z+1 )/255.0f;

//set the color with OpenGL, and render the point
glColordf( fColor, fColor, fColor, fColor );
g1TexCoord2f( fTexLeft, fTexTop );

glVertex3f( x, GetScaledHeightAtPoint( x, z+1 ), z+1 );

//end the triangle strip

gTEnd(

}

The only difference here from the last section, in case you didn’t notice, is in the
alpha value that we pass for g1Color4f, which defines the visibility of the second tex-
ture we are adding to the image. Remember that the higher the height value, the
more opaque the second texture is. So, if we had a low value of 27, for example, it
would be textured like a nice grassy field, but if we had a higher value of 227, it
would be textured like a rugged mountaintop. Figure 6.9 shows the additional tex-
ture, and Figure 6.10 shows the multitextured version of Figure 6.8.

TeamLRN



158 6. Tips from the Dutﬁ_

o
———

Figure 6.9

The additional texture for
the terrain, just a rock
texture that is repeated over
and over

Figure 6.10

The multitextured
version of Figure 6.8

That’s all the information I’'m going to give you about texturing in this chapter. If
my nice little texturing technique was too simple or too slow for you, check out
some of the excellent references in the section “Going Further: Deeper into the
Wilderness” later in this chapter. In fact, I implore that you go check them out
right now because making multiple passes for terrain isn’t just a very fast technique;
it’s great for quick-and-dirty projects in which you need some good-looking results.

TeamLRN



Adding Light to Your Life 159

Adding Light to Your Life

Adding lighting to an outdoor world can make a Auge difference in the overall
mood and environment projected from your rendered scene. The lighting for the
last couple of demos was, well, seriously flawed. It is probably the most unrealistic
model possible. We just cannot have that, so I think it’s about time for us to get to
work on making a new lighting system for our outdoor world. For this task, we are
going to use a very cool method called “Slope Lighting.”

To slope light terrain, all we are going to do is retrieve the height from the vertex
next to the current vertex (which direction to go will be dictated by the light’s
direction) and then subtract it by the current vertex’s height. The only kicker of
the whole algorithm is that the light’s direction must be in increments of 45
degrees. For instance, the direction of the light in the demo (OutdoorDemo_3) is
(1, 1), but we could move it 90 degrees and give it a direction of (-1, 1), as seen in
Figure 6.11.

Figure 6.11

Left image: Slope-

lighted terrain with
a light direction of

(1. 1)

Right image: Slope-
lighted terrain with
a light direction of

L1

Now, does that look good, or does that look good? Yeah, that’s what I thought!
Anyway, let’s do a code run-through and re-explain some of the concepts we just
touched on in more detail. First of all, our slope-lighting system does all of its cal-
culations per frame, so we might as well give the user as much power in customiz-
ing the lighting system as we can. To do this, we add a few variables to the ol’
CTERRAIN class:

CVECTOR m_vecLightColor; //the color of the Tight

float m_fLightSoftness; //the 1ight softness
float m_fMinBrightness; //minimum shading value
float m_fMaxBrightness; //maximum shading value

TeamLRN



160 6. Tips from the ODOutdoorsman’s Journal

_L——q___r_1———J_____EEEEEEE___rU__”j___LJ__‘ | [ =—— 5 | :::?__15511_4______JﬂLUJ——1

int m_iDirectionX; //X-direction of the Tight
int  m_iDirectionZ; //Z-direction of the 1light
bool m_bDoSTopelLighting; //is slope lighting enabled/disabled?

These are all the variables we need. We also need to create a pair of functions to
enable/disable slope lighting and one to customize the lighting system, but those
are all very self-explanatory. What I want to concentrate on is the function that will
be calculating the shading value for a pair of (X, Z) values.

//

// Name: CTERRAIN::CalculateSlopelLighting - public

// Description: Calculates the shading value using the Slope

// algorithm (Charlie Van Noland)

// Arguments: -X, z: the vertex to calculate Tighting for

// Return Value: A floating point value: the shading Tevel for a
// vertex

//

float CTERRAIN::CalculateSlopelLighting( int x, int z )

{

float fShade;

//if slope lighting is not enabled, then just return a very
//bright color value (white)
if( !m_bDoSTopelighting )

return 1;

//ensure that we won't be stepping over array boundaries by
//doing this
if( z>=m_iDirectionZ && x>=m_iDirectionX )
{
//calculate the shading value using the "slope
//1ighting" algorithm
fShade= 1-( GetTrueHeightAtPoint( x-m_iDirectionX,
z-m_iDirectionZ ) -
GetTrueHeightAtPoint( x, z ) )/m_fLightSoftness;

//if we are, then just return a very bright color value (white)
else
fShade= 1;

TeamLRN



Adding Light to Your Life 161

//clamp the shading value to the min/max brightness boundaries
if( fShade<m_fMinBrightness )

fShade= m_fMinBrightness;
if( fShade>m_fMaxBrightness )

fShade= m_fMaxBrightness;

//return the final shading value
return fShade;
}

The most important part of this nice little snippet is the middle, where we calculate
fShade. That is basically the whole slope lighting algorithm in one simple segment.
Given the light direction, all we have to do is calculate the difference between the
height of the vertex passed as an argument from the vertex before it (in the direc-
tion of the light). Here’s a slight analogy: In a tightly packed city, there are some
huge skyscrapers, and your little flower shop resides right next to one. Let’s say the
sun is directly behind the building from your point of view. Wouldn’t things around
you be a lot darker than if you were directly in front of the huge skyscraper (where
you could receive the sun’s rays in full)? Well, that’s exactly what is going on here.
In case you’re more of a visual learner, check out Figure 6.12.

Figure 6.12
This building gets shaded! The slope lighting algorithm, using the
building analogy

U=~ — | Shaded Area

] [
][

TeamLRN



162

Now, for a better display of how a patch of terrain would get shaded, check out
Figure 6.13. I didn’t bother texturing the terrain at all, so you can see the full effect
of how a blank patch of terrain would be shaded. Cool, huh?

Figure 6.13

A nontextured but
slope-lit patch of
terrain

That’s all that there is to slope lighting. I told you it was an easy algorithm to use,
and yet it still provides great-looking results. It’s all so exciting! Go check out
OutdoorDemo_3 to see slope lighting in action. The controls for the demo are the
exact same as they have been for the last couple. Next on the list is fog. Yes, fog!

Lost in the Fog

I’'m not going into complicated fog issues here. I just want to discuss some of the

benefits of fog and give you a simple demo to check out. I didn’t use any compli-

cated techniques to render the fog. I just used the API’s hardware-accelerated fog
features—nothing too great, but hey, it works!

Adding fog greatly increases the realism of an outdoor system. (Of course, you’d
want to implement a better system than the one described here to be even more
realistic. See the section “Going Further: Deeper into the Wilderness” later in this
chapter.) Depending on how dense you make the fog, it can greatly change the
mood of the entire scene. It also helps give the viewer a better sense of depth in
the 3-D scene. Finally, fog helps hide the far clipping plane; once an object
becomes completely absorbed in the fog, you might as well just clip it! So, you see,

TeamLRN



Fun with Skyboxes 163

fog has other benefits in addition to its aesthetic value, so it’s very worth your while
to spend a bit of time making your fog system very high quality. Check out
OutdoorDemo_4 for a simple implementation, just so you can see the benefits of
fog that were previously listed (see Figure 6.14).

Figure 6.14

A patch of terrain
covered in fog

Fun with Skyboxes

A skybox is just that, a box with a series of textures that together form a complete
sky image. Remember when you were a little kid and your teacher made you cut
out a series of little boxes that connected to form a cube? Well, that’s basically what
you’re going to be doing here, except that little cube is a bit more complicated. It
looks a little like Figure 6.15.

Now what we have to do is “cut” those images out and “glue” them together to make
a nice-looking area surrounding our terrain. This isn’t nearly as hard as it sounds.
How many people, for their first 3-D project, made a simple cube? I'm hoping that
most of you started out with something similar. The concept barely changes here
except the position is a bit different, and you’re adding textures to that simple cube.

To render the skybox, we just need six textures for the sides of the skybox, the cen-
ter of the skybox (this should be the position of the camera), the minimum vertex
of the skybox, and the maximum vertex of the skybox. Yup, that’s all that we need!
Check out Figure 6.16 for a visual list of the requirements.

TeamLRN



164 6. Tips from the ODOutdoorsman’s Journal

Figure 6.15

A series of textures
that make up a

skybox
Figure 6.16
Max vertex
Visual requirements
needed to render a skybox
Top texture
Back(|texture
N4 @
> &
<@ N
& &
v s
Front|texture

Bottom texture

Min vertex

TeamLRN



Fun with Skyboxes 165

We want the skybox to move along with the camera (we don’t want the user to walk
into a mountain that looks like it should still be an eternity away!), so we’ll update
the center of the skybox with the camera’s position every frame. Also, skyboxes
have one huge advantage that I have not discussed up to this point. If we disable
depth testing and render the skybox directly after updating the view matrix (using
our camera’s utility function), we can eliminate the need to clear the color buffer
(though we still need to clear the depth buffer). This provides a very large speed
increase and makes a skybox both pretty and economical for our cause.

To render the skybox, you will want to “push” the current view matrix onto the
stack and then translate to the skybox’s center. You then would proceed to render
the box usi