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About the CoverAbout the CoverAbout the CoverAbout the CoverAbout the Cover
The cover image is the second in the “Gems” theme that I began last year. Andrew
Glassner and I bounced some ideas back and forth, and the design solidified pretty
quickly. The gems themselves are the same as in last year ’s image.The picture was
generated at Pacific Data Images using their in-house software. All of the textures and
models are procedurally generated. The sand texture, the sand surface shape, the
woodgrain, the sea foam, and the starfish texture are all derived from fractal noise
patterns. I spent most of my time on the water, making it look all shiny and wet and
transparent, but not too transparent. The foam on the water ’s surface was also very time-
consuming. Another challenge was to get the gems to all pile on top of each other
convincingly. I wrote a program that dropped them, one at a time, and as they fell, they
were rotated to the angle that moved them the furthest down without intersecting
anything that was there already. This program took a couple of hours to run, but it was
much faster than trying to place them by hand. The picture was rendered with a ray-
tracing program and took 50 hours on an Silicon Graphics 4D25 computer at a resolution
of 2250 × 3000 pixels with four samples per pixel.

Thaddeus Beier
Silicon Graphics Computer Systems

When Andrew asked if I wanted to do the cover for Graphics Gems II, I said “Sure . .
. we can reuse the software we built last year for Graphics Gems.” While it wasn’t quite
that simple, it was much easier to produce this cover than the first one. As before, the
image was designed on a color monitor producing red, green and blue pixels. For
printing, we needed to convert these pixels to cyan, magenta, yellow, and black pixels
(printer color space). Once in this form, the image was processed commercially to
produce half-toned film suitable for printing. This final step was performed at Kedie-
Orent, Sunnyvale, California, on their Crosfield digital prepress system.

As was the case with the first “Gems” picture, many of the original image colors could
not be exactly reproduced in print form. The colors had to be modified to map into the
set of colors that can be produced by the printer, its gamut. The trick is to do the
modification while maintaining the appearance of the image. In this picture, the colors
in the sand, shells, and water were mostly inside the printer gamut. However, some of
the gem colors, particularly the bright blue-greens, were far outside the gamut. The
transformation we applied was similar to the one we designed for Graphics Gems; colors
outside of the gamut were desaturated to colors of the same lightness while maintaining
the same hue. If one color of a particular hue needed to be desaturated, all colors of
the same hue would be desaturated to preserve shading detail. However, colors outside
of the gamut move more than colors inside of the gamut to maintain the overall
saturation.

The colors of the Graphics Gems II cover are lighter and more delicate than the cover
of Graphics Gems, and much more of the image lies in the interior of the printer gamut.
We tuned the transformation for this image to minimize the change to the less saturated
colors, preserving the subtle shading in the sand and water.

Thanks to Bill Wallace, who wrote the original gamut mapping software for Graphics
Gems, and to Ken Fishkin, who helped with the production of the cover this year.

Maureen Stone
Xerox Palo Alto Research Center

♦
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FOREWORD

FFFFFOREWORDOREWORDOREWORDOREWORDOREWORD
by Andrew Glassner

Welcome to Graphics Gems II, a new collection of practical techniques
and methods for the computer graphics programmer. This book is a
collection of contributions from many people, most of whom work inde-
pendently of each other. Yet through these volumes we are able to share
our observations and insights with each other and our readers, and
together build a communal library of graphics programming techniques.

In the preface to the original Graphics Gems, I wrote that “This
book . . . concludes one turn of a cycle of discovery, documentation,
editing, publishing, and reading, which will in turn lead to new discover-
ies.” I am delighted that we have completed another loop around the
cycle, and emerged with another strong collection of programming tech-
niques. As with its predecessor, the articles in this book are primarily not
research results; those can be found in the formal professional literature.
Rather, the Graphics Gems books are a conduit for practical informa-
tion. Much of the detailed information in these volumes would be inap-
propriate for a technical paper, but is invaluable to the implementor.

This volume has been edited by Jim Arvo, who is well known in the
graphics community as a skilled researcher and teacher. Jim and I have
taught several courses together at SIGGRAPH conferences and other
venues, and I have always been impressed with his insight and eagerness
to share his knowledge. The fine selection and organization of material in
this volume demonstrates his abilities well.

There may be more volumes in the Graphics Gems series. We will
continue to solicit and collect contributions, and organize them into new
books, as long as the quality remains high and the results useful. Each
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volume will be edited by a different individual, since I believe this will
help keep the results lively and fresh, and reflect the diversity that is part
of what makes computer graphics such an exciting field to work in.

One quality that I believe is shared by most engineers and scientists
is a desire for elegance. An elegant solution is one that is simple and direct,
and often provokes an “Aha!” reaction when first encountered. Often
such clean techniques depend on an insight derived from knowledge or
experience from another context. Many of the techniques in this book fit
this criterion for elegance, and enlarge the repertoire of tools upon which
we draw for solutions to new, unexpected challenges. Each time we learn
how another person solved an important problem, we grow as designers
and implementors.

It is in celebration of the twin spirits of growth and sharing that we
bring you this book. I hope you find it informative and useful.
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PPPPPREFACEREFACEREFACEREFACEREFACE

Continuing in the spirit of the inaugural Graphics Gems volume,
Graphics Gems II represents the collective expertise of a large and
diverse group of people. The common thread shared by all the contribu-
tors is that each has devised or refined useful ideas which can benefit
other computer graphics practitioners, and they have graciously agreed to
disseminate them. The resulting amalgam has a character quite distinct
from any text book on the subject, as it reflects ideas and approaches
every bit as diverse and unique as the people behind them.

In the field of computer graphics, as with almost any endeavor, there is
rarely a best way to do anything. Therefore, this volume shares a recur-
ring theme with the original volume by presenting techniques for doing
well-known operations faster or easier. Some present a new way of
looking at an old problem while others provide useful mathematical
machinery with broad application.

There are several ways to use this book. First, it can be a source of
solutions to specific problems. If one of the gems in this collection
addresses a particular problem of interest to you, the idea can be
employed with little ado. This is facilitated by the program listings
provided with many of the gems. A second way to use this book is to
simply browse, learning clever solutions to problems you may not have
encountered or even considered yet. Often the ideas behind the gems can
be applied in contexts much broader than those shown, or they may serve
as the seeds to get you thinking along new lines. In any event, there is
much to be gained by looking over the shoulders of experienced graphics
programmers as they apply the subtle tricks of the trade.

The overall structure, mathematical notation and pseudo-code used
here are the same as in the first volume. The scope and names of some
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parts have been changed slightly to best accommodate this new collection
of gems. In order to make this book as self-contained as possible we have
included several of the important sections verbatim from the first volume
for easy reference; there are the sections entitled “Mathematical Nota-
tion”, “Pseudo-Code”, and the listings “Graphics Gems C Header File”
and “2D and 3D Vector Library” in Appendix I. The last of these contains
several corrections and extensions. Only the part titled “Radiosity” has
no counterpart in the first volume. This new part has been added to
complement the part on ray tracing and to reflect current research trends.

The gems comprising each part all relate to some common theme.
Gems that share something more fundamental are linked via the “See
also” section at the end of each gem. Gems identified by gem number are
contained in this volume; gems identified by page number are in the first
volume of Graphics Gems. The mathematical background which is as-
sumed in most of the gems is limited to elementary calculus and linear
algebra, the staples of computer graphics.

The C programming language has been used for all the program listings
in the appendix because it is widely used and is among the most portable
of languages. It is also a favorite among graphics programmers because
of its flexibility. These considerations made it the obvious choice. All the
C code in this book is in the public domain, and is yours to study, modify,
and use. As of this writing, all code listings are available via anonymous
ftp transfer from the machine “weedeater.math.yale.edu” (internet ad-
dress 130.132.23.17). When you connect to this machine using ftp, log in
as “anonymous”, and give your own last name as the password. Then use
the “cd” command to move to the directory “pub/GraphicsGems”.
Download and read the file called README to learn about where the code
is kept, and how to report bugs.

Thanks are due to the many people who made this book possible. First
and foremost I’d like to thank all the gem contributors, whose expertise
and insight is what this book is all about. Also, I’d like to thank Andrew
Glassner for pioneering this whole adventure and for assisting in every
aspect along the way.  Special thanks to Terry Lindgren for his
tremendously helpful  input where it was most needed, and to Greg
Ward, John Francis, Paul Heckbert, and Eric Haines for their reviews,
expert opinions, and helpful suggestions. Finally, I’d like to thank Craig
Kolb for providing a safe haven for the public domain C code.
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MMMMMATHEMATICALATHEMATICALATHEMATICALATHEMATICALATHEMATICALNNNNNOTATIONOTATIONOTATIONOTATIONOTATION
Geometric ObjectsGeometric ObjectsGeometric ObjectsGeometric ObjectsGeometric Objects
0 the number 0, the zero vector, the point (0, 0), the

point (0, 0, 0)
a, b, c the real numbers (lower–case italics)
P, Q points (upper-case italics)
l, m lines (lower-case bold)
A, B vectors (upper-case bold)(components Ai)
M matrix (upper-case bold)
θ, ϕ angles (lower-case greek)

Derived ObjectsDerived ObjectsDerived ObjectsDerived ObjectsDerived Objects
A⊥ the vector perpendicular to A (valid only in 2D, where

A⊥  = (−Ay, Ax)
M-1 the inverse of matrix M
MT the transpose of matrix M

M* the adjoint of matrix M
    

M−1 = M∗

det M( )






|M| determinant of M
det(M) same as above
Mi,j element from row i, column j of matrix M (top-left is

(0, 0)
Mi, all of row i of matrix M
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M ,j all of column j of Matrix
∆ ABC triangle formed by points A, B, C
∠ ABC angle formed by points A, B, C with vertex at B

Basic OperatorsBasic OperatorsBasic OperatorsBasic OperatorsBasic Operators
    + ,  − ,  /,  ∗ standard math operators
⋅ the dot (or inner or scalar) product
× the cross (or outer or vector) product

Basic Expressions and FunctionsBasic Expressions and FunctionsBasic Expressions and FunctionsBasic Expressions and FunctionsBasic Expressions and Functions
  x  floor of x (largest integer not greater than x)

  x  ceiling of x (smallest integer not smaller than x)
a|b modulo arithmetic; remainder of a ÷ b
a mod b same as above

  Bi
n t( ) Bernstein polynomial = 

    

n
i







ti 1 − t( )n− i ,  i = 0Ln

  

n
i





 binomial coefficient 

  
n!

n− i( )!i!
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PPPPPSEUDO-CODESEUDO-CODESEUDO-CODESEUDO-CODESEUDO-CODE

Declarations (not required)Declarations (not required)Declarations (not required)Declarations (not required)Declarations (not required)
name: TYPE ← initialValue;
examples:
π :real ← 3.14159;
v: array [0..3] of integer ← [0, 1, 2, 3];

Primitive Data TypesPrimitive Data TypesPrimitive Data TypesPrimitive Data TypesPrimitive Data Types
array [lowerBound..upperBound] of TYPE;
boolean
char
integer
real
double
point
vector

matrix3
     equivalent to:
    matrix3: record [array [0..2] of array [0..2] of real;];
     example: m:Matrix3 ← [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]];
    m[2][1] is 8.0
    m[0][2]← 3.3; assigns 3.3 to upper-right corner of matrix
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matrix4
equivalent to:
matrix4: record [array [0..3] of array [0..3] of real;];
example: m: Matrix4 ← [

  [1.0, 2.0, 3.0, 4.0],
  [5.0, 6.0, 7.0, 8.0],
  [9.0, 10.0, 11.0, 12.0],
  [13.0, 14.0, 15.0, 16.0]];

m[3][1] is 14.0
m[0][3] ← 3.3; assigns 3.3 to upper-right corner of matrix

Records (Structures)Records (Structures)Records (Structures)Records (Structures)Records (Structures)
Record definition:
Box: record [

left, right, top, bottom: integer;
];

newBox: Box ← new[Box];
   dynamically allocate a new instance of Box and return a pointer to it

newBox.left ←10;
   this same notation is appropriate whether newBox is a pointer or
   structure

ArraysArraysArraysArraysArrays
v: array [0..3] of integer ← [0, 1, 2, 3]; v is a four-element array of integers

v[2] ← 5;         assign to third element of v

CommentsCommentsCommentsCommentsComments
A comment may appear anywhere–it is indicated by italics
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BlocksBlocksBlocksBlocksBlocks
begin

Statement;
Statement;
  L
end;

Conditionals and SelectionsConditionals and SelectionsConditionals and SelectionsConditionals and SelectionsConditionals and Selections
if Test

then Statement;
[else Statement]; else clause is optional

result = select Item from
instance: Statement;
endcase: Statement;

Flow ControlFlow ControlFlow ControlFlow ControlFlow Control
for ControlVariable: Type ← InitialExpr, NextExpr do

Statement;
endloop;

until Test do
Statement;
endloop;

while Test do
Statement;
endloop;

loop; go directly to the next endloop

exit; go directly to the first statement after the next endloop

return[value] return value as the result of this function call
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Logical ConnectivesLogical ConnectivesLogical ConnectivesLogical ConnectivesLogical Connectives
or, and, not, xor

Bitwise OperatorsBitwise OperatorsBitwise OperatorsBitwise OperatorsBitwise Operators
bit-or, bit-and, bit-xor

RelationsRelationsRelationsRelationsRelations
=, ≠, >, ≥, <, ≤

Assignment SymbolAssignment SymbolAssignment SymbolAssignment SymbolAssignment Symbol
←
(note: the test for equality is = )

Available FunctionsAvailable FunctionsAvailable FunctionsAvailable FunctionsAvailable Functions
These functions are defined on all data types

min(a, b) returns minimum of a and b
max(a, b) returns maximum of a and b
abs(a) returns absolute value of a
sin(x) sin(x)
cos(x) cos(x)
tan(x) tan(x)
arctan(y) arctan(y)
arctan2(y, x) arctan(y/x), defined for all values of x and y
arcsin(y) arcsin(y)
arccos(y) arccos(y)
rshift(x, b) shift x right b bits
lshift(x, b) shift x left b bits
swap(a, b) swap a and b
lerp(α, l, h) linear interpolation: ((1 – α)*l) + (α*h) = l + (α(h – l))
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clamp(v, l, h) return l if v < l, else h if v > h, else v: min(h,max(l,v))

floor(x) or  x  round x towards 0 to first integer

ceiling(x) or  x  round x away from 0 to first integer
round(x) round x to nearest integer, if frac(x) = .5, round  towards

0
frac(x) fractional part of x
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Two-dimensional geometry pervades computer graphics. For that reason,
a graphics programmer requires tools for solving a wide variety of 2D
geometrical problems efficiently. Solutions to several typical 2D problems
are presented in this Part: computing the area of a planar figure, the distance
from a point to a line, and finding the minimal enclosing area for some set
of objects.

Problems of this type arise partly because of the inherent two-dimensional
nature of the screen or surface on which graphics output is displayed.
Another reason 2D geometry is important is that larger problems in three
dimensions are frequently attacked by reducing them to smaller and simpler
problems in one or two dimensions. This tactic of breaking a large problem
into little palatable ones is perhaps nowhere more evident than in large
computer programs. Graphics, in particular, tends to reduce ultimately to
a large number of small 2D problems, increasing the importance of handling
each one robustly and efficiently.

The first six gems of this Part address some common 2D operations that
can serve as basic building blocks for more complex tasks. The next
two gems deal with generating and utilizing a class of space-filling
curves. These curves are members of an infinite family of related curves
that possess an interesting property: If the steps in their constructions are
carried out a sufficiently large number of times, the resulting curves will
come arbitrarily close to every point in some region of space. Although
this concept is equally valid in spaces of any dimension, space-filling
curves are most immediately useful and accessible for computer graphics
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when they are in two dimensions. For instance, their convoluted paths
provide an interesting order in which to generate the pixels of an image,
as described in Gem number 1.8. The final gem in this Part describes a
uniform framework that provides many useful operations on two-dimensional
figures.
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Jon RokneUniversity of CalgaryCalgary, Alberta, Canada
The formula for the area of a triangle is given in “Triangles” (Goldman,
l990b). This was generalized by Stone (1986) to a formula for a simple
polygon that is easy to remember.

Let Pi = (xi, yi), i = 1, . . . , n be the counterclockwise enumeration of
the vertices of the polygon as in Fig. 1.

The area of the polygon is then

    
A  =  

1

2

 x1  x2 ⋅ ⋅ ⋅ xn  x1 
 y1  y2 ⋅ ⋅ ⋅ yn   y1 

,

where the interpretation of

      
 
x1 x2 ⋅ ⋅ ⋅ xn x1

y1 y2 ⋅ ⋅ ⋅ yn y1

 

is the summing of the products of the “downwards” diagonals and
subtraction of the product of the “upwards” diagonals.

A specific example serves to clarify the formula. Consider the polygon
in Fig. 2.

The area of this polygon is

A = 
  

1

2
 
6 5 2 4 2 6
2 4 3 3 1 2

 

= (6 ×  4 + 5 ×  3 + 2 ×  3 + 4 ×  1 + 2 ×  2

– 5 ×  2 – 2 ×  4 – 4 ×  3 – 2 ×  3 – 6 ×  1)/2

= 7.5.
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Figure 2.

See also  IV.1 The Area of Planar Polygons and Volume of
Polyhedra, Ronald N. Goldman
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Mukesh PrasadMeta Mind, Inc.East Haven, Connecticut
ProblemProblemProblemProblemProblem
Given two line segments in 2D space, determine whether they intersect or
not. If they intersect, then determine the point of intersection.

AlgorithmAlgorithmAlgorithmAlgorithmAlgorithm
The following approach is particularly efficient if the lines often do not, in
fact, intersect—since it works from partial results. It also is very adapt-
able to integer-only computation.

 Let the line L12 connect points (x1, y1) and (x2, y2).

 Let the line L34 connect points (x3, y3) and (x4, y4).

Let the equation of L12 be F(x, y) = 0, and that of L34 be G(x, y) = 0.
Then this approach consists of the following steps:

1. From the equation of L12, by substituting x3 and y3 for x and y,
compute r3 = F(x3, y3).

2. Compute r4 = F(x4, y4).

3. If (i) r3 is not equal to 0, (ii) r4 is not equal to 0, and (iii) the signs
of r3 and r4 are the same (either both positive or both negative),
the lines do not intersect. Terminate algorithm.
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4. From the equation of L34, compute r1 = G(x1, y1).

5. Compute r2 = G(x2, y2).

6. If (i) r1 is not equal to 0, (ii) r2 is not equal to 0, and (iii) the signs
of r1 and r2 are the same, the lines do not intersect. Terminate
algorithm.

7. Lines intersect (or they are collinear). Compute point of intersec-
tion

NotesNotesNotesNotesNotes
• The algorithm is determining if:

• (x3, y3) and (x4,  y4) lie on the same side of L12. If they do,
the line segments obviously do not intersect.

• (x1, y1) and (x2, y2) lie on the same side of L34. If they do,
the line segments obviously do not intersect.

Otherwise, the lines must intersect, or be collinear.

• Comparison of signs usually is very efficient. The C Implementation for
this gem (Appendix 2) assumes a 2’s complement number representa-
tion, and uses the XOR operation to determine efficiently whether the
signs are the same or not.

• The intermediate results obtained are useful in the final step—“com-
pute point of intersection”—improving the algorithm efficiency.

• The algorithm, obviously, will work in floating point coordinates; but if
all xi and yi are available as integers (as is usually the case in bitmap
graphics) and the result is required on an integer grid, only integer
arithmetic is required. However, for integer-only arithmetic, care should
be taken to guard against the possibility of overflow. The polynomial
evaluations in the C Implementation (Appendix 2) are at most of
degree 3; therefore, using 32-bit integers, a range of 0-1023 in both X
and Y directions can be handled. For larger ranges, floating point
operations may be necessary, or a rearrangement of the intersection-
point computations may be necessary.



9

I.2 INTERSECTION OF LINE SEGMENTS

GRAPHICS GEMS II Edited by JAMES ARVO 9

• For further efficiency, the cases of r1, r2, r3, or r4 being 0 can be
handled separately. In these situations, one of the end points is the
point of intersection, and need not actually be computed

• If a collinearity check needs to be efficient, it can also be determined
from the fact that both r3 and r4 (or both r1 and r2) will be 0 in this
case. The lines may or may not overlap in this case, and if necessary,
that can be easily determined by comparing extents.

See also (49) A Fast 2D Point-on-Line Test, Alan W. Paeth;
(304) Intersection of Two Lines in Three-Space, Ronald
Goldman
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I.3I.3I.3I.3I.3
DDDDDISTANCE FROMISTANCE FROMISTANCE FROMISTANCE FROMISTANCE FROMAAAAA POINT TO A LINE POINT TO A LINE POINT TO A LINE POINT TO A LINE POINT TO A LINE

Jack C. MorrisonEvergreen, Colorado

This Gem gives efficient formulae for the distance dl between a point P
and the line defined by points A and B, and the distance d2 between P
and the line segment AB. (See Fig. 1.) An example of this application is
an interactive program searching for a displayed line segment nearest to
a cursor being moved by the user. For this type of operation, coordinates
usually are integers, and computationally expensive functions need to be
avoided to provide rapid response. Often, finding d2

1 or d2
2 is sufficient.

The distance from a point to a line is the length of the segment PQ
perpendicular to line AB. Start with the formula for the area of triangle
DABP,

  
1
2 |AxBy + BxPy + PxAy – AyBx – ByPx – PyAx|.

Rearranging terms to save multiplies gives the following formula for a2,
twice the signed area of DABP:

a2 = (Py – Ay)(Bx – Ax) – (Px – Ax)(By – Ay).

Since the area of DABP is also given by

  
1
2 d1|AB|,
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Figure 1.

the square of the desired distance can be computed as

    
1
2d  =  a22

Bx  – Ax( )2  + By  – Ay( )2 .

The differences in the denominator already were computed for a2, so the
total operation count is six adds, five multiplies, and one divide. If dl
is needed directly, a square root also is necessary; but if an approxima-
tion will do, we can apply Alan Paeth's Graphics Gem shortcut for |AB|
to get

 

    

a2

B
x
 –  A

x
 +  B

y
 –  A

y
 –  1

2
 min B

x
 –  A

x
 ,  B

y
 –  A

y( )
for an approximate distance with only two multiplies and one divide.

d′
1 =
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When the perpendicular intersection point Q is outside the segment
AB, dl is shorter than d2, the distance from P to the nearest point of the
segment. For applications only interested in segments within some maximum
distance from P, a simple bounding box test can be used to quickly reject
segments that are too far away:

min(Ax, Bx) – margin < Px < max(Ax, Bx) + margin,

min(Ay, By) – margin < Py < max(Ay, By) + margin,

and then dl can be taken as an approximation for d2.
To properly compute the distance d2, note first that

d2 = |AP| if Q is on the half-line from A away from B,

d2 = dl if Q is on the segment AB,

d2 = |BP| if Q  is on the half-line from B away from A.

The appropriate case can be determined by using the dot product equal-
ity,

AP ⋅ AB = |AP| |AB| cos a

= (Px – Ax)(Bx – Ax) + (Py – Ay)(By – Ay),

where a is the angle /PAB.
If Q is at A, then a is 90°, and cos a (and the dot product) is zero. If Q

is on the same side of A as B, a is less than 90°, and the dot product is
positive. This leads to the following algorithm for d2:

t ← (Px – Ax)(Bx – Ax) + (Py – Ay)(By – Ay) (dot product)
if t < 0

then d2 ← |AP| Q beyond A
else begin

t ← (Bx – Px)(Bx – Ax) + (By – Py)(By – Ay)
if t < 0

then d2 ← |BP| Q beyond B
else d2 ← d1 Q on AB

end
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The coordinate differences again can be reused, and an approximation for
|AP| and  |BP|  may be sufficient.

With integer coordinates for A, B, and P, these formulae can be
computed without using floating point, although care is required to
prevent overflow. For example, the worst case for three points in a
512 × 512 region gives a value of 262,144 for a2, whose square exceeds
32 bits.

See also (3) Useful 2D Geometry, Andrew S. Glassner
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Jon RokneUniversity of CalgaryCalgary, Alberta, Canada

In Graphics Gems (Ritter, 1990), we find a near-optimal algorithm for
computing a bounding sphere for N points in 3D space. Here, we present
a simple exact algorithm for computing the smallest bounding circle for
N points Pl, . . . , PN in 2D. It was devised for a numerical analysis
problem by E. Grassmann, who met with a fatal climbing accident when
the paper (Grassmann and Rokne, 1979) was about to be published.

We use the convention that a point P  in 2D can be written as
P = (Px,  Py), where Px is the x  coordinate of P  and Py is the y
coordinate of P. Also, |P – Q| is the Euclidean distance between P
and Q.

From geometry, it follows that the smallest bounding circle is defined
by two or three points of the pointset. See, for example, Rademacher and
Toeplitz (1957).

Case 1. The circle is determined by two points, P and Q. The center of
the circle is at (P + Q)/2.0 and the radius is |(P – Q)/2.0|.

Case 2. The circle is determined by three points, P, Q, and R, forming
a triangle with acute angles.

The two cases are shown in Fig. 1.
In both cases, there may be other points of the pointset lying on the

circle.
The algorithm proceeds as follows. First, determine a point P with the

smallest Py. Then find a point Q such that the angle of the line segment
PQ with the x axis is minimal. Now find R such that the absolute value
of the angle ∠PRQ is minimal.

If this angle is acute, then the circle C l determined by P, Q, and R
contains—according to elementary geometry—all the points, since there
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Figure 1.

Figure 2.
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are no points to the right of the directed segment PQ. If the triangle PQR
has acute angles only, we are finished. If the angle at R is obtuse, then
the center of the circle we are looking for is (P + Q)/2.0 and the radius
is |(P – Q)/2.0|.

If the angle at P or Q is obtuse, say at Q, we replace Q by R and
repeat to get a circle C2. See Fig. 2.

From elementary geometry, it follows that the center of C l is to the left
of the directed line segment PR, since the angle at Q otherwise would be
acute. Since the radius of C2 at most is as large as that of C l, it follows
that all the points inside C l that are to the right of the segment PR also
are inside C2. No points are lost, therefore, and C2 contains all the points
of the pointset.

We claim that after finitely many repetitions, we get the minimal circle.
To show this, we only need to observe that a point to the right of the line
segment PR stays to the right, and therefore, we have at most N – 2
iterations.

The algorithm has a worst-case complexity of O(N p p 2).

See also (301) An Efficient Bounding Sphere, Jack Ritter
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Jon RokneUniversity of CalgaryCalgary, Alberta, Canada

In Graphics Gems (Thompson, 1990), an algorithm is given for the area
of intersection of two circles. Here we give a simple pseudo-code for
finding the center and radius of the smallest circle containing the inter-
section of two circles.

We use the convention that a point in 2D can be written as P = (Px, Py)
where Px is the x coordinate of P and Py is the y coordinate of P. Also,
|P – Q| is the Euclidean distance between P and Q.

The two circles are (P, r) and (Q, s) and the circle containing the
intersection is (R, t).

In Fig. 1, we show the case of non-trivial intersection.
Let l = |P – Q|. Then from the geometry, we have for this case the two

equations,

z2 + t2 = r2,

(l – z)2 + t2 = s2,

which can be solved for

z = (l2 + r2 – s2)/(2l),

    t = r 2 – z2 .

The other cases are (P, r) # (Q , s), (Q , s) # (P, r), and (P, r) >
(Q, s) = \.
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Pseudo-CodePseudo-CodePseudo-CodePseudo-CodePseudo-Code
l ← |P – Q|;
If l > r + s then “intersection empty”

else if l + r < s then C ← P, t ← r;
else if l + s < r then C ← q, t ← s;

else begin
z ← (l2 + r2 – s)/(2l);
t ←     r 2 – z2 ;
R ← P + (P – Q)z/l;

end
endif

endif
endif

See also 1.6 Appolonius’s 10th Problem, Jon Ro ne

Figure  1.
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Jon RokneUniversity of CalgaryCalgary, Alberta, Canada

A problem that occurs in computer graphics and CAD is the construction
of the smallest circle touching three given circles from the outside. This
problem already was considered by Appolonius (c. 262-190 B.C.).

The solution given here was used in a numerical analysis problem
(Grassmann and Rokne, 1979).

It should be pointed out that the problem of finding the smallest sphere
containing three given spheres also is reduced to the problem of Appolo-
nius by considering the plane passing through the centers of the spheres.

We note first that the problem may have no solution; i.e., there might
not exist a circle touching the given circles from the outside. See Figs. 1
and 2.

In Fig. 1, there is no circle that touches the given circles, whereas in
Fig. 2, at least one of the circles has to be outside. The decision
procedure for the case in Fig. 1 is obvious, whereas the decision proce-
dure for the case in Fig. 2 requires the computation of the outside
common tangents of the largest and the smallest circle as well as for the
largest and the middle circle. See Glassner (1990b).

It is convenient to use some geometric properties of complex analysis
to develop the algorithm. These are not stressed in the usual courses in
complex analysis in North America; hence, we refer to Behnke et al.,
(1983), where the required formulas are given.

We identify points in the plane with complex quantities; that is, if Z is
a point in 2D, then we write the x coordinate as Re Z and the y
coordinate as Im Z, and we also think of it as a complex quantity,
Z = Re Z + i Im Z. An overline means reflection with the real axis for a
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Figure 1.

Figure 2.
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mapping the Z plane into a W plane.
This maps the unknown circle into a straight line, the two other circles

into circles with centers and radii (Wi, ρi), where (as shown by Gargantini
and Henrici (1972), Eq. (2.1), or any textbook describing the Moebius
transformation)

Figure 3.

    
Wi =

Zi – Z3( )
Zi – Z3

2 − ri ∗( )2

    
ρi =

ri ∗
Zi – Z3

2 − ri ∗( )2

 i = 1, 2. (1)

, ,

point in 2D and the complex conjugate when we consider the point as
a complex quantity.

Let (Zi , ri), i = 1, 2, 3 be the center and radii of the circles. First, subtract
the smallest radius, say r3,  from the other two, getting ri*=
ri – r3.

If we can find a circle (Z, r) that passes through Z3 and touches (Zi, ri*),
i = 1, 2 from outside, then the disc (Z, r + r3) will be the solution to the
original problem. The geometry of this is shown in Fig. 3.

To find this circle, we use the transformation,

      
W  =  7(Z) =

1

Z – Z3

,
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Note that ρ
i < 0 if Z3 is contained in disc i, i = 1, 2, and that any circle

through Z3 in the Z plane is mapped into a line in the W plane.
The problem now is to find a common tangent line, l: Re UW = c, in

the W plane. This line mapped back into the Z plane will provide the
desired circle.

If l separates the centers from the origin, the corresponding circle in
the Z plane will separate the centers from ∞, i.e., contain the given discs
inside.

The constants U and c are determined by the following method.
We can assume that U = 1. Then the distance formula gives

Re UWi – c = ρ
i , i= 1, 2. (2)

Subtracting, we get

 Re U(W1 – W2) = ρ
1 – ρ

2,

and calling

α = arg U(W1 – W2),

we get

cos α =
    

ρ1 –  ρ2

W 1 –  W 2

(3)

and

    sin α =   ± 1 –  cos2 α ,    (4)

so

 cos α + i sin α = 
    

U W 1 – W 2( )
W 1 – W 2

,

and multiplying both sides by

    

W 1 – W 2( )
W 1 – W 2

,
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we get

U = (cos a + i sin a)
    

W 1 – W 2( )
W 1 – W 2

. (5)

The ambiguity of the root in Eq. (2) gives the two solutions, Ul, U2,
expected from geometry. (The geometric meaning of a is the angle
between the normal of l and that of the line joining Wl and W2.) The fact
that we have positive ri has the geometric meaning that the normals Uj
point towards the centers, and the line does not separate the centers.

Using the first of the equations, (2), we get the corresponding cj,

cj = Re W1Uj – ri .

The line separates the Wi from the origin if cj > 0.
We shall need the points of contact as well. They are

Ti
∗
j = Wi – ri Uj, i = 1, 2, j = 1,  2. (6)

We now transform the equations, Re UjW = cj, back into the Z plane
and get

Re  
    

U j

Z –  Z3
 
    
=  1

Z  −  Z3
2  Re Uj(Z – Z3) = cj ,

and writing Z – Z3 = j + ih, Uj = mj + inj, we get

  mjj + njh = cj(j2 + h2),

or since, |Uj| = 1,

  
    

ξ −  
mj

2cj







2

 +  η −  
nj

2cj







2

 =  
1

4cj
2 ,

i.e., the circle has center Z = Uj/(2cj) + Z3 and radius r = 1/(2cj).
We can see that we need only the line for which cj is greater, since we

are interested in the circle of minimal radius.



24

I.6 APPOLONIUS’S 10TH PROBLEM

GRAPHICS GEMS II Edited by JAMES ARVO 24

The points of contact are

    
Tij  =  

1
Tij

*  +  Z3 .

The computations are quite simple as shown by the following pseudo-
code.

Pseudo-CodePseudo-CodePseudo-CodePseudo-CodePseudo-Code
Compute     1

∗r ,  2
∗r .

Compute W1, W2, r1, r2 from (1).
Compute cos a from (3) and sin a from (4).
Compute c1, c2 from (5).
Choose c = max (c1, c2) and corresponding U from (5).
The required circle is then Z = U/ (2c) + Z3 with radius r = 1/ (2c).

See also 1.5 The Smallest Circle Containing the Intersection of
Two Circles, Jon Rokne
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AAAAA PEANO CURVE PEANO CURVE PEANO CURVE PEANO CURVE PEANO CURVEGGGGGENERATION ALGORITHMENERATION ALGORITHMENERATION ALGORITHMENERATION ALGORITHMENERATION ALGORITHM

Ken MusgraveYale UniversityNew Haven, Connecticut

One occasionally may desire a space-filling Peano curve in n dimensions
(Peano, 1980). The Peano curve is a fractal with integer-fractal dimen-
sion. This curve provides a continuous mapping from the integers to
n-space, with the properties that all points in the domain are close in the
range, and most points that are close in the range are close in the domain.
Applications we have found include image compression, color quantiza-
tion (Stevens et al., 1983; Whitten and Neal, 1982), and debugging for
interactive four-dimensional rotation routines.

We have implemented Butz’s algorithm (1971) for generating an n-
dimensional Peano curve to m bits of precision, that is, with 2m seg-
ments per dimension,     2mn  segments total. It is based on bitwise boolean
operations, and is the only algorithm we have ever coded where we have
had absolutely no insight into how it works. But the code’s correct
operation has been verified in two, three and four dimensions. See figs. 1
and 2 (color insert) for an example in 2-dimensions.

The algorithm, but not its derivation, is described in Butz (1971).
Unfortunately, no insight is offered there for the logic of the algorithm.

See also 1.8 Space-Filling Curves and a Measure of Coherence,
Douglas Voorhies



1.7 Figures 1 and 2.  These plates show the Peano curve in two dimensions with 8 subdivisions, or “bits of
precision,” at 512 by 512 resolution. Thus alternating pixels are covered by the curve. The two images represent
the same curve, as seen at different points in a colormap animation performed by ran_ramp. Note the changing
patterns created by the colormap animation.
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Douglas VoorhiesHewlett Packard Co.Chelmsford, Massachusetts

TraversalTraversalTraversalTraversalTraversal
Performance of ray tracers and other rendering algorithms can be im-
proved by altering the primary ray generation sequence. The key is to
better exploit coherence.

Coherence provides opportunities to use memory more effectively.
Modern memory hierarchies employ caches, translation look-aside buffers,
and paging, which depend upon extreme repetition in the reference
pattern. In this environment, rendering approaches that minimize churn-
ing of the working set runs considerably faster, even if the total computa-
tion is the same.

Object-space rendering (e.g., ray tracing or reverse-mapped volumet-
ric) typically processes the screen-space pixels in scanline order, which
is mediocre in its churning of the working set. An object whose screen
projection is several pixels across will have several consecutive pixels
that enjoy the same intersections and similar lighting experiences, but the
scanline traversal sequence then leaves the object and does not return for
a long time. Thus, scanline traversal exploits only one dimension of
object coherence.

An ideal traversal sequence visits all the pixels in the entire area of
each object before moving on to the next object, thus exploiting coher-
ence in two dimensions. Unfortunately, there is a wide range of on-screen
object sizes, and neither their size nor position is known a priori.
Furthermore, different levels of memory hierarchies work best with repe-
tition within working sets of different sizes. Thus, the concept of object
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area in this context may be extended to mean repetitious access at many
size levels.

Two important properties for a traversal sequence which exploits
coherence are that:

1. All the pixels in an area are visited before moving on.

2. The sequentially visited areas always are adjacent.

Both properties decrease the reloading of memory by minimizing the
number of times an object area is exited and reentered. Assuming that the
traversal sequence is fixed rather than adaptive, its selection must be
based on shape alone.

Space-Filling CurvesSpace-Filling CurvesSpace-Filling CurvesSpace-Filling CurvesSpace-Filling Curves
Some space-filling curves can exploit coherence in two dimensions de-
spite a range of object area sizes. As fractals, they are self-similar at
multiple resolutions. Thus, if they do a good job of visiting all the pixels
corresponding to a particular object area at one scale, then they may have

   Normal unidirectional   Peano Curve       Hilbert Curve
     scanline traversal

Figure 1.



28

 I.8 SPACE-FILLING CURVES AND A MEASURE OF COHERENCE

GRAPHICS GEMS II Edited by JAMES ARVO 28

this advantage for much larger or smaller object areas. As topologically
continuous curves, areas visited always are adjacent. Let us look at two of
them, as shown in Fig. 1.

Peano curves are recursive boustrophedonic patterns. They snake
back and forth at multiple recursion levels, filling the plane. Since each
pattern enters and exits from opposite rectangle corners, they implicitly
use serpentines with an odd number of swaths, a minimum of three. Thus,
they can be self-similar at 3 3 3, 9 3 9, 27 3 27, 81 3 81, etc. resolu-
tions. (If squeezed in one dimension only, they can repeat as 2 3 3,
6 3 9, 18 3 27, 54 3 81, etc.)

A Hilbert curve is folded even more tightly. It can visit all the pixels in
a 2 3 2, 4 3 4, 8 3 8, 16 3 16, etc. area before moving on, so its
self-similar, area-filling patterns are more numerous and closer together
in scale.

A Measure of CoherenceA Measure of CoherenceA Measure of CoherenceA Measure of CoherenceA Measure of Coherence
How can one measure the ability of a traversal sequence to exploit
coherence, independent of a specific image and renderer? A pragmatic
measure can be based on the notion of a memory working set. For a given
object area, any traversal will consist of consecutive pixels that are within
that object’s screen projection and others that lie outside. Part of the
working set of a renderer can be thought of as the current object area

Figure 2.
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Figure 3.  Average coherence of Peano and Hilbert traversal sequences for object
radii of .5 to 100.
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plus the recently touched ones. In this context, high coherence means
staying within the current object area (or nearby ones) most of the time,
and venturing outside rarely, until all the current object area pixels have
been visited.

To make this concrete, I assume that an imaginary object projects as a
circle in screen space. Choosing a circle favors no traversal direction over
another. Coherence of a traversal sequence then is the current object
circle’s diameter divided by the number of times the sequence exits
the circle. Hysteresis is added by only counting paths that exit the ob-
ject circle and then venture another radius away; this avoids penalizing
small excursions beyond the circle that immediately return. See Fig. 2.

By this pragmatic measure, object areas not touching the screen edges
have a coherence measure of 1.00 for normal scanline traversal, since all
sequences that penetrate the circle exit and continue all the way to the
screen edge and thus are counted. For Fig. 3, a 1024 3 1024 screen is
traversed by three methods: normal scanline traversal, a Peano curve, and
a Hilbert curve. (Since the Peano curve did not fit evenly into 1024 3
1024, it was clipped.) The coherence of 1000 circles centered at random
on-screen positions is averaged for a range of radii.

Both the Peano and Hilbert curves far exceed the coherence = 1.00
measure of conventional scanline traversal. The Hilbert curve appears
superior, and is easier to generate. Better performance from a real
renderer can be expected simply by choosing either of these alternative
traversal sequences.

See also 1.7 A Peano Curve Generation Algorithm,
Ken Musgrave
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Jonathan E. SteinhartIndependent ConsultantMcMinnville, Oregon

IntroductionIntroductionIntroductionIntroductionIntroduction
Shape algebra has many applications in raster graphics. Window manage-
ment systems use shape algebra to compute the visible regions of over-
lapping windows. Shape algebra can be used to implement caps and joins
in fat line drawing code. POSTSCRIPT™-style (Adobe, 1985a, 1985b) clip
paths are yet another application of shape algebra.

This gem details an approach to shape algebra that can be implemented
efficiently as part of a raster graphics system. Routines are provided that
implement the basic union, intersection and difference operations as
shown in Fig. 1. A number of utility functions and special purpose
variations also are provided, as are some example applications.

BackgroundBackgroundBackgroundBackgroundBackground
Previous published work in this area falls into two categories: quadtrees
(Samet, 1990a, 1990b) and the Apple™ patent (Atkinson, 1986).

Quadtrees are data structures that represent arbitrary shapes through
rectangular two-dimensional binary subdivision. Although shape algebra
can be performed efficiently on quadtrees, the binary subdivision tech-
nique makes it expensive to coalesce adjacent rectangles. This makes it
difficult to take advantage of scanline coherence during rasterization.

The Apple™ patent uses a scanline-width bit mask to mark horizontal
transitions across the region boundaries. The bit mask is updated at each
vertical boundary transition. Although the Apple™ approach allows one
to take advantage of scanline coherence, it has two major disadvantages.
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Figure 1. Basic shape algebra operations.

First, the bit mask is expensive to maintain for wide scan lines. Second,
there is an unquantified legal expense involved in the utilization of this
patent.

Two unpublished papers exist that describe portions of the approach
presented here, Gosling (1986) and Donato and Rocchetti (1988). Earlier
versions of this work appear in Steinhart et al. (1989, 1990).

Data StructuresData StructuresData StructuresData StructuresData Structures
Our approach is to represent arbitrary shapes as y-sorted lists of x-sorted,
non-overlapping rectangles. The decomposition of an ellipse with a rect-
angular hole into our shape representation is shown in Fig. 2.

We store shape representations as linked lists. Although packed array
formats such as the one discussed in Steinhart et al. (1989) are more
compact, a significant amount of data copying can occur in the difference
operation. Also, it is difficult to manage the amount of array space
required, since the worst-case combination of a shape containing m
rectangles with a shape containing n rectangles is a shape containing
m 3 n rectangles.

Figure 2. Sample shape decomposition.
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Figure 3. Representation of a sample shape.

The choice of memory management techniques used for the data
structures can have a dramatic impact on the performance of the algo-
rithms. This gem does not go into the details of memory management,
since the choice of technique is very dependent on the operating environ-
ment.

A shape is a vertically ordered set of horizontal spans. Each span
contains a horizontally ordered set of segments. The span data structure
contains the y coordinate of the top of the span, a pointer to the next
span, and a pointer to the segment list. Each element of the segment list
contains an x coordinate and a pointer to the next segment. Figure 3
shows a sample shape and the data structures that represent it.

There are three spans in the structure. The first one describes the
rectangle ((10, 10),(50, 20)). The second span describes the two rectan-
gles, ((10, 20),(20, 30)) and ((40, 20),(50, 30)). The third span describes no
rectangles and merely provides the upper y bound for the second span.

Note that we place the pixels between the grid lines as shown in Fig.
4a, not on the grid lines as shown in Fig. 4b.
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Figure 4. Pixel locations.

Spans and structures are constructed from instances of the span and
segment data structures, defined as follows:

segment: record [ span: record [
next: ↑ segment; next: ↑ span;
x: integer; x: ↑ segment;
]; y: integer;

];

We allow a NIL pointer to represent an empty shape for convenience.

The Basic AlgorithmThe Basic AlgorithmThe Basic AlgorithmThe Basic AlgorithmThe Basic Algorithm
The shape algebra routines alternately process spans in an outer loop
and segments in an inner loop. Let us look at what happens with opera-
tions on two simple shapes, the rectangles ((10, 10),(20, 20)) and
((15, 15),(25, 25)), as shown in Fig. 5.

The outer loop contains two pointers, one for each span list. One
pointer is advanced—or both are—each time through the loop. The span
whose y value is lowest has its pointer advanced; both pointers are
advanced if both spans have the same y value. The effect is to generate a
new set of span y values as shown in Fig. 6.

Figure 5. Two simple shapes.
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Each iteration through the outer loop produces a y coordinate and a
pair of segments to be operated on by the inner loop. Note that the outer
loop supplies an empty segment in cases where one shape begins or ends
before the other.

The inner loop processes the segments in much the same manner as
the outer loop processes the spans. A bit is used to keep track of the state
of each segment. Each x value toggles this state bit. The state bits from
each segment are combined into a state code as shown in Fig. 7.

Figure 7. State code generation.

Figure 6. Span processing.
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Figure 8. Shape algebra opcodes.

One segment is advanced—or both are—each time through the inner
loop. The segment that ends at the lower x coordinate is advanced; both
segments are advanced if they both end at the same place. The state code
is monitored; x values that cause the state code to change to or from the
opcode are added to the output. The effect of each opcode is shown in
Fig. 8. Note that code 1 produces A–B; a code of 2 would produce B–A.

The x coordinates in segments come in pairs. The first coordinate in
each pair is a transition from “off” to “on” for the coordinate value. The
second coordinate in each pair is a transition from “on” to “off” that
occurs after the coordinate value.

The basic shape algebra routine is presented as follows. Although a
single routine could be used to implement all of the operations, a
considerable amount of time can be wasted using the opcode to choose
the appropriate special case handling code. Substantial performance
benefits can be realized by using optimized code for each opcode. The
special case handling code is discussed in the following sections.

procedure shape_operation(shape1, shape2, opcode)
begin

result ← x1 ← x2 ← NIL;
handle special cases that occur before the shapes overlap in y
while shape1 ← NIL and shape2 ≠ NIL do
begin

test ← shape1.y – shape2.y;
if test ≤ 0 then

begin y ← shape1.y; x1 ← shape1.x; shape1 ← shape1.next;
end;
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if test ≥ 0 then
begin y ← shape2.y; x2 ← shape2.x; shape2 ← shape2.next;
end;

flag ← old ← 0;
segment ← NIL;
handle special cases that occur before the shapes overlap in x
p1 ← x1; p2 ← x2;
while p1 ≠ NIL and p2 ≠ NIL do
begin

test ← p1.x – p2.x;
if test ≤ 0 then

begin x ← p1.x; flag ← flag bit-xor 1; p1 ← p1.next; end;
if test ≥ 0 then

begin x ← p2.x; flag ← flag bit-xor 2; p2 ← p2.next; end;
if flag = opcode or old = opcode then

begin append a new element to segment with ualue x
end;

old ← flag;
end;

handle special cases that occur after the shapes overlap in x
if segment ≠ NIL or result ≠ NIL then

append a new element to result with values y and segment
end;

handle special cases that occur after the shapes overlap in y
return [result];
end;

IntersectionIntersectionIntersectionIntersectionIntersection
The intersection algorithm takes advantage of the fact that the result is
empty if one operand is empty. Only one piece of special case code is
necessary; the remaining pieces are empty.

special case code for before the shapes overlap in y
if shape1 = NIL or shape2 = NIL
return [NIL];
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UnionUnionUnionUnionUnion
Both shape operands must be traversed to the end in the union algorithm.
We can get some performance improvement by avoiding the tests and
handling the cases where one span or segment is empty as straightfor-
ward copies.

special case code for before the shapes overlap in y
if shape1 = NIL then

begin return [a copy of shape2]; end;
if shape2 = NIL then

begin return [a copy of shape1]; end;
if shape1.y < shape2.y then
begin

copy the span from shape1 and append it to result
x1 ← shape1.x;
shape1 ← shape1.next;
end;

else if shape2.y < shape1.y then
begin

copy the span from shape2 and append it to result
x2 ← shape2.x;
shape2 ← shape2.next;
end;

special case code for before the shapes overlap in x
if x1 ≠ NIL then

begin copy x1; end;
else if x2 ≠ NIL then

begin copy x2; end;
else

do the normal inner loop processing

special case code for after the shapes overlap in x
if x1 ≠ NIL then

begin copy the remainder of x1; end;
else if x2 ≠ NIL then

begin copy the remainder of x2; end;
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special case code for after the shapes overlap in y
if shape1 ≠ NIL then

begin copy the remainder of shape1 to result end;
else

begin copy the remainder of shape2 to result end;

DifferenceDifferenceDifferenceDifferenceDifference
Only the first shape operand must be traversed to the end in the differ-
ence algorithm. We can get some performance improvement by avoiding
the tests and handling the cases where one span or segment is empty as
straightforward copies.

special case code for before the shapes overlap in y
if shape1 = NIL then

return [NIL];
if shape2 = NIL then

begin return [a copy of shape1]; end;
if shape1.y < shape2.y then
begin

copy the span from shape1 and append it to result
x1 ← shape1.x;
shape1 ← shape1.next;
end;

else if shape2.y < shape1.y then
begin x2 ← shape2.x; shape2 ← shape2.next; end;

special case code for before the shapes overlap in x
if x1 = NIL then

begin segment is NIL; end;
else if x2 = NIL then

begin copy x1; end;
else

do the normal inner loop processing

special case code for after the shapes overlap in x
if x1 ≠ NIL then

begin copy the remainder of x1; end;
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special case code for after the shapes overlap in y
if shape1 ≠ NIL then

begin copy the remainder of shape1 to result end;

Handy UtilitiesHandy UtilitiesHandy UtilitiesHandy UtilitiesHandy Utilities
This section presents several utility functions that make working with
shape descriptions easier. The first creates a shape from a description of
a rectangle.

procedure shape_box(x, y, width, height)
begin

result ← new[span];
result.y ← y;
result.next ← new[span];
result.next.y ← y + height;
result.next.next ← NIL.
result.x ← new[segment];
result.x.x = x;
result.x.next ← new[segment];
result.x.next.x ← x + width;
result.x.next.next ← NIL.
return [result];
end;

A useful variant of the shape_box routine, shap_tmp_box, creates the
shape in a static data area. This allows temporary shapes to be generated
without memory allocation overhead.

The next utility makes a copy of a shape description.

procedure shape_copy(shape)
begin

for each span in shape do
begin

add a span to the result with the y from the current span
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for each segment in the current span do
  add a new segment to the new span with the x from the current
  segment

end
return [result];
end;

The third utility translates a shape by a relative x, y offset.

procedure shape_translate(shape, x, y)
begin

for each span in shape do
begin

span.y ← span.y + y;
for each segment in the current span do

begin segment.x ← segment.x + x; end
end

return;
end;

The final utility deallocates the storage consumed by a shape description.

procedure shape_free(shape)
begin

while shape ≠ NIL do
begin

x ← shape.x;
while x ≠ NIL do
begin tmpx ← x; x ← x.next; free_memory(tmpx); end
tmpy ← shape; shape ← shape.next; free_memory(tmpy);
end

return;
end;

ApplicationsApplicationsApplicationsApplicationsApplications
Shape algebra is useful for computing and representing the visible area of
windows in window management systems. Let us assume that we have a
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hierarchical window system in which descendent windows are clipped to
their ancestors’ boundaries. The window data structure shown next
contains pointers to other windows in the window tree, the size and
position of the window, and the visible area description.

window: record[
parent: ↑ window; parent window
child: ↑ window; highest priority (frontmost) child)
n_sib: ↑ window; next lowest priority sibling
p_sib: ↑ window; next highest priority sibling
x: integer; x coordinate of upper left corner
y: integer; y coordinate of upper left corner
width: integer; width of window
height: integer; height of window
visible: ↑ span; shape that describes visible area
];

Figure 9 shows how the window pointers describe the relationship of a
window with other windows in the window tree.

The visible area for each window in the tree can be computed using the
following algorithm.

Figure 9. Window tree
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procedure compute_window_area( )
begin

root.visible ← shape_box(root.x, root.y, root.width, root.height);
compute _subwindow_area(root);
return
end

procedure compute_subwindow_area(parent)
begin

for each child in order from front to back do
begin

shape_free(child.visible);
child.visible = shape_intersect(parent.visible,
shape_tmp_box(child.x, child.y, child.width, child.height));
tmp = parent.visible;
parent.visible = shape_difference(parent.visible, child.visible);
shape_free(tmp);
compute_subwindow_area(child);
end

return
end

Complex graphical objects such as fat curves can be generated using
shape algebra. One technique for the generation of fat curves to drag a
pen along the curve trajectory. An example of this technique is shown in
Fig. 10. The line marks the actual trajectory; the dashed boxes show the
pen shape description.

Figure 10. Fat curve generation.
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a) Shape to draw  b) Clipping shape  c) Clipped drawn shape
Figure 11. Complex clipping.

The following algorithm can be used to generate fat curves. Note that a
special union routine that took pen offset parameters would be more
efficient than the repeated translation of the pen shape description.

curve_shape ← NIL
for each point in the curve do
begin

translated_pen ← shape_translate(pen, point.x, point.y);
curve_shape = shape_union(curve_shape, translated_pen);
shape_free(translated_shape);
end

Another application of shape algebra is complex clipping such as that
used by POSTSCRIPT™ and by window management systems. The algo-
rithms for the rasterization of many primitives, including polygons (Foley
et al., 1990) and fat curves, produce output that essentially is a y-sorted
list of x-sorted rectangles. These primitives can be clipped easily to
arbitrary shapes using intersection as shown in Fig. 11.

An efficient variation on the intersection routine for clipping is inter-
sect and fill. This variation invokes an actual drawing function each time
a new rectangle would be added to the result shape instead of building
the shape.

ImprovementsImprovementsImprovementsImprovementsImprovements
An examination of shape algebra applications reveals a pattern; tempo-
rary shapes are being created, used, and then destroyed. This gives
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memory management a real workout. The following type of operation is
typical:

shape1 ← shape1 op shape2;

The amount of overlap between shape operands often is minimal when
compared to the total size of the shapes in operations such as fat curve
drawing. The shape_union and shape_difference routines can be modi-
fied to substantially reduce memory management overhead in such appli-
cations.

procedure shape_operation(shape1, shape2, opcode)
begin

for any part of shape1 that comes before any part of shape2 do
detach spans from shape1 and attach them to the result

do the normal operation

for any part of shape1 that comes after any part of shape2 do
detach spans from shape1 and attach them to the result

free the spans in shape1 that overlapped shape2

This is effective only for the union and difference operations as the
non-overlapping parts of shapes are discarded for intersection operations.

Shape algebra operations can produce fragmented shapes in which
more than the minimal number of rectangles is used to represent the
shape. Such shapes can be compressed into minimal representations,
although this typically consumes more time than it saves. Compression is
a worthwhile optimization only in situations where a computed shape is
used for a long period of time without being changed.
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The output of every graphics program is an image. Images are typically
represented as a two-dimensional array of pixels, or some encoding of
that information. When the input and output of a program are both
images, we say the program is performing image processing. All the
gems of this part involve some form of image transformation or change of
representation. These include accurate pixel representations, scaling and
sharpening, rotation, mapping an image into a nearly equivalent image
with fewer colors or shades of gray, and compression.

This last topic, compression, is driven by a very common problem. A
picture may be worth a thousand words, but as many a graphics program-
mer will attest, it frequently takes many more than a thousand words to
store one. In fact, the storing of images is notorious for eating up vast
amounts of secondary storage, such as disk or tape. Fortunately, most
images contain a large amount of redundant information that can be
squeezed out for compact storage. Two of the gems in this part present
simple approaches for doing just that.
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Dale A. SchumacherSt Paul, Minnesota

One of the reasons for capturing an image digitally is to allow us to
manipulate it to better serve our needs. Often this will include trying to
improve the subjective appearance of an image through smoothing of
grainy features or sharpening of indistinct features. These goals some-
times can be accomplished through the use of a discrete convolution
operation (also called digital filtering).

Discrete convolution determines a new value for each pixel in an image
by computing some function of that pixel and its neighbors. Often this
function simply is a weighted sum of pixel values in a small neighborhood
of the source pixel. These weights can be represented by a small matrix
that sometimes is called a convolution kernel. The dimensions of the
matrix must be odd so there will be a central cell to represent the weight
of the original value of the pixel for which we are computing a new value.
The new value is computed by multiplying each pixel value in the
neighborhood of the central pixel by the corresponding weight in the
matrix, summing all the weighted values, and dividing by the sum of
the weights in the matrix. The following pseudo-code shows this compu-
tation for a 3 × 3 convolution kernel.

input: array [1..width] of array [1..height] of pixel;
output: array [1..width] of array [1..height] of pixel;
kernel: array [–1..1] of array [–1..1] of integer;
sum, ksum: integer;
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compute_output_value(x: integer, y: integer);
begin

sum ← 0;
ksum ← 0;
for j: integer ← –1, j ← j + 1, j <= 1 do

for i: integer ← –1, i ← i + 1, i <= 1 do
sum ← sum + (kernel[i][j]*input[x + i][y + j]);
ksum ← ksum + kernel[i][j];
endloop;

endloop;
output [x][y] = sum/ksum;
end;

One of the simplest kernels is one that gives all pixels in a 3 × 3
neighborhood equal weight, as shown in Fig. 2. This sometimes is called a
box filter, since the shape of the filtering function this kernel represents
is a one-unit-high box three units on a side. This kernel simply computes
the average pixel value over a 3 × 3 area and has a smoothing effect on
the image, since the central pixel is made more similar to its neighbors.

The kernel shown in Fig. 3 is similar to the box filter, but ignores
completely the original value of the center pixel. This produces a halo-like
effect around sharp edges in the image. This filter can be thought of as
computing the average of the neighborhood surrounding a pixel, a useful
concept to remember for later discussion.

Figure 4 sometimes is called a triangle or tent filter because it
defines a pyramid-shaped volume. This filter gives a little more weight to
the center pixel, although the overall weight given to the center versus
the surrounding average is still   

1
3  versus   

2
3 , Notice how the stronger

center-weights in this and the next filter reduce the smoothing effect.
Figure 5 shows a half-and-half balance between the pixel’s current

value and the value suggested by the average of the pixel’s neighbors. If
the diagonal neighbors were included, with weights of 1 in each corner,
then the weight of the central pixel would have to be 8 to achieve the
same half-and-half balance.

Another commonly used filter is an approximation of a gaussian distri-
bution, as shown in Fig. 6. Sampling of the real world (which we assume
is a continuous function) to create a discrete image often is described as a
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Figure  1. Original test
image

Figure 2. Figure 3. Figure 4.

Figure 5. Figure 6. Figure 7.
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sequence of spatially separated gaussian-shaped samples; thus, using a
gaussian weighted filter should accurately emulate such sampling.

Up to now, the filters shown have been horizontally and vertically
symmetrical. Sometimes, an asymmetric filter is desired, such as for
processing images taken from interlaced video. Since two fields of a video
frame are spaced 1/60th of a second apart in time, the image often
shows much more coherence in the horizontal direction, along the scan-
line, than in the vertical. The filter shown in Fig. 7 often works well on
captured video. Vertical lines are smoothed, but horizontal lines stay
distinct.

Smoothing reduces noise by spreading it out over a larger area,
making it more diffuse. This also has the same effect on any sharp
transitions in a source image. Some detail will be lost by smoothing, so
you must take care in how you apply this operation. Smoothing works
best on images where the smallest detail of interest is at least as large as
the filtering kernel, such as the 3 × 3 pixels in the examples given thus
far. Smoothing also can be used to improve the performance of some
compression and dithering algorithms, by making the changes in the
pixels’ values more gradual.

On the other hand, there are many times when we would rather perform
the inverse of smoothing to sharpen an image, attempting to bring out
details that are indistinct. Interestingly enough, it is possible to do exactly
that with a carefully chosen filtering kernel.

If we look at smoothing as a way of enhancing the similarity between
nearby pixels, sharpening should enhance the differences. If we take a
weighted average of the pixels surrounding a given pixel, excluding the
central pixel (as in Fig. 3), and take that average away from the value of
the central pixel, we enhance the difference between that pixel and its
neighborhood. The kernel in Fig. 9, sometimes called a discrete lapla-
cian filter, computes this difference. By weighting the neighboring pixels
negatively, we take their value away rather than add it to the central pixel.
This produces the desired edge-sharpening effect. Note that the weight of
the central pixel is 1 greater than the sum of the negative weights. If this
filter is applied to a large area of all the same value, the weight of the
neighbors cancels four times the center value, leaving one times the
center value remaining, and the pixel thus retains its original value.

If we want our sharpening filter to have a little larger radius, we need to
define a larger kernel. The kernel shown in Fig. 10 is the sharpening
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Figure 8. Smoothed test image.

       Figure 9. Figure 10. Figure 11.

Figure 12. Ideal test image.
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(a) Original image, (b) processed version.

Figure 13.

counterpart of the gaussian kernel in Fig. 6. The center weight again is 1
minus the sum of the neighbor’s weights.

Sometimes, the sharpening effect of the previous two kernels is a bit
too harsh, and may overemphasize some high-frequency noise in the
image. In that case, we want to moderate the sharpening somewhat. This
can be done by weighting the center pixel higher than simply required to
offset the negative weights, as shown in Fig. 11. This essentially gives a
little more weight to the current pixel value versus the value derived by
the edge-sharpening computation. None of these convolutions can exactly
recover the ideal image (Fig. 12) from the smoothed image (Fig. 8), but
they go a long way toward that goal.

Now, test images are fine and can show quite clearly how the various
convolutions operate on extreme conditions, but how well does this work
in practice? Figures 13 and 14 show some real-world examples of
edge-sharpening convolutions. In each case, the (a) figure is the original
image and the (b) figure is the processed version. Although it may seem
like it, the original images are not out of focus.

The examples of convolution kernels shown here all happen to be
3 × 3 matrices; however, this by no means is required. Larger matrices
take proportionally longer to convolve an image, and basically are exten-
sions of the principles shown here. The primary reason to use a larger
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      (a) Original image,     (b) processed version.

Figure 14.

matrix is to cause wider effects. With a 3 × 3 matrix, pixels two or more
units away will have no effect on the current pixel.

There are a large number of useful ways to apply discrete convolution
for image enhancement. I have touched on only a few of the basic
building blocks. Creative combinations of these techniques, particularly
conditional application of various filters, will greatly enrich your image
processing capacity. Books by Gonzalez and Wintz (1987) and Pratt
(1978) contain much more information about discrete image filtering and
many other topics. Also, both books go into far greater depth explaining
the mathematics behind these operations.

See  a lso  (166 )  Smooth ing  Enlarged  Monochrome  Images ,
John Olsen; (171)  Median Finding on  a 3 × 3 Grid, Alan
W. Paeth
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Digital halftoning is a process that allows us to trade spatial resolution
for grayscale resolution in an image. Typically, this is used to display an
image with a large number of grayscale values on a device that supports
significantly fewer distinct grayscale values. In many cases, such as
typical printing devices, the device can represent only the two levels,
black and white. On such devices, we give the illusion of differing
grayscale values by producing patterns with the values available. The
perceived grayscale value is proportional to the density of such patterns

Many halftoning techniques can be generalized to thresholding an
image with a pattern mask. This pattern mask is a matrix of threshold
values that define which of two adjacent output grayscale values will be
assigned to a pixel based on the position and value of that pixel. Since the
thresholding matrix nearly always is much smaller than the image itself,
the thresholding values are tiled over the image area. This is equivalent
to saying that the thresholding value used for a given pixel is taken from
the thresholding matrix by computing the modulo of the pixel location
with the size of the matrix. The following pseudo-code shows how a
thresholding matrix is applied to an image to create a black-and-white
halftone.

input: array [1..image_width] of array [1..image_height] of pixel;
output: array [1..image_width] of array [1..image_height] of pixel;
threshold: array [1..matrix_width] of array [1..matrix_height] of pixel;
t: pixel;
i, j: integer;
threshold_dither; {dither to BLACK and WHITE}
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begin
for y: integer ← 1, y ← y + 1, y < = image_height do

j ← ((y – 1) mod matrix_height) + 1;
for x: integer ← 1, x ← x + 1, x < = image_width do

i ← ((x – 1) mod matrix_width) + 1;
if input[x][y] > threshold[i][j] then

output[x][y] ← WHITE_PIXEL;
else

output[x][y] ← BLACK_PIXEL;
endloop;

endloop;
end;

For this discussion, we will use floating point values in the thresholding
matrix, and we will assume that image data is in the range [0.0, 1.0], with
black being 0.0 and white being 1.0. Many implementations will use the
integer range [0, 255] for processing efficiency.

Threshold DitheringThreshold DitheringThreshold DitheringThreshold DitheringThreshold Dithering
We now can define halftones by their thresholding matrix. Let us start
with a halftone so simple it usually is not even thought of as a halftone
at all—the single element matrix [.44]. This “halftoning matrix” simply will
apply the same threshold to all pixels in the image, resulting in an output
image like Fig. 2. This is equivalent to quantizing the image to two
levels, assigning each pixel to the nearest of the two possible output
values.

Now let us take a slightly more complex matrix, as shown in Fig. 3b.
This is called a 2 × 2 ordered dither. This matrix results in five distinct
grayscale patterns, thus five apparent output grayscale levels. As long as
all elements of a halftone matrix are different, the number of apparent
grayscale levels created is (N ∗ M) + 1, where N and M define the size
of the matrix.

A larger version of the ordered dither matrix is shown in Fig. 4b. Since
this is a 4 × 4 matrix, it creates 17 output levels. The intent of the
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Figure 1.  Original image. Figure 2.  Single threshold.

ordered dither is to fill the matrix evenly, reducing the amount of aliasing
introduced by patterns in the halftone matrix.  Arbitrary sized ordered
dithering matrices can be created through a simple recursive algorithm
(Hawley, 1990). The actual threshold values are evenly spaced intervals
between 0.0 and 1.0. The matrix in Fig. 4c represents the fill order of
the matrix in Fig. 4b. This is the order in which pixels are set within the

.2 .6

.8 .4
(a) (b)

Figure 3.  2 × 2 ordered dither.
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   (a)

.06 .53 .18 .65 1 9 3 11

.76 .30 .88 .41 13 5 15 7

.24 .71 .12 .59 4 12 2 10

.94 .47 .82 .35 16 8 14 6

(b) (c)

Figure 4.  4 × 4 ordered dither.

matrix as the grayscale value of the corresponding source pixel increases.
It often is useful, for analysis, to separate the fill order from the actual
threshold values, although when the algorithm is implemented, we most
often want to combine the two to save processing time.

As seen from the preceding, the patterns created by a halftone matrix
can be defined simply by a fill order independent of the threshold values.
Another halftone matrix, which shows the effects of strong patterns in the
halftone matrix on the resultant image, is given by the fill-order matrix in
Fig. 5b. This matrix creates strong “horizontal lines” in the output image.

On the other end of the spectrum, the matrix in Fig. 6b takes a different
approach to minimizing the aliasing effect. This is a magic-square
dither, since the fill-order values form a magic square. Since a magic
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1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

(a) (b)

Figure 5.  4 × 4 horizontal lines.

1 7 10 16
12 14 3 5

8 2 15 9
13 11 6 4

(a)

Figure 6.  4 × 4 magic square.
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(a)

30 19 13 20 31 35
18 8 5 9 21 29
12 4 1 2 10 28
17 7 3 6 14 27
26 16 11 15 22 32
34 25 24 23 33 36

(a) (b)

Figure 7.  6 × 6 90° halftone.

15 9 17 32 22 30
7 1 3 19 35 23

13 5 11 27 26 33
31 21 29 16 10 18
20 36 24 8 2 4
28 25 34 14 6 12

(a) (b)

Figure 8.  6 × 6 45° halftone.
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square sums to equal values along all rows, columns, and diagonals, this
fill order should be ideal in filling the pixels in such a way that the number
of dots along any row, column, or diagonal will be approximately equal.

On many output devices, smearing, variance in dot size, blurring, and
other similar effects make the use of patterns like the preceding impracti-
cal, since those patterns rely on being able to image single pixels
accurately and consistently. On devices where such precision is not
practical, a clustered-dot dither may be more appropriate. Clustered-dot
dithers create patterns very similar to those created by the optical
halftoning process used to print photographs in books, magazines, and
newspapers.

Figures 7b and 8b give two examples of such a halftone matrix. In
photographic halftoning, these patterns are created by a screen consisting
of small transparent dots on an opaque field. The spacing of these dots,
described in lines (of dots) per inch, and the angle along which these lines
run defines by the parameters of the screen. The matrix in Fig. 7b acts
like a 90-degree screen, with the lines per inch proportional to the pixels
per inch in the source image. The matrix in Fig. 8b acts like the more
commonly used 45-degree screen.

Contrast Adjustment during HalftoningContrast Adjustment during HalftoningContrast Adjustment during HalftoningContrast Adjustment during HalftoningContrast Adjustment during Halftoning
The perceived brightness of various halftone patterns differs, even at the
same dot density. Also, all halftoning seems to reduce contrast. Due to
these effects, it often is desirable to apply a contrast enhancement
transform to an image while halftoning. Going back to the separation
between threshold levels and fill order, we find the means to accomplish
the contrast adjustment essentially “for free” while halftoning. The key is
to incorporate the transform into the threshold levels. Figure 9b shows
the normal case, a linear transform, with four thresholding levels, as
would be required by a 2 × 2 matrix. Figure 9d shows the same four
threshold levels as derived from a contrast-enhancement transform curve.
Note that the threshold levels are nonlinearly spaced to make the trans-
formed output levels linear.
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(a) (b)

(c) (d)

Figure 9.  (a) 2 × 2 linear dither, (b) linear transform (c) 2 × 2 contrast-enhanced dither,
(d) contrast enhancement transform.

Halftoning to Multiple Output LevelsHalftoning to Multiple Output LevelsHalftoning to Multiple Output LevelsHalftoning to Multiple Output LevelsHalftoning to Multiple Output Levels
Thus far, we have assumed that the output of our halftoning process was
strictly black or white, which is true for a large number of output devices.
However, there is considerable usefulness in halftoning to multiple output
levels. Extending the various threshold methods to multiple output levels
consists of first picking the nearest pair of output values for a given input,
then using the threshold matrix to determine which of the two output

(a)

(c)
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values to use, considering the range [lower_value, higher_value] to map to
the normalized [0.0, 1.0] in the threshold matrix. The following pseudo-
code gives the general algorithm for applying threshold dithering to
multiple output levels.

input: array [1..image_width] of array [1..image_height] of pixel;
output: array [1..image_width] of array [1..image_height] of pixel;
threshold: array [1..matrix_width] of array [1..matrix_height] of pixel;
range: pixel; distance between output levels
base: pixel; lower end of target range
i, j; integer;

threshold_dither(n: integer); dither to n output levels
begin

n ← n – 1 convert number of levels to number
of ranges

range ← (1.0/n);
for y: integer ← 1, y ← y + 1, y < = image_height do

j ← ((y – 1) mod matrix_height) + 1;
for x: integer ← 1, x ← x + 1, x < = image_width do

i ← ((x – 1) mod matrix_width) + 1;
base ← floor(input[x][y]/range) ∗ range;
if (input[x][y] – base) > (threshold[i][j] ∗ range) then

output[x][y] ← base + range;
else

output[x][y] ← base;
endloop;

endloop;
end;

Error Diffusion DitheringError Diffusion DitheringError Diffusion DitheringError Diffusion DitheringError Diffusion Dithering
An entirely different approach to halftoning is a group of algorithms
known as error diffusion methods. Since dithering must approximate a
desired output level by creating patterns with the available output levels,
there is a certain quantifiable error in the approximation at a given pixel.
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Error diffusion carries that error over to bias the values of nearby pixels
to balance out the error. This spreads the error out over a small area,
creating a diffusion effect. The spread of the error is controlled by a
weighting matrix such that a fraction of the error is applied to some
number of nearby pixels. Since the image is processed in the normal
left-to-right and top-to-bottom order, and pixel values are not changed
once assigned, the weighting matrix can distribute the error only to
unassigned output locations. The following pseudo-code illustrates the
general algorithm. The special-case processing required to handle edges
properly is omitted here for simplicity.

input: array [1..image_width] of array [1..image_height] of pixel;
output: array [1..image_width] of array [1..image_height] of pixel;
weight: array [–filter_dx.. + filter_dx] of

array [–filter_dy.. + filter_dy] of integer;
sum: integer; sum of values in weighting filter
value: pixel; value chosen for a pixel
error: pixel; quantization error for a pixel
range: pixel; distance between output levels
base: pixel; lower end of target range

diffusion_dither(n: integer); dither to n output levels
begin

n ← n – 1 convert number of levels to number
of ranges

range ← (1.0/n);
sum ← 0;
for j: integer ← –filter_dy, j ← j + 1, j < = +filter_dy do

for i: integer ← –filter_dx, i ← i + 1, i < = +filter_dx do
sum ← sum + weight[i][j];
endloop;

endloop;
for y: integer ← 1, y ← y + 1, y < = image_height do

for x: integer ← 1, x ← x + 1, x < = image_width do
dither_pixel(x, y);
endloop;

endloop;
end;
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dither_pixel (x: integer, y: integer); determine pixel values, spread error
begin

if (input[x][y] < 0.0) then
value ← 0.0;

else if (input[x][y] > 1.0) then
value ← 1.0;

else begin
base ← floor(input[x][y]/range) ∗ range;
if (input[x][y] – base) > (0.5 ∗ range) then

value ← base + range;
else

value ← base;
end;

output[x][y] ← value;
error ← input[x][y] – value;
for j: integer ← –filter_dy, j ← j + 1, j < = +filter_dy do

for i: integer ← –filter_dx, i ← i + 1, i < = +filter_dx do
if weight[i][j] ≠ 0 then

input[x + i][y + j] ← input[x + i][y + j]
   + (error ∗ weight[i][j]/sum);

endloop;
endloop;

end;

The classic weighting matrix is shown in Fig. 10b (Floyd and Steinberg,
1975). Other useful filters are shown in Figs. 11b (Jarvis et al. 1976) and
12b (Stucki, 1981).

Ulichney (1987) presents an excellent analysis of the halftoning pro-
cess and suggests several improvements to the preceding algorithm.
First, some undesirable aliasing effects are produced by the raster scan-
ning pattern inherent in this dithering process. One way to reduce this
effect is to traverse the image with a serpentine raster pattern. Start
scanning left to right on the first scanline, as usual, then reverse the
scanning direction and traverse the next scanline right to left. Continue
alternating scanning directions on each scanline. Remember that the
weighting matrix also will need to be left/right-reversed. Figures 13 and
14 contrast normal raster and serpentine raster scanning methods.
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0 0 0
0 0 7
3 5 1

(a) (b)

Figure 10. Floyd-Steinberg filter.

0 0 0 0 0
0 0 0 0 0
0 0 0 7 5
3 5 7 5 3
1 3 5 3 1

(a) (b)

Figure 11.  Jarvis, Judice, and Ninke filter.



II.2 A COMPARISON OF DIGITAL HALFTONING TECHNIQUES

GRAPHICS GEMS II Edited by JAMES ARVO 69

0 0 0 0 0
0 0 0 0 0
0 0 0 8 4
2 4 8 4 2
1 2 4 2 1

(a) (b)

Figure 12.  Stucki filter.

A useful suggestion from Ulichney is to introduce some random noise
in the dithering process. This noise, which should have uniform probabil-
ity density (white noise), can be added in any of several stages of the
dithering process, and the amount of noise can be adjusted for best effect.
First, the threshold value (a constant 0.5 in the pseudo-code example)
can be randomly adjusted up or down. Second, the position of the
diffusion weight can be chosen randomly using the filter weights to bias

Figure 13.  Normal raster.   Figure 14.  Serpentine raster.
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Figure 15.  Blue noise added.

the selection of a position for a single error diffusion weight. Finally, the
weights themselves can be altered randomly. If noise is added to the
weight values, it must be accounted for either by adjusting the filter sum,
to ensure unity gain, or by adjusting two weights, with the same initial
values, in equal and opposite directions. Variation of the threshold value
combined with variation in weights was used to produce Fig. 15.

One final improvement to the dithering process is to account for its
inherent dispersion. Since we are trading spatial resolution for grayscale
resolution, it is natural that we will lose some of the high spatial fre-

Figure 16.  Edge-enhanced.
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quency components of the source image. It only makes sense that we
could compensate somewhat by emphasizing such components before
halftoning. Figure 16 was created using the same method as in Fig. 15,
except that the source image had an edge-sharpening convolution applied
before halftoning. This sort of processing is discussed further in the
preceding gem in this book.

ConclusionConclusionConclusionConclusionConclusion
Proper use of digital halftoning methods can result in excellent reproduc-
tion of images with much higher grayscale resolution than that available
on a particular display device. This gem is meant to give a practical
introduction and comparative guide to some of the halftoning methods in
use today. Ulichney’s book (1987) is an excellent next step for those
interested in further comparative analysis and discussion of digital
halftoning techniques.

See also II.1 Image Smoothing and Sharpening by Discrete
Convolution, Dale A. Schumacher; II.3 Color Dithering, Spencer
W. Thomas, Rodney G. Bogart; III.1 Efficient Inverse Colormap
Computation, Spencer W. Thomas; III.2 Efficient Statistic Com-
putations for Optimal Color Quantization, Xiaolin Wu; (176)
Ordered Dithering, Stephen Hawley; (196) Useful 1-to-1
Pixel Transforms, Dale A. Schumacher.



II.3 COLOR DITHERING

GRAPHICS GEMS II Edited by JAMES ARVO 72

II.3II.3II.3II.3II.3
CCCCCOLOR DITHERINGOLOR DITHERINGOLOR DITHERINGOLOR DITHERINGOLOR DITHERING

Spencer W. Thomas, Rod G. BogartUniversity of MichiganAnn Arbor, Michigan
IntroductionIntroductionIntroductionIntroductionIntroduction
Although several sources discuss dithering to a binary image (Ulichney,
1988; Hawley, 1990), there apparently is no widely available literature on
dithering to a multilevel color image. This gem discusses two color
dithering techniques, a simple ordered dither and an error-propagation
dither based on the Floyd-Steinberg method (Floyd and Steinberg, 1975).

ConventionsConventionsConventionsConventionsConventions
Throughout this discussion, we will assume that color values are in the
range 0.0–1.0, unless it is stated explicitly otherwise. Mathematical
expressions operating on colors will be written with scalar variables;
however, you can assume that the operation should be applied separately
and simultaneously to the red, green, and blue components of the color.

Gamma CorrectionGamma CorrectionGamma CorrectionGamma CorrectionGamma Correction
To get the proper visual effect, the dithering process assumes that the
input and output values are linear in the image brightness; i.e., a number
twice as large as another produces a pixel twice as bright. This is almost
never true for display devices, and may not be true of input files. Thus,
both the input and output values must be gamma-corrected
(Schumacher, 1990; Hall, 1990; Foley et al., 1990) for optimal visual
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performance. Input gamma correction maps the input values to a linear
scale. Output gamma correction affects the values that are loaded into the
output color table, but has no effect on the dithering process or the
resulting pixel values.

If the input image has a gamma of γi, then each input pixel value x (in
the range 0–1) must be mapped by the function f(x) = x1/γi. Similarly,
to display an image on a display with a gamma of γd, each value c must
be mapped to the actual output value by g(c) = c1/γd. However, for
error-propagation dithering, the uncompensated output value must be
used to compute the error. The discussions that follow will assume that
any gamma correction necessary has been done, and therefore, will
operate solely in the linear domain.

Ordered DitheringOrdered DitheringOrdered DitheringOrdered DitheringOrdered Dithering
The simplest form of dithering is ordered dithering. In the bilevel case,
a function d(x, y) is used to determine whether the output value v is a 0
or a 1 by comparing it with the pixel value c:

    
v =  

1 c >  d(x,  y),
0 c ≤  d(x,  y).





Usually, the function d(x, y) is implemented using an m × n matrix:

d(x, y) = M[y mod m][x mod n].

Dithering to a multilevel display is only slightly more complex. If the
output will have l + 1 distinct levels (i.e., the output range is 0..l), then
the dithering function is

    
v =  floor(l ⋅  c) +  

1, frac(l ⋅  c) >  d(x,  y),
0, frac(l ⋅  c) ≤  d(x,  y).





If c is an integer in the range 0..cmax, then, letting k = cmax/l,
the floor and frac functions can be replaced by floor(c/k) and
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c – floor(k ⋅ floor(c/k)). The function d(x, y) should produce an integer
in the range 0..(k – 1).1

What should d(x, y) look like? It will be implemented as a matrix, as
suggested previously. Hawley (1990) suggests one way to build such a
matrix.

The code included here uses a slightly different method. It always
computes a 16 × 16 matrix. With 256 entries in the matrix, it would be
possible to get 257 output levels, certainly sufficient for any (8-bit) input
image, even if the output image is bilevel. The matrix is a magic square
constructed as the outer product of a 4 × 4 magic square with itself. The
entries in the square are scaled into the range 0..k (cmax = 255 in the C
Implementation).

The C code (Appendix 2) assumes that the input values are 8-bit
unsigned integers. For efficiency, to avoid repeatedly using the divide
and mod operators, arrays of 256 entries are built, such that divN[c] =
floor(c/k) and modN[c] = c – floor(k ⋅  divN[c]).  We then can write
the dithering function as a macro:

macro dither(x, y, c)
(divN[c] + (if modN[c] > M[y bit-and 15][x bit-and 15]

then 1
else 0))

The only remaining task is deciding what the output color set should be.
It is easiest to dither with the same number of levels of each primary
color, and the resulting image will look better than if differing numbers of
levels were used for the different primaries.2 If 256 entries are available
in the color table of the output device, setting l = 5 (k = 51) produces

1The astute reader will note that, if d(x, y) = (k – 1), 1 never will be added at the
pixel (x, y). This is correct. Suppose k = 128. Then if c = 127, the output value will be
1, except when d(x, y) = 127. If d(x, y) is uniformly distributed, 127 out of 128 pixels
will be 1, and the 128th will be 0, giving an average output value of 127/128, exactly
what is desired. To get all the pixels to have a value of 1, c should be 128.

2I have tried the vaunted “3-3-2” allocation of bits (3 to red, 3 to green, and 2 to blue).
The assumption behind this is that the eye is less sensitive to blue, so not as many levels
of blue are needed. However, the eye is quite sensitive to color variation in something that
should be gray, and that is what you get with this setup. There are eight levels of red and
green {0,1/7,2/7,3/7,4/7,5/7,6/7,1}, and four levels of blue {0,1/3,2/3,1}. These
sets coincide only at white and black.



II.3 COLOR DITHERING

GRAPHICS GEMS II Edited by JAMES ARVO 75

six output levels per primary and uses 216 entries in the color table.3 The
40 left over can be used for other purposes (sometimes a definite
advantage). If we can assign the value (r ⋅ k, g ⋅ k, b ⋅ k) (with r, g, b in
the range 0..5) to the cell 36 ⋅ r + 6 ⋅ g + b, the mapping from dithered
color to color table index is trivial. If this is not possible (for example, if
the color table belongs to an X server), then an intermediate mapping
table, T[0..5][0..5][0..5], must be built, such that T[r][g][b] contains the
appropriate color table index.

A sample image dithered with ordered dither is shown in Fig. 1 (see
color insert).

Error-Propagation DitheringError-Propagation DitheringError-Propagation DitheringError-Propagation DitheringError-Propagation Dithering
The main drawback with ordered dither can be seen from the aforemen-
tioned example. The dither pattern is quite evident in the result. Error-
propagation dithering techniques reduce the apparent patterning by
making the dot placement appear more random. The basic idea is this: At
each pixel, choose the best output color for the given input color. Then
compute the error (difference) between the chosen output color and the
input color. Spread the error out nearby pixels that have not yet been
output. A number schemes exist for distributing the error. The Floyd-
Steinberg method gives 7/16 to the next pixel to the right (assuming
scanning from left to right along a scanline), 3/16 to the previous pixel
on the next scanline, 5/16 to the adjacent pixel on the next scanline, and
1/16 to the next pixel on the next scanline. (See Fig. 2.) Note that the
error propagation can result in color values that are out of their allowed
range, so the code must be careful to clamp the values before trying to
compute an output color.

An advantage of error-propagation dither over ordered dither is that it
can use an arbitrary color table. The problem of choosing an output
color, given an arbitrary RGB color, is solved easily by using an inverse
colormap, as described in the first gem of Part III in this book, “Efficient
Computation of Inverse Colormaps.” Note that the inverse colormap
should be computed before any output gamma compensation is applied
to the color table, and the error values also should be computed from the
uncompensated table. The best results will be obtained if the input colors

3The C Implementation in Appendix 2 allows any value of l ≥ 1.



II.3 COLOR DITHERING

GRAPHICS GEMS II Edited by JAMES ARVO 76

Figure 2. Floyd-Steinberg error propagation. Direction of processing is left to
right, bottom to top.

lie within the convex hull of the color table. Otherwise, some error could
be lost when out-of-range values are clamped.

Type color is equivalent to array[1..3] of real
function fsdither(thisrow, nextrow:array[0..511] of color;

x:integer):integer;
begin

Current entry may have accumulated error; clamp it.
for c ← 1 to 3 do

thisrow[x][c] ← clamp(thisrow[x][c], 0, 1);
Find closest representative color, get its index.
color_index ← closest_color(thisrow[i]);
Propagate the error.
color_map is a global array of the output colors.
for c ← 1 to 3 do
begin

err ← thisrow[index][c] – color_map[color_index][c];
if x < 511 then
begin

thisrow[x + 1][c] ← thisrow[x + 1][c] + 7*err/16;
nextrow[x + 1][c] ← nextrow[x + 1][c] + err/16;
end;

nextrow[x][c] ← nextrow[x][c] + 5*err/16;
if x > 0 then

nextrow[x – 1][c] ← nextrow[x – 1][c] + 3*err/16;
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end;
return color_index;
end;

A complete C Implementation of this algorithm including optional edge
enhancement, is included in the freely distributed Utah Raster Toolkit.
(Contact one of the authors of this gem for details.)

Figure 3 (see color insert) shows an example of the application of this
dither algorithm.

See also II.2 A Comparison of Digital Halftoning Techniques,
Dale A. Schumacher; III.1 Efficient Inverse Colormap Computa-
tion, Spencer W. Thomas; III.2 Efficient Statistic Computations
for Optimal Color Quantization, Xiaolin Wu; (176) Ordered
Dithering, Stephen Hawley

Figure 1.  A multilevel image dithered with ordered
dither.

Figure 3.  A sample image dithered to the ordered
dither colormap, using multilevel error-propagation
dither
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Dale A. SchumacherSt Paul, Minnesota

There are many ways to rescale an image to the desired size. Some are
considerably more accurate than others, and the more accurate methods
generally are more computationally intensive. The method I will present
is not particularly accurate, but it can be accomplished quite quickly and
produces generally acceptable results. Better, but slower, methods exist
involving filtering and are significantly more complicated.

Pixel remapping operations like stretching, rotation, skewing, and
rescaling are often thought of, and thus often implemented, as mappings
from positions in the source image to positions in the destination image.
This approach, however, often leaves “holes” in the destination due to
rounding error in the computation of the destination position or the fact
that there is not a one-to-one mapping between source pixels and destina-
tion pixels.

Taking a different approach to the problem can eliminate these errors.
Think of the remapping as defining which source pixel a particular
destination pixel is taken from. This maps positions in the destination
from positions in the source. The processing loop then is over the
destination pixels rather than the source pixels, and thus, each pixel in
the destination is assigned a value, even if more than one destination
pixel maps from the same source pixel. This method may skip some of
the source pixels, not using their value at all, but in the previous method,
that would correspond to more than one source pixel mapping to the
same destination, which poses the problem of how to choose which
source pixels set the value of the destination. This method avoids that
conflict by choosing only one source pixel, always the most correct for a
given mapping.
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Applying his me hod o image rescaling, we loop over he des ina ion
pixels, de ermining a  each loca ion which source pixel lends i s value o
that destination pixel. This allows anamorphic scaling, since the horizon-
tal and vertical mappings need not be the same. This allows both expan-
sion of an image, where multiple destination pixels are mapped from the
same source pixel, and reduction of an image, where some adjacent
destination pixels are mapped from nonadjacent source pixels. These
expansion and reduction methods often are referred to as pixel replica-
tion and pixel sub-sampling, respectively.

In the following pseudo-code, the scaling is conveniently defined in
terms of the desired destination image size.

src_x_size: integer; source image width
src_y_size: integer; source image height
source: array [0..src_x_size-1] of array [0..src_y_size-1] of pixel;
dst_x_size: integer; destination image width
dst_y_size: integer; destination image height
destination: array [0..dst_x_size-1] of array [0..dst_y_size-1] of pixel;
sx, sy, dx, dy: integer; source and destination

coordinates

begin
dy ← 0;
while dy < dst_y_size do

sy ← ((dy*src_y_size)/dst_y_size);
dx ← 0;
while dx < dst_x_size do

sx ← ((dx*src_x_size)/dst_x_size);
destination[dx][dy] ← source[sx][sy];
dx ← dx + 1;
endloop:

dy ← dy + 1;
endloop;

end;
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Greg WardLawrence Berkeley LaboratoryBerkeley, California

Many programs use floating point color representations internally, only to
convert to 24-bit integer values when writing the results to a file. This
saves disk space, but at the expense of accuracy and the ability to
readjust the exposure or perform other operations that require wide
dynamic range. Furthermore, if a linear mapping is used, 24 bits is
inadequate for high-quality output and causes visible quantization con-
tours in the darker regions of a print or slide.

An improved linear mapping from real color space to bytes uses
random rounding as a form of predithering:

Convert a primary using random rounding:

if rval > = 1.0
then ival ← 255;
else ival ← 255*rval + random( );

This method was suggested by Rob Cook several years ago, although it
may have been floating around for some time.

It is better still to store gamma-corrected bytes rather than linear ones,
since this will give the pixels greater dynamic range without sacrificing
accuracy. Here is a simple table look-up routine for accomplishing this
transformation:

Initialize of gamma table:
gamtab: array [0..1023] of byte;
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for i: integer ← 0 to 1023, i ← i + 1 do
gamtab[i] ← 256.0*((i + .5)/1024) ˆ (1.0/gamma);

To convert each pixel primary:
if rval > = 1.0

then ival ← 255;
else ival ← gamtab[floor(1024.*rval)];

It is important to use a large enough table that accuracy will not be
compromised for smaller values. An alternative method is to reverse the
look-up and use a 256-entry table of floating point values with a binary
search routine to find the closest value, but this approach takes consider-
ably longer and probably is not worth the small improvement in accuracy.

The ultimate solution to the problem of accurate pixel storage is to use
a floating point pixel format, which is the real subject of this gem. The
simplest approach is to store a short float for each of the three primaries
at each pixel. On most machines, this translates to 96 unportable bits
per pixel. Many people have used this format, but nobody is bragging
about it.

Fortunately, there is a better floating point format that only requires 32
bits per pixel and is completely portable between machine architectures.
The idea is simple: Use an 8-bit mantissa for each primary and follow it
with a single 8-bit exponent. In most floating point formats, the mantissa
is normalized to lie between .5 and 1. Since this format uses the same
exponent for three mantissas, only the largest value is guaranteed this
normalization, and the other two may be less than .5.

For example, the color

[.3 .02 .1]

would be converted to

[.6 .04 .2]*2–l,

or, in 32-bit floating point format,

[153 10 51 127].

Notice that the exponent value –1 translated to 127. It is necessary to
add an offset to the unsigned value to get a signed exponent. In this case,
we have chosen to add 128, giving our colors a more or less even range
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between values greater than 1 and less than 1. Selecting a smaller offset
would favor larger values, and a larger offset would favor smaller values,
but since 2127 is about 1038, it hardly seems worth the worry.

It appears that this format favors the largest primary value at the
expense of accuracy in the other two primaries. This is true, but it also is
true that the largest value dominates the displayed pixel color so that the
other primaries become less noticeable. The 32-bit real pixel format
presented here preserves the bits that are most significant, which is the
general goal of any floating point format.

Conversion to and from this format relies heavily on the math routines
frexp  and ldexp.  Frexp  takes a real value and returns a mantissa
between .5 and 1 and an integer exponent. Ldexp performs the reverse
operation, multiplying a real value by two to the power of an integer
exponent.1 Thus, converting from the internal floating point color repre-
sentation involves picking the largest primary value, then calling frexp.

To convert from machine float to 32-bit real pixel:

rf, gf, bf: real; machine red, green and blue values
rm, gm, bm, ex: integer; red, green, and blue mantissas + exponent

rf ← max(rf,max(gf,bf));

if v < 1e-32
then begin

rm ← 0;
gm ← 0;
bm ← 0;
ex ← 0;
end;

else begin
v ← frexp(v, e)*256./v; e is returned exponent
rm ← rf*v;
gm ← gf*v;
bm ← bf*v;
ex ← e + 128;
end;

1Ideally, these functions would be implemented as bit operations specific to the floating
point architecture, but they are written more typically as portable C routines.
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Note that there is a special case for zero. This case also is tested in the
conversion back to machine floating point with ldexp, as follows:

To convert from 32-bit real pixel to machine float:

if ex = 0
then begin

rf ← 0.;
gf ← 0.;
bf ← 0.;
end;

else begin
v ← ldexp(1./256., ex-128);
rf ← (rm + .5)*v;
gf ← (gm + .5)*v;
bf ← (bm + .5)*v;
end;

Besides the ability to perform more general image processing without
losing accuracy, real pixels are great for radiosity and other lighting
simulation programs, since the results can be evaluated numerically well
outside the dynamic range of the display. For example, an office space
with a window may have radiosities that vary over a range of 1000 : 1. It
is impossible to store such values using an integer pixel format, but when
the pixels are real, the image can be analyzed in many ways. The
exposure can be raised and lowered dynamically, the brightnesses can be
compressed, contour lines can be drawn, and values can be displayed as
numbers over their positions on the screen. These capabilities can be of
immense help to lighting designers and architects trying to evaluate a
simulated scene for visual comfort, and they are impossible with any of
the standard image storage formats.

In the end, one extra byte per pixel is not that much to pay for the
benefits associated with true floating point color. Also, conventional
compression techniques such as run-length encoding and Lempel-Ziv
work very well with this 4-byte format—much better than machine float
values, which tend to look like random bits. Thus, the image files take up
only a little more space than their 24-bit counterparts.
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Sue-Ken YapCSIRO DITCanberra, Australia

IntroductionIntroductionIntroductionIntroductionIntroduction
This is a routine that rotates an 8 × 8 depth 1-bitmap clockwise by table
look-up. Larger bitmaps can be rotated by division down to 8 × 8 tiles.
Separate strides (address difference between successive rows in bitmaps)
can be specified for source and destination so that the result can be
written directly into the destination bitmap.

PrinciplePrinciplePrinciplePrinciplePrinciple
The source tile is viewed as eight rows of bytes. Each byte maps onto
certain bits in the destination tile viewed as a 64-bit longword whose bits
run row-wise. Eight table look-up and bit-or operations construct this
longword. Finally, the longword is unpacked into 8 bytes at the destina-
tion.

The actual algorithm is modified slightly to work with nybbles and to
produce two 32-bit words instead of one 64-bit longword. This reduces
the size of each of the eight look-up tables from 256 × 64 bits to 16 × 32
bits.

VariationsVariationsVariationsVariationsVariations
Either transposition or rotation is possible, since the rotator allows an
arbitrary swizzle of its input bits. For example, a different look-up table
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can rotate counterclockwise. Bitmap complementation can be done si-
multaneously by complementing the tables, changing the initial condition
of the longword to all ones, and using bit-and operations in the extrac-
tion. This follows from de Morgan’s theorem. This is important as the
0 = black, 1 = white conventions of digital photometry often are violated
by xerographic printers, which regard 1 ⇔ mark ⇔ black.

AcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgments
The idea for this gem was suggested by Alan Paeth (University of
Waterloo) and implemented by the author while at the University of
Rochester. The rotator was used first in a TeX DVI to raster converter
described in TUGboat 11(2).

See also II.7 Rotation of Run-Length Encoded Image Data, Jeff
Holt, (179) A Fast Algorithm for General Raster Rotation,
Alan W. Paeth
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Jeff HoltIntergraph CorporationHuntsville, Alabama

A lot of applications require rotating raster images by 90 degrees. For
example, if an image has been scanned in column major order, most
software requires it to be in row major order to display—i.e., the image
must be transposed. This corresponds to a 90-degree rotation, followed
by inverting the order in which the lines are stored.

In general, 90-degree rotation and/or column-major-to-row major
transposition is easy if the data is in expanded format—i.e., unencoded. If
the image is in run-length encoded format, the image needs to be
expanded completely in memory and then reconverted to run-length
format. If the expanded image is larger than available memory, perfor-
mance will be terrible, even on virtual memory systems, because there is
no address coherency when reading out the image in rotated order.

This gem describes a simple algorithm to rotate a run-length encoded
image directly. It has good performance—it has been found to be as good
as or better than algorithms that expand the data before rotating, and
requires much less memory. The version given rotates 16-bit data. At the
end of this gem, variations to the algorithm are given for other data types,
as well as some notes on performance enhancements.

The algorithm operates as follows. A structure called the edge struc-
ture is allocated for each line in the output (rotated) image. The edge
structure is used to accumulate run-lengths for the output image. It
contains:

acc_value—the pixel value being accumulated,
acc_rl—the current run-length of the value being accumulated (actu-
ally one less than the current run-length),
information to manage a linked list of buffers,
the number of run-lengths generated for the line.
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The first line of the input image is used to prime the set of edge
structures by setting the acc_value to the correct value for the first pixel
of that line, and to initialize acc_rl.

Then, for each line of raster data in the input image, pixels are
generated sequentially. These correspond to pixels in sequential lines of
the output image. The generated pixel is compared with the acc_value in
the edge structure for that line in the output image—the value of the
run-length being accumulated for that line. If they are the same, the
run-length value is incremented. If they are different, the value-run-length
pair is added to the list of value-run-lengths and acc_value set to the
current pixel, and acc_rl is initialized.

Variations on the AlgorithmVariations on the AlgorithmVariations on the AlgorithmVariations on the AlgorithmVariations on the Algorithm
The C code (Appendix 2) has a slight modification to the preceding
algorithm. Instead of initializing the current_run to 1, it is initialized to
zero, and always is incremented rather than being incremented only if the
input and current color are the same. This will remove one branch
instruction from the inner loop.

The main performance enhancements that can be made revolve around
increasing cache performance. Instead of storing the current value and
run being accumulated in the edge structure, they can be stored in a
separate array. Then the only section of the memory usually being
accessed is this array of num_output_lines * 4 bytes (apart from the
input data, of course). The larger array of edge structures and the list of
value-runs of the output image are accessed only when a value changes
in a line of the output image. This means the cache is less likely to thrash.

Another performance gain from this change depends on the structure
of the cache on some machines. When a cache hit occurs, a certain
amount of data is read out—a cache line of data. For example, in the
clipper chip, 16 bytes are read into a cache line buffer. A subsequent
access to the data in the line gives even faster access than a cache hit.
This means that while we are processing a single run-length, and hence
do not need to go to memory except for the preceding array—and if this
array is in cache, only one in four accesses even will require a cache read
—the rest will be extremely efficient line hits.

This idea can be extended for rotating binary data, if the output image
has less than 32K pixels per line.
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Instead of storing value-run pairs for each output image line, store a
single 16-bit integer where the bottom 15 bits represent the run-length,
and the MS bit represents the color being accumulated—i.e., 0 or 1. As
cur_value, use 0 or –1.

Then to test, do an XOR operation between acc_run and cur_value—
if the result is negative, then the pixel has changed. Of course, you must
mask off the top bit before storing it in the run length list, which just
consists of an array of run-lenghts, with an implied toggle between runs.

This method of rotation obviously can be generalized for any size data
item. For example, for 8-bit RGB data, use a longword to store the RGB
values so the compare can be done by a single instruction. Larger data
types may require multiple compares.

See also II.6 A Fast 90-Degree Bitmap Rotator, Sue-Ken Yap;
II.8 Adaptive Run-Length Encoding, Andrew S. Glassner; (179)
A Fast Algorithm for General Raster Rotation, Alan W.
Paeth
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Andrew S. GlassnerXerox PARCPalo Alto, California

Many graphics programmers find that much of their disks are occupied by
images. Consider that a straightforward, byte-by-byte representation of a
512-by-512 image consisting of three bytes per pixel (a raw dump of an
image) occupies 3*218 bytes, or about 0.75 megabytes. If many images
are to be stored, it seems reasonable to try to reduce the disk space
required by each image.

One approach is to use a general-purpose compaction algorithm, such
as the UNIX compress utility. Such programs indeed may achieve high
compression, but it is difficult to work with the compressed data directly.
If an image is to be composited with another, or one only wishes to
extract a small portion, the entire image typically must be decoded first,
at considerable space and time penalty.

Some compression techniques work in two dimensions, storing regions
of the picture in a data structure such as a quadtree. Again, high
compression can be achieved this way for some images, but finding the
best decomposition of the image can be difficult, and fast decompression
of selected regions also can be hard.

A less sophisticated but simpler image storage technique is known as
run-length encoding. Consider a gray-level image with a scanline con-
sisting of the following 10 values:

(15, 15, 15, 15, 15, 15, 25, 25, 25, 25).

Suppose we adopt a format consisting of pairs of bytes: a count and a
value. The count tells how many times to repeat the immediately follow-
ing gray value. Then this line could be encoded with the four bytes
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(6, 15, 4, 25). This run-length form required only 4 bytes rather than 10.
Since the count is only 1 byte long, we can store runs from lengths 1 to
255. We can squeeze a single extra step out of the run by realizing that
we never will encode runs of length zero. So, redefine the count byte to
represent one less than the actual run length; a count of 0 is a run of
length 1, and 255 is a run of length 256. Thus we need only two pairs to
store a 512-byte-wide scanline of constant color.

This scheme is not efficient for images where the colors change quickly.
If each pixel in a scanline is different than the preceding pixel, then
run-length encoding actually will double the size of the file relative to a
straightforward dump, since each pixel will be preceded by a count byte
with value 0 (representing a run of length 1).

To handle this situation, redefine the count byte as a signed 8-bit
integer. If the value is zero or positive, then it indicates a run of length
one more than its value, as described earlier; but if the count is negative,
then it means that what follows is a dump: a pixel-by-pixel listing of the
next few pixels, as many as the absolute value of count. This is called
adaptive run-length encoding. For example, consider the following
scanline:

(200, 200, 200, 200, 190, 189, 180, 180, 180, 180).

One way to represent this is as a 10-byte dump, requiring 11 bytes:

(–10, 200, 200, 200, 200, 190, 189, 180, 180, 180, 180).

It would be more efficient to mix runs and dumps, requiring only 7 bytes:

(3, 200, –2, 190, 189, 3, 180).

If you are working with color data, then you can consider each pixel to
be a single composite color value, consisting of red, green, and blue
components. Thus, rather than storing just a single byte after each count,
you can store the 3 bytes encoding the red, green, and blue components.
Tests for equality and runs all use the entire RGB pixel. If three pixels are
to be dumped, then the dump count is still –3 (meaning three pixels), but
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9 bytes of data follow. Alternatively, you may choose to encode the red,
green, and blue channels separately, and compress the three channels
independently.

A straightforward application of this technique usually will produce a
smaller file than a raw dump, but not always. For the following discus-
sion, C represents the length of a code, and P the length of a pixel value,
both in bytes. C always is 1, but P is 1 for grayscale pictures and 3 for
color images.

Consider the worst case for adaptive run-length encoding: a repeating
pattern of two pixel values p1 and p2 in the sequence (p1, p2, p2). Storing
this as a raw pixel-by-pixel dump requires 3P bytes. An adaptive run-
length encoding gives (–1, p1, 1, p2), requiring 2(C + P) bytes. In gen-
eral, if the pattern is repeated n times, a raw dump requires 3Pn bytes,
and an adaptive run-length encoding requires 2n(C + P) bytes. If the
image is grayscale, then an entire file made up of this pattern will require
4n bytes rather than 3n for a raw dump, expanding the file size by 4/3.
Happily, color pictures do not suffer, since they encode into 8n bytes
rather than the 9n required by a raw dump, a savings of 8/9. You can
dream up other patterns that cost more in the encoded form than a raw
dump, but unless such patterns dominate an image, you will save in the
long run. Where you lose is with any picture where there are no runs at
all; then you effectively end up saving a raw dump, but you pay for the
extra, useless code bytes.

I recommend that you encode with a greedy algorithm: Any time you
find two or more pixels of the same color in a row, encode them as a run.
If the final encoded picture is larger than a raw byte-by-byte dump, then
forget about it and store just the raw file. I have found this situation to be
sufficiently rare that I do not bother with the test.

You can make encoded files easier to use if you encode each scanline
individually, rather than trying to tie together the end of one line with the
start of the next. You lose a little bit of compression this way, but you
save in speed when you want direct access to some part of the image. In
my implementation, I also store a header block at the top of each file,
giving the offset in bytes from the start of the file to the start of each
scanline. This makes it easy to quickly extract and decode small regions
of the image on the fly. A 32-bit offset for each of s scanlines requires
only 4s bytes of header, a classic space-time trade-off that buys you fast
random access at the cost of a bit of extra file storage.
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See also II.7 Rotation of Run-Length Encoded Image Data, Jeff
Holt; II.9 Image File Compression Made Easy, Alan W. Paeth
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Alan W. PaethNeuralWare, Inc.Pittsburgh, Pennsylvania

A simple predictive-corrective coding filter is derived through empirical
and analytical means. Passing a 2D image through this coder in byte-serial
order yields a highly redundant data stream well-suited to subsequent
serial compression, as by 1D Lempel-Ziv or Huffman coders. When used
to process 2D images compacted under the well-known Unix compress
tool, treated files typically show an additional 30% reduction in size.
Compared to untreated originals, cumulative compression ratios of 4 : 1
are typical. The filter is demonstrably lossless and is specifically crafted
for storage reduction on raster data sets of arbitrary bit precision (Paeth,
1986, 1987).

As seen in Fig. 1a, P–C coding estimates the value of the current input
datum by making a prediction based on the past history of the data
stream. A difference signal between the guess and the current value
represents the correction to the predicted value. Given an ideal predictor,
the corrector output is zero. For practical predictors, the output values
are clustered about zero in symmetric fashion, leaving a data stream
suitable for subsequent encoding. The efficiency of the coder may be
characterized by the creation of a histogram (Fig. 2). Unlike other
common schemes, such as Viterbi encoding, P–C coding is nearly its own
inverse. As seen in Fig. 1b, a prediction—now based on the decoded
output that has reconstructed the original—is used to provide the correc-
tion implicit with the current input value. Thus, a minor change in
internal program structure allows the same code to serve as both decoder
and encoder. Note that the predictor input always must be derived from
previously occurring values, as the output half of the system otherwise
would violate causality.
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Figure 1.  Prediction-correction coding.

P–C coders are a broad family. Adaptive (APC) coders may learn
based on the true value of the next input; the adjustment most often is a
weighted linear average. For 2D signals, the past state may be repre-
sented as a template of values that preface the current pixel (in transmis-
sion order) in both X and Y. Implementation of a simple, adaptive 2D
filter for binary images is straightforward: The state of a template of N
cells forms an N-bit integer, which indexes a table of predictions contain-
ing 2N 1-bit entries. Each entry records the last output seen. Thus, any

Figure 2.  Data histogram: (a) raw, (b) treated.
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Figure 3.  2D prediction: (a) input image, (b) prediction template.

recurring template triggers a prediction that matches the unknown value
discovered previously under identical local context.

A simple encoder used as a whitening filter does not require adapting:
This is redundant to the operation of any subsequent linear compressor.
Its purpose is to form a fast, nonadaptive 2D prediction based on a small
set of neighboring pixels while requiring no state information on past
contexts. Unfortunately, the logical (Binary table look-up) implementa-
tion is unsuitable: A small neighborhood of 24-bit color pixels forms too
large an index. An arithmatic means of extension is desired; constrain-
ing the solution space simplifies the search.

A minimum 2D template (Fig. 3) considers neighboring values that
are adjacent by edge or along the back diagonal of the current input pixel.
Values previously output are indicated by ‘ – ’, with {a, b, c} the values of
particular interest. Conversely, a ‘ . ’ indicates unseen raster data in which
‘ * ’ is the present input, as yet unseen by the predictor. Both logical and
arithmetic models exist that estimate the value ( * ). Because the predictor
is to be nonadaptive, it need not save state; the multivariate function
P(a, b, c) models it. To reduce the solution space of any model for P,
three constraints are imposed. The first is self-evident:

P(a, a, a) = a    [identity] (1).

The remaining two possess a compelling underlying symmetry. The
second,

P(a, b, c) = P(a, c, b)    [transposition] (2),
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guarantees an invariant predictor behavior across a transposition of the
input data by row and column. Likewise:

P(a, b, c)' = P(a', b', c') [complementation] (3)

indicates that inversion of the raster (as with a photographic negative)
yields an output that is similarly inverted.

These constraints are easily met for arithmetic prediction using
Roberts’s method L.R., a “poor man’s Lapacian” (gradient estimator),
which finds the slope along the NW/SE diagonal: G(a, b, c) = b + c –
2a. Adding this slope step to the variable a yields the estimate: (*) =
a + G(a, b, c). The predictor thus is P(a, b, c) = b + c – a. For images
that ramp in linear fashion along any axis, the prediction is exact.
Viewing the predictor output for an entire forms an image reminiscent of
an unsharp mask convolution (Hall et al., 1971).

In the case of binary prediction, empirical data was used to classify the
best output as a function of eight inputs. The data was a large collection
of rasters (synthetic and scanned), including digital typography, halftone,
and line art. Based on the aggregate figures, the best predictions are:

a b 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1
c (∗) 0 (0) 0 (1) 1  (1) 1 (1) 0  (0) 0  (0) 1 (0) 1 (1)

300K trials 99% 66% 73% 71% 67% 90% 89% 98%

As was surmised, the empirical data satisfies all rules [1..3]. The templates
are taken as the baseline case for any general predictor P(a, b, c), as they
satisfy both the empirical and analytical models. Note that the penulti-
mate context and its predecessor have two of three input bits set, yet
predict a zero output: These patterns are useful in detecting horizontal
and vertical edges. (The binary equations that model the selection of the
output data are not treated here, but are the subject of a more general
paper, which also considers larger spatial templates.)

A formula modeling the template is desired in which simple pattern
matching is extended arithmetically, allowing operation on rasters of
arbitrary precision (Paeth, 1986, 1987). Traditional nonadaptive methods
are ill-suited to binary (1 bit) data; a linear combination of integral
weights often produces fractional estimates. This forms a poor prediction
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in the binary case, as the unseen value always is integral and on the small
domain {0 1}. A fourth and final constraint already implicit in the binary
template data now is adopted:

P(a, b, c) is an element of {a, b, c} [membership] (4).

The fourth rule is satisfied easily by finding that element on the input set
closest to the trial prediction, thereby forming a final prediction. Analysis
shows that rules [1..3] remain invariant. Because scalar distance employs
the absolute value, ambiguity in nearness is introduced should the predic-
tion fall midway between two input values. This is resolved by introducing
a tie-break order: {a, b, c}. The final prediction algorithm then is:

integer function predict(a, b, c: integer)
p, pa, pb, pc: integer;

p = b + c – a; initial estimate
pa = abs(p – a); distances to a, b, and c
pb = abs(p – b);
pc = abs(p – c);
if (pa ≤ pb) and (pa ≤ pc) return(a); return nearest element
if (pb ≤ pa) and (pb ≤ pc) return(b); in a, b, c tie-break order
return(c);

This choice has the added advantage of implicitly limiting the prediction
output to nonnegative values. This removes the per-datum interval test of
traditional methods, used to limit predictions to the maximum range of
the input. Here, the prediction output is precisely the domain of the input.
For synthetic data sets of high precision, this can be of value. For
instance, given an image in 24-bit precision, but having only four unique
pixel colors (common to regions of bilevel color stipple or halftoning),
four predictions are possible. The final estimate is the difference of two
pixels; both are members of the same four-element set. Their difference
set is a Cartesian product of only 16 elements. In four of 16 cases, the
pixels match (a statistically common exact prediction) and a zero gener-
ated, reducing the output code set to no more than 13 combinations. In
contrast, a linear method under the same conditions produces an output
alphabet that is an order of magnitude larger: The final output is not
sparse under byte representation.
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Figure 4.  Compression ratios.

(a) Original

Figure 5.
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(b) Prediction

(c) Correction
Figure 5.  (Continued)
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The accuracy of the hybrid predictor may be tested by pitting it against
a perfect oracle, which peeks at the next input value ( * ) prior to
making its prediction on set {a, b, c}. (Peeking is a timeworn tradition for
all successful oracles.) Also tested is a trivial 2D predictor that considers
merely the input set (b); that is, the previous column element is chosen.
This method satisfies rules [1, 2, 4], but not [3]. It places an added burden
on the subsequent 1D coding step: Long runs of similar output value are
possible, but are not necessarily clustered about zero, degrading encod-
ing efficiency. However, adaptive 1D coders (Unix Compress) often can
do well. In contrast, the two-step prediction scheme presented here
supports a simplified post-coding, as by skip compression of runs of
zeros. Encoding ratios are illustrated in Fig. 4; the traditional Huffman-
derived entropy measure is supplanted by a file-size ratio for final sizes
under Unix Compress. Figures 5a through c snow the operation of the
non-adaptive 2D filter at the respective stages of input, prediction, and
correction.

In summary, a method for efficient, nonlinear, algebraic prediction of
2D images is demonstrated. The method is both lossless and particularly
well-suited to the encoding of both synthetic and scanned raster images
of arbitrary precision.

See also II.8 Adaptive Run-Length Encoding, Andrew S. Glassner
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Nelson MaxLawrence Livermore National LaboratoryLivermore, California

In a previous gem, Mark Pavicic discussed radially symmetric filter
functions, optimized for several functional forms. Here, I propose another
functional form, meeting somewhat different criteria.

For the purposes of image reconstruction from a sampled raster, it is
important that the filter be at least C1 smooth, so that the reconstructed
image will not have Mach bands. Pavicic’s filters are not C1, resulting in
creases in the sum of the filters, visible in his figures. Also, Pavicic
restricted himself to radial filter functions f(r), which are zero for r ≥ 1.
I do not make this restriction.

I wanted a function that was easily computed, and chose to use a
nonuniform quadratic spline g(r), of the form shown in Fig. 1. It consists
of downward curving parabola for 0 ≤ r ≤ s, and an upward curving
parabola for s ≤ r ≤ t, which meet smoothly at r = s, and has the
properties g(0) = 1, g'(0) = 0, g(t) = 0, and g'(t) = 0.

The function that satisfies these conditions is

    

g r( )  =  

1 –  
r 2

st
      0 ≤  r ≤  s,

(t –  r)2

t(t –  s)
      s ≤  r ≤  t,

0                       t ≥  r.
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Figure 1.

The volume V under this filter is computed as a solid of revolution,

    

V = 2π rf(r) dr
0

∞

∫  = 2π r –  
r 3

st






 dr + 2π 
r(t –  r)2

t(t –  s)s

t

∫  dr
0

s

∫

= 2π
s2

2
 –  

s4

4st
 + 

t 4

12t(t –  s)
 –  

s2t 2

2t(t –  s)



                             +  
2s3t

3t(t –  s)
 –  

s4

4t(t –  s)


.

The filter f(r) = 
    
1
V g(r ) , normalized to have unit volume, thus can be

found in terms of the two parameters, s and t.
A function with constant value 1, sampled on the integer lattice {(i, j)},

will be reconstructed as

    
h(x,  y) =      f (x –  i)2  +  (y –  j)2( )

j = –∞

∞

∑
i = –∞

∞

∑ .

One condition for optimality is to minimize the difference d between the
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maximum value M and the minimum value m of h. This difference can
become arbitrarily small as s and t approach infinity, so I limited t to be
less than 2. Because of symmetry and the limited size range I allowed
for t,

    
M =  max

0 ≤  x ≤  .5
0  ≤  y ≤  .5

     f (x –  i)2  +  (y –  j)2( )
j = –1

2

∑
i = –1

2

∑ .

Figure 2.
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For each fixed s and t, I found the critical points of h(x, y) by solving

the equations 
  

∂h

∂x
 = 0 and 

  

∂h

∂y
 = 0, using 2D Newton iteration, starting at

all initial conditions in a 26 × 26 array of points inside the square of side
1/2, and took d to be the difference between the maximum and mini-
mum critical value.

The minimum d, equal to .885 percent, was found at s = .4848 and
t = 1.3778. The RMS error between h(x, y) and 1 was .261 percent, and
the error volume,

    
abs(h(x, y) –  1) dxdy

0

1

∫0

1

∫ ,

used by Pavicic was .232 percent. Figure 2 shows a raster intensity image
of this h(x, y) for x and y between 0 and 2, with the contrast amplified
by a factor of 100. Although there is clearly visible periodic structure, the
intensity varies smoothly.

The minimum RMS error of .245 percent is attained when s = .4810
and t = 1.3712, and the minimum error volume of .210 percent is
attained when s = .4792 and t = 1.3682.

This work was performed under the auspices of the U.S. Department of
Energy by the Lawrence Livermore National Laboratory under contract
number W-7405-Eng-48.

See also (144) Convenient Anti-Aliasing Filters that Mini-
mize “Bumpy” Sampling, Mark J. Pavicic; (147) Filters
for Common Resampling Tasks, Ken Turkouski
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John SchlagMacroMind, Inc.San Francisco, California

This is actually more of a vision gem than a graphics gem, but since
image processing is so often useful in computer graphics, this seems
apropos.

First derivative filters (often called edge detectors in the vision
literature) are often used to sharpen digitized images, or to produce a
candidate set of points at which to evaluate some other operator. They
also are used to obtain a surface normal perturbation from an image for
bump mapping. Digitized images are typically noisy. First derivative
estimators such as the Sobel and Prewitt operators (see below) accentu-
ate this noise. Hence, it often is necessary to threshold the result of the
edge operator to filter out the noise. The question then is how to pick the
threshold. For those who find arbitrary (tweak) parameters distasteful,
here is a way to at least tie the threshold to a discernible system
parameter.

The two most common first derivative edge detectors are the Sobel and
Prewitt operators:

    

   Sobel:  ix (p) ≅  
–1 0 1
–2 0 2
–1 0 1

















iy (p) ≅  
1 2 1
0 0 0

–1 –2 –1
















,

Prewitt:  ix (p) ≅  
–1 0 1
–1 0 1
–1 0 1

















iy (p) ≅  
1 1 1
0 0 0

–1 –1 –1
















,

The 3-by-3 convolution masks are evaluated at each pixel to produce
estimates of the partial derivatives of the image function. The edge
function E(p) produces an estimate of the magnitude of the gradient.
The threshold can be based on an evaluation of the noise in the gradient

    E(p) =  ix
2 +  iy

2 .
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Figure 1.  The Rayleigh probability density function.

domain. Assume that the noise in the input image is normal with mean
zero and variance     σn

2 . Each mask forms a linear combination of the
neighborhood pixels, so the noise distribution in each of the partial
derivative estimates also is normal. Since the variances of independent
variables add as the squares of their coefficients, the noise variance in
each estimate will be     σx

2 =  σy
2 =  12σn

2  (for the Sobel masks). From
probability theory (Papoulis, 1965, p. 195), the noise distribution in the
edge function has a Rayleigh distribution with parameter σx:

    
p(z) =  

z
σx

2 exp
–z2

2σx
2







     for z ≥  0.

The threshold T can be placed to eliminate a given percentage of the
distribution. Integrating the density function and solving for the threshold
gives     T =  2σx

2 ln(1/1 –  k) , where k is the fraction of the distribution
to be eliminated. If the variance     σn

2  of the input noise is not known a
priori, it can be measured easily from a blank image, or a flat region of
an image. Alternatively, we can examine the histogram of an unthresh-
olded edge image to find σx directly. Notice that we are playing fast and
loose with assumptions of statistical independence, since the convolution
masks are using the same pixels. Experiment confirms however, that the
edge function distribution is as expected.

Similar reasoning applies in the case of bump mapping, where the
estimates of the partials ix and iy, are used to perturb a surface normal.
In this case, E(p) is never calculated, and all one need worry about is the
noise distribution of the partials.
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Hanspeter Bieri, Andreas KohlerUniversity of BerneBerne, Switzerland

An ExampleAn ExampleAn ExampleAn ExampleAn Example
Figure 1 shows a small binary digital image of resolution 8*7 consist-
ing of 31 black and 25 white pixels. Pixels are considered here to be
closed unit squares, although we will assume them to be implemented as
elements of a binary matrix, as is often the case. The set union of the
black pixels will be called the figure of the image, and computing the
area, the circumference, and the genus (or Euler number)  of the
image more precisely shall mean computing these three important prop-
erties for the figure.

Using elementary geometry, we easily verify that the area of the image
in Fig. 1 is 31 and the circumference is 62. The genus of a binary digital
image often is defined as the number of connected components of the
figure minus the number of holes. (These are the connected components
of the set complement of the figure which do not meet the border of the
image.) Obviously, the image of Fig. 1 has two black connected compo-
nents and three holes; therefore, its genus is –1.

The MethodThe MethodThe MethodThe MethodThe Method
In Fig. 2, the digital image of Fig. 1 is represented in a slightly different
way, which makes it easy to recognize the vertices, sides, and (quadratic)
extents of all its pixels. The main task of the method we are going to
present is counting the number of vertices, sides, and extents of the black
pixels in an image. Because vertices are zero-dimensional, sides one-
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Figure 1.  A binary digital image.

dimensional and extents two-dimensional, we denote these numbers by
n0, n1, and n2, respectively. For our example, we get n0 = 61, n1 = 93,
n2 = 31. Knowing these numbers for a given image I, it is very easy to
compute the area A, the circumference C and the genus G of I by
applying the following formulas:

A(I) = n2,

C(I) = 2 * n1 – 4 * n2,

G(I) = n0 – n1 + n2.

Now, assuming that I has resolution m*n  and is provided as a binary
m *n -matrix M, we can compute n0, n1, and n2 simultaneously in one
single scan of M, e.g., row by row and from left to right. Then we only
have to evaluate the three preceding formulas to determine A(I), C(I)
and G(I).
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Figure 2.  The vertices, sides, and extents of all pixels in the image.

For an explanation of this method—which is based on the fact that
area, circumference, and genus can be understood as additive functionals
—the interested reader is referred to Bieri and Nef (1984), where the
d-dimensional case is treated and where more references (several in
German) are listed.

The AlgorithmThe AlgorithmThe AlgorithmThe AlgorithmThe Algorithm
To find n0, n1, and n2 fast and elegantly, we add an auxiliary row and an
auxiliary column of zeros to M and imagine the corresponding image
partitioned in a way shown in Fig. 3. By this partitioning, every pixel
vertex, pixel side, and pixel extent of I is associated with exactly one
element of the (enlarged) matrix M. For each matrix element Mi, j, we
call the associated vertex, horizontal side, vertical side, and pixel extent
the pixel components at position (i, j) and denote them by Pi, j, Hi, j,
Vi, j and Ei, j, respectively (Fig. 4).
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Figure 3.  All pixel components belonging to the enlarged matrix.

Figure 4.  Five neighboring pixel components are blackened.
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Now let us consider an element Mi, j during the scan of the matrix M
(0 ≤ i ≤ m – 1, 0 ≤ j ≤ n – 1). The following pseudo-code describes
how our algorithm updates n0, n1, and n2 at this position and how it
blackens certain neighboring pixel components in case Mi, j represents a
black pixel (Fig. 4). (For i = m or j = n, only the update of n0, n1, and
n2 is necessary, of course.)

if M[i][j] = 1 black pixel
then begin

N[0] ← N[0] + 1;
N[1] ← N[1] + 2;
N[2] ← N[2] + 1;
P[i][j + 1] ← 1;
V[i][j + 1] ← 1;
P[i + 1][j] ← 1;
H[i + 1][j] ← 1;
P[i + 1][j + 1] ← 1;
end;

else begin white pixel
if P[i][j] = 1

then N[0] ← N[0] + 1;
if H[i][j] = 1

then N[1] ← N[1] + 1;
if V[i][j] = 1

then N[1] ← N[1] + 1;
end;

Large digital images often are stored in raster representation, i.e., as a
sequential file where row i precedes row i + 1. In Appendix 2, the C
Implementation of our algorithm assumes the given binary digital image I
to be provided in this way.
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A frame buffer is the piece of hardware at the heart of most graphics
display tasks. To the computer, this device appears essentially as a large
chunk of memory, while to the user, it is the vehicle for perceiving the
underlying data visually. This mapping from data to image is carried out
by altering the appearance of a two-dimensional array of discrete picture
elements, or pixels, according to the contents of corresponding memory
locations. Thus, the role of modern frame buffers is to take the normally
invisible contents of computer memory and present them in a visual form.

Because it is a physical piece of hardware, the frame buffer possesses
certain limitations that the graphics programmer must take into account,
such as resolution in pixels and the number of discrete colors each of
these pixels can assume. Given the diversity and importance of these
devices, it is not surprising that many techniques have been developed to
make the most of their capabilities. All of the gems of this Part deal with
some aspect of color as it pertains to a frame buffer.

There are many similarities between the techniques explored in this
Part and those of the previous Part on image processing. These similari-
ties stem from the fact that both frame buffer techniques and image
processing are intimately linked with manipulating rectangular arrays of
discrete pixels.



116

III.1 EFFICIENT INVERSE COLOR MAP COMPUTATION

GRAPHICS GEMS II Edited by JAMES ARVO 116

III.1III.1III.1III.1III.1
EEEEEFFICIENT INVERSE COLORFFICIENT INVERSE COLORFFICIENT INVERSE COLORFFICIENT INVERSE COLORFFICIENT INVERSE COLORMMMMMAP COMPUTATIONAP COMPUTATIONAP COMPUTATIONAP COMPUTATIONAP COMPUTATION

Spencer W. ThomasUniversity of MichiganAnn Arbor, Michigan

An inverse color map is used to translate full (RGB) colors into a limited
set of colors. It might be used to drive an 8-bit color display (Apple,
1988), to perform error-propagation dithering (e.g., Floyd-Steinberg) in
color (as in Gem II.3, “Color Dithering”, by Spencer Thomas), or for the
output phase of a color quantization algorithm (Heckbert, 1982; Gervautz
and Purgathofer, 1990). Published methods for computing such color
maps seem to be few and far between, and either are relatively inefficient
or inexact. This gem describes a simple and efficient method for comput-
ing inverse color maps.

A representative color is one of the colors in the limited set. There are
n representative colors. RGB colors are quantized to k bits by taking
the top k bits of each primary as an integer in the range 0..2k. A inverse
color map is a cubical array, 2k on each side, that is indexed by
quantized red, green, and blue values to obtain a color index that
represents the closest (within the limits of the quantization) representa-
tive color to the given RGB color.

Two versions of the algorithm will be described. The first is simple, and
illustrates the basic principle as well. It also is fairly efficient, taking
approximately 24 seconds to completely fill an inverse color map (k = 5
and n = 256) on a SUN 3/60 computer. The asymptotic behavior of this
algorithm is O(n ⋅ 23k), which is achieved for relatively small values of 1
and n (on a SUN 3/60, the constant of proportionality is 2.8 µsec).
The second version is significantly more complex, but much more effi-
cient for large color maps, taking approximately 3.2 seconds to fill the
same map. The asymptotic behavior of this algorithm is expected to be
O(log(n) ⋅ 2:3k), but this limit is not reached in practice. Still, the speedup
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version 2 over version 1 is significant, and improves as n and k
increase.

The C Implementation for both versions is included in Appendix 2. It
also is distributed freely as part of the Utah Raster Toolkit.

Incremental Distance CalculationIncremental Distance CalculationIncremental Distance CalculationIncremental Distance CalculationIncremental Distance Calculation
This algorithm is based on the following observations:

• The regions of RGB space that map to a given representative color
comprise exactly those points that are closer to the given representa-
tive than to any other. This gives rise to a structure known as a
Voronoi diagram (Preparata and Shamos, 1985) in the three-dimen-
sional RGB space. Figure 1 (see color insert) shows one of these as a
set of slices perpendicular to the red axis.

• A depth-buffered image of cones aligned with the Z axis results in a
picture of a 2D Voronoi diagram. Each region consists of the points
that are closest to the projection of the apex of a single cone.

• In fact, the depth of a point on the cone is proportional to the distance
of the screen point from the projected apex of the cone. Thus, we
might call the depth buffer a distance buffer instead.

• A 3D image of the RGB Voronoi diagram can be obtained by using a
3D distance buffer to render hypercones whose apices coincide with
the representative colors.

• Since the decision to color a given voxel is based only on the relative
magnitude of the distances involved, it works just as well to use the
distance squared rather than the actual Euclidean distance.

• The distance squared easily can be computed incrementally using only
integer addition and subtraction operations.

• Finally, for version 2, we observe that the regions are convex.

The square of the Euclidean distance from a color (r, g, b) to a
representative color (ri, gi,bi) is

d(r, g, b) = (r – ri)
2 + (g – gi)

2+ (b – bi)
2.
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The effect of incrementing one color component, say b, by a quantity x
yields

∆b(r,g,b) = d(r,g,b + x) – d(r,g,b) = x2 – 2bix + 2bx.

The second difference,

∆    b
2 (r, g, b) = ∆b(r, g, b + x) – ∆b(r, g, b) = 2x2,

is a constant, assuming x is constant. Note, too, that these depend only
on b, and so are independent of the values of r and g. For the
pseudo-code, we assume that the input RGB values are represented with
8 bits per primary, and that x = 28–k, Distances are measured to the
center of each quantized cell, so x/2 is used as the starting point instead
of 0.

distbuf is a 3D array of 32-bit integers 2k on a side. All its elements are
initialized to 231 – 1.
mapbuf is a 3D array of 8-bit index values of the same size.
x ←  lshift(1, 8–k);
xsqr ←  lshift(x, 8–k);
txsqr ←  xsqr*2;
The following code is executed for each color in the (forward) color map.
The variable color_index is the corresponding index.
Thus, (ri,gi,bi)= color map[color_index], rdist, gdist, bdist are the com-
puted distances for the respective nested loops
rdist ←  (ri – x/2)2 + (gi – x/2)2 + (bi – x/2)2;
rinc, ginc, binc are the initial increments for rdist, gdist, bdist
(i.e., for r = g = b = x/2)
rinc ←  2*x*(ri – x);
ginc ←  2*x*(gi – x);
binc ←  2*x*(b – x);
rxx, gxx, bxx are the current increment values for rdist, gdist, bdist
rxx ←  rinc;
rq, gq, bq are the quantized versions of r, g, b
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for rq ←  0 to 2k – 1 do
gdist ←  rdist;
gxx ←  ginc;
for gq ←  0 to 2k – 1 do

bdist ←  gdist;
bxx ←  binc;
for bq ←  0 to 2k – 1 do

if distbuf[rq][gq][bq] > bdist then
begin

Note that in C, the subscripting is done efficiently
with pointers. E.g., instead of distbuf, use a pointer
distp, initialized to distbuf, and incremented
each time through the blue loop.
distbuf[rq] [gq] [bq] ←  bdist;
mapbuf[rq] [gq] [bq] ←  color_index;
end;

bdist  ←  bdist + bxx;
bxx ←  bxx + txsqr;
endloop;

gdist ←  gdist + gxx;
gxx ←  gxx + txsqr;
endloop;

rdist ←  rdist + rxx;
rxx ←  rxx + txsqr;
endloop;

This code visits every cell in the inverse color map for each representa-
tive color. The cost of changing a cell is not that much higher than the
cost of visiting it in the first place. Therefore, the time to run will be
proportional to the product of the number of representatives and the
number of cells, or n ⋅ 23k. This is borne out by experiment for values of
k in the range 4–6.

Taking Advantage of ConvexityTaking Advantage of ConvexityTaking Advantage of ConvexityTaking Advantage of ConvexityTaking Advantage of Convexity
The first version of the algorithm, while quite simple, visits many inverse
color map cells that it does not change because they are too far from the
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representative. The colors that map to a given representative lie within a
convex polyhedron. We can take advantage of this fact to visit fewer cells
per representative and thereby speed up the algorithm. The basic idea is
simple: Start at the representative color and scan outwards until cells not
in the region are encountered, then stop. In one dimension, this results in
the following pseudo-code. The details of the incremental distance com-
putation are not repeated.

detected_some ←  false;
Note: quantize(b) = rshift(b,8 – k)
for bq ←  quantize(bi) to 2k – 1 do

if distbuf[bq] < bdist then
begin

if detected_some then
exit;

end;
else begin

detected_some ←  true;
distbuf[bq] ←  bdist;
mapbuf[bq] ←  color_index;
end;

for bq ←  quantize(bi) – 1 to 0 step – 1 do
Pretty much the same code goes in here as in the preceding.
Because of going down instead of up, reverse the order of incrementing:
bxx ←  bxx – txsqr;
bdist ←  bdist – bxx;

The multidimensional scan essentially is the same, except that for the
green and red levels, the inequality test and changes to the buffer are
replaced by a call on the next inner loop. The value of “detected_some”
from the lower-level loop is used to determine whether a change was
made, and thus whether to set “detected_some” for the higher-level loop.

Additional complexity is introduced when we realize that as green, say,
scans away from the representative color, the active segment of a blue
scanline might not overlap the blue value of the representative color (Fig.
2). Thus, we really should update the blue starting point so that it has a
good chance of being close to the segment on the next scanline. Of
course, this start-point tracking needs to be reset at the start of the next
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green loop (when green starts scanning down, for example, or when red
has just been incremented to the next scan-plane). There are a number of
variables (such as the initial distance and its increment) that are associ-
ated with the starting point; these must be updated as well.1 The preced-
ing code changes to look like this:

The  variable names starting with ‘c’ are the original values of these variables
at the blue center (quantize(B)). They are used to reinitialize the variables
when green starts a new loop.
if new_green_loop then
begin

here = quantize(B);
binc = cbinc;
bdist ←  gdist;

   ⋅ ⋅ ⋅
   end;
detected_some ←  false;
for bq ←  here to 2k – 1 do

if distbuf[bq] < bdist then
This is the same as above.

else begin
if not detected_some and bq > here then

First time on this scan-line, update here if necessary.
here ←  bq;
binc ←  bxx;
gdist ←  bdist;

                  ⋅⋅⋅
                 end;
         This is the same as above.
         end;
for bq ←  here – 1 to 0 step – 1 do

essentially same code goes in here as above.

1In the green loop, two sets of some of these values (e.g., gdist) must be maintained. One set is
updated from below by the blue loop, and the second set is used to update the red loop when the
green starting point is changed.
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Figure 2. A sample domain in a blue-green plane, showing that the starting point of
the blue scanlines may shift to the side. The solid lines indicate the changed segment
(scanning up from the blue axis), and the boxes indicate the starting point of each
segment.

This produces a reasonable speedup (about 7 ×  for a map with k = 5),
but more is possible. When the scan encounters a scanline or scan-plane
on which there are no cells for the representative, it must look at all the
cells on that line or plane. This causes a large number of cells to be
examined uselessly. The minimum and maximum values reached during a
previous scan sometimes can be used to predict the range within which
any cells found on the next scan must lie. In particular, if the minimum i s
increasing, or the maximum decreasing, then the new scan cannot over-
lap the previous scan on that end (Fig. 3). This is a consequence of the
convexity of the region. The min/max tracking is included in the C
Implementation (Appendix 2), but will not be elaborated on here. This
version showed a speedup of about 9 ×  for a 5-bit map, and about 25 ×
for a 6-bit map (versus 15 ×  for the version without min/max tracking).

A final optimization splits the blue scanning loops into two halves to
avoid the “if detected_some” test in the inner loop. The first loop finds
the beginning of the segment and the second loop fills it.
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Figure 3. Adjusting the minimum and maximum for blue scanlines. The boxes show the
minimum and maximum value set on each scanline, and used for the next scanline up.

What should the asymptotic behavior of this algorithm be? In the
average case, with randomly distributed representative colors, the mth
representative will modify approximately 1/m of the cells in the map.
The expected number of cells modified, therefore, is

    
23k 1

m
1

n

∑  →  O(23k log(n)).

The algorithm still visits an appreciable number of unmodified cells
(presumably proportional to 22k), so this number forms a lower bound on
the time complexity, and the observed times for n < 256 and k ≤  7 do
not follow this rule.

Unfortunately, version 2 of the algorithm does not produce identical
results to version 1, because of an aliasing problem. If a domain is very
narrow, it may be missed on some scanlines. Since the version 2 code
exits as soon as a scanline (for the green loop) is empty, any cells lying
past the empty scanline will be missed, and will be assigned to a different
representative. However, the narrowness of the region that caused the
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Figure 4. Aliasing of narrow domains can cause some cells to be miscolored by version
2 of the algorithm. On the left is the correct set of pixels in the domain. On the right is the
set of pixels found by version 2. It stops scanning after reaching the first blank line,
missing the last pixel at the top.

aliasing means that this other representative is almost as close as the
original, so the effect is negligible. The aliasing problem is illustrated in
Figure 4.

Color map OrderingColor map OrderingColor map OrderingColor map OrderingColor map Ordering
Version 2 of the algorithm is sensitive to the ordering of the input colors.2

For example, if the input color map consisted solely of grays in order of
increasing brightness, the loop for each representative would be expected
to visit (m – 1)/m cells, yielding a time complexity of O(n ⋅ 23k). The

2This is similar to the anomalous behavior shown by the Quicksort algorithm on
sorted input.
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solution is simple: Randomize the input values. The shuffle algorithm in
Morton (1990) provides exactly the effect needed here.

ResultsResultsResultsResultsResults
Figure 5 (see color insert) shows a sample computer-generated image.
The colors in this image were quantized to 256 representative colors. The
corresponding inverse color map (k = 6, n = 256) is shown in Figure 1.

See also II.2 A Comparison of Digital Halftoning Techniques,
Dale A. Schumacher; II.3 Color Dithering, Spencer W. Thomas,
Rodney G. Bogart; III.2 Efficient Statistic Computations for
Optimal Color Quantization, Xiaolin Wu; (287) A Simple
Method for Color Quantization: Octree Quantization,
Michael Gervautz, Werner Purgathofer

3.1 Figure 1.  A color Voronoi diagram. The colors
were derived by quantizing the Christmas tree im-
age in Fig. 5.

3.1 Figure 5.  A test image. (See Fig. 1.)
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1 ≤ k ≤ K c ∈ Sk

III.2III.2III.2III.2III.2
EEEEEFFICIENT STATISTICALFFICIENT STATISTICALFFICIENT STATISTICALFFICIENT STATISTICALFFICIENT STATISTICALCCCCCOMPUTATIONS FOR OPTIMALOMPUTATIONS FOR OPTIMALOMPUTATIONS FOR OPTIMALOMPUTATIONS FOR OPTIMALOMPUTATIONS FOR OPTIMALCCCCCOLOR QUANTIZATIONOLOR QUANTIZATIONOLOR QUANTIZATIONOLOR QUANTIZATIONOLOR QUANTIZATION

Xiaolin WuUniversity of  Western OntarioLondon , Ontario, Canada

IntroductionIntroductionIntroductionIntroductionIntroduction
Color quantization is a must when using an inexpensive 8-bit color
display to display high-quality color images. Even when 24-bit full color
displays become commonplace in the future, quantization still is impor-
tant because it leads to significant image data compression, making extra
frame buffer available for animation and reducing bandwidth require-
ments (a bottleneck when we go for HDTV).

Color quantization is a 3D clustering process. A color image in an RGB
mode corresponds to a three-dimensional discrete density P(c), where
c = (cr, cg, cb) in RGB space. The intensity of each primary color often is
discrete and encoded by m bits; hence, P(c) is defined on a cubic lattice
S of 2m ⋅ 2m ⋅ 2m points. In color image quantization, the point set S is
partitioned into K subsets Sk, 1 #  k # K,     c∈Sk

∑ P(c) ≠ (c) ≠ 0,   U  1 < k < kSk=
S, Sj   I j≠kSk = φ , and all colors c ∈ Sk are mapped to a representative
color, qk = (qkr,qkg,qkb) Given such a partition, the expected quantiza-
tion error is defined as

                E(S1, S2,⋅⋅⋅, SK) =       ∑ ∑  P(c) Ψ (c – qk),                (1)

where Ψ  is a dissimilarity measure between c and qk. A suitable Ψ  for
human perception of colors is a research topic beyond the scope of this
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paper. The ubiquitous mean-square error measure is used in the following
development; but test images, not just numerical errors, are used for the
reader to judge the image quality.

Ideally, one would like to minimize Eq. (1) for given P(c), Ψ , and K.
The fact that there are approaching K|S| different partitions (Anderberg,
1973) makes optimal quantization a challenging problem for algorithm
design. Many heuristic algorithms were proposed for color quantization:
Heckbert’s median-cut algorithm (1982), the Wu-Witten (1985) and Wan
et al. (1988) variance-based algorithms, and the Gervautz-Purgathofer
octree-based algorithm (1990). The median-cut algorithm partitions the
color space into K boxes, each of which contains approximately the
same number of pixels. This approach is better than naïve uniform
quantization, but far from the goal of minimizing Eq. (1). Intuitively, for
the same pixel population, a large box should be allocated more repre-
sentative colors than a small one; i.e., the variance should play an
important role. Wu and Witten developed a divide-and-conquer strategy
to minimize the marginal variance in partitioning the color space, and this
work was improved by Wan et al. However, the sole reason for minimiz-
ing the marginal variance instead of true variance was that we did not
have an efficient way to compute three-dimensional color statistics then.
This problem will be solved in this gem, and consequently, optimizing
color quantization will become computationally feasible.

Quantization Based on Variance MinimizationQuantization Based on Variance MinimizationQuantization Based on Variance MinimizationQuantization Based on Variance MinimizationQuantization Based on Variance Minimization
Color quantization is optimized through a linear search. We sweep a
cutting plane across the RGB cube perpendicularly to the R, G, B axes
separately, and choose the plane that minimizes the sum of variances at
both sides to cut the cube into two boxes. Next, the box with the larger
variance is partitioned into two smaller boxes by the same cutting
criterion, and so forth, until K boxes are formed. The K means (centers
of gravity) of those K boxes are selected as K representative colors.

In the preceding minimization process, for each possible cutting posi-
tion in every direction, we need to evaluate the variances at both sides.
Without an efficient algorithm for such statistical evaluations, the pro-
posed optimization is impractical.
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Efficient Computations of Color StatisticsEfficient Computations of Color StatisticsEfficient Computations of Color StatisticsEfficient Computations of Color StatisticsEfficient Computations of Color Statistics
In this section, we will show how the mean and the variance of any
rectangular box containing n color points may be computed, respec-
tively, in O(1) time with an O(|S|) time preprocessing.

Let ci = (cir, cig, cib) and c j = (cjr, cjg, cjb) be the two points in the
cubic lattice S. We say that c j dominates c i, denoted by c j   f  ci, if
cjr > cir, cjg > cig, and c jb > c ib hold simultaneously. Any pair ci and
c j,  where c j   f  c i,  defines a three-dimensional box Ω (c i, c j] in the
discrete color space, with its r, g, and b  interval being (c ir, cjr],
(cig, cjg], and (cib, cjb]. Notice that these intervals are open on the left
but closed on the right; i.e., the lower, left, and front faces of the box are
excluded, while the upper, right, and back faces are included.

If all colors c ∈ Ω (c i, cj] are quantized to q = (qr, qg, qb), then under
the mean-square error measure, the expected quantization error for
Ω (ci, cj] is defined by

    
E ci ,( c j



=                  P∑ (c)(c–q)2 ,                       (2)

where (c – q)2 = (c – q)(c – q)T is the squared Euclidean distance be-
tween c and q. It is easy to show that Eq. (2) is minimized if the
representative color q is set to the mean µ (ci, c j] of the boxΩ(c i, cj], i.e.,

                    q = µ (c i,cj] = 

      

       ∑
c ∈Ω (  c i  c j ]
                  ∑
c ∈Ω (  c i  c j ] 

Denote the eight vertices of the box Ω (ci, cj] by

v0 = (cir,cig,cib),   v4 = (cjr,cig,cib),

v1 = (cir,cig,cib),   v5 = (cjr,cig,cjb),

v2 = (cir,cjg,cib),   v6 = (cjr,cjg,cib),

v3 = (cir,cjg,cjb),   v7 = (cjr,cjg,cjb,)

      c ∈Ω( ci c j ]

. (3)
  P(c)

cP(c)



129

 III.2 EFFICIENT STATISTICAL COMPUTATIONS FOR OPTIMAL COLOR QUANTIZATION

GRAPHICS GEMS II Edited by JAMES ARVO 129

∑

(4)

(5)

(7)

(6)

f(c)P(c)

Then by the basic rule of inclusion-exclusion of combinatorics (Liu,
1968), we have

c ∈ Ω( c i, c j]

     
  

=   ∑ –         ∑   –                +∑  ∑
c ∈Ω(o,  v6 ]      c ∈Ω(o,  v6 ]  c ∈Ω(o,  v5 ] c ∈Ω(o,  v4 ]








      
    

−        ∑      –         ∑   –                +∑  ∑
c ∈Ω(o,  v3 ]      c ∈Ω(o,  v2 ]  c ∈Ω(o,  v1] c ∈Ω(o,  v0 ]







f(c)P(c).

In the preceding, vector o is a reference point such that

                            
      

∑
c ∈Ω(–∞ ,o]

P(c) =  0.

A graphical explanation of Eq. (4) is given in Fig. 1.
Since P(c) is defined on the finite lattice S, one can pre-compute and

store the quantities,

                            
      

∑
c ∈Ω(o,  ct ]

f(c)P(c),

for all ct ∈ S. Then the summation 
    
∑

c ∈Ω c i , c j( ] f(c)P(c) can be done in
O(1) time by Eq. (4), independent of the size of Ω (ci, cj]. Now substitute
f(c) with cd, d = 0, 1, 2, where c0 = 1 and c2 = ccT, and define

      
Md (c t ) =

c ∈ Ω(o , c t ]

∑   c dP(c).

Then, given a box Ω (ci, c j], its color population w(c i, cj], mean µ (c i, cj],
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Figure 1. Inclusion-exclusion computations in color space.

and quantization error E(c i,cj] (the weighted variance of the box),

      
w(c i ,c j ] =

c ∈ Ω(o i , c j ]

∑   P(c)

      
µ (ci ,c j ] =

c ∈ Ω ( oi , c j ]

∑     cP(c)

      w(ci ,c j ]                         

      
E(c i ,c j ] =        c2P(c)

c∈Ω(ci ,c j ]
∑ –

        cP(c)
c∈Ω(ci ,c j ]

∑












w(c i ,c j ]

2

(8)

(9)

(10)
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can be computed in O(1) time using Eq. (4), provided that Md(c),
d = 0, 1, 2, the cumulative dth moments of the discrete density P(c)
against the reference point o, are pre-computed and stored for all |S| =
23m lattice points of S. Clearly, this preprocessing requires O(|S|) time
and space.

If the original 24-bit pixel image was quantized directly, then |S| = 224,
invoking excessive if not prohibitive costs. Encouragingly, it was ob-
served by previous researchers and by the author that color image
quantization on a 32 ⋅ 32 ⋅ 32 rgb lattice yields visually almost the same
result as on a 256 ⋅ 256 ⋅ 256 lattice. Thus, the preprocessing time and
space costs can be reduced to an acceptable level of |S| = 215 without
noticeable loss of fidelity.

Algorithm Details and AnalysisAlgorithm Details and AnalysisAlgorithm Details and AnalysisAlgorithm Details and AnalysisAlgorithm Details and Analysis
Formally, optimizing the cutting of the box Ω(ci, cj] is minimizing

       E(ci, c] + E(c,cj],

subject to

c ∈{cjr ×  cjg ×  (cib, cJb]} ∪ {cjr ×  (cig, cjg] ×  cjb}

   ∪{(cir, cjr] ×  cjg ×  cjb}.

With the aid of the proposed preprocessing, Eq. (11) can be evaluated
in O(1) time, given Q(c i,c j] and c. Then it can be easily shown that
partitioning S into K boxes based on variance minimization needs
O(|S|1/3K) time in the worst case and O(|S|1/3K2/3) time1 in the average
case.

1Obtained by solving the recurrence, T(n) = 2T(n/2) + 3n1/3, for  the boundary con-
dition T(|S|/K)= 0.

(11)

(12)
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 c ∈ Ω(
      
c i , c j]

Note, however, that the preceding analysis only gives the order of time
complexity of the  proposed algorithm, with no consideration of the
coefficient before the O notation. Directly minimizing Eq. (11) would
require as many as 76 additions, six multiplications, and two divisions for
a single c. However, since

E(ci,c] + E(c,c j] =  ∑   c2P(c)

      
–

∑ cP(c)
c ∈Ω(ci , c]







2

w(ci , c] –

∑ cP(c)
c ∈Ω(c,c j ]







w(c,c j ]
,     (13)

minimizing Eq. (11) is equivalent to maximizing

  
      

∑ cP(c)
c ∈Ω(ci , c]







2

w(ci , c] +

∑ cP(c)
c ∈Ω(c,c j ]







w(c,c j ]

2

      

=
∑ cP(c)

c∈Ω(ci ,c]















2

w(ci ,c]
 +  

∑ cP(c) –
c∈Ω(ci ,c]

∑ cP(c)
c∈Ω(ci ,c]















w(c,c j]– w(ci ,c]

2

(14)

As w(ci,cj] and  ∑c [ Ω(      c i , c
j
]cP(c) are constants for a fixed box Ω(c i , cj],

we only need to apply the inclusion-exclusion rule Eq.(4) to compute the
summations ∑c [ Ω(      c i , c ]cP(c) and w(c i,c] for c of Eq.(12) in the process
of maximizing Eq.(14). Furthermore, since four of eight Md(c) involved
in Eq.(4) do not change when c takes on different values in one of three
sets — cjr × cjg ×  (cib, cjb], cjr ×  (cig, cjg] ×  cjb, and (cir, cjr] ×  cjg ×
cjb—only  four additions are required by  w(c i,c] and  12 additions by
∑c [ Ω(      c i , c ]cP(c). (Note  that the latter is a 3-vector). After the preceding
manipulations the new algorithm requires 25 additions, six multiplica-
tions, and two divisions per iteration.
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Experimental ResultsExperimental ResultsExperimental ResultsExperimental ResultsExperimental Results
The new optimal color quantization algorithm was implemented on a SUN
3/80 workstation. It took only 10 seconds to quantize a 256 ×  256
image. The impact of optimizing partitions is very positive. The new
algorithm achieved, on average, one-third and one-ninth of mean-square
errors for the median-cut and Wan et al. algorithms respectively.

Shown in Fig. 2 (see color insert) is a set of photos of a quantized ISO
color test image. The picture in (a) has 256 colors and is quantized by
the proposed algorithm. This image is virtually indistinguishable from the
original 24-bit pixel image. In (b) is the 64-color image quantized by the
proposed algorithm. Its quality is acceptable. For comparison, we also
show in (c) and (d) the 64-color images quantized by the Heckbert
median-cut and Wan et al. algorithms. The improvement on image quality
by the new algorithm over the previous algorithms is evident.

See also II.2 A Comparison of Digital Halftoning Techniques,
Dale A. Schumacher; II.3 Color Dithering, Spencer W. Thomas,
Rodney G. Bogart; III.1 Efficient Inverse Color Map Computa-
tion, Spencer W. Thomas; (287) A Simple Method for Quanti-
zation: Octree Quantization, Michael Gervautz, Werner
Purgathofer



3.2 Figure 2.  (a) 256-color image quantized by Wu’s algorithm; (b) 64-color image quantized by Wu’s algo-
rithm; (c) 64-color image quantized by Heckbert’s algorithm; (d) 64-color image quanitized Wu the Wan et al.
algorithm.

(a) (b)

(c) (d)
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III.3III.3III.3III.3III.3
AAAAA RANDOM COLOR MAP RANDOM COLOR MAP RANDOM COLOR MAP RANDOM COLOR MAP RANDOM COLOR MAPAAAAANIMATION ALGORITHMNIMATION ALGORITHMNIMATION ALGORITHMNIMATION ALGORITHMNIMATION ALGORITHM

Ken MusgraveYale UniversityNew Haven, Connecticut

Coloring deterministic fractals such as Mandelbrot and Julia sets is a
time-consuming process. This process can be automated with a random
color map animation algorithm that gives quite striking results as seen in
the color plates I.7.1 and I.7.2. Color map animation makes
iteration-fractal images come alive and adds considerable viewing inter-
est; applied to more ordinary images, it can give bizarre and entertaining
effects and sometimes can reveal data not readily apparent with a fixed
color map.

The idea behind this algorithm is simple: Generate random sawtooth
waves in red, green, and blue on the fly (Fig. 1), and push the resulting
color ramps through the color look-up table. One can think of the look-up
table as a window sliding along the trace of the random RGB sawtooth
waves. The power of the algorithm derives from the fact that the color
ramps are generated on the fly, and thus need not be stored. User input is
limited to a starting seed for the underlying random number generator
and parameters for the statistics of the random ramps. (These parameters
can be built in, of course.) The programming work involves the creation
of random-number generation routines with specific statistical character
to be used in specifying the color ramps, and the interpolation of the
ramps once endpoints have been specified.

For a first cut, very nice results can be had by using uniform random
numbers to specify the ramp endpoints, and linear interpolation for the
ramps. In fact, one simply can perform a random walk in color space
(corresponding, appropriately enough, to Brownian motion) and not have
to perform any interpolation at all. The choice of color space (e.g., RGB,
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Figure 1.

HLS, etc.) is up to the programmer; we always have used the RGB color
space. Linear interpolation of color ramps can be performed efficiently
using a bit of standard DDA code, which you already may have lying
around somewhere, or can easily lift from a basic computer graphics text.

The algorithm proceeds as follows:

0. Optionally, load a starting colormap, such as a zebra-striped grey
ramp.

1. Get values from the random-number generator for ramp endpoints.
Scale these values to represent intensity (i.e., 0–255) and ramp
length. Maximum ramp length is a user option.

2. Assuming initial ramps start and zero intensity, shift [0, 0, 0] into the
low end of the color map.
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3. Until the end of the text (i.e., red, green, or blue) ramp is reached,
shift next interpolated color tuple into the colormap.

4. Choose endpoint for next ramp of the color ramp that has been
exhausted, and go to step 3. Interpolate new ramp starting from the
endpoint of the last ramp.

Note that you may wish to leave the bottom or top color map entry, which
colors the interior of the M-set or J-set, fixed at some color such as
black.

On modern hardware, the  entire  process often proceeds too rapidly,
and some means, such as specification of no-ops, must be found to slow
the animation down to a reasonable speed. A problem often encountered
in implementation on a specific platform is side effects from writing to the
color look-up table during nonvertical-retrace time; this will show up
typically as a flickering noise in the display. Thus, one may have to go
into low-level instructions for the  frame buffer hardware to find an
instruction that will assure that the writing  occurs only during vertical
retrace time. Personal experience indicates that when such an instruction
exists, it often does not work as advertised, and that inclusion of no-ops
to slow the execution usually does the trick.

Fun can be had in playing with the statistics of the random-number
generator. Try Gaussian random numbers in the interval [0,255] with a
mean of 127 for a pastel color map animation (more tasteful, but less
spectacular). Taking  Gaussian random numbers  in  the interval
[ –256, 255] with mean 0 and adding 256 to negative instances gives a
loud, tasteless, ”postmodern“ animation. Try nonlinear, e.g., cubic spline,
interpolation of the color ramps. (We have found this generally less
visually striking than linear interpolation.) Try reversing the direction of
the animation (randomly). Try different starting maps—it takes a while to
fill the color map with the random animation, but the built-in anticipationis
a nice feature. A zebra-striped gray ramp, with stripes of width 2 or 3 is
nice. (A width of 1 generally is very hard on the eyes.)

While the animation is, in principle, periodic,the period of the se-
quence is on the order of one day for a 16-bit random-number generator
and about 100 years for a 32-bit generator.
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Should library random-number generators be unavailable or too slow,
here is one that works fine:

#define MULTIPLIER 25173
#define INCREMENT   13849
#define MODULUS    65535A
/*
* pseudo-random number generator; period 65536; requires seed between
*/0 and 65535; returns random numbers between 0 and 65536.
#define RANDOM(x) (x =   (MULTIPLIER * x + INCREMENT) & MODU-
LUS)
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III.4III.4III.4III.4III.4
AAAAA FAST APPROACH TO PHIGS FAST APPROACH TO PHIGS FAST APPROACH TO PHIGS FAST APPROACH TO PHIGS FAST APPROACH TO PHIGSPPPPPLUS PSEUDO COLORLUS PSEUDO COLORLUS PSEUDO COLORLUS PSEUDO COLORLUS PSEUDO COLORMMMMMAPPINGAPPINGAPPINGAPPINGAPPING

James Hall and Terence LindgrenPrime CVBedford, Massachusetts

models: true color mapping, pseudo color mapping and pseudo N color
mapping. In all three cases, the color mapping stage receives primitives
from the lighting and depth cueing stages with a color vector per vertex.
Then, for interior shading method COLOR, the color mapping stage
interpolates the colors across the primitive and maps the resulting colors
according to the selected color mapping method. True color mapping
sets the resulting color using either a closest fit, dithering, or directly
setting the color depending on the pixel depth of the machine. If we
assume that the colors are received in a normalized RGB format, then the
pseudo color mapping will map the color vector onto an index that is
used to select an entry from a list of colors. The major problem with this
scheme is that it uses three interpolators and combines the resulting
colors into an index for each pixel as we traverse the primitive. We show
that it is possible by mapping the colors at the vertices first to simply
interpolate the indices at each vertex.

Pseudo Color MappingPseudo Color MappingPseudo Color MappingPseudo Color MappingPseudo Color Mapping
The PHIGS PLUS specification defines pseudo color mapping as a
method that converts colors into a single integer index that is used to
select a color from a list of specified colors in a data record. The data
record contains a weighting vector [Wl, W2, W3] (for RGB color format)

PHIGS PLUS allows an application to select between three color mapping
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and a list of R colors. Note that an index of 1 corresponds to the first
color on the list. Assuming an RGB color model for both the rendering
color model and the color mapping color model, the mapping processmay
be defined as follows:

1. Normalize the weighting vector W by dividing it by the sum of its
components. (This operation is independent of the interpolation pro-
cess and may be done when the weighting vector is defined.)

2. Calculate  J = round((R—1)(Wl*Cl + W2*C2 + W3*C3) + 1)
(where [Cl, C2, C3] = [red, green, blue])

3. Use J as an index to select one of the entries in the list of colors.

4. The selected color then is displayed on the workstation as accurately
as possible.

How accurately the colors are displayed on the workstation is determined
by the capabilities of the underlying workstation. For true color worksta-
tions, whose pixel memory is displayed directly, mapped colors are
reformatted to the correct pixel layout and output to the frame buffer. For
pseudo color workstations, with a smaller frame buffer resolution whose
output is mapped through a color look-up table (LUT), it is more an issue
of how the LUT is managed. Since we must support both true and pseudo
color mapping, at least some part of the LUT must contain a color cube to
support either a closest-fit or dither scheme. If we create the largest
possible color cube that the LUT size will allow, then we will get a
higher-quality approximation of true color at the cost of approximating
the pseudo entries. Consequently, after applying the pseudo color map-
ping, we must get the color from the color list and approximate it based
on the current color cube. We would obtain much better performance if
we directly load the color lists into the LUT so that the color indices could
be written immediately into the frame buffer. Most applications tend to
use only one of the color mapping methods, so a reasonable approach
would be to prescan the workstation color mapping table and load the
pseudo color lists into the hardware LUT, and use the remaining space to
fit a color cube. In this fashion, if no pseudo color mappings are used, we
would get a large color cube and a higher-quality true color approxima-
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tion. As the number of pseudo color mappings increases, the quality of
the true color emulation would decrease (as well as the likelihood that it
would be used).

Pseudo Color InterpolationPseudo Color InterpolationPseudo Color InterpolationPseudo Color InterpolationPseudo Color Interpolation
In this section, we describe the interpolation of colors along a line and
show that it is possible to map the colors at the endpoints prior to
interpolation, instead of interpolating the endpoint colors and then map-
ping. We note that this process can be extended to fill areas (polygons) by
interpolating the mapped colors along the polygon edges and performing
scanline interpolation between them. We can describe the interpolation of
colors along a line with endpoints P1 (x1, y1, C1) and P2(x2, y2, C2)
by:

C = t*C1 + (1 – t)*C2,                         (1)

where
                    Cl = [r1, g1, b1] and C2 = [r2, g2, b2].

The color mapping process then is defined by:

               i = round((R – 1)(W1*r + W2*g + W3*b) + 1).

We can switch to vector notation and incorporate (R – 1) into W,
W = W*(R – 1),

i = round((W, C)) + 1 ,                       (2)

i = round((W, t*C1 + (1 – t)*C2) + 1 ,

i = round(t*(W, C1) + (1 – t)*(W, C2)) + 1           (3)

This shows that mapping the colors prior to interpolation is identical to

combining Eqs. (1) and (2),

distributing
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interpolating the colors and then performing the pseudo color mapping;
which means that we can switch accurately to a single interpolation
variable for the pseudo color interpolation process.

The optimization outlined saves for each pixel four additions and three
multiplications, where two of the additions are associated with updating
the two extra interpolation variables and the other two are associated
with the mapping operation. Moreover, we eliminate two divides associ-
ated with the two extra interpolation derivatives.

ImplementationImplementationImplementationImplementationImplementation
An implementation of this scheme might prescan the workstation color
mapping table and load the color lists into the hardware look-up table.
This requires associating with each color mapping method entry a
lut_start describing where in the LUT the color list was loaded. Relocat-
ing the list in this fashion allows us to drop the +1 in Eq. (3), since the
first entry in the list now is at lut_start. Additionally instead of represent-
ing the index values as real and rounding when performing the original
mapping of the vertices, we scaled the values by 4096.0 and rounded so
that the indices were in an 8.12-integer format. This allows us to substi-
tute the round in Eq. (3) with a shift right by 12, further increasing the
performance. The following pseudo-code gives a general overview of an
implementation:

assume we haue a current color mapping state with the following
format
Record color_mapping_table_entry

 begin
 w1, w2, w3: real;     weighting vector with (R – 1) incorpo-

rated
 start_lut:    integer  starting lut index
 end;

shaded_line(x1, y1, x2, y2, c1, c2) assuming x is the major axis
where (x1, y1) and (x2, y2) are the endpoints of the line and c1

and c2 are the colors (red, green, blue) at those points
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begin
map the color at the input endpoints

i1 ←  start_lut*4096 + (w1*c1.red + w2*c1.green + w3*c1.blue)*4096;
i2 ←  start_lut*4096 + (w1*c2.red + w2*c2.green + w3*c2.blue)*4096;
didx ←  (i2–i1)/(x2 – x1); compute color derivative
i ←  round(i1); compute starting color
for each pixel

begin
plot(x, y, shift_right(i,12)); plot the current color
i ←  i + didx; update for next pixel
end

end
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III.5III.5III.5III.5III.5
MMMMMAPPING RGB TRIPLES ONTOAPPING RGB TRIPLES ONTOAPPING RGB TRIPLES ONTOAPPING RGB TRIPLES ONTOAPPING RGB TRIPLES ONTO16 16 16 16 16 DISTINCT VALUESDISTINCT VALUESDISTINCT VALUESDISTINCT VALUESDISTINCT VALUES

Alan W. PaethNeuralWare, Inc.Pittsburgh, Pennsylvania

A previous gem by the author (Paeth, 1990a) described a high-speed
mapping from arbitrary RGB color descriptors onto one of 14 values,
useful for creating four-bit pixel indices. This entry extends the technique
in compatible fashion to 16 values by placing two mid-level gray values.
The derivation once again takes advantage of descriptive solid geometry
in locating the nearest (Euclidean) target point to input point. Figure 1
illustrates the partitioning of 3-space into 16 regions. Figure 2 illustrates
the quantization of color triples under the algorithm.

High-speed mapping onto a small set of three-component descriptors
may be achieved by the partitioning of the unit cube into subregions. This
has a general application in recoding 3-vectors (color triples, surface
normals) at reduced precision in symmetric fashion. Specifically, planes
normal to the cube’s four body diagonals (Paeth, 1990e, Fig. 6b) form 14
space partitions.

As these planes are parallel neither to the axes nor to each other,
axis-separable algebraic methods (Paeth, 1990f, p. 254), which are con-
ventionally used for quantization of larger color spaces (Gervautz and
Purgathofer, 1990), must yield to non-Cartesian models, the latter easily
represented geometrically. This dissection is related to the face locations
of the cuboctahedron. (The latter are presented in Gem “Exact Metrics
for Regular Convex Solids,” later in this book (Paeth, IV.3).)

The vertices of the former solid are retained to allow upward com-
patibility. This preserves the primary colors of the cube’s vertices at
( ± 1, ± 1, ± 1), which are essential to many algorithms. (See also Paeth
(1990f, Fig. 9).) Unfortunately, space partitioning by projection onto
spherical polyhedra places no interior points: Grays in particular are
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absent. Worse, Steiner’s theorem from 1888 (republished in 1971) indi-
cates that four arbitrary skew planes may form no more than 15 3-space
partitions: P3(n) = 1/6 [n3 + 5n + 6].

The addition of two gray points extends the descriptor table usefully: A
uniform, linear set of four achromatic values allows the direct rendering
of monochromatic images of two bits, plus their multiples (Paeth, 1990b,
p .  250). The interior codes are at     

1
3

 
1
3

 
1
3( )  and     

2
3

 
2
3

 
2
3( )  Table I is the

updated color descriptor table.

Table 1.

Code  Name       Red      Green       Blue  Volume

0000 black 0 0 0 1/48
0001 olive 1/2 1/2 0 1/12
0010 purple 1/2 0 1/2 1/12
0011 red 1 0 0 1/16
0100 aqua 0 1/2 1/2 1/12
0101 green 0 1 0 1/16
0110 blue 0 0 1 1/16
0111 lt gray 1/3 1/3 1/3 1/24
1000 dk gray 2/3 2/3 2/3 1/24
1001 yellow 1 1 0 1/16
1010 magenta 1 0 1 1/16
1011 pink 1 1/2 1/2 1/12
1100 cyan 0 1 1 1/16
1101     lime 1/2 1 1/12 1/12
1110 sky 1/2 1/2 1 1/12
1111 white 1 1 1 1/48

Computation of the nearest axial gray descriptor       
c
3

 
c
3

 
c
3( )  for any point

in RGB space uses the equation, c = 1/3  (R + G + B + .5)



 , valid for all

space. This resembles the first half-plane equation of the previous algo-
rithm: the test used to bisect the gray axis. To extend that algorithm, the
bit-oring operations that record fourfold half-space membership are
permuted (with the tests not being coupled), placing the gray test in
fourth position. When the three preceding boolean tests for code-bit
positions 20 21 and 22 yield like sign, the final test with boolean result in
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bit 23 may be omitted: Code words “0000” (black) and “1111” (white)
must result; codes “1000” and “0111” are inadmissible. In cases of like
sign, the test point is localized to the black or white partition at the
conclusion of the third test.

When these conditions arise, the fourth half-plane test may be adjusted
(at execution time) by parallel displacement, recasting it in the form of a
two-bit gray axis quantization test. Points lying toward the interior are
placed in dark gray-light gray subregions split from the parent
black-white volumes. These are represented conveniently by the previ-
ously unoccupied code words. Conditional execution of the adjustment
step prior to the fourth plane test provides optional run-time back-compa-
tibility, as seen in the following pseudo-code. (See also the C Implementa-
tion in Appendix 2.)

integer function remap16(R, G, B, R′, G′, B′: real)
rval, gval, bval,: array [0..15] of real;

rval ←  {0.,.5 ,.5, 1.,0., 0., 0.,.333, .667, 1., 1., 1., 0.,.5 ,.5,1.}

gval ←  {0.,.5, 0., 0.,.5, 1., 0.,.333, .667, 1., 0.,.5, 1., 1.,.5,1.}

bval ←  {0., 0.,.5, 0.,.5, 0., 1.,.333, .667, 0., 1.,.5, 1.,.5,1.,1.}

dist: real ←  0.5;
code, mask: integer ←  0;
if   R + G – B > dist then code ←  code bit-or 1
if   R – G + B > dist then code ←  code bit-or 2
if – R + G + B > dist then code ←  code bit-or 4
dist ←  1.5; mask ←  8;

The next two lines update the algorithm and may be compiled
or executed conditionally to provide back-compatibility:

if (code = 0) then {dist ←  .5; mask ←  7;}
else if (code = 7) then {code ←  8; dist ←  2.5; mask ←  7;}

if R + G + B > dist then code ←  code bit-or mask;
R′ = rval[code]
G′ = gval[code]
B′ = bval[code]
return[code]
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This yields an upward-compatible algorithm useful with old data sets.
As before, monochromatic triples (c, c, c) yield monochromatic output.
No central gray color is present: Infinitesimal test excursions away from
the cubes’s center at (1/2, 1/2, 1/2) yield 14 distinct colors, including
two grays—only full black and full white are not represented.

A valuable geometric property of this space partitioning is that the two
gray planes introduced are coincident with faces of the underlying cuboc-
tahedron. These cut the gray body diagonal at 1/6 and 5/6 of its total
length. This cube partitioning is closely related to the dissection of
Euclidean 3-space into cuboctahedra and octahedra. An octahedron
(whose faces are primary colors) may be split in Cartesian fashion into
eight right-angled corner pyramids. Attaching each to the eight underly-
ing triangular faces of a cuboctahedral core forms the color cube of the
previous algorithm. In the present case, the interior, regular tetrahedra
beneath the black and white corner pyramids retain intermediate gray
values (Fig. l see color insert).

Interestingly, although many edge and face dimensions of the unit color
cube have irrational measure, the dissection volumes do not: They are
reciprocals of integers (Table 1). Moreover, the eight primary colors,
which occupy half of the descriptor table, likewise account for half of the
cube’s partitioned volume. Finally, the four achromatic volumes are in
1 : 2 : 2 : 1 proportion. Precisely the same ratios result when gray quanti-
zation onto two bits is performed along a one-dimensional axis, in a
manner previously advocated (Paeth, 1990f, pp. 250-251). Four half-
plane tests (the minimum) suffice in partitioning the (color) cube into 16
regions, though two comparisons are required to establish the displace-
ment constant employed by the fourth test.

See also (233) Mapping RGB Triples onto Four Bits, Alan W. Paeth



3.5 Figure 2.  Quantization of color triples under the algorithm.

3.5 Figure 1  Partioning of 3-space into 16 regions.
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David Martindale                              Alan W. Paeth      Imax Corp.              and            NeuralWare, Inc.Toronto, Ontario, Canada              Pittsburgh, Pennsylvania

IntroductionIntroductionIntroductionIntroductionIntroduction
Television cameras and receivers are RGB devices: They deal with color
using three signals representing the intensity of red, green, and blue at
each point in the image. However, television signals are not broadcast in
RGB form. RGB is encoded into one luminance and two color-difference
signals for transmission, and a color receiver decodes these signals back
into RGB for display. The color-difference signals then may be transmit-
ted with less bandwidth than the luminance signal, since the human visual
system has poorer spatial resolution for color variation than it has for
luminance variation. Also, this encoding technique provides a signal
compatible with black-and-white receivers that have no color decoding
circuitry.

Mathematically, the transformation from RGB into a luminance-color
difference space is a linear change of basis, and is lossless and invertible.
In the real world of television, though, the signals are represented by
voltages that have maximum limits, and some RGB triples transform into
signals that cannot be broadcast. These “unencodable” RGB values all
are high-intensity, high-saturation colors that seldom occur in nature, but
easily can be present in synthetic images. We call them hot colors.

We discuss the color encoding process to clarify why the problem
exists. Then we discuss an algorithm for efficiently detecting hot pixels in
an image, and two techniques for “cooling” them. A person selecting
colors for an image may use this as a tool to avoid hot colors entirely. It
also can be used to fix up already rendered images before recording them
on video.
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NNNNNTSCTSCTSCTSCTSC Encoding Basics Encoding Basics Encoding Basics Encoding Basics Encoding Basics
The American broadcast color television standard was developed by a
group of industry experts called the National Television Systems Commit-
tee. The acronym NTSC is used now for both the committee and the
standard itself.

Any color television standard must begin by specifying the chromatici-
ties of the three primary colors that will form the color reference frame
for the system. The actual spectral sensitivities of the sensors in the
camera may not match these reference primaries, but in that case, the
camera will perform a color space transform to express the color content
of the scene in terms of amplitudes of the reference primaries, not the
actual image sensor outputs. Similarly, if the receiver uses phosphors
with chromaticities different from the reference primaries, it also will
perform a color space transform to match the color that would have been
produced with the reference primaries. (Well, that is the theory. Practice
often differs from theory.)

For its reference primaries, the NTSC selected the chromaticities iden-
tified as NTSC in Table 1. For the luminance (Y) signal to reflect
accurately the luminance content of a scene, it must be calculated as a
weighted sum of RGB, where the weights represent the actual contribu-
tions of each of the reference primaries towards the luminance of a
reference white value. First, a reference white must be selected; the NTSC
specified CIE Standard Illuminant C (Table 2). Then we must find the
linear combination of the reference primaries that gives reference white
by solving the following set of equations. Here, the columns of the first
matrix are the chromaticities of the reference primaries, the J’s are the

Table 1.  Primary Color Chromaticities.
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Table 2.  White Point Chromaticities.

unknowns, and the right-hand matrix contains the chromaticity of refer-
ence white normalized so its y component is 1:
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When this has been solved, the relative luminance contributions of the
RGB primaries to reference white then are Jr ∗ yr , Jg ∗ yg , and Jb ∗ yb.
For the NTSC primaries and Illuminant C white point, the weights are
0.299, 0.587, and 0.114 to three significant figures. The ubiquitous
equation Y = .30R + .59G + .11B, seen so often in computer graphics,
is borrowed directly from the NTSC standard. Note that these values are
correct only for the NTSC primary chromaticities and white point; they
are not correct for most modern RGB monitors.

In addition to the Y signal, there are two color difference values to be
defined. (B – Y) and (R – Y) are used, since they have the nice property
of going to zero on any grays in the scene, and (G – Y) is less suitable
because of the large amount of green in Y. The resulting values then must
be scaled by some factor to keep their amplitudes within a range where
they can be superimposed on the luminance signal without requiring
more total voltage range. Somewhat arbitrarily, the NTSC decided to
calculate the scaling factors so that any color whose RGB amplitudes all
are less than or equal to 0.75 (after gamma correction) will be encoded
into a composite signal whose peak amplitude never exceeds that of
full-intensity white. The two worst-case colors are fully saturated yellow
and cyan, and expressions for the encoded composite signal for these two
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colors yield two linear equations in two unknowns. Solving them yields
the needed scaling factors, and we now can define two signals, U = 0.493
(B – Y) and V = 0.877 (R – Y). These two signals carry all of the color
information, and collectively are known as chrominance.

The I and Q signals that are broadcast are derived from U and V via a
simple linear change of basis corresponding to rotating the coordinate
system 33°: I = V cos(33°) – U sin(33°), Q = V sin(33°) + U cos(33°).
This positions the Q axis so it carries the colors for which the eye has the
poorest spatial resolution, thus minimizing the picture degradation caused
by transmitting the Q signal with less bandwidth than I.

Every component of this sequence of operation (Y extraction, color
difference extraction and scaling, and 33° change of chrominance basis
vectors) is linear, so we can express the entire transformation as a single
matrix. The NTSC transformation and its inverse are:
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1.0 –0.2717 –0.6485
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The three signals must be combined into a single composite signal for
broadcast or transmission over a single wire. This is done by having I and
Q modulate two high-frequency signals of the same frequency but with a
90° phase difference between them. This can be represented by C =
I cos(ωt) + Q sin(ωt), where ω = 2π FSC This sum is a single sine wave
of amplitude |C| = sqrt(I2 + Q2). When this is added to the luminance
signal, the peak positive and negative excursions of the composite signal
are Y + |C| and Y – |C|.

There is one additional detail that has been ignored so far. The RGB
signals being fed to the CRT in the receiver must be gamma-corrected to
compensate for the nonlinear transfer characteristics of the CRT. The
NTSC standard defines this gamma correction as being done to the RGB
signals in the camera, before encoding to YIQ. As far as the NTSC
encoding hardware is concerned, your frame buffer is a camera, so the
signals coming from it also must include gamma correction. You may do
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the gamma correction with hardware or software look-up tables, have it
built into your pixel quantization method, or use any other method that
works. You always should use an exponent of 0.45 when doing the
gamma correction, ignoring the actual gamma of your monitor. (The
NTSC standard specifies gamma correction for an assumed receiver
gamma of 2.2.)

The actual phosphors used in television CRTs have changed over time,
and their chromaticities have not been close to the NTSC reference
primaries for decades. This variation made it difficult to evaluate critically
the color in television studios, and the Society of Motion Picture and
Television Engineers (SMPTE) set up several committees to develop
standards for these picture monitors. Eventually, recommended practices
RP-37 and RP-145 (SMPTE, 1969, 1987) were published. These docu-
ments specify the phosphor chromaticities called SMPTE in Table 1 and a
white reference of D65 (Table 2). See Zavada (1988) for more information
about the history of these standards.

In theory, these practices apply only to monitors used for evaluating
video within television studios, while cameras, telecines1, and home
receivers continue to adhere to the original standard. However, of the
broadcasters that bother to calibrate the color matrixing on their cameras
and telecines, most use monitors that conform to these standards, so
these picture sources are effectively being calibrated to the SMPTE
standards. Thus, although the official standard has not changed, there is
a new de facto standard for primary chromaticity.

The RGB-to-YIQ encoding still is done according to the original stan-
dard; the luminance weighting factors and chrominance scale factors
have not been changed to correspond to the altered phosphors and white
point. As a result, the matrix is not quite correct for the chromaticities
actually used, though this causes few problems in practice.

If you have an image rendering system that can be told the chromatici-
ties of the red, green, and blue primaries of the display for which it is
rendering, you should specify chromaticities appropriate for broadcast,
not the ones appropriate for your particular RGB monitor. In theory, you
should use the NTSC reference primary chromaticities, but we recom-

1A telecine is a device for converting a motion picture image recorded on photographic
film into a television signal.
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mend that you use the SMPTE set instead. This is more likely to give
color reproduction that matches that of real objects photographed in
modern studios.

The ProblemThe ProblemThe ProblemThe ProblemThe Problem
Because of the particular way in which the scale factors used in the
calculation of U and V were chosen, some fully saturated colors with
intensities greater than 0.75 after gamma correction (0.53 before gamma
correction) will have composite signal amplitudes that go above maxi-
mum white. There is some leeway for signals that go above maximum
white, but not enough to handle all possible colors. The worst case occurs
when either the red or blue intensity is zero and the other two compo-
nents are at maximum. Such signals are unlikely to be produced by video
cameras, but frame buffers will happily generate any combination of R,
G, and B.

Video signal amplitudes usually are measured in IRE units, where 100
IRE is maximum white, 7.5 IRE is picture black, and 0 IRE is blanking
black. At an amplitude of 120 IRE, the video transmitter becomes over-
modulated, so this forms an absolute upper limit for the signal during
transmission. Other video equipment, too, may clip or distort signals that
exceed 120 IRE, potentially resulting in drastic color errors in the
affected areas of the image. Unfortunately, full-intensity yellow and cyan
encode to signals that reach 131 IRE: such colors must be reduced in
intensity or saturation before they can be broadcast. To be conservative,
we should limit the peak amplitude to about 110 IRE, so that even if it
grows a bit through several stages of processing, it will not reach the 120
IRE hard limit. Limiting to 100 IRE is even safer, but undesirable because
it further limits the colors available.

There is a second potential problem. Winkler (1990) describes how the
chrominance component of an NTSC signal can be displayed on a vec-
torscope, and comments that colors never should be allowed to go
outside the outer circle of its display. On vectorscopes available to the
first author, the position of the outer circle corresponds to a chroma
amplitude of 52 or 53 IRE units. To be safe, we should set the chroma
amplitude limit to 50 IRE.
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Although no explanation of this restriction is given by Winkler, and
another source does not consider this to be a problem, it costs almost
nothing to check for this condition at the same time that we check for
composite signal amplitude. Thus, we provide the check; you can delete it
easily if you feel it is not required.

PPPPPALALALALAL Encoding Encoding Encoding Encoding Encoding
The designers of the PAL broadcast standard used the NTSC standard as
a basis, changing only what they felt needed changing for their environ-
ment. Many of the changes were in areas that do not concern us here. We
will discuss only the relevant ones.

Because more total bandwidth was available, and because of the phase
alternation that is used in PAL, both chrominance signals could be
transmitted with the same bandwidth. Thus, there was no reason for the
color space transformation from U, V to I, Q, and it was deleted. The U
and V signals are used to modulate the subcarriers directly.

Instead of using the NTSC reference primaries, most PAL systems use
the EBU reference primaries listed in Table 1. Thus, you should render
your images for these primary chromaticities if they are destined for PAL
broadcast. PAL systems also use a D65 white point instead of Illumi-
nant C.

Despite these changes, PAL retains exactly the same luminance weight-
ing factors and U, V scaling factors that are used in NTSC. In matrix
form, the transformation and its inverse are:
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The only difference between the NTSC and PAL matrices is the additional
33° rotation used to generate I and Q in NTSC.
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You should do gamma correction using an exponent of 0.45 (the same
as NTSC).

Component SystemsComponent SystemsComponent SystemsComponent SystemsComponent Systems
There are several systems for processing and recording video images as
three separate signals that are not mixed together; these are called
component systems. Betacam and M2 are analog component systems,
while CCIR 601 is a standard digital component system. These are
available for both NTSC and PAL standards. Since the luminance informa-
tion is carried separately from the chrominance, there are no problems
with the sum of the two being too large. In addition, the chrominance
scale factors are defined so that all RGB colors produce chrominance
signals that are within the defined range. Finally, the two chrormi-
nance signals are not added together, so the magnitude of their sum is not
a concern either. See SMPTE RP-125 and 253 (1984, 1990b) for the
details.

Thus, there are no color restrictions when you are recording to a
component recorder—provided you will play back the recording only on
a component monitor. If the signal will be encoded to composite NTSC or
PAL at some point in the future, however, it may be advantageous to do
hot-color processing before recording, anyway.

HHHHHDTVDTVDTVDTVDTV
The SMPTE 240M document (1988) describes an international standard
for the production of HDTV images. It is a component video standard,
and has all the advantages of the other component systems listed previ-
ously.

Initially, the reference phosphors are the SMPTE set (Table 1). Eventu-
ally, the committee members hope that the colorimetry can be based on
the considerably wider gamut given by the primaries labeled HDTV
ideal. Note that the gamut of these primaries is a superset of the gamuts
of the three other primary sets listed. For now, you should render for
SMPTE primaries.
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The white point is D65. The gamma correction exponent is 0.45.  The
luminance weighting factors were calculated from the primaries and white
point specified, and so differ from those used in NTSC and PAL.  The
chrominance scale factors were chosen so that there are no hot colors.  The
encoding and decoding matrices are:
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The AlgorithmThe AlgorithmThe AlgorithmThe AlgorithmThe Algorithm
The hot-pixel test must be done on every pixel in an image, and thus should
be fast.  The “repair” section of the algorithm is likely to be used on a
relatively small number of pixels, so its speed is not of such great
concern.

Calculation of YIQ for each pixel potentially is quite expensive.  The
integer RGB values first must be decoded into a floating point number in
the range [0,1]; this may be cheap or expensive depending on the way the
pixels are encoded.  Then these values must be gamma-corrected, requiring
three calls to a math library function.  Finally, we multiply by the encoding
matrix to obtain YIQ.

We can improve on this considerably by building nine look-up tables, one
for each coefficient in the matrix.  In each table, for each possible RGB
component value, we convert the component value to float, gamma-correct
it, then multiply it by the appropriate coefficient of the encoding matrix.
This reduces the YIQ calculation to nine indexing operations and six
additions.

Y = tab0, 0[R] + tab0, 1[G] + tab0, 2[B],

I = tab1, 0[R] + tab1, 1[G] + tab1, 2[B],

Q = tab2, 0[R] + tab2, 1[G] + tab2, 2[B].
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Calculation of chroma amplitude involves taking a square root. Per-
forming the test, though, only requires comparing the sizes of two
expressions, so we can compare amplitude squared, and eliminate the
square root:

    I 2 + Q2( )  > limit
I2 + Q2 > limit2

The test for composite signal amplitude can be rearranged in a similar way:

Y +     I 2 + Q2( )  > limit

    I 2 + Q2( )  > limit – Y

I2 + Q2 > (limit – Y)2

The simple computations just described can be done entirely in scaled
integers, eliminating floating point entirely. Since the values of Y, I, and
Q always are within the range [–1, 1], we can choose a scale factor that
gives plenty of fractional bits without risk of overflow, even on a 16-bit
machine. We do have to convert to 32 bits to handle the squares, though.

There are only three integer multiplications plus seven additions, one
subtraction, and two comparisons necessary in the per-pixel loop. (One
squaring operation is done on a constant.) This is reasonably cheap.

Once you have found a hot pixel, you may wish to flag it in a distinctive
manner so the user can see where it is. If your frame buffer does not have
overlay bits, just setting the pixel to a distinctive color will do.

If you have to repair hot pixels, then the RGB values must be altered.
This involves calculating the actual chroma amplitude, which requires
taking a square root or equivalent. The C Implementation that accompa-
nies this gem (Appendix 2) just switches to floating point for simplicity.
However, if floating point is not available or is too slow, you can convert
the remainder of the code to scaled integer as well. The square root also
can be done with integers using an approximation technique described by
the second author (Paeth, 1990b). This technique is not exact, but always
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errs on the side of overestimating the result. When used in this algorithm,
it can result in “cooling” the color a bit too much, which is harmless.

There are two plausible ways to alter the RGB color to bring it within
acceptable bounds. Altering the hue of the color could have extremely
ugly results, so we do not consider this. That leaves saturation and
intensity (luminance) open for adjustment. Changing luminance is easy.
Because the color encoding transform is linear, multiplying YIQ by a
scalar value is equivalent to multiplying RGB by the same scalar. Gamma
correction adds a minor wrinkle: To multiply the gamma-corrected RGB
values (and thus YIQ values) by a factor K, the linear RGB values must
be multiplied by a factor of Kgamma.

Altering color saturation while leaving hue and luminance alone is only
a bit more difficult. In concept, we want to scale I and Q equally by some
scale factor s, while leaving Y unaltered. If E is the color encoding matrix
and E–1 is its inverse, we wish to evaluate:
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If you multiply out the three 3 × 3 matrices, you will find that the
operation performed by their product simply is:

R = (1 – s)*Y + s*R R = Y + s*(R – Y)
G = (1 – s)*Y + s*G or G = Y + s*(G – Y)
B = (1 – s)*Y + s*B B = Y + s*(B – Y)

In other words, perform a linear interpolation between the original pixel
value and a monochrome pixel of the same luminance. In practice, this
method looks awful when applied to full-intensity color bars, since their
saturation must be decreased so much. However, it might be acceptable
when applied to real images, and it has the advantage that it preserves the
black-and-white component of the image.
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Further ReadingFurther ReadingFurther ReadingFurther ReadingFurther Reading
Winkler (1990) contains an introduction to video, plus much reference
material on calibrating your video equipment if you do not have a video
engineer handy. Hall (1989) contains extensive discussions about color
accuracy in rendering, and transforming images to a different color space.
It also contains a discussion on how to handle out-of-gamut colors that
goes beyond the two simple techniques discussed here. Amanatides and
Mitchell (1990) provide some interesting comments about high-quality
rendering for the interlaced video format.
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III.7III.7III.7III.7III.7
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Gary W. MeyerUniversity of OregonEugene, Oregon

Calibrating a color television monitor in terms of the CIE XYZ color
notation system has assumed an increasingly important role in computer
graphics. This adjustment has been shown to be useful in applications as
diverse as two-dimensional page layout for the graphic arts and three-
dimensional realistic image synthesis for commercial animation. Part of
the calibration process involves setting the individual brightness and
contrast controls for the three monitor guns so that a white color with
known chromaticity coordinates is produced whenever R = G = B
(Meyer, 1990). Typically, this is thought to require an expensive color
measurement device, such as a colorimeter or a color comparator (SMPTE,
1977).

In this gem, we show how a relatively inexpensive luminance meter can
be used to establish this setup. We also show how the luminance meter
may only need to be used once if a simple light meter with arbitrary
spectral sensitivity but linear response is available. We have made use of
this technique in our research for some time (Meyer, 1986). Recently, it
was shown how this approach can be adapted to postpone the need for a
complete monitor calibration (Lucassen and Walraven, 1990).

To employ a luminance meter in setting the monitor white point, the
luminance ratio between the red, green, and blue monitor guns at equal
drive must be determined. This ratio can be found by noting that the
following relationship holds between the tristimulus values of the white
point and the component tristimulus values produced by each of the
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Using the fact that, for example,
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where xG and yG are the chromaticity coordinates of the green monitor
phosphor, this can be rearranged to yield
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where xw, yw, and zw are the white-point chromaticity coordinates and
Yw is the white-point luminance. From this expression, the required ratio
between the gun luminances can be determined. A luminance meter can
be used to set the individual brightness and contrast controls for each
monitor gun so that the preceding luminance ratio is achieved.

A luminance meter may not always be available to establish these
settings and, even if it is, it may not have the necessary sensitivity (due to
its photopic response) to make these adjustments over the entire dynamic
range of each monitor gun. It is possible, however, to make these
measurements with a light sensing device of arbitrary spectral sensitivity
as long as the device responds linearly to changes in intensity, the device
has a response time appropriate for the monitor refresh rate, and a
luminance meter is available to calibrate initially the light sensing device.

To see how this is possible, consider the spectral emission curve KP  (λ )
for one of the monitor  phosphors, where P  (λ )  is  a relative  spectral
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energy distribution curve that has the property,

∫ P( λ ) d λ  = 1,

and K is a constant with units watts m-2 sr–1 that scales P( λ ) to create
an absolute spectral energy distribution. A luminance meter has spectral
sensitivity   y ( λ ) identical to the human photopic response curve and
performs the following integration:

Y = ∫ KP( λ )  y ( λ ) d λ  = K ∫ P( λ )  y ( λ ) d λ  = KIy.

A light sensing device with arbitrary spectral sensitivity   a ( λ ) performs the
following integration:

A = ∫ KP( λ )  a ( λ )d λ  = K ∫ P( λ )  a ( λ )d λ  = KIa.

Dividing these two expressions by one another and rearranging, we see

    
Y =

Iy

I a

A.

The luminance of the phosphor, therefore, can be measured using the
light sensing device with arbitrary spectral sensitivity as long as the ratio
Iy/Ia has been determined. This can be done by taking the ratio of the
two meter readings at several fixed phosphor intensities and averaging
the result.

Given the chromaticity coordinates of the monitor phosphors, a light
sensing device with linear response but arbitrary spectral sensitivity, and
the short term loan of a luminance meter, it is possible to calibrate
completely a color television monitor in terms of the CIE XYZ system. As
was shown previously the light sensing device can be used to set the
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monitor white point and balance the monitor over its entire dynamic
range. A light sensing device with flat spectral sensitivity is preferred even
over a luminance meter in performing this operation because of its
greater sensitivity, particularly for low blue phosphor intensities. This
same light sensing device also can be used to measure the nonlinear
relationship that exists between the voltage applied to the monitor guns
and the amount of light that the phosphors emit (i.e., gamma correc-
tion) (Cowan, 1983; Brainard, 1989). In this way, a complete monitor
calibration can be accomplished using one relatively inexpensive light
measurement device.
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Ken MusgraveYale UniversityNew Haven, Connecticut

Obtaining high-quality color hardcopy of digital images is still more an art
than a science. It is an expensive process, fraught with pitfalls and
requiring much experimentation. In this gem, we seek to convey some
useful knowledge and techniques. We address image quality and fidelity,
and archivability and originality of computer images as artworks; we do
not address problems of color gamut matching.

The essential problem of color reproduction in computer images is that
of recreating one more or less arbitrary mapping from numbers to colors
—the one performed by whatever reference device is deemed your norm
—on another device or medium that has its own and, invariably, different
biases. While one can endeavor to solve this problem rigorously and
scientifically (Stone, et al., 1988), for some of us, just getting a reproduc-
tion that is close to the original, and in a particular preferred size and
format, would be a boon—especially if it can be achieved without
expensive special hardware.

The first problem we encounter in switching reproduction devices or
media is dynamic range and gamma matching (Catmull, 1979; Bilson
et al., 1986). We have found that a reasonable first-order approximation
can be had through the following process:

Output a gray ramp, with visible tic marks on the edge at about every
five gray levels. Note where the low entries of your look-up table all have
gone to black, and where the high values all have gone white. (Hopefully,
this will not be complicated by significantly different values for red,
green, and blue.) Then remap your image to within the available contrast
range, to avoid gaining contrast and potentially losing detail in highlights
and/or shadows. This sort of contrast gain often occurs when mapping to
photographic media, as when photographing the screen, making a C-Print
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or a Cibachrome print, or even when using a film recorder. Note that you
may need to use a different ASA or type of film in a film recorder than that
specified by the manufacturer; manufacturer ’s specifications sometimes
are utterly apocryphal.

The next step is to reproduce the peculiar response curve of the new
medium on your standard reference device. This means creating a gray
ramp that resembles your standard gray ramp, as displayed on the new
device. This new ramp may not be a gray ramp at all; it may go, for
instance, from black through shades of brown to white, or show some
other peculiar distortion. Reproduce this ramp on your reference device
—hopefully, this simply will require a separate gamma correction to each
of red, green, and blue. Now invert the mapping required to change your
original gray ramp to this distorted ramp. (Inversion of exponential
mappings, such as gamma corrections, just means using 1/ γ , where γ  is
the exponent used in the gamma correction.) Apply the inverse mapping
to your dynamic range-adjusted image(s), which may now look rather
horrible on your reference device. Print the newly distorted images. A
good test is to apply the adjustments to your original gray scale and
reimage it—it should be much closer to the reference ramp now.

This procedure can improve markedly the quality of first-generation
output. This sometimes is not the final target, however. Sometimes, we
wish to make a photographic enlargement from, for instance, a color
transparency. This will require a second iteration of the procedure, to
adjust for the second medium. Note that the adjustments made to your
images inevitably will introduce quantization errors. We employ two
techniques in our renderer to combat quantization error. First, we add
white noise to the image while we have the floating point values, i.e.,
before quantization to 8 bits each for red, green, and blue. This has the
effect of dithering the quantization lines and making them less visible and
offensive. It also plays merry hell with run-length encoding. Second, we
have built the inverse-distortion mapping into the renderer, as an option
to be invoked when rendering images specifically for one of our favorite
bogus output devices. Thus, after developing an image on our reference
monitor, we can toggle the option to create images that are distorted on
our reference monitor but match it closely to the hardcopy device,
without introducing any extra quantization artifacts.

The final target medium may be a Duratrans, C-Print, Cibatrans, or
Cibachrome photographic print, or a four-color offset print. These media
are listed in order of increasing longevity. Works proffered as fine art to
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serious collectors must be archival, that is, it should be expected to last
about 100 years without serious fading or degradation. No commonly
available color photographic medium currently is accepted as being
archival by museums and collectors.

Cibachrome and Cibatrans are positive-to-positive color printing media.
C-Prints and Duratrans are negative-to-positive color printing media, and
are more commonly available. C-Print and Cibachrome are opaque color
prints, while Duratrans and Cibatrans are large-scale transparencies meant
to be displayed back-lit in light boxes. While back-lit transparencies are a
luminous medium, and thus more like a CRT display than an opaque
reflection print, their life expectancy is substantially shorter, as they are
directly exposed to high levels of uv-rich light from the fluorescent bulbs
in the light box. Light boxes are rather expensive as well. C-Prints are
rather short-lived, depending largely on exposure to light. Cibachromes
are touted as being semi-archival, with good colorfastness and a life
expectancy of over 50 years. Note, however, that glossy Cibachrome is
purported to be longer-lived than pearl-finish Cibachrome.

Four-color offset prints made on acid-free paper with non-fugitive (i.e.,
colorfast) inks may be considered archival and can constitute very nice
reproductions, though setup costs are high (about one to three thousand
dollars) and physical dimensions may be limited. Color separations are
done routinely by scanning an original image to create a digital image,
from which the separations are created. With synthetic images, the
intermediate original hardcopy may be skipped, and the separations
made directly from the original digital data. (Note that medium-matching,
as described previously, may need to be done here.) As artwork, the
four-color offset prints now can be rightly viewed as originals, as no
other nonvolatile visual representations exist.

High-quality color printers of various sorts are being announced with
increasing frequency. While the quality can be very good, the longevity of
the pigments often is rather poor. These devices remain rather expensive
as well. If you cannot afford or justify the expense of such a device, look
for a service bureau—these are commercial outfits that make a living
from their stable of such devices. Whichever route you use, be prepared
to pay and pay and pay—and to weep over the quality of your early
results.
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One of the major uses of computer graphics is to produce visual repre-
sentations of virtual three-dimensional objects. Synthetic images of hypo-
thetical three-dimensional scenes are used in areas ranging from engi-
neering to entertainment. Consequently, much of computer graphics is
concerned with three-dimensional geometry. Within this broad subject,
there are many specific, smaller problems; modeling, viewing, clipping,
and shading are among them. The gems of this Part are applicable to
these problems and others.

The first three gems deal with some basic properties of polyhedra and
spheres, two very common types of 3D objects. More complex and
general 3D geometries are addressed by the gems on winged-edge
models and the construction of boundary representations. Three-dimen-
sional clipping is the focus of the gem on triangle strips, an efficient and
flexible grouping of adjacent triangles. The problem of specifying a
viewing transformation for the creation of image—and the inverse prob-
lem of inferring the viewing transformation from an image—form the
basis of the gems on a simple viewing geometry and view correlation,
respectively. The last gem in this Part introduces the concept of Inter-
phong shading, a generalization of the familiar technique of Phong
shading.
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Ronald N. GoldmanRice UniversityHouston, Texas

Area of a Planar PolygonArea of a Planar PolygonArea of a Planar PolygonArea of a Planar PolygonArea of a Planar Polygon
Consider a planar polygon with vertices P0, . . . , Pn. There is a simple
closed formula for the area of the polygon. Let Pn+1 = P0. If the points
P0, . . . , Pn lie in the xy plane, then the following formula can be derived
from Green’s theorem:

Area(Polygon) = 
    
1
2 Pk × Pk +1

k
∑ .

If the points lie on some arbitrary plane perpendicular to a unit vector N,
then from Stokes Theorem:

Area(Polygon) = 
      
1
2 N ⋅ Pk × Pk +1

k
∑ .

These two formulas are valid even for nonconvex polygons.

Volume of a PolyhedronVolume of a PolyhedronVolume of a PolyhedronVolume of a PolyhedronVolume of a Polyhedron
Consider a polyhedron with planar polygonal faces S0, . . . , Sn. There is
a simple closed formula for the volume of the polyhedron. Let

Qj = any point on Sj,

Nj = a unit outward pointing vector normal to Sj.
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Then the following formula can be derived from Gauss’s theorem:

Volume(Polyhedron) = 
      

1
3 Qj ⋅ N j( )Area Sj( )

j
∑ .

Moreover, if P0j, . . . , Pmj are the vertices of Sj oriented counterclock-
wise with respect to the outward pointing normal of Sj, then by our
previous result for polygons:

Area(Sj) = 
      

1
2  Nj ⋅ Pkj × Pk +1, j

k
∑


.

Moreover, we now can take

Qj = P0j,

Nj = {(P1j – P0j) × (P2j – P0j)}/|(P1j – P0j) × (P2j – P0j)|

Putting this all together, we get the formula:

Volume(Polyhedron) = 
      

1
6  P0 j ⋅  N j( ) Nj ⋅ Pkj ×  Pk +1, j

k
∑

j
∑





,

where Nj is defined in the preceding in terms of the vertices of the
polyhedron. Notice again that these two formulas for volume are valid
even for nonconvex polyhedra.

See also I.1 The Area of a Simple Polygon, Jon Rokne
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Clifford A. ShafferVirginia TechBlacksburg, Virginia

Given a point P on a sphere, this gem describes how to compute the new
coordinates that result from moving in some direction. I recently used
this material when developing a browsing system for world-scale maps.
When “looking down” at a position on the sphere, the user of the
browsing system can shift the view to the left, right, up, or down.

The first thing to realize is that while latitude and longitude are
convenient for people, most calculations for the sphere are done more
easily in Cartesian coordinates. Given longitude λ, latitude φ, and a
sphere of radius R with center at the origin of the coordinate system, the
conversions are:

  x = R cos λ cos φ; y = R sin λ cos φ;   z = R sin φ;

R =     x 2  +  y 2  +  z2 ;  λ = arctan
  

y

x




 ; φ = arctan

    

z

x 2  +  y 2






 .

Given point P on the sphere, the plane T tangent to the sphere at P
will have its normal vector going from the origin through P. Thus, the
first three coefficients for the plane equation will be Ta = Px, Tb = Py,
Tc = Pz.  Since the plane must contain P, Td = –(P ⋅ P), i.e., the negative
of the dot product between the vector from the origin to P and itself.

Movement on the sphere must be in some direction. One way to specify
directions is by means of a great circle G going through the current point
P. In this way, we can describe movement as either along G, or in a
direction at some angle at G. G will be contained in some plane J, with
Jd = 0 (since it must go through the origin). For example, the plane for
the great circle containing point P and the north pole N at (0, 1, 0) will
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have normal P × N, or the cross product of the vector from the origin to
P with the vector from the origin to N. Taking the cross product in this
order will make rotations by θ appear clockwise when looking along the
direction of the normal vector from the plane.

Moving along the great circle simply will be a rotation by some angle θ.
The rotation axis will be the normal vector for the plane of the great
circle. Given J, the plane for some great circle, and some point P on the
great circle, rotation of the point within plane J by angle θ clockwise can
be done as (Faux and Pratt, 1979):

Px′ = (JaJa + cos θ(1 – Ja Ja))Px + (JaJb(1 – cos θ) – Jc sin θ)Py

+ (JcJa(1 – cos θ) + Jb sin θ)Pz,

Py′ = (JaJb (1 – cos θ) + Jc sin θ)Px + (JbJb + cos θ(1 – Jb Jb))Py

+ (JbJc(1 – cos θ) – Ja sin θ)Pz,

Pz′ = (JcJa(1 – cos θ) – Jb sin θ)Px + (JbJc(1 – cos θ) + Ja sin θ)Py

+ (JcJc + cos θ(1 – JcJc))Pz.

Moving in a direction perpendicular to the great circle requires comput-
ing the plane J′ perpendicular to the plane J of the great circle that
contains P. The normal for J′ is P × JN, where JN is the normal vector
for plane J, and again, Jd′ = 0. Note that two distinct great circle planes
perpendicular to a great circle plane will not be parallel.

Finally, assume we wish to move from point P in some arbitrary
direction to point P′. The direction is specified as being a clockwise angle
φ to some great circle (with plane J) that contains P. We first must
calculate the plane J′ of the great circle connecting P and P′. We then
can use the preceding rotation equations to calculate the actual move-
ment. To find the new normal vector JN′ we simply rotate JN by angle φ,
using as the axis of rotation the vector from the origin to P. To do so,
simply reverse the use of P and J, and substitute φ for θ, in the rotation
equations.
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Alan W. PaethNeuralWare, Inc.Pittsburgh, Pennsylvania

Whereas decimal approximations for vertex coordinates are common,
this gem gives closed-form formulae and tables for the dihedral angles of
nine prototypical solids. (This is a direct extension of Paeth (1990e),
which allows closed-form expressions for the vertex locations of select
n-gons.) Uses include the production of coordinate tables at high preci-
sion (as seen in example), crack prevention in space packing lattices
having no near-coincident vertices, and the generation of polyhedra using
half-plane equations in the style of CAD/CAM descriptive solid modeling.
The table for dihedrals for the Snub figures in analytic form is previously
unpublished, and dispels the misconception requoted by Coxeter in Ball
(1939) suggesting that cubic roots are needed in the analytic representa-
tion of these unusual solids.

Table I is organized by the regular (platonic) solids, quasi-regular solids
(Coxeter, 1948), and their duals. All possess merely one face dihedral: the
hinge δ between any two edge-adjacent polygons. These are listed
as cos δ and tan δ; sin δ may be immediately formed as their product and
does not appear. Note that supplementary angles (those that sum to 180°
and thus form an unbroken plane) have opposite signs: f(90° – x) =
–f(90° + x) for f in {tan, cos}. Thus, the tetrahedron and octahedron
are seen to form a common face when joined—this suggests their 2 : 1
space packing ratio. Likewise, the cube’s dihedral necessarily is zero: It
forms no edge when abutted with identical copies. This condition for
space packing is sufficient but not necessary: Three copies of the rhombic
dodecahedron also fill space, as is suggested by a solid dihedral angle of
2π/3 (Paeth, 1990g, pp. 236–239), as do two cuboctahedra and an
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Table 1.  (Quasi) Regular Polyhedra and Duals.

octahedron. (See also Fig. 1 from Gem 3.5, “Mapping RGB Triples onto
sixteen Distinct Values.”) Other trigonometric forms may further reduce
the surds. For instance, employing the halved tangent (Gem 8.5, “A
Half-Angle Identity for Digital Computation”) gives the elegant series,
{  2 /2, 1,   2 , φ, φ2), for the five platonic solids; dihedral values tan(δ/2)
are positive and go to infinity as two faces approach planarity. Under this
transformation, supplementary angles have reciprocal, not complemen-
tary measures: The cube now is represented by unity. Using Table I, other
identities may be derived, e.g., sin δi cos a = 2/3.

The dodecahedron and icosahedron are strongly dependent on the
golden mean. The angle formed between two adjacent (vertex) vectors of
the latter may be used to derive the face dihedral of its dual dodecahe-
dron by dotting the vectors, (0 1 φ) ⋅ (0 1 –φ). Closer analysis shows
that the solid angle of the latter also may be derived using vectors with
integral components, as with (1 2 2) ⋅ (1 0 –2), related to the compact
equation tan δdodec = –2. Similarly, the included angle of (0 1 2) ⋅
(2 –1 –2) defines the solid angle of the icosahedron.

As an example of use, the solids of fivefold symmetry most often are
listed (Coxeter, 1948) edge on (meaning the Z axis bisects an edge). Of
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Figure 1.  Regular Dodecahedron (face upright).
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the 20 vertices in the dodecahedron, a cubic subgroup in Cartesian
alignment thus is revealed. (Here ι = φ–1 = φ, – 1):

(± 1, ± 1, ± 1), (0, ± ι, ± φ), (± φ, 0, ± ι), (± ι, ± φ, 0).

Likewise, the icosahedron may be constructed from three mutually
perpendicular rectangles, each having a golden aspect ratio. This also
gives the edge-on representation:

(0, ± φ, ± 1), (± 1, 0, ± φ), (± φ, ± 1, 0).

An aesthetic (and often more practical) dodecahedron is face-on: The
Z axis intersects the centroid of two opposing faces. By starting with a
closed-form representation for a pentagonal face (Paeth, 1990e) and then
applying rotations based on the dihedral table (Table I), the desired
orientation is achieved. A fully worked example is shown in Fig. 1. An
inscribed cube remains evident, here at {± B, ± C, ± D}, in the list of
vertices in Fig. 1. (C and D permute as the cube cannot also be face-on.)

Nearly all of the semi-regular Archimedean solids (whose faces are
regular n-gons with more than one n in symmetric arrangement) employ
these solid angles. For instance, the truncated tetrahedron adds the
octahedron’s dihedral for hinges between its 3-gon and 6-gon faces,
suggestive of its complete truncation to the octahedron.

Unaccounted for are the snub figures, formed by surrounding the
edges of a regular solid’s faces with equilateral triangles. Snubbing the

Table 11.
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cube and dodecahedron creates new solids; the snub octahedron is the
icosahedron. This provides a good test for the snub equation relating
dihedral δ to principal face to vertex angle θ:

4 – 3 cos δ =
  

25 +  16 3 sin
θ
2

Likewise, snubbing a hexagonal plane tiling (which properly may be
regarded as a 3-space polyhedron of infinite volume) forms the curious
snub tiling of the plane. In each case, the algebraic form holds, though an
obscure snub remains: The snub square anti-prism (the 85th solid in a
complete enumeration of polyhedra, see (Johnson, 1966)). It has a dihe-
dral frustratingly close to one formed given a vertex angle of φ = 75°, yet
yields only to other methods (Linsternik, 1963). Johnson’s 84th solid, the
snub disphenoid, is the only other snub having regular n-gon faces. It
may be disregarded, as it can be decomposed into simpler solids. The
Archimedean snubs are presented in Table II. A second, distinct dihedral
angle is present on the two solids of interest between two equilateral
triangles, and is listed in parentheses. Orthographic projections of two
less-familiar solids appear below.

rhombic dodecahedron                icosidadecahedron
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Andrew S. GlassnerXerox PARCPalo Alto, California

Sometimes, it is handy to be able to set up a simple viewing geometry.
For example, packages without matrix libraries, quick preview hacks, and
simple ray tracers all can benefit from a simple viewing construction.
Here is one that I have found handy.

The input is a viewpoint E, a gaze direction and distance G, an up
vector U, and viewing half-angles θ and ϕ. The output is a screen
midpoint M and two vectors, H and V, which are used to sweep the
screen. Figure 1 shows the setup.

First, create vector A by A ← G × U. (I assume right-handed cross
products.) Then find B from B ← A × G. Vector B is coplanar with U and
G, but it is orthogonal to A and G. The midpoint of the screen is found
from M ← E + G. (Note that the length of G tells you how far away the
viewscreen is located.) Vectors A and B span the viewplane, but they are
the wrong size. Find the vector H by scaling A by the horizontal half-
angle: H ← (A|G|tanθ)/|A |. Similarly, the vertical vector is found by
V ← (B|G|tan ϕ)/|B|.

Assuming your origin is in the lower left, as shown, then any point S on
the screen may be specified by (sx, sy), both numbers between 0 and 1.
(For example, if your frame buffer is 640 pixels wide by 480 pixels high,
then (30, 250) would map to (30/639, 250/479)). The point P on the
image plane then is P ← M + (2sx – 1)H + (2sy – 1)V. If you prefer to
have your origin in the upper left, then generate points with the equation
P ← M + (2sx – 1)H + (1 – 2sy)V.



180

IV.4 A SIMPLE VIEWING GEOMETRY

GRAPHICS GEMS II Edited by JAMES ARVO 180

Figure 1.

If you are ray tracing, the ray equation would be R = E + (P – E)t.
(You may wish to normalize (P – E) before actually shooting the ray.)
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IV.5IV.5IV.5IV.5IV.5
VVVVVIEW CORRELATIONIEW CORRELATIONIEW CORRELATIONIEW CORRELATIONIEW CORRELATION

Rod G. BogartUniversity of MichiganAnn Arbor, Michigan

To combine computer-generated objects into a photographic scene, it is
necessary to render the objects from the same point of view as was used
to make the photo. This gem describes an iterative technique for correlat-
ing view parameters to a photograph image. The method is implemented
in C (Appendix 2) as a user function with a simple driver program for
testing. The following sections describe the math behind the iterative
technique, some specifies about the given implementation, and an exam-
ple.

This method requires that at least five points are visible in the photo
image, and that the 3D coordinates of those points are known. Later,
when a computer-generated object is modeled, it must be in the same 3D
space as the photo objects, and must use the same units. It is not
necessary for the origin to be visible in the photo image, nor does it
assume a particular up direction.

For each of the five (or more) data points, the 2D screen point must be
found. This can be done simply by examining the photo image, or by
employing more advanced image processing techniques. Because this is
an iterative technique, the 2D point need not be accurate to sub-pixel
detail. The final set of view parameters will project the given 3D points to
2D locations that have the minimum error from the given 2D screen
points.

In addition to the data points, an iterative process needs a starting
value. A set of view parameters must be given that approximate the
correct answer. The method is extremely forgiving; however, it does help
if the starting eye position is at least in the correct octant of 3-space, and
the direction of view looks towards the center of the 3D data.
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Mathematical BasisMathematical BasisMathematical BasisMathematical BasisMathematical Basis
The following equations define the projection equations used, along with
the partial derivatives needed for Newton iteration. The iteration process
consists of finding the error with the current viewing parameters, filling
the Jacobian matrix with the partial derivatives, inverting the Jacobian to
find the correction values, and applying the correction values to the
current viewing parameters. Right-handed coordinates and row vectors
are used. The following variables are defined:

P 3D data point

E 3D eye point

T Translate by negative eye

R Viewing rotate

θ Half of horizontal view angle

r Aspect ratio for non-square pixels

xs Half X screen width in pixels

xc X screen centering

yc Y screen centering

u Resulting screen X coordinate

v Resulting screen Y coordinate

The projection equations are

  PTR = [a b c],

u = – 
    

xs  ∗  a

c ∗  tanθ
+ xc,

v = – 
    

r ∗  xs  ∗  b

c ∗  tanθ
 + yc,
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but it is difficult to take the partial derivatives of u and v with respect to
the unknown view parameters. The partial of u with respect to a is
simple, but a is dependent on the unknown eye point and rotation
matrix. Therefore, the projection equations are modified so that the
partial derivatives are easy to find.

Rather than subtracting the eye point from P and rotating the result
(PTR), rewrite the equation by rotating each point and subtracting the
results:

PR – ER = [a  b  c],

PR = [x  y  z],

[a  b  c] = [x  y  z] – ER,

[a  b  c] =     x –  erx      y –  ery      z –  erz[ ].

The symbols erx, etc. are just the components of the rotated eye point.
The rotation matrix still is the same one as in the original projection
equations. Substituting for a, b, and c gives a set of projection equations
that are easy to differentiate. The expression 1/tan θ is replaced by ds,
which simply is the distance to the screen divided by half the screen
width:

u = – 
    

ds ∗  xs  ∗  x –  erx( )
z –  erz

 + xc,

v = – 
    

ds ∗  r ∗  xs  ∗  y –  ery( )
z –  erz

+ yc.

The partial derivatives for Newton’s method are found with respect to
the 10 iteration parameters: erx ery erz φx φy φz ds r xc yc. Note that xs
is constant and is known from the original photo image. The φ parame-
ters are the individual rotations about the coordinate axes. Although the
component rotations are not explicitly referenced in the projection equa-
tions, they are embodied in x, y, and z. Therefore, the partial ∂ u/ ∂ φz
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can be found by the chain rule:

     
    

∂u
∂φ z

 =  
∂u
∂x

∂x
∂φ z

 +  
∂u
∂y

∂y
∂φ z

,

    

∂u
∂x

 =  –
ds ∗  xs

z –  erz

,

    

∂u
∂y

 =  0,

     
    

∂x
∂φ z

 =  – y ,

    
    

∂u
∂φ z

 =  
ds ∗  xs  ∗  y

z –  erz

.

The partial ∂ u/ ∂ φz follows from the fact that (x, y, z) = (r cos φz,
r sin φz, z). Therefore, ∂ u/ ∂ φz = –r sin φz = –y. The partial deriva-
tives with respect to the rest of the iteration parameters are found
directly, or by applications of the chain rule, and are presented in Table I.

The Jacobian matrix is simply composed of these equations evaluated
for each given data point. For example, if eight data points were given,
the Jacobian would have 10 rows (for the iteration parameters) and 16
columns (for the u and v partial derivative calculations for each given
point).

The iteration process is simple. First, the 3D data points are projected
according to the current view parameters. The projected points are
compared to the measured 2D data to create a set of error terms. If the
errors are below a predetermined threshold, the iteration stops. Other-
wise, the Jacobian matrix is built as described previously. To produce the
correction values, the Jacobian is inverted and multiplied by the error
terms. Since the Jacobian probably is not a square matrix, the pseudo-
inverse is calculated, (J–1 = JT(J∗JT)–1). The correction values are sub-
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Table 1.  Partial derivatives of u and v with respect to the 10 iteration parameters.

tracted from the current iteration parameters to create a new set of view
parameters. Then the new view parameters are used to project the 3D
points, and the process begins again.

Implementation DetailsImplementation DetailsImplementation DetailsImplementation DetailsImplementation Details
The provided C Implementation (Appendix 2) contains the view correla-
tion routines and a simple program to test them. The test program
accepts a file containing an initial view and a set of 3D points and their
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2D screen locations. The program outputs the correlated view and the
data points, followed by parameters suitable for a specific ray tracing
program called rayshade.

Some renderers cannot handle arbitrary aspect ratios, so it is possible
to prevent the aspect ratio from being iterated. The include file view-
corr.h has a #define variable that can be changed to restrict the aspect
ratio. The aspect ratio then should be set to 1.0 in the initial set of view
parameters passed into iterate_view_parms.

It is important to choose appropriate 3D points for the iteration
process. Although the algorithm can produce correct results with only
five data points, it is advantageous to have as many points as possible. If
only five points are given that all lie in a 3D plane, the process will fail.
Also, if the 2D points are nearly collinear, the process will not iterate
successfully. Therefore, it is best to choose points that widely span
3-space as well as spanning a large amount of screen area.

Figure 1 shows the view geometry that can result from the iterative
process. The view pyramid on the left shows the line of sight as a dotted
line towards the center of the screen (Xhalf, Yhalf). However, the intended
line of sight is toward another point (Xcenter, Ycenter) The view on the right

Figure 1. View pyramid geometry for rendering with iterated parameters.
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shows a larger view pyramid centered at (Xcenter, Ycenter) and completely
enclosing the original screen. The correct rendering is performed by
implying a large screen, then rendering a small window that is the size of
the original image. During the iteration process, the ds value represented
the field of view shown on the left. For rendering a window of a larger
screen, the field of view must be scaled by the ratio of the new screen
divided by the original screen.

It should be noted that the apply_corrections routine does not find
the individual rotation parameters and subtract the correction values

Figure 2.  Example image.
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Table 2. Initial input file for example view correlation.

from them. This would work only for very small changes to the rotation
parameters. Instead, the correction values are built into a single matrix,
and appended to the current view matrix.

ExampleExampleExampleExampleExample
The structure shown in Fig. 2 was built from bricks with known dimen-
sions. Therefore, it was simple to choose a set of 3D points and the
corresponding 2D screen locations of those points. The exact input for
the viewfind program is shown in Table 2. The comments to the right
are not part of the input file.

Table 3. Parameters for use with rayshade for the example image.

screen 608 582
window 224 198 607 581
eyep 248.932765 149.991910 239.688754
lookp 248.350545 149.572529 238.992235
up –0.592104 –0.368372 0.716740
fov 25.338186 24.858782
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Figure 3. Example image with computer-generated objects.

With this input file, the iteration stops after 36 steps, with a root-
mean-squared error of 0.446954. The final rayshade parameters are
shown in Table 3. If the initial guess for the up vector is changed to
(0, 1, 0), the iteration takes 116 steps to reach the same values. When the
up vector is changed to (0, 1, 0), the eye point is set to (100, 1000, –500),
and the look point is set to (300, 300, 300), the iteration takes 272 steps.
On current CPUs, 272 iterations occur in a few seconds.
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Figure 3 shows some additional bricks added by rendering an image of
the two towers with the new rayshade parameters. The raytraced image
then was composited over the original photo image.

Although this gem is intended for use with photographic data, it can be
tested by producing an image of known data with known parameters.
Then the iterated parameters can be compared to the original data.
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IV.6IV.6IV.6IV.6IV.6
MMMMMAINTAINING WINGED-EDGEAINTAINING WINGED-EDGEAINTAINING WINGED-EDGEAINTAINING WINGED-EDGEAINTAINING WINGED-EDGEMMMMMODELSODELSODELSODELSODELS

Andrew S. GlassnerXerox PARCPalo Alto, California

The winged-edge data structure is a powerful mechanism for manipulat-
ing polyhedral models. The basic idea rests on the idea of an edge and its
adjacent polygons. The name is derived by imagining the two polygons as
a butterfly’s wings, and the edge as the butterfly’s body separating them.
This simple concept provides a basis for implementing a variety of
powerful tools for performing high-level operations on models. The refer-
ences (Baumgart, 1974), (Baumgart, 1975), and (Hanrahan, 1982) pro-
vide details on such high-level operations as object-object intersection,
union, difference, and collision detection.

There are several fundamental operations that a winged-edge library
must support. Each operation requires carefully moving and adjusting a
variety of pointers. To illustrate the type of problem that must be solved,
consider the task of inserting a new node N into a simple doubly linked
list between nodes A and B. Each node has two pointers, prev and next,
pointing to the previous and next node, respectively. At the time of
insertion, A.next = B and B.prev = A. If you insert node N by setting
A.next ← N, and then set N.next ← A.next, you are in big trouble, since
after assignment, N.next will point to N, not B. If you make those
assignments in the opposite order, all is well. This sort of problem is
greatly multiplied when moving pointers in a winged-edge library—you
have to make sure you do things in just the right order, or disaster will
ensue.

The purpose of this note is to describe how I solved some of what I
found to be the trickiest pointer-stitching problems in implementing a
winged-edge library. A complete description of such a library would be
long and only repeat the information in the references. Rather, I will
suggest a general architecture and data structures, and give recipes for
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performing those basic mechanisms that require some care to implement
correctly.

I like the architecture suggested by Pat Hanrahan. The general struc-
ture is that faces, edges, and vertices each are stored in a ring (a doubly
linked list). A WShape contains three rings, one each for faces, edges,
and vertices. Each edge ring entry points to a data structure called
WEdgeData, which contains the information for that edge. Each face
contains an edge ring describing the edges around that face. Each vertex
contains an edge ring of all edges around that vertex. All duplicate
instantiations of an edge point to a single WEdgeData structure. (This
contains a pointer back to its owner in the master edge ring in the
WShape.)  Notice that there is a lot of redundancy in this
architecture—that helps speed up searches and complex operations,
which typically start from a face, edge, or vertex ad work from there.
Figure 1 is a pictorial description of a WShape.

Figure 1.
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Figure 2.

The fundamental building block in the system is the edge, represented
by an instance of the WEdgeData data structure. An edge is a directed
connection between two vertices (from aVertex to bVertex). Each edge
separates two faces. (Viewing the edge as in Figure 2, aFace is below and
bFace is above; when following an edge aFace is on the right looking
down onto the outside of the surface, and bFace is on the left.) An edge
has four wings; these are the first edges around the vertex encountered
in the specified direction. Referring to Fig. 2, on aFace we travel
clockwise from the edge to reach aCWedge, and counterclockwise to
reach aCCWedge; we travel similarly for bFace and its wings, bCWedge
and bCCWedge .  Note that other edges may share aVertex and lie
between aCCWedge and bCWedge, but we only store these two outer-
most edges in the WEdgeData data structure.

The basic data structures to implement this library are the WShape,
WFace,  WEdge,  WVertex,  and WEdgeData.  The basic components of
these structures are given as follows. I have augmented the basic data
with an index field and a clientData field; the former is for bookkeeping
and debugging, and the latter is a place for users of the library to store
a pointer to any information they wish to associate with an individual
element.

ClockDirection: type{cw,ccw};

WShape: type record[
vertexRing: WVertex ← nil,
edgeRing: WEdge ← nil,
faceRing: WFace ← nil,
next, previous: WShape ← nil,
index: int ← 0,
clientData: ref any ← nil
];
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WFace: type record[
edgeRing: WEdge ← nil,
next, previous: WFace ← nil,
index: nil ← 0,
clientData: ref any ← nil
];

WEdgeData: type record[
aCWedge, bCWedge: WEdge ← nil,
aCCWedge, bCCWedge: WEdge ← nil,
aVertex, bVertex: WVertex ← nil,
aFace, bFace: WFace ← nil,
index: int ← 0,
owner: WEdge ← nil,
clientData: ref any ← nil
];

WEdge: type record[
edgeData: WEdgeData ← nil,
next, previous: WEdge ← nil,
clientData: ref any ← nil
];

WVertex: type record[
basicVertex: point,
edgeRing: WEdge ← nil,
next, previous: WVertex ← nil,
index: int ← 0,
clientData: ref any ← nil
];

With these data structures in hand, we can consider some of the
functions a winged-edge library needs to support. One common operation
when constructing a model is embodied in the procedure SetWings. This
takes a pair of edges with a common vertex, and determines their wing
information. There are eight ways the edges might be related when they
come into the procedure; Fig. 3 indicates how to set the pointers. (This is
adapted from page 22 of Baumgart (1974).) In the figure, aF and bF
stand for aFace and bFace, and aCW, bCW, aCCW, and bCCW stand
for the edges with those prefixes.
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Figure 3.

The input to SetWings is two edges, e1 and e2. The four columns
distinguish the four cases that identify the vertex shared by the edges.
Each column has two illustrated cases, depending on how the edges are
shared. The cases are identified using the equality just under each picture.
When a diagram is identified as describing this pair of edges, the assign-
ments below the test are applied to the input edges. For example,
suppose your input is two edges, e1 and e2. If e1.aVertex = e2.bVertex,
then you are in the second column. Then if e1.aFace = e2.aFace, you
are in the bottom half of the second column, and you would set
e1.aCCWedge ← e2 and e2.aCWedge ← e1.

Consider next a useful routine called NextFaceAroundVertex. This
takes a vertex, a face, and a direction, and returns the next face around
that vertex in the given direction. Begin by finding any edge that is on the
input face and contains that vertex. (Call this edge e.) As with the
previous procedure, there are eight possible geometric configurations;
identifying the one at hand allows you to determine the next face around
the vertex. We assume a procedure called FaceAcrossEdge, which ac-
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Figure 4.

cepts an edge and face, and returns the other face sharing that edge.
(Such a procedure is easy; if the input face is edge.aFace,  return
edge.bFace, and vice versa.)

Figure 4 illustrates the logic behind NextFaceAroundVertex.  In the
diagram, the input vertex is common to all three shapes; it is marked with
a circle. The input face is shaded in gray. Edge e, the edge you find on
the face and vertex, is indicated with an arrow. In each portion of the
figure, the desired face is marked with a star; the triangle is the next face
clockwise, and the rectangle is the next face counterclockwise. In each
case, we return the face across an edge with respect to the input face; the
correct edge to use is shown in bold. In four cases, that edge is just e; the
other four cases each use one of the wings of e. The legends refer to
the position of the passed-in vertex and face with respect to e. Each case
is marked with the name of the edged used to find the next face, opposite
the input face; this edge is marked in bold.

For example, suppose you are given inputFace and inputVertex and
the direction clockwise. Since clockwise was specified, you know you
care about the upper row of the chart. You search the vertex or face for
an edge e on that vertex and face. Now, find on which side of e lies
inputFace; suppose inputFace = e.bFace, which is the situation for the
two rightmost columns. To distinguish now between the two rightmost
entries on the top row, find which vertex of e is inputVertex; suppose
e.bVertex = inputVertex. Then you are in the rightmost column of the
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Figure 5.

top row, or the upper right corner, and you would call FaceAcrossEdge
(e.bCCWedge, inputFace) to find and return the new face.

Consider next the basic operations when modifying a winged-edge
model: These typically are known as Euler operators, since they pre-
serve the Euler characteristic number of the model. One of the basic
Euler operators is SplitEdge, which simply inserts a new vertex into a
single edge, splitting it in two, as shown in Fig. 5.

I say simply advisedly, since finding the proper sequence in which to
move the pointers can be a little tricky to get right. Part of the problem
is that the data structure I described before has a lot of redundancy, so
there are many pointers to move. As with the linked-list example, you
have to make sure you move your pointers in the right order or you will
end up with disaster. Figure 6 shows the order of interconnect of the
links. The diagram follows Fig. 5; the bold edge and vertex on the right
side are the new elements. A * indicates that a copy of the indicated edge

Figure 6.
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is created (but not the data to which it points). The links marked with a
P are inherited from the input (or parent) edge.

 Step 1: Create the new edge and its data structures.

 Step 2: Create the new vertex and its data structures.

 Step 3: Hook the edge into the object edge ring.

 Step 4: Hook the vertex into the object vertex ring.

 Step 5: Hook the new edge into the edge rings for both faces.

 Step 6: Point the new vertex at the two edges.

 Step 7: Set up the starting vertex of the new edge.

 Step 8: Direct the old edge to the new vertex.

 Step 9: Hook back the old bVertex into the new edge.

Step 10: Connect the aCW wings.

Step 11: Connect the bCCW wings.

Step 12: Connect the back wings of the new edge to the old edge.

Step 13: Connect the front wings of the old edge to the new edge.

Another common operation is RemoveEdge. This routine accepts an
edge as input, and removes that edge, merging the two faces that share it,
Figure 7 shows the order for setting the links.

 Step 1: Delete the pointer from vertex a to the edge.

 Step 2: Delete the pointer from vertex b to the edge.

 Step 3: Repoint all edges pointing to face b to point to face a.

 Step 4: Build the new edge ring for face a.

 Step 5: Link the old wings on aVertex.

 Step 6: Link the old wings on bVertex.

 Step 7: Delete bFace from object.

 Step 8: Delete edge from object.
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object face ring: 7   object edge ring: 8

Figure 7.

The opposite operation is InsertBridge, which takes two vertices as
inputs and builds a new edge between them. In Fig. 8, the edge is directed
from vl to v2. A * indicates that a copy of the indicated edge is created
(but not the data to which it points). The new edge is shown in bold. Links
labeled with P are inherited from the input (or parent) configuration.

Step 1: Create the new edge.

Step 2: Add the new edge to the object’s edge ring.

Step 3: Create the new face.

Step 4: Add the new face to the object’s face ring.

Step 5: Assign the first vertex to the new edge’s tail.

Step 6: Assign the second vertex to the new edge’s head.

Step 7: Insert the new edge into the edge list at the head vertex.
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object edge ring: 2     new face: 3     object face ring: 4

Figure 8.

 Step 8: Insert the new edge into the edge list at the tail vertex.

 Step 9: Link the new edge to the new face.

Step 10: Link the new edge to the old face.

Step 11: Build the edge ring for the new face.

Step 12 : Set the edges around the new face to point to the new face.

Step 13: Build the edge ring for the old face, and point the edges at
the new face.

Step 14: Link the new face to the new edge.

Step 15: Link the old face to the new edge.

Step 16: Set the new edge’s aCW wings.

Step 17: Set the new edge’s bCCW wings.
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Step 18: Set the new edge’s bCW wings.

Step 19: Set the new edge’s aCCW wings.

Cleanup: Reclaim old face edge ring, and replace old face edge ring
with new.

The information given in this gem certainly is not enough to implement
an entire library; I have provided only some signposts around what I
found to be the most twisting parts of the road. For more information on
winged-edge data structures and their use, please consult the references.
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QUADTREE/OCTREE-QUADTREE/OCTREE-QUADTREE/OCTREE-QUADTREE/OCTREE-QUADTREE/OCTREE-TTTTTO-BOUNDARY CONVERSIONO-BOUNDARY CONVERSIONO-BOUNDARY CONVERSIONO-BOUNDARY CONVERSIONO-BOUNDARY CONVERSION

Claudio Montani and Roberto ScopignoConsiglio Nazionale delle RicerchePisa, Italy

IntroductionIntroductionIntroductionIntroductionIntroduction
Numerous and widely differentiated are the coding schemes proposed for
the representation and manipulation of two-dimensional and three-dimen-
sional spatial information: from analytical to vectorial, from raster to
cellular or hierarchical, from parametric to algebraic. Each of these
representation schemes presents peculiar characteristics with reference
to the storage costs, the efficiency of the algorithms, the simplicity of the
data manipulation, and so on. For these reasons, it is common to use
multiple data representation schemes to fulfill the required space-time
efficiency. The quest for efficient scheme conversion algorithms always
has been a central theme in the problem of the representation of spatial
data.

An algorithm for the conversion from hierarchical representation
(quadtree or octree) (Samet et al., 1988, 1990) to boundary is presented
in this gem. The algorithm returns the boundary of the represented
objects in terms of a list of polygon borders (2D case) or a list of faces
(3D case). The proposed approach can be applied easily to raster or voxel
representation, too.

The algorithm computes the boundary of the represented regions (or
faces), taking into account possible holes, and requires only one complete
visit of the hierarchical structure. The hierarchical structure is visited
with a simple depth-first criterion, and more complex neighbor-finding
techniques (Samet, 1982) are not requested (Dyer, 1980); this character-
istic made it possible to apply this conversion algorithm on both pointer
and pointerless QT/OT (Gargantini, 1982a, 1982b), with the same effi-
ciency. The algorithm makes use of a two-step approach: It first converts
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Figure 1.  A simple example of 2D drawing

the hierarchical structure in a raster-based temporary data structure, the
Parallel Connected Stripes (PCS) (Montani, 1984); then the boundary of
the represented regions is reconstructed by working on the PCS represen-
tation. This representation made it possible to reconstruct efficiently the
maximal connected polygonal borders/regions that constitute a boundary
representation of the original hierarchical data. The polygonal borders are
returned in the common 4-directions Freeman’s chains (Freeman, 1974);
the algorithm returns clockwise boundaries of the represented regions or
objects and counterclockwise boundaries of the holes.

The The The The The PCSPCSPCSPCSPCS Representation Scheme Representation Scheme Representation Scheme Representation Scheme Representation Scheme
Figure 2 shows the PCS representation (Montani, 1984) for the regions of
the binary map of Fig. 1. The original 2D space is subdivided into
horizontal stripes of thickness equal to the step size of the reference grid
(for simplicity’s sake, the step size being 1 in our examples); the intersec-
tion of each stripe with the regions of the map generates a set of
rectangular substripes corresponding to the part of the regions internal to
the stripe.

Each stripe can be described by storing its ordinate (the ordinate of the
lower side), the number of substripes, and the list of the abscissas of the



204

IV.7 QUADTREE/OCTREE-TO-BOUNDARY CONVERSION

GRAPHICS GEMS II Edited by JAMES ARVO 204

Figure 2. The PCS representation of the example in Fig. 1.

Table 1. Numerical representation of the PCS data structure for the example in Fig. 2.

west and east sides of each substripe. Table 1 shows this information for
the example of Fig. 2.

PPPPPCSCSCSCSCS-to-Boundary Conversion-to-Boundary Conversion-to-Boundary Conversion-to-Boundary Conversion-to-Boundary Conversion
The conversion from PCS representation to boundary is very simple. (Actually,
the algorithm returns 4-directions Freeman’s chains (Freeman,
1974).) It is possible to walk from one substripe of y ordinate to one of
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y + 1 or y – 1 ordinate only if these are connected (i.e., have one
horizontal side or part of it in common); it is possible to walk from one
substripe of y ordinate to another of the same ordinate only if there is a
substripe of y + 1 or y – 1 ordinate connecting them.

The algorithm consists of two steps: a first step in which a starting
point for the chain is searched for (PCS_To_Chain procedure) and a
second step in which the chain is constructed walking through the
stripes (Bottom_Up and Top_Down procedures). The first step is re-
peated until all of the outer boundaries (or holes) of the data structure
have been detected. To avoid endless reconstruction, each substripe side
already considered in the conversion process is marked.

The PCS_To_Chain procedure (Fig. 3) searches for a substripe with at
least one unmarked side. If the unmarked side is the west side of the Sy

i

substripe (i.e., the ith substripe in the stripe of ordinate y), the point
(Absc(Si

y, W), y) is chosen as the beginning point of the output chain,
and the algorithm starts to reconstruct clockwise the boundary of a
region, activating the Bottom_Up procedure (Fig. 4) on the substripe Sy

i .

PCS_to_Chain( )
begin

for y: integer ← YMIN, y ← y + 1 WHILE y < YMAX do
for i: integer ← 0, i ← i + 1 WHILE i < Ss_Num(y) do

begin
if Check_Mark(Sy

i , W) = FALSE then
begin

Init_Chain(Absc(Sy
i , W), y);

Bottom_Up(Sy
i );

Display_Chain( );
end;

else if Check_Mark(Sy
i , E) = FALSE then

begin
Init_Chain(Absc(Sy

i , E), y + 1);
Top_Down(Sy

i );
Display_Chain( );

end;
endloop;

end PCS_to_Chain;

Figure 3. PCS_to_Chain procedure.
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Bottom_Up(Sy
i )

begin
if Check_Mark(Sy

i , W) = FALSE then
begin

Fig. 6a Add_Link(l, ’1’);
Mark(Sy

i , W);
for k: integer ← 0, k ← k + 1 while k < Ss_Num(y + 1) do

if (Absc(Sy
i , W) < Absc(Sk

y+l , E)) and
    (Absc(Sy

i ,E) > Absc(Sk
y+l ,W)) do

begin
p ← Absc(Sk

y+l , W);
if Absc(Sy

i , W) ≤ p then
   begin

Fig. 6b/c Add_Link(p-Absc(Sy
i , W),’0’);

Bottom_Up(Sk
y+l );

return;
   end;
else if (i = 0) or (Absc(Sy

i–1, E) ≤ p) then
   begin

Fig. 6g Add_Link(Absc(Sy
i , W) – p,’2’);

Bottom_Up(Sk
y+l );

return;
   end;
else
   begin

Fig. 6f Add_Link(Absc(Sy
i , W) – Absc(Sy

i+1, E),’2’);
Top_Down(Sy

i–1);
return;

   end;
end;

Fig. 6e Add_Link(Absc(Sy
i , E) – Absc(Sy

i , W),’0’);
Top_Down(Sy

i );
end;

end; Bottom_Up;

Figure 4. Bottom_Up procedure.
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Alternatively, if the west side of the substripe is marked and the east side
is not, we indicate with (Absc(Sy

i , E), y + 1) the beginning point of the
output chain and go on to reconstruct counterclockwise the boundary
of a hole activating the Top_Down procedure (Fig. 5) on Sy

i . With
Absc(Sy

i , P), we indicate the abscissa of the P side (west or east) of the
Sy

i , substripe.
The certainty in considering that the first case deals only with the outer

frontier of a region, and the second only with holes, holds because:

(a) the starting point is searched from the bottom upwards and from left
to right, and

(b) by definition of the PCS, the non-empty space is on the right of each
west side (i.e., the inside of a region), while the empty space is on
the right of the east sides.

The different directions (clockwise and counterclockwise) of the chains
describing the outer boundaries or the holes of the regions are not
obtained by adopting different procedures or inverting the chains re-
turned, but, conversely, using the same algorithm that follows the sides
and the bases of the substripes, which always leaves the inside of the
regions to the right and the outside to the left.

The recursive procedure Bottom_Up is invoked on a substripe Sy
i ; it

adds an upward vertical link to the current chain and then searches in the
stripe of ordinate y + 1 (scanning from left to right) for a substripe
top-connected to Sy

i .
If such a substripe (Sk

y+1) exists and

Absc(Sy
i , W) ≤ Absc(Sk

y+1, W),

the procedure (Figs. 6B and 6C) produces the leftward horizontal links
associated to the upper side of Sy

i  not adjacent to Sk
y+1; then, Bottom_Up

invokes itself on the Sk
y+1 substripe.

If, otherwise, the top-connected substripe Sk
y+1 is in the opposite

relation with Sy
i  (Fig. 6D),

Absc(Sy
i , W) > Absc(Sk

y+1, W),

the procedure analyzes the position of the (i – 1)th substripe of the
ordinate y. In the case of Fig. 6F, Bottom_Up returns a set of leftward
horizontal links and then it activates Top_Down on the substripe S

y
i – 1.



208

IV.7 QUADTREE/OCTREE-TO-BOUNDARY CONVERSION

GRAPHICS GEMS II Edited by JAMES ARVO 208

Top_Down(Si
y)

begin
if Check_Mark(Si

y, E) = FALSE then
begin

Fig. 7a Add_Link(1,’3’);
Mark(Si

y, E);
for k: integer ← Ss_Num(y – 1) – 1, k ← k – 1 while k ≥ 0 do

if (Absc(Si
y, W) < Absc(Sk

y–1, E)) and
(Absc(Si

y, E) > Absc(Sk
y–1, W)) do

begin
p ← Absc(Sk

y–1, E);
if Absc(Si

y, E) ≥ p then
begin

Fig. 7b/c Add_Link(Absc(Si
y, E) – p,’2’);

Top_Down(Sk
y–1);

return;
end;

else if (i = Ss_Num(y) – 1) or
(Absc(Sy

i+1, W) ≥ p) then
begin

Fig. 7g Add_Link(p-Absc(Si
y, E),’0’);

Top_down(Sk
y–1);

return;
end;

else
begin

Fig. 7f Add_Link(Absc(Sy
i+1, W) – Absc(Si

y, E), ’0’);
Bottom_Up(sy

i+1);
return;

end;
end;

Fig. 7e Add_Link(Absc(Si
y,E) – Absc(Si

y, W), ’2’);
Bottom_Up(Si

y);
end;

end Top_Down;

Figure 5. Top_Down procedure.
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Figure 6. Bottom_Up procedure: possible situations during the bottom-up boundary
reconstruction.

Conversely, as in Fig. 6G, Bottom_Up invokes itself on the Sk
y+1 sub-

stripe.
Finally, if a top-connected substripe Sk

y+1 does not exist (Fig. 6E), the
procedure adds to the output chain Absc(Si

y, W) – Absc(Si
y, E) right-

ward horizontal links and invokes Top_Down on the same substripe.
Similarly, changing appropriately the terms and directions of move-

ment, the Top_Down procedure (Fig. 7) can be described. Table 2 shows
the Freeman chains produced by the application of the algorithm to the
example of Fig. 2. It also shows which procedure has produced the links
in the chains to give a clearer idea of the conversion process.

The pseudo-code procedures of Figs. 3, 4, and 5 make use of the
following simple functions:

Ss_Num(y): returns the number of substripes belonging to the stripe of
ordinate y;

Absc(Si
y, P): returns the abscissa of the P side (West or East) of the ith

substripe of the stripe of ordinate y;
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Figure 7. Top_Down procedure: possible situations during the top-down boundary
reconstruction.

Mark(Si
y, P): marks the P side (west or east) of the substripe Si

y;

Check_Mark(Si
y, P): returns false if the P side of the substripe Si

y is
marked, true otherwise;

Init_Chain(x,y): initializes a new Freeman chain with starting point
(x,y);

Add_Link(n,t): adds to the current chain n links (possibly none) of
type t (being t in the range {0, 1, 2, 3});

Return_Chain(): returns the constructed Freeman chain; the effective
action is implementation-dependent: the returned chain actually can
be displayed or stored.

It is worthwhile to note that the algorithm returns clockwise boundaries
of the regions and counterclockwise boundaries of the holes. This charac-
teristic is found to be very important for the correct management and
subsequent processing of returned information.
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Table 2. Applying the PCS-to-chains conversion algorithm to the example of Fig.2.

Because the horizontal links of the output chains are produced as
connections between two vertical links, the computational complexity of
the PCS_To_Chain algorithm is proportional to the number of substripes
of the PCS data structure rather than to the perimeter of the regions. In
real cases, the search for a top-connected or bottom-connected substripe
is proportional to the number of distinct regions and holes of the map.

Quadtree-to-Boundary ConversionQuadtree-to-Boundary ConversionQuadtree-to-Boundary ConversionQuadtree-to-Boundary ConversionQuadtree-to-Boundary Conversion
The Quadtree-to-Boundary conversion is realized by first applying a
Quadtree-to-PCS conversion and then reconstructing the boundary of the
represented regions by using the former PCS-to-Chain procedure.

The recursive procedure Quadtree-to-PCS (Fig. 8) here is defined for
the binary pointer-based quadtree, and can be extended easily to the
more general case of n-level pointer or pointerless quadtree. The param-
eters of the Quadtree-to-PCS procedure are the pointer Q to the
quadtree, the width of the space 2n ∗ 2n of definition of the quadtree
(width = 2n), and the coordinate x, y of the lower left corner of the
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Quadtree_to_PCS (Q, width, x, y)
begin

if Node_Type(Q) = BLACK then
for i: integer ← 0, i ← i + 1, while i < width do

begin
Side_Insert (x, y + i);
Side_Insert (x + width, y + i);

end;
else if Node_Type (Q) = GRAY then

begin
hw = width/2;
Quadtree_to_PCS (Son(Q, NW), hw, x, y + hw);
Quadtree_to_PCS (Son(Q, NE), hw, x + hw, y + hw);
Quadtree_to_PCS (Son(Q, SW), hw, x, y);
Quadtree_to_PCS (Son(Q, SE), hw, x + hw, y):

end;
end Quadtree_to_PCS;

Figure 8 Quadtree_to_PCS procedure.

definition space with respect to a global coordinate space. The procedure
visits the quadtree and, for each black node, inserts in the PCS data
structure the set of substripes corresponding to the node. For each node
at level i in the quadtree, 2n-i substripes of length 2n–i will be inserted
in the PCS.

The following simple functions are used in the pseudo-code description
of Quadtree-to-PCS procedure:

Node_Type (Q): returns the type (Black, White, or Gray) of the node Q;

Side_Insert (x,y): inserts in the stripe y of the PCS data structure a
substripe side with abscissa x; the sides are inserted into stripe y in
ascending order with respect to the abscissa value. If a side with the
same x value is contained already in the PCS, then the new side is
not inserted and the old one is deleted; in this way, two substripes
with a side in common are unified in a single one;

Son(Q, P): returns the pointer to the P son (with P in {NW, NE, SW, SE})
of the Q node.
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The procedure Quadtree-to-PCS returns a PCS data structure in
which a list of sides is associated to each stripe, ordered by increasing
abscissa value. By definition, the odd sides in the list are west sides of
substripes, while the even are east sides; moreover, by definition of the
procedure Side_Insert, each couple of successive odd and even sides in
each stripe individuates one of the maximal length substripes obtained by
intersecting the area described by the quadtree with that stripe. Figure 9

Figure 9. The making of the PCS data structure during the depth-first visit of the
quadtree.
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shows the conversion steps required to convert the quadtree representing
the regions of the example in Fig. 1.

The complexity of the Quadtree-to-PCS algorithm simply is propor-
tional to the number of black nodes in the quadtree.

Octree-to-Boundary ConversionOctree-to-Boundary ConversionOctree-to-Boundary ConversionOctree-to-Boundary ConversionOctree-to-Boundary Conversion
To introduce the three dimensional extension of the preceding algo-
rithms, the Octree-to-Boundary conversion algorithm, let us describe
how to convert a simple octree composed of one black node only (Fig.
10); let the width of the node be 2n. We define six different PCSs, the first
couple representing the planes X = 0 and X = 2n parallel to the plane
YZ; the second couple, Z = 0 and Z = 2n parallel to the plane XY; and
the third couple, Y = 0 and Y = 2n parallel to the plane ZX. We then can
convert the octree by defining the six PCSs representing the six faces of
the root black node. Once the six PCSs are constructed, it is possible to
apply the PCS-to-Chain procedure to each of them and, therefore, obtain

Figure 10. Converting a Black node of an octree into six PCS data structures.
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Octree_to_PCS(Q, width, x, y, z)
begin

if Node_Type(Q) = BLACK then
for i: integer ← 0, i ← i + 1, while i < width do

begin
Side_Insert_XY(z, x, y + i);
Side_Insert_XY(z, x + width, y + i);
Side_Insert_XY(z + width, x, y + i);
Side_Insert_XY(z + width, x + width, y + i);
Side_Insert_ZY(x, z, y + i);
Side_Insert_ZY(x, z + width, y + i);
Side_Insert_ZY(z + width, z, y + i);
Side_Insert_ZY(x + width, z + width, y + i);
Side_Insert_XZ(y, x, z + i);
Side_Insert_XZ(y, x + width, z + i);
Side_Insert_XZ(y + width, x, z + i);
Side_Insert_XZ(y + width, x + width, z + i);

end;
else if Node_Type(Q) = GRAY then

begin
hw = width/2;
Octree_to_PCS(Son(Q, FNW), hw, x, y + hw, z);
Octree_to_PCS(Son(Q, FNE), hw, x + hw, y + hw, z);
Octree_to_PCS(Son(Q, FSW), hw, x, y, z);
Octree_to_PCS(Son(Q, FSE), hw, x + hw, y, z);
Octree_to_PCS(Son(Q, BNW), hw, x, y + hw, z + hw);
Octree_to_PCS(Son(Q, BNE), hw, x + hw, y + hw, z + hw);
Octree_to_PCS(Son(Q, BSW), hw, x, y, z + hw);
Octree_to_PCS(Son(Q, BSE), hw, x + hw, y, z + hw);

end;
end Quadtree_to_PCS;

Figure 11. Octree_to_PCS procedure.
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Figure 12. A 3D example.

Figure 13. The PCS data structures for the XY faces of the example.
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Figure 14. The PCS data structures for the YZ faces of the example.

Figure 15. The PCS data structures for the XZ faces of the example.
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the Freeman encoded description of the polygonal faces that bound the
polyhedrical volume represented by the octree.

The former approach is generalized in the Octree-to-PCS procedure in
Fig. 11. For each black node of the octree, the six faces are converted in
substripes and inserted into six PCSs, each of them associated to the
plane on which the faces of the node lie. The procedure makes use of the
following simple functions:

Side_Insert_XY (z, x, y): inserts a substripe side of y ordinate and x
abscissa in the PCS that represents the plane Z = z;

Side_Insert_ZY (x, z, y): inserts a substripe side having ordinate y and
abscissa z in the PCS that represents the plane X = x;

Side_Insert_XZ (y, x, z): inserts a substripe side having ordinate z and
abscissa x in the PCS that represents the plane Y = y.

Analogously to the Side_Insert procedure described for the Quadtree-
to-Boundary conversion algorithm, in each of the preceding routines,
couples of sides with identical coordinates are deleted from the PCS data
structure. The conversion of the obtained set of PCSs into Freeman
chains is the same as the 2D case.

In Figs. 13–15 are the three sets of faces returned by the algorithm
when applied to the example of Fig. 12.
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IV.8IV.8IV.8IV.8IV.8
THREE-DIMENSIONALTHREE-DIMENSIONALTHREE-DIMENSIONALTHREE-DIMENSIONALTHREE-DIMENSIONALHHHHHOMOGENEOUS CLIPPINGOMOGENEOUS CLIPPINGOMOGENEOUS CLIPPINGOMOGENEOUS CLIPPINGOMOGENEOUS CLIPPINGOOOOOF TRIANGLE STRIPSF TRIANGLE STRIPSF TRIANGLE STRIPSF TRIANGLE STRIPSF TRIANGLE STRIPS

Patrick-Gilles MaillotSun Microsystems, IncMountain View, California
IntroductionIntroductionIntroductionIntroductionIntroduction
Triangle strips are among the complex primitives handled by most 3D
graphics software packages. One of the most expensive operations in
graphics is to perform clipping. This gem presents a solution that takes
into account the specific organization of the list of points provided with a
triangle strip to achieve up to 50,000 + triangle clippings per second in
software.

Some of the principles discussed here can be applied to other, simpler
graphic structures, such as multi-bounded polygons, to improve the
efficiency of standard clipping methods. The same principles also have
been applied to quadrilateral mesh clipping.

One easy way of optimizing a graphics pipeline operation is to keep the
primitive (and its logic) all along the graphics pipeline. Unfortunately,
some operations of the pipeline can modify, or break, the logical struc-
ture of the initial primitive. This typically is the case of clipping, where a
triangle can be changed (clipped) into a nine-sided polygon after the
clipping operation against six planes.

This gem proposes a method to clip triangle strips in 3D homogeneous
coordinates, in the general case of a non-normalized clipping volume,
accepting a triangle strip structure at the input of the clipping process,
and giving a triangle strip structure at the output.

Data StudyData StudyData StudyData StudyData Study
While described by a list of points, triangle strips also have a logical
organization that should be considered during the clipping step. A trian-
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Figure 1. A triangle strip.

gle strip consists of an ordered list of n vertices [v0, v1, . . . , vn – 1] that
define a sequence of n – 2 triangles. The triangles in the strip share
common edges. Thus, the kth triangle is formed of vertices k, k + 1,
k + 2. Figure 1 is a pictorial example of a triangle strip.

Algorithm StudyAlgorithm StudyAlgorithm StudyAlgorithm StudyAlgorithm Study
We propose clipping the primitives using a method derived from the
Sutherland-Hodgman algorithm (1974). This means that the clipping
calculations will be limited to determining intersections with one clipping
plane at a time, separating the primitive into two regions: the inside and
the outside. These calculations will be repeated as many times as needed
to scan all the enabled clipping planes.

This method involves a lot of computations as well as memory opera-
tions. However, since we operate in a three-dimensional space, and the
vertices can have both normal and color information, it seems to be the
most efficient. Each intersection (computed only when needed) is based
on the parametric equation of the edge from one vertex to another:

P ← λP2 + (1 – λ)P1,
λ [ [0.0, 1.0].
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The value of λ is used to compute the intersection vertex coordinates
(P), and also can be used to interpolate linearly the color and normal
data generally associated with the intersection vertex.

The intersection, in the case of a line segment, has to be evaluated only
when the endpoints of that line lie in opposite regions. If a bit is assigned
to each point, with a 1 meaning lies outside and a 0 meaning lies inside,
then the intersection will be computed only when (bit[Pi] ^ bit[Pi+1]) is
set, meaning that one point lies outside and the other one lies inside the
clipping region. If both bits are set, that means the entire line segment is
outside the clipping region. The entire line segment is inside the clipping
region when both bits are equal to 0. This approach, presented in
Maillot,s thesis (1986), offers the advantage of using fast operations to
check for trivial cases, and provides a way to keep intermediate results
available for the next point. In the case of a triangle, we can take
advantage of three points at a time.

A triangle strip is (obviously) composed of triangles. Each triangle can
be considered separately for the intersection calculations. However, the
implementation of the clipping algorithm should provide a way to avoid
multiple equivalent calculations by taking advantage of the logical organi-
zation of the vertices. As a triangle is composed of three points, and the
clipping process is organized in n steps, n being the number of enabled
clip planes, each point of the triangle can be in or out of the interior half
space determined by the current clipping plane. This produces eight
different situations to examine when computing the clipped result of a
triangle with a given clipping plane. The drawings of Fig. 2 show the
different cases and the resulting output that has to be generated by the
clipper to maintain the logical organization of the triangle strip. The
triangle strip clipping algorithm can generate some triangles with an area
of zero. By doing this, the triangle strip structure can be maintained even
when a triangle degenerates into a quad after clipping with a clip-plane.

There are special cases when clipping a triangle with clipping codes
equal to 011, or 110. The code 011 indicates that the current triangle has
its two first points outside, and the third point of the triangle is inside the
clipping boundary. In this particular case, a new triangle strip should be
issued. Even in the case of a single triangle strip input, it is possible to
have more than one triangle strip after the clipping operation. Figure 3
explains such a situation.

There is a way, however, to avoid the multiple triangle strips at the
clipper output, and this helps to simplify the triangle strip rendering. The
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Figure 2. Triangle situations.
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Figure 3. Multiple triangle strips created by the clipping operation. A new triangle
should be issued when clipping a, b, c.

solution, proposed in the case presented in Fig. 3, is to duplicate the
points Q and R so that three degenerate triangles are issued to keep the
logic of the original triangle strip. The implementation proposed in this
gem takes advantage of this method. It should be noted that this can be
applied only when the rendering stage, further down in the graphics
pipeline, knows how to deal with degenerate triangles.

Memory ConsiderationsMemory ConsiderationsMemory ConsiderationsMemory ConsiderationsMemory Considerations
The standard clipping algorithm proposed by Sutherland–Hodgman im-
plies a lot of memory operations. A detailed introduction to the principle
of the algorithm is presented in Foley et al. (1990), showing the different
steps used to clip a polygon in 2D or 3D. Although it is mentioned that
the reentrant characteristic of the original algorithm avoids the need for
intermediate storage, the cost implied in stack operations and recursive
calls probably is not well-suited in the case of a software implementation
with large data structures.

i, j, k: clipping code 110, generates i, P, Q
j, k, m: clipping code 111, culled
k, m, a: clipping code 111, culled
m, a, b: clipping code 111, culled
a, b, c: clipping code 011, generates R, S, c

     A new triangle should be issued when clipping a, b, c

...

...
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While keeping the same general intersection principles, this gem pro-
poses a different approach, necessitating intermediate storage, but limit-
ing the number of calls to the inner portions of the clipping algorithm to
the number of active clipping planes. The algorithm only propagates
pointers to points, and not the points themselves, from one stage of the
clipper to the next stage, thus avoiding expensive memory copy opera-
tions.

Homogeneous Clipping Against a Non-NormalizedHomogeneous Clipping Against a Non-NormalizedHomogeneous Clipping Against a Non-NormalizedHomogeneous Clipping Against a Non-NormalizedHomogeneous Clipping Against a Non-NormalizedClipping VolumeClipping VolumeClipping VolumeClipping VolumeClipping Volume
Most of the algorithms presented in the literature and proposing a
clipping in homogeneous coordinates only deal with a normalized clip-
ping volume. In fact, it may be more interesting for a software implemen-
tation of a graphics pipeline to perform all the transformations using a
single matrix, and then perform the clipping against a clip-volume in
homogeneous device coordinates. The graphics pipeline is simplified in
terms of number steps to perform, but the clipping operation needs more
attention.

Clipping against a normalized clip volume means that the clip volume is
[–1, 1] × [–1, 1] × [0, 1]. In this gem, the clipping operation uses a
general, non-normalized, clipping volume [xmin, xmax] × [ymin, ymax]
× [zmin, zmax]. In a homogeneous coordinates system, the basic clip-
ping equation is:

–w ≤ c ≤ w,

with w > 0, and c the value of the x, y, or z coordinate.

In the case of a non-normalized clipping volume, the basic clipping
equation becomes:

w*xmin ≤ x ≤ w*xmax,
w*ymin ≤ y ≤ w*ymax,
w*zmin ≤ z ≤ w*zmax,

with w > 0.
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Detailed explanations about clipping against a nonuniform clipping vol-
ume, as well as a general description of the clipping problems, can be
found in Maillot’s thesis (1986).

ImplementationImplementationImplementationImplementationImplementation
The algorithm proposed here supports the case where the w components
of the vertices of the triangle strip are positive. Clipping for negative w’s
requires changing the clipping equation (an exercise left to the reader),
and supporting lines with end vertices having both positive and negative
w’s requires two passes by the clipping algorithm to render both positive
and negative sections, one for each clipping equation. Figure 4 shows the
result of clipping a single triangle with coordinates (1, 0, 0, 1), (0, 1, 0, 1),
and (0, 0, 1, 1), compared to a triangle with coordinates (1, 0, 0, 1),
(0, 1, 0, –1), and (0, 0, 1, –1).

To implement the clipping algorithm for triangle strips, we define the
following data structures:

H_point: record [
coords: array[0..3] of real;

];

Figure 4. Effect of positive and negative w components: (a) all w components are
positive; (b) w components are positive and negative.
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This structure holds a single homogeneous point with coordinates x, y,
z, and w.

H-List: record [
num_hpoints: integer;
hpoint: array[] of H_point;

];

This structure holds a list of homogeneous points with coordinates x, y,
z, and w.

Clip_ctx: record [
cl_plane: array[0..5] of real;
cl_tbdone: char;
pointers_bucket_0: array[] of array[] of H_point;
integer pointers_bucket_0_max;
pointers_bucket_1: array[] of array[] of H_point;
pointers_bucket_1_max: integer;
hpoints_bucket: array[] of H_point;
hpoints_bucket_max: integer;
hpoints_bucket_index: integer;

];

This structure holds the current state of the clipper. Storage is made for
pointers to points, and intermediate values of different clipping parame-
ters. cl_plane[] represents the six values of xmin, xmax, ymin, ymax,
zmin, zmax of the clipping volume. cl_tbdone is composed of 6 bits; bit
0 is set if clipping has to be done on xmin, bit 1 is assigned to xmax,
and so on, up to bit 5, assigned to the clip condition on zmax.

The following is the pseudo-code for the clipping of a triangle strip. To
simplify the presentation of the code, some portions appear in “^ &” in
the pseudo-code. These are related to memory management, making sure
enough memory has been allocated, or ensuring the copy of data. Please
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refer to the actual C Implementation proposed in Appendix 2 for a
complete description of the tasks to be performed.

The pseudo-code also makes reference to macros. These are used in
the computation of intersections, or when moving pointers to points from
one stage of the clipper to the other one. The C Implementation gives a
complete description of these macros.

3D triangle strip clipper. A triangle strip is made of
vertices logically organized in triangles (. . . ). The first
triangle is composed of the vertices 0, 1, and 2. The second
triangle is represented by the vertices 1, 2, and 3, and so
on until the last vertex.

The triangle strip clipper clips the triangle strip against
one to six boundaries organized in a [xmin, xmax, ymin, ymax,
zmin, zmax] order. Each clip plane can be enabled/disabled by
controlling the clip_ctx^cl_tbdone [0..5] flags. Each flag
affects the respective clip plane of clip_ctx^cl_plane[0..5].

As presented in the algorithm, a triangle strip outputs only
one triangle strip. This is possible if degenerate triangles
are acceptable.

Notes:
This basically is a Sutherland-Hodgman algorithm, but a nonre-
ursiue version. Some “shortcuts” have been employed in the in-
tersection calculations in homogeneous coordinates.

h3d_strip_clip(clip_ctx, in, out)
{

At init, set the previous stage pointers to the input points values.

n_cur_s ← in^num_hpoints;
if clip_ctx^pointers_bucket_0_max < (n_cur_s + 64) then begin

^Ensure memory for pointers_bucket_0&
end;
if clip_ctx^pointers_bucket_1_max < (n_cur_s + 64) then begin

〈Ensure memory for pointers_bucket_1〉
end;
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cur_stage ← clip_ctx^pointers_bucket_0;
for i: integer ← 0, i < n_cur_s, i ← i + 1 do

cur_stage[i] ← &(in^hpoints[i]);
endloop;
C ← clip_ctx^hpoints_bucket;
clip_ctx^hpoints_bucket_index ← 0;

For each of the clipping planes, clip (if necessary).
for i: integer ← 0, i < 6 and n_cur_s > 2, i ← i + 1 do

if (clip_ctx^cl_tbdone >>  i) & 1 then begin
c ← i >> l;
^Switch memory between current and previous&
n_cur_s ← 0;

Start clipping of the previous stage, for the ith clip plane.
Output points go in the current_stage memory.
Process the first point of the triangle strip.

clip_code ← 0;
n ← 0;
COMPUTE_INTER_3D(Q, Q_plan, 1)

Now, process the second point of the triangle strip.

n ← 1;
COMPUT_INTER_3D(R, R_plan, 2)

(Q, R) represents the first line segment of the first triangle of
the triangle strip. Need to clip it as a line to ensure the first two points.

n ← clip_code >> 1;
select n from

0: begin Q and R inside
POINT_COPY(Q)
POINT_COPY(R)
end;

1: begin Q outside, R inside
POINT_INTER_3D(Q, Q_plan, R, R_plan)
POINT_COPY(R)
end;
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2: begin Q inside, R outside
POINT _COPY(Q)
POINT_INTER_3D(Q, Q plan, R, R plan)
end;

3: Q and R outside
endcase;

Process each subsequent point of the triangle strip.
P, Q, R form the (n – 2)ith triangle of the strip.

for n: integer ← 2, n < n_pre_s, n ← n + 1 do
clip_code ← clip_code >> 1;
P ← Q;
Q ← R;
P_plan ← Q_plan;
Q_plan ← R_plan;
COMPUT_INTER_3D(R, R_plan, 2)
if n_cur_max < (n_cur_s + 3) then begin

〈Ensure that enough memory is available〉
end;

clip_code now has 3 bits that represent the “position” of the triangle in
respect to the clip boundary. 8 different cases can occur.

select clip_code from
0: begin all inside

POINT_COPY(R)
end;

1: begin P outside, Q and R inside
POINT_INTER_3D(R, R_plan, P, P_plan)
POINT_COPY(Q)
POINT_COPY(R)
end;

2: begin P inside, Q outside and R inside
POINT_COPY(R)
POINT_INTER_3D(Q, Q_plan, R, R_plan)
POINT_COPY(R)
end;

3: begin P and Q outside, R inside
POINT_INTER_3D(R, R_plan, P, P_plan)
〈Duplicate the point just computed〉
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POINT_INTER_3D(Q, Q_plan, R, R_plan)
POINT_COPY(R)
end;

4: begin P and Q inside, R outside
POINT_INTER_3D(R, R_plan, P, P_plan)
POINT_COPY(Q)
POINT_INTER_3D(Q, Q_plan, R, R_plan)
end;

5: begin P outside, Q inside, R outside
POINT_INTER_3D(Q, Q_plan, R, R_plan)
end;

6: begin P inside, Q and R outside
POINT_INTER_3D(R, R_plan, P, P_plan)
〈Duplicate the point just computed〉
end;

7: P, Q and R outside
endcase;
endloop;
end;
endloop;

The triangle strip has been clipped against all (enabled) clipping planes.
“Copy” the result to the output.

if n_cur_s > 2 then
begin

for i: integer ← 0, i < n_cur_s, i ← i + 1 do
out^hpoints[i] ← ∗ (cur_stage[i]);

endloop;
out^num_hlpoints ← n_cur_s:

end;
else

out^num_hpoints ← 0;
return;

};

ConclusionConclusionConclusionConclusionConclusion
This gem has presented a different approach to 3D homogeneous clipping
of complex primitives. Most of the particularities presented here—re-
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organization of the Sutherland-Hodgman algorithm, intersection compu-
tations, nonuniform clipping volume, etc.—can be used in any 3D poly-
gon clipping. The performance of the proposed algorithm for all clip
planes enabled is better than 23,000 triangles (trivial acceptance or trivial
reject) per second on a Sun-Sparc Station 330, with the C Implementation
given in Appendix 2, and for triangle strips of 10 or more triangles. The
efficiency of the clipping algorithm varies with the number of triangles
per triangle strip. The worst case of the algorithm—one triangle per
triangle strip—still clips at an honorable speed of 10,000 + triangles per
second.

The specific case of single triangles should be optimized separately. An
implementation limited to clipping against uniform volumes also gives
better performances.

The method presented here also has been applied in the case of
quadrilateral meshes. The clipping operation is performed one quad-mesh
row at a time, and potentially can generate several quad-mesh rows at the
output of the clipping algorithm. Because quads are composed of four
points, the algorithm takes two points at a time, and the core of the
clipping process necessitates 16 different cases.
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IV.9IV.9IV.9IV.9IV.9
IIIIINTERPHONG SHADINGNTERPHONG SHADINGNTERPHONG SHADINGNTERPHONG SHADINGNTERPHONG SHADING

Nadia Magnenat Thalmann                   Daniel Thalmann                  University of Geneva       Swiss Federal Institute of Technology     Geneva, Switzerland,                Lausanne, SwitzerlandandHong Tong MinhUniversity of WaterlooWaterloo, Ontario, Canada
OverviewOverviewOverviewOverviewOverview
InterPhong shading is a modified version of the popular Phong shading.
When applied to a facet-based object, it is able to give a rough or smooth
appearance depending on the variation between the normals of the facets.
For example, we may apply it to a sphere, a cube, or a cylinder. This
varying shading also may be considered as a continuous model between
faceted shading and Phong shading. This property is very important for
shading objects obtained by shape interpolation between two different
objects, such as a sphere and a cube. The InterPhong shading also has
been used for rendering synthetic actors. In particular, it has been used
for rendering Marilyn Monroe and Humphrey Bogart in the film, Rendez-
vous à Montréal.

IntroductionIntroductionIntroductionIntroductionIntroduction
Since 1970, various illumination and shading models have been pro-
posed, as described by several authors (Rogers, 1985; Lorif, 1986;
Magnenat Thalmann and Thalmann, 1987a). Hall (1986) proposes a
classification into three groups:

1. Incremental shading techniques and empirical illumination models.

2. Ray tracing and translational illumination models.

3. Analytical models and radiosity techniques.
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In this Gem, we are concerned with the first kind of shading models.
These models traditionally are implemented with scanline rendering sys-
tems and will be reviewed in the next section. It is evident that the better
the results that an algorithm provides, the more expensive it is in terms
of CPU time. However, the choice of shading techniques also is dependent
on the shape of objects. For example, Phong shading is well adapted to
spheres, and faceted shading is suitable for cubes. Now consider the
transformation of a sphere into a cube using an in-between algorithm.
What kind of shading model should be used to shade any in-between
object? This gem tries to answer this question by introducing a new kind
of shading dependent on the shape of objects. The new shading model,
called the InterPhong model, also may be considered as a continuous
model between faceted shading and Phong shading. One application of
this algorithm is to shade faceted-based objects obtained from a general
shape interpolation (Hong et al., 1988). As objects change, their shading
is changed automatically.

Review of Incremental and EmpiricalReview of Incremental and EmpiricalReview of Incremental and EmpiricalReview of Incremental and EmpiricalReview of Incremental and EmpiricalShading TechniquesShading TechniquesShading TechniquesShading TechniquesShading Techniques
The first illumination model that took into account the three components
of ambient, diffuse, and specular light was devised by Bui-Tuong Phong
(1975). Intensity I in this model is given by:

 I = Ia + Id + Is, (1)

where Ia is reflection due to ambient light, Id is diffuse reflection, and Is

is specular reflection.
Diffuse reflection is defined as in Lambert’s law, which means for ms

light sources:

    Id = kdCs
    

Ilj
j

ms

∑ ( N ⋅ Lj), (2)

where kd is the diffuse reflection coefficient, N is the unit surface normal,
Ilj is the intensity of the jth source, Cs is the surface color, Lj is the
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vector in the direction of the jth light source, and ms is the number of
light sources.

Specular reflection is defined as:

Is = ksCr
    

Ilj
j

ms

∑ ( N ⋅ Hj)
n, (3)

where ks is the specular reflection coefficient and Cr is the reflective
color surface. The exponent n depends on the surface and determines
how glossy this surface is; Hj is the vector in the direction halfway
between the observer and the jth light source.

Surface shading may be defined as the distribution of light over an
illuminated surface. For each type of object model (set of polygons,
algebraic surface, patches), shading can be calculated using the preced-
ing reflection model. However, reflection models do not directly provide
ways of calculating the complete shading of an object, but only the
intensity of light as specific points. The shading techniques used depend
on the type of object. For polygon meshes, three basic ways of shading
objects have been developed—faceted shading, Gouraud shading, and
Phong shading.

Faceted shading was first introduced by Bouknight (1970). It involves
calculating a single intensity for each polygon. This implies the following
assumptions:

1. The light source is at infinity.

2. The observer is at infinity.

3. The polygons are not an approximation of a curved surface.

The first two assumptions are required so that the dot products N ⋅ Lj

and N ⋅ Hj are constant in the calculations of intensity. The third as-
sumption is made because each polygonal facet of an object will have a
slightly different intensity from its neighbors. This produces good results
for a cube, but very poor ones for a sphere.
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Gouraud (1971) introduced an intensity interpolation shading method
that eliminates the discontinuities of constant shading. The principle of
Gouraud shading is as follows:

1. For each vertex common to several polygons, the normal to each
polygon is computed as a vector perpendicular to the plane of that
polygon.

2. For each vertex, a unique normal is calculated by averaging the
surface normals obtained previously.

3. Vertex intensities are calculated by using the vertex normals and a
light model.

4. As each polygon has a different shading at each vertex, the shading
at any point inside the polygon is found by linear interpolation of
vertex intensities along each edge and then between edges along each
scanline.

Bui-Tuong Phong (1972) has proposed a normal-vector interpolation
shading method. This means that instead of interpolating intensities as in
Gouraud shading, Phong interpolates the surface normal vector. With this
approach, the shading of a point is computed from the orientation of the
approximated normal. With Phong shading, a better approximation of the
curvature of the surface is obtained, and highlights due to the simulation
of specular reflection are rendered much better. However, the method
requires more computation, since three normal components must be
computed, rather than one shading value, and the vector at each point
must be normalized before evaluating the shading function. The linear
interpolation scheme used in the Phong algorithm to approximate the
orientation of the normal does not guarantee a continuous first derivative
of the shading function across an edge of a polygonal model. In particu-
lar, where there is an abrupt change in the orientation of two adjacent
polygons along a common edge, the Mach band effect is possible. This
means that a subjective brightness may be visible along this edge. The
effect usually is much less visible in the Phong model than in the Gouraud
model. However, Duff (1979) shows that Phong shading can produce
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worse Mach bands than Gouraud shading, notably for spheres and cylin-
ders. Moreover, both techniques render concave polygons incorrectly.
Duff has discovered another great problem in the computer animation of
shaded objects with the Gouraud and Phong algorithms. If an object and
its light source are rotated together in the image plane, the shading of the
object can change contrary to expectations. This is due to the fact that
the interpolation of intensities (or normals) is carried out using values on
a scanline, and when objects and lights are rotated, the scanlines do not
cut the edges at the same points. Duff proposes alleviating this problem
by interpolating intensities (or normals) in a rotation-independent man-
ner; he avoids the use of values by the use of an appropriate interpolator
depending only on the vertices of the polygon.

InterPhong ShadingInterPhong ShadingInterPhong ShadingInterPhong ShadingInterPhong Shading
Faceted shading is the quickest and easiest of the shading techniques. It
is more appropriate for rendering cubes than spheres. However, it is not
realistic for perspective views and/or point light sources. One way of
improving realism in this case is to recalculate the intensity at each pixel,
because only the normal is constant at any point of a given facet, not the
viewer direction and light direction. This process is almost as expensive
as the Phong shading, although no interpolation across facets is per-
formed. We call this type of shading modified faceted shading. This

Figure 1.  Normal interpolation.
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shading is realistic for a cube, while Phong shading is a good way (in a
facet-based environment) of rendering a sphere. Now consider the trans-
formation of a sphere to a cube using an in-between algorithm. What kind
of shading model should be used to shade any in-between object? Though
we may decide that an object that is 50% sphere and 50% cube may be
rendered using Phong shading, this is not true for a 99.9% cube and 0.1%
sphere. We have to introduce a varying shading model between the
faceted (or modified faceted) model and the Phong model. We call this
the InterPhong model. To explain this model, consider, as shown in Fig.
1, a point P belonging to a facet with normal N. The interpolated normal
Np according to the Phong method is:

Np = Na + t(Nb – Na), (4)

Na = Nl + u(N2 – Nl),

Nb = N4 + v(N3 – N4),

with {t, u, v} ∈ [0, 1].
We now replace Np by a new value calculated as:

     Npnew = Np + f(N – Np), (5)

with

f = (|N  – Np| + β1(2 – |N – Np|))  
β 2

2
. (6)

Several cases may be considered to explain the role of β1 and β2:

1.  β1 = 0. In this case, we have f = 
    

N –  Np β 2

2
. The algorithm will

decide to give a rough or smooth appearance depending on the variation
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between the normals of the facets. (The polygon facet edges are left sharp
or smoothed.) β2 is a real positive number; when the tension β2 is
decreased, the characteristics of the Phong model are emphasized. Other-
wise, when the tension β2 is greater than 1, the characteristics of the
faceted model are emphasized. β2 is called the shading tension.

2.  β1 = 1. In this case, we have f = β2. The user may select a value
between 0 and 1 for the tension parameter β2 to obtain an interpolated
shading between faceted shading and Phong shading. For example, if
β2 = 0.75, we have 75% of faceted shading and 25% of Phong shading.
For β2 = 1, we have the faceted shading, and for β2 = 0, standard Phong
shading.

3.  0 < β1 < 1. This is a combination of the two previous cases. For
example, if β2 = 0.25, we obtain a shading with 25% of effects from the
interpolation (between Phong shading and faceted shading) and 75% from
the edge emphasizing process. (See first case.)

As β1 is a measure of the dependence on the variation between the
normals of the facets; we call it the nonlocality tension.

Analysis of the New FormulaAnalysis of the New FormulaAnalysis of the New FormulaAnalysis of the New FormulaAnalysis of the New Formula
The use of a new Np   new calculated by Eq. (5) solves two problems:

1. The dependence of the texture of the display of a graphical object on
the scanlines.

2. The undesirable smoothing of certain regions.

For example, consider the cube of Fig. 2; we observe that Np1 depends
on Nl , N2 , and N4 , and Np2 depends on N2 , N3, and N4 . This implies a
kind of texture that varies depending on the scanned areas. Moreover, at
the vertex S, the cube will be rounded and the common edges will be
difficult to distinguish. The problems are solved by moving the normal Np

to the facet normal N, which is the only true information.
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Figure 2.  Vertex dependence.

To simplify the explanations, consider the case with β1 = 0 and β2 = 1
We have:

    

Np new  –  Np  =  N –  Np N –  Np

2
. (7)

If the normal variations between the adjacent facets are small (smooth
surfaces), as shown in Fig. 3, the normals Np and/or Np′ should not be
very different from N and/or N′.

Figure 3. Normals for adjacent facets: a) in 3D; b) in 2D.
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This implies that

    

Np new  –  Np  =  N –  Np

2

2
 →  0 (8)

and

    

′Np new  –  ′Np  =  ′N  –  ′Np

2

2
 →  0,

as N ≅ Np (and N′ ≅ Np′), Npnew → Np (and Np′new →  Np′); the new
shading model preserves the Phong characteristics.

For a cube, |N – Np| is not negligible and

    
Np new =

Np  +  N –  Np N –  Np( )
2

is very near the original normal N. This means that the various adjacent
facets will have different new normals, which emphasize the edges.

If we assume that all normals are normalized, the constant “2” in Eq.
(6) comes from |N – Np| < |N| + |Np| < 1 + 1 = 2. This is the maximum
correction allowed and corresponds to N – Np.

From a performance point of view, as all norms in Rn are topologically
equivalent, we may use |N| = |Nx| + |Ny| + |Nz| , which implies

• 3 absolute values and 2 additions for the norms,

• 3 subtractions for N – Np ,

• 1 multiplication and 1 division for |N – Np|(N – Np )/2

• 3 additions for Npnew = Np + |N – Np|(N – Np)/2

This is an extra cost of 10 arithmetic operations and three absolute
values.
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Applications of InterPhong ShadingApplications of InterPhong ShadingApplications of InterPhong ShadingApplications of InterPhong ShadingApplications of InterPhong Shading
One possible application of InterPhong shading is the rendering of human
faces. As it was noted in the film, Rendez-vous à Montréal (Magnenat
Thalmann and Thalmann, 1987b), Phong shading is convenient for the
face of a synthetic actress, but the result is too smooth for a synthetic
actor. Fig. 4 (see color insert) shows various shadings for the face of a
synthetic actor.

The InterPhong shading model may be considered as a continuous
model between faceted shading and Phong shading. This property is very
much important for shading objects obtained by shape interpolation
between two different objects, such as a sphere and a cube.

Figure 5 (see back cover) shows an example of transformation of a
sphere into a dodecahedron with a continuous shading interpolation from
Phong shading to faceted shading (InterPhong shading).

(a)

(c)

(b)

(d)

Figure 4.  A Synthetic actor: a) faceted shad-
ing; b) Phong shading; c) Interphong shad-
ing with β1 = 0 and  β2 = 1; d) InterPhong
chading with β1 = 0 and  β2 = 5.

Figure 5.  A Transformations of a sphere into a dodeca-
hedron (with shading interpolation).
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VVVVV
RRRRRAY TRACINGAY TRACINGAY TRACINGAY TRACINGAY TRACING

Ray tracing is one of the most popular techniques for high-fidelity image
synthesis because of its wide variety of optical effects and its conceptual
simplicity. First introduced to the realm of computer graphics by Appel
[68], it was later extended into its now-familiar recursive form by Whitted,
1980. Since then, ray tracing has been widely used to generate images of
striking realism, and continues to be a topic of vigorous research. Much
of the appeal of ray tracing stems from its faithful simulation of basic
geometrical optics. By tracing individual rays of light into a hypothetical
3D scene and obeying laws for refraction and reflection, the overall
characteristics of transparent and reflective surfaces can be simulated.
These characteristics remain the unmistakable hallmarks of ray-traced
imagery.

In the context of more recent global illumination algorithms, ray
tracing is taking on a new life as a powerful tool for solving subproblems.
(Examples of this can be found in the following Part on the radiosity
method). It is clear that ray tracing will have an important role to play for
a long time, whether used directly for image synthesis or as the founda-
tion for other algorithms. Its generality makes it an ideal research vehicle,
lending itself to a panoply of essential graphics operations and optical
effects.

The gems of this Part address methods for computing ray intersections
with polyhedra, triangles, and tori, as well as large collections of such
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objects by use of object hierarchies and spatial subdivision. The last three
gems discuss techniques for use in shadow calculations and in the
simulation of translucent objects, two important effects in ray tracing’s
wide repertoire.
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V.1V.1V.1V.1V.1
FFFFFAST RAY–CONVEXAST RAY–CONVEXAST RAY–CONVEXAST RAY–CONVEXAST RAY–CONVEXPPPPPOLYHEDRON INTERSECTIONOLYHEDRON INTERSECTIONOLYHEDRON INTERSECTIONOLYHEDRON INTERSECTIONOLYHEDRON INTERSECTION

Eric Haines3D /Eye, Inc.Ithaca, New York

The standard solution to ray-polyhedron intersection is to test the ray
against each polygon and find the closest intersection, if any. If the
polyhedron is convex, the ray-polyhedron test can be accelerated by
considering the polyhedron to be the space inside a set of planes. This
definition also drastically reduces the memory requirements for such
polyhedra, as none of the vertices and their connectivities need to be
stored; only the plane equations for the faces are needed. Finally, the
ray-polyhedron test outlined here avoids the problems that can occur
when the shared edge of two polygons is intersected by a ray, since there
no longer are any edges. There is no chance of a ray “slipping through
the cracks” by having its intersection point on an edge not considered
being inside either polygon.

The algorithm is based on the ideas of Roth (1981) and Kay and Kajiya
(1986). The basic idea is that each plane of the polyhedron defines a
half-space: All points to one side of this space are considered inside the
plane (also considering points on the plane as inside). The logical inter-
section of the half-spaces of all the convex polyhedron’s planes is the
volume defined by the polyhedron. Introducing a ray into this definition
changes the problem from three dimensions to one. The intersection of
each plane by the ray creates a line segment (unbounded at one end)
made of a set of points inside the plane’s half-space. By taking the logical
intersection of all ray-plane line segments, we find the line segment (if
any) in which the ray passes through the polyhedron.
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The ray is defined by:

Rorigin = Ro = [xo yo zo],

Rdirection = Rd [xd yd zd],

where x2
d + y2

d + z2
d = 1 (i.e., normalized).

The set of points on the ray is represented by the function:

R(t) = R0 + R*dt,

                            where t > 0.

In addition, in ray tracing, it is useful to keep track of tmax, the
maximum valid distance along the ray. In shadow testing, tmax is set to
the distance of the light from the ray’s origin. For rays in which the
closest object hit is desired, tmax is initialized to infinity (i.e., some
arbitrarily large distance), then updated to the distance of the object
currently the closest as testing progresses. An object intersected beyond
tmax does not need to be tested further—for example, for shadow testing,
such an object is beyond the light.

We initialize the distances tnear to negative infinity and t far to tmax
These will be used to keep track of the logical intersection of the
half-spaces with the ray. If tnear ever becomes greater than tfar, the ray
misses the polyhedron and testing is done.

Each plane is defined in terms of [a, b, c, d], which defines the plane

a*x + b*y + c*z + d = 0.

Pn is the plane’s normal,[a, b, c].
The distance from the ray’s origin to the intersection with the plane P

is simply:
t = –υn/υd,

where:
υn = Pn ⋅ Ro + d,

υd = Pn ⋅ Rd.
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If υd is 0, then the ray is parallel to the plane and no intersection takes
place. In such a case, we check if the ray origin is inside the plane’s
half-space. If υn is positive, then the ray origin is outside the plane’s
half-space. In this case, the ray must miss the polyhedron, so testing is
done.

Otherwise, the plane is categorized as front-facing or back-facing. If υd

is positive, the plane faces away from the ray, so this plane is a back-face
of the polyhedron; else, the plane is a front-face. If a back-face, the plane
can affect tfar. If the computed t is less than 0, then the polyhedron is

Figure 1.
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behind the ray and so is missed. If t is less than tfar, tfar is updated to t.
Similarly, if the plane is a front-face, tnear is set to t if t is greater than
tnear. If tnear ever is greater than tfar, the ray must miss the polyhedron.
Else, the ray hits, with tnear being the entry distance (possibly negative)
and tfar being the distance where the ray exits the convex polyhedron. If
tnear is negative, the ray originates inside the polyhedron; in this case,
check if tfar is less than tmax; if it is, then tfar is the first valid intersection.

An example of this process is shown in Fig. 1. A two-dimensional view
of a ray and a set of five planes forming a polyhedron is shown. Below
this is the set of segments formed by the ray and the five faces. The ray
intersects the plane formed by face 1 and so defines a set of points along
the ray inside the half-space to the right of this intersection. The ray
intersects the plane of face 2 (shown as a dashed line) at a closer
distance, even though the face itself is missed. Face 3 is a back-face and
creates a half-space open to the left. Face 4 also is missed, but its plane
still defines a half-space. Finally, plane 5 forms a front-face half-space.

The segment in which the line defined by the ray passes through the
polyhedron is the logical intersection of the five face segments; that is,
where all of these segments overlap. Comparing this segment with the
ray’s own segment gives which (if either) of the intersection points is the
closest along the ray. If there is no logical intersection, the ray misses.
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V.2V.2V.2V.2V.2
IIIIINTERSECTING A RAY WITHNTERSECTING A RAY WITHNTERSECTING A RAY WITHNTERSECTING A RAY WITHNTERSECTING A RAY WITH     AN ELLIPTICAL TORUSAN ELLIPTICAL TORUSAN ELLIPTICAL TORUSAN ELLIPTICAL TORUSAN ELLIPTICAL TORUS

Joseph M. CychoszPurdue UniversityW. Lafayette, Indiana

IntroductionIntroductionIntroductionIntroductionIntroduction
This gem presents the mathematics and computations required for deter-
mining the points of intersection between a ray and a torus. Also pre-
sented is an efficient bounding method for tori.

The Equation of an Elliptical TorusThe Equation of an Elliptical TorusThe Equation of an Elliptical TorusThe Equation of an Elliptical TorusThe Equation of an Elliptical Torus
An elliptical torus can be generated by sweeping an ellipse about a given
axis. Figure 1 illustrates the resulting cross section of an elliptical torus
that has been swept about the y axis. The cross section consists of two
ellipses of radii a and b, centered at x = ±r, y = 0. By sweeping the
ellipses circularly about the y axis, a torus of radius r and centered at
the origin is formed.

In an approach analogous to that taken by Glassner et al. (1989), the
equation of the two elliptical cross sections is given by

      

x –  r( )2

a2  +  
y2

b2  –  1






x +  r( )2

a2  +  
y2

b2  –  1






 =  0, (1)

which can be expressed as

(b2(x – r)2 + a2y2 – a2b2)(b2(x + r)2 + a2y2 – a2b2) = 0. (2)
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Figure 1. Cross section of an elliptical torus.

Equation (2) can be rearranged to yield the following equation,

      
x +  r( )2  +  a2

b2 y2 +  r2 –  a2( )





2

 −  4r2˙x2 =  0. (3)

By substituting p for a2/b2, A0 for 4r2, and B0 for (r2 – a2), Eq. (3) is
rewritten as

(x2 + py2 + B0)
2 – A0x

2 = 0.
(4)

By setting y = 0 in the preceding equation, we find that x2 = r2. The
torus now can be formed by substituting the sweeping function, r2 =
x2 + z2, for x2 in the cross-sectional function presented in Eq. (4). The
equation for the elliptical torus thus becomes

    (x2 + z2 + py2 + B0)
2 – A0(x2 + z2) = 0, (5)

where p, A0 , and B0 are constants defined previously that control the
shape of the torus.

Intersection of a Ray with a TorusIntersection of a Ray with a TorusIntersection of a Ray with a TorusIntersection of a Ray with a TorusIntersection of a Ray with a Torus
The intersection of a ray with a torus can be found by substituting the ray
equations shown in Eqs. (6a)–(6c) into Eq. (5), the torus equation, the
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intersection of a ray with a torus is defined in Eq. (7) as follows:

x = x0 + αxt,  (6a)
y = y0 + αyt, (6b)
z = z0 + αzt, (6c)

(t2(α2
x + pα2

y + α2
z) + 2t(x0αx + py0αy + z0αz)

+ (x2
0 + py2

0 + z2
0) + B0)

2

–A0(t
2(α2

x + α2
z) + 2t(x0αx + z0αz) + (x2

0 + z2
0)) = 0. (7)

The real roots of the quartic equation presented in Eq. (7) define the
distances along the ray where the ray intersects the torus. Eq. (7) can be
rearranged into the following form:

c4t
4 + c3t

3 + c2t
2 + c1t + c0 = 0,

where

c4 = (α2
x + pα2

y + a2
z)

2,

c3 = 4(x0αx + py0αy + z0αz)(α
2
x + pα2

y + α2
z),

c2 = 4(x0αx + py0αy + z0αz)
2

+ 2(x2
0 + py2

0 + z2
0 + B0)(α

2
x  + pα2

y  + α2
z) –A0(α

2
x + α2

z),

c1 = 4(x0αx + py0αy + z0αz)(x
2
0 + py2

0 + z2
0 + B0)

– 2A0(x0αx + z0αz),

c0 = (x2
0 + py2

0 + z2
0 + B0)

2  – A0(x2
0 + z2

0).



254

V.2 INTERSECTING A RAY WITH AN ELLIPTICAL TORUS

GRAPHICS GEMS II Edited by JAMES ARVO 254

Using the substitutions developed by Cashwell and Everett (1969), the
quartic in normalized form is as follows:

c4 = 1,

c3 = 2m,

c2 = m2 +2u – qf,

c1 = 2mu – ql,

c0 = u2 – qt,

where
f = 1 – α2

y, g = f + pα2
y, l = 2(x0αx + z0αz),  t = x0

2 + z0
2,

    
q  =  

A0

g2 ,  
    
m  =

l  +  2py0αy( )
g ,  

    
u  =  

t  +  py0
2  +  B0( )

g .

To intersect a ray with a torus that has been arbitrarily positioned and
oriented, the ray base and direction cosines must be transformed into the
coordinate system of a torus positioned at the origin and oriented in the
x–z plane. This can be done by use of a coordinate transformation matrix
established from the orthonormal basis created from the axis of rotation
and the local x axis. The transformation matrix is defined as follows:

      

T =  

U 0
N 0

U × N 0
–Cx –Cy –Cz 1



















,

where U defines the local x axis of the torus, N defines the local y axis
(i.e., the axis of rotation) of the torus, and C is location of the center of
the torus.

Efficient Bounding of ToriEfficient Bounding of ToriEfficient Bounding of ToriEfficient Bounding of ToriEfficient Bounding of Tori
A common bounding method is to enclose an object within a sphere.
When the ray does not intersect the bounding sphere, there is no need to
calculate the intersection points of the ray with the enclosed object, thus
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Figure 2. Efficient toroidal bounding.

eliminating unnecessary computation. A torus can be enclosed easily
within a sphere positioned at the center of the torus and with a radius as
follows:

rsphere = r + max(a, b)

However, this bounding approach results in a significantly large void
volume as depicted in Fig. 2. To reduce the resulting void volume, the
torus is sandwiched between two planes located ±b off of the x–z plane.
The vertical distances of the intersection points of the sphere then are
tested to determine if the ray passes either completely above or below the
torus. Since the torus lies in the x–z plane, only the y component of the
intersection locations on the sphere are of interest. The ray misses
the torus if the following relationship is true:

yin = y′0 + α′ytin,

yout = y′0 + α′ytout,

(yin > b  and  yout > b) or (yin < –b  and  yout < –b),

where tin and tout are the intersection distances to the bounding sphere.
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Determining the Surface Normal of a TorusDetermining the Surface Normal of a TorusDetermining the Surface Normal of a TorusDetermining the Surface Normal of a TorusDetermining the Surface Normal of a Torus
The normal at any given point on the surface of the torus can be
computed by evaluating the gradient (i.e., the partial derivatives of the
surface function with respect to each of the variables, x, y, and z) of the
surface at the point. Given the hit point P, the surface normal N is
defined as follows:

P9 = P × T

d =     ′Px
2  +  ′Pz

2 ,

f =
    

2 d  −  r( )
da2( ) ,

N9x = P9x f ,

N9y =
    
2 ′Py

b2 ,

N9z = P9z f,

N = N9 × TT
33.

The normal in world coordinate space is found by transforming the
normal from the local coordinate space by using the inverse of the
coordinate transformation matrix T. Since the upper 3 × 3 matrix in T is
an orthonormal basis, the inverse simply is the transpose of the upper
3 × 3.
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V.3V.3V.3V.3V.3RRRRRAY-TRIANGLEAY-TRIANGLEAY-TRIANGLEAY-TRIANGLEAY-TRIANGLEIIIIINTERSECTION USING BINARYNTERSECTION USING BINARYNTERSECTION USING BINARYNTERSECTION USING BINARYNTERSECTION USING BINARYRRRRRECURSIVE SUBDIVISIONECURSIVE SUBDIVISIONECURSIVE SUBDIVISIONECURSIVE SUBDIVISIONECURSIVE SUBDIVISION
Douglas Voorhies                               David Kirk    Apollo Systems Division     and   California Institute of Technology        Hewlett Packard Co.                      Pasadena, California Chelmsford, Massachusetts

The ProblemThe ProblemThe ProblemThe ProblemThe Problem
Determine if a line segment and a triangle intersect. If so, calculate the
XYZ coordinates of that intersection, and the corresponding U, V triangle
location.

Initial InformationInitial InformationInitial InformationInitial InformationInitial Information
The line segment is defined by XYZ endpoint coordinates. (See Fig. 1.)
The triangle is defined by XYZ vertex coordinates, with the coefficients of
its AX + BY + CZ + D = 0 plane equation available as well.

ConstraintsConstraintsConstraintsConstraintsConstraints
To make the solution effective in both hardware and software, the number
of calculations (especially multiplications) must be minimized, with more
difficult operations such as divides, roots, and transcendentals avoided
entirely. Integer arithmetic is preferable to floating point, again to permit
efficient hardware implementation.

The MethodThe MethodThe MethodThe MethodThe Method
The 3D intersection problem is decomposed into a series of 1D intersec-
tion problems: along the ray, along the triangle sides, and along an axis.
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The U,V parameters are determined partially as a side effect of the
intersection calculation. There are three steps in total:

1. Finding the intersection of the ray with the plane of the triangle.

2. Determining if that point lies inside or outside of the triangle itself.

3. Completing the computation of the intersection point’s triangle U,V
parameters.

Step 1: Ray – Plane IntersectionStep 1: Ray – Plane IntersectionStep 1: Ray – Plane IntersectionStep 1: Ray – Plane IntersectionStep 1: Ray – Plane Intersection
The plane of the triangle is stored as coefficients (A, B, C, D) of the
plane equation: AX + BY + CZ + D = 0. This equation may be thought
of as representing the 1-norm (Manhattan) distance from the plane:
AX + BY + CZ + D = Manhattan distance where the scaling factors
for the three axes may not be equal.

By evaluating this function for endpoint 1 and endpoint 2, we get the
signed distance above or below the plane for these two points. (This
calculation requires six multiplications and six additions.) If these two
distances are not zero and agree in sign, then both are on the same side
of the plane, and the line interval does not intersect the plane. If one
distance is zero, then that endpoint is the intersection point, and we can
skip to the next step. If both are zero, the line segment and the triangle
are coplanar to within the precision of the addresses, and are presumed
to not intersect.

If the endpoint distances are nonzero and differ in sign, then the plane
passes through or between these endpoints. The intersection of the plane

Figure 1.
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with the line segment between the endpoints may be found by recursive
subdivision of the interval. The interval is shortened by half each iteration
by taking the interval's current endpoints and averaging them, thus
computing the interval midpoint. The Manhattan distances also are aver-
aged, producing the Manhattan distance for that midpoint. Each division
of the interval produces a choice of two sub-intervals; the one whose end
Manhattan distances differ in sign is pursued. (Each iteration requires
four additions, four shifts, and a zero detect.) Thus:

Initially: End 1 & End 2 define the line segment
(XYZ and distance from plane)
until (Distnew = 0) do
Compute Midpoint:

Xnew ← (X1 + X2) / 2;
Ynew ← (Y1 + Y2)/2;
Znew ← (Z1 + Z2)/2;
Distnew ← (Dist1 + Dist2)/2;

Choose new interval:
if (SIGN(Dist1) = SIGN(Distnew)) then End1 ← New;

else End2 ← New;
endloop;

Whereupon (XYZ)new is the intersection point

Step 2: Point – Triangle IntersectionStep 2: Point – Triangle IntersectionStep 2: Point – Triangle IntersectionStep 2: Point – Triangle IntersectionStep 2: Point – Triangle Intersection
The second part of the algorithm determines if the intersection point lies
inside the triangle. This implicitly is a 2D problem, since the plane
intersection point and the triangle are coplanar. The coordinate whose
axis is most orthogonal to the plane simply is dropped, thus projecting
the intersection point and the triangle on to the plane of the remaining
axes. Its determination involves two 1D procedures, with the first proce-
dure carrying an extra coordinate along for use in the second.

After dropping the coordinate for one axis, we project the intersection
point and triangle vertices on to one of the remaining two axes (by simply
selecting that axis’s coordinate); this is shown in Fig. 2. Either axis could
be used, but the one along which the triangle’s extent is greatest pre-
serves more precision. The intersection point’s projection on to this axis
will lie within the extent of either zero or two triangle edges. If no triangle
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edge overlaps the intersection point’s projection, then the line segment
and the triangle do not intersect.

For those two edges whose extents overlap the intersection point in the
chosen axis’s dimension, we must find the actual triangle edge locations
that project on to the same axis location as the intersection point. We use
recursive subdivision separately on both triangle edges to converge upon
these points. Each subdivision begins with the vertices for its edge and
subdivides the edge recursively. On each iteration, the axis projection of
the new midpoint is compared with that of the intersection point, and the
sub-interval whose projection contains the intersection point’s projection
is pursued. Eventually, both edges converge on 2D locations having the
axis coordinate equal to the intersection point. (This calculation requires
two additions, one subtraction, and two shifts per edge iteration, for a
total of four additions, two subtractions, and four shifts per iteration.) In
Step 3, we will want the pattern of subdivision decisions that converge on
these edge points; to save them requires two shift registers.

In the following algorithm definition, we use the notation L, M, and S
to represent the axes (among X, Y, and Z) in which the particular
triangle’s extents are largest, medium, and smallest, respectively:

Initially: End 1 and End 2 are the (L, M) triangle edge vertices
Orientation = “+” if L2 > L1 else Orientation = “–”

until (Ldist = 0) do
Compute Midpoint:

Lnew ← (L1 + L2)/2;
Mnew ← (M1 + M2)/2;
Ldist ← Lnew – Lintersection;

Choose new interval:
if (SIGN(Ldist) = Orientation) then End2 ← New;

else End1 ← New;
endloop;

Whereupon (L, M)new is edge point with Lnew) = Lintersection

We now look at the span between these two edge points and do 1D
comparisons in the M dimension. If the intersection point lies on the
span between these two edge locations, then the intersection point is
inside the triangle, and the intersection test succeeds; otherwise, it is
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Figure 2.

outside, and the intersection test fails. (This requires only two compar-
isons of Mintersection against the two MnewS). Figure 2 illustrates the
projection on to the M axis as well.

Step 3: U, VStep 3: U, VStep 3: U, VStep 3: U, VStep 3: U, V     ComputationComputationComputationComputationComputation
If intersected triangles are assumed to have a canonical U, V mapping of
0, 0, 0, 1, and 1, 0 at the three vertices, as shown in Fig. 3, then the U, V
values at the two edge points are available directly.

The pattern of subdivision decisions (or the pattern subtracted from 1)
encodes the U or V value for the resulting edge point. For example, if
one edge point is two-thirds of the way from the 0, 0 vertex to the 1, 0
vertex, then the subdivision decisions proceed: far interval, near interval,
far interval, near interval . . . , etc. Expressing this pattern as a binary

Figure 3.
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fraction (.1010101010101010) gives the U parameter of this example
point.

Edge Vertices Parameter Values at Edge Point
U V

0,0 → 0,1 0 subdivision fraction
0,0 → 1,0 subdivision fraction 0
0,1 → 1,0 subdivision fraction 1-subdivision fraction

Given the U, V values for the two edge points, the U, V value for the
intersection point that lies on the span between them can be computed by
yet another recursive subdivision of this span. The edge point M coordi-
nates and U, V parameters are averaged to determine midpoint values for
each iteration. Mmidpoint is compared with Mintersection to determine
which sub-interval to pursue. When these M coordinates are equal, the
U, V values are correct for the intersection point. (This requires three
additions, one subtraction, and three shifts.)

Initially: End 1 and End 2 are the two (M, U, V) triangle edge points
Orientation = “+” if M2 > M1 else Orientation = “–”

until (Mintersection = Mnew) do
Compute Midpoint:

Mnew ← (M1 + M2) /2
Unew ← (U1 + U2)/2
Vnew ← (V1 + V2) /2
Mdist ← Mnew – Mintersection

Choose new interval:
if (SIGN(Mdist) = Orientation) then End2 ← New

else End1 ← New
endloop;

Whereupon (U, V)new is parametric triangle location
for the intersection point

ConclusionConclusionConclusionConclusionConclusion
This method substitutes binary recursive subdivision for division in find-
ing intersection points along line segments. By using only simple arith-
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metic operations, it is suitable for use on computers with weak floating-
point capability, or even directly in hardware. An advantage is that part of
the computation needed to determine the U, V triangle location of the
intersection point simply is a side effect of deciding whether there is any
intersection. A disadvantage is the need for the triangle’s plane equation
coefficients in addition to the vertexes.

This intersection technique solves the 3D ray-triangle intersection
problem by reducing it to a sequence of 1D and 2D problems. This aspect
of the algorithm is useful regardless of whether binary recursive subdivi-
sion or division is used.

See also (390) An Efficient Ray-Polygon Intersection, Didier
Badouel; (394) Fast Ray-Polygon Intersection, Andrew Woo
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V.4V.4V.4V.4V.4IIIIIMPROVED RAY TAGGING FORMPROVED RAY TAGGING FORMPROVED RAY TAGGING FORMPROVED RAY TAGGING FORMPROVED RAY TAGGING FORVOXEL-BASED RAYTRACINGVOXEL-BASED RAYTRACINGVOXEL-BASED RAYTRACINGVOXEL-BASED RAYTRACINGVOXEL-BASED RAYTRACING
David KirkCalifornia Institute of TechnologyPasadena, CaliforniaandJames ArvoApollo Systems Division of Hewlett Packard  Chelmsford, Massachusetts

IntroductionIntroductionIntroductionIntroductionIntroduction
A common difficulty that arises in ray tracing spatially subdivided scenes
is caused by objects that penetrate more than one voxel. The problem is a
degradation in performance due to repeated ray-object intersection tests
between the same ray and object. These redundant tests occur when a ray
steps through several voxels occupied by the same object before finding
an intersection. One strategy that avoids this problem is to employ a
mailbox described by Arnaldi et al. (1987). A mailbox, in this context,
is a means of storing intersection results with objects to avoid redundant
calculations. Each object is assigned a mailbox and each distinct ray is
tagged with a unique number. When an object is tested for intersection,
the results of the test and the ray tag are stored in the object‘ws mailbox.
Before testing each object, the tag stored in its mailbox is compared
against that of the current ray. If they match, the ray has been tested
previously against this object and the results can be retrieved without
being recalculated.

Unfortunately, this scheme can break down when the world object
hierarchy contains multiple instances of spatial subdivision aggregate
objects; that is, collections of objects bundled with a ray intersection
technique based on an octree, a uniform grid, or some other spatial data
structure. In such a scene, several intersections may occur between a ray
and instances of an aggregate object, each instance being geometrically
distinct in the world coordinate system. Therefore, to use the tagging
scheme correctly, we must be careful to distinguish between child objects
within different instances. One way to do this is to update a ray’s tag
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Octree_Intersect(Ray, Octree, Hit_data)
Ray: struct; Ray origin, direction, etc.
Octree: struct; Local data for octree.
Hit_data: struct; Details of intersection.

begin
Incremental local intersection invocation counter.
Octree.tag ← Octree.tag + 1;
Walk through voxels, looking for first intersection.
repeat

get next Voxel of Octree pierced by Ray;
Test all objects in current voxel
for each Child associated with Voxel begin

if Octree.tag = Child.tag Then
This_test ← Child.mailbox;

else begin
Intersect_Object(Ray, Child.Object, This_test);
Child.mailbox ← This_test;
Child.tag ← Octree.tag;
end;

if This_test is a closer hit than Hit_data then
Hit_data ← This_test;

endfor;
until intersection found or no more voxels;
end

Figure 1. A procedure for using local ray-object intersection tags.
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whenever it encounters an instance of an aggregate object, thereby
invalidating the previous contents of the mailboxes. However, this can be
awkward because knowledge about ray tags must percolate throughout
every part of the ray tracer, even modules completely divorced from
spatial subdivision. In particular, the ray tag would need to be updated
every time a new ray is generated or transformed.

An Improved TechniqueAn Improved TechniqueAn Improved TechniqueAn Improved TechniqueAn Improved Technique
A better approach stems from the observation that the items that need to
be tagged are not rays at all, but intersection queries between rays and
aggregate objects. Therefore, the ray tag can be replaced by invocation
counters residing only within aggregate objects based on spatial subdivi-
sion. The tag then is part of the private data of an aggregate and is
incremented each time its ray-intersection technique is invoked on behalf
of any instance. The mailboxes are still associated with child objects
within the aggregate, and the tag is compared with the contents of these
mailboxes, as before (Figure 1).

The benefits of this approach are two-fold. First, the ray tag and
mailbox concepts are localized to where they are used. Therefore, the
bulk of the ray tracer can remain unaffected by them; tags need not be
copied or updated when rays are created or transformed. The second
benefit is that redundant intersection tests are avoided completely, even
in the presence of instanced aggregate objects.

As object-oriented programming techniques are adopted more widely in
ray tracing implementations, it will become common to encapsulate basic
ray tracing operations such as ray-aggregate intersection queries, CSG
operations, and shaders within objects that behave much as simple
primitives (Kirk and Arvo, 1988). Observations about the locality of
information allow us to hide data structures within the objects, removing
them from the main body of the ray tracer, as we have done here with ray
tags.
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Eric Haines3D / Eye, Inc.Ithaca, New York

One common scheme for accelerating ray tracing is using a hierarchical
set of bounding volumes. In this scheme, a tree structure is formed in
which the root is a bounding volume enclosing all objects in the scene,
and each child is an object or a bounding volume containing more objects
or volumes (Rubin and Whitted, 1980; Weghorst et al., 1984). Such a
hierarchy can be formed manually or by various algorithms (Kay and
Kajiya, 1986; Goldsmith and Salmon, 1987). The hierarchy is accessed by
testing a ray against the root volume. If it hits, the volume is opened up
and the objects or volumes within are tested for intersection. This process
continues until the entire tree is traversed, at which time the closest
intersection is returned. What follows are improved tree traversal tech-
niques, many of which have not been published before or have been
overlooked.

One simple improvement is to use the current closest intersection
distance as an upper bound on how far the ray travels. For example, if the
ray hits a sphere at some distance, there is no good reason to examine the
contents of any bounding volumes beyond this distance. For that matter,
if a polygon is intersected at a distance beyond this upper bound, the
polygon must be missed (and so the inside-outside test for the polygon
can be avoided).

Kay and Kajiya improved upon the traversal process by keeping track
of intersected bounding volumes and their intersection distances. The
closest volume on this list is retrieved via heap sort, then is opened and
examined. If at any time the retrieved volume is beyond the upper bound
distance, then the rest of the volumes must be missed and so the process
is complete. Jeff Goldsmith and I have noted that this sorting process
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should not be done for shadow rays, since any intersection found will
block the light.

Caching is a technique that can improve efficiency in traversal. Shadow
object caching is a good example of the method (Haines and Greenberg,
1986). At each intersection node in the ray tree, store a set of object
pointers, one per light source. Set each pointer initially to null. Whenever
a shadow test is done at this node and for a given light, store the object
hit by the ray in the pointer location (or store null if no object is hit). At
the beginning of each shadow test, check if there is an object for this light
at the node. If so, test this object first. If the ray hits the object, no more
testing is needed. Otherwise, continue shadow testing as before.

The principle is simple enough: An object that blocked the last shadow
ray for a node and light probably is going to block the next ray. Using
Arnaldi’s mailboxes technique of marking objects (Arnaldi, et al., 1987)
avoids testing the object twice (once in the cache and once during regular
traversal). The mailbox algorithm is to give each ray a unique ID, and
store this ID in the object when it is tested against the ray. At the
beginning of any intersection test, if the object’s ID matches the ray’s ID,
then the object already has been tested against the ray.

Another technique is to save transparent objects for later intersection
while performing shadow testing (or, memory permitting, to have a
separate hierarchy for them altogether). Only if no opaque object is hit do
the transparent objects need to be tested. The idea here is to avoid doing
work on transparent objects when, in fact, the light does not reach the
object.

Caching also can be applied to tracing shading rays; that is, eye,
reflection, or refraction rays. Keep track of the closest object (if any) last
intersected at the node and test this object first. If the object is hit, there
now is a good upper bound on the ray’s length. Bounding volumes
beyond this distance are discarded, which can cut down considerably on
the amount of the hierarchy traversed. In fact, this minor addition can
give much of the benefit of Kay and Kajiya’s heap sort scheme with much
less implementation and overhead. It also can aid Kay and Kajiya’s
method by helping to prune the tree immediately.

There are a variety of techniques that improve the traversal process
itself. One top-down preprocess method is to open bounding volumes
that contain an endpoint of the ray. For example, a large number of rays
originate from the eye location. So, before tracing any of them, test the
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eye’s location against the root bounding volume. If it is inside, this box
always must be hit; recursively test the eye location on down the tree. Put
the bounding volumes not enclosing the eye location, and all objects
found inside opened bounding volumes, on a list. Use this list of objects
for testing all rays from the eye. In this way, unneeded intersection tests
are eliminated at the start. The same process can be done for each point
light source.

This list formation process is shown in Fig. 1. In this example, the ray
origin is found to be inside bounding volume 1; so, this bounding volume
is opened and the ray origin is tested against the three children. The
origin is found to be in bounding volume 2, so its children are tested.
Bounding volume 5 also encloses the origin, so its children are examined.
These children both are objects, so they are put on the test list. Checking
the other children of BV2, object 1 is put on the list, and BV6 is tested
against the origin. This time, the ray’s origin is not inside the bounding
volume, so BV6 is put on the list. This traversal process continues until
the entire tree has been classified.

Figure 1. Top-down list formation.
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A bottom-up method can be done on the fly for rays originating on an
object. All ancestors of the originating object must be hit by these rays.
Beginning at the parent bounding volume of the originating object, test
each son against the ray. Move to the parent of this bounding volume, and
test all sons except this one. Continue moving up the tree through each
ancestor until done. This traversal has two advantages. The obvious one
is that the object’s ancestor bounding volumes never have to be tested
against the rays. The other advantage is that objects relatively close to the
object are tested first for intersection, thus providing a possible upper
bound early in the process. This approach was used successfully in the
early Cornell ray tracer.

This process is similar to caching in that the lists formed can be reused
for rays originating from the same object. Instead of traversing and
intersecting, simply move up the hierarchy from the originating object
and store the direct sons of these ancestors (except for the originating
sons). This list stays the same throughout the rendering, so it can be used
whenever a ray begins on that object. If keeping all lists around for the
duration of the process costs too much memory, an alternative is to keep
the lists in a similar fashion to shadow cache objects: Store the object’s
list at the intersection node. If the originating object is the same for the
next ray starting from this node, then this list can be reused; otherwise, it
is freed and a new list formed. Note that the list at a node can be used for
a large number of rays: the reflection ray, the refraction ray, and all
shadow rays from this object. Amortizing the cost of forming this list once
over the number of rays per node and the number of times the node has
the same object usually gives a minimal cost per ray for list management.

An example of how this process works is shown in Fig. 2. A ray
originates on object 7; so, object 7 itself is stored for later testing in the
list. This object is shown in parentheses, since one could avoid storing it
if it is guaranteed that the ray cannot intersect this originating object
(e.g., a ray originating on a polygon cannot re-intersect this polygon). The
parent bounding volume 8 is opened and its other son, object 8, is put on
the list. The parent of BV8 is BV6, which then is opened, and its other
son, object 6, is placed on the list. This process continues until the root
node, BVI, is opened.

A further traversal enhancement is combining the top-down and bot-
tom-up approaches. Say there is a list for a given object at a given node.
If the next ray originates on a different object, we normally would rebuild
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Figure 2. Bottom-up traversal.

the list. However, what if the ray’s origin is inside the bounding volume
of the list’s originating object? If so, the ray must hit all the bounding
volumes eliminated when the list was made, and so the list can be reused
for this ray.

It is interesting to note that rays that originate slightly outside the
bounding volume still can use the list—in fact, any ray can use the list.
However, the further the ray is from the bounding volume that formed the
list, the worse the traversal time. Some bounding volumes will be open on
the list that the ray would not have opened, and some bounding volumes
that could have been culled by removing the ancestors will have to be
tested against the ray instead.

As shown before, there is much benefit in obtaining a close intersection
early on in traversal. This suggests another simple scheme, which is to
reorder the hierarchical tree so that objects are before bounding volumes
in the list of sons of a bounding volume. All things being equal, it is better
to find an intersection with an object quickly, and possibly prune bound-
ing volumes early on. Sorting the list of sons in this way suggests other
schemes, such as putting larger objects first in the list, on the theory that
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larger objects are more likely to be hit. Another scheme is to put objects
that are quick to test first. For example, if a sphere and a spline patch are
equally likely to be hit by a ray, it is better to test the sphere first, as this
may obtain an upper bound that quickly prunes the spline from any
testing at all. Sorting by the ratio of hits to tests (found empirically from
testing) is another possibility. A combination of all of these factors may
be the best sorting scheme.

Likewise, bounding volumes could be sorted by various characteristics.
Size and simplicity of intersection both apply as sort keys. Another factor
is the number of descendants in the tree. In general, less descendants
means that fewer bounding volumes will have to be traversed before
reaching objects. Our goal is to test objects as soon as possible, so
bounding volumes with fewer descendants generally are preferable.

For specialized applications, i.e., for a scene rendered with only eye
rays, the sons could be sorted by the distance along the main direction of
rays. Objects close by then would be tested before those further behind.
This idea simply is performing a Kay and Kajiya sort as a preprocess.
Little work has been done on sorting the hierarchy to date, so this whole
area deserves exploration.

As has been shown, there are many methods for speeding hierarchy
access for ray tracing. Some, such as shadow caching and eye-ray list
building, almost always are worth doing. Others, such as object list
building, are more dependent upon weighing the savings of the new
algorithm versus the additional setup and access costs. Most of the
techniques described in this gem are simple to implement and test, and
each can yield some bit of savings.
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Andrew PearceAlias ResearchToronto, Ontario, Canada

This gem describes a simple technique for speeding up shadow ray
computation if you are ray tracing scenes that exploit any type of spatial
subdivision.

When ray tracing shadow rays, it is a good idea to store a pointer to the
last object that caused a shadow with each light source in a shadow
cache (Haines and Greenberg, 1986). The next shadow ray towards any
light source first is intersected with the object in the shadow cache, and if
an intersection occurs, the point we are shading can be declared to be in
shadow with respect to that light source. This works because it is not
necessary to know which object shadows a light source; it is sufficient to
know simply that an object does shadow a light source. The shadow
cache technique exploits object coherence in shadowing.

However, if you are ray tracing surface tessellations, the amount of
object coherence in the shadow is minimal, since the tessellated triangles
produced usually are quite small. It is a simple matter to extend the
shadow cache idea to include the caching of the voxel in which the last
object to shadow the light was intersected, in a voxel cache with each
light source. If the shadow-cached object does not shadow the light
source, then one of the objects in the vicinity (as enclosed by the voxel)
likely will, so all of the objects in the voxel are tested for intersection to
see if they might shadow the light.

David Jevans added the comment that if the last shadow ray towards a
given light source was spawned from a primary ray, and the current
shadow ray was spawned from a reflection ray, then the information in
the shadow and voxel cache is useless, and probably will waste computa-
tion by intersecting objects that could not possibly shadow the light
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source. What he suggests is that a tree of shadow voxel caches be stored
with each light source. To access the shadow voxel cache tree, the history
of each ray is kept at all times; a ray’s history describes uniquely its
position in the shading tree for the current primary (eye) ray. To keep
track of the current ray’s history, a simple bit table can be employed
(called path in the code).

The shadow voxel cache will waste computation when the spawning
point for the shadow rays moves drastically. Therefore, the shadow voxel
cache trees should be cleared at the end of each scanline unless scanlines
are traced in alternating directions (i.e., even scanlines sweep left to right
across the screen, odd scanlines sweep right to left). There is no way to
avoid wasting computation when the spawning point is changed drasti-
cally due to highly curved objects or transitioning between objects; one
must hope that the benefits of the shadow voxel cache tree outweigh this
little bit of wasted computation, and, in practice, I have found this
technique to be very effective.
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This gem is a quick way to avoid intersecting the object that generated
the shadow ray when ray tracing, and is appropriate for planar objects.

Due to floating-point precision problems, many ray tracers add a small
epsilon to the starting position of the shadow ray (along the direction of
its travel) to avoid intersecting the object that has just been intersected. If
the epsilon is not added, then it is possible that the shadow ray will find
an intersection with the object it is supposed to be shading (right at the
origin of the shadow ray), resulting in an incorrect shadow.

When ray tracing objects that are contained in most types of spatial
subdivision structures, it is possible to intersect an object that spans
multiple voxels more than once. A simple technique—which is mentioned
by Arnaldi et al.(1987), Pearce (1987), and Amanatides and Woo (1987)
—is to assign a unique identification number to each ray so that objects
will be tested for intersection with any given ray only once. Once an
object is tested for intersection, the ray’s number is stored in a last-ray
field in that object. Before intersecting an object, the ray’s number and
the last-ray field in the object are compared; if the numbers match, then
the object already has been encountered and tested in a previous voxel
and has been eliminated from the set of possible intersections, so no
further processing is done on that object.

An advantage of saving ray numbers with each object is that the
shadow test easily can ignore the spawning object simply by setting the

V.7V.7V.7V.7V.7
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object’s last-ray field to the shadow ray’s number before starting
the shadow test. However, if the objects are nonplanar and can curve
around to self-shadow, then the traditional epsilon method (or something
similar) must be used.
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IntroductionIntroductionIntroductionIntroductionIntroduction
Body color is the result of the selective absorption of certain wave-
lengths of light as the light travels through a medium. The ability to use
body color is important both in realistic image synthesis and in scientific
visualization. The attenuation and color shift of light traveling through an
almost transparent medium provide important visual cues to the thick-
ness, density, and shape of the object being traversed. Traditional graph-
ics shading models have concentrated on shading at surfaces, which is
sufficient for many objects. However, including the ability to model the
body color of those objects that act as filters enhances the realism and, in
some cases, improves the interpretability of the images produced.

Theoretical BasisTheoretical BasisTheoretical BasisTheoretical BasisTheoretical Basis
The theory of physical optics is used to derive formulas for calculating
the attenuation of the intensity of light as it passes through translucent
materials. Absorption occurs when light waves lose energy as they travel
through a medium. The amount of energy absorbed increases with the
thickness of the medium. If the medium absorbs more energy in one
wavelength than others, then the overall color of the light changes as it
travels through the absorbing medium. This is the principle behind
colored filters. An absorbing medium exhibits body color as distinguished
from surface color, since the color comes from light that has traveled a
distance through the medium. Surface color comes by the reflection of
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light at the surface. Paints give their color primarily by absorption. Metals
give their color predominantly by reflection (Jenkins and White, 1937).

All of the formulas in this gem are stated for a single wavelength. If the
color space being used is based on a continuous range of wavelengths,
then all of the terms in the formulas are functions over the continuous
range of wavelengths. If the color space is discrete in wavelength, such as
an RGB color space, then all of the terms are vectors with one element for
each discrete wavelength.

Absorption by Homogeneous MediaAbsorption by Homogeneous MediaAbsorption by Homogeneous MediaAbsorption by Homogeneous MediaAbsorption by Homogeneous Media
The basic absorption formula is derived from the amount of absorption in
the medium through layers of unit thickness (Jenkins and White, 1937).
Suppose that the light wave enters a medium layered in unit thicknesses.
The intensity of the wave entering the medium is I0. The intensity of the
wave as it enters the second layer will be a fraction q of the initial
intensity I0, such that

I1 = qI0.

As the wave exits the second layer, then the new intensity I2 is

I2 = qI1 = q2I0.

The same effect takes place as the wave moves from layer to layer. After
n layers,

In = qnI0.

Therefore, as the layers become infinitely thin,

Ix = qxI0

for some distance x. The factor q is called the transmission coefficient
(Jenkins and White, 1937) and represents the fraction of the intensity of
light remaining after traveling a unit distance through the volume. This
version of the absorption model is the model proposed by Kay and
Greenberg (1979) and Hall (Hall and Greenberg, 1983).
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The same general formula can be derived in a different manner (Jenkins
and White, 1937). For an infinitely small thickness, dx, the fraction of the
intensity absorbed is proportional to dx by the following equation:

  
dI
I  = –Adx,

where dl/I is the fraction of the intensity absorbed in the thickness, dx.
The factor A is the fraction of incident intensity absorbed per unit
thickness for small thicknesses. By integrating both sides of the equation,
the final intensity can be derived for any distance travelled. Using the fact
that when x = 0, I = I0,the equation

    
 
dI
I

 =  –  Adx,0

x
∫I0

I x∫

yields

Ix = I0e
–(Ax)⋅

This result is Lambert’s law of absorption. A is called the absorption
coefficient of the medium (Jenkins and White, 1937). Values for this
parameter for specific real materials sometimes can be found in various
references (Gubareff et al., 1960; Purdue University, 1970a, 1970b,
1970c).

Another measure of absorption sometimes is more readily available. It
is called the extinction coefficient, k0, and is related to the absorption
coefficient in the following manner:

      
A  =  

4πk0

λ0

,

where λ0 is the wavelength measured in a vacuum (Jenkins and White,
1937). If the wavelength in a vacuum, λ0, is replaced by the wavelength
in the material, λ, then k0 can be replaced by k by using the relationship,
k0 = nk,  where n is the index of refraction for the medium, which
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implies that

      
A  =  4πk

λ .  

The term k is called the absorption index. Both the extinction coeffi-
cient and the absorption index can be found sometimes in the literature
(Gubareff et al., 1960; Purdue University, 1970a, 1970b, 1970c). Some-
times, the term k is used for the extinction coefficient instead of the
absorption index and care must be exercised when using the literature to
determine whether the extinction coefficient or the absorption index is
being specified.

By substituting these two relationships for A, the absorption formulas
now can be stated as

Ix = qxI0,

= I0e
–(Ax)

= 
    I0e

– 4 π k0 x( )
λ 0 ,

= 
    I0e

– 4 π k x( )
λ ,

where x is the distance traveled (Born and Wolf, 1975; Jenkins and
White, 1937). Any of the preceding formulations may be used depending
on the availability of the necessary parameters.

Absorption through Inhomogeneous MediaAbsorption through Inhomogeneous MediaAbsorption through Inhomogeneous MediaAbsorption through Inhomogeneous MediaAbsorption through Inhomogeneous Media
Suppose that the absorptive medium is not constant throughout the
volume, but is defined as a function of position. Now the extinction
coefficient becomes the function A(x), where x represents distance and

  
dI
I

 = –A(x)dx.
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When integrating over the thickness through the volume, then

    
 
dI
I

   I0

I x∫ =     – A x( )dx0

x
∫     results in    Ix =     I0e

– A x( ) dx0
x∫ ⋅

Since

A(x) = 
      

4πk0 x( )
λ0

  and  k0(x) = nk(x),

then

Ix =     I0e
– A x( ) dx0

x∫ ,

=     I0e
–

4 π k0 x( )
λ 0

0
x∫ dx

,

=     I0e
–

4 π k x( )
λ0

x∫ dx
.

Now an integral still remains for evaluation. For some applications, the
media being traversed is piecewise homogeneous or varies smoothly in
some known fashion and the integral can be evaluated directly. For other
applications and various graphical display methods, the integrals cannot
be evaluated directly. For some applications, numerical integration algo-
rithms such as Gaussian quadrature can be applied, while for other
applications, statistical techniques such as Monte Carlo methods must be
applied. The best evaluation methods are highly application- and display
method-dependent and must be chosen wisely.

Once again, remember that the absorption formulas contain a wave-
length factor. The absorption factors are wavelength-dependent and must
be specified for every wavelength that is to be sampled, allowing certain
wavelengths to be absorbed at higher rates than others. Filters operate on
this principle. Some wavelengths are absorbed completely, while others
are allowed to pass untouched, causing an overall shift in the color of the
light to be perceived.
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Reflection of LightReflection of LightReflection of LightReflection of LightReflection of Light
As a side note, the reflection of light from a conducting medium (medium
with free electrons) also is affected by the extinction coefficient. The
Fresnel formulas determine the fraction of the intensity of the light wave
that will be reflected. For more on this subject, please see the appendix
for the next gem in this book.

ConclusionsConclusionsConclusionsConclusionsConclusions
We have derived several equivalent absorption formulations, each of
which can be used depending on the application and the availability of
data. For stable numerical computation, we prefer transforming the data
into the form using the absorption coefficient. Unstable conditions for the
exponential function, such as underflow and overflow, are detected easily
and avoided.

See also V.9 More Shadow Attenuation for Ray Tracing Trans-
parent or Translucent Objects, Mark E. Lee, Samuel P. Uselton;
(397) Shadow Attenuation for Ray Tracing Transparent
Objects, Andrew Pearce
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Approximations for Shadow Generation
This gem contains the derivation of an approximation for the calculation
of a shadow attenuation term for shadow generation.

Why is an approximation necessary? An accurate, general, computable
algorithm for calculating the amount of light that passes through trans-
parent surfaces to reach the point being illuminated is difficult to con-
struct. Objects such as glass lenses tend to focus light onto the point
being illuminated. To demonstrate the difficulty in constructing an accu-
rate model, consider the light being focused through a simple lens. The
solution for light being focused through a lens onto a single point on the
surface is a continuous area of the lens. Determination of the focusing
areas for arbitrary multiple transparent surfaces is extremely difficult.
However, if focusing effects are ignored, the shadow model becomes
much simpler.

Pearce (1990) presented one such approximation. We would like to
present another approximation that has been used by the ray-tracing
project at the University of Tulsa (Lee et al., 1986).

The Naïve Scheme
Let S be the shadow attenuation factor for the amount of light that
reaches the point to be illuminated. A naïve scheme for calculating the S
term sends a ray back in the light source direction and determines if any
objects lie between the point of interest and the light source. If any
objects obstruct the path of the ray between the point of interest and the
light source, then the point is assumed to be in shadow and S = 0;

V.9V.9V.9V.9V.9
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otherwise, the point is not shadowed and S = 1. This scheme works
efficiently; however, for transparent surfaces, the amount of shadow is
incorrect. A certain amount of light still travels through the transparent
surface to reach the intersection point and the shadow is not completely
dark (0 ≤ S ≤ 1). A better approximation is necessary.

An Improved SchemeAn Improved SchemeAn Improved SchemeAn Improved SchemeAn Improved Scheme
For many shading models, such as the Hall model (Hall and Greenberg,
1983; Hall, 1983; Glassner, 1989), the amount of light that passes
through the interface between two media (generally a surface) is I0ktT,
where I0 is the amount of light incident to the interface, kt is the
transmission coefficient from the shading equation (in our application, the
same as ks, the specular reflection coefficient), and T = 1 – F, where T
is the Fresnel transmission curve and F is the Fresnel reflectance curve.
(See the appendix for this gem for the calculation of the Fresnel re-
flectance curve.) The new approximation procedure now will construct
the shadow attenuation term S from the same transmission factor, ktT,
used for the refraction of a ray through a surface interface. A ray is sent
from the point of interest to the light source and all points of ray-surface
intersection are calculated. Unlike the refraction of a ray at the interface
between two media, the direction of the light ray is not altered at such
points. By not bending the light ray at each interface, the problem of
determining the path of light from the light source through transparent
objects onto other surfaces has been eliminated. The ray proceeds from
intersection point to intersection point, calculating new transmission

Figure 1. Calculation of shadow through lens
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factors and weighting the current shadow attenuation term S by these
transmission factors to generate the new shadow attenuation term. Also,
as light passes through absorbing media, the amount of absorption should
be factored into the shadow attenuation term. (See preceding gem, on
body color.)

The attenuation term S is calculated as follows:

Procedure Shadow_ray()
S = 1
send ray to the light source and generate intersection list
for j = 1 to number_of_intersections or until reach light source

get jth intersection point
compute distance, d, through previous medium with absorptiont
factor, A
S = Se(–Ad) attenuation of light by absorption
compute Fresnel transmission curve, T, for the surface inter-
face
S = SktT attenuation of light by surface transmission factor

repeat
end.

When the light source is reached, S contains the shadow attenuation term
for scaling the amount of light that reached the point being illuminated.

Figure 1 demonstrates the shadow algorithm. As the ray leaves the
intersection point and reaches the lens, the absorption factor for medium
1 and the transmission factor for the interface between medium 1 and
medium 2 are factored into the S term. The process continues until the
ray reaches the light source, where the final term is:

S =     e
− A 1 d 1( )

     kt 1
T1    e

− A 2 d 2( )

    kt 2
T2    e

− A 3 d 3( ) .

Notice that, since the absorption and transmission factors are present in
the equation, the equation is now wavelength-dependent. (See preceding
gem, on body color.) The wavelength dependency allows certain wave-
lengths to be absorbed at higher rates than others, causing an overall shift
in the color of the light to be perceived and permitting the shadows to be
colored by the filtering of light by various media. The images in the
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stratified sampling paper by Lee, Redner, and Uselton (1985) contain
examples of colored shadows generated by using this technique. Note
also the dark edges and light center of the shadow cast by the solid glass
wineglass stem.

This approximation can be extended further by taking diffuse transmis-
sion of light into account. Let Ts be the specular transmission curve as
before (previously called T). Let Td be the diffuse transmission curve, kst
be the specular transmission coefficient (previously called kt), and kdt be
the diffuse transmission coefficient (Glassner, 1989). In our project at the
University of Tulsa, kst = ks, the specular reflectance coefficient, and
kdt = kd, the diffuse reflectance coefficient. Now, Ts = 1 – Fs as before,
and using conservation of energy principles, Td = 1 – Fd, where Fd is the
diffuse reflectance curve. The new shadow attenuation through the inter-
face between two media can be modeled as kstTs + kdtTd. This might
make for a more accurate approximation for shadows generated by
frosted glass. However, most diffusely reflecting objects are opaque and
Haines’s idea of testing for opaque objects first when calculating shadows
definitely should be used before applying this shadowing approximation.

AppendixAppendixAppendixAppendixAppendix
Wavelength-Dependent Reflection and RefractionWavelength-Dependent Reflection and RefractionWavelength-Dependent Reflection and RefractionWavelength-Dependent Reflection and RefractionWavelength-Dependent Reflection and Refraction
The reflection of light from a conducting medium (medium with free
electrons) is affected by both the extinction coefficient and the index of
refraction. The Fresnel formulas determine the fraction of the intensity of
the light wave that will be reflected (Born and Wolf, 1975; Cook, 1982;
Cook and Torrance, 1982; Jenkins and White, 1937; Sparrow and Cess,
1970; Wiebelt, 1966). Brighter reflections, such as reflections from metal-
lic surfaces, are due to increased motion by free electrons under the force
of a light wave. The motion is greatest at the most resonant frequencies,
which occur where the values of the extinction coefficient are greatest.
The effective reflectance is a weighted average of the reflectance in the
direction parallel to the electric field and the reflectance in the direction
perpendicular to the electric field. If the incident light is unpolarized, then
the weights of the parallel and perpendicular terms are equal (Born and
Wolf, 1975; Ditchburn, 1976; Jenkins and White, 1937; Wiebelt, 1966).
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Special care must be taken that the complex index of refraction, nc + ik0,
for the Fresnel formulas not be confused with the geometric index of
refraction, n, used by ray tracing for determining the direction of refrac-
tion. When k0 = 0, as is the case for dielectric materials such as glass
and plastic, then the geometric index of refraction, n, is the same as the
real portion of the complex index of refraction, nc (i.e., the complex
index of refraction now is real, as for dielectric media); otherwise, nc and
n are different.

Approximations for Applying the Fresnel FormulasApproximations for Applying the Fresnel FormulasApproximations for Applying the Fresnel FormulasApproximations for Applying the Fresnel FormulasApproximations for Applying the Fresnel Formulas
Unfortunately, the Fresnel formulas for a conducting medium (metals) are
not readily available or applicable except for the interface between metals
and air (nc = 1, k0 = 0). However, as Cook points out (Cook, 1982;
Cook and Torrance, 1982), the Fresnel formulas are only weakly depen-
dent on k0 and, therefore, the appearance of a metallic surface is not
degraded too severely using the Fresnel formulas for the interface be-
tween dielectric surfaces (k0 = 0), which are well-defined. The Fresnel
formulas for dielectric materials (Born and Wolf, 1975; Ditchburn, 1976;
Sparrow and Cess, 1970; Wiebelt, 1966) are:

ri = 
    

ntcosθi  −  nicosθt

ntcosθi  +  nicosθt

,

r⊥ = 
    

nicosθi  −  ntcosθt

nicosθi  +  ntcosθt

,

Fi = ri
2,

F⊥ = r⊥
2, and

F = 
  
1
2 (Fi  + F⊥),

where

ni is the index of refraction for the medium of incidence,
nt is the index of refraction for the medium of transmittance,
θi is the angle of incidence,
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θt is the angle of refraction,

ri is the ratio of the amplitude of the incident wave and the reflected
wave for the direction parallel to the electric field,

r⊥ is the ratio of the amplitude of the incident wave and the reflected
wave for the direction perpendicular to the electric field,

Fi is the reflectivity value for the direction parallel to the electric field,

F⊥ is the reflectivity value for the direction perpendicular to the
electric field,

F   is the total reflectivity value when the incident light wave energy is
unpolarized.

The formula F = 1/2(Fi + F⊥) holds only under the assumption that the
energy incident to the dielectric interface is completely unpolarized. The
energy leaving the surface is polarized or partially polarized for all angles
except 0 and 90 degrees. However, since no polarization information is
being maintained by the majority of all existing shading models, the
assumption must be made that the incident energy is completely unpolar-
ized.

The cosine terms are calculated as follows:

cos θi = 
    

V ⋅ H   for shading model applications,
V ⋅ N   for reflected ray weight calculations,
L ⋅ N   for shadow ray attenuation calculations,







cos θt =     1 –  ni
2 / nt

2( ) 1 –  cos2 θi( )( ) ,

where

L is the ray from the point to be illuminated to the light source,
N is the surface normal,
V is the incident or viewing ray, and
H = (V + L)/|V + L|.

The term T is the Fresnel transmission term that determines the
amount of light to be transmitted for a particular wavelength. Assuming a
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conservation of energy, the sum of the intensity of light reflected and the
intensity of light transmitted must equal the intensity of light incident on
the surface interface, which implies that T = 1 – F.

Since the Fresnel formulas are well-defined only for dielectric media,
the values of nc + ik0 for conducting media must be converted to the
geometric index of refraction, n. Generating the refracted ray at a surface
intersection also requires the geometric index of refraction. An approxi-
mation can be used to derive the geometric index of refraction, n, from
the complex index of refraction, nc + ik0. At normal incidence, the
reflectance equation becomes:

F = 
nc  −  1( )2

 +  k0
2

nc  +  1( )2
 +  k0

2
,

where F is the effective reflectance. Using the geometric index of refrac-
tion in place of the complex index of refraction, the reflectance equation
becomes:

F = 
    

n  −  1( )2

n  +  1( )2 .

Solving for n yields:

n = 
    
1 +  F
1 −  F

.

By using the effective reflectance calculated using the complex index of
refraction with this last equation, an approximation to the geometric
index of refraction, n, has been derived (Cook, 1982; Cook and Torrance,
1982).

See also V.8 A Body Color Model: Absorption of Light through
Translucent Media, Mark E. Lee, Samuel P. Uselton
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RADIOSITYRADIOSITYRADIOSITYRADIOSITYRADIOSITY

The radiosity approach to image synthesis was introduced by Goral
et al. (1984) and is now well-established as one of the preeminent
algorithms for creating high-quality images. Based on ideas from an
engineering discipline known as radiative heat transfer, the radiosity
approach has as its central tenet a fundamental physical principle that is
ignored almost entirely by techniques such as ray tracing—the principle
of energy conservation. Although the standard ray-tracing effects of
specular reflection and refraction are much more difficult to incorporate
into this approach, radiosity excels at computing global lighting in which
energy is balanced among diffuse surfaces that radiate and re-radiate light
ad infinitum.

Initially, radiosity appeared to be a radical departure from ray tracing,
with the sharp difference easily discernible in the images generated by
each method. Ray tracing boasted curved shiny objects with brilliant
reflections, while radiosity images revealed soft shadows and color bleed-
ing among flat diffuse surfaces—subtle effects that add realism to images
of more commonplace settings, such as room interiors. Although the two
algorithms seemed worlds apart, current research is bridging the gap to
yield techniques that enjoy the strengths of both. The view-dependent
nature of ray tracing makes it indispensable for precise reflections, while
the physically based nature of radiosity makes it an ideal paradigm for
physically accurate simulations. The gems in this Part focus on different
aspects of the radiosity approach. The first gem describes how a radiosity

VIVIVIVIVI
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renderer can be implemented based on familiar rendering software. The
next two gems describe small improvements to relatively well-known
radiosity approaches. The last two gems focus on the use of ray tracing
within the context of radiosity.
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VI.1VI.1VI.1VI.1VI.1IIIIIMPLEMENTING PROGRESSIVEMPLEMENTING PROGRESSIVEMPLEMENTING PROGRESSIVEMPLEMENTING PROGRESSIVEMPLEMENTING PROGRESSIVERRRRRADIOSITY WITHADIOSITY WITHADIOSITY WITHADIOSITY WITHADIOSITY WITHUUUUUSER-PROVIDED POLYGONSER-PROVIDED POLYGONSER-PROVIDED POLYGONSER-PROVIDED POLYGONSER-PROVIDED POLYGONDDDDDISPLAY ROUTINESISPLAY ROUTINESISPLAY ROUTINESISPLAY ROUTINESISPLAY ROUTINES
Shenchang Eric ChenApple Computer, Inc.Cupertino, California

IntroductionIntroductionIntroductionIntroductionIntroduction
Radiosity has emerged in recent years as a popular rendering technique.
The main advantage of radiosity is its capability of simulating diffuse
interreflection or so-called color bleeding effects. This advantage has
enabled radiosity images to be highly realistic, since most surfaces in the
real world are diffuse. Another characteristic of typical diffuse radiosity is
that the rendering is view-independent: Intensities are computed in world
space on some discrete surface points. This allows fast viewing of
radiosity results from different positions.

While a naïve ray tracer can be implemented fairly easily and com-
pactly (as in the case of Paul Heckbert, who has a ray tracer printed on
his business card), implementing a radiosity program generally is re-
garded as an enormous task. This is evident in that there still is no public
domain radiosity code available, to the author’s knowledge; yet if we
assume some tools are available, a naïve radiosity renderer actually is
quite simple to implement.

The main computation in radiosity is the computation of form factors,
which are geometrical relationships between surfaces (Goral et al., 1984).
Form factors can be computed using a hemi-cube technique (Cohen and
Greenberg, 1985), which mainly involves hidden surface removal. There-
fore, if we assume some polygon display tools such as z buffer or ray
casting are available, then implementing a radiosity program is very
simple. The availability of such kinds of tools generally is not a problem.
A number of polygon scan converters and ray tracers are published in
previous gems. Most graphics workstations now have z buffer methods
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implemented in hardware and may be used to speed up the hemi-cube
computation.

In the following sections, an implementation of progressive radiosity
(Cohen et al., 1988) is presented and its C Implementation also is given
in Appendix 2. The implementation assumes all the surfaces are ideal
diffuse and have been tessellated into patches (shooters of radiosity) and
elements (receivers of radiosity). It does not perform any adaptive subdi-
vision and ignores the aliasing problems caused by the hemi-cube method
as noted by Baum et al. (1989) and Wallace et al. (1989). The program
is easily transportable to different platforms because it assumes some
user-provided polygon drawing routines are available. An additional ad-
vantage of this approach is that it allows users to experiment with
different hidden surface algorithms to accelerate the hemi-cube computa-
tion, which may account for 90% of the total computation.

Progressive RadiosityProgressive RadiosityProgressive RadiosityProgressive RadiosityProgressive Radiosity
Progressive radiosity uses an iterative solution to compute the results.
Each iteration basically consists of the following steps:

Find Shooting Patch: Find the next shooting patch that has the
greatest unshot energy (i.e., the energy to be distributed). If the unshot
energy is less than a fraction of the sum of the initially emitted energy,
then stop the solution.

Compute Form Factors: Place a hemi-cube on the center of the
shooting patch and orient it to the patch’s normal direction. Project every
element to all five faces of the hemi-cube. Sum the delta form factors
associated with each hemi-cube pixel to compute form factors from the
shooting patch to every element.

Distribute Radiosity: Distribute the unshot radiosity of the shooting
patch to every element.

Display Results: Display all the elements with colors determined
from the element’s radiosity.

Figure 1 illustrates the process.
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Figure 1. Progressive radiosity.

ImplementationImplementationImplementationImplementationImplementation
The program rad.c takes an array of patches and elements as input and
performs rendering on them. The patch and element are two different
levels of subdivision of a surface. The patches actually are surface sample
points that contain locations, normals, areas, surface attributes, etc. The
shape of a patch is not needed in our implementation. The patch subdivi-
sion can be very coarse and usually is a function of the surface’s
radiosity, size, and position. Varying patch subdivision is equivalent to
approximating an area light with different numbers of point lights and has
a similar speed and quality trade-off. Each patch is subdivided further
into elements, which contain additional information such as shapes and
patches to which they belong. Since elements are used to display the
results, varying element subdivision is analogous to varying image resolu-
tions in ray tracing.

This program makes use of three user-provided routines to perform
hemi-cube computation and display of results:

BeginDraw: This function should clear the frame buffer with a back-
ground color and prepare it for drawing. It also sets up a view transfor-
mation that will be used by all the subsequent drawings of polygons.

DrawPolygon: This function should transform, clip, and scan-con-
vert a polygon into a frame buffer, and should perform hidden surface
removal. Each polygon is drawn with a constant color.
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EndDraw: The function should guarantee all the polygons are drawn
to the frame buffer and the content of the buffer is ready to be accessed
by the caller.

Notice that the preceding routines also can be implemented with a ray
tracer, which stores polygons in a list when DrawPolygon is called and
starts tracing rays when EndDraw is called.

Since the drawing routines are assumed to perform only flat shading,
each polygon in the image is shaded with a constant color computed from
the element radiosity. To generate smoothly shaded images, bilinear
interpolation of the element radiosities can be used to obtain colors of the
element vertices. Then Gouraud shading (1971) can be used to display
the image.

A test program room.c is included as a demonstration. (See C Imple-
mentation in Appendix II.)
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VI.2VI.2VI.2VI.2VI.2AAAAA CUBIC TETRAHEDRAL CUBIC TETRAHEDRAL CUBIC TETRAHEDRAL CUBIC TETRAHEDRAL CUBIC TETRAHEDRALAAAAADAPTATION OF THEDAPTATION OF THEDAPTATION OF THEDAPTATION OF THEDAPTATION OF THEHHHHHEMI-CUBE ALGORITHMEMI-CUBE ALGORITHMEMI-CUBE ALGORITHMEMI-CUBE ALGORITHMEMI-CUBE ALGORITHM
Jeffrey C. Beran-Koehn and Mark J. PavicicNorth Dakota State UniversityFargo, North Dakota

The hemi-cube algorithm has become the most popular method of
calculating radiosity solutions for complex environments containing hid-
den surfaces and shadows (Cohen and Greenberg, 1985). A cubic tetra-
hedral adaptation of this algorithm increases performance by reducing
the number of projection planes from five to three, while maintaining the
simplicity of the required clipping and projection operations.

The hemi-cube algorithm calculates the amount of light landing on a
patch from every other patch by transforming the environment so that the
receiving patch’s center is at the origin and its normal coincides with the
positive z axis. An imaginary cube is constructed around the center of the
receiving patch. The upper half of this cube provides four half-faces and
one full face onto which the environment is projected. Each of these faces
is divided into square pixels at a given resolution. The hemi-cube is
illustrated in Fig.1.

Every patch in the environment that is above, or intersects, the z = 0
plane is clipped so that it lies within only one of the five view volumes
defined by the planes: z = 0, z = x, z = –x, z = y, z = –y, x = y, and
x = –y. These patches then are projected onto the appropriate face of
the cube by a perspective projection and hidden-surface removal is done
with a depth-buffering algorithm.

A cubic tetrahedron may be constructed by slicing a cube with a plane
that passes through three of the cube’s vertices. Using a cube that is
identical to the one described before, select the following vertices to
define the slicing plane: V1 = (–r, r, r), V2 = (r, –r, r), V3 = (r, r, –r).
The apex of the cubic tetrahedron is at the point A = (r, r, r), and the
center of the cubic tetrahedron’s base is located at the point C=
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(r/3, r/3, r/3). To locate the center of the cubic tetrahedron’s base at
the origin, the cube is translated –r/3 units along the x, y, and z axes
(i.e., V′i = Vi – C, A′ = A – C, and C′ = 0). Figure 2 illustrates this
cubic tetrahedron. The plane equation of the base of the cubic tetra-
hedron now is x + y = –z. The equation of the plane containing C′, A′,
and V′1 is z = y. The plane containing C ′, A′, and V2′ is described by the
equation z = x, while C′, A′, and V3′ define a plane whose equation is
x = y.

To use this cubic tetrahedral approach, the environment is transformed
so the center of the receiving patch is at the origin and the patch’s normal

Figure 1. The Hemi-cube.

Figure 2. The cubic tetrahedron.
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coincides with the vector (1, 1, 1). An imaginary cubic tetrahedron is
constructed from a cube and the plane containing the receiving patch as
described previously. This defines three faces onto which the environ-
ment is to be projected. Every patch in the environment that is above, or
intersects, the x + y = –z plane is clipped so that it lies within only one
of the three view volumes defined by the planes: x + y = –z, z = y,
z = x, and x = y. Thus, the cubic tetrahedron retains the property that
only simple comparisons are required to determine on which side of a
clipping plane any point lies. Each patch, located above the x + y = –z
plane, is projected onto the appropriate face of the cubic tetrahedron by a
perspective projection. The projections for the cubic tetrahedron and the
hemi-cube differ only in the distance between the center of projection and
the projection plane. As is the case with the hemi-cube algorithm,
hidden-surface removal is done with a depth-buffering algorithm.

The first advantage of the cubic tetrahedral adaptation is the fact that
each of the faces is identical. The hemi-cube uses four half-faces and one
full face of a cube, thus requiring the top face to be treated differently
than the four side faces.

The cubic tetrahedral adaptation also increases the performance of the
hemi-cube algorithm. The cubic tetrahedron partitions the environment
into three view volumes instead of five. This coarser partitioning results in
fewer patches that must be clipped. This is an important result because
for each patch that is clipped, not only must the intersection of the patch
with an edge of a view volume be calculated, but another patch is created.
This new patch creates additional work in the projection and hidden-
surface portions of the algorithm. The reduction in the clipping, and,
therefore, in the number of projection and hidden-surface calculations, is
achieved while maintaining the ease with which these operations are
performed.

The cubic tetrahedral adaptation samples the environment with half as
many pixels as would be used by the hemi-cube algorithm at a given
resolution. The four half-faces and one full face of the hemi-cube sample
the environment with three times the number of pixels located on one full
face of the cube. The three faces of the cubic tetrahedron sample the
environment with only one and one-half times the number of pixels
located on one full face of the cube. Therefore, to sample the environ-
ment with the same number of pixels as the hemi-cube, the number of
pixels on the cubic tetrahedron must be doubled. This does not affect
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performance, since the number of pixels used for hidden-surface removal
and form-factor calculations now is identical for both geometries. The
doubling, however, does slightly increase the storage requirements of the
delta form-factor look-up table (Cohen and Greenberg, 1985). Let n be
the number of pixels on one full face of the cube. Then the hemi-cube’s
look-up table contains n/8 + n/4, or 3n/8 values. Doubling the number
of pixels on the cubic tetrahedron results in a look-up table containing
n/2 values.

The cubic tetrahedron provides an attractive adaptation of the hemi-
cube algorithm. It replaces the five faces of the hemi-cube with three
symmetrical faces. These faces are constructed in such a manner as to
maintain the efficiency of the clipping and projection operations. The
number of patches that are clipped is reduced, resulting in a reduction of
the number of projection and hidden-surface calculations performed. This
performance increase is accompanied by only a slight increase in the
amount of storage required for the delta form-factor look-up table.
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Filippo TampieriCornell UniversityIthaca, New York

Here is a simple method for fast progressive refinement radiosity using
ray-traced form factors that, at each iteration of the algorithm, reduces
the number of surfaces whose radiosity needs to be updated.

At each iteration of progressive refinement radiosity, a shooting patch
is selected and the radiosity of all the mesh vertices in the environment
must be updated with its contribution. A simple approach consists of
traversing sequentially a list of these vertices and updating each one in
turn. The update involves tracing one or more shadow rays to determine
occlusions for the computation of the vertex-to-shooting patch form
factor and can be pretty expensive. If the vertex is behind the shooting
patch, though, the entire computation can be avoided, since, in this case,
there can be no energy reaching the vertex. Let the vertex location be
denoted by P and the plane on which the shooting patch lies be denoted
by N and d, where N = [a, b, c] and ax + by + cz + d = 0 is the
equation of the plane, then:

if  N ⋅ P + d ≤ 0 then
vertex P is behind the shooting patch

else
vertex P is in front of the shooting patch

Thus, a simple dot product is sufficient to cull a vertex out of considera-
tion. The culling operation, though, can be much more effective at
speeding up the update pass if applied to a group of mesh vertices all at
once.
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If the environment is viewed as consisting of a set of surfaces, mesh
vertices can be grouped according to which surface they lie on. If the
surfaces all are polygons, then each surface can be culled easily by
testing its corners; if its corners all are behind the shooting patch, then
none of its mesh vertices can receive any energy and no further work is
necessary. However, if at least one corner is in front of the shooting
patch, then all of its mesh vertices must be processed, since some of
them might receive energy.

Bounding boxes can be used to develop a faster and more general
method of determining whether a surface is behind a shooting patch. If
the surface is enclosed in a bounding box, then it can be culled out of
consideration if its bounding box is behind the shooting patch.

Here is an algorithm that determines whether or not an axis-aligned
box is completely behind a given plane, using only a few comparisons and
a single dot product. The idea is as follows: Choose the corner of the box
that is in front of the plane and the furthest away from it, or that which
 is the closest to the plane if no corner lies in front of the plane. (Ties are
broken arbitrarily.) If the chosen corner is behind the plane, then all the
other corners must be behind the plane as well, which implies that the
bounding box itself and its contents are completely behind the plane and
thus can be culled safely out of consideration. In Fig. 1, the chosen
corner is circled for the three most representative cases.

The choice is made simply by selecting that corner whose x, y, and z
components are the largest when the corresponding component of the
plane normal is positive, and the smallest when the corresponding com-
ponent of the plane normal is negative. (If the component of the plane
normal is zero, any choice will do.)

Let the axis-aligned box be denoted by its minimum and maximum
corners, Cmin and Cmax, and the plane be denoted by N and d as before;

Figure 1.

    (a)         (b)           (c)
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then:

1. for i in xyz do
if Ni ≥ 0. then

Pi := Ci
max

else
Pi := Ci

min;
2. if N ⋅ P + d ≤ 0. then

the box is completely behind the plane
else

the box is at least partially in front of the plane

Step 1 chooses the appropriate corner of the bounding box and step 2
checks whether the corner is behind the plane of the shooting patch. On
large surfaces and fine meshes, this method may cull hundreds or even
thousands of mesh vertices in a single operation.

The idea of using bounding boxes can be carried even further. If the
surfaces in the environment are organized in a hierarchy of bounding
boxes, then entire groups of surfaces are eliminated from consideration
when the bounding box associated to an interior node of the hierarchy is
found to lie completely behind the plane of the shooting patch. The whole
environment now is updated by traversing the hierarchy recursively,
starting from the root, testing at each node whether its bounding box is
completely behind the shooting patch, and examining its children only if
that is not the case.

See also VI.1 Implementing Progressive Radiosity with User-
Provided Polygon Display Routines, Shenchang Eric Chen
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Peter ShirleyIndiana UniversityBloomington, Indiana

In a radiosity program, the indirect lighting that contributes to surface
color is calculated explicitly. This is used in place of the less accurate
ambient term usually used in computer graphics. Radiosity solutions are
applicable to scenes that are made up of diffuse reflectors (i.e., matte
objects). Recently, progressive refinement radiosity has become popu-
lar. In progressive refinement solutions, power is transported within the
environment until we have an estimate for the power reflected from each
surface. If ray tracing is used to transport the power, a radiosity program
is not hard to write.

Progressive Refinement RadiosityProgressive Refinement RadiosityProgressive Refinement RadiosityProgressive Refinement RadiosityProgressive Refinement Radiosity
The simplest way to implement (and understand) a radiosity program is
as a brute force physical simulation. Assume that the entire environment
is divided into N surface zones zi.

For each zone, we should find the average reflectivity, Ri. The un-
knowns we would like to solve for are the radiances Li  of all zi. Radiance
can be thought of as surface brightness, and sometimes is called intensity
in the computer graphics literature. For our purposes, we can use
radiance and brightness interchangeably.

In a physical simulation, it is easier to deal with power than radiance.
Power simply is the energy per unit time. For example, a light bulb that
emits 60 joules per second is a 60-watt bulb. Given the power Φi leaving
zi, we can find the radiance Li:

    
Li  =  Φi

πAi

,

where Ai is the surface area of zi.
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Assume the power emitted from zi is known to be Φi
emit This quantity

will be zero for zones that are not luminaries (light sources). In a
progressive refinement solution, we send the power from the luminaires
to all other zones. We then have these zones send the power they reflect.
This process is repeated until most of the power is absorbed. To accom-
plish this, we need to define Φi

unsent, the accumulated power of zi that has
not yet been propagated to other zones. We now can outline a simple
program to estimate Li for every surface:

for i = 1 to N
Φi

unsent = Φi = Φi
emit

for b = 1 to B
for i = 1 to N

Send Φi
unsent to other surfaces

Φi
unsent = 0

for i = 1 to N
Li= Φi/(πAi)

This algorithm loops through all the zones B times. B can be thought of
as the approximate number of interreflections we model (we actually
model approximately 1.5B interreflections), and values somewhere be-
tween 4 and 20 should produce good results. Each zone sends its unsent
power once to the other zones in each iteration of the loop. The difficult
part of the algorithm is the line Send Φi

unsent to other surfaces. Here,
power is sent to many zj, raising the values for Φj and Φj

unsent, This can
be accomplished using projection techniques or ray tracing. In the next
section, the easiest ray tracing method is described.

Sending the Power with RaysSending the Power with RaysSending the Power with RaysSending the Power with RaysSending the Power with Rays
When the zone zi sends its accumulated power out into the environment,
the quantity sent in a particular direction is proportional to cos θ, where θ
is the angle between the direction and the surface normal of zi. We could
calculate explicitly the power transferred from zi to every zj based on
the geometrical relationship of zi and zj. The fraction of power leaving
zi that directly gets to zj is called the form factor Fij. Instead, we
implicitly can estimate Fij by using a Monte Carlo simulation.

Because we know zi reflects/emits power in a cosine distribution, we
could divide Φi

unsent  into r packets, and send each packet in a random
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direction. These directions should have a cosine density, rather than
being uniformly random. The power carried in each packet would be
transferred fully to whatever zone, zj, is hit by the packet (seen in the
direction the packet is sent). In pseudo-code, this idea becomes:

φ = Φi
unsent/r

for k = 1 to r
Choose a random direction (θ, ϕ)
Choose a random point p on zi

Find zone zk hit by ray from p in direction (θ, ϕ)
Φk =  Φk + Rkφ
Φk

unsent = Φk
unsent + Rkφ

One way to think of this is as a simulation where r photons are sent
from zi. There are two details that need to be fleshed out. The first is how
many rays r we should send. We certainly should not use the same r for
each surface, because we would rather send many rays from a bright
zone, and no rays from a zone with no unsent power. A good method is to
make r directly proportional to Φi

unsent , so a zone with twice as much
power as another zone will send twice as many rays.

We also need a way to choose random (θ, ϕ) with the right distribution:
The probability of a particular direction is proportional to cos θ. For a
particular ray, we choose a random pair (ξ1, ξ2) uniformly from the unit
square (0 ≤ ξj < 1). We get the direction (θ, ϕ) by applying the transfor-
mations θ = arccos (  1 −  ξ1

), and ϕ = 2πξ2. Be sure to remember that
(θ, ϕ) are the coordinates relative to the surface normal, and not the
global Cartesian axes.

ExtensionsExtensionsExtensionsExtensionsExtensions
There are a few things we need to add to our solution for it to be useful.
Most importantly, we need to smooth our solution. If we simply flat-
shaded every zi using Li, then we would end up with obvious zone
boundaries, giving a quilting effect. The standard solution is to interpo-
late zone colors to the zone vertices, and then Gouraud shade each zone.
Because we want color to vary continuously across an object (e.g., the
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wall in a room), vertices shared by adjacent zones should have exactly
one color. The simplest way to find vertex colors that meet this constraint
is to set each vertex color to the average of Li for all zi that have that
vertex on their boundaries.

Another basic thing we need to add is color. This is done by represent-
ing the power, reflectance, and radiance variables as sets of values. If an
RGB color model is used, each variable would have a red, a green, and a
blue component. If we want to use a more sophisticated color model, we
can represent each variable at a set of specified wavelengths.

Non-diffuse luminaires can be added by distributing the rays first sent
from luminaires according to some density other than the cosine density.
For example, we could make the density proportional to cosn θ, where n
is a user-defined phong exponent. For this, we use the transformations
θ = arccos((1 – ξ1)

l/(n + l)), ϕ = 2πξ2.
If we want to make images of complex scenes, we will want to use

texture mapping. We can think of this as allowing each zone to have a
reflectivity that varies across its surface; so each zi will have a reflectivity
function R(p) defined for all points p on the zone. The average re-
flectance, Ri, can be found by integrating R(p) over the surface of zi

and dividing by Ai. If we use Monte Carlo integration, this amounts to
averaging R(pj) for several points pj randomly taken from the surface of
zi. We can proceed with the standard radiosity solution. When we
normally would display a point p on a zone zi as color L(p) (found
from Gouraud shading), instead use R(p)L(p)/Ri. In effect, this trans-
forms the radiosity solution to one of incoming light rather than reflected
light, which we then can multiply by reflectance.

Mirrors can be added to our solution by letting the power carrying rays
reflect from them with appropriate loss in power (attenuation by the
reflectivity of the mirror). These mirrors will not have any stored color (as
their color varies directionally), but they can be rendered with a standard
ray tracing program.

Further ReadingFurther ReadingFurther ReadingFurther ReadingFurther Reading
The first radiosity paper, which gives insight into the original thinking
behind radiosity methods, is by Goral et al. (1984). The hemi-cube, an
alternative to ray tracing, and the interpolation to zone vertices is dis-
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cussed by Cohen and Greenberg (1985). The progressive refinement
approach is described by Cohen et al. (1988). Ray tracing for radiosity is
discussed by Malley (1988), Sillion and Puech (1989), Wallace et al.
(1989), and Airey et al. (1990). More information on Gouraud shading
and modeling techniques for polygons with shared vertices can be found
in Foley et al. (1990). Radiosity techniques for heat transfer, as well as
much of the underlying physics, can be found in the book by Siegel and
Howell (1981).

See also VI.1 Implementing Progressive Radiosity with User-
Provided Polygon Display Routines, Shenchang Eric Chen
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VI.5VI.5VI.5VI.5VI.5
DDDDDETECTION OF SHADOWETECTION OF SHADOWETECTION OF SHADOWETECTION OF SHADOWETECTION OF SHADOWBBBBBOUNDARIES FOR ADAPTIVEOUNDARIES FOR ADAPTIVEOUNDARIES FOR ADAPTIVEOUNDARIES FOR ADAPTIVEOUNDARIES FOR ADAPTIVEMMMMMESHING IN RADIOSITYESHING IN RADIOSITYESHING IN RADIOSITYESHING IN RADIOSITYESHING IN RADIOSITY

François SillionCornell UniversityIthaca, New York

BackgroundBackgroundBackgroundBackgroundBackground
Radiosity algorithms attempt to compute the global interreflection of light
in an environment composed of diffuse surfaces. Most implementations of
the radiosity approach break the surfaces in a scene into patches in a
meshing stage, and these patches are used as secondary illuminators in
the course of the solution. Radiosity textures also have been used to
encode the illumination information without complicating the geometrical
description (Heckbert, 1990).

The radiosity (diffused intensity) across a patch typically is interpolated
bilinearly from radiosities at the vertices, which means that the accuracy
of the illumination on a surface is influenced directly by the size of the
mesh elements (or the texture resolution). Typically, we would like to
concentrate smaller elements in the regions of sharp intensity variations,
such as shadow boundaries, while limiting the subdivision of surfaces
with gentle illumination variations.

We place ourselves in the context of progressive radiosity,  where
successive steps of the solution can be described as shooting light from a
selected patch. Since we would like our mesh (or texture) to depend on
illumination, we have to base our subdivision criterion on the results of
the simulation. This means that after each shooting step, we want to
decide which areas to subdivide, based on the results of the current shot.
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Figure 2. Ray-traced form factors.

Figure 1. Two cases with the same difference in vertex intensities. Only the one
with a shadow boundary should require subdivision, since it cannot be rendered
by bilinear interpolation.
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Unfortunately, it is difficult to base a decision on intensity comparisons
alone (Fig.1). What we really want to detect are cases where bilinear
interpolation will not capture the real intensity variations.

The idea presented here is equally applicable to meshed and tex-
tured environments. We show that, using ray casting to compute area-to-
differential-area form factors as explained by Wallace et al. (1989), it is
easy, in fact, to detect true shadow boundaries, by keeping track of the
visibility of the shooting patch at each receiving vertex. This information
then can be used in the subdivision criterion.

Obtaining a “Visibility Index”Obtaining a “Visibility Index”Obtaining a “Visibility Index”Obtaining a “Visibility Index”Obtaining a “Visibility Index”
When using ray casting to compute form factors, a shooting patch is
selected, and each vertex in the environment mesh is visited in turn. At
each vertex, the shooting patch is sampled at one or several locations (as
a variety of sampling algorithms can be implemented), and for each
sample point, a ray is cast to determine potential occlusion. Each sample
point has an area associated with it, and a delta form factor is computed
by approximating the region around the sample point with a disk of the
same area (Fig. 2). An area-to-differential-area form factor (Wallace
et al., 1989) then is computed as an area-weighted average of the delta
form factors.

Suppose now that we associate a visibility value to each ray; that is,
0.0 if the sample point is obstructed from the vertex, 1.0 otherwise. We
then can compute the same area-weighted average of this visibility
variable, and obtain a patch visibility index that can be stored with the
vertex. Depending on the amount of storage that one is willing to
allocate, this can be as simple as a 1 bit value, or a more precise quantity.

Subdivision CriteriaSubdivision CriteriaSubdivision CriteriaSubdivision CriteriaSubdivision Criteria
After a complete radiosity shot—that is, when all vertices have been
visited—is the time to examine the current mesh or texture, and to



314

VI.5 DETECTION OF SHADOW BOUNDARIES FOR ADAPTIVE MESHING IN RADIOSITY

GRAPHICS GEMS II Edited by JAMES ARVO 314

decide whether to subdivide further.  Each edge of the mesh is considered
in turn, and the chosen subdivision criterion is applied to decide of that
edge needs to be split. If yes, the edge and the neighboring  mesh
elements are split, and radiosity is shot from the shooting patch to all
newly created vertices. The same criterion then can be applied recursively
to the newly created edges.

As was shown in Fig. 1, the difference in intensities at the endpoints of
an edge is not relevant as a criterion: It would require a low threshold to
detect faint (but important for the picture) shadow boundaries, which
would result in unnecessary subdivision in open areas.

We advocate the use of different thresholds for edges that cross or do
not cross a shadow boundary: Using the visibility variable that was just
described, shadow boundaries are identified trivially, and the lower
criterion can be used. When no shadow boundary is crossed, a different
criterion can be used; for example, based on the actual 3D intensity
gradient. It is possible then to trigger adaptive subdivision on faint
shadow boundaries, without subdividing all the open areas on the
surfaces

The algorithm can be summarized as:

Select shooting patch
For each vertex

-for each sample point on the patch
use your favorite sampling method

compute delta form factor
compute visibility 1 or 0

-average (area weighted) form factor
-average (area weighted) visibility

End for

For each edge
If visibility of end points are different
Then

apply shadow boundary criterion.
Else

apply normal criterion.
Subdivide or not according to criterion

End For
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See also VI.1  Implementing Progressive Radiosity with User-
Provided Polygon Display Routines, Shenchang Eric Chen; VI.4
Radiosity via Ray Tracing, Peter Shirley
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MMMMMATRIXATRIXATRIXATRIXATRIXTTTTTECHNIQUESECHNIQUESECHNIQUESECHNIQUESECHNIQUES

The mathematical foundation and predominant language of computer
graphics come from linear algebra, and perhaps the most fundamental
element of this vocabulary is the matrix. Virtually every graphics applica-
tion rests at some level upon linear transformations in screen coordi-
nates, world coordinates, or homogeneous coordinates, expressed as
2 × 2, 3 × 3, and 4 × 4 matrices. Operations involving these matrices
are sprinkled liberally throughout every manner of graphics program,
from image processing to ray tracing. Their utility is made clear by the
preponderance of hardware graphics devices designed to accelerate ma-
trix transformations, as well as by mathematical expositions in which they
provide concise notation. The gems of this Part are devoted to construct-
ing, decomposing, representing, and operating on matrices.

VIIVIIVIIVIIVII
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VII.1VII.1VII.1VII.1VII.1
DDDDDECOMPOSINGECOMPOSINGECOMPOSINGECOMPOSINGECOMPOSINGAAAAA MATRIX INTO SIMPLE MATRIX INTO SIMPLE MATRIX INTO SIMPLE MATRIX INTO SIMPLE MATRIX INTO SIMPLETTTTTRANSFORMATIONSRANSFORMATIONSRANSFORMATIONSRANSFORMATIONSRANSFORMATIONS

Spencer W. ThomasUniversity of MichiganAnn Arbor, Michigan
Sometimes, it is useful to be able to extract a sequence of simple

transformations (scale, rotate, etc.) that will reproduce a given transfor-
mation matrix. This gem provides a way to do that. In particular, given
(almost1) any 4 × 4 transformation matrix M, it will compute the argu-
ments to the following sequence of transformations, such that concatenat-
ing the transformations will reproduce the original matrix (to within a
homogeneous scale factor):

Scale(sx, sy, sz)Shear2
xy  ShearxzShearyz Rotatex Rotatey

Rotatez Translate(tx, ty, tz)

Perspective(px, py, pz, pw )

This routine has been used for tasks such as removing the shears from a
rotation matrix, for feeding an arbitrary transformation to a graphics
system that only understands a particular sequence of transformations
(which is particularly useful when dealing with rotations), or for any other
application in which you want just part of the transformation sequence.

1The only constraint is that the product of the [4, 4] element with the determinant
of the upper left 3 x 3 component of the matrix be nonzero.

2Shearxy shears the x coordinate as the y coordinate changes. The matrix corresponding
to this transformation is

    

1 0 0
sxy 1 0
0 0 1

















⋅
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The AlgorithmThe AlgorithmThe AlgorithmThe AlgorithmThe Algorithm
The algorithm works by undoing the transformation sequence in reverse
order. It first determines perspective elements that, when removed from
the matrix, will leave the last column (the perspective partition) as (0, 0, 0,
1)T. Then it extracts the translations. This leaves a 3 × 3 matrix
comprising the scales, shears, and rotations. It is decomposed from the
left, extracting first the scaling factors and then the shearing components,
leaving a pure rotation matrix. This is broken down into three consecutive
rotations.

Extracting the perspective components is the messiest part. Essen-
tially, we need to solve the matrix equation:

              =

which reduces to:

              

      

M1,4

M2,4

M3,4

M4,4



















=

M1,1 M1,2 M1,3 0
M2,1 M2,2 M2,3 0
M3,1 M3,2 M3,3 0
M4,1 M4,2 M4,3 1



















px

py

pz

pw



















⋅

Assuming that the upper left 3 × 3 partition of M is not singular, this can

    

M1,1 M1,2 M1,3 M1,4

M2,1 M2,2 M2,3 M2,4

M3,1 M3,2 M3,3 M3,4

M4,1 M4,2 M4,3 M4,4



















      

M1,1 M1,2 M1,3 0
M2,1 M2,2 M2,3 0
M3,1 M3,2 M3,3 0
M4,1 M4,2 M4,3 1



















1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 pw



















,
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be solved easily for px, py, pz, and pw Since some of the later steps will not
work if this partition is singular, this is not a serious defect.

The next step is to extract the translations. This is trivial; we find
tx = M4,1, ty = M4,2, and tz = M4,3. At this point, we are left with a
3 × 3 matrix, M′ = M1..3,1..3.

The process of finding the scaling factors and shear parameters is
interleaved. First, find sx = |M′1|. Then, compute an initial value for the
xy shear factor, sxy, = M′1, M ′2 (This is too large by the y scaling
factor.) The second row of the matrix is made orthogonal to the first by
setting M′2 ← M′2 − sxyM′1. Then the y scaling factor, sy is the length of
the modified second row. The second row is normalized, and sxy is
divided by sy to get its final value. The xz and yz shear factors are
computed as in the preceding, the third row is made orthogonal to the
first two rows, the z scaling factor is computed, the third row is normal-
ized, and the xz and yz shear factors are rescaled.

The resulting matrix now is a pure rotation matrix, except that it might
still include a scale factor of −1. If the determinant of the matrix is −1,
negate the matrix and all three scaling factors. Call the resulting ma-
trix R.

Finally, we need to decompose the rotation matrix into a sequence of
rotations about the x, y, and z axes. If the rotation angle about x is α,
that about y is β, and that about z is γ, then the composite rotation is:

Thus, β = arcsin(−Rl,3). If cos(β) ≠ 0, α is derived easily from R2,3 and  R3,3,
and γ from R1,2 and R1,1. If cos(β) = 0, then R reduces to:

      

R =

cos β{ }cos γ{ } cos β{ }sin γ{ } − sin β[ ]
sin α{ }sin β{ }cos γ{ } sin α{ }sin β{ }sin γ{ }

− cos α{ }sin γ{ } + cos a{ }cos γ{ } sin α{ }cos β{ }
cos α{ }sin β{ }cos y{ } cos α{ }sin β{ }sin γ{ }

+ sin α{ }sin γ{ } − sin α{ }cos γ{ } cos α{ }cos β{ }























⋅

  

0 0 ±1
sin α ± γ{ } cos α ± γ{ } 0
cos α ± γ{ } − sin α ± γ{ } 0

















⋅
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In this case, we arbitrarily set γ to 0 and derive α from R2,1 and R2,2.
This finishes the decomposition.

See also 7.2 Recovering the Data from the Transformation
Matrix, Ronald N. Goldman
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VII.2VII.2VII.2VII.2VII.2
RRRRRECOVEECOVEECOVEECOVEECOVERlNG RlNG RlNG RlNG RlNG THTHTHTHTHE E E E E DATADATADATADATADATAFFFFFROM THE TRANSFORMATIONROM THE TRANSFORMATIONROM THE TRANSFORMATIONROM THE TRANSFORMATIONROM THE TRANSFORMATIONMMMMMATRIXATRIXATRIXATRIXATRIX

Ronald N. GoldmanRice UniversityHouston, Texas
In Graphics Gems (“Matrices and Transformations”), we showed how to

construct the 4 × 4 matrices for affine and projective transforma-
tions—rigid motion, scaling, and projections—which were defined rela-
tive to some arbitrary positions and orientations described by scalars,
points, and vectors. In this volume, we added the 4 × 4 matrices for
shear and pseudo-perspective. Now we shall show how to retrieve the
defining data—scalars, points, and vectors—from the 4 × 4 matrix when
we know the type of transformation represented by the matrix. This is
useful, for example, when we concatenate matrices for rotations around
different axes and then want to know the axis and angle of the resulting
rotation.

Most of the affine and projective transformations we discuss have fixed
points and fixed directions—that is, values that are left invariant by the
transformation. These fixed values show up as eigenvectors of the trans-
formation matrix. (In keeping with standard usage, we shall use the term
eigenvector even when the fixed value actually is a point rather than a
vector). The data we seek to extract often are simply eigenvectors of the
transformation matrix.

Briefly, an eigenvector v of a transformation T is any non~ero vector
such that

T(v) = βI(v) =βv,

where I is the identity transformation. The scalar β is called an eigenvalue
of T, and v is said to be an eigenvector of T corresponding to the
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eigenvalue β. The eigenvalues of T are the roots of the equation:

Det(T – βI) = 0

where I is the identity matrix of the same size as the matrix T. There are
well-known algorithms for computing eigenvalues and eigenvectors; read-
ers not familiar with these concepts should consult a standard linear
algebra text.

We shall adopt the following notation:

M = 4 × 4 matrix,

M33 = upper left 3 × 3 submatrix of M,

M34 = upper 3 × 4 submatrix of M,

M43 = left 4 × 3 submatrix of M,

MT = transpose of M,

Trace (M33) = 
  k
∑ M33 (k, k) = M(1, 1) + M(2, 2) + M(3, 3).

Armed with these concepts and this notation, we are ready now to
extract the data from the transformation matrices. Note that in many
cases, the data is not unique. For example, if we define a plane by a point
and a unit vector, the point is not unique. Usually, this point is an
eigenvector of the transformation matrix relative to some fixed eigen-
value. If we do not specify further, then any such eigenvector will suffice.
Often, too, we will require a unit eigenvector corresponding to some
eigenvalue β. Such an eigenvector is found readily by computing any
eigenvector v corresponding to the eigenvalue β and then normalizing its
length to one, since, by linearity, if v is an eigenvector corresponding to
the eigenvalue β, then cv also is an eigenvector corresponding to the
eigenvalue β.
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TranslationTranslationTranslationTranslationTranslation
Let

w = Translation vector

Given

T(w) = Translation matrix

Compute

w = Fourth row of T(w) = (0, 0, 0, 1) * T(w)

RotationRotationRotationRotationRotation
Let

L = Axis line
    w = Unit vector parallel to L
    Q = Point on L
φ = Angle of rotation

Given

R = R(w, φ, Q) = Rotation matrix

Compute

w = Unit eigenvector of R33 corresponding to the eigenvalue 1
Q = Any eigenvector of R corresponding to the eigenvalue 1

    
cosφ =

Trace R33( ) − 1( )
2

      
sin φ =

R 1, 2( ) + cosφ − 1( )w1w2{ }
w3
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Notice that the sign of sin φ depends on the choice of w, since both w
and –w are eigenvectors of R33 corresponding to the eigenvalue 1.
Therefore, we cannot find φ without first deciding on the choice of w.

Mirror ImageMirror ImageMirror ImageMirror ImageMirror Image
Let

S = Mirror plane

n = Unit vector perpendicular to S

Q = Point on S

Given
M = M(n, Q) = Mirror matrix

Compute

n = Unit eigenvector of M33 corresponding to the eigenvalue –1

Q = Any eigenvector of M corresponding to the eigenvalue + 1

ScalingScalingScalingScalingScaling
Let

Q = Scaling origin

c = Scaling factor

w = Scaling direction
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a.  Uniform scaling
  Given

S = S(Q, c) = Scaling matrix

   Compute

c = 
  
Trace S33( )

3

Q = Any eigenvector of S corresponding to the eigenvalue 1

b.  Nonuniform scaling
    Given

S = S(Q, c, w) = Scaling matrix

   Compute

c = Trace(S33) – 2
w = Unit eigenvector of S33 corresponding to the eigenvalue c
Q = Any eigenvector of S corresponding to the eigenvalue 1

ShearShearShearShearShear
Let

S = Shearing plane

v = Unit vector perpendicular to S

Q = Point on S

w = Unit shearing direction vector

φ = Shearing angle
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Given

S = Shear(Q, v, w, φ) = Shearing matrix

Compute

w1, w 2 = independent eigenvectors of S33 corresponding to the eigenvalue
1

tanφ =

Q = any eigenvector of S corresponding to the eigenvalue 1

ProjectionProjectionProjectionProjectionProjection
Let

S = Image plane

    n = Unit vector perpendicular to S

    Q = Point on S

    w = Unit vector parallel to projection direction

R = Perspective point

a. Orthogonal projection
 Given

O = O proj(n, Q) = Projection matrix

      
w =

v∗ S − I( )33

tan φ

    
v =

w1 × w2

w1 × w2

    v∗ S − I( )33
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Compute

   n = Unit eigenvector of O33 corresponding to the eigenvalue 0

   Q = Any eigenvector of O corresponding to the eigenvalue 1

b.    Parallel projection
      Given

P = P proj(n, Q, w) = Projection matrix

Compute

    Q = Any eigenvector of P corresponding to the eigenvalue 1

    w = Unit eigenvector of P33 corresponding to the eigenvalue 0

    n = Unit eigenvector of     P33
T  corresponding to the eigenvalue 0

c.   Pseudo-perspective
     Given

P = Pseudo(n, Q, R) = Pseudo-perspective matrix

Compute

  Q = Any eigenvector of P not corresponding to the eigenvalue 0

  nT = First three entries of the fourth column of P = P34 * (0, 0, 0, 1 )T

  R

d.    Perspective
    Given

P = Persp(n, Q, R) = Perspective matrix

      
= −

0,0,0,1( )∗P43 + Q ⋅ n( )n{ }
Q ⋅ n( )

      

=
w∗ I − P( )33

T{ }
w∗ I − P( )33

T{ }
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Compute

Q = Any eigenvector of P not corresponding to the eigenvalue 0

  nT = –First three entries of the fourth column of P = –P34*(0, 0, 0 ,1)T

  R  = eigenvector of P corresponding to the eigenvalue 0

See also 7.1 Decomposing a Matrix into Simple Transforma-
tions, Spencer W. Thomas

      
=

0,0,0,1( )∗P43

Q ⋅ n( )
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VII.3VII.3VII.3VII.3VII.3
TTTTTRANSFORMATIONS ASRANSFORMATIONS ASRANSFORMATIONS ASRANSFORMATIONS ASRANSFORMATIONS ASEEEEEXPOXPOXPOXPOXPONENENENENENTIALSNTIALSNTIALSNTIALSNTIALS

Ronald N. GoldmanRice UniversityHouston, Texas

IntroductionIntroductionIntroductionIntroductionIntroduction
Consider two rotations around the same axis. Concatenating these two
transformations is equivalent to adding the rotation angles; that is, the
product of two such rotation matrices is equivalent to a single rotation
matrix where the angles are added. Thus, multiplication of rotations is
like the adding of angles. There is another well-known function in mathe-
matics where multiplication can be performed through addition: the
exponential. Multiplying two exponentials is equivalent to adding their
exponents. Of course, this observation is the basis of standard logarithms.
We shall show here that this connection between rotation and exponen-
tials is more than simply a coincidence; indeed, rotations—and many of
the other nonsingular transformations that we often encounter in com-
puter graphics—are exponential matrices.

The Exponential MatrixThe Exponential MatrixThe Exponential MatrixThe Exponential MatrixThe Exponential Matrix
Let M be a square matrix. We define the matrix eM by the usual infinite
series for the exponential. Let I denote the identity matrix. Then

        
eM = I + M +

M2

2! +
M3

3! +L=
k

∑
Mk

k ! ⋅
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For any constant c > 0, we define cM by

CM = eln(c)M

The matrix exponential function behaves in many ways like the ordi-
nary scalar exponential function. We list some of its main properties
below:

• eM * e-M = I

• eM * eN = eM+N whenever MN = NM

•    ReMR-1 =

•    Det(eM) = eTrace(M)

In the last equation, Det is the usual determinant function and Trace is
the sum of the diagonal terms of M; that is,

Notice that by the first property eM always is invertible, so only nonsingu-
lar matrices can be exponentials.

Tensor Product and Cross ProductTensor Product and Cross ProductTensor Product and Cross ProductTensor Product and Cross ProductTensor Product and Cross Product
Before we can proceed further, we need to recall some notation that was
used in Graphics Gems (“Matrices and Transformations”) and in this
book (“More Matrices and Transformations”) to construct the matrices
for the transformations rotation, mirror image, scaling, and shear. Since
we are interested primarily in transformations of 3-space, we confine
ourselves to 3 × 3 matrices.

      
Trace M( ) =

k
∑ Mkk ⋅

    eRMR-1
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a.   Identity

b.   Tensor Product

c.    Cross Product

d.    Observations

  u∗ v ⊗ w( ) = u ⋅ v( )w

  
I =

1 0 0
0 1 0
0 0 1

    

v ⊗ w =
v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3

=
v1
v2
v3

∗ w1 w2 w3

      

wx_ =
0   w3 −w2

−w3 0   w1

  w2 −w1  0

      u∗ wx_( ) = w × u

    v ⊗ w( )k = v ⋅ w( )k−1 v ⊗ w( )                 k ≥ 1

    v ⋅ w = 0   implies  ed v⊗w( ) = I +  d v ⊗ w( )

    w ⋅ w = 1    implies ed w⊗w( ) =  I +  ed  −  1 w ⊗ w( )( )

    w x_( )2 = w ⊗ w  −  I  and  w x_( )3 = −w x_

    w x_( )2k = −1( )k I −  w ⊗ w( )   and  w x_( )2k+1 = −1( )k  w x_
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Linear TransformationsLinear TransformationsLinear TransformationsLinear TransformationsLinear Transformations
We shall focus our attention on the following five linear transformations,
which are standard in computer graphics. Notice that we do not include
any projections, since projections are singular and, therefore, cannot be
exponentials. By convention, all the vectors below are unit vectors.

rot(w,φ) = rotation around the axis vector w through the
            angle φ,

mir(n) = mirror image in the plane perpendicular to the
     vector n,

scale(c) = scaling in all directions by a constant c > 0,

scale(c, w) = scaling only in the direction parallel to the
    vector w by a constant c > 0,

shear(v, w, φ) = shearing orthogonal to the plane perpendic-
                  ular to the vector v by the angle φ in the
                  direction parallel to the vector w, which is
                  perpendicular to the vector v.

Here, we consider only the 3 × 3 matrices defined by these transforma-
tions, not the 4 × 4 matrices discussed in previous articles. We can think
of this in two ways. The fourth row of the transformation matrix stores a
translation. If our transformations are defined by lines or planes that pass
through the origin, then this fourth row does not contribute anything and
is not required. Alternatively, we can think of applying our transforma-
tions only to vectors, not to points. In this case, the fourth row again
contributes nothing, since vectors remain invariant under translation. In
any event, we are dealing here with linear, rather than affine, transforma-
tions.

Now, in previous articles (“Matrices and Transformations,” in Graph-
ics Gerns, and “More Matrices and Transformations,” in this book), we
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have shown that:

rot(w, φ) = (cosφ)I + (1 − cosφ)w ⊗  w + (sinφ)wx_,

mir(n) = I − 2n ⊗  n,

scale(c) = cI,

scale(c, w) = I + (c−1)w ⊗  w,

shear(v, w, φ) = I + (tanφ)v ⊗  w.

Each of these transformation matrices is nonsingular and, it turns out,
each can be represented as an exponential. Indeed, using the definitions
and the properties of the exponential map, the tensor product, and the
cross product, it is not difflcult to show that:

rot(w,φ) = eφ(wx_),

mir(n) = ei π (n ⊗  n),    (i =   –1)

scale(c) = cI,

scale(c, w) = cw ⊗w,

shear(v, w, φ) = e(tanφ)v ⊗u).

One immediate application of these exponentials is that they make it
particularly easy to compute determinants. Recall that:

Det(eM) = eTrace(M)

Moreover, it is easy to verify that:

Trace(I) = 3

Trace(v ⊗  w) = v ⋅ w

Trace(wx_) = 0.



337

VII.3 TRANSFORMATIONS AS EXPONENTIALS

GRAPHICS GEMS II Edited by JAMES ARVO 337

Therefore,

Det{rot(w,φ)} = e0 = 1,

Det(mir(n)} = ei π  =-1,

Det{scale(c)} = e3ln(c) = C3,

Det{scale(c, w)} = eln(C) = c

Det{shear(v, w, φ)} = e0 = 1.

The most interesting of these exponentials by far is the one for
rotation. As we said at the start, rotation mimics the exponential function,
since multiplication of rotations around the same axis is akin to adding
angles. This observation is immediate from the properties of the exponen-
tial map, since:

rot(w, φ1) ∗ rot(w, φ2) = eφ1 wx _( )  ∗   eφ 2 wx _( ) ,

= e φ1 +φ 2( ) w x_( )  ,

= rot(w, φ1 + φ2).

Since exponentials are particularly simple to manipulate, the exponential
map also may be useful for discovering other identities relating the
standard linear transformations of computer graphics.
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MORE MATRICES ANMORE MATRICES ANMORE MATRICES ANMORE MATRICES ANMORE MATRICES ANDDDDDTTTTTRANSFORMATIONS: SHEARRANSFORMATIONS: SHEARRANSFORMATIONS: SHEARRANSFORMATIONS: SHEARRANSFORMATIONS: SHEARAAAAANNNNND D D D D PSEUDO-PERSPECTIVEPSEUDO-PERSPECTIVEPSEUDO-PERSPECTIVEPSEUDO-PERSPECTIVEPSEUDO-PERSPECTIVE
Ronald N. GoldmanRlce UniversityHouston, Texas

In Graphics Gems (“Matrices and Transformations”), we showed how to
construct the matrices for affine and projective transformations—rota-
tion, mirror image, scaling, and projections—which were not defined
relative to the origin and coordinate axes, but rather relative to some
arbitrary positions and orientations. Two fundamental transformations we
omitted from that discussion were shear and pseudo-perspective. Here,
we construct the matrices for these two important transformations. We
begin by recalling some notation.

NotationNotationNotationNotationNotation
a. Identity

   
    
I =

1 0 0
0 1 0
0 0 1

   

b. Tensor Product

VII.4VII.4VII.4VII.4VII.4

    

v ⊗ w =
v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3

=
v1

v2

v3

∗ w1       w2     w3
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ObservationsObservationsObservationsObservationsObservations
u ∗ I = u

u ∗ (v ⊗  w) = (u ⋅ v)w

ShearShearShearShearShear
A shear is defined in terms of a shearing plane S, a unit vector w in S,
and an angle φ. Given any point P, project P orthogonally onto a point
P′ in the shearing plane S. Now, slide P parallel to w to a point P′′, so
that ∠P′′P′P = φ. The point P′′ is the result of applying the shearing
transformation to the point P. (See Fig. 1.)

To construct the 4 x 4 matrix which represents shear, let

S = Shearing plane

v = Unit vector perpendicular to S

Q = Point on S

w = Unit vector in S (i.e., unit vector perpendicular to v)

φ = Shear angle

Figure 1. The Geometry of a shear
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Then the shear transformation is given by the 4 x 4 matrix:

It is easy to verify by direct computation that

   Det{Shear(Q, v, w, φ)} = 1.

Therefore, shearing preserves volumes.

Pseudo-PerspectivePseudo-PerspectivePseudo-PerspectivePseudo-PerspectivePseudo-Perspective
If we perform perspective projection before clipping, we lose the ability
to clip in depth. To avoid this problem, we must put depth back into the
perspective transformation; that is, we want a transformation that gives
us both perspective and depth. Usually, this is done by factoring perspec-
tive projection through orthogonal projection. Thus, we want a pseudo-
perspective transformation that preserves relative depth such that:

Perspective = (Pseudo-Perspective) ∗ (Orthogonal Projection).

To construct the 4 × 4 matrix that represents pseudo-perspective, let

  S = Perspective plane

Q = Point on S

N = Unit vector perpendicular to S

  R  = Perspective point

    
Shear Q,  v,  w,  φ( ) =

I + tan φ v ⊗ w( )  0
    − Q ⋅ v( )w        1
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Then the pseudo-perspective transformation is given by the 4 × 4 matrix:

where TN denotes the transpose of the row vector N.

See also (472) Matrices and Transformations, Ronald Goldman

      
Pseudo N,  Q,  R( ) =

Q − R( ) ⋅ N{ }I + N ⊗ R + N ⊗ N  TN

− Q ⋅ N( ) R + N( ) −R ⋅ N



342

VII.5 FAST MATRIX INVERSION

GRAPHICS GEMS II Edited by JAMES ARVO 342

VII.5VII.5VII.5VII.5VII.5
FFFFFAST MATRIXAST MATRIXAST MATRIXAST MATRIXAST MATRIX I I I I INVERSIONNVERSIONNVERSIONNVERSIONNVERSION

Kevin WuSun Microsystems, Inc.Mountain View, California

Problem StatementProblem StatementProblem StatementProblem StatementProblem Statement
Performing matrix operations quickly is especially important when a
graphics program changes the state of the transformation pipeline fre-
quently. Matrix inversion can be relatively slow compared with other
matrix operations because inversion requires careful checking and han-
dling to avoid numerical instabilities resulting from roundoff error and to
determine when a matrix is singular. However, a general-purpose matrix
inversion procedure is not necessary for special types of matrices. In-
deed, when speed is more important than code size, a graphics program-
mer can benefit greatly by identifying groups of matrices that have simple
inverses and providing a special matrix inversion procedure for each
type. This gem describes inversion of 4 × 4 matrices for types that
commonly arise in 3D computer graphics. Note that previous gems
(Carling, 1990; Turkowski, 1990) have given examples where a matrix
inverse is needed, including texture mapping and normal vector transfor-
mation.

Building BlocksBuilding BlocksBuilding BlocksBuilding BlocksBuilding Blocks
Graphics books—for example, Foley and van Dam (1982) and Newman
and Sproull (1979)—describe how to construct general geometric trans-
formations by concatenating matrix representations of the basic
operations: translation, scaling, and rotation. We denote the 3D transfor-
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ations with 4 × 4 matrices:

• T(tx, ty, tz) is a translation matrix.

• S(sx, sy, sz) is a scale matrix.

• R is a rotation matrix in (x, y, z) coordinate space.

We adopt the convention of treating points in homogeneous space as row
vectors of the form [wx wy wz w], w ≠ 0. These matrices are suitable
for developing the ideas in the following sections, but some graphics
programmers may find it convenient to consider other building blocks,
such as shear.

Basic Group TheoryBasic Group TheoryBasic Group TheoryBasic Group TheoryBasic Group Theory
A group is an algebraic object useful for characterizing symmetries and
permutations. For example, all crystalline lattices can be classified by
applying group theory. Gilbert (1976) gives a good introduction to the
subject. Our interest in groups comes from the desire to define the scope
of special matrix types.

Definition I  A group (G, ⋅) is a set G together with a binary
operation ⋅ satisfying the following axioms.

1. Closure: a ⋅ b [ G for all a, b [ G.

2. Associativity: (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) for all a, b, c [ G.

3. Identity: There exists an identity element e [ G, such that e ⋅ a =
a ⋅ e = a for all a [ G.

4. Inverse: Each element a [  G  has an inverse element a -l [  G,
such that a-1 ⋅ a = a ⋅ a-1 = e.

For our purposes, the set G is a particular type of matrix with a certain
form and set of properties. The operation  ⋅ is matrix multiplication. When
the operation of a group is clearly understood, we can denote the group
by only its underlying set. Hereafter, we denote the matrix group (G, ⋅ )
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by simply G with the matrix multiplication operation implicit. Note that
the fourth axiom limits our attention to nonsingular matrices. A singular
matrix has no inverse, so in practice, a matrix inversion procedure must
check for this condition.

Matrix Groups in GraphicsMatrix Groups in GraphicsMatrix Groups in GraphicsMatrix Groups in GraphicsMatrix Groups in Graphics
The following matrix groups can occur frequently in graphics applica-
tions, so they deserve special attention.

Basic Matrix GroupsBasic Matrix GroupsBasic Matrix GroupsBasic Matrix GroupsBasic Matrix Groups
Each of the elementary matrix types together with matrix multiplication
is a group. These are useful groups:

• Identity Matrix Group: = ({I}.

• Translation Matrix Group: 7= {T(tx, ty ,tz)}.

• Isotropic Scale Matrix Group: 6i = {S(s, s, s)|S ≠ 0}.

• Anisotropic Scale Matrix Group:  6a = {S(sx, sy, sz)|sx, sy, sz ≠ 0}.

• Rotation Matrix Group: 5 = {R}.

The Window-to-Viewport Matrix Group The Window-to-Viewport Matrix Group The Window-to-Viewport Matrix Group The Window-to-Viewport Matrix Group The Window-to-Viewport Matrix Group 0
0

Transformation of a window to a viewport is the last stage of a typical
graphics transformation pipeline. It involves scaling and translation, but
not rotation. A matrix of this form also may appear in other parts of a
transformation pipeline.

The Length-Preserving Matrix Group The Length-Preserving Matrix Group The Length-Preserving Matrix Group The Length-Preserving Matrix Group The Length-Preserving Matrix Group 31

3l

A graphics program sometimes can benefit from knowing when a matrix

      
T tx ,  ty ,  tz( ),  S sx ,  sy ,  sz( ) sx ,  sy ,  sz  ≠ 0{ } ⊂

      
T tx ,  ty ,  tz( ),  R{ } ⊂
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always preserves the distances between points and the lengths of direc-
tion vectors. For example, when a unit light direction vector or unit
surface normal vector passes through such a matrix, the program does
not need to normalize the vector after transformation, saving three
multiplications and divisions and a square root per vector.

The Angle-Preserving MThe Angle-Preserving MThe Angle-Preserving MThe Angle-Preserving MThe Angle-Preserving Matrix Group atrix Group atrix Group atrix Group atrix Group           3a

                            3a

A matrix that preserves angles allows lighting calculations to take place in
model coordinates. Instead of transforming surface normals to world
coordinates and performing lighting there, we can transform the lights
back to model coordinates to calculate the reflected light. This is benefi-
cial when there are fewer lights than surface normals in a particular
model space. Since angles are preserved, so are dot products (after
renormalizing direction vectors). Some local light sources may have
attenuation properties that cause the intensity of light reaching the
surface to diminish with its distance from the light source. In such a
situation, the uniform scaling factor must be applied to distances in model
coordinates.

The AffineThe AffineThe AffineThe AffineThe Affine     Matrix Group Matrix Group Matrix Group Matrix Group Matrix Group !
                                       !

An affine matrix preserves the straightness of lines and the parallelism of
parallel lines, but possibly alters distances between points or the angles
between lines. Thus, an affine matrix can perform anisotropic scaling.
Perspective projection is an example of a transformation that is not affine.
However, parallel projection is affine. In addition, the model transforma-
tion that maps points from model coordinates to world coordinates
almost always is affine.

The Nonsingular Matrix Group The Nonsingular Matrix Group The Nonsingular Matrix Group The Nonsingular Matrix Group The Nonsingular Matrix Group 1
All the preceding groups are subgroups of the nonsingular matrix
group. Perspective matrices are included in this group as well. We denote
it by 1.

      
T tx ,  ty ,  tz( ),  R ,  S s,  s,  s( ) s ≠ 0{ } ⊂

      
T tx ,  ty ,  tz( ),  R ,  S sx ,  sy ,  sz( ) sx ,  sy ,  sz ≠ 0{ } ⊂
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Membership and PrivilegesMembership and PrivilegesMembership and PrivilegesMembership and PrivilegesMembership and Privileges
The preceding section introduced the matrix groups by listing the ele-
mentary matrices that belong to each group; these are the columns in
Table 1. Now, we examine each elementary matrix and tabulate its
memberships to the matrix groups; these are the rows of Table 1.

A graphics program can take advantage of this information in the
following way. We assign each group to a bit in a flag word and associate
this flag word or membership record with each matrix in a graphics
program. The program has utilities for constructing each of the elemen-
tary matrices. For example, a utility takes a translation vector and returns
a translation matrix. In addition, it sets the membership record associated
with this matrix according to the second row of Table 1.

The graphics program takes advantage of the definition of a group
when it multiplies two matrices. Since a group is closed under its
operation, the product of two matrices is a member of the groups to
which both operands belong: The program simply intersects the operands’
membership records using logical AND to obtain the record of the
product. When the program needs to calculate the inverse of a matrix, its
membership record establishes its privilege to use a fast matrix inversion
procedure.

As an aside, we note that a graphics program also can use the member-
ship records to optimize matrix multiplication. Each matrix group has a
characteristic form, often with many zeros and ones. As a previous gem
(Thompson, 1990) has observed, a programmer can eliminate extraneous
multiplications and additions and unroll the loops according to the

Table 1. Elementary Matrices and Matrix Groups
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memberships of the two matrices. Perhaps more importantly, a program-
mer can optimize multiplication of points by a matrix because thousands
of points may require the geometric mapping of the matrix.

Matrix InversionMatrix InversionMatrix InversionMatrix InversionMatrix Inversion
The membership record associated with a matrix determines how much
effort a graphics program requires to invert the matrix. The program
determines the group that has the fastest inversion procedure among the
matrix’s eligible groups and calls that procedure. The fourth axiom in a
group’s definition states that the inverse belongs to the same groups as
the original matrix. By implication, the inverse has the same form as the
original, so some of the zeros and ones occupy the same positions.

Inverses of the Elementary MatricesInverses of the Elementary MatricesInverses of the Elementary MatricesInverses of the Elementary MatricesInverses of the Elementary Matrices
The inverses of the elementary matrices are straightforward:

• Identity: I–1 = I.

• Translation: T-l(tx, ty, tz) = T(-tx, -ty, -tz).

• Scale: S−1(sx, sy, sz) = S(sx
−1, sY

−1, sz
−1), sx, sy, sz ≠ 0.

• Rotation: R−l = RT

Evaluation StrategyEvaluation StrategyEvaluation StrategyEvaluation StrategyEvaluation Strategy
A graphics program can evaluate inverses on the fly (automatic evalua-
tion) or on demand (lazy evaluation).

Given the inverses of the preceding elementary matrices, the program
automatically can evaluate the inverse when it multiplies two matrices
according to the rule,  (AB) −1 = B−1A−1, provided A and B are invertible.
This approach requires that the inverse always is available. Therefore,
matrix multiplication runs at half its normal speed because the multiplica-
tion utility must find the product of two matrices and the two inverses.

Lazy evaluation allows matrix multiplication to run at full speed be-
cause the graphics program never evaluates the product of inverses. An
inversion utility explicitly evaluates an inverse as required. In practice, a
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typical graphics program usually performs many more matrix multiplica-
tions than inversions so lazy evaluation gives better overall system perfor-
mance. The following two sections describe additional special-case
inversion techniques for use with lazy evaluation that complement the
ones in the preceding section.

Inverse of a Window-to-Viewport MatrixInverse of a Window-to-Viewport MatrixInverse of a Window-to-Viewport MatrixInverse of a Window-to-Viewport MatrixInverse of a Window-to-Viewport Matrix
The inverse of a window-to-viewport matrix is useful in picking when the
pick device gives locations in the device coordinates of the viewport and
the pick aperture conceptually resides in the virtual device coordinates of

the window:

, sx, sy, sz ≠ 0.

    

sx 0 0 0

0 sy 0 0

0 0 sz 0

tx ty tz 1

























−1

 =  

1
sx

0 0 0

0 1
sy

0 0

0 0 1
sz

0

−tx

sx

−ty

sy

−tz

sz

1

























Inverse of an Affine MatrixInverse of an Affine MatrixInverse of an Affine MatrixInverse of an Affine MatrixInverse of an Affine Matrix
The product of any combination of the elementary matrices always is
affine. A typical 3D graphics program probably needs to find the inverse
of matrices in the affine group ! and the nonsingular group 1 more
often than any other groups. A general-purpose matrix inversion proce-
dure is necessary for 1. However, a faster procedure is possible for
because the last column always is [0 0 0 1]T. A fact applicable to the
inverse of block matrices (for example, Kailath, 1980) serves as the
starting point:

    
M−1 = A 0

C B






−1

= A−1 0
−B−1CA−1 B−1







⋅
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This holds for any square submatrices A and B as long as their inverses
exist. For our affine matrices, we let A be the upper-left 3 × 3 submatrix
of M and B be 1. Then this result simplifies to

    
M−1 = A 0

C 1






−1

= A−1 0
CA−1 1







⋅

The effort required to calculate the inverse of the 3 × 3 matrix A is much
less than that for a general 4 × 4 matrix.

One method for finding the inverse of a general matrix involves deter-
minants as described in a previous gem (Carling, 1990): A -1 =
A*/det(A), where A* is the adjoint matrix of A and det(A) is the
determinant of A. If the dimension of A is n, the number of multiplica-
tions for this method is 2((n + 1)!) for large n.

Another inversion technique is Gauss-Jordan elimination. In practice, a
related technique—LU decomposition with partial pivoting and backsub-
stitution—is more efficient and robust. Numerical Recipes in C (Press
et al., 1988) describes this in some detail and gives a C Implementation.
The operations count is 2(n3), and the book claims there is no better way
to find the inverse. LU decomposition has much overhead and bookkeep-
ing, including many tests and loops. In addition, partial pivoting requires
exchanging rows. These extra steps can count for more than
the floating-point arithmetic, depending on the hardware.

Some test runs for calculating the inverse of affine matrices on a SUN
SPARCstation 330 demonstrated that the adjoint approach is twice as fast
as LU decomposition after unrolling the loops, substituting constants for
the variable indices, and eliminating extraneous tests; both these imple-
mentations treat affine matrices as block matrices. This ad,joint technique
is three times faster than a procedure capable of inverting any nonsingu-
lar 4 × 4 matrix using LU decomposition and no block matrices. How-
ever, numerical analysts agree that Gaussian elimination techniques like
LU decomposition with pivoting are more stable in the presence of
roundoff error than determinant methods. The graphics programmer
needs to decide whether the risk is worth the improved performance.

A C Implementation for calculating the inverse of a 3D affine matrix  is
included in Appendix 2. It finds A−1 from the adjoint matrix and M−1

from the equation for inverting block matrices.
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Inverse of a Nonsingular MatrixInverse of a Nonsingular MatrixInverse of a Nonsingular MatrixInverse of a Nonsingular MatrixInverse of a Nonsingular Matrix
A 4 × 4 matrix belonging to the nonsingular matrix group 1 requires a
general matrix inversion procedure. Some test runs (again, on a SPARC-
station 330) have shown that LU decomposition is faster than the adjoint
method, but the ratio is less than a factor of two. The results may differ
on a host machine with different floating-point performance relative to
nonarithmetic performance, but LU decomposition with partial pivoting is
more stable numerically.

SummarySummarySummarySummarySummary
A graphics programmer can take the following steps to improve the
performance of 3D matrix inversion for special types of matrices com-
monly found in computer graphics:

1. Provide a set of utilities for constructing a basic set of elementary
matrices.

2. Associate a membership record with each matrix that describes the
matrix groups to which the matrix belongs. The utilities in the
previous step initialize the matrix’s membership record.

3. The matrix multiplication utility determines the membership record
of a product by intersecting the records of the two operand matrices.

4. The matrix inversion utility inverts a matrix by calling the fastest of
the procedures associated with the groups in the matrix’s member-
ship record.
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VII.6VII.6VII.6VII.6VII.6
QQQQQUATERNIONS ANDUATERNIONS ANDUATERNIONS ANDUATERNIONS ANDUATERNIONS AND 4 X 4 4 X 4 4 X 4 4 X 4 4 X 4MMMMMATRICESATRICESATRICESATRICESATRICES

Ken ShoemakeOtter EnterprisesPalo Alto, California

Quaternions are steadily replacing Euler angles as the internal represen-
tation of orientations, presumably because of such advantages as are
detailed in Shoemake (1985, 1989). What is not so obvious from that
paper, however, is that they mesh remarkably well with 4 × 4 homoge-
neous matrices.

Matrix multiplication can be used quite nicely for quaternion multipli-
cation, since quaternions are, in fact, four-component homogeneous
coordinates for orientations, and since they multiply linearly. Consider a
quaternion q as a 4-vector, written (xg, yq, zg, wq), or as just (x, y, z, w)
when context makes it clear. The quaternion product p♦q is a linear
function of either p or q, so two different matrix forms are possible.
(Transpose these when using row vectors.) They are:

                 p♦q

and

    

= L p( )q =

wp −zp yp xp

zp wp −xp yp

−yp xp wp zp

−xp −yp −zp wp



















xq

yq

zq

wq



















    

= R q( )p =

wq zq −yq xq

−zq wq xq yq

yq −xq wq zq

−xq −yq −zq wq



















xp

yp

zp

wp



















p♦q
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Using these L and R matrices, we can readily convert a quaternion to a
homogeneous rotation matrix. Recall that a quaternion q rotates a vector
v using the product q♦v♦q−1, where q−1 = q*/N(q). In the common
case of a unit quaternion, q−1 = q*. This permits the rotation matrix to
be computed from the components of q—since q* is merely (−x, −y,
−z, w)—as

Rot(q) = L(q)R(q*),

so that a hardware matrix multiplier can do all the conversion work. Isn’t
that nice?

More specifically, suppose you are using hardware matrix multiplica-
tion to compose a series of matrices that will be applied to row vectors in
right-handed coordinates, as in vSNQTP, where Q is to be derived from a
quaternion, q = (x, y, z, w). Then instead of Q, compose with L(q) and
R(q*), so that the sequence is vSNRLTP. For row vectors, we want the
transpose form of L and R, so we have

    Qrow = Rrow(q*)Lrow(q) =

Because the desired result is a homogeneous rotation matrix, an overall
scale factor can be ignored; thus, q* can be used instead of q−1 even if
N(q) = q ♦ q* = x2 + y2 + z2 + w2 is not equal to one. Be aware, how-
ever, that some systems do not implement matrix manipulations carefully,
and will misbehave if the bottom right entry of the matrix is not 1. Even
when normalization is desired, it is not necessary to compute a square
root; only addition, subtraction, multiplication, and division are used.

Notice that only the last row and column of the two matrices differ, and
then only by transposition or sign change. (This may seem obvious, but
one programmer’s “obvious” is another ’s “obscure”, and perhaps point-
ing it out will save someone time.) Although these two matrices may look

  

w z −y −x

−z w x −y

y −x w −z

x y z w



















  

×

w z −y x

−z w x y

y −x w z

−x −y −z w



















⋅
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peculiar to the average computer graphicist, multiplying them confirms that
the result is a matrix with the expected zeros in the last row and column,
with 1 in the corner for a unit quaternion.

      

Qrow =

w2 + x2 − y2 − z2 2xy − 2wz 2xz + 2wy 0
2xy + 2wz w2 − x2 + y2 − z2 2yz − 2wx 0
2xz − 2wy 2yz + 2wx w2 − x2 − y2 + z2 0

0 0 0 w2 + x2 + y2 + z2



















Fans of 4D should note that any rotation of a 4-vector v can be written
as p ♦ q ♦ v ♦ q−1 p, which is translated easily into matrices using this
same approach. The q quaternion controls rotation in the planes exclud-
ing w—namely x−y, x−z, and y−z—while the p quaternion controls
rotation in the planes including w—namely w−x, w−y, and w−z.

Converting a homogeneous matrix back to a quaternion also is rela-
tively easy, as the Qrow matrix has a great deal of structure that can be
exploited. To preserve numerical precision, one must adapt to the spe-
cific matrix given, but the structure also makes that elegant. Observe that
the difference, Qrow minus its transpose, has a simple form:

    

Qrow −  Qrow
T =

0 −4wz  4wy 0
 4wz 0 −4wx 0
−4wy   4wx 0 0

0 0 0 0



















.

Clearly, it is easy to find x, y, and z when w is known, so long as w is
not zero—or, for better precision, so long as w is not nearly zero. On the
other hand, the sum Of Qrow plus its transpose also is simple, if we ignore
the diagonal:

      

Qrow + Qrow
T − diagonal =

0 4xy 4xz 0
4xy 0 4yz 0
4xz 4yz 0 0
0 0 0 0



















⋅
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So, knowing any one of x, y, or z also makes it easy to find the others,
and to find w (using the difference matrix). In particular, if (i, j, k) is a
cyclic permutation of (0, 1, 2), then

      
w =

Q k , j[ ] − Q j , k[ ]
q i[ ] ,      q j[ ] =

Q i , j[ ] + Q j , i[ ]
q i[ ] ,

     
      
q k[ ] =

Q i,  k[ ] + Q k,  i[ ]
q i[ ] .

Now observe that the trace of the homogeneous matrix (the sum of the
diagonal elements) always will be 4w2. Denoting the diagonal elements
by X, Y, Z, and W, one finds all possibilities:

4x2 = X – Y - Z + W,

4y2 = –X + Y - Z + W

4z2 = –X – Y + Z + W

4w2 = X + Y + Z + W

Except for w, the computation is q[i] = Sqrt(Q[i, i] – Q[j, j] – Q[k, k]
+ Q[3, 3])/2. Since a divide almost certainly is cheaper than a square
root, it is better to compute just one of these, preferably the largest, since
that will give the best precision for the divides; but look at the diagonal
elements again, and let S = w2 − x2 − y2 − z2. Then X = S + 2x2,
Y = S + 2y2, Z = S + 2z2, and T = X + Y + Z = S + 2w2. Clearly,
which of X, Y, Z, or T is largest indicates which of x, y, z, or w is
largest. (T is the trace of the upper-left 3 × 3 corner of the homogeneous
matrix.)

See also (498) Using Quaternions for Coding 3D Transforma-
tions, Patrick-Gilles Maillot
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VII.7VII.7VII.7VII.7VII.7
RARARARARANDOM ROTATIONNDOM ROTATIONNDOM ROTATIONNDOM ROTATIONNDOM ROTATIONMMMMMATRICESATRICESATRICESATRICESATRICES

James ArvoApollo Systems Division of Hewlett-PackardChelmsford, Massachusetts

It is sometimes convenient to generate arbitrary 3 × 3 rotation matrices
for use in creating randomized models, random animation sequences, or
for use in stochastic simulations. The following routine (Fig. 1) maps
three random variables in the range [0, 1] onto the set of orthogonal
3 × 3 matrices with positive determinant; that is, the set of all rotations
in 3-space. This mapping is one-to-one on the domain (0, 1) × (0, 1) ×
(0, 1). The algorithm works by first constructing a unit quaternion from
the three random variables, then converting the quaternion into an
orthogonal matrix. If the random variables are independent and uniformly
distributed in [0, 1], the resulting rotations will also be uniformly dis-
tributed.

       Random_Rotation_Matrix(x1, x2, x2 M)
          x1, x2, x3: real;
         M: matrix3;
       begin

           Use the random variables x1 and x2 to determine the axis f r tati n in
           cylindrical coordinates.

             z: real ← x1;
             θ: real ← 2πx2;

             r: real ←     1 − z2 ;

Figure 1.
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end

Figure 1. (Continued)

See also 7.6 Quaternions and 4 × 4 Matrices, Ken Shoemake;
(498) Using Quaternions for Coding 3D Transf rmati ns,
Patrick-Gilles Maillot

Use the random variable x3 to determine the half-angle
             rotation, ω, about this axis.

ω: real ← πx3;

Map (z, θ, r, ω) to a unit quaternion (a, b, c, d).

a: real ← cos(ω);
b: real ← sin(ω) cos(θ) r;
c: real ← sin(ω) sin(θ) r;
d: real ← sin(ω) z;

Construct an orthogonal matrix corresponding to (a, b, c, d).
This matrix has positive determinant, so it is a rotati n.

    

M ←
1 − 2 c2  +  d2( ) 2 bc  +  ad( ) 2 bd  −  ac( )

2 bc  −  ad( ) 1 − 2 b2  +  d2( ) 2 cd  +  ab( )
2 bd  +  ac( ) 2 cd  −  ab( ) 1 −  2 b2  +  c2( )
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VII.8VII.8VII.8VII.8VII.8
CCCCCLASSIFYING SMALL SPARSELASSIFYING SMALL SPARSELASSIFYING SMALL SPARSELASSIFYING SMALL SPARSELASSIFYING SMALL SPARSEMMMMMATRICESATRICESATRICESATRICESATRICES

James ArvoApollo Systems Division of Hewlett-PackardChelmsford, Massachusetts

Zero StructuresZero StructuresZero StructuresZero StructuresZero Structures
Small matrices, such as 3 × 3 or 4 × 4, are ubiquitous in computer
graphics. They are used to transform everything from rays and normal
vectors in ray tracing to vectors and polygons in traditional display list
processing. Because these matrices are often formed by concatenating
several simpler matrices, such as rotations, translations, changes of scale,
and reflections, they frequently contain a number of zero elements: i.e.,
they are frequently sparse. If a given sparse matrix is used for many
transformations, its zero structure can be exploited to minimize the total
number of floating-point operations. To do this, we propose tagging each
matrix with an integer form index indicating its zero structure and
subsequently using this index to branch to optimized handlers for each
zero structure; that is, code in which the zero additions and multiplica-
tions have been removed.

Because a 3 × 3 matrix has 29, or 512, possible zero structures, nearly
half of which are guaranteed to be singular (247 of them, to be exact), it
would seem unreasonable to supply special-purpose code for every case.
A compromise is to pick a small number of common zero structures and
optimize only these. The frequency with which these sparse matrices arise
in a given application will determine whether using the form index will
be beneficial. However, because the added cost of a branch is typically very
small (depending upon the compiler and machine architecture), there is
little to lose and potentially much to gain in using this approach.

Form indices also make it possible to optimize space by storing only
nonzero elements. However, it is often more convenient to store the full
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matrix because this allows non-time-critical code and preexisting libraries
to operate on these matrices in the normal fashion, oblivious to zero
structures.

Classifying a MatrixClassifying a MatrixClassifying a MatrixClassifying a MatrixClassifying a Matrix
Figure 1 enumerates a set of 16 common zero structures for 3 × 3
matrices. Included are six permutations, three rotations, and the seven
distinct forms resulting from permuting the rows and columns of the
simple rotations. Note that the labels permutation and rotation pertain
only to the structure and do not imply that the matrix is a true permuta-
tion or rotation. This can be determined only by considering the values of
the nonzero elements, which is unnecessary for our purposes.

Though we could deduce a zero structure for a matrix from the zero
structures of its component matrices and the order of concatenation, it is

Figure 1. Sixteen common zero structures for a 3 × 3 matrix
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far easier to do this after the matrix has been computed. This makes it
unnecessary for the modeling operations to have any knowledge of zero
structures, and it also takes advantage of fortuitous callcellations that
introduce additional zeros.

The algorithm in Fig.2 is a fast and convenient way to determine which
of the zero structures of Fig.1 apply to a given 3 x 3 matrix. Rather than
using deeply nested if-then-elses, which call be cumbersome, this proce-

Classify_Matrix(M):integer

M:Matrix3;

Begin

Initialize “form” by oring all possibilities together.

form:integer ← P1<...P6<R*<C1<...C6;

Eliminate possibilities due to non-zeros on the diagonal.

if M[0][0] ≠  0 then form ← form>(P1<P5<R*<C1<C5<C6);
if M[1][1] ≠  0 then form ← form>(P1<P6<R*<C1<C2<C3);
if M[2][2] ≠  0 then form ← form>(P1<P4<R*<C1<C4<C7);

Eliminate possibiliteis due to non-zeros on the diagonal.

if M[0][1] ≠  0 then form ← form>(P2<P4<Rz<C3<C4<C5<C7);
if M[0][2] ≠  0 then form ← form>(P3<P6<Ry<C1<C2<C3<C6<C7);
if M[1][2] ≠  0 then form ← form>(P2<P5<Rx<C3<C4<C5<C6);

Eliminate possibilities due to non-zeros in the loer triangle.

if M[1][0] ≠  0 then form ← form>(P3<P4<Rz<C2<C4<C6<C7);
if M[2][0] ≠  0 then form ← form>(P2<P6<Ry<C1<C2<C3<C4<C5);
if M[2][1] ≠  0 then form ← form>(P3<P5<Rx<C2<C5<C6<C7);

return[form]

end

Figure 2. A function for identifying the zero structure of 3 ×  3 matrices. Here, > means
bitwise-and, < means bitwise-or, and R* is an abbreviation for(Rx<Ry<Rz)
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dure maintains a bit-vector of possible classifications, which is narrowed
down by examining each matrix element in sequence. Only nonzero
elements constrain the possible classifications because starred elements
may be anything, including zero. Thus, for each nonzero element, we
reset the bits corresponding to forms in which that element is zero. Any
reasonable compiler will replace the or expressions in Fig. 2 with the
equivalent constants at compile time.

Sparse_Mat_Vect_Mult(M, form, a, b)

M:Matrix3;

form:integer;

a:vector3;

b:vector3;

begin

select form from

P1:begin

b.x ← M[0][0] ∗ a.x;
b.y ← M[1][1] ∗ a.y;
b.z ← M[2][2] ∗ a.z;

end

P2:begin

b.x ← M[2][0] ∗ a.x;
b.y ← M[0][1] ∗ a.y;
b.z ← M[2][2] ∗ a.z;

end

.

.

.

DENSE: Resort to traditional matrix multiply

endcase

end

Figure 3. A procedure for multiplying a sparse matrix by a vector.
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Figure 3 shows how one might use the form index to speed up
matrix-vector products. Operations such as matrix inversion and
matrix-matrix multiplications can also enjoy the extra information sup-
plied by the form index; but be warned that in the case of inversion, most
but not all matrices have the same zero structure as their inverses. For
example, the inverse of a P2 matrix has the form of P3, and vice versa.
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Computer graphics is replete with programming tricks and careful numer-
ical techniques, both of which deal with the myriad mathematical prob-
lems that every graphics programmer encounters. Solutions often come
from clever mathematical identities, special numerical algorithms, and
shrewd programming. The gems of this Part present methods for count-
ing bits, useful trigonometric identities, and methods for fast approxima-
tions and evaluation of familiar functions such as square root and
arctangent, as well as the more exotic noise function.
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VIII.1VIII.1VIII.1VIII.1VIII.1
BBBBBIT PICKINGIT PICKINGIT PICKINGIT PICKINGIT PICKING

Ken ShoemakeOtter EnterprisesPalo Alto, California

One bit raster graphics is not dead yet, and the use of bit vectors
probably will never die—which is merely an excuse to propagate one of
the prettiest little hacks on a binary computer. Some computer architec-
tures, such as the Motorola 68020, include an instruction for finding the
highest 1-bit set in a word, presumably to assist in software normalization
of floating-point operation results. This high 1 finding can be quite handy
for other bit vector operations as well. Finding the lowest 1-bit set in a
word is a different matter. However, using the properties of 2’s-comple-
ment arithmetic, it can be done easily. Simply take the bit-wise AND of the
word and its negative; the result will be a word containing just the lowest
1-bit. If n is exactly a power of 2, then n = = (n& – n) is TRUE,
otherwise not. One example of the use of this technique is in stepping
through 1 bit in a word, which is used to record pixel coverage for
anti-aliasing. Why does it work? Here is a picture (Table 1):

Table 1.

n 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0

!n 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1

+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

– n 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0

n 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0

n& – n 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
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Remember that –n in 2’s-complement arithmetic is !n + 1; carry propa-
gation is effectively doing the search.

See also VIII.3 Fast In-Line Manipulations: Of Integers, Fields,
and Bit Counting, Alan W. Paeth, David Schilling
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VIII.2VIII.2VIII.2VIII.2VIII.2
FFFFFASTER FOUASTER FOUASTER FOUASTER FOUASTER FOURlRlRlRlRlER TRANSFORMER TRANSFORMER TRANSFORMER TRANSFORMER TRANSFORM

Ken ShoemakeOtter EnterprisesPalo Alto, California

Fast Fourier Transform algorithms have been explored pretty thoroughly,
and vary from quite terse to highly optimized. It is not hard to find source
code, as in Press et al. (1988) or Burrus and Parks (1985). However,
there is one task common to every in-place algorithm that can be made
faster, namely, the flipped bit count shuffling of data that occurs before
or after the transform proper.

Historically, folks have tried to come up with clever ways either to flip
the bits of an ordinary counter or to make a flipped counter; but there is
another possibly pointed out by Evans (1987). Notice in Table 1 that,
first, all rearrangements involve simply swapping pairs; and second, that
some indices do not change (the palindromes 000, 010, 101, and 111).
Both these properties hold in larger cases as well, and suggest trying to
generate only the pairs that must be swapped. For a length 1024 FFT,
this means enumerating 496 indices—less than half the total.

When the bits are flipped, abcxyz turns into zyxcba—as, for example,
101011 becomes 110101—and vice versa. A way to avoid duplications
and palindromes can be found by splitting the bits in half, as in 101 011.
When zyx is strictly greater than abc, zyxcba is strictly greater than

Table 1.

Decimal 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

Binary 000 100 010 110 001 101 011 111

Decimal 0 4 2 6 1 5 3 7

Index
in

Index
out
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Figure 1.

abcxyz, and cannot be a palindrome. A simple enumeration strategy for a
length n = 22k FFT thus is possible:

shift = k  >> 1; half = 1 < < shift;
h = k – shift;
for (low = 1; low + +; low < half) {

limit = flip (low, h); top = limit < < shift;
for (high = 0; high + +; high < limit) {

SWAP (data[(high << shift) + low],
 data[top + flip (high, h)]);

}
}

More subtly, the same code works when n = 22k+1, because of the way in
which h is computed. One further speedup, now possible because only
small values of h will occur, is to implement flip using a table look-up.
For a 1024-point FFT, the table need hold only 32 entries.

Why does the code work for odd numbers of bits? First, the flipping,
shifting, and adding leave the middle bit unchanged. Second, the inner-
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most loop generates both 0 and 1 for the middle bit, so both cases are
considered. Finally, zyx0 strictly greater than abcm implies zyx is
strictly greater than abc, which still guarantees no duplicates or palin-
dromes. Figure 1 shows the odd-bits case; the even-bits case omits the m
bit in the middle.
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VIII.3VIII.3VIII.3VIII.3VIII.3
OOOOOF INTEGERS, FIELDSF INTEGERS, FIELDSF INTEGERS, FIELDSF INTEGERS, FIELDSF INTEGERS, FIELDS,,,,,AND BIT COUNTINGAND BIT COUNTINGAND BIT COUNTINGAND BIT COUNTINGAND BIT COUNTING

    Alan W. Paeth                David Schilling        NeuralWare Inc.           Software Consultant   Pittsburgh, Pennsylvania    Bellevue, Washington

Inner loops common to graphics code may benefit from short, register-
based in-line code. These may exploit mixed arithmetic-logical operation
on integers to achieve high performance at small cost. Two techniques
useful for bit manipulation within a single register are described. The first
increments (disjoint) fields within machine words; the second tallies the
number of bits set. Both are helpful particularly in manipulating RGB
pixels within a single machine word without resort to the (re)packing of
each component, a valuable property exploited elsewhere (Paeth, 1990a).

BasicsBasicsBasicsBasicsBasics
Consider hardware that represents integers in the nearly universal 2’s-
complement binary form. Bitwise logical negation “not()” is an arithmetic
1’s-complement operation, differing by one unit from arithmetic negation
“–” on such machines. They may be equated: not(A) = –(A + 1).
Negating both sides yields an incremental form; a decrement may be
derived in like manner:

A ← –not(A) ⇔ A ← A + 1,

A ← not(–A) ⇔ A ← A – 1.
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The latter places the logical operation outermost, allowing it to be
absorbed further. For instance, the expression, “X bit-and (Y – 1)” and
equivalent “X and-not (–Y),” become “X bit-clear ( – Y)” on architec-
tures having only a bit-clear (e.g., a Vax).

Counting through Bits under Mask
A binary integer of 2N non-adjacent bits may be counted (incremented
through its 2N unique states) in simple fashion by using a mask of active
bits. This situation commonly occurs when a machine word represents a
color pixel of three adjacent integers, most often bytes representing RGB
values. As an example, hexadecimal mask “808080” has 3 bits set. These
define the most significant bits for each primary in a 24-bit pixel descrip-
tor. Counting up through this scattered integer generates the eight
bounding corners of the color cube at 50% intensity. Conversely, the 6-bit
mask of “030303” may define low-order unused dither bits when repre-
senting data having only 6 bits per color channel on a 24-bit display;
counting under the second mask enumerates all possible intermediate
dither values.

A minimal implementation requires two registers: a mask of those bits
that are live in the partitioned integer, plus the current count value,
initially zero. Successive values may be generated using the brief frag-
ment:

count = count – mask,

count = count bit-and mask.

This form combines logical and arithmetic operations to achieve the
desired effect. The operation is minimal in that no more than the two
original registers are employed. Also, both machine instructions are of the
compact two-op form, kregA op = regBl.

To understand why this works, recall that subtraction of mask in the
first statement may be expressed as the addition of the 2’s-complement of
mask. This form may be represented in turn by the 1’s-complement of
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mask plus 1: – mask = not(mask) + 1. The rewrite gives:

count = count + not(mask) + 1,

count = count bit-and mask,

where the unit constant serves to increment the count. The inclusion of
not(mask) provides a carry path across those bits in mask that are
unoccupied, allowing low-bit carry-outs to advance to the carry-in of the
next active bit. The second statement zeros out carry-chain scaffolding,
thereby vacating bit positions unused in register count. The cycle then is
ready to repeat.

Tallying the on  on  on  on  on bits in an Integer
Bit-tallying is a common tool in a programmer’s kit. In graphics scenar-
ios, it is used most often when the target word represents a portion of a
raster. For instance, consider a binary output device in which on bits
represent marks (e.g., a laser printer). Tallying 1’s in the input data
stream provides an estimate of the local or global density of the print.
Similarly, counting the on bits within a 4 × 4 spatial mask can convert a
binary raster of size 4N × 4M into a grayscale raster of size N × M. In
both examples, a significant portion of the input may be off/unmarked: a
counting method with cost proportional to the number of on bits may be
beneficial.

A straightforward approach employs byte-indexed tables. Based on
machine architecture and implementation specifics, this may be the
fastest technique.

Here, a 256-entry table indexed by byte—whose Nth entry is the
number of bits present in its byte index N—solves the problem for 8-bit
words. For 32-bit long words, the word first is broken into 4 bytes. Each
is tallied using the table method. The four values then are summed. The
summing may be done implicitly by forming the remainder modulo 255,
as explained at the conclusion of this gem. The table method has constant
cost, but still may lose to the following bit-based methods on machines
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for which byte alignment and indexing are expensive, or when rasters are
very sparse or full, but not both.

A less intuitive scheme with running time proportional to the number of
set bits likewise may take advantage of mixed arithmetic-logical opera-
tions. For sufficiently sparse rasters, this method often provides asymp-
totically better running time:

integer function tally(bits)
count: integer ← 0;
while (bits < > 0)

begin
bits = bits bit-and (bits – l)

or use “bits = bits bit-clear (-bits)”
count = count + l
end

This algorithm is strongly suggestive of the first item in this gem. Bit
anding any integer with its predecessor zeros the rightmost bit set (up to
and including the word’s rightmost/least significant bit); for instance, the
operation, ABCD0300 bit-and ABCD02FF = ABCD0200. Bits then may be tal-
lied and discerded until the word is zero.

For dense rasters whose words have many bits set, the method like-
wise is fast: Given as 32-bit word W, the complemented word W′ may be
counted and the value 32 – C(W′) returned. A hybrid bipolar algorithm
performing both tests in line-by-line parallel has been suggested (Booth,
1989) for fast symmetric performance. Here, each inner loop has twice
the cost, but the code terminates at most in half the number of steps, as
no more than half the bits can be both 1 and 0. This gives identical
worst-case performances and a chance to end early for words that are
either empty or full.

Analysis reveals a subtlety: The algorithm generally is not useful. Even
with no penalty for overhead in parallel execution, this hybrid scheme is
slower on average by 1.73 times. This is a consequence of the binomial
theorem on the distribution of bits. For a 32-bit integer of random bit
settings, the number of patterns having between 15 and 17 bits set (and
as many off) is 40.33%; most often, any algorithm will terminate near the
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16th cycle. Comparing hybrid to simple, the former does twice the work
for each step. Put another way, the twin halting conditions and associated
work buy little improvement; they tend to occur at roughly the same
moment.

Finally, counting may be done by viewing a long word as 32 1-bit
tallies. These are regrouped (by addition) as 16 2-bit tallies, continuing
for log2 (word-length) steps, at which point a 32-bit tally is left. This
method has many variations; three are provided in the C Implementation.
Once partial tallying has created four adjacent byte counts (the same
format as the first tally algorithm), a remainder step may be employed to
complete the task (Beeler et al., 1972). The modulus allows the casting
out of N – 1’s in any base N > 2; the digital root test (digit sums) for
divisibility by 9 in base 10 is a well-known example. In the case at hand:

N = (d3d2d1d0) =   di2
8i,

N mod 255 =  
    

di 28i mod 255( )
i = 0

3

∑





 mod 255,

= (d3 + d2 + dl + d0) mod 255,

= (d3 + d2 + dl + d0).

The last step discards the modulus, as the value of the sum at most is 32.
Performing the modulus on eight hex digits would employ “mod 15” and
introduces ambiguity; an interesting, compact algorithm employing the
modulus 31 with minor correction for ambiguity appears as the final C
code algorithm.

A pseudo-code example follows:

    i = 0

3

∑
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integer function tally32(a)
a: unsigned long integer; a: 32 × 1-bit
tallies

begin
mask = 1431655765; hex 55555555

a = (a bit-and mask) + (a rshift 1) bit-and mask; a: 16 × 2-bit tallies

mask= 858993459; hex 33333333

a = (a bit-and mask) + (a rshift 2) bit-and mask; a: 8 × 4-bit tallies

mask= 117901063; hex 07070707

a = (a bit-and mask) + (a rshift 4) bit-and mask; a: 4 × 8-bit tallies

return(a mod 255) sum the bytes by
end casting out 255’s.

on machines for which modulus is expensive, the return  may be
replaced with this coda:

mask = 2031647; hex 001f001f

a = (a bit-and mask) + (a rshift 8) bit-and mask; a: 2 × 8-bit tallies
mask = 63;hex 0000003f

a = (a bit-and mask) + (a rshift 16) bit-and mask; a: 1 × 32-bit tally
return(a) done.
end

See also VIII.1 Bit Picking, Ken Shoemake
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Quaternions have been established as a useful representation for interpo-
lating 3D orientation in computer animation. In keeping with traditional
computer animation practices, we would like both interpolating and
approximating splines. These can be derived easily by applying the
geometric constructions known for linear splines.

Shoemake (1985) provided a scheme for deriving Bézier control points
from a sequence of quaternions. This provides an interpolating spline for
quaternions, but the construction is somewhat more complicated than
necessary. The most common interpolating spline in use probably is the
Catmull-Rom spline. In 1988, Barry and Goldman (1988) obligingly
provided a geometric construction for Catmull-Rom splines. This pro-
duces an interpolating spline directly from the control points, without the
construction of auxiliary Bézier points. For an approximating spline, a
geometric construction for B-splines is well-known (de Boor, 1972).

Barry and Goldman represent geometric constructions as a triangle
with the four control points at the bottom, the result point at the top, and
weighting functions for the intermediate results on each arc; for example,
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the nonuniform B-spline construction:

P0
3(t)

    

tq+1 – t

tq+1 − tq     

t − tq
tq+1 − tq

P2
–1(t) P0

2(t)

    

tq+1 – t
tq+1 − tq−1     

t − tq−1
tq+1 − tq−1     

tq+2 – t
tq+2 – tq     

t − tq
tq+2 – tq

P1
–2(t) P1

–1(t) P0
1(t)

    

tq+1 – t

tq+1 − tq−2     

t − tq−2

tq+1 − tq−2     

tq+2 – t

tq+2 − tq−1     

t − tq−1

tq+2 − tq−1     

tq+3 – t
tq+3 − tq     

t – tq

tq+3 − tq

P–3 P–2 P–1 P0

This notation can be compressed considerably, since each pair of points
is blended with coefficients that sum to one (i.e., the points are linearly
interpolated, or lerped). By collapsing such coefficients and deleting the
points, we get the six-entry triangle:

    

t − tq
tq+1 − tq

    

t − tq−1
tq+1 − tq−1     

t − tq
tq+2 − tq

    

t − tq−2
tq+1 − tq−2     

t − tq−1
tq+2 − tq−1     

t − tq
tq+3 − tq

In the uniform case (with knot values ti = i), this reduces to:
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t  +  1

2     
t
2

    
t  +  2

3     
t  +  1

3     
t
3
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Similarly, the Catmull-Rom construction is

t

    
t  +  1

2     
t
2

t + 1 t t – 1

and the Bezier construction is simply

t
t t

t t t

For our purposes, the most useful consequence of expressing the
constructions as lerping pairs of points together is that they can be
readily applied to any domain where an analog to lerp exists. For
quaternions, the analog to lerp is slerp, for spherical linear interpolation
(Shoemake, 1985):

slerp(q1,q2,u) = 
    
sin 1 − u( )θ

sinθ q1  +  sin uθ
sin θ q2 ,  where cos θ = q1 ⋅ q2.

For example:

function qCatmullRom(
q00, q01, q02, q03: quaternion; t: real

): quaternion;
q10, q11, q12, q20, q21: quaternion;

begin
q10 ← slerp(q00, q01, t + 1);
q11 ← slerp(q01, q02, t);
q12 ← slerp(q02, q03, t – 1);
q20 ← slerp(q10, q11, (t + 1)/2);
q21 ← slerp(q11, q12, t/2);
return [slerp(q20, q21, t)];

endproc qCatmullRom
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The implementation of the other constructions differs only in the third
arguments to slerp().

See also VII.6 Quaternions and 4 × 4 Matrices, Ken Shoemake;
    (498) Using Quaternions for Coding 3D Transformations,
    Patrick-Gilles Maillot
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Alan W. PaethNeuralWare Inc.Pittsburgh, Pennsylvania

Trigonometric transformations are common to distant corners of graph-
ics, ranging from cartography to ray tracing. However, the formulae that
underpin their related algorithms often make heavy use of the basic
trigonometric functions tan θ, sin θ, or cos θ, their reciprocals, and often
their half-angle forms. The values typically occur in pairs; [cos θ, sin θ] is
a common example. Algorithms employing parallel trigonometric expres-
sions may benefit from a transformation that expresses all trigonometric
forms in terms of one: tan(θ/2). This gem derives the half-angle identity
and reveals a wide variety of uses.

Trigonometric formulae are derived conventionally through geometric
means on a right triangle of unit hypotenuse. We substitute an isosceles
triangle symmetric about the x axis on the Cartesian plane and proceed
by way of analytic geometry. Its three vertices are located at the origin
and at a pair of conjugate points (Fig. 1).

Here, the base is of length 2y, the congruent sides are     x 2  +  y 2 . By
regarding these common sides as vectors, the cosine of their included
angle is equated to their dot (inner) product, normalized by the product of
their lengths (Fig. 2a). Because the cosine represents the quotient of two
sides (adjacent over hypotenuse) in a conventional right triangle, applica-
tion of Pythagoras’s theorem finds the third side of this rectified triangle
(Fig. 2b). It likewise has base angle α. Thus, sin α = 2xy/x2 + y2,
tan α = 2xy/x2 – y2. Note that the side equations in Fig. 2b contain no
roots: They are integral for integrals x and y. Figure 2b thus rederives
the familiar generator of all Pythagorean triangles (Paeth, 1990c). All
right triangles of integer sides (solving the familiar i2 + j2 = k2) may be
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defined by at least one integer pair (x, y). For instance, the pair (2, 1)
yields the [3, 4, 5] Egyptian triangle of antiquity.

Bisecting the angle α in Fig. 1 shows that tan(α/2) = y/x. Setting
x = 1 in the equations for both tangent and half-tangent provide the basis
of formulae interrelating functions of the angle and half-angle. Although
half-angle identities of full angles are common (Glassner, 1990a), their
inverses are infrequently tabulated. Reexpressing the trigonometric iden-
tities for the right triangle in Fig. 2b in terms of x = 1, T = y = tan α/2
yields:

cos α = 
    

1 –  T 2

1 +  T 2
, sin α = 

    

2T

1 +  T 2
, tan α = 

    

2T

1 −  T 2
,

cos 
  

α
2

 = 
    

1

1 +  T 2
, sin 

  

α
2

 = 
    

T 2

1 +  T 2
, tan 

  

α
2

 = T(α)

By substituting the trigonometric value T = tan α/2 for the angular value

Figure 2.

Figure 1.
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Figure 3. a) Circle with radials; b) circle with fan.

α, equations involving the sine, cosine, and tangent of α may proceed
without resorting further to radicals or trig libraries; four-function hard-
ware floating-point often suffices. The savings can be substantial, as when
large (hemispherical) cartographic [lat,lon] data sets are precomputed
off-line under the transformation T. In this case, further savings exist
when the half-tangent form appears explicitly, as with Mercator ’s confor-
mal projection (Paeth, 1990c), or with the stereographic conformal pro-
jection, which follows.

The form [cosθ, sinθ] is bound intimately to the unit circle by the
foundational identity eiθ = cos θ + i sin θ. By this expression, the com-
plex Nth roots of unity form the vertices of a regular N-gon. Because
T(θ) substitutes so freely for [cos, sin], intuition suggests a geometric
model involving the half-angle and a circle, analogous to the conventional
model. Both appear in Fig. 3.

A constant rotation θ in Fig. 3a yields linear circumferential motion.
Remarkably, the same is true in Fig. 3b, where a viewer at the edge need
turn at only half the rate and through a half-circumference, while viewing
the same instantaneous horizon as a central observer in Fig. 3a. In short,
a chord’s angular subtense to a point anywhere on the circle’s perimeter
is half the angular subtense at the center. A geometric proof (omitted)
constructs congruent isosceles triangles that have the circle’s base and
center in common, but which have different points along the perimeter.
Euclid derives a general case; a lucid account appears in Polya (1962).
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The identities given allow the familiar reexpression of parametric
circular plotting through rational polynomials. Here, the LHS is the
familiar unit vector of rotation with α = 2 arctan(T) substituted. The RHS
may be derived from the tables previously given, yielding:

[cos(2 arctan(T)),sin(2 arctan(T))] = 
    

1 −  T 2

1 +  T 2
,  

2T

1 +  T 2







,

as appearing in Newman and Sproull (1979) and elsewhere. When T is a
half-tangent function of angle a, the circumferential motion is uniform.
When T is taken as the (linear) independent parameter, the angular rate
is no longer constant, but does not deviate considerably; The half-tangent
is strongly linear through much of its domain, as seen by the Taylor
expansion of both the function and its inverse about x = 0:

2T(x) = 2 tan
    

x

2




  = x + 

  

1

12
x3 + 

  

1

120
 x5 + O(x)7,

2 arctan
    

x

2




  = x – 

  

1

12
x3 + 

  

1

80
x5 + O(x)7.

This reveals the alternate forms 2 tan(x/2) and 2 arctan(x/2), which
may be employed preferentially to inherit the valuable property x ≅ 0 →
F(x) ≅ x, shared by sin(x) and tan(x). This form is familiar to the
geometry of viewport specification and, more generally, to problems of
geometric optics: 2 tan(θ/2) relates an angular field of view to a linear
field viewed at a unit distance. This occurs often enough to merit an
example.

A 35 mm format camera (with 1.5 : 1 aspect ratio giving a 42 mm film
diagonal) equipped with a 210 mm telephoto lens has a field-distance
ratio of 42 : 210 = 1/5. Substitution into the second Taylor expansion
gives the angular field: 2 tan–1(1/10) ~ 2/10 radians ~ 11.4° (half-field
if the leading 2 is omitted). Here, merely the approximation’s first term is
retained, as the field is narrow.

Interestingly, a nonrectilinear fish-eye lens enforces this approxima-
tion at wide angles; angular field distance then gives linear displacement
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at the film plane, allowing the imaging of a hemispherical extent (or
more) in cases where an ideal pinhole lens would require an infinite film
plane.

The close relation between the half-tangent and the conventional rota-
tion form [cos θ, sin θ] also may be implicit. For instance, raster rotation
using shearing (Paeth, 1990a) employs three 2 × 2 identity matrices,
each with one off-diagonal, nonzero element. This element is –tan(θ/2)
for the central matrix, bracketed by matrices having sin θ on the off-
diagonal. Not surprisingly, the algorithm admits particularly accurate
special cases when the off-diagonals are small rationals. These are related
directly to Pythagorean forms (Paeth, 1990c). In particular, the generator
pair (1, 1) yields a flat right triangle with sides (0, 1, 1), allowing for
90-degree rotation of all integer coefficients as a well-known special case
(Guibas and Stolfi, 1982).

This model reveals other domains in which the half-tangent appears.
The drawing in Fig. 3b is suggestive of the Lambertian radiosity model,
which characterizes ideal diffuse reflective surfaces. This specific model
also may be extended to 3-space by rotation about an axis containing the
base point and center of the opposite chord. The latter becomes a circle
(all points of common subtense) on the sphere, while its projection
remains circular. This illustrates the basis of the stereographic polar
projection (Paeth, 1990d). A plot (Paeth, 1990d, Fig. 5) illustrates the
remarkable property unique to this conformal mapping: Circles are pre-
served under transformation between chart and globe. The equation that
relates azimuthal chart distance to spherical subtense is 2 tan(χ/2),
where χ is co-latitude (zero at the pole).

Elsewhere, the function is useful in problems of general trigonometry.
A concise identity (Glassner, 1990a) relates the half-tangents of two base
angles in a plane triangle to the ratio of their respective legs (Fig. 4a).
Extension to oblique spherical triangles necessarily adds a trigonometric
form: The legs of spherical triangles are measured in terms of angular
subtense. Another introduction of the half-tangent suffices (Fig. 4b).

Figure 4.  a) Planar; b) spherical.
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From a computational point of view, the function T(x) = tan(x/2) is
desirable because it is odd-valued: T(–x)= –T(x). In contrast, even
functions such as cos(x) and   x  discard x’s sign. Similarly, transforma-
tions involving the square root introduce a sign ambiguity, recovered
through cumbersome forms such as sign(x)  F x( ) . Under substitution,
T(x) remains superior to other odd trigonometric functions, such as
S = sin(x), whose expression of the cosine, cos(x) =     1 −  S2( )  , is
unstable for S ~ 1. However, there are other means to form [cos, sin] in
parallel with high accuracy, e.g., Cordic techniques (Turkowski, 1990).

T(θ) moves the tangent’s bothersome singularity at ±π/2 outward to
±π: the function is defined on the entire circumferential domain
(– π . . . + π ), where its range is [– ∞ . . . ∞]. Note that the point-at-infinity
is a pole having no sign; this is suggested by the stereographic projection’s
antipodal point, which lies in no unique direction away from the chart
origin. In many cases, a half-circle or hemispherical domain sufflces for T
and the range then is the convenient [–1. . .1], as was seen in the
rational-parametric circle drawer. The π likewise may be removed from
the domain by reexpressing T(x) in circumferential units (Shoemake,
1990).

It is ironic that trigonometric identities based on a single form are not
more common today. In times past, problems of navigation and astron-
omy—which provided mathematics many of its riches—preferentially
employed half-angle forms, such as the haversine (hav(x) = 1/2 vers(x)
= 1/2[1 – cos x] = sin2 x/2 = T2/1 + T2). By these, the reckoner of
a ship’s company could (among his other duties) navigate during adverse
circumstances with reference merely to sums and to a single table. Today,
a misplaced sign has less dire consequences (usually!) for the reckoner.
Still, the opportunity to optimize code under a unified model while
implicitly accounting for the bothersome ambiguities of four-quadrant
trigonometry is not ignored easily.
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Christopher J. MusialNew Horizons SoftwareSt. Louis, Missouri

Some algorithms that perform a square root operation may require only
the integer portion of the result, rather than the entire floating-point
number. An example may be arranging a list of items into a nearly
square table: The table will have the same number of rows and columns,
with the last row/column possibly being empty or incomplete. The
overhead of a full floating-point calculation is not necessary in this case.
The algorithm presented here calculates the largest integer, which is less
than or equal to the square root of a given integer n, i.e.,   n .

Given n as the number for which the square root is required and s as
the integer square root we are seeking, iteratively perform the operation,

Si+1 ← 
    

si  +  
x

si

2
,

until si+l becomes greater than or equal to si, at which point si is the
integer square root we are seeking. Prior to starting the iteration, si is
assigned the value n/2. Note that the divisions are carried out in integer
arithmetic. The pseudo-code for this procedure is:

procedure isqr (n: unsigned long int);
begin

nextTrial: unsigned int ← n/2;
currentAnswer;
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if n ≤ 1 then return [n];
do

begin
currentAnswer ← nextTrial;
nextTrial ← (nextTrial + n/nextTrial)/2;
end;

until nextTrial ≥ currentAnswer;
return [currentAnswer];
end;

See also (424) A High Speed, Low Precision Square Root,
Paul  La londe ,  Rober t  Dawson
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Ron CapelliIBM Corp.Poughkeepsie, New York

Given the components of a vector (dx, dy), the inverse trigonometric
arctangent function is used to determine precisely the angle that the
vector makes with respect to the x axis. The function arctan2(dy, dx) is
provided in many program libraries so that the function can be defined
for all values of dx and dy (except the single case where both dx and
dy are zero).

A useful measure of vector angle can be constructed by a piecewise
continuous function, using only three comparisons, one division, and one
or two add/subtract operations. This represents significantly fewer oper-
ations than a standard implementation of arctan2.

The segments of the piecewise continuous function are determined by
the octant in which the vector lies. The octant can be determined by three
comparisons of dx with respect to 0, dy with respect to 0, and dx with
respect to dy. For octants where abs(dx) > abs(dy), dy/dx is evalu-
ated. For octants where abs(dx) < abs(dy), dx/dy is evaluated. Finally,
so that the segments join with both C0 and C1 continuity, the absolute
value of the quotient is subtracted from 1 for the odd octants, and the
octant number is added to the result. This algorithm is summarized in
Fig. 1, with the comparisons satisfied for each octant shown inside the
circle, and the piecewise function evaluation for each octant shown
outside the circle.

Figure 2 is a graph of the function for all angles. The function is
monotonically increasing, so it is ideal for use as a key for sorting vectors
by angle. Such a sort, for example, is used in determining the convex hull
of a set of points using Graham’s scan algorithm (Graham, 1972; Lee and
Preparata, 1984).
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Figure 2. Graph of piecewise continuous function.

Figure 1. Octants and piecewise function evaluation.
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Figure 3. Graph of arctangent approximation error.

As presented, this function returns a value greater than or equal to
zero, and less than 8. This range often is useful as is, or it can be
remapped easily to radians (or degrees) to provide an approximation to
the arctangent. Figure 3 is a graph of the error of the approximation. The
maximum error is less than 4.1 degrees, just over 1% of a full circle.
Thus, the approximation is safe for point-in-polygon testing using alge-
braic sums of angles when the number of polygon vertices is small.
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Jack Ritter

This gem provides a quick method of determining the sign of a 2D cross
product. (If the plane defined by the two vectors is a general 3D plane, a
transformation that aligns the plane to one of the three coordinate planes
should be pre-applied to all points, to convert the problem into 2D.) In
computer graphics, there are many cases where the cross product is
computed, but only the sign is really needed. Four such cases are:

1. Back face culling (in screen space).

2. Determining the winding, or handedness, of two consecutive edges in
a polygon, or looking at all consecutive pairs to determine whether
the polygon is convex (e.g., if all signs agree). Handedness also is
referred to as into/out of the page.

3. Determining the two outer corners of a pair of 2D wide lines joined at
the ends, so as to fill in the hole with a bevel joint, mitered joint, etc.

4. Determining if a point is inside a triangle.

Typically, the full cross product is computed, and compared to zero.
The calculation of a floating-point 2D cross product is of the form:

a*b – c*d,

where two fp multiplications, one fp subtraction, and one fp compare (to
0) are needed. This can be simplified by converting the problem into fixed
point, and looking at the signs of a, b, c, and d, before doing the
multiplication. Half the time, no multiplications are necessary, and the
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other half of the time, two fixed-point, 16-bit multiplications are re-
quired. To convert a fp number to a fixed point, scaling often is neces-
sary. The algorithm uses signed short integers, so the fp numbers should
scale to the order of: –32K → 32K. This guarantees that only 16 × 16
fixed-point multiplications will be compiled, and not calls to complex
math routines (like _lmul). The C Implementation (Appendix 2) uses a
scaling of 16384; e.g., the original fp numbers are assumed to be in the
range of –1.0 → 1.0. The scale factor always should be a power of 2, so
the compiler generates a fp shift, and not a fp multiplication.

Sometimes, the quantities a, b, c, and d are known only as relative
differences (e.g., a2 – a1 instead of a). In these cases, it might be worth
it to pass all eight floating-point numbers to the routine, convert all eight
to fixed point, and then do the four subtractions in fixed point.
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Ken ShoemakeOtter EnterprisesPalo Alto, California

To sample an interval evenly with a predetermined number of points is
easy. Sampling evenly when the number of points needed is not known in
advance is less obvious. What is needed is a sequence of points that
breaks the interval up as evenly as possible with each new point. Ramshaw
(1978) showed one special way to do this is optimal according to several
different criteria. For simplicity, assume your interval is the unit interval.
(A simple linear map t → (b – a)t + a will convert from [0. . .1] to
[a. . .b].) Then the sequence of sample points xk is given by xk =
(log2(2k + 1)) mod 1.0, where modulo 1.0 means to take the fractional
part. Here in the accompanying table are the first few samples:
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Figure 1.

Figure 1 is a graphical depiction of the partitioning obtained. For k
sample points, the fragments obtained are all roughly of length 1/(k + 1).
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Greg WardLawrence Berkeley LaboratoryBerkeley, California

Since its introduction at SIGGRAPH ‘85, Ken Perlin’s three-dimensional
noise function has found its way into a great many renderers (Perlin,
1985). The idea is to create a basis function that varies randomly between
– 1 and 1 throughout 3-space with an autocorrelation distance of about 1
in every direction. Such a function can serve as the building block for a
wide variety of procedural textures. An additional proviso of the Perlin
noise function is that it should not have pronounced harmonics; i.e., it
should look like a sine function with a wiggling amplitude and no origin
(Fig. 1). This enables the programmer to build up almost any desired
random function by summing harmonics of the basic function, similar to a
Fourier reconstruction.

There is no one correct way to write a random noise function, but some
approaches are simpler or more efficient than others. One popular ap-
proach, suggested by Perlin in his 1985 paper, is to use random values
and gradients assigned to a rectilinear grid throughout 3-space, then
interpolate between them using Hermite splines. Although this does not
produce a function that is completely free of rotational biases, it is good
enough for most rendering applications. The C Implementation (Appendix
II) is based on this simple approach.

The initial requirement of the implementation is a mapping from
integer 3-space to random gradients and values, for which there are two
basic approaches. The first approach is to use a hashing function to map
integer triplets to a (possibly small) table of random numbers. The second
approach is to use some uniformly distributed random function of three
integers. The first method tends to be faster and more reliable, although
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Figure 1. Perlin noise function.

the second method has the potential to produce more random results (but
be careful—it is much easier to write a bad random function than one
might think!). Once an algorithm has been chosen for assigning random
vectors with components between –1 and 1 to integer lattice points,
Hermite interpolation can be used to compute the function value at any
point in 3-space.

The following pseudo-code function returns a random real value be-
tween –1 and 1 based on a single integer argument. Since its value from
one integer to the next essentially is uncorrelated, random functions of
more arguments can be constructed by using a sum of prime multiples as
shown for the marcros rand3a ,  rand3b ,  rand3c, and rand3d that
follow.
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Frand: return a pseudo-random real between –1 and 1 from an integer seed

The following assumes a 32-bit two’s-complement integer architecture

MAXINT: integer ← 1shift(1,32)-1; All ones except sign bit

function frand(s: integer): real;
begin

First, hash s as a preventive measure
s ← 1shift(s,13) bit-xor s;

Next, use a third order odd polynomial, better than linear
s ← (s*(s*s*15731 + 789221) + 1376312589) bit-and MAXINT;

Convert result to –1 to 1 range
rval ← 1.0 – s*2.0/MAXINT;

return rval;

end; End of frand

Define macros for different random functions of 3 integers:

macro rand3a(x,y,z) frand(67*(x) + 59*(y) + 71*(z))
macro rand3b(x,y,z) frand(73*(x) + 79*(y) + 83*(z))
macro rand3c(x,y,z) frand(89*(x) + 97*(y) + 101*(z))
macro rand3d(x,y,z) frand(103*(x) + 107*(y) + 109*(z))

In our implementation of three-dimensional Hermite interpolation, re-
cursion is used to reduce the apparent complexity. A single
function—whose job is to interpolate points and tangents in N dimen-
sions—is written. If N is greater than 0, then it calls itself on each half of
the next lower-order function (N – 1) and interpolates the results with a
Hermite cubic function. If N is 0, then the function simply returns the
point and tangent vector at the specified corner from the random lattice
mapping.

Figure 2 shows eight lattice points surrounding a point in 3-space. The
random values at these points are used to compute four points interpo-
lated in x, which in turn are interpolated in y, then in z to compute the
final value.

The following pseudo-code implements this algorithm. A macro defines
the Hermite polynomial, and a home base routine assigns global variables
and calls the recursive function that performs the actual interpolation.
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One-dimensional Hermite polynomial:

macro hermite(p0,p1,r0,r1,t)(p0*((2.*t – 3.)*t*t + 1.) +
p1*(–2.*t + 3.)*t*t +
r0*((t – 2.)*t + 1.)*t +
r1*(t – 1.)*t*t)

Global variable for the cube containing the point:

xlim: array [0..2] of array [0..1] of integer;

Figure 2.
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Global variable for the fractional parts for each coordinate:

xarg: array [0..2] of real;

Define type for gradient plus value in 4D array
GradV: array [0..3] of real;

function noise3(x: point): GradV;
nval: GradV;
begin

Assign global variables for cube and fractional part
xlim[0][0]← floor(x[0]);
xlim[0][1]← xlim[0][0] + 1;
xlim[l][0] ← floor(x[1]);
xlim[l][1] ← xlim[1][0] + 1;
xlim[2][0]← floor(x[2]);
xlim[2][1]← xlim[2][0] + 1;
xarg[0] ← x[0] – xlim[0][0];
xarg[1] ← x[1] – xlim[1][0];
xarg[2] ← x[2] – xlim[2][0];

Call recursive interpolation function
interpolate(f, 0, 3);

return nval;

end; End of noise3

Interpolate n-dimensional noise function

interpolate(var f: GradV; i, n: integer)
f0, 1: GradV; results for first and second halves
begin

if n = 0
then begin at zero, just return lattice value
f[0] ← rand3a(xlim[0][i bit-and 1],

xlim[1][rshift(i, 1) bit-and 1],
xlim[2][rshift(i, 2)]);

f[l] ← rand3b(xlim[0][i bit-and 1],
xlim[1][rshift(i, 1) bit-and 1],
xlim[2][rshift(i, 2)]);



401

 VIII.10 A RECURSIVE IMPLEMENTATION OF THE PERLIN NOISE FUNCTION

GRAPHICS GEMS II Edited by JAMES ARVO 401

f[2] ← rand3c(xlim[0][i bit-and 1],
xlim[1][rshift(i, 1) bit-and 1],
xlim[2][4shift(i, 2)]);

f[3] ← rand3d(xlim[0][i bit-and 1],
xlim[1][rshift(i, 1) bit-and 1],
xlim[2][rshift(i, 2)]);

return,
end;

n ← n – 1; decrease order
interpolate(f0, i, n); compute first half
interpolate(f1,i*1 ! n,n); compute second half

use linear interpolation for slopes
f[0] ← lerp(xarg[n], f0[0], f1[0]);
f[1] ← lerp(xarg[n], f0[1], f1[1]);
f[2] ← lerp(xarg[n], f0[2], f1[2]);

use hermite interpolationfor value
f[3] ← hermite(f0[3], f1[3], f0[n], f1[n], xarg[n]);
end; End of interpolate

Thanks to this algorithm’s recursive nature, it is easy to extend it to
noise functions of higher dimensions. One only would need to add extra
gradient components to the random number lattice mapping and increase
the number of linear interpolations a like amount.

The author ’s experience with this implementation has proven it to be
both fast and reliable, producing pleasing patterns without discernible
repetition or statistical bias.
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IXIXIXIXIX
CCCCCURVES ANDURVES ANDURVES ANDURVES ANDURVES ANDSSSSSURFACESURFACESURFACESURFACESURFACES

The gems of this Part explore several theoretical and practical aspects of
curves and surfaces. The first four gems provide new techniques for
efficient evaluation and manipulation of polynomial representations, such
as those based on Bézier curves. These are computationally convenient
and provide a fairly compact means of representing complex surfaces.

The last three gems focus on curves related to the circle. It may be
surprising that interesting and challenging problems remain even in this
simple and familiar shape, but within the realm of computer graphics,
there always will be a need to draw circles and arcs with increasing speed
and fidelity. Toward this end, the final gems address approximation of
circular arcs, plotting great circles, and anti-aliasing of circles.
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IX.1IX.1IX.1IX.1IX.1     LEAST-SQUARESLEAST-SQUARESLEAST-SQUARESLEAST-SQUARESLEAST-SQUARES,,,,,AAAAAPPROXIMATIONS TO BÉZIERPPROXIMATIONS TO BÉZIERPPROXIMATIONS TO BÉZIERPPROXIMATIONS TO BÉZIERPPROXIMATIONS TO BÉZIERCCCCCURVES ANURVES ANURVES ANURVES ANURVES AND D D D D SURFACESSURFACESSURFACESSURFACESSURFACES
Doug Moore and Joe WarrenRice UniversityHouston, Texas

ProblemProblemProblemProblemProblem
In computer graphics, the need to approximate a high-degree curve or
surface by a lower-degree curve or surface often arises. One popular
method used to select approximations is the least-squares technique. This
gem discusses the use of least-squares to produce optimal approxima-
tions of lower degree to Bézier curves and surfaces.

Univariate ApproximationUnivariate ApproximationUnivariate ApproximationUnivariate ApproximationUnivariate Approximation
Let p(t) be a polynomial of degree n written in Bernstein basis form:

p(t) =
    j=0

n

∑ pjB
n
j (t).

Here, the Bernstein basis functions Bn
j(t) are of the form:

Bn
j(t) =

    

n!
j !(n − j)!

tj(1 – t)n – j

We wish to compute a polynomial q(t) of degree m,

q(t) = 
    j=0

m

∑ qjB
m
j(t),
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that best approximates p(t) under some mathematically precise measure
of approximation error.

The least-squares method (Lawson and Hanson, 1974) provides one
such measure. To use it, we define  the residual as the  average squared
difference between p(t) and q(t) over the unit interval,

R  0

1

∫

and seek coefficients qj. that minimize the residual. For fixed p(t), the
residual is a quadratic expression in the coefficients qj. It is minimized where
all of its derivatives ∂ /∂ qi vanish. From elementary calculus, the vanishing
 of the derivatives means that

  0

1

∫     
qj i

mB (t) j
mB (t)dt =     

j=0

m

∑
  0

1

∫       
qj i

mB (t) j
nB (t)dt     

j=0

m

∑

for all 0 # i # m.
Such an equation can be simplified by applying the rules for products

and integrals of Bernstein polynomials (Farin, 1988). The result is a
matrix equation of the form,

Aq= Bp,                                  (1)

where A  is in 5 (m+l) × (m+l) and B  is in 5 (m+l) × (n+l).  The entries of A
and B can be written as:

    

(2m +  1)aij  =  
j

m





i + j
2m





,(m +  n +  1)bij  =  
j
n





i + j
m+n





.

In practice, the degrees of p(t) and q(t) usually are fixed. In such
cases, it is possible to precompute the matrix A-1B and avoid repeatedly
solving Eq.(1). If m = 1, this matrix, C = A-1 B, has  a particularly

      
qjBj

m (t) –  pjBj
n (t)

j=0

n

∑
j=0

m

∑





2

dt,
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simple form:

    
c0 j = 2

(n +  1)(n +  2)
(1 +  2n −  3 j),

    
c1 j

= 2
(n +  1)(n +  2)

(1 –  n +  3 j).

For example, the best-fitting linear function q(t) to a given cubic polyno-
mial p(t) has coefficients:

    
q0 = 1

10
(7p0 + 4p1 + p2 – 2p3 ),

    
q1 = 1

10
(–2p0 + p1 + 4p2 + 7p3 ).

To approximate a parametric Bézier curve, we apply the method to
each of the component polynomials x(t) and y(t) separately. An example
of the application of this technique appears in Fig. 1, in which a degree
12 parametric curve is reduced to a degree 3 curve. If the line segment
L(t) connects the points p(t) and q(t) on the two curves, then the
least-squares fitting cubic curve minimizes the average value of the
squared length of L(t).

Figure 1. Cubic curve approximating degree 12 curve.
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Multivariate ApproximationMultivariate ApproximationMultivariate ApproximationMultivariate ApproximationMultivariate Approximation
A more general problem is the fitting of a Bézier surface, or its higher-
dimensional analog, with a lower-degree surface. The multivariate Bern-
stein polynomials behave very much like their univariate counterparts, so
with appropriate notation, an explanation of the general multivariate
result is no more difficult to understand than the univariate result.

A multivariate Bernstein polynomial (de Boor, 1987) of dimension d is
defined over a d-simplex, where a 2-simplex is a triangle and a 3-simplex
is a tetrahedron. For concreteness, consider in particular the simplex S
with vertices at the origin and at e1, . . . , ed, where ei is a point on the xi
axis one unit from the origin. For convenience, define x0 as 1 –     i=1

d∑ xi .
The index set for the degree n Bernstein polynomials of dimension d

is denoted as ∆n
d; it consists of all the (d + 1)-tuples of nonnegative

integers that sum to n. For an element i ∈∆n
d, ik is the kth index, i!

denotes the product of the factorials of the indices, and xi denotes the
product of the terms xi

0
o . . . xi

d
d. In this notation, a Bernstein basis

function can be expressed as:

      
Bi (x) = n!

i! x i ,

and a polynomial in Bernstein basis form as:

p(t) =     i∈∆ d
n

∑ piBi(t).

Using this notation, the derivation in the multivariate case closely
matches the derivation in the univariate case. Given p(t), we wish to find
a q(t) that minimizes the residual,

R = eS
qj Bj (t)  – qj Bj (t)

j∈∆ d
n

∑
j∈∆ d

m
∑













2

dt.

This expression is minimized where the partial derivatives ∂ /qi vanish,
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so that

e
    S j∈∆d

m

m

∑ qjBi t( )Bj t( )dt =e
      
S

j∈∆d
m

∑ pjBi t( )Bj t( )dt

for each i ∈ ∆m
d. Again, the product and integration rules for multivariate

Bernstein polynomials (de Boor, 1987) permit simplifications of this
expression to the matrix equation,

Aq= Bp,

where the matrix A is in 5|∆m
d| × |∆m

d| and the matrix B is in 5|∆m
d| × |∆m

d|,
where

    
|∆ d

k|= k + d
k





 .

The entries of A and B are given by the expressions,

aij =
m!d!(i + j)!
(2m + d )! j!,  bij  =  

m!d!(i + j)!
(m + n + d )! j!.

In the linear case, m = 1, this expression can be simplified further.
The elements of A–1 are given by:

ii
–1a = (d + 1)2 ,

ij
–1a =  – (d + 1) (i ≠ j).

Since m = 1, the indices of the coefficients qi are in ∆1
d, and each index

i is of the form ek for 0 # k # d. The qek
 can be expressed in terms of

the pj as:

      
qe k

=  
n!(d +  1)!

(n +  d +  1)!
  (1

j∈∆d
n

∑  –  n +  (d +  2)jk )pj ,

where jk denotes the kth entry of j.

  n
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For example, if n = d = 2, then

    
q100 = 1

10
(7p200 + 3p110 + 3p101 – p020 – p011 – p002 ),

    
q010 = 1

10
(7p020 + 3p110 + 3p011 – p200 – p101 – p002 ),

    
q001 = 1

10
(7p002 + 3p101 + 3p011 – p200 – p110 – p020 ).

See also 9.2 Beyond Bézier Curves, Ken Shoemake; 9.6 Geo-
metrically Continuous Cubic Bézier Curves, Hans-Peter Seidel
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IX.2IX.2IX.2IX.2IX.2
BBBBBEYONEYONEYONEYONEYOND D D D D BÉZIERBÉZIERBÉZIERBÉZIERBÉZIERCCCCCURVESURVESURVESURVESURVES

Ken ShoemakeOtter EnterpnsesPalo Alto, California

Bézier curves are deservedly popular, because the control points have a
geometrical relationship to the curve, unlike polynomial coefficients. By
associating a homogeneous weight with each control point, it is possible
to describe rational curves—and hence, conics—as well. Surfaces can be
described with tensor products of curves, giving four-sided Bézier patches;
and solids as well as higher-dimensional volumes can be described by an
extension of the same technique. This is not the only way to proceed,
however. Instead, one can construct Bézier triangles, tetrahedra and so
on (de Boor, 1987). These Bézier simplices have been exploited re-
cently by Loop and De Rose (1989, 1990) as a way to construct patches
with any number of sides, and from these, surfaces of arbitrary topology.

Evaluation to find points on Bézier simplices can be accomplished by a
generalization of the recursive geometric de Casteljau algorithm for
curves. One tricky part in doing this is simply managing the bookkeeping,
since the algorithms and data structures are most naturally expressed in
terms of what are called multi-indices. For a curve, these may seem like
an unnecessary complication; for higher dimensions, they are a great
help. Here in Fig. 1 are examples of a cubic curve and a cubic triangle,
with control points labeled by their multi-indices. The sum of the indices
is the parametric degree; here, it is 3.

Evaluation of the curve or surface recursively reduces the degree to
zero, which gives a point. A convenient way to describe the process is to
give the parameter values for the point as affine coordinates with respect
to a simplex. For a point 2/3 of the way along the curve, the coordinates
are (1/3, 2/3). Each edge of the control polygon for a curve has two
endpoints, which are summed in these proportions to give a point of the
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Figure 1. a) Cubic curve; b) cubic triangle.

next lower-degree control polygon. The affine coordinates always sum to
1, or else this would not make sense; also, this constraint removes one
degree of freedom, leaving only a single effective parameter for a curve,
as expected. Be careful not to confuse the index for a control
point—which is only a label—with its coordinates. In implementation
terms, the multi-index gives a location in an array, while the coordinates
are the contents of that location. Thus, the point with multi-index {1, 2}
could have coordinates (1.3, –2.4, 2) and control a space curve, not just
a planar curve. For a degree 2 curve, the indices will be {2, 0}, {1, 1}, and
{0, 2}; for degree 1 (a line), they will be {1, 0} and {0, 1}; and finally, for
degree 0 (a point), the index is {0, 0} (Table I).

Table 1.
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The dependency follows a very simple pattern: p[î] = ∑ t[k]p[î + êk],
where î  + êk adds 1 to each component of the multi-index î  in turn. For
triangles, the pattern holds, but there now are three control points to
sum, and the affine coordinates are three-tuples, t = (t0, t1, t2), with
∑ tk = 1. (See Fig. 1 and Table 2. To save space, the table shows only the
evaluation of a quadratic triangle.) While it is possible to store the points
in a multi-dimensional array, it also is wasteful. The triangular cubic
patch would store only 10 points in a 43 = 64 entry array, while the
points for one of Loop and De Rose’s S-patches of depth 6 and five sides

Figure 2.

Table 2.

Degree 2 Degree 1 Degree 0

index from index from index
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would use only 210 out of 75= 16,807 entries! Fortunately, one can
systematically enumerate the control points to allow systematic indexing,
and so use entries in a one-dimensional array without any waste.

To enumerate through all multi-indices for degree d and n + 1 slots,
decrement the first index i0 from d down to 0, and for each value of i0,
recurse to enumerate the multi-indices for degree d – i0 and one less
slot. For degree 0 or for only one slot (a special case), there is only one
control point. For higher degrees or more slots, #Points(d ,  n)  =
#Points(d – 1 , n)  + #Points(d, n – 1). The closed form #Points(d, n)
= (d + n)!/d!n! clearly is symmetric in its arguments. With this order,
evaluation is very regular, as can be seen in the case of a cubic triangle
(Table 3).

Study of this and similar examples reveals that for a given number of
slots, there really is only one dependency list, with lower degrees using
smaller portions of it. Also, a point always depends on the higher degree
point at the same array index (and never on points with lower indices); so,
for a modest investment in precalculated tables, all the multi-index
bookkeeping goes away.

To build the dependency tables, it helps to know how to compute an
offset from a multi-index. This turns out to be another recursive process.
The idea behind the offset calculation is that before we get to the offset
for the leading index i0, we first must have enumerated all larger indices.

Table 3.
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When the degree is zero, the offset is zero; this is where the recursion
bottoms out. Otherwise, the offset is the sum of #Points(d – i0 – 1,n)
and the offset for the shorter multi-index, {i1, . . . , in}. (For the case when
i0 = d, it is necessary to extend the definition of #Points to return 0
when d is negative.) Remember that the degree is the sum of the indices,
so the shorter multi-index has degree d – i0, and the recursion will
terminate after all the nonzero indices have been picked off.



417

IX.3 A SIMPLE FORMULATION FOR CURVE INTERPOLATION WITH VARIABLE CONTROL POINT APPROXIMATION

GRAPHICS GEMS II Edited by JAMES ARVO 417

IX.3IX.3IX.3IX.3IX.3AAAAA SIMPLE FORMULATION FOR SIMPLE FORMULATION FOR SIMPLE FORMULATION FOR SIMPLE FORMULATION FOR SIMPLE FORMULATION FORCCCCCURVE INTERPOLATION WITHURVE INTERPOLATION WITHURVE INTERPOLATION WITHURVE INTERPOLATION WITHURVE INTERPOLATION WITHVVVVVARIABLE CONTROL POINTARIABLE CONTROL POINTARIABLE CONTROL POINTARIABLE CONTROL POINTARIABLE CONTROL POINTAAAAAPPROXIMATIONPPROXIMATIONPPROXIMATIONPPROXIMATIONPPROXIMATION
John SchlagMacroMind, Inc.San Francisco, California

Curve interpolation for computer animation often requires some sort of
shape control beyond the values of the control points. This gem presents
a hybrid scheme—based on techniques presented by Kochanek and
Bartels (1984) and Duff (1984)—that provides control over tension, bias,
continuity, and approximation. (The terms approximation and interpo-
lation are used interchangeably, although they are complementary, simi-
lar to the terms transparency and opacity in rendering.)

Kochanek and Bartels (1984) provide an elegant formulation for ten-
sion, continuity, and bias control based on the blending of tangents:

P'ii–1 =  
(1 – t)(1 – c)(1 + b)

2 (Pi – Pi –1 )

      
+  

(1 – t)(1 + c)(1 – b)
2 (Pi+1 – Pi ),

P'ii–1 =  
(1 – t)(1 + c)(1 + b)

2 (Pi – Pi –1 )

      
+  

(1 – t)(1 – c)(1 – b)
2 (Pi+1 – Pi ).

where P'i – 1(1) is the incoming tangent at Pi(i.e., the tangent of arc i – 1
evaluated at t = 1) and P'i(0) is the outgoing tangent at Pi, and t, c, and
b are tension, continuity, and bias. Two control points, Pi and Pi + 1, and
the tangents computed at these control points, P'i(0) and Pi'(1) are then
used for Hermite interpolation.
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Duff (1984), on the other hand, provides a five partner family of
splines with control over bias, tension, and approximation:

where s, i, g, t, and d are interpreted as slew, interpolation, geo-
metricity, tension, and direction, respectively. Note that, unfortunately,
the term tension is used both for interpolating splines, in which the
tension controls the velocity at the control points, and for approximating
splines, in which the tension controls the degree to which the curve
approaches the control points.

The Kochanek-Bartels formulation provides superior control over tan-
gents by breaking the tangent at a point into incoming and outgoing
tangents, thus providing control over continuity. Duff's formulation pro-
vides the additional parameter necessary for control over approximation.
These methods can be easily combined by using Duff's formulation with σ
= .5 to calculate the endpoints P(0) and P(1), and the Kochanek-Bartels
formulation to calculate the tangents P′(0) and P′(1):

    

P(0) =  lerp(Pi , lerp(Pi –1 , Pi+1 ,σ ), ι ),
P(1) =  lerp(Pi+1 , lerp(Pi , Pi+2 ,σ ), ι ),

P ' (0) =  (1 – γ )τ lerp(Pi – Pi –1 , Pi+1 – P ,δ ),

P ' (1) =  γτ lerp(Pi+1 + Pi , Pi+2 – Pi+1 ,δ ),

    
′P (0) =  (1 – t)(1+ c)(1 + b)

2 (Pi – Pi –1 )

    
+  

(1 – t)(1 – c)(1 – b)
2 (Pi+1 – Pi ),

    
′P (1) =  (1 – t)(1 – c)(1 + b)

2 (Pi+1  –  Pi )

                            
+  

(1 – t)(1+ c)(1 – b)
2 (Pi+2 – Pi+1 ).

    
P(1) =  lerp Pi+1 ,

Pi +  Pi+2

2 , ι





,

    
P(0) =  lerp Pi ,

Pi–1 +  Pi+1

2 , ι





,

′

′
  i
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With t = c = b = 0, the value i = 1/3 generates B-splines, and i = 0
generates Catmull-Rom splines.

Note that the Kochanek-Bartels formulation includes corrections to the
tangents for knot spacing (omitted until now for clarity):

adjusted P′(0) = P′(0)
    

2Ni–1

Ni–1 + Ni
,

adjusted P′(1) = P′(1)
    

2Ni–1

Ni + Ni+1
.

Now for some observations regarding the user interface to these pa-
rameters: The most obvious approach is to provide sliders or some other
controls for t, b, c, and i. Another approach is to let the user edit the
tangents directly. This works especially well for 2D position (Adobe,
1988). This technique can be extended to 3D in a number of ways. First,
the technique can be limited to ID—as in a function editor—and then
applied to each scalar. This is often the only alternative, especially when
the motion parameter being interpolated has no intuitive geometric mean-
ing. Alternatively, we can observe that, according to the rules of good
traditional animation (Lasseter, 1987), animation is often staged from the
side. This suggests that mapping 2D interaction onto a plane parallel to
the image plane of a 3D view window would be acceptable. Finally, of
course, three orthogonal views can be used, if necessary, to provide
complete control.
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IX.4IX.4IX.4IX.4IX.4
SSSSSYMMETRIC EVALUATION OFYMMETRIC EVALUATION OFYMMETRIC EVALUATION OFYMMETRIC EVALUATION OFYMMETRIC EVALUATION OFPPPPPOLYNOMIALSOLYNOMIALSOLYNOMIALSOLYNOMIALSOLYNOMIALS

Terence LindgrenPrime ComputervisionBedford, Massachusetts

Parametric curves and surfaces are widely used primitives in computer
graphics. PHIGS PLUS, in fact, makes NURBS curves and surfaces funda-
mental primitives. It is very common to renderers to find polyline repre-
sentations for curves and facet representations for surfaces. Typically,
these representations come from evaluating the curve or surface at a set
of points and connecting them in the natural way. The efficient evaluation
of these primitives is important to any renderer interested in speed. The
mathematical form of the primitive is important to both the application
and the renderer. Often, CAD/CAM applications represent geometry in
the B-Spline basis or the Berstein basis because these bases have signifi-
cant geometric interpretations; other applications might use a power
series with the more familiar power basis, {1,t,t*t,...}. Unfortunately,
many of these different bases are difficult to render quickly within the
constraints of most graphics subsystems. However, the power basis is not
one of the difficult ones, and renderers commonly change to the power
basis prior to evaluation (Boehm, 1984).

Before the advent of fast floating-point multipliers, these polynomials
might have been evaluated with forward differencing; but with multiplier
speeds comparable to adder speeds, a polynomial can be evaluated
realistically by Horner ’s rule; that is,

    
F[t] =  ai ⋅ ti

i=0

N

∑
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can be evaluated at t by the loop:

F←an;
for i=N–1 to 0

begin
F←F*t+ai;

end

We will examine this technique and subsequent calculations in terms of
the number of multiplications and the number of additions the operation
takes. If the degree of the polynomial is N, then Horner’s rule requires N
multiplications and N additions to evaluate a point t in the domain. A
multivariate polynomial, like those that would be used to represent the
coordinate functions of a parametric surface,

    
F[t, s] =  aij

j=0

M

∑
i=0

N

∑ ⋅ sj∗ti ,

would use (N + 1)(M + 1) –1 multiplications and (N + 1)(M + 1) – 1
additions to evaluate a point (s, t) in the domain by Horner ’s rule.

The polynomials we encounter in computer graphics, especially those
arising originally as NURBS, are defined neither over an infinite domain
nor over an interval that is symmetric about the origin. Both the interval
of definition [a, b] and the point at which the power series is centered are
unrestricted. For power series centered at some point c, we can evaluate
points in the domain by applying Horner’s rule to the quantity (t – c),
reducing the problem of evaluating a power series to ones centered at 0.
Of particular interest to us are power series centered at the midpoint m
of the domain [a, b]; that is,

    
F[t] =  βi

i=0

N

∑ ⋅ (t – m)i .

Henceforth, we will consider only power series centered at 0.
Certain polynomials have some very simple properties. Some are even

or odd functions. A function H is even if

H[–t] = H[t],
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and is odd if

H[–t] = –H[t].

Moreover, any polynomial is the sum of an even and an odd function. The
even function is determined by those terms with even powers, and the
odd function is determined by those terms with odd powers,

F[t] = E[t] + O[t].

Since O[t] is all terms with odd powers from F, we immediately see that
we may rewrite O[t] as

O[t] = t*E'[t] ,

where E' is an even function. So we may write F as

                          F[t] = E[t] + t*E'[t] ,                     (1)

and we now are free to recognize

F[–t] = E[t] – t*E'[t].

With this observation, we are in a position to state the simple work
saving evaluation technique, which we will call symmetric evaluation.
Note that we do assume that the power series is centered at the midpoint
of the segment or patch.

for t$0, generate F[t] and F[–t].
Construct a power series (centered at the midpoint of the segment).
Calculate E and E′ as in Eq. (1)
Calculate t*t.
Use Horner’s Rule to evaluate both E and E’ as polynomials in t*t.
Multiply E′ by t.
Create the sum, F[t], and difference, F[–t], of E[t] and t*E′[t].

The price we pay for calculating two symmetric points of a polynomial
of degree N is a multiplication to set up t*t, N multiplications and
N – 1 additions to calculate E and E', and two additions to calculate the
sum and the difference; So, for a single polynomial, the total work is
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N + 1 multiplications and N + 1 additions. Evaluation of polynomials in
two variables presents an opportunity for even greater savings. We center
a power series at the midpoint of a patch just as we did for the midpoint
of a segment and proceed in a similar way as before.

If we evaluate the multivariate polynomial as if it were N + 2 univari-
ate polynomials, as

    
F[t, s] =  α ij ⋅ sj

j=0

M

∑



∗ti

i=0

N

∑

would indicate, our savings are more impressive. We may evaluate sym-
metrically four points with a cost of (N + l)M + 2N + 2 multiplications
and (N + 1)(M + 3) additions. Compare this to the 4((N + 1)(M + 1) –
1) multiplications and 4((N + 1)(M + 1) – 1) additions needed for tradi-
tional evaluation.

Actually, the savings are greater for a parametric surface; not only are
there at least three coordinate polynomials to be evaluated, but the
surface,s partial derivatives also will need to be evaluated. After all, we
will want to shade the surface, so we will need the partials to calculate the
surface normal at the evaluation points. The cost for this work tradition-
ally is 4*(number of coordinate functions)*(3NM + 2(N + M) – 2) mul-
tiplications and additions; while the cost for symmetric evaluation is
(number of coordinate functions)*(3NM + 5N + 3M – 2) multiplica-
tions and (number of coordinate functions)*(3NM + 6N + 4M + 3) ad-
ditions.

Finally, as an illustration, let us look at the actual savings obtained
evaluating symmetric points and their partials on an integral bicubic
patch. Traditional evaluation costs 444 multiplications and 444 additions,
whereas symmetric evaluation costs only 149 multiplications and 180
additions.



424

IX.5 MENELAUS’S THEOREM

GRAPHICS GEMS II Edited by JAMES ARVO 424

IX.5IX.5IX.5IX.5IX.5
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Hans-Peter SeidelUniversity of WaterlooWaterloo, Ontario, Canada

IntroductionIntroductionIntroductionIntroductionIntroduction
Menelaus’s theorem has been known since the ancient Greeks, but is
surprisingly unfamiliar today. It often is a handy tool in curve and surface
design, since it relates the ratios between different control points in a
simple intuitive way. In particular, Menelaus’s theorem can be used for
knot insertion in B-splines, β -splines, and NURBS.

Menelaus’s TheoremMenelaus’s TheoremMenelaus’s TheoremMenelaus’s TheoremMenelaus’s Theorem
Menelaus’s theorem can be stated as follows: Consider the triangle
∆(ABC) together with the points D ∈ BC, E ∈ CA, and F ∈ AB as
shown in Fig. 1. Menelaus’s theorem says that the points

    
D,  E,  F  are collinear iff  

BD

DC
 ⋅  

CE
EA  ⋅  

AF

FB
 =  − 1

(The negative sign is due to the fact that the ratio     BD / DC  for a point D
outside of   BC  is negative).

1This work has been supported partly by the Natural Sciences and Engineering Re-
search Council of Canada through Strategic Operating Grant STR0040527.
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Figure 2. Knot insertion for cubic B-splines

Figure 1. Menelaus’s theorem.
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ApplicationApplicationApplicationApplicationApplication
An application of Menelaus’s theorem is shown in Fig. 2. The figure
illustrates how Menelaus’s theorem can be used for knot insertion into
B-splines: Shown in the ith segment of a cubic B-spline curve F over the
knot vector. knotvector

together with the B-spline control points . . . , Vi – 2 , Vi – 1 , . . . and the
Bézier points . . . , Pi

l
-1, . . . , Pi

2
+l, . . . of the adjacent segments. Also

depicted are the new control points Vi–2* , . . . , Vi* after inserting the new
knot t between ti and ti + l.

Note that Fig. 2 contains two of Menelaus’s figures: One figure comes
from the triangle, ∆(A l, B l, C1) = ∆(Pi

2
-l, Vi – 2, P i

1), together with the
points, D1 = Vi–1* ,E1, and F1 = Vi–2* , while the other figure comes from
the triangle, ∆(A2, B2, C2) = ∆ (P1

i+1, Vi – 1, Pi
2), together with the points,

D2 = V*i – 1, E2, and F2 = Vi*.
Since the points,

    
E1 = t – ti

ti+1 – ti

P1
i + ti+1 – t

ti+1 – ti

P0
i ,

    
    
Vi –1

∗ = t – ti

ti+1 – ti

P2
i + ti+1 – t

ti+1 – ti

P1
i ,

     
    
E2 = t – ti

ti+1 – ti

P3
i + ti+1 – t

ti+1 – ti

P2
i ,

are given by the de Casteljau algorithm, a simple calculation using
Menelaus’s theorem shows

    
Vi – 2

∗ = t – ti

ti+1 – ti

Vi – 2 + ti+1 – t
ti+1 – ti

P2
i –1 ,

T = (. . . , t i – 1, t i, t i + 1, t i + 2, . . . ),
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and

    
Vi

∗ = t – ti

ti+1 – ti

P1
i+1 + ti+1 – t

ti+1 – ti

Vi –1 ,

and using the relationship between the Bézier points and the B-spline
control points, we see that the new control points Vj* are given as:

    
Vj

∗ = t – ti

ti+1 – ti

Vj + ti+1 – t
ti+1 – ti

Vj –1 ,          j = i – 2,... , i.

Thus, we have derived the well-known insertion algorithm for B-splines
from a simple theorem on 2D geometry. In a similar fashion, Menelaus’s
theorem can be used for knot insertion in nonuniform β -splines and
NURBS.



428

IX.6 GEOMETRICALLY CONTINUOUS CUBIC BÉZIER CURVES

GRAPHICS GEMS II Edited by JAMES ARVO 428

IX.6IX.6IX.6IX.6IX.6
GGGGGEOMETRICALLYEOMETRICALLYEOMETRICALLYEOMETRICALLYEOMETRICALLYCCCCCONTINUOUS CUBIC BÉZIERONTINUOUS CUBIC BÉZIERONTINUOUS CUBIC BÉZIERONTINUOUS CUBIC BÉZIERONTINUOUS CUBIC BÉZIERCCCCCURVESURVESURVESURVESURVES11111

Hans-Peter SeidelUniversity of WaterlooWaterloo, Ontario, Canada

IntroductionIntroductionIntroductionIntroductionIntroduction
Traditionally, curves and surfaces in computer graphics and computer-
aided design have been required to be parametrically Ck-continuous.
However, for many applications, this notion of continuity is far too
restrictive: Figure 1 shows two cubic Bézier curves,

    
F(u) = Bi

n

i=0

3

∑ (u)Pi ,

and

    
H(u) = Bi

3

i=0

3

∑ (u)Ri ,

in the plane. Here,

    
Bi

3 (u) =  3
i( )ui (1 – u)3– i ,        i =  0,... , 3

are the Bernstein polynomials, and the points P0, . . . , P3, and R0, . . .,R3
respectively, are the Bézier points. The problem is to fill the gap between

1This work has been supported partly by the Natural Sciences and Engineering Re-
search Council of Canada through Strategic Operating Grant STR0040527.



429

IX.6 GEOMETRICALLY CONTINUOUS CUBIC BÉZIER CURVES

GRAPHICS GEMS II Edited by JAMES ARVO 429

Figure 1. Gap between P3 and R0.

P3 and R0 by an other cubic Bézier curve,

    
G(u) = Bi

3

i=0

3

∑ (u)Qi ,

in such a way that the resulting composite curve is as smooth as
possible.

Suppose we wish to fill the gap between the given curves F and H in
such a way that the resulting composite curve is parametrically C1-con-
tinuous. Using the well-known derivative formulas for Bézier curves,

G′(0) = 3(Q1 – Q0),G′′(0) = 6(Q2 – 2Q1 + Q0),

and

G′(1) = 3(Q3–Q2), G′′(1) = 6(Q3 – 2Q2 + Q1),

we see that a C1-joint at F(1) = G(0) implies:

Q0 = P3 and Q1 = 2P3 – P2,

while a C1-joint at G(1) = H(0) gives:

Q3 = R0 and Q2 = 2R0 – R1.
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Figure 2. C1-solution with a cusp.

In particular, our requirement for an overall C1-curve completely deter-
mines the Bézier curve G that bridges the gap between F and H. So far,
it seems that the preceding two equations provide an easy solution to an
easy problem.

Second thoughts arise when we actually take a look at the curve G that
we have just computed (Fig. 2). Disaster has happened: By insisting on
parametric C1-continuity at the joints G(0) and G(1), we actually have
introduced a cusp. Our solution G is totally unacceptable!

Parametric versus Geometric ContinuityParametric versus Geometric ContinuityParametric versus Geometric ContinuityParametric versus Geometric ContinuityParametric versus Geometric Continuity
The problem with our solution G in the previous section stems from the
fact that we have insisted on parametric continuity instead of geomet-
ric continuity: Instead of looking at the continuity of a specific
parametrization, we have to look at the continuity of the shape of the
curve, which is independent under possible reparametrization. Thus, we
say that two curves join with geometric continuity if the curves are
parametrically continuous under reparametrization. In other words, two
curves F and G are Gk-continuous at a parameter s if there exists a
reparametrization φ (which preserves the given orientation of the curve)
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such that F( φ (u)) and G(u) are Ck-continuous at s. Using the chain rule
of differentiation, it easily is seen that Gk-continuity is equivalent to the
well-known β-constraints:

G′(s) = β1F′(s),

G′′(s) = β1
2F′′(s) + β

2F′(s),

G′′′(s) = β3
1F′′′(s) + 3β1β2F′′(s) + β3F′(s).

    M

G (k ) (s) =
i1 + i2 +  . . . + ik = j ,

i
1

+ 2 i2 +  . . . + k ik = k ,

∑
j = 0

k

∑
k!

i1 !(1!)i1  ⋅  ⋅  ⋅  ik !(k!)ik
β 1

i1  ⋅  ⋅  ⋅  β k
ik F ( j ) (s),

where β
k = φ (k)(s), and β

1 > 0, since φ  preserves the given orientation.
The parameters β

i also are called shape parameters. We pause to
remark that G1-continuity is equivalent to a continuous unit tangent,
while G2-continuity is equivalent to a continuous curvature vector.

Geometrically Continuous Bézier CurvesGeometrically Continuous Bézier CurvesGeometrically Continuous Bézier CurvesGeometrically Continuous Bézier CurvesGeometrically Continuous Bézier Curves
How can we exploit the preceding conditions to join two cubic Bézier
curves with a given order of geometric continuity? Consider two cubic
Bézier curves,

    
F(ũ) =  Bi

3

i=0

3

∑ (ũ)Pi     and    G(ṽ) =  Bi
3

i=0

3

∑ (ṽ)Qi ,

over  the intervals [r, s]  and [s, t], respectively, so  that the local parame-
ters     ̃u  and     ̃v  are given as:

ũ  =  
u – r
s – r  (u ∈[r,s])   and     ṽ  =  

v – s
t – s  (v ∈[s, t]).
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Figure 3. C1-joint between two cubic Bézier curves.

To join F and G with G1-continuity, it is necessary and sufficient that
the Bézier points

P2, P3 = Q0,Q1 are collinear,

and satisfy the ratios,

      P2P3MQ0Q1 = (s –  r)Mβ1(t – s).

This follows immediately from the β -constraints and the well-known
derivative formula for Bézier curves, and is depicted in Fig. 3.

Things become slightly more complicated for G2-continuity. (See Fig.
4.)

It can be shown that  F and G are G2-continuous at s precisely if the
Bézier points,

P1, P2, P3 = Q0,Q1,Q2, are coplanar,

Figure 4. G2-joint between two cubic Bézier curves.
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and satisfy the ratios,

    P1P2 :P2V = (s – r): γ1(t – s) and     VQ1:Q1Q2  = (s – r): γ2(t – s),

for parameters γ1, γ2, with

γ1γ2 = β1
2.

Thus, instead of directly using the shape parameters β1 and β2, it
sometimes is advantageous to use the shape parameters β1 and γ1
instead. For those who are curious, the (ugly) relationship between the
γ ’s and the β’s is given as:

γ 1  =  
2β1

2 β1 t  –  s( )  +  s  −  r( )( )
β 2 t  –  s( )  s  −  r( )  +  2β1 β1 t  –  s( )  +  s  −  r( )( )

and

γ 2  =  
β 2 t  –  s( )  s  −  r( )  +  2β1 β1 t  –  s( )  +  s  −  r( )( )

2 β1 t  –  s( )  +  s  −  r( )( )

Using geometric continuity instead of parametric continuity, it now is
easy to come up with a simple satisfactory solution to our original
problem of filling the gap between two given cubic Bézier curves F and
H by another cubic Bézier curve,

    
G u( )  =  Bi

n u( )Qi ,
i = 0

3

∑

in such a way that the resulting composite curve is as smooth as possible.
All we have to do is move the Bézier points Q1 and Q2 somewhere on
the lines P2P3 and R0R1 a little bit closer to the endpoints P3 and R0.
This will avoid the cusp in the C1-solution, and, according to Fig. 3, will
produce a G1-curve overall; but we can do even better than that. Note
that the exact positioning of the vertices Q1 and Q2 on the lines P2P3
and R0R1 still leaves us with one degree of freedom for each point. Using
the symmetry of the given problem, we can exploit this freedom to
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Figure 5.  G2-solution: The resulting composite curve has a continuous unit tangent,
and, in addition, is curvature-continuous everywhere.

arrange the Bézier points Q1, and Q2 of G in such a way that the ratios of
Fig. 4 are satisfied. Thus, the resulting curve not only will be C1, but, in
addition, will have continuous curvature throughout. This solution is
shown in Fig. 5.

See also 9.1 Least-Squares Approximations to Bézier Curves
and Surfaces, Doug Moore, Joe Warren; 9.2 Beyond Bézier
Curves, Ken Shoemake
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IX.7IX.7IX.7IX.7IX.7AAAAA GOOD STRAIGHT-LI GOOD STRAIGHT-LI GOOD STRAIGHT-LI GOOD STRAIGHT-LI GOOD STRAIGHT-LINENENENENEAAAAAPPROXIMATION OF APPROXIMATION OF APPROXIMATION OF APPROXIMATION OF APPROXIMATION OF ACCCCCIRCULAR ARCIRCULAR ARCIRCULAR ARCIRCULAR ARCIRCULAR ARC
ChristopherJ. MusialNew Horizons SoftwareSt. Louis, Missouri

Many geometric algorithms and spatial modeling systems work with
straight lines and straight-line polygons. Because the world does not
always consist of straight lines, the need often arises for approximating a
circular arc with line segments. The simplest approximation is to select
points along the curve at a spacing that gives sufficient accuracy and then
join these points together into a polyline. One of the major deficiencies
with this approach is that the length of the resulting polyline is less than
the arc length of the original curve. If perimeter calculation is a require-
ment, this type of approximation is unacceptable.

In addition to maintaining the original length, the polyline also must
start and stop at the same endpoints as the arc. Because we are imposing
two constraints on the culve, there are two variables we must calculate.

The first is the angle formed between the tangent vector at the start of
the arc with the first segment in the approximating polyline (α). (By
symmetry, this also is the angle between the last segment and the tangent
line at the end of the curve.)

The second variable is the incremental angle between two adjacent
polyline segments (φ). Figure 1 shows these two angles. (In Fig. 1 and
throughout this discussion, clockwise arcs are assumed. Counterclock-
wise arcs will be explained later.)

Before we can begin the calculation, we first must determine the
number of segments to use in the polyline based on the maximum
allowable distance between the polyline and the arc. If the polyline
circumscribes the arc, it will be longer than the arc; likewise, if the
polyline is inscribed within the arc, it will be shorter than the arc.
Therefore, a polyline with the same length as the arc will be somewhere
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Figure 1.

between being inscribed and circumscribed. By choosing the number of
segments based on the curve-to-chord distance of error for an inscribed
polyline, we will be sure to be within the tolerance for the polyline at
which we are aiming. Figure 2 shows the curve-to-chord distance for an
inscribed polyline.

The distance d between a circular arc with an internal angle θ and a
radius R, and the chord joining its two endpoints, is

    
d  =  R 1 −  cos

θ
2





 . (1)

If this distance is too large, split the curve by dividing θ and the arc
length in half. Repeating the preceding procedure until we get a curve-to-
chord distance within the acceptable tolerance, the length of each seg-
ment in the polyline is that of the last arc length, and the number of
segments is 2number of splits.

The preceding step satisfied the first criterion we were after: The sum
of each segment in the polyline will equal the arc length of the curve. The
second criterion—having the same start and end points as the arc—will

Figure 2.
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be met by forcing the horizontal span of the polyline to equal the chord
length of the curve.

The horizontal span is the sum of the projection of each segment onto
the x axis, which simply is the segment length times the cosine of the
segment’s direction vector. This problem becomes one of calculating the
segment directions, and thus the two angles, α and φ.

If T is the tangent vector at the start of the arc, the direction vector of
the first polyline segment is T – α, the direction vector of the next
segment is T – α – φ, T – α – 2φ, and so on. Thus, forcing the total
span to be equal to the chord length of the arc, we get the equation:

segLen 
    i = 0

n − 1

∑ cos(T – α – iφ) = chordLen, (2)

where n is the number of segments in the polyline, segLen is the length
of each segment in the polyline, and chordLen is the length of the chord
of the arc.

Figure 3 shows the values we need. Only four segments are used in the
approximation for ease of viewing.

We know that the total deflection of the circular arc is the same as its
internal angle, θ. We also know that the total deflection of the polyline

Figure 3.
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plus the two α’s at either end equals the deflection of the curve, so

2α + (n − 1) φ = θ,    or (3a)

    
α  =  

θ  –  n  −  1( )φ
2

. (3b)

Substituting for α in Eq. (2) and rearranging, we get

segLen 
    i = 0

n − 1

∑ cos
      

T  −  
θ  −  n  −  1( )φ

2
 −  iφ





 – chordLen = 0. (4)

From here, you may use your favorite convergence algorithm to calcu-
late φ. Both α and φ are positive, so using Eq. (3a), we can calculate the
range of values for α and φ as:

0 < α <
  
θ
2

, (5a)

0 < φ < 
    

θ
n  −  1

. (5b)

Equation (4) is a well-behaved function as shown in Fig. 4. This is a
graph of Eq. (4) for an arc with θ = 90°, radius = 100, T = 45°, and
n = 32. The chord length is calculated as 141.4214 and the segment
length as 4.9087. Along the x axis are values of φ. The y axis is the left
side of Eq. (4). The value of φ we need is where the plot crosses y = 0.

The result of the left side of Eq. (4) for the different trial values of φ is
the error to be minimized, which is the difference between the span of the
polyline and the chord length of the arc. Once Eq. (4) gives an answer
within the acceptable tolerance, use Eq. (3b) to calculate α.

For counterclockwise curves, use the same procedure as before, and
then negate the values of α and φ.

In this discussion, we oriented the curve such that the chord is parallel
with the x axis. When this is not the case (and it usually is not), calculate
α and φ as if it were, but use the true tangent vector of the arc when
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Figure 4.

calculating the direction vectors of the polyline segments as described in
the following.

Knowing the starting point and direction of the first segment (T – α),
and the direction vector for each succeeding segment (T – α – (i – 1)φ),
the polyline now may be constructed.

The C lmplementation (Appendix 2) uses linear interpolation as the
convergence method, and also shows how to calculate the polyline
vertices once α and φ are available.
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IX.8IX.8IX.8IX.8IX.8
GGGGGREAT CIRCLE PLOTTINGREAT CIRCLE PLOTTINGREAT CIRCLE PLOTTINGREAT CIRCLE PLOTTINGREAT CIRCLE PLOTTING

Alan W. PaethNeuralWare Inc.Pittsburgh, Pennsylvania

A great circle comprises those points common to a sphere and a plane,
the latter passing through the former ’s center. Great circles partition a
sphere into equal hemispheres and form geodesics: lines of minimal
length spanning two points on the sphere’s surface. These properties
make them ubiquitous to charts and other applications involving spheri-
cal coordinates. Examples include the instantaneous ground track of a
satellite (with orbital planes containing the center of the body), the
Earth’s present day/night terminator (the sun illuminating one hemi-
sphere), and the way followed by a long-haul airline route or a radio wave
(the shortest path having the least expended energy). By deriving the
equations for a great circle in analytic form, the equations of
projection—or algorithms for plotting—can be created easily. A simple
[lat/lon] chart (Fig. 1) illustrates the great circles forming the day/night
terminators on consecutive months during fall in the Northern Hemi-
sphere.

Plotting great circles is especially difficult when the track passes near a
pole: Pronounced shifts in instantaneous heading arise. In particular,
cylindrical projections for paths of high inclination are decidedly curved.
Great circles cannot be approximated suitably by generating points along
the linear path spanning (lat1, lon1) and (lat2, lon2). Common charts
cannot easily account for this curve’s shape, save for two azimuthal
projections: the stereographic and gnomonic (Paeth, 1990g). Neither of
these can depict an entire globe on a chart of finite extent.

A simple analytic expression for the great circle interrelates the circle’s
latitude and longitude by way of parametric longitude and inclination. The
final formula then may be easily reexpressed in other projections such as
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Autumn Terminator
Northern Hemisphere

Figure 1. Autumn terminator (Northern Hemisphere)
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Mercator’s. Although problems of navigation traditionally were both dif-
ficult and of central importance to Renaissance mathematics (Dörre,
1965), the analytic vector geometry of the last century simplifies the
derivation considerably; explicit reference to spherical trigonometry is
not needed.

Without loss of generality, consider the central section of a sphere by a
plane. If the plane fully contains the equator (a great circle with defining
plane XY), the problem is solved immediately. Otherwise, the equator is
intersected at two nodes. Without loss of generality, these may be placed
at the locations ±90°, i.e., rotated onto the Y axis with subsequent
offsetting of all values of longitude. Any great circle now may be modeled
as a parametric equatorial circle (no Z component) and local longitude L:
[cos L, sin L, 0], which may be expressed in rectangular coordinates. This
circle then is rotated about the Y axis by an inclination ρ. This is
expressed by the matrix product in the RHS:

    

X
Y
Z













 =  
cosρ cosL

sin L
– sinρ cosL













 =  
cosρ 0 sinρ

0 1 0
– sinρ 0 cosρ













 
cosL
sin L

0












.

The LHS vector gives the (X, Y, Z) space position for a uniform angular
motion by L along the circle. (L is both a subtended angle and linear
circumferential distance along the track.) As a check, note that X2 + Y2

+ Z2 = 1, as expected: All points formed lie upon the surface of the unit
sphere. Conversion between rectangular and spherical coordinates (Paeth,
1990b) states that tan lon = Y/X, and tan lat = z/    X 2  +  Y 2 . Substitu-
tion yields:

tan lon = 
    

sin L
cos ρ  cos L

 =sec ρ tan L,

implying that

tan L = cos ρ tan lon. (1)
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Similarly,

tan lat = 
    

− sin ρ  cos L
cos2 ρ  cos2  L  +  sin2 L

. (2)

A simplification of Eq. (2) is sought to rework it in nonparametric form,
thereby yielding an expression for latitude in terms of longitude and
inclination. This is possible by substituting Eq. (1) in Eq. (2), with other
trigonometric functions of L reexpressed in terms of the tangent, as
needed:

tan lat = ± tan ρ cos lon, (3a)

or (with proper choice of sign)

lat = arctan (tan ρ cos lon). (3b)
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As a double-check of the equation, note that:

lon = 0 → lat = ρ (inclination being the maximum latitude at center),

lon = ± 90 → lat = 0 (nodes crossed at ± 90° for any inclination).

For illustration, four annotated values of inclination are plotted under a
global Plate Carre’s cylindrical equidistant chart (Paeth, 1990g; Maling
1973). The maximum inclination occurs at the equinox, when day equals
night everywhere on the globe. Here, the sun’s declination (celestial
latitude) is zero; it lies over the equator. Thus, the colatitude (angle to the
North Pole) is 90 degrees and the tan ρ in Eq. (3b) goes to infinity.
Minimum inclination (colatitude) corresponds to the sun’s maximum
declination (latitude) at –23.5°. The sun achieves this maximum on
December 21 and momentarily is stationary in celestial declination; hence
the term winter solstice. The globe’s subsolar points on the solstice
likewise are at –23.5° and define the Tropic of Capricorn, appearing as a
dotted line on the chart. (Capricorn, Latin for goat, is the name of the
constellation in which the sun resided on the solstice at the time of the
naming of the constellations; owing to the precession of the equinoxes,
Sagittarius, Latin for archer, would now be the proper choice).

To use the technique to plot a great circle between two points on the
surface of a sphere, vector geometry aids the derivation of inclination
angle. Points (lat0, lon0) and (lat1, lon1) are treated as unit vectors in
spherical coordinates (R = 1) and then transformed into rectangular
coordinates (Paeth, 1990g). The cross-product [x0, y0, z0] × [x1, y1, z1]
= [y0z1 – y1z0, x0z1 – x1z0, x0y1 – x1y0), is the unit normal vector to
that plane common to both vectors and to the origin. The cross-axis then
may be returned to spherical coordinates, yielding a longitude and lati-
tude value.

The latitude is converted to colatitude: colat = 90° – lat to form an
inclination value. For instance, eastward travel along the equator (lat = 0)
yields a normal vector through the North Pole (lat = 90°, colat = 0°);
travel thus is in a plane having zero inclination. The longitude of this
normal vector likewise provides the offset angle in longitude for proper
placement of the nodes.

For use in forming analytic, closed-form formulae, the tan lat term of
the RHS of Eq. (3a) may be substituted directly for projection formulae
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expressed in terms of this function. For instance, Mercator ’s projection,
y = ln tan(lon/2 + π/4), may be rewritten using the little-known substi-
tution, tan(x/2 ± π/4) = ±tan x ±     1 +  tan2  x  (derived by the author
and used to great advantage in Paeth (1990a)), which then may be
expressed as y = sinh–1(–tan ρ cos lon), yielding a simple analytic ex-
pression for great circles plotted on cylindrical, conformal maps of
globular scale.
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FFFFFAST ANTI-ALIASED CIRCLEAST ANTI-ALIASED CIRCLEAST ANTI-ALIASED CIRCLEAST ANTI-ALIASED CIRCLEAST ANTI-ALIASED CIRCLEGGGGGENERATIONENERATIONENERATIONENERATIONENERATION

Xiaolin WuUniversity of Western OntanoLondon, Ontario, Canada

This gem proposes an elegant technique to render anti-aliased circles
with even fewer number of operations than Bresenham’s incremental
circle algorithm (1977). The success is credited to a simple two-point
anti-aliasing scheme and the use of a table of size   2 /4Rmax, where Rmax
is the maximum circle radius allowed by the new algorithm.

Simple Two-Point Anti-Aliasing SchemeSimple Two-Point Anti-Aliasing SchemeSimple Two-Point Anti-Aliasing SchemeSimple Two-Point Anti-Aliasing SchemeSimple Two-Point Anti-Aliasing Scheme
Due to the eight-way symmetry of the circle, it suffices to consider the
circle x2 + y2 = r2 in the first octant. To suppress the image jaggies
caused by insufficient spatial sampling on a grayscale display, we may
plot all pixels immediately to the right and left of the true circular arc
(Fig. 1) with their intensities inversely proportional to their distances to
the arc. To keep even intensity on the digital circle, we let the total
intensity I of two horizontally adjacent pixels be a constant. Let I(i, j) be
the pixel value at the raster point (i, j); then the linear intensity interpo-
lation between the two adjacent pixels is given by:

    
I r 2  −  j 2 ,  j( )  =  I r 2  −  j 2   −  r 2  −  j 2( ),

    
I r 2  −  j 2 ,  j( )  =  I  −  I r 2  −  j 2 ,  j( ),     1 ≤ j ≤ 

    

r
2

. (1)

Now we derive the algorithm to compute Eq. (1) as j marches in the y
axis from 0 to r/  2  in scan-converting the first octant circular arc. The
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Figure 1. Anti-aliasing pixel band.

first issue is to determine when the integer-valued function     
r 2  −  j 2 

decreases by 1 as j increases. We need the critical values t such that

    
r 2 −  t  −  1( )2   – 

    
r 2  −  t 2   = 1 to move the pixel band being plotted

to the left by one step. This computation can be simplified by the
following lemma.

LEMMA 1  The relation

    
r 2 −  t  −  1( )2   – 

    
r 2  −  t 2   = 1

holds if and only if

    
r 2 −  t  −  1( )2   –     r 2  −  t  −  1( )2  >     

r 2  −  t 2   –     r 2  −  t 2 .
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Proof. Since     r 2  −  j 2  is decreasing monotonically in j,

    
r 2 −  t  −  1( )2   –     r 2  −  t  −  1( )2  > 

    
r 2  −  t 2   –     r 2  −  t 2

implies

    
r 2 −  t  −  1( )2   – 

    
r 2  −  t 2   > 0;

but in the first octant, we have

    r 2  −  t  −  1( )2  –     r 2  −  t 2  ≤ 1,

prohibiting

    
r 2 −  t  −  1( )2   –     

r 2  −  t 2   > 1;

hence,

    
r 2 −  t  −  1( )2   – 

    
r 2  −  t 2   = 1.

Figure 2. Wu’s anti-aliased circle algorithm for first octant.
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The only-if part can be proven by contradiction. Assume that

    
r 2 −  t  −  1( )2   – 

    
r 2  −  t 2   = 1,

but

    
r 2 −  t  −  1( )2   –     r 2  −  t  −  1( )2  ≤      

r 2  −  t 2   –     r 2  −  t 2 .

This requires     r 2  −  t  −  1( )2  –      r 2  −  t 2  > 1, an impossibility in the
first octant. u

For given r, the values     
r 2  −  j 2   –     r 2  −  j 2 , 1 ≤ j ≤ r/  2 , serve

dual purposes: determining the pixel positions as suggested by the
preceding lemma and determining the pixel intensities as in Eq. (1). Let
the intensity range for the display be from 0 to 2m – 1, and define the
integer variable:

D(r,j) = 
    

2m  −  1( ) r 2  −  j 2   −  r 2  −  j 2( )  +  0.5 . (2)

Figure 3. Bresenham’s circles (left) and Wu’s anti-aliased circles (right).
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Then it follows from Eq. (1) that

    
I r 2 − j 2 , j( )  = D(r, j),

    
I r 2 − j 2 , j( )  =     D r ,  j( ),  1 ≤ j ≤ 

    

r
2

, (3)

where     D r ,  j( ) is the integer value obtained through bitwise-inverse
operation on D(r, j), since 

    
I r 2  −  j 2 ,  j( )  + 

    
I r 2  −  j 2 ,  j( )  = I =

2m – 1, and since the intensity values are integers. By Eq. (2), every
decrement of the function,     

r 2  −  j 2   –     r 2  −  j 2  as j increases, is
reflected by a decrement of D(r, j); thus, D(r, j) can be used to control
the scan conversion of the circle. The new anti-aliased circle algorithm
based on precomputed D(r, j) is extremely simple and fast. The algo-
rithm for the first octant is described by the flowchart in Fig. 2.

The inner loop of the anti-aliased circle algorithm requires even fewer
operations than Bresenham’s circle algorithm. Of course, the gains in
image quality and scan-conversion speed are obtained by using the
D(r, j) table. If Rmax is the maximum radius handled by the circle
generator, then the table size will be   2 /4Rmax It is my opinion that the
rapidly decreasing memory cost makes the preceding simple idea a viable
solution to real-time anti-aliased circle generation. For instance, for a
64K-bytes ROM, the preceding algorithm can display anti-aliased circular
arcs of radius up to 430. Without the precomputed table D(r, j), the
anti-aliased circle algorithm can be implemented by computing the func-
tion D(r, j).

The performance of the new anti-aliased circle algorithm is demon-
strated by Fig. 3.

See also (105) Rendering Anti-Aliased Lines, Kelvin
Thompson
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Angle-preserving matrix group, 345
Anti-aliased circle generation, 445–449
Apple patent, 31–32
Appolonius’s 10th problem, 19–24
Archimedean solids, semi-regular, 177
Archival media, 165
Arctangent, approximation, 389–391
Area

computing, binary digital image, 107–111
polygon, 5–6

Area-to-differential-area form factor, 313
Asymmetric filter, 52–53
Autumn terminator, 440–441

B

Bernstein basis, 406, 409
Bernstein polynomials, 407, 409–410, 428
Betacam, 154

Bézier control points, derivation, 377
Bézier curves and surfaces, 412–416

cubic, 428–429
geometrically continuous, 428–434

derivative formulas, 429
least-squares approximations, 406
multivariate approximation, 409–411
parametric versus geometric continuity,

430–431
univariate approximation, 406–408

Bézier simplices, 412
Binary digital image, 107

computing area, circumference, and genus,
107–111

algorithm, 109–111
method, 107–109

Binary recursive subdivision, ray-triangle
intersection, 257–263

Bitmap rotator, 90-degree, 84–85
Bit picking, 366–367
Bits, under mask, counting through, 372–373
Bit-tallying, 373–376
Blue–green plane, domain, 120–122
Blue scanlines, adjusting minimum and

maximum, 122–123
Body color model, 277–282

theoretical basis, 277–278
Bottom-Up, 206, 208-209
Bounding box, radiosity, 304–305
Bounding method, torus, 254–255
Bounding volumes, sorting, 272
Box filter, 51–52
Bresenham’s circles, 448–449
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B-splines, 377–378
cubic, knot insertion, 425–427

Bump mapping, 106
Butz’s algorithm, 25

C

Cache performance, increasing, 87
Caching, 268
Chain rule, 184
Chrominance, 150
Cibachrome, 164–165
Cibatrans, 164–165
Circle

anti-aliased generation, 445–449
bounding, 14–16
containing intersection of two circles, 17–18
with radials, 383
touching three given circles, 19–24

Circular arc, straight-line approximation,
435–439

Circumference, computing, binary digital image,
107–111

C1 joint, between cubic Bézier curves, 432
Clipping

complex, 44
3D homogeneous, triangle strips, 219–231

Clustered-dot dither, 63
Coherence, 26

measure, 28, 30
Color descriptor table, 144
Color dithering, 72–77

conventions, 72
error-propagation dithering, 75–77
gamma correction, 72–73
ordered dithering, 73–75

Color hardcopy, frame buffer, 163–165
Color mapping

 animation, random algorithm, 134–137
 pseudo, PHIGS PLUS, 138–140

Colorprinters, 165
Color quantization

 algorithm details and analysis, 131–132
 based on variance minimization, 127
 color statistic computations, 128–131
 error, 126–128
 experimental results, 133
 optimal, statistical computations, 126–133

Color reference frame, 148
Color statistics, computations, 128–131

Color television monitor, calibration, 159–162
Combinatorics, inclusion-exclusion, 129–130
Compaction algorithm, 89
Complex clipping, 44
Compression, 49

 image file, 93–100
Compression ratios, 97, 100
Compression techniques, 89
Conducting medium, light reflection, 286
Convolution kernel, 50–51
C-Print, 164–165
Crack prevention, space packing lattices, 174
Cross product, 333–334

 sign calculation, 392–393
Cube, dihedral, 174–175
Cubic curve, 413
Cubic tetrahedron, adaptation of hemi-cube

algorithm, 299–302
Cubic triangle, 413
Current object area, 28
Curves and surfaces, 405

 anti-aliased circle generation, 445–449
 Bézier, see Bézier curves and surfaces
 great circle plotting, 440–444
 interpolation with variable control point

approximation, 417–419
 Menelaus’s theorem, 424–427
 number of segments, 435–436
 Peano, 25–26
 polynomials, symmetric evaluation, 420–423
 straight-line approximation of circular arc,

435–439

D

Data structures, scanline coherent shape
algebra, 32–34

Delta form factor, 313
Dielectric materials, fresnel formulas, 287–289
Difference, scanline coherent shape algebra,

39–40
Diffuse reflection, 233
Digital computation, half-angle identity,

381–386
Digital filtering, see Discrete convolution
Digital halftoning, 57–71

 clustered-dot dither, 63
 contrast adjustment during, 63–64
 error diffusion dithering, 65–71
 horizontal lines, 60–61
 magic-square dither, 60–62
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 to multiple output levels, 64–65
 ordered dither matrix, 58–60
 threshold dithering, 58–63

Digital images, color hardcopy, 163–165
Discrete convolution, image smoothing and

sharpening, 50–56
Discrete laplacian filter, 53–54
Dodecahedron, 176

 dihedrals, 175, 177
 transformation of sphere, 241

Duff’s formulation, 418
Duratrans, 164–165

E

Edge detectors, 105
Edge images, noise thresholding, 105–106
Edge-sharpening convolutions, 55

 applied before halftoning, 70–71
Edge structure, 86–87
Eigenvalues, 324–325
Elliptical torus

 cross section, 251–252
 equation, 251–252
 intersection with ray, 251–256

Encoded image data, rotation, 86–88
Encoding, adaptive run–length, 89–91
Error diffusion dithering, 65–71

 blue noise added, 70
 edge-enhanced, 70–71
 introduction of random noise, 69
 serpentine raster pattern, 67, 69

Error–propagation dithering, 75–77
Euler number, computing, binary digital

image, 107–111
Euler operators, winged–edge models, 197
Exponential matrix, 332–333
Exponentials, transformations as, 332–337
Extinction coefficient, 279

F

Face dihedrals, 174–175
Faceted shading, 234, 236
Fast anamorphic image scaling, 78–79
Fast Fourier transform algorithms, 368–370
Fat curve, generation, 43
Filter, nonuniform quadratic spline, 101–102
First derivative filters, 105

Flipped bit count, 368
Floating point pixel format, 81–82
Floyd-Steinberg error propagation, 75–76
Floyd-Steinberg filter, 68
4 × 4 matrices, 351–354
Fourier transform, 368–370
Frame buffer, 115

 color hardcopy, 163–165
 color quantization statistical computations,

126–133
 inverse color map, computation, 116–125
 mapping RGB triples, 143–146
 PHIGS PLUS, 138–142
 random color map animation algorithm,

134–137
 setting monitor white point, 159–162
 television color encoding, 147–158

Fresnel formulas
 approximations for applying, 287–289
 dielectric materials, 287–289
 wavelength-dependent reflection and

refraction, 286–287
Fresnel reflectance curve, 284, 289
Fresnel transmission curve, 284, 288–289
Frexp, 82

G

Gamma correction, color dithering, 72–73
Gaussian random numbers, 136
Gaussian weighted filter, 51–53
Gauss-Jordan elimination, 349
Genus, computing, binary digital image,

107–111
Geodesics, 440
Geometric constructions, interpolation of

orientation with quaternions, 377–380
Geometric continuity, 430–431
G2 joint, between cubic Bézier curves, 432
Gouraud shading, 235–236
Gray ramp, 163–164
Great circle plotting, 440–444
Group theory, 343–344

H

Half-angle identity, digital computation,
381–386

Half-tangent, 381–386
Halftoning, see Digital halftoning
Halftoning matrix, 58
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HDTV, 154–155
Heckbert’s algorithm, 127
Hemi-cube algorithm, 299

 cubic tetrahedral adaptation, 299–302
Hermite polynomial, 398–399
Hierarchy traversal, 267–272

 bottom-up method, 270–271
 caching, 268
 combining top-down and bottom-up

approaches, 270–271
 top-down list formation, 268–269

High coherence, 28, 30
Hilbert curve, 27–28
Homgeneous media, light absorption 278–280
Horner ’s rule, 420–421
Hot colors, 147, 152–153
Hot pixels

 repairing, 155–156
 test, 155–157

Hybrid predictor, 97–100
Hypercones, 117

I

Icosahedron, dihedrals, 175, 177
Image file compression, 93–100

 hybrid predictor, 97–100
 prediction-correction coding, 93–94

adaptive, 94–95
Image processing, 49, see also Digital halftoning

 adaptive run-length encoding, 89–91
 color dithering, 72–77
 fast anamorphic image scaling, 78–79
 image file compression, 93–100
 image smoothing and sharpening by discrete

convolution, 50–56
 90-degree bitmap rotator, 84–85
 noise thresholding in edge images, 105–106
 optimal filter for reconstruction, 101–104
 pixels, 80–83
 run-length encoded image data rotation, 86–88

Image reconstruction, optimal filter, 101–104
Image scaling, fast anamorphic, 78–79
Image sharpening, by discrete convolution,

50–56

Image smoothing, by discrete convolution ,50–56
Inclusion-exclusion, combinatorics, 129–130
Inhomogeneous media, light absorption,

280–281
InputFace, 196
InputVertex, 196
InsertBridge, 199–201
Integers, 371–372

 counting through bits under mask, 372–373
 tallying on bits, 373–376

Integer square root algorithm, 387–388
Intensity, 233, 278–279

 interpolation between adjacent pixels, 445
InterPhong shading, 232–241

 analysis of formula, 238–240
 applications, 241

Intersection
 line, see Line, intersections
 scanline coherent shape algebra, 37
 of two circles, circle containing, 17–18

Interval sampling, 394–395
Inverse color map, 116

 adjusting blue scanlines, 122–123
 aliasing, 123–124
 computation, 116–125
 convexadvantage, 119–124
 domain in blue-green plane, 120–122
 incremental distance calculation, 117–119
 ordering, 124–125

IRE unites, 152

J

Jacobian matrix, 184
Jarvis, Judice, and Nanke filter, 68

K

Knot, insertion into B-splines, 425–427
Kochanek-Bartels formulation, 417–419

L

Lambertian radiosity model, 385
Lambert’s law of absorption, 279
Ldexp, 82–83
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Least-squares approximations, Bézier curves and
surfaces, 406–411

Length-preserving matrix group, 344–345
Light

 absorption
homogeneous media, 278–280
inhomogeneous media, 280–281
translucent media, 277–282

 reflection, 282
Light sensing device, 161–162
Line

 distance to point, 10–13
 intersections, see also Scanline coherent shape

algebra Appolonius’s lOth problem,
  19–24
bounding circle, 14–16
circle containing intersection of two
  circles, 17–18
distance from point to line, 10–13
intersection of line segments, 7–9
Peano curve generation algorithm,
  25–26
segments, 7–9
space-filling curve, 27–28
transversal, 26–27

Linear transformations, 335–337
Look-up table color, 139
LU decomposition, 349
Luminaires, power from, 307
Lumninance–color difference space, 147
Luminance meter, 159–160

M

M2, 154
Mach band effect, 235–236
Magic square

 dither, 60–62
 as outer product, 74

Mailbox, 264
 algorithm, 268

Manhattan distance, 258–259
Mapping, RGB triples, 143–146
Matrix

 decomposition into simple transformations,
320–323

 exponential, 332–333
Matrix groups, 344

 affine, 345
 angle-preserving, 345

inverse, 348–349
 length-preserving, 344–345
 membership and privileges, 346–347
 nonsingular, 345
   inverse, 350
 window-to-viewport, 344
   inverse, 348

Matrix inversion, 342–350
 elementary, 347
 evaluation strategy, 347–348
 problem statement, 342

Matrix techniques, 319
 cross product, 333–334
 data recovery from transformation matrix,

324–331
 4 × 4 matrices, 351–354
 linear transformations, 335–337
 notation, 338
 pseudo-perspective, 340–341
 quaternions, 351–354
 random rotation matrices, 355–356
 shear, 339–340
 small sparse matrix classification, 357–361
 tensor product, 333–334
 transformations as exponentials, 332–337

Matrix-vector, 360–361
Menelaus’s theorem, 424–427
Mirror image, data recovery from

 transformation
 matrix, 327

Modified facet shading, 236–237
Monitor, white point, setting, 159–162
Monochromatic triples, 146
Multi-indices, 412
Multiple output levels, halftoning to, 64–65
Multivariate approximation, Bézier curves and

surfaces, 409

N

Narrow domains, aliasing, 123–124
National Television Systems Committee,

encoding basics, 148–152
NextFaceAroundVertex, 195–196
Noise thresholding, edge images, 105–106
Nonlocality tension, 238
Nonsingular matrix group, 345

 inverse, 350
NTSC encoding basics, 148–152
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Numerical and programming techniques, 365
 arctangent, approximation, 389-391
 bit picking, 366–367
 Fourier transform, 368–370
 half-angle identity, 381–386
 integer square root algorithm, 387–388
 interval sampling, 394–395
 Perlin noise function, recursive

implementation, 396–401
 sign of cross product calculation, 392–393
 using geometric constructions to interpolate

orientation with quaternions, 377–380

O

Object area, 26–27
Object-space rendering, 26
Octahedron, dihedrals, 174–175
Octree-to-Boundary conversion, 214–218
Octree-to-PCS, 214–215
Offsetprints, 165
Opcode, 36
Ordered dithering

 color, 73–75
 matrix, 58–60

P

PAL encoding, 153–154
Parallel connected stripes representation,

203–204
Parametric continuity, 430–431
Patch visibility index, 313
Pattern mask, 57
PCS-to-boundary conversion, 205
PCS-to-Chain procedure, 205–206
Peano curve, 27–28

 coherence of transversal sequences, 28–30
 generation algorithm, 25–26

Perlin noise function, recursive implementation,
396–401

PHIGS PLUS, 138–142, 420
 implementation, 141–142
 pseudo color
   interpolation, 140–141
   mapping, 138–140

Phosphors
 chromaticity, 151
   coordinates, 161
 spectral emission curve, 160–161

Pixels, 80–83
 band, anti-aliasing, 445–446
 components, 109–110
 gamma-corrected byte storage, 80
 locations, 33–34
 remapping, 78
 replication, 79
 sub-sampling, 79
 unportable bits, 81

Planar polygon, area, 170
Point

 distance to line, 10-13
 generation equation, 179

Point-triangle intersection, 259–261
Polygon

 area, 5–6
 user-provided display routines, radiosity,

295–298
Polyhedron

 convex, ray intersection, 247–250
 exact dihedral metrics, 174–178
 regular, 174–175
 volume, 170–171

Polyline, circular arc, 435–437
Polynomials

 Horner ’s rule, 420–421
 symmetric evaluation, 420–423

Prediction-correction coding, 93–94
Programming techniques, see Numerical and

programming techniques
Projection

 data recovery from transformation matrix,
329–331

 equations, view correlation, 182–183
Pseudo color

 interpolation, PHIGS PLUS, 140–141
 mapping, PHIGS PLUS, 138–140

Pseudo-perspective, 340–341
Pyramid geometry, rendering with iterated

parameters, 186–187

Q

Quadratic spline, nonuniform, 101–102
Quadtree/octree-to-boundary conversion,

202–218
 Bottom-Up, 206, 208–209
 Octree-to-Boundary conversion, 214–218
 Octree-to-PCS, 214–215
 parallel connected stripes representation,

203–204
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Quadtree/ octree-to-bound.-conv. (Cont’d)
 PCS-to-boundary conversion, 205
 PCS-to-Chain procedure, 205–206
 quadtree-to-boundary conversion, 211–213
 Quusdtree-o-PCS, 211–213
 Top-Down, 206-208, 210

Quadtrees, 31
Quadtree-to-PCS, 211–213
Quaternions, 351–354

 geometric construction interpolation of
orientation, 377–380

R

Radiosity, 293–294
 adaptive meshing, shadow boundary

detection,
311–315

 advantage, 295
 extensions, 308–309
 fast vertex update, 303–305
 form factors, 295
 hemi-cube algorithm, cubic tetrahedral

adaptation, 299–302
 progressive, 296–297
   implementation, 297–298
 progressive refinement, 306–307
 ray-traced form factors, 312–313
 by ray tracing, 306–310
 sending power with rays, 307–308
 user-provided polygon display routines,

295–298
Random color map animation algorithm,

134–137
Random noise function, see Perlin noise
function
Random-number generator, 136
Random rotation matrices, 355–356
Raster image, 90-degree rotation, 86
Raster representation, 111
Ray

 definition, 248
 intersection with elliptical torus, 251–256

Ray-convex polyhedron intersection, 247–250
Ray equation, 180
Rayleigh probability density function, 106
Ray–object intersection tags, 264–266
Ray–plane intersection, 258–259
Ray–polyhedron test, 247–250
Rayshade, 186, 188–190
Ray tagging, voxel-based ray tracing, 264–266

Ray tracing, 245-246
avoiding incorrect shadow intersections,
275-276
body color model, 277-282
hierarchy traversal, 267-272
radiosity by, 306-310
ray-convex polyhedron intersection, 247-250
recursive shadow voxel cache, 273-274

 shadow attenuation, 283–289
 voxel-based, 264–266

Ray-triangle intersection, binary recursive
subdivision, 257–263

 constraints, 257
 point-triangle intersection, 259–261
 ray-plane intersection, 258–259
 U, V computation, 261–262

Recursive shadow voxel cache, 273–274
Reflection, wavelength-dependent, 286–287
Refraction, wavelength-dependent, 286–287
Remove Edge, 198
Representative color, 116
RGB-to-YIO encoding, 151
RGB triples, mapping, 143–146
RGB values

 gamma-corrected, 157
 unencodable, 147

RMS error, 104
Roberts’s method, 96
Rotation

 data recovery from transformation matrix,
326

 run-length encoded image data, 86–88
Rotation matrix

 homogeneous, 352
 random, 355–356

Run-length encoding, adaptive, 89–91

S

Scaling, data recovery from transformation
matrix, 327–328

Scanline coherent shape algebra, 31–45
 algorithm, 34–37
 applications, 41–44
 background, 31–32
 data structures, 32–34
 difference, 39–40
 improvements, 44–45
 intersection, 37
 union, 38–39
 utility functions, 40–41

Segment data structures, 33–34
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Serpentine raster pattern, 67, 69
SetWings, 194–195
Shading rays, caching, 268
Shading techniques, incremental and empirical,

233–236
Shading tension, 238
Shadow algorithm, 284–285
Shadow attenuation, 283–289

 naive scheme, 283–284
 wavelength-dependent reflection and
 refraction, 286–287

Shadow boundaries
 detection, adaptive meshing in radiosity,

311–315
 subdivision criteria, 313–315
 visibility index, 313

Shadow cache, 273
Shadow generation, approximations, 283
Shadow intersections

 avoiding incorrect, 275–276
Shadow object caching, 268
Shadow voxel cache, 273–274
Shape

 algebra opcodes, 36
 decomposition, 32
 parameters, 431, 433

Shape-box routine, 40–41
Shape representations, stored as linked lists, 32
Sharpening filter, 53–55
Shear, 339–340

 data recovery from transformation matrix,
328–329

 geometry, 339
Small sparse matrix, classification, 357–361
Smoothing, 53–54
Snub disphenoid, 178
Snub figures, 177–178
Sobel and Prewitt operators, 105
Solids, quasi-regular, 174–175
Space-filling curves, 3–4, 27–28
Space packing lattices, crack prevention, 174
Span

 data structure, 33
 processing, 342–35

Sparse matrix
 classification, 357–361
   zero structures, 357–358
 multiplying a vector, 360–361

Specular reflection, 234
Sphere, moving on, 172–173
SplitEdge, 197–198
Square root algorithm, 387–388

State, code generation, 35
Stucki filter, 69
Surface normal, torus, determination, 256
Surfaces, see Curves and surfaces
Surface shading, 234
Sutherland-Hodgman algorithm, 220, 231
Symmetric evaluation, polynomials, 420–423
Synthetic actor, 241

T

Television color encoding, 147–158
 chrominance, 150
 color reference frame, 148
 component systems, 154
 HDTV, 154–155
 hot-pixel test, 155–157
 IRE unites, 152
 luminance-color difference space, 147
 NTSC encoding basics, 148–152
 PAL encoding, 153–154
 unencodable RGB values, 147

Tensor product, 333–334
Tent filter, 51–52
Tetrahedron, dihedrals, 174–175
3 ×3 matrix, zero structures for, 358–359
Three-dimensional geometry, 169

 homogeneous clipping, triangle strips,
219–231

 InterPhong shading, 232–241
 moving on a sphere, 172–173
 planar polygon, area, 170
 polyhedra
   exact dihedral metrics, 174–178
   volume, 170–171
 quadtree/octree-to-boundary conversion,

202–218
 view correlation, 181–190
 viewing geometry, 179–180
 winged-edge model maintenance, 191–201

Three-dimensional homogeneous clipping,
triangle strips, 219–231

 against non-normalized clipping volume,
224–225

 algorithm study, 220–223
 data study, 219–220
 implementation, 225–229
 memory considerations, 223–224

Threshold dithering, 58–63
Thresholding matrix, 57
Top-Down, 206–208, 210
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Torus
 determining surface normal, 256
 efficient bounding, 254–255

Transformation matrix, data recovery, 324–331
 mirror image, 327
 projection, 329–331
 rotation, 326
 scaling, 327–328
 shear, 328–329
 translation, 326

Transformations, as exponentials, 332–337
Translation, data recovery from
transformation

matrix, 326
Translucent media, light absorption, 277–282
Translucent objects, ray tracing, shadow

attenuation, 283–289
Transmission coefficient, 278
Transparent objects, ray tracing, shadow

attenuation, 283–289
Traversal, 26–27

 coherence, 30
Triangle, intersection with ray, 257–263
Triangle filter, 51–52
Triangle strips, three-dimensional
homogeneous

clipping, 219–231
Tristimulus values, 159–160
Two-dimensional geometry, 3–4

 area, polygon, 5–6
Two-dimensional prediction, 95
Two-dimensional screen point, 181
Two-dimensional template, minimum, 95

U

Union, scanline coherent shape algebra, 38–39
Univariate approximation, Bézier curves and

surfaces, 406–407
Utility functions, scanline coherent shape

algebra, 40–41
U, V values, 261–262

V

Variable control point approximation, curve
interpolation, 417–419

Variance minimization, color quantization based
on, 127

Vertex dependence, 238–239
Video signal amplitudes, 152

View correlation, 181–190
 chain rule, 184
 example, 188–190
 implementation details, 185–188
 iteration parameters, 184–185
 mathematical basis, 182–185
 projection equations, 182–183
 pyramid geometry, rendering with iterated

parameters, 186–187
 2D screen point, 181

Viewing geometry, 179–180
Visibility index, 313
Voronoi diagram, 117
Voxel cache, 273–274

W

Wavelength-dependent reflection and
refraction,

286–287
WEdgeData structure, 192–194
Whitening filter, 95
White point

 chromaticities, 148–149
 monitor, setting, 159–162

Window data structure, 42
Window-to-viewport matrix group, 344

 inverse, 348
Window tree, 42
Winged-edge library, fundamental operations,

191
Winged-edge models, maintaining, 191–201

 Euler operators, 197
 inputFace, 196
 inputVertex, 196
 InsertBridge, 199–201
 NextFaceAround Vertex, 195–196
 RemoveEdge, 198
 SetWings, 194–195
 SplitEdge, 19 7–198
 WEdgeData structure, 192–194

WShape, 192
Wu’s algorithm, 127
Wu’s anti-aliased circles, 448–449

 algorithm, 447

Z

Zero structures, 357–358
for 3 × 3 matrix, 358–359
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