
.NET Game Programming
with DirectX 9.0

ALEXANDRE SANTOS LOBÃO
AND

ELLEN HATTON

*0511_ch00_FINAL 2/18/03 4:58 PM Page i

.NET Game Programming with DirectX 9.0

Copyright ©2003 by Alexandre Santos Lobão and Ellen Hatton

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-051-1

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: David Jung

Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Karen Watterson, John Zukowski

Managing Editor: Grace Wong

Project Manager: Sofia Marchant

Copy Editor: Ami Knox

Production Manager: Kari Brooks

Compositor: Diana Van Winkle, Van Winkle Design Group

Artist and Cover Designer: Kurt Krames

Indexer: Lynn Armstrong

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710.

Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

*0511_ch00_FINAL 2/18/03 4:58 PM Page ii

CHAPTER 4

River Pla.Net:
Tiled Game Fields,
Scrolling, and
DirectAudio

IN THIS CHAPTER we’ll apply the
concepts learned in the pre-
vious chapter about Direct3D
to implement DirectX gaming
classes (such as GameEngine
and Sprite), so we’ll easily be
able to create high-speed
graphics games. We’ll also
introduce basic DirectAudio
concepts that will allow us to
include sound effects and
background music in our
games.

We’ll also examine the
concept of tiled game fields
and scrolling in games, and
start implementing a clone of
Activision’s River Raid game, a
popular title for Atari 2600 and VCS. Our sample game, shown in Figure 4-1, will be
finished in the next chapter, where we’ll introduce DirectInput and the use of
force-feedback joysticks.

Scrolling games and tile-based games have been around since earlier video
game consoles and home computers hit the shelves, and we often see games that
use both techniques. We’ll discuss some interesting points about each in the next
sections.

211

Figure 4-1. River Pla.Net, a River Raid clone, is this chapter’s
sample game

*0511_ch04_FINAL 2/18/03 7:47 PM Page 211

Scrolling Games

Although the basic concept of scrolling games is very simple, there are many inter-
esting variations we must consider when we start creating a new game. We can
define scrolling games as the games in which the background moves in a con-
tinuous way. It’s a very loose definition, but it’ll suffice for our goals here.

Some of the typical choices we must make when coding scrolling games are
discussed next.

Scrolling Direction

All scrolling games are either vertical scrollers, horizontal scrollers, or full scrollers,
meaning that the background on these games scroll in a vertical direction, in a
horizontal direction, or in any direction. We’ll discuss some variations of these
movements in this section.

The most common choice is to implement vertical “up-down” scrollers (as
does the sample game for this chapter), where the background moves from the top
to the bottom of the screen, and horizontal “right-left” scrollers, where the back-
ground moves from right to left. We don’t see many scrolling games using the
opposite direction schemes because using these directions makes our games seem
more natural to players.

Full scrollers are harder to implement and to play, but when made correctly,
they can lead to very interesting gameplay. Just imagine a game in which players
can move their character in any direction: This might be an interesting feature, but
the player could become disorientated, and the game objective would be less clear.

Parallax Scrolling

Parallax scrolling is an ingenious trick that gives players the feeling of being in a
3-D environment, even with flat images.

The basic idea is to create different layers of background objects, each one
moving at different speeds. For example, if we are controlling a monkey in a
jungle, we can create some bushes and trees that scroll at the same speed as the
terrain, trees a little farther off that move a little slower, distant mountains that
move very slowly, and maybe a fixed moon in the sky.

Chapter 4

212

*0511_ch04_FINAL 2/18/03 7:47 PM Page 212

This approach creates a more lifelike game, but must be used with care
because it can lead to visual clutter and confusion for the player. A good tip is to
make distant objects with less vivid colors. This adds to the ambience without
distracting the player.

Player or Engine-Controlled Scrolling

When coding the scrolling for our game, we need to decide whether the back-
ground will always be moving (except, perhaps, when facing some end-of-level
bosses), if it will move depending solely on the player’s input, or if the movement
will be a combination of both.

In some scrolling games, the player is always in the same position on the
screen (usually the middle), and the background rolls according to the player’s
movement: When a player moves the joystick to the right, his or her character
walks to the right (moving in a fixed position), while the background moves to the
left. Many race games use this approach.

Some games use a similar solution: A player walks freely in a restricted area,
and when he or she gets near any border, the background starts to move until the
player starts walking back toward the center of the screen.

Some other games use a combination of automatic scrolling with player-
controlled scrolling; the player controls scrolling right or left, but is always
moving from the top to the bottom of the screen.

One last group of games comprises the auto-scrolling ones, such as the
sample we’ll code in this chapter: The background simply goes on scrolling
without player intervention, creating a nonstop action game.

Choosing the Scrolling Type

Even a topic as simple as choosing the scroll type we should use in our game may
lead to extensive discussion. Of course there’s a lot more we can do when coding
scrolling games; don’t be reluctant to try new ideas. For example, we can split the
screen and make two areas with different scrolling behaviors, such as in the old
arcade game Olympics, where the computer controls a character running in the
upper middle of the screen and the player runs in the lower middle; each half-
screen scrolls with its own speed.

The most appropriate type of scrolling will vary from game to game, and it will
be up to us to make the final choice between code complexity and game playability.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

213

*0511_ch04_FINAL 2/18/03 7:47 PM Page 213

Technical Tips for Scrolling Implementation

Since there are many ways to implement scrolling—from a “camera” moving over
a big image through to the opposite extreme, scrolling based on tiles—there’s no
universal solution. However, keep in mind the following rules of thumb as design
goals:

• Avoid loading images from disk exactly when they are needed. Although it
may not be practical to load all images at the start of the game, try to load
the images before they’re needed; never depend on disk response time, or
the game will probably lack smoothness.

• On the other hand, loading every image and creating every vertex buffer
for the game when it starts is only practical in small game fields. In bigger
games memory can run out in a short time; so balance memory use against
the loading speed of the images. A simple technique to avoid memory
shortage is dividing the game into levels, and loading the images only for
the current level. While the user is distracted with a screen with the current
score or a short message, the next level can be loaded.

Tile-Based Games

A tile is just a small piece of a graphic with a certain property that reveals its status
for the game (a background, an enemy, an obstacle, a ladder, etc.). Creating a tiled
game field is simply a matter of putting the tiles together in a logical fashion. We
can do this by creating a level-map file with a level designer or even with a text
editor; our game, when running, translates the tile codes in the file to graphical
tiles on screen.

When coding tile-based games, the first question to ask is, Will our tiles be
clearly visible, or will we try to hide the repetitive patterns?

There’s no correct answer—it just depends on the game.
If we’re working with a game that deals with visible blocks or bricks, there’s no

special trick to use when creating the tiles: We can simply list the tiles we’ll use and
draw them. Drawing some extra tiles can help the game to look more interesting to
the user.

However, using seamless tiles is another matter. The following sections offer
some practical tips for when we need seamless tiles.

Chapter 4

214

*0511_ch04_FINAL 2/18/03 7:47 PM Page 214

Draw the Basic Tile Sets

When creating a new tile set, we first draw the basic tiles for each type of terrain:
for example, one tile for water, one tile for grass, one tile for sand, etc. An example
of a basic set is show in Figure 4-2.

Figure 4-2. A basic set of tiles, comprising two terrain types

With the tiles presented in Figure 4-2 and in other figures in this chapter, we
include suggested filenames. Using a logical filenaming scheme for your tiles can
help you easily find specific tiles when you need them.

Keeping an eye on our “budget” of memory (how much memory we can use
for textures), let’s create some simple variations, such as adding different patterns
to a sand tile, or some little bushes or small stones to a grass tile.

We should review our basic set, using the game project as a guide, to be sure
that we create a tile for every terrain or object we need. Once we are satisfied with
our basic set, we can go on to the next step: creating border tiles.

Create Border Tiles

To create border tiles, we must separate the tiles into groups that will have con-
nections with each other, and then create the borders for the tiles in each group.
We must do this because usually some tiles won’t need to have borders with some
of the others—for example, the tiles that will create internal parts of a building
don’t need to have any special border with the outside tiles.

Within every group, create the border tiles between each type of terrain. There
are basically three types of borders we can create, as shown in Figure 4-3:

• Border tiles: With this kind of tile, one terrain type occupies almost all of the
area of each tile, leaving just few pixels for the transition to the next terrain.

• 3/4-to-1/4 tiles: One terrain occupies 3/4 of the tile and another terrain
occupies the rest for this tile type. (Think about this texture as cutting a tile
in four equal-sized squares and filling three of them with one type of terrain,
and one with another.)

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

215

*0511_ch04_FINAL 2/18/03 7:47 PM Page 215

• Half-to-half tiles: With this kind of tile, each type of terrain occupies half of
the tile; the transition between terrain types can be on the vertical, hori-
zontal, or diagonal axis.

Figure 4-3. Example of border tiles

These basic border tiles will suffice to create a continuous-looking terrain, but
if we have many of these transition tiles presented to the player on every screen,
the set still won’t suffice to create an illusion of a nontiled terrain. That’s why we
need to create extra borders between the most-used terrain types.

Include Extra Transition Tiles

For those transitions that will be presented most of the time to the player, include
some different tiles for each transition and for the basic set, which will be used
sparingly to break down the feeling of patterns of repetition. For example, when
creating tiles between water and land, include some rocks, a bay, or a larger beach,
so you can use them eventually to give more variation to the game visual.
Examples of simple variations are shown in Figure 4-4.

Figure 4-4. Simple variations of border tiles

Chapter 4

216

*0511_ch04_FINAL 2/18/03 7:47 PM Page 216

To create a better set of tiles, test if the transitions for each tile are seamless in
every direction (when we rotate the tiles). An improved game engine can use the
same tiles with various rotations to achieve better results. An easy way to do this is
to create some tiles with only borders (and a flat color at the middle), and use
them as “masks” over other tiles, employing any graphical editor to hide the tran-
sitions between the base tiles and the masks. Ensuring that the border pixels are
always the same will allow smooth transitions.

In Figure 4-5 we see part of a screen from Sid Meyer’s Civilization. Although
the terrain looks random at first glance, if we pay a little more attention we can see
the same tiles used in different compositions, with great results.

Figure 4-5. Civilization: a successful example of a tile-based game

Creating New Game Classes

Looking at the similarities amongst the test programs we did in Chapter 3, we can
choose some parts of the code to create DirectX versions for the two basic game
classes we created in Chapter 2: a GameEngine class, which will be responsible for
initializing, terminating, and managing the device operations, and a Sprite class,
which will create some vertices and load the images as textures (transparent or
otherwise) from image files.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

217

© 2002 Infogrames Interactive, Inc.
All Rights Reserved.
Used With Permission.

*0511_ch04_FINAL 2/18/03 7:47 PM Page 217

NOTE We’ll try to maintain the class interfaces used in Chapter 2, but since
using Direct3D is very different from using GDI+, don’t be surprised if we
find new ways to do the same things.

We’ll also extend our game class library by creating a GameMusic class according
to the basic concepts we’ll examine when studying the DirectAudio interface.

The GameEngine Class

To create the new GameEngine class, we’ll use the lessons learned in Chapters 1 and 2
about game engines, plus the Direct3D concepts discussed in Chapter 3. The fol-
lowing sections present the concepts involved in the creation of this class.

The Class Interface

To include all we learned from the previous chapter, the GameEngine class must
have some objects that will store references to Direct3D objects and a reference to
the DirectAudio object (which controls the game music and sound effects, as we’ll
see). Another common theme we can see in the samples of the previous chapter is
the use of flexible vertex formats to define figure vertices when creating a device,
as well as the use of a background color when clearing the device.

Looking to the game engines from the samples of Chapters 1 and 2, we can
again see some common properties, such as the window handle used for drawing,
the width and height of the game field, and some flags to control whether the
game is over or paused.

Looking again at the samples in Chapter 3, we can see a repetitive pattern in
every Direct3D application. This gives us some clues about possible methods to
include in our new GameEngine class:

1. Initialize the various Direct3D objects.

2. Enter a loop that will call the Render procedure between BeginScene and
EndScene methods.

3. Dispose all Direct3D objects created.

With these ideas in mind, we can imagine three methods that can be called
sequentially in a game, as shown in the pseudo-code here:

Chapter 4

218

*0511_ch04_FINAL 2/18/03 7:47 PM Page 218

Dim MyGameEngine as clsGameEngine

...

' Initialize Direct3D and DirectAudio objects

MyGameEngine.Initialize

' Start the game loop, the procedure will only return when the game is over

MyGameEngine.Run

' Dispose the Direct3D and DirectAudio objects

MyGameEngine.Finalize

We’ll need a fourth method: an empty Render method that will be called from
within a loop on the Run method. Each game will create a new class, derived from
the generic GameEngine class, that will implement the Render procedure and add
any extra features to the Initialize and Finalize methods.

NOTE For more information on flexible vertices and the objects and the
methods mentioned in the preceding text, see Chapter 3.

The suggested interface for the GameEngine class is shown in Figure 4-6; when
creating new games, we can improve the class as needed.

Figure 4-6. The GameEngine class interface

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

219

*0511_ch04_FINAL 2/18/03 7:47 PM Page 219

The description of the interface members of the GameEngine class are shown in
Table 4-1.

Table 4-1. Interface Members of the DirectX GameEngine Class

TYPE NAME DESCRIPTION

Property ObjDirect3DDevice The Device object, used by all graphical operations.

Property BackgroundColor The color used when clearing the device.

Property Width The width of the game field.

Property Height The height of the game field.

Property ScreenWinHandle The window handle used by all drawing functions.

Property GameOver If true, the game is over.

Property Paused If true, the game is paused. This flag and the

preceding one store the current game status. Each

game uses these flags to end or pause the game.

Constant FVF_CustomVertex The constant that will define which flexible vertex

format we’ll be using when creating the device and

the vertices of the sprites.

Constants IMAGE_PATH and The relative paths where the images and the sound

SOUND_PATH files are stored.

Method Initialize The procedure that will initialize Direct3D.

Method Render The rendering procedure. This procedure will be an

empty overrideable function that must be

implemented in the derived classes.

Method Finalize This method will dispose any objects created in the

initialize procedure.

Method Run This method will simply have a BeginScene-EndScene

block inside a loop, allowing the game programmer

to start the game by calling the Run method.

Chapter 4

220

*0511_ch04_FINAL 2/18/03 7:47 PM Page 220

The next code listing shows the definition of the GameEngine class, including
the proposed properties, methods, and constants:

Imports Microsoft.DirectX.Direct3D

Imports Microsoft.DirectX

Public Class clsGameEngine

Protected Shared objDirect3DDevice As Device = Nothing

' Simple textured vertices constant and structure

Public Const FVF_CUSTOMVERTEX As VertexFormat = VertexFormat.Tex1 Or _

VertexFormat.Xyz

' defines the default background color as black

Public BackgroundColor As Color = Color.FromArgb(255, 0, 0, 0)

' Images path, to be used by the child classes

Protected Const IMAGE_PATH As String = "Images"

Public Structure CUSTOMVERTEX

Public X As Single

Public Y As Single

Public Z As Single

Public tu As Single

Public tv As Single

End Structure

Public Width As Integer = 25

Public Height As Integer = 25

Private ScreenWinHandle As System.IntPtr

' Controls the game end

Public Shared GameOver As Boolean

Public Shared Paused As Boolean

Sub Run()

Public Overrideable Sub Render()

Public Function Initialize(Owner As windows.forms.control) As Boolean

Protected Overrides Sub Finalize()

End Class

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

221

*0511_ch04_FINAL 2/18/03 7:47 PM Page 221

The Imports clause used in the beginning of the class is a new feature of
Visual Basic .NET, and it allows us to use any of the objects of the imported
namespace directly, without needing to inform the full object hierarchy. For
example, instead of creating a Microsoft.DirectX. Direct3.D .Device object,
we can simply use Device in our variable declarations.

Before writing the code for the class methods, let’s ensure that we understand
the scope modifiers used in the GameEngine class, as explained in the next section.

Understanding the Scope Modifiers

Now is a good time to look at the scope keywords used before variable and method
declarations, and used extensively in the GameEngine class:

• Private: Visible only inside the class

• Protected: Visible only to the class and its derived classes

• Public: Visible to any code outside and inside the class

Other keywords used in this context are

• Shared: Any member declared with this keyword is shared with all the
objects created for the class, and can be accessed directly by the class name
(we don’t need to create objects). Constants are shared by default, even
when we don’t use the shared keyword.

• Overrideable: This keyword indicates that a class member can be overridden
by derived classes. In the preceding sample code, the Render procedure must
be an overrideable function, since the code for it will be supplied by the
derived classes, although it will be called by the Run method in the base
class.

• Overrides: This keyword indicates that the class member is overriding a cor-
responding member of the base class. For example, to code a working
Finalize event for any Visual Basic .NET class, we need to override the base
class event Finalize.

Chapter 4

222

*0511_ch04_FINAL 2/18/03 7:47 PM Page 222

• Shadows: When we want to redefine a function in a derived class, we can use
this keyword. In this case, we aren’t overriding a member from the base
class, so when the method is called from the derived class, the method of
this class will be called, and when a call is made from the base class, the
method of the base class is called.

In the next section we’ll examine the code for each method of the GameEngine
class.

Coding the Class Methods

There are no new concepts in these methods, so we can simply copy the code
from one of the samples in the previous chapter and organize it as methods of the
GameEngine class. As previously explained, we have an Initialize method to do the
initialization (as we saw in Chapter 3) for a full-screen application using an
orthogonal view. The Finalize method disposes of the objects created, and the Run
method has the rendering loop, used in all programs in Chapter 3, that calls the
empty Render method for each loop interaction. The Render method will be coded
in the derived class, which will include specific features for each game.

Sub Run()

Do While Not GameOver

If (objDirect3DDevice Is Nothing) Then

GameOver = True

Exit Sub

End If

objDirect3DDevice.Clear(ClearFlags.Target, BackgroundColor, 1.0F, 0)

objDirect3DDevice.BeginScene()

' Calls the Render sub, which must be implemented on the derived classes

Render()

objDirect3DDevice.EndScene()

Try

objDirect3DDevice.Present()

Catch

' Some error ocurred, possibly in the Render procedure

End Try

Application.DoEvents()

Loop

End Sub

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

223

*0511_ch04_FINAL 2/18/03 7:47 PM Page 223

Public Overrideable Sub Render()

' This sub is specific for each game,

' and must be provided by the game engine derived class

End Sub

Public Function Initialize(Owner as Windows.Forms.Control) As Boolean

Dim WinHandle As IntPtr = Owner.handle

Dim objDirect3Dpp As PresentParameters

Initialize = True

Try

DispMode = Manager.Adapters(_

Manager.Adapters.Default.Adapter).CurrentDisplayMode

DispMode.Width = 640

DispMode.Height = 480

' Define the presentation parameters

objDirect3Dpp = New PresentParameters()

objDirect3Dpp.BackBufferFormat = DispMode.Format

objDirect3Dpp.BackBufferWidth = DispMode.Width

objDirect3Dpp.BackBufferHeight = DispMode.Height

objDirect3Dpp.SwapEffect = SwapEffect.Discard

objDirect3Dpp.Windowed = True 'False

' Create the device

objDirect3DDevice = New Device(_

Manager.Adapters.Default.Adapter, _

DeviceType.Reference, WinHandle, _

CreateFlags.SoftwareVertexProcessing, objDirect3Dpp)

' Tells the device which is the format of our custom vertices

objDirect3DDevice.VertexFormat = FVF_CUSTOMVERTEX

' Turn off culling => front and back of the triangles are visible

objDirect3DDevice.RenderState.CullMode = Cull.None

' Turn off lighting

objDirect3DDevice.RenderState.Lighting = False

' Turn on alpha blending, for transparent colors in sprites

objDirect3DDevice.RenderState.SourceBlend = Blend.SourceAlpha

objDirect3DDevice.RenderState.DestinationBlend = Blend.InvSourceAlpha

' The sprite objects must turn on alpha blending only if needed,

' using the following line:

' objDirect3DDevice.RenderState.AlphaBlendEnable = True

Chapter 4

224

*0511_ch04_FINAL 2/18/03 7:47 PM Page 224

' Set the Projection Matrix to use a orthogonal view

objDirect3DDevice.Transform.Projection = Matrix.OrthoOffCenterLH(0,_

DispMode.Width, 0, DispMode.Height, 0.0F, 0.0F)

Catch de As DirectXException

MessageBox.Show("Could not initialize Direct3D. Error: " & _

de.ErrorString, "3D Initialization.", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

Initialize = False

End Try

' Dispose the used objects

DispMode = Nothing

objDirect3Dpp = Nothing

End Function

Protected Overrides Sub Finalize()

On Error Resume Next ' We are leaving, ignore any errors

If Not (objDirect3DDevice Is Nothing) Then objDirect3DDevice.Dispose()

objDirect3DDevice = Nothing

GC.Collect()

MyBase.Finalize()

End Sub

In the initialize procedure, we used a set of common parameters for the device
creation; we can change it as needed for each application.

In the next section we’ll see the upgraded code for the second game class of
our library: the Sprite class.

The Sprite Class

Here we’ll attempt to create a generic Sprite class, which can be improved upon as
needed, and can be used to create derived classes that can hold specific properties
and methods according to the game being created.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

225

*0511_ch04_FINAL 2/18/03 7:47 PM Page 225

We can use the basic interface for sprites defined in Chapter 2, with the New,
Draw, and Load methods, and some simple properties. Looking back at Chapter 3,
we can list some suggestions for other interface elements: values for the trans-
lation, scaling, and rotation operations in the x and the y axis, and a speed value
for both axes (speed is just the counter to be used for the translation in every new
frame drawn).

Because a sprite is drawn over a polygon, we’ll need a property to store the
vertex buffer and a helper function to create the flexible vertices. Because a sprite
is a 2-D image, there’s no need to store z values for the transformations.

TIP An important point of this new Sprite class is that we’ll never need to
change the vertex coordinates of the sprite to perform any translations or
rotations; we can use the matrix transformations as seen in Chapter 3 to
do it faster.

NOTE For more information about flexible vertices, vertex buffers, and
matrices, refer to Chapter 3.

Chapter 4

226

*0511_ch04_FINAL 2/18/03 7:47 PM Page 226

The complete interface for a Direct3D sprite is shown in Figure 4-7.

Figure 4-7. The Sprite class interface

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

227

*0511_ch04_FINAL 2/18/03 7:47 PM Page 227

The Sprite class members are described in Table 4-2.

Table 4-2. Interface Members for the DirectX Sprite Class

TYPE NAME DESCRIPTION

Properties X and Y The upper-left position of the sprite.

Properties SizeX and SizeY The size of the sprite, in the x and y axes.

Property IsTransparent If true, the Draw function will draw a transparent

sprite, loaded in the Load function. We don’t need to

store a color key property to say which color will be

transparent; such a color is used only when loading

the textures.

Property Direction The current direction the sprite is moving in. This

property can be used to choose which image must

be drawn.

Constant IMAGE_SIZE The default size for a square sprite.

Property ScaleFactor Same as the GDI+ Sprite class, it holds a constant

used when creating the sprite, indicating whether

the x and y values are pixel values or based on

IMAGE_SIZE. Useful for creating tiled game fields.

Properties SpeedX and SpeedY The speed (translation increment per frame) of the

sprite on the x and y axes.

Properties TranslationX and The current translation value in each axis, from the

TranslationY initial x,y position.

Properties ScaleX and ScaleY The scale to be applied to the sprite in each axis.

Properties RotationX and

RotationY The rotation in each axis.

Property SpriteImage The sprite texture, loaded from an image file.

Property VertBuffer The vertex buffer with the vertices of the sprite.

Method New Method for creating a new sprite.

Method Load Method for loading the image file from disk; it

creates the vertices used to draw the image on the

screen.

Method Draw Method that draws the sprite.

Method Dispose Method that disposes of the texture and the vertex

buffer used by the sprite.

Method CreateFlexVertex Helper method used when creating the sprite vertex

buffer.

Chapter 4

228

*0511_ch04_FINAL 2/18/03 7:47 PM Page 228

The interface code for the Sprite class is shown here:

Imports Microsoft.DirectX.Direct3D

Public Class clsSprite

Inherits clsGameEngine

Public IsTransparent As Boolean = False

Public Direction As enDirection

Public X As Single

Public Y As Single

Public SizeX As Single = IMAGE_SIZE

Public SizeY As Single = IMAGE_SIZE

Public Const IMAGE_SIZE As Integer = 32

Public ScaleFactor As enScaleFactor = enScaleFactor.enScaleSprite

' speed used in translation

Public SpeedX As Single = 0

Public SpeedY As Single = 0

' Values used for the operations

Public TranslationX As Single = 0

Public TranslationY As Single = 0

Public ScaleX As Single = 1

Public ScaleY As Single = 1

Public RotationX As Single = 0

Public RotationY As Single = 0

Protected SpriteImage As Texture

Protected VertBuffer As VertexBuffer

Public Enum enScaleFactor

enScalePixel = 1

enScaleSprite = IMAGE_SIZE

End Enum

Public Enum enDirection

North = 1

NorthEast = 2

East = 3

SouthEast = 4

South = 5

SouthWest = 6

West = 7

NorthWest = 8

End Enum

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

229

*0511_ch04_FINAL 2/18/03 7:47 PM Page 229

Sub New(...)

Function Load(...) As Boolean

Private Function CreateFlexVertex(...) As CUSTOMVERTEX

Sub Draw()

Public Sub Dispose()

End Class

We must highlight two points in the preceding code: the use of default values for
the properties (always use the most common ones), and the use of the inherits
clause. The Sprite class will be closely related to the game engine, and it’ll need to
use some of the game engine properties to work properly, so we must create it as a
GameEngine-derived class.

Let’s see the code for the methods, starting with the New method. We’ll create
two overrides for the function: one for creating opaque sprites, and another for
creating transparent sprites. The following code sample depicts the difference
between these two overrides:

Sub New(strImageName As String, startPoint As POINT, _

Optional Scale As enScaleFactor = enScaleFactor.enScaleSprite, _

Optional width As Integer = IMAGE_SIZE, _

Optional height As Integer = IMAGE_SIZE)

X = startPoint.x

Y = startPoint.y

SizeX = width

SizeY = height

ScaleFactor = Scale

If Not Load(strImageName) Then _

Err.Raise(vbObjectError + 1, "clsSprite", _

"Could not create the sprite textures")

End Sub

Sub New(strImageName As String, colorKey As Integer, startPoint As POINT, _

Optional Scale As enScaleFactor = enScaleFactor.enScaleSprite, _

Optional width As Integer = IMAGE_SIZE, _

Optional height As Integer = IMAGE_SIZE)

' When calling the New procedure with a colorKey,

' we want to create a transparent sprite

IsTransparent = True

X = startPoint.x

Y = startPoint.y

SizeX = width

SizeY = height

ScaleFactor = Scale

Chapter 4

230

*0511_ch04_FINAL 2/18/03 7:47 PM Page 230

If Not Load(strImageName, colorKey) Then _

Err.Raise(vbObjectError + 1, "clsSprite", _

"Could not create the sprite textures")

End Sub

The Load procedure will receive an optional colorKey parameter that will be
used to load a transparent texture if the IsTransparent property is set to true.
Besides loading the texture from an image file, the Load procedure must create
the vertex buffer used to show the sprite in the draw procedure, using the
CreateFlexVertex helper procedure.

' Default colorKey is magenta

Function Load(strImageName As String, _

Optional colorKey As Integer = &HFFFF00FF) As Boolean

Dim vertices As CustomVertex()

Dim i As Integer

Try

If IsTransparent Then

'Load the transparent texture

SpriteImage = TextureLoader.FromFile(objDirect3DDevice, _

Application.StartupPath & "\" & IMAGE_PATH & "\" & strImageName, _

64, 64, D3DX.Default, 0, Format.Unknown, Pool.Managed, _

Filter.Point, Filter.Point, colorKey)

Else

SpriteImage = TextureLoader.FromFile(objDirect3DDevice, _

Application.StartupPath & "\" & IMAGE_PATH & "\" & strImageName)

End If

VertBuffer = New VertexBuffer(GetType(CustomVertex), 4, _

objDirect3DDevice, Usage.WriteOnly, FVF_CUSTOMVERTEX, Pool.Default)

vertices = VertBuffer.Lock(0, 0)

' CreateFlags a square, composed of 2 triangles in a triangle strip

vertices(0) = CreateFlexVertex(X * ScaleFactor, Y * ScaleFactor, 1, 0, 1)

vertices(1) = CreateFlexVertex(X * ScaleFactor + SizeX, _

Y * ScaleFactor, 1, 1, 1)

vertices(2) = CreateFlexVertex(X * ScaleFactor, _

Y * ScaleFactor + SizeY, 1, 0, 0)

vertices(3) = CreateFlexVertex(X * ScaleFactor + SizeX, _

Y * ScaleFactor + SizeY, 1, 1, 0)

' Release the vertex buffer and commits our vertex data

VertBuffer.Unlock()

Return True

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

231

*0511_ch04_FINAL 2/18/03 7:47 PM Page 231

Catch de As DirectXException

MessageBox.Show("Could not load image file " & strImageName & _

". Error: " & de.ErrorString, "3D Initialization.", _

MessageBoxButtons.OK, MessageBoxIcon.Error)

Return False

End Try

End Function

Function CreateFlexVertex(X As Single, Y As Single, Z As Single, _

tu As Single, tv As Single) As CUSTOMVERTEX

CreateFlexVertex.X = X

CreateFlexVertex.Y = Y

CreateFlexVertex.Z = Z

CreateFlexVertex.tu = tu

CreateFlexVertex.tv = tv

End Function

The Draw method is very straightforward: It simply sets the texture and draws
the rectangle defined by the vertex buffer created in the Load procedure, using the
concepts shown in the previous chapter.

Sub Draw()

' Turn on alpha blending only if the sprite has transparent colors

If IsTransparent Then

objDirect3DDevice.RenderState.AlphaBlendEnable = True

End If

Try

objDirect3DDevice.SetTexture(0, SpriteImage)

objDirect3DDevice.SetStreamSource(0, VertBuffer, 0)

objDirect3DDevice.DrawPrimitives(PrimitiveType.TriangleStrip, 0, 2)

Catch de As DirectXException

MessageBox.Show("Could not draw sprite. Error: " & de.ErrorString, _

"3D Initialization.", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

' Turn off alpha blending if the sprite has transparent colors

If IsTransparent Then

objDirect3DDevice.RenderState.AlphaBlendEnable = False

End If

End Sub

Chapter 4

232

*0511_ch04_FINAL 2/18/03 7:47 PM Page 232

The last method, Dispose, will only dispose of the texture and the vertex buffer
created in the Load procedure. Calling the Collect method of the garbage collector
will ensure a faster disposal of memory; and calling the SupressFinalize method of
this class will prevent errors that can arise if the default finalizer is called before
the objects are freed from memory. The Dispose method is shown in the next code
sample:

Public Sub Dispose()

On Error Resume Next ' We are leaving, ignore any errors

SpriteImage.Dispose()

VertBuffer.Dispose()

GC.Collect()

GC.SuppressFinalize(Me)

End Sub

DirectAudio Classes

There are two different sets of components for audio input and output: Direct-
Music, for background music playback, and DirectSound, for sound effects. These
two sets together are sometimes called DirectAudio, although they are separate
things. DirectMusic doesn’t have a managed version, but we can access its features
through COM interoperability.

.NET is kind of an evolution from COM architecture; but we still can
use COM objects from .NET programs, and more: The .NET programs
generate COM wrappers, so COM-based languages (such as the previous
version of Visual Basic) can access .NET components too. To use non-
managed DirectX features, we must include in our projects a reference
to the VBDX8.DLL.

Besides the components for audio playback, DirectAudio includes Direct-
Music Producer, which can be used to create new music based on chord maps,
styles, and segments. We’ll not enter into any details about DirectMusic Producer
here, but if you want to exercise your composing skills, you’ll find a lot of relevant
material in DirectX SDK.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

233

*0511_ch04_FINAL 2/18/03 7:47 PM Page 233

The main distinction between background music and sound effects is related
to the file types used by each one. Sound effect files are MIDI or WAV files that
store a single piece of sound that is usually played when a specific action occurs in
a game (such as a player getting a bonus or dying). Background music can be pro-
duced using a MIDI file playing in a loop, but it’s best done with segment (SGT)
files. SGT files have a main piece of music and one or more motifs (or waves) that
can be played any time, as the program commands, so the music can change
subtly from time to time.

NOTE A special music generation program is included with DirectX SDK,
and it allows professional musicians to create segment files by connecting
the computer to a music device (like a keyboard), or composing the music
directly on the computer using instruments from the predefined libraries
or even creating new ones. It’s beyond the scope of this book to enter into
details about the creation of segment files, but those who want to get a
deeper knowledge of this subject will find many samples in the DirectMusic
help feature on the DirectX SDK.

A lot of theory and technical details are connected to DirectAudio, but we’ll
stick here to the simplest ways of generating sound for our application.

There aren’t many steps we must follow to play sound, but we’ll enclose these
steps in two classes so every application doesn’t need to include these initial-
ization details. To play sounds using managed DirectSound, we need to perform
the following four steps:

1. Create the DirectSound device object.

2. Create the DirectSound buffer object.

3. Load the WAV sound file into the buffer.

4. Play the sound using the buffer.

As we can see, only two objects are involved in playing sound through
DirectSound:

• Device: Responsible for any generic operation regarding the sound device

• Buffer: Loads the sound files, sets specific properties, and plays the sounds

Chapter 4

234

*0511_ch04_FINAL 2/18/03 7:47 PM Page 234

When playing files through DirectMusic, we’ll have to implement some extra
steps and different objects, due to the different nature of the sound files con-
trolled. The steps to play any MIDI or SGT file using DirectMusic are as follows:

1. Create the Performance and Loader objects.

2. Initialize the Performance object.

3. Set the search directory from which the Loader object will load the sound
files.

4. Load the file with the sound information of a Segment object.

5. If the file is an SGT file, download band and wave information for the file
to the Performance object.

6. Play the sound from the segment object, choosing the audio path to play
it in (primary or secondary).

7. If the file is an SGT file, play any included motifs as needed.

From these steps, we can see that there are three main objects we’ll need to
handle when playing sounds though DirectMusic: Performance, Loader, and
Segment. These objects are described in more detail in the following list:

• Performance: Responsible for the management of all music playback. This
object controls a set of instruments, with their special characteristics, and
maps them to specific audio paths. It controls the music tempo, handles
messages and events, and sets the music parameters. The performance
mixes all sounds from primary and secondary audio paths seamlessly.

• Loader: Loads sound files, including instrument data, styles, bands, and col-
lections. When we load a sound file, every related file is loaded too.

• Segment: Stores and plays each music piece as it is loaded from the sound
file.

With these concepts in mind, we are ready to define the basic audio classes’
interface, as shown in Figure 4-8.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

235

*0511_ch04_FINAL 2/18/03 7:47 PM Page 235

Figure 4-8. The audio classes

We can add new properties and methods as needed when implementing
audio management for our games.

In the next sections, we discuss the details for each game audio class.

The GameSound Class

As we can see in our class definition, to play a sound through managed Direct-
Sound, we must load the buffer with the sound file and then play the sound. This
way of working gives us two choices for playing multiple sounds in our games:

• Create one single GameSound object and call Load and Play methods for every
sound to be played.

• Create a GameSound object for each sound to be played, load each sound
once, and call the Play method for the specific object that holds the sound
to be played.

For sounds that are constantly playing throughout the game, the second
approach is better, because it won’t waste time reloading the sounds.

The interface for the class will be as follows:

Imports Microsoft.DirectX.DirectSound

Public Class ClsGameSound

Protected Const SOUND_PATH As String = "Sounds"

Dim DSoundBuffer As SecondaryBuffer = Nothing

Chapter 4

236

*0511_ch04_FINAL 2/18/03 7:47 PM Page 236

Public Looping As Boolean = False

Private Shared SoundDevice As Device = Nothing

Sub New(WinHandle As Windows.Forms.Control)

Function Load(strFileName As String) As Boolean) As Boolean

Sub StopPlaying()

Sub Play()

End class

In the next sections, we’ll look at the code and details for each class method.

The New Method

On the New method we must initialize the sound device. Since we only need one
device initialization for all the sounds we want to play, we must define the device
object as shared (as we already did in the class definition), and include code in the
New method to initialize the device only if it’s not already initialized. The code for
this method is presented in the following listing:

Sub New(WinHandle As System.Windows.Forms.Control)

If SoundDevice Is Nothing Then

SoundDevice = New Device()

SoundDevice.SetCooperativeLevel(WinHandle, CooperativeLevel.Normal)

End If

End Sub

Besides creating the device, we can see a specific initialization to inform the
device of the appropriate cooperative level—in other words, how the sound device
object will interact with other applications that may be using the device. The pos-
sible values for the SetCoopLevel enumeration follow:

• Normal: Specifies the device be used in a way that allows the smoothest mul-
tithreading and multitasking (multiple application) operation. Using this
setting will force us to only use the default buffer and output formats, but
this will suffice for our samples.

• Priority: Sets a priority level on the device, so we can change buffer and
output formats. This member doesn’t behave well with other applications
trying to share the device, so we must use it only if we don’t expect concur-
rency from other applications.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

237

*0511_ch04_FINAL 2/18/03 7:47 PM Page 237

• Write Only: Specifies that the application plays only on primary buffers. This
enumeration member will work only on real hardware devices; if Direct-
Sound is emulating the device, the call to SetCooperativeLevel will fail.

Once we’ve created the device, we can load the sounds into a sound buffer, as
described in the next section.

The Load Method

The Load method will be mainly based on the CreateSoundBufferFromFile function,
which requires the following parameters:

<Buffer object>.CreateSoundBufferFromFile(FilePath, BufferDescription)

The first parameter is the path from which we want to load the sound file.
The second is a description of specific properties we’ll need for the buffer, from the
capabilities we’ll have (control volume, frequency, etc.) to how the device must act
when playing this buffer, when another application gets the focus. In our sample,
we’ll only set one flag, GlobalFocus, which tells the device to continue playing the
buffer even if other DirectSound applications have the focus.

The full code of the Load function is shown in the following sample:

Function Load(strFileName As String) As Boolean

Try

Dim Desc As BufferDesc = New BufferDesc()

Desc.Flags = New BufferCapsFlags() = BufferCapsFlags.GlobalFocus Or _

BufferCapsFlags.LocSoftware

DSoundBuffer = _

SoundDevice.CreateSoundBufferFromFile(Application.StartupPath & _

"\" & SOUND_PATH & "\" & strFileName, Desc)

Catch de As Exception

MessageBox.Show("Could not load the sound file. Error: " & de.Message, _

"Music Initialization", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

Load = True

End Function

In the next section we’ll discuss the last two methods of the GameSound class,
Play and StopPlaying.

Chapter 4

238

*0511_ch04_FINAL 2/18/03 7:47 PM Page 238

The Play and StopPlaying Methods

The Play and StopPlaying methods will use the Play and Stop methods
belonging to the Buffer object, as shown in the next code listing. Similarly to the
CreateSoundBufferFromFile function, the Play method will receive a structure with
the playing flags; in our sample we’ll use the default settings, and include an extra
setting for looping the sound if the Looping property of the class is set.

Sub Play()

Dim PlayFlags As BufferPlayFlags = BufferPlayFlags.Default

If Looping Then PlayFlags = BufferPlayFlags.Looping

If Not (DSoundBuffer Is Nothing) Then

Try

DSoundBuffer.Play(0, PlayFlags)

Catch de As Exception

MessageBox.Show("Error playing sound file. Error: " & de.Message, _

MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

End If

End Sub

Sub StopPlaying()

If Not (DSoundBuffer Is Nothing) Then

DSoundBuffer.Stop()

DSoundBuffer.SetCurrentPosition(0)

End If

End Sub

In the next section we’ll discuss the second DirectAudio class, GameMusic.

The GameMusic Class

The basic class interface to access DirectMusic features is shown in the next code
listing. The first line imports the library created by Visual Basic as a wrapper to
the VBDX8.DLL file, used for COM access to all DirectX features, including
DirectMusic.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

239

*0511_ch04_FINAL 2/18/03 7:47 PM Page 239

Imports DxVBLibA

Public Class clsGameMusic

Private Shared DMusicPerf As DirectMusicPerformance8 = Nothing

Private Shared DMusicLoad As DirectMusicLoader8 = Nothing

Private DMusicSegment As DirectMusicSegment8 = Nothing

' Background music is looped by default

Public looping As Boolean = True

' Default sound files path

Private Const SOUND_PATH As String = "Sounds"

Sub SetVolume(intVolume As Integer)

Function Initialize(WinHandle As IntPtr) As Boolean

Function Load(strFileName As String, bolLooping As Boolean = True) As Boolean

Sub Play()

Function PlayMotif(strMotifName As String) As Boolean

Sub StopPlaying()

Protected Overrides Sub Finalize()

End Class

In this code sample, we can see that DirectMusic defined the Performance and
Loader objects as private so they’ll only be accessible to the class. This will prevent
us from having to know internal details of the class when playing music from our
games.

The Initialize Method

In the Initialize function, we need to create and initialize the class objects with
the most commonly used values. The next code sample shows a possible imple-
mentation for this method:

Function Initialize(WinHandle As IntPtr) As Boolean

' CreateFlags our default objects

Dim AudioParams As DMUS_AUDIOPARAMS

DMusicPerf = DX8.DirectMusicPerformanceCreate()

DMusicLoad = DX8.DirectMusicLoaderCreate()

Chapter 4

240

*0511_ch04_FINAL 2/18/03 7:47 PM Page 240

Try

' Initialize our performance object to use reverb

DMusicPerf.InitAudio(WinHandle.ToInt32, _

CONST_DMUS_AUDIO.DMUS_AUDIOF_ALL, AudioParams, , _

CONST_DMUSIC_STANDARD_AUDIO_PATH.

DMUS_APATH_SHARED_STEREOPLUSREVERB, 128)

' Turn on all auto download

DMusicPerf.SetMasterAutoDownload(True)

' Set our search folder

DMusicLoad.SetSearchDirectory(Application.StartupPath & "\" & SOUND_PATH)

Initialize = True

Catch de As Exception

MessageBox.Show("Could not initialize DirectMusic. Error: " & de.Message, _

"Music Initialization.", MessageBoxButtons.OK, MessageBoxIcon.Error)

Initialize = False

End Try

End Function

Some of the key functions used in the Initialize method deserve a better
explanation. Let’s start by taking a closer look at the InitAudio method and its pos-
sible values:

<Performance object>.InitAudio(hWnd, Flags, AudioParams, DirectSound, _

DefaultPathType, ChannelCount)

The first parameter, HWnd, receives the window handle. This will usually be the
same window used for Direct3D device object creation. If we specify a window
handle, we don’t need to specify the DirectSound object, so DirectMusic creates a
private one for its personal use, making our code simpler.

The second parameter, Flags, specifies a member of the CONST_DMUS_AUDIO enu-
meration that will state the requested features for the performance. Although you
can specify different values, such as BUFFERS to fully support audio path buffers,
or 3D for supporting 3-D sounds, using ALL, as in the sample code, will prepare
Performance to handle any kind of loaded sounds.

The third parameter, AudioParams, allow us to specify the desired control
parameters for the sound synthesizer, and to be notified of which requests were
granted. We can specify details such as the frequency of the sample and the
number of voices used; but since we are using only the simplest features from
DirectMusic, we’ll let all flags remain set to their default values.

The DirectSound object is used when we are employing DirectMusic features
to support DirectSound with playing WAV files; since we are dealing with separate
classes for each one, we can simply omit this parameter.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

241

*0511_ch04_FINAL 2/18/03 7:47 PM Page 241

The next parameter, DefaultPathType, receives a member of the DMUS_APATH
enumeration, which specifies the default audio path type, as described in the fol-
lowing list:

• DYNAMIC_3D: Indicates the audio path will play to a 3-D buffer (the sounds are
distributed on the speakers in order to create the illusion of a 3-D envi-
ronment). For more information on 3-D sounds, refer to the DirectX SDK.

• DYNAMIC_MONO: Used for creating an audio path with mono buffering (all
music sounds are of equal volume in each speaker).

• DYNAMIC_STEREO: Specifies the sounds be played in a stereo environment
(the sounds are distributed on the speakers according to how they were
recorded—for example, if the percussion instruments were more to the left,
the left speaker will have a louder percussion sound).

• SHARED_STEREOPLUSREVERB: Indicates the buffer created for the audio path has
all the features of the stereo buffer, plus an environmental reverb (echo in
music).

The ChannelCount parameter specifies the number of performance channels
allocated to the audio path. In the code sample, we have 128 performance
channels, which means that we can play up to 128 different sounds within the
same Performance object.

A second function in the preceding sample that deserves a more detailed
explanation is SetMasterAutoDownload:

<Performance object>. SetMasterAutoDownload(value)

This method is one of many used to set global parameters for the performance
object, passing a single value as a parameter. The following lists a few more of the
methods in this category:

• SetMasterVolume: Sets the volume, measured in hundreds of decibels,
ranging from +20 (amplification) to –200 (attenuation). Values below –100 or
above +10 will result in no audible difference, so the useful values are up to
10 times the default volume to 1/100 of it.

• SetMasterAutoDownload: Turns on and off automatic loading of instruments
when loading the segment files that use them. We’ll always want this
parameter set to on.

Chapter 4

242

*0511_ch04_FINAL 2/18/03 7:47 PM Page 242

• SetMasterTempo: Represents the “scale factor” for the tempo of the music. The
default value is 1, so you can set this to 0.5 and have music playing at half the
normal speed, or set this to 2 and double the speed (if you want to hear, say,
Lou Reed singing like Madonna). Valid values range from 0.01 to 100.

There are other methods of this type, but these are the ones we’ll most com-
monly want to set. We can create new methods for the GameMusic class to set these
parameters, such as a SetVolume method to set the current volume for the per-
formance object, as in the following code sample:

Sub SetVolume(intVolume As Integer)

If Not (DMusicPerf Is Nothing) Then

Try

DMusicPerf.SetMasterVolume(intVolume)

Catch de As Exception

MessageBox.Show("Could not set the master volume. Error: " & _

de.Message, MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

End If

End Sub

NOTE As you can imagine, there are complementary methods with the
GetMaster prefix that are used to retrieve the value of a specific configu-
ration parameter from the Performance object. It’s beyond the scope of
this book to explain every one of them; refer to DirectX SDK help for a
comprehensive list.

The last new function we saw in the sample, SetSearchDirectory, simply
informs the Loader object of the directory from which the sound files will be
loaded, so we won’t need to give the path for every sound loaded.

The Load Method

The Load method will be mainly based on the LoadSegment function, which receives
the file and path from which we want to load the sound file (MIDI or SGT). Since
we already gave the search path for the Loader object, we can pass only the
filename to the function.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

243

*0511_ch04_FINAL 2/18/03 7:47 PM Page 243

The full code for a first version of the Load function is shown in the following
sample:

Function Load(strFileName As String, Optional bolLooping As Boolean = True)_

As Boolean

' Backgound music loops by default

looping = bolLooping

' Load the music file

Try

DMusicSegment = DMusicLoad.LoadSegment(strFileName)

' If it's a segment file, we have some special treatment

If strFileName.EndsWith(".sgt") Then

If Not (DMusicSegment Is Nothing) Then '// Download the segment

DMusicSegment.Download(DMusicPerf.GetDefaultAudioPath)

End If

Else

If strFileName.EndsWith(".mid") Or strFileName.EndsWith(".rmi") Then

DMusicSegment.SetStandardMidiFile()

End If

End If

Catch de As Exception

DMusicSegment = Nothing

MessageBox.Show("Could not load the sound file. Error: " & de.Message, _

"Music Initialization", MessageBoxButtons.OK, MessageBoxIcon.Error)

Load = False

Exit Function

End Try

Load = True

End Function

In VB .NET, every data type corresponds to a class definition, with its own
set of properties and methods, so we can use these methods and properties
as we would do with any kind of objects. In the preceding sample code,
EndsWith() is a method of the string data type, corresponding to the Right
method in previous versions of Visual Basic, with the only difference being
that we don’t need to pass the number of characters to check.

Chapter 4

244

*0511_ch04_FINAL 2/18/03 7:47 PM Page 244

Another interesting point about the preceding code is the use of the
Try-Catch block with a specific type of exception. This structured error
block, new in Visual Basic .NET, allows the programmer to catch generic
errors or errors from a specific set (such as Exception).

We can improve the music played from segment files using styles and motifs
that are stored in those files by the music author. In the next section we’ll examine
what these are and how to apply them to our audio class.

Styles and Motifs

Styles and motifs are intrinsic parts of a segment file, and they allow us to choose
from a set of previously created compositions to play at any time during music
execution. Each segment file can have one or more styles recorded within it, and
every style can have one or more motifs.

A style is a collection of instruments and music patterns or motifs (sequences
of music values for each instrument present in the style). To read a specific style
from a music segment, we use the GetStyle method. There are various Get
methods in the Segment object, similar to the GetMaster methods present in the
Performance object, as we saw before. To retrieve a style, we must pass the style
number, from 0 to the number of styles present minus 1. Passing an invalid value
will generate an error.

After choosing a specific style, we can retrieve its number of motifs using the
GetMotifCount function.

Based on these two functions, we can extend our Load method to retrieve the
number of styles and the number of motifs, setting new properties that will allow
the game to retrieve the information from the GameMusic class. To do so, we must
include the following new properties in the class:

Private DMusicStyle As DirectMusicStyle = Nothing

Public MotifCount As Integer = 0

Public StyleCount As Integer = 0

And we need to include the following lines in the Load method. Read the fol-
lowing code carefully so you understand the mechanism of reading styles and
motifs.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

245

*0511_ch04_FINAL 2/18/03 7:47 PM Page 245

Dim strMotifName As String

Dim bolLoopStyles As Boolean = True

Dim bolLoopMotifs As Boolean = True

Do While (bolLoopStyles)

' Count the styles

Try

DMusicStyle = DMusicSegment.GetStyle(StyleCount)

StyleCount += 1

' Count the motifs of the style

bolLoopMotifs = True

MotifCount += DMusicStyle.GetMotifCount

Catch

' The GetParam will throw an exception if there are no more styles.

bolLoopStyles = False

End Try

Loop

' We start counting from zero, so add 1 to have the real Style count value

StyleCount += 1

In the next section we’ll discuss the methods for playing and stopping the
audio.

The Play and StopPlaying Methods

Once the styles have been read, we can code the Play and StopPlaying methods,
which will use the PlaySegmentEx and StopEx methods belonging to the Performance
object, as shown in the following code sample. Both methods receive the segment
object (created in the Load method) used to play or stop playing.

Sub Play()

If Not (DMusicSegment Is Nothing) Then

Try

If Looping Then

DMusicSegment.SetRepeats(CONST_DPNWAITTIME.INFINITE)

Else

DMusicSegment.SetRepeats(0)

End If

DMusicPerf.PlaySegmentEx(DMusicSegment, 0, 0)

Catch de As Exception

MessageBox.Show("Error playing music file. Error: " & de.Message, _

MessageBoxButtons.OK, MessageBoxIcon.Error)

Chapter 4

246

*0511_ch04_FINAL 2/18/03 7:47 PM Page 246

End Try

End If

End Sub

Sub StopPlaying()

If Not (DMusicSegment Is Nothing) Then

DMusicPerf.StopEx(DMusicSegment, 0, 0)

End If

End Sub

In the next section, we look at how to play motifs, and create two new
methods to add this feature to our GameMusic class.

Playing Motifs

To finish our GameMusic class, it’ll be interesting to have one function to play a
motif from the current music segment. We can use such a function to add some
subtle variations to our background music, making it a little more exciting. We
can simply do this by using the same PlaySegmentEx function. Instead of using the
entire sound loaded as a segment object as the first parameter, we’ll load the motif
from the segment object (using the GetMotif function) and pass the motif as a
parameter for that function.

We can create an analogous method that receives a number and plays the
associated motif; such a method would be useful if we don’t previously know the
motif names, but do know how many there are (as calculated in the Load method).

The two overloaded methods are shown in the next listing, and it’s up to each
game to choose which one best suits its needs.

Function PlayMotif(strMotifName As String) As Boolean

Dim Motif As DirectMusicSegment8

Try

' Get the motif

Motif = DMusicStyle.GetMotif(strMotifName)

DMusicPerf.PlaySegmentEx(Motif, _

CONST_DMUS_SEGF_FLAGS.DMUS_SEGF_DEFAULT Or _

CONST_DMUS_SEGF_FLAGS.DMUS_SEGF_SECONDARY, 0)

PlayMotif = True

Catch

PlayMotif = False

End Try

End Function

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

247

*0511_ch04_FINAL 2/18/03 7:47 PM Page 247

Function PlayMotif(intMotifIndex As Integer) As Boolean

Dim strMotifName As String

Try

' Get the motif

strMotifName = DMusicStyle.GetMotifName(intMotifIndex)

' Call the overloaded method which receives a string

PlayMotif = PlayMotif(strMotifName)

Catch

PlayMotif = False

End Try

End Function

The GetMotifName method, listed in the previous code sample, receives the
motif number (ranging from one to GetMotifCount) and returns the motif name (as
informed by the composer when creating the segment) as the second parameter.
Calling this function with an invalid index will generate an error.

In the next section we’ll discuss the final method of our class.

The Finalize Method

The last class method, Finalize, simply destroys the audio objects, making sure
that the Performance object is closed before destroying it, using the CloseDown
method.

Protected Overrides Sub Finalize()

' The object is being destroyed, so ignore any errors

On Error Resume Next

MyBase.Finalize()

'Clean up DMusicSegment

If Not (DMusicSegment Is Nothing) Then

DMusicPerf.StopEx(DMusicSegment, 0, 0)

End If

DMusicSegment = Nothing

DMusicStyle = Nothing

DMusicLoad = Nothing

If Not (DMusicPerf Is Nothing) Then

DMusicPerf.CloseDown()

End If

DMusicPerf = Nothing

End Sub

Chapter 4

248

*0511_ch04_FINAL 2/18/03 7:47 PM Page 248

Now that this class is finished, we have a complete set of classes to help us to
include audio capabilities in our games. The most important point to note when
using this kind of approach is that when coding a game, we need to be concerned
with the game goals, not the less important details such as how to load music or
initialize a device.

In the next section we’ll discuss the proposal for the sample game used in this
chapter and the next, which will allow us to test, in a practical way, our gaming
class library.

The Game Proposal

We are going to do an Activision’s River Raid (an old Atari console game) clone, but
in this chapter we’ll create only half of the game features. Since not everyone will
remember the original River Raid game features (or will have ever played it), let’s
introduce the points we’ll want to cover in our first version of the game.

In River Pla.Net the player will control a plane that is flying over a top-to-
bottom scrolling river. Even when the player isn’t moving the plane, the ground
beneath it will be moving. As far as we know, the river goes on forever, so the main
goal of the game is to live for as long as possible.

Here are some more details about the game:

• The plane will be controlled by keyboard arrows.

• There will be some obstacles along the river: ships, planes, and bridges. The
ships and planes won’t move in the first version of the game.

• The plane must always be flying over water; if it flies over land or over an
obstacle (bridges, planes, or ships), it will be destroyed.

• To make the level design easier, the game map will be a text file, in which
each character will represent a different tile when the game field is created.

• There’ll be some gas barrels on the river, which will be collected by the
player’s plane when it flies over them. In the first version of the game, we
won’t create a fuel counter.

• After being destroyed, the player’s plane will be invincible for a few seconds.

• The game must have background music and different sound effects for each
player action: upon being destroyed, when in invincible mode, and while
filling the gas tank.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

249

*0511_ch04_FINAL 2/18/03 7:47 PM Page 249

When a team of developers creates a “real” game, the game proposal is nor-
mally followed by some drafts showing details about the game (like screen layout
and some artwork samples), and must be refined until everyone in the team has a
clear understanding of what the game will be. The game proposal goal is to answer
the question: What are we doing?

Once everyone agrees about the game proposal, it’s time to answer the next
question we need to ask: How will we do it? The game project presents the tech-
nical details to answer this question, but both documents aren’t static; they can
(in fact, they must) be revised every time a new point of view arises and is agreed
upon by the game development team. Care must be taken not to include every
suggestion, or the planning stage will simply never end.

The last two important questions in a “real” game development are mainly
targeted to commercial games (How long will it take to finish the project? How
much will it cost?), and won’t be discussed here.

The Game Project

Looking back at the project proposal, before starting anything else, we need to
decide some higher level details for the game. It’s good practice to think about how
things will work before writing down any class diagrams or pseudo-code.

In our specific case, maybe the two most important points on the proposal are
the following:

• The player will control a plane that is flying over a top-to-bottom scrolling
river.

• To make the level design easier, the game map will be a text file, where each
character will represent a different tile when creating the game field.

How do we really make scrolling games? How can we design a level with
Notepad?

In our game, these questions are very much related. First, let’s figure out the
creation of the game field, and then think about how to do the translation and
implementation of the other features described in the game proposal.

Chapter 4

250

*0511_ch04_FINAL 2/18/03 7:47 PM Page 250

Defining the Game Tiles

River Pla.Net is one of those games that allows us to design the whole game field
based on tiles. We can create the game field map file with a text editor, using the
game program to translate the set of characters in the file to a set of tiles on
screen.

Maybe the first thing we must think about when creating a tile-based game is
what size our tiles will be. They aren’t required to be square ones, but using
squares is the best approach, since we can put the tiles together in any direction,
without any problems.

To define the number of tiles, we must first decide the resolution for our
game. A higher resolution will allow us to use more tiles, if the tiles are a fixed size,
or force us to have larger images. Either approach can lead to a reduction in per-
formance because they’ll both use more memory than lower resolutions, so let’s
keep our sample to a 640×480 resolution to make it as fast as possible. With this
resolution, if we have square tiles that are 32-pixels wide, we can have 15 tiles for
the height and 20 tiles for the width.

Looking at the game proposal, we can list a basic set of tiles to fill the game
goals:

• Land

• Water

• Ship

• Enemy plane

• Gas barrel

• Bridge

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

251

*0511_ch04_FINAL 2/18/03 7:47 PM Page 251

This reduced set of tiles is probably very close to the one used by the original
River Raid, but using just these tiles will result in a very “blocky” game. In Figure 4-9
we see a basic set of tiles.

Figure 4-9. A basic set of tiles

Let’s create a game field using any graphical tool (Microsoft’s Paint will suffice)
to cut and paste the tiles shown in Figure 4-9 so we can see a first “visual pro-
totype” of our game, giving us a better idea about how it’ll look. Figure 4-10 shows
a screen drawn with these tiles.

Figure 4-10. A first screen based on tiles

Chapter 4

252

*0511_ch04_FINAL 2/18/03 7:47 PM Page 252

As we can see in this first screen, using only this set of tiles will result in a
flat block game: All river “curves” are straight, and we can barely see the border
between land and water. Creating borders is just a matter of drawing a new set of
tiles that can be used to generate an island and a lake, and all river curves can be
derived from this set. Figure 4-11 shows such a set of tiles.

Figure 4-11. The border tiles

It’s important to adopt tile names that will help us to find them easily. For the
border tiles, we suggest giving all tiles the “border” prefix and a direction indicator.
For example, for the border where the water meets the land to the north, the name
would be “borderN”, and for a Southwest border the name would be “borderSW”.
Take a closer look at Figure 4-12 to understand this naming convention and all the
border tile names.

Figure 4-12. The names of the border tiles

The N, S, W, and E borders are used as island borders and as lake borders by
just exchanging positions.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

253

*0511_ch04_FINAL 2/18/03 7:47 PM Page 253

We can remake the screen from Figure 4-10 to add the borders, resulting in the
screen shown in Figure 4-13.

Figure 4-13. A second screen, based on a larger set of tiles

Initially it may seem as though these are the only tiles we’ll ever need, but just
imagine if the plane flies over a straight section of the river, with no bridges or
opponents: The player would barely see the scrolling movement—the only tip
would be the water movement. So we can add some “final touch” tiles, such as
trees and mountains (at least two of each, to give some visual variation), and
maybe create a bridge tile different from the road one, to give the game a nicer
look and feel. Figure 4-14 shows the “final touch” tiles.

Figure 4-14. The “final touch” set of tiles

Chapter 4

254

*0511_ch04_FINAL 2/18/03 7:47 PM Page 254

Creating a bridge with borders forces us to change the road tile and make it
thin, and we have to add two new tiles to use when the road is over the river
border. Our final screen, using all tiles, is shown in Figure 4-15.

Figure 4-15. The final screen, using all sets of tiles

Of course, we can go on creating new tiles. For example, a diagonal border for
the river would be interesting, so we can break the “blocky” visual that still per-
sists. We can add different borderlines, with beaches or little bays; and we can add
more “final touch” objects, such as houses, buildings, or even animals or people,
to arrange around the screen.

The more tiles we include, the more flexibility the level designer will have to
create our groundbreaking levels. But for our purpose here, the tiles we’ve already
created will suffice.

Before going to the next topic, we shall define the char codes corresponding to
each tile. Doing this at game project phase will allow the level designer to start
writing the levels at the same time the programmers start coding. Then again,
there’s no rule for choosing the chars. A good approach is to choose chars that will
give a visual clue about how the level will look; and as for the borders, we can
simply choose North as 1 and go on sequentially in a clockwise direction. The
characters chosen are shown in Table 4-3.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

255

*0511_ch04_FINAL 2/18/03 7:47 PM Page 255

Table 4-3. The Tile Codes

CODE TILE CODE TILE CODE TILE

1 borderN 9 borderSW2 G Gas

2 borderNE1 A borderW (BridgeBorderW

3 borderNE2 B borderNW1) BridgeBorderE

4 borderE C borderNW2 - Road

5 borderSE1 T Tree = Bridge

6 borderSE2 M Mountain . Land

7 borderS S Ship _ Water

8 borderSW1 P EnemyPlane -- --

We have decided to create one single char for both types of trees and another
one for both mountain types, so the game can randomly choose the image to use
and have some subtle visual variations every time it’s played.

With these codes, we can look again at our first test screen and create a corre-
sponding map of it, as show in the following code listing:

.....4____A......T..

.M...4____A..T...M..

...975____876...M..T

.T.4P_______A.......

...4___B2__G86..M.T.

...4___AC2___A....T.

T..4___864===(------

...4____85___A....T.

...4___S_____A.976..

..M4________B3.4_A..

...C11112___A..C13..

..T.....4___A.......

..M....95___86......

....T..4_____A....TT

T..M...4_____A..T...

.......4_____A......

Scrolling Games

When talking about translation, remember that we have already made a scrolling
object—our walking-man cube in Chapter 3, when performing translations on it.
Since we already have a set of features in Direct3D that allow us to scroll an object

Chapter 4

256

*0511_ch04_FINAL 2/18/03 7:47 PM Page 256

without having to move every vertex of it, we can use the same idea here: Simply
change the Transform.World matrix of the device object to do the translation.

So all we need to do is create the game field and perform small translations on
it, for each time frame, to make it scroll. But will we scroll the entire game field?
Will moving all the tiles of the game field result in prolonged calculations?

Looking again at the samples in the last chapter, we see that setting the world
matrix will only define the transformations to be applied to the vertex buffer when
we call the DrawPrimitivesUP function; so there’s no performance difference when
setting the matrix for a scene with a few dozen vertices or for a scene with several
thousand.

So what we want to do is to draw the minimum number of vertices possible.
Remember, our game field will be defined by a text file. For performance reasons
we must load it only once, when starting the game, converting each char in the
text file to a tile that will be in a fixed (x,y) position, depending on the position of
the char in the map text file. The tiles will be fixed throughout the game, and we’ll
scroll over them, changing the translation value of the world matrix, to “move the
camera” over the game field. Just like a plane moving over a real river, the river is
fixed on the ground, and we move over it.

So to minimize the vertices drawn, we can store the current line from the
bottom of the screen, and draw the 15 next lines—as mentioned in the previous
section, our visual game field will be 20 tiles wide and 15 tiles tall. Since we won’t be
performing translations on the objects the size of a tile, we’ll need to draw an extra
line to avoid the top of the screen not being drawn appropriately. It’s like being in
The Matrix (the movie): The world will exist only when we are looking at it.

Another good idea to minimize the number of vertices being drawn is simply
remove the Land tile from our set, and draw the other sets over a green back-
ground. To make the background green, all we need to do is to use the green color
as a parameter of the Clear method of the device object.

The Class Diagram

Since we already have all base classes for the game engine, sprite, game music,
and sound, all we need to do is to create derived classes that will supply specific
characteristics, according to the game’s special needs.

Looking at the game proposal, we can only see two candidates for new classes:
Player and Tile, which will be derived from the Sprite class. Of course, we’ll need a
class derived from the game engine, too (let’s call it the RiverEngine class), to
implement the game code.

After a little brainstorming over the game proposal, we have come up with the
class diagram shown in Figure 4-16.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

257

*0511_ch04_FINAL 2/18/03 7:47 PM Page 257

Figure 4-16. The River Pla.Net game class diagram

Chapter 4

258

*0511_ch04_FINAL 2/18/03 7:47 PM Page 258

The following tables describe the properties and methods for each of the
game classes, starting with the Tile class in Table 4-4.

Table 4-4. The Tile Class

TYPE NAME DESCRIPTION

Property Type A member of an internal enumeration that should store

the type of the tile (land, water, enemies, etc.)

Method New An overloaded method for each New method of the

Sprite class that simply adds an extra parameter for

the Type property

Table 4-5 shows the description of the methods and properties for the Player
class.

Table 4-5. The Player Class

TYPE NAME DESCRIPTION

Property Status The current status for the player: flying, dying, or

starting a new life

Property Gas The fuel tank value by percentage

Property DyingImage Image (image file loaded to create textures) to show

when the player dies

Property StartingImage Image to show when the player is in invincible mode

(starting a new life)

Property DyingSound Object that stores the sound to be played when the

player dies

Property StartingSound Object that stores the sound to be played when the

player is in invincible mode (starting a new life)

Property GameSound Object that will initialize the sound components and

make them ready to play sounds

Method New An overloaded method that will load all player images

Method Draw An overloaded method that will draw the player image

based on the current status

The RiverEngine class includes members that are additions to the GameEngine
class to make it fit our needs. In Table 4-6 we present the descriptions for each
class member. As we discussed in earlier chapters, this class interface is a result of
many interactions over game project refinements.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

259

*0511_ch04_FINAL 2/18/03 7:47 PM Page 259

Table 4-6. The RiverEngine class

PROPERTY NAME DESCRIPTION

Property Lifes Specifies the number of lives of the player.

Property GameSpeed Indicates the scrolling speed of the game.

Property Tiles Represents an array with all the tiles of the game.

Property CurrentLineNumber Specifies the number of the current line at the bottom

of the screen. This property is used to control the tiles

we should draw.

Property Player Indicates an object of the Player class.

Property GasSound Indicates an object of the GameSound class, which will

be played when the player passes over a gas barrel.

Property BackgroundMusic Indicates an object of the GameMusic class, which will

play the game’s background music.

Method Initialize Calls the Initialize method of the base class, loads

the game map, and creates all game objects (Player,

GasSound, and BackgroundMusic).

Method LoadGameMap Loads the game map text file and populates the Tiles

array.

Method Render Overrides the Render empty method from the base

class, and will be called in the game loop (on the Run

base class method). All the drawing functions, physics

tests, and sound-playing functions should be called

from here.

Method Scroll Scrolls the game field by calculating the game world

translation matrix.

Method Draw Draws the visible tiles of the game field, based on the

CurrentLineNumber property and the Height of the

screen.

Method MovePlayer Moves and draws the player, based on the input

received from the keyboard.

Method TestCollisions Tests the collision of the player against the obstacles

of the game field.

Method PlayMotifs Plays the random motifs over the background music

to add a little variance to it.

Chapter 4

260

*0511_ch04_FINAL 2/18/03 7:47 PM Page 260

The Main Program

This main program will show the splash screen and, after closing it, execute the
steps we saw before when presenting the GameEngine class. The pseudo-code for
this will be very simple, as shown in the following sample:

Create object from RiverPlanet class

Create a window to be the game screen

Show splash screen

Initialize RiverPlanet object

Show the game window

Run the game (execute method RUN from RiverEngine object)

' The Run is a synchronous method, it will return when the game ends

Destroy the RiverEngine object

Dispose the game window

And now we are ready to start looking at the code details.

The Coding Phase

In order to follow a “progressive disclosure” technique, let’s do the coding in dis-
crete steps, so we can better test and understand our code. The functionalities of
each step will be as follows:

1. First draft: Code the Tile Class and load the game map and the Draw
method to draw the tiles in the Render method.

2. Second draft: Make the game field scroll.

3. Third draft: Create the Player class to draw the player’s plane, and make it
move according to the keyboard input.

4. Fourth draft: Code the collision detection.

5. Final version: Play background music and sound effects.

In the next section we start coding the first draft of our game.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

261

*0511_ch04_FINAL 2/18/03 7:47 PM Page 261

First Draft: Loading and Drawing the Game Field

Our main objective in this first draft is to load the text file and convert it into a
graphical game field. For this, we’ll code the Tile class, some basic methods of the
RiverEngine class, and our main program.

The Tile class, as we saw in the game project phase, will be very simple and
will only add a specific Type attribute to the base class Sprite, as shown in the fol-
lowing code sample:

Imports Microsoft.DirectX.Direct3D

Public Class ClsTile

Inherits clsSprite

Enum enType

Background = 0

Water = 1

Land = 2

Gas = 3

Ship = 4

Plane = 5

Bridge = 6

End Enum

Public Type As enType

Sub New(strImageName As String, startPoint As POINT, intType As enType)

MyBase.New(strImageName, startPoint)

Type = intType

End Sub

Sub New(strImageName As String, colorKey As Integer, _

startPoint As POINT, intType As enType)

MyBase.New(strImageName, colorKey, startPoint)

Type = intType

End Sub

End Class

As for the RiverEngine class, let’s define the whole interface and then code only
the functions we need at the moment:

Imports System.IO

Imports Microsoft.DirectX

Imports Microsoft.DirectX.Direct3D

Public Class ClsRiverEngine

Inherits clsGameEngine

Chapter 4

262

*0511_ch04_FINAL 2/18/03 7:47 PM Page 262

Private BackgroundMusic As ClsGameMusic

Public Lifes As Integer = 5463

Public gameSpeed As Integer = 10

' Define the array that will store the reference to the tiles on the game

' field. Since we don't know its size a priori, we'll REDIM it when reading

' the game map file

Private tiles As ClsTile(,)

Private CurrentLineNumber As Int32 = 0

Public Player As ClsPlayer

Private GasSound As ClsGameSound

Overrides Sub Render()

Sub Scroll()

Sub Draw()

Sub MovePlayer()

Sub PlayMotifs()

Function TestCollision() As Boolean

Public Shadows Function Initialize(Owner as Windows.Forms.Control) As Boolean

Function LoadGameMap() As Boolean

Protected Overrides Sub Finalize()

End Class

The Imports clause in the header of the class file allows us to include a name-
space reference to the current file so we can use its members directly. In the
preceding sample code, we import the System.IO namespace, which includes
classes and enumerations for manipulating files.

The fastest way to read and write text files in Visual Basic .NET is to use the
StreamReader and StreamWriter classes. We’ll use the first one, which has
some methods dedicated to reading files, including the ReadLine method,
which reads one text line until the new line char (just what we’ll need
here). The files are opened when creating the object (in the New method),
and closed using the Close method.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

263

*0511_ch04_FINAL 2/18/03 7:47 PM Page 263

Coding the LoadGameMap Method

The first problem that comes to mind when we start thinking about how the
LoadGameMap function will be implemented is that we read a text file from the first
line to the last, but our game field needs to be presented to the player in the
reverse order. So, if we open the game map file in Notepad, the last line of the file
will be the first one to be drawn at the bottom of the screen, and then we’ll draw
the next ones over it, to make the game scroll until we reach the first line of the
file.

A possible approach to solving this problem is to read the entire file to a string
array and then run through this array to create the Tiles array. We’ll include a first
line in the text file with the number of lines of the array, so we can Redim it accord-
ingly. It’s a good idea to create a separate function for translating the chars of each
line, so we can isolate the code that is responsible for accessing the file and read
lines from the code that will be creating the tiles.

So let’s see the code for the LoadGameMap function and the helper function
LoadLine:

Function LoadGameMap(strGameMapFileName As String) As Boolean

' Define the string array that will store the lines read from the map file

Dim GameMap As String()

' Define the streamreader to read the game map file

Dim GameMapFile As StreamReader

Dim strLine As String

Dim i As Int32

LoadGameMap = True

Try

' Opens the game map text file

GameMapFile = New StreamReader(Application.StartupPath & "\" & _

strGameMapFileName)

' reads the first line of the game map, which holds the size of the map

GameMapSize = Convert.ToInt32(GameMapFile.ReadLine())

' Creates the game map array, including tiles and active objects

ReDim GameMap(GameMapSize)

ReDim tiles(Width, GameMapSize)

' Load the game map array

For i = 1 To GameMapSize

GameMap(GameMapSize - i) = GameMapFile.ReadLine()

' The game map file ends within the FOR loop

' if the game map size read from the file is wrong

Chapter 4

264

*0511_ch04_FINAL 2/18/03 7:47 PM Page 264

If GameMap(GameMapSize - i) Is Nothing Then

MessageBox.Show("Incorrect game map size in " & _

strGameMapFileName & _

" - Expected size: " & GameMapSize & " / Real Size: " & i, _

"Critical error in game map")

LoadGameMap = False

Exit Function

End If

Next

' Checks to see if there are more lines in the game map file

strLine = GameMapFile.ReadLine()

If Not (strLine Is Nothing) Then

' Informs the user that we missed the last line(s)

MessageBox.Show("Incorrect game map size in " & strGameMapFileName _

& " - One or more lines after the " & GameMapSize & _

"th line were ignored.", "Critical error in game map")

LoadGameMap = False

Exit Function

End If

GameMapFile.Close()

Catch

LoadGameMap = False

Exit Function

End Try

' Load all the game map lines from the GameMap array into the Tiles array

For i = 0 To GameMapSize - 1

If Not LoadLine(GameMap(i)) Then

LoadGameMap = False

Exit Function

End If

Next

' frees the memory used by the game map

GameMap = Nothing

End Function

Function LoadLine(strLine As String) As Boolean

Dim x As Integer

Dim strSpriteFileName As String

Dim Type As ClsTile.enType

Static LineNumber As Integer = 0

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

265

*0511_ch04_FINAL 2/18/03 7:47 PM Page 265

LoadLine = True

For x = 0 To Width - 1

Select Case strLine.Chars(x)

Case "1"

strSpriteFileName = "borderN"

Type = ClsTile.enType.Land

Case "2"

strSpriteFileName = "borderNE1"

Type = ClsTile.enType.Land

... < CASES for the other borders > ...

Case "T"

If Rnd() * 10 < 5 Then

strSpriteFileName = "Tree1"

Else

strSpriteFileName = "Tree2"

End If

Type = ClsTile.enType.Land

Case "M"

If Rnd() * 10 < 5 Then

strSpriteFileName = "Mountain1"

Else

strSpriteFileName = "Mountain2"

End If

Type = ClsTile.enType.Land

Case "S"

strSpriteFileName = "Ship"

Type = ClsTile.enType.Ship

Case "P"

strSpriteFileName = "EnemyPlane"

Type = ClsTile.enType.Plane

Case "G"

strSpriteFileName = "Gas"

Type = ClsTile.enType.Gas

Case "("

strSpriteFileName = "BridgeBorderW"

Type = ClsTile.enType.Land

Case ")"

strSpriteFileName = "BridgeBorderE"

Type = ClsTile.enType.Land

Case "-"

strSpriteFileName = "Road"

Type = ClsTile.enType.Land

Chapter 4

266

*0511_ch04_FINAL 2/18/03 7:47 PM Page 266

Case "="

strSpriteFileName = "Bridge"

Type = ClsTile.enType.Bridge

Case "." ' Green background

' Do nothing

strSpriteFileName = ""

Type = ClsTile.enType.Background

Case "_"

strSpriteFileName = "Water"

Type = ClsTile.enType.Water

Case Else

' Should never happen

strSpriteFileName = "InvalidTile"

Type = ClsTile.enType.Land

End Select

Try

If Type <> ClsTile.enType.Background Then

tiles(x, LineNumber) = New ClsTile(strSpriteFileName & ".bmp", _

New POINT(x, LineNumber), Type)

Else

tiles(x, LineNumber) = Nothing

End If

Catch e As Exception

LoadLine = False

MessageBox.Show("Unpredicted Error when loading game sprites: " & _

e.Message, "River Pla.Net", MessageBoxButtons.OK, _

MessageBoxIcon.Stop)

Exit Function

End Try

Next

' Increments the line number counter

LineNumber += 1

End Function

Visual Basic .NET is far stricter for automatic conversions between data
types than the previous versions. To support conversions between types,
each data type is treated as a class and has a set of converting methods; but
we also have a Convert class in the System namespace that has many con-
version methods, such as the ToInt32 method used in the previous code
sample.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

267

*0511_ch04_FINAL 2/18/03 7:47 PM Page 267

As we can see, the LoadGameMap function simply uses the StreamReader methods
to run through the text file, just checking the number of lines against the informed
game map size (first line). The LoadLine function is just a big Select Case, which
will set the image filename to be loaded and the tile type, which will be used to
create the Tiles array elements. Each time we call the LoadLine function, we
process a full line read from the file and create a new line on the array, composed
of a set of 20 tiles (the width of the game field, as expressed in the next code
listing). The LineNumber static variable, incremented at the end of the function,
controls the number of lines already read to index the Tiles array properly.

As mentioned before, there’ll be two types of mountains and trees, so we add
a rnd function that will choose one image name or another, with a 50 percent
chance for each. Roads, bridge borders, trees, and mountains are all defined as
Land tile types, because we don’t have any special treatment in code for them.

To allow us to see the map loaded, we have to code the Initialize, Render, and
Draw methods, as presented in the next sections.

Coding the Initialize Method

In the Initialize method, we’ll call the LoadGameMap function and the base class
Initialize method, which will initialize Direct3D.

Private Const GAME_MAP As String = "GameMap.txt"
Public Shadows Function Initialize(Owner As Windows.Forms.Control) _

As Boolean
Dim WinHandle As IntPtr = Owner.Handle
Dim i As Integer
Randomize()
Initialize = True

' Sets the background color to green
BackgroundColor = Color.FromArgb(255, 0, 255, 0)
' Sets the width and height of the game field
Width = 20
Height = 15

' Loads the game map (into GameMap array)
If Not LoadGameMap(GAME_MAP) Then

Initialize = False
Exit Function

End If

' If the game map was loaded without errors, start Direct3D
If Not MyBase.Initialize(WinHandle) Then

Initialize = False
Exit Function

End If
End Function

Chapter 4

268

*0511_ch04_FINAL 2/18/03 7:47 PM Page 268

Coding the Render Method

The Render function will, for now, only call the Draw method. This function will be
called from the base class Run method.

Public Overrides Sub Render()

Draw()

End Sub

Coding the Draw Method

The Draw method will be very simple too, because all the complexity for loading
textures, initializing Direct3D, and manipulating vertex buffers is in the base
classes. All we need to do is call the Draw method for each member of the Tiles
array, starting from the line prior to the current line (which must have a default
value of 1) and going through the height of the screen plus 1, so that we’ll draw
only the visible tiles, with a little margin to avoid any problems.

Public Sub Draw()

Dim x As Integer, y As Integer

Dim LineCount As Integer = 0

' Draw the game field

y = CurrentLineNumber - 1

' We will draw a line below the current line number and a line above

' the last line on screen (CurrentLineNumber + Height)

Do While LineCount < Height + 2

For x = 0 To Width - 1

If Not (tiles(x, y) Is Nothing) Then

tiles(x, y).Draw()

End If

Next

LineCount += 1

y += 1

Loop

End Sub

The last thing we must do is code the main procedure.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

269

*0511_ch04_FINAL 2/18/03 7:47 PM Page 269

We’ll be following the guidelines of the pseudo-code written in the game
project, and adding a splash screen (just a screen with a nondynamic image) that
will close when the player presses any key, as shown in the following code:

Sub frmSplash_KeyDown(sender As Object, e As KeyEventArgs) Handles MyBase.KeyDown

Me.Dispose()

End Sub

The intro screen is shown in Figure 4-17.

Figure 4-17. The game splash screen

The final code for the main program is as follows:

Public RiverPlanet As ClsRiverEngine

Sub main()

Dim winGameWindow As New GameWindow()

Dim winSplash As New frmSplash()

winSplash.ShowDialog()

RiverPlanet = New ClsRiverEngine()

Chapter 4

270

*0511_ch04_FINAL 2/18/03 7:47 PM Page 270

If Not RiverPlanet.Initialize(winGameWindow) Then

MessageBox.Show("Error initializing the game", "Critical Error", _

MessageBoxButtons.OK, MessageBoxIcon.Stop)

Exit Sub

End If

winGameWindow.Show()

' The run procedure will return only when the game is over

RiverPlanet.Run()

' Destroying the object calls the finalize method

RiverPlanet = Nothing

winGameWindow.Close()

End Sub

We can run our game now, and see the resulting screen, which is exactly the
same as our visual prototype, shown in Figure 4-15.

In the next section we’ll implement the scrolling of our game field.

Second Draft: Scrolling

To see our game field scrolling, all we need to do is to add code to the Scroll
method and call it on the Render procedure before calling the Draw method.

The new Render method will be as follows:

Public Overrides Sub Render()

Scroll()

Draw()

End Sub

To appropriately control the scrolling, the Scroll function must store Matrix
as a static variable that will maintain the current translation to be applied to the
Transform.World matrix of the objDirect3DDevice, created in the base class. To
implement the translation, we must use the concept we learned in Chapter 3: Mul-
tiplying matrices has the same effect as adding the transformations of each one.

Since the base GameEngine class uses an orthogonal view of the textures, every-
thing is automatically translated to pixel coordinates, so we can control the
current line number by simply counting the number of pixels translated and,
when the sum of pixels exceeds the tile size (the clsSprite.IMAGE_SIZE constant),
add 1 to the current line property.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

271

*0511_ch04_FINAL 2/18/03 7:47 PM Page 271

To avoid our game running at full (and unplayable) speed, we must control
the frame rate using the technique we learned in Chapter 3 to control the walking
man’s speed: We store the system time using System.Environment.TickCount and
only do the scroll processing when a given time has passed.

Taking all this into consideration, we can code a fully working scroll routine.
Spend some time analyzing the following code to make sure you understand the
basic concept here, which will be used later to move the player’s plane.

Public Sub Scroll()

Static ScrollMatrix As Matrix = Matrix.Identity

Static LastTick As Integer

Static PixelCount As Integer

' Force a Frame rate of 'GameSpeed' frames to second on maximum

If System.Environment.TickCount - LastTick >= 1000 / gameSpeed Then

LastTick = System.Environment.TickCount

' Scrolls the game field (translation on the Y axis)

' since the Y axis increases when going up on the screen,

' we use a negative transation value to make the tiles scroll down

ScrollMatrix = _

Matrix.Multiply(ScrollMatrix, _

Matrix.Translation(0, -gameSpeed, 0))

' updates the current line number, used to control the screen drawing

PixelCount = PixelCount + gameSpeed

If PixelCount > clsSprite.IMAGE_SIZE Then

CurrentLineNumber += 1

PixelCount -= clsSprite.IMAGE_SIZE

End If

End If

objDirect3DDevice.Transform.World = ScrollMatrix

End Sub

A set of scrolling images is shown in Figure 4-18.

Chapter 4

272

*0511_ch04_FINAL 2/18/03 7:47 PM Page 272

Figure 4-18. Testing the scrolling game field

In the next section we’ll code the player’s plane, including the controls for
using the keyboard.

Third Draft: Coding the Player

To add a player to our scrolling game field, we’ll need to follow four steps:

1. Code the Player class.

2. Code the keyboard event of the game window to gather the player’s input
and set the appropriate values for doing the translations (moving) the
player’s plane.

3. Code the MovePlayer method of the RiverEngine class.

4. Call the MovePlayer method from within the Render procedure.

We won’t code the collision detection now, but we can already include the
images for dying and starting a new life in the Player class, as defined in the game
project and shown in the next sample.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

273

*0511_ch04_FINAL 2/18/03 7:47 PM Page 273

Imports Microsoft.DirectX.Direct3D

Public Class ClsPlayer

Inherits clsSprite

Public Status As enPlayerStatus

Enum enPlayerStatus

Flying = 0

Dying = 1

Starting = 2

Shooting = 3

End Enum

Protected DyingImage As Direct3DTexture8

Protected StartingImage As Direct3DTexture8

Private DyingSound As ClsGameSound

Private StartingSound As ClsGameSound

Public Gas As Single = 100

Sub New()

Shadows Sub Draw()

End Class

The images for the player’s plane are shown in Figure 4-19.

Figure 4-19. Images used for the player’s plane

Coding the New Method

In the New method, we’ll have to initialize the game variables. Calling the Load
method of the base class, we can load the default Image property for the Player
class, and we’ll have to add special code for loading the DyingImage and
StartingImage properties. We can simply copy and paste the code from the
previously defined Sprite class, which loads a file to a texture.

Chapter 4

274

*0511_ch04_FINAL 2/18/03 7:47 PM Page 274

Sub New()

Dim colorKey As Integer

colorKey = Color.FromArgb(255, 255, 0, 255)

IsTransparent = True

X = 0 : Y = 0

If Not Load("plane.bmp", colorKey.ToArgb) Then _

Err.Raise(vbObjectError + 1, "clsPlayer", _

"Could not create the player textures")

Try

DyingImage(i - 1) = TextureLoader.FromFile(objDirect3DDevice, _

Application.StartupPath & "\" & IMAGE_PATH & _

"\dyingPlane" & i & ".bmp", _

64, 64, D3DX.Default, 0, Format.Unknown, Pool.Managed, _

Filter.Point, Filter.Point, colorKey.ToArgb)

StartingImage(i - 1) = TextureLoader.FromFile(objDirect3DDevice, _

Application.StartupPath & "\" & IMAGE_PATH & _

"\startingPlane" & i & ".bmp", _

64, 64, D3DX.Default, 0, Format.Unknown, Pool.Managed, _

Filter.Point, Filter.Point, colorKey.ToArgb)

Catch

MsgBox("Could not create the player textures", MsgBoxStyle.Critical)

End Try

End Sub

In the next section we’ll code the Draw method, which will enable us to see on
screen the images loaded by the New method.

Coding the Draw Method

As for the Draw method, we’ll have to shadow the base property Draw, including a
select Case that will choose which image must be drawn based on the current
player status. This player status must be set to Dying by the game engine when a
collision occurs or when the plane runs out of fuel.

We’ll need to control the time for displaying the images for dying and starting
a new life on screen; for this we’ll employ the same technique we have used before
for controlling the frame rate (getting the current clock tick and controlling the
milliseconds for each image).

The next code sample shows our Draw procedure, including a Gas property that
is decremented as the plane flies. If we run out of gas, the player status will be
automatically set to Dying.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

275

*0511_ch04_FINAL 2/18/03 7:47 PM Page 275

Shadows Sub Draw()

Static LastTick As Integer = 0

' Turn on alpha blending only if the sprite has transparent colors

If IsTransparent Then

objDirect3DDevice.RenderState.AlphaBlendEnable = True

End If

Select Case Status

Case enPlayerStatus.Flying

objDirect3DDevice.SetTexture(0, SpriteImage)

objDirect3DDevice.SetStreamSource(0, VertBuffer, 0)

objDirect3DDevice.DrawPrimitives(PrimitiveType.TriangleStrip, 0, 2)

' when flying, subtracts the gas counter every half second

If System.Environment.TickCount - LastTick >= 500 Then

LastTick = System.Environment.TickCount

Gas -= 0.5

' if the tank is empty, destroy the plane

If Gas < 0 Then

Status = enPlayerStatus.Dying

End If

End If

LastTick = System.Environment.TickCount

Case enPlayerStatus.Dying

DyingSound.Play()

objDirect3DDevice.SetTexture(0, DyingImage)

objDirect3DDevice.SetStreamSource(0, VertBuffer, 0)

objDirect3DDevice.DrawPrimitives(PrimitiveType.TriangleStrip, 0, 2)

' start a new life after 2 seconds

If System.Environment.TickCount - LastTick >= 3000 Then

LastTick = System.Environment.TickCount

Status = enPlayerStatus.Starting

End If

Case enPlayerStatus.Starting

objDirect3DDevice.SetTexture(0, StartingImage)

objDirect3DDevice.SetStreamSource(0, VertBuffer, 0)

objDirect3DDevice.DrawPrimitives(PrimitiveType.TriangleStrip, 0, 2)

' restore the flying status after 3 seconds

If System.Environment.TickCount - LastTick >= 3000 Then

Status = enPlayerStatus.Flying

End If

End Select

Chapter 4

276

*0511_ch04_FINAL 2/18/03 7:47 PM Page 276

' Turn off alpha blending if the sprite has transparent colors

If IsTransparent Then

objDirect3DDevice.RenderState.AlphaBlendEnable = False

End If

End Sub

That’s all for the Player class. Now we want to create the player object on the
GameEngine class, and code the MovePlayer method, which will move the player
across the screen, as described in the next sections.

Creating the Player Object

We’ll create the player object inside the Initialize method of the GameEngine class.
Since the New method of the Player class takes no parameters, all we need to do is
create the object and check if this has been done correctly.

Player = New ClsPlayer()

If Player Is Nothing Then

Initialize = False

Exit Function

End If

In the next section we’ll include the code for the GameEngine class that will call
the Draw method of the Player class, allowing us to see the player’s plane on the
screen and move it.

Coding the MovePlayer Method

Before coding the keyboard control and the MovePlayer procedure, let’s take a step
back and review the concepts for applying transformations to objects.

As we were reminded when coding the scrolling feature of the game, to
perform transformations on an object defined by its vertices stored in the vertex
buffer, all we need to do is set the Transform.World property of the device object.

But what if we want to apply different transformations to a certain object? In
our specific case, we want the game field to scroll and the player’s plane to move
according to the keys pressed by the player.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

277

*0511_ch04_FINAL 2/18/03 7:47 PM Page 277

In such a case, all we need to do is to set different world matrices for each
object according to the effect we want to have. For this example, we’ll loop
through the following steps:

1. Set the world matrix to perform the translation to implement the
scrolling.

2. Draw the tiles.

3. Set the world matrix to perform the translation, according to the keys
pressed, to implement the player’s movements (overwriting the previous
world matrix).

4. Draw the player.

As we did in the Scroll procedure, to control the player we’ll use a static Matrix
to store the player’s movements. Looking at the New procedure shown previously,
we can see that the player coordinates were set to (0,0); and although the vertices
will all stay in the position in which they were first created, we’ll see the player’s
plane moving if we set the correct translations.

The value for the translations to be applied in each direction will be set at the
KeyDown event of the game window, by simply setting the SpeedX or SpeedY prop-
erties (defined in the base class Sprite) to the current game speed using negative
values where appropriate.

Sub GameWindow_KeyDown(sender As Object, e As KeyEventArgs) _

Handles MyBase.KeyDown

Select Case e.KeyCode

Case Keys.Right

RiverPlanet.Player.SpeedX = RiverPlanet.gameSpeed

Case Keys.Left

RiverPlanet.Player.SpeedX = -RiverPlanet.gameSpeed

Case Keys.Up

RiverPlanet.Player.SpeedY = RiverPlanet.gameSpeed

Case Keys.Down

RiverPlanet.Player.SpeedY = -RiverPlanet.gameSpeed

End Select

End Sub

The MovePlayer method will follow the basic structure of the Scroll method,
but it’ll use the properties set for the player in the preceding code to build the
translation matrix.

Chapter 4

278

*0511_ch04_FINAL 2/18/03 7:47 PM Page 278

Public Sub MovePlayer()

' Initializes the player position in the middle of screen (x-axis)

' and 3 tiles up (y-axis)

Static PlayerMatrix As MATRIX = Matrix.Translation(_

10 * clsSprite.IMAGE_SIZE, 3 * clsSprite.IMAGE_SIZE, 0)

If Player.Status = Player.enPlayerStatus.Flying Or _

Player.Status = Player.enPlayerStatus.Starting Then

' Draw the player sprite, moving acording to the arrow keys pressed

If Player.SpeedX <> 0 Or Player.SpeedY <> 0 Then

PlayerMatrix = Matrix.Multiply(PlayerMatrix, _

Matrix.Translation(Player.SpeedX, Player.SpeedY, 0))

End If

' Reset the speed of the sprite to prevent the plane from moving

' after the player releases the arrow keys

RiverPlanet.Player.SpeedX = 0

RiverPlanet.Player.SpeedY = 0

End If

objDirect3DDevice.Transform.World = PlayerMatrix

Player.Draw()

End Sub

All we need to do now is include a call to the MovePlayer method in the Render
procedure, and we are ready to test our plane by moving it around the screen. By
this stage, our game designer should have developed a larger game field, so we can
fly around over whole new backgrounds, as shown in Figure 4-20.

Figure 4-20. Our plane flying over trouble waters

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

279

*0511_ch04_FINAL 2/18/03 7:47 PM Page 279

If you were to test this game at this point, one thing you’d discover is that you
can drive your plane off the screen. Although you can come back later, it’s not a
good game practice. So we’d better include some testing on our movement pro-
cedure to avoid this, just after the line in which we set the PlayerMatrix variable,
inside the if command:

' the m41 element represents the translation on the X axis

If PlayerMatrix.m41 < clsSprite.IMAGE_SIZE Then _

PlayerMatrix.m41 = clsSprite.IMAGE_SIZE

If PlayerMatrix.m41 > (Width - 1) * clsSprite.IMAGE_SIZE Then _

PlayerMatrix.m41 = (Width - 1) * clsSprite.IMAGE_SIZE

' the m42 element represents the translation on the Y axis

If PlayerMatrix.m42 < clsSprite.IMAGE_SIZE Then _

PlayerMatrix.m42 = clsSprite.IMAGE_SIZE

If PlayerMatrix.m42 > (Height - 1) * clsSprite.IMAGE_SIZE Then _

PlayerMatrix.m42 = (Height - 1) * clsSprite.IMAGE_SIZE

We can now control the plane within the screen limits.
In next section we’ll code the collision detection functions, so the first version

of our game will be almost finished.

Fourth Draft: Collision Detection

The collision detection in our game will be fairly simple: We’ll use an algorithm
that will provide approximate results to make the code simpler. Although it’s not
very accurate, it’ll suffice for fair game play.

The basic idea here is to check the current player position, convert it to (x,y)
coordinates of the Tiles array, and then check the tile array element we are over, to
see if we are colliding. There’ll be three types of collisions:

• If we are over water, we aren’t colliding.

• If we are over a gas barrel, we aren’t colliding, but we’ll need to destroy the
gas barrel tile, fill our tank with some gas, and create a new tile (with water)
to replace the gas tile.

• If we are over a bridge, a ship, or a plane, we are colliding.

The TestCollision method will return a Boolean indicating if we are colliding
or not, so the Render procedure will deal with the collision as appropriate.

Chapter 4

280

*0511_ch04_FINAL 2/18/03 7:47 PM Page 280

One last point before looking at the code for this procedure: As mentioned in
the previous draft, when coding the player’s movements, the player vertices will
always be at the original positions they were created; what we’ll do is change the
world matrix to see the player in different positions. So, to allow the TestCollision
procedure to get the current player position, we’ll need to update the X and Y
properties of the player as he or she moves. All we need to do is to add the next
lines of code to the MovePlayer method, just before the lines in which we set the
PlayerMatrix transformation matrix:

' Updates the player location (used in collision detection)

Player.X = PlayerMatrix.m41

Player.Y = PlayerMatrix.m42

The complete code for the TestCollision procedure is shown in the following
sample:

Private Function TestCollision() As Boolean

Dim x As Integer, y As Integer

Dim i As Integer

x = Player.X / 32

y = (Player.Y + 16) / 32 + CurrentLineNumber

' If we are over water or over a gas barrel, we are not colliding

If Not (tiles(x, y) Is Nothing) Then

If tiles(x, y).Type = ClsTile.enType.Water Then

TestCollision = False

ElseIf tiles(x, y).Type = ClsTile.enType.Gas Then

' Remove the gas barrel from screen

tiles(x, y).Dispose()

tiles(x, y) = New ClsTile("water.bmp", _

New POINT(x, y), ClsTile.enType.Water)

TestCollision = False

Player.Gas = Player.Gas + 30

If Player.Gas > 100 Then Player.Gas = 100

Else

' If we collide with a ship or a plane, destroy it...

If tiles(x, y).Type = ClsTile.enType.Plane Or _

tiles(x, y).Type = ClsTile.enType.Ship Or _

tiles(x, y).Type = ClsTile.enType.Bridge Then

tiles(x, y).Dispose()

tiles(x, y) = New ClsTile("water.bmp", _

New POINT(x, y), ClsTile.enType.Water)

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

281

*0511_ch04_FINAL 2/18/03 7:47 PM Page 281

End If

TestCollision = True

End If

Else

TestCollision = True

End If

End Function

The code for the Render procedure will have to deal with the results of the
TestCollision procedure, changing the player status and removing one life from
the game’s Lifes property, as shown in the following code sample:

Public Overrides Sub Render()

' Scrolls the game field and moves the player

Scroll()

Draw()

MovePlayer()

' Only tests for collision if flying

If Player.Status = Player.enPlayerStatus.Flying Then

' If there's a collision, set player status to dying

If TestCollision() Then

Player.Status = Player.enPlayerStatus.Dying

Lifes -= 1

If Lifes = 0 Then

GameOver = True

End If

End If

End If

End Sub

We can now run the game’s new version, flying more carefully because now we
are flying at lower altitude, as shown in Figure 4-21.

Chapter 4

282

*0511_ch04_FINAL 2/18/03 7:47 PM Page 282

Figure 4-21. The plane now collides with any solid obstacles—in this case, a bridge

Final Version: Music and Sound Effects

Since our base sound manipulation library is coded, the task of including sounds
in our application is very simple. All we need to do is to create the sound objects
and call them as appropriate. Since we want to play some motifs randomly over
the background music, we’ll code the PlayMotifs method, as defined in the game
project, to do so.

The BackgroundMusic object and the GasSound object must be created in the
Initialize method of the RiverEngine class, so they’ll be accessible to all other
methods. As for the background music, we can start playing it right after the object
creation; it’ll be looping until the game end.

' Start the background music

BackgroundMusic = New ClsGameMusic()

BackgroundMusic.Initialize(WinHandle)

If Not BackgroundMusic.Load("boidsd.sgt") Then

MessageBox.Show("Error loading background music", "River Pla.Net")

End If

BackgroundMusic.Play()

' Initializes the gas filling sound effect

GasSound = New ClsGameSound(Owner)

If Not GasSound.Load("FillGas.wav") Then

MessageBox.Show("Error loading Gas sound effect", "River Pla.Net")

End If

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

283

*0511_ch04_FINAL 2/18/03 7:47 PM Page 283

As for the player game effects, we need to add the object creation to the New
procedure of the Player class:

' Initializes the sound effects

DyingSound = New ClsGameSound(Owner)

If Not DyingSound.Load("explosion.wav") Then

MessageBox.Show("Error loading explosion sound effect", "River Pla.Net")

End If

StartingSound = New ClsGameSound(Owner) If Not

StartingSound.Load("init.wav") Then

MessageBox.Show("Error loading starting sound effect", "River Pla.Net")

End If

Once we have created the sound objects, all we need to do is call the Play
method of each object where appropriate.

• In the TestCollision procedure, when the player collides with a gas barrel,
we’ll play the “gas bonus” sound.

GasSound.Play()

• In the Draw method of the Player class, we’ll play the “dying” sound every
time the player has a status of Dying.

DyingSound.Play()

• In this same method, we’ll play the “starting a new life” sound every time
the player has a status of Starting.

StartingSound.Play()

This will suffice to add music and sound effects to our game. And to add that
little bit extra, for subtle variations in the background music from time to time,
we’ll code the PlayMotifs function. This function will be called with every frame
that’s drawn on the Render method, so we’ll include two random choices: first,
choosing a random time (let’s say, between 5 and 15 seconds) to wait for the next
motif to play, and choosing a random motif to play, using the PlayMotif method of
our GameSound class and passing an index between zero and the value of the
MotifCount property, as shown in the next code sample:

Chapter 4

284

*0511_ch04_FINAL 2/18/03 7:47 PM Page 284

Sub PlayMotifs()

Dim MotifIndex As Integer

Static LastTick As Integer

Static Interval As Integer

' Plays a random motif every 5 to 15 seconds

If System.Environment.TickCount - LastTick >= Interval Then

LastTick = System.Environment.TickCount

' Gets a new random interval (in miliseconds) to play the next motif

Interval = (Rnd() * 10 + 5) * 1000

MotifIndex = Rnd() * BackgroundMusic.MotifCount

BackgroundMusic.PlayMotif(MotifIndex)

End If

End Sub

And that’s all for this chapter. The game is up to the standard described in the
game project. But there are a lot of improvements we can make, as shown in the
next section and in the next game version, in Chapter 5, when we’ll introduce
DirectInput and joystick control.

Adding the Final Touches

We’ll code a second version of our game in the next chapter, with many improve-
ments, but there is already some upgrading we can do right now, as shown in the
next sections.

Including Player Animations

A good improvement would be to include some player animations for dying and
starting a new life.

Animations are only a set of images that are presented, one at a time, using
specific time intervals. To define an animation, we should take into account the
total time we’ll have to play the animation and the number of frames we want to
display.

For the total time for each animation, we can simply check the duration of
each sound effect: about 1 second for the explosion sound, and about 2 seconds
for the sound of starting a new life.

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

285

*0511_ch04_FINAL 2/18/03 7:47 PM Page 285

To create an interesting explosion animation, we’ll need as many images as
possible. Figure 4-22 shows a minimal set for an explosion animation.

Figure 4-22. Explosion images for dying animation

Since we have seven images, we can calculate the desired interval between
each image: about 0.15 seconds.

Figure 4-23 shows a second set of images that will be used to give the player a
visual clue that the plane is invincible when starting a new life.

Figure 4-23. Flashing planes for starting a new life animation

In this case, we can use a different approach: Let’s simply show the images
from the first to the fourth, and then from the fourth down to the first, so the ani-
mation will appear to be flashing to the player.

To implement the animations, we’ll need to change the Player class as follows:

• Change the DyingImage and the StartingImage properties from variables to
arrays.

• Adjust the New method to dimension the arrays to the appropriated values.

• On the New method, load each of the images to the corresponding array
position.

• On the Draw method, include the code for displaying the images one at a
time, taking into account the specified interval between images.

Chapter 4

286

*0511_ch04_FINAL 2/18/03 7:47 PM Page 286

The modifications of the Player class are shown in the following code listing:

Protected DyingImage() As Direct3DTexture8

Protected StartingImage() As Direct3DTexture8

Sub New()

ReDim DyingImage(7)

ReDim StartingImage(4)

Dim colorKey As Integer

Dim i As Integer

colorKey = Color.fromARGB(255, 255, 0, 255)

. . .

Try

For i = 1 To 7

DyingImage(i - 1) = TextureLoader.FromFile(objDirect3DDevice, _

Application.StartupPath & "\" & IMAGE_PATH & _

"\dyingPlane" & i & ".bmp", _

64, 64, D3DX.Default, 0, Format.Unknown, Pool.Managed, _

Filter.Point, Filter.Point, colorKey.ToArgb)

Next

For i = 1 To 4

StartingImage(i - 1) = TextureLoader.FromFile(objDirect3DDevice, _

Application.StartupPath & "\" & IMAGE_PATH & _

"\startingPlane" & i & ".bmp", _

64, 64, D3DX.Default, 0, Format.Unknown, Pool.Managed, _

Filter.Point, Filter.Point, colorKey.ToArgb)

Next

Catch

MsgBox("Could not create the player textures", MsgBoxStyle.Critical)

End Try

. . .

End Sub

Shadows Sub Draw()

Static CountAnim As Integer = 0

Static LastTick As Integer = 0

Static IncAnim As Integer = 1

. . .

Select Case Status

Case enPlayerStatus.Flying

. . .

Case enPlayerStatus.Dying

If CountAnim = 0 Then

DyingSound.Play()

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

287

*0511_ch04_FINAL 2/18/03 7:47 PM Page 287

End If

' Each frame will be shown for .15 seconds,

' the 7 frames of the explosion in about 1 second

If System.Environment.TickCount - LastTick >= 150 Then

LastTick = System.Environment.TickCount

CountAnim += 1

End If

objDirect3DDevice.SetTexture(0, DyingImage(_

IIf(CountAnim - 1 < 0, 0, CountAnim - 1)))

objDirect3DDevice.SetStreamSource(0, VertBuffer, 0)

objDirect3DDevice.DrawPrimitives(PrimitiveType.TriangleStrip, 0, 2)

' The dying animation is 7 frames long

If CountAnim = 6 Then

CountAnim = 0

Status = enPlayerStatus.Starting

End If

Case enPlayerStatus.Starting

If CountAnim = 0 Then

StartingSound.Play()

End If

objDirect3DDevice.SetTexture(0, StartingImage(CountAnim))

objDirect3DDevice.SetStreamSource(0, VertBuffer, 0)

objDirect3DDevice.DrawPrimitives(PrimitiveType.TriangleStrip, 0, 2)

' The starting animation is 4 frames long,

' and must run in a reverse loop

If CountAnim = 3 Then IncAnim = -1

If CountAnim = 0 Then IncAnim = 1

' Each frame will show a different frame of the animation

CountAnim += IncAnim

' restore the flying status after 4 seconds

If System.Environment.TickCount - LastTick >= 4000 Then

CountAnim = 0

Status = enPlayerStatus.Flying

' We have a new plane, fill the tank!

Gas = 100

End If

End Select

. . .

End Sub

Chapter 4

288

*0511_ch04_FINAL 2/18/03 7:47 PM Page 288

Implementing a Neverending Game Map

So we managed to define a map with several hundreds of tiles. And what happens
when the user reaches the end of the game map?

Since we’ll have no ending screen, we can use a little trick to make our game
field infinite in length.

Adding some code to reset the scroll translation matrix to the beginning of the
game map when we reach the end will make the player loop forever on our game.
To allow a smooth transition, we can copy the first 15 lines of the game to the end
of the game map, so when we return to the beginning the player won’t notice a dif-
ference.

We can add an extra degree of playability to our game by including the
concept of different phases: Every time the player reaches the end of the map, we
can increase the game speed, so that even though he or she starts the same game
field, the game increases in difficulty.

To do this we’ll need to change the code for the Scroll method, including a
new test within the if command that increments the current line number counter,
to reset the scroll matrix and increase the game speed (using a new constant,
gameSpeedIncrease), as shown in the next code lines:

Private gameSpeedIncrease As Single = 1.3

. . .

' If we ended our game map, start it all over again, but with increasing speed

If CurrentLineNumber + Height = GameMapSize Then

gameSpeed = gameSpeedIncrease * gameSpeed

' The maximum gameSpeed will be the size of a tile per frame

If gameSpeed > 32 Then gameSpeed = clsSprite.IMAGE_SIZE

ScrollMatrix = Matrix.Identity

CurrentLineNumber = 0

End If

In the next chapter we’ll see some more improvements when we code the
second version of River Pla.Net.

Improving the Performance

Taking our sample game as an example, we can see that we are spending a lot of
time drawing each tile by itself. Looking at the Draw method of the Tile class, we
can see that for every tile we are calling three functions:

River Pla.Net: Tiled Game Fields, Scrolling, and DirectAudio

289

*0511_ch04_FINAL 2/18/03 7:47 PM Page 289

objDirect3DDevice.SetTexture(0, SpriteImage)

objDirect3DDevice.SetStreamSource(0, VertBuffer, 0)

objDirect3DDevice.DrawPrimitives(PrimitiveType.TriangleStrip, 0, 2)

In commercial games we’ll usually want a higher frame rate, so we need to set
aside the simplicity and use higher performance algorithms.

A simple way to speed up the game is to group equal tiles together, in a big
vertex buffer, so we could call these three functions only once for each texture.
Since the DrawPrimitives function can receive the first vertex to draw and the
number of primitives (triangle strips, in our case), all we need do is store a vertex
number in the Tile class, so we can pick the first tile and the last tile of each type
on screen and calculate the values for the DrawPrimitives function.

Since our main goal here is to introduce the gaming concepts, we didn’t spend
time on optimizations; in the next chapter we’ll include extra features in our game,
such as joystick control, but the game engine will remain basically the same.

Summary

In this chapter, we managed to use the Direct3D concepts discussed in the pre-
vious chapter to create an interesting new game, River Pla.Net. Among the many
new points learned are the following:

• An introduction to DirectAudio library, including the basic concepts about
music and sound reproduction through the DirectSound and DirectMusic
interfaces.

• The creation of a new game library, including two graphic classes (Sprite
and GameEngine) and two audio classes (GameSound and GameMusic).

• How to employ some advanced object-oriented concepts in programming,
like the use of overrideable functions.

• The introduction of two new game concepts, tile-based game fields and
scrolling games, and a practical example of their use.

In the next chapter, we’ll include some enhancements in our game, intro-
ducing two new concepts indispensable in every game: input device control with
DirectInput, including the use of force feedback in joysticks, and the practice of
writing text on the device context screen used by Direct3D.

Chapter 4

290

*0511_ch04_FINAL 2/18/03 7:47 PM Page 290

