
TeamLRN



 

Graphics Programming with Direct X 9 

Part I 

(12 Week Lesson Plan) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TeamLRN



Lesson 1: 3D Graphics Fundamentals  

Textbook:             Chapter One (pgs. 2 – 32) 
 
Goals: 
 
We begin the course by introducing the student to the fundamental mathematics necessary 
when developing 3D games. Essentially we will be talking about how 3D objects in games are 
represented as polygonal geometric models and how those models are ultimately drawn. It is 
especially important that students are familiar with the mathematics of the transformation 
pipeline since it plays an important role in getting this 3D geometry into a displayable 2D 
format. In that regard we will look at the entire geometry transformation pipeline from model 
space all the way through to screen space and discuss the various operations that are necessary 
to make this happen. This will include discussion of transformations such as scaling, rotations, 
and translation, as well as the conceptual idea of moving from one coordinate space to another 
and remapping clip space coordinates to final screen space pixel positions.  
 
Key Topics: 
 

•  Geometric Modeling  
o  2D/3D Coordinate Systems 
o Meshes  

  Vertices  
  Winding Order  

•  The Transformation Pipeline  
o  Translation  
o  Rotation  
o  Viewing Transformations  
o  Perspective Projection  
o  Screen Space Mapping  
 
 

Projects:  NONE 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  5 - 7 
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Lesson 2: 3D Graphics Fundamentals II 

Textbook:             Chapter One (pgs.  32 – 92) 
 
Goals: 
 
Picking up where the last lesson left off, we will now look at the specific mathematics 
operations and data types that we will use throughout the course to affect the goals discussed 
previously regarding the transformation pipeline. We will examine three fundamental 
mathematical entities: vectors, planes and matrices and look at the role of each in the 
transformation pipeline as well as discussing other common uses. Core operations such as the 
dot and cross product, normalization and matrix and vector multiplication will also be 
discussed in detail. We then look at the D3DX equivalent data types and functions that we can 
use to carry out the operations discussed. Finally we will conclude with a detailed analysis of 
the perspective projection operation and see how the matrix is constructed and how arbitrary 
fields of view can be created to model different camera settings.  
 
Key Topics: 
 

•  3D Mathematics Primer  
o  Vectors  

 Magnitude  
 Addition/ Subtraction  
 Scalar Multiplication  
 Normalization  
 Cross Product  
 Dot Product  

o  Planes  
o  Matrices  

 Matrix/Matrix Multiplication  
 Vector/Matrix Multiplication  
 3D Rotation Matrices  
 Identity Matrices  
 Scaling and Shearing  
 Concatenation  
 Homogenous Coordinates  

•  D3DX Math  
o  Data Types  

 D3DXMATRIX  
 D3DXVECTOR  
 D3DXPLANE  

o  Matrix and Transformation Functions  
 D3DXMatrixMultiply  
 D3DXMatrixRotation{XYZ}  
 D3DXMatrixTranslation  
 D3DXMatrixRotationYawPitchRoll  
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 D3DXVecTransform{…}  
o  Vector Functions  

 Cross Product  
 Dot Product  
 Magnitude  
 Normalization  

•  The Transformation Pipeline II  
o  The World Matrix  
o  The View Matrix  
o  The Perspective Projection Matrix  

 Field of View  
 Aspect Ratio  

 
 
Projects:  
 
Lab Project 1.1: Wireframe Renderer 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  8 - 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TeamLRN



Lesson 3: DirectX Graphics Fundamentals I  

Textbook:            Chapter Two (pgs. 94 – 132) 
 
Goals: 
 
In this lesson our goal will be to start to get an overview of the DirectX Graphics pipeline and 
see how the different pieces relate to what we have already learned. A brief introduction to the 
COM programming model introduces the lesson as a means for understanding the low level 
processes involved when working with the DirectX API. Then, our ultimate goal is to be able to 
properly initialize the DirectX environment and create a rendering device for output. We will 
do this during this lesson and the next. This will require an understanding of the different 
resources that are associated with device management including window settings, front and 
back buffers, depth buffering, and swap chains. 
 
 
Key Topics: 
 

•  The Component Object Model (COM)  
o Interfaces/IUnknown  
o GUIDS  
o COM and DirectX Graphics  

•  Initializing DirectX Graphics  
•  The Direct3D Device  

o  Pipeline Overview  
o  Device Memory  

 The Front/Back Buffer(s)  
 Swap Chains  

o  Window Settings  
 Fullscreen/Windowed Mode  

o Depth Buffers  
 The Z-Buffer / W-Buffer 

 
 

Projects:  
 
Lab Project 2.1: DirectX Graphics Initialization 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):   8 – 10 
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Lesson 4: DirectX Graphics Fundamentals II  

Textbook:            Chapter Two (pgs. 132 – 155) 
 
Goals: 
 
Continuing our environment setup discussion, in this lesson our goal will be to create a 
rendering device for graphics output. Before we explore setting up the device, we will look at 
the various surface formats that we must understand for management of depth and color 
buffers. We will conclude the lesson with a look at configuring presentation parameters for 
device setup and then talk about how to write code to handle lost devices.  
 
Key Topics: 
 

• Surface Formats  
o  Adapter Formats  
o  Frame Buffer Formats  

•  Device Creation  
o  Presentation Parameters  
o  Lost Devices  

 
Projects:  
 
Lab Project 2.2: Device Enumeration 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):   8 - 10 
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Lesson 5: Primitive Rendering I  

Textbook:            Chapter Two (pgs. 156 – 191) 
 
Goals: 
 
Now that we have a rendering device properly configured, we are ready to begin drawing 3D 
objects using DirectX Graphics. In this lesson we will examine some of the important device 
settings (states) that will be necessary to make this happen. We will see how to render 3D 
objects as wireframe or solid objects and also talk about how to affect various forms of shading. 
Our discussion will also include flexible vertex formats, triangle data, and the DrawPrimitive 
function call. Once these preliminary topics are out of the way we will look at the core device 
render states that are used when drawing – depth buffering, lighting and shading, back face 
culling, etc. We will also talk about transformation states and how to pass the matrices we 
learned about in prior lessons up to the device for use in the transformation pipeline. We will 
conclude the lesson with discussion of scene rendering and presentation (clearing the buffers, 
beginning and ending the scene and presenting the results to the viewer).  
 
Key Topics: 
 

• Primitive Rendering 
o Fill Modes  
o Shading Modes  
o Vertex Data and the FVF 
o DrawPrimitiveUP  

• Device States  
o  Render States  

 Z – Buffering  
 Lighting/Shading/Dithering 
 Backface Culling  

o  Transformation States  
 World/View/Projection Matrices 

•  Scene Rendering  
o Frame/Depth Buffer Clearing  
o Begin/End Scene  
o Presenting the Frame  

 
Projects:  
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  5 – 7 
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Lesson 6: Primitive Rendering II  

Textbook:            Chapter Three (pgs. 194 – 235) 
 
Goals: 
 
In this lesson we will begin to examine more optimal rendering strategies in DirectX. Primarily 
the goal is to get the student comfortable with creating, filling and drawing with both vertex 
and index buffers. This means that we will look at both indexed and non-indexed mesh 
rendering for both static geometry and dynamic (animated) geometry. To that end it will be 
important to understand the various device memory pools that are available for our use and 
see which ones are appropriate for a given job. We will conclude the lesson with a discussion of 
indexed triangle strip generation and see how degenerate triangles play a role in that process. 
 
Key Topics: 
 

•  Device Memory Pools and Resources  
o Video/AGP/System Memory  

• Vertex Buffers  
o  Creating Vertex Buffers  
o  Vertex Buffer Memory Pools  
o  Vertex Buffer Performance  
o  Filling Vertex Buffers  
o  Vertex Stream Sources  
o  DrawPrimitive  

•  Index Buffers  
o  Creating Index Buffers  
o  DrawIndexedPrimitive/DrawIndexedPrimitiveUP  
o  Indexed Triangle Strips/Degenerate Triangles  

 
Projects:  
 
Lab Project 3.1: Static Vertex Buffers 
Lab Project 3.2: Simple Terrain Renderer 
Lab Project 3.3: Dynamic Vertex Buffers 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  8 – 10 
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Mid-Term Examination 

The midterm examination in this course will consist of 40 multiple-choice and true/false 
questions pulled from the first three textbook chapters. Students are encouraged to use the 
lecture presentation slides as a means for reviewing the key material prior to the examination.    
The exam should take no more than 1.5 hours to complete. It is worth 35% of student final 
grade. 
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Lesson 7: Camera Systems  

Textbook:            Chapter Four (pgs.  238 – 296) 
 
Goals: 
 
In this lesson we will take a detailed look at the view transformation and its associated matrix 
and see how it can be used and manipulated to create a number of popular camera system 
types – first person, third person, and spacecraft. We will also discuss how to manage 
rendering viewports and see how the viewport matrix plays a role in this process. Once we have 
created a system for managing different cameras from a rendering perspective, we will examine 
how to use the camera clipping planes to optimize scene rendering. This will include writing 
code to extract these planes for the purposes of testing object bounding volumes to determine 
whether or not the geometry is actually visible given the current camera position and 
orientation. Objects that are not visible will not need to be rendered, thus allowing us to speed 
up our application. 
 
Key Topics: 
 

•  The View Matrix  
o  Vectors, Matrices, and Planes  

 The View Space Planes  
 The View Space Transformation  
 The Inverse Translation Vector  

•  Viewports  
o  The Viewport Matrix  
o  Viewport Aspect Ratios  

•  Camera Systems  
o  Vector Regeneration  
o  First Person Cameras  
o  Third Person Cameras  

•  The View Frustum  
o  Camera Space Frustum Plane Extraction  
o  World Space Frustum Plane Extraction  
o  Frustum Culling an AABB  

 
Projects: NONE 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):   8 - 10 
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Lesson 8: Lighting  

Textbook:            Chapter Five (pgs. 298 – 344) 
 
Goals: 
 
In this lesson we will introduce the lighting model used in the fixed function DirectX Graphics 
pipeline. We begin with an overview of the different types of lighting (ambient, diffuse, 
specular, and emissive) that are modeled in real-time games.  We will also talk about the 
specific light types (point/spot/directional) and how to setup their properties and configure the 
lighting pipeline to use them.  This will include some discussion of the role of vertex normals 
and how to calculate them when necessary. In conjunction with lighting we must also discuss 
the concept of materials as they define how surfaces interact with the lights in the 
environment. We will see how to create them and set their properties to produce different 
results. We will conclude this lesson with a brief discussion of the advantages and 
disadvantages of using the fixed function vertex lighting pipeline as a means for setting the 
stage for more advanced lighting models that will be introduced in Part II of this course series.   
 
Key Topics: 
 

•  Lighting Models  
o Indirect Lighting 

 Emissive/Ambient Illumination  
o Direct Lighting  

 Diffuse/Specular Light   
•  The Lighting Pipeline  

o  Enabling DirectX Graphics Lighting  
 Enabling Specular Highlights  
 Enabling Global Ambient Lighting  

o  Lighting Vertex Formats and Normals 
o  Setting Lights and Light Limits  

•  Light Types  
o  Point/Spot/Directional  

• Materials  
o  Colors, Specular and Power  
o  Material Sources  

 
Projects:  
 
Lab Project 5.1: Dynamic Lights 
Lab Project 5.2: Scene Lighting 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  10 - 12 
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Lesson 9: Texture Mapping I 

Textbook:            Chapter Six (pgs.  346 – 398) 
 
Goals: 
 
In this lesson students will be introduced to texture mapping as a means for adding detail and 
realism to the lit models we studied in the last lesson. We begin by looking at what textures are 
and how they are defined in memory.  This will lead to a preliminary discussion of mip-maps in 
terms of memory format and consumption. Then we will look at the various options at our 
disposal for loading texture maps from disk or memory using the D3DX utility library. 
Discussion of how to set a texture for rendering and the relationship between texture 
coordinates and addressing modes will follow. Finally we will talk about the problem of aliasing 
and other common artifacts and how to use various filters to improve the quality of our visual 
output. 
 
Key Topics: 
 

•  Texture Memory Pools  
o  Texture Formats  

 Validating Texture Formats  
 Surface Formats  

•  MIP Maps  
•  Loading Textures  
•  Setting Textures  
•  Texture Coordinates  
•  Sampler States  

o  Texture Addressing Modes  
 Wrapping/Mirroring/Bordering/Clamping/MirrorOnce 

o Texture Coordinate Wrapping  
o  Texture Filtering  

 Magnification/Minification 
 Point/Bilinear/Trilinear/Anisotropic  

 
Projects:  
 
Lab Project 6.1: Simple Texturing 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  8 - 10 
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Lesson 10: Texture Mapping II 

Textbook:            Chapter Six (pgs. 399 – 449) 
 
Goals: 
 
This lesson will conclude our introduction to texture mapping (advanced texturing will be 
discussed in Part II of this series). We will begin by examining the texture pipeline and how to 
configure the various stages for both single and multi-texturing operations. Then we will take a 
step back and examine texture compression and the various compressed formats in detail as a 
means for reducing our memory requirements. Once done, we will return to looking at the 
texture pipeline and see how we can use transformation matrices to animate texture 
coordinates in real time to produce simple but interesting effects. Finally, we will conclude with 
a detailed look at the DirectX specific texture and surface types and their associated utility 
functions.  
 
Key Topics: 

 
•  Texture Stages  

o  Texture Color  
o  Texture Stage States  

•  Multi-Texturing and Color Blending 
•  Compressed Textures  

o  Compressed Texture Formats  
 Pre-Multiplied Alpha  

o  Texture Compression Interpolation  
o  Compressed Data Blocks – Color/Alpha Data Layout  

• Texture Coordinate Transformation  
• The IDirect3DTexture Interface  
• The IDirect3DSurface Interface  
• D3DX Texture Functions  

 
Projects:  
 
Lab Project 6.2: Terrain Detail Texturing 
Lab Project 6.3: Scene Texturing 
Lab Project 6.4: GDI and Textures 
Lab Project 6.5: Offscreen Surfaces 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  10 – 12 
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Lesson 11: Alpha Blending  

Textbook:            Chapter Seven (pgs. 451 – 505) 
 
Goals: 
 
In this lesson we will examine an important visual effect in games: transparency. Transparency 
requires that students understand the concept of alpha blending and as such we will talk about 
various places alpha data can be stored (vertices, materials, textures, etc.) and how what 
various limitations and benefits are associated with this choice. We will then explore the alpha 
blending equation itself and look at how to configure the transformation and texture stage 
pipelines to carry out the operations we desire. We will also examine alpha testing and alpha 
surfaces for the purposes of doing certain types of special rendering that ignores specific pixels. 
We will conclude our alpha blending discussion with a look at the all important notion of front 
to back sorting and rendering, examining various algorithms that we can use to do this. Finally, 
we will wrap up the lesson with an examination of adding fog to our rendering pipeline. This 
will include both vertex and pixel fog, how to set the color for blending, and the three different 
formulas available to us (linear/exponential/exponential squared) for producing different 
fogging results.  
 
 
Key Topics: 
 

• Alpha Components  
o  Vertex Alpha – Pre-Lit/Unlit Vertices  
o  Material Alpha  
o  Constant Alpha + Per-Stage Constant Alpha  
o  Texture Alpha  

•  The Texture Stage Alpha Pipeline  
•  Frame Buffer Alpha Blending 
• Transparent Polygon Sorting  

o Sorting Algorithms and Criteria 
 Bubble Sort/Quick Sort/Hash Table Sort  

•  Alpha Surfaces  
•  Alpha Testing 
•  Fog  

o  Enabling Fog and Setting the Fog Color  
o  Vertex/Pixel Fog  
o  Fog Factor Formulas  

  Linear/Exponential/Exponential Squared 
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Projects:   
 
Lab Project 7.1: Vertex Alpha 
Lab Project 7.2: Alpha Testing 
Lab Project 7.3: Alpha Sorting 
Lab Project 7.4: Texture Splatting 
 
 
Exams/Quizzes:  NONE 
 
 
Recommended Study Time (hours):   10 - 12 
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Lesson 12: Exam Preparation and Course Review 

Textbook:            NONE 
 
 
Goals: 
 
In this final lesson we will leave the student free to prepare for and take their final 
examination. Multiple office hours will be held for student questions and answers.  
 
 
Key Topics: NONE 
 
 
Projects: NONE 
 
 
Exams/Quizzes: NONE 
 
 
Recommended Study Time (hours):  15 - 20 
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Final Examination 

The final examination in this course will consist of 50 multiple-choice and true/false questions 
pulled from all of the textbook chapters. Students are encouraged to use the lecture 
presentation slides as a means for reviewing the key material prior to the examination.    The 
exam should take no more than two hours to complete. It is worth 65% of student final grade. 
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The Virtual World 
 

Games that use 3D graphics often have several source code modules to handle tasks such as: 
 

1. user input 
2. resource management 
3. loading and rendering graphics 
4. interpreting and executing scripts 
5. playing sampled sound effects  
6. artificial intelligence 

 
These source code modules, along with others, collectively form what is referred to as the game 
engine. One of the key modules of any 3D game engine, and the module that this course will be 
focusing on, is the rendering engine (or renderer). The job of the rendering engine is to take a 
mathematical three dimensional representation of a virtual game world and present it as a two 
dimensional image on the monitor screen.  
 
Before the days of graphics APIs like DirectX and OpenGL, developers did not have the luxury of 
being handed a fully functional collection of code that would, at least to a certain extent, shield them 
from the mathematics of 3D graphics programming. Developers needed a thorough understanding of 
designing and coding a robust 3D graphics pipeline. Those who have worked on such projects 
previously have little trouble starting to use APIs like DirectX Graphics. Most of the functionality is 
not only familiar, but is probably something they had to implement by hand at an earlier time.  
 
Unfortunately, novice game developers have a tendency to jump straight into using 3D APIs without 
any basic knowledge of what the API is doing behind the scenes. Not surprisingly, this often leads to 
unexpected results and long debugging sessions. 3D graphics programming involves a good deal of 
mathematics. Without a firm grasp of these critical concepts you will never fully understand nor likely 
have the ability to exploit the full potential of the popular APIs.  
 
This is a considerable stumbling block for students just getting started with 3D graphics programming. 
So in this lesson we will examine some basic 3D programming concepts as well as some key 
mathematics to help create a foundation for later lessons. We will have only one Lab Project in this 
lesson. In it, we will build a rudimentary software rendering application so that you can see the 
mathematics of 3D graphics firsthand.  
 
Those of you who already have a thorough understanding of the 3D pipeline may wish to take this 
opportunity to refresh your memory or simply move on to another lesson.  
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Geometric Modeling 
 

During the process of developing a three-dimensional game, artists and modelers will create 3D 
objects using a modeling package like 3D Studio MAX™, Maya™, or even GILES™. These models 
will be used to populate the virtual game world. If you wanted to design a game that took place along 
the street where you live, an artist would likely create separate 3D models for each house, a street 
model and sidewalk model, and a collection of various models to represent such things as lamp posts, 
automobiles or even people. These would all be loaded into the game software and inserted into a 
virtual representation of the world where each model is given a specific position and orientation.  
 
Non-complex models can also be created programmatically using basic mathematics techniques. This 
is the method we will use during our initial examples. It will provide you with a better understanding 
of how 3D models are created and represented in memory and how to perform operations on them. 
While this approach is adequate for creating simple models such as cubes and spheres, creating 
complex 3D models in this way would be extraordinarily difficult and unwise.  
 

Note: 3D models are often referred to by many different names. The most common are: objects, 
models and meshes. In keeping with current standard terminology we will refer to a 3D model as a 
mesh. This means that whenever we use the word mesh we are really referring to an arbitrary 3D 
model that could be anything from a simple cube to a complex alien mother ship. 

 
A mesh is a collection of polygons that are joined together to create the outer hull of the object being 
defined. Each polygon in the mesh (often referred to as a face), is created by connecting a collection of 
points defined in three dimensional space with a series of line segments. If desired, we can ‘paint’ the 
surface area defined between these lines with a number of techniques that will be discussed as we 
progress in this course. For example, data from two dimensional images called texture maps can be 
used to provide the appearance of complex texture and color (Fig 1.1).  
 

 
Figure 1.1 

 
The mesh in Fig 1.1 is constructed using six distinct polygons. It has a top face, a bottom face, a left 
face, a right face, a front face and a back face. The front face is of course determined according to how 
you are viewing the cube. Because of the fact that the mesh is three dimensional, we can see at most 
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three of the faces at any one time with the other faces positioned on the opposite side of the cube. Fig 
1.2 provides a better view of the six polygons: 
 

 
 

Figure 1.2 
 
To create a single polygon we will plot a series of points within a 3D coordinate system. The actual 
shape of the polygon will become clear when we join those points together with lines (Fig 1.3).  
 

 
 

Figure 1.3 
 

Plotting points within a coordinate system and joining these points together to create more complex 
shapes is an area of mathematics known as Geometry. We begin by looking at some two dimensional 
geometry and later move on to three dimensions. 
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Geometry in Two Dimensions  
 
A coordinate system is a set of one or more number lines used to characterize spatial relationships. 
Each number line is called an axis. The number of axes in a system is equal to the number of 
dimensions represented by that system. In the case of a two dimensional coordinate system there will 
typically be a horizontal axis and a vertical axis labeled X and Y respectively. These axes extend out 
from the origin of the system. The origin is represented by the location (0, 0) in a 2D system. All 
points to be plotted are specified as offsets along X or Y relative to this origin.  
 
Fig 1.4 shows one example of a 2D coordinate system that we will be discussing again later in the 
lesson. It is called the screen coordinate system and it is used to define pixel locations on our viewing 
screen. In this case the X axis runs left to right, the Y axis runs from top to bottom, and the origin is 
located in the upper left corner. 
   

 
Figure 1.4 

 
Fig 1.5 shows how four points could be plotted using the screen system and how those points could 
have lines drawn between them in series to create a square geometric shape. The polygon looks very 
much like one of the polygons in the cube mesh we viewed previously (with the exception that it is 
viewed two dimensionally rather than three). 
 
 

 
 

Figure 1.5 
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We must plot these points in a specific sequence so that the line drawing order is clear. We see that a 
line should be drawn between point 1 and point 2, and then another between point 2 and point 3 and so 
on until we have connected all points and are back at point 1. 
 
It is worth stating that this screen coordinate system is not the preferred design for representing most 
two dimensional concepts. First, the Y values increase as the Y axis moves downward. This is contrary 
to the common perception that as values increase, they are said to get ‘higher’. Second, the screen 
system does not account for a large set of values. In a more complete system, the X and Y axes carry 
on to infinity in both positive and negative directions away from the origin (Fig 1.6). 
 

 
 

Figure 1.6 
 
Only points within the quadrant of the coordinate system where both X and Y values are positive are 
considered valid screen coordinates. Coordinates that fall into any of the other three quadrants are 
simply ignored.  
 
Our preferred system will remedy these two concerns. It will reverse the direction of the Y axis such 
that increasing values lay out along the upward axis and it will provide the full spectrum of positive 
and negative values. This system is the more general (2D) Cartesian coordinate system that most 
everyone is familiar with.  Fig 1.7 depicts a triangle represented in this standard system: 
 

 
 

Figure 1.7 
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Geometry in Three Dimensions 
 

The 3D system adds a depth dimension (represented by the Z axis) to the 2D system and all axes are 
perpendicular to one another. In order to plot a point within our 3D coordinate system, we need to use 
points that have not only an X and a Y offset from the origin, but also a Z offset. This is analogous to 
real life where objects not only have width and height but depth as well. 
 
 

 
 

Figure 1.8 
 
Fig 1.8 is somewhat non-intuitive. It actually looks like the Z axis is running diagonally instead of in 
and out of the page (perpendicular to the X and Y axes).  But if we ‘step outside’ of our coordinate 
system for a moment and imagine viewing it from a slightly rotated and elevated angle, you should 
more clearly be able to see what the coordinate system looks like (Fig 1.9). 
 

 
 

Figure 1.9 
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There are two versions of the 3D Cartesian coordinate system that are commonly used: the left-
handed system and the right-handed system. The difference between the two is the direction of the 
+Z axis. In the left-handed coordinate system, the Z axis increases as you look forward (into the page) 
with negative numbers extending out behind you. The right handed coordinate system flips the Z axis. 
Some 3D APIs, like OpenGL use a right-handed system. Microsoft’s DirectX Graphics uses the left-
handed system and we will also use the left-handed system in this course. 
 

 
Figure 1.10 

 
 

Note: To remember which direction the Z axis points in a given system:  
 

1) Extend your arms in the direction of the positive X axis. (towards the right). 
2) Turn both hands so that the palms are facing upwards towards the sky. 
3) Fully extend both thumbs. 

 
The thumbs now tell you the direction of the positive Z axis. On your right hand, the thumb should be 
pointing behind you, and the thumb on your left hand should be pointing in front of you. This informs 
us that in a left handed system, positive Z increases in front of us and in a right handed system positive 
Z increases behind us. 

 
 
To plot a single point in this coordinate system requires that we specify three offsets from the origin: 
an X, a Y and a Z value. Fig 1.11 shows us where the 3D point (2, 2, 1) would be located in our left-
handed Cartesian coordinate system. 
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Figure 1.11 
 
A coordinate system has infinite granularity. It is limited only by the variable types used to represent 
coordinates in source code.  If one decides to use variables of type float to hold the X, Y and Z 
components of a coordinate, then coordinates such as (1.00056, 65.0234, 86.01) are possible. If 
variables of type int are used instead, then the limit would be the whole numbers like (10, 25, 2). In 
most 3D rendering engines variables of type float are used to store the location of a point in 3D space. 
A typical structure for holding a simple 3D position looks like this: 
 
struct 3Dpoint 
{ 
     float x; 
     float y; 
     float z; 
}; 
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Creating Our First Mesh 
 
A mesh is a collection of polygons. Each polygon is stored in memory as an ordered list of 3D points. 
In Fig 1.12 we see that in order to create a 3D cube mesh we would need to specify the eight corner 
points of the cube in 3D space. Each polygon could then be defined using four of these eight points. 
The following eight points define a cube that is 4x4x4 where the extents of the cube on each axis range 
from –2 to +2.  
 

 
 

Figure 1.12 
 
We have labeled each of the 3D points P1, P2, P3, etc. The naming order selected is currently 
unimportant. What is significant is the order that we use these points in to create the polygons of the 
cube. The front face of the cube would be made up of points P1, P4, P8 and P5. The top face of the 
cube would be constructed from points P1, P2, P3 and P4. And so on. You should be able to figure out 
which points are used to create the remaining polygons. 
 
Notice that the center of the cube (0,0,0) is also the origin of the coordinate system. When a mesh has 
its 3D points defined about the origin in this way it is said to be in model space (or object local 
space). In model space, coordinates are relative to the center of the mesh and the center of the mesh is 
also the center of the coordinate system. Later we will ‘transform’ the mesh from model space to 
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world space where the coordinate system origin is no longer the center of the mesh. In world space all 
meshes will coexist in the same coordinate system and share a single common origin (the center of the 
virtual world).  
 
Very often you will want to rotate an object around its center point. For example you might want a 
game character to rotate around its own center point in order to change direction. We will cover the 
mathematics for rotating an object later in the lesson, but for now just remember that in order to rotate 
a mesh you will have to rotate each of the points it contains.  In Fig 1.12, we would rotate the cube 45 
degrees to the right by rotating each of the eight corner points 45 degrees around the Y axis. When we 
rotate a point in a coordinate system, the center of rotation will always be at the origin of the 
coordinate system.  
 
 
Note: Game World Units 
 
It is up to you, the developer, working with your artists to decide game unit scale. For example, you may decide 
that 1 unit = 1 meter and ask your artist to design 3D meshes to the appropriate size to make this appear true. 
Alternatively you might decide that 1 unit = 1 kilometer and once again, create your geometry to the 
appropriate size. It is important to bear in mind that if you choose such a small scale, you may encounter 
floating point precision problems. 
 
A mesh could be 4x4x4 units like our cube or even 100x100x100 and look exactly the same from the viewer’s 
perspective. It depends on factors like how fast the player is allowed to move and how textures are applied to 
the faces. In the next image you can see two identically sized polygons with differently scaled textures. The 
polygon on the right would probably look much bigger in the game world than the one on the left. As long as all 
the objects in your world are designed to a consistent scale relative to each other, all will be fine.  
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Vertices 
 
The vertex (the plural of which is vertices or vertexes depending on your locale) is a data structure 
used to hold 3D point data along with other potential information. From this point on we will refer to 
each point that helps define a polygon in a mesh as a vertex. Therefore, we can say that our cube will 
have 24 vertices because there are 6 polygons each defined by 4 vertices (6 x 4 = 24). 
 
If you examine our Lab Project for this lesson (LP 1.1), you will see our vertex structure looks like: 
 
class CVertex 
{  
public: 
   // Constructors 
   CVertex( float fX, float fY, float fZ); 
   CVertex(); 
    
   // Public Variables for This Class 
   float       x;          // Vertex X Coordinate 
   float       y;          // Vertex Y Coordinate 
   float       z;          // Vertex Z Coordinate 
}; 
 
 
 
Winding Order 
 
3D models will not usually be created programmatically but will be created within a modeling package 
such as GILES™ or 3D Studio Max™. This allows us to create scenes with thousands or even millions 
of polygons. Very high polygon counts often correlate to a reduction in application performance due to 
the increased volume of calculations that need to be performed when drawing them. As a graphics 
developer you will use a number of techniques to keep the number of polygons that need to be drawn 
in a given frame to a minimum. Certainly you would not want to render polygons that the user could 
not possibly see from their current position in the virtual world. One such optimization discards 
polygons that are facing away from the viewer; this technique is called back face culling. It is assumed 
that the player will never be allowed to see the back of a polygon. You should notice in our example 
that regardless of the direction from which you view the cube, you will only be able to see three of the 
six faces at one time. Three will always be facing away from you. For this reason, 3D rendering 
engines normally perform a fast and cheap test before rendering a polygon to see if it is facing the 
viewer. When it is not it can be discarded. 
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 Figure 1.13 

 
Using Figure 1.13 as a reference you should be able to see how each vertex of every face is one of the 
eight 3D positions of the cube stored in our code. The coordinate P1 is used to create a vertex in the 
left face, the top face and the front face. And so on for the other coordinates. Also note that the vertices 
are specified in an ordered way so that lines can be drawn between each pair of points in that polygon 
until the polygon is finally complete. The order in which we specify the vertices is significant and is 
known as the winding order. 
 
 

 
Figure 1.14 

 
So how does one determine which way a polygon is facing? After all, in our cube example, a face is 
simply four points; we do not provide any directional information. 
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The answer lies in the order in which we store the vertices within our polygons. If you look at Fig 1.13 
and then reference it against the code in LP 1.1, you will notice that the polygon vertices are passed in 
using a clockwise order. 
 
For example, the front face is made up of points P1, P4, P8 and P5. When viewed from in front of that 
face this is a clockwise specification. It does not matter which vertex in the face begins the run. We 
could have created the front face in this order: P8, P5, P1 and P4 and it would still work perfectly 
because the order remains clockwise. This order is referred to as the polygon winding order. In 
DirectX Graphics, polygons are assumed to have a clockwise winding by default (Fig 1.14) -- although 
you can change this if desired. 
 
Now look at the back face. It uses the vertex order P6, P7, P3 and P2. This is clearly counter-clockwise 
so we will not draw it. Of course if we were to rotate the cube so that the back face was now facing us, 
you would notice that the vertex order would then be clockwise.  
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Transformations 
 
Translation 
 
We can add offsets to the positions of the vertices of a polygon such that the entire polygon moves to a 
new position in our world. This process is called translation. We translate an entire mesh by 
translating all of its polygons by equal amounts. 
 
In Fig 1.15 we define a 4x4 polygon around the center of the coordinate system (model space). We 
decided to place our mesh in the virtual game world so that the center of the mesh is at world position 
(0, 5, 0). If we add this value set to all vertices in the mesh then the center of our mesh is indeed moved 
to that position.  
 

 
 

Figure 1.15 
 In pseudo-code: 
 
PositionInWorld.x = 0; PositionInWorld.y = 5; PositionInWorld.z = 0; 
for ( Each Polygon in Mesh ) 
    for ( Each Vertex in Polygon ) 
    { 
        Vertex.x += PositionInWorld.x; 
        Vertex.y += PositionInWorld.y; 
        Vertex.z += PositionInWorld.z; 
    } 
} 
 
This is a transformation. We are transforming data from model (relative) space to world (relative) 
space. The mesh center (and in turn, its entire local coordinate system) is now positioned at (0, 5, 0) in 
the game world. You can assign each mesh its own position in the 3D world using this approach.  
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Note that this is not how we will implement a transformation in code. Rather than altering the polygon 
data directly we will store the results of the operation in temporary vertices prior to rendering each 
polygon. We will use a single mesh object defined in model space which never has its data changed. 
This mesh can be shared by multiple objects types in a process called instancing (Fig 1.16).  
 
class CObject 
{ 
public: 
    CMesh *m_pMesh; 
    float PositionX; 
    float PositionY; 
    float PositionZ; 
}; 
 
Assuming we wanted to have three cubes in our world we would simply create three separate CObject 
instances. We will specify a position for each object by setting the PositionX, PositionY and PositionZ 
member variables. The CMesh pointer can point to the same CMesh object in all three instances. For 
each object in our scene we would do the following prior to rendering: 
 

a) For each polygon of the mesh referenced by the object 
b) Add the PositionX, PositionY and PositionZ values to the X, Y and Z vertex values. 
c) Store the results in a temporary vertex list. 
d) Render the polygon using the temporary vertices. 
 

CMesh *MyMesh; // Pointer to the mesh containing our 4x4 polygon 
CObject ObjectA, ObjectB, ObjectC; 
 
ObjectA.m_pMesh = MyMesh; 
ObjectB.m_pMesh = MyMesh; 
ObjectC.m_pMesh = MyMesh; 
 
ObjectA.PositionX =  0; ObjectA.PositionY = 5; ObjectA.PositionZ =  0; 
ObjectB.PositionX = -6; ObjectB.PositionY = 0; ObjectB.PositionZ =  0; 
ObjectC.PositionX =  4; ObjectC.PositionY = 0; ObjectC.PositionZ = -5; 
 
At the center of Fig 1.16 we see a ghosted image of the model space mesh data. By adding the 
positional offset of the object to the mesh vertices, we translate the object to the desired position in the 
3D world. Notice that it is the center of each object that moves to the resulting position. The vertices 
retain their relationship to that center point. We have effectively moved the origin of the model space 
coordinate system to a new position in the 3D world. Note as well the distinction between a mesh and 
an object. The mesh is simply the geometry an object uses to represent itself. The object is responsible 
for maintaining its own position in the 3D world.  
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Figure 1.16 
 

The following functions demonstrate how object transformations might occur during each frame so 
that we can redraw all of the objects in our world. DrawObjects loops through each object, and for 
each polygon in the mesh, calls the DrawPrimitive function to transform and render it.  

 
void DrawObjects () 
{ 
    // transform vertices from model space to world space  
    for ( ULONG i = 0; i < NumberOfObjectsInWorld; i++) 
    { 
        CMesh *pMesh = WorldObjects[i]->m_pMesh; 
        for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
        { 
            // Store poly for easy access 
            CPolygon *pPoly = pMesh->m_pPolygon[f]; 
 
            // Transform and render polygon 
            DrawPrimitive ( WorldObjects[i] , pPoly )          
        } 
    } 
} 
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void DrawPrimtive ( CObject* Object , CPolygon *pPoly ) 
{ 
    // Loop round each vertex transforming as we go 
    for ( USHORT v = 0; v < pPoly->m_nVertexCount ; v++ )  
    { 
        // Make a copy of the current vertex 
        CVertex vtxCurrent = pPoly->m_pVertex[v ]; 
                 
        // Add world space position to transform to world space 
        vtxCurrent.x += Object->PositionX; 
        vtxCurrent.y += Object->PositionY; 
        vtxCurrent.z += Object->PositionZ; 
 
           // Do further pipeline transformations here which we have  
           // not covered yet but will shortly. 
        ... 
        ... 
           // By this point we will have 2D screen vertices so render  
           // to screen which we have not yet Covered.  
    }     
} 

 
The transformation from model to world space occurs during every frame for each polygon that we 
render. By adjusting the position of an object between frames we can create animation. For example, 
one might make a space ship move through space by incrementally adding or subtracting offsets from 
the CObject’s PositionX, PositionY and PositionZ variables each frame. 
 

 
Rotation 
 
To rotate a set of two dimensional points we will use the following formula on each point of the 2D 
polygon: 
 

)cos()sin(
)sin()cos(

θθ
θθ

×+×=
×−×=

OldYOldXNewY
OldYOldXNewX

 

 
In these equations, OldX and OldY are the two dimensional X and Y coordinates prior to being rotated. 
cos and sin are the standard abbreviation for the cosine and sine trigonometric functions. The theta 
symbol θ  represents the angle of rotation for the point specified in radians and not in degrees (most 
3D APIs, including DirectX Graphics, use radians for angle calculations). 
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Note: A radian is used to measure angles. Instead of a circle being divided into 360 degrees, it is 
divided into 2 * pi radians. Pi is approximately 3.14159 and is equivalent to 180 degrees in the radian 
system of measurement. Therefore there are approximately 6.28 radians in a full circle. 90 degrees is 
equivalent to pi / 2 (1.1570796 radians) and so on.  
 
Because many programmers prefer working with degree measurements, a macro can be created that 
will convert a value in degrees to its radian equivalent: 

             
            #define DegToRad( x ) ( x *( pi/180 ) ) 

 
 

 
 

Figure 1.17 
 
We will need to feed each of the four vertices in Fig 1.17, one at a time, through the above rotation 
formula to receive back our rotated vertices (Fig 1.18). The following code snippet demonstrates this: 
 
float angle = DegToRad( 45 ); 
... 
for ( USHORT v = 0; v < pPolygon->m_nVertexCount; v++) 
{ 
    CVertex OldVtx = pPolygon->Vertex[v];  
    CVertex NewVtx; 
       
    // Rotate the vertex 45 degrees 
    NewVtx.x = OldVtx.x * cos(angle) - OldVtx.x * sin(angle); 
    NewVtx.y = OldVtx.x * sin(angle) + OldVtx.y * cos(angle); 
 
    // Vertex is now rotated and stored in NewVtx     
    // Use to draw polygon in rotated position      
} 
... 
 
You might think of this rotation as rotating a point around the Z axis. While technically true that we do 
not see a Z axis in the image, you can contemplate the 2D image in 3D. In this case the Z component 
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of each point is zero and the Z axis is pointing into the page as it was in the 3D Cartesian system 
discussed earlier. Fig 1.18 shows the resulting points after rotating the polygon by 45 degrees: 
 
 

 
 

Figure 1.18 
 
The key point to remember is that in a given coordinate system, rotations are relative to the coordinate 
system origin. You can see in Fig 1.18 that the vertices are rotated about the origin (the blue circle). 
This is the center of rotation.  
 
Notice that when we rotate a vertex around an axis, the vertex component that matches the axis is 
unchanged in the result. If we rotate a vertex about the Y axis, only the X and Z values of the vertex 
are affected. If we rotate about the X axis, only the Y and Z values are affected. If we rotate around the 
Z axis, only the X and Y values are affected.  
 
The following formulas are used to rotate a 3D point around any of the three principal axes: 
 
X Axis Rotation 

 
)cos()sin(
)sin()cos(

θθ
θθ

×+×=
×−×=
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Y Axis Rotation 

 
)cos()sin(
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Z Axis Rotation 

)cos()sin(
)sin()cos(

θθ
θθ

×+×=
×−×=

OldYOldXNewY
OldYOldXNewX

 

 
Because rotations are always relative to the coordinate system origin we have to be careful about the 
order in which we perform the rotation and the translation operations in our pipeline. Let us imagine 
that we want to place a mesh into our world at position (0, 5, 0) and that we want it rotated by 45 
degrees about the Z axis. We might initially try something like this: 
 

1) Apply translation to the vertices to move the object to position (0, 5, 0) in world space. 
2) Apply 45 degree rotation about the Z axis so it is rolled in world space. 

 

 
 

Figure 1.19 
 
Fig 1.19 might not display what you were expecting. The object was first moved to the world space 
position (0, 5, 0) and then rotated about the Z axis relative to the world space origin.  
 
More often than not, we want to perform the rotation before the translation. Here the object would first 
be rotated in model space about its own center point (the model space origin) and then translated to the 
final position in world space (Fig 1.20). 
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Figure 1.20 
 

By performing the rotation transformation first we were able to achieve the expected world space 
position with a 45 degree roll about the mesh center point. Of course translating before rotating can be 
useful too. If you had a planet at the coordinate space origin then you might use this approach to make 
an object rotate around that planet at a constant distance (like an orbit).  
 
We can add some rotation members to our CObject class to allow for object rotations relative to axes:  

 
class CObject 
{ 
public:    
    CMesh *m_pMesh; 
      
    float PositionX; 
    float PositionY; 
    float PositionZ; 
      
    float RotationX; 
    float RotationY; 
    float RotationZ; 
} 

 
 

All of these transformations will take place when we render our meshes. They are performed at the 
per-polygon level for every frame before those polygons are drawn.  
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Cameras 
 

Before we can render anything we must create a virtual camera through which to view our world. All 
of our world space vertices must then be defined relative to this camera. This requires a new coordinate 
system called camera space (or view space) and as we saw earlier, transformations will be required to 
get our vertices into this new space. We will specify camera properties such as the current position, 
viewing direction, and field of view (FOV).  
 
We should also be able to move and orient a camera in our world in real-time. This is accomplished in 
a rather interesting and perhaps not immediately obvious manner:  

 
1) When player moves the camera forward, we translate the whole world backward 
2) When player moves the camera backward, we translate the whole world forward 
3) When player rotates left around the Y axis, we rotate the entire world right around the Y axis 
4) And so on… 

 
As you can see, whatever we want our virtual camera to do, we must make the opposite happen to 
every scene object. This gives the appearance that we are moving through the world when, in fact, it is 
the world that is moving around us.  
 
A simple camera class might hold only the camera world position and rotation. 
 
class CCamera 
{ 
public:    
    float PositionX; 
    float PositionY; 
    float PositionZ; 
 
    float RotationX;  // Pitch 
    float RotationY;  // Yaw 
    float RotationZ;  // Roll 
}; 
 
One could add input routines to convert mouse or joystick data into rotations for the camera. Moving 
left on the joystick might store a rotation of 1 degree in the RotationY member to make the camera 
yaw. If the joystick is pushed forward you might update the position of the camera to make it travel 
forward along the current heading.  
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A render loop that includes camera data might look something like the following: 
 
void DrawObjects() 
{ 
    for (each object) 
    { 
        for (Each Polygon in Object) 
        { 
            DrawPrimitive (Object , Polygon , Camera); 
        } 
    } 
} 
 
void DrawPrimitive (CObject * Object , CPolygon *Poly , CCamera * Cam) 
{ 
    for (each Vertex in Poly) 
    { 
      // convert polygon to world space (Already discussed) 
      Perform any object Rotations on vertices of polygon 
      Perform Translation on vertices of polygon to move polygon into world space 
               
      // convert polygon to view space 
      Perform inverse camera rotations on vertices of polygon 
      Perform inverse camera translations on vertices of polygon  
             
      // Convert polygon to Projection Space  
      Not Yet Covered 
            
      // Render 2D polygon 
      Not Yet Covered 
    } 
} 
 
If the camera had an X axis rotation of 45 degrees, the following code would rotate all of the vertices 
of every object in the world -45 degrees about the X axis (i.e. 45 degrees in the opposite direction).  
 
if (m_pCamera.RotationX) 
{ 
    VSVertex.y = Vertex.y * cos(-m_pCamera.RotationX) –  
                 Vertex.z * sin(-m_pCamera.RotationX); 
 
    VSVertex.z = Vertex.y * sin(-m_pCamera.RotationX) + 
                 Vertex.z * cos(-m_pCamera.RotationX); 
 
} // End if X Axis Rotation 
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Y and Z axis rotations would follow along similar lines: 
 
if (m_pCamera.RotationY) 
{ 
    VSVertex.x = Vertex.x * cos(-m_pCamera.RotationY) – 
                 Vertex.z * sin(-m_pCamera.RotationY); 
 
    VSVertex.z = Vertex.x * -sin(-m_pCamera.RotationY) +  
                 Vertex.z * cos(-m_pCamera.RotationY); 
 
} // End if Y Axis Rotation 
 
if (m_pCamera.RotationZ) 
{ 
    VSVertex.x = Vertex.x * cos(-m_pCamera.RotationZ) +  
                 Vertex.y * sin(-m_pCamera.RotationZ); 
 
    VSVertex.y = Vertex.x * sin(-m_pCamera.RotationZ) + 
                 Vertex.y * cos(-m_pCamera.RotationZ); 
 
} // End if Z Axis Rotation 
 
In the above code, Vertex is assumed to be in world space and is being converted into camera space 
(i.e. view space). The same rotation formulas are used as before with the exception that we are 
negating the angle passed into the function so that the objects are rotated in the opposite direction. If 
the camera has a position in the world other than (0, 0, 0) then this would also have to be taken into 
account which we will look at in a later section.  
 
It is worth pointing out that we devote an entire chapter to camera systems later in the course, so do not 
be especially concerned if some of these concepts are not immediately obvious to you. 
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Perspective Projection 
 

 
 
Perspective is an important aspect of how we process distance and scale in the world around us. In real 
life, as things move further away from us they appear to grow smaller and vice versa. The same will 
hold true for our scene geometry. As we move the camera away from our meshes, the meshes should 
‘shrink’. When we move it closer they should ‘grow’.   
 
Things also tend to move toward the center of your field of view as distance increases and away from 
the center as distance decreases. Most objects in your field of view will appear to be either left or right 
or up or down relative to the center of your field of vision. You can refer to these left/right positions 
using X coordinate values and up/down positions using Y coordinate values relative to that center. In 
the last section, we discussed converting our vertices to camera space where vertices are offsets 
relative to a camera coordinate system. We call the distance from the viewer position to any object a: Z 
coordinate relative to that position (a view space Z coordinate).  
 
As the Z coordinate increases between the viewer and a given mesh, the X and Y coordinates of each 
vertex in that mesh can be scaled by that Z amount (the distance) to produce the perspective effect: 
 

ViewSpaceZViewSpaceYDY
ViewSpaceZViewSpaceXDX

/2
/2

=
=

  

 
We divide each vertex view space x and y components by their view space z component. The result is a 
2D point in projection space. 
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Imagine that we have a coordinate that is 5 units to the right of the camera, 20 units up from the 
camera and 100 units in front of the camera. This vertex would have a view space coordinate of         
(5, 20, 100).  Performing the perspective projection: 
 

005.0
100

5
===

ViewSpaceZ
ViewSpaceX

projectedX
 

100
20

==
ViewSpaceZ
ViewSpaceY

projectedY = 0.2 

 
We end up with the 2D point (0.005, 0.2).  Note that these are not screen coordinates (since we know 
that those must be discreet integer values). These new coordinates are actually called viewport space 
coordinates (sometimes called clip-space coordinates or projection space coordinates).  
 
The 3D coordinates have been projected onto a 2D infinite plane. On this plane there is a projection 
window. If the x and y values are within this projection window then they are visible to the camera and 
should be rendered. It is at this point that 3D APIs often perform tests to see if the polygon is facing 
away from the viewer (back face culling) and may also clip any polygons that are only partially in 
view.  
 

 

 
2D projection space coordinates have been 
mapped to the projection plane using the x/z and 
y/z technique.  
 
Point P is not within the projection window 
because one of its coordinates is not within the -
1 to +1 range. 
 
Point Q will be visible from the camera position 
because its projected coordinates fall within the 
-1 to +1 range. 

 
The projection window is a square 2D window that is 2 units wide and 2 units high with an origin at 
the center. Thus a projection space point of (0, 0) would map directly to the center of the projection 
window. Valid coordinates in projection space are in the range of –1 to +1 on both the x and y axes. 
These are the coordinates generated after dividing by z in the equations shown above. 
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Both components of the sample projected point (x = 0.005, y = 0.2) are within the –1 to +1 range so in 
this particular case the point would be considered within the bounds of the projection window and 
therefore visible to the camera (within the field of view).  
 
Fig 1.21 shows a side view of the camera in view space prior to the divide by Z operation. Please note 
that the X axis is assumed to be going into the page and can not be seen and the same logic would also 
apply to the X coordinate projections. 
 

 
 

Figure 1.21 
 
As Z increases, Y is scaled in direct proportion. Given that the projection window maximum 
coordinate along the Y axis is +1.0, if Y = Z then our projection formula becomes: 
 

1===
y
y

z
yprojectedY  

 
If Y = Z in view space then that point will be projected at the very top of the projection window. As Z 
increases, the maximum Y point that will fall within the projection window is Y=Z or Y=-Z. The same 
is also true for the X projection.  
 
So, if at any point Y > Z or Y < -Z or X > Z or X <- Z, when this point is projected, it will fall outside 
the –1 to +1 range (and therefore outside the projection window).  
 
If we have a Z coordinate of 4 then the range of Y coordinates that are visible are [–4, +4] in view 
space. The maximum range of Y values that can be seen at a distance of Z=6 is in the range [–6, +6]. 
And so on. (Once again, exactly the same holds true for the X coordinate projection.) 
 
Thus, for any point in view space where (x>-z) and (x<z) and (y>-z) and (y<z) that point is visible.  
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When we scale the x and y components of the vertex in proportion to z, we are in effect creating an 
imaginary view cone that extends out at a 90 degree angle across both the x and y axes (45 degrees up 
and 45 degrees down on the Y axis and 45 degrees left and 45 degrees right for X). Where the two red 
lines meet in Fig 1.21 (at the camera position) there is a perfect right angle. Any points falling within 
this cone are considered visible because their divided x and y coordinates will fall within the bounds of 
the projection window.  
 
Thus our virtual camera has a 90 degree field of view because the ratio described above will always 
produce values that are consistent with this.   
 
Although the 90 degree view cone does not really exist, as there is no physical camera in our game 
world, it is a useful way to think about how functions that convert vertices from 3D to 2D space work. 
Dividing x and y by z stretches or squashes geometry as it gets closer or further away from the camera 
respectively. Looking at the view cone in Fig 1.21 we note that the total range between the bottom red 
cone line and the top red cone line at any given z position, is mapped into the  –1 to +1 range. As Z 
increases, a larger portion of the cone is mapped to the [–1, +1] range and things get squashed more 
towards the center of the projection window. 
 
Fig 1.22 shows a series of points plotted at the same y position in view space, each with increasing z.  
 
 

 
 

Diagram is not to scale. 
 

Figure 1.22 
 
The formula squashes the two red cone lines so that they become parallel with each other with a 
separating distance equal to the size of the projection plane (Fig 1.22). The blue lines show what the 
cone looks like after it has been squashed into what is essentially a box. Larger z values produce 
greater squashing ratios.  
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In Fig 1.22 there are five points in view space (green circles). Each has a y value of +2 and increasing z 
values are assigned. The effect of our projection formula can be seen when we look at the projected 
points (blue dots). All of these have been squashed into the [–1, +1] range. Although the points had 
identical y values in view space, when mapped to projection space they receive different y values.  
 
In many math textbooks perspective projection formulas are listed as:  

dz
xXp
/

=  
dz

yYp
/

=  
 
The problem with the projection formula we have been using is that it always projects with a field of 
view of 90 degrees. We would prefer to use an arbitrary field of view to give complete control over 
exactly how much of the scene can be viewed by the camera. In order to accommodate this, a new 
variable is introduced (d). This allows the projection window to be moved further from or closer to the 
camera. Because the size of the projection window remains the same (–1 to +1), moving the projection 
window further away from the camera reduces the cone size. Moving the projection window nearer to 
the camera increases the cone size. This new formula allows us to alter the camera FOV in a manner 
similar to the way a photographer might adjust the lens of his camera to capture more or less of a scene 
in his photo. In Fig 1.23 you can see why moving the projection window affects the FOV: 
 

 
Figure 1.23 

 
The cone is much smaller when the projection window is at a distance of 5 units from the camera than 
when it is when it is at a distance of 1 unit. This distance is labeled d in the above formula. 
 
While this technique works quite well, in DirectX Graphics (and in our software renderer) the 
projection window is always set at a fixed distance of 1.0 unit from the camera. The pipeline performs 
the x/z, y/z mapping into 2D space as was the case in our old formula: 
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z
xXp =  

z
yYp =  

 
But we can achieve the effect of the d value using a different strategy. Our code (and DirectX 
Graphics) will continue to use a 90 degree FOV behind the scenes but will use a projection matrix to 
deform geometry prior to the divide by z to accommodate the appearance of arbitrary FOV. We will 
examine the projection matrix in detail later in the lesson. For now we will proceed with a 90 degree 
FOV. 
 
Screen Space Mapping 
 
The final stage is finding a screen space pixel coordinate for our projected vertex. Transforming a 2D 
projection space point to a 2D screen space point requires mapping the –1 to +1 coordinates to the 
width and height of the current render window. The formula is:  
 
ScreenX =  projVertex.x * ScreenWidth  / 2 + ScreenWidth  / 2 
ScreenY = -projVertex.y * ScreenHeight / 2 + ScreenHeight / 2 
 
Let us assume our window is 640x480 pixels in size and that we have a vertex which has been mapped 
to (0, 0) in projection space. This should mean that it is in the center of the screen:  
 
ScreenX = 0 * (640/2) + (640/2) 
ScreenX = 0 * (320) + (320) 
ScreenX = 320 
 
Another example would be x = -1 in projection space. It should wind up on the far left hand side of the 
projection window (and thus the screen): 
 
ScreenX = -1 *(640/2) + (640/2) 
ScreenX = -1 *(320) + (320); 
ScreenX = -320 + 320 
ScreenX = 0; 
 
The Y value is projected into screen coordinates using the same approach but with one exception. In 
projection space (as with model space, world space and view space) the Y axis is positive running up 
and negative running down. In screen space (as we discussed earlier in this lesson) the Y axis would be 
0 at the top of the screen and increase toward the bottom. So we will need to invert it by negating the 
projection space Y coordinate to ensure conformity.  
 
Let us look at an example using a projection Y value of Y = 1 in projection space. We saw earlier that 
this value was at the very top of the projection window. We need it to be at the top of the screen too: 
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ScreenY = -1 * (480/2) + (480/2) 
ScreenY = -1 * (240) + (240) 
ScreenY = -240 + 240 
ScreenY = 0 
 
Once all of the vertices of our polygon are in screen space we can draw lines between each point. The 
result is a wire frame rendition of our scene geometry.  
 
Draw Primitive Pseudocode 

 

 
 
The pseudo-code to an updated DrawPrimitive function follows. In the example, we pass the object we 
are processing and the polygons we wish to render. The object is needed for its position and rotation 
information which is necessary to transform the polygons into world space. We pass a pointer to a 
camera so that we can access the camera position and rotational information in order to do a view 
space transformation after the world space transformation: 
 
void DrawPrimitive( CObject *pObject , CPolygon *pPoly , CCamera *pCamera ) 
{ 
    CVertex CurrVertex; 
    CVertex PrevVertex; 
 
    // Retrieve object angles; 
    float Opitch = pObject->RotationX; 
    float Oyaw   = pObject->RotationY; 
    float Oroll  = pObject->RotationZ; 
  
 
 
    // Retrieve Camera angles 
    float Cpitch = pCamera->RotationX; 
    float Cyaw   = pCamera->RotationY; 
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    float Croll  = pCamera->RotationZ; 
 
    // Loop round each vertex transforming as we go 
    for ( USHORT v = 0; v < pPoly->m_nVertexCount + 1; v++ )  
    { 
       // Store the current vertex 
        CurrVertex = pPoly->m_pVertex[ v % pPoly->m_nVertexCount ]; 
 
        // WORLD SPACE TRANSFORMATION   
        // Apply any object rotations if applicable 
        if (Opitch) // rotate object about its x axis like pitching up and down 
        { 
            currVertex.y = currVertex.y * cos(Opitch) – currVertex.z * sin(Opitch); 
            currVertex.z = currVertex.y * sin(Opitch) + currVertex.z * cos(Opitch);  
 
        } // End if Pitch 
 
        if (Oyaw) // rotate object about its Y axis like yawing left/right 
        { 
            currVertex.x = currVertex.x * cos(Oyaw) + currVertex.z * sin(Oyaw); 
            currVertex.z = currVertex.x * -sin(Oyaw) + currVertex.z * cos(Oyaw); 
 
        } // End if Yaw 
 
        if (Oroll) // rotate object about its Z axis like rolling left or right 
        { 
            currVertex.x = currVertex.x * cos(Oroll) + currVertex.y * sin(Oroll); 
            currVertex.y = currVertex.x * sin(Oroll) + currVertex.y * cos(Oroll); 
 
        } // End if Roll 
  
        // Now move the vertex into its world space position 
        currVertex.x += pObject.PositionX; 
        currVertex.y += pObject.PositionY; 
        currVertex.z += pObject.PositionZ;   
                  
 
        // VIEW SPACE TRANSFORMATION 
        // subtract the camera position from the vertex so its position is relative 
        // to the camera with the camera at the origin 
        currVertex.x -= pCam->PositionX; 
        currVertex.y -= pCam->PositionY; 
        currVertex.z -= pCam->PositionZ; 
          
        // if the camera is rotated, rotate the world the opposite way 
        // but the only difference  
        // from the object rotation is the negated parameter 
        if (Cpitch) // rotate camera about its x axis like pitching up and down 
        { 
            currVertex.y = currVertex.y * cos(-Cpitch) – currVertex.z * sin(-Cpitch); 
            currVertex.z = currVertex.y * sin(-Cpitch) + currVertex.z * cos(-Cpitch);  
 
        } // End if Pitch 
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        if (Cyaw) // rotate cam around its Y axis 
        { 
            currVertex.x = currVertex.x * cos(-Cyaw) + currVertex.z * sin(-Cyaw); 
            currVertex.z = currVertex.x * -sin(-Cyaw) + currVertex.z * cos(-Cyaw); 
         
        } // End if Yaw 
  
        if (Croll) // rotate camera about its Z axis like rolling left or right 
        { 
            currVertex.x = currVertex.x * cos(-Croll) + currVertex.y * sin(-Croll); 
            currVertex.y = currVertex.x * sin(-Croll) + currVertex.y * cos(-Croll); 
 
        } // End if Roll 
 
        // PERSPECTIVE PROJECTION TRANSFORMATION 
        // divide x and y by z to project point onto 2D projection  
        // window in the –1 to +1 range 
        currVertex.x /= currVertex.z; 
        currVertex.y /= currVertex.z;  
 
 
        // SCREEN SPACE TRANSFORMATION  
        // Convert to screen space coordinates 
        vtxCurrent.x =   vtxCurrent.x * SCREENWIDTH  / 2 + SCREENWIDTH  / 2; 
        vtxCurrent.y =  -vtxCurrent.y * SCREENHEIGHT / 2 + SCREENHEIGHT / 2; 
 
        // If this is the first vertex, continue. This is the first  
        // point of our first line. 
        if ( v == 0 ) { vtxPrevious = vtxCurrent; continue; } 
 
        // Draw the line  between this one and the previous vertex in the loop 
        DrawLine( vtxPrevious, vtxCurrent, 0 ); 
 
        // Store this as new line's first point 
        vtxPrevious = vtxCurrent; 
 
    } // Next Vertex 
 
} 
 
After the above function has been called for each polygon of every object in the world we would be 
left with a 2D visual representation of our 3D world from the point of view of our virtual camera.  
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3D Mathematics Primer 
 
Vectors  
 
A vector is a mathematical construct that describes a physical point or a direction and magnitude. We 
can represent a 3D vector using a C++ class: 
 
class Vector 
{ 
public: 
    float x; 
    float y; 
    float z; 
}; 
 
Vectors are very important to the 3D graphics programmer. You might have noticed the similarity to 
3D Cartesian points. In fact, a 3D point is a vector. To be more precise it is a 3D vector. There are also 
2D vectors and so on for other dimensions.  
 
Although many people use the terms vector and point interchangeably there is a distinction; a point is 
always a vector but the reverse is not always true. It depends on how we intend to interpret the values 
stored in the vector: either as an actual location in space (where the vector does indeed describe an 
absolute point) or as an indicator of direction with magnitude (which can be used relative to some 
other point in space). 
 
Point vectors can be defined via a direction from some origin (the origin of our coordinate system) and 
a magnitude (the distance to travel in that direction). If we travel out from the origin in a given 
direction for a specified distance we end up at a location described in 3D space. 
 
In Fig 1.24 we see points plotted in a 2D Cartesian coordinate system. Although each point can be 
described as a collection of offsets from the origin along each major axis, each point also describes a 
vector from the origin to that point (the green arrows):  
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Figure 1.24 
 

The vector A<5, 5> can be described as a location 5 units right of the origin and 5 units up from the 
origin. It also describes the line shown by the green arrow which has a definite direction and a length. 
  
 
Vector Magnitude 
 
We can use the Pythagorean Theorem to determine the length of a vector. This length is the distance 
from the origin to the point (the length of the green arrows above). 
 
2D 22 YXitude +=VectorMagn  
 
Everything is identical when working with 3D vectors; we simply have an extra axis. To find the 
length of a 3D vector we would use the extended formula: 
 
3D 222 ZYXitude ++=VectorMagn  
 
We could write a function that returned the length of a 3D vector like so: 
 
float VectorLength3D( CVector * v ) 
{ 
     return sqrtf( (v->x * v->x) + (v->y * v->y) + (v->z * v->z)); 
} 
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If we use the 2D vector A<5, 5>: 
 
Length = sqrtf( (5*5)+(5*5) ) 
       = sqrtf( 50 ) 
       = 7.0710 
 
If we travel a distance of 7.0710 units from the origin and disperse that motion evenly in both the 
positive X and Positive Y directions (because the x and y vector components are equal in this example) 
we will arrive at the location (5, 5).  
 
We calculate the length of vector C<1, -8>: 
 
Length = sqrtf( (1*1) + (-8*-8)) 
       = sqrtf( 65) 
       = 8.06225 
 
If we travel from the origin down the positive X axis and the negative Y axis at a ratio of 8:1 for a 
distance of 8.06225 units we would arrive at location C. The distance is dispersed over the ratio of the 
X:Y components in a 2D vector or the X:Y:Z components in a 3D vector.  
 
Vector magnitude is represented using two uprights on either side of the vector name: 
Length of C = |C|. 
 
While we can and will use vectors for representing the vertices of our objects in 3D space, they can 
also be used for many other tasks in 3D graphics programming, from representing the direction in 
which the camera is facing, to representing the way that light reflects off a polygon or a vertex. Vectors 
will be used within collision detection systems and to make objects move around your game world.  
 

 
Vector Addition and Subtraction 
 
Vector addition is performed by adding like components together to create a new vector. We can write 
vector addition using the short hand (C = A + B).  
 
CVector AddVectors3D( CVector A , CVector B) 
{ 
    CVector C; 
   
    C.x = A.x + B.x; 
    C.y = A.y + B.y;  
    C.z = A.z + B.z; 
   
    return C; 
} 
 
To add two 2D vectors together simply remove the addition of the Z components. 
 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 38 of 97 

 

TeamLRN



 

Adding two 2D vectors (A and B) we can visualize the resulting vector (C) by taking the tail of B and 
placing it at the head of A and then drawing a new vector between the tail of A and the head of B (Fig 
1.25). The second vector (B) is now relative to first vector (A).  
 

 
 

Figure 1.25 
 
The circular inset in Fig 1.25 shows the vectors A and B and their relationship to one another prior to 
the addition. During addition, A begins at the origin and B is added to this vector. So its tail starts at 
the tip of A. The resulting vector is the red vector C. 

 
Vector subtraction is similar to addition: 
 
CVector SubtractVector3D( CVector A , CVector B ) 
{  
    CVector C;  
   
    C.x = A.x – B.x; 
    C.y = A.y – B.y; 
    C.z = A.z – B.z; 
 
    return C; 
} 
 
Because subtracting B from A is the same as negating B and then adding it to A, we could represent 
this as:  
 
C = A – B 
 
OR (the negated version) 
 
C = A + (-B) 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 39 of 97 

 

TeamLRN



 

We can visualize the resulting vector (C) by placing the tail of B at the tip of A as we did with 
addition. This time we flip (negate) the direction of B so that it is facing in the opposite direction. Fig 
1.26 shows the same two 2D vectors A and B. B is subtracted from A to produce the red vector C. 
 

 
 

Figure 1.26 
 
Vector subtraction is quite useful. It allows us to gain an understanding of the relationship between the 
objects in our scene. Let us say, for example, that we have two fighter planes (Fighter Plane A and 
Fighter Plane B) in our game world. One of them is at position A, and the other at position B. If we 
subtracted position B from position A, we would end up with a vector that told us both the direction 
Fighter Plane A would have to fly to get to Fighter Plane B’s position as well as the distance between 
the two by calculating the vector length (Fig 1.27). 
 

 
 

Figure 1.27 
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In Fig 1.27 there are two points (A and B) representing our fighter planes. If we subtract B from A we 
would end up with Vector B-A = (8, 3) shown as the green arrow above pointing right and up. We 
could then go on to calculate the length of the vector as follows 
 
MagnitudeB-A = 22 38 +  

             = 964 +  

             =  8.544 
 
So the distance between fighter plane A and fighter plane B is 8.544 units. In order for fighter plane A 
to reach fighter plane B it must travel that distance in a ratio of 8:3 along the positive X and Y axes, 
respectively.  

 
Vector Scalar Multiplication 

 
Vectors can be multiplied by scalar values. In this case the scalar is multiplied with each component of 
the vector. A function that performs scalar multiplication on a 3D vector might look like the following: 
  
CVector VectorMultiply3D (CVector A , float scalar) 
{ 
    CVector C; 
 
    C.x = A.x * scalar; 
    C.y = A.y * scalar; 
    C.z = A.z * scalar; 
 
    return C; 
}  
 
Fig 1.28 shows the visual effect of multiplying Vector A by 2.0.  
 

 
 
 

Figure 1.28 
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Unit Vectors 
 
A special type of vector that is incredibly useful in 3D graphics programming is the unit vector. A unit 
vector is a vector with magnitude = 1. The process of taking a non-unit vector and making it a unit 
vector is called normalizing the vector (or normalization). This is done by dividing each component 
of the vector by the overall length of the vector.  
 

VectorC     = (8,3,10) 

|C|         = 222 1038 ++  
|C|         = 13.152946 
 

UnitVectorC = 







||

.
||

.
||

.
C

zC
C

yC
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xC
 

UnitVectorC = 





152946.13
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152946.13
3

152946.13
8

 

 
UnitVectorC = ( 0.60822 , 0.2280 , 0.7602859 ) 

 
Vector C should now have a length of 1. To prove this let us run the distance calculation on the 
resulting vector: 
  

 UnitVectorC  = ( 0.60822, 0.2280, 0.7602859 ) 

|UnitVectorC| = 222 7602859.02280.060822.0 ++  
|UnitVectorC| = 0.9999... 

 
This is as close to 1.0 as we can generally expect using limited precision floating point math. 
 
Note that while the length becomes 1.0 the directional information remains the same. This is due to the 
fact that all vector components are scaled equally by the length. Next we see a function that could be 
called to normalize a vector. It uses one of our earlier functions (VectorLength3D) to initially calculate 
the length of the vector. 
 
CVector VectorNormalize3D ( CVector A) 
{ 
         float length = VectorLength3D ( A ); 
         A.x = A.x / length; 
         A.y = A.y / length; 
         A.z = A.z / length;  
 
         return A; 
} 
 
We mentioned that unit vectors can be used for object movement. Let us assume that we have a 
spaceship facing down the X and Z axes of our world in equal proportions. This direction could be 
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represented with a single vector (we will call this DirectionVector) and might be (1, 0, 1). Imagine that 
we want to move our space ship forward based on a velocity of 100 world space units per frame.  
 
DirectionVector = (1,0,1) 
Speed           = 100; 
 
Movement.x = DirectionVector.x * speed; 
Movement.y = DirectionVector.y * speed; 
Movement.z = DirectionVector.z * speed; 
 
=  
 
Movement.x = 1 * 100 = 100; 
Movement.y = 0 * 100 = 0; 
Movement.z = 1 * 100 = 100; 
 
Is this correct? We said the space ship could travel 100 units so let us check the length of the 
movement vector: 
 

|movement| = 222 1000100 ++  
|movement| = 141.42135 
 
That is obviously incorrect as we moved the ship 141 units. The problem is that the direction vector 
specified (1, 0, 1) is not a unit vector. If we calculate the length of that initial direction vector we can 
see that we would end up with: 
 
|DirectionVector| = 222 101 ++  = 1.4142135 
 
The error is the result of the ship moving a total of 100 units along the X axis and 100 units along the 
Z axis (which is not the same as moving 100 units diagonally as we would expect). Before we use our 
direction vector to calculate the new movement vector we must normalize the vector: 
 

DirectionVector = 





4142135.1
1,

4142135.1
0,

4142135.1
1

 = ( 0.7071068 , 0 , 0.7071068 ) 

 
Let us calculate the ship’s movement vector again with the normalized direction vector. 
 
Movement.x = 0.7071068 * 100 = 70.71068 
Movement.y = 0.7071068 * 0   = 0 
Movement.z = 0.7071068 * 100 = 70.71068 
 
This movement vector (70.71068, 0, 70.71068) gets added to our ship’s previous position. 
 
NewPosition.x = OldPosition.x + Movement.x; 
NewPosition.y = OldPosition.y + Movement.y; 
NewPosition.z = OldPosition.z + Movement.z; 
 
 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 43 of 97 

 

TeamLRN



 

Let us check our results: 
 
|Movement| = 222 71068.70071068.70 ++   
|Movement| = 100 
 
We now have a space ship located at a new position having traveled exactly 100 units from its previous 
position in the direction of the unit vector. This is the equivalent of moving 70.7 units along the X axis 
and 70.7 units along the Z axis. If unit vectors are used to represent the direction an object is facing in 
your game world, using the above technique allows you to easily move that object forward (no matter 
which direction it is facing).  
 
Object movement is just one of the many uses of unit vectors. Unit vectors are also used to describe the 
direction your polygons are facing; something which is used extensively during lighting calculations. 
You will come to discover that unit vectors are seen all the time in 3D graphics programming and we 
will cover a lot of these situations throughout the coming lessons. 
 
The Cross Product 

 
The cross product operation between two vectors results in a third vector perpendicular to the two 
input vectors. The ‘× ’ symbol is used to represent a cross product between two vectors. 
 
Input vectors 
A = (0, 1, 0) 
B = (1, 0, 0) 
 
Cross product calculation 
C = A B = ((A.y*B.z) - (A.z*B.y), (A.z*B.x) - (A.x*B.z), (A.x*B.y) - (A.y*B.x)) ×
C = ((1*0) - (0*1), (0*1) - (0*0), (0*0) - (1*1)) 
C = (0, 0, -1) 
 
The resulting vector C is perpendicular (90 degrees) to vectors A and B. The two green vectors in Fig 
1.29 show the input vectors and the resulting vector C is shown in red.  
 

 
Figure 1.29 
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In this example we used two unit vectors as input and the vector returned is also a unit vector. The 
cross product does not require that the input vectors be unit vectors. If the two input vectors are not 
unit length then the resulting vector will also not be unit length but it will still be perpendicular. If you 
require a unit length vector then you will need to normalize the resulting vector. 
 
The order in which we pass the vectors into the cross product operation is significant. If we had 
performed B×A instead of A×B, the resulting vector C above would still be perpendicular to the input 
vectors but would be facing in the opposite direction. Try this out for yourself on paper using the 
above calculations.  
 
So the cross product works with any two arbitrarily orientated vectors and will always return a vector 
that is perpendicular to them.  
 
CVector VectorCrossProduct (CVector A , CVector B) 
{ 
    CVector C; 
     
    C.x = (A.y*B.z) – (A.z*B.y); 
    C.y = (A.z*B.x) – (A.x*B.z); 
    C.z = (A.x*B.y) – (A.y*B.x); 
 
    return C;  
} 
 

Normals 
 

One very useful application of the cross product is generating what is known as a surface normal. A 
normal is a unit length vector that describes the direction a polygon is facing.  
 
In Fig 1.30 we see a triangular polygon consisting of three vectors (v1, v2, v3). If we were to subtract 
v0 from v1 the result would be a vector which describes Edge 1. If we do the same again, this time 
subtracting v0 from v2 we get Edge 3. The cross product of these two edges yields a vector which, 
after normalization, is the polygon normal:  
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Figure 1.30 
 
The following code snippet assumes that the polygon structure has already been initialized with the 
vertex data and uses some of our previously created vector functions to accomplish this task. This code 
can also safely cast our polygon vertex structure to a CVector because at this point our vertex structure 
simply contains an x, y and z position.  
 
CVector GeneratePolygonNormal( CPolygon P ) 
{ 
    CVector Edge1, Edge2, Normal; 
 
    Edge1 = SubtractVector3D ( Polygon.Vertices[1], Polygon.Vertices[0] ); 
    Edge2 = SubtractVector3D ( Polygon.Vertices[2], Polygon.Vertices[0] ); 
  
    Normal = VectorCrossProduct ( Edge1, Edge2); 
    Normal = VectorNormalize3D  ( Normal ); 
 
    return Normal; 
} 
  
If the polygon is rotated, the normal would have to be regenerated in order to correctly describe the 
new orientation.  
 
The Dot Product 
 
The  symbol is commonly used to express the dot product (inner product) operation between two 
vectors. The dot product calculation between two 3D vectors A and B can be expressed as follows: 

•

 
A• B = (A.x * B.x) + (A.y * B.y) + (A.z * B.z) 
 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 46 of 97 

 

TeamLRN



 

The results of each component multiply are added to create a single scalar value and not another 
vector. The significance of the result can be appreciated when we look at an alternative formula for the 
dot product: 
 
A• B = cos(θ )|A||B| 
 
The value returned by the dot product of two vectors is equal to the cosine of the angle between those 
two vectors multiplied by their magnitudes. So we can find the cosine of the angle between two vectors 
by doing the following: 
 
cos(θ ) = A• B / |A||B| 
 
When the two vectors are unit vectors then the equation is simplified because the length of both 
vectors equates to 1. This allows us to eliminate the magnitudes and simplify the procedure: 
 
cos(θ ) = A• B 
 
Plugging the cosine of the angle into the acos (inverse cosine) function, we quickly find the actual 
angle between the two vectors (expressed in radians).  
 
We can write a generic ‘angle determination’ function which accepts two vectors and returns the angle 
between them. Unfortunately finding the angle between two vectors in this way involves first finding 
the length of the vectors. This is not a particularly fast process because it involves three multiplies, 
three additions and a square root. For this reason we generally try to use unit vectors wherever possible 
because it simplifies and speeds up the calculation. The function below shows how one might 
implement a dot product procedure: 
 
float VectorDotProduct3D (CVector A , CVector B) 
{ 
    return (A.x * B.x + A.y * B.y + A.z * B.z); 
} 
  
If the two vectors are of unit length, this function will return the cosine of the angle between the two 
vectors.  
 
If you need to find the angle between two vectors and they are not assured to be unit length then you 
could write an ‘angle finding’ function which automatically handles the division of the dot product by 
the vector magnitudes: 
 
float FindVectorAngles3D (CVector A, CVector B) 
{ 
    float LengthOfA = VectorLength3D ( A ); 
    float LengthOfB = VectorLength3D ( B );       
    return acos ( (A.x*B.x + A.y*B.y + A.z+B.z) / (LengthOfA * LengthOfB) ); 
} 
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Fig 1.31 shows how the dot product works when determining the angle between two 2D vectors. 
 

 

 
 

Figure 1.31 
 

|A| = 22 103 +  = 10.440306 

|B| = 22 411 +  = 11.704699 
 
cos (θ ) = (3*11) + (10*4) / (10.440306 * 11.704699) 
cos (θ ) = 73 / 122.20063 
 

θ  = acos(0.5973782)   
θ  = 0.93056 radians 
θ  = 53.31   degrees 
 

One thing to remember is that the vectors share the same origin during the dot product operation. 
Think of the process as placing the tail points of each vector at the origin of the coordinate system.  
 
Often we only need to know whether an angle between two vectors is larger or smaller than 90 
degrees. If we do not need to know the actual angle, then we do not need to use unit vectors or divide 
by the magnitude. The sign of the result will not change because vector magnitudes are always 
positive. 
 
There are some important points to note about the dot product between two vectors: 

a. if the angle < 90 degrees the result will be a positive number 
b. if the angle = 90 degrees the result will be zero 
c. if the angle > 90 degrees the result will be a negative number 
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This diagram on the left outlines the different 
relationships between two vectors and the result 
returned by the dot product operation. 
 
 
If both of the vectors are unit vectors then the 
result will be the cosine of the angle between the 
two vectors. You can pass that result into the acos 
function to determine the actual angle in radians. 
 
Remember that both of the source vectors are 
moved to the origin during the dot product so that 
their tails share a single point.  
 

 
 
Planes 

 
A plane is an infinitely thin slice of 3D space that stretches out to infinity in all directions. It is the 3D 
equivalent of an infinite line in 2D. To visualize a plane, pick up a piece of paper and rotate it to some 
arbitrary angle (making sure not to bend it). Now imagine that the paper had no edges and in fact went 
on forever in all directions. Although the plane is infinite it does have an orientation in the 3D space.  
 
Rotating your piece of paper to different angles show you an infinite number of different planes. Each 
orientation change defines a new plane. You could draw a polygon in the center of that piece of paper 
and you will see that as you rotate the paper the polygon changes orientation too. But it is always on 
that plane. In fact, polygons are subsets of planes. If you imagine a polygon without any edges so that 
its area expanded forever in all directions, you would have the plane the polygon is said to lay on. 
 
Planes are useful for many things in 3D graphics development. For example, if we know that a point 
(say, our camera location) is behind a certain plane then we know that the polygons on that plane are 
facing away from us and cannot be seen. This allows us to quickly reject polygons that do not require 
further testing. 
 
Fig 1.32 shows an infinite plane in a 3D Cartesian coordinate system. The red plane is technically 
infinite but we have taken some liberties to make our plane finite in size for easier viewing. Also 
depicted is a point that lies on that plane and a vector describing the orientation of the plane (shown in 
green). This vector is called the plane normal. Like the polygon normal discussed earlier in the lesson, 
the plane normal is also a unit length vector. It describes the orientation of the plane.  
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Figure 1.32 
 
A typical class which might be used to store a plane is: 
 
class CPlane 
{ 
public:  
 
    CVector PlaneNormal; 
    float   DistanceToPlane;  
}; 
 
The PlaneNormal member variable is a unit length vector that describes the orientation of the plane. 
The DistanceToPlane variable is the distance to the plane as measured from the origin to the closest 
point on the plane (the black dotted line in the graphic). It can be determined by tracing a line from the 
origin to the plane in the direction of the  plane normal (Fig 1.33). 
 

 
Figure 1.33 
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Fig 1.33 represents a cross section of the 3D world as if we were looking at the plane from the ‘side’. 
In two dimensions the plane looks like an infinite line, but it would have an infinite depth coming out 
and going into the page.  
 
Because the plane normal is facing away from the origin, the origin is said to be behind the plane. In 
this case the distance to the plane will be a positive distance value. If the plane is facing the origin then 
the origin is said to be in front of the plane and the distance will be negative.  
 
To find the plane on which a polygon lies (and determine the plane normal) we would calculate a 
normal for the polygon using the cross-product of the edges as described earlier. We could then copy 
this data directly into the plane structure. To calculate the distance the dot product will be used. 
 
Recall that the dot product of two unit vectors is equal to the cosine of the angle between them. 
However, when one of the vectors is a non-unit vector then the outcome of the dot product will equal 
the cosine of the angle between them multiplied by the length of the non-unit vector.  

 

Figure 1.34 
 
In Fig 1.34 the non-unit vector (v1) forms the hypotenuse of a right angled triangle and the unit vector 
(v2) forms the adjacent leg with a length of 1.0. The cosine is also the length of the adjacent leg of a 
right-angled triangle.  
 
The result of the dot product of any non-unit vector with a unit vector is the length of the first vector 
projected onto the unit vector. The length of v1 is projected onto v2 in the diagram and results in the 
length of the adjacent side ((0, 0) to p1). Imagine that the opposite leg of the triangle above is a plane 
on which the polygon lies and that the (5, 5) coordinate is some point on that plane (any vertex 
belonging to a polygon will do). v1 is the direction vector from the origin of our coordinate system to 
the vertex at position (5, 5). Vector v2 is the same as the polygon/plane normal. The result of the dot 
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product is the shortest distance to the plane (p1). Note that this does not tell us the distance to the 
polygon necessarily, only the distance to the infinite plane on which it lies.  
 
CVector PointOnPlane = (5.0, 5.0, 0.0);  // Vector from origin to point on plane          
CVector Normal       = (1.0, 0.0, 0.0);  // Unit vector (the plane normal) 
 
// p1=distance to the plane 
float DistanceToPlane = VectorDotProduct3D( PointOnPlane, Normal ); 
 
The result of the dot product is 5. The length of PointOnPlane (v1 in diagram) is: 
 
length = sqrtf(5*5,0*0,5*5) ; // we get the answer 7.0710678. 
 
We can see in Fig 1.34 that the angle is 45 degrees (it climbs in equal steps along each axis. To be sure 
this is true we can divide the result of our dot product (which was 5) by the length of the non-unit 
vector): 
 
5 / 7.0710678 = 0.7071067; // gives us the cosine of the angle 
 
float angle = acosf(0.7071067) = 0.7853981; // 0.78539181 radians = 45 degrees 
 
The dot product returns the result we expect by finding the cosine of the angle first which it then 
multiplies by the length of the non-unit vector. 
 
DotProduct = (Cosine of 45 Degrees) * (Length of v1) 
DotProduct = 0.7071067 * 7.0710678 
DotProduct = 5 
 
So in order to calculate the distance from the origin to the plane we need two vectors. The first is the 
plane normal. The second vector is a non-unit vector that starts from the origin and extends to any 
point known to be on that plane (Fig 1.35). The dot product between these two vectors is our plane 
distance. 
 

 
Figure 1.35 
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We can now write a function that would construct a plane from a polygon. Later we will be using 
DirectX Graphics helper functions to perform all of these calculations but it is worth understanding the 
mathematics happening under the hood. 
 
CPlane GetPolygonPlane( CPolygon & P ) 
{ 
    CPlane Plane; 
      
    // Calculate polygon Normal by performing cross product on two of the 
    // polygons edges  
    CVector Edge1  = P.Vertices[1] – P.Vertices[0]; 
    CVector Edge2  = P.Vertices[3] – P.Vertices[0]; 
    CVector Normal = VectorCrossProduct( Edge1, Edge2 ); 
      
    // normalize this so it is unit length. We now have our plane normal 
    Plane.PlaneNormal = VectorNormalize3D (Normal); 
      
    // Perform dot product between ANY vertex in the polygon and the plane normal 
    // to get distance 
    Plane.DistanceToPlane = VectorDotProduct3D( P.Vertices[0], Plane.PlaneNormal);   
    return Plane; 
} 
 
Knowing the plane of a polygon also allows us to determine whether it is facing away from the viewer. 
We can do this test in world space and thus avoid transforming the vertices through the entire pipeline 
only to be rejected in screen space (where it would have a counter-clockwise vertex winding order). 

 
Figure 1.36 

 
Fig 1.36 shows the dot product between the camera position in world space and a polygon plane. We 
create a vector from the camera position to any point on the polygon plane (any vertex of the polygon 
will do) and perform the dot product on this vector and the polygon plane normal. This gives us the 
distance from the camera to the polygon plane.  
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In the circular inset below polygon A, when the polygon normal and the vector V1 (created by 
subtracting any vertex in the polygon from the camera’s position) have the dot product performed 
between them the two vectors create an angle that is larger than 90 degrees. Since the n1•  V1 result is 
a negative number the polygon is facing the camera. This holds true with Polygon B as it is clearly 
facing away. The two vectors n2 V2 create an angle smaller than 90 degrees and the result is a 
positive number. 

•

 
 
Matrices 
 
A matrix is a table of values arranged in rows and columns. The table can be of any dimensions. Below 
we can see an example of a 3x3 matrix: 
 

















−

−

2711
2950

145
 

 
Access to the matrix (and indeed all matrices) must be done in a consistent manner. Some math texts 
use a row major addressing approach. A matrix position of [2][3] means that we are referring to the 
value in [Row 2][Column 3]. In the above example you can see that this is number ‘29’. Others use a 
column major system where the same [2][3] reference would describe the element in the above table 
that contains ‘-7’ as its value. Interpreting a matrix element description using the wrong system returns 
an incorrect result.  
 

Note: DirectX Graphics uses the row major system for accessing matrix elements. 
 
The matrix in the above example is a special type of matrix called a square matrix. This means that it 
has as many rows as it does columns. Matrices can be of any size however. The following matrix is an 
example of a 3x1 matrix, because it has 3 rows but only one column: 
 

















3
9
3

 

 
The following matrix is a 1x3 matrix: 

 
[ ]393  

 
We can replace the numbers in each element with some variables labeled x, y and z: 
 

[ ]zyx  
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This matrix looks identical to our 3D vector. In fact, you can think of a 3D vector as being a matrix of 
dimensions 1x3. 
 
A matrix having m rows and n columns is referred to as an m x n matrix (order m x n). 
 
A matrix is usually referred to with a capital letter such as ‘M’ or ‘A’. Each element in that matrix has 
its own address that describes the location of the element using double suffix notation. Each address 
contains three parts: the letter that describes the matrix, the first number indicating the row, and the 
second number indicating the column: 
 

















333231
232221
131211

mmm
mmm
mmm

 

 
Note:  In some textbooks and in some code implementations the labeling scheme is zero based for 
both rows and columns. This means that m11 would be referred to as m00 and m32 would be m21. If 
you are converting code from source that uses the m00 based convention, you will need to add ‘+1’ to 
each label: m00 = m(0+1)(0+1) = m11. 

 
 

Matrix/Matrix Multiplication 
 
Two matrices can be multiplied together if and only if they share the same inner dimension.  
 
Matrix A (3x3)  * Matrix B (3x6). The inner dimensions are A 3x3  * B 3x6 (OK) 
 
Above you see that when we line up the four matrix dimensions we get: 3x3 3x6. The inner 
dimensions of both matrices do indeed match and these matrices can be multiplied. The following 
matrices could not be multiplied together: 
 
Matrix A (3x3) * Matrix B (6x3). The inner dimensions are A 3x3 * B 6x3 (NOT OK) 
 

 
Inner Dimension Rule: Matrices can only be multiplied when the number of columns in the first is 
equal to the number of rows in the second.  

 
If two matrices have a matching inner dimension they can be multiplied to create a resulting matrix 
with dimensions equal to their outer dimensions.  A 5x8 * B 8x16 would result in a matrix of 
dimensions 5x16.   
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Matrix multiplication is easier to understand when we look at some reference tables. In the next 
example, we want to multiply two square matrices A and B: 

 
Matrix A 

a11  a12  a13   
a21  a22  a23   
a31  a32  a33     

           Matrix B 
b11 
b21 
b31 

b12 
b22 
b32 

b13 
b23 
b33 

  
 

We treat each row in the Matrix A as a vector and each column in Matrix B as a vector. In this 
example since we are using 3x3 matrices each vector is a 3D vector. Again, vectors can be 4D, 
5D….nD, etc. so this works with any size matrices that can be multiplied. Matrix A consists of 3 row 
vectors: Vector 1 (a11, a12 ,a13), Vector 2 (a21 , a22 , a23) and Vector 3 (a31, a32 , a33). Matrix B 
also consists of 3 vectors: Vector 1 (b11, b21, b31), Vector 2 (b12, b22, b32) and Vector 3 (b13, b23, 
b33). In order to calculate our resultant matrix we need to calculate the value for each element in the 
output matrix. Our resulting matrix will be called M as shown below: 

 

M =  
















333231
232221
131211

mmm
mmm
mmm

 
We begin by calculating the value that will be stored at position m11. Because this element is in row 1 
and column 1 of the resultant matrix the value stored here will be the dot product  of Vector 1 (1• st 
row) in Matrix A with Vector 1 (1st column) in Matrix B. The double suffix notation of the element 
you are calculating in the resultant matrix describes which rows from Matrix A to dot with the columns 
from Matrix B. So the value of m32 would be calculated like this: 

 
Blue Row (A) •  Green Column (B) 

 
Since we are calculating the result of address [3][2], we dot the [3] vector of Matrix A with the [2] 
vector of matrix B. This same multiplication is carried out to compute every cell in the resulting 
matrix.  

 

















•••
•••
•••

=















×
















332313
322212
312111

333231
232221
131211

333231
232221
131211

bColaRowbColaRowbColaRow
bColaRowbColaRowbColaRow
bColaRowbColaRowbColaRow

bbb
bbb
bbb

aaa
aaa
aaa

 

 
The dot product notation allows us to write the entire multiplication for the resulting 3x3 matrix in a 
shorthand way. Look at element [1][1] in the resulting matrix. We can write 
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aRow1• bCol1 
 

-or- 
 

a11* b11 + a12 * b21 + a13 * b31 
 
Some source examples do matrix multiplication using only a couple of lines of code. This is possible 
by nesting for/next loops. We will not do that here. Matrix multiplication should be fast because it may 
be done hundreds of times per frame. We prefer to avoid the loop logic processing so we will unroll 
the loops to create a longer but typically faster function. This will also make it easier to see the dot 
products being performed between the columns and rows. The following source code multiplies two 
4x4 matrices together. As we will discuss later, DirectX Graphics works almost exclusively with 4x4 
matrices.  

 
void MatrixMultiply(MATRIX &result, MATRIX &a, MATRIX &b ) 
{ 
   result.m11 = a.m11*b.m11  +  a.m12*b.m21  +  a.m13*b.m31  +  a.m14*b.m41; 
   result.m12 = a.m11*b.m12  +  a.m12*b.m22  +  a.m13*b.m32  +  a.m14*b.m42; 
   result.m13 = a.m11*b.m13  +  a.m12*b.m23  +  a.m13*b.m33  +  a.m14*b.m43; 
   result.m14 = a.m11*b.m14  +  a.m12*b.m24  +  a.m13*b.m34  +  a.m14*b.m44;  
 
 
   result.m21 = a.m21*b.m11  +  a.m22*b.m21  +  a.m23*b.m31  +  a.m24*b.m41; 
   result.m22 = a.m21*b.m12  +  a.m22*b.m22  +  a.m23*b.m32  +  a.m24*b.m42; 
   result.m23 = a.m21*b.m13  +  a.m22*b.m23  +  a.m23*b.m33  +  a.m24*b.m43; 
   result.m24 = a.m21*b.m14  +  a.m22*b.m24  +  a.m23*b.m34  +  a.m24*b.m44; 
 
   result.m31 = a.m31*b.m11  +  a.m32*b.m21  +  a.m33*b.m31  +  a.m34*b.m41; 
   result.m32 = a.m31*b.m12  +  a.m32*b.m22  +  a.m33*b.m32  +  a.m34*b.m42; 
   result.m33 = a.m31*b.m13  +  a.m32*b.m23  +  a.m33*b.m33  +  a.m34*b.m43; 
   result.m34 = a.m31*b.m14  +  a.m32*b.m24  +  a.m33*b.m34  +  a.m34*b.m44; 
 
   result.m41 = a.m41*b.m11  +  a.m42*b.m21  +  a.m43*b.m31  +  a.m44*b.m41; 
   result.m42 = a.m41*b.m12  +  a.m42*b.m22  +  a.m43*b.m32  +  a.m44*b.m42; 
   result.m43 = a.m41*b.m13  +  a.m42*b.m23  +  a.m43*b.m33  +  a.m44*b.m43; 
   result.m44 = a.m41*b.m14  +  a.m42*b.m24  +  a.m43*b.m34  +  a.m44*b.m44; 
} 
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Vector/Matrix Multiplication 
 

A 3D vector can be treated like a 1x3 matrix. When we multiply a 3D vector with a 3x3 matrix the 
result is another 1x3 matrix. That is, we get back another 3D vector. 
 
          Matrix A             Matrix B                                             Matrix C 
 

[ ] [ ] [ ZYXbColaRowbColaRowbColaRow
mmm
mmm
mmm

zyx =•••=















× 312111

333231
232221
131211

]  

 
Vector <x, y, z> is transformed into vector <X, Y, Z> by the multiplication.  
 
When a vector is multiplied by a matrix we are actually feeding that vector into an equation and getting 
back a transformed result. This is very useful because we will need to perform transformations on our 
3D vertices. We need to scale them, move them and rotate them to transform them from one coordinate 
system to another (ex. model space to world space). If we have the equations required to do these 
operations then we simply need to set up some matrices to hold them.  
 
We will give each object in our game world a matrix to describe its orientation about all three axes and 
its position in the world. The local space vertices of the object mesh can then be transformed into 
world space by multiplying each by this matrix. This will clean up our pipeline a fair bit, from a coding 
perspective, and it will be much faster to execute.  
 
Let us suppose that we have a 2D vector <x, y> that we want to rotate by an arbitrary angle θ  around 
the origin to get a transformed 2D vector <X, Y>. Recall from our earlier discussion that we can 
imagine a Z axis running through the origin for rotation purposes.  
 

Formula for Rotation around the Z Axis 
 

)cos(*)sin(*
)sin(*)cos(*

θθ
θθ

yxY
yxX

+=
−=

 

 
These input values could be represented by a [1][2] matrix called V. 
 

V = [ ]yx  
 
Because two values are calculated (x and y) our output vector will be a 2D vector as well (consisting of 
X and Y). We will call this vector C. 

 
C = [X  Y] 
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Our input vector has 2 columns so we know that our multiplication matrix must have 2 rows (the Inner 
Dimension rule). Because we need the output matrix C to contain 2 columns, our multiplication matrix 
must then be a square [2][2] matrix. We will call this matrix M. 
 

M=  







2221
1211

mm
mm

 
Then V * M = C using the above matrices: 
 
 

]
    V                M                              C 

[ ] [ 21
2221
1211

mColVYmColVX
mm
mm

yx •=•==







×  

 
The long-hand form sheds more light on how we might represent our rotation. X and Y below are the 
X and Y elements of the 2D output vector (matrix C). Remember that column 1 is used for calculating 
the X component of the output vector and column 2 is used to calculate the Y component in the output 
vector. 
 
X = x * m11 + y * m21 
Y = x * m12 + y * m22 
 
Now look again at our rotation formula: 
 
X = x * cos(θ ) – y * sin(θ ) 
Y = x * sin(θ ) + y * cos(θ ) 
 
The similarities should be clear. Let us look at the Y calculation first: 
 
Y = x * m12     + y * m22    // Matrix Calculation of Y 
Y = x * sin(θ ) + y * cos(θ ) // Rotation Formula for Y 
 
We can replace m12 in our matrix with sin(θ ) and m22 with cos(θ ): 
 

M=  







)cos(21
)sin(11

θ
θ

m
m

 
The same is also true for X .We calculate X (in vector C) by doing this: 
 
X = x * m11 + y * m21 
 
Compared to our rotation formula of: 
X = x * cos(θ ) – y * sin(θ ) 
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Because the signs are different we can rearrange terms to get: 
 
X = x * cos(θ ) + y * -sin(θ ) 
 
Thus: 
 
X = x * m11    + y * m21           // Matrix Calculation of X 
X = x * cos(θ ) + y * -sin(θ )     // Rotation Formula for X 

 
We can now replace m11 with cos(θ ), and m21 with -sin(θ ). The final matrix M contains both of our 
transformations (X and Y): 
                                                                             
                                                                             X           Y 

M=  







− )cos(sin(

)sin()cos(
θθ
θθ

 
Matrix M will transform the x and y coordinates of an input vector to a rotated X and Y in an output 
vector. One important benefit here is that we can initialize the matrix once, calling cos twice and sin 
twice (or once if we use a local variable) and storing the values in the matrix. Then we could multiply 
thousands of vectors by this matrix to transform them without having to call cos and sin to transform 
every vertex as we did in our earlier code examples.  
 
Rotation is the same in 3D. The only difference is that we use a 3D vector and a 3x3 matrix: 

 
Matrix to Rotate 3D Vector V around the Z axis by θ Radians. 

 

[ ] [ 321
100
0)cos()sin(
0)sin()cos(

mColVmColVmColVCMzyxV •••==















−=×= θθ

θθ
] 

 
Very little has changed going to 3D because when a rotation around the Z axis occurs, only the X and 
Y values of a vector are actually modified by the rotation. This means that we want C[Z] to be the 
same as V[z]. You can think of the 3rd column of the matrix M above, as being the vector that produces 
the transformed Z component in the output vector. 
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3D Rotation Matrices 
 
                                                                   X Axis Rotation 

)cos()sin(
)sin()cos(

θθ
θθ

×+×=
×−×=

OldZOldYNewZ
OldZOldYNewY

   
































− )cos()sin(0
)sin()cos(0

001

θθ
θθ  

 
                                                                   Y Axis Rotation 

)cos()sin(
)sin()cos(
θθ

θθ
×+−×=
×+×=

OldZOldXNewZ
OldZOldXNewX































 −

)cos(0)sin(
010

)sin(0)cos(

θθ

θθ
 

 
                                                                   Z Axis Rotation 

)cos()sin(
)sin()cos(

θθ
θθ

×+×=
×−×=

OldYOldXNewY
OldYOldXNewX

   































−

100
0)cos()sin(
0)sin()cos(

θθ
θθ

 

 
 
  
Identity Matrices 
 
You might think that because we do not need Z to change during the earlier rotation transformation 
that we could simply fill the 3rd column of M with zeros. This is not so. The Z component in the output 
vector is computed as follows: 
 
Z = x*m13 + y*m23 + z*m33 
 
If the input vector contained a value of z = 10 then we would want to make sure that this value made it 
through the z axis rotation transformation unmodified. The output vector must also have Z = 10. If we 
had filled the last column of matrix M with zeros, we would have computed the output as follows: 
 
Z = x*0 + y*0 + z*0 = 0 
 
What we really want to do is copy the value into the output vector. By placing a ‘1’ in m33, the Z 
calculation now becomes: 
 
Z = x * 0 + y * 0 + z * 1 = z ∴  
Z = x * 0 + y * 0 + 10 * 1 = 10 
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This new column in the matrix is called an identity column because the value it outputs is the same as 
its input. Using this knowledge we can create a special type of matrix known as an identity matrix 
which is the matrix equivalent of the number 1: 

 

Identity Matrix=  
















100
010
001

 
Given a vector V=[x y z] and an Identity Matrix I, by multiplying V * I we should get a resulting 
vector C[X Y Z] such that C = V:  

 

[ ] [ z=y=x= 1*0*0*0*1*0*0*0*1*
100
010
001

zyxzyxzyxCIzyxV ++++++==















=×= ] 

 
Losing the zeroed out values we are left with: 
 

C=[ x*1 , y*1 , z*1] 
 
Scaling and Shearing Matrices 
 
The identity matrix is a matrix that multiplies an input vector by one. We can expand this concept to 
build a matrix that multiplies vectors by other values as well. The result is a uniform scaling matrix 
that replaces the 1’s for some other amount by which you wish to scale the vector. For example, if you 
wanted to scale all vectors by 10, the scaling matrix looks like this: 
 

10X ScaleMatrix=
1000
0100
0010

 

 
If you multiplied all of the vertices of a mesh by the above matrix, the object would become 10x 
bigger. Note that we can also create a matrix for non-uniform scaling along individual axes. It is 
called a shearing matrix:  
 

3500
0200
005
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Matrix Concatenation 
 
Matrix multiplication is associative (A(BC) = (AB)C). So if matrix A rotates points around the Z axis 
and matrix B rotates points around the Y axis, they can be combined (concatenated) into a single 
matrix M that does the work of both. Thus for vector V to have both transformations applied to it,  
rather than doing V *A = C and then C * B = D, we will take a different approach. Instead we will do 
M = A * B first. This allows us to use V * M = D and get the same effect as V*A=C, C*B=D. 
Concatenating matrices like this means that you can have many different matrices, each of which 
performs its own transformation, and combine them into a final matrix using matrix multiplication. We 
can now multiply a vector by this final matrix and it is completely transformed in one pass. This is 
very efficient. 

 
Matrix multiplication is not commutative. (A * B) != (B * A). That is, multiplication order is 
significant. This should sound familiar. Earlier in this chapter we saw the effects of rotating vertices 
before translating them and the very different results when we saw when translating first and then 
rotating. Rotating the mesh before translating it gave the appearance that the object was rotating 
around its own center point (often the desired effect). When we translated the object into world space 
first and then follow with a rotation, the vertices were rotated around the new world space origin rather 
than its own (Fig 1.37). Since we will use matrices to store these types of transformations, the order in 
which matrix multiplication is performed will be significant to us.  
 

  Figure 1.37 
 
 
Homogeneous Coordinates 
 
A vector is multiplied with a matrix by performing a series of row/column multiplications. You might 
conclude then that matrices can only be used for linear transformations (where the output is 
proportional to the input). A good example is the identity matrix, which maps the source vector to the 
output vector. Scaling and rotating are certainly linear transformations as the output represents some 
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multiple of the input. But what if we wanted to build a matrix that always produced an X component in 
the output vector of 5 regardless of the input vector? 

 

[ ] [ ZYX
mmm
mmm
mmm

zyx =















×

333231
232221
131211

]  

 
Ignore the Y and Z components of the output vector for now, and just concentrate on how the X 
component in the output vector is calculated: 

 
X= x*m11 + y*m21 + z*m31  

 
Because x, y and z are all used to create the resulting X component, there is no way to fill in an element 
of our matrix that would always result in X = 5.  
 
So, if our object is supposed to be positioned at world space coordinate (50, 70, 10) we would need to 
build a matrix that translates all the vertices in its mesh by 50 along the x axis, 70 along the y axis and 
10 along the z axis.  
 
It would seem the only solution would be to handle the linear transformations first using a 3x3 matrix 
and then translate that result separately like so: 
 
V’ = MV + T 
 
Where V and V’ represent the input and output vectors respectively, M is a 3x3 rotation matrix, and T 
is a translation vector (a 1x3 matrix).  
 
While this approach would certainly work, we would much prefer to get the job done with a single 
matrix multiplication. But how do we build a matrix that will add 50 to the X, 70 to the Y and 10 to 
the Z of the input vector, regardless of the vector’s initial input value? In the matrix above you should 
be able to see that this is just not possible. Take a look at column 1 in the matrix, which is responsible 
for the output of the X component. There is no way to substitute m11, m21 or m31 for any value that 
would simply ADD 50 to the x value for example. A solution is required and that solution is 
homogeneous coordinates. 
 
Although human beings have difficulty visualizing more than three dimensions, in mathematics many 
dimensions can and do exist. These ‘hidden’ dimensions (specifically the fourth dimension in this 
case) provide us with an interesting mathematical method for solving the translation problem. Have a 
look at a four dimensional vector. A 4D vector is perhaps very much like you would expect (a 1x4 
matrix): 

 
[ ]wzyx  
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The 4D vector above has an x, y and z component just like our 3D vector and it also has a fourth 
component labeled w. If we divide a 4D vector by its own w component like so we can map back into 
3D space: 

[ ]wwwzwywx ////  
 

In fact any 4D vector where w=1, maps directly to 3d space: 
 

[ ]11/1/1/ ==== wzzyyxx  
 

This type of vector is known as a homogeneous coordinate. The operation of dividing x, y and z by w 
is called homogenizing the coordinate. This projects a vector from dimension N to dimension N-1. 
Homogeneous coordinates do not apply to 4D vectors only. They exist in every dimension N. If we 
wanted to homogenize a 3D vector V: 
 
V = (x , y , z) 
 
We can do this by dividing x and y by z like so: 
 
V = (x/z , y/z , z/z)  
 
This resulting vector R looks like:  
 
R = (X , Y , 1) 
 
The operation projected the vector from 3D space into 2D space. You may recall this technique from 
our earlier discussion. Dividing the X and Y components of a 3D point by the Z component was the 
formula we used to perspective project a 3D point onto a 2D plane located at z = 1.  
 
So an N dimensional vector can be homogenized by dividing its components by the Nth component of 
that vector. This projects the vector from dimension N to dimension N-1. 
 
Using a homogeneous 4D vector we can ignore the w component since it always equals 1. To be sure, 
there will be times when we work with 4D coordinates where the w component does not equal 1, and 
we will discuss those cases later in the course.  
 
How does this help us solve the problem of representing a non-linear translation transformation in a 
matrix? The key is found in the idea that w = 1. Below, we see a 4D vector V multiplied with a 4x4 
identity matrix I to create resulting 4D vector R. Notice that a new column is needed to compute w in 
the matrix. If w=1 (as we know it does) then multiplying by this matrix also results in an output vector 
where w=1. 
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[ ] [ 1

1000
0100
0010
0001

1 ==



















=×== WZYXRIwzyxV ]

]

 

 
With this knowledge we can create a new 4x4 matrix storing the equation for rotation around the Z 
axis: 
 

Matrix for Rotation around the Z Axis 


















−

1000
0100
00)cos()sin(
00)sin()cos(

θθ
θθ

 

 
The matrix is essentially the same as it was before with the exception being that the last two columns 
now have been set to identity columns. Remember that we only want the x and y values of the input 
vector to be affected by the rotation operation. The z and w values of the input vector should be copied 
over into the output vector unchanged. The new identity column above would copy the w component 
from the input vector into the W component of the output vector unchanged as expected: 
 

W= x * 0 + y* 0 + z * 0 + w*1 = w 
 

Note as well that we have added an extra row to our matrix. This is done firstly in order to allow us to 
multiply vector[1][4] with the matrix[4][4] (the inner dimension rule). It will also allow us to represent 
translation in our matrices. Take a look at the two matrices below, which demonstrate the 
multiplication of our vector V with a matrix M: 
 

[ ] [ 1

44434241
34333231
24232221
14131211

1 ZYXR

mmmm
mmmm
mmmm
mmmm

MzyxV =



















×  

 
 
To calculate element X in output vector R: 
 

X= Vx*m11 + Vy*m21 + Vz*m31 +  1*m41 
 

We know that w=1 so the last portion of the calculation for X will always be “+ 1*m41”. In other 
words, whatever value we put into element m41 will be used as an addition operation: 
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The same also holds true for both the y and z columns in the matrix. Any value we store in m42 will be 
directly added to the y component of the input vector V and any value we store in element m43 will be 
added to the z component of input vector V. So the fourth row, along with the homogeneous 
coordinate, lets us represent translation in a matrix because together they give us the benefit of a 
required addition operation. You should think of the fourth row as a separate section of the matrix that 
does not scale the input vector like the upper 3x3 portion does. It will be used to add or subtract values 
to the components of the input vector. 
 
With this knowledge, we can now create a matrix that would translate a vector TX along the X axis, 
TY along Y the axis and TZ along the Z axis like so: 
 

Translation Matrix  



















1
0100
0010
0001

TZTYTX

 

 
For example: TX=200, TY=0 and TZ=-50. Input vector V=( 200 , 70 , 500 ). We will need to represent 
this vector as a 4D homogeneous coordinate so V= ( 200 , 70 , 500 , 1 ). 
 

[ ] [ 1

1500200
0100
0010
0001

150070200 ZYXRV ==



















−

×= ] 

 
Calculating vector R ourselves: 
 
Rx = 200 * 1 + 70 * 0 + 500 * 0 + 1 * 200 = 200 * 1 + 1*200 = 400 (Rx=400) 
Ry = 200 * 0 + 70 * 1 + 500 * 0 + 1 * 0     = 70 *1     =70    (Ry=70) 

) 
Rz = 200 * 0 + 70 * 0 + 500 * 0 + 1 * 1     = 1* 1     =1      (Rw=1) Rz = 200 * 0 + 70 * 0 + 500 * 1 + 1 * -50 =  500*1 + 1*-50   =450  (Rz=450

 
[ ]145070400=∴R  

 
Our point has been successfully transformed by the matrix. This 4x4 translation matrix can be 
combined with other matrices. We can concatenate a rotation matrix and a translation matrix into a 
single matrix and pump all of our vectors through it.  
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Matrix for Z Axis Rotation and Translation 
 


















−

1
0100
00)cos()sin(
00)sin()cos(

TZTYTX

θθ
θθ

 

 
We can hardcode the fact that input vector W components will always equal 1 in a function. This is a 
shortcut we can safely make for a function that works explicitly with 3D vectors and matrices that 
consist of translations, rotations and scaling. Below, we see a function called VectorMatrixMultiply 
that takes a 3D vector and stores it as a 4D vector internally in order to carry out the calculation. The 
result is then homogenized to make sure we return a 3D vector. This is why we are dividing x, y and z 
by w. This is a handy function for multiplying the mesh’s model space vertices to world space or view 
space when we know that we want a resulting vector where w = 1. 
 
BOOL VectorMatrixMultiply( VECTOR3D& vDest, VECTOR3D& vSrc, MATRIX& mat) 
{ 
    FLOAT x = vSrc.x*mat.m11  +  vSrc.y*mat.m21  +  vSrc.z* mat.m31  +  mat.m41; 
    FLOAT y = vSrc.x*mat.m12  +  vSrc.y*mat.m22  +  vSrc.z* mat.m32  +  mat.m42; 
    FLOAT z = vSrc.x*mat.m13  +  vSrc.y*mat.m23  +  vSrc.z* mat.m33  +  mat.m43; 
    FLOAT w = vSrc.x*mat.m14  +  vSrc.y*mat.m24  +  vSrc.z* mat.m34  +  mat.m44; 
     
    // Prevent Divide by 0 case. 
    if( fabsf( w ) < g_EPSILON ) return FALSE; 
 
    // Homogenize the coordinate. 
    vDest.x = x / w; 
    vDest.y = y / w; 
    vDest.z = z / w; 
 
    return TRUE; 
} 
 
Some matrix functions seem to multiply a 3D vector with a 4D matrix but we know this can not be 
done because of the inner dimension rule. Of course, what these functions are doing is similar to what 
we are doing here: explicitly treating the 3D vector as a 4D vector where w always equals 1. There are 
times when you do not want a function to homogenize the result and therefore the more generic 4D 
vector/4D matrix multiplication would be used. 
 
For each component calculated in the output vector we add the 4th row values from the matrix. We 
then homogenize the 4 components back into 3D space by dividing by w. This allows us to return a 3D 
space vector. You could alter this code to return a 4D vector instead where the divide by w could be 
performed elsewhere. Another point to note is that if you know for sure that the 4th column (the w 
column) of the matrix being multiplied is an identity column, then the resulting w will still equal 1 and 
the divisions by w are not needed. This is often the case when dealing with vertex positions. 
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Quaternions 
 
A quaternion is a complex number defined by a 3D directional vector v = <x, y, z> and a scalar value s 
= w. A unit length quaternion provides an alternative format for storing rotation data. The direction 
vector v represents an arbitrary axis around which rotation will occur. It is a stored as a unit vector that 
has been scaled by the sin of the half-angle θ (the rotation angle in radians). The scalar value w 
completes the rotation data and is defined as the cosine of the half-angle θ.   
 
q = (s, v) = [w, <x, y, z>] 
q = [cos (θ / 2),  │v│ * sin (θ / 2)] 
 
Quaternions provide a number of advantages over using matrices to store rotation information. The 
most obvious benefit is that they occupy less memory (4 floats versus 9 floats). Additionally, 
concatenation of quaternions is actually a bit faster than matrix concatenation. While vertices cannot be 
transformed by a quaternion directly, quaternions can be quickly converted to matrix format to 
accomplish this purpose. As we will see later in the course, they are also a better choice for 
interpolating between rotations.  
 
To convert a quaternion to 3x3 rotation matrix form we will use the following formula: 
 

M =  





















−−−+
+−−−
−+−−

22

22

22

2212222
2222122
2222221

yxwxyzwyxz
wxyzzxwzxy
wyxzwzxyxy

 
As a quaternion is a complex number, it is composed of both a real and an imaginary part. For our 
purposes in this course we do not need to be familiar with complex numbers to use quaternions. 
Students in the Game Mathematics course will have an opportunity to explore the quaternion and its 
operations in detail. The formulae above are all we will need to understand how to create and use 
quaternions in our applications, since we will wind up converting all of our quaternions to matrix form 
to perform rotation transformations.  
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D3DX Math  
 

The DirectX9 SDK ships with a DirectX Graphics helper API called the Direct3D Extensions (D3DX). 
Among just some of its components it includes numerous mathematical structures and functions that 
will be of value to us. We can include this functionality in our source code modules by adding   
#include <d3dx9.h> near the top of the source file. Most D3DX classes have overloaded operators and 
various constructors to make operations easy and intuitive. LP 1.1 will be using D3DX only for its 
math functions and its matrix and vector structures. This will be advantageous since D3DX math 
functions may take advantage of CPU capabilities like MMX™ or 3DNow™ when available. As the 
course progresses we will use D3DX for many other important tasks. 
 
 
D3DXMATRIX  
 
DirectX Graphics works exclusively with 4x4 matrices (16 floats). Matrix elements in this class can be 
accessed in two ways: via a 4x4 array or by using the double suffix notation we are already familiar 
with. Each member of the matrix can be accessed using the .row_column method.  This means that we 
can assign a value to the 3rd row and the 2nd column using the following code: 
 
D3DXMATRIX Mat; 
Mat._32 = f; //f = float value 
 
With operator overloading we can perform matrix multiplication, addition and subtraction: 
 
D3DXMATRIX mat1, mat2, mat3; 
 
mat3 = mat1 * mat2;    // matrix multiplication 
mat3 = mat1 + mat2; // matrix addition 
mat3 = mat1 - mat2; // matrix subtraction 
 
There are two constructors worthy of mention. The first initializes the matrix using another matrix 
passed as a parameter. The second allows us to pass in each of the 16 float values we want placed in 
each element of matrix. Their definitions are shown below: 

 
Constructor 1 
D3DXMATRIX( CONST D3DMATRIX& ); 
 
 
Constructor 2 
D3DXMATRIX( FLOAT _11, FLOAT _12, FLOAT _13, FLOAT _14, 
            FLOAT _21, FLOAT _22, FLOAT _23, FLOAT _24, 
            FLOAT _31, FLOAT _32, FLOAT _33, FLOAT _34, 
            FLOAT _41, FLOAT _42, FLOAT _43, FLOAT _44 ); 
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D3DXVECTOR3 
 
The D3DXVECTOR3 stores 3D vectors (3 floats). There are structures for 2D (two floats) and 4D 
(four floats) vectors also. All contain overloaded operators and constructors for easy initialization. This 
means we can perform addition, subtract, multiplication, etc. with the standard operators as shown 
below. 
 
Construction 
D3DXVECTOR3 MyVector   ( 20.0f,   50.0f, -10.0f);  
D3DXVECTOR3 YourVector (  0.0f, -200.0f,  35.0f); 
 
MyVector  = MyVector + YourVector  ; // Vector Addition 
MyVector  = MyVector * 5;   // Vector scalar multiplication 
MyVector  = MyVector – YourVector;  // Vector subtract 
MyVector  = (YourVector*2) + MyVector; // Combination 
 
We can access and modify the individual vector elements x, y, or z as follows: 
 
MyVector.x += 10.0f; 
MyVector.y  = YourVector.y; 
 
Of course with a D3DXVECTOR2 structure there are only x and y member variables and with the 
D3DXVECTOR4 structure we have x, y, z and w member variables. The latter can be used to store 
homogeneous coordinates. 

 
D3DXPLANE 
 
D3DX also provides a structure for holding plane information (four floats). The first three floats will 
store the plane normal (x, y and z components). The fourth float will be assigned the distance to the 
plane from the origin.  
 
D3DXPLANE MyPlane; 
MyPlane.a = Normal.x; 
MyPlane.b = Normal.y; 
MyPlane.c = Normal.z; 
MyPlane.d = dist;     // Distance to plane from origin. 
 
We can make use of the constructor for easy initialization. 
 
D3DXPLANE MyPlane(Normal.x, Normal.y , Normal.z , DistanceToPlane); 
 
D3DX has many helper functions that can be used to create planes. Using the 
D3DXPlaneFromPointNormal function you could, for example, create a plane simply by passing in the 
plane normal and any point known to be on the plane. In the case of using a polygon’s plane, we could 
pass in a plane normal and any one of the polygons vertices. 
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D3DXPlaneFromPointNormal(  D3DXPLANE* pOut, CONST D3DXVECTOR3* pPoint, 
                     CONST D3DXVECTOR3* pNormal); 

 
We pass in a pointer to a D3DXPLANE structure that will receive the final plane and also pointers to 
two 3D vectors, the plane normal and a point known to be on the plane. 
 
If you do not have access to the polygon normal and want it calculated on your behalf, use the 
D3DXPlaneFromPoints function. This function can be used to create a plane from any three points 
known to be on the plane. For example, if you were creating a plane for a polygon, you could pass in 
three of the polygon’s vertices. D3DX would calculate the plane normal and the distance for you, 
returning the information via the D3DXPLANE structure passed in the pOut parameter. 
 
D3DXPlaneFromPoints( D3DXPLANE* pOut,  CONST D3DXVECTOR3* pV1, 
                     CONST D3DXVECTOR3* pV2, CONST D3DXVECTOR3* pV3 ); 
 
 
D3DXQUATERNION 
 
While a quaternion can be a difficult concept to grasp due to its origins as a complex number, using 
quaternions is made quite simple through D3DX.  
 
The D3DXQUATERNION structure stores 4 floating point components (x,y,z,w). As mentioned 
earlier, we will convert quaternions to matrix form before using them for rotation operations. For 
example, to create a quaternion to store a 45 degree rotation around the X axis, we can do the 
following: 
 
float angle = 0.785f; 
 
D3DXVECTOR3 axis(1,0,0); 
 
axis *= (float)sin(angle/2.0f); 
 
D3DXQUATERNION q; 
q.x = axis.x; 
q.y = axis.y; 
q.z = axis.z; 
q.w = (float)cos(angle/2.0f); 
 
Before converting the quaternion to a rotation matrix we will want to make sure it is normalized first. 
D3DX provides a function for this purpose called D3DXQuaternionNormalize. Continuing our 
example above: 
 
D3DXQUATERNION normalized_q; 
D3DXQuaternionNormalize(&normalized_q, &q); 
 
Now that we have a unit quaternion we can proceed with matrix conversion. D3DX also provides a 
function for this purpose called D3DXMatrixRotationQuaternion: 
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D3DXMATRIX rotation_matrix; 
D3DXMatrixRotationQuaternion (&rotation_matrix, &normalized_q); 
 
We now have a rotation matrix constructed from our quaternion. As it turns out, the quaternion math 
we have looked at uses the right-handed coordinate system. Since DirectX Graphics uses a left-handed 
system we will need to invert the matrix as a final step before using it in a transform operation. Given 
the orthogonal nature of our rotation matrix, we can opt for the faster transpose call: 
 
D3DXMatrixTranspose(&rotation_matrix, &rotation_matrix); 
 
A faster alternative is to invert the quaternion before conversion to matrix form. This operation will 
conjugate the quaternion and renormalize it, so you could replace the normalization call above and 
forego the matrix transpose: 
 
D3DXQUATERNION normalized_q; 
D3DXQuaternionInverse (&normalized_q, &q); 
 
D3DXMATRIX rotation_matrix; 
D3DXMatrixRotationQuaternion (&rotation_matrix, &normalized_q); 
 
 
D3DX Functions 
 
D3DX provides a function to multiply two 4x4 matrices: 
 
D3DXMATRIX* D3DXMatrixMultiply( D3DXMATRIX* pOut,  
                                CONST D3DXMATRIX* pM1,  
                                CONST D3DXMATRIX* pM2 ); 
 
The function takes the addresses of the two 4D matrices to be multiplied and the address of a matrix 
which will receive the result of the operation. The multiplication will take advantage of any hardware 
(CPU) features or optimizations available.  
 
D3DX provides three functions for building specific rotation matrices: 
 
D3DXMatrixRotationX (D3DXMATRIX* pOut, FLOAT Angle); 
D3DXMatrixRotationY (D3DXMATRIX* pOut, FLOAT Angle); 
D3DXMatrixRotationZ (D3DXMATRIX* pOut, FLOAT Angle); 
 
The functions accept a pointer to a D3DXMATRIX structure and float values that describe the 
amount of rotation (in radians) we require about that particular axis. For example, if we want to 
build a matrix that rotates vectors 1.3 radians about the world Y axis we can do the following: 
 
D3DXMATRIX RotationMatrixY; 
D3DXMatrixRotationY ( &RotationMatrixY , 1.3 ); 
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When the function returns, the matrix passed via the pOut parameter will contain the correct values. In 
this case, the matrix returned internally would look like so: 
 































 −

)cos(0)sin(
010

)sin(0)cos(

θθ

θθ
 

 
 
There is also a function to create a translation matrix for positioning our objects in the world: 

 
D3DXMatrixTranslation ( D3DXMATRIX* pOut, FLOAT x, FLOAT y, FLOAT z); 
 
If we wanted to translate our mesh so that it was positioned at (10, 40, 50) in world space we could do 
the following: 
 
D3DXMATRIX TranslationMatrix; 
D3DXMatrixTranslation (&TranslationMatrix , 10 , 40 , 50); 
 
Using these functions, we can give each object its own world matrix. When that object is rendered for 
each frame, its vertices are multiplied by this matrix to transform it into world space. For example, let 
us say that we have an object that we want to be rotated 2 radians about the Z axis and positioned at 
(10, 50, 2) in world space. We could build a matrix that would perform this operation by first building 
the translation matrix, and then combining it with a rotation matrix in order to generate the 
concentrated matrix. The code to do this is shown below: 
 
CObject    Object; // assumed to have two members, a mesh and a world matrix 
D3DXMATRIX RotMat, TransMat; 
 
// Build the matrices 
D3DXMatrixTranslation ( &TransMat , 10, 50, 2); 
D3DXMatrixRotationZ   ( &RotMat , 2 ); 
 
// Set the combined matrix as the object’s world matrix 
Object.WorldMatrix = RotMat * TransMat; 
 
The object now has a single world matrix which completely describes its orientation and position 
within the 3D world.  Using that matrix to transform the vertices into world space, we can move the 
object around the world simply by altering the matrix values. We might have a function that is called 
every time the left arrow key is pressed, that builds a rotation matrix around the Y axis by 0.2 radians 
and then multiplies this with the object’s current world matrix. This would cause the object to rotate 
each time by a further 0.2 radians. 
 
Note that in the above code the matrix multiplication order is significant. Here we are rotating the 
object about its local origin first and then translating the object into its final world space position. 
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Reversing the order of the multiplication would produce a translation into the world space position 
followed by a rotation about the world origin. 
 
The next function allows you to specify the rotations about the X, Y and Z axes with a single call. This 
would otherwise have to be built using three separate rotation matrices about each of the X, Y and Z 
axes respectively and then multiplying each of them together.  
 
D3DXMatrixRotationYawPitchRoll( D3DXMATRIX* pOut, FLOAT Yaw, FLOAT Pitch, 
                                FLOAT Roll); 
  
To build a single matrix that rotates 1 radian about the X axis, 2 radians about the Y axis and 0.5 
radians about the Z axis and then positions our object at (100,50,-20), we would use the following 
code: 
 
D3DXMATRIX OrientationMat , TranslationMat; 
 
D3DXMatrixRotationYawPitchRoll( &OrientationMat , 2 , 1 , 0.5); 
D3DXMatrixTranslation         ( &TranslationMat , 100 , 50 , -20 ); 
 
Object.WorldMatrix = OrientationMat * TranslationMat; 
 
If you maintain three floats (Yaw, Pitch, Roll) for each object, these can be altered in response to user 
input and used to build the object’s new orientation matrix each time it needs to be updated. 
 
The D3DX library also has functions that allow us to multiply a vector with a matrix. We will need to 
do this multiply on each of the mesh’s vertices using the object’s world matrix. There are three 
functions that concern us and each behaves somewhat differently: 
 
1. D3DXVec3TransformCoord( D3DXVECTOR3* pOut,  CONST D3DXVECTOR3* pV, 
                           CONST D3DXMATRIX* pM ); 
 
This function multiplies a 3D vector with a 4x4 matrix. As we know from our earlier discussion, the 
function treats the input vector as a homogenous 4D vector in the form (x, y ,z , 1). The 4D vector is 
multiplied by the 4x4 matrix which creates another 4D vector. This function takes care of 
homogenizing the resulting vector back into 3D space. 
 
This is the function we will use to multiply our object vertices by our object world matrix.  
 

 
2. D3DXVec3TransformNormal(D3DXVECTOR3* pOut, CONST D3DXVECTOR3* pV, 

                     CONST D3DXMATRIX* pM ); 
 
This function is provided when the result vector needs to be normalized. For example, let us say that 
we have a polygon facing down the positive Z axis. The normal for this polygon equals (0, 0, 1). If the 
polygon were rotated 45 degrees about the Y axis, the normal would also have to be updated. We can 
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rotate normal vectors just as we do ordinary vectors as long as the unit vector remains a unit vector 
after the matrix multiplication. 
When the matrix contains translation information (which will most likely be the case with the object’s 
world matrix) then the normal will also be translated. As a result, its tip would no longer necessarily be 
one unit from the origin. So we want to ignore the bottom row of the matrix which stores the 
translation and only multiply the normal using the upper 3x3 section storing the orientation. The D3DX 
function does just this.  
 
3. D3DXVec3Transform ( D3DXVECTOR4* pOut,  CONST D3DXVECTOR3* pV, 

                 CONST D3DXMATRIX* pM); 
 

This function takes a 3D input vector and a matrix and returns a 4D vector. The input vector is treated 
as a 4D vector in the form (x, y, z, 1). This output vector is in the form (x, y, z, w) where w does not 
equal 1. Unlike D3DXVec3TransformCoord, this function does not homogenize the result by dividing 
x, y and z by w. You may need this function if you are required to use a matrix where the fourth 
column is not an identity column. 
 
The D3DX library also provides functions for performing normalization of vectors, dot products, cross 
products and functions for returning the length of a vector. Some of these are listed below. 
 
Cross Product of two 3D vectors 
D3DXVec3Cross ( D3DXVECTOR3* pOut,  CONST D3DXVECTOR3* pV1,   
                CONST D3DXVECTOR3* pV2); 
 
Returns a vector perpendicular to A and B in pOut result. 
 
D3DXVECTOR3 Result, A, B; 
D3DXVec3Cross( &Result , &A , &B ); 
 
Dot Product of two 3D vectors 
D3DXVec3Dot ( CONST D3DXVECTOR3* pV1,  CONST D3DXVECTOR3* pV2 ); 
 
Returns cosine of the angle between A and B scaled by vector magnitudes. 
 
D3DXVECTOR3 A, B; 
float CosAngle = D3DXVec3Dot( &A , &B );         
 
3D vector Magnitude 
D3DXVec3Length( CONST D3DXVECTOR3* pV ); 
 
Returns the length of the passed vector. 
 
D3DXVECTOR3 A; 
float Length = D3DXVec3Length ( &A ); 
 
Normalizing a 3D vector      
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Takes a vector pV and makes it Unit Length. 
 
D3DXVECTOR3 A; 
D3DXVec3Normalize ( &A , &A ); 
 
The functions that return a vector result allow an output vector to be specified. This vector can be used 
to specify a vector other than the one used for input. This is useful if you do not want the normalized 
vector to overwrite the input vector. However, in the above example we have passed vector A as both 
the input and the output, therefore normalizing vector A and storing the result back in vector A. 
 
 
The Transformation Pipeline 
 
In our first Lab Project (LP 1.1), three key matrices are used. These matrices combine to perform the 
initial phase of the transformation pipeline from model space to projection space. After a polygon has 
passed through each of these three matrices its vertices are ready to be scaled from 2D projection space 
to 2D screen space as discussed earlier. We will now cover each of the three matrix types, their use, 
and some interesting facts about them. 

 
The World Matrix 

 
Each object in our scene will have a world matrix. The world matrix is used to position, scale and 
orient the object in world space. The first thing our pipeline will do is multiply each of the polygon’s 
vertices with the current object’s world matrix. This will transform the polygon from model space into 
world space. By applying new rotations and translations during each frame of our game, we can 
animate a 3D object. Our object structure looks like this: 
 
class CObject 
{ 
     CMesh     *pMesh; 
     D3DXMATRIX WorldMatrix; 
}; 

 
If an object’s world matrix has been set as an identity matrix, then we know that the object will not be 
translated or rotated at all, it will positioned in the world at position (0, 0, 0) and is assumed to face 
straight down the positive Z axis. Let us look at an identity matrix again for a moment: 
 

Position
LocalZAxis
LocalYAxis
LocalXAxis



















1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

 

 
Ignoring row 4 and column 4 for the moment, we can see that the first three rows are actually unit 
vectors which are identical to that of the world X, Y and Z axes. The third row for example is a vector 
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of (0, 0, 1) which is a unit vector describing the world Z axis. You should think of these three rows as 
the object’s local coordinate system. They describe the orientation of the model space X, Y and Z axes 
in relation to the world space X, Y and Z axes. We can see that the local coordinate system exactly 
matches the world space coordinate system when using an identity matrix.  
 
In Fig 1.38, the X and Y rows in the identity matrix are unit vectors pointing in the same direction as 
the world axes. We know that the input vector will be unchanged by this matrix since the matrix used 
is constructed with identity columns.  
 

 
 

Figure 1.38 
 

 
Regardless of whether the world matrix of an object is an identity matrix or not, we can still think of 
the first three rows of the matrix as unit vectors describing the local coordinate system x, y and z axes.  
 
Let us see what happens when we combine our identity initialized world matrix with a Z axis rotation 
matrix. In the next example we will build a rotation matrix that rotates our points by 45 degrees 
(0.785398 radians). 
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We see in Fig 1.39 that the axes of the local space coordinate system are now rotated 45 degrees: 
 

 
Figure 1.39 

 
If we have a unit vector describing the way an object is pointing, we can use it to update its position in 
the world (by moving along this vector). Our object matrix contains all of the information we need to 
move it along a local axis even though it is now in world space. For example, the 3rd row of the matrix 
is referred to as the look vector. It is a unit vector describing the way the object is facing. It is actually 
the model space Z axis and it retains exactly the same relationship to the model in world space as it did 
in model space. If we want to move our object a certain distance forward, we can use the 3rd row of the 
matrix to do this: 
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// move spaceship forward 
void MoveForward( float distance ) 
{ 
   D3DXVECTOR LookVector; 
 
   // Extract the Look vector (local z axis) from the world matrix 
   LookVector.x = SpaceShip.WorldMatrix._31; 
   LookVector.y = SpaceShip.WorldMatrix._32; 
   LookVector.z = SpaceShip.WorldMatrix._33; 
 
    
   SpaceShip.WorldMatrix._41 += LookVector.x * distance; 
   SpaceShip.WorldMatrix._42 += LookVector.y * distance; 
   SpaceShip.WorldMatrix._43 += LookVector.z * distance; 
} 
 
MoveForward extracts the look vector from the 3rd row of the matrix and then scales it by the forward 
distance we wish to move. We add the resulting vector to the current position -- which we know is 
stored in the 4th row of the matrix. Because LookVector is a unit vector, the distance is dispersed over 
the X, Y and Z axis in their correct proportions and the world matrix now contains the new world 
space position. This new position is exactly distance units from its previous position in the direction of 
the look vector. So whatever the orientation of the object in world space, we now have the means to 
move it forward in the desired direction. If MoveForward was passed a negative distance value, it 
would move the object backwards in world space. 
 
We also have the object local Y axis (called the up vector) in the second row of the matrix and the 
local X axis (called the right vector) in the first row. This means that we could, for example, make our 
spaceship strafe left or right by using a function that uses the first row of the matrix. A negative 
distance value would cause the object to move left instead of right: 
 
// Strafe spaceship left or right 
void MoveStrafe( float distance) 
{ 
   D3DXVECTOR RightVector; 
 
   // Extract the Right vector (local x axis) from the world matrix 
   RightVector.x = SpaceShip.WorldMatrix._11; 
   RightVector.y = SpaceShip.WorldMatrix._12; 
   RightVector.z = SpaceShip.WorldMatrix._13; 
 
   // update position in matrix 
   SpaceShip.WorldMatrix._41 += LookVector.x * distance; 
   SpaceShip.WorldMatrix._42 += LookVector.y * distance; 
   SpaceShip.WorldMatrix._43 += LookVector.z * distance; 
} 
 
With these two examples it should be no problem for you to write a third function called 
MoveUpDown.  
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The world matrix can be summarized as follows: 
 
World Matrix 
Right Vector.x Right Vector.y Right Vector.z 0 
Up Vector.x Up Vector.y Up Vector.z 0 
Look Vector.x LookVector.y Look Vector.z 0 
Position.x Position.y Position.z 1 
 
This matrix will serve as our entire world transformation module. Multiplying our object vertices with 
a world matrix will convert those vertices from model space to world space: 
 
WorldSpaceVertex = ModelSpaceVertex * WorldMatrix 
 
The View Matrix 

 
The next task is to transform our world space vertices to view space (relative to some virtual camera 
position). The camera orientation and position information can also be stored in a single matrix. We 
refer to this matrix as the view matrix. 
 
The view matrix works a little differently than our world matrix. As we saw earlier, in order to 
transform vertices into view space, we have to perform the opposite operations on them. When the 
camera is rotated to the right, we need to rotate the vertex left. If the camera is moved forward, we 
need to move the vertex backwards, and so on. In order to accomplish this we will use the inverse 
matrix. 
 
Let us assume that we have three vectors describing the Up, Look and Right vectors of the camera, and 
that we also have a camera position in our 3D world. 
 
// Assumed to be later initialized to meaningful values… 
D3DXVECTOR3 CLook;  // Camera Look Vector 
D3DXVECTOR3 CRight; // Camera Right Vector 
D3DXVECTOR3 CUp;    // Camera Up Vecrtor   
D3DXVECTOR3 CPos;   // Camera World space Position      
 
If we were to build a standard local to world matrix for the camera it would look like so: 
 



















1...
0...
0....
0....

zCPosyCPosxCPos
zCLookyCLookxCLook

zCUpyCUpxCUp
zCRightyCRightxCRight

 

 
However this matrix would not have the desired effect. In fact it would take a vertex that is already in 
view space and transform it so that the result is back in world space! This can actually be handy in 
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certain situations we will encounter later, but it is not what we need at the moment. We need to use the 
inverse of this matrix: 
 

 
View Matrix 



















•−•−•− 1)()()(
0...
0...
0...

CLookCPosCUpCPosCRightCPos
zCLookzCUpzCRight
yCLookyCUpyCRight
xCLookxCUpxCRight

 

 
 
 
This is the matrix we will use to convert vertices from world space into view space. The virtual camera 
in our game can be represented using this single matrix. D3DX has a function that will take a 4x4 
matrix and invert it: 

 
D3DXMatrixInverse(D3DXMATRIX* pOut,FLOAT* pDeterminant, CONST  D3DXMATRIX* pM); 
 

 The mathematics involved in inverting arbitrary matrices can be complex and is covered in detail in the 
Game Mathematics course here at the Game Institute. For our purposes, we can simply pass in a 
transformation matrix and set the determinant value to NULL (as we will not need it). Also notice that 
the output matrix need not be the same as the input matrix. 

 
 There will be times when you will need to call the above function to invert a matrix but it is certainly 

not the way we would recommend creating the view matrix each time the camera moves and the view 
matrix needs to be updated. Storing the camera position and orientation as a normal transformation 
matrix and calculating the inverse each time the camera moves is an expensive operation. Instead, the 
camera is usually managed by having Up, Right, Look and position vectors and building the view 
matrix manually; inserting the vectors into the matrix as shown above. The matrix will only need to be 
rebuilt when the camera moves or rotates. We could for example replace our previous CCamera class 
with a new one that looked like this: 

 
 class CCamera 

{ 
public: 
    D3DXVECTOR3 LookVector; 
    D3DXVECTOR3 Up Vector; 
    D3DXVECTOR3 RightVector; 
    D3DXVECTOR3 Position; 
}  

 
At the start of your application you might set the camera to its correct starting position and set the look, 
up and right vectors so they are aligned with the world axes using vectors (0,0,1) , (0,1,0) and (1,0,0) 
respectively. Then when the player presses an arrow key, you could rotate the vectors with a rotation 
matrix that rotates them so they are now facing in a new direction. Finally the view matrix would be 
rebuilt by inserting these vectors manually into the view matrix.  
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In LP 1.1 we will not be moving the camera and we will be leaving the view matrix set as an identity 
matrix. This means that the camera can be visualized as being at position (0,0,0) in the world, with its 
local coordinate system aligned with the world axes so that it is looking down the positive Z axis. 
 
View Matrix 
Right Vector.x Up Vector.x Look Vector.x 0 
Right Vector.y Up Vector.y Look Vector.y 0 
Right Vector.z UpVector.z Look Vector.z 0 
- (Position•RightVector) - (Position•UpVector) - (Position• LookVector) 1 
 
There are D3DX matrix functions which aid in the setting up of a view matrix. We will discuss using 
the view matrix in Chapter 4 in much more detail. We will see how to get it to behave like a first 
person shooter game camera or even a space ship game camera. 
 
A D3DX view matrix helper function of interest to us is shown below. It takes a camera position in 
world space, a point in that we want the camera to look at, and a vector describing the UP vector of the 
camera (often <0, 1, 0>  at startup) and builds the matrix for us: 
 
D3DXMatrixLookAtLH(  D3DXMATRIX* pOut,  CONST D3DXVECTOR3* pEye, 

               CONST D3DXVECTOR3* pAt, CONST D3DXVECTOR3* pUp); 
 

The parameters are shown below: 
 
pOut  - The address of a D3DXMATRIX structure that will contain the calculated view matrix.  
pEye – World space position of the camera, referred to here as the eye point 
pAt   -  World space position that we want the camera to be looking at 
pUp  -  Orientation of the camera up vector 
 
It should be noted that the ‘LH’ at the end of the function call is short for ‘Left Handed’. This function 
builds a view matrix suitable for a left handed coordinate system, which DirectX Graphics (and we) 
will use. D3DX does contain a right handed version of the function called D3DXMatrixLookAtRH so 
make sure that you do not accidentally call the wrong one.  
 

Note: Inverting a matrix produces the opposite effect of a normal transformation matrix. Thus, by 
inverting an object’s world matrix, we get a matrix that would transform world space vectors into model 
space vectors.  
 
This technique is often used in collision detection routines where you may have to check each vertex of 
a mesh against a world space bounding box or a bounding sphere. In these cases it is much cheaper to 
back transform a single world space sphere into model space and perform the test there than to 
transform every vertex in the mesh into world space and then test. 
 
If you think of a transformation matrix as transforming points from one space to another, you can think 
of the inverse of that matrix as performing a canceling or reversing transformation into the original 
space. 
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Remember that we can multiply matrices together to create a single combined transformation matrix 
that will transform any vectors as if they had been multiplied by all the original matrices. We could 
combine each object’s world matrix with the current view matrix prior to rendering that object, and 
thus transform all vertices from model space to view space with one vector/matrix multiplication. This 
saves us a fair amount of work as each vertex would otherwise need to be multiplied by the object 
world matrix, and then again by the view matrix.  
 
D3DXMATRIX ComboMatrix = Object.WorldMatrix * ViewMatrix; 
 
D3DXVECTOR ViewSpaceVertex = ModelSpaceVertex * ComboMatrix;  
 
In LP 1.1 we will not do this. At this point we would like to keep the World, View and Projection 
matrices separate to better demonstrate each stage of the pipeline. 
 
 
The Perspective Projection Matrix 
  
We spent a good deal of time earlier in this lesson discussing how to project a 3D view space point into 
a 2D projection space point. You may recall that the resulting point was in the –1 to +1 range on both 
the X and Y axes. This point was later mapped to screen space. You may also recall that the formula 
we used to perspective project the 3D point into a 2D projection space coordinate was simply: 
 

ViewSpaceZ
ViewSpaceXXojectionPoD =intPr2  

 

ViewSpaceZ
ViewSpaceYYojectionPoD =intPr2  

 
As a point gets further away from the camera it is scaled down (and vice versa). This provides the 
illusion of perspective. Recall that theone important characteristic of this formula is that it always 
useds a 90 degree FOV. This means that the camera can always see 45 degrees to the left, and 45 
degrees to the right, and on the other axis, 45 degrees up and 45 degrees down. We could visualize this 
as a view cone spreading out from the camera origin at an angle of 90 degrees.  
 
This is exactly how DirectX Graphics (and our own software code) perspective projects a 3D view 
space point. But having no choice other than a 90 degree FOV is simply not acceptable to us. First of 
all, a 90 degree FOV does not usually look particularly good. Most developers prefer to use a 45 to 65 
degree FOV. This is not technically correct because humans have a wider FOV than that in real life, 
but it looks correct in the game. Second, the monitor screen is not square and we usually have more 
pixels horizontally than we do vertically. This means we should really have a wider FOV left and right 
than we do Up and Down. If we do not, then the scene will looked squashed because we are doing a 
SQUARE projection onto a rectangular monitor screen. If your application is running in a perfectly 
square window, then no squashing or distortion will appear, but usually, we like our games to run in 
full screen resolution such as 800x600 or 1024x768 which are rectangular video modes. 
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If all of this is true, then we would appear to have a problem. DirectX Graphics calculates the 
perspective projection using the 90 degree FOV formula we saw earlier (x/z and y/z) yet we wish to 
use arbitrary FOV.  
 
In order to combat this problem we can multiply view space vectors by a third matrix prior to the 
divide by z (the perspective projection process). This matrix will distort the geometry in our world in a 
controlled manner so that the illusion of an arbitrary FOV is maintained. We are still doing a 90 degree 
unit projection, but because the vertices have been deformed, we can control whether or not they fit 
within the 90 degree FOV.  
 
 
The vertices of a mesh will be multiplied with this new projection matrix after the vertices have been 
converted to view space. This means that we can write the complete transformation from model space 
vertex to projection space vertex as: 
 

ProjectedVertex = ModelVertex * ( WorldMatrix * ViewMatrix * ProjectionMatrix);  
 
At this point we can map the [–1, +1] range of the vertex along the x and y axes into the range of the 
current screen resolution as shown earlier in the lesson. 
 

Note: It is perhaps odd that it is called a ‘projection matrix’ since it does not project the vertices at all. 
Rather it swells or shrinks their position values prior to a perspective divide. You could say, then, that 
the projection matrix is a matrix that prepares 3D vertices for projection to 2D. 
 
Refer back to the section on perspective projection if you need to. It is important that you understand 
why the divide by z performs a 90 degree projection if you are to understand this next section. 

 
Let us start our analysis of the projection matrix with an identity matrix and build up from there. We 
know that the projection matrix is a 4x4 matrix and that it will output a 1x4 vector.  The input vector 
will be a homogeneous 4D coordinate in the form of (x, y, z, 1) as we have already discussed. As with 
all of the matrices we have used up until this point, the W column of the matrix is an identity column. 
Thus the output vector will also be in the form of (x, y, z, 1) and we can discard the w component. 
 

Projection Matrix 
 

[ ] [ 1

1000
0100
0010
0001

1 ==



















=×= WZYXPMzyxV ] 

 
The above projection matrix does absolutely nothing. Because it is an identity matrix, output vector P 
will be identical to input vector V. Once vector P has been calculated we could simply do x/z and  y/z 
to calculate the new 2D projection space position of the vector. This would scale the geometry using a 
90 degree FOV projection. 
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Note that the projection matrix is the last point at which we have control over the vertex in the DirectX 
Graphics fixed-function transformation pipeline. We will pass DirectX Graphics a World matrix, a 
View matrix and a Projection matrix and call the DrawPrimtive function to render polygons. DirectX 
Graphics will multiply our vertices with the three matrices and will then take care of performing the 
perspective divide on the resulting vector returned from the projection matrix. It will eventually remap 
the coordinate to a screen space coordinate.  The software renderer in LP 1.1 will mimic this behavior 
to a certain extent. Therefore we will set up the projection matrix the same way it will need to be set up 
when using DirectX Graphics. 
 
The first problem we must address with our matrix is that DirectX Graphics requires that the w 
component of the output vector be equal to the z component of the input vector after the projection 
matrix multiply (W=z). The reason is that DirectX Graphics uses the w component of the output vector 
for other calculations (depth-based fog, color interpolation, W–Buffer). It may seem more intuitive to 
copy the input z component into the output Z component and use that, but as you will see later on, we 
need the Z value of the output vector to hold specialized information intended for something called a 
Depth Buffer. Copying the z component of the input vector into the W component of the output vector 
is no big deal, and we can alter our matrix quite easily to ensure that this is so:  
 

Projection matrix 
 

[ ] [ zWZYXPMzyxV ==
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By adjusting the 4th column of the projection matrix so that the 1 is no longer in the 4th row but is now 
in the 3rd row, the W component of the output vector will be calculated as follows:  
 

W= x*0 + y*0 + z*1 + 1*0 =z 
 
This matrix has correctly copied over the z component of the input vector V into the W component of 
the output vector P. So if V= ( 20 , 40 , 105 , 1), then P =( 20, 40, 105, 105). 
 
We said before that to move a vertex from view space to 2D projection space (where the divide by z 
happens) we simply do: 
 

zViewSpace
yViewSpaceaceyojectionSpD

zViewSpace
xViewSpaceacexojectionSpD

.

.Pr2

.
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=

=
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And now we have a new coordinate space. This space is the space the vertex is in after it has been 
multiplied by the projection matrix but before it has been projected into 2D projection space (the 
divide by z). This new space is referred to as Homogeneous Clip Space. The only current difference 
between view space and homogeneous clip space is that in homogeneous clip space we have copied the 
z component into w and we have: 
 
ViewSpaceVector                         = (x , y , z , 1) 
HomogneousClipSpaceVector     = (x , y , z , z) 
 
Because the w component holds the z value and because the z value of the output vector will later hold 
something else, DirectX Graphics (and our software engine) does its perspective projection using this 
formula: 
 

wsClipSpaceHomogeneou
yClipSpaceHomogenousaceyojectionSpD

wClipSpaceHomogenous
xClipSpaceHomogenousacexojectionSpD

.
.Pr2

.
.Pr2

=

=

 

 
The formula remains totally unchanged, only now the z value is in W instead of Z.  
 
So if we set up our projection matrix correctly, it will output a 4D vector P like so:  
 

P(X , Y , Z=Depth Buffer value , W=z) 
 

Ignore the Depth Buffer value for now. We will cover it in our next lesson. For now we are only 
interested in finding out how the X and Y columns of the projection matrix can be used to deform 
geometry to give an arbitrary FOV. The W column is already taken care of; it simply copies over the 
input z component into w. So let us now look at what we should do with columns 1 and 2 of the 
projection matrix. 
 
 
Arbitrary FOV 
 
If you take a look at the first two columns of the projection matrix, you see that for x and y, it is really 
like a 2x4 scaling matrix. At the moment it is simply scaling x*1 = x and y*1=y -- which is why these 
are not altered. But by changing the values in elements m11 and m22 we can scale the x and y values 
prior to the divide by w. In effect, we still perform a 90 degree FOV projection (x / w and y / w), but we 
can use the m11 and m22 elements in the matrix to scale (squash or enlarge) geometry so that it falls 
either in or out of the 90 degree FOV projection cone.  This is what allows us to have any FOV we 
desire. To understand this concept, take a look at Fig 1.40. It shows us squashing geometry into the 
view cone that would otherwise not be rendered. 
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Figure 1.40 

 
Noting that the z value of the input vector is simply copied over into the W value of the output vector, 
any given x or y point in space will only be mapped inside the projection window if the following is 
true:  
 

-W < X < W 
-W < Y < W 

 
In Fig 1.40 there are three view space points (red dots) labeled P1, P2 and P3. These points are outside 
the 90 degree view cone because the Y value of each of these points is greater than the Z value. 
However, if we were to multiply each Y value by, say, 0.4, the Y values would be smaller than their z 
counterparts (green dots in the above diagram). This means that these points would be projected onto 
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the projection window when the divide by w is calculated. If we do this to all vertices in our scene, we 
can squash as much or as little geometry into our 90 degree view cone as we want.  
 
In the previous example, we multiplied our y values by 0.4 to create a wider FOV. But we can also 
scale the geometry up as well. For example, if we were to scale each vertex by 1.5, Y values that did fit 
within the 90 degree FOV originally would be increased and would leave the projection matrix greater 
than W. These points would not fall within the projection window and this would simulate a narrower 
FOV. 
 
Scaling the x and y values is easy. The first two columns of our projection matrix look just like a 
scaling matrix. Therefore, in m11 and m22 where we currently have a value of 1.0, we can replace 
these values with other values that will increase or decrease x and y input vector values.  
  

Projection Matrix 
 



















=
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1100
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0004.0
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Y is calculated as follows: 
 

Y= x*0 + y*0.4 + z*0 + w*0 
 

This simplifies to: 
 

Y=y*0.4. 
 

The same is true for the x coordinate. X is calculated as follows: - 
 

X=x*0.4 + y*0 + z*0 + w*0 

This simplifies to:  

X=x*0.4 
 
At this point we can now scale the geometry, calculate the depth buffer output value and copy z into W, 
all by performing one vector/matrix multiplication. 
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Co-Tangent and User Defined FOV 
 

In the last example we used an arbitrary value of 0.4 in the m11 and m22 elements of the matrix to 
scale the geometry. This provided the appearance of a wider FOV because geometry was scaled down. 
However gaining precise control over the FOV settings requires a trigonometric function: the co-
tangent. 

 
Cosine, Sine, and Tangent are functions that return the ratio of two sides of a right triangle. For 
example the Tan function returns the ratio between the Opposite side of a triangle and the Adjacent 
side of a triangle. 
 

 
Figure 1.41 

 
  
In Fig 1.41, the length of the Opposite side of the right triangle is 7 and the length of the Adjacent side 
of the triangle is 15. When we divide the opposite side by the adjacent side we get a result of 
0.466666666. This ratio is called the Tangent (or Tan for short). The tangent is always calculated by 
dividing opposite by adjacent. 
 
All angles of a right angled triangle are mapped to a specific tangent value that describes the ratio 
between the opposite and adjacent sides. For example, let us say that we know the triangle has an angle 
of 25.01689345 degrees and we also know the length of the Adjacent leg of the triangle. If we wanted 
to figure out how long the opposite leg was, we could punch in the angle on our calculator 
(25.01689345) and then press the Tan button (which in this case would return 0.466666666). This 
value describes the ratio of the opposite leg to the adjacent. Thus to find the length of the opposite leg: 
 
Opposite= Tan (25.01689345) * 15 = 0.466666666*15 = 7 (approx, actually 6.999999999999) 
 
If we have the lengths of both the opposite side and the adjacent side, but we do not know the angle 
value, we can use the inverse tangent atan (i.e. Tan-1). First we calculate the tangent: 
 
Tan = Opposite/Adjacent = 7/15 = 0.46666666 
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Punch in this tangent value and press the atan key and the calculator will return the angle for that 
tangent (which in our case we already knew was 25.01689345 degrees or 0.436627159 radians). 
 
If we take a side-on look at our view cone, and split it down the middle, you can see that for any z 
value along the Z axis in view space, we do indeed have a right angled triangle. 
 

 
Figure 1.42 

 
The opposite side of the triangle is represented by the Y value and the Adjacent leg is represented by 
the Z value. The same would also be true in a top-down view of the view cone, where the X axis would 
represent the Opposite leg.  
 
In Fig 1.42, the Opposite side of the Triangle is at a distance of Z=+6. (It should be noted that for any 
Z value, the ratio (tangent) between the Opposite and Adjacent would remain the same and the angle 
would remain the same). Note that the angle of the triangle is FOV/2. Also notice that the Opposite and 
Adjacent sides have the same lengths as each other.  
 

1
6
6
==

Adjacent
Opposite

 

 

If you type 1.0 into your calculator and press the atan function you will be returned an angle of 45 
degrees. Recall that when the Y value at any point is equal to Z, then the FOV is 90 degrees. If we 
change this relationship we could come up with a value that we could put into our projection matrix 
(m11 and m22) to scale the geometry.  
 
Let us suppose that we want a FOV smaller than the default 90 degree projection carried out by the 
divide by w projection (say 60 degrees). Logically we would want a value that would increase our X 
and Y values so that the geometry which was just inside our 90 degree FOV is pushed outwards. This 
simulates a smaller FOV since we should not see as much of our scene as we would be able to see with 
a 90 degree FOV. 
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What happens if we use the tangent function to calculate the ratio for us?  
 
Tan(30)=0.577350269 
 
That is clearly not correct. Multiplying our x and y values by 0.577350269 would actually make the 
values smaller and would squash even more geometry into the view cone. It is the opposite effect that 
we want. In order to get the correct ratio to scale our x and y values we need to use the co-tangent 
function: 
 

 
Figure 1.43 

 
The co-tangent in our example ratio is 2.142857143. This value is exactly what we need to multiply by 
the opposite side in order to make it equal to the adjacent side: 
 
7 * 2.142857143 = 15 
 
More specifically, this is the value that we need to create an opposite side length such that the triangle 
is forced into becoming a 45 degree triangle (where both the opposite side and the adjacent side have 
lengths of 15).  
 
So this is the value we need to multiply by our x and y values in order to simulate a 50.02 FOV (twice 
the angle above for the full view cone). Since the Co-Tangent function is not implemented in many 
programming languages or on many calculators we can use trig functions to figure it out: 
 

co-tan=
)sin(
)cos(

)tan(
1

θ
θ

θ
=  

 
If we want a FOV of 60 degrees, we can scale the x and y values in the projection matrix by filling out 
the m11 and m22 elements of our matrix as follows. 
 
 
 
m11 = 1 / tan(60/2) 
m22 = 1 / tan(60/2) 
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or 
 
m11 = cos(60/2) / sin(60/2) 
m22 = cos(60/2) / sin(60/2) 
 
 
Notice above that the FOV (60 degrees) is divided in two (30 degrees) because the trigonometry 
functions use one half of the view cone. 
 

047197551.1=θ  radians (60 degrees) 
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We now have a projection matrix that will scale geometry according to any arbitrary FOV. The 4th 
column simply copies the input z value into W of the output vector for the divide by w. The 3rd column 
maps the input z value into a value that can be used by the DirectX Graphics depth buffer. We are just 
about finished. 
 
 
Aspect Ratio 

 
When projected into 2D space, we get back a value between –1 and +1 in both the x and y dimensions 
for any point inside the FOV. This is the coordinate system of the Projection Window. The next task is 
to convert those projection coordinates to valid screen coordinates that can be rendered on the display. 
In order to calculate the final screen coordinates, we do something like this:  
 
ScreenX =  Vector.x * ViewportWidth  / 2 + ViewportLeft + ViewportWidth  / 2 
ScreenY = -Vector.y * ViewportHeight / 2 + ViewportTop  + ViewportHeight / 2 

 
ScreenX and ScreenY are screen space coordinates. In a resolution of 800x600, ScreenX is in the 
range of 0 to 800 and ScreenY is in the range of 0 to 600. 
 
Vector.x and Vector.y are the clip space coordinates on the projection window (in the range –1 to +1) 
and are the results of the divide by w. 
 
ViewportWidth and ViewportHeight are the dimensions of the viewable area on screen. For example, 
in a full screen window of 800x600, these values would be 800 and 600 respectively. 
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ViewportLeft and ViewportTop should be set to zero for full screen windows, or should contain the 
top left coordinates of the view window if you only wish to render to a view port that covers part of the 
screen. 
 
The projection window coordinates range from –1 to +1 in both the x and y dimensions and thus the 
window is square (2x2 in size). However, monitor screens are generally not square. Most are 
rectangular (usually wider than they are higher). This is also true for the most common video modes: 
800 x 600, 640 x 480, 1024 x 768. These are all video modes that have more pixels horizontally than 
they do vertically. This presents us with a problem. Suppose we have a polygon in front of the camera 
that is a perfect square. This will be projected onto the projection window as a perfect square also. 
However, when the projection window coordinates are mapped to screen coordinates, they will be 
stretched to take up the extra width of the video mode. This means that the user of your application will 
see the square as a rectangle (Fig 1.44). 

 
Figure 1.44 

 
In order to counter this unwanted effect we will set a different FOV in the X dimension of our matrix 
(m11). By increasing the FOV in the X dimension, we scale the input x values in our projection matrix 
down. This means a square in camera space will be squashed in X onto the projection window such 
that when the projection window is stretched into screen coordinates, the resulting rectangle is 
stretched back into a square shape (Fig 1.45). 
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Figure 1.45 

 
If we can measure the ratio of Screen Width to Screen Height that our application is using, and set the 
FOV for the x axis (m11) in our projection matrix accordingly, we get a wider FOV along the x axis. 
This is logical; if the monitor is wider in the x dimension than it is in the y, we should be able to see 
more in the x dimension, and therefore have a wider FOV in the x dimension. In order to correct the 
problem, we must first measure the ratio of screen distortion. This ratio is nearly always referred to as 
the Aspect Ratio, and can be calculated like so:  
 

Aspect Ratio = 33333333.1
480
640

600
800

768
1024

====
Height
Width

 

 

Notice how the aspect ratio is the same for all the standard full screen video resolutions (1.3333333). If 
you are not using a standard video mode, or are using a viewable area that is not the full screen, Width 
and Height in the above equation refers to the width and height of the view in which port you are 
rendering (in screen coordinates). 

With this aspect ratio, we can adjust the m11 element of our matrix to correct for screen space 
distortion by setting up the matrix as follows:  
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Projection Matrix with 60 Degree FOV and Aspect Ratio Correction 
 

047197551.1=θ  (60 Degree FOV) 
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When we specify a FOV of 60 degrees, the FOV is only 60 degrees with respect to the Y axis. It is 

1781788.752)333333.1)
2

60(( =××TANATAN degrees with respect to the X axis. 

 
Note: In some source implementations you might see Aspect Ratio calculated as 

77777777.0=
Width
Height

. These implementations will MULTIPLY element m11 with 0.77777777 instead 

of DIVIDING m11 by 1.33333333. 
 
 
After that somewhat lengthy discussion on setting up a projection matrix, you will be glad to know that 
you can set-up a projection matrix easily with a single call to a D3DX function: 
 
D3DXMatrixPerspectiveFovLH( D3DXMATRIX* pOut,  FLOAT fovY,  FLOAT Aspect, 

                      FLOAT zn,  FLOAT zf ); 
  
We pass to this function the address of a matrix that will store the final matrix, a FOV for the Y axis, 
and an aspect ratio (ViewportWidth / ViewportHeight). The matrix returned will be calculated in the 
way that we have just described.  
 
The two parameters at the end of the parameter list in the above function (zn and zf) are used to 
configure the 3rd column of the projection matrix to scale the Z value of the input vector into a range 
that can be used by the DirectX Graphics depth buffer. We will not be using a depth buffer in our first 
lab project so we can leave this discussion until the next chapter when we use DirectX Graphics to 
render our geometry. 
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Conclusion 
 

The key points from this lesson are the core processes involved in transforming objects from model 
space to world space to view space to eventual screen coordinates. We also learned that 3D models are 
constructed from polygons and that each polygon is made up of a number of vertices. Finally we 
covered a good deal of crucial mathematical techniques that will be invaluable as we progress through 
the course. At this point it is recommended that you enroll in the Game Mathematics course to continue 
to reinforce this mathematics knowledge as well as learn new techniques. The two courses can now be 
taken in parallel since the core math you will need for this course has been covered.  
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Workbook Chapter One: 
3D Graphics Fundamentals 
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Getting Started with DirectX Graphics 
 
Veteran programmers, and even veteran games players, will surely remember the days when all games 
ran on top of a low-level text based operating system known as DOS™. At the time, Microsoft 
Windows™ had become a respectable platform to run business applications but was generally 
considered a very poor choice for developing cutting edge 3D games. The problem was that the 
platform isolated the programmer from the underlying graphics hardware by using a software layer 
called the Graphics Device Interface (GDI). This interface contained a robust collection of 2D text and 
primitive drawing functions that the developer could use to render 2D output to the screen. In some 
ways this was advantageous because it meant developers did not have to concern themselves with 
issues such as which chipset was used by the graphics card in the end user’s system. To the developer 
it all looked the same. If you wanted to draw a rectangle, you would simply instruct GDI to draw that 
rectangle. GDI would handle the interaction with the graphics hardware to produce the physical output.  
 
The GDI was built to be stable and robust. Unfortunately this came at the cost of prohibiting the 
developer direct access to the screen and video memory. This situation is generally unacceptable for 
game development projects because drawing operations had to be converted by GDI into native 
instructions that the graphics hardware could understand. This heavy software abstraction layer 
between the developer and the hardware rendering was very slow; so slow in fact that it could not 
seriously be used for modern games. 
 
Games running through DOS had no such limitation. The graphics hardware could be controlled 
directly by the programmer using low-level techniques and games could run much faster. Despite these 
benefits, DOS games were a challenge. This was true not only for the developer but also for the game 
player.  
 
From the developer’s perspective, the PC had become so popular that many manufacturers produced 
graphics cards, all with different chipsets, each of which often spoke different languages. This meant 
developers had to make sure their games worked on many different types of hardware. There was no 
standard rendering API at that time. Because each graphics card had to be uniquely programmed, 
developers often had to create many different versions of drawing functions to work with the different 
graphics hardware. If new hardware was released after the software application was released there was 
a good chance the application would not work with that hardware. This also presented a difficulty for 
the bedroom programmer (the hobbyist) because they generally did not have the budget to purchase all 
of the available graphics hardware on the market to ensure that their game worked on all of them. 
 
From the perspective of the games player, many felt it too difficult just to get a game to install 
correctly.  The user would often be quizzed about the chipset they were using on their graphics card 
and the amount of available video memory they had. This may not sound like such a big deal to a 
technical person, but many people who were not computer savvy did not really understand what all 
these terms meant or even exactly what hardware they had inside their system. Software companies 
had to provide extensive customer support as an added expense. This was in contrast to games 
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consoles such as the Super Nintendo™, where even a young child could play a game simply by 
inserting a cartridge. 
 
Microsoft realized that this problem had to be addressed if they wanted Windows to become a 
dominant gaming platform. So shortly after the release of Windows 95, Microsoft released a royalty-
free multimedia development library called ‘The Game SDK’. This was essentially version 1.0 of 
DirectX. The name DirectX however, was officially adopted along with version 2.0 of this SDK, likely 
because it had matured into a full-blown multimedia library and was no longer limited to just games 
development. Although the earlier versions of DirectX were somewhat rough around the edges, it has 
matured greatly over the years. From DirectX 5 onwards, developers really started to sit up and take 
notice. Now we are at version 9 of DirectX and it really is amazing how far it has come in such a short 
period of time.  
 
DirectX provided the answers to many of the problems that had plagued the development of games and 
entertainment titles up until that point. First, it was designed for the Windows platform. This meant 
that developers could create their games in an environment where Win32 API features (such as multi-
threading and user interfaces) were already available. Second, it provided a unified API, much like the 
GDI had done before, but this time it was very fast. The developer no longer had to worry about what 
graphics hardware the end user would be playing on, and could usually leave it up to DirectX to 
communicate with the hardware correctly. This was accomplished through the use of driver 
programs. Graphics cards that support DirectX (which is virtually all of them now) come with a driver 
which is installed on the end user’s system. This driver is written by the card manufacturer and is a 
very thin and fast software layer that takes the requests passed through various DirectX functions by 
the application, and turns them into instructions that the hardware understands. This means DirectX 
can talk to all graphics cards as though they are the same even when they are radically different from 
one another. Drivers supplied by the card manufacturer handle the conversion into hardware specific 
instructions very quickly. One of the other advantages that DirectX affords us (over the GDI) is that it 
does not completely isolate us from the end user’s hardware.  
 
DirectX also takes advantage of 3D hardware acceleration without requiring any additional code from 
the developer. If you render a triangle using DirectX, and the computer running the application has a 
3D accelerated graphics card, DirectX will use those features to render that triangle at high speeds. The 
latest 3D hardware also accelerates 3D mathematics (which was always the domain of the CPU in the 
past). This means that many graphics card can handle the thousands of mathematical calculations 
needed to render a scene whilst leaving the CPU free to handle other tasks such as artificial 
intelligence or other game specific tasks. 
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The DirectX API 
 
DirectX is divided into several code modules or Application Programming Interfaces (APIs). Each 
covers different areas of multimedia development. Some of the DirectX APIs are listed below along 
with a brief description of the functionality they provide to the developer. Although this course is 
primarily focused on DirectX Graphics, it is useful to have a broader picture of the entire DirectX 
multimedia library: 
DirectX Graphics 
In older versions of DirectX, 2D and 3D operations were divided among two APIs called DirectDraw 
and Direct3D respectively. From DirectX 8.0 onwards, these APIs were merged into a single API 
called DirectX Graphics. Many people still refer to DirectX Graphics as Direct3D. As you will see, 
most of DirectX Graphics functions and interfaces usually start with D3D (short for Direct3D) so in 
many ways this makes some sense. The terms ‘Direct3D’ and ‘DirectX Graphics’ will be used 
interchangeably from this point on. If we mention either of these terms it is to be assumed that we are 
talking about the same API: DirectX Graphics. 
 
DirectX Audio 
The DirectX Audio API contains functionality for managing and playing audio samples and music 
within your application. It includes support for three dimensional / positional audio, and also includes 
support for hardware sound processing and environmental effects. DirectX Audio was previously split 
into two APIs, known as DirectSound and DirectMusic but following the release of DirectX 8.0 they 
have been merged into one. This API is not covered in this course. 
 
DirectInput 
The DirectInput API contains functionality to handle user-input peripherals. It provides functions for 
managing and reading devices such as Joysticks, Game Pads, and Force Feedback Wheels as well as 
the keyboard and the mouse. The Game Institute offers a course covering the full DirectInput API so 
be sure to check out the course offerings page at www.gameinstitute.com for more information as you 
continue to build out your own projects. 
 
DirectPlay 
This API provides functionality generally used in the implementation of networked multiplayer games 
and similar applications. It includes support for transmitting and receiving data across many different 
types of network environments, including the Internet. As with most aspects of DirectX, this API is 
designed as an application layer which unifies the system used to transmit and receive data regardless 
of the underlying network infrastructure. The Game Institute also provides training in this API so be 
sure to check out this course when you decide to add network capability to your game projects. 
 
DirectShow  
The DirectShow API provides features which encapsulate the recording and playback of high quality 
multi-media streams. This includes support for many popular formats such as MPEG, AVI, ASF and 
MP3 audio files. This API is not covered in this course. 
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Direct Setup 
This API provides you with a straightforward way to distribute and install the DirectX runtime 
libraries on the end user’s machine. You may have seen this in action many times before when you 
installed a new game that uses a more recent version of DirectX than the one you currently have 
installed. When this is found to be the case you are often informed that you need the later version of 
DirectX, after which the actual installation proceeds. This requires much more than a few file copy 
operations, so you should make sure that you use this API to install DirectX on the end user machine 
when your game is finally shipped. This API is not covered in this course. 
 
 
Installing the DirectX9 SDK 
 
In order to use DirectX Graphics and the D3DX utility extension, we need to set up our compiler so 
that it can find the DX9 header files and the DX9 library files. We will need to include the d3d9.lib and 
d3dx9.lib library files within all of the projects that make use of DirectX Graphics. We must also 
include the d3dx9.h header file at the top of the source files that require their functionality (a common 
header file could also be used). When using d3dx9.h we do not have to manually include in d3d9.h as 
this is included automatically when including d3dx9.h. 
 
Let us first cover setting up the DX9 SDK for your compiler. The following examples are for 
Microsoft’s Visual C++ 6 compiler. If you are using a different compiler then you will have to 
interpret and translate the following instructions for use with your particular system. 
 
The first thing you will need to do is to visit the Microsoft website (www.microsoft.com) and 
download the DirectX9 software development kit (SDK). This is a fairly sizable download especially 
for people using 56k dial up accounts (around 200MB). If you are unable to download files this big, 
Microsoft provides a means to purchase the DirectX 9 SDK on CD from their website (for a minimal 
charge that basically covers postage, packaging, and shipping). 
 
Once the file has been downloaded (or you have received the package on CD), run the setup 
executable. This will install the SDK on your computer. In the following example, we have installed 
the SDK in the folder “C:\DX9SDK”. If you decide to place it elsewhere on your system, you must 
change the path used in the following examples to match the folder into which you decided to install it. 
 
Once the SDK has been installed (and you have rebooted your machine) you will find that a folder has 
been created (‘C:\DX9SDK’ in this example) with several sub-folders. The sub-folders of importance 
are shown below: 
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          C:\dx9sdk 
 

 
Bin 
The ‘Bin’ folder contains utility applications that aid in the development of DX9 applications. These 
are incredibly useful tools to have at your disposal. Some worthy of mention are:  
 
a. DXCapsViewer.exe: Allows you to see all of the DirectX features and modes supported by your 
current hardware. Video modes, refresh rates, and texture blending operations are some examples.  
b. DXErr.exe: Allows you to enter error codes returned by DX API functions and retrieve a 
meaningful description to help you to diagnose what went wrong 
c.  DXTex.exe: Allows you to import bitmaps that are to be used as textures, and convert them to the 
DirectX native texture format known as .DDS. You do not have to use DDS files but they can be 
convenient in certain circumstances. 
d.  vsa.exe: Allows you to compile vertex shaders. 
e.  psa.exe: Allows you to compile pixel shaders. 
 
Doc 
This folder contains your lifeline to DirectX Graphics development (ok, perhaps your second lifeline, 
after this course). It contains the complete reference manual for DirectX packed with hundreds of 
pages of information. You will no doubt use this as a reference time and time again. Every possible 
function call, interface, structure, and macro used by DirectX is explained to some degree in here. 
 
Include 
This folder contains the entire set of C++ header files that you will need to include in your project to 
create a DirectX application. We will discuss shortly how to set up the search paths used by the 
development environment so that the compiler automatically uses this folder when building your 
project. 
 
Libs 
This folder contains all of the library files that you will need to link into your project in order to gain 
access to DirectX functions and interfaces. We will show you how to set the environment up in a 
moment and discuss which lib files you need to link into your project and when. 
 
Redist 
This folder contains the distributable DirectX runtime which you can ship to the end user along with 
your application. The executable in this folder allows for the automated version checking and 
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installation of the DirectX9 runtime on the end user system. There are examples of how to use this 
system correctly in the samples folder.  
 
Samples 
The samples folder is another invaluable resource when it comes to learning DirectX programming. It 
contains dozens of example programs (with source code) showing how to use DirectX and all of its 
features. This folder also contains precompiled binaries so that you can run the samples without being 
required to build the source. This is a good way to test that DirectX9 is correctly installed to your 
computer. 
 
SDKDev 
This directory contains the runtime install applications that are automatically installed with the SDK.  
They are English language only and contain both debug and retail DirectX 9.0 system components.  
You can switch between the retail and debug versions of the runtime via the DirectX Control Panel 
component (accessible via the Windows Control Panel). You can use the debug runtime to receive 
additional debug information from DirectX via the C++ IDE. If the control panel icon is not available, 
try re-installing the debug runtime contained in this folder. These installers are not for redistribution, 
and are designed for SDK development only. 
 
Note: If you choose to install the debug runtimes, please make sure that you disable it via the control 

panel whenever you do not require additional debug information. The debug runtimes are 
significantly slower than the retail runtimes. 

 
 
Setting up the Build Environment for DirectX9 
 
Setting up the environment is easy if you are using Microsoft Visual C++ 6. If you are not using 
Microsoft VC++ 6 then you will need to translate the following instructions to work with your 
preferred compiler/environment. 
 
The first thing we will do is setup the IDE so that it will search the “C:\DX9SDK\Include” folder 
automatically when searching for header files. This is done via the Tools / Options menu item which 
will bring up the options property sheet. Next you need to click on the Directories tab as demonstrated 
below: 
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Select ‘Include files’ from the drop down combo box in order to display a list of all the folders 
currently in the environment include search path. Whenever a ‘#include <file>’ directive is 
encountered within your code, the compiler will search for the file in each of the folders listed (in 
order) until it is found. We need to add the folder in which our DirectX9 headers files are contained: 
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In the above image we have added two folders to the list. The first one (described earlier) is the folder 
in which the primary include files are contained. These are required for building a DirectX application.  
 
The second path we have added contains many of the include files used by certain SDK sample 
applications. These include the header files for the SDK Framework. The framework is a series of 
classes that can be used to define a pre-built code structure for your DirectX programs. It provides 
certain benefits such as functionality for handling the environment setup, texture import and 
manipulation, and so on. We will not be using the framework in this course, although you can make 
use of individual components if you desire. 
 
Warning: 
The search path list is processed in order from top to bottom. This is important to note if you have a 
previous version of the SDK installed and you have a path to those folders in the list. If it is higher up 
in the list and some of those files share the same name as the ones in the dx9sdk, those files will be 
processed first and used to build your executable. This is not a good thing. To change the order of the 
directories, simply select the path item you want to move and drag it up or down in the list. 
 
Our next task is to add another search path in the same way described above. This time we want to add 
it to the directories checked whilst searching for library files. Simply pull down the combo box as 
before and select library files. The current list of search directories will be displayed. As before, we 
need to add a search path so that the compiler searches the ‘C:\DX9SDK\Lib’ folder shown below: 
 

 
 
Again, the search order is significant. If you have legacy lib files (from an older SDK installation) in 
different search paths that share the same name as some of the DirectX 9 lib files, then you will 
experience problems during compilation. So, make sure that the priority listings are at the top. 
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The last step is informing the environment about which DirectX library files we would like linked with 
our application. To use DirectX Graphics we need to link in two library files, ‘d3d9.lib’ which contains 
the core DirectX Graphics functionality and ‘d3dx9.lib’ which contains the D3DX helper library. We 
will set this list up on a per project basis. For the project files accompanying this lesson, this will have 
been done already. If you are starting a new project, you will need to carry out this procedure via the 
‘Projects / Settings’ menu item. This will open the project settings property sheet. When this happens 
select the ‘Link’ tab to display the settings for the linker as show below: 
 

 
 
As you can see in the above image we have added the names of the two DirectX library files we need 
to the end of the ‘Object/Library Modules’ list. 
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Lab Project 1.1: The Transformation Pipeline 
 
Our first demonstration application will be a simple wire frame software transformation and rendering 
application that animates two spinning cubes. We will use the Window GDI to draw the lines for each 
polygon.  
 
We have chosen to use a class to store vertex information in this example but you could also use a 
struct. The class contains three floating point member variables that describe the offset from the origin 
along each respective axis. It also has a constructor which receives X, Y, and Z values to aid in the 
easy initialization of the vertex. Although it is considered more OOP correct to make the data members 
private and to provide accessor functions that read and set the variables, in the interest keeping things 
simple and to minimize code, we will make the members public. This is actually typical for a vertex 
class since the values may need to be accessed many times in very tight code loops. The overhead of 
calling functions such as ‘SetVertexX(value)’ and ‘GetVertexX()’ might be significant where in-lining 
cannot be used. 
 
class CVertex 
{  
public: 
   // Constructors 
   CVertex( float fX, float fY, float fZ); 
   CVertex(); 
    
   // Public Variables for This Class 
   float       x;          // Vertex X Coordinate 
   float       y;          // Vertex Y Coordinate 
   float       z;          // Vertex Z Coordinate 
}; 
 
The next class we need will store a polygon. Since each polygon is made up of a number of vertices, 
our polygon structure will look like this: 
 
class CPolygon 
{ 
public: 
    // Constructors & Destructors for This Class. 
             CPolygon( USHORT VertexCount ); 
             CPolygon(); 
    virtual ~CPolygon(); 
  
    // Public member functions 
    long        AddVertex( USHORT Count = 1 ); 
 
    // Public member variables 
    USHORT      m_nVertexCount;  // Number of vertices stored. 
    CVertex    *m_pVertex;       // Simple vertex array 
 
}; 
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The Polygon class has a member variable m_nVertexCount which will store the number of vertices 
used to define this polygon. In our example all polygons are cube faces that have four corner points 
and therefore the vertex count for each of our polygons will be 4. The CVertex pointer will be used to 
allocate an array for the number of vertices required for this polygon. 
 
The default constructor simply initializes the member variables to zero or null: 
 
// Default Constructor 
CPolygon::CPolygon() 
{ 
     m_nVertexCount  = 0; 
     m_pVertex       = NULL; 
} 
 
The second constructor allows us to pass in the number of vertices to be allocated. This function calls 
the member function AddVertex to allocate the actual vertex memory. 
 
// Constructor 2 
CPolygon::CPolygon( USHORT Count ) 
{ 
    // Reset / Clear all required values 
    m_nVertexCount  = 0; 
    m_pVertex       = NULL; 
     
    // Add vertices 
    AddVertex( Count ); 
} 
 
The destructor simply deletes the vertex array if one exists. 
 
// Destructor 
CPolygon::~CPolygon() 
{ 
    // Release our vertices 
    if ( m_pVertex ) delete []m_pVertex; 
     
    // Clear variables 
    m_pVertex       = NULL; 
    m_nVertexCount  = 0; 
} 
 
The AddVertex function allocates a new block of memory large enough to hold both the requested 
number of vertices and those already existing inside the polygon. Data is copied from the old vertex 
array into the new one and the old array discarded. The additional vertices that have been added to the 
end of the array will be initialized to the values specified in the default CVertex constructor. 
 
long CPolygon::AddVertex( USHORT Count ) 
{ 
    CVertex * pVertexBuffer = NULL; 
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    // Allocate new resized array 
    if (!( pVertexBuffer = new CVertex[ m_nVertexCount + Count ] )) return -1; 
 
    // Existing Data? 
    if ( m_pVertex ) 
    { 
        // Copy old data into new buffer 
        memcpy( pVertexBuffer, m_pVertex, m_nVertexCount * sizeof(CVertex) ); 
 
        // Release old buffer 
        delete []m_pVertex; 
 
    } // End if 
 
    // Store pointer for new buffer 
    m_pVertex = pVertexBuffer; 
    m_nVertexCount += Count; 
 
    // Return first vertex 
    return m_nVertexCount - Count; 
} 
 
 
 

The CMesh Class 
 
The CMesh class will manage a collection of polygons. In our class we have chosen to store an array 
of polygon pointers. We also need a member variable that tells us how many polygons the mesh 
contains. Our cube mesh will use eight polygons. Of course, we will not hard-code such limitations so 
that we can reuse these classes later to store polygons with more than 4 vertices (hexagons for 
example) or meshes with thousands of polygons. 
 
class CMesh 
{ 
public: 
    // Constructors & Destructors 
             CMesh( ULONG Count ); 
             CMesh(); 
    virtual ~CMesh(); 
 
    // Public Functions 
    long        AddPolygon( ULONG Count = 1 ); 
     
    // Public Member Variables  
    ULONG       m_nPolygonCount;        // Number of polygons stored 
    CPolygon  **m_pPolygon;             // Simply polygon array 
 
}; 
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// Default constructor 
CMesh::CMesh() 
{ 
    m_nPolygonCount = 0; 
    m_pPolygon      = NULL; 
} 
 
The second constructor allows us to specify how many polygons we want automatically allocated. It 
wraps the AddPolygon function which is where the allocation takes place. 
 
CMesh::CMesh( ULONG Count ) 
{ 
    m_nPolygonCount = 0; 
    m_pPolygon      = NULL; 
 
    // Add Polygons 
    AddPolygon( Count ); 
} 
 
The destructor releases any memory that has been allocated. This involves releasing all polygons 
owned by the mesh. 
 
CMesh::~CMesh() 
{ 
    // Release our mesh components 
    if ( m_pPolygon )  
    { 
        // Delete all individual polygons in the array. 
        for ( ULONG i = 0; i < m_nPolygonCount; i++ ) 
        { 
            if ( m_pPolygon[i] ) delete m_pPolygon[i]; 
         
        } // Next Polygon 
 
        // Free up the array itself 
        delete []m_pPolygon; 
     
    } // End if 
 
    // Clear variables 
    m_pPolygon      = NULL; 
    m_nPolygonCount = 0; 
} 
 
Next we look at the polygon allocation function AddPolygon. The CMesh contains an array of polygon 
pointers. This makes resizing the arrays easier when a new polygon is added. 
 
long CMesh::AddPolygon( ULONG Count ) 
{ 
    CPolygon ** pPolyBuffer = NULL; 
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    // Allocate new resized array 
    if (!( pPolyBuffer = new CPolygon*[ m_nPolygonCount + Count ] )) return -1; 
 
    // Clear out slack pointers 
    ZeroMemory( &pPolyBuffer[ m_nPolygonCount ], Count * sizeof( CPolygon* ) ); 
 
    // Existing Data? 
    if ( m_pPolygon ) 
    { 
        // Copy old data into new buffer 
        memcpy( pPolyBuffer, m_pPolygon, m_nPolygonCount * sizeof( CPolygon* ) ); 
        // Release old buffer 
        delete []m_pPolygon; 
 
    } // End if 
     
    // Store pointer for new buffer 
    m_pPolygon = pPolyBuffer; 
 
    // Allocate new polygon pointers 
    for ( UINT i = 0; i < Count; i++ ) 
    { 
        // Allocate new poly 
        if (!( m_pPolygon[ m_nPolygonCount ] = new CPolygon() )) return -1; 
        // Increase overall poly count 
        m_nPolygonCount++; 
 
    } // Next Polygon 
     
    // Return first polygon 
    return m_nPolygonCount - Count; 
}  
 
 
With these classes in place we add a function call at the start of our application to initialize the mesh 
object and fill it with the vertices of our cube. A function that used our new classes would look 
something like the following (assuming that g_Mesh is a global CMesh object variable):   
 
 
bool BuildObjects() 
{ 
    CPolygon * pPoly = NULL; 
 
    // Add 6 polygons to this mesh. 
    if ( g_Mesh.AddPolygon( 6 ) < 0 ) return false; 
 
    // Front Face 
    pPoly = g_Mesh.m_pPolygon[0]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2,  2, -2 );  // P1 
    pPoly->m_pVertex[1] = CVertex(  2,  2, -2 );  // P4  
    pPoly->m_pVertex[2] = CVertex(  2, -2, -2 );  // P8 
    pPoly->m_pVertex[3] = CVertex( -2, -2, -2 );  // P5 
 
     // Top Face 
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    pPoly = g_Mesh.m_pPolygon[1]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
     
    pPoly->m_pVertex[0] = CVertex( -2,  2,  2 );  // P2 
    pPoly->m_pVertex[1] = CVertex(  2,  2,  2 );  // P3 
    pPoly->m_pVertex[2] = CVertex(  2,  2, -2 );  // P4 
    pPoly->m_pVertex[3] = CVertex( -2,  2, -2 );  // P1 
 
    // Back Face 
    pPoly = g_Mesh.m_pPolygon[2]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2, -2,  2 );  // P6 
    pPoly->m_pVertex[1] = CVertex(  2, -2,  2 );  // P7 
    pPoly->m_pVertex[2] = CVertex(  2,  2,  2 );  // P3 
    pPoly->m_pVertex[3] = CVertex( -2,  2,  2 ),  // P2 
 
    // Bottom Face 
    pPoly = g_Mesh.m_pPolygon[3]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2, -2, -2 );  // P5 
    pPoly->m_pVertex[1] = CVertex(  2, -2, -2 );  // P8 
    pPoly->m_pVertex[2] = CVertex(  2, -2,  2 );  // P7 
    pPoly->m_pVertex[3] = CVertex( -2, -2,  2 );  // P6 
 
    // Left Face 
    pPoly = g_Mesh.m_pPolygon[4]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2,  2,  2 );  // P2 
    pPoly->m_pVertex[1] = CVertex( -2,  2, -2 );  // P1 
    pPoly->m_pVertex[2] = CVertex( -2, -2, -2 );  // P5 
    pPoly->m_pVertex[3] = CVertex( -2, -2,  2 );  // P6 
 
    // Right Face 
    pPoly = g_Mesh.m_pPolygon[5]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex(  2,  2, -2 );  // P4 
    pPoly->m_pVertex[1] = CVertex(  2,  2,  2 );  // P3 
    pPoly->m_pVertex[2] = CVertex(  2, -2,  2 );  // P7  
    pPoly->m_pVertex[3] = CVertex(  2, -2, -2 );  // P8   
     
    // Success! 
    return true; 
} 
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WinMain 
 

A WinMain function will typically call initialization routines and then enter a message loop that is 
continuously processed until the application exits. Our WinMain function will be very simple because 
we have moved the message pump handler into a class called CGameApp. That class will be 
responsible for managing the entire application.  
 
// Global Variable Definitions 
CGameApp    g_App;       
 
// Name : WinMain() (Application Entry Point) 
int WINAPI WinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance, 
                    LPTSTR lpCmdLine, int iCmdShow ) 
{ 
   int retCode; 
 
   // Initialize the engine. 
   if (!g_App.InitInstance( hInstance, lpCmdLine, iCmdShow )) return 0; 
     
   // Begin the game play process. Will return when app due to exit. 
   retCode = g_App.BeginGame(); 
 
   // Shut down the engine, just to be polite, before exiting. 
   if ( !g_App.ShutDown() )   
    { 
          MessageBox( 0, _T("Failed to shut system down correctly, please 
                      check file named 'debug.txt'.\r\n\r\nIf the problem 
                      persists, please contact technical support."), 
                      _T("Non-Fatal Error"), MB_OK | MB_ICONEXCLAMATION ); 
    } 
     
    // Return the correct exit code. 
    return retCode; 
} 
 
First we declare a global instance of the CGameApp class. The WinMain function will call a member 
of the CGameApp class called InitInstance which sets up the environment. It creates the window, 
builds the 3D objects and allocates memory to be used as an off screen rendering target which holds 
the current frame (referred to as the frame buffer).  When the InitInstance function returns, it either 
returns zero, which means something has gone wrong during initialization (and we should exit 
immediately), or it means the application has been successfully initialized and the CGameApp class 
has everything it needs to start running. 
 
The next function we call is CGameApp::BeginGame. This function will sit in a loop, updating the 3D 
scene and the screen image for each frame and handling Windows messages via the message pump. 
Only if a request to quit the program is found in the message queue will this function exit from the loop 
and return control back to the WinMain call.  
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Before exiting we call the CGameApp::ShutDown function. It takes care of releasing all memory used 
by the application. If something goes wrong during shutdown this function returns a false value and we 
have an opportunity to warn the user that memory may not have been released properly. 
 
 
CObject  
 
The CObject class contains the object’s world matrix and a pointer to the mesh that this object will use 
for rendering. This demo will have two objects that share the same mesh. This shows us how 
instancing can be used to place multiple objects in the world while only having one physical set of 
mesh data in memory.  
 
class CObject 
{ 
public: 
    // Constructors & Destructors for This Class. 
    CObject( CMesh *pMesh ); 
    CObject(); 
 
    //Public Variables for This Class 
    D3DXMATRIX  m_mtxWorld;            // Objects matrix 
    CMesh      *m_pMesh;               // Mesh we are instancing 
 
}; 
 
The default constructor initializes the CMesh pointer to NULL and sets the WorldMatrix to an identity 
matrix.  
 
CObject::CObject() 
{ 
    // Reset / Clear all required values 
    m_pMesh = NULL; 
    D3DXMatrixIdentity( &m_mtxWorld ); 
} 
 
The second constructor allows us to attach a CMesh: 
 
CObject::CObject( CMesh *pMesh ) 
{ 
    // Reset / Clear all required values 
    D3DXMatrixIdentity( &m_mtxWorld ); 
 
    // Set Mesh 
    m_pMesh = pMesh; 
} 
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The overall picture is: 
 

a) Each object points to a mesh and has its own World Matrix 
b) Each Mesh manages an array of polygons 
c) Each polygon manages an array of vertices 
d) Each object will transform its mesh’s vertices into world space using its world matrix 

 
 
CGameApp 

 
For the most part, the CGameApp class is the application. Here is its class definition: (see 
CGameApp.h) 
 
class CGameApp 
{ 
public: 
    //--------------------------------------------------------------------- 
    // Constructors & Destructors for This Class. 
    //--------------------------------------------------------------------- 
     CGameApp(); 
     virtual ~CGameApp(); 
 
    //-------------------------------------------------------------------- 
    // Public Functions for This Class 
    //--------------------------------------------------------------------- 
    LRESULT     DisplayWndProc( HWND hWnd, UINT Message, WPARAM wParam,  
                                LPARAM lParam ); 
    bool        InitInstance( HANDLE hInstance, LPCTSTR lpCmdLine, 
                               int iCmdShow ); 
    int         BeginGame( ); 
    bool        ShutDown( ); 
  
 private: 
    //-------------------------------------------------------------------- 
    // Private Functions for This Class 
    //-------------------------------------------------------------------- 
    bool        BuildObjects( ); 
    void        FrameAdvance( ); 
    bool        CreateDisplay( ); 
    void        SetupGameState( ); 
    void        AnimateObjects( ); 
    void        PresentFrameBuffer( ); 
    void        ClearFrameBuffer( ULONG Color ); 
    bool        BuildFrameBuffer( ULONG Width, ULONG Height ); 
    void        DrawPrimitive( CPolygon * pPoly, D3DXMATRIX * pmtxWorld ); 
    void        DrawLine( const D3DXVECTOR3 & vtx1,  
                          const D3DXVECTOR3 & vtx2,ULONG Color ); 
    //--------------------------------------------------------------------- 
    // Private Static Functions For This Class 
    //--------------------------------------------------------------------- 
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    static LRESULT CALLBACK StaticWndProc(HWND hWnd, UINT Message, 
                                         WPARAM wParam, LPARAM lParam); 
 
    //--------------------------------------------------------------------- 
    // Private Variables For This Class 
    //--------------------------------------------------------------------- 
    D3DXMATRIX  m_mtxView;          // View Matrix 
    D3DXMATRIX  m_mtxProjection;    // Projection matrix 
 
        CMesh       m_Mesh;             // Mesh to be rendered 
    CObject     m_pObject[2];       // Objects storing mesh instances 
     
    CTimer      m_Timer;            // Game timer 
     
    HWND        m_hWnd;             // Main window HWND 
    HDC         m_hdcFrameBuffer;   // Frame Buffers Device Context 
    HBITMAP     m_hbmFrameBuffer;   // Frame buffers Bitmap 
    HBITMAP     m_hbmSelectOut;     // Used for selecting out of the DC 
 
    bool        m_bRotation1;       // Object 1 rotation enabled / disabled  
    bool        m_bRotation2;       // Object 2 rotation enabled / disabled  
 
    ULONG       m_nViewX;           // X Position of render viewport 
    ULONG       m_nViewY;           // Y Position of render viewport 
    ULONG       m_nViewWidth;       // Width of render viewport 
    ULONG       m_nViewHeight;      // Height of render viewport 
 
}; 
 
D3DXMATRIX m_mtxView 
The View matrix in this application is set to an identity matrix because we allow no camera movement. 
In the next demo, the view matrix will be used to allow you to move the camera dynamically about the 
scene.  
 
D3DXMATRIX m_mtxProjection 
The projection matrix that the application will use is set once at application start-up.  
 
CMesh m_Mesh 
There will be two objects in our world. Each one will use the same mesh. Therefore we only need a 
single mesh for this application. This mesh will be a cube and both objects will instance it. 
 
CObject m_pObject[2] 
The application will use two objects that share the same mesh. Each object has its own world matrix so 
it can be positioned anywhere in the 3D world. You can change the size of this array so that the 
application supports more objects. 
 
CTimer m_Timer 
This class allows us to get runtime reports on how the application is performing and how many frames 
per second are currently being rendered. It uses the high-performance counter available on most 

www.gameinstitute.com 3D Graphics Programming with DX9 

TeamLRN



modern PCs to report very accurate timing. The timer is also used to track how much time has passed 
since the last frame so that we know by how much to rotate the cubes. If we did not use a timer for this, 
the rotation speed would not be consistent across machines. A faster machine would spin the cube 
more quickly as it could execute more game loops per second. This approach allows us to work with 
rotations specified in rotations per second and use the timer to rotate the cube for only the fraction of 
the second that has currently passed. We will examine this simple class later. 
 
HWND m_hWnd 
This will hold the handle to the main application window where the rendering will take place.  
 
HDC           m_hdcFrameBuffer  
HBITMAP m_hbmFrameBuffer 
These two member variables hold the handle to the device context (DC) and the bitmap that will be 
used as a frame buffer. The scene is rendered each frame to the bitmap. Once the scene has been fully 
drawn we will blit the bitmap to the main application window.  
 

Note: In order to render the scene each frame, we must first erase what was drawn in the last frame. 
If we had a cube that was rotating between two frames and we didn’t clear the old image before we 
rendered the newly rotated cube, we would have two sets of cube lines on the screen: one set in its old 
position and one set in the new position.  
 
If we only cleared the window every frame and then drew the new scene, two undesirable effects would 
occur. The first problem is flicker. If we were to clear the window first to a white color and then display 
it and then draw the scene, you would see a flicker effect even though it happens extremely quickly 
(perhaps 40-60 times per second). Secondly, if you are on a low-end machine and have a low frame 
rate, you might actually see the scene being rendered.  

Both of these conditions are unacceptable. The solution (which nearly all games implement) is an 
offscreen buffer used to compose the image for each frame first. This frame then replaces the old 
image in the previous frame and animation is achieved. This technique is referred to as double 
buffering. 

 

 
So we will create a bitmap that is the same size as the portion of the application window to which we 
will be rendering (the application window client area). We then create a compatible DC into which we 
can select the bitmap. We will use the DC’s drawing commands to render not to the window, but to the 
bitmap. When we have drawn all the lines and the image is complete, we call the DCs BitBlit function 
to perform a high-speed image copy from the bitmap to the application window client area. Once the 
bitmap is copied to the window, we can leave the user looking at the scene, while in the background 
the bitmap is cleared to white, thereby erasing the previously rendered lines, and then render the scene 
again for the next frame. We do not have to clear the application window because the bitmap copied to 
the window will completely cover up the previous frame that was rendered. This means we will have 
no flickering. 
 
The buffer to which the scene is rendered (in our demo, the bitmap) is often called the frame buffer, 
because it is where we will draw the current frame to be displayed.   
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bool m_bRotation1        
bool m_bRotation2 
 
This application will create two cube objects and will rotate them continuously. These two boolean 
variables are used by the CGameApp class to toggle whether Object1 and Object2 should be rotated in 
each frame. Our application will have a menu that allows the user to toggle each rotation. 
 
ULONG m_nViewX;            
ULONG m_nViewY;            
ULONG m_nViewWidth;        
ULONG m_nViewHeight;  
 
These four variables define the rectangle in the window to which we wish to render. For our 
application, these variables will store the size of the application window client area. These variables 
can be adjusted so that the scene is only rendered to a portion of the client area. They are the values 
used in mapping the 2D projection space vertices in the [–1 , +1] range to valid screen coordinates 
using the formula described earlier: 
 
ScreenX =  Vector.x * m_nViewportWidth  / 2 + m_nViewportX + m_nViewportWidth  / 2 
ScreenY = -Vector.y * m_nViewportHeight / 2 + m_nViewportY + m_nViewportHeight / 2 
   
 
CGameApp::InitInstance 
 
bool CGameApp::InitInstance( HANDLE hInstance, LPCTSTR lpCmdLine, 
                             int iCmdShow ) 
{ 
    // Create the primary display device 
    if (!CreateDisplay()) { ShutDown(); return false; } 
 
    // Build Objects 
    if (!BuildObjects()) { ShutDown(); return false; } 
 
    // Set up all required game states 
    SetupGameState(); 
 
    // Success! 
    return true; 
} 
  
The first step is calling CGameApp::CreateDisplay. This function is responsible for creating and 
initializing the application main window. If this call fails, we return the failure so that the WinMain 
function can exit the application with an error.  
 
The second function call is to CGameApp::BuildObjects. This function creates the single cube mesh 
and initializes both cube objects. 
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The final call is to CGameApp::SetupGameState which creates the application projection matrix and 
the view matrix. (Because we are not yet allowing camera movement, the view matrix can be 
initialized and left as an identity matrix).  
 
CGameApp::CreateDisplay 
 
The first thing we will do is create a string for our window title and use two local variables to hold the 
desired width and height of our window (this demo window will be 400x400).  
 
bool CGameApp::CreateDisplay() 
{ 
    LPTSTR  WindowTitle  = _T("Software Render"); 
    USHORT  Width        = 400; 
    USHORT  Height       = 400; 
    HDC     hDC          = NULL; 
    RECT    rc; 
     
     
If you are not familiar with basic Windows programming techniques then it is strongly recommended 
that you take the Game Institute course Introduction to C++ Programming. It is vital that you know 
how to do this.  
 
Next we fill in our WNDCLASS structure so that we can register the type of window we wish to create 
with the operating system. 
 
    // Register the new windows window class. 
    WNDCLASS wc;  
    wc.style         = CS_BYTEALIGNCLIENT | CS_HREDRAW | CS_VREDRAW; 
    wc.lpfnWndProc   = StaticWndProc; 
    wc.cbClsExtra    = 0; 
    wc.cbWndExtra    = 0; 
    wc.hInstance     = (HINSTANCE)GetModuleHandle(NULL); 
    wc.hIcon         = LoadIcon( wc.hInstance, MAKEINTRESOURCE(IDI_ICON)); 
    wc.hCursor       = LoadCursor(NULL, IDC_ARROW); 
    wc.hbrBackground = (HBRUSH )GetStockObject(BLACK_BRUSH); 
    wc.lpszMenuName  = NULL; 
    wc.lpszClassName = WindowTitle; 
    RegisterClass(&wc); 
 
We specified a style that forces the horizontal position of the window to be byte aligned. This allows 
certain optimizations when we are copying the frame buffer to the window and the speed gain is quite 
significant. The other styles simply specify that we want Windows to repaint the window when it is 
resized horizontally (CS_HREDRAW) or vertically (CS_VREDRAW). 
 
We set the icon to the one stored in the executable’s resource, a standard cursor, and the background 
brush to black. The string ‘Software Render’ will be the window class name used to create an instance 
of the window. Note that after calling RegisterClass no window has yet been created. We have simply 
provided a template describing appearance and behavior. 
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Next we create the application window using the Win32 CreateWindow function. We pass in the 
window class name (this is the name we assigned when we registered the class: Basic Demo). The 
second parameter is the string that we would like displayed in the window caption bar (we use the 
same string).  
 
// Create the rendering window 
m_hWnd = CreateWindow( WindowTitle,  
                       WindowTitle, 
                       WS_OVERLAPPEDWINDOW, 
                       CW_USEDEFAULT,  
                       CW_USEDEFAULT,  
                       Width,  
                       Height, 
                       NULL,  
                       LoadMenu( wc.hInstance,MAKEINTRESOURCE(IDR_MENU) ), 
                       wc.hInstance, this ); 
  
    // Bail on error 
    if (!m_hWnd) return false; 
 
We ask for a 400x400 overlapped window and assign a menu to this window that gets loaded from our 
resource data. This menu can be viewed through the resource editor and holds commands that allow 
cube rotation manipulation and other directives. If the window is not created successfully, we return 
‘false’ to the calling function.  
 
Next, we retrieve the client area of our newly created window and assign the dimensions of the client 
area to our four class variables. These variables hold the rendering viewport dimensions needed for 
mapping the 2D projection space points to screen space. 
 
   // Retrieve the final client size of the window 
    ::GetClientRect( m_hWnd, &rc ); 
    m_nViewX      = rc.left; 
    m_nViewY      = rc.top; 
    m_nViewWidth  = rc.right - rc.left; 
    m_nViewHeight = rc.bottom - rc.top; 
 
Once our window is created, we will create the frame buffer. This is the bitmap where all rendering 
will take place. We then show the window, and return ‘true’ to indicate successful initialization. 
 
    // Build the frame buffer 
    if (!BuildFrameBuffer( Width, Height )) return false; 
     
    // Show the window 
    ShowWindow(m_hWnd, SW_SHOW); 
    // Success! 
    return true; 
} 
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CGameApp::BuildFrameBuffer 
 

We will need two things in order to render to the frame buffer. We need the frame buffer itself, which 
will be a bitmap, and we need a device context that we can use to draw onto the bitmap surface. The 
first thing we do in the following function, is retrieve a temporary device context for the application 
window and then (if not already created) we create a compatible device context that the frame buffer 
can use. We will store the handle to this device context in the CGameApp member variable 
m_hdcFrameBuffer. 

 
bool CGameApp::BuildFrameBuffer( ULONG Width, ULONG Height ) 
{ 
    HDC hDC = ::GetDC( m_hWnd ); 
    if ( !m_hdcFrameBuffer ) m_hdcFrameBuffer = ::CreateCompatibleDC( hDC ); 
     
Next we create a bitmap that is compatible with the application window and store the returned handle 
to that bitmap in the CGameApp member variable m_hbmFrameBuffer. We also take care to release 
any previously allocated frame buffer data prior to this step, not shown here. 
 
    m_hbmFrameBuffer = CreateCompatibleBitmap( hDC, Width, Height );     
    if ( !m_hbmFrameBuffer ) return false; 
 
We select this bitmap into the device context we created for it earlier and it is ready to be used as our 
frame buffer. Note that when you select an object into a device context, any previously selected object 
of the same type is returned from the function call. You should store this object and make sure that you 
select the default object back into the device context before you destroy it. For this reason we made a 
copy of the default bitmap returned from the SelectObject function and stored it in the CGameApp 
member variable m_hbmSelectOut. You should do this with any objects that you intend to select into a 
device context, including pens and brushes. If you fail to restore a device context to its default state 
before releasing it, your application (as well as any other applications running concurrently) may not 
perform properly until the operating system is rebooted. On earlier versions of Windows this is 
especially true; device contexts were a very limited resource.  
 
    m_hbmSelectOut = (HBITMAP)::SelectObject( m_hdcFrameBuffer,  
                                             m_hbmFrameBuffer ); 
     
Finally we release the window DC (because we only used it to create a compatible DC for the bitmap) 
and set the frame buffer DC so that it renders transparently. 
 
    ::ReleaseDC( m_hWnd, hDC ); 
    ::SetBkMode( m_hdcFrameBuffer, TRANSPARENT ); 
    return true; 
} 
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CGameApp::BuildObjects() 
 
The CGameApp class has a single mesh which will hold our cube. We call the Mesh’s AddPolygon 
function to add the 6 faces of our cube. 
 
bool CGameApp::BuildObjects() 
{ 
    CPolygon *pPoly = NULL; 
    if ( m_Mesh.AddPolygon( 6 ) < 0 ) return false; 
 
For each polygon we now add four vertices that define the model space coordinates of the corner points 
of that face. This is similar to the cube example code we looked at earlier in this lesson: 
 
    // Front Face 
    pPoly = m_Mesh.m_pPolygon[0]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2,  2, -2 ); 
    pPoly->m_pVertex[1] = CVertex(  2,  2, -2 ); 
    pPoly->m_pVertex[2] = CVertex(  2, -2, -2 ); 
    pPoly->m_pVertex[3] = CVertex( -2, -2, -2 ); 
     
    // Top Face 
    pPoly = m_Mesh.m_pPolygon[1]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2,  2,  2 ); 
    pPoly->m_pVertex[1] = CVertex(  2,  2,  2 ); 
    pPoly->m_pVertex[2] = CVertex(  2,  2, -2 ); 
    pPoly->m_pVertex[3] = CVertex( -2,  2, -2 ); 
 
    // Back Face 
    pPoly = m_Mesh.m_pPolygon[2]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2, -2,  2 ); 
    pPoly->m_pVertex[1] = CVertex(  2, -2,  2 ); 
    pPoly->m_pVertex[2] = CVertex(  2,  2,  2 ); 
    pPoly->m_pVertex[3] = CVertex( -2,  2,  2 ), 
 
    // Bottom Face 
    pPoly = m_Mesh.m_pPolygon[3]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2, -2, -2 ); 
    pPoly->m_pVertex[1] = CVertex(  2, -2, -2 ); 
    pPoly->m_pVertex[2] = CVertex(  2, -2,  2 ); 
    pPoly->m_pVertex[3] = CVertex( -2, -2,  2 ); 
 
    // Left Face 
    pPoly = m_Mesh.m_pPolygon[4]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
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    pPoly->m_pVertex[0] = CVertex( -2,  2,  2 ); 
    pPoly->m_pVertex[1] = CVertex( -2,  2, -2 ); 
    pPoly->m_pVertex[2] = CVertex( -2, -2, -2 ); 
    pPoly->m_pVertex[3] = CVertex( -2, -2,  2 ); 
 
    // Right Face 
    pPoly = m_Mesh.m_pPolygon[5]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex(  2,  2, -2 ); 
    pPoly->m_pVertex[1] = CVertex(  2,  2,  2 );  
    pPoly->m_pVertex[2] = CVertex(  2, -2,  2 ); 
    pPoly->m_pVertex[3] = CVertex(  2, -2, -2 ); 
 
We now have our mesh created and all polygons defined. Next we need to assign this single mesh to 
both objects in our game world. This is a classic example of instancing mesh data. Our world will 
contain two objects, but only one mesh will be used by both: 
 
    // Our two objects should reference this mesh 
    m_pObject[ 0 ].m_pMesh = &m_Mesh; 
    m_pObject[ 1 ].m_pMesh = &m_Mesh; 
 
Finally we set each object world matrix so that they are positioned in different locations in world 
space. Object0 will be centered at world space vector (-3.5, 2, 14) and Object1 will be positioned at 
world space vector (3.5, -2, 14).  
 
    // Set both objects matrices so that they are offset slightly 
    D3DXMatrixTranslation(&m_pObject[0].m_mtxWorld, -3.5f,  2.0f, 14.0f ); 
    D3DXMatrixTranslation(&m_pObject[1].m_mtxWorld,  3.5f, -2.0f, 14.0f ); 
     
    // Success! 
    return true; 
} 
 
Because we are setting the view matrix to identity, our camera will be located at world space position 
(0, 0, 0) with a look vector of (0, 0, 1). This means that both cubes will be located at a distance of 14 
units in front of the camera. Both will be offset horizontally and vertically from the camera 3.5 units 
and 2.0 units respectively in opposing directions. 
 
Notice that we use the D3DX library to build our translation matrix for each object. Both cubes will 
initially not be rotated with regards to the world space axes. 
 
CGameApp::SetupGameState 

 
void CGameApp::SetupGameState() 
{ 
    float      fAspect; 
    D3DXMatrixIdentity( &m_mtxView ); 
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The first thing this function does is set the application view matrix to an identity matrix. Remember 
that in this demo we are not going to be manipulating the view matrix. Thus we can set it up once at 
application start-up and forget about it. Remember that an identity matrix provides no translation 
values and will align objects with the standard world axes. Again, this is equivalent to us explicitly 
placing our camera at world space coordinate (0,0,0) looking down the positive Z axis with a look 
vector of (0,0,1) and an up vector of (0,1,0). 
 
 

Identity View Matrix 
 

     Right Vector         Up Vector                Look Vector 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

----------------------------------Translation Vector (0,0,0)----------------------  
 
In later demo applications we will manipulate the view matrix to allow us to move the camera about 
the 3D world. When we do this we will have to rebuild the view matrix every time the camera position 
or rotation changes.  
 
Our next task is to build the projection matrix using the D3DXMatrixPerspectiveFovLH function. In 
order to avoid image distortion when mapping from the projection window to the viewport, we 
calculate the aspect ratio of the viewport and pass it into the function. Here we are asking for a 
projection matrix that gives us a vertical FOV of 60 degrees (D3DXToRadian is a helper function that 
automatically converts degrees to radians). 
 
    fAspect = (float)m_nViewWidth / (float)m_nViewHeight; 
    D3DXMatrixPerspectiveFovLH( &m_mtxProjection, D3DXToRadian( 60.0f ), 
                                 fAspect, 1.01f, 1000.0f ); 
     
The last two parameters to the above function can be ignored for now as they are used for clipping and 
depth buffer coordinate mapping which are not used in this application. The resulting matrix is stored 
in the CGameApp::m_mtxProjection member variable. Finally, we set both objects to a true rotation 
status: 
 
    // Enable rotation for both objects 
    m_bRotation1 = true; 
    m_bRotation2 = true; 
} 
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CGameApp::BeginGame 
When InitInstance returns, we call the CGameApp::BeginGame function. This is the function that will 
contain the main message processing and render loop. It will not return program flow back to WinMain 
until the user chooses to close the application. This is very similar to how MFC encapsulates the 
message pump within the CWinApp::Run function.  
 
int CGameApp::BeginGame() 
{ 
    MSG msg; 
 
    // Start main loop 
    while (1)  
    { 
        // Did we receive a message, or are we idling ? 
        if ( PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) )  
        { 
                 if (msg.message == WM_QUIT) break; 
  
                 TranslateMessage( &msg ); 
                 DispatchMessage ( &msg ); 
        }  
        else  
        { 
                 FrameAdvance(); 
        }  
  
    } // Until quit message is received 
 
    return 0; 
} 
 
The BeginGame function sits in a loop calling CGameApp::FrameAdvance in order to redraw the 
scene.  Before rendering we check to make sure that there are no messages in the message pump which 
need to be handled. If there are messages, we need to remove them and send them off to the OS for 
processing. These messages will eventually be routed to our StaticWndProc function that handles the 
application level processing of these messages.  
 
The only message we are interested in for now is the WM_QUIT message. It tells us that the user has 
attempted to close the application. We will need to break out of our infinite loop and return back to our 
WinMain function, where the function will end and the application will be shut down. 
 
 
CGameApp::FrameAdvance 
 
The FrameAdvance function is called repeatedly by the BeginGame function. It will apply rotations to 
the objects, clear the frame buffer to erase the previous frame, render each of the objects to the frame 
buffer and copy the contents of the frame buffer to the main application window whereby a new frame 
is displayed to the user. 
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void CGameApp::FrameAdvance() 
{ 
   CMesh      *pMesh = NULL; 
   TCHAR       lpszFPS[30]; 
  
The first thing we do is advance the timer since we need to keep track of the time that has passed 
between the previous frame and the current one. The CTimer::Tick function retrieves the current time 
from the high performance counter and updates its internal variables so that we can access the data 
later on. The parameter passed in is a frame rate ceiling value. This locks the frame rate to prevent it 
from updating too quickly on very fast computers. In our demo we use a value of 60. This means we 
desire to update the screen no more than 60 times per second. The CTimer::Tick function will burn up 
any extra time to make this so: 
 
   m_Timer.Tick( 60.0f ); 
 
Next we call the CGameApp::AnimateObjects function. This is the function that applies the rotations 
to the object world matrices.  
     
   AnimateObjects(); 
 
Then we call CGameApp::ClearFrameBuffer to erase the previous frame image from our frame buffer 
bitmap. It uses the frame buffer device context to draw a large rectangle over the entire bitmap. The 
color of the rectangle is the value passed into this function (in our demo, bright white). This allows us 
to have any background color we want on the frame buffer. Be sure to check the source code for 
implementation details. 
 
   ClearFrameBuffer( 0x00FFFFFF ); 
 
Having our clean frame buffer and all rotations applied to our object world matrices, we are ready to 
draw those objects in their newly rotated positions. We now begin our render loop. For each object we 
get a pointer to its mesh and then loop through each of the polygons. For each polygon we call the 
CGameApp::DrawPrimitive function which will take care of rendering the wire frame polygon to the 
frame buffer. 
 
  for ( ULONG i = 0; i < NumberOfObjects; i++ ) 
  { 
    pMesh = m_pObject[i].m_pMesh; 
 
    // Loop through each polygon 
    for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
    { 
      DrawPrimitive( pMesh->m_pPolygon[f], &m_pObject[i].m_mtxWorld ); 
    } 
  }   
 
When the above code exits, all objects have had their polygons rendered into the frame buffer. The 
scene is now ready to be displayed to the user. However, before we do that we call 

www.gameinstitute.com 3D Graphics Programming with DX9 

TeamLRN



CTimer::GetFrameRate and pass it a string to fill with frame rate information. This string is also added 
to the frame buffer: 
 
  m_Timer.GetFrameRate( lpszFPS ); 
  TextOut( m_hdcFrameBuffer, 5, 5, lpszFPS, strlen( lpszFPS ) );  
     
Finally we present the newly rendered frame to the user. The CGameApp::PresentFrameBuffer call 
performs the copying of the frame buffer bitmap to the application window client area. 
 
   PresentFrameBuffer(); 
}  
 
 
CGameApp::AnimateObjects 

 
This function creates the rotation matrices which are later multiplied by each object world matrix to 
create a new world matrix which has been rotated from its previous position. This can be done using 
fewer lines of code then we will see below (and we will examine a shorter version later). The reason 
we have expanded this code is that it better demonstrates the matrix multiplication process. 
 
First we create some local D3DXMATRIX variables to hold Yaw, Pitch and Roll data. Another matrix 
(mtxRotate) will hold the concatenated result of multiplying these matrices. We also use three local 
float variables that will be used to hold the appropriate angles. 
 
void CGameApp::AnimateObjects() 
{ 
    D3DXMATRIX mtxYaw, mtxPitch, mtxRoll, mtxRotate; 
    float RotationYaw, RotationPitch, RotationRoll; 
 
If the user has not disabled the rotation of Object1 then we create some rotational values. These are 
arbitrary values and can be modified. We selected a yaw rotation value of 75 degrees per second, a 
pitch rotation value of 50 degrees per second and a roll value of 25 degrees per second. Multiplying 
these values by the fraction of a second returned from the CTimer::GetTimeElapsed function scales 
them accordingly. If we are running at, say, 4 frames per second, this call would return 0.25 which will 
scale the yaw rotation value to 18.75. This allows for rotation to be independent of frame rate. 
 
    // Rotate Object 1 by small amount 
    if ( m_bRotation1 ) 
    { 
        RotationYaw   = D3DXToRadian( 75.0f * m_Timer.GetTimeElapsed() ); 
        RotationPitch = D3DXToRadian( 50.0f * m_Timer.GetTimeElapsed() ); 
        RotationRoll  = D3DXToRadian( 25.0f * m_Timer.GetTimeElapsed() ); 
 
Using these values you can see that the object rotates around the X axis at twice the rate it rotates about 
the Z axis, and rotates about the Y axis three times the amount it rotates about the Z axis. 
With our yaw, pitch and roll rotation values we build three rotation matrices. We also create an identity 
matrix to hold the concatenation of all three matrices. 

www.gameinstitute.com 3D Graphics Programming with DX9 

TeamLRN



        // Build rotation matrices  
        D3DXMatrixIdentity( &mtxRotate ); 
        D3DXMatrixRotationY( &mtxYaw, RotationYaw); 
        D3DXMatrixRotationX( &mtxPitch,RotationPitch); 
        D3DXMatrixRotationZ( &mtxRoll, RotationRoll); 
         
The next step is to use the D3DXMatrixMultiply (which multiplies two matrices) function to combine 
all of these rotations into a final matrix. This function is an alternative to using the overloaded * 
operator. We use D3DXMatrixMultiply to better see the multiplication order.  
 
        // Concatenate the rotation matrices 
        D3DXMatrixMultiply( &mtxRotate, &mtxRotate, &mtxYaw ); 
        D3DXMatrixMultiply( &mtxRotate, &mtxRotate, &mtxPitch ); 
        D3DXMatrixMultiply( &mtxRotate, &mtxRotate, &mtxRoll ); 
             
The resulting matrix is returned to us in the mtxRotate variable. It contains all of the rotations for the x, 
y and z axes that need to be applied to the first object. All that is left to do is multiply this matrix with 
the object’s current world matrix and we are done: 
   
        D3DXMatrixMultiply( &m_pObject[ 0 ].m_mtxWorld, &mtxRotate, 
                            &m_pObject[ 0 ].m_mtxWorld ); 
 
 } // End if Rotation Enabled 
 
Object1 now has its world matrix updated to contain the new rotations. When this matrix is used to 
transform the mesh vertices later, the object will be rendered in its new orientation.  
 
We repeat the same steps for Object2 and the function returns. 
 
For completeness, here is some code that could be used to make the function smaller: 
 
void CGameApp::AnimateObjects() 
{ 
    D3DXMATRIX mtxYaw, mtxPitch, mtxRoll, mtxRotate; 
    float RotationYaw, RotationPitch, RotationRoll; 
 
    if ( m_bRotation1 ) 
    { 
        RotationYaw   = D3DXToRadian( 75.0f * m_Timer.GetTimeElapsed() ); 
        RotationPitch = D3DXToRadian( 50.0f * m_Timer.GetTimeElapsed() ); 
        RotationRoll  = D3DXToRadian( 25.0f * m_Timer.GetTimeElapsed() ); 
 
        // Build entire rotation matrix  
        D3DXMatrixRotationYawPitchRoll(&mtxRotate , RotationYaw , RotationPitch,  
                                        RotationRoll); 
 
        // Multiply with world matrix using operators     
        m_pObject[0].m_mtxWorld = mtxRotate * m_pObject[0].m_mtxWorld;          
 
    } // End if Rotation Enabled 
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    if ( m_bRotation2 ) 
    { 
        RotationYaw   = D3DXToRadian( -25.0f * m_Timer.GetTimeElapsed() ); 
        RotationPitch = D3DXToRadian(  50.0f * m_Timer.GetTimeElapsed() ); 
        RotationRoll  = D3DXToRadian( -75.0f * m_Timer.GetTimeElapsed() ); 
      
        // Build entire rotation matrix  
        D3DXMatrixRotationYawPitchRoll(&mtxRotate , RotationYaw , RotationPitch, 
                                        RotationRoll); 
 
       // Multiply with world matrix using operators     
       m_pObject[1].m_mtxWorld = mtxRotate * m_pObject[1].m_mtxWorld; 
      
    } // End if rotation enabled 
} 
 
As you can see we have used D3DXMatrixRotationYawPitchRoll to build a matrix that contains all 
three rotations in one call. The resulting matrix is multiplied with the object world matrices using the 
overloaded * operator instead of the D3DXMatrixMultiply function.  
 
 
CGameApp::DrawPrimitive 

 
The CGameApp::DrawPrimitive function renders our polygons. It is this function that is responsible 
for transforming the polygons from model space to screen space and then drawing them to the frame 
buffer. This is the heart of our rendering pipeline. 
 
void CGameApp::DrawPrimitive( CPolygon * pPoly, D3DXMATRIX * pmtxWorld ) 
{ 
    D3DXVECTOR3 vtxPrevious, vtxCurrent; 
 
    // Loop round each vertex transforming as we go 
    for ( USHORT v = 0; v < pPoly->m_nVertexCount + 1; v++ )  
    { 
        // Store the current vertex 
        vtxCurrent = (D3DXVECTOR3&)pPoly->m_pVertex[ v % pPoly->m_nVertexCount ]; 
 
First we loop through each vertex in the polygon and store the current vertex in the vtxCurrent vector. 
The [v % pPoly->m_nVertexCount] line makes certain that we wrap around to vertex zero again for 
the end point of the last line. You will notice that we loop + 1 times more than there are vertices in the 
polygon. This is because a final line will be drawn between the last vertex and vertex zero.  
 
The object that this polygon belongs to has had its world matrix passed in so we can multiply each 
vertex with this matrix to transform it into world space: 
        // Multiply the vertex position by the World / object matrix 
        D3DXVec3TransformCoord( &vtxCurrent, &vtxCurrent, pmtxWorld ); 
 
The vertex is now in world space and is ready to be transformed into view space.  
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        // Multiply by View matrix 
        D3DXVec3TransformCoord( &vtxCurrent, &vtxCurrent, &m_mtxView ); 
 
The vertex is now in view space. We will now multiply it with the projection matrix so that it can be 
deformed (squashed or expanded) to simulate the requested FOV.  
 
  // Multiply by Projection matrix 
  D3DXVec3TransformCoord( &vtxCurrent, &vtxCurrent, &m_mtxProjection ); 
 
The D3DXVec3TransformCoord function does an automatic divide by w to ensure that a 3D vector is 
returned. In the previous two function calls this has had no effect as both the world matrix and the view 
matrix have identity W columns (therefore w=1 in the resulting vector). This is not so with our 
projection matrix. The W column of this matrix is set up so that the input vector’s Z component is 
copied into the output vector’s W component. Since this function performs the homogenization before 
it returns the vector, it will not only multiply the vector by the projection matrix, but it will also divide 
the x,y,z components by w (performing the 2D projection). So when this function returns, the 3D 
vector has x and y components in 2D projection space (z can be ignored for now) where valid 
coordinates are in the –1 to +1 range. Our final transformation converts the 2D homogeneous clip 
space coordinates into screen coordinates using the formula covered in this lesson’s textbook: 
 
 // Convert to screen space coordinates 
 vtxCurrent.x = vtxCurrent.x * m_nViewWidth/2 + m_nViewX + m_nViewWidth/ 2; 
 vtxCurrent.y =-vtxCurrent.y * m_nViewHeight/2 + m_nViewY + m_nViewHeight/2; 
 
We now have our vertex in screen space such that the x and y components of the 3D vector are relative 
to the pixel in the top left corner of our window.  
 
If this is the first vertex of the polygon we are transforming, we will skip the DrawLine function and 
store this vertex in the vtxPrevious local variable. Each time through this loop we will draw the line 
from the previous vertex to the vertex that has just been transformed: 
 
 // If this is the first vertex, continue. This is the first  
 // point of our first line. 
 if ( v == 0 ) { vtxPrevious = vtxCurrent; continue; } 
 
   // Draw the line 
   DrawLine( vtxPrevious, vtxCurrent, 0 ); 
 
   // Store this as new line's first point 
   vtxPrevious = vtxCurrent;  
 
    } // Next Vertex 
} 
Here is the complete function: 
 
void CGameApp::DrawPrimitive( CPolygon * pPoly, D3DXMATRIX * pmtxWorld ) 
{ 
 D3DXVECTOR3 vtxPrevious, vtxCurrent; 
 for ( USHORT v = 0; v < pPoly->m_nVertexCount + 1; v++ )  
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 { 
   vtxCurrent = (D3DXVECTOR3&)pPoly->m_pVertex[ v % pPoly->m_nVertexCount ]; 
         
   D3DXVec3TransformCoord( &vtxCurrent, &vtxCurrent, pmtxWorld ); 
   D3DXVec3TransformCoord( &vtxCurrent, &vtxCurrent, &m_mtxView ); 
   D3DXVec3TransformCoord( &vtxCurrent, &vtxCurrent, &m_mtxProjection ); 
   
   vtxCurrent.x =   vtxCurrent.x * m_nViewWidth  / 2 + m_nViewX + m_nViewWidth  / 2; 
   vtxCurrent.y =  -vtxCurrent.y * m_nViewHeight / 2 + m_nViewY + m_nViewHeight / 2; 
 
   if ( v == 0 ) { vtxPrevious = vtxCurrent; continue; } 
 
   DrawLine( vtxPrevious, vtxCurrent, 0 ); 
 
   vtxPrevious = vtxCurrent;  
 
 } 
} 
 
 
 
CGameApp::DrawLine 

 
In this function we create a black pen, select it into the frame buffer device context, and then render the 
line between the two screen space vectors using the LineTo function. Notice that although the vectors 
passed are 3D vectors, the z component is unused and the x and y components are in screen space.  
 
void CGameApp::DrawLine(const D3DXVECTOR3 &vtx1, const D3DXVECTOR3 &vtx2,  
                        ULONG Color ) 
{ 
    LOGPEN logPen; 
    HPEN   hPen = NULL, hOldPen = NULL; 
     
    // Set up the rendering pen 
    logPen.lopnStyle   = PS_SOLID; 
    logPen.lopnWidth.x = 1; 
    logPen.lopnWidth.y = 1; 
 
    // Set up the color, converted to BGR & stripped of alpha 
    logPen.lopnColor   = 0x00FFFFFF & RGB2BGR( Color );  
     
    // Create the rendering pen 
    hPen = ::CreatePenIndirect( &logPen ); 
    if (!hPen) return; 
 
    // Select into the frame buffer DC 
    hOldPen = (HPEN)::SelectObject( m_hdcFrameBuffer, hPen ); 
 
    // Draw the line segment 
    MoveToEx( m_hdcFrameBuffer, (long)vtx1.x, (long)vtx1.y, NULL ); 
    LineTo( m_hdcFrameBuffer, (long)vtx2.x, (long)vtx2.y ); 
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    // Destroy rendering pen 
    ::SelectObject( m_hdcFrameBuffer, hOldPen ); 
    ::DeleteObject( hPen ); 
} 
 
 
 
CGameApp::PresentFrameBuffer 
 
PresentFrameBuffer retrieves the device context of the application window and calls the Win32 BitBlt 
function to copy the image from the frame buffer device context to the application window device 
context. After this, the application window device context is released as it is no longer needed. As 
mentioned earlier, device contexts are valuable resources and should be released back to the operating 
system whenever they are not needed. 
 
void CGameApp::PresentFrameBuffer( ) 
{     
    HDC hDC = NULL;  
 
    // Retrieve the DC of the window 
    hDC = ::GetDC(m_hWnd); 
 
    // Blit the frame buffer to the screen 
    ::BitBlt( hDC, m_nViewX, m_nViewY, m_nViewWidth, m_nViewHeight, 
              m_hdcFrameBuffer, m_nViewX, m_nViewY, SRCCOPY ); 
 
    // Clean up 
    ::ReleaseDC( m_hWnd, hDC ); 
} 
 
 
 
CGameApp::StaticWndProc 
 
When you register a window class under the Windows operating system you must specify a function 
through which Windows will route all messages that were received by that window. This callback 
function can handle requests from the user dealing with keyboard and mouse input, as well as menu 
selections and application window closing. In order for this to work, Windows is very specific about 
how the function should be declared. It must have the following definition: 
 
LRESULT CALLBACK WndProc(HWND hWnd, UINT Message, WPARAM wParam, LPARAM lParam); 
 
Many developers use global functions for this purpose but there are alternatives. It is often preferable 
to map these messages to a member function instead (in our CGameApp class for example). However, 
when we call a class member function in C++, the compiler inserts an invisible first parameter to the 
parameter list (a this pointer). The ‘this’ pointer points to the current instance of the class so that all 
class instances can share the same physical function code. This presents a problem since the parameters 
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passed into the function no longer match up with the function signature that Windows requires. A static 
member function will solve this problem. 
 
When we create a static member function for a class, the function acts just like a global function and 
has no this pointer, but is confined to the class namespace. Even if no instances of the CGameApp 
class have been created, we can still call the CGameApp:StaticWndProc function because the function 
is created at application start-up just like a global function and is shared by all instances of the 
CGameApp class. Recall that when using such functions the only class member variables that are 
accessible are those declared as static as well. This is logical since accessing a non-static member 
variable when no class instances have been created would be difficult (since those variables have not 
been constructed yet). Static class member variables are like static class member functions in that they 
are shared by all instances of the class and are created at application start-up just like global variables. 
This means that they can be accessed and assigned values even if no instances of the class have been 
created. They must be accessed using the class namespace: 
 
 CGameApp::MyVariable = 1; 
 
Our CGameApp class does not use static member variables but it does use a static member function to 
distribute the window messages to the correct instance of the class. Please note that while we only ever 
have one instance of the CGameApp class in this demo, it does allow us flexibility in the future to have 
several CGameApp classes running in a single application, as well as being able to work directly 
within our game application object. 
 
To begin, let us recall how we created the window: 
 
m_hWnd = CreateWindow(  WindowTitle, WindowTitle, WS_OVERLAPPEDWINDOW,  
                        CW_USEDEFAULT, CW_USEDEFAULT, Width, Height, NULL, 
                        LoadMenu( wc.hInstance, MAKEINTRESOURCE(IDR_MENU) ), 
                        wc.hInstance, this ); 
 
Notice that the last parameter to be passed in, is the ‘this’ pointer. It maps to a pointer to the instance 
of the CGameApp class that created the window. This allows us to pass application-defined data to the 
window procedure when it is created. 
 
Once the window has been created our window procedure receives a WM_CREATE message. The 
lparam parameter in the WndProc function will point to a CreateStruct. The CreateStruct contains all 
the creation information about our window. More importantly, it has a field in the structure called 
CREATESTRUCT::lpCreateParams which contains the application-defined data which was sent in as 
the last parameter in the CreateWindow call. In our case, this information will be a pointer to the 
instance of the application class that created the window. This is important because our static window 
function is shared by all class instances. It will need to know for which instance of the CGameApp 
class this message is intended. 
 
In Windows, every window has a 4 byte user data area where you can store application-defined data to 
be associated with the window. In the following code you can see that we use the Win32 
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SetWindowLong function to store the CGameApp pointer passed to the function in the user data area. 
This means that the window itself now stores the instance of the CGameApp for which it was created.  
 
LRESULT CALLBACK CGameApp::StaticWndProc(HWND hWnd, UINT Message, WPARAM 
                                         wParam, LPARAM lParam) 
{ 
    if ( Message == WM_CREATE ) SetWindowLong( hWnd, 
                                               GWL_USERDATA, 
                                              (LONG)((CREATESTRUCT FAR*) 
                                               lParam)->lpCreateParams); 
     
This happens only once when the window is created and the WM_CREATE message is received. It is 
important if you use this method yourself to make sure that you pass in a pointer to the instance of the 
class in the call to CreateWindow. 
 
We are somewhat limited for any other messages because we cannot access any of the member 
variables of the class. This is because we are in a static function. So what we will do instead is retrieve 
the CGameApp pointer from the window that sent the message using the Win32 GetWindowLong 
function. Once we have this pointer we have the instance of the CGameApp for which the message is 
intended. 
 
    CGameApp *Destination = (CGameApp*)GetWindowLong( hWnd, GWL_USERDATA ); 
     
We can now forward the message to one of CGameApp’s non-static member functions. 
DisplayWindowProc handles windows messages for our application. 
 
   if (Destination)  
       return Destination->DisplayWndProc( hWnd, Message, wParam, lParam ); 
 
If we receive a message that has not yet had a pointer to an instance of CGameApp assigned to it, we 
will forward this message to the OS for default message processing. 
 
    // No destination found, defer to system... 
    return DefWindowProc( hWnd, Message, wParam, lParam ); 
} 
 
 
CGameApp::DisplayWndProc 

 
This function handles messages for the application object. It checks for menu items being selected and 
requests to close the application. It also traps the WM_SIZE message so that if the window is being 
resized the projection matrix can be rebuilt to take into account the new aspect ratio of the viewport 
dimensions. 
 
LRESULT CGameApp::DisplayWndProc( HWND hWnd, UINT Message, WPARAM wParam, 
                                  LPARAM lParam ) 
{ 
    float fAspect; 
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    // Determine message type 
    switch (Message) 
    { 
 
         case WM_CREATE: 
         break; 
         case WM_CLOSE: 
                 PostQuitMessage(0); 
         break; 
         case WM_DESTROY: 
                 PostQuitMessage(0); 
         break; 
   
We do not want any action taken in the case of a WM_CREATE message since we have already 
handled it in the parent function described previously. In the case of the application being closed by the 
user or the application window being explicitly destroyed, we call the Win32 PostQuitMessage 
function. This will send a WM_QUIT message to the application. The WM_QUIT message is polled 
for in CGameApp::BeginGame and used to break from the infinite rendering loop. 
 
One of the messages that we must be on the lookout for is the WM_SIZE message (sent when the user 
has resized the application window). This directly affects our rendering since it alters the aspect ratio of 
the rendering window. This means that we will need to recalculate the aspect ratio using the new 
window dimensions and rebuild the projection matrix to take these dimensions into account. Also note 
that the frame buffer is a bitmap and it has to match the dimensions of the window as well. The 
BuildFrameBuffer function has already been covered and takes care of destroying any previously 
created frame buffer.  
 
         case WM_SIZE: 
 
            // Store new viewport sizes 
            m_nViewWidth  = LOWORD( lParam ); 
            m_nViewHeight = HIWORD( lParam ); 
         
            // Set up new perspective projection matrix 
            fAspect = (float)m_nViewWidth / (float)m_nViewHeight; 
            D3DXMatrixPerspectiveFovLH( &m_mtxProjection,  
                                        D3DXToRadian( 60.0f ),  
                                        fAspect, 1.01f, 1000.0f ); 
 
            // Rebuild the new frame buffer 
            BuildFrameBuffer( m_nViewWidth, m_nViewHeight ); 
         break; 
 
We exit the application in response to the user pressing the escape key, so we must trap the 
WM_KEYDOWN message and check the wParam variable passed in to see what key was pressed:  
 
         case WM_KEYDOWN: 
          // Which key was pressed? 
            switch (wParam)  

www.gameinstitute.com 3D Graphics Programming with DX9 

TeamLRN



            { 
                    case VK_ESCAPE: 
 PostQuitMessage(0); 
                          return 0; 
            }  
 
The last section of code traps command messages generated by the user selecting a menu item. These 
simple menu items allow the user to toggle the state of an object’s rotation variable. We also check to 
see if the user has selected the Exit command from the menu. 
 
case WM_COMMAND: 
 
     // Process Menu Items 
     switch( LOWORD(wParam) ) 
     { 
      case ID_ANIM_ROTATION1: 
           // Disable / enable rotation 
           m_bRotation1 = !m_bRotation1; 
           ::CheckMenuItem( ::GetMenu( m_hWnd ), ID_ANIM_ROTATION1,  
                                     MF_BYCOMMAND | (m_bRotation1) ?   
                                     MF_CHECKED :  MF_UNCHECKED ); 
           break; 
 
      case ID_ANIM_ROTATION2: 
           // Disable / enable rotation 
           m_bRotation2 = !m_bRotation2; 
           ::CheckMenuItem( ::GetMenu( m_hWnd ), ID_ANIM_ROTATION2,  
                                     MF_BYCOMMAND | (m_bRotation2) ?  
                                     MF_CHECKED :  MF_UNCHECKED ); 
           break; 
 
      case ID_EXIT: 
           // Received key/menu command to exit app 
           SendMessage( m_hWnd, WM_CLOSE, 0, 0 ); 
           return 0; 
         
     } // End Switch 
 
     default: 
      return DefWindowProc(hWnd, Message, wParam, lParam); 
 
    } // End Message Switch 
     
    return 0; 
} 
 
Any messages that we do not handle directly are passed on to Windows for default processing by 
calling the Win32 function DefWindowProc. 
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Exercises 
 
The current demo does not allow the camera to be moved and the view matrix is left as an identity 
matrix. In this exercise, try adding user input to the demo so that the user can strafe the camera left or 
right in response to the left and right cursor keys being pressed.  

 
     Tips: 

a) You will need to add key handlers in the DisplayWndProc function . 
b) You can set the view matrix to an identity matrix at application start up as we have done 

in our code, but you will need to modify the view matrix in response to the left or right 
keys being pressed. It is the translation information (the last row) of the view matrix that 
will have to be updated. 

c) In order to strafe the camera, you will need to move the camera along its RIGHT 
VECTOR. Refer back to the diagram of the view matrix to see how to extract the right 
vector. (hint: look at column 1) 

d) Remember that multiplying the right vector with a negative distance value will move the 
camera left. 

e) Remember to store the newly translated vector back into the translation row of the view 
matrix before rendering the scene. 

 
 
Further Reading: 
 
The CTimer class used by our demo uses the Windows high performance counter functions. We have 
provided a short document explaining how to use the timer function. This document can be found 
accompanying this material (in the download section), and is named TimerTut.zip  
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DirectX Graphics Overview 
 
DirectX Graphics provides a unified programming interface for multimedia development with 
integrated support for hardware acceleration when available. Since even the most moderately priced 
PCs on the market typically include hardware acceleration for 3D graphics, most end-user systems can 
be counted on to meet minimum requirements. Driver support for the DirectX Graphics API exists for 
practically every video card sold since the mid-90s. If hardware acceleration is not present on an end 
user system, DirectX Graphics provides software based emulation with full support for optimized CPU 
instruction sets (like MMX or 3DNow).  
 
When card manufacturers ship their latest hardware, they release a small high-speed software layer 
called a device driver along with it. Driver software acts as an interpreter, taking requests from the OS 
and turning them into native instructions the hardware can execute. As newer versions of the OS are 
released, the manufacturer can release new drivers to maintain compatibility. Device drivers are 
generally fast and stable and tend to improve with time. Hardware manufacturers like nVidia and ATI 
are constantly working on optimizing their device drivers and you should check their websites’ driver 
downloads sections periodically to ensure optimal application performance.  
 
Most hardware manufacturers package a DirectX Graphics compliant device driver called the 
Hardware Abstraction Layer (HAL). When a HAL is found on the current system, it indicates that 
the graphics hardware has hardware accelerated support for at least some DirectX Graphics 
functionality. DirectX Graphics can talk to hardware in a consistent way because the HAL takes care 
of translating requests into the native instruction set for the 3D hardware. Some adapters provide only 
hardware accelerated polygon rasterization. When this is the case, DirectX Graphics will transform and 
light polygons in software and then pass them to the HAL for rasterization. DirectX will shift the entire 
process to the HAL when transformation and lighting (T&L) support is available.  
 
One of the first things your application will need to do is determine whether or not a HAL is present on 
the current system. If a HAL is available (which is likely the case), then you will generally prefer it to 
use software emulation. If a HAL is not provided, then the graphics adapter has no DirectX Graphics 
support. In this case you can choose to use the DirectX Graphics Hardware Emulation Layer (HEL). 
When you use the HEL, all transformation, lighting and rasterization of polygons is done on the CPU. 
The DirectX Graphics software emulation module is called the Reference Rasterizer. It emulates all 
of the DirectX Graphics features but is not viable for commercial purposes due to performance 
constraints.  
 
The reference rasterizer is useful for testing DirectX features when development hardware does not 
support all of the DirectX Graphics features your game will use. If you were developing an application 
that used bump mapping, and your test hardware did not support bump mapping, you could use the 
reference rasterizer to test your code. This ensures that users who have hardware that supports bump 
mapping can still enjoy it in your game. 
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Features supported in the HAL vary widely across video hardware. Our application must be flexible 
enough to ensure that it does not attempt to use features that are not available while taking advantage 
of those that are.  
 
Fig 2.1 shows the relationship between the application and hardware layers: 
 

 

 
 
 
 
 
If no HAL exists on the system, or if the 
application has decided not to make use of 
it, then DirectX Graphics will emulate all 
functionality in software using the HEL 
(reference rasterizer). 
 
The reference rasterizer is slow but is useful 
for testing features not supported in 
hardware on your development machine. 
 
The HAL does not provide emulation of 
DirectX features when a feature is not 
supported by the underlying hardware.  
 

 
Figure 2.1 

 
When graphics hardware supports the entire transformation and rendering pipeline, this frees up the 
system CPU to handle other game tasks like AI and physics. Most users will have cards capable of 
hardware rasterization, but not everyone will have full T&L support. The latest cards from nVidia (the 
geForce™ family) and more recently ATI (the Radeon™ family) support the transformation and 
lighting of vertices in hardware. 
 
The DirectX Graphics environment must be initialized appropriately to ensure that your application 
can take advantage of the best features available on a given system. Failure to properly initialize 
DirectX Graphics could result in significant performance loss or even total software failure. This will 
be the main focus of the first part of this chapter.  
 
Using DirectX Graphics to draw 3D shapes will be our focus in the second part of this lesson.  
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Initializing DirectX Graphics 
 
The IDirect3D9 object interface provides access to core DirectX Graphics functionality. Creating this 
interface is typically one of the first things our application will do during initialization. DirectX 
Graphics contains a global function to handle creation: 
 
IDirect3D9 *Direct3DCreate9(UINT SDKVersion); 
 
This is how it would be called from our code: 
 
LPDIRECT3D9 pD3D; 
pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 
 
The function accepts a single unsigned integer parameter. The integer identifier D3D_SDK_VERSION 
is defined in the d3d9.h header file and ensures that the application is built with the correct header file 
versions. The function creates the Direct3D9 COM object, increases its reference count, and returns an 
IDirect3D9 interface to the object. Direct3DCreate9 is the only global non-COM function that DirectX 
Graphics provides (excluding D3DX). All other functionality will be accessed using COM methods 
either directly or indirectly through the IDirect3D9 interface. A short COM tutorial can be found 
included with this chapter for those who are not familiar with the model. 
 
IDirect3D9 exposes methods that allow the application to query the hardware capabilities of the 
current system. This interface is also used to create the Direct3DDevice9 object and retrieve a pointer 
to the IDirect3DDevice9 interface. The IDirect3DDevice9 interface provides the functionality our 
application will use most of the time.  
 
In order to create a proper Direct3DDevice9 object, we will need to know the capabilities of the 
hardware installed on the system. For example, cards like the Voodoo 1™ and the Voodoo 2™ are 3D 
accelerators with no 2D support. As a result they exist alongside another graphics card which provides 
that 2D functionality. So there may be two physically separate 3D hardware accelerated devices on the 
system. Since we can only use one of them, which one do we choose? If we choose incorrectly our 
application is not likely to perform as well as it should. We may wind up using the CPU when there 
was hardware acceleration available on the video card. 
 
The IDirect3D9 interface provides functions for querying the number of graphics adapters installed on 
the system as well as functions for querying the capabilities of each of those adapters. So the main 
purpose of this object is to gather information that we can use to create the most optimal 
Direct3DDevice9 object possible on an end user system. Some of the key functions of this interface are 
shown below. This is not a complete list, but it does provide the core functionality we will need in this 
lesson:  
 
UINT    GetAdapterCount      (VOID);  
HRESULT GetDeviceCaps        (UINT Adapter,  D3DDEVTYPE DeviceType, D3DCAPS9* pCaps); 
UINT    GetAdapterModeCount  (UINT Adapter , D3DFORMAT Fomat ); 
HRESULT GetAdapterDisplayMode(UINT Adapter,  D3DDISPLAYMODE* pMode ); 
HRESULT CheckDeviceType      (UINT Adapter,  D3DDEVTYPE CheckType,  D3DFORMAT DisplayFormat, 
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                       D3DFORMAT BackBufferFormat,  BOOL Windowed ); 
HRESULT EnumAdapterModes     (UINT Adapter,   D3DFORMAT Format,  UINT Mode, 
                              D3DDISPLAYMODE* pMode); 
HRESULT CreateDevice         (UINT Adapter,  D3DDEVTYPE DeviceType,  HWND hFocusWindow, 
                              DWORD BehaviorFlags,           
                              D3DPRESENT_PARAMETERS* pPresentationParameters, 
                           IDirect3DDevice9** ppReturnedDeviceInterface); 
 
The structures and enumerated types used as parameters will be covered later in the lesson. For now 
we will briefly explore some these functions so that we can begin to understand system capability 
querying.  
 
GetAdapterCount – This function returns the number of physical display adapters available on the 
current system. The value returned will usually be 1; indicating only one display adapter is installed. 
The first graphics card installed is typically referred to as the primary display adapter. 
 
While it is true that only one adapter will exist on the vast majority of systems, we still want our code 
to handle cases where more than one is present. Although we could choose to ignore the other adapters 
and simply use the first adapter found, we risk not selecting the most capable adapter available. The 
Enumeration class that we will build in our final Lab Project for this lesson will let the user choose 
which adapter they wish to use. 
 
GetAdapterDisplayMode – This function returns the current display mode of the adapter identifier. 
Each adapter on the system is assigned an integer index between 0 and AdapterCount – 1. This is 
referred to as the adapter ordinal. If you need to find out information about the current display mode, 
the D3DDISPLAYMODE returned will include this information (resolution, color bit depth, and so on). 
If the adapter is the primary display adapter currently being used to display the Windows desktop, then 
the display mode returned will be equal to the resolution and color depth you have your desktop set to. 
 
typedef struct _D3DDISPLAYMODE  
{ 

UINT       Width; 
UINT       Height; 
UINT       RefreshRate; 
D3DFORMAT  Format; 

} D3DDISPLAYMODE; 

 
The D3DDISPLAYMODE structure contains the width and height (in pixels) of the current display 
mode, the monitor refresh rate, and the display surface pixel format.  
 
EnumAdapterModes –In DirectX Graphics, there are a number of formats that describe how image 
pixels are represented in memory. The D3DFORMAT enumerated type contains all of the formats 
currently supported by DirectX. When we create our game, we will want it to run in a variety of 
different video resolutions given the wide range of hardware capability across the marketplace. People 
with low-end machines might need to run our game in a resolution of 640x480 for better performance 
while users with high-end machines can run 1600x1200. This function allows us to request a list of 
video resolutions available for a given pixel format.  
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For example, let us assume that there is one adapter installed in the system (the primary display 
adapter) and that we desire a display mode with a 16 bit color format of D3DFMT_R5G6B5 (5 bits 
for red, 6 for green, and 5 for blue in every pixel). We could use the following code to find out if this 
format is supported by the adapter: 
 
D3DDISPLAYMODE       Mode; 
UINT                 AdapterOrdinal = 0; 
D3DFORMAT            Format = D3DFMT_R5G6B5; 
LPDIRECT3D9          pD3D; 
 
pD3D = Direct3DCreate9( D3D_SDK_VERSION );  
if (!pD3D) return FALSE; 
 
UINT NumberOfModes = pD3D->GetAdpaterModeCount (Adapter, Format); 
 
if (!NumberOfModes) return FALSE; 
 
for (UINT I=0; I < NumberOfModes; I++)  
{ 
     pD3D->EnumAdapterModes( Adapter, Format , I , &Mode); 
     FormatModeList->push_back(Mode); 
} 
In this example we tested for D3DFMT_R5G6B5 format support (generally available on most cards). We 
use an adapter ordinal of 0 (the number of the default adapter) and do not iterate through all adapters 
on the system. Next we create the Direct3D9 object and use one of its member functions to query the 
number of video modes the adapter supports for that pixel format. For example, the adapter may 
support 640x480, 800x600 and 1024x768 video modes -- all using the D3DFMT_R5G6B5 format. If this 
was the case, then the number of modes returned would be 3. More recent hardware may support many 
more modes than this (sometimes going to resolutions beyond 2000 pixels in a single dimension). Of 
course, in a commercial application we would not look for one particular format. We will write some 
code later in the lesson that will search all formats available. If the desired video mode format is not 
available, we will try another until we find the best match. 
 
If the number of modes returned is zero, the graphics card does not support this color format. This is 
not unusual as there are a number of 16 bit color formats available and it may use one of the others 
instead. In a real application we would continue to test other possible 16 bit formats until we found a 
suitable match. 
    
Next, we loop through the number of available modes and call the 
IDirect3D9::EnumAdapterModes function. This function parameter list includes the adapter 
ordinal, the desired pixel format, and the number of modes we wish to retrieve. For each format an 
adapter supports, there is a list of display modes containing 0 to modecount - 1 elements. This function 
asks for details of the display mode at a given index in that list (the third input parameter ‘I’ above). 
Details are returned in the D3DDISPLAYMODE structure whose address is contained in the last 
parameter. This structure will contain the width and height of the mode, the format itself (which we 
passed in) and the refresh rate. Note that it is quite possible that many of the modes returned have 
identical width, height, and format settings, and differ only with respect to refresh rate. This reflects 
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the wide range of capabilities present on current monitors. Each is copied into an STL vector called 
FormatModeList and at the end of the loop the vector will contain all display modes available for the 
D3DFMT_R5G6B5 color format on that system. A brief STL vector tutorial is included in the Appendices 
to this chapter if you are unfamiliar with its usage. 
 

Note: You should always use the format returned in the D3DDISPLAYMODE structure from 
EnumAdapterModes to create your device object. Although we pass in the format that we wish to have 
modes enumerated for, the format returned in the D3DDISPLAYMODE structure is not always 
guaranteed to be the same for certain 16 bit formats. The formats, D3DFMT_X1R5G5B5 and 
D3DFMT_R5G6B5 are two commonly supported 16 bit pixel formats. In some cases an adapter will only 
support one or the other. The EnumAdapterModes function will return the version that the hardware 
supports in the D3DDISPLAYMODE structure. So if you enumerated all modes for D3DFMT_X1R6G5B5 
but the graphics card only supported D3DFMT_R5G6B5 then the latter format would have its modes 
enumerated. This is the only case where this is true. For all other formats the function will not succeed 
if the explicit format passed is not supported by the graphics adapter. 

 
 
The Direct3D Device 
 
Once we have used the IDirect3D9 object to gather information about the current system, we will 
create a device object based on that information. The device object can be thought of as a black box 
that encapsulates the transformation pipeline, rendering to the frame buffer, pixel blending, depth 
testing and texture mapping -- using hardware acceleration when available.  
 
In many respects the device object is a 3D engine. At a very basic level, we tell it to render a polygon 
by passing a collection of vertices to the IDirect3DDevice9::DrawPrimitive function. This 
very much like the way we passed vertices into our software transformation and rendering code in Lab 
Project 1.1. The vertices are passed through a series of computations to arrive at the screen 
representation of the polygon. Unlike our simple software rendering demo, the polygons rendered by 
the device can have lighting effects applied to them, multiple textures blended onto them, and even 
have several color blending operations done at the per-pixel level to allow for transparency. 
 
The device is also a state machine that can be controlled through member functions (eg. 
IDirect3DDevice9::SetRenderState). These states control the way the device transforms 
and color blends our polygons onto the screen. Any state that is set will remain set until we unset it or 
set it to something else. If we set the device to wireframe render mode for example, every polygon 
drawn will be rendered in wireframe until we set the render state to some other value (such as solid fill 
mode). 
 
Using the device states to control the transformation and lighting of vertices is referred to as fixed 
function pipeline rendering. There will be times however when even all of the many render states 
available do not provide the results you want. Beginning with DirectX 8, Microsoft exposed the 
rendering pipeline to the developer using something called programmable shaders. Shaders allow the 
developer to create small code modules for transforming and lighting vertices and coloring pixels 
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instead of using the fixed function pipeline. We call this the programmable pipeline. Shaders will be 
covered in detail during the next course in this series. 

 
Figure 2.2 
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Fig 2.2 provides a representation of the device object and the software modules that it contains. The 
device is divided into two main sections: the vertex processor (BLUE) and the pixel processor 
(PURPLE). 
 
 
Pipeline Overview 
 
Vertices are sent to the device using the DrawPrimitive function(s). As we did in Lab Project 1.1, we 
will pass in world, view, and projection matrices so that the device can perform the necessary 
transformations. We set each matrix using the IDirect3DDevice9::SetTransform function 
prior to rendering an object. The function takes as its first parameter a member of the 
D3DTRANFORMSTATETYPE enumerated type. This tells the device which of the matrices is being passed 
(projection, view or world). The second parameter is a pointer to the matrix itself. 

 
HRESULT SetTransform(D3DTRANSFORMSTATETYPE State, CONST D3DMATRIX* pMatrix); 
 
At application startup we might create a projection matrix and send it to the device as follows: 
 
m_pD3DDevice->SetTransform( D3DTS_PROJECTION, &m_mtxProjection); 
 
Each frame we can create a view matrix which would contain the position and orientation of the virtual 
camera in our world. Before rendering any objects we would use the SetTransform function again 
to set the device view matrix: 
 
m_pD3DDevice->SetTransform( D3DTS_VIEW, &m_mtxView); 
 
Finally, before we render each object’s polygons, we send the object world matrix to the device: 
  
for(I=0; I<NumberOfObjects; I++) 
{ 
  m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_pObject[i].m_mtxWorld ); 
  m_pD3DDevice->DrawPrimitive ( All Object[I] Polygons); //pseudo function call 
} 
 
Polygons are transformed by these matrices in a manner similar to what we saw in our software demo.  
 
Once the device has transformed (and lit – see Chapter 5) the vertices, it performs backface culling (if 
enabled) to remove polygons facing away from the viewer. It then performs the divide by w to 
perspective project the vertices into 2D projection space coordinates in the range of –1 to 1.  
 
The transformed vertices now enter the pixel pipeline. The device will set up the outline of the polygon 
in screen space and then draw that polygon one scan line at a time -- and ultimately one pixel at a time. 
Once the device has interpolated the depth and color values for a pixel (using a weighted interpolation 
between the vertices and their depth and color values), the pixel is sent through the rest of the pixel 
pipeline where it may have texture and/or fog effects applied that alter its color. The pixel depth value 
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is then tested against the depth buffer (and possibly the stencil buffer if one is being used) to see if it is 
closer to the camera than a previously rendered pixel. If so, if enters the final phase where it may be 
color or alpha blended with a pixel already stored in the frame buffer. If not, it is discarded.  
 
Do not be too concerned if this description is a little overwhelming. We will be dealing with every 
element described above as we progress through this course.  
 
 
Device Memory 
 
The device owns and maintains memory for a number of important data storage buffers. The frame 
buffer (and usually the depth buffer) memory will be created when we create the device. Device 
memory can also be allocated by our application for assets like texture images and mesh geometry. 
These memory buffers are referred to as device resources. Having these resources available in device 
memory provides maximum speed on T&L hardware. Fig 2.2 shows the memory buffers owned by the 
device for an application that uses four vertex buffers (perhaps to hold the vertices for four different 
meshes), four textures, a depth buffer, and a frame buffer. 
 

 
Figure 2.3 

 
Although it is likely that your application will use all of the memory buffers types in Fig 2.3, only a 
frame buffer is required. Later we will see how our application can configure the device to control 
where resources are stored. 
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Frame Buffers 
 
The frame buffer (or back buffer) is a memory buffer where the image of our 3D scene is rendered 
prior to displaying the output on the screen. This approach allows us to minimize or even avoid certain 
artifacts that may occur if we rendered directly to the screen buffer. We discussed some of these 
artifacts in Chapter 1. We saw that a frame buffer was critical because proper scene rendering required 
that we erase the prior frame image before displaying the new one. If we were to try to do this on the 
physical display, the user would see the image flicker as it was erased and then redrawn at high speeds. 
The frame buffer solved this problem by clearing and rendering to an off-screen memory buffer. Only 
after the scene was completely rendered did we copy it to the screen and replace the existing image.  
 
 
Refresh Rate 
 
The speed at which the monitor screen repaints itself is referred to as the refresh rate. Refresh rate is 
measured in Hertz (1/sec). A refresh rate of 60 Hz means the monitor repaints itself 60 times per 
second. The higher the refresh rate, the more rapidly the monitor can react to changes in the image 
rendered to the screen. There is typically a block of memory on every video card that is used to map 
images directly to the monitor screen. When the screen is repainted by the electron gun, it gets 
information about how it should be painted directly from this display memory. When changes are 
made within this address space, it changes the image seen by the viewer. 
 
The electron gun inside the monitor starts at the top left corner of the display. Each line of the monitor 
display is called a scan line and is refreshed as the electron gun from moves left to right. At the end of 
each scan line, the electron gun is moved to the beginning of the next line to repeat the process until 
the entire screen has been refreshed. 
 

 
 

Figure 2.4 
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If we copy the frame buffer to the display memory while the electron gun is halfway through 
repainting the screen, the new image will be displayed only on the bottom half of the screen for a 
fraction of a second. This is because the top part of the display has already been repainted by the 
electron gun using the image that was previously in display memory, while the new image is used for 
the second part of the repaint. Although this corrects itself very quickly due to high refresh rates, it is 
still noticeable to the viewer. We call this visual artifact tearing.  
 
 

 
 

Figure 2.5 
 
In Fig 2.5 the current frame in the frame buffer is slightly skewed to the right with respect to the 
previous frame’s camera setting (currently being displayed in display memory). When the frame buffer 
is copied to display memory and the electron gun is only half way through a repaint, the bottom half of 
the screen is updated with the new image. The top half of the screen will not be updated until the next 
repaint. 
 
Referring back Fig 2.4 we notice that there is a time at which the electron gun reaches the bottom right 
corner of the screen and has to stop repainting and return to the top left corner for the next repaint. 
During this time the electron gun is not painting the screen, so this will be an ideal time for us to copy 
the frame buffer to display memory. This period of time during which the gun retraces from bottom 
right to top left is called the vertical retrace period (sometimes called the vertical blank). While the 
vertical retrace time is indeed quite short, we can be assured with modern hardware that we can copy 
the entire frame buffer to the display memory within that time block to prepare for the next monitor 
repaint. 
 
We will tell the device that we want to synchronize our frame buffer with the vertical retrace period. 
This is called VSYNC. When given a command to present the frame buffer, the device will wait until 
the vertical retrace starts before it performs the copy operation from the frame buffer to display 
memory.  
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Note: Some commercial games allow the user to disable VSYNC in order to increase the 
responsiveness of the game and increase the frame rate slightly. This usually comes at the cost of 
visual artifacts such as screen tearing. When VSYNC is disabled in such games, the frame buffer is 
copied to display memory as soon as the scene is rendered and no waiting for the vertical retrace 
occurs. 

 
 

The Front Buffer 
 
The display memory used by the electron gun to repaint the monitor is sometimes called the front 
buffer. DirectX Graphics enforces the use of a frame buffer by denying the application access to the 
front buffer -- all rendering must be done to the frame buffer. When the frame buffer is complete, we 
call IDirect3DDevice9::Present to tell the device object to copy or promote the frame buffer 
to display memory.  
 
It should be noted that while you cannot directly access or alter the image in the front buffer, the 
IDirect3DDevice9 interface does have a function called 
IDirect3DDevice9::GetFrontBuffer. This function will return a copy of the image in the 
front buffer only. Altering this returned image will not alter display memory. This can be useful for 
taking a screen shot of your application.  
 

 
Note:  IDirect3DDevice9::GetFrontBuffer is the only way to take a screen shot of an anti-aliased scene. 

 
 
Swap Chains 
 
It is possible to create more than one frame buffer for a device. When more than one frame buffer is 
used, this is called a swap chain.  Consider a scenario where your application tells the device to 
present the frame buffer to display memory. The device may have to wait until the vertical retrace 
period before it can present the frame buffer. Your application will essentially wait for the all clear 
signal to render the next frame; which it cannot do until the current frame buffer has been presented. If 
a swap chain is used, you can continue to render the next frame into the next frame buffer in the swap 
chain. This can speed things up under certain circumstances and may even smooth out erratic frame 
rates, but it comes at a cost. At high screen resolutions (especially in 32 bit color) each frame buffer 
can take up a considerable amount of precious video memory. This is memory often best reserved for 
resources that need to be accessed frequently by the device (like textures or vertex buffers). 
 
The process of using two frame buffers (plus the front buffer) is called triple buffering. The more 
typical approach uses just one frame buffer and is called double buffering. We will be using double 
buffering for most of the demo applications in this course. DirectX allows swap chains with as many as 
four frame buffers. 
Fig 2.6 shows the relationship between the front buffer, the frame buffer, and the physical display. All 
polygon rendering is done through the device to the frame buffer. When we have finished rendering 
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the frame, we tell the device to present the frame buffer to the user. The device then takes the current 
image in the frame buffer and puts it into the front buffer when the next vertical retrace period starts. If 
we have disabled synchronization with the vertical retrace period, then the device will put the frame 
buffer image into the front buffer immediately. Each time the monitor is repainted, it takes the 
information about what to display from the front buffer. Notice that even though the frame buffer and 
the front buffer are both located in memory on the video card, sometimes referred to as local video 
memory, only the front buffer memory is used to repaint the physical display: 
 

 
 

Figure 2.6 
 
Screen Settings 

 
When we create a Direct3DDevice9 object at the start of our application, we also have to choose a 
windowing mode to operate under. Most commercial games use a fullscreen mode. In fullscreen mode, 
the 3D image covers the entire display area. Alternatively, windowed mode games run alongside other 
applications on your desktop. As you will discover for yourself, this mode is critical during the 
development phase of your application.  
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Fullscreen Mode 
 
When we create the device object, we query the current hardware to see which fullscreen video modes 
it supports. Once we select a resolution and color depth (or let the user choose from a list) we create a 
fullscreen device that physically puts the graphics hardware into this video mode. The Windows 
desktop will no longer be visible and the front buffer will take up the entire screen.  
 
In fullscreen mode, the frame buffer created for the device must be exactly the same size and color 
depth as the front buffer. If we choose to create our device so that it operates in a video mode of 
640x480 in 16 bit color (640x480x16), the frame buffer should also be created to these specifications.  
 
In this mode the device can perform a fast presentation from the frame buffer to the front buffer using 
a technique called flipping -- a feature available on virtually all current graphics hardware. Flipping 
essentially amounts to a pointer swap. The video card has two pointers; one to the current frame buffer 
and the other to the front buffer. The monitor is repainted by the image pointed to by the front buffer 
pointer. Drawing commands issued by the application to the device take place in the area of video 
memory pointed to by the frame buffer pointer. Once we have rendered the scene in the frame buffer 
and it is ready for presentation, the device (in a double buffer system) just swaps the pointers. Now the 
front buffer pointer points at the old frame buffer and the frame buffer pointer points at the old front 
buffer. This is much faster than the alternative which is called blitting, where every pixel would need 
to be copied between the buffers.  
 
Once the swap has taken place, the new frame buffer replaces the old front buffer and all drawing 
commands are directed to the current frame buffer (the old front buffer). When the next image is 
complete the device will once again swap the two pointers. Fig 2.7 shows this concept in action over 
two consecutive frames: 
 

 
 

Figure 2.7 
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The blue arrows show the buffer arrangement during frame one. The device draws directly to Buffer 2 
(the current frame buffer). Buffer 1 is the front buffer and contains the image currently being displayed 
on the monitor. When the device is told to present the image in the frame buffer, the pointers are 
switched so that Buffer 2 is now the front buffer. Its contents (the image we just rendered) are painted 
by the electron gun. When we render frame two, the pointers have been swapped. The device now 
draws directly to Buffer 1 while Buffer 2 is used as the front buffer. When the device is told to present 
the frame buffer, the pointers are switched again, and Buffer 1 is promoted to the front buffer, with 
Buffer 2 becoming the frame buffer for the next frame. And so it goes for the lifetime of the 
application. 
 
 
Windowed Mode 
 
In windowed mode the desktop is not hidden and it shares the current video mode with other 
applications that may be running, including yours. Thus the video mode cannot be changed. Flipping 
cannot be used because the front buffer is mapped directly to the client area of the application window. 
In windowed mode, the frame buffer is copied to the client area pixel-by-pixel each time we present 
the scene. Although this blitting process is handled by the device, it is likely to be slower than flipping.  
 
Movement of the application window by the user is handled automatically by DirectX Graphics. 
However, until the release of DirectX 9.0, resizing the window was not. Until now, when the user 
resized the window (WM_SIZE) our message handler would need to tell the device to rebuild its swap 
chain so that the frame buffers matched the new dimensions of the front buffer. We may still decide to 
do this anyway, but it is no longer a requirement. 
 
As long as the device is in windowed mode, the frame buffer(s) does not have to be the same size or 
color format as the front buffer. DirectX Graphics will automatically shrink or expand the frame buffer 
image to fill the front buffer, which in this case is the window client area. The same is true with color 
depth. It is now possible in windowed mode to have a 32 bit frame buffer even when the desktop (and 
therefore your front buffer) is in 16 bit color mode. DirectX Graphics will perform the color 
conversion when the image is copied from the frame buffer to the front buffer. Because all of this 
conversion and resampling will be slower, you should still try to keep the formats and sizes matched 
up for optimal performance. Note that the above features are only true when running in windowed 
mode. In fullscreen mode the frame buffer must be the same size and format as the front buffer. 
 
When we create our windowed mode device in our lab projects, we will use the current desktop display 
mode for our frame buffer. This makes environment setup much easier for windowed mode 
applications as we will see in Lab Project 2.1. 
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 Depth Buffers 
 
One of the trickiest parts of creating a 3D game used to be making sure that the polygons in the scene 
were rendered in such a way that polygons nearer to the camera were rendered on top of polygons 
further away. While this is not an issue when rendering in wireframe mode, when we use filled (solid) 
polygons this is a very significant problem. Polygons cannot just be rendered in any random order 
without potentially damaging the integrity of the scene. In Fig 2.8 we see an example of polygons 
forming a corridor section of a game world viewed from the player location.  If we rendered the wall 
polygons in no particular order (perhaps just using the order they were stored in the mesh), we might 
render the wall furthest from the camera last:  
 

 
Figure 2.8 

 
The horizontal dark red polygon is supposed to be forming the back wall of the passage where it meets 
in a T-junction. It should be partially obscured by the nearer polygons to give the illusion that it is 
further away. We cannot simply define our meshes so that the polygons are ordered correctly because 
the drawing order will depend on the viewing angle and position of the player. These values will 
change as the player moves around the world.  
 
One way to solve this problem is with a technique called the Painter’s algorithm (Fig 2.9). The 
polygons in the scene are sorted into a back to front ordered list prior to rendering. Polygons further 
from the camera are rendered first and polygons close to the camera are rendered last, drawing over the 
distant polygons. This is similar to how a painter builds up the scene on his canvas; painting 
background objects first, followed by foreground objects. 
 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 18 of 85 

 

TeamLRN



 

 
Figure 2.9 

 
The Painter’s algorithm worked well for the above case but it is not suitable for the complex worlds we 
expect in commercial games today. Sorting all of the visible polygons before rendering would 
seriously diminish performance if thousands of polygons or more were visible on the screen at once. 
Many polygons will be rendered only to be overdrawn by nearer polygons. We will also have 
difficulties choosing a sorting criterion and would have to settle for an approximation that can be 
applied to the whole polygon. For example, we could use the nearest vertex position in the polygon 
and calculate its distance from the camera and use that to sort polygons. Or we could try to find an 
average distance using all of the vertices’ distances from the camera. No matter what criterion we 
decide to use, it will not suffice in all situations (Fig 2.10). 

 
Figure 2.10 

 
If we render the green polygon in Fig 2.10 first, then the portion of the red polygon that is supposed to 
be behind it will be rendered in front. If we render the red polygon first, then the portion of the green 
polygon that is supposed to be obscured by the red polygon will be rendered in front. The Painter’s 
algorithm cannot resolve this. 
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The solution is to work with smaller units. Eventually these polygons will need to be rendered at the 
per-pixel level. While a particular vertex might not be behind another polygon, when pixels are 
interpolated across the polygon from one vertex to another, the pixel itself might be obscured because 
a closer polygon has already had its pixels rendered there. Ideally the current pixel would not be 
rendered in this case. So we need a per-pixel test that allows us to figure out whether a given pixel 
should be rendered or whether a pixel that is closer to the viewer has already been rendered in that 
location in the frame buffer.  
 
 
The Z-Buffer 
 
The most popular depth solution creates a memory buffer that is the same size as the frame buffer. 
Instead of each buffer location holding a pixel color, it will store the interpolated Z depth value for 
each corresponding pixel in the frame buffer. This technique is known as Z-Buffering and the memory 
buffer itself is referred to as a Z-Buffer.  
 
In Chapter 1 we discussed the projection matrix transformation. We saw that it takes a vertex from 
view space to homogenous clip space prior to the divide by w. It is possible to ensure that when the 
vertex Z value is output from the projection matrix and divided by w, it ends up in the range [0.0, 1.0]; 
where 0.0 represents a vertex very close to the viewer and 1.0 represents a vertex at the furthest 
possible point from the viewer. This is not a pure distance value mind you. It is simply the view space 
Z component of each vertex mapped to the range [0.0, 1.0]. This will suffice however because the 
sorting problem is a view space problem. When the device renders a polygon, it will perform a linear 
interpolation between the Z values stored at each vertex to produce a Z value for each pixel. This Z 
value provides us with a relative distance from the viewer to each pixel that we render.  
 
Before we render our scene we will clear the Z-Buffer to the maximum Z distance that can be stored. 
For example, let us say that the Z-Buffer is a BYTE array. Each element can hold a number between 0 
and 255. So in this case we will set every element in the buffer to 255 (the maximum depth value). 
 
Next we render our polygons. After the polygon is transformed into screen space, we calculate the Z 
component for each pixel based on an interpolation of the Z values stored at each vertex in the 
polygon. Once we have the pixel depth value, we compare it against the corresponding value stored in 
the Z-Buffer. Every pixel in the frame buffer has a corresponding entry in the Z-Buffer describing its 
distance from the viewer. 
 
If the value already stored in the Z-Buffer is smaller than the depth value of the current pixel about to 
be rendered, then it means another pixel has already been rendered at this location in the frame buffer 
that is closer to the viewer than the one we are currently about to draw. In this case we discard the 
current pixel and move on to the next one. 
 
If the depth value of the pixel we are about to render is smaller than the corresponding value in the Z-
Buffer, then the pixel we are about to render is closer to the viewer than any we have previously 
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rendered in that position up to this point. So we should render the current pixel and overwrite the pixel 
residing in that frame buffer location. After we do this, we store the current depth value in the 
corresponding Z-Buffer location overwriting the depth value that was previously there.  
 
In Fig 2.11 we see a low-resolution frame buffer and depth buffer. We used a 5 bit Z-Buffer where 
each value falls between 0 and 16. Before the scene is rendered, the Z-Buffer is cleared so that every 
location contains the maximum depth value of 16. Then we render our polygons:  

 
Figure 2.11 

 
Because we are doing per-pixel tests using the Z-Buffer values, rendering order no longer matters. If 
we rendered the red triangle in Fig 2.10 last and tried to write a pixel where the blue triangle already 
had a pixel, the Z-Buffer test would fail because a 5 would already be stored at that location. Since this 
is less than the depth of the red pixel (10) we would be about to render, the red pixel would be 
discarded. 
 
Per-pixel tests in software are very expensive simply because there are going to be so many of them. 
Fortunately, virtually all 3D graphics cards support Z-Buffers in hardware and our applications can use 
them without any performance concerns. The DirectX Graphics device object will handle depth testing 
for us automatically. We simply instruct it to create a Z-Buffer when it creates the frame buffer at 
application startup and activate the appropriate render state. When we render our polygons, the device 
will record the depths of each pixel in the Z-Buffer and perform the per-pixel depth tests at high 
speeds.  
 
Our application must query and select a Z-Buffer format supported by the current hardware and tell the 
device to use it. We also have to make sure that we setup the 3rd column of our projection matrix so 
that it generates a proper Z value for each vertex. We will discuss this exact process a little later in the 
lesson. 
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Z-Buffer Inaccuracy 
 
Graphics hardware usually supports 16, 24, or 32 bit Z-Buffers and sometimes all three. But it is worth 
discussing 16 bit in particular because it presents us with some real problems that we will need to 
solve.  
 
The Z value for each vertex -- and eventually each pixel -- is the result of our projection matrix 
multiply and the divide by w. This gives each screen space vertex a depth value between 0.0 and 1.0. 
In code, this is a floating point value and is thus 32 bits wide. In order to fit 32 bit floats into 16 bit Z-
buffer entries, two bytes of the float have to somehow be discarded. The clear consequence is the loss 
of a significant amount of precision. 
 
Let us assume that we need 32 bits to store values with four decimal places and 16 bits to store values 
with only 2 decimal places. The problem becomes clear if we consider two hypothetical pixels from 
separate polygons:  
 
32 bit depth values: 
 
Pixel A = 0.1025 
Pixel B = 0.1029 
 
16 bit truncated depth values: 
 
Pixel A = 0.10 
Pixel B = 0.10 
The 16 bit values lost the last two digits in the truncation and both A and B now equal 0.10. The Z-
Buffer can no longer tell which pixel should be obscuring the other. If B was rendered after A, it would 
pass the Z-Buffer test and overwrite A, even though it should not do so. This loss in precision results in 
unattractive rendering artifacts. Unfortunately, on hardware where only a 16 bit Z-buffer is available, 
this is mostly unavoidable. 
 
There is another problem with the Z-Buffer. When we calculate the depth value for each vertex in the 
projection matrix, we need some way to provide DirectX Graphics a Z depth value between 0.0 and 1.0 
that it can use for rendering the polygon and interpolating per-pixel depths. We cannot simply hand it 
the view space Z value input into the projection matrix because this will eventually get divided by w 
when the vertex is homogenized. As the W component of the vertex output from the projection matrix 
multiplication is always equal to the Z value that was input, this equates to: 
 
Depth Z = z / w    
Depth Z = z / z 
Depth Z =1 
 
As W=Z after the projection matrix multiply, the depth value has to be something other than W when it 
leaves the projection matrix multiply. Otherwise the depth value will always be 1.0. We will discuss 
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later how we setup the third column of the projection matrix to generate this depth value so that after it 
is divided by w, it ends up in the 0.0 to 1.0 range depending on its distance from the camera.  
 
The unfortunate and unavoidable problem is that the third column multiply of the projection matrix 
followed by the divide by w will not linearly map the depth value to the 0.0 to 1.0 range. In fact, most 
of the time, the first 10 percent of the scene will be mapped to the 0.0 to 0.9 range. That is, 90 percent 
of the Z-buffer’s precision is used up in the first 10 percent of the viewing distance. As a result, all of 
the depth values for the remaining 90 percent of the scene will be mapped to fractional values between 
0.9 and 1.0. This does not present as significant a problem with 32 bit floating point numbers since 
there is enough precision between 0.9 and 1.0 to generate thousands of unique depth values. 16 bit Z-
Buffers do not fare nearly as well, as you might expect. Appendix A at the end of this lesson explores 
this issue in greater depth.   
 
To be fair, for non-complex scenes, or at least in scenes where all of the objects are relatively close to 
the camera, a 16 bit Z-Buffer will probably suffice. But for modern game scenes that have many 
polygons at medium and far distances from the camera, a 16 bit Z-Buffer is insufficient. 
 
Fortunately, most graphics cards that have been released in the last few years support either 24 or 32 
bit Z-Buffers. 24 bits usually provide more than an adequate amount of precision to represent all of our 
depth values accurately. Cards with 32 bit Z-Buffers often allow us to use the last 8 bits for another 
function entirely, since the first 24 would meet our depth testing needs.  
 
 
The W-Buffer 
 
Some graphics cards support a depth buffer variation known as a W-Buffer. W-Buffers use the same 
per-pixel comparison technique and the same physical video memory buffer as a Z-Buffer. The W-
Buffer differs in the way that it calculates the depth values for each vertex, and ultimately each pixel. 
 
When a view space vertex is multiplied with the projection matrix, we end up with an output vertex 
where W is equal to the Z component of the input vector (W = Zview). W-Buffers use the reciprocal 
value for depth testing: 
 
Depth = 1/w 
 
This provides a more distributed linear mapping than for Z-Buffers. However, using a W buffer can 
still produce artifacts when many of the objects in the scene are close to the camera. Contrast this with 
the Z-Buffer which has 90 percent of its precision in that range. Nevertheless, the W-Buffer has a lot 
more precision available for objects in the middle to far distance range from the viewer. The choice of 
whether to use a Z-Buffer or W-Buffer depends on whether your objects are dispersed evenly over the 
view distance (use a W- Buffer) or whether your objects are typically going to be close to the camera 
(use a Z-Buffer). 
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Because most cards now support 24 bit Z buffers the need for W buffers is not as great. This is 
fortunate since W buffers are not as widely supported on modern hardware as Z buffers. However, if 
your application does find itself on a system where only a 16 bit Z Buffer is available, a W buffer (if 
available) can often produce better results.  
 
The device object manages W buffer calculations for our application just as it does the Z buffer. We 
will generally only need to check for support and then specify our preference when creating the depth 
buffer. 
 
Surface Formats 
 
A surface is an object that stores image data. For example, both the frame buffer and depth buffer are 
physically stored as a surface. Textures are stored as surfaces as well. We carry out per-pixel 
operations on a surface object by acquiring an IDirect3DSurface9 interface. Surfaces come in a variety 
of sizes and color bit depths and not all surface formats are supported by all hardware. One of the 
trickiest tasks when initializing the environment is making sure that: 
 

• The frame buffer surface is created by the device in a format that the hardware supports 
• We create a Z-Buffer surface that the hardware supports 
• We load our textures into surfaces whose format and type the current hardware supports. 

 
The enumerated type D3DFORMAT contains the surface formats supported by DirectX Graphics. 
Many graphics cards will indeed support a great number of these formats in hardware, but some 
formats might not be supported. For example, older cards such as the Voodoo™ 1 and 2 supported 
only 16 bit colors. None of the 32 bit color formats were available to developers targeting those 
platforms.  
 
When we create the device at application initialization time, we must tell it the format of the frame 
buffer(s) we would like constructed. This format must be one that is supported by the hardware. Our 
environment setup routines will need to obtain a list of supported surface formats on the current 
hardware and make sure that the frame buffer, depth buffer, and textures are created using only these 
formats.  
 
Table 2.1 lists the image surface formats we will use in the early stages of the course. These are the 
formats most commonly supported on modern cards. 
 
Table 2.1 Common D3DFORMATs 
 
D3DFMT_R8G8B8 24-bit RGB pixel format with 8 bits per channel. 
D3DFMT_A8R8G8B8 32-bit ARGB pixel format with alpha, using 8 bits per channel. 
D3DFMT_X8R8G8B8 32-bit RGB pixel format, where 8 bits are reserved for each color. 
D3DFMT_R5G6B5 16-bit RGB pixel format with 5 bits for red, 6 bits for green, and 5 bits for 
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blue. 
D3DFMT_X1R5G5B5 16-bit pixel format where 5 bits are reserved for each color. 

D3DFMT_A1R5G5B5 16-bit pixel format where 5 bits are reserved for each color and 1 bit is 
reserved for alpha. 

D3DFMT_A4R4G4B4 16-bit ARGB pixel format with 4 bits for each channel. 
D3DFMT_X4R4G4B4 16-bit RGB pixel format using 4 bits for each color. 
D3DFMT_A2B10G10R10 32-bit pixel format using 10 bits for each color and 2 bits for alpha. 
D3DFMT_A8B8G8R8 32-bit ARGB pixel format with alpha, using 8 bits per channel. 
D3DFMT_X8B8G8R8 32-bit RGB pixel format, where 8 bits are reserved for each color. 
 
Just to ensure complete understanding of what these formats represent, let us examine the format 
D3DFMT_R8G8B8. This might look familiar if you have worked with COLORREFS in Win32. Each 
pixel on the surface is represented by 24 bits (3 bytes). Each byte can hold a value between 0 and 255 
that describes the intensity of the color. If all three bytes were set to 255, then the pixel would be full 
white. If the second byte was set to 255 and the first and third were set to 0, then the pixel would be 
bright green. 
 
The format A8R8G8B8 is a 32 bit format where Red, Green and Blue values each receive a byte of 
storage space. The A stands for alpha and is used to measure pixel opacity; it also consumes one byte 
per-pixel. If the device has alpha blending enabled, then when a pixel is rendered into the frame 
buffer, its alpha value will be used to determine how its color blends with any pixel color currently in 
that location. In this format the Alpha value would range from 0 to 255 as fully transparent to fully 
opaque respectively. We will discuss alpha values and transparency in detail in Chapter 7. 
 
 
Adapter Formats 
 
When we create a fullscreen device we must choose a format to put the adapter into. This is the format 
of the front buffer and can only be one of the following: 
 
D3DFMT_X1R5G5B5 
D3DFMT_R5G6B5 
D3DFMT_X8R8G8B8 
 
This is useful because we know that all video cards will at least support one of these three modes. 
Notice that the front buffer cannot use a format with an alpha channel. 
 
 
Frame Buffer Formats 
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Since windowed mode applications share the desktop, the front buffer must use the format that the 
adapter is already using. This actually makes setting up the environment for a windowed mode device 
significantly easier. The frame buffer has no such requirements. In windowed mode, the format and 
resolution of the frame buffer does not have to match the format of the adapter mode (the front buffer). 
The device will handle the color conversion between the two when they differ.  
 
There are a number of formats that we can use for the frame buffer: 
 
D3DFMT_X1R5G5B5 
D3DFMT_R5G6B5 
D3DFMT_X8R8G8B8 
D3DFMT_A8R8G8B8 
D3DFMT_A1R5G5B5 
D3DFMT_A2R10G10B10 
 
Not all of the above formats are guaranteed to be supported by all video cards, so when we setup our 
device we will need to make sure that we select a valid format. With the exception of the last mode in 
the list, you should notice that the only difference is that the back buffer supports modes that add an 
alpha channel to the pixel. You will not often need a frame buffer to have an alpha pixel format. Often, 
you will simply match the front buffer and back buffer pixel formats exactly. 
 
For fullscreen devices, the formats and resolutions must match, with one exception: the back buffer 
can still have an alpha channel even though the physical display does not. The rule is that the alpha 
mode must match the non-alpha mode counterpart (with the placeholder ‘X’ value). If we set the 
display mode of the adapter to 32 bit, the front buffer format will be D3DFMT_X8R8G8B8. This means 
we can have a back buffer format of either D3DFMT_X8R8G8B8 or D3DFMT_A8R8G8B8. Likewise, if we 
were in 16 bit mode D3DFMT_X1R5G5B5, we could create a back buffer in either D3DFMT_X1R5G5B5 or 
D3DFMT_A1R5G5B5. 
 
 
Creating a Device 
 
Let us now examine the process of creating a device in DirectX Graphics. We begin by looking at the 
IDirect3D9 method that provides this functionality. 
 
 
HRESULT CreateDevice(UINT Adapter, D3DDEVTYPE DeviceType, HWND hFocusWindow, 
         DWORD BehaviorFlags, D3DPRESENT_PARAMETERS* pPresentationParameters, 

   IDirect3DDevice9** ppReturnedDeviceInterface); 
                         

UINT Adapter  
This is the adapter ordinal that the device will be created for. Usually there is only one graphics 
adapter on the system. The primary display adapter is the adapter with an ordinal of 0 (or 
D3DADAPTER_DEFAULT). 
 
D3DDEVICETYPE DeviceType 
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This parameter defines whether we will create a hardware accelerated device or a slower, software 
emulated one.  For this parameter we pass in one of the D3DDEVICETYPE enumerated types: 
 

typedef enum _D3DDEVTYPE { 
    D3DDEVTYPE_HAL = 1, 
    D3DDEVTYPE_REF = 2, 
    D3DDEVTYPE_SW = 3, 
    D3DDEVTYPE_FORCE_DWORD = 0xffffffff 
} D3DDEVTYPE; 

 
D3DDEVICETYPE_HAL – the HAL device is typically our preference since it uses the 
hardware acceleration features on the adapter. If there is no 3D accelerated graphics adapter on 
the current system, then the request to create a HAL device will fail. We will be left with no 
choice but to create a HEL device, provide our own renderer and forego DirectX, or exit the 
application. If a HAL device is created successfully then it means that the hardware has at least 
some 3D capability. This may be hardware triangle rasterization or it may be the entire 
transformation and lighting pipeline too. We will have to check the capabilities of the HAL to 
make sure it supports the functionality we require.  
 
D3DDEVICETYPE_REF - If a HAL device cannot be created then the Hardware Emulation 
Layer (HEL) is our remaining choice. Outside of feature testing, the reference rasterizer is not 
viable for commercial applications. Even simple scenes might render at as few as 1 or 2 frames 
per second. The HEL is really intended for hardware manufacturers and hardware engineers to 
ensure that their hardware performs correctly. For Example, video card makers can test their 
development boards against the reference rasterizer to check that their card is not rendering 
polygons brighter or darker than they should be. The reference rasterizer has helped to maintain 
image consistency across the variety of different video cards. 
 
Since the reference rasterizer is considered to be of no use for commercial purposes, it is not 
even enumerated by DirectX Graphics when it is installed. You must manually go to the 
DirectX properties applet in the Windows control panel and enable it via a check box on the 
Direct3D properties page if you wish to use it. Our applications will try to create a HEL device 
if no HAL is found so you should enable this check box. This will be especially important later 
on in the next course in this series when we cover features that your hardware may not support. 
 
D3DDEVICETYPE_SW – Because of a lack of a commercially usable software device within 
DirectX Graphics, Microsoft provides developers with the ability to produce pluggable 
software devices. This allows developers to ship their applications with the ability to run on 
machines without hardware acceleration. From the application’s perspective, it is still using a 
single unified API. The Driver Development Kit (DDK) can be used to create such software 
devices. Once the devices are installed and registered with the operating system, they can be 
enumerated and created as part of DirectX Graphics. DirectX Graphics will pass application 
requests to the software device driver and the software device will perform the actual task. 
Unlike the HEL device, software devices will probably not support the entire set of DirectX 
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Graphics functionality. Certain techniques may also be too processor intensive to run in 
software. 
 
Creating a software device yourself is a complex task that requires a strong understanding of 
the processes involved. You are essentially writing your own IDirect3DDevice9 object. Most 
games no longer offer the choice of running in software mode and require 3D graphics cards. 
Developers often feel that it is simply not worth the effort when most PCs have 3D hardware 
acceleration. Some of the very latest games even require vertex transformation and lighting in 
hardware too.  
 

HWND hFocusWindow 
The window to which the device object will be linked is referred to as the focus window. This will 
most often be the parent window of your application (such as your main application frame window). 
DirectX traps and dispatches certain messages to and from this window when the device is created, 
and toggled between fullscreen and windowed modes. Interestingly, the focus window is not 
necessarily the window where the frame buffer will be rendered. We will discuss this a little later in 
the chapter. In most cases, passing in the HWND of our main window application will suffice. Also 
note that if the device will potentially be toggled from windowed to fullscreen mode, the focus 
window must be a top level window. This is a window that has the WS_EX_TOPMOST flag set. If 
this is not the case, the device will fail to be created in fullscreen mode or fail to be switched to 
fullscreen mode from windowed mode.  
 
DWORD BehaviourFlags 
There are three mutually exclusive behavior flags that we can use when creating the device to request 
the maximum level of hardware support. Device creation will fail if the level of hardware acceleration 
we request is not available. We can then try again using the next best level of hardware acceleration 
until we eventually find one that is supported. At least one of the following flags must be stated. They 
are listed in order of desirability. 
 
 
 D3DCREATE_HARDWARE_VERTEXPROCESSING 

 
Try to create a device that performs transformation, lighting and rasterization on the video 
card. This is the maximum level of hardware support that we can request. If we request a 
D3DDEVICETYPE_HAL device type and a HAL is present on the system, we can try specifying 
this flag to create a T&L accelerated device.  
 
If the device creation call fails, we can try the D3DCREATE_SOFTWARE_VERTEXPROCESSING 
flag next. If that device is successfully created then this means that the HAL can perform 
rasterization in hardware but the transformation and lighting of vertices will be done in 
software. This is slower, but still acceptable in most cases as a next best option. Very few 
games at the time of writing require T&L capable video cards, although that will likely 
change in the future.  
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Specifying the D3DCREATE_HARDWARE_VERTEXPROCESSING flag whilst trying to create a 
device of type D3DDEVICETYPE_REF will succeed, since the reference rasterizer does emulate 
a hardware device. However, this will not speed up the reference rasterizer in any way. 
While you may be able to create a HAL device that supports hardware vertex processing, this 
does not always mean that all vertex processing will be done on the hardware. For example, a 
video card may only support vertex transformation and not lighting. In this case the driver 
will perform the lighting calculations in software using the host CPU.  
 
IDirect3D9 provides a function called IDirect3D9::GetDeviceCaps that will retrieve 
information about device capability. Since this is part of the IDirect3D9 interface, it can be 
called to query a device without having to create the device first: 
 
HRESULT GetDeviceCaps(UINT Adapter,  
                      D3DDEVTYPE DeviceType, 
                      D3DCAPS9* pCaps); 
 
We pass the adapter ordinal and the type of device we wish to learn about. We also pass a 
pointer to a D3DCAPS9. This structure contains all of the capability information for the device.  
 
D3DCAPS9 DevCaps; 
pD3D9->GetDeviceCaps (D3DADPATER_DEFAULT, D3DDEVICETYPE_HAL, &DevCaps); 
 
We will examine this structure in detail throughout this lesson. Our primary interest right 
now is a DWORD field called VertexProcessingCaps. The bits in this field indicate the 
level of hardware vertex processing supported by the device: 
 
D3DVTXPCAPS_DIRECTIONALLIGHTS  
Device supports directional lights.  
D3DVTXPCAPS_LOCALVIEWER  
Device supports local viewer.
D3DVTXPCAPS_MATERIALSOURCE7  

  

Device supports selectable vertex color sources.  
D3DVTXPCAPS_POSITIONALLIGHTS  
Device supports positional lights (including point lights and spotlights).  
D3DVTXPCAPS_TEXGEN  
Device can generate te
D3DVTXPCAPS_TWEENING  

xture coordinates.  

Device supports vertex tweening.  
D3DVTXPCAPS_NO_VSDT_UBYTE4  
Device does not support the D3DVSDT_UBYTE4 
 
Do not worry about what these flags actually mean for now. We are currently focused on 
understanding device capability querying only. For example, we could query the D3DCAPS9 
structure to determine whether vertex tweening was supported. This is an advanced technique 
used to create an intermediate mesh from two or more input meshes. We simply use a bitwise 
AND operation to do the test: 
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if (DevCaps.VertexProcessingFlags & D3DVTXCAPS_TWEENING)  
{ 
  //Tweening is supported 
} 
If your application needed hardware tweening support and the above test failed, then you 
would not be able to use hardware vertex processing when creating the HAL device. You 
would instead choose software vertex processing where the tweening could be done on the 
CPU. 
 

 D3DCREATE_MIXED_VERTEXPROCESSING 
 

 If a device supports hardware vertex processing but does not support the capabilities that we 
require, we can attempt to create a device that supports both software and hardware vertex 
processing. In this case, our application can dynamically switch between the two vertex 
processing modes.  
 
Continuing the tweening example discussed previously, we could use hardware vertex 
processing to transform and light the vertices of objects that do not need to be tweened. This 
affords them maximum hardware acceleration.  When we need to render our tweened objects 
we could switch the device into software vertex processing mode so that the transformation, 
lighting, and tweening of those vertices would be carried out on the CPU by DirectX 
Graphics. 
 

 D3DCREATE_SOFTWARE_VERTEXPROCESSING 
 

If the CreateDevice function has failed to create a HAL device using the flags just discussed, 
or if you are creating a device of type D3DDEVICETYPE_REF or type D3DDEVICETYPE_SW, then 
you will need to pass this flag. All calculations to transform and light vertices will be done by 
DirectX Graphics on the CPU. If you created a HAL device but were unable to create it with 
any other flag but this one, it means that the 3D graphics card supports 3D accelerated 
rasterization only. 
 
It is possible to specify this flag even when the device supports hardware vertex processing. 
This would force the transformation and lighting to be done by DirectX Graphics instead of 
the GPU. This may be necessary if the hardware does not support the vertex processing 
capabilities you require. 
 

The device behavior flags discussed above are mutually exclusive. However, there is another flag that 
can be combined with D3DCREATE_HARDWARE_VERTEXPROCESSING to create a device designed for 
optimal performance: 
 
              D3DCREATE_PUREDEVICE 
 

If this flag is used with the D3DCREATE_HARDWARE_VERTEXPROCESSING type and device 
creation is successful then it means that the HAL supports a pure device.  
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Recall that the device object is a state machine and that we are able to change state by calling 
certain functions like SetRenderState or SetTransform. Our application can also query the 
device to retrieve its current state. For example, we might ask the device to return the 
contents of its current world matrix: 
 
D3DXMATRIX mMat; 
pDevice->GetTransform(D3DTS_WORLD , &mMat); 
 
Although our application will generally set these device states to begin with, it is certainly 
easier not to have to store and maintain state data in persistent variables. Querying back the 
state data from the device as we need it may be convenient, but it adds overhead. The driver 
has to ensure that state data can be returned at any time. 
 
When we choose to create a pure device, we are telling the driver that we have no intention 
of querying the device for such states. The result is that we can no longer use most of the 
device query functions. This allows the driver and hardware to work more efficiently at a cost 
of denying the application convenient access to the current state of the device. Generally, this 
is not a major concern since our application is responsible for setting the states anyway. It is 
easy enough to store these states in persistent variables that our application can read and 
update whenever we update the state of the device. 
 

The following code might be used at application startup to create a device. It starts out requesting the 
maximum level of hardware support and reduces those requirements until it is able to successfully 
create the best device possible.  
 
D3DPRESENT_PARAMETERS d3dpp; 
IDirect3D9        *pD3D;       
IDirect3DDevice9  *pDevice; 
 
 // First of all create our D3D Object 
pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 
if (!pD3D) return false; 
 
// Try creating a HAL pure hardware device first 
if( FAILED( pD3D->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVICETYPE_HAL ,hWnd,  
                                D3DCREATE_HARDWARE_VERTEXPROCESSING | D3DCREATE_PUREDEVICE, 
                                &d3dpp, &m_pDevice ) ) ) 
{ 
 
          // Pure device failed so try just hardware device with T&L acceleration 
          if (FAILED(pD3D->CreateDevice(D3DADAPTER_DEFUALT, D3DDEVICETYPE_HAL,hWnd, 
                                        D3DCREATE_HARDWARE_VERTEXPROCESSING , &d3dpp , &m_pDevice))) 
          { 
             
               // nope, lets try a software vertex processing hardware device 
               // for accelerated rasterization    
                if (FAILED(pD3D->CreateDevice(D3DADAPTER_DEFUALT, D3DDEVICETYPE_HAL,hWnd, 
                                              D3DCREATE_SOFTWARE_VERTEXPROCESSING , &d3dpp , 
                                              &m_pDevice))) 
                { 
                      
           // last resort is the reference rasterizer  
                     if (FAILED(pD3D->CreateDevice(D3DADAPTER_DEFUALT, D3DDEVICETYPE_REF,hWnd, 
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                                                   D3DCREATE_SOFTWARE_VERTEXPROCESSING , &d3dpp , 
                                                   &m_pDevice))) 
                     { 
                           // We couldn’t even create a HEL device, something is wrong and  
                           //your dx app will not run on this machine 
                           return FatalError; 
                     } // End Reference Rasterizer      
              }// End Hal – Software VP 
        }// End Hal – Hardware VP 
}// End Hal – Pure Device 
 
 

Presentation Parameters 
 
The fifth parameter in the CreateDevice function is the address of a D3DPRESENT_PARAMETERS 
structure. It is used to pass information such as the video mode we wish to use (in fullscreen mode 
only), the width, height, and pixel format of the back buffer, and settings such as which window we 
wish to render to in windowed mode.  
 
struct D3DPRESENT_PARAMETERS  
{ 

UINT    BackBufferWidth, BackBufferHeight; 
D3DFORMAT   BackBufferFormat; 
UINT    BackBufferCount; 
D3DMULTISAMPLE_TYPE MultiSampleType; 
DWORD    MultiSampleQuality; 
D3DSWAPEFFECT   SwapEffect; 
HWND    hDeviceWindow; 
BOOL    Windowed; 
BOOL    EnableAutoDepthStencil; 
D3DFORMAT   AutoDepthStencilFormat; 
DWORD    Flags; 
UINT    FullScreen_RefreshRateInHz; 
UINT    PresentationInterval; 

}  
 
BackBufferWidth / BackBufferHeight 
These fields inform the device of the dimensions of the desired frame buffer. They are interpreted 
based on whether we are going to create a fullscreen or a windowed device.  
 
In fullscreen mode the frame buffer must match the resolution of the physical display mode and these 
field values must match one of the supported fullscreen video modes enumerated using 
IDirect3D9::EnumAdapterModes. When we create the device, DirectX Graphics will change the 
current video mode of the hardware so that it matches this resolution, and then it creates a frame buffer 
of the same size. This allows flipping to be used.  
 
In windowed mode, our application is not allowed to change the video mode resolution since the 
desktop and other applications are using it. However, there is no need to match the back buffer and 
front buffer sizes as in fullscreen mode.  
 
If we set these values to 0 in windowed mode, the device will automatically create a frame buffer to 
match the resolution of the client area of the window it is attached to. This window is represented by 
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the handle passed in the hDeviceWindow field and is not necessarily the same as the focus window 
passed in to the CreateDevice function. This is the approach we will take in Lab Project 2.1, our first 
demo in this lesson.  
 
BackBufferFormat 
This field specifies the pixel format for the frame buffer. In fullscreen mode this format will set the 
video mode for the adapter. If we specify a 32 bit D3DFMT_A8R8G8B8 format as the back buffer, then 
the device will change the video mode to use a matching format. Because the front buffer cannot use 
an alpha channel, this will put the adapter into D3DFMT_X8R8G8B8 color mode with the resolution 
specified in BackBufferWidth and BackBufferHeight. This assumes of course that this display mode is 
supported by the adapter. If the back buffer format does not correspond to one of the supported adapter 
display modes then device creation will fail. The enumerator class we develop in Lab Project 2.2 will 
use the IDirect3D9::CheckDeviceType function to build a list of modes that can be used with the 
device on the current hardware. This function allows us to check  whether or not a particular back 
buffer format can be used with a particular adapter mode on both windowed and fullscreen devices. 
 
Since we are using windowed mode in Lab Project 2.1, we can simply use the same format for the 
frame buffer as the current display mode because we know it will be supported; the adapter is in that 
mode already. 
 

BackBufferCount 
This field allows you to create a device with more than one frame buffer (double or triple buffering). 
Valid values are between 0 and 4. 0 is treated the same as 1 since there must always be at least one 
frame buffer.  
 
If you specify a BackBufferCount that is larger than the number of buffers that can be created on the 
hardware, the call to create the device will fail and this field in the structure will be filled in with the 
maximum number of frame buffers that can be created. This allows for subsequent call to 
CreateDevice, passing the now amended structure to resolve the problem.  
 
For our demonstrations, and indeed for most applications, one back buffer will suffice. 
 
 
MultiSampleType / MultiSampleQuality; 
More recent video hardware has support for multisampling video modes that remove the jagged edges 
of polygons that are especially visible in lower resolutions. When we enumerate our available video 
modes, we can record whether the hardware can perform multisampling in that video mode. If so, we 
have the option to create the device so that it uses it. We will cover multisampling in later lessons so 
we will set these fields to 0 for now. This informs the device that we do not wish to use available 
multisampling capabilities.  
 
SwapEffect 
The D3DSWAPEFFECT enumerated type describes how the device should transition frame buffer content 
to the front buffer: 

 
D3DSWAPEFFECT_FLIP 
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In the case of fullscreen rendering, presenting the frame buffer is done very quickly by 
swapping the frame buffer and front buffer pointers. When we have more than one frame 
buffer, the swap chain is rotated each time we present the scene. After the flip, the current 
frame buffer becomes the front buffer and the current front buffer is sent to the back of the 
swap chain.  

 
  

Note: When we use a flip in windowed mode, the effect of hardware flipping is emulated using pixel 
copying (blits) between surfaces. The behavior of the swap chain frame buffers is the same from the 
application perspective. For example, in a double buffered device, after the presentation, the frame 
buffer will hold the contents of the previous front buffer and vice versa. Using flip in a windowed 
system carries processing overhead and may consume video memory. This is especially a concern 
when using D3DSWAPEFFECT_FLIP with a windowed swap chain of two or more buffers. 

 
Let us take one quick example of a device with two frame buffers (triple buffering). We will 
render a different shape to each buffer and then repeatedly flip through them: 
 

 
 

Figure 2.12 
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To create the device for Fig 2.12 we specify a BackBufferCount of 2. The result is two frame 
buffers and a front buffer. Assume that all three are initially blank. Next we render a triangle. 
The device will automatically render to the active frame buffer, which is initially the first of the 
two frame buffers created. When the image is complete, we call the Present function and the 
pointers are flipped (or copied in windowed mode). The frame buffer now becomes the front 
buffer, the front buffer becomes the second frame buffer, and the second buffer becomes the 
active frame buffer.  
 
Next we render a square and present the scene again. The front buffer which currently has the 
triangle is sent to the back of the frame buffer queue, the new frame buffer with the square 
becomes the new front buffer, and the initial front buffer has now become the next active frame 
buffer. If we were to render a circle next and then call the Present function in a loop, the 
image on the screen would switch between a triangle, a square and a circle over and over again. 
 
 
 
D3DSWAPEFFECT_COPY 
 
D3DSWAPEFFECT_COPY causes the contents of the frame buffer to be copied to the front buffer 
when the scene is presented. In windowed mode this is performed by doing a blit of all pixels 
in the frame buffer into the front buffer. In full screen mode, the copy may be performed in 
hardware using copies, flips, or a combination of the two to emulate the behavior: 

 
 

Figure 2.13 
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When a copy is performed, the contents of the frame buffer are unaltered by the presentation. 
This is in contrast to flipping where the frame buffer holds the image that was previously in the 
front buffer (in a double buffer arrangement). This is important to remember if your application 
needs to read pixels back from the frame buffer after the scene has been presented. 
This setting makes sense for windowed mode applications since they are going to perform 
copies anyway and emulating the flip comes with some overhead. In fullscreen mode, unless 
our application requires an unaltered post-presentation frame buffer, flipping should be used. 
Copying in fullscreen mode is slower and may carry additional video memory overhead. 

 
Note: D3DSWAPEFFECT_COPY can only be used for devices with one frame buffer 
(BackBufferCount = 0 or 1). Device creation will fail if you try to create it using 
D3DSWAPEFFECT_COPY and more than one frame buffer. 

 
 
D3DSWAPEFFECT_DISCARD 
 
This setting lets the device choose the best method to use (flipping or copying) based on the 
current video and window modes. This will generally mean that flipping is used with a 
fullscreen device and copying is used with a windowed device, but this is not guaranteed. Thus 
our application should not make any assumptions about the state of the frame buffer after the 
screen presentation. When using D3DSWAPEFFECT_DISCARD we will always treat the frame 
buffer as an uninitialized memory buffer requiring that we render over the entire surface. In 
fact, the DirectX Graphics debug runtime will automatically fill the contents of a presented 
frame buffer with random data to discourage you from making such assumptions when using 
this swap effect. 
 

HWND hDeviceWindow 
This parameter is often confused with the focus window HWND in the CreateDevice call. In 
most cases these will be the same and if you leave this parameter set to NULL, the device will use 
the focus window passed into CreateDevice as the device window also. But there are differences 
between the two and in some cases we may want to use a focus window separate from our device 
window. First let us examine what the device window is used for in both fullscreen and windowed 
modes: 

 
Windowed Mode 
In windowed mode this is the HWND of the window that will have its client area used as the 
front buffer. This device window is treated like any other windowed application. For example, 
messages from the mouse or keyboard will be sent to this window’s WndProc function when it 
has focus. It can be minimized and maximized just like any other desktop window. If the 
window is moved, then the device will automatically track the positional changes such that the 
presentation happens at the new position of the client area. Resizing (WM_SIZE messages) of 
the window, although not required, should be handled separately by our application and we 
will discuss this later in the lesson. 
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Fullscreen Mode 
When the device is in fullscreen mode it gains exclusive access to the screen and the desktop is 
no longer visible. It is as if the device has created its own window without any caption or 
borders and has overlaid the entire desktop. This overlay has the dimensions of the video mode 
stated in the BackBufferWidth and BackBufferHeight fields.  
 
However, this overlay window is not a real window. The desktop is still active (behind it) and 
handling messages from mouse and keyboard input. So although this device window is not 
actually rendered to, and is in fact not visible, the device resizes it so that it takes up the entire 
display. It also changes its Z order so that it is always atop all other desktop windows. This 
ensures that any mouse and keyboard input is correctly sent to the device window. This avoids 
accidentally clicking the mouse on a window belonging to another application -- invisible 
behind the overlay window -- and changing the focus to that other application. The WndProc of 
this device window will receive the mouse and keyboard messages as well as other window 
messages. Although this window is not actually visible, it will have a one-to-one mapping with 
the physical overlay window that the device is using to render.  

 

 
Figure 2.14 

 
Fig 2.14 shows the device window that would be created by our application in fullscreen mode. 
It has a caption, a border and a menu. Regardless of the initial size of this window, when we 
create the device in fullscreen mode and pass this HWND as the device window, the device 
will alter the dimensions of the window so that it takes up the entire video resolution. This 
window will not actually be visible, so all rendering will be done using an overlay window. 
Windows messages such as keyboard or mouse events will be sent to the device window. So 
unlike the windowed mode scenario where the device window was used for rendering, in 
fullscreen mode the device window is merely used as a message collector.  
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Imagine a scenario where the window was initially set so that it was 400x400 in size. Now 
consider what would happen if the device did not resize it to take up the entire desktop. When 
the mouse was clicked on the overlay window, it may not actually be situated over the 
(invisible) device window. We might accidentally select another application’s window, or 
perhaps click an empty area on the desktop, or in a worst case scenario, drag items into the 
recycle bin!  
 
Fig 2.15 shows what would happen if the device did not resize the device window. While 
rendering is unaffected, the position of the mouse is not actually over the device window and 
mouse messages will not get to our device window’s WndProc function. 
 

 
 

Figure 2.15 
 

So in order for everything to work correctly, we must make sure that we create our device 
window as a top level window if we intend to use fullscreen mode. 
 
There is something else to watch out for when using a device in fullscreen mode. Although the 
device will resize the window to take up the entire dimensions of the chosen video mode, this 
does not always mean that the client area of the window is resized to the full extent of the 
video mode. In Fig 2.16 we can see that the device window contains a border, a caption bar and 
a menu. When the window is resized, the menu and border still remain. Thus the client area 
will not have a one-to-one pixel mapping with the overlay window. At the top of the window in 
this example, about 10% of the overlay window covers up the caption bar and menu of the 
device window. If a mouse button was clicked in this area, the client area would not receive the 
message and we might instead be selecting a menu item or clicking on the caption bar: 
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Figure 2.16 

 
The solution is to create a device window without caption, menus, or borders so that the 
window contains only a client area.  
 
There will be times when you want your application to toggle between fullscreen and 
windowed modes. There are two options. First, we can change the current operating mode of 
the device by calling the IDirect3DDevice9::Reset function. So if we are moving to 
fullscreen mode, we could alter the style of the window such that the menu, caption bar and 
borders are removed. Another option is to create two device windows at application startup. 
The first has a border and caption for windowed mode. The second has no caption or borders, 
and we can pass this one into the Reset function when going to fullscreen mode.  

 
 

Note: The focus window can only be specified when the device is initially created. If we create 
a device in windowed mode and use the window for both the focus window and the device 
window, changing to fullscreen mode later may cause a problem if we are not careful. In order 
for the device to transition to fullscreen mode, the focus window must be a top level window. If 
our windowed rendering window is not a top level window then we have no way of changing 
the focus window without destroying the device and creating a new one. Therefore, it is 
common practice to make the application main frame window the focus window even when this 
window will never be used for rendering. For applications that use multiple fullscreen devices, 
such as a multi-monitor system, only one device should use the focus window as the device 
window. All others should have unique device windows. Otherwise, behavior is undefined and 
applications will not work as expected. 
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 Windowed 
This parameter tells the device creation function whether we wish to create the device in windowed 
or fullscreen mode. If we set it to TRUE then the device will be created in windowed mode and the 
device window client area will be the front buffer. If set to FALSE then the device will be created in 
fullscreen mode where the video mode will be set by the BackBufferWidth and BackBufferHeight 
fields.  

 
EnableAutoDepthStencil 
This Boolean variable instructs the device creation function whether or not we wish it to create and 
attach a depth buffer surface. If it is set to TRUE, the function will create the depth buffer (Z-Buffer 
or W-Buffer) using the depth buffer surface format specified in the next parameter. If the depth 
buffer surface is created successfully, it will be automatically attached to the device frame buffer. 
Any pixels rendered by the device will also have their depths tested and recorded in the depth buffer. 
If the device is reset (perhaps to resize it or alter it to a different video mode), it will automatically 
destroy the current depth buffer, create a new one that matches the new frame buffer size and attach 
it as the current depth buffer. This auto management feature makes using depth buffers very 
convenient.  

 
If it is set to FALSE, a depth buffer will not be created and the application will be responsible for 
creating a depth buffer surface and attaching it to the device, if it needs one. The application would 
also be responsible for managing the destruction and recreation of the buffer if the device is reset. 

 
AutoDepthStencilFormat 
If the EnableAutoDepthStencil parameter above is set to TRUE, then this field should hold the 
D3DFORMAT describing the format of the depth surface our application requires. Unlike the surface 
formats used for textures and frame buffers, there are special D3DFORMAT types for use with depth 
buffers.  

 
Table 2.2 contains the depth buffer surface formats available in DirectX 9.0. If the hardware supports 
Z-Buffering (as nearly all do these days) then at least one of the D3DFORMATs listed will be available 
for use. It is possible that some 3D hardware may support many of these depth buffer formats. If this 
is the case then our application will have to choose which one is best for our application to use. As 
we will discuss  
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Table 2.2 Depth/Stencil 
Formats 
 
 
As we will discuss in 
the next course in this 
series, many 3D 
graphics cards provide 
support for stencil 
buffers. Stencil buffers 
are used to mask areas 
of the frame buffer we 
do not wish rendered 
to. They share the same 
physical memory as a 
depth buffer. A 32 bit 
depth buffer format 
may have 24 bits used 
for storing pixel depth 
information and the 
remaining 8 bits for 
stencil information.  
 
Our application will 
have to ensure that it 
selects a depth buffer 
format that the 3D 
hardware is capable of 
supporting. The 
Direct3D9 object 
provides member 

functions to check which depth buffer formats can be used with the selected frame buffer format.  

32 bit formats  

D3DFMT_D32 
A 32 bit surface where each pixel can hold 
32 bits of depth information. Provides a 
significant range of depth granularity.  

D3DFMT_D24X8 24 bits of this 32 bit surface can be used to 
hold depth information. 8 bits are unused. 

D3DFMT_D24S8 
24 bits of this 32 bit surface are used for 
depth information with 8 bits being used to 
hold stencil buffer values. 

D3DFMT_D24X4S4 

A 32 bit surface with 24 bits of each pixel 
being used to hold depth values and 4 bits 
of each pixel being used to hold stencil 
information. 4 bits are unused. 

16 bit formats  

D3DFMT_D16 

Each pixel in this surface can hold 16 bits 
of depth information. 16 bit surfaces can 
suffer Z-Buffer artifacts. A 24 bit Z-Buffer 
minimum is desirable. 

D3DFMT_D15S1 

Only 15 bits are used for depth information 
with 1 bit reserved for use by a stencil 
buffer. Z-Buffer artifacts are exacerbated 
with only 15 bits of accuracy.  

D3DFMT_D16_LOCKABLE 

A special type of 16 bit depth buffer 
surface that can be locked. This allows us 
to read/write to the surface directly through 
a pointer. This is the only depth buffer 
surface format that is allowed to be locked.  

 
Some older graphics cards only support 16 bit depth buffer formats. These are not ideal but if that is all 
we have available then we will have to use them. It is also possible that even if a particular card 
supports 16 and 32 bit depth buffers and frame buffers, it may require that the bit depth of the depth 
buffer matches the bit depth of the frame buffer. Therefore, if we have a 32 bit capable card but we 
have a full screen device running in 16 bit color mode (a 16 bit frame buffer), the hardware may insist 
that we also use a 16 bit depth buffer. Fortunately, most of the recent graphics cards support the 
D3DFMT_D24X8 depth buffer format. 24 bit depth buffers provide us with more than adequate depth 
granularity so this format will suit our purposes for any demonstration we see in this lesson. 
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DWORD Flags 
This parameter allows the application to specify how the frame buffer and depth buffer should be 
treated. The two flags that are of importance to us now are listed below: 

 
D3DPRESENTFLAG_LOCKABLE_BACKBUFFER – If this flag is specified, the device will create the 
frame buffer such that it can be locked and modified. When we lock a surface (calling the 
IDirect3DSurface9::Lock method) a pointer to the surface pixels is returned. This allows us 
to modify the frame buffer at the pixel level or to read back pixel colors from the frame buffer. 
On some hardware, creating a frame buffer with this flag can incur a performance cost. The 
cost may be the result of the device maintaining a system memory copy of the frame buffer so 
that it is reachable by the application. Even if this is not the case, the act of locking the frame 
buffer itself is an expensive operation and should be avoided if possible. Frame buffers are 
created such that they are not lockable by default so this flag is required if your application 
needs lock permissions (which will not usually be the case). 
 
D3DPRESENT_DISCARD_DEPTHSTENCIL – If the device was created with a depth buffer, then 
setting this flag may improve performance. If this flag is not set then the device object will 
maintain the integrity of the depth buffer information after the scene has been presented to the 
front buffer. If the application does not clear the depth buffer before the rendering the next 
scene, then the depth buffer will still hold the per- pixel depth information from the last render. 
Sometimes this can be useful, but it is usually not required.  
 
On some hardware the depth buffer data is swizzled to a proprietary format for rendering. If 
this is the case and the flag was not set, the driver would need to make sure that the original 
depth buffer information is restored afterwards so that the data appears unchanged. This might 
require an expensive copy operation.  

 
We will generally set this flag because our applications will clear the depth buffer before 
rendering each frame. The DirectX debug runtime will enforce discarding by filling the depth 
buffer with a constant value after the scene has been presented.  

 
UINT FullScreen_RefreshRateInHz  
This field lets the application specify the refresh rate for fullscreen devices. In windowed mode, this 
value must be zero since we will need to use the refresh rate used by the current adapter running the 
desktop. Setting this field to D3DPRESENT_RATE_DEFAULT allows the device to choose a refresh rate. 
This is typically the approach that our applications will use. 
 
UINT PresentationInterval 
This field allows the application to specify the rate at which the frame buffer is presented to the front 
buffer. For fullscreen devices we normally want to synchronize the presentation with the vertical 
retrace period of the monitor to avoid tearing artifacts. However, there are several other options. We 
can choose to present the buffer immediately without waiting for the vertical retrace or we could have 
the device wait for more than one retrace to occur before presenting the scene. Table 2.3 lists the 
possible values (defined in d3d9.h) that can be passed. 
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 #define Description 

D3DPRESENT_INTERVAL_DEFAULT 
The device creation function will automatically 
select a compatible presentation synchronization 
scheme. 

D3DPRESENT_INTERVAL_ONE 

The device will wait until the vertical retrace 
period before copying/flipping the frame buffer to 
the physical display. This avoids tearing and 
essentially locks the frame rate to that of the 
monitor’s refresh rate. 

D3DPRESENT_INTERVAL_TWO 

The device will wait for every second vertical 
retrace period before the frame buffer is 
copied/flipped to the front buffer. This will 
essentially limit the presentation rate to ½ the 
monitor’s refresh rate. 

D3DPRESENT_INTERVAL_THREE 

The device will wait for every third vertical 
retrace period before the frame buffer is 
copied/flipped to the front buffer. This will 
essentially limit the presentation rate to 1/3 the 
monitor’s refresh rate. 

D3DPRESENT_INTERVAL_FOUR 

The device will wait for every fourth vertical 
retrace period before the frame buffer is 
copied/flipped to the front buffer. This will 
essentially limit the presentation rate  to ¼ the 
monitor’s refresh rate. 

D3DPRESENT_INTERVAL_IMMEDIATE
The device will perform the copy/flip immediately 
regardless of the current position of the electron 
gun. 

       
     Table 2.3 Presentation Intervals 
 
 
Not all of these modes are supported on all hardware in all video modes, but you can safely assume 
that at least three are: 

• D3DPRESENT_INTERVAL_DEFAULT 
• D3DPRESENT_INTERVAL_IMMEDIATE 

• D3DPRESENT_INTERVAL_ONE. 
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Format Selection 
 

The IDirect3D9::CheckDeviceFormat function allows us to test whether a specific surface pixel 
format is compatible with a device in a specific display mode. This function will be used by our 
FindDepthStencilFormat function (see Lab Project 2.1) to check the various depth buffer formats 
against the current device on the current adapter. We have to do this because it is possible an adapter 
that supports 32 bit depth buffers might only support 16 bit depth buffers in 16 bit color mode. So it is 
not enough to know what depth buffer formats the hardware supports. We also have to know which 
ones are supported in a particular display mode.  

CheckDeviceFormat can also be used to check whether or not a certain texture format is supported by 
the device in the requested display mode or whether a texture surface can be rendered to directly by the 
device. For now however, we simply wish to use it for determining the best depth buffer format 
available. 
HRESULT IDirect3D9::CheckDeviceFormat(  

    UINT Adapter, 
    D3DDEVTYPE DeviceType, 
    D3DFORMAT AdapterFormat, 
    DWORD Usage, 
    D3DRESOURCETYPE RType, 
    D3DFORMAT CheckFormat 
); 

UINT Adapter 
The adapter ordinal for the adapter we are checking the format against. 

 

D3DDEVTYPE DeviceType 
The device type we are checking against. In our code this will either be a HAL device 
(D3DDEVTYPE_HAL) or the reference device if no 3D hardware acceleration is found. 

 

D3DFORMAT AdapterFormat 

The display mode the adapter will be placed into. This is the format for which a compatible depth 
buffer format must be found for our application. In Lab Project 2.1 for example, this will be the 
display mode currently being used by the desktop (returned by 
IDirect3D9::GetAdapterDisplayMode). In a fullscreen application we would pass in the display 
mode format that we are intending to put the hardware into. 

 

DWORD Usage 
A depth buffer surface is a special type of device resource. Internally, it is a block of memory just like 
any other surface (a texture or the frame buffer for example) but by specifying a USAGE flag we 
inform DirectX Graphics what we intend the resource to be used for.  In this example, we are trying to 
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find an image surface format that can be used for a depth buffer. In this case we use the 
D3DUSAGE_DEPTHSTENCIL flag.  

 

D3DRESOURCETYPE   rType 
The CheckDeviceFormat function is used for checking the availability of many resource types so we 
must specify the resource type we are inquiring about.  
typedef enum _D3DRESOURCETYPE { 
    D3DRTYPE_SURFACE = 1,     D3DRTYPE_VOLUME = 2, 
    D3DRTYPE_TEXTURE = 3,     D3DRTYPE_VOLUMETEXTURE = 4, 
    D3DRTYPE_CUBETEXTURE = 5, D3DRTYPE_VERTEXBUFFER = 6, 
    D3DRTYPE_INDEXBUFFER = 7, D3DRTYPE_FORCE_DWORD = 0x7fffffff 
} D3DRESOURCETYPE; 
 

As you might have guessed, the D3DRTYPE_SURFACE type is the one we need for the depth buffer.  

 

D3DFORMAT CheckFormat 
The final parameter allows us to specify our desired surface format. We looked at a table earlier that 
specified the available 16 and 32 bit depth buffer formats that DirectX Graphics supports. Since we 
will not use a stencil buffer at this point in the course, we will choose one of the standard depth buffer 
formats: D3DFMT_D32 , D3DFMT_D24X8 or D3DFMT_D16.  

To avoid the artifacts described earlier in the lesson, our code will first test for a 32 bit depth buffer. If 
that fails, we will try a 24 bit depth buffer and fall back to a 16 bit buffer as a last resort. 

 

To check for 32 bit depth buffer support: 
if (SUCCEEDED( m_pD3D->CheckDeviceFormat(AdapterOrdinal, DevType, Mode.Format, 
                                         D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, 
                                         D3DFMT_D32 ))) 
{ 
 return D3DFMT_D32; 
} 
 

The above code checks the adapter, device and display mode for 32 bit depth buffer support. If it is 
supported, the function returns successfully and we execute the code in the braces. If the function did 
not succeed, we would try again but change the final parameter to a 24 bit format and so on until we 
were successful. Notice that when the function succeeds the format is returned back to the caller where 
it will be placed into the D3DPRESENT_PARAMETERS structure for the call to CreateDevice. 

There is one last thing we must do before we accept the format. In windowed mode, DirectX 9.0 
permits devices where the frame buffer and the front buffer have different surface formats. So we 
could use a 32 bit frame buffer with a 16 bit front buffer. We will need to know whether our requested 
depth buffer format will work with the current front buffer/frame buffer arrangement. The following 
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code calls an additional function from the IDirect3D9 interface called CheckDepthStencilMatch to 
make this verification: 
if (SUCCEEDED( m_pD3D->CheckDeviceFormat(AdapterOrdinal, DevType, Mode.Format, 
                                        D3DUSAGE_DEPTHSTENCIL , D3DRTYPE_SURFACE , 
                                        D3DFMT_D32 ))) 
    { 
       if (SUCCEEDED( m_pD3D->CheckDepthStencilMatch(AdapterOrdinal, DevType, 
                      Mode.Format, Mode.Format, D3DFMT_D32 ))) 
             { 
                   return D3DFMT_D32; 
             } 
     
    } // End if 32bpp Available 
 

The parameter list to the CheckDepthStencilMatch function are (in order) adapter, device type, 
adapter format (i.e. front buffer format), render target format, and depth buffer format. While this may 
seem redundant given the previous function, there is a difference. As we will discover in the next 
course in this series, although the frame buffer is initially the render target when the device is created -
- meaning all rendering is done on the frame buffer surface -- we will have the ability to change render 
targets to other surfaces (like textures for example).  

The following code example is taken from Lab Project 2.1. It demonstrates the process just discussed. 
 
D3DFORMAT CGameApp::FindDepthStencilFormat(ULONG AdapterOrdinal, D3DDISPLAYMODE Mode, D3DDEVTYPE 
DevType ) 
{ 
    // Test for 32bit depth buffer 
    if (SUCCEEDED( m_pD3D->CheckDeviceFormat(AdapterOrdinal, DevType, Mode.Format, 
                                             D3DUSAGE_DEPTHSTENCIL , D3DRTYPE_SURFACE , D3DFMT_D32 ))) 
    { 
        if (SUCCEEDED( m_pD3D->CheckDepthStencilMatch ( AdapterOrdinal, DevType, Mode.Format, 
                                                        Mode.Format, D3DFMT_D32 ))) 
           return D3DFMT_D32; 
    } // End if 32bpp Available 
 
    // Test for 24bit depth buffer 
    if (SUCCEEDED( m_pD3D->CheckDeviceFormat(AdapterOrdinal, DevType, Mode.Format, 
                                             D3DUSAGE_DEPTHSTENCIL , D3DRTYPE_SURFACE , D3DFMT_D24X8 
))) 
    { 
        if (SUCCEEDED( m_pD3D->CheckDepthStencilMatch ( AdapterOrdinal, DevType, Mode.Format, 
                                                        Mode.Format, D3DFMT_D24X8 ))) 
             return D3DFMT_D24X8; 
    } // End if 24bpp Available 
 
    // Test for 16bit depth buffer 
    if (SUCCEEDED( m_pD3D->CheckDeviceFormat(AdapterOrdinal, DevType, Mode.Format, 
                                             D3DUSAGE_DEPTHSTENCIL , D3DRTYPE_SURFACE , D3DFMT_D16 ))) 
    { 
        if (SUCCEEDED( m_pD3D->CheckDepthStencilMatch ( AdapterOrdinal, DevType, Mode.Format, 
                                                        Mode.Format, D3DFMT_D16 ))) 
         return D3DFMT_D16; 
    } // End if 16bpp Available 
 
    // No depth buffer supported 
    return D3DFMT_UNKNOWN; 
} 
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Lost Devices 
 
It is possible that the device object may be placed into a ‘lost’ state while the application is running. 
Consider an application running in fullscreen mode where the device has frame buffers, texture 
surfaces, and vertex buffers stored in video memory. The device knows precisely where these 
resources are located when they need to be accessed. Now imagine that the user decides to ALT+TAB 
the focus to another application. The application would be forced back into windowed mode so that 
another application on the desktop could assume the dominant role. At this point, the new focus 
application might require access to video memory. Because it has OS focus, its requests for video 
memory will take precedent and the application resources still occupying video memory are not 
guaranteed to be preserved. The textures, vertex buffers, and frame buffers may all need to be deleted 
to create space for memory requests from the focus application. As such, the device pointers now point 
to resources which no longer exist.  Even if we ALT+TAB again to return focus to our application, the 
memory that was previously being used by our application has been corrupted. It is at this point that 
the device is said to be in a lost state. When a device is lost we cannot perform normal operations with 
that device object. Only two functions will be valid at this stage: one to test if the device is lost, and 
the other to ‘reset’ it if it is.  
 
The following function call enables us to determine the state of the device: 
 
HRESULT hRet = m_pD3DDevice->TestCooperativeLevel(); 
 
This function returns one of two possible results: D3DERR_DEVICELOST or D3DERR_DEVICENOTRESET. 
 
D3DERR_DEVICELOST 
This result indicates that the device memory is still not available as it may be still in use by another 
application that has focus. Under these circumstances no rendering should be done. The application 
will need to continually poll the device using the TestCooperativeLevel function until it returns 
D3DERR_DEVICENOTRESET. At this time we will be able to reset the device. 
 
D3DERR_DEVICENOTRESET 
This indicates that the memory resources have been handed back to the device. However, caution is in 
order. When a device is lost, it loses exclusive access to the memory for its resources. Memory handed 
back to the device is invalid and the previous resource data should be regarded as corrupt.  
 
Once we receive the D3DERR_DEVICENOTRESET return code, we can reset the device as follows: 
 
m_pD3DDevice->Reset( &m_D3DPresentParams ); 
 
Resetting a device entails passing a D3DPRESENT_PARAMETERS structure as was done when the device 
was initially created. This tells the device how to rebuild its frame buffer(s), which rendering window 
to use, and so on. This is similar to recreating the device from scratch. Technically speaking, we are 
not recreating the device; we are simply instructing it to recreate its resources (textures, frame buffers, 
etc.). Although we can use different presentation parameters when resetting a device, this is not 
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usually the approach we will take. Our preference is to return the device back to the state it was in 
before the loss occurred. Note that this applies to states as well. Lost devices also lose the render and 
transform states that the application may have set previously. All states return to their default 
conditions when the device is reset. This is why it is good practice to put our initial device render 
states in a separate function.  
It is important to note that certain textures, vertex buffers, and other resources will need to be 
reconstructed when a lost device is finally recovered. We will examine these scenarios as we begin to 
use these resources later in the course.  
 
 
Common Causes of Lost Devices 
 
When the user switches focus (ALT+TAB) to another application from a fullscreen application, the 
device is automatically lost because it no longer has the exclusive access to the video memory that it 
needs. The application will be minimized on the task bar. The device will remain lost 
(TestCooperativeLevel will continue to return D3DERR_DEVICELOST) until the application is 
maximized again, giving it the focus. At this time, TestCooperativeLevel will return 
D3DERR_DEVICENOTRESET and we can reset our device. 
  
Other possible examples might include minimizing the application or shifting focus to another 
application when running in windowed mode. On some machines (such as our test machine) this does 
not cause device loss, but this may not always be the case on other hardware.  
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Primitive Rendering 101 
 
Now that we know how to set up a DirectX Graphics environment, let us try to use some of the core 
features. The rest of our discussion will focus on how to render polygons, change render states, and 
how to use the device to transform our vertices.  
 
 
Filled Polygons 
 
In Chapter 1 we constructed a wireframe renderer. While it was useful for understanding the 
transformation of vertex data from world space to screen space, it is unlikely that we will be using 
DirectX Graphics to render our scenes only in wireframe. Generally we want our polygons to be filled 
with color. Let us briefly examine the different fill modes that set the polygon drawing strategy for the 
device. 
 
 Point 
 
In point fill mode, the device renders each transformed vertex as a point on the screen and does not 
connect them. Point mode might be useful for tasks like generating a low-quality star field for a space 
game but is obviously not a fill mode you will likely use very often. Below we see an example of a 
triangle rendered in point mode.  

 
We can control the color of individual vertices by adding color data to our vertex structure (in addition 
to the positional data). We will discuss this in detail later in the lesson. 
  
 Wireframe 
 
In wireframe mode, one-pixel thick lines are rendered between the screen space vertices. We saw this 
technique in Lab Project 1.1. The color of the line can be modified by using a color stored in each 
vertex structure. The following is a triangle rendered in wireframe mode: 
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Solid 
 
Solid rendering is the mode you will use most. In this mode the device renders the outlines of the 
polygon and paints every pixel inside the wireframe outline to provide a solid appearance. Once again 
the color we store at each vertex can control how the inside area of the polygon gets rendered. Below 
we see an example of a triangle rendered in solid fill mode. 

 
We configure our device to render with a particular fill mode using the 
IDirect3DDevice9::SetRenderState function and passing in D3DRS_FILLMODE and the desired fill 
mode. The first parameter is a D3DRENDERSTATETYPE enumerated type and tells the device 
which render state we wish to change. This same function is used to change all render states. In this 
case, we are changing the current fill mode. The second parameter describes the new fill mode. Every 
polygon rendered following a call to any one of these functions will be rendered using that fill mode 
until the state is changed. 
 
pDevice->SetRenderState (D3DRS_FILLMODE , D3DFILL_POINT); 
pDevice->SetRenderState (D3DRS_FILLMODE , D3DFILL_WIREFRAME); 
pDevice->SetRenderState (D3DRS_FILLMODE , D3DFILL_SOLID); 
 
 
Shaded Polygons 
 
We are not limited to just using a single color to fill polygons or draw lines. We can instruct the device 
to render the surface of a polygon using an interpolation between colors stored in the vertex structures. 
This can be used to generate smooth coloring effects. DirectX Graphics supports both Flat and 
Gouraud shading. Shade modes and fill modes are not mutually exclusive and will be used together to 
create the desired effect. The following code shows us how to set one of the two shade modes. 
 
pDevice->SetRenderState (D3DRS_SHADEMODE , D3DSHADE_FLAT); 
pDevice->SetRenderState (D3DRS_SHADEMODE , D3DSHADE_GOURAUD); 

 
 Flat Shade Mode 
 
Flat shading applies a single color to the entire polygon. In flat shade mode the device uses the color 
stored at the first vertex in the triangle to color the entire triangle. If you had a triangle where the first 
vertex was blue, the second vertex was red and the third vertex was green, only the color of the first 
vertex (blue) would be used to color the entire triangle. The other colors would be ignored. The next 
image shows a flat shaded polygon. To render a polygon in this manner, the device would be set to use 
the solid fill mode and flat shade mode device render states. 
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In wireframe fill mode and flat shade mode, the color of each line in the polygon will be the color 
stored in the first vertex. 
 
 
Gouraud Shade Mode 
 
When each pixel in the triangle is rendered using Gouraud shading, the color will be calculated by 
performing a linear interpolation of the three vertex colors weighted by the position of the pixel in 
relation to each vertex. For example, if we had two vertices that had red color components of 0.2 and 
0.8 and the pixel being rendered was exactly half-way between those two vertices, the red component 
of that pixel would be 0.5. The following triangle has one yellow vertex at the top and two red vertices 
at the bottom:  

 
 
As we will see later, Gouraud shading helps to cover up sharp edges between adjacent polygons and 
makes the mesh appear more rounded.  
 
Gouraud shading also works in wireframe mode. The color of the line between each vertex making up 
the edge of the polygon will be determined through the same interpolation process: 
 
 

 
 
The line above consists of two vertices. The top vertex contains a yellow color and the bottom vertex 
contains a red color. We thickened the line so that it is several pixels wide for ease of viewing but keep 
in mind that in DirectX Graphics, line thickness in wireframe rendering mode is always one pixel. 
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Vertices in DirectX Graphics 
 

As we learned in Chapter 1, 3D worlds are made up of a collection of polygons, each of which 
represents a collection of vertices. We also learned that vertices can hold more than just positional 
information. 
 
struct Vertex 
{ 
 float x; 
 float y; 
 float z; 
}; 
 
When the device renders a polygon and Gouraud shading is enabled, the color stored at each vertex is 
interpolated across the face of the polygon for each pixel. This smoothly blends the color from one 
vertex into the next: 
 

 
 
In the triangle above, the top vertex in the face holds a yellow color and the bottom two vertices hold 
slightly different shades of red. Each pixel has its color calculated as a function of its position relative 
to the three vertices. 
 
So we can store a color at each vertex. In this case, we are looking at the diffuse color of the polygon 
and our structure now looks like this: 
 
struct Vertex 
{ 
 float x; 
 float y; 
 float z; 
 DWORD diffuse; 
}; 
 
It may seem strange that we used a DWORD to hold color information but this is in fact how DirectX 
Graphics represents colors. We will often see DirectX code where colors are defined as D3DCOLOR. 
 
D3DCOLOR diffuse; 
 
D3DCOLOR is actually a typedef for a DWORD (see d3d9types.h): 
 
typedef DWORD D3DCOLOR 
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Colors are stored in the DWORD as ARGB (alpha/red/green/blue) using a byte for each color 
component. We can use the D3DCOLOR_ARGB macro to pass in 4 byte values and have the packed 
DWORD (D3DCOLOR) returned: 
 
#define D3DCOLOR_ARGB(a,r,g,b) 
                  
((D3DCOLOR)((((a)&0xff)<<24)|(((r)&0xff)<<16)|(((g)&0xff)<<8)|((b)&0xff))) 

 
The macro simply shifts the input bytes values into there respective positions inside the DWORD. 
 
In DirectX Graphics, colors are always represented as 32 bit DWORDs even if the device is in 16 bit 
or 24 bit video modes. The device will handle any conversions that need to take place as well as the 
quantization of 32 bit color values into 16 bit color values.  
 
Another macro allows us to ignore the alpha component and deal with colors as RGB values: 
 
#define D3DCOLOR_XRGB(r,g,b)   D3DCOLOR_ARGB(0xff,r,g,b) 
 
The resulting alpha component will be set to 255. This means that it is completely opaque.   
 

Note: There will be times (especially when dealing with lighting) when we will need to specify colors as 
a series of floats (one float each for A, R, G and B). In this case we will use the D3DCOLORVALUE 
structure: 
 
typedef struct _D3DCOLORVALUE { 
    float r; 
    float g; 
    float b; 
    float a; 
} D3DCOLORVALUE; 
 
Note: Each component above has a value in the range to 0.0 to 1.0 (instead of 0 – 255). These values 
will be converted back into DWORD values for the final render. 

 
Colors are not the only thing we can store in our vertex structure. We may also want to texture our 
polygons. In order for polygons to have textures applied, each vertex must store a new pair of 
coordinates. You can think of these two coordinates (generally referred to by U and V) as the X and Y 
coordinates of the pixel in the texture where the vertex is mapped. Once we give each vertex a set of 
UV coordinates, the device can interpolate the pixels of the texture across the polygon surface between 
the vertex coordinates. All of this will be examined in detail in chapter 6.  
 
struct Vertex 
{ 
 float x, y, z; 
 DWORD diffuse; 
 float u, v; 
}; 
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It might seem odd to have both a color and a texture applied to the same polygon. After all, if a texture 
is mapped to a polygon, wouldn’t the color of the texture pixels determine the color of the polygon 
pixels?  
 
Not necessarily, although we certainly could do it that way. What we will do instead is instruct the 
device to blend the interpolated diffuse color of each pixel with the texture pixel computed via 
interpolation of the UV coordinates and use that single color result for our frame buffer image. Fig 
2.17 shows an example of this. We have a polygon with a texture applied to it where the vertices on 
the left edge of the polygon have darker diffuse colors than those on the right. 
 

Vertices with diffuse color component and texture map applied 
 

 
 

Figure 2.17 
As we will see in later lessons, a single polygon can have multiple textures assigned to it. When the 
polygon is rendered, each pixel in the polygon has its color blended from a series of textures (possibly 
including the diffuse color as well). If we wanted a polygon which had three textures and a diffuse 
color, we would give it three sets of texture coordinates: 
 
struct Vertex 
{ 
 float x; 
 float y; 
 float z; 
 DWORD diffuse; 
 float u1 
 float v1; 
 float u2; 
 float v2; 
 float u3; 
 float v3; 
}; 
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To make our objects shiny, we can store another color value called specular at each vertex. The 
specular color we specify determines the color used for surface highlights: 

 
Figure 2.18 

 
The sphere on the left has no specular component. The sphere on the right has a white specular color at 
each vertex. DirectX Graphics will calculate the specular component based on the location of the 
vertices relative to light sources in the scene and the position of the camera. We will cover specular 
lighting in detail in chapter 5. 
 
struct Vertex 
{ 
 float x; 
 float y; 
 float z; 
 DWORD diffuse; 
 DWORD specular; 
 float u1 
 float v1; 
}; 
DirectX Graphics allows us to place lights in our scene to enhance realism. Vertices closer to light 
sources will be lit more brightly than those that are further away. The effects are even more 
compelling when combined with an algorithm like Gouraud shading. While we will discuss lighting in 
detail in chapter 5, a brief discussion will be helpful to illustrate the next concept. 
 
In order for the device to light our vertices we must place first light sources in the scene. Additionally, 
the device must know whether or not the polygon is facing the light source. Polygons facing away 
from the light source should obviously not be lit. Because lighting is done at the vertex level and not 
the face level, we must provide information about the orientation of each vertex. We can do this by 
storing a normalized vector at each vertex. 
 
A vertex normal is a normalized vector stored at each vertex describing the direction the vertex is 
facing. When the device lights a vertex it will measure the angle between the vertex normal and the 
direction vector from the vertex to the light source. Vertex color will be scaled based on this angle. A 
vertex pointing right at a light source will be lit at full intensity while a vertex rotated at some angle 
away from the light source will have its color scaled down appropriately.  
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So if our application intends to use the DirectX Graphics internal lighting pipeline, then it will need a 
vertex structure that contains this normal.  
 
The following vertex structure contains position, a vertex normal vector, a diffuse color and a specular 
color.  
 
struct Vertex 
{ 
 D3DXVECTOR3  Position; 
 D3DXVECTOR3  Normal; 
 DWORD   Diffuse; 
 DWORD   Specular; 
}; 
 
Notice that we used a D3DXVECTOR3 rather than three floats this time. We can access any 
individual float component of the positional data by using Position.x, Position.y, and Position.z 
(likewise for the Normal vector components). 
 
The real point of this discussion is that our applications will use vertices in a number of different ways. 
We may want to render some polygons using DirectX Graphics lighting and a single set of texture 
coordinates and others without lighting but with three sets of textures, and so on. The question is, how 
will we tell DirectX Graphics what our vertices look like so that it knows what to expect when we pass 
them into the IDirect3DDevice9::DrawPrimitive function? The answer is the Flexible Vertex Format. 
 
 
The Flexible Vertex Format 

 
We can inform DirectX Graphics about the components it can expect to find in our vertices by calling 
the following function: 
 
IDirect3DDevice9::SetFVF(DWORD fvf); 
 
The DWORD will be some combination of Flexible Vertex Format flags. Some of the more common 
flags are seen in the next table: 
 
Common FVF Flags       Description  

D3DFVF_XYZ 

The vertex is untransformed and will need to be multiplied by the 
world, view and projection matrices to transform it into screen space. 
The structure will contain a 3D vector describing its model (or world) 
space position. 

D3DFVF_XYZRHW 
The vertex will not need to be transformed or lit. The positional 
information contained within the vertex is specified in screen 
coordinates.  
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D3DFVF_NORMAL 

The vertex contains a normal vector that describes its orientation. If 
lighting is enabled, this normal is used in lighting calculations to scale 
the intensity of the light in relation to the orientation of the vertex to the 
light. 

D3DFVF_DIFFUSE 

The vertex has a diffuse color component. If lighting is enabled, this 
color is scaled by the lighting calculations (and the color of lights 
effecting the vertex) to create a final diffuse color. If lighting is not 
enabled and no normal is specified, the diffuse color is considered to be 
the final output diffuse color used to render the polygon. 

D3DFVF_SPECULAR 

The color of specular highlights that should be reflected by this vertex. 
If lighting is enabled and a normal is specified, this value is scaled 
based on the light sources in the scene and the position of the camera in 
relation to the object and the light. If lighting is disabled this value is 
considered to be the final specular color used at the rasterization stage. 

D3DFVF_TEX0 through 
D3DFVF_TEX8 

DirectX Graphics supports vertices with up to 8 sets of texture 
coordinates. We can check the MaxSimultaneousTextures member of 
the D3DCAPS9 structure returned from the 
IDirect3D9::GetDeviceCaps function to inquire about the device 
texture blending capabilities. Although many 3D graphics cards will 
only support 2 to 4 textures being blended simultaneously, this does not 
limit the ability to store 8 texture coordinates in a single vertex. You 
may wish to store the texture coordinates in the vertex and render the 
polygon several times using different sets. This will be covered later in 
the course when covering multi-texturing.  

 
Note: The IDirect3DDevice9 interface has a function called GetFVF() which retrieves the currently set 
vertex format for the device. Remember that the device is a state machine. Once you call SetFVF with a 
vertex format, the device will expect that vertex format in all future calls to the DrawPrimitive functions 
until you call SetFVF again to specify another vertex format. 

 
Vertex flags that are only valid for pre-transformed vertices (vertices specified in screen coordinates) 
are highlighted in blue, while flags that are only valid for untransformed vertices are highlighted in 
yellow.  
These are mutually exclusive flags. The yellow flags cannot be used with the blue flag. This would be 
like informing the device that the positional information of the vertex is untransformed and 
transformed at the same time.  
 
Similarly we would not use the D3DFVF_XYZRHW flag with the D3DFVF_NORMAL flag because 
the first flag states that we are using vertices that have already been transformed. When we specify 
screen space vertices, the vertices do not pass through the transformation and lighting pipeline. Since 
the normal is only used for lighting calculations, we would not need to pass it. Flags that are not 
highlighted can be used with both untransformed and transformed vertices, although they have 
different implications depending on which of the two is being used. 
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Let us have a look at some examples. In this first example, we will create a structure that holds 
positional information, a diffuse color, and one set of texture coordinates. This vertex would be used to 
specify vertices in model space or world space. They will need to be transformed by the fixed-function 
pipeline into screen coordinates. Because we have specified a diffuse color and no normal, we will 
indicate that we do not want the pipeline to light the vertices and that the diffuse color should be used 
explicitly in the rendering process. This demonstrates that we can enable or disable functionality by 
choosing only the components we need. In this case, we are choosing the transformation capabilities of 
the device but not the lighting module.  
 
struct Untransformed_PreLit_Textured_Vertex 
{ 
 D3DXVECTOR3 Position; // untransformed model space vertex position 
 DWORD     Diffuse   // vertex color 
 float      u;        // x texture coordinate  
 float      v;        // y texture Coordinate       
}; 
 
Notice that although we can leave out the components we do not wish to use, the components that we 
do use must appear in the order that they are listed in the table. Diffuse must come after position and 
so on. To tell the device what to expect from our vertices: 
 
m_pDevice->SetFVF(D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX1|D3DFVF_TEXCOORDSIZE2(0)) 
 
Notice that the last flag is not found in the above table. That is because it is not a flag, it is actually a 
macro. It tells the device how many floats the texture coordinate set contains. 
D3DFVF_TEXCOORDSIZE2(0) informs the device that the first set of texture coordinate in this 
vertex (index 0) is two floats in size (the typical size). We will see later on in the course that there will 
be times when we need to use 1D or even 3D texture coordinates and this macro will allow us to 
specify that. Keep in mind that at this point in the course that you are not expected to understand how 
texture coordinates work, only that a vertex may need to contain them. 
 
The next example vertex invokes both the transformation and the lighting module of the device. This 
time we will need to supply a vertex normal. When we render polygons containing vertices of this 
type, the device will transform the vertices by the device’s currently set world, view and projection 
matrices. It will use the vertex normal to calculate its orientation from any lights placed in the scene 
which will be used to scale the diffuse and specular colors. This type of vertex is referred to as an 
untransformed and unlit vertex since it needs the device to transform and light it before rendering it. 
Also note that it does not contain any texture coordinates, so a texture will not be applied to this 
polygon when it is rendered. 
 
struct Untransformed_Unlit_Vertex 
{ 
 D3DXVECTOR3 Position;  // untransformed model space position 
 D3DXVECTOR3 Normal;    // unit vector orientation vector 
 DWORD     Diffuse;   // color reflected from diffuse lighting   
 DWORD     Specular;  // color of specular highlights reflected 
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}; 
To use this vertex format we would need to call SetFVF with the following flags: 
 
m_pDevice->SetFVF( D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | 
D3DFVF_SPECULAR);  
 
Notice again that the flags are specified in the order that they appear in the table (ignoring omitted 
flags) and that the vertex structure itself retains this ordering as well. 
 
Our lab projects in this lesson will not use texturing or the lighting module. We will specify our 
vertices in model coordinates and render polygons using Gouraud shading. Therefore, we will need to 
store a color at each vertex. This means that we will need only two components, a position and a 
diffuse color component: 
 
struct CVertex 
{ 
 float x; 
 float y; 
 float z; 
 DWORD Diffuse; 
}; 
 
Since our application uses only one vertex type we can simply call SetFVF as soon as the device is 
created and leave this state set for the life of the application: 
 
m_pD3DDevice->SetFVF( D3DFVF_XYZ | D3DFVF_DIFFUSE ); 
 

Note: When an application requires many different FVF types, it is preferable to #define the flags and 
give them meaningful names, making it easier to read. For example: 
 
#define MyUnLitVertex D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE 
#define MyPreLitVertex D3DFVF_XYZ | D3DFVF_DIFFUSE 
 
m_pDevice->SetFVF(MyUnLitVertex) 
// Render un-lit meshes here 
 
m_pDevice->SetFVF(MyPreLitVertex); 
// Render pre-lit meshes here 
// Present scene here 

 
In Lab Project 1.1, our spinning cubes were made up of six faces each with four vertices per face. We 
were able to render those faces (called quads due to the four sided nature of the polygon) once we had 
transformed the vertices into valid screen coordinates. In DirectX Graphics (and virtually all 3D API’s 
commonly available) you are limited to rendering only two types of primitives: lines or triangles. A 
line is specified using two vertices which define starting and ending points in either 3D space or screen 
space. A triangle is constructed from three vertices defined in either 3D space or screen space. We will 
cover using DirectX Graphics for 2D rendering using screen space vertices later in the course. At this 
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point in time we will concentrate only on primitives defined in 3D model space or world space. To 
render a quad, we must construct it using two triangles as shown below: 
 

 
Figure 2.19 

 
Triangle 1 contains three vertices (P1, P2 and P3) and Triangle 2 also has three vertices (P1, P3 and 
P4). Let us briefly discuss exactly why it is that we are limited to triangle rendering. 
 
 
Planar Polygons 

 
As we discussed in Chapter 1, if all of the points of a polygon are on a single plane, we can take any 
two edges in that polygon and perform a cross product to generate a normal vector for the entire 
polygon. This normal can be used to determine whether or not the polygon is facing away from the 
camera. Many mathematical operations performed in 3D graphics programming are simplified (and 
thus made fast enough for real-time use) when the assumption is made that all vertices in a polygon are 
on the same plane. If the plane is facing away from us then so are polygons that share the plane. Plane 
calculations are used for back-face culling, collision detection, object picking and even color 
interpolation. If we were allowed to generate polygons where all of the vertices did not share the same 
plane, then these mathematical operations would fail to return the correct results. 
 
Let us consider an example. Imagine that we were trying to find out whether a point was behind or in 
front of a polygon. We usually do this by using the polygon plane and classifying that point against 
that plane. If the point is behind the plane then the point is behind the polygon. Fig 2.20 shows a quad 
where three of the points share a plane but one of the vertices has been lifted off of the plane. This is 
similar to laying a piece of paper flat on a desk, and then picking up one of its corners. P2 does not lie 
on the same plane as P1, P3 and P4: 
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Figure 2.20 

 
What is the plane normal of the quad in Fig 2.20? If we perform a cross product on edges (P1 – P2) 
and (P1 - P3) we would get a very different result than if we used edges (P1 – P3) and (P1 – P4). The 
answer is that they are both wrong because the polygon does not exist on a single plane. We could 
have a situation where a point is classified as being in front of the plane (because it is in front of points 
P1, P3 and P4) when it is actually behind point P2.  
 
Of course, we know that the vertices of a triangle are always co-planar. If you move a vertex to a 
different position, the entire triangle is rotated or pivoted onto a new (but single) plane. So, in 
choosing triangles, DirectX Graphics can be sure that when it is dealing with the vertices of its 
primitives, they will always exist on a single plane. Fig 2.20 does not accurately depict the situation. 
We had to bend ends P1-P2 and P2-P3 to represent the fact that the vertex P2 is raised off the plane. 
Of course, this is not actually the case since polygon edges are always straight. With this in mind, you 
should be able to carve the above quad into two triangles. Each will exist on different planes to be 
sure, but nevertheless they will have co-planer vertices when taken individually. Note that we can still 
store our polygons as N-sided convex polygons (squares, hexagons, octagons, etc.) as long we are sure 
to deconstruct them into triangles prior to passing them to the device for rendering. 
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The DrawPrimitive Functions 
 
The IDirect3DDevice9 interface defines the following primitive rendering functions.  
 
HRESULT DrawPrimitive(D3DPRIMITIVETYPE PrimitiveType, 
                      UINT StartVertex, UINT PrimitiveCount); 
 
DrawPrimitive is used to draw polygons when the vertices are stored in a device resource called a 
vertex buffer. Vertex buffers are blocks of memory allocated by the device that we use to store vertex 
data. We will discuss vertex buffers in the next chapter. 
 
HRESULT DrawPrimitiveUP(D3DPRIMITIVETYPE PrimitiveType, UINT PrimitiveCount, 
     const  void *pVertexStreamZeroData, 
                        UINT VertexStreamZeroStride); 
 
DrawPrimitiveUP is the function that we will use to render the two cubes in our first demo for this 
lesson (Lab Project 2.1). When we use this function to render polygons we will pass in a pointer to an 
array of vertices much like we did in our software based rendering demo. This is not the optimal way 
to render polygons in DirectX Graphics and we will learn why this is so in the next lesson. For now 
however, it will suit our purposes because it is very easy to use. The ‘UP’ appended to the end of the 
function name stands for ‘User Pointer’ because the vertices are maintained by the application (via a 
pointer to a vertex array) and not in a device owned vertex buffer. 
 
HRESULT DrawIndexedPrimitive(D3DPRIMITIVETYPE Type, 

INT BaseVertexIndex, UINT MinIndex, 
                      
 UINT NumVertices, UINT StartIndex, UINT PrimitiveCount); 
 

DrawIndexedPrimitive allows us to make certain optimizations based on the fact that vertices from 
different faces might share the same 3D space position and properties. In our cube example we created 
24 vertices (four for each face) when technically they describe only eight unique positions in 3D space. 
Many of the faces, such as the top face and the front face for example, used the same vertices. There 
were three vertices at each corner of the cube, one belonging to each face that shared that corner point. 
This is wasteful because we wind up transforming and lighting 24 vertices when we could just operate 
on 8. Using the DrawIndexedPrimitive function we pass a device resource called an index buffer along 
with our vertex buffer.  It is filled with indices into the vertex buffer describing which vertices make 
up each face. This allows us to reuse the same vertex in each of the three faces in our cube and speeds 
things up considerably.  
 
HRESULT DrawIndexedPrimitiveUP(D3DPRIMITIVETYPE PrimitiveType, 
                               UINT MinVertexIndex, 
                               UINT NumVertexIndices, UINT PrimitiveCount,  
                               const void *pIndexData, D3DFORMAT IndexDataFormat, 
                               const void* pVertexStreamZeroData, 
                               UINT VertexStreamZeroStride ); 
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This is behaviorally the same as the DrawIndexedPrimitive function, only it allows us to pass in 
pointers to system memory allocated vertex and index arrays, rather than device allocated vertex and 
index buffers.  

 
 
The DrawPrimitiveUP Function 
 
DrawPrimitiveUP is the function we will use in this lesson to render our polygons: 
 
HRESULT DrawPrimitiveUP(D3DPRIMITIVETYPE PrimitiveType, UINT PrimitiveCount, 
            const void *pVertexStreamZeroData, 
                        UINT VertexStreamZeroStride); 
 
We will discuss the parameter list slightly out of order to clarify certain concepts. 
 
UINT VertexStreamZeroStride 
This parameter represents the size of our vertex structure (a single vertex). It tells the device how big 
each vertex is so that it knows how far to advance the pointer to access the next vertex in the array. 
The size should match the size that would result given the FVF definition. 
 
void *pVertexStreamZeroData 
This is the pointer to our array of vertices. The first demo in this lesson will call DrawPrimtiveUP for 
each polygon in each cube. During each call, this pointer points to a single face consisting of four 
vertices. Later, we will learn how to render many triangles simultaneously with a single function call.   
 
UINT PrimitiveCount 
This value describes how many primitives we intend to render from the vertex array.  This value 
depends on the D3DPRIMTIVETYPE described next.  
 
D3DPRIMITIVETYPE PrimitiveType 
The D3DPRIMITIVETYPE tells the device how to interpret the vertex data passed in and how it 
should be used to render triangles. The primitive types defined by DirectX Graphics are as follows: 

 
D3DPT_POINTLIST  
 
The D3DPT_POINTLIST primitive type informs the device that the vertex data should be 
treated as a list of points to be rendered, not as a list of triangles. The vertices pass through the 
transformation and lighting pipeline and have their vertex colors calculated just like normal 
vertices, but at rendering time they are treated as individual points to be drawn on the screen. 
The following code demonstrates rendering our cube faces as a point list: 
 
for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
{ 
     CPolygon * pPolygon = pMesh->m_pPolygon[f]; 
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     // Render the primitive 
     m_pD3DDevice->DrawPrimitiveUP(D3DPT_POINTLIST,pPolygon->VertexCount,  
                                   pPolygon->m_pVertex, sizeof(CVertex) ); 
} // Next Polygon 
 
With DrawPrimitiveUP, the second parameter describes how many primitives we wish to draw. 
When using D3DPT_POINTLIST to render points, each vertex is a primitive and thus the 
number of primitives is equal to the number of vertices to be rendered.  
 
We do not have to render all of the primitives contained in the vertex array. Of course, when 
using a Point List primitive type, the primitive count cannot exceed than the number vertices 
contained in the vertex array or the call will fail. 
 
Fig 2.21 demonstrates the results of the previous code. Faint gray lines were added to help you 
see the original cube shape. Only the white dots would actually be rendered during the call. 
 
 

 
 
 

PrimitiveCount = NumberOfVertices 
 

Figure 2.21 
 
D3DPT_LINELIST  
 
The device treats the vertex array as a collection of vertex pairs when using line lists. Each pair 
defines a start and end point in 3D space (or screen space if using pre-transformed vertices). 
During rendering the device will draw a straight line between each pair of points. As with the 
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point primitive, the vertices that pass through the pipeline can have colors, shading, and even 
textures applied. One limitation is that line thickness is limited to a single pixel.  
 
Fig 2.22 shows how an array of six vertices would be rendered by DrawPrimitiveUP using the 
D3DPT_LINELIST primitive type. Since each line is defined by two vertices, the maximum 
number of primitives that can be rendered is equal to NumberOfVertices / 2. In this example, 
six vertices would describe three separate lines. 
 

 
Figure 2.22 

 
Note that the vertices also contain their own colors and that Gouraud shading smoothly blends 
the colors of the two vertices across the length of the line. The image is not accurate since we 
widened the lines beyond one pixel for easier viewing.  
 
Although we do not have to render all of the lines passed into the function, the PrimitiveCount 
parameter should not exceed the total number of vertices in the array divided by two: 
 
PrimitiveCount = NumberOfVertices / 2 
 
Rendering a series of connected lines using the D3DPT_LINELIST primitive type will require 
vertex duplication since vertices are paired. Fig 2.23 shows five connected line segments. Ten 
vertices would be required (5 (NumberOfLines) * 2 (VerticesPerLine) = 10): 

 
Figure 2.23 
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Although this approach works correctly, it is inefficient. The end point of line 1 (v1) is in the 
same position as the start point of line 2 (v3) and so on. Not only will this be a less than 
optimal use of memory (especially if we were rendering a significant number of line segments) 
but if the line segments use untransformed vertices, duplicates sharing the same positions 
would still need to be transformed individually.  
 
The code to render the five line segments just mentioned is shown next. It assumes that 
m_pLineVertexArray is a pointer to an array of type CVertex large enough to hold the ten 
vertices: 
 
// There are 10 vertices in our linked line because it is made up of 5 separate lines
  
UINT LineVertexCount = 10 
 
// Render the primitives 
m_pD3DDevice->DrawPrimitiveUP( D3DPT_LINELIST , LineVertexCount / 2 ,  
                               m_pLineVertexArray , sizeof(CVertex) ); 
 
D3DPT_LINESTRIP  
 
The D3DPT_LINESTRIP primitive informs the device that the lines are connected. This 
eliminates the need for duplicated vertices. During rendering, the device uses the end vertex of 
the previous line as the start vertex of the next line and so on for each line rendered.  
 
If we have two line segments to draw, v1 to v2 and v2a to v3 and v2 and v2a are duplicates, we 
can pass in vertices v1, v2, and v3 and the device will automatically render the first line 
between v1 and v2 and the next line between v2 and v3. This allows us to do remove 
duplicated vertices and conserve memory and means that the vertex position v2 only has to be 
transformed and lit once by the pipeline.  
 
Fig 2.24 illustrates the same five line segments using the D3DPT_LINESTRIP. Only six 
vertices are required to render the five line primitives. The primitive count for a line strip is: 
 

PrimitiveCount = NumberOfVertices-1 

 
Figure 2.24 
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In this example, the device would use v2 as both the end point for line 1 and would reuse it as 
the start vertex for line two. The same holds for the other vertices that are both the start and end 
vertices of neighboring line primitives. The following code demonstrates how we would render 
this example: 
 
// There are 6 vertices uses to describe our 5 lines  
UINT LineVertexCount = 6 
 
 // Render the primitives 
m_pD3DDevice->DrawPrimitiveUP( D3DPT_LINELIST , LineVertexCount +1 ,  
                               m_pLineVertexArray , sizeof(CVertex) ); 
 
Although line strips are more efficient for rendering connected lines, they cannot be used if the 
connected line segments require different properties (such as a different color): 

 
Figure 2.25 

 
In Fig 2.25 v2 is the start and end point of lines 1 and 2 respectively. In order to make line 1 
blue, both of its vertices must have a blue color component. In order for line 2 to be red, both 
of its vertices must have red color components. Because v2 is shared by both lines 1 and 2 and 
there is no way to simultaneously store both colors in the vertex, a D3DPT_LINELIST 
primitive type with duplicate vertices at each line intersection must be used. Each line would 
have its own copy of the vertex in the same position but with the correct color. 
 
 
D3DPT_TRIANGLELIST  
 
When we use the D3DPT_TRIANGLELIST, the vertex array is expected to have three vertices 
for each primitive. If a vertex array had nine vertices, it would be capable of producing three 
triangle primitives. Vertices [v1, v2, v3] would be used for triangle 1, [v4, v5, v6] for triangle 2 
and vertices [v6, v7, v8] for triangle 3. The primitive count can be calculated as follows: 
 
PrimitiveCount = NumberOfVertices / 3 
 
The vertex array must contain a vertex count that is a multiple of 3. Fig 2.26 depicts a quad 
stored as a list of 6 vertices: 
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Figure 2.26 

 
 

Triangle 1 in this example would be made up of v1, v2 and v3 and triangle 2 would be made up 
of v4, v5 and v6. The vertex array passed into DrawPrimtiveUP would be arranged as follows. 
 
v1 , v2 , v3 , v4 , v5 , v6 
 
The device will treat each group of three vertices as a separate triangle for rendering. Note once 
again the duplicate vertices problem. Vertex 4 in Triangle 2 has exactly the same position 
property as vertex 1 used in Triangle 1. The same is true for v3 and v5. This is unavoidable 
when using the triangle list primitive. The vertices for each triangle can be defined in any order 
as long as a clockwise winding order is maintained for display. 
 
As we saw with the line primitive, there may be times when there is no choice but to do 
triangle list rendering and accept the duplicated vertex problem. Different properties such as 
color or texture coordinate would be examples of why we might need to take this approach.  
 
This situation only becomes more difficult when one thinks of duplicated vertices within a 
more complex mesh. Fig 2.27 depicts a triangle list representation of a cube. Each face is 
rendered as two triangles. This amounts to storage for six vertices rather than the four used in 
our software demo. 
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Figure 2.27 
 
The red circle highlights a corner in the cube where three faces meet. We see that four vertices 
share the same position (look at the triangles) and each will be sent through the transformation 
and rendering pipeline. Consider the implications of a game world made up of thousands of 
polygons. Storing and rendering this world as a triangle list can more than double or triple the 
amount of vertices needing to be processed. 
 
The main advantage of triangle lists is that they are relatively easy to work with. For example, 
if we had a large mesh consisting of thousands of triangles, we could render the whole lot with 
one call to DrawPrimitiveUP. We simply pass in the vertex data for the entire mesh. This is 
much more efficient than calling DrawPrimtiveUP for every individual triangle despite the 
duplicated vertices. 
 
The following code shows how we could render each face of a cube using triangle lists. The 
code assumes that each face of the cube now stores 6 vertices. The two duplicates are needed to 
represent the two unique triangles from which the face is composed. 
 
for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
{ 
    CPolygon * pPolygon = pMesh->m_pPolygon[f]; 
             
    // Render the primitive 
    m_pD3DDevice->DrawPrimitiveUP ( D3DPT_TRIANGLELIST, pPolygon->m_nVertexCount  / 
3,  
                                    pPolygon->m_pVertex, sizeof(CVertex) ); 
} // Next Polygon 

 
In this example we render each face (two triangles) with its own call to DrawPrimitiveUP. 
Alternatively, we could have designed our cube mesh structure to hold all of the vertices in one 
large array rather than each face having its own pointer to vertex data. Had this been the case 
then we could have rendered the entire cube with one call to DrawPrimitiveUP. This would 
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have been a more efficient solution but is not ideal for our cube meshes given how they are 
currently stored. 

 
 

Note: It important to understand that duplicated vertices are not always undesirable. In fact, 
sometimes they are absolutely necessary. If we wanted each face in a cube to be different 
colors, then each face would need four unique vertices not shared by any other faces. We 
could modify the face color by altering the color components of the vertices without concern for 
affecting neighboring faces sharing the same vertex. 

 
The cube is actually a good example of a possible situation where you might desire duplicated 
vertices between faces. This is because we usually texture the faces of our meshes. If we 
wanted each face of the cube to have a different texture applied (or use different portions of 
the same texture) then we would need to give each face its own unique vertices with their own 
unique set of texture coordinates. Note that this does not mean that we need to duplicate 
vertices within a single face. It would be much more efficient to store a single cube face as four 
vertices instead of six.  We will examine how this can be accomplished later in this section. 

 
 
D3DPT_TRIANGLESTRIP  
 
Triangle strips are one of the most efficient primitive types available. This is particularly true 
when many duplicated vertex positions exist between adjacent triangles. Triangle strips are 
analogous to line strips. Strips use the first three vertices in the array to render the first triangle. 
For every triangle thereafter, the strip uses the last two vertices of the previous triangle and the 
next vertex in the list to create the next triangle. This eliminates duplicate vertices. 3D cards 
are often optimized for triangle strip rendering. Fig 2.28 demonstrates how the vertex array is 
used to construct triangles for rendering:  

 
Figure 2.28 

 
Fig 2.28 shows that we can pass 7 vertices to render 5 primitives. This ratio is very efficient. If 
we had used a triangle list instead, 15 vertices would have been necessary to achieve the same 
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result. Triangle strips cut this requirement roughly in half by exploiting connected triangles that 
share edges (and therefore vertices) with neighboring triangles.  
 
Let us quickly step through the render process for the above set. The device renders the first 
triangle using the first three vertices in the vertex array: V1, V2, and V3. It then processes 
vertex V4 and creates the second triangle using vertices V2, V4, and V3. Moving to the next 
vertex (V5) the device builds Tri 3 from V3, V4, and V5.  Triangle 4 is rendered using vertices 
V4, V6, V5, and the pattern repeats until the strip is complete.  
 
Be sure to note the vertex order used in the strip. For example, Triangle 2 was built using V2, 
V4 and V3 rather than the order the vertices were passed in (V2, V3, and V4). Recall that 
backface culling is performed by taking the winding order of the vertices of a polygon into 
account. If a triangle strip did not swizzle the order of the vertices in every second triangle in 
the list, those triangles would have an counter-clockwise winding order and would be back face 
culled by the device, and never rendered. If Triangle 2 was built using V2, V3 and V4, it would 
create a triangle with a counter-clockwise winding order and would be incorrect. The device 
takes this into account when rendering your triangles as strips and automatically adjusts the 
order of the second and third vertex in every second triangle. When we define our strip, every 
second triangle should have a counter-clockwise winding order since the device will 
automatically flip it to be clockwise during rendering. We calculate the primitive count 
parameter to be passed into the DrawPrimitiveUP as: 
 
PrimitiveCount = NumberOfVertices - 2 
 
Fig 2.29 shows a quad represented as a triangle strip. It looks similar to the quad diagram using 
a triangle list with the exception of the counter-clockwise winding order for the complete face 
and the use of 4 vertices rather than 6.  

 
Figure 2.29 

 
Only triangle 1 has a clockwise winding, triangle 2 does not. Please take time to review the 
diagrams above as strips are often a confusing concept for newcomers to 3D graphics 
programming. 
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It should also be noted that if we wanted each triangle to be rendering using a different color, 
then a triangle strip would not be the appropriate choice since the two triangles share two 
common vertices. Altering the color of one of these vertices would affect the color interpolated 
across both triangles. For this effect, a triangle list should be used instead.  

 
 
D3DPT_TRIANGLEFAN  
 
When using triangle fans, the first three vertices in the array are used to create the first triangle. 
For every other triangle, the first vertex in the array, the last vertex of the previous triangle, and 
the next vertex in the array are used. We pass the vertices to our cube face as four vertices in a 
clockwise winding order and it will automatically be rendered as two triangles by DirectX 
Graphics. There are no duplicated vertices within the face itself. Fig 2.30 demonstrates the 
concept. 

 
Figure 2.30 

 
We pass in a vertex array with the vertices V1, V2, V3, and V4 arranged in a clockwise order. 
The device uses V1, V2, and V3 to create the first triangle. V1, V3, V4 are then used to render 
the second triangle. The first vertex in the list is used as the first vertex for all triangles in the 
list. Fig 2.31 should make the concept clear. 

 
Figure 2.31 
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We render the entire face as a triangle fan by passing in the ordered vertex array. The octagon 
in Fig 2.31 would be broken down into six separate triangles for rendering. In the diagram, the 
triangles are colored for easier viewing only. Since vertices are shared, we recognize that 
properties such as color must also be shared if we desire a single color for the polygon. If we 
wanted the triangles to have individual colors, a triangle list would be required. 
 
The diagram shows the pattern used by the device when constructing the triangles. V1 is used 
in all six triangles. For every triangle but the first, the second vertex in each triangle is the 
vertex that was the third vertex in the previous triangle.  
 
This is an ideal primitive type when dealing with data stored as convex N-gons as it does not 
suffer from duplicate vertices. It will be a good choice for rendering the faces of our cubes, and 
is the type we will use in Lab Project 2.1. 
 
The primitive count for a triangle fan can be calculated as: 
 
PrimitiveCount = NumberOfVertices – 2 
 
The following code could be used to render the faces of our cube using triangle fans: 
 
for( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
{ 
       CPolygon *pPolygon = pMesh->m_pPolygon[f]; 
             
       // Render the primitive 
       m_pD3DDevice->DrawPrimitiveUP( D3DPT_TRIANGLEFAN, 
                                      pPolygon->m_nVertexCount - 2, 
                                      pPolygon->m_pVertex, sizeof(CVertex) ); 
} // Next Polygon 
 

 
Rendering polygons is very easy in DirectX Graphics. We just need to make sure that we calculate the 
primitive count correctly and use a primitive type that is compatible with the way our geometry is 
stored. In our next lesson we will examine other members of the DrawPrimtive family of functions, as 
well as how to use vertex buffers and indexed primitives to eliminate duplicate vertices. 
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The Rendering Pipeline 
 

We now understand how to define vertices and how to render them using the DrawPrimtiveUP 
function. It is time to bring these concepts together and examine what happens to the vertex when one 
of the DrawPrimitive functions is called. Let us assume that we are using a mesh made up of 
untransformed, pre-lit (i.e. colored) vertices. The vertex structure might look like the following: 
 
struct CVertex 
{ 
 float x, y, z; 
 DWORD color; 
}; 
 
We can describe this vertex structure using the following flexible vertex format flags: 
 
#define MyPreLitVertex D3DFVF_XYZ | D3DFVF_DIFFUSE 
 
Before rendering the mesh we will tell the device object to expect this type of vertex: 
 
m_pDevice->SetFVF ( MyPreLitVertex ); 
 
The device object maintains three state matrices used to transform vertices into screen space 
coordinates. From our discussion in the last chapter we know that these matrices are the world, view, 
and projection matrices.  
 
When we call DrawPrimitiveUP, the device checks the current FVF flags. If it finds the 
D3DFVF_XYZ flag, it multiplies each vertex in the array (or subsection of the array) with the current 
World, View, and Projection matrices to produce homogeneous clip space coordinates. Tasks such as 
clipping and back face culling follow, and then the device performs the divide by w. At this point, 
vertices that are visible are inside the –1 to +1 range on the x and y axes of the projection window. The 
device maps these vertices into the range of the viewport to produce screen space coordinates. Had we 
used the D3DFVF_XYZRHW flag instead, the device would understand that there is no need to 
transform the vertices by these matrices as they are already in screen space. These flags allow us to 
directly control which parts of the transformation pipeline we want to use.  

 
Thus all we must do before we render a mesh is make sure that the world, view, and projection 
matrices are setup correctly and sent to the device. We can set all three of these matrices using the 
SetTransform method of the IDirect3DDevice9 interface, specifying the matrix we want to set: 
 
D3DXMATRIX mtxWorld , mtxView , mtxProjection 
 
//build World, View, and Projection matrices with correct information here 
… 
//whenever we need to update one of the device matrices 
//we can use one of the following transform states to 
m_pD3DDevice->SetTransform( D3DTS_WORLD , &m_mtxWorld); 
m_pD3DDevice->SetTransform( D3DTS_VIEW  , &m_mtxView); 
m_pD3DDevice->SetTransform( D3DTS_PROJECTION, &m_mtxProj); 
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As discussed in Chapter 1, the projection matrix is often set once at application startup. The view 
matrix will need to be updated whenever the position of the camera changes (typically once per frame 
if the camera is moving). The world matrix will normally need to be set before rendering each mesh in 
the scene.  
 
The following code snippet from Lab Project 2.1 renders two cube objects. It assumes that the view 
and projection matrices have already been sent to the device. Note that the world matrix is set for each 
object and that we render each face of each cube as a triangle fan. 
 
    // Loop through each object (there are two cubes) 
    for ( ULONG i = 0; i < 2; i++ ) 
    { 
        // Store mesh for easy access 
        pMesh = m_pObject[i].m_pMesh; 
 
        // Set our object matrix 
        m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_pObject[i].m_mtxWorld ); 
 
        // Loop through each polygon 
        for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
        { 
            CPolygon *pPolygon = pMesh->m_pPolygon[f]; 
             
            // Render the primitive 
            m_pD3DDevice->DrawPrimitiveUP( D3DPT_TRIANGLEFAN, pPolygon->m_nVertexCount - 2, 
                                           pPolygon->m_pVertex, sizeof(CVertex) ); 
        } // Next Polygon 
     
    } // Next Object 
 
Hopefully you will find that this is a lot easier to follow than the rendering code we wrote in Chapter 
1. In that project we had to manually multiply each vertex by the various matrices and transform them 
into screen space ourselves.  
 
 
Device States 
 
The device object is a state machine and when we set a state inside the device (such as turning lighting 
on or off), it remains in effect until it is unset or modified to some other state. There are four main state 
groups: 

• Render States 
• Transform States 
• Texture Stage States 
• Sampler States 

 
The IDirect3DDevice9 interface exposes four functions used to alter the states within these four 
categories. We will ignore the latter two for now as these will be covered in chapter 6 and focus only 
on the render state and transform state groups. 
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Render States 
 
We can set a render state using the following function exposed by the IDirect3DDevice9 interface: 
 
HRESULT SetRenderState(D3DRENDERSTATETYPE State, DWORD Value); 
 
The first parameter is one of the members of the D3DRENDERSTATETYPE enumerated type and the 
second parameter is a DWORD whose meaning depends on the render state specified in the first 
parameter.  
 
The D3DRENDERSTATETYPE enumerated type has a significant number of entries. We will explain each 
render state only as we cover it in the text. As we move forward in the course, at the end of each 
chapter you will find an appendix with a listing of any new states introduced during the lesson.  
 

Note: The device includes a function called GetRenderState that allows the application to retrieve the 
current device setting for a given state. We pass the render state we wish to inquire about and the 
address of a DWORD variable that will be filled with that current state inside the device: 

 
HRESULT GetRenderState(D3DRENDERSTATETYPE State, DWORD *pValue); 

 
Note: GetRenderState should not be called if you are using a pure device. A pure device eliminates 
the overhead resulting from maintaining an internal structure of render states to return information to 
the GetRenderState function. This improves application performance. When using a pure device your 
application must retain its own copy of the current state settings if it requires access to this 
information. 

 
 
Z – Buffering 
After we have created and attached a Z-Buffer to the device, we need to tell the device that we wish to 
use it when rendering. As we will discover later in the course, there will be times when we will want to 
render some objects with the Z-Buffer and some without it. That is why there is a render state that 
allows the application to toggle it on and off: 
 
m_pDevice->SetRenderState(D3DRS_ZENABLE , D3DZB_TRUE);  
 
The D3DRS_ZENABLE member of the D3DRENDERSTATETYPE enumerated type specifies that we wish to 
alter the current state of the device Z-Buffer. The device expects the second parameter to be a member 
of the D3DZBUFFERTYPE enumerated type: 
 
typedef enum _D3DZBUFFERTYPE  
{ 
    D3DZB_FALSE = 0, 
    D3DZB_TRUE = 1, 
    D3DZB_USEW = 2, 
    D3DZB_FORCE_DWORD = 0x7fffffff 
} D3DZBUFFERTYPE; 
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D3DZB_FALSE 
This disables the Z–Buffer so that no per-pixel depth testing is performed. It is the default state of the 
device if a Z-Buffer was not automatically created during device creation. Since our applications will 
specify automatic    Z-Buffer creation during device initialization (we set the 
EnableAutoDepthStencil member of the D3DPRESENT_PARAMETERS structure to TRUE), this will 
not be the default state of the device. 
 
D3DZB_TRUE 
This enables the device Z–Buffer for per-pixel depth testing. This state change will only succeed if a 
Z- Buffer has been created and attached to the device swap chain (frame buffer(s)). This is the default 
state of the device if the Z–Buffer created at device creation time used the EnableAutoDepthStencil 
member of the D3DPRESENT_PARAMETERS structure. Otherwise, the default is D3DZB_FALSE. 
 
D3DZB_USEW 
Some 3D graphics adapters support the use of a W-Buffer. The W-Buffer uses the same memory as the 
Z-Buffer but calculates the per-pixel depth values differently. When we enable W-Buffer, the device 
uses the reciprocal of W (1/W) where W is the value output from the projection matrix. This is equal 
to the view space Z component of the input vertex. W-Buffers provide a more linear mapping of depth 
values and eliminate artifacts caused by 16 bit Z-Buffers.  
 
In order to use this parameter type, our application must ensure that the adapter supports W buffering 
by checking the RasterCaps member of the D3DCAPS9 structure to see if the 
D3DPRASTERCAPS_WBUFFER flag is set. 
 
D3DCAPS9 Caps; 
// Caps was filled out in the InitDirect3D function by calling IDirect3D9::GetDeviceCaps 
if (Caps.RasterCaps & D3DPRASTERCAPS_WBUFFER) 
 m_pDevice->SetRenderState ( D3DRS_ZENABLE , D3DZB_USEW ); // Use W Buffer 
else 
 m_pDevice->SetRenderState ( D3DRS_ZENABLE , D3DZB_TRUE );  // Use Z buffer 

 
This is generally something we will do only when a 16 bit Z-Buffer is the only option available. 
 
 
Lighting 
This next render state allows us to enable or disable the device’s internal lighting pipeline. In our 
initial applications, we will disable lighting since our vertices do not have the required vertex normal. 
Lighting will be covered in Chapter 4. To enable/disable lighting we use the following respective 
render states: 
 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, TRUE ); 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
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The D3DRS_LIGHTING member of the D3DRENDERSTATETYPE enumerated type tells the device that the 
second parameter will set the state of the internal lighting module. Lighting is enabled by default so if 
we do not require lighting, then we must explicitly disable it.  
 
TRUE 
This is the default state of the device. Vertices that use lighting must include a vertex normal. Lighting 
calculations are done by taking the angle between the vertex normal and the light direction vector to 
establish the angle between the vertex and the light. We scale the light’s effect on that vertex using a 
dot product of those two vectors. If the vertex normal is absent, a dot product result of 0 will be used. 
 
FALSE 
Disables the lighting module of the device. Our current application will use this render state. 
 
 

Note: All render states can be changed at any time, even in the middle of rendering a scene. For 
example, we could disable lighting and render some pre-lit polygons, then enable lighting and render 
some unlit polygons. Pre-lit polygons have no vertex normal and include a color at each vertex. Unlit 
polygons contain a vertex normal and require the device to light them before rendering. 

 
 
Shading 
Our applications will use the Gouraud shading model so that the colors stored at each vertex in the 
face are linearly interpolated across the surface of that face. There are a few shading models available 
in DirectX Graphics and they are set using the following render state: 
 
m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADEMODE ); 
 
When setting the D3DRS_SHADEMODE render state, the second parameter should be a member of the 
D3DSHADEMODE enumerated type: 

 
typedef enum _D3DSHADEMODE  
{ 
      D3DSHADE_FLAT = 1, 

D3DSHADE_GOURAUD = 2, 
D3DSHADE_PHONG = 3, 
D3DSHADE_FORCE_DWORD = 0x7fffffff 

} D3DSHADEMODE; 
 
Although there are three choices listed (D3DSHADE_FLAT, D3DSHADE_GOURAUD, and D3DSHADE_PHONG), 
only flat and Gouraud shading modes are currently supported.  
 
D3DSHADE_FLAT 
When this shade mode is set, the diffuse and specular colors of the first triangle vertex are used and no 
interpolation is done between vertex colors. Diffuse and specular colors stored in other vertices within 
the same triangle are ignored. Vertex alpha however is interpolated across the surface as we will see in 
Chapter 7. Note that the first vertex in the triangle is selected, not the first vertex in the entire polygon. 
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Since a cube face is made using two triangles, vertex 0 will be used to color triangle 1 and vertex 3 
will be used to color triangle 2 (using the triangle fan example). The first vertex in a given triangle can 
be defined for the different primitive types as follows. 

• For a triangle list, the first vertex of the triangle i is i * 3.  
• For a triangle strip, the first vertex of the triangle i is vertex i.  
• For a triangle fan, the first vertex of the triangle i is vertex i + 1.  

D3DSHADE_GOURAUD 
When a triangle is rendered with Gouraud shading, the colors of all vertices in the triangle are used to 
calculate the final color of a pixel within that triangle by using a linear interpolation between all three 
vertices. The distance from a pixel to a vertex is a weight value for the vertex color contribution to the 
pixel. This is the default shade mode when the device is created. To set the Gouraud shading mode in 
code: 
 
m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 

 
 
Dithering 
In 16 bit color mode the range of colors is significantly less than those available in 32 bit color mode 
(65,535 vs. 16,000,000 or so). There will be times when 16 bit color modes cannot accurately produce 
the shade of a certain color your application may require. If dithering is enabled, it creates the color by 
using two colors at alternating pixel positions across the surface. For example, let us imagine that the 
color yellow was unavailable. If dithering was enabled then the triangle would be rendered using 
alternating red and green pixels. Because the pixels are so close together the human eye perceives the 
triangle as yellow. While dithering can be useful in these situations, it can result in a grainy appearance 
on high resolution monitors. Dithering is disabled by default when the device is initially created. We 
enable dithering using the following respective render states: 
 
m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  FALSE ); 

 
 
Back Face Culling 
DirectX Graphics can check the winding order of triangles that have passed through the World, View, 
and Projection matrices and remove them from further consideration when their vertices are ordered in 
a counter clockwise fashion. This ordering indicates that the camera is looking at the back of the 
polygon. Our application can set the back face culling behavior using the D3DRS_CULLMODE render 
state and specifying a member of the D3DCULL enumerated type as the second parameter: 
 
m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL ); 
 
typedef enum _D3DCULL  
{ 
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    D3DCULL_NONE = 1, 
    D3DCULL_CW = 2, 
    D3DCULL_CCW = 3, 
    D3DCULL_FORCE_DWORD = 0x7fffffff 
} D3DCULL; 
 
D3DCULL_NONE 
This sets the device so that no back face culling is done. The triangle orientation is not tested and it is 
rendered as if it had two sides. If the camera was moved behind the triangle, the viewer will still be 
able to see it.  
 
D3DCULL_CW 
When this state is set, triangles with a clockwise winding order in relation to the camera are considered 
to be facing away from the camera. This mode is useful when using geometry ported from OpenGL 
engines. OpenGL uses a right-handed Cartesian coordinate system where the faces have a counter-
clockwise winding order.  
 
D3DCULL_CCW 
This is the default culling state for the device and is the mode that we will use throughout this course. 
In this mode triangles that have a counter-clockwise winding order with relation to the camera are 
considered to be facing away from the camera and are not rendered. We generally set this state once at 
environment setup: 
 
m_pD3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW); 
 
 
 

Transformation States 
 
We set the device transform states to control how vertices are transformed from model space into 
screen space. The device maintains three state matrices (along with a few others that we will discuss in 
later lessons) that are used for this process.  
 
 
The World Matrix 
Before rendering each object in our scene we will set the object world matrix as the current world 
matrix for the device as follows: 
 
m_pD3DDevice->SetTransform( D3DTS_WORLD, &mtxWorld ); 
 
We use the SetTransform function with D3DTS_WORLD as the first parameter to inform the device we 
are setting the world matrix. The second parameter is the address of the object world matrix (a 
D3DXMATRIX structure) for the object to be rendered. This matrix holds the position and orientation of 
the object in the 3D world.  
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The device world matrix will typically have to be changed many times per frame. In our first few 
applications we will be rendering two cube objects. Each will have its own world matrix which must 
be set prior to rendering. We will set object 1’s world matrix and render its polygons, then we will set 
object 2’s world matrix (which overwrites the previous world matrix setting of the device) and then 
render its polygons. This is a critical point to understand. The device has only one world matrix. 
Before you render an object you will send its world matrix to the device. That matrix will remain the 
device world matrix until replaced with another world matrix as shown below: 
 
m_pD3DDevice->SetTransform( D3DTS_WORLD, &Object1->mtxWorld ); 
Object1->Render(); 
 
m_pD3DDevice->SetTransform( D3DTS_WORLD, &Object2->mtxWorld ); 
Object2->Render(); 
 
 
The View Matrix 
The application maintains a view matrix to describe the camera position and orientation in the virtual 
world. World space vertices are multiplied by this matrix to transform them into view space relative to 
the camera. When the position or orientation of the camera changes, we need to build a new view 
matrix and send it to the device using the following transform state: 
 
m_pD3DDevice->SetTransform( D3DTS_VIEW, &mtxView ); 
 
 
The Projection Matrix 
The projection matrix describes the FOV of the camera and is used to convert the camera relative 
coordinates into homogenous clip space. We set the device projection matrix using the following 
transform state: 
 
m_pD3DDevice->SetTransform( D3DTS_PROJECTION, &mtxProj ); 
 
Once this matrix is set, the device transformation pipeline setup is complete. From now on, whenever 
our application calls one of the DrawPrimitive functions, each vertex will be multiplied by the device 
state matrices to be transformed from model space to homogeneous clip space. 
 
HomogeneousVertex = ModelSpaceVertex * World * View * Projection 
 
At this point, the device will do various clipping tests and perform back face culling. Then the divide 
by W maps the vertex onto the projection window where the vertices are in the range of –1 to +1 in 
both the x and y dimensions. Finally, the coordinates are converted into screen coordinates and used to 
rasterize the triangles. 
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GetTransform 
Just like the SetRenderState function, the SetTransform function also has a counterpart called 
GetTransform in the IDirect3DDevice9 interface. It can be called to query the current device world, 
view, or projection matrix: 
 
D3DXMATRIX mtxWorld , mtxView , mtxProj; 
 
m_pDevice->GetTransform( D3DTS_WORLD , &mtxWorld); 
m_pDevice->GetTransform( D3DTS_VIEW     , &mtxView); 
m_pDevice->GetTransform( D3DTS_PROJECTION , &mtxProj); 
 

Note: As with GetRenderState, GetTransform does not work if you are using a pure device. The 
application must maintain copies of the matrices if access is required after sending them to the device. 

 
Fig 2.33 shows how the SetRenderState and SetTransform functions are used to alter the states of the 
device object. These states remain in their current condition until set to new conditions. 
 

 
 

Figure 2.33 
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Frame Buffer and Depth Buffer Clearing 
 
Before we render a scene, the first thing we generally do is clear the frame buffer and reset the Z-
Buffer. We can accomplish both of these objectives using a single function call via the 
IDirect3DDevice9 interface: 
 
IDirect3DDevice9::Clear( DWORD Count, const D3DRECT *pRects,  DWORD Flags,     
                         D3DCOLOR Color, float Z, DWORD Stencil); 
 
DWORD Count 
It is possible to clear only portions of the frame buffer (and Z-Buffer) rather than the entire surface. 
Our application can pass an array of one or more D3DRECT structures indicating the desired areas to 
be cleared. If the second parameter to this function is not NULL then this value will indicate the 
number of D3DRECT structures pointed to by pRects.  
 
D3DRECT pRects 
If the first parameter (Count) is not 0, this parameter will point to the start of an array containing the 
D3DRECT structures describing areas of the frame buffer or depth buffer the application want cleared. 
If the entire frame buffer (and Z-Buffer) is to be cleared, this parameter will be set to NULL. 
 

DWORD Flags 
This parameter is a combination of flags that tell the device which surfaces to clear. We can choose to 
clear the frame buffer, the depth buffer, and/or the stencil buffer by combining the following flags. 
Note that at least one of the following flags must be used and that these flags are not mutually 
exclusive: 

 
D3DCLEAR_STENCIL: Clear the stencil buffer to the value in the Stencil parameter. We are 
not using a stencil buffer at this time so the Stencil parameter will be set to zero. 
 
D3DCLEAR_TARGET:  Clear the frame buffer (or render target) to the color in the Color 
parameter. 
  
D3DCLEAR_ZBUFFER: Clear the depth buffer to the value in the Z parameter.  
 

D3DCOLOR Color 
If the D3DCLEAR_TARGET flag is used then this should contain the 32 ARGB color used to clear 
each pixel in the frame buffer or current render target. Our application uses a white color setting 
(0xFFFFFFFF) which is the ARGB color (255,255,255,255). The frame buffer does not use the alpha 
component of a color but colors must still be specified in 32 bit ARGB format. 
 
float Z 
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If the D3DCLEAR_ZBUFFER flag is set then this value should contain the normalized distance value 
that each pixel in the depth buffer should be initialized to before rendering. This value is typically set 
to 1.0. This maps the maximum distance to the far frustum plane in view space.  
 
DWORD Stencil 
If the D3DCLEAR_STENCIL flag is used then this flag should contain an integer value to store in 
each stencil buffer entry. Stencil buffers will be covered at a later time and will not be used by our 
current application. 
 
If this function is unsuccessful then it will return D3DERR_INVALIDCALL. This indicates that one or 
more of the parameters may have been invalid. 
 
 
Beginning and Ending Scenes 
 
Before calling any primitive rendering functions for a given frame, the application must call the 
IDirect3DDevice9::BeginScene function. When rendering is completed it calls the 
IDirect3DDevice9::EndScene function. The call to EndScene informs the device that the application 
has finished rendering the current scene. All DrawPrimitive calls will take place between BeginScene 
and EndScene function calls. 
 
 
Presenting the Frame 
 
The final step in frame rendering is instructing the device to present the frame buffer to the front 
buffer. This makes the newly rendered scene visible to the user on the monitor screen. We do this 
using the IDirect3DDevice9::Present function. This function is called outside the 
BeginScene/EndScene pair. 
 
HRESULT IDirect3DDevice9::Present(CONST RECT *pSourceRect, CONST RECT *pDestRect, 
                                  HWND hDestWindowOverride,  
                                  CONST RGNDATA *pDirtyRegion); 
 
RECT *pSourceRect 
Instead of the entire frame buffer being copied to the front buffer, the application can specify a 
rectangular frame buffer region to be copied. This parameter holds the address of a RECT structure 
containing the dimensions of the desired region. When this parameter is NULL, the entire frame buffer 
is copied. This parameter must be NULL if you did not use the D3DSWAPEFFECT_COPY swap effect for 
the swap chain when you created the device. 
 
CONST RECT *pDestRect 
A pointer to a RECT structure containing the front buffer destination rectangle in window client 
coordinates. If NULL, the entire client area is filled. If the rectangle is larger than the destination client 
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area, it is clipped to the destination client area. This parameter must be NULL if the swap chain was 
not created with D3DSWAPEFFECT_COPY. 
 
 
 
HWND hDestWindowOverride 
This parameter allows you to specify another window to which your frame buffer output will be 
displayed. It overrides the device window specified in the D3DPRESENT_PARAMETERS structure during 
device creation. The common value is NULL. This informs the device to carry out its default behavior 
of copying the frame buffer to the front buffer when performing a presentation with a windowed 
device. Note that this only works with a windowed device and that it does not remove the association 
with the device window. For example, key press messages will still be sent to the device window and 
not to the override window. 
 
CONST RGNDATA  *pDirtyRegion 
This allows you to specify a region (an area of the screen constructed from non-overlapping 
rectangles) to be copied to the screen. The rectangles are specified in frame buffer coordinates. This 
value is typically set to NULL. 
 
Passing NULL for all of these parameters is the most common application behavior. This will copy or 
flip (depending on the swap effect being used by the device) the entire frame buffer (the top of the 
swap chain if multiple frame buffers have been created) to the front buffer. In windowed mode the 
front buffer is the client area of the device window specified in the D3DPRESENT_PARAMETERS structure 
used to create the device. In fullscreen mode rendering is always done to the overlay window covering 
the display. 
 
 
 
Conclusion 

 
And with that, we now have a good understanding of core DirectX Graphics functionality. We have 
looked at environment setup, device states, and even shaded primitive rendering. When you have 
finished studying your workbook projects you will be able to quickly set up rendering environments 
for future applications and you will have a fully reusable and highly functional set of classes to handle 
these rather mundane (but essential) setup tasks. You will also have a good feel for the different steps 
involved in setting up and running your game rendering loop for every frame.  
 
In our next lesson, we will continue our study of primitive rendering. Our focus will be on more 
efficient, hardware-friendly approaches.  
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Lab Project 2.1 Device Initialization 
 
The first demo in this chapter creates a device in windowed mode. We will not have to concern 
ourselves yet with the enumeration of all possible fullscreen modes since we will simply use the mode 
currently in use by the desktop. The initialization demo is almost identical in structure to the software 
demo we implemented in the last lesson. We have kept all of the same function names and the same 
CGameApp class. It is probably a good idea to open up the project to follow along with the 
explanations. Focus on the DirectX Graphics code that creates the initial Direct3D9 object and then 
creates a valid device. 
 
 
CGameApp::CreateDisplay 
 
In our last demo, WinMain called the CGameApp::InitInstance function which in turn called the 
CGameApp::CreateDisplay function to create the main application window. In this demo, we add a 
new function called CGameApp::InitDirect3D which is called before the function exits: 
 
bool CGameApp::CreateDisplay() 
{ 
    LPTSTR WindowTitle   = _T("Initialization"); 
    USHORT Width         = 400; 
    USHORT Height        = 400; 
    RECT   rc; 
 
    // Register the new windows window class. 
    WNDCLASS wc;  
    wc.style  = CS_BYTEALIGNCLIENT | CS_HREDRAW | CS_VREDRAW;   
    wc.lpfnWndProc  = StaticWndProc; 
    wc.cbClsExtra  = 0; 
    wc.cbWndExtra  = 0; 
    wc.hInstance  = (HINSTANCE)GetModuleHandle(NULL); 
    wc.hIcon  = LoadIcon( wc.hInstance, MAKEINTRESOURCE(IDI_ICON)); 
    wc.hCursor           = LoadCursor(NULL, IDC_ARROW); 
    wc.hbrBackground = (HBRUSH )GetStockObject(BLACK_BRUSH); 
    wc.lpszMenuName  = NULL; 
    wc.lpszClassName = WindowTitle; 
    RegisterClass(&wc); 
 
    // Create the rendering window 
    m_hWnd = CreateWindow( WindowTitle, WindowTitle, WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, 
                           CW_USEDEFAULT, Width, Height, NULL, 
          LoadMenu( wc.hInstance, MAKEINTRESOURCE(IDR_MENU) ), wc.hInstance, this ); 
  
    // Bail on error 
    if (!m_hWnd) return false; 
 
    // Retrieve the final client size of the window 
    ::GetClientRect( m_hWnd, &rc ); 
    m_nViewX        = rc.left; 
    m_nViewY        = rc.top; 
    m_nViewWidth    = rc.right - rc.left; 
    m_nViewHeight   = rc.bottom - rc.top; 
 
    // Show the window 
    ShowWindow(m_hWnd, SW_SHOW); 
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    // Initialize Direct3D (Simple) 
    if (!InitDirect3D( )) return false; 
 
    // Success!! 
    return true; 
} 

Notice that we called the function that is responsible for initializing the DirectX Graphics environment 
after we created the application window. This is important since we will need the window handle to 
create a valid Direct3DDevice9 object. The device needs to know where its frame buffer will 
ultimately be copied each frame. You can think of the client area of the window created above as being 
the front buffer. 
 
Our CGameApp class will have two new members: 
 
LPDIRECT3D9             m_pD3D;          // Direct3D Object 
LPDIRECT3DDEVICE9       m_pD3DDevice;    // Direct3D Device Object 
 
These pointers are used to store the IDirect3D9 interface and the IDirect3DDevice9 interface that will 
be returned to us after we create the respective objects. 
 
CGameApp::InitDirect3D 
 
The CGameApp class has member variable pointers to the IDirect3D9 interface (m_pD3D) and the 
IDirect3DDevice9 interface. These are the interfaces that will be created in this function if it is 
successful. CGameApp also has a member variable of type D3DPRESENT_PARAMETERS 
(m_D3DPresentParams) that will contain the presentation parameters used to create the device. This 
will be useful if we need to rebuild the device at a later stage.  
 
bool CGameApp::InitDirect3D() 
{ 
    D3DPRESENT_PARAMETERS PresentParams; 
    D3DCAPS9              Caps; 
    D3DDISPLAYMODE        CurrentMode; 
    HRESULT               hRet; 
  
    // First of all create our D3D Object 
    m_pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 
    if (!m_pD3D)  return false; 
 
First, we create some local variables to store intermediate information. The D3DDISPLAYMODE structure 
will be used to obtain and store the display mode currently being used by the primary adapter to 
display the Windows desktop. 
 
Then, we attempt to create the Direct3D9 object.  If successful, the returned pointer to an IDirect3D9 
interface is stored in the CGameApp class member variable m_pD3D. If the call is unsuccessful and 
m_pD3D is NULL, then something is terribly wrong and the application cannot continue. This is likely 
the result of incorrect (or non-existent) installation of DirectX. 
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Now, we will fill out the D3DPRESENT_PARAMETERS structure in preparation for passing it to the 
IDirect3D9::CreateDevice function. For the most part, environment setup is no more complicated than 
figuring out the correct values to store in this structure and then passing it into the CreateDevice 
function. Just to be safe, the first thing we do is zero out the structure.  
 
     // Fill out a simple set of present parameters 
    ZeroMemory( &PresentParams, sizeof(D3DPRESENT_PARAMETERS) ); 
 
Next, we use the IDirect3D9::GetAdapterMode function and pass it the address of a D3DISPLAYMODE. 
The function will fill this structure with the current adapter display mode. We have specified the 
D3DADAPTER_DEFAULT flag which means that we are asking for the current display mode of the 
primary adapter.  
 
We store the pixel format of the returned display mode in the BackBufferFormat member of the 
D3DPRESENT_PAREMETERS structure. This informs the device that we want a frame buffer with a 
matching pixel format.  
 
    // Select back buffer format etc 
   m_pD3D->GetAdapterDisplayMode( D3DADAPTER_DEFAULT, &CurrentMode); 
   PresentParams.BackBufferFormat = CurrentMode.Format; 
 
Next, we set the EnableAutoDepthStencil member to TRUE indicating our desire for a depth buffer 
that is attached to the frame buffer at device creation time. We also set the depth buffer pixel format. 
To do so, we will call a helper function (that we will write) called FindDepthStencilFormat. It will 
return a valid D3DFORMAT that works with this device.      
    
    //Setup remaining flags 
   PresentParams.EnableAutoDepthStencil = true; 
   PresentParams.AutoDepthStencilFormat =  
                FindDepthStencilFormat( D3DADAPTER_DEFAULT, CurrentMode, D3DDEVTYPE_HAL ); 
 
The next member we fill in is the SwapEffect. We use D3DSWAPEFFECT_DISCARD to allow the device to 
choose the presentation approach. We also set the Windowed member of the structure to TRUE so that 
we can run the application in windowed mode. 
 
   PresentParams.SwapEffect   = D3DSWAPEFFECT_DISCARD; 
   PresentParams.Windowed   = true; 
    
The remaining presentation parameters can be left at zero. The device will choose the appropriate 
default behaviors for these members as discussed in the text. 
 
The next task is to determine whether the HAL device on this system supports hardware vertex 
processing and choose the optimal approach.  
 
    // Set Creation Flags 
    unsigned long ulFlags = D3DCREATE_SOFTWARE_VERTEXPROCESSING; 
 
    // Check if Hardware T&L is available 
    ZeroMemory(&Caps, sizeof(D3DCAPS9));  
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    m_pD3D->GetDeviceCaps( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, &Caps ); 
     
    if ( Caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ) 
                              ulFlags = D3DCREATE_HARDWARE_VERTEXPROCESSING; 
 
The IDirect3D9::GetDeviceCaps above returns a D3DCAPS9 structure. It contains the functionality 
and capabilities of a particular device type on a particular adapter. This structure is quite large and you 
can examine its members in the SDK documentation. We will cover many of its members throughout 
this course as our application hardware requirements grow and checking for capabilities becomes more 
important. In the code we are asking for the capabilities structure for the HAL device on the primary 
adapter. If the HAL device supports transformation and lighting in hardware as well as rasterization, 
the DevCaps member of the D3DCAPS9 structure will have the D3DDEVCAPS_HWTRANSFORMANDLIGHT 
flag set. If this flag is not set then either the HAL only supports rasterization (in which case we must 
create the device using the D3DCREATE_SOFTWARE_VERTEXPROCESSING flag) or a HAL device is not 
present on the hardware. We will now try to create a device. We pass the adapter ordinal we wish to 
create the device for (D3DADPATER_DEFAULT), the device type we wish to create (a HAL device), the 
HWND of the focus window (created in the CreateDisplay function and also used as the device 
window by default), the vertex processing we wish the device to use, the address of the presentation 
parameters structure that we filled in above, and the address of a pointer to an IDirect3DDevice9 
interface that will be filled in if the call is successful. 
 
    // Attempt to create a HAL device 
    if( FAILED( hRet = m_pD3D->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, m_hWnd, 
        ulFlags, &PresentParams, &m_pD3DDevice ) ) )  
    { 
            
If device creation fails, we will try to create a HEL device (reference rasterizer). If this is the case, we 
should amend the AutoDepthStencilFormat field with a depth surface pixel format that is compatible 
with the REF device. We call our helper function again to test depth buffer formats for the reference 
rasterizer and return the best supported format:  
 
       // Find REF depth buffer format 
       PresentParams.AutoDepthStencilFormat =  
  FindDepthStencilFormat( D3DADAPTER_DEFAULT, CurrentMode, D3DDEVTYPE_REF ); 
 
        // Check if Hardware T&L is available 
        ZeroMemory(&Caps , sizeof(D3DCAPS9)); 
        ulFlags = D3DCREATE_SOFTWARE_VERTEXPROCESSING; 
        m_pD3D->GetDeviceCaps( D3DADAPTER_DEFAULT, D3DDEVTYPE_REF, &Caps ); 
         
        If ( Caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ) 
                     ulFlags = D3DCREATE_HARDWARE_VERTEXPROCESSING; 
 
        // Attempt to create a REF device 
        if( FAILED( hRet = m_pD3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_REF, m_hWnd, 
                                               ulFlags, &PresentParams, &m_pD3DDevice ) ) )  
        { 
            // Failed 
            return false; 
        
        } // End if Failure (REF) 
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    } // End if Failure (HAL) 
 
If the reference device could not be created, then something is terribly wrong and we will have no 
choice but to exit the application with an error. If our device is successfully created, then we store the 
presentation parameters so that we can access them later if need be. 
 
    // Store the present parameters 
    m_D3DPresentParams = PresentParams; 
 
    // Success!! 
    return true; 
} 

 
You might find it odd that after the HAL device creation failed, we did not immediately create the 
REF device with software vertex processing. After all, it is a software device with no hardware 
capabilities available. While this is true, recall that the purpose of the reference rasterizer is to emulate 
a hardware device. When we create certain resources in DirectX Graphics, how we create them 
depends on whether or not we are using hardware or software vertex processing. Therefore, if you 
coded your application so that it only worked with hardware vertex processing and did not have 
hardware vertex processing capabilities on your development machine, you could create a reference 
rasterizer with hardware vertex processing and you would not have to change all of your resource 
creation function calls. Of course, when you create a reference device with hardware vertex 
processing, nothing is processed in hardware. But since it pretends that it is, your application can treat 
it in exactly the same way as a HAL device and keep the same resource creation code. Here is the 
function in its entirety for easier reading: 
 
bool CGameApp::InitDirect3D() 
{ 
    HRESULT               hRet; 
    D3DPRESENT_PARAMETERS PresentParams; 
    D3DCAPS9              Caps; 
    D3DDISPLAYMODE        CurrentMode; 
  
    // First of all create our D3D Object 
    m_pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 
    if (!m_pD3D)     return false; 
 
     // Fill out a simple set of present parameters 
    ZeroMemory( &PresentParams, sizeof(D3DPRESENT_PARAMETERS) ); 
 
    // Select back buffer format etc 
    m_pD3D->GetAdapterDisplayMode( D3DADAPTER_DEFAULT, &CurrentMode); 
    PresentParams.BackBufferFormat = CurrentMode.Format; 
 
    //Setup remaining flags 
    PresentParams.EnableAutoDepthStencil = true; 
    PresentParams.AutoDepthStencilFormat =  
                 FindDepthStencilFormat( D3DADAPTER_DEFAULT, CurrentMode, D3DDEVTYPE_HAL ); 
    PresentParams.SwapEffect   = D3DSWAPEFFECT_DISCARD; 
    PresentParams.Windowed   = true; 
 
    // Set Creation Flags 
    unsigned long ulFlags = D3DCREATE_SOFTWARE_VERTEXPROCESSING; 
 
    // Check if Hardware T&L is available 
    ZeroMemory(&Caps , sizeof(D3DCAPS9));  
    m_pD3D->GetDeviceCaps( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, &Caps ); 
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    if ( Caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ) ulFlags = D3DCREATE_HARDWARE_VERTEXPROCESSING; 
 
    // Attempt to create a HAL device 
    if( FAILED( hRet = m_pD3D->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, m_hWnd, ulFlags, 
                                            &PresentParams, &m_pD3DDevice ) ) )  
    { 
        // Find REF depth buffer format 
        PresentParams.AutoDepthStencilFormat =  
                 FindDepthStencilFormat( D3DADAPTER_DEFAULT, CurrentMode, D3DDEVTYPE_REF ); 
 
        // Check if Hardware T&L is available 
        ZeroMemory(&Caps , sizeof(D3DCAPS9)); 
        ulFlags = D3DCREATE_SOFTWARE_VERTEXPROCESSING; 
        m_pD3D->GetDeviceCaps( D3DADAPTER_DEFAULT, D3DDEVTYPE_REF, &Caps ); 
         
        if ( Caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ) 
           ulFlags = D3DCREATE_HARDWARE_VERTEXPROCESSING; 
 
        // Attempt to create a REF device 
        if( FAILED( hRet = m_pD3D->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_REF, m_hWnd, ulFlags, 
                                                 &PresentParams, &m_pD3DDevice ) ) )  
        { 
            // Failed 
            return false; 
         } // End if Failure (REF) 
 
    } // End if Failure (HAL) 
 
    // Store the present parameters 
    m_D3DPresentParams = PresentParams; 
 
    // Success!! 
    return true; 
} 

 
 
CGameApp::InitInstance 
 
bool CGameApp::InitInstance( HANDLE hInstance, LPCTSTR lpCmdLine, int iCmdShow ) 
{ 
    // Create the primary display device 
    if (!CreateDisplay()) { ShutDown(); return false; } 
 
    // Build Objects 
    if (!BuildObjects())   { ShutDown(); return false; } 
 
    // Set up all required game states 
    SetupGameState(); 
 
    // Setup our rendering environment 
    SetupRenderStates(); 
 
    // Success! 
    return true; 
} 
 
So far we have covered only the CreateDisplay function. This function created the application window 
and then called the InitDirect3D function to create the device object. The next function we need to 
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look at is the BuildObjects function which (as with our Chapter 1 demo) creates the mesh used by both 
cube objects.   
 
Our vertex class will now include a color in addition to position data. The class includes a new 
constructor which takes X, Y and Z position components along with a DWORD describing the color. 
 
class CVertex 
{ 
public: 
    // Public Variables for This Class 
    float       x;          // Vertex Position X Component 
    float       y;          // Vertex Position Y Component 
    float       z;          // Vertex Position Z Component 
    ULONG   Diffuse;        // Diffuse Vertex Color Component 
 
    // Constructors & Destructors for This Class. 
    CVertex( float fX, float fY, float fZ, ULONG ulDiffuse = 0xFF000000 )  
    { 
            x = fX; 
            y = fY; 
            z = fZ; 
           Diffuse = ulDiffuse; 
    } 
    
    CVertex()     { x = 0.0f; y = 0.0f; z = 0.0f; Diffuse = 0xFF000000; } 
}; 
 
The CVertex class definition can be found in CObject.h. If no color is specified, a default color of 
black is used. Remember that colors are in ARGB format, so this default color is A=255, R=0, G=0, 
B=0. An alpha value of 255 indicates a solid (opaque) color. We will discuss alpha components later in 
the course. 
 
Apart from these few changes, there is virtually no difference between this demo and the last demo in 
the way that objects and meshes are stored. Each object in the world contains a pointer to a mesh and a 
world matrix describing its position and orientation in the world: 
 
class CObject 
{ 
public: 
    //------------------------------------------------------------------------- 
    // Constructors & Destructors for This Class. 
    //------------------------------------------------------------------------- 
    CObject( CMesh * pMesh ); 
    CObject(); 
 
   //------------------------------------------------------------------------- 
   // Public Variables for This Class 
   //------------------------------------------------------------------------- 
    D3DXMATRIX  m_mtxWorld;       // Objects world matrix 
    CMesh      *m_pMesh;                // Mesh we are instancing 
};  
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The CMesh and CPolygon classes are identical to the classes used last time so they are not shown 
again here.  
 
 
CGameApp::BuildObjects 
 
The CGameApp::BuildObjects function is also identical to our last demo with the exception of the new 
vertex class. We create a 4x4 cube mesh and assign it to both of our world objects. We set each object 
world matrix to an arbitrary position that looks good for the demo.  
 
We used a macro called RANDOM_COLOR (main.h) to generate a random color to send into each 
vertex constructor. At the beginning of the function, we call srand to seed the random number 
generator so that we get different random numbers generated each time the application is run. We do 
this by seeding with the current time. timeGetTime returns a DWORD value describing the amount of 
time elapsed (in milliseconds) since Windows was started. This function wraps around to zero again 
every 2^32 milliseconds (about every 49.5 days). 
 
#define RANDOM_COLOR 0xFF000000 | ((rand() * 0xFFFFFF) / RAND_MAX) 
 
bool CGameApp::BuildObjects() 
{ 
    CPolygon *pPoly = NULL; 
 
    // Seed the random number generator 
    srand( timeGetTime() ); 
 
    // Add 6 polygons to this mesh. 
    if ( m_Mesh.AddPolygon( 6 ) < 0 ) return false; 
 
    // Front Face 
    pPoly = m_Mesh.m_pPolygon[0]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
     
    pPoly->m_pVertex[0] = CVertex( -2,  2, -2, RANDOM_COLOR ); 
    pPoly->m_pVertex[1] = CVertex(  2,  2, -2, RANDOM_COLOR ); 
    pPoly->m_pVertex[2] = CVertex(  2, -2, -2, RANDOM_COLOR ); 
    pPoly->m_pVertex[3] = CVertex( -2, -2, -2, RANDOM_COLOR ); 
     
    // Top Face 
    pPoly = m_Mesh.m_pPolygon[1]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
     
    pPoly->m_pVertex[0] = CVertex( -2,  2,  2, RANDOM_COLOR ); 
    pPoly->m_pVertex[1] = CVertex(  2,  2,  2, RANDOM_COLOR ); 
    pPoly->m_pVertex[2] = CVertex(  2,  2, -2, RANDOM_COLOR ); 
    pPoly->m_pVertex[3] = CVertex( -2,  2, -2, RANDOM_COLOR ); 
 
    // Back Face 
    pPoly = m_Mesh.m_pPolygon[2]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2, -2,  2, RANDOM_COLOR ); 
    pPoly->m_pVertex[1] = CVertex(  2, -2,  2, RANDOM_COLOR ); 
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    pPoly->m_pVertex[2] = CVertex(  2,  2,  2, RANDOM_COLOR ); 
    pPoly->m_pVertex[3] = CVertex( -2,  2,  2, RANDOM_COLOR ); 
 
    // Bottom Face 
    pPoly = m_Mesh.m_pPolygon[3]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2, -2, -2, RANDOM_COLOR ); 
    pPoly->m_pVertex[1] = CVertex(  2, -2, -2, RANDOM_COLOR ); 
    pPoly->m_pVertex[2] = CVertex(  2, -2,  2, RANDOM_COLOR ); 
    pPoly->m_pVertex[3] = CVertex( -2, -2,  2, RANDOM_COLOR ); 
 
    // Left Face 
    pPoly = m_Mesh.m_pPolygon[4]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex( -2,  2,  2, RANDOM_COLOR ); 
    pPoly->m_pVertex[1] = CVertex( -2,  2, -2, RANDOM_COLOR ); 
    pPoly->m_pVertex[2] = CVertex( -2, -2, -2, RANDOM_COLOR ); 
    pPoly->m_pVertex[3] = CVertex( -2, -2,  2, RANDOM_COLOR ); 
 
    // Right Face 
    pPoly = m_Mesh.m_pPolygon[5]; 
    if ( pPoly->AddVertex( 4 ) < 0 ) return false; 
 
    pPoly->m_pVertex[0] = CVertex(  2,  2, -2, RANDOM_COLOR ); 
    pPoly->m_pVertex[1] = CVertex(  2,  2,  2, RANDOM_COLOR );  
    pPoly->m_pVertex[2] = CVertex(  2, -2,  2, RANDOM_COLOR ); 
    pPoly->m_pVertex[3] = CVertex(  2, -2, -2, RANDOM_COLOR ); 
 
    // Our two objects should reference this mesh 
    m_pObject[ 0 ].m_pMesh = &m_Mesh; 
    m_pObject[ 1 ].m_pMesh = &m_Mesh; 
 
    // Set both objects matrices so that they are offset slightly 
    D3DXMatrixTranslation( &m_pObject[ 0 ].m_mtxWorld, -3.5f,  2.0f, 14.0f ); 
    D3DXMatrixTranslation( &m_pObject[ 1 ].m_mtxWorld,  3.5f, -2.0f, 14.0f ); 
     
    // Success! 
    return true; 
} 

 
Notice that each cube face has only four vertices stored in a clockwise order and no duplicated are 
used within the face. But we do have duplicated vertices between faces. Every corner point will have 
three vertices in identical positions belonging to different faces. This is unavoidable but not necessarily 
undesirable because it allows us to provide each vertex in every face a unique color. Fig 2.1 shows the 
output from this first demo: 
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Figure 2.1 
 
We note that the random colors stored at each of the face vertices are smoothly interpolated across the 
face, blending from one color to the next. This is because we are using Gouraud shading. The 
highlighted corner position is shared by three faces, but is a different color in each face. This is why 
the faces each need a copy of their own vertex at that position; the top face has a yellow vertex, the 
right face has a green vertex and the left face has a pink vertex. If we disabled Gouraud shading, each 
face would be the color of the color of its first vertex. 
 
 
CGameApp::SetupGameState 
 
Once control is returned to CGameApp::InitInstance, the next function called is SetupGameState to set 
any states needed within the application itself. We create an identity matrix which will be used later to 
initialize the device view matrix. We set the m_bRotation boolean to true for each object since we 
want both cubes to be animated: 
 
void CGameApp::SetupGameState() 
{ 
    // Setup Default Matrix Values 
    D3DXMatrixIdentity( &m_mtxView ); 
     
    // Enable rotation 
    m_bRotation1 = true; 
    m_bRotation2 = true; 
 
    // App is active 
    m_bActive    = true; 
} 
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CGameApp::SetupRenderStates 
 
SetupRenderStates is the last function called by InitInstance in our application framework. Its job is to 
initialize our projection matrix, vertex format, transform states and render states prior to entering the 
main rendering loop.  
 
void CGameApp::SetupRenderStates() 
{ 
    // Set up new perspective projection matrix 
    float fAspect = (float)m_nViewWidth / (float)m_nViewHeight; 
    D3DXMatrixPerspectiveFovLH( &m_mtxProjection, D3DXToRadian( 60.0f ), fAspect,  
                                1.0f , 1000.0f  ); 
 
    // Setup our D3D Device initial states 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
    m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
 
    // Setup our vertex FVF flags 
    m_pD3DDevice->SetFVF( D3DFVF_XYZ | D3DFVF_DIFFUSE ); 
 
    // Setup our matrices 
    m_pD3DDevice->SetTransform( D3DTS_VIEW, &m_mtxView ); 
    m_pD3DDevice->SetTransform( D3DTS_PROJECTION, &m_mtxProjection ); 
} 
    
Note the last two parameters in the D3DX projection matrix creation function. These were values that 
we deliberately avoided discussing in Chapter 1 because we did not have the background at that point 
to understand what they represented. The next section examines these values (Near and Far planes) 
and their purpose.  
 
 
Near and Far Planes 
 
In Chapter 1 we examined the means by which the first and second columns of the projection matrix 
scale vertices so that arbitrary fields of view can be achieved. We also discussed how those columns 
integrated the concept of the aspect ratio to adjust the horizontal FOV to compensate for display 
windows (especially in full screen) that have more pixels in the X direction than they do in the Y 
direction.  We looked at setting up the fourth column (W column) as a Z identity column so that the W 
component in the output vector was equal to the view space Z component in the input vector. Finally 
we divided the X and Y components of the output vector by the W component of the output vector to 
provide perspective projection onto the projection window. 
 
The third column of the matrix was not discussed at the time because our assertion was that it was only 
useful if a depth buffer was being used (which we did not use in our software renderer). It is now time 
to revisit this third column since we intend to use a Z-Buffer from this point forward. 
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In DirectX Graphics, we must set up the third column of the projection matrix in such a way that we 
ensure that when the output vector Z component is divided by W, the resulting depth values are in the 
[0.0, 1.0] range.  
 
This may seem trivial at first glance, but recall that the divide by W is dividing the output vector 
components by the Z component of the input vector (because output W = input Z). So the input Z 
component must be altered in some way or we will end up with an output vector from the projection 
matrix where: 
 
V(x,y,z,1) * ProjectionMatrix = H( X , Z , Z=z , W=z) 
 
Because the W and Z components are the same, we would always end up with a depth for that vertex 
of 1.0. This is hardly useful. Our goal is to ensure that the output vector Z component is different than 
the output vector W component such that dividing Z by W provides a value in the range of 0.0 to 1.0. 
 
This means that the view space Z values input into the projection matrix multiplication must be 
mapped to some other range. The solution is to define a minimum and maximum range of acceptable Z 
values. 
 
For this, the concept of a far plane is used. A far plane is a plane set at some application defined 
maximum distance from the camera. That distance defines a maximum value for view space Z 
components that can be considered for rendering. For example, let us say that we decide that we want 
a far plane at a distance of 400 units from the camera. Vertices that are on the opposite side of this far 
plane will be clipped and discarded. This provides a finite range of Z values and makes a mapping 
possible: 
 
Source Range   Target Range 
0 – 400     0.0 – 1.0 
 
In order to avoid rendering artifacts for objects that are too close to the camera (or even behind it), a 
near plane is constructed. This sets a minimum distance value for vertices in relation to the camera. 
The near plane must be some finite distance from the camera (it cannot have a distance of zero). 
Developers typically use a near plane distance between 1.0 and 10.0. Trial and error is often required 
to find a nice distance for the application. Triangles or vertices closer to the camera than the near plane 
distance are clipped and discarded from the render list.  
 
The last two parameters in the D3DXMatrixPerspeciveLH call are the view space distance for the near 
and far planes. In the above code we have used a near plane value of 1.0 and a far plane value of 
10000. Recall in chapter 1 that the projection matrix created a view cone by setting up the FOV in the 
X and Y dimensions. If we include these planes in the overall picture, the result is a new shape which 
we call a frustum. A frustum looks like a pyramid with a flat top instead of a point:  
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Figure 2.2 

 
This truncated pyramid shape is characterized by six planes (near, far, top, bottom, left, right). Vertices 
that do not fall within the six planes created by the projection matrix are clipped. In other words, only 
triangles that are not completely outside the frustum are rendered. Triangles that are partially inside the 
frustum are clipped by DirectX Graphics so that only the fragment of the triangle that was originally 
inside the frustum is sent on to the rasterizer. Since D3DXMatrixPerspectiveLH handles building the 
third column of the projection matrix using these near and far plane values, we are spared the need to 
do so ourselves. However, if you wish to understand how these values are integrated into the matrix, 
please read Appendix A at the end of this lesson.  
 
The appendix will also discuss why this mapping from one range to another is responsible for the Z-
Buffer having a non-linear mapping (which can lead to certain artifacts – especially with 16 bit Z-
Buffers).   
 
 
The Render Loop  
 
Application setup is complete and we are ready to enter the main render loop. 
CGameApp::InitInstance has returned control back to the WinMain function which calls 
CGameApp::BeginGame class to start running the render loop. Although this is unchanged from the 
application code in Chapter 1, it is included below to refresh your memory. The function processes 
windows messages if any are available and calls CGameApp::FrameAdvance to process the next frame 
to be rendered. 
 
int CGameApp::BeginGame() 
{ 
    MSG  msg; 
    while (1)  
    { 
        // Did we receive a message, or are we idling ? 
       if ( PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) )  
       { 
     if (msg.message == WM_QUIT) break; 
  
            TranslateMessage( &msg ); 
            DispatchMessage ( &msg ); 
       }  
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       else  
       { 
   // Advance Game Frame. 
   FrameAdvance(); 
 
       } // End If messages waiting 
    } // Until quit message is received 
 
    return 0; 
} 

 
 
CGameApp::FrameAdvance 
 
The bulk of the application processing is handled in the FrameAdvance function. It addresses scene 
animation and rendering and includes a new helper function called ProcessInput to test for key presses. 
This will give the user the ability to strafe the camera left and right. 
 
void CGameApp::FrameAdvance() 
{ 
    CMesh      *pMesh = NULL; 
  
    // Advance the timer 
    m_Timer.Tick( ); 
     
    // Skip if app is inactive 
    if ( !m_bActive ) return; 
 
We update the timer class by calling its Tick() method. This updates its internal variables with the new 
time. We then check whether or not the CGameApp::m_bActive variable is true. If it is not true, then 
the application is currently minimized and we exit the function to free up processing time for other 
applications the user may be running. 
 
    // Recover lost device if required 
    if ( m_bLostDevice ) 
    { 
        // Can we reset the device yet ? 
        HRESULT hRet = m_pD3DDevice->TestCooperativeLevel(); 
        if ( hRet == D3DERR_DEVICENOTRESET ) 
        { 
            // Restore the device 
            m_pD3DDevice->Reset( &m_D3DPresentParams ); 
            SetupRenderStates( ); 
            m_bLostDevice = false; 
 
        } // End if Can Reset 
        else 
        { 
             // device cannot be reset at this time 
             return;   
        } 
   } // end if Device Lost 
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To deal with the occurrence of a lost device, the application polls the current device state using the 
TestCooperativeLevel function. If the device cannot be reset, the function exits. This allows us to 
continue to poll the device on each subsequent frame until DirectX is ready to reset it. Once ready to 
reset the device, we pass in our stored presentation parameters and reset our flag that indicates a lost 
device. This takes the application out of recovery mode and allows FrameAdvance to continue its 
processing: 
 
   // Poll & Process input devices 
    ProcessInput(); 
 
    // Animate the two objects 
    AnimateObjects(); 

 
We will examine the ProcessInput function in greater detail in a later section. At a high level, it checks 
for key presses that indicate the user’s intention to move the camera to a new location. The function 
rebuilds the view matrix using this new positional information and sends it to the device for the next 
render. 
 
The AnimateObjects function has not changed from our last demonstration. It applies rotations to the 
cube objects by adjusting the values in their world matrices.  
 
Before we render the scene, the first thing we do is clear the frame buffer and reset the Z-Buffer. We 
can accomplish both of these objectives using the Clear function call via the IDirect3DDevice9 
interface: 
 
    // Clear the frame & depth buffer ready for drawing 
    m_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xFFFFFFFF, 1.0f, 0); 
 
Scene rendering then starts with a call to BeginScene and then proceeds much like our last application. 
We loop through each of the objects in our scene (2 objects in this case), get a pointer to the object 
mesh and then set the device world matrix to the current object world matrix. We then proceed to loop 
through each polygon in the mesh and call DrawPrimitiveUP for each face. Notice that we render the 
two triangles of the face using the triangle fan primitive type. This allows us to pass our four face 
vertices in a clockwise order and have them automatically rendered as two triangles. The device will 
transform the input vertices using its state matrices, producing 2D screen vertices that will be used to 
render filled polygons. The call to EndScene informs the device that the application has finished 
rendering the current frame. 
 
    // Begin Scene Rendering 
    m_pD3DDevice->BeginScene(); 
 
    // Loop through each object 
    for ( ULONG i = 0; i < 2; i++ ) 
    { 
        // Store mesh for easy access 
        pMesh = m_pObject[i].m_pMesh; 
 
        // Set our object matrix 
        m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_pObject[i].m_mtxWorld ); 
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        // Loop through each polygon 
        for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
        { 
            CPolygon * pPolygon = pMesh->m_pPolygon[f]; 
             
            // Render the primitive 
            m_pD3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 
                                          pPolygon->m_nVertexCount - 2, 
                                          pPolygon->m_pVertex, sizeof(CVertex) ); 
     
        } // Next Polygon 
     
    } // Next Object 
 
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 

 
At this point, our cubes are rendered into the frame buffer. The final step is to instruct the device 
object to present the frame buffer to the front buffer using the IDirect3DDevice9::Present function. 
Notice that the Present function takes place outside of the BeginScene / EndScene pair. 
 
    // Present the buffer 
    if ( FAILED(m_pD3DDevice->Present( NULL, NULL, NULL, NULL )) )  
        m_bLostDevice = true; 
} 
 
The complete frame advance function is shown next without interruption: 
 
void CGameApp::FrameAdvance() 
{ 
    CMesh      *pMesh = NULL; 
  
    // Advance the timer 
    m_Timer.Tick( ); 
     
    // Skip if app is inactive 
    if ( !m_bActive ) return; 
 
    // Recover lost device if required 
    if ( m_bLostDevice ) 
    { 
        // Can we reset the device yet ? 
        HRESULT hRet = m_pD3DDevice->TestCooperativeLevel(); 
        if ( hRet == D3DERR_DEVICENOTRESET ) 
        { 
            // Restore the device 
            m_pD3DDevice->Reset( &m_D3DPresentParams ); 
            SetupRenderStates( ); 
            m_bLostDevice = false; 
 
        } // End if Can Reset 
          else 
        { 
          // device cannot be reset at this time 
             return;   
        } 
 
    } // End if Device Lost 
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    // Poll & Process input devices 
    ProcessInput(); 
 
    // Animate the two objects 
    AnimateObjects(); 
 
    // Clear the frame & depth buffer ready for drawing 
    m_pD3DDevice->Clear( 0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xFFFFFFFF, 1.0f, 0 ); 
     
    // Begin Scene Rendering 
    m_pD3DDevice->BeginScene(); 
 
    // Loop through each object 
    for ( ULONG i = 0; i < 2; i++ ) 
    { 
        // Store mesh for easy access 
        pMesh = m_pObject[i].m_pMesh; 
 
        // Set our object matrix 
        m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_pObject[i].m_mtxWorld ); 
 
        // Loop through each polygon 
        for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
        { 
            CPolygon * pPolygon = pMesh->m_pPolygon[f]; 
             
            // Render the primitive 
            m_pD3DDevice->DrawPrimitiveUP( D3DPT_TRIANGLEFAN, pPolygon->m_nVertexCount - 2, 
                                           pPolygon->m_pVertex, sizeof(CVertex) ); 
     
        } // Next Polygon 
     
    } // Next Object 
 
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 
     
    // Present the buffer 
    if ( FAILED(m_pD3DDevice->Present( NULL, NULL, NULL, NULL )) ) m_bLostDevice = true; 
 
} 
 

 
 
CGameApp::ProcessInput 
 
The CGameApp::ProcessInput function moves the camera left or right depending on input from the 
user. This is done by manipulating the current view matrix and setting it as the device view matrix for 
use in the transformation pipeline during the next rendering of the scene: 
 
void CGameApp::ProcessInput( ) 
{ 
    // Simple strafing 
    if ( GetKeyState( VK_LEFT  ) & 0xFF00 )  
       m_mtxView._41 += 25.0f * m_Timer.GetTimeElapsed(); 
    if ( GetKeyState( VK_RIGHT ) & 0xFF00 ) 
       m_mtxView._41 -= 25.0f  * m_Timer.GetTimeElapsed(); 
         
    // Update the device matrix 
    if (m_pD3DDevice) m_pD3DDevice->SetTransform( D3DTS_VIEW, &m_mtxView ); 
} 
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Our demo camera will always look straight down the positive Z axis (look vector = <0, 0, 1>). We can 
create the illusion of strafing (i.e. moving from side to side) by adding or subtracting offsets to the 
camera X position in world space. Recall that the bottom row of the view matrix is responsible for the 
camera position. Specifically we know that the first column of the fourth row holds the X position of 
the camera (actually it is an inverse X position as discussed in Chapter 1). 
 
The m_Timer.GetTimeElapsed function returns the number of seconds that have elapsed since the 
previous frame. We then multiply this value by the (arbitrary) value 25. This means that the camera 
will slide left or right at a speed of 25 world units per second. If the application was running at 60 fps, 
this would move our camera a distance of 25 * (1/60) = 0.416 units per frame. 
 
If you attempted the homework assignment at the end of Chapter 1, you now have a function with 
which to compare your work. 
 
Before moving on with the rest of this lesson, it would be worthwhile for you to put this chapter aside 
and spend some time playing with the code before moving on. It is very important that you understand 
the key topics discussed because they will be fundamental to using DirectX as we move forward. Once 
you feel comfortable with the information learned so far, you will be ready to move on and review Lab 
Project 2.2 source code.  
 
The second demo will be identical to this first one except this time it will use an enumeration class to 
allow the user to select display mode settings. The enumeration class presented in the next section is 
fairly large. Fortunately, it can be written once and then reused in all of your future applications as a 
black box initialization module. 
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Lab Project 2.2: Device Enumeration 
 
Lab Project 2.1 had very easy initialization code. This is mostly a result of the fact that the application 
ran only in windowed mode. When creating a device in windowed mode we generally use the current 
desktop display setting to create our device. We know these settings are supported by the adapter 
because the adapter is currently using them to display the desktop. The following code shows the basic 
initialization code from Lab Project 2.1 to refresh your memory. We fill out the 
D3DPRESENT_PARAMETERS structure with our device creation parameters and call CreateDevice as 
shown.  
   
   D3DPRESENT_PARAMETERS PresentParams;   
 
    // Select back buffer format etc 
   m_pD3D->GetAdapterDisplayMode( D3DADAPTER_DEFAULT, &CurrentMode); 
   PresentParams.BackBufferFormat = CurrentMode.Format; 
 
    // Setup remaining flags 
   PresentParams.EnableAutoDepthStencil = true; 
   PresentParams.AutoDepthStencilFormat = 
   FindDepthStencilFormat( D3DADAPTER_DEFAULT, CurrentMode, D3DDEVTYPE_HAL 
); 
 
   PresentParams.SwapEffect  = D3DSWAPEFFECT_DISCARD; 
   PresentParams.Windowed   = true; 
 
    // Set Creation Flags 
    unsigned long ulFlags = D3DCREATE_SOFTWARE_VERTEXPROCESSING; 
 
    // Check if Hardware T&L is available 
   ZeroMemory(&Caps , sizeof(D3DCAPS9));  
   m_pD3D->GetDeviceCaps( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, &Caps ); 
     
    if ( Caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ) 
               ulFlags = D3DCREATE_HARDWARE_VERTEXPROCESSING; 
 
    // Attempt to create a HAL device 
    m_pD3D->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, m_hWnd, ulFlags, 
                          &PresentParams, &m_pD3DDevice ) ); 
 
Creating a fullscreen device is actually not that much more difficult to do although it will require more 
care. We would need to set the windowed member of the D3DPRESENT_PARAMETERS structure to false 
and we would fill in the BackBufferWidth and BackBufferHeight members appropriately. The next 
example shows the creation of a fullscreen device running in a resolution of 800x600 using the pixel 
format currently used by the desktop: 
 
   D3DPRESENT_PARAMETERS PresentParams;   
 
    // Select back buffer format etc 
    m_pD3D->GetAdapterDisplayMode( D3DADAPTER_DEFAULT, &CurrentMode); 
    PresentParams.BackBufferFormat = CurrentMode.Format; 
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    //Setup remaining flags 
    PresentParams.BackBufferWidth  = 800; 
    PresentParams.BackBufferHeight = 600; 
    PresentParams.EnableAutoDepthStencil = true; 
    PresentParams.AutoDepthStencilFormat =  
  FindDepthStencilFormat( D3DADAPTER_DEFAULT, CurrentMode, D3DDEVTYPE_HAL ); 
 
    PresentParams.SwapEffect  = D3DSWAPEFFECT_DISCARD; 
    PresentParams.Windowed  = false; 
 
    // Set Creation Flags 
    unsigned long ulFlags = D3DCREATE_SOFTWARE_VERTEXPROCESSING; 
 
    // Check if Hardware T&L is available 
    ZeroMemory(&Caps , sizeof(D3DCAPS9));  
    m_pD3D->GetDeviceCaps( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, &Caps ); 
     
    if ( Caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ) 
          ulFlags = D3DCREATE_HARDWARE_VERTEXPROCESSING; 
 
    // Attempt to create a HAL device 
     m_pD3D->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, m_hWnd, ulFlags, 
                          &PresentParams, &m_pD3DDevice ) );  

  
While this would be a fairly straightforward code update, it is generally not acceptable to restrict the 
user to pre-selected video modes. In a commercial game, your application should provide the user with 
a choice of which resolution and color depth to use. These settings allow the user to tailor the 
performance of their computer to the application so that everything runs as smoothly as possible. 
Incidentally, there is no guarantee that the current display mode being used by the desktop is supported 
by the adapter in fullscreen mode (although this is usually the case). 
 
Providing the user the ability to configure the application environment is not a difficult process but it is 
somewhat involved. The following list demonstrates typical tasks that need to be accomplished as part 
of a more user-friendly (and system safe) initialization process.  
 
The application should determine: 

• the number of adapters on the current system 
• the display modes each adapter supports 
• whether or not the adapter can create a HAL device 
• hardware vertex processing for the HAL device on a given adapter  
• available depth buffer formats for a given display mode/device/adapter set 
• which adapter display modes work with each device type  
• available refresh rates (if we wish to allow the user to select) 
• available presentation intervals (if we wish to allow the user to select) 
• which adapters, devices and video modes support anti-aliasing 

 
We would also like to give the application the ability to force restrictions on device feature 
requirements. For example, if our application requires support for the use of a stencil buffer and the 
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user hardware does not meet those needs, the application will need to be able to take appropriate steps 
when this is determined. 
 
 
The CD3DInitialize Class 
 
In this project we are going to create a Direct3D environment initialization class. It will use a number 
of support classes and we will be discussing those over the coming sections. Before we examine the 
source code to this class, it will be helpful to see how it would be used by an application. The class 
design embodies a simple goal: to create a valid (and preferably optimal) device. The CD3DInitialize 
class is defined in CD3DInitialize.h and CD3DInitialize.cpp. 
 
The main purpose of this class is to create a valid device and return a pointer to that device to the 
application. It is designed to be called from an application initialization function. The class will store a 
great deal of information about the system environment including every combination of 
Adapter/Device/Display Mode/Z-Buffer formats. In our application, we will instantiate this class on 
the stack since this allows the information to be flushed from memory as soon as the class goes out of 
scope (when the initialization function ends). This is obviously not a requirement but it does serve a 
useful purpose. 
 
CD3DInitialize Initialize; 
 
// Create DirectD3D9 object 
m_pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 
 
// pass it in as the only parameter to our initialization class 
Initialize.Enumerate( m_pD3D ) ) 
 
The Enumerate function does quite a bit of work. It scans the hardware and tests what each adapter on 
the system is capable of. The class stores a list of adapters. For each adapter in the list, it stores another 
list with all of the display modes the adapter. It also stores an array of each device type supported 
(HAL or REF) and for each of those it stores an array of format combinations that work with that 
device. Each combination contains an adapter format, back buffer format, an array of compatible depth 
buffer formats that work with this adapter format/back buffer combination. It will determine whether 
the combination is for windowed or fullscreen mode and store an array of valid presentation intervals 
that can be used with a given combination. Finally, it stores an array of vertex processing types that 
can be used with this combination (hardware/software vertex processing or both).  
 
The CD3DInitialize class communicates this data by means of a support class called CD3DSettings 
(defined in CD3DInitialize.h): 
 
class CD3DSettings  
{ 
public: 
     
    struct Settings 
    { 
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        ULONG                    AdapterOrdinal; 
        D3DDISPLAYMODE           DisplayMode; 
        D3DDEVTYPE               DeviceType; 
        D3DFORMAT                BackBufferFormat; 
        D3DFORMAT                DepthStencilFormat; 
        D3DMULTISAMPLE_TYPE     MultisampleType; 
        ULONG                    MultisampleQuality; 
        VERTEXPROCESSING_TYPE    VertexProcessingType; 
        ULONG                    PresentInterval; 
    }; 
 
    bool        Windowed; 
    Settings    Windowed_Settings; 
    Settings    Fullscreen_Settings; 
 
    Settings*   GetSettings(){return(Windowed)? &Windowed_Settings : &Fullscreen_Settings;} 
}; 
 

The class is a container for two Settings structures. Each will hold settings for windowed mode and 
fullscreen mode. We can pass one of these structures to two member functions of the 
CD3DInitialization class so that settings can be determined for both windowed and fullscreen modes: 
 
bool CD3DInitialize::FindBestFullscreenMode( CD3DSettings & D3DSettings, 
                                                                                D3DDISPLAYMODE * pMatchMode, 
                                                                                bool bRequireHAL, bool bRequireREF ) 
 
This function takes a D3DDISPLAYMODE structure containing the desired display resolution and 
pixel format. Two optional booleans are provided to indicate whether to enumerate HALs or REF 
devices. If we do not pass these parameters, the default behavior of the function is to search all devices 
on all adapters with a preference for a HAL device. When this function returns, the CD3DSetting 
parameter will have its FullscreenSettings member populated appropriately with available features. We 
can use this function to find a compatible fullscreen device as follows: 
 
    D3DDISPLAYMODE MatchMode; 
 
   // Attempt to find a good default fullscreen set 
    MatchMode.Width          = 640; 
    MatchMode.Height         = 480; 
    MatchMode.Format         = D3DFMT_UNKNOWN; 
    MatchMode.RefreshRate    = 0; 
 
    Initialize.FindBestFullscreenMode( m_D3DSettings, &MatchMode ); 
 
We pass the FindBestFullscreenMode function the CGameApp class CD3Dsettings structure along 
with a display mode. It searches through its list of adapters/devices and combination arrays and fills 
the CD3DSettings::FullscreenSettings structure with the closest match it can find to the desired input 
mode. In this example above, the D3FMT_UNKNOWN format indicates that the application will not 
be particular about the format used. The same applies to refresh rate. In this case the function will 
prefer a 640x480 format whose pixel format matches the current adapter display format (desktop 
format). It will also attempt to use the current desktop refresh rate. 
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The information stored in the CD3DSetting class can now be used to fill out a 
D3DPRESENT_PARAMETERS structure and call CreateDevice with a device configuration we can 
be confident has support. 
 
If our application wants to be able to switch from fullscreen to windowed mode, we should also 
determine the Windowed settings (for the same CD3DSettings class): 
 
bool CD3DInitialize::FindBestWindowedMode( CD3DSettings & D3DSettings, bool bRequireHAL, 
                                                                                 bool bRequireREF ) 
 
With windowed mode enumeration we will not need to pass the display mode. The code will 
automatically search for an adapter/device combination that uses the current desktop format, find a 
compatible frame buffer format, and give preference to HAL devices. 
 
   // Attempt to find a good default full screen set 
    MatchMode.Width         = 640; 
    MatchMode.Height        = 480; 
    MatchMode.Format        = D3DFMT_UNKNOWN; 
    MatchMode.RefreshRate = 0; 
    Initialize.FindBestFullscreenMode( m_D3DSettings, &MatchMode ); 
 
    // Attempt to find a good default windowed set 
    Initialize.FindBestWindowedMode( m_D3DSettings ); 
 

We can use this function along with its predecessor using the same CD3DSettings object to have both 
its Windowed_Settings and its Fullscreen_Settings members filled with compatible device creation 
parameters. This is precisely what we will do in this demo in the CGameApp::CreateDisplay function. 
 
m_D3DSettings.Fullscreen_Settings  = settings to create a 640x480 fullscreen device 
m_D3DSettings.Windowed_Settings = settings to create a compatible windowed mode device 
 
The above code is used only to provide an initial set of viable default initialization values. The user 
can then subsequently choose alternatives from a list of video modes that are supported on the current 
hardware. The results of the user selection will be used to amend the entries in the m_D3DSettings 
structure to create the requested device. 
 
Note that at this point in the code, no device has been created. The CD3DInitialize::Enumerate 
function has only built a list of all adapter/device/display mode/depth buffer combinations and stored 
them in an array. The FindBestXX functions have returned two of these combinations based on search 
criteria. The criterion in the example was a 640x480 fullscreen mode in any format and a windowed 
mode that matches the current display mode. 
 
The next task is to create the device using these settings by calling the 
CD3DInitialization::CreateDisplay function. The D3DSetting class includes a boolean variable that 
allows us to specify the desired window mode (windowed vs. fullscreen) so that the appropriate 
settings are selected during device creation.  
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The following code snippet searches for an 800x600 32 bit color mode, then retrieves a viable 
windowed mode, and finally creates a fullscreen device. The windowed setting will be used to reset 
the device if the user chooses to switch between windowed and fullscreen modes using 
SHIFT+ENTER.  
 
D3DDISPLAYMODE MatchMode; 
CD3DInitialize         Initialize; 
 
// Create DirectD3D9 object 
m_pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 
 
// pass it in as the only parameter to our initialization class 
Initialize.Enumerate( m_pD3D ) ) 
 
// Attempt to find a good default full screen set 
MatchMode.Width         = 800; 
MatchMode.Height        = 600; 
MatchMode.Format        = D3DFMT_A8R8G8B8; 
MatchMode.RefreshRate   = 0; 
Initialize.FindBestFullscreenMode( m_D3DSettings, &MatchMode ); 
 
// Attempt to find a good default windowed set 
Initialize.FindBestWindowedMode( m_D3DSettings ); 
 
// now state we wish to create a full screen device initially 
m_D3Dsettings.Windowed = TRUE 
 
 // Create the device and application window (parameter list not covered yet, will 
be discussed next) 
 LPTSTR          WindowTitle  = _T("Enumeration"); 
 USHORT          Width        = 400; 
 USHORT          Height       = 400;  
 Initialize.CreateDisplay(m_D3DSettings, 0, NULL, StaticWndProc, WindowTitle, 
                          Width, Height, this ); 
 
 // Retrieve created items 
 m_pD3DDevice = Initialize.GetDirect3DDevice( ); 
 m_hWnd       = Initialize.GetHWND( ); 
 
 
CD3DInitialize::CreateDisplay 
 
The CreateDisplay function creates the device object and (optionally) the application window. When 
the function returns successfully, the application will be able to retrieve a pointer to the device 
interface that was created and a handle to the window that was created. This is done by calling the 
GetDirect3DDevice and GetHwnd member functions respectively. These will be stored in the 
CGameApp class member variables for future application use. At that point, our application could 
delete (or in our case simply let its scope expire) the CD3DInitialize class if desired.  
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HRESULT CD3DInitialize::CreateDisplay( CD3DSettings& D3DSettings, 
                                                                       ULONG Flags, 
                                                                       HWND hWnd,  
                                                                       WNDPROC pWndProc, 
                                                                       LPCTSTR Title, 
                                                                       ULONG Width,  
                                                                       ULONG Height,  
                                                                       LPVOID lParam ) 
 
 
D3DSettings 
This is a structure filled with device creation information. The D3DSettings::Windowed boolean will 
inform the CreateDisplay function whether it should create a fullscreen or windowed device (using its 
Fullscreen_Settings or Windowed_Settings members respectively). 
 
Flags 
The flags passed into this parameter will be passed into the CreateDevice function of the IDirect3D 
interface after being combined with any other required flags, such as the vertex processing creation 
flags. 
  
hWnd 
If you do not wish the function to create an application window for you automatically, perhaps because 
you have already created one that has special attributes, you can pass in the HWND of your 
application window here. This window will be attached to the device as the focus window and the 
rendering window. If a fullscreen application is being created, this window will be resized to take up 
the entire display. If NULL is passed instead, the function will use the following four parameters to 
build a window for you. 
 
pWndProc 
If hWnd is NULL, then this parameter should be name of the function (often called the WndProc 
function) that will handle the newly created window’s messages. As with all of our demos thus far, this 
will be the global StaticWndProc function in our application. This function will then dispatch the 
message to the CGameApp::DisplayWndProc function. 
 
Title 
If hWnd is NULL, then this string contains the title of the newly created window. The title will be 
displayed in the caption bar in windowed device mode. 
 
Width 
If hWnd is NULL, this should contain the desired window width. 
 
Height 
If hWnd is NULL, this should contain the desired window height. 
 
lParam 
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If hWnd is NULL, this should be a 32 bit value that will be associated with the created window. In 
chapter 1, we used this per window data to store a pointer to the instance of the CGameApp class to 
which it belongs. That is also what we will do in this application. We pass in the this pointer so that a 
pointer to the CGameApp class is stored inside the window itself. This is used in the StaticWndProc 
function to determine which instance of the CGameApp class data should be dispatched to.  
 
If the user wants to switch from a fullscreen device to a windowed device (and vice versa) using 
SHIFT+ENTER, we can handle this request in our window procedure as follows: 
 
                   case VK_RETURN: 
                     
                   if ( GetKeyState( VK_SHIFT ) & 0xFF00 ) 
                   { 
                       CD3DInitialize Initialize; 
  
                       // Toggle full screen / windowed 
                        m_D3DSettings.Windowed = !m_D3DSettings.Windowed; 
                        Initialize.ResetDisplay( m_pD3DDevice, 
                                                 m_D3DSettings, m_hWnd ); 
                        SetupRenderStates( ); 
 
                        // Set menu only in windowed mode 
                        // (Removed by ResetDisplay automatically in fullscreen) 
                        if ( m_D3DSettings.Windowed ) 
                        { 
                            SetMenu( m_hWnd, m_hMenu ); 
                        } // End if Windowed 
 
                    } // End if 
                    
                    break; 
 
 
The CGameApp class has the CD3DSettings stored for both windowed and fullscreen modes. To flip 
between the two, we toggle the value of the CD3DSetting::Windowed boolean variable and call 
CInitialize.ResetDisplay. We pass our current device object, the CD3DSetting object with the newly 
modified boolean, and the HWND of the application window. 
 
 
Deriving Classes from CD3DInitialize 
 
There are times when our application will require explicit feature support from the 3D hardware. Some 
examples might be the number of textures the device can blend simultaneously, support for counter-
clockwise culling, minimum screen resolutions and so on. The CD3DInitialization class includes a 
series of overridable virtual functions (which by default all simply return true) to aid in this process: 
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virtual bool ValidateDisplayMode(const D3DDISPLAYMODE& Mode ) { return true; } 
virtual bool ValidateDevice(const D3DDEVTYPE& Type, const D3DCAPS9& Caps ) { return true; } 
virtual bool ValidateMultiSampleType(const D3DMULTISAMPLE_TYPE& Type){ return true; } 
virtual bool ValidatePresentInterval(const ULONG& Interval){ return true; } 
virtual bool ValidateDeviceOptions(const D3DFORMAT& BackBufferFormat,bool IsWindowed) 
             {return true;} 
virtual bool ValidateDepthStencilFormat(const D3DFORMAT& DepthStencilFormat) 
             {return true;} 
virtual bool ValidateVertexProcessingType(const VERTEXPROCESSING_TYPE& Type) 
             {return true;} 
 
The general idea behind these ValidateXX calls is that a derived class can override them to reject 
devices, display modes, depth buffer formats, vertex processing capabilities, etc. The 
CD3DInitialization will call these functions to determine what choices are valid for your application. 
 
In applications throughout the course, we will override some of these functions to make sure that we 
reject adapters and devices that do not meet the base requirements. It is unlikely that our applications 
will reject many devices since most will not require an advanced feature set, but it does set a precedent 
for future usage.  
 
In CGameApp.h we derive a class from the CD3DInitialization class: 
 
class CMyD3DInit : public CD3DInitialize 
{ 
private: 
    virtual bool   ValidateDisplayMode   ( const D3DDISPLAYMODE& Mode ); 
    virtual bool   ValidateDevice        ( const D3DDEVTYPE& Type, const D3DCAPS9& Caps ); 
    virtual bool   ValidateVertexProcessingType ( const VERTEXPROCESSING_TYPE& Type ); 
}; 
 
This derived class overrides three of the validation functions (see CGameApp.cpp). 
 
bool CMyD3DInit::ValidateDisplayMode( const D3DDISPLAYMODE &Mode ) 
{ 
    // Test display mode 
    if ( Mode.Width < 640 || Mode.Height < 480 || Mode.RefreshRate < 60 ) return false; 
     
    // Supported 
    return true; 
} 
 
When we call the CMyD3DInit::Enumerate function, it searches through all adapters on the system 
and records, in an array, the various video modes that the adapter supports. Before it adds them to the 
list, it calls the virtual ValidateDisplayMode function and passes in the D3DDISPLAYMODE. Our derived 
class method checks the width and height of the display and returns true only if the width is not 
smaller than 640, the height is not smaller than 480, and the refresh rate is not less than 60 Hz. When a 
mode is encountered where any of the above criteria are not met, we return false back to the 
Enumerate function of the base class. This instructs it not to add this particular display mode to the list 
of available display modes. Otherwise, we return true and the display mode is added to the array. The 
Enumerate function will call this function for every display mode for every adapter on the current 
system. This allows us to remove display modes we do not wish to support from consideration. In the 
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above example, a 320x200 video mode would be rejected and thus not be added to the CD3DInitialize 
database.  
 
ValidateDevice tests the capabilities of the device and rejects those that do not meet the application 
requirements. This function is called once for every device type found on each adapter during the 
enumeration function. The input parameters are the device type and the D3DCAPS9 structure 
containing the capabilities of the device currently being tested by the enumeration function: 
 
bool CMyD3DInit::ValidateDevice( const D3DDEVTYPE &Type, const D3DCAPS9 &Caps ) 
{ 
    // Test Capabilities (All device types supported) 
    if ( !(Caps.RasterCaps & D3DPRASTERCAPS_DITHER       ) ) return false; 
    if ( !(Caps.ShadeCaps & D3DPSHADECAPS_COLORGOURAUDRGB) ) return false; 
    if ( !(Caps.PrimitiveMiscCaps & D3DPMISCCAPS_CULLCCW ) ) return false; 
    if ( !(Caps.ZCmpCaps & D3DPCMPCAPS_LESSEQUAL         ) ) return false; 
 
    // Supported 
    return true; 
} 

 
Our application checks the D3DCAPS9.RasterCaps member to ensure that dithering is supported. It 
checks the D3DCAPS9.ShadeCaps member to confirm Gouraud shading. The PrimitiveMiscCaps 
member is evaluated to make sure that the cull mode we are using (counter clockwise) is supported. 
Finally, the default Z-Buffer pixel compare of distances is tested.  If any of the above tests fail (which 
is highly unlikely), then the function returns false informing the enumeration function that this device 
should not be added to the database. The result is that this device will never be used to search for 
compatible video modes during the CD3DInitialize::FindBestXX functions.  
 
The last function we override in our demo is the ValidateVertexProcessingType. It allows us to reject 
any devices that do not support the required vertex processing support (eg. hardware transformation 
and lighting). It can also be used to remove unnecessary processing types. For example, our 
application does not need a device that supports mixed vertex processing.  
 
bool CMyD3DInit::ValidateVertexProcessingType( const VERTEXPROCESSING_TYPE &Type ) 
{ 
    // Test Type ( We don't need mixed  ) 
    if ( Type == MIXED_VP ) return false; 
 
    // Supported 
    return true; 
} 

 
When you run the Lab Project 2.2 application a dialog box will appear. You will be able to select the 
various device parameters you desire. Notice that in the Vertex Processing combo box, mixed vertex 
processing is not an option (in keeping with the function above): 
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The CD3DInitialization Class 
 
The CD3DInitialization class and all of its support classes are defined in CD3DInitialization.cpp: 
 
class CD3DInitialize 
{ 
public: 
 // Member function have been snipped from here 
private 
 // Member variables    
    LPDIRECT3D9    m_pD3D;          // Primary Direct3D Object. 
    LPDIRECT3DDEVICE9      m_pD3DDevice;           // Created Direct3D Device. 
    HWND                   m_hWnd;                 // Created window handle 
    VectorAdapter          m_vpAdapters;           // Enumerated Adapters 
}; 

 
The first member is a pointer to the IDirect3D9 interface passed into the CD3DInitialize function. The 
second holds the IDirect3DDevice9 interface to the device object that will ultimately be created at the 
end of the enumeration process (when the user calls CD3DInitialize::CreateDisplay). The third HWND 
parameter will eventually be filled with the handle to the automatically created window created by this 
class in the CreateDisplay member function. All three of these member variables will initially be set to 
NULL. The fourth parameter stores an array of CD3DEnumAdapter class pointers. This class is a 
support class which has members to identify each adapter on the current system. VectorAdapter is a 
typedef for an STL vector of pointers of type CD3DEnumAdpater: 
 
typedef std::vector<CD3DEnumAdapter*>  VectorAdapter; 

 
Please refer to the appendices for a brief refresher if you are unfamiliar with the STL vector type.  
 
CD3DEnumAdpater is a support class that maintains adapter information. Usually, there will only be 
one adapter on most computer systems and after enumeration has taken place, the m_vpAdapters 
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vector will only hold a single pointer to a CD3DEnumAdapter class. When there is more than one 
adapter on the current system, there will be one CD3DEnumAdpater class generated for each adapter 
on the system. 
 
class CD3DEnumAdapter 
{ 
public: 
    ~CD3DEnumAdapter(); 
 
    ULONG                    Ordinal; 
    D3DADAPTER_IDENTIFIER9   Identifier; 
    VectorDisplayMode        Modes; 
    VectorDevice             Devices; 
}; 

 
Each CD3DEnumAdpater instance holds an adapter ordinal and the adapter identifier. We can retrieve 
an adapter identifier using the IDirect3D9::GetAdapterIdentifier function. D3DADAPTER_INDENTIFIER9 
holds information about the hardware such as the name of the card, the driver, and the manufacturer: 
 
typedef struct _D3DADAPTER_IDENTIFIER9  
{ 
    char Driver[MAX_DEVICE_IDENTIFIER_STRING]; 
    char Description[MAX_DEVICE_IDENTIFIER_STRING]; 
    char DeviceName[32]; 
    LARGE_INTEGER DriverVersion; 
    DWORD DriverVersionLowPart; 
    DWORD DriverVersionHighPart; 
    DWORD VendorId; 
    DWORD DeviceId; 
    DWORD SubSysId; 
    DWORD Revision; 
    GUID DeviceIdentifier; 
    DWORD WHQLLevel; 
} D3DADAPTER_IDENTIFIER9; 
 
Our application is interested only in the Description field. This is a string that tells us the name of the 
adapter (ex. ATI Radeon 7500™, nVidia geForce 3™, etc.). The user will be able to see that the 
application is using the desired adapter. 
 
Each CD3DEnumAdapter also manages two vectors. The first will be filled with all of the display 
modes that the adapter supports and is defined as: 
 
typedef std::vector<D3DDISPLAYMODE> VectorDisplayMode; 
 
This vector holds an array of D3DDISPLAYMODE structures. Each D3DDISPLAYMODE contains a width, 
height, pixel format, and refresh rate. 
 
The second vector is defined as: 
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typedef std::vector<CD3DEnumDevice*> VectorDevice;  
 
VectorDevice contains CD3DEnumDevice class pointers. This class will be used to hold device 
information. As mentioned previously, several device types might be supported. For example, for most 
adapters you will usually be able to create a REF device and a HAL device type. Each device type that 
is available for an adapter will be stored in the CD3DEnumAdapter::VectorDevice array.  
 
You should begin to see a hierarchy forming here. At the root there is a list of adapters 
(CD3DEnumAdpater classes). For each adapter there is a list of display modes and a list of devices 
available on that adapter (CD3DenumDevice classes).  
 
The CD3DEnumDevice class is also defined in CD3DInitialize.h: 
 
class CD3DEnumDevice 
{ 
public: 
    ~CD3DEnumDevice(); 
 
    D3DDEVTYPE                DeviceType; 
    D3DCAPS9                  Caps; 
    VectorDeviceOptions       Options; 
}; 
 
For each device, this class is used to store the device type, device capabilities, and a vector of options 
available on that device. In this context, a device option is a compatible combination of display modes, 
frame buffer formats, pixel formats, refresh rates, depth buffer formats, presentation intervals, vertex 
processing capabilities and multi-sampling modes available on that device.  
 
VectorDeviceOptions is type defined as: 
 
typedef std::vector<CD3DEnumDeviceOptions*> VectorDeviceOptions; 
 
Each CD3DEnumDevice class maintains an array of CD3DEnumDeviceOptions class pointers for 
each configuration combination that works with this device. This class is shown below: 
 
class CD3DEnumDeviceOptions 
{ 
public: 
    ~CD3DEnumDeviceOptions(); 
 
    ULONG                  AdapterOrdinal; 
    D3DDEVTYPE             DeviceType; 
    D3DCAPS9               Caps; 
    D3DFORMAT              AdapterFormat; 
    D3DFORMAT              BackBufferFormat; 
    bool                   Windowed; 
    VectorMSType           MultiSampleTypes; 
    VectorULONG            MultiSampleQuality; 
    VectorFormat           DepthFormats; 
    VectorVPType           VertexProcessingTypes; 
    VectorULONG            PresentIntervals; 
}; 
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The first three members of this structure contain duplicated device and adapter information from 
further up the hierarchy. It is convenient to store the adapter and device at this level because this is the 
structure our FindBestWindowedMode and FindBestFullscreenMode functions will be working with 
when searching for a suitable device and mode. In the end, these functions are searching for a 
compatible DeviceOptions structure with which to create the device. When we enumerate our adapters, 
each device on that adapter will have a structure allocated for every unique combination of settings 
that can be used with that device.  
 
Each device option contains an adapter format and back buffer format that the device is compatible 
with. The Windowed boolean identifies the option as either a windowed or fullscreen mode setting 
combination. This is ultimately what a combination is. It is a front buffer/back buffer windowed or 
fullscreen configuration that works with a given device. For each front buffer/back buffer combination 
there will be a new option added to the array for the device. 
 
The remaining members are arrays of other settings that work with the combination. There is an 
unique array for depth buffer formats, another for presentation intervals, one for vertex processing 
settings, and an array of multi-sampling capabilities used for anti-aliasing. These vectors are type 
defined to hold core DirectX structures as seen below: 
 
typedef std::vector<D3DMULTISAMPLE_TYPE>    VectorMSType; 
typedef std::vector<D3DFORMAT>              VectorFormat; 
typedef std::vector<ULONG>                  VectorULONG; 
typedef std::vector<VERTEXPROCESSING_TYPE>  VectorVPType; 

 
This entire hierarchy will be filled with information by the CD3DInitialization class using the 
Enumerate function. The function will enter a loop where it looks for available adapters. For each 
adapter found it adds a CD3DEnumAdpater class to the CD3DInitialize adapter array. It enumerates 
all of the available display modes and stores them in a mode array inside the CD3DEnumAdapater 
class. 
 
For each adapter, it loops through all of the device types it is capable of supporting. For each device it 
allocates a CD3DEnumDevice class and adds it to the CD3DEnumAdapter device array. Another loop 
finds every supported front buffer/back buffer format combination that can be used with the device and 
stores that information in CD3DEnumDevice::CD3DEnumDeviceOptions. This structure is filled with 
information such as viable depth buffer formats, vertex processing types, and so on.  
 
Once all of this information has been enumerated, our application can call 
CD3DInitialize::FindBestFullscreenMode.  That function can now loop through each adapter, each 
device for that adapter, and eventually each device option set stored for that device until it finds one 
that best suits its needs.  
 
Fig 2.3 depicts how the classes just discussed are stored in a hierarchy that can be navigated to find the 
best results. Keep in mind that before a single display mode, device, or device option set is added to 
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the hierarchy, the Validation functions are called. These functions provide the application an 
opportunity to accept or reject a given set of capabilities.   

 
 

Figure 2.3 
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CD3DInitialize::Enumerate 
 
The enumerate function is the first CD3DInitialize function explicitly called by our application. It 
initiates the construction of the adapter/device options database: 
 
HRESULT CD3DInitialize::Enumerate( LPDIRECT3D9 pD3D ) 
{ 
    HRESULT hRet; 
  
    // Store the D3D Object 
    m_pD3D = pD3D; 
    if ( !m_pD3D ) return E_FAIL; 
     
    // We have made copy of pointer do increase reference count 
    m_pD3D->AddRef(); 
 
    // Enumerate the adapters 
    if ( FAILED( hRet = EnumerateAdapters() ) ) return hRet; 
 
    // Success! 
    return S_OK; 
} 
 
The function stores the input IDirect3D9 pointer for later use and then calls the EnumerateAdapters 
member function. This function is responsible for filling up the CD3DEnumAdpater array: 
 
 
CD3DInitialize::EnumerateAdapters 
 
HRESULT CD3DInitialize::EnumerateAdapters() 
{ 
    HRESULT hRet; 
 
    // Store the number of available adapters 
    ULONG nAdapterCount = m_pD3D->GetAdapterCount(); 
 
    // Loop through each adapter 
    for ( ULONG i = 0; i < nAdapterCount; i++ ) 
    { 
        CD3DEnumAdapter * pAdapter = new CD3DEnumAdapter; 
        if ( !pAdapter ) return E_OUTOFMEMORY; 
 
        // Store adapter ordinal 
        pAdapter->Ordinal = i; 
 
        // Retrieve adapter identifier 
        m_pD3D->GetAdapterIdentifier( i, 0, &pAdapter->Identifier ); 
 
        // Enumerate all display modes for this adapter 
        if ( FAILED( hRet = EnumerateDisplayModes( pAdapter ) ) || 
             FAILED( hRet = EnumerateDevices( pAdapter ) ))  
        { 
            delete pAdapter; 
            if ( hRet == E_ABORT ) continue; else return hRet; 
         
        } // End if Failed Code 
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        // Add this adapter the list 
        try { m_vpAdapters.push_back( pAdapter ); } catch ( ... ) 
        { 
            delete pAdapter; 
            return E_OUTOFMEMORY; 
 
        } // End Try / Catch Block 
 
    } // Next Adapter 
 
    // Success! 
    return S_OK; 
} 
 
To begin, we query the Direct3D9 object for the number of graphics adapters installed on the system. 
For each adapter, we allocate a CD3DEnumAdpater class to be filled with the adapter information. We 
record the adapter ordinal and call the IDirect3D::GetAdapterIdentifier method to retrieve the adapter 
details (name, description, driver version, etc.). The CD3DEnumAdapter class has two arrays to be 
filled. The first contains all of the supported display modes and the second contains a list of supported 
device types (encapsulated by the CD3DEnumDevice class). To fill these arrays we call two more 
methods of this class: EnumerateDisplayModes and EnumerateDevices. When these functions return, 
the CD3DEnumAdapter class contains all necessary information. Finally, we add the adapter to the 
vector. At this point, the enumeration process is complete and the adapter/device database has been 
built. 
 
Most of the work happens in the two helper functions called from the above code. 
CD3DInitialize::EnumerateDisplayModes is responsible for compiling an array of display modes 
supported by the device. The following function loops through all supported Direct3D pixel formats. 
There are a limited number of D3DFMT types that can be used for the physical adapter mode: 
 
const ULONG          ValidAdapterFormatCount = 3; 
const D3DFORMAT      ValidAdapterFormats[3]  = { D3DFMT_X8R8G8B8, D3DFMT_X1R5G5B5, 
                                                 D3DFMT_R5G6B5 }; 

 
At least one of these adapter formats will be supported by all Direct3D compatible cards (possibly all 
three). Our function needs to loop through all three formats in the array. It needs to enumerate all of 
the display modes (width, height, and refresh rates) that the device can support in that format. 
 
 
CD3DInitialize::EnumerateDisplayModes 
 
HRESULT CD3DInitialize::EnumerateDisplayModes( CD3DEnumAdapter * pAdapter ) 
{ 
    HRESULT         hRet; 
    ULONG           i, j; 
    D3DDISPLAYMODE  Mode; 
    
    // Loop through each valid 'Adapter' format. 
    for ( i = 0; i < ValidAdapterFormatCount; i++ ) 
    { 
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        // Retrieve the number of valid modes for this format 
        ULONG nModeCount = m_pD3D->GetAdapterModeCount( pAdapter->Ordinal, 
                                                        ValidAdapterFormats[i] ); 
        if ( nModeCount == 0 ) continue; 
 
        // Loop through each display mode for this format 
        for ( j = 0; j < nModeCount; j++ ) 
        { 
            // Retrieve the display mode 
            hRet = m_pD3D->EnumAdapterModes( pAdapter->Ordinal, ValidAdapterFormats[i], 
                                             j, &Mode ); 
            if ( FAILED( hRet ) ) return hRet; 
 
            // Is supported by user ? 
            if ( !ValidateDisplayMode( Mode ) ) continue; 
 
            // Add this mode to the adapter 
            try { pAdapter->Modes.push_back( Mode ); } catch( ... )  
            {  
                return E_OUTOFMEMORY; 
            } // End Try / Catch block 
 
        } // Next Adapter Mode 
 
    } // Next Adapter Format 
 
    // Success? 
    return (pAdapter->Modes.size() == 0) ? E_ABORT : S_OK; 
} 

 
We test each adapter format in the array, and call the IDirect3D9::GetAdapterModeCount function to 
retrieve the number of display modes that the adapter supports in that pixel format. If the count is zero, 
then the device does not support the format and we move on to the next iteration of the loop. If the 
result is non-zero, then this is the number of different display mode combinations the adapter can 
support with that pixel format. Next, we loop through each of these modes and call the 
IDirect3DDevice9::EnumAdpaterModes function passing the format and the mode number to retrieve 
the display mode.  
 
Before adding the returned display mode to the CD3DEnumAdapter display mode array, the virtual 
function ValidateDisplayMode is called. If the derived function returns true, then the display mode is 
added to the array. Once done, we retrieve the size of the vector. A size of zero means that all display 
modes were rejected. In this case we would return E_ABORT to tell the EnumerateAdapters function 
to remove this adapter from further consideration. 
 
When the overall process is complete, program flow returns to the 
CD3DInitialize::EnumerateAdapters function. There now exists an array of valid display modes and 
CD3DInitialize::EnumerateDevices is called to fill the array of device types for CD3DEnumAdapter. 
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CD3DInitialize::EnumerateDevices 
 
This function will populate the CD3DEnumAdpater::CD3DEnumDevices array by traversing all of the 
DirectX supported device types to test whether they are valid for this adapter. At the top of the .cpp 
file, we define an array holding the three possible device types: 
 
const ULONG            DeviceTypeCount = 3; 
const D3DDEVTYPE       DeviceTypes[3] = { D3DDEVTYPE_HAL, D3DDEVTYPE_SW, D3DDEVTYPE_REF };  
 

Generally only a HAL or REF device will be available since third party software devices 
(D3DDEVTYPE_SW) do not ship with DirectX9 and are not widely used. 
 
The function loops through each device type supported by DirectX and calls 
IDirect3D9::GetDeviceCaps to retrieve the device type capabilities on the current adapter. If the device 
type is not available on the adapter, the function will fail and the loop continues. If the call succeeds, 
then the device type is supported by the adapter and the D3DCAPS9 structure will be filled with all the 
device capabilities info. Finally, the function calls the virtual function ValidateDevice to allow the 
application to accept or reject the passed device type.  
 
HRESULT CD3DInitialize::EnumerateDevices( CD3DEnumAdapter * pAdapter ) 
{ 
    ULONG    i; 
    HRESULT  hRet; 
    D3DCAPS9 Caps; 
 
    // Loop through each device type (HAL, SW, REF) 
    for ( i = 0; i < DeviceTypeCount; i++ ) 
    { 
        // Retrieve device caps (on failure, device not generally available) 
        if ( FAILED( m_pD3D->GetDeviceCaps( pAdapter->Ordinal, DeviceTypes[i], &Caps ) ) ) 
            continue; 
 
        // Supported by user ? 
        if ( !ValidateDevice( DeviceTypes[ i ], Caps ) ) continue; 
 
        // Allocate a new device 
        CD3DEnumDevice * pDevice = new CD3DEnumDevice; 
        if ( !pDevice ) return E_OUTOFMEMORY; 
 
        // Store device information 
        pDevice->DeviceType = DeviceTypes[i]; 
        pDevice->Caps       = Caps; 
 
        // Retrieve various init options for this device 
        if ( FAILED( hRet = EnumerateDeviceOptions( pDevice, pAdapter ) ) )  
        {  
            delete pDevice;  
            if ( hRet == E_ABORT ) continue; else return hRet;  
     
        } // End if failed to enumerate 
 
        // Add it to our adapter list 
        try { pAdapter->Devices.push_back( pDevice ); } catch ( ... ) 
        { 
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            delete pDevice; 
            return E_OUTOFMEMORY; 
 
        } // End Try / Catch Block 
 
    } // Next Device Type 
 
    // Success? 
    return (pAdapter->Devices.size() == 0) ? E_ABORT : S_OK; 
 
} 
 
If ValidateDevice returns true, a new CD3DEnumDevice is allocated and will be added to the 
CD3DEnumAdapter device array. The object is filled with the device type and capabilities previously 
retrieved into the class member variables. Before adding it to the device array, we call the 
EnumerateDeviceOptions function to compile an array of device options (stored in 
CD3DEnumDevice::Options). When EnumerateDeviceOptions returns, there will be an option set for 
every compatible adapter/back buffer format the device is capable of (both windowed and fullscreen 
mode).  
 
 
CD3DInitialize::EnumerateDeviceOptions 
 
CD3DEnumDeviceOptions stores five vectors that are used to store various options that can be used 
with each adapter/back buffer format combination. We declare an array of all possible back buffer 
formats supported by DirectX9 at the top of the .cpp file to make it easier to loop and test them all: 
 
const ULONG       BackBufferFormatCount   = 11; 
const D3DFORMAT   BackBufferFormats[11]   = { D3DFMT_R8G8B8,      D3DFMT_A8R8G8B8, 
                                              D3DFMT_X8R8G8B8,  D3DFMT_R5G6B5,                      
                                              D3DFMT_A1R5G5B5,  D3DFMT_X1R5G5B5, 
                                              D3DFMT_R3G3B2,      D3DFMT_A8R3G3B2, 
                                              D3DFMT_X4R4G4B4,   D3DFMT_A4R4G4B4,  
                                              D3DFMT_A2B10G10R10 }; 
 
HRESULT CD3DInitialize::EnumerateDeviceOptions(CD3DEnumDevice *pDevice, 
                                               CD3DEnumAdapter *pAdapter) 
{ 
    HRESULT     hRet; 
    ULONG       i, j, k; 
    bool        Windowed; 
    D3DFORMAT   AdapterFormats[ ValidAdapterFormatCount ]; 
    ULONG       AdapterFormatCount = 0; 
    D3DFORMAT   AdapterFormat, BackBufferFormat; 
 
    // Build a list of all the formats used by the adapter 
    for ( i = 0; i < pAdapter->Modes.size(); i++ ) 
    { 
        // Already added to the list ? 
        for ( j = 0; j < AdapterFormatCount; j++ )  
            if ( pAdapter->Modes[i].Format == AdapterFormats[j] ) break; 
 
        // Add it to the list if not existing. 
        if ( j == AdapterFormatCount ) 
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            AdapterFormats[ AdapterFormatCount++ ] = pAdapter->Modes[i].Format; 
 
    } // Next Adapter Mode 
 
This function starts by building a local list of possible adapter formats supported by the current 
CD3DEnumAdapter object. These formats are stored in the local array AdapterFormats. Recall that the 
CD3DEnumAdapter object stored all of the display modes in an array. So it is a case of testing each 
format and adding it to the local array (avoiding duplicates).  
 
At this point the function has an array of adapter format supported by the device. It will now iterate 
over the list and test each adapter format against every possible back buffer format in our const array 
(see inner loop). After it has determined an adapter format and a back buffer format, it will check 
whether this combination is supported by the device in both windowed and fullscreen modes. The 
combination is evaluated using the IDirect3D9::CheckDeviceType function. This function will only 
succeed when the adapter format and back buffer format can be used together on the current device. If 
the function does succeed, a new CD3DEnumDeviceOptions object is created and its member 
variables will be populated.   
 
 // Loop through each adapter format available 
    for ( i = 0; i < AdapterFormatCount; i++ ) 
    { 
        // Store Adapter Format  
        AdapterFormat = AdapterFormats[i]; 
 
        // Loop through all valid back buffer formats 
        for ( j = 0; j < BackBufferFormatCount; j++ ) 
        { 
            // Store Back Buffer Format  
            BackBufferFormat = BackBufferFormats[j]; 
 
            // Test Windowed / Fullscreen Modes 
            for ( k = 0; k < 2; k++ ) 
            { 
                // Select windowed / fullscreen 
                if ( k == 0 ) Windowed = false; else Windowed = true; 
 
                // Skip if this is not a valid device type 
                if ( FAILED( m_pD3D->CheckDeviceType(pAdapter->Ordinal, 
                                                     pDevice->DeviceType,  
                                                     AdapterFormat, 
                                                     BackBufferFormat, Windowed))) 
     continue; 
                
        // Allocate a new device options set 
                CD3DEnumDeviceOptions * pDeviceOptions = new CD3DEnumDeviceOptions; 
                if (!pDeviceOptions) return E_OUTOFMEMORY; 
 
                // Store device option details 
                pDeviceOptions->AdapterOrdinal     = pAdapter->Ordinal; 
                pDeviceOptions->DeviceType         = pDevice->DeviceType; 
                pDeviceOptions->AdapterFormat      = AdapterFormat; 
                pDeviceOptions->BackBufferFormat   = BackBufferFormat; 
                pDeviceOptions->Caps               = pDevice->Caps; 
                pDeviceOptions->Windowed           = Windowed; 
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Although CD3DEnumDeviceOptions is a child of CD3DEnumDevice (which is itself a child of 
CD3DEnumAdpater), we still store a copy of the adapter ordinal and the device type at this level in the 
hierarchy. This makes the class more user-friendly since it removes the requirement to maintain links 
back up the hierarchy to its parents. 
 
ValidateDeviceOptions is called next and affords the application an opportunity to reject this particular 
option from being added to the database.  
 
              // Is this option set supported by the user ? 
                if ( !ValidateDeviceOptions( BackBufferFormat, Windowed ) ) 
                { 
                    delete pDeviceOptions; 
                    continue;                 
                } // End if user-unsupported 
 

The derived function is passed the back buffer format and a windowed mode boolean. Perhaps your 
application might derive a function that rejects all 16 bit windowed formats or perhaps even all 
windowed modes if it only wanted to allow fullscreen gaming. If the ValidateDeviceOptions function 
returns false, then this particular set of options is not added to the CD3DEnumDevice options array. 
 
As the function reaches the bottom of the adapter database hierarchy, it calls four more short 
enumeration functions. Recall that each option set maintains a number of arrays: compatible 
depth/stencil formats, multi-sampling capabilities, vertex processing behavior flags, and presentation 
intervals. Each of the following enumeration functions are used to populate these arrays: 
 
                // Enumerate the various options components 
                if ( FAILED( hRet = EnumerateDepthStencilFormats  ( pDeviceOptions ) ) || 
                     FAILED( hRet = EnumerateMultiSampleTypes     ( pDeviceOptions ) ) || 
                     FAILED( hRet = EnumerateVertexProcessingTypes( pDeviceOptions ) ) || 
                     FAILED( hRet = EnumeratePresentIntervals     ( pDeviceOptions ) ) ) 
                { 
                    // Release our invalid options 
                    delete pDeviceOptions; 
 
                    // If returned anything other than abort, this is fatal 
                    if ( hRet == E_ABORT ) continue; else return hRet; 
             
                } // End if any enumeration failed 
 
                // Add this to our device 
                try { pDevice->Options.push_back( pDeviceOptions ); } catch ( ... ) 
                { 
                    delete pDeviceOptions; 
                    return E_OUTOFMEMORY; 
 
                } // End Try / Catch Block 
 
            } // Next Windowed State 
 
        } // Next BackBuffer Format 
 
    } // Next Adapter Format 
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    // Success? 
    return (pDevice->Options.size() == 0) ? E_ABORT : S_OK; 
} 
 
If all four functions return true, then the four arrays will store a complete set of options that work with 
this device and the option set will be added to the device option array. The Enumeration process is 
now officially finished and control is handed back to the calling application. For completeness, we will 
examine the four enumeration functions used to fill out the option set arrays. 
 
CD3DInitialize::EnumerateDepthStencilFormats 
 
EnumerateDepthStencil format uses a global array of all the possible Direct3D depth/stencil formats to 
loop through to test with the current option set. The array is declared at the top of CD3DInitialize.cpp: 
 
const ULONG        DepthStencilFormatCount = 6; 
const D3DFORMAT    DepthStencilFormats[6]  = { D3DFMT_D16, D3DFMT_D15S1, D3DFMT_D24X8, 
                                               D3DFMT_D24S8, D3DFMT_D24X4S4, D3DFMT_D32 }; 
 
HRESULT CD3DInitialize::EnumerateDepthStencilFormats(CD3DEnumDeviceOptions *pDeviceOptions) 
{ 
    ULONG i; 
 
    try 
    { 
        // Loop through each depth stencil format 
        for ( i = 0; i < DepthStencilFormatCount; i++ ) 
        { 
            // Test to see if this is a valid depth surface format 
            if ( SUCCEEDED( m_pD3D->CheckDeviceFormat(pDeviceOptions->AdapterOrdinal, 
                                                      pDeviceOptions->DeviceType, 
                                                      pDeviceOptions->AdapterFormat, 
                                                      D3DUSAGE_DEPTHSTENCIL, 
                                                      D3DRTYPE_SURFACE,  
                                                      DepthStencilFormats[ i ]))) 
            { 
                // Test to see if this is a valid depth / stencil format for this mode 
                if(SUCCEEDED(m_pD3D->CheckDepthStencilMatch(pDeviceOptions->AdapterOrdinal, 
                                                          pDeviceOptions->DeviceType, 
                                                          pDeviceOptions->AdapterFormat,  
                                                          pDeviceOptions->BackBufferFormat, 
                                                          DepthStencilFormats[ i ] ) ) ) 
                { 
                    // Is this supported by the user ? 
                    if ( ValidateDepthStencilFormat( DepthStencilFormats[ i ] ) ) 
                    { 
                        // Add this as a valid depthstencil format 
                        pDeviceOptions->DepthFormats.push_back( DepthStencilFormats[ i ] ); 
 
                    } // End if User-Supported 
 
                } // End if valid for this mode 
 
            } // End if valid DepthStencil format 
 
        } // Next DepthStencil Format 
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    } // End Try Block 
 
    catch ( ... ) { return E_OUTOFMEMORY; } 
 
    // Success ? 
    return ( pDeviceOptions->DepthFormats.size() == 0 ) ? E_ABORT : S_OK; 
} 
 
If CheckDeviceFormat succeeds (the device supports this depth format) and CheckDepthStencilMatch 
also succeeds (the depth buffer can be used with this device option set), then a ValidateXX derived 
call is made before adding the set to the passed CD3DEnumDeviceOptions object depth/stencil format 
array. The derived function allows the application to reject depth/stencil formats it does not wish to be 
considered. 
 
 
CD3DInitialize::EnumerateMultiSampleTypes 
 
Each pixel on our screen represents a color sample taken from the 3D scene. Imagine a ray cast out 
from each pixel on the monitor directly into the scene. Where the ray intersects a particular object in 
the scene, the color of the object at that intersection point will be used as the pixel color at that screen 
location. We call this process sampling. As the number of available pixels increases (at higher screen 
resolutions), the number of samples that will be taken increases. Higher sampling frequencies result in 
sharper images and more accurate representations of the scene are the result. When fewer samples are 
taken, we simply have less information to work with to represent the scene and there is less detail that 
can be displayed. Low sampling frequencies result in image artifacts. One of the most common is a 
jagged diagonal line (‘the jaggies’). This artifact is recognizable by its staircase like appearance.   
 
The issue is essentially one of trying to represent (or alias) something that is infinite (sampling the 
world at every possible location would result in a precise representation of the world) with something 
that is finite (the number of available pixels that can be filled with color). 
 
Anti-aliasing algorithms such as multi-sampling are used to combat artifacts that occur at low sample 
frequencies. When a device supports multi-sampling, it means that it has the ability to rescan the front 
buffer again (possibly multiple times) and detect where jagged lines occur. It will then smooth them 
out by blending together colors from neighboring pixels.  
 
Consider the simple scenario of a white diagonal line rendered on a pure black background. In a low 
resolution mode the line would appear to step up across the screen like a set of stairs. Rather than 
looking like a diagonal line, it actually looks like a series of horizontal and vertical lines placed in such 
a way that it represents a best fit approximation of the diagonal line. When multi-sampling is used, the 
hardware can detect where the jaggies occur and insert some in-between colored pixels (gray) to help 
blend the jagged edge into the back ground color. This simple solution can vastly improve the visual 
quality of the scene. 
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Support for multi-sampling varies across video hardware. Some cards perform no multi-sampling at all 
while newer cards often support one or more sampling passes. The tradeoff is additional processing 
and some loss in application performance. Anti-aliasing is a relatively demanding task even for the 
latest hardware. Although DirectX Graphics supports up to 16 blending passes, most graphics adapters 
currently support one or two passes at most.  
 
The EnumerateMultiSampleTypes function will test all DirectX Graphics multi-sample types against 
the current device option. We define an array at the top of CD3DInitialize.cpp containing all the multi-
sampling types supported by DirectX Graphics. If the type is supported by the device option set, it is 
added to the CD3DEnumDeviceOption multi-sample array: 
 
const ULONG                 MultiSampleTypeCount    = 17; 
const D3DMULTISAMPLE_TYPE   MultiSampleTypes[17]    = {  
                              D3DMULTISAMPLE_NONE      ,  
                              D3DMULTISAMPLE_NONMASKABLE, 
                              D3DMULTISAMPLE_2_SAMPLES , D3DMULTISAMPLE_3_SAMPLES, 
                              D3DMULTISAMPLE_4_SAMPLES , D3DMULTISAMPLE_5_SAMPLES, 
                              D3DMULTISAMPLE_6_SAMPLES , D3DMULTISAMPLE_7_SAMPLES, 
                              D3DMULTISAMPLE_8_SAMPLES , D3DMULTISAMPLE_9_SAMPLES, 
                              D3DMULTISAMPLE_10_SAMPLES, D3DMULTISAMPLE_11_SAMPLES, 
                              D3DMULTISAMPLE_12_SAMPLES, D3DMULTISAMPLE_13_SAMPLES, 
                              D3DMULTISAMPLE_14_SAMPLES, D3DMULTISAMPLE_15_SAMPLES, 
                              D3DMULTISAMPLE_16_SAMPLES };  

 
CD3DEnumDeviceOption also includes a linked array that holds a maximum quality setting for each 
multi sample type. For example, we may have a device option set that allows us to use two samples 
(D3DMULTISAMPLE_2_SAMPLE) but that supports three quality levels. If we use 
D3DMULTISAMPLE_2_SAMPLE, we also have a choice of setting the quality to 0, 1, 2 or 3. The 
higher number provides better visual quality at the cost of performance.  
 
This next function checks available sampling capabilities. If one or more of the multi-sampling types 
is supported by the hardware, its maximum quality is also returned and stored in a separate array: 
 
HRESULT CD3DInitialize::EnumerateMultiSampleTypes( CD3DEnumDeviceOptions * pDeviceOptions ) 
{ 
    ULONG i, Quality; 
 
    try 
    { 
        // Loop through each multi-sample type 
        for ( i = 0; i < MultiSampleTypeCount; i++ ) 
        { 
            // Check if this multi-sample type is supported 
            if(SUCCEEDED(m_pD3D->CheckDeviceMultiSampleType(pDeviceOptions->AdapterOrdinal, 
                                                         pDeviceOptions->DeviceType, 
                                                         pDeviceOptions->BackBufferFormat, 
                                                         pDeviceOptions->Windowed, 
                                                         MultiSampleTypes[i], &Quality))) 
            { 
                // Is this supported by the user ? 
                if ( ValidateMultiSampleType( MultiSampleTypes[ i ] ) ) 
                { 
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                    // Supported, add these to our list 
                    pDeviceOptions->MultiSampleTypes.push_back( MultiSampleTypes[i] ); 
                    pDeviceOptions->MultiSampleQuality.push_back( Quality ); 
 
                } // End if User-Supported 
 
            } // End if valid for this mode 
 
        } // Next Sample Type 
 
    } // End try Block 
 
    catch ( ... ) { return E_OUTOFMEMORY; } 
 
    // Success ? 
    return ( pDeviceOptions->MultiSampleTypes.size() == 0 ) ? E_ABORT : S_OK; 
}  
 
For every supported multi-sample type, we call the IDirect3D9::CheckDeviceMultiSample function 
passing in the adapter, device, back buffer format and window mode. If a type is supported and the 
function is successful, then the DWORD variable passed into the function as the last parameter will 
hold the maximum quality for that multi sample type for this device option set. Finally, we call the 
ValidateMultiSampleType function. If it returns true, we add the multi-sample type to the device 
option multi-sample array and add the maximum quality to the matching array. When this function 
returns, the current CD3DEnumDeviceOptions object will have its multi-sample type array and its 
multi-sample quality array filled with all supported multi-sampling modes and their maximum 
qualities. 
 
 
CD3DInitialize::EnumerateVertexProcessingTypes 
 
This function is called from EnumerateDeviceOptions and is used to fill an array belonging to the 
CD3DEnumDeviceOptions class with the vertex processing behavior that works with the current 
device options set. It checks the D3DCAP9 structure of the current device to see which processing 
modes are available and adds them the array. The following enumerated type is declared in 
CD3DInitialize.h and is used in this function: 
 
enum VERTEXPROCESSING_TYPE 
{ 
    SOFTWARE_VP               = 1,        // Software Vertex Processing 
    MIXED_VP                  = 2,        // Mixed Vertex Processing 
    HARDWARE_VP               = 3,        // Hardware Vertex Processing 
    PURE_HARDWARE_VP          = 4         // Pure Hardware Vertex Processing 
}; 
 
 
HRESULT CD3DInitialize::EnumerateVertexProcessingTypes( 
                                                     CD3DEnumDeviceOptions* pDeviceOptions) 
{ 
    try 
    { 
        // If the device supports Hardware T&L 
        if ( pDeviceOptions->Caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ) 
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        { 
            // If the device can be created as 'Pure' 
            if ( pDeviceOptions->Caps.DevCaps & D3DDEVCAPS_PUREDEVICE ) 
            { 
                // Supports Pure hardware device ? 
                if ( ValidateVertexProcessingType( PURE_HARDWARE_VP ) ) 
                    pDeviceOptions->VertexProcessingTypes.push_back( PURE_HARDWARE_VP ); 
 
            } // End if 
 
            // Supports hardware T&L and Mixed by definition ? 
            if ( ValidateVertexProcessingType( HARDWARE_VP ) ) 
                pDeviceOptions->VertexProcessingTypes.push_back( HARDWARE_VP ); 
 
            if ( ValidateVertexProcessingType( MIXED_VP ) ) 
                pDeviceOptions->VertexProcessingTypes.push_back( MIXED_VP ); 
 
        } // End if HW T&L 
 
        // Always supports software 
        if ( ValidateVertexProcessingType( SOFTWARE_VP ) ) 
            pDeviceOptions->VertexProcessingTypes.push_back( SOFTWARE_VP ); 
 
    } // End try Block 
 
    catch ( ... ) { return E_OUTOFMEMORY; } 
 
    // Success ? 
    return ( pDeviceOptions->VertexProcessingTypes.size() == 0 ) ? E_ABORT : S_OK; 
} 
 
 
The function calls the virtual function ValidateVertexProcessingType which the derived class uses to 
accept or reject vertex processing types. For example, in this demo, the derived class returns false for 
MIXED_VP processing behavior so that mixed vertex mode options will not be added to the internal 
enumeration database. 
 
 
CD3DInitialize::EnumeratePresentationIntervals 
 
The final enumeration function is also called from the EnumerateDeviceOptions function. The 
EnumeratePresentationIntervals function fills the CD3DEnumDeviceOptions presentation interval 
array with options available for a given device option set. An array containing all 
D3DPRESENT_INTERVAL options is declared at the top of the CD3DInitialize.cpp file: 
 
const ULONG     PresentIntervalCount    = 6; 
const ULONG     PresentIntervals[6]     = { D3DPRESENT_INTERVAL_IMMEDIATE,  
                                            D3DPRESENT_INTERVAL_DEFAULT, 
                                            D3DPRESENT_INTERVAL_ONE,       
                                            D3DPRESENT_INTERVAL_TWO, 
                                            D3DPRESENT_INTERVAL_THREE, 
                                            D3DPRESENT_INTERVAL_FOUR }; 
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This function tests the PresentationInterval field of the D3DCAPS9 structure to determine supported 
presentation intervals and adds them to the array. The virtual function ValidatePresentInterval can be 
overridden to reject undesirable presentation interval options. 
 
The following code is fairly obvious and should require no more explanation. 
 
HRESULT CD3DInitialize::EnumeratePresentIntervals( CD3DEnumDeviceOptions * pDeviceOptions ) 
{ 
    ULONG i, Interval; 
 
    try 
    { 
        // Loop through each presentation interval 
        for ( i = 0; i < PresentIntervalCount; i++ ) 
        { 
            // Store for easy access 
            Interval = PresentIntervals[i]; 
 
            // If device is windowed, skip anything above ONE 
            if ( pDeviceOptions->Windowed ) 
            { 
                if ( Interval == D3DPRESENT_INTERVAL_TWO   || 
                     Interval == D3DPRESENT_INTERVAL_THREE || 
                     Interval == D3DPRESENT_INTERVAL_FOUR ) continue; 
 
            } // End if Windowed 
 
            // DEFAULT is always available, others must be tested 
            if ( Interval == D3DPRESENT_INTERVAL_DEFAULT ) 
            { 
                pDeviceOptions->PresentIntervals.push_back( Interval ); 
                continue; 
 
            } // Always add 'Default' 
 
            // Supported by the device options combo ? 
            if ( pDeviceOptions->Caps.PresentationIntervals & Interval ) 
            { 
                if ( ValidatePresentInterval( Interval ) ) 
                    pDeviceOptions->PresentIntervals.push_back( Interval ); 
 
            } // End if Supported 
 
        } // Next Interval Type 
 
    } // End try Block 
 
    catch ( ... ) { return E_OUTOFMEMORY; } 
 
    // Success ? 
    return ( pDeviceOptions->PresentIntervals.size() == 0 ) ? E_ABORT : S_OK; 
} 
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Enumeration Complete 
 
CD3DInitialize::Enumerate() initiates the process we have just examined. When the function returns, 
the CD3DInitialize database has been constructed and ready for use. The next step is to determine the 
best windowed and fullscreen modes available for device creation. 
 
 
CD3DInitialize::FindBestWindowedMode 
 
This function takes an empty CD3DSettings class and fills it with a default set of values that can be 
passed into the CD3DInitialize::CreateDisplay function to create a windowed device object. The 
strategy is straightforward since the application cannot change the adapter format (because it is 
currently being used by the desktop). The function loops through every device on every adapter 
iterating the device options array and trying to find a device option set that has the following 
properties: 
 

• The adapter format matches the current display format (this is non-negotiable) 
• A HAL device is preferable  (unless we pass bRequireRef=TRUE as the third parameter) 
• A back buffer format matching the adapter format is preferable (not essential if no match 

found) 
 
Once the setting is returned from this function, the CreateDisplay member function is called passing in 
a width and a height. This will be the width and height of the application window and frame buffer. 
The application also has the option of passing two booleans into the function to request only a HAL or 
a REF device. In our current application we will not utilize these parameters. This indicates a 
willingness to use a REF device if that is all that is available on the current system. 
 
bool CD3DInitialize::FindBestWindowedMode( CD3DSettings & D3DSettings, bool bRequireHAL, 
bool bRequireREF ) 
{ 
    ULONG  i, j, k; 
    D3DDISPLAYMODE             DisplayMode; 
    CD3DEnumAdapter            *pBestAdapter = NULL; 
    CD3DEnumDevice             *pBestDevice  = NULL; 
    CD3DEnumDeviceOptions      *pBestOptions = NULL; 
    CD3DSettings::Settings     *pSettings    = NULL; 
 
    // Retrieve the primary adapters display mode. 
    m_pD3D->GetAdapterDisplayMode( D3DADAPTER_DEFAULT, &DisplayMode); 
 
The first step is determining the current adapter display mode and then to loop through every 
enumerated adapter. The GetAdpaterCount function returns the number of adapters that were stored 
in the adapter array at enumeration time. 
 
    // Loop through each adapter 
    for( i = 0; i < GetAdapterCount(); i++ ) 
    { 
        CD3DEnumAdapter * pAdapter = m_vpAdapters[ i ]; 
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For each adapter, we need to loop through each of its devices:         
 
        // Loop through each device 
        for( j = 0; j < pAdapter->Devices.size(); j++ ) 
        { 
            CD3DEnumDevice * pDevice = pAdapter->Devices[ j ]; 
 
If this device is not a HAL device and we have specified that we require a HAL device, then we skip 
this device: 
 
            // Skip if this is not of the required type 
            if ( bRequireHAL && pDevice->DeviceType != D3DDEVTYPE_HAL ) continue; 
 
If this device type is not a REF device and we have specified that we require a REF device, the same 
logic holds: 
            if ( bRequireREF && pDevice->DeviceType != D3DDEVTYPE_REF ) continue; 
 
At this point, this device might be suitable. We need to loop through each of the device options 
determine whether we can find one with a matching backbuffer and adapter mode format. This ensures 
that the front buffer and back buffer share the same format and speeds up scene presentation. 
             
            // Loop through each option set 
            for ( k = 0; k < pDevice->Options.size(); k++ ) 
            { 
                CD3DEnumDeviceOptions * pOptions = pDevice->Options[ k ]; 
 
                // Determine if back buffer format matches adapter  
                bool MatchedBB = (pOptions->BackBufferFormat == pOptions->AdapterFormat ); 
 
                // Skip if this is not windowed, and formats don't match 
                if (!pOptions->Windowed) continue; 
                if ( pOptions->AdapterFormat != DisplayMode.Format) continue; 
 

We skip this device option if it is not a windowed option or if its adapter format is not equal to the 
display format the adapter is currently using.               
 
At this point we store this mode as the best mode found so far if any of the following is true: 

• No options have yet been found. 
• If it is a HAL device with a matching back buffer/adapter format. 
• If it is more optimal than the option stored previously. 

 
  // If we haven't found a compatible option set yet, or if this set 
         // is better (because it's HAL / formats match better) then save it. 
         if( pBestOptions == NULL ||  
     pOptions->DeviceType == D3DDEVTYPE_HAL && MatchedBB ) || 
            (pBestOptions->DeviceType != D3DDEVTYPE_HAL && 
             pOptions->DeviceType==3DDEVTYPE_HAL) ) 
        { 
                    // Store best so far 
                    pBestAdapter = pAdapter; 
                    pBestDevice  = pDevice; 
                    pBestOptions = pOptions; 
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If the current option is a HAL device with a matched backbuffer/adapter format, then we have found 
what we are looking for and we can exit the loop.  
 
                    if ( pOptions->DeviceType == D3DDEVTYPE_HAL && MatchedBB ) 
              { 
                 // This windowed device option looks great -- take it 
                 goto EndWindowedDeviceOptionSearch; 
              } 
         } // End if not a better match 
       } // Next Option Set 
    } // Next Device Type 
 } // Next Adapter 
 
EndWindowedDeviceOptionSearch: 
     
    if ( pBestOptions == NULL ) return false; 
 
If we get here and no best option has been found, then we are left with no choice but to conclude that a 
suitable windowed mode is not available. This is unlikely to happen. If it did happen, you may have 
forgotten to call Enumerate prior to entering this function. 
 
If a best match is found then the details will be copied into the CD3DSettings object passed into the 
function. This object can then be used to create the final device object. This can be done manually or 
by calling the CD3DInitialize::CreateDisplay function. 
 
     // Fill out passed settings details 
    D3DSettings.Windowed                  = true; 
    pSettings                             = D3DSettings.GetSettings(); 
    pSettings->AdapterOrdinal             = pBestOptions->AdapterOrdinal; 
    pSettings->DisplayMode                = DisplayMode; 
    pSettings->DeviceType                 = pBestOptions->DeviceType; 
    pSettings->BackBufferFormat           = pBestOptions->BackBufferFormat; 
    pSettings->DepthStencilFormat         = pBestOptions->DepthFormats[ 0 ]; 
    pSettings->MultisampleType            = pBestOptions->MultiSampleTypes[ 0 ]; 
    pSettings->MultisampleQuality         = 0; 
    pSettings->VertexProcessingType       = pBestOptions->VertexProcessingTypes[ 0 ]; 
    pSettings->PresentInterval            = pBestOptions->PresentIntervals[ 0 ]; 
 
    // We found a mode 
    return true; 
} 

 
By default we use the first capable depth buffer format, multi-sample type, vertex processing behavior, 
and presentation intervals in the arrays for this device option. 
 
 
 
CD3DInitialize::FindBestFullscreenMode 
 
The basic aim of this function is the same as the last. The application will pass a CD3DSettings object 
to be filled with a set of device creation settings. Unlike the previous function, we must pass in a 
D3DISPLAYMODE structure that specifies the desired width, height, refresh rate, and pixel format. 
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The function will return as close a match as possible if the desired choices are not directly supported 
by any of the system adapters. 
 
If any of the fields of the D3DDISPLAYMODE structure are zero or if the format field is set to 
D3DFMT_UNKNOWN, then the function will try to return a device option set which matches the current 
desktop display mode for that field. As a reminder, here is the D3DDISPLAYMODE once again: 
 
typedef struct _D3DDISPLAYMODE  
{ 

UINT  Width; 
UINT  Height; 
UINT  RefreshRate; 
D3DFORMAT  Format; 

} D3DDISPLAYMODE; 

 
The rules of the function for the four structure members are as follows: 
 

• If we pass a non-zero width, the function will try to return a fullscreen device option set which 
matches that width. If the width is zero, the function will try to return a fullscreen device option 
set where the width is equal to that of the current desktop video mode. 

• If we pass a non-zero height, the function will try to return a fullscreen device option set which 
matches the passed height. If the height is zero, the function will try to return a fullscreen 
device option set with a height that matches that of the current desktop display mode. 

• If the refresh rate is non-zero, the function will try to find a fullscreen device option set with 
the passed refresh rate. If this field is zero, the function will try to return a fullscreen  device 
option set with a refresh rate equal to that of the current desktop display mode. 

• If Format is a valid adapter format supported by DirectX Graphics, then the function will try to 
return a fullscreen device option set with this pixel format and color depth. If we pass 
D3DFMT_UNKNOWN, then the function will try to return a fullscreen device option set that matches 
the format of the current desktop display mode. 

 
If the application was not particular about the current display mode it could run using the display mode 
the user has chosen for the desktop like so: 
 
D3DDISPLAYMODE Mode; 
Mode.Width          = 0; 
Mode.Height         = 0; 
Mode.RefreshRate    = 0; 
Mode.Format         = D3DFMT_UNKNOWN; 

 
pInitialize->FindBestFullscreenMode( &MyD3Dsettings , &Mode); 
 
The fullscreen option set returned will match the current desktop display mode provided that it is 
supported by one of the devices on the system for fullscreen mode. If this is not the case, a closest 
match will be used. 
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bool CD3DInitialize::FindBestFullscreenMode(CD3DSettings & D3DSettings, 
                                            D3DDISPLAYMODE * pMatchMode, 
                                            bool bRequireHAL, bool bRequireREF ) 
{ 
    // For fullscreen, default to first HAL option that supports the current desktop  
    // display mode, or any display mode if HAL is not compatible with the desktop mode, or  
    // non-HAL if no HAL is available 
     
    ULONG                    i, j, k; 
    D3DDISPLAYMODE           AdapterDisplayMode; 
    D3DDISPLAYMODE           BestAdapterDisplayMode; 
    D3DDISPLAYMODE           BestDisplayMode; 
    CD3DEnumAdapter         *pBestAdapter = NULL; 
    CD3DEnumDevice          *pBestDevice  = NULL; 
    CD3DEnumDeviceOptions   *pBestOptions = NULL; 
    CD3DSettings::Settings  *pSettings    = NULL; 
     
    BestAdapterDisplayMode.Width  = 0; 
    BestAdapterDisplayMode.Height = 0; 
    BestAdapterDisplayMode.Format = D3DFMT_UNKNOWN; 
    BestAdapterDisplayMode.RefreshRate = 0; 
 
    // Loop through each adapter 
    for( i = 0; i < GetAdapterCount(); i++ ) 
    { 
        CD3DEnumAdapter * pAdapter = m_vpAdapters[ i ]; 
         
        // Retrieve the desktop display mode 
        m_pD3D->GetAdapterDisplayMode( pAdapter->Ordinal, &AdapterDisplayMode ); 
 
        // If any settings were passed, overwrite to test for matches 
        if ( pMatchMode )  
        { 
            if ( pMatchMode->Width  != 0 ) AdapterDisplayMode.Width  = pMatchMode->Width; 
            if ( pMatchMode->Height != 0 ) AdapterDisplayMode.Height = pMatchMode->Height; 
            if ( pMatchMode->Format != D3DFMT_UNKNOWN ) 
               AdapterDisplayMode.Format = pMatchMode->Format; 
            if ( pMatchMode->RefreshRate != 0 ) 
               AdapterDisplayMode.RefreshRate = pMatchMode->RefreshRate; 
 
        } // End if match mode passed 
 
 
A local D3DISPLAYMODE structure is constructed for the desired display mode and will be used to 
search the database for a match. Notice that in the if(pMatchMode) code block we copy over the 
fields of the passed D3DDISPLAYMODE structure unless one of the fields is zero. In that case, we 
copy the information from the adapter current display mode. This allows us to leave certain fields in 
the passed D3DDISPLAYMODE structure as zero and forces the function to use the current display 
mode for those values. 
 
The function now needs to test every adapter and every device on that adapter for an option set that 
matches the display mode of the local AdapterDisplayMode structure. 
 
        // Loop through each device 
        for( j = 0; j < pAdapter->Devices.size(); j++ ) 
        { 
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            CD3DEnumDevice * pDevice = pAdapter->Devices[ j ]; 
             
As with the previous function, if the application has specified an explicit requirement for either a HAL 
or REF device, appropriate steps are taken: 
 
            // Skip if this is not of the required type 
            if ( bRequireHAL && pDevice->DeviceType != D3DDEVTYPE_HAL ) continue; 
            if ( bRequireREF && pDevice->DeviceType != D3DDEVTYPE_REF ) continue; 
 
Now that we have a device that might be valid, we test all of its option sets to find one that is best 
suited to the requested format. We record whether the current option set being tested has a matching 
adapter and backbuffer format since this is an optimal arrangement. We also record whether the 
adapter format of the option set exactly matches the adapter format that we are looking for. The name 
of the variable MatchedDesktop is potentially a little misleading. It is not set to true if the option set 
adapter mode matches the current desktop format (as its name suggests). Instead, it is set to true if the 
option set format matches the format we are looking for. But if we did not pass in a specific format 
then the AdapterDisplayMode.Format member will contain the desktop format by default. For obvious 
reasons, we skip windowed mode option sets. 
             
            // Loop through each option set 
            for ( k = 0; k < pDevice->Options.size(); k++ ) 
            { 
                CD3DEnumDeviceOptions * pOptions = pDevice->Options[ k ]; 
 
                // Determine if back buffer format matches adapter  
                bool MatchedBB = (pOptions->BackBufferFormat == pOptions->AdapterFormat ); 
                bool MatchedDesktop = \ 
                                   (pOptions->AdapterFormat == AdapterDisplayMode.Format); 
                 
                // Skip if this is not fullscreen 
                if ( pOptions->Windowed ) continue; 

 
If we get this far, then we have found a potential candidate option set for a fullscreen device. The next 
step is to determine whether it is in fact the best set found thus far. If there is no previously stored best 
option set, then this one automatically becomes the new best option set. If there is an existing best 
option set, but it is not from a HAL device and the current one is, then we make this new option set the 
best set. If they are both HAL sets, but the previously stored best option set does not precisely match 
the requested format and the new one does, then this becomes the new best option set. Finally, if this 
new option set is a HAL device and it matches our requested format and it also has a matching 
adapter/backbuffer format combination, then this is an ultimate match and we can stop our search.  
 
                // If we haven't found a compatible option set yet, or if this set 
                // is better (because it's HAL / formats match better) then save it. 
                if ( pBestOptions == NULL || 
                    (pBestOptions->DeviceType != D3DDEVTYPE_HAL && 
                     pDevice->DeviceType == D3DDEVTYPE_HAL ) || 
                    (pOptions->DeviceType == D3DDEVTYPE_HAL     && 
                     pBestOptions->AdapterFormat != AdapterDisplayMode.Format && 
                     MatchedDesktop)  || 
                    (pOptions->DeviceType == D3DDEVTYPE_HAL &&  
                     MatchedDesktop && MatchedBB)) 
                { 
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                    // Store best so far 
                    BestAdapterDisplayMode = AdapterDisplayMode; 
                    pBestAdapter = pAdapter; 
                    pBestDevice  = pDevice; 
                    pBestOptions = pOptions; 
                     
                    if ( pOptions->DeviceType == D3DDEVTYPE_HAL && 
                         MatchedDesktop && MatchedBB ) 
                    { 
                        // This fullscreen device option looks great -- take it 
                        goto EndFullscreenDeviceOptionSearch; 
                    } 
 
                } // End if not a better match 
             
            } // Next Option Set 
         
        } // Next Device Type 
     
    } // Next Adapter 
 
EndFullscreenDeviceOptionSearch: 
     
    if ( pBestOptions == NULL) return false; 
 

At this point we hopefully have found a matching option set. Even if it was not an exact match, we 
should at least have an option set that comes fairly close. We copied all adapter and device information 
into the local pBestAdapter, pBestDevice, and pBestOptions variables. 
 
We must still loop through all of the best adapter display modes (stored in a separate array within the 
CD3DEnumAdpater class) and find a display mode that matches our new best format. It also has to 
match the width, height, and refresh rate passed into the function. We will store the results in a local 
D3DISPLAYMODE structure called BestDisplayMode. 
 
    // Need to find a display mode on the best adapter 
    // that uses pBestOptions->AdapterFormat 
    // and is as close to BestAdapterDisplayMode's res as possible 
    BestDisplayMode.Width       = 0; 
    BestDisplayMode.Height      = 0; 
    BestDisplayMode.Format      = D3DFMT_UNKNOWN; 
    BestDisplayMode.RefreshRate = 0; 
 
Loop through each of the adapters display mode and reject any that do not match the adapter format of 
our previously found best option set.    
 
    // Loop through valid display modes 
    for( i = 0; i < pBestAdapter->Modes.size(); i++ ) 
    { 
        D3DDISPLAYMODE Mode = pBestAdapter->Modes[ i ]; 
         
        // Skip if it doesn't match our best format 
        if( Mode.Format != pBestOptions->AdapterFormat ) continue; 

 

TeamLRN



This display mode has a matching format. If it is a perfect match, then we can break from this loop 
because we need to look no further. 
 
        // Determine how good a match this is 
        if( Mode.Width == BestAdapterDisplayMode.Width && 
            Mode.Height == BestAdapterDisplayMode.Height &&  
            Mode.RefreshRate == BestAdapterDisplayMode.RefreshRate ) 
        { 
            // found a perfect match, so stop 
            BestDisplayMode = Mode; 
            break; 
 
        } // End if Perfect Match 

 
If we get to this point, then the display mode is not a perfect match but may be better than any we have 
found in previous iterations of the loop. The next step is to check for a match with everything except 
the refresh rate. If this test passes, then the display mode has matching width, height, and adapter 
format but a different refresh rate. This is a decent match and we store the current display mode as the 
best so far and continue the loop. 
 
        else if( Mode.Width == BestAdapterDisplayMode.Width && 
                 Mode.Height == BestAdapterDisplayMode.Height &&  
                 Mode.RefreshRate > BestDisplayMode.RefreshRate ) 
        { 
            // refresh rate doesn't match, but width/height match, so keep this 
            // and keep looking 
            BestDisplayMode = Mode; 
        } 

 
At this point, we test to see if the width of the display mode matches and store it as the best found so 
far if it does. This indicates that the display mode returned may have a different height resolution and 
refresh rate, but will have the desired width and adapter format. 
 
        else if( Mode.Width == BestAdapterDisplayMode.Width ) 
        { 
            // width matches, so keep this and keep looking 
            BestDisplayMode = Mode; 
        } 
 
If we reach this point, then this display mode is not a very good match at all since only the format 
matches. If this is the case, then we will store only the current display mode as the best found so far.  
 
        else if( BestDisplayMode.Width == 0 ) 
        { 
            // we don't have anything better yet, so keep this and keep looking 
            BestDisplayMode = Mode; 
         
        } // End if  
     
    } // Next Mode 
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Now the job is done and we have hopefully found at least a decent match. We copy the information 
into the CD3DSettings structure passed into the function and return control back to the caller. 
 
    // Fill out passed settings details 
    D3DSettings.Windowed               = false; 
    pSettings                          = D3DSettings.GetSettings(); 
    pSettings->AdapterOrdinal          = pBestOptions->AdapterOrdinal; 
    pSettings->DisplayMode             = BestDisplayMode; 
    pSettings->DeviceType              = pBestOptions->DeviceType; 
    pSettings->BackBufferFormat        = pBestOptions->BackBufferFormat; 
    pSettings->DepthStencilFormat      = pBestOptions->DepthFormats[ 0 ]; 
    pSettings->MultisampleType         = pBestOptions->MultiSampleTypes[ 0 ]; 
    pSettings->MultisampleQuality      = 0; 
    pSettings->VertexProcessingType    = pBestOptions->VertexProcessingTypes[ 0 ]; 
    pSettings->PresentInterval         = pBestOptions->PresentIntervals[ 0 ]; 
 
    // Success! 
    return true; 
} 
 

This was certainly a lot of information to absorb. Please take time to study the source code so that you 
can make adjustments down the road to meet your own application needs.  
 
There is still one initialization phase left to discuss. Phase 1 enumerated the devices on the system. 
Phase 2 used the FindBestXX functions to search the enumerated database for a compatible set of 
device settings. Phase 3 will now use these settings to create the device and optionally create an 
application window. 
 
 
CD3DInitialize::CreateDisplay 
 
The CreateDisplay function is used to initialize the Direct3D device and to optionally create an 
application window. If the input HWND parameter is NULL, then the function will create the 
application window as well as the device. If this is the desired behavior, then a WNDPROC function 
will also be required. If you already have an application window, then simply pass in the HWND of 
your window and it will create the device only. Note that the function may need to alter some of the 
attributes of your window to make it work with a fullscreen device (such as removing the menu and 
moving its origin to screen coordinate <0, 0>) 
 
The first section of code creates the window if the HWND parameter was set to NULL. It also tests to 
see if we are creating a fullscreen device. If so, then it sets the width and height of the window to that 
of the requested fullscreen display mode. If window creation fails, then the function will exit with a 
failure notification.  
 
HRESULT CD3DInitialize::CreateDisplay( CD3DSettings& D3DSettings, ULONG Flags, HWND hWnd, 
                                       WNDPROC pWndProc, LPCTSTR Title, ULONG Width, 
                                       ULONG Height, LPVOID lParam ) 
{ 
    ULONG                   CreateFlags = 0; 
    CD3DSettings::Settings *pSettings   = D3DSettings.GetSettings(); 
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    if ( !hWnd ) 
    { 
        // Register the new windows window class. 
        WNDCLASS   wc;  
 wc.style  = CS_BYTEALIGNCLIENT | CS_HREDRAW | CS_VREDRAW; 
 wc.lpfnWndProc = pWndProc; 
 wc.cbClsExtra = 0; 
 wc.cbWndExtra = 0; 
 wc.hInstance = (HINSTANCE)GetModuleHandle(NULL); 
         wc.hIcon = NULL; 
 wc.hCursor = LoadCursor(NULL, IDC_ARROW); 
 wc.hbrBackground = (HBRUSH )GetStockObject(WHITE_BRUSH); 
 wc.lpszMenuName = NULL; 
 wc.lpszClassName = Title; 
 RegisterClass(&wc); 
 
        ULONG Left  = CW_USEDEFAULT, Top = CW_USEDEFAULT; 
        ULONG Style = WS_OVERLAPPEDWINDOW; 
 
        // Create the rendering window 
        if ( !D3DSettings.Windowed ) 
        { 
            Left   = 0; Top = 0; 
            Width  = pSettings->DisplayMode.Width; 
            Height = pSettings->DisplayMode.Height; 
            Style  = WS_VISIBLE | WS_POPUP; 
          
        } // End if Fullscreen 
 
        // Create the window 
        m_hWnd = CreateWindow( Title, Title, Style, 
        Left, Top, Width, Height, 
        NULL, NULL, wc.hInstance, lParam ); 
 
        // Bail on error 
        if (!m_hWnd) return E_FAIL; 
 
    } // End if no Window Passed 
     
The next block of code examines the scenarios where the HWND parameter is not set to NULL. This 
window will be used as the device window.  
 
    else 
    { 
        // Store HWND 
        m_hWnd = hWnd; 
         
        // Setup styles based on windowed / fullscreen mode 
        if ( !D3DSettings.Windowed ) 
        { 
            SetMenu( m_hWnd, NULL ); 
            SetWindowLong( m_hWnd, GWL_STYLE, WS_VISIBLE | WS_POPUP ); 
            SetWindowPos( m_hWnd, NULL, 0, 0, pSettings->DisplayMode.Width, 
                          pSettings->DisplayMode.Height, SWP_NOZORDER ); 
         
        } // End if Fullscreen 
        else 
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        { 
            RECT rc; 
 
            // Get the windows client rectangle 
            GetWindowRect( hWnd, &rc ); 
 
            // Setup the window properties 
            SetWindowLong( m_hWnd, GWL_STYLE, WS_OVERLAPPEDWINDOW ); 
            SetWindowPos( hWnd, HWND_NOTOPMOST, rc.left, rc.top, 
                         (rc.right - rc.left), (rc.bottom - rc.top), 
                          SWP_NOACTIVATE | SWP_SHOWWINDOW ); 
 
        } // End if Windowed 
     
    } // End if window passed 
 
The next task is to fill the D3DPRESENT_PARAMETERS structure with the settings found in the input 
CD3DSettings object. The following code uses a helper function called BuildPresentParameters to 
copy all of the fields from the CD3DSettings object into the D3DPRESENT_PARAMETERS structure. 
 
    // Build our present parameters 
    D3DPRESENT_PARAMETERS d3dpp = BuildPresentParameters( D3DSettings ); 
     
At this point, we have a D3DPRESENT_PARAMETERS structure and a window to use as the device 
window. What remains is to determine whether the CD3DSettings structure requests the use of 
software, hardware, or mixed vertex processing. Once done, we create the device and store its pointer 
in the CD3DInitialize member variable. 
 
    // Build our creation flags 
    if ( pSettings->VertexProcessingType == PURE_HARDWARE_VP ) 
        CreateFlags |= D3DCREATE_PUREDEVICE | D3DCREATE_HARDWARE_VERTEXPROCESSING; 
    else if ( pSettings->VertexProcessingType == HARDWARE_VP ) 
        CreateFlags |= D3DCREATE_HARDWARE_VERTEXPROCESSING; 
    else if ( pSettings->VertexProcessingType == MIXED_VP ) 
        CreateFlags |= D3DCREATE_MIXED_VERTEXPROCESSING; 
    else if ( pSettings->VertexProcessingType == SOFTWARE_VP ) 
        CreateFlags |= D3DCREATE_SOFTWARE_VERTEXPROCESSING; 
 
    // Create the device 
    m_pD3DDevice = NULL; 
    HRESULT hRet = m_pD3D->CreateDevice( pSettings->AdapterOrdinal, pSettings->DeviceType, 
                                         m_hWnd, CreateFlags, &d3dpp, &m_pD3DDevice ); 
    // Did the creation fail ? 
    if ( FAILED( hRet ) )  
    { 
        if ( m_pD3DDevice ) m_pD3DDevice->Release(); 
        m_pD3DDevice = NULL; 
        return hRet; 
    } // End if failed 
 
    // Success 
    return S_OK; 
} 
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Assuming that the function was successful, our application can now call 
CD3DInitialize::GetDirect3DDevice to retrieve a pointer to the Direct3D device interface. At that 
point the application can let the CD3DInitialize object go out of scope or delete it if it was allocated on 
the heap.  
 
For completeness, the code to the BuildPresentParameters helper function is shown below: 
 
D3DPRESENT_PARAMETERS CD3DInitialize::BuildPresentParameters(CD3DSettings& D3DSettings, 
                                                             ULONG Flags) 
{ 
    D3DPRESENT_PARAMETERS   d3dpp; 
    CD3DSettings::Settings *pSettings = D3DSettings.GetSettings(); 
     
    ZeroMemory ( &d3dpp, sizeof(D3DPRESENT_PARAMETERS) ); 
 
    // Fill out our common present parameters 
    d3dpp.BackBufferCount           = 1; 
    d3dpp.BackBufferFormat          = pSettings->BackBufferFormat; 
    d3dpp.Windowed                  = D3DSettings.Windowed; 
    d3dpp.MultiSampleType           = pSettings->MultisampleType; 
    d3dpp.MultiSampleQuality        = pSettings->MultisampleQuality; 
    d3dpp.EnableAutoDepthStencil    = TRUE; 
    d3dpp.AutoDepthStencilFormat    = pSettings->DepthStencilFormat; 
    d3dpp.PresentationInterval      = pSettings->PresentInterval; 
    d3dpp.Flags                     = D3DPRESENTFLAG_DISCARD_DEPTHSTENCIL | Flags; 
    d3dpp.SwapEffect                = D3DSWAPEFFECT_DISCARD; 
 
    // Is this fullscreen ? 
    if ( !d3dpp.Windowed ) 
    { 
        d3dpp.FullScreen_RefreshRateInHz = pSettings->DisplayMode.RefreshRate; 
        d3dpp.BackBufferWidth            = pSettings->DisplayMode.Width; 
        d3dpp.BackBufferHeight           = pSettings->DisplayMode.Height; 
 
    } // End if fullscreen 
     
    // Success 
    return d3dpp; 
} 
 
 
A Small Bonus 
 
To make the use of the enumeration concepts discussed in this lesson a little easier, you will find an 
extra class called CD3DSettingsDlg included with the material. The source can be found in 
CSettingDlg.cpp and CSettingDlg.h. The class provides an application with the ability to let the user 
select the device option set they wish to use to run the application. This dialog class is used in Lab 
Project 2.2 in the CGameApp::CreateDisplay function as follows: 
 
    D3DDISPLAYMODE  MatchMode;  
    CD3DSettingsDlg SettingsDlg; 
    CMyD3DInit      Initialize; 
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    // First of all create our D3D Object (This is needed by the enumeration etc) 
    m_pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 
 
    // Enumerate the system adapters/devices 
    Initialize.Enumerate( m_pD3D ) 
 
    // Attempt to find a good default fullscreen set 
    MatchMode.Width       = 640; 
    MatchMode.Height      = 480; 
    MatchMode.Format      = D3DFMT_UNKNOWN; 
    MatchMode.RefreshRate = 0; 
    Initialize.FindBestFullscreenMode( m_D3DSettings, &MatchMode ); 
 
    // Attempt to find a good default windowed set 
    Initialize.FindBestWindowedMode( m_D3DSettings ); 
 
At this point, m_D3DSettings contains settings for a fullscreen and windowed mode device. Because 
FindBestWindowedMode was called last, the m_D3DSetting::Windowed boolean will be set to true. 
This indicates a desire to use the windowed option set. 
 
Next, we see some new code that passes the m_D3Dsettings object into the CSettingsDlg::ShowDialog 
function. This will display the configuration dialog box and initializes all of its controls to display the 
options passed in the m_D3Dsettings object. The m_D3DSettings object is only being used to provide 
a set of default selections for the dialog box when it first opens. 
 
    // Display the settings dialog 
    int RetCode = SettingsDlg.ShowDialog( &Initialize, &m_D3DSettings ); 

 
After the user has made their selections and press the ok button, the settings will be stored inside the 
CD3DSettingsDlg class in its own CD3DSetting structure. The application can now retrieve the user 
options and use them to create the device object: 
 
    // Retrieve users options 
    m_D3DSettings = SettingsDlg.GetD3DSettings(); 
 
    // Create the direct 3d device etc. 
    
Initialize.CreateDisplay(m_D3DSettings,0,NULL,StaticWndProc,WindowTitle,Width,Height,this)) 
 
    // Retrieve created items 
    m_pD3DDevice   = Initialize.GetDirect3DDevice( ); 
    m_hWnd         = Initialize.GetHWND( ); 

 
 
 
 
 
 
 
 
 

TeamLRN



Chapter 2 Appendix A  
 

The Projection Matrix Z-Buffer Requirements 
 

This brief appendix discusses why Z-Buffers do not distribute depth values linearly as well as possible 
ways to resolve certain Z-Buffer artifacts. 
 
DirectX Graphics requires that after the 4D vector is returned from the projection matrix, and after it 

has divided the x, y and z values of this vector by w, (
w
z

w
y

w
x & ), the z value to be in the range 0.0 to 

1.0. In this case 0.0 would describe a point on the near clip plane and 1.0 would describe a point on the 
far clip plane. Any Z value between the 0.0 and 1.0 range is considered to be within the view frustum 
(provided it is within the FOV in both the x and y dimensions). The application needs to ensure that 
the third column in our projection matrix is such that, when DirectX Graphics divides it by w, values 
are returned in the 0.0 to 1.0 range for any point inside the frustum. 
 
As mentioned in chapter 1, the projection matrix does not actually project points. The divide by w is 
performed on the vector that is returned from the projection matrix multiplication which produces the 
2D projection. This same logic holds true for the Z value. This value should not end up in the 0.0 to 
1.0 range until the divide by w takes place. The third column of the projection matrix must be set up to 
map the input vector z component to some other space, so that it ends up in the 0.0 to 1.0 range after 
the divide by w. Also, recall that the z value of the input vector is copied over to the w value of the 
output vector.  
 
For clarity sake, in the examples in this section we will set the first and second columns of the 
projection matrix to x and y identity columns. We will concentrate only on the third column values.  
 
The third column of the projection matrix has only two rows (3 and 4) that can be used to produce a 
value based on the input z component. We will labels these as 'a' and 'b' in the following matrix. Our 
goal will be to find values to fill in here that satisfy the specified requirements. It should be 
immediately clear that the first and second  rows of the third column would not be of much value since 
they would factor the input vectors x and y components in to the resulting z value and this is not what 
we want. 
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We know that after projection W is equal to the z component of the input vector. So we know that the 
Z component of the output vector needs to be a number such that dividing by W will scale it into the 
0.0 to 1.0 range when the input vector z component is between the near and far plane in view space. 
Since W = z we will need a new Z value such that Z / z =0.0 to 1.0 when the vector is inside the view 
frustum.  (Z = output Z || z = input Z) 
 
Certainly we cannot simply copy the input vector z value into the output vector Z value. Otherwise 
W=Z would always be true in the output vector. When DirectX Graphics does the divide by w it would 

calculate the Z-Buffer value like so: 
W
Z  which would be equal to: 

W
Wor

Z
Z  which will always result in 

a value of 1.0. All points rendered would have the same Z value (at the very back of the depth buffer) 
and the Z-Buffer would be useless. 
 
So we need to calculate a new Z value based on the input z value, but not directly proportional to it. It 
is also important to realize that if the far plane was 100 units from the camera and the near plane was 
10 units from the camera, the Z relationship to the camera from any point is not that same as the Z 
relationship with the Z-Buffer. The Z-Buffer is only interested in values that fall between the near and 
far planes. If a vector has a z value of 20 for example, it means that it is 20 units from the camera. 
However this does not mean that we want to write a value into the Z-Buffer that is equivalent in 
percentage terms (20% from the near plane). Z-Buffer space starts at the near plane. This means the Z 
view space points of 10.0 in our example would be on the near plane and should result in a value of 0.0 
because it is at the very front of near plane/far plane space. This will be what makes our Z calculation 
possible. 
 
For the rest of the discussion we will assume the following conditions: 

 
Near Plane  =10.0 
Far Plane    =100.0 

 
 
 

The first thing we must do to our input z value is subtract the distance to the near plane (10.0 in our 
example). The job of the third column of the matrix is to produce a depth value for the Z-Buffer based 
on the input view space z value. Any input vectors that have z values < 10 will have this distance 
subtracted from them. Any values that are between 0 and 10 (although technically in front of the 
camera in view space) will wind up in range [-10.0, 0.0] and will fail the Z-Buffer test. This has the 
effect of rejecting any geometry that is closer to the camera than the near plane. 
 
There is one thing to note. Because we subtract 10 from the input z coordinate we are only interested 
in z values between 0-90 (Originally we were interested only in ranging between 10.0 and 100.0 
because these were the view space values between the near and far planes). Subtracting 10 from the z 
value takes the value into what we might call near plane/far plane space. So a z value of 90 was 
originally 100 units from the camera in camera space. We need to make sure that any input z value is 
multiplied in such a way that a point at 100 in camera space (on the far plane) results in an output Z 
value of 100 (Z=W) from the projection matrix as well.  
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This may sound simple at first but keep in mind that we have already subtracted the near plane 
distance from the z values. Any input z value that was previously equal to 100.0 would have been 
reduced to a value of 90.0. This means that this point is on the far plane and should ultimately leave 
the projection matrix equal to W. When this is the case it creates a Z-Buffer value of Z/W = 1.0.  In 
our example this means that a z value of 100 in view space would have been reduced to 90 after near 
plane subtraction and should now be multiplied by some number such that it would make it equal to 
100 again. 
 
The following formula satisfies our needs: 
 

)( NearPlaneFarPlane
FarPlaneZ

−
=  

 
This formula creates a value that we can multiply our input z value with (after near plane subtraction) 
and will scale the z value in such a way that a value of 90 in our example will result in an output z 
value of 100 again. We have found a way to map the 0-90 range of values back to the 0-100 range of 
values. 
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To test this approach, let us plug in some values and see the results. One obvious value to test for 
compliance is an initial input view space z value of 100.0. We already know that it is positioned on the 
far plane and that it should eventually end up being converted to a maximum z buffer value of 1.0.  
 
                               z = 100.0 
                               90)10100( =−=Z

9999999.9911111111.190 =×=Z  

 
 
When DirectX Graphics does the divide by w, the final Z-Buffer depth value (ZB) is: 
 

99999999.0
0.100

99999999.99
===

W
ZZB  

 
Allowing for floating point precision we can see that this works perfectly.  
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Let us check a point on the near plane next. Because the near plane in our examples is positioned at 
10.0 from the camera in view space we know that a z value of 10.0 should be on the near plane and 
mapped at the very front of the depth buffer (0.0 after the divide by w): 
 

( ) 0.011111111.100.100.10 =×=−=Z  
 

0.0
10

0.0
===

W
ZZB  

 
It should be obvious to you that any view space value closer to the camera than the near plane (8.0 in 
view space for example) would be mapped to a final Z-Buffer value that was < 0.0: 
 

( ) 22222222.211111111.120.100.8 −=×−=−=Z  

277777777.0
8

22222222.2
−=

−
==

W
ZZB  

 
This result would be rejected. 
 
Now that we know what we want to do, the next step is figuring out how to do this in a matrix.  
                          
                         Projection Matrix 
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The first thing we need to do is subtract the near plane distance from the input z value. This presents 
an immediate problem because as we discussed in chapter 1 (while discussing translations), the only 
row that we can use to perform addition or subtraction is the fourth row. Recall that this is because the 
input value of w will always equal 1.0. So the only place where we can force the subtraction of the 
near plane into our linear transformation is in element b in the above matrix. The problem is that b is in 
the last row and we would no longer have a means tom complete the transformation and perform the 
multiply (by 1.11111111 in our example). 
 
The solution is to reverse the order in which we do the above calculation. First we multiply the input z 
value by the ratio (1.11111111 in our example). To do this we can just store our ratio value in element 
a in the above matrix. This will (so far) create an output Z value: 
 
Z=Vx*0 + Vy*0 + Vz*a + Vw*b 
 
If we put the ratio (1.11111111) into element a: 
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Z=Vz*1.11111111 + 1*b 
 
The z value has been scaled first. Using the w=1 assumption we can simply put a negative value into 
the b element to subtract the near plane distance. 
 
You would be forgiven for thinking that all we have to do in our example is put –10 into element b. 
However this is not the case because we have already scaled the input z value by our ratio. Because we 
did not subtract the near plane distance first it means that this distance (10.0 in our example) has also 
been multiplied by 1.11111111. Therefore we need to subtract this amount using the ratio again. 
Instead of subtracting 10.0 we need to subtract 10.0*1.11111111: 
 

 
Ratio= 11111111.1

90
0.100

)(
==

− NearPlaneFarPlane
FarPlane   
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Projection Matrix 
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Our third column is now complete. Let us test it with a z value of 100 again just to make sure: 
 

Z = Vz*ratio = (100*1.11111111) (=111.11111111) 
                                              + 
       w * (-NearPlane * Ratio) = 1 * -10*1.11111111 (= -11.11111111) 
 
= 111.11111111- 11.11111111 
= 99.99999999 
 

When we divide by w (100 in our example) we get a Z-Buffer value: 
 

99999999.0
00.100

99999999.99
===

W
ZZB  

 
The Z-Buffer Is Not Linear 
 
Because we are using the ratio to multiply the input z value, the output z value is not linearly 
distributed across the range of the Z-Buffer. If we had a view space z value of 55, we know that this 
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point in view space is exactly half way between the near and far planes. This is because the near plane 
starts at 10 so the half way point would be 10 + (90/2=45) = 55. 
 
If the third column produced a linear mapping with the Z-Buffer you would expect the final value to 
be equal to 0.5 (halfway between 0.0 and 1.0). However this is not the case: 
 

 z=55 (view space z, halfway between near and far planes) 
 
 Z= z  *Ratio            * 1 * (-NearPlane * Ratio) 
 Z= 55*1.11111111 * 1 * (-10              * 1.11111111) 
 Z =61.11111105               - 11.11111111 
 Z= 49.99999999 (Output Z from projection matrix) 

 
 
 
 
 
 
 

An input z of 55.0 produces the output Z value of 49.99999999. When we divide by w: 
 

909090908.0
0.55

99999999.49
===

W
ZZB  

 
This is a bit surprising. The Z-Buffer value it calculated is right near the back in the 0.9 range. Because 
we are multiplying the z values by 1.11111111, there is a kind of cascade effect that brings each point 
in the 0 to 90 range exponentially nearer to the 0-100 range. To better see this in action, take a look at 
the following table. It shows the projection matrix output for view space z values in increments of 
20.0. 
 
Near plane = 10.0 
Far plane  = 100.0 
Ratio         = 1.11111111 

 
                                     Camera Space Z Values: 
20.0 40.0 60.0 80.0 100 

                      
                         Z Values returned from projection matrix: 
11.11111111 33.33333333 55.55555555 77.77777777 99.99999999 
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Can you see the pattern in the above table that indicates why the Z Buffer calculation would not be 
linear? At a distance of 20.0 units from the camera in view space the value is mapped to 11.11111111. 
The difference between the input z value and the output Z value is 8.88888888. A view space z value 
of 40 gets mapped to 33.33333333. The difference between these two values is only 6.66666666. You 
will see by following the numbers that the difference grows progressively smaller as the input z value 
increases until eventually the difference between the two values is zero (or nearly zero) at 100 in 
camera space. 
 
Recall that the output value is divided by w and that w is equal to the input z value. As the difference 
between the input and output values decrease with increasing z the divide by w creates a number 
increasingly closer to 1.0 (because these two values grow more and more similar) 
 

                       Final Z Buffer values after divide by w: 
0.55555555 0.833333333 0.925925925 0.9722222222 0.99999999 

 
We see now that the z buffer values are not linearly distributed across the range. In fact, at a distance 
of 10.0 from the near plane (input z=20) we have already used up half of the values (> 0.5). This 
indicates that 50% of the Z-Buffer precision has been used up in the first 10.0 units of near plane/far 
plane space.  By the time we hit a distance of 50 units from the near plane we are already computing 
values well into the 0.9 range of the z buffer. This problem gets worse when the distance between the 
near and far planes increase. In a typical application, the far plane is often set quite a bit further than 
100 camera space units. 
 
This (unavoidable) non-linear mapping creates problems that have been a long time hindrance to game 
developers. When using Z-Buffers of 16 bits or less, you will often see artifacts (often called Z 
Fighting or Z Wars). 
 
These artifacts are caused by the fact that 90% of the Z-Buffer precision is typically used up in the 
closest 10% of the scene. If many objects are far away from the camera, we can have a result where 
several points at different locations in 3D space map to the same Z-Buffer value.  
 
Quake™ players may remember playing DM3 and camping out by the mega health in the pent 
courtyard. Sometimes people hiding in the enclave on the opposite side of the courtyard would appear 
through the wall that should have been obscuring them. This was caused by a lack of Z-Buffer 
precision in the Quake™ software rasterizer. 
 
Z-Buffer artifacts are less common close to the camera because precision is adequate in that range. 
Note that it is actually the projection matrix that causes this problem. It is not a hardware problem. 
Although there is little we can do to change the mathematics, there are ways to deal with this problem: 
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• Using a 24 bit Z-Buffer almost always solves this problem. 24 bit Z-Buffers offer so much 
resolution that using 32 bits is generally considered wasteful. A 32 bit Z-Buffer would offer 4 
billion possible depth values between the near and far plane. That is likely far more than we 
will ever need. This is the reason why the top 8 bits of a 32 bit Z-Buffer are usually reserved 
for stencil buffering. 

 
• More recent hardware includes a W-Buffer. The W-Buffer uses the W component of the 

projection matrix output vector for the depth calculation. The W-Buffer maps much more 
linearly than a Z-Buffer and is excellent for getting rid of Z-Buffer artifacts. The buffer uses 
the same memory as the Z-Buffer and is similar in most other ways.  

 
• Reducing the distance between the near and far plane help reduce artifacts. It is actually a lot 

more effective to move the near plane forward when it comes to curing artifacts but you are 
very limited by how far you can move the near plane before objects start getting clipped 
inappropriately. If you can get away with moving the near plane a bit and it does not cure the 
problem completely, try moving the far plane back a bit as well. The goal we are trying to 
achieve to get a more linear mapping is to reduce the ratio used by the projection matrix while 
making sure Z maps from 0.0 to 1.0 after the divide by W. 

 
Our Projection Matrix now has a third column that looks like this: 
 

Projection Matrix 
 

Ratio = 
NearPlaneFarPlane

FarPlane
−
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Chapter 2 Appendix B Render/Transform States 
 
 
RenderState Type  Argument  Description 
D3DRS_ZENABLE  D3DZB_TRUE , 

D3DZB_FALSE or 
D3DZB_USEW 

 Used to enable or disable the Z Buffer. 
The Z Buffer must have been created and 
attached to the device. D3DZB_USEW 
instructs the device to use w buffering. 
You must first check if W Buffering is 
available. 

D3DRS_SHADEMODE  D3DSHADE_FLAT or 
D3DSHADE_GOURAU
D 

 Used to set the shading policy used by 
the device when rendering primitives. 
The default is 
D3DSHADEMODE_GOURAUD which 
interpolates color stored at the vertices 
over the surface. 

D3DRS_CULLMODE  D3DCULL_NONE, 
D3DCULL_CCW or 
D3DCULL_CW 

 Tells the device which winding order is 
to be considered for back face removal. 
The default is D3DCULL_CCW which 
states primitives with a counter 
clockwise winding order with respect to 
the camera should be culled. 

D3DRS_FILLMODE  D3DFILL_POINT, 
D3DFILL_WIREFRAME
, 
D3DFILL_SOLID 

 Tells the device how vertex lists should 
be rendered. The default is 
D3DFILL_SOLID stating that primitives 
should be filled with color depending on 
the current shade mode. 

D3DRS_LIGHTING  TRUE 
Or 
FALSE 

 Enables or disables the devices lighting 
module during the transformation of 
vertices. The default value is TRUE. 
Only vertices which include a vertex 
normal will be lit correctly. 

D3DRS_DITHERENABLE  TRUE 
Or  
FALSE 

 Enables or disable dithering on the 
device. The default value is FALSE. 

 
 
Transform State Type  Argument  Description 
D3DTS_WORLD  D3DXMATRIX * World  Used to set the devices world matrix. You 

pass in the address of a D3DXMATRIX 
containing the new world matrix you want 
to set. 

D3DTS_VIEW  D3DXMATRIX * View  Used to set the devices view matrix. You 
pass in the address of a D3DXMATRIX 
containing the new view matrix you want 
to set. 

D3DTS_PROJECTION  D3DXMATRIX * Proj  Used to set the devices projection matrix. 
You pass in the address of a 
D3DXMATRIX containing the new 
projection matrix you want to set. 
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Chapter 2 Appendix C 
 

STL Vector Primer 
 

The Standard Template Library (STL) is an integral part of any C++ toolset. It provides many different 
template classes for performing routine tasks such as memory allocation and string handling. One of 
the most commonly used templates is a container called a ‘vector’. A vector is essentially a dynamic 
array. It provides easy allocation, re-allocation, and de-allocation of linearly indexed memory. While 
we have decided not to use vectors in place of standard arrays in most of our demo applications, we do 
use them to simplify working with the many different types of arrays required by the enumeration and 
initialization systems. 
 
We declare a vector of any arbitrary type in the manner shown below: 
 

std::vector<int> m_IntVector; 
 
The first part of this line, std::, instructs the compiler that the following type is a member of the ‘std’ 
namespace. This is typically always the case with the common STL types so you could also make use 
of the ‘using namespace std;’ directive to avoid having to include the namespace explicitly. 
 
The next portion of code declares the variable to be of type ‘vector<int>’. Because this is a template, 
we are able to specify the type of data to be stored and managed. We could replace the ‘int’ in the 
above example with other data types, including structures or pointers. 
 
Note: Older versions of the Microsoft STL vector implementation (such as the one provided with 
Visual C++ 5.0) are not strictly compliant when it comes to user defined structures as the input type. 
Therefore it is often preferable simply to store pointers to those structures. 
 
The following is a short list of some of the common vector functions we will use in our applications: 
 
Adding Items 
vector::push_back accepts an object of the declared type and adds it to the end of the stored array. If 
the allocated memory block is not large enough to hold the new item, then the vector will grow 
automatically to make room: 
 
int IntVar = 3; 
 
// Add this integer value to our vector 
m_IntVector.push_back( IntVar ); 
 
// Also feel free to push a constant if you wish :) 
m_IntVector.push_back( 3 ); 
 
vector::size() returns the number of items currently stored in the vector.  
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A major disadvantage to adding items in this way (one by one) is that the vector may be required to 
grow each time we call push_back and the memory will be re-allocated. This results in a copy of the 
old data into the newly allocated array. If you are sure you will only be adding a few items then this is 
most likely not an issue. However in cases where you are likely to need to add hundreds or even 
thousands of items, the time required to reallocate memory and copy data in this manner will quickly 
add up. The solution to this problem is to pre-allocate a suitably sized amount of memory so that you 
are free to add items without having to reallocate as often. 
 
The vector exposes two functions which allow us to do this. The first is vector::resize. This function 
will resize the vector to the size specified in its first parameter. This number represents the total 
number of items the vector should be capable of storing before it needs to grow. If we were to pass the 
value 1000, the vector would be capable of storing 1000 separate int variables in our above example. 
The second parameter is a value used to initialize the new entries.  
 
// Add 1000 new integer items to the vector 
m_IntVector.resize( 1000 );  
 
// Add 1000 more, these should be initialized for us 
// Notice that the function expects the absolute / total size 
m_IntVector.resize( 2000, 5 ); 
 
Pre-allocating a vector in this manner has certain drawbacks. First, we have only set the overall size of 
the vector. If we were to call push_back on a vector that had been resized to 1000 the vector would 
still grow and we would have 1001 items stored. The second drawback is that we would have to 
maintain a separate variable to keep track of how many variables we have placed into the vector so far. 
This way when we next wanted to add an item, we could assign it to an existing vector element rather 
than to the end. 
 
What we would rather do then is just reserve memory rather than resize the vector. vector::reserve 
allows you to reserve however much memory you need and you can continue to call push_back until it 
reaches the reserved size. At that point the vector would begin to grow again unless you reserved more 
memory.  
 
// Reserve 1000 elements for us to use 
m_IntVector.reserve( 1000 ); 
 
// Lets be nasty and add 1000 items 
for ( i = 0; i < 1000; i++ ) m_IntVector.push_back( 3 ); 
 
// I want to add 1000 new items now, so we need some more room 
// Notice that the function expects the absolute / total size 
m_IntVector.reserve( 2000 ); 
 
// Add some more items. 
for ( i = 0; i < 1000; i++ ) m_IntVector.push_back( 3 ); 
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vector::capacity() returns the number of items that are currently reserved in the vector. 
 
Setting and Retrieving Vector Elements. 
 
The STL vector can be accessed much like a standard array since the vector class overloads the [ ] 
operator: 
 
int IntVar = 5; 
 
// Add an element to the vector 
m_IntVector.push_back(  IntVar ); 
 
// Lets read it back out just for fun 
IntVar = m_IntVector[ 0 ]; 
 
// Finally we’ll adjust the value and assign it again :) 
m_IntVector[0] = IntVar; 
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Introduction 
 
Vertex and index buffers are important device resources used to achieve the best possible application 
perfomance during primitive rendering. These resources will replace the vertex arrays we used with the 
DrawPrimitiveUP call used in Chapter 2. During this lesson we will discuss how indexed primitives 
remove the need for redundant vertices in our geometry. We will also look at how to take advantage of 
the vertex cache available on most 3D graphics adapters to minimize pipeline data transfer when 
possible. Finally, this lesson will provide you with valuable information on how to create and use 
vertex buffers in an optimal way on both hardware and software vertex-processing devices.  
 
In the last lesson, we used the IDirect3DDevice9::DrawPrimitiveUP call to send vertices through the 
transformation and rendering pipeline. Recall that the ‘UP’ stands for ‘User Pointer’ because the 
application passes its own vertex data pointer into the function. This was a pointer to a vertex array 
located in system memory that the application could freely modify at will. The main problem with this 
approach is that the vertex data is contained in system memory while the hardware geometry 
processing unit or GPU (assuming one exists on the current hardware) requires that this data be 
accessible in on-board video memory (i.e. local video memory) or in AGP memory (i.e. non-local 
video memory) in order to work with it at maximum speed.  
 
When vertex data is not in video memory the CPU must copy the system memory vertices over the bus 
into local video or AGP memory. The GPU does have direct memory access to system memory but it 
is much slower than accessing data in video memory on a hardware vertex-processing device. Because 
we are passing in an application created pointer to system memory and because the application can 
change this data at any time, the driver cannot safely cache the vertex data in video memory because it 
has no way of knowing whether or not the application has changed the memory contents. Therefore, 
each time the vertex array is rendered, DirectX Graphics will copy it into another area of memory first 
so that the GPU can be sure it is accessing the most current data. The new data area where these 
vertices reside is called a vertex buffer and will typically be located in AGP memory or local video 
memory, if a GPU is available. Once the vertex data is in the vertex buffer, the GPU can access it 
directly for fast processing. After the vertex data has been used, the temporary vertex buffer that was 
created is discarded. It will have to be recreated and destroyed each time vertices are rendered. This 
creates stalls in the rendering pipeline and results in significantly degraded application performance. 
 
When the graphics adapter does not have hardware vertex processing capability, the situation is 
different. In such a case, the transformation and lighting of our vertices is done by the DirectX 
Graphics device in software. In this situation, using DrawPrimitiveUP would not degrade performance 
quite as much as it would in the HW T&L scenario. Nevertheless, the vertex data will still be copied 
into temporary system memory vertex buffers. So even on non-HW T&L devices we face the cost of 
creation, copying, and discarding memory each time we render vertex data. While the 
DrawPrimitiveUP function is indeed convenient, it should never be used in performance critical 
commercial code. 
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It stands to reason that one way to avoid the vertex-copying overhead of DrawPrimitiveUP is to store 
our data in a vertex buffer to begin with. This way the driver already has the data available in the 
correct format. That is exactly what we will do in this lesson.  
 
Vertex buffers have a strict set of rules that, when followed, allow the driver to make optimization 
decisions about vertex data. For example, you cannot just read or write from your vertex buffer any 
time you please. You must first explicitly request a lock on the buffer. If the request was successful, 
you will be returned a pointer to the data (or a copy of the data) to work with. When you are done 
processing, you must unlock the buffer. This means that the driver can place or cache your vertex 
buffer in optimal memory without having to worry about the application changing the contents of the 
buffer without its knowledge. In a system that has a GPU, the vertex buffer will typically be stored 
either in AGP memory or local video memory. These memory pools can be quickly read by the GPU 
since it has direct memory access to them. The GPU can extract vertices from the buffer and transform 
them without having to tie up the CPU with data transfers between memory pools.  
 
 
Memory Types 
  
Vertex buffer behaviour is dependant upon parameters defined at creation time. One of the most 
important performance related factors involves which memory pool the vertex buffer resides in. In 
most circumstances we will want a vertex buffer to be placed in local video memory or AGP memory. 
However, when the 3D hardware does not support T&L, then the vertex buffer will need to be created 
in system memory. This is quite logical; if no T&L facility is available on the graphics hardware, then 
software vertex processing will occur. Vertex data in system memory is within easy reach of the CPU 
based software transformation pipeline. 
 
The following diagram shows an application running on a 3D graphics card with hardware vertex 
processing capability (a graphics card that has a GPU). 
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Let us begin by talking about the different memory types available to your application and the 
performance implications of using each type.  
 
 
Video Memory 
 
Modern graphics cards typically have their own on-board memory. The GPU can access content stored 
in video memory very quickly for both read and write operations. Applications can write to video 
memory at reasonable speeds, but reading operations are terribly slow and should be avoided at all 
costs. If we know that a certain resource used for rendering will not change (i.e. it is static), then 
ideally we will want that resource to be placed in video memory. Again, in the case of vertex buffers, if 
the graphics hardware does not support T&L (in other words, the card does not have a GPU) then we 
do not want our vertex buffers placed in video memory. System memory is the preferred choice 
because it provides fast CPU access. 
 
AGP Memory 
 
AGP enabled videocards are capable of interfacing at high speeds with reserved portions of system 
memory. The GPU has direct memory access to AGP memory much like its own local video memory. 
This means that data can be extracted from AGP memory directly by the GPU without having to 
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burden the CPU with the request. There is usually a BIOS setting that can be changed to control how 
much system memory is set aside to be used as AGP memory. 
 
When system memory is reserved as AGP memory, it behaves very differently from standard system 
memory. AGP memory is flagged as a critical section and it cannot be cached by the CPU. This makes 
CPU data reads from AGP memory slow – much like reads from local video memory. Writing to AGP 
memory however is typically very fast. In addition, AGP memory is not allowed to be paged out to 
disk. This is very different from normal memory that can be written to the hard disk using the 
operating system’s virtual memory manager. So care should be taken if you change BIOS settings 
where too much AGP memory is reserved.  
 
Vertex buffers will often be placed in AGP memory. AGP memory is fast for the CPU to write to, and 
it is fast for the GPU to read from. However it is very slow for the CPU to read from due to the fact 
that the L1/L2 caches are disabled.  
 
As we saw with local video memory, if the current system has no hardware T&L support, AGP 
memory is a poor location for storing vertex buffers. System memory is once again the best choice in 
this case. 
 
System Memory  
 
System memory (heap memory) is the memory pool in which your applications run and in which 
memory allocations are made with operators like new and delete. This is where vertex buffers should 
be placed when there is no GPU available on the current system or if there is a GPU available but the 
application frequently needs to read back data from the vertex buffer. The latter is not a recommended 
scenario if a GPU is available. GPU access to vertices in a system memory vertex buffer is typically 
ten times slower than GPU access to local or non-local video memory vertex buffers. 
 
Memory Pool Selection 

 
Ideally we want to structure our application so that vertex buffers will be placed in video memory 
when a GPU is available and system memory when it is not. We want the data stored in these buffers 
to be static, or if this is not possible, write-only. A video memory vertex buffer will be quick to render 
but will hurt performance if you have to read from it frequently. Creating the vertex buffer in system 
memory will be fast for CPU reads but will be significantly slower for the GPU to render since it will 
have to fetch the vertices over the system bus. Also note that when the GPU accesses a system memory 
vertex buffer, the CPU must play a role in the communication of that data and this can impact 
application performance.  
 
If your application requires read access to a vertex buffer then your best solution is to create it in 
system memory (even if a GPU is available). Of course, there are often solutions to help you work 
around the performance penalties associated with reading operations. One of the most obvious is 
keeping a separate copy of the vertex data in system memory to use for CPU reading, and then writing 
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results out to a seperate video memory copy when needed. Memory footprint is the clear downside 
here, but often it is worth it.  
 
When we create a vertex buffer, we will specify various flags that will be used by the device object and 
the driver to determine where (in which memory pool) the vertex buffer will be placed.  
 
While there are numerous rules and semantics listed for vertex buffers in the SDK documentation, very 
often the driver has some degree of autonomy to make its own choices. The more information we 
provide at vertex buffer creation time as to how we intend to use the buffer, the better chance that the 
driver will place it in the optimal memory for our needs. We will examine these rules as we progress 
through the chapter. 
 
 
 Device Resources 
 
Resources are data types that are created and owned by IDirect3DDevice9 object. They include vertex 
buffers, textures, index buffers, frame buffers, depth buffers, and more.  
 

 
 
All resources have interfaces that are derived directly or indirectly from the IDirect3DResource9 
interface. This interface contains a set of common methods that apply to all resource types. 
 
You will create a resource object by calling one of the device interface methods. In the case of a vertex 
buffer you call the IDirect3DDevice9::CreateVertexBuffer method. If creation is successful it will 
return a new IDirect3DVertexBuffer9 interface. This process is similar for all resource types. For 
example, when you call the IDirect3DDevice9::CreateTexture method or the 
IDirect3DDevice9::CreateIndexBuffer method, you will get returned IDirect3DTexture9 and 
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IDirect3DIndexBuffer9 interfaces respectively. We use the returned interface to manipulate the 
resource data. 
 
Because the application does not own the resource data area, it cannot simply write data to the resource 
at will. In the case of a vertex buffer for example, although we have an interface, we have no means of 
filling it with data or reading data contained within, until we call the IDirect3DVertexBuffer9::Lock 
method. If the call is successful the method will return a pointer to the resource data area and the 
application can use it as it would any other memory pointer. It could read or write to the memory 
pointed to by it or use the pointer in memcpy function calls. We will discuss this in greater detail later 
in the lesson. 
 
CreateVertexBuffer  

 
To create a vertex buffer we call the IDirect3DDevice9::CreateVertexBuffer function: 
  
HRESULT CreateVertexBuffer 
(       
    UINT Length, 
    DWORD Usage, 
    DWORD FVF, 
    D3DPOOL Pool, 
    IDirect3DVertexBuffer9** ppVertexBuffer, 
    HANDLE* pHandle <-(Reserved : Should always be set to NULL) 
); 
 
UINT Length 
This parameter is used to tell the device how many bytes the vertex buffer will need. The value must 
be large enough to store at least one vertex. When using flexible vertex formats (FVF) the size will be 
equivilent to the size of our vertex structure (in bytes) multiplied by the number of vertices we intend 
to store in the vertex buffer. For example, if CMyVertex was our vertex structure and you wanted to 
store 100 vertices in the buffer, you could calculate the length as 100 * sizeof(CMyVertex). This 
would allocate enough memory for 100 CMyVertex structures within the vertex buffer. 
 
DWORD Usage 
The Usage flag is critical to vertex buffer performance as it can ultimately control which memory pool 
the vertex buffer will reside in. The D3DUSAGE constants are used by many device resource creation 
functions. Here we will discuss the constants as they apply to vertex buffers. This parameter can be 0 if 
no usage flags are required. 
 
 D3DUSAGE_DYNAMIC 

This flag informs the device object that we intend to modify the contents of the vertex buffer on 
a frequent basis. If hardware vertex processing is used then the vertex buffer will typically be 
placed in AGP memory for dynamic buffers and in local video memory for static buffers 
(although this varies across cards and drivers). There is no D3DUSAGE_STATIC flag to 
indicate that we will not need to alter the contents of the vertex buffer throughout the life of the 
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application. Instead, the lack of a D3DUSAGE_DYNAMIC flag is interpreted as a static vertex 
buffer request. 
 
Where the vertex buffer gets placed is ultimately up to the driver. Most nVidia® drivers place 
all vertex buffers in AGP memory (both static and dynamic) when using a hardware vertex 
processing device. If the device is using software vertex processing then the vertex buffer 
(whether static or dynamic) will usually be placed in system memory. So this flag is simply a 
hint to the driver that we anticpate needing to frequently lock the vertex buffer for updates.  
 

Note: Applications should not make IDirect3DVertexBuffer9::Lock calls in time critical code 
unless the D3DUAGE_DYNAMIC flag was specified at creation time. 

 
When you lock a vertex buffer for access, there are several flags that you can pass to the device 
to minimize pipeline stalls and performance hits. 
 
For example, if we call the Lock() method with the D3DLOCK_NOOVERWRITE flag, we are 
promising the device that we will not alter any of the contents already in the vertex buffer 
although we may add additional vertices to it. This allows the driver to issue the lock, return a 
pointer, and then carry on immediately rendering from the same buffer our application is 
adding data to. Without this flag, it would have to wait until the application had finished 
altering the vertex buffer and unlocked it, before it could continue rendering. These flags 
(covered later when we look at the Lock method) are not available for static vertex buffers. 
Locking a static vertex buffer puts the GPU into a hard stall. 
 
Dynamic vertex buffers can also be locked using another flag called D3DLOCK_DISCARD. It 
is used if you intend to overwrite the contents and do not wish to stall the pipeline. Typically, 
this is handled by the device issuing a pointer to a new vertex buffer, which can be written 
while the hardware continues using the previous vertex buffer for transformation and rendering. 
This is another flag that cannot be used to lock static vertex buffers. 
 
D3DUSAGE_WRITEONLY 
 
This is a very important flag for maximum performance on a device with hardware vertex 
processing. It specifies that we do not intend to read data from the vertex buffer at any time. 
Because reading from video memory vertex buffers is so slow, the driver may decide to place 
the buffer in system memory if this flag is not specified. So, you will almost always want to 
include this flag in your creation parameters (assuming buffer reading is not required). 
 
The worst-case scenario is if the driver was to ignore this flag and place the vertex buffer in 
video memory regardless of our intentions to read from it. This would seriously hurt 
perfomance whenever we locked the buffer and read from it. This of course would never 
happen in a responsibly written device driver, but the point here is that, it is the driver which 
ultimately decides where the vertex buffer should be placed. This decision is based in whole or 
in part on the hint flags that we send it during vertex buffer creation. As it turns out, the driver 
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development kit documentation explicitly states that any vertex buffer that is created without 
the D3DUSAGE_WRITEONLY flag set must be placed in system memory. But as mentioned, 
driver implementations may vary across hardware. 
 
The Game Institute ran some tests on our development machines using static vertex buffers 
without specifying the D3DUSAGE_WRITEONLY flag. Benchmark results proved quite 
conclusively that the vertex buffer was being placed in video memory (either AGP or local). 
Significant peformance hits were recorded for data reads. 
 
D3DUSAGE_SOFTWAREPROCESSING 
 
This flag indicates that we would like the transformation and lighting of the vertex buffer data 
to be performed in software using the DirectX Graphics software T&L pipeline. This usage flag 
must not be used on a device that has been created with 
D3DCREATE_HARDWARE_VERTEXPROCESSING behaviour, although it can be used on 
devices created with the D3DCREATE_MIXED_VERTEXPROCESSING behavior flag. It 
does not have to be explicitly specified when using a device created with 
D3DCREATE_SOFTWARE_VERTEXPROCESSING since processing is done in software 
anyway. If this flag is not specified on a hardware vertex processing device or a mixed vertex-
processing device then vertex processing is done in hardware. 

 
There are other D3DUSAGE flags that are applicable to vertex buffers but the ones listed above are the 
ones we are currently interested in. We will return to some of the other usage flags later in the lesson. 
 
DWORD FVF 
This parameter tells the device the format of the vertices destined for the vertex buffer. For example, if 
we used a vertex structure which had an x, y, and z component and also a diffuse color component, we 
would pass the following flags: 
 
    Flags = D3DFVF_XYZ | D3DFVF_DIFFUSE 
 
Flexible vertex format flags were covered in Chapter 2. 
 
D3DPOOL POOL 
This flag allows our application to specify which memory pool it would like the resource to be place 
into. When combined with the D3DUSAGE flags, it directly governs the performance and behaviour 
of our vertex buffers. It is worth noting that certain resource types are treated differently even when 
they share the same D3DPOOL. For now though our focus will be on its application to vertex buffer 
creation. 
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typedef enum _D3DPOOL 
{ 
    D3DPOOL_DEFAULT = 0, 
    D3DPOOL_MANAGED = 1, 
    D3DPOOL_SYSTEMMEM = 2, 
    D3DPOOL_SCRATCH = 3, 
    D3DPOOL_FORCE_DWORD = 0x7fffffff 
} D3DPOOL; 
 
There are four possible pool types that we can choose for any resource. We will discuss each type 
along with its relationship to the vertex processing capabilities of the device. 
 
 
D3DPOOL_DEFAULT 
 
When we use the default pool, the driver will typically store the vertex buffer in the most optimal 
memory by taking into account the D3DUSAGE flag. If we specify this pool on a device that is only 
capable of software vertex processing, or if we specify this pool on a mixed mode device when we 
have specified the D3DUSAGE_SOFTWAREPROCESSING flag, the vertex buffer will be created in system 
memory. If we specify this pool type on a mixed mode vertex-processing device without the 
D3DUSAGE_SOFTWAREPROCESSING flag or if the device is a hardware vertex processing only device, 
then the vertex buffer will typically be placed in local or non-local video memory for maximum 
rendering performance. If we have not specified the D3DUSAGE_WRITEONLY flag (even on a hardware 
vertex processing device) then the situation is more ambigious. The driver may choose to place the 
vertex buffer in system memory because it assumes you might want to read from it. Alternatively, the 
driver may choose to ignore this flag and place the vertex buffer in video memory (local or non-local), 
which would carry a serious performance penalty if the vertex buffer were to be read from by your 
application.   
 
Below we list the typical video card driver reaction to specifying the D3DPOOL_DEFAULT 
enumerated type in combination with some of the D3DUSAGE flags covered previously. 

 
D3DPOOL_DEFAULT with a Hardware Vertex Processing Device 

 
 

Usage = D3DUSAGE_DYNAMIC and D3DUSAGE_WRITEONLY 
 
With this combination the driver will usually place the vertex buffer in AGP video memory. 
Writing to the vertex buffer is typically very fast but reading is extremely slow.  
 
Usage = D3DUSAGE_DYNAMIC 
 
The driver may interpret the absence of the D3DUSAGE_WRITEONLY flag as an indication 
that you will want to read from the vertex buffer at some point. Taking this into account the 
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driver might place the vertex buffer in system memory to increase reading speed at the cost of 
compromising rendering performance.  
 
Usage = D3DUSAGE_WRITEONLY 
 
The lack of the D3DUSAGE_DYNAMIC flag and the use of the D3DUSAGE_WRITEONLY 
flag generally result in optimal creation. Often this will mean the driver will place the vertex 
buffer in local video memory or at the very least, in AGP memory. The driver expects that the 
vertex buffer will not be locked or updated and places it in the memory that provides maximum 
read performance for the GPU.  
 
Usage = D3DSOFTWARE_PROCESSING 
 
This is not a valid flag for a hardware vertex-processing device because the GPU will still 
transform and light the vertices even if the vertex buffer is in system memory.   
 
Usage = 0 
 
When we specify no flag, we are indicating that we want to create a static vertex buffer and that 
we may want to read from it. A driver may decide to place the vertex buffer in video memory 
where a lock and read would be extremely expensive or it may decide that the lack of the 
D3DUSAGE_WRITEONLY flag means the application wants to read from the vertex buffer and 
place it in system memory to aid read access (when in fact we probably had no such intention).  
 
 
D3DPOOL_DEFAULT with a Software Vertex Processing Device 
 
Using the D3DPOOL_DEFAULT pool to create a vertex buffer on a software vertex-processing 
device will always create the vertex buffer in system memory. If this were not the case, 
performance would be severely degraded since the software module would have to extract the 
vertices from a buffer located in video memory.  
 
D3DPOOL_DEFAULT with a Mixed Vertex Processing Device 
 
Where the vertex buffer is placed on a mixed mode device is based on whether we created the 
vertex buffer with the D3DUSAGE_SOFTWAREPROCESSING flag. If we did, then the vertex buffer is 
always created in system memory and behaves in exactly the same way as the software vertex-
processing device described previously. The GPU will not be used to tranform and light vertices. 
 
If the D3DUAGE_SOFTWAREPROCESSING flag is not specified then the vertex buffer is treated like 
the hardware vertex-processing device scenario described above. This is also true of all 
D3DUSAGE flags specified in the hardware vertex processing case. The 
D3DUSAGE_SOFTWAREPROCESSING flag allows you to switch functionality on a mixed mode 
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device between hardware vertex processing (using the GPU) and software vertex processing 
(using the CPU).  
 

The D3DPOOL_DEFAULT pool is often the preferred pool when you want to maximize performance on 
systems with a GPU. With the D3DUSAGE_WRITEONLY flag specified, we ensure that the vertex buffer is 
placed in video memory for optimal rendering performance. Additionally, you should always use 
D3DPOOL_DEFAULT for dynamic vertex buffers. 
 

Note: If a device is lost, all vertex buffers that were created with the D3DPOOL_DEFAULT type become 
invalid and must be destroyed and rebuilt again after the device has been reset. This is true of all 
resources created with the D3DPOOL_DEFAULT type and not just vertex buffers. This is not true with 
D3DPOOL_MANAGED and D3DPOOL_SYSTEMMEM pool types. 

 
 
D3DPOOL_MANAGED 
 
Creating a vertex buffer using the D3DPOOL_MANAGED type asks the device to manage the vertex 
buffer for us. The device will not only choose the optimal memory pool for the vertex buffer, it will 
also maintain a system memory copy of the buffer so that when a device is lost and later reset, it can 
restore the buffer back to video memory without application intervention. 
 
The additional overhead of maintaining a system memory copy of a video memory vertex buffer on a 
hardware vertex processing device actually has some advantages. If our application should ever need 
to read data from the vertex buffer for example then the performance loss is typically not as severe 
because we will be locking and reading the system memory copy. 
 
Unfortunately, we cannot create dynamic vertex buffers in the D3DPOOL_MANAGED pool. Only static 
vertex buffers are viable candidates for this pool.   
 
Let us examine the behaviour and creation processes for vertex buffers created in this pool type with 
the various D3DUSAGE flags. 
 

 
D3DPOOL_MANAGED with a Hardware Vertex Processing Device 
 
Usage  = D3DUSAGE_DYNAMIC and D3DUSAGE_WRITEONLY 
 
The D3DUSAGE_DYNAMIC usage flag is not compatible with the D3DPOOL_MANAGED 
flag and they should not be used together. 
 
Usage = D3DUSAGE_DYNAMIC 
 
The D3DUSAGE_DYNAMIC usage flag is not compatible with the D3DPOOL_MANAGED 
flag and they should not be used together. 
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Usage = D3DUSAGE_WRITEONLY 
 
A driver will typically place this static vertex buffer in the optimal memory; usually local video 
memory or at the very least, non-local video memory. When we lock a managed vertex buffer, 
we are returned a pointer to the system memory copy that is managed by the device object. 
Changes made to that copy are commited up to the video memory copy once the vertex buffer 
has been unlocked.  
 
Results are undefined if you read data back from a managed vertex buffer when you have 
specified D3DUSAGE_WRITEONLY. On a local test machine we were able to successfully 
read back data from a managed vertex buffer on a hardware vertex processing device and it was 
much faster than reading back from the same vertex buffer created using the 
D3DPOOL_DEFAULT type. This is because we were reading from the system memory copy 
of the video memory vertex buffer managed by the device.  
 
Note however that this is risky. We explicitly told the driver that we do not intend to read and 
the driver is under no obligation to make sure that the data in the system memory copy of the 
vertex buffer is correct or current. It will only guarantee that changes you make to the vertex 
buffer will be synchronized with the video memory copy once the lock has been released.  
 
Usage = D3DSOFTWARE_PROCESSING 
 
This is not a valid flag for a hardware vertex processing only device even in the case of 
managed vertex buffers. With a hardware vertex-processing device, the GPU will always 
transform and light the vertices even if the vertex buffer is in system memory.  
 
Usage = 0 
 
When we do not specify any flags with a managed vertex buffer we are essentially telling the 
driver that we wish to create a static vertex buffer, which we may want to read from. Usually, 
this will still result in the vertex buffer being placed in video memory. The device will keep a 
system memory copy available that can be locked to provide decent CPU read/write 
performance.  

 
 

Note: Because D3DPOOL_MANAGED cannot be used to create dynamic vertex buffers, you should 
never use the D3DPOOL_MANAGED memory pool for any vertex buffer that your application intends to 
lock in a time critical situation. Even when the vertex buffer has been placed in system memory by the 
driver, the GPU must still read from it. Locking it will place the GPU into a wait state and stall the 
pipeline. 
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D3DPOOL_MANAGED with a Software Vertex Processing Device 
 
Usage = D3DUSAGE_DYNAMIC and D3DUSAGE_WRITEONLY 
 
You cannot use the D3DUSAGE_DYNAMIC usage flag with the D3DPOOL_MANAGED pool. 
Only static vertex buffers can be created with this pool type. 
 
Usage = D3DUSAGE_DYNAMIC 
 
You cannot use the D3DUSAGE_DYNAMIC usage flag with the D3DPOOL_MANAGED pool. 
Only static vertex buffers can be created with this pool type. 
 
Usage = D3DUSAGE_WRITEONLY 
 
The vertex buffer will be created in system memory because this is a software vertex-
processing device. No system memory copy will need to be maintained as the vertex buffer is 
already in system memory. 
 
It is still wise to specify D3DUSAGE_WRITEONLY even when using a software vertex-
processing device. The software transformation and lighting module may make optimizations 
based on the fact that the information in the vertex buffer does not have to be available for the 
application to read. Using this flag will always help you to get maximum vertex buffer 
performance. 
 
Once again, if you specify D3DUSAGE_WRITEONLY and then read back from the vertex buffer 
you may get undefined behaviour.  
 
Usage = D3DSOFTWARE_PROCESSING 
 
This flag is ignored with a software vertex-processing only device because its behavior is 
automatically implied by the type of device it is.  You should still prefer to use this flag so that 
you can clearly see how your vertex buffers are being created when examine your code. 
 
Usage = 0 
 
The vertex buffer will be created in system memory and can be safely written to and read from. 
This read-access guarantee may impede rendering performance when compared to vertex 
buffers created using the D3DUSAGE_WRITEONLY flag.  
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D3DPOOL_MANAGED with a Mixed Vertex Processing Device 
 
Where the managed vertex buffer is placed on a mixed mode device is based on whether we 
created the vertex buffer with the D3DUSAGE_SOFTWAREPROCESSING flag. If we did, then the 
vertex buffer is always created in system memory and behaves in exactly the same way as the 
software vertex-processing device described above. If the D3DUAGE_SOFTWAREPROCESSING flag 
is not specified then the vertex buffer is treated the same way as one on a hardware vertex-
processing device. This is also true of all the D3DUSAGE flags specified in the hardware 
vertex processing case.  

 
 

D3DPOOL_SYSTEMMEM 
 
A vertex buffer using this pool type is always created in system memory. It will not need to be 
recreated if the device is lost and reset. This pool is the clear choice for vertex buffers created for use 
with a software vertex-processing device. In fairness, even if we did specify D3DPOOL_MANAGED 
or D3DPOOL_DEFAULT, a system memory vertex buffer would be chosen in that case. On a 
hardware vertex-processing device, D3DPOOL_MANAGED and D3DPOOL_DEFAULT will usually 
place the vertex buffer in some form of video memory (assuming proper usage flags). So, if you wish 
to create a system memory vertex buffer with a hardware vertex-processing device, you must explicitly 
state this memory pool. 
 
While you normally would not want to do this, perhaps your application requires a dynamic vertex 
buffer and it needs to read those vertices fairly often. This is a particularly nasty situation. Your best 
bet would probably be to create the vertex buffer in the system memory pool using the 
D3DUSAGE_WRITEONLY flag. Locking the vertex buffer would be cheaper because it is a dynamic 
vertex buffer and CPU access would be decent because we are reading the vertex data back from 
memory that can be cached. Since managed vertex buffers cannot be dynamic, this is probably the best 
you can do. 
 
System memory dynamic vertex buffers are generally slow on a hardware vertex-processing device. 
The penalty associated with the GPU having to fetch the vertices, coupled with the device management 
overhead for dynamic vertex buffers, degrades performance considerably -- about 10% of the speed of 
reading vertices from a video memory vertex buffer. 
 
 
D3DPOOL_SCRATCH 
 
This pool places the vertex buffer in system memory and it does not need to be recreated when the 
device is lost and reset. Unlike the D3DPOOL_SYSTEMMEM pool type, vertex buffers created in this 
pool are completely inaccessible to the Direct3D device. This means they cannot be used for rendering. 
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You can think of vertex buffers in this pool type as simply being vertex containers. You can use these 
vertex buffers to store data, which you will later copy to another vertex buffer that is accessible from 
the device.  
 
The D3DPOOL_SCRATCH pool type vertex buffer can be created, locked, and copied. It is not a pool 
type you will use very often with vertex buffers, but it can be useful for other resource types. 
 
Vertex Buffer Performance 
 
Let us explore some different vertex buffer creation possibilities and discuss the outcomes. The code 
assumes that CVertex is a defined vertex structure and that pDevice is a pointer to a valid 
IDirect3DDevice9 interface.  
 
I. Managed Static Vertex Buffer -- optimal render performance 
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer (sizeof(CVertex) * num_verts , D3DUSAGE_WRITEONLY , fvf ,  
                             D3DPOOL_MANAGED, &pVertexBuffer , NULL)   

 
Outcome A: Hardware Vertex Processing Device 
The vertex buffer would be created in video memory with a system memory backup. Optimal render 
performance is the result, with the cost of increased memory footprint. Locking this vertex buffer will 
stall the software pipeline because it is a static vertex buffer and reading back from the buffer could 
result in undefined behaviour.  
 
Outcome B: Software Vertex Processing Device 
The vertex buffer would be created in system memory. Locking this vertex buffer will stall the 
software pipeline because it is a static vertex buffer and reading back from the buffer could result in 
undefined behaviour. 
  
II. Managed Static Vertex Buffer -- non-optimal render performance 
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer ( sizeof(CVertex) * num_verts , 0 , fvf , D3DPOOL_MANAGED, 
                              &pVertexBuffer , NULL)   

 
 
Outcome A: Hardware Vertex Processing Device 
The driver may interpret the lack of a D3DUSAGE_WRITEONLY flag as an indication of your desire 
for read access. It is likely that because this is a managed mode vertex buffer and therefore has a 
system memory copy for read accees, the actual vertex buffer will still be placed in some form of video 
memory. You can safely lock this vertex buffer and read and write its contents. When it is locked, the 
system memory copy of the vertex buffer (if it has been placed in video memory) will have its pointer 
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returned. Changes made to the system memory copy will be committed to the video memory vertex 
buffer once the lock has been released. This is a static vertex buffer, so locking is still very expensive. 
It is also likely that by guaranteeing read access to the CPU, the rendering performance will be 
compromised. 
 
Outcome B: Software Vertex Processing Device 
The vertex buffer will be created in system memory and can be locked, read from, and written to with 
confidence. Again, locking a static vertex buffer is expensive since it can cause a stall in the pipeline. 
 
III. Static Vertex Buffer -- optimal render performance 
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer ( sizeof(CVertex) * num_verts , D3DUSAGE_WRITEONLY , fvf ,   
                              D3DPOOL_DEFAULT, &pVertexBuffer , NULL); 
 
 
Outcome A: Hardware Vertex Processing Device 
The driver will place the vertex buffer in video memory (AGP or local) for optimal GPU read access. 
Unlike the D3DPOOL_MANAGED type, a system memory copy of the vertex buffer will not be 
maintained by the device object. This minimizes system memory overhead but requires your 
application to manually recreate the vertex buffer if the device is lost and reset.  
 
Speed is optimal for the GPU when transforming and rendering vertices from this vertex buffer. Unlike 
the managed vertex buffer where locking returns a pointer to the system memory copy, the pointer 
returned from locking this buffer will typically be an aliased pointer directly into video memory. 
Therefore writing to this vertex buffer can be marginally faster than writing to a managed vertex buffer 
because the copy synchronization process of the system memory vertex buffer and the video memory 
vertex buffer is not necessary when the lock is released. Although you should not try to read back from 
this buffer because it was created with D3DUSAGE_WRITEONLY, we were successfully able to do 
so during some tests. The performance results were (as one might imagine) simply terrible because the 
reads were being done directly from video memory.  
 
Outcome B: Software Vertex Processing Device 
The vertex buffer will be placed in system memory so that the software pipeline can access the data as 
quickly as possible. The device makes optimization assumptions based on the fact that you are not 
going to be reading the data back from the vertex buffer when your application locks it. Obviously, 
locking the vertex buffer and reading back from it could result in undefined behaviour.  
 
IV. Managed Dynamic Vertex Buffer -- optimal render performance 
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer ( sizeof(CVertex) * num_verts ,  
                              D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY ,  
                              fvf , D3DPOOL_DEFAULT,  &pVertexBuffer , NULL) 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 18 of 45 

 

TeamLRN



 

Outcome A: Hardware Vertex Processing Device   
Typically the driver will place the vertex buffer into some form of video memory. With nVidia® 
hardware for example, AGP seems to be the default choice. Write accesses are typically quick and 
locking the vertex buffer can be extremely efficient when the correct locking flags are used. No 
pipeline stalls will occur when locking a dynamic vertex buffer. The pointer returned from the lock is 
typically an aliased pointer directly into video memory. Reading from this buffer would result in 
terrible performance at best and undefined behaviour at worst due to the fact that the driver may have 
swizzled the data into a proprietary format (not expecting your application to read it back). 
 
Outcome B: Software Vertex Processing Device 
The vertex buffer will be placed into system memory. Locking this vertex buffer is much more 
efficient than locking a static vertex buffer as certain mechanisms are in place to prevent stalls in the 
pipeline. This buffer should not be read. 
 
V. Static Vertex Buffer – inefficient 
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer ( sizeof(CVertex) * num_verts , 0 , fvf , D3DPOOL_DEFAULT, 
                              &pVertexBuffer , NULL); 

 
 
Outcome A: Hardware Vertex Processing Device 
Results are undefined here because we created a vertex buffer in the default pool but we have not 
specified D3DUSAGE_WRITEONLY. What happens from this point on is up to the driver and 
incorrect assumptions may be made.  
 
Outcome B: Software Vertex Processing Device 
The vertex buffer is placed in system memory and can be reliably read from and written to, although 
locking can cause the performance penalty seen with all static vertex buffers. 
 
VI. Dynamic Vertex Buffer in System Memory  
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer ( sizeof(CVertex) * num_verts , 
                              D3DUSAGE_WRITEONLY | D3DUSAGE_DYNAMIC ,  
                              fvf , D3DPOOL_SYSTEMMEM,  &pVertexBuffer , NULL); 
 
Outcome A: Hardware Vertex Processing Device 
The vertex buffer is created in system memory and can be efficiently locked and written to. It should 
not be read from.  This vertex buffer can still be transformed and lit in hardware by the GPU although 
a performance hit will result from the fact that the GPU has to retrieve the vertices from system 
memory. 
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Outcome B: Software Vertex Processing Device 
The vertex buffer is created in system memory and can be efficiently locked and written to. It should 
not be read from.  This vertex buffer can still be transformed and lit in hardware by the GPU although 
a performance hit will result from the fact that the GPU has to retrieve the vertices from system 
memory. 
 
Vertex Buffer Read Statistics 
 
We discussed earlier that we should avoid reading from a vertex buffer -- especially a static vertex 
buffer. Below you will see some test results that indicate the performance of the different resource 
pools for vertex buffers. This helps us to identify where the driver was placing the test (static) vertex 
buffers. During our test we locked a vertex buffer containing 1089 vertices and read them back 10,000 
times in succession. We then unlocked the buffer. The test machine was an Athlon® 1.4 GHz with a 
geForce 3™ graphics card. Results were averaged over three tests: 
 
D3DPOOL_DEFAULT       (Hardware Vertex Processing)             23 s 80.1601 ms 
D3DPOOL_MANAGED     (Hardware Vertex Processing)                     42.7314 ms 
D3DPOOL_SYSTEMMEM (Hardware Vertex Processing)                     42.7683 ms 
 
D3DPOOL_DEFAULT 
When we chose the default pool the vertex buffer was placed in video memory. The pointer returned 
from the lock was aliased directly into video memory. Note the significant drop in performance; the 
tests took over 23 seconds when the other two took much less than a second. This is because we are 
reading directly from some type of video memory. On our test machine, the driver placed the vertex 
buffer in video memory even if we did not specify D3DUSAGE_WRITEONLY and we were still able to 
still read back from the buffer. The read times were unaltered by this. This was also true when we used 
a dynamic vertex buffer in the same pool. Each time, the vertex buffer was placed in video memory, 
which resulted in a huge performance hit when reading. Note that other drivers may decide to place the 
vertex buffer in system memory if the D3DUSAGE_WRITEONLY flag is not specified. This would 
speed up read access but impair rendering performance. 
 
D3DPOOL_MANAGED  
In this case the vertex buffer was still placed in video memory by the driver, but the device object has 
maintained a separate system memory copy of it. The meaning of this sentence is obscureLock calls 
returned pointers to this system memory copy and reading was much faster. We see quite clearly that 
reading from a managed vertex buffer is much faster than reading from a video memory vertex buffer. 
Writing to a managed vertex buffer is typically slightly slower due to the fact that an update to the 
video memory version must eventually take place. However, because the main vertex buffer is in video 
memory rendering speed is not significantly compromised. 
 
D3DPOOL_SYSTEMMEM 
As expected, reading from a system memory vertex buffer is relatively fast. The results were the same 
as reading from a managed vertex buffer because we are reading from system memory in both cases. 
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Unlike the managed pool however, rendering would take a performance hit since the GPU will have to 
fetch the vertices over the bus from system memory.  
 
We carried out the same read tests on a software vertex-processing device. Read times were also 
comparably fast since the vertex buffer was always in system memory. They are not shown above 
since the results are basically the same as reading from a D3DPOOL_SYSTEMMEM pool on a hardware 
vertex-processing device. 
 
 
Locking Vertex Buffers 
 
Once the vertex buffer is created, we need to fill it with vertex data. This is typically done at 
application startup for static vertex buffers. We call the IDirect3DVertexBuffer9::Lock method to 
retrieve a pointer to the vertex buffer data area. After we have finished filling the vertex buffer we 
must remember to call the IDirect3DVertexBuffer9::Unlock method to relinquish control of the vertex 
buffer back to the driver. Every call to Lock must be matched with a call to Unlock. This is very 
important.  
 

Note: As you will see in later lessons, all resources follow the same rules for locking and unlocking to 
gain temporary access to the resource data area. You should never store the pointer returned from a 
Lock method since it will be invalid once the resource is unlocked. Further, there is no guarantee that a 
second call to the lock function on the same resource will return the same pointer. In fact, this is often 
not the case. 

 
HRESULT IDirect3DVertexBuffer9::Lock 
(       
    UINT OffsetToLock, 
    UINT SizeToLock, 
    VOID **ppbData, 
    DWORD Flags 
); 
 
UINT OffsetToLock 
OffsetToLock specifies an offset into the vertex buffer in bytes. Locking can be optimised in some 
situations (especially with managed resources) if we specify only the region of the vertex buffer that 
we wish to modify. For example, if you did not need access to the first ten vertices in the buffer but did 
need access to the rest, you would want to pass in the value of 10 * sizeof(CVertex). This will return a 
pointer to the 11th vertex in the vertex buffer. If you pass in zero, the pointer returned will point to the 
start of the vertex data.  
 
UNIT SizeToLock 
SizeToLock defines how many vertices you need access to, starting from OffsetToLock. If you pass in zero 
to both the OffsetToLock and the SizeToLock parameters the entire buffer will be locked and the pointer 
returned will point to the start of the data area. Otherwise, this value is used to lock only a section of 
the vertex buffer. If you only needed acces to the 11th, 12th, 13th, 14th, and 15th vertices in the buffer 
you would use: 
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OffsetToLock = 10 * sizeof(CVertex) and SizeToLock = 5 * sizeof(CVertex).  
 
VOID **ppbData  
This is the address of a pointer that will point to the vertex data when the call returns. It is a temporary 
pointer that should be discarded once the resource has been unlocked. Usually you will pass a pointer 
to your own vertex structure type and cast it to void for the call. 
 
DWORD Flags 
This will be a combination of one or more flags to aid the device in selecting an efficient locking 
strategy. The possible values are: 

• D3DLOCK_DISCARD  
• D3DLOCK_NO_DIRTY_UPDATE  
• D3DLOCK_NO_SYSLOCK  
• D3DLOCK_READONLY  
• D3DLOCK_NOOVERWRITE 

D3DLOCK_DISCARD 
This flag states that the application will write to the entire locked region. This allows the 
runtime to discard the current vertex buffer and a pointer to a new buffer is returned 
immediately. The discarded vertex buffer can continue to be used by the GPU while the new 
buffer is being filled.  
 
This flag is only valid when locking a dynamic vertex buffer (or any other dynamic resource). 
It cannot be specified during the lock call if your vertex buffer was not created with the 
D3DUSAGE_DYNAMIC flag. Additionally, it is recommended that this flag only be used for 
buffers created with D3DUSAGE_WRITEONLY. 
 
D3DLOCK_NOOVERWRITE 
This flag promises the device that the application will not alter any of the vertex data currently 
in the buffer. It could be used if you wanted to append vertex data to the end, or if you wanted 
to read from the vertex buffer. Because you are promising that your application will not alter 
the contents, the driver can lock the resource, return the pointer, and then continue to render 
from this buffer knowing that the vertex data is still current. The driver does not have to wait 
for the lock to return to continue processing any cached data. It is the most efficient locking 
flag. 
 
This flag is only valid when locking a dynamic vertex buffer (or any other dynamic resource). 
If you specify both D3DLOCK_DISCARD and D3DLOCK_NOOVERWRITE then D3DLOCK_DISCARD is 
ignored and only D3DLOCK_NOOVERWRITE is used. 
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D3DLOCK_READONLY 
This flag promises the driver that your application will not alter the data in the buffer or attempt 
to add data to it. It will only read from it. This can be beneficial if a driver was to store the 
vertex buffer in a non-native format internally for performance reasons. If this were the case 
then the data would have to be uncompessed into a readable format for the application and then 
recompressed after the lock has been released to update the vertex buffer. If this flag is 
specified then the recompression is not necessary as the data has not changed. 
 
The lock function will fail if this flag is specified when locking a vertex buffer created with the 
D3DUSAGE_WRITEONLY flag. 
 
D3DLOCK_NO_DIRTY_UPDATE 
By default, a lock on a resource adds a dirty region to that resource. This flag prevents any 
changes to the dirty state of the resource. Applications should use this option when they have 
additional information about the set of regions changed during the lock operation. You will 
probably not use this lock flag very often with vertex buffers. 

 
D3DLOCK_NOSYSLOCK 
The default behavior of a video memory lock is to reserve a system-wide critical section, 
guaranteeing that no display mode changes will happen whilst the resource is locked. This flag 
causes the system-wide critical section not to be held for the duration of the lock.  
 
A lock operation of this type is typically pretty slow, but it does enable the system to perform 
other duties, such as moving the mouse cursor. This option is useful for long-duration locks 
that would otherwise adversely affect system responsiveness, such as the lock of the back 
buffer for software rendering. 

 
 

Filling Vertex Buffers 
 

The following code example shows how to create a static vertex buffer to hold six vertices. In this code 
CVertex is assumed to be an already defined vertex structure such as the one used in our demo 
applications. pDevice is assumed to be a valid IDirect3DVertexBuffer9 interface. Error checking is 
removed for readability. 
 
   // We will need a pointer to the vertex buffer interface 
   // In our example this is assumed to be a CGameApp class member variable   
   IDirect3DVertexBuffer9 * m_pVertexBuffer; 
   …… 
   // Declare a pointer to use for the lock. 
   CVertex *pVertex = NULL; 
   ULONG    ulUsage = D3DUSAGE_WRITEONLY;    
 
   // Create our vertex buffer ( 36 vertices (6 verts * 6 faces) ) 
   m_pD3DDevice->CreateVertexBuffer( sizeof(CVertex) * 36, ulUsage,  
                                     D3DFVF_XYZ | D3DFVF_DIFFUSE, 
                                     D3DPOOL_MANAGED, &m_pVertexBuffer, NULL ); 
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   // Lock the vertex buffer and get ready to fill data 
   m_pVertexBuffer->Lock( 0, sizeof(CVertex) * 36, (void**)&pVertex, 0 ); 
    
   // Front Face 
   *pVertex++ = CVertex( -2,  2, -2, RANDOM_COLOR ); 
   *pVertex++ = CVertex(  2,  2, -2, RANDOM_COLOR ); 
   *pVertex++ = CVertex(  2, -2, -2, RANDOM_COLOR ); 
   *pVertex++ = CVertex( -2,  2, -2, RANDOM_COLOR ); 
   *pVertex++ = CVertex(  2, -2, -2, RANDOM_COLOR ); 
   *pVertex++ = CVertex( -2, -2, -2, RANDOM_COLOR ); 
 
    // Unlock the buffer 
    m_pVertexBuffer->Unlock( );  

 
This is a pretty straightforward example. Notice that we must call the Unlock function once we are 
finished filling the buffer. You are allowed to nest calls to Lock/Unlock pairs but any calls to render 
the buffer will fail if there are any outstanding locks on it. As you can see, the 
IDirect3DVertexBuffer9::Unlock method takes no parameters and should be paired with a prior call to 
IDirect3DVertexBuffer9::Lock. 

 
Vertex Stream Sources  
 
In order to render a vertex buffer with the fixed function pipeline, we must set it as the currently active 
vertex buffer and make sure that the device knows the vertex format. As we did in our previous 
applications when we were not using vertex buffers, we must call the SetFVF function and specify the 
components in the vertices in our buffer using the flexible vertex format flags. 
 
    // Setup our vertex FVF code 
    m_pD3DDevice->SetFVF( D3DFVF_XYZ | D3DFVF_DIFFUSE ); 
 
We tell the device to get the vertices from our vertex buffer using the 
IDirect3DDevice9::SetStreamSource function: 
 
   // Set the vertex stream source 
   m_pD3DDevice->SetStreamSource( 0, m_pVertexBuffer, 0, sizeof(CVertex) ); 
 
Several streams can be used to pass data from multiple vertex buffers. This can be useful if you wish to 
store position components in one vertex buffer (in stream zero) and have the texture coordinates stored 
in another vertex buffer (in stream two). In all of our applications, we will be using a single vertex 
stream (stream zero).  
 
Let us have a look at the definition of the IDirect3DDevice::SetStreamSource function: 
 
HRESULT SetStreamSource 
(       
    UINT StreamNumber, 
    IDirect3DVertexBuffer9 *pStreamData, 
    UINT OffsetInBytes, UINT Stride 
); 
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UINT StreamNumber 
This is the number of the stream you wish to bind the vertex buffer to. We will be using stream 0 for 
our applications. 
 
IDirect3DVertexBuffer9 *pStreamData 
The pointer to the interface of the vertex buffer you wish to bind to the stream.  
 
UINT OffsetInBytes 
Offset from the beginning of the stream to the beginning of the vertex data measured in bytes. To find 
out if the device supports stream offsets, see the D3DDEVCAPS2_STREAMOFFSET constant in 
D3DDEVCAPS2. You will usually set this value to zero (indicating no offset). Stream offsets are not 
supported by all devices.  
 
UINT Stride 
The stride of our vertex format is the amount of bytes from the start of one vertex to the start of the 
next vertex in the vertex buffer. Basically, this is the size of a single vertex.  
 

 
DrawPrimitive 
 
At this point we have created and filled a vertex buffer, set the FVF, and attached the vertex buffer to 
stream zero. All that remains is to send the vertex data to the rendering pipeline. In the last chapter, we 
did this by calling the DrawPrimitiveUP function. This time we will call the 
IDirect3DDevice9::DrawPrimitive function instead. This tells the device to extract the vertices from 
the vertex buffer currently bound to the vertex stream(s). 
 
HRESULT IDirect3DDevice9::DrawPrimitive 
(       
    D3DPRIMITIVETYPE PrimitiveType, 
    UINT StartVertex, 
    UINT PrimitiveCount 
); 
 
The DrawPrimitive function fires the vertices from the currently set vertex buffer into the 
transformation and lighting pipeline (assuming they are untransformed vertices). We will set our 
world, view, and projection matrices prior to calling the function just as we did in Chapter 2.  
 
D3DPRIMITIVETYPE PrimtiveType 
Describes how the vertices in the vertex buffer are to be rendered as primitives. Valid values are 
D3DPT_POINTLIST, D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT_TRIANGLELIST, D3DPT_TRIANGLESTRIP, or 
D3DPT_TRIANGLEFAN.   
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UINT StartVertex 
Although our application can use many vertex buffers (one for each object in our scene if we wish), it 
is often beneficial to store multiple objects within a single buffer. One of the reasons is that changing 
vertex buffers (by calling IDirect3DDevice9::SetStreamSource) can be a moderately expensive 
operation. If we store many objects within a single buffer we can minimize the number of vertex buffer 
changes that our application needs to make. This parameter allows us to store the meshes in a single 
vertex buffer sequentially and render one section at a time.  
 
For example, we could have mesh 1 stored in the vertex buffer using the first 100 vertices and mesh 2 
following mesh 1 in the vertex buffer with another 100 vertices. To render mesh 1, we would set its 
world matrix and call DrawPrimitive with a StartVertex parameter of 0 and a PrimitiveCount with a 
number such that its faces are rendered using the first 100 vertices. Then we could set the second mesh 
world matrix and call DrawPrimitive with a StartVertex of 100 and a primitive count value such that it 
renders the appropriate number of triangles for that mesh taking into account the D3DPRIMTIVETYPE 
being used. 
 
UINT PrimitiveCount 
The number of primitives to render in this call. The value will be based on the primitive type: 

• PointList (PrimitiveCount = NumberOfVertices) 
• LineList  (PrimitiveCount = NumberOfVertices / 2) 
• LineStrip (PrimitiveCount = NumberOfVertices –1) 
• TriList     (PrimitiveCount = NumberOfVertices / 3) 
• TriStrip   (PrimitiveCount = NumberOfVertices – 2) 
• TriFan     (PrimtiveCount  = NumberOfVertices – 2) 

 
The next code snippet demonstrates rendering multiple objects where each mesh is stored in its own 
vertex buffer. The vertex buffers are assumed to hold untransformed vertices, and each object in the 
world is assumed to have a correctly initialized world matrix and a pointer to its own vertex buffer 
containing the vertex data. All vertices share the same FVF code set at application startup. The vertex 
data is arranged to be rendered as a triangle list. 
 
    // Clear the buffers 
    m_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xFFFFFFFF, 1.0f, 0 ); 
     
    // Begin Scene Rendering 
    m_pD3DDevice->BeginScene(); 
     
    // Loop through each object 
    for ( ULONG i = 0; i < NumberOfObjectsInWorld; i++ ) 
    { 
        // Set our object matrix 
        m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_pObject[i].m_mtxWorld ); 
 
        // Set the vertex stream source 
        m_pD3DDevice->SetStreamSource( 0, m_pObject[i].m_pVertexBuffer, 
                                       0, sizeof(CVertex)); 
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        // Render the primitives as a triangle list 
        m_pD3DDevice->DrawPrimitive( D3DPT_TRIANGLELIST, 
                                     0, 
                                     m_pObject[I].NumberOfVertices/3 ); 
     
    } // Next Object 
 
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 
     
    // Present the buffer 
   m_pD3DDevice->Present( NULL, NULL, NULL, NULL ); 
 

Notice that we call the SetStreamSource function during each iteration of the loop because in this 
example each object has its own vertex buffer.  
 
A more efficient approach might be to store all of the objects that share the same flexible vertex format 
in the same vertex buffer. In this case, each object would need to store an index into the vertex buffer 
where its vertices begin. We would then render that section by calling DrawPrimitive and specifying 
this index as the StartVertex parameter. We would also be able to move the call to SetStreamSource 
outside of the loop and set it once for those objects. 
 
Before moving on to the next section, please open your workbook to Lab Project 3.1 and spend some 
time examining the source code. This project addresses creating, filling, and rendering vertex buffers. 

 
 

Indexed Primitives 
 
In Lab Project 3.1, the GPU had to transform 36 vertices per cube when only 8 unique points existed.  
It is certainly good that we were able to render the entire cube with one function call (versus our 
previous applications), but this still seems extraordinarily wasteful. When a mesh has hundreds or 
thousands of triangles (as will the next mesh we examine) the performance implications of all of this 
redundant processing are clearly not good.  
 
In this section, we will address the concern about data redundancy while preserving the preference for 
rendering with as few function calls as possible. This solution will apply to all of our primitive types 
(strips, fans, or lists), so our ability to store data in formats that suit our needs will also be preserved. 
The technique we will use is called indexed primitive rendering. Beyond simply resolving the 
redundancy issue, there is another important benefit we will see. Indexed rendering allows hardware to 
utilize a small local memory cache for temporary vertex storage. This vertex cache can, under the right 
circumstances, significantly improve application performance.  
 
Rendering with indices is a straightforward concept. In addition to our vertex buffer, we will send the 
device a second buffer filled with indices into that vertex buffer. This buffer is called an index buffer. 
Each element in the index buffer is the index of a vertex in the vertex buffer. We essentially treat this 
concept as two parallel arrays. One array (the vertex buffer) holds the building-block vertices. The 
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second array (the index buffer) holds references into the first array that are used select out the vertices 
needed to construct triangles.  
 
If we were rendering a triangle list using indices, then the first three indices in the index buffer would 
describe the vertices in the vertex buffer used to form the first triangle. The next three indices would 
descibe the vertices in the vertex buffer that comprise the second triangle. And so on. This allows us to 
reuse the same vertex in multiple triangles simply by specifying its index in each triangle that requires 
it. This approach can completely eliminate the need for duplicated vertices when all vertex properties 
are shared, and in turn eliminate redundant vertex processing.  
 

 
Figure 3.1 

 
Fig 3.1 depicts seven unique position vertices used to build five triangles. If we wanted to render this 
list of triangles as a triangle list, we would need to duplicate vertices in the vertex buffer because the 
device expects three vertices for each triangle when using the D3DPT_TRIANGLELIST primitive type. 
 
The vertex buffer would look like the list of vertices shown below: 
 
                                 Tri 1                Tri 2                 Tri3                 Tri 4                  Tri 5 
                             ------------        ------------         ------------        ------------          ------------- 
VertexBuffer =   P1 , P2 , P3 ,   P2 , P3 , P4 ,    P3 , P4 , P5 ,    P4 , P5 , P6 ,    P5 , P6 , P7    
 
Positions P3, P4, and P5 are all duplicated three times because they belong to three separate triangles.  
 
Note that indeed we could render this example mesh as a triangle strip and eliminate the redundant 
vertices without the need for indices, but since this is an indexing example, please ignore strips for 
now.  
 
 
Under an indexed based scenario, the situation shifts to become: 
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                                     Vertex Pool 
                           ------------------------------- 
VertexBuffer =  P1, P2, P3, P4, P5, P6, P7 = 7 vertices 
 
This vertex buffer now serves as a pool rather than a triangle list. The triangle list is moved to the 
index buffer: 
 
                        Tri 1     Tri 2    Tri 3      Tri 4     Tri 5  
                       -------    ------     ------     ------     ------ 
IndexBuffer = 0,1,2  ,  1,2,3  ,  2,3,4  ,  3,4,5  ,  4,5,6 
 
Each element in the index buffer describes the offset (zero-based) into the vertex buffer of the vertex to 
be used in the correct location. For example, Triangle 4 references vertices P4, P5, P6 using index 
values 3, 4, and 5. 
 
Note that although we have to allocate a new resource (the index buffer) we generally wind up saving a 
considerable amount of memory. Indices are typically 16 bit values (although 32 bit values are possible 
as well). In the case above we managed to eliminate 9 vertices from the vertex buffer. Consider even a 
simple vertex structure that stored a position (3 floats) and a diffuse color (1 DWORD). That is 16 
bytes. For the 9 vertices we eliminated we reduced the buffer size by 144 bytes. Our 18 indices at 16 
bits each take 36 bytes of storage for an overall savings of 108 bytes. If the vertex format was more 
complex (as will usually be the case) memory savings can start to add up. 
 
More important is the point that using indices enables the GPU (if hardware vertex processing is 
enabled) to cache vertices so that they do not have to be processed multiple times. This can improve 
performance by an order of magnitude. In the above arrangement, vertices P1, P2 and P3 would be 
transformed and lit first. When we render the second triangle, vertices P2 and P3 are already in the 
vertex cache and do not have to be transformed and lit again. And so on for the other triangles. The 
vertex cache is a pretty scarce resource that is implemented on nVidia® based cards as FIFO buffers. 
The next table lists the cache size on the geForce™ series of cards. 
 
NVidia Model Vertex Cache Size 
geForce  
geForce 2 
geForce 3 
geForce 4 

10 Vertices 
10 Vertices 
18 Vertices 
18 Vertices 

 
The vertex cache is a valuable resource so it is important to order your indices so that triangles that use 
the shared vertex are located close together in the vertex buffer. This ensures that when a vertex enters 
the cache, other triangles can be rendered that use that vertex before it is flushed from the cache. If you 
do not do this then there is a good chance that the vertex will have been removed from the cache by the 
time the next triangle using it is transformed and lit. When this happens, that same vertex will have to 
be pumped through the transformation pipeline again. 
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Important: The vertex cache is only available when using indexed primitives. 
  
Let us look at one more example, just to make sure we have the concept fully nailed down. We return 
once more to our favorite 3D shape: 

 
Figure 3.2 

 
In Fig 3.2 we have labeled only the seven vertices that are used by the six visible triangles making up 
the three cube faces. Ignoring the back faces for now, we could create a vertex buffer for the six visible 
triangles as: 
 
Vertex Buffer = P1 , P2 , P3 , P4 , P5 , P6 , P7 
 
The corresponding index list for the six triangles would be: 
 
                         Tri 1    Tri 2      Tri 3       Tri 4       Tri5        Tri6 
                         ------    ------     ------       ------      -------      ------- 
Index Buffer = 0,2,3  ,  0,1,2  ,  4,1,0   ,   4,5,1   ,   1,6,2   ,   1,5,6  = 18 
 
We have represented six triangles as a triangle list using only seven vertices. Notice that the index 
count is now what the old vertex count used to be for each primitive. For a triangle list, the number of 
indices needed is NumTriangles * 3. But we are not limited to indexed triangle lists. We can use 
indices with any D3DPRIMITIVETYPE. For example, take another look at the image we saw earlier: 
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If we wanted to render the above as an indexed triangle strip we would create the following vertex and 
index buffers: 
 
Vertex Buffer = P1 , P2 , P3 , P4 , P5 , P6 , P7 
 
There is no change here, since the vertex buffer is just a vertex pool that will be referenced by the 
index buffer to create triangles: 
 
                          Tri 1   Tri 3                
                         -------  -------    … 
IndexBuffer =  0 , 1 , 2 , 3 , 4 , 5 , 6 
                              -------- 
                                Tri 2     
 
Note the consistency with the strips we saw in the last chapter. The first three vertices in the vertex 
buffer describe the first triangle, and then every additional vertex created a new triangle by using the 
last two vertices of the previous triangle. This same behaviour carries over when using indexed triangle 
strips. 
 
We can calculate the number of indices needed to render an indexed triangle strip as NumTriangles * 
2. This is identical to the way we calculated the vertices needed for a non-indexed triangle strip in 
Chapter 2. 
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Creating Index Buffers 
 

Like vertex buffers, index buffers are device resources that are derived from IDirect3DResource9. We 
can create static and dynamic index buffers (using the same D3DUSAGE flags), lock and unlock for 
read/write access, and we can set them as the active index buffer so that the device will use the index 
buffer to fetch the indices when rendering. To create an index buffer we call the 
IDirect3DDevice9::CreateIndexBuffer method.  
 
HRESULT CreateIndexBuffer 
(       
    UINT Length, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    IDirect3DIndexBuffer9 **ppIndexBuffer, 
    HANDLE* pHandle 
); 

 
UINT Length 
This specifies the length (in bytes) that you wish your index buffer to be. There are two different index 
formats you can use (16 or 32 bit).  This format is specified in the D3DFORMAT parameter. To create 
an index buffer to hold ten 16-bit indices, the length of the buffer would need to be 10 * 2 = 20 bytes. 
 
D3DUSAGE Usage 
Identical to the vertex buffer usage options discussed earlier and the same rules apply: if you need to 
lock the index buffer in time critical situations then make sure it is created with both the 
D3DUSAGE_WRITEONLY and D3DUSAGE_DYNAMIC flags.  
 
D3DFORMAT Format 
There is a choice of two format types that are applicable to index buffers: D3DFMT_INDEX16 or 
D3DFMT_INDEX32 (describing 16- or 32-bit indices respectively). Normally you will use 16-bit 
indices. If you have more than 65,535 vertices within a single vertex buffer then you could use 32-bit  
indices -- although even then it is not strictly necessary. As we will see later, we can use a special 
offset parameter during the rendering call to address just this sort of situation. This is preferable to 
using what is essentially twice as much memory and bus bandwidth during rendering. 
 
D3DPOOL Pool 
The implications for index buffers with regards to pool type are essentially the same as for vertex 
buffers. If you use a manged index buffer, then you will not have to recreate the index buffer should 
the device become lost. The driver will also try to place the index buffer in optimal memory. If you 
choose the default pool, then the index buffer will also be put into optimal memory but will have to be 
recreated by your application when the device is lost and restored. If you intend to read from the index 
buffer often then you should place the index buffer in either the managed pool or system memory pool. 
If you wish to create a dynamic index buffer then it must go in the default pool. Finally, you will want 
to place the index buffer into system memory on a software vertex-processing device. 
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IDirect3DIndexBuffer9** ppIndexBuffer 
This is where we pass the address of a pointer to an IDirect3DIndexBuffer9 interface. If the device was 
able to create the index buffer successfully then this pointer will point to a valid 
IDirect3DIndexBuffer9 interface when the function returns.  
 
HANDLE *pHandle 
Reserved. This parameter should be set to NULL. 
 
The next code snippet creates a static managed index buffer that would hold 36 16-bit index values.  
 
IDirect3DindexBuffer9 * pIndexBuffer; 
DWORD ulUsage = D3DUSAGE_WRITEONLY; 
pDevice->CreateIndexBuffer(sizeof(USHORT) * m_nIndexCount, ulUsage, D3DFMT_INDEX16, 
                           D3DPOOL_MANAGED, &pIndexBuffer, NULL ); 
 
Providing the function was successful, we can now lock the buffer using the returned interface. The 
IDirect3DIndexBuffer9::Lock method should look familiar: 
 
HRESULT Lock 
(       
    UINT OffsetToLock, 
    UINT SizeToLock, 
    VOID **ppbData,  
    DWORD Flags 
); 
 
This lock method is exactly the same as the IDirect3DVertexBuffer9::Lock method. The first two 
parameters allow us to lock only a region of the index buffer. If we pass zero for both of these 
parameters then we will get back a pointer to the start of the index buffer data area. The third 
parameter is where we pass the address of a pointer that will point to the data area should the lock be 
successful. The final parameter can be any of the D3DLOCK flags that we discussed earlier when we 
discussed vertex buffers: 

• D3DLOCK_DISCARD  
• D3DLOCK_NO_DIRTY_UPDATE  
• D3DLOCK_NO_SYSLOCK  
• D3DLOCK_READONLY  
• D3DLOCK_NOOVERWRITE 

Refer back to the section on vertex buffer if you have forgotten the benefits these flags can provide. 
Once we have our index buffer, we can lock it as follows. 
 
USHORT *pIndex; 
pIndexBuffer->Lock (0, sizeof(USHORT) * m_nIndexCount, (void**)&pIndex, 0); 

  
Provided the lock is successful, we can use the returned pointer to place values into our index buffer. 
 
*pIndex++ = 0; 
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*pIndex++ = 1; 
 

Once we have finished placing the values into the index buffer, we unlock it. 
 
pIndex->Unlock(); 
 
 

DrawIndexedPrimitive 
 
Rendering indexed primitives is a simple affair. First, we attach the vertex buffer to stream 0 as we did 
before. Then we need to inform the device about the index buffer we wish to use. The 
IDirect3DDevice9 interface has a method called SetIndices that allows you to pass in an interface to an 
index buffer: 
 
HRESULT SetIndices( IDirect3DIndexBuffer9 *pIndexData ); 
 
As with all device state changes, these buffers will remain active until they are changed. This means 
we can set the vertex buffer, and set the index buffer and they will remain the current index and vertex 
buffers used for rendering until they are unset.  
 
Finally, we call the rendering function IDirect3DDevice9::DrawIndexedPrimitive: 
 
HRESULT DrawIndexedPrimitive 
(       
    D3DPRIMITIVETYPE Type, 
    INT BaseVertexIndex, 
    UINT MinIndex, 
    UINT NumVertices, 
    UINT StartIndex, 
    UINT PrimitiveCount 
); 
 
We will examine the parameters slightly out of order as it should make the concepts easier to 
understand.  
 
D3DPRIMTIVETYPE Type 
This tells the device how the indexed primitives are arranged. In this case, indices define the triangles, 
so the vertices can be stored in an arbitrary order so long as the indices reference them correctly given 
the specified primitive type. The possible parameters here can be D3DPT_POINTS, 
D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT_TRIANGLELIST, D3DPT_TRIANGLESTRIP, 
or D3DPT_TRIANGLEFAN.  
 
UINT StartIndex 
This value describes the first index in the currently set index buffer that we want to start rendering 
with. For example, if we had 100 indices and a StartIndex of 30, only the last 70 indices in the index 
buffer would be used. 
 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 34 of 45 

 

TeamLRN



 

UINT PrimitiveCount 
This informs the driver how many primitives you wish to render. There must be enough indices in the 
index buffer to fullfill this request. For example, if we were rendering using a 
D3DPT_TRIANGLESTRIP primitive type and we wanted to render 100 triangles, there would need to 
be 102 indices in the index buffer. If we were using a D3DPT_TRIANGLELIST primitive type, there 
would need to be 300 indices in the index buffer. If you have specified a StartIndex value that is non-
zero, then there must be enough indices in the array from the specified offset in the index buffer to the 
end of the buffer to fullfill the primitive count request. 
 
INT BaseVertexIndex 
This allows you to specify a value that will be added to all index values before they are used to index 
into the vertex buffer. If we specified a base vertex index value of 1000, and our index buffer has three 
indices in it with the values (6, 7, and 8), the driver would add 1000 to each index and fetch vertices 
1006, 1007, and 1008. This allows you to use the same index values and map them to different areas of 
a vertex buffer. It also solves the problem discussed earlier regarding 16- and 32-bit index values since 
you can now use this value to offset beyond the 65,535 limitation imposed by 16-bit indices. 
 
UINT MinIndex 
This is the index of the first vertex used in the call. The BaseVertexIndex value will be added to this 
value when rendering so this does not need to be taken into account at this time. If we have a three-
element index buffer consisting of indices (20, 21, and 22) and we had a BaseVertexIndex value of 
200, we would specify a MinIndex of 20. When transforming these vertices, the device will add the 
BaseVertexIndex value to the MinIndex value such that it knows the minimum vertex used in the call 
is actually 220. 
 
UINT NumVertices 
This is the number of vertices in the vertex buffer used in this call. Let us say for example that we have 
an index buffer (10,11,12,13,14,15,16,17,18). Let us also say that we have set a BaseVertexIndex 
value of 100 and we have a StartIndex value of 3. This is how it looks: 
  
Index Buffer        = 10,11,12,   13,14,15,    16,17,18 
StartIndex            = 3 
BaseVertexIndex = 100 
MinIndex             = 13 
NumVertices        = 6 
 
The StartIndex value 3 means that the first three indices are skipped over and are not used in this call. 
The section of our index that will be used is: 
 
IndexBuffer         = 13,14,15,   16,17,18 
 
BaseVertexIndex will be added to the indices so the devive will use vertices: 
 
VerticesUsed      =  113,114,115,   116,117, 118 
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Because we are skipping the first 3 indices, the minimum vertex index is 13 because this is the lowest 
vertex index used in our index buffer. When rendering, the device will add the BaseVertexIndex value 
to the MinIndex value and it knows that vertex 113 is the first vertex used. 
 
Finally, we render two triangles from the remaining six vertices in the buffer. This creates triangle 1 
from vertices 113,114,115 and triangle 2 from vertices 116,117, 118. 
 
It is sometimes initially difficult to understand the need for MinIndex and NumVertices when it would 
seem that the primitive count should ultimately describe how many vertices we are using. But this is 
not strictly true because in our examples we have used vertices stored consecutively in our vertex 
buffer. However you might have an index buffer with one triangle using the indices (0, 9, 350). In this 
instance, we would have to set the MinIndex to 0 and the number of vertices used to 350.  
 
When using a hardware vertex-processing device, the MinIndex and NumVertices parameters are 
ignored. This is because the GPU has its own vertex cache, allowing it to very efficiently grab vertices 
when they are needed and store them in this memory. When we are using a software vertex-processing 
device however, the code can transform the vertices much quicker if it transforms a block of vertices in 
advance. This is why we need to pass in the MinIndex and NumVertices parameters. It processes the 
block of vertices in this range in one pass before it uses them for rendering.  
 
This brings up an important optimization point. If, as in the above example, we had an index buffer 
with indices (0, 9, 350) the software transformation engine would have to tranform all 350 vertices in 
advance even though we are only using three of them. This is why it is crucial to store vertices in the 
vertex buffer in an ordered fashion. They should be grouped such that a single mesh’s vertices are all 
in one section, another mesh in another section and so on. Although this is not as critical on a hardware 
vertex-processing  device, it is still important to store vertices in the vertex buffer in a localized 
manner so that the GPU vertex cache is used to its maximum potential. The vertex cache has very 
limited storage space so you should try to organize your indices in such a way that all triangles that 
share a vertex are stored together in the index buffer. 
 
In our lab projects for this lesson, most of these parameters are simplified by the fact we are rendering 
using the entire contents of the index buffer and are not using a BaseVertexIndex value. Both 
BaseVertexIndex and StartIndex can be set to zero. 
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DrawIndexedPrimitiveUP 
 
It is worth mentioning that we do not have to use index buffers to use indexed rendering. In Chapter 2 
we used the DrawPrimitiveUP function to render vertices using application managed arrays rather than 
vertex buffers. Similarly (although we will not use it in the course), there is a function in the 
IDirect3DDevice9 interface called DrawIndexedPrimitiveUP. It allows you to pass user defined 
pointers to vertices along with an array of indices stored in normal application memory. It works just 
like the DrawIndexedPrimitive we studied in the last section so you should have no trouble 
understanding it should you choose to experiment with it. 
 
HRESULT DrawIndexedPrimitiveUP 
(       
    D3DPRIMITIVETYPE PrimitiveType, 
    UINT MinVertexIndex, 
    UINT NumVertexIndices, 
    UINT PrimitiveCount, 
    const void *pIndexData, 
    D3DFORMAT IndexDataFormat, 
    CONST void *pVertexStreamZeroData, 
    UINT VertexStreamZeroStride 
); 
 
 
Indexed Triangle Strips 
 
It is now time to examine some geometry that is a little more challenging than the cubes we have been 
using to date. In Lab Project 3.2 we are going to build and render a terrain (an outdoor landscape) 
using vertex and index buffers. The terrain will be rendered using indexed triangle strips. If you are 
unfamiliar with terrains, quad grids, and height maps, this would be a good time to open your 
workbook and read the first few pages of discussion for Lab Project 3.2. This will give you some 
foundation as to how we will create a terrain and some important performance issues to consider. Once 
you have finished reading these pages, please continue with the next section in this text before 
beginning to examine any code.  
 
3D graphics cards often have a penchant for triangle strips (and especially for indexed triangles strips). 
They can typically process and render indexed triangle strips faster than any other primitive type. 
Certainly it would be preferable if we could store and render each terrain submesh as a single triangle 
strip using one call to DrawIndexedPrimitive. This will be much faster than rendering one row of 
quads at a time. Although, if you remember how strips work, you might be wondering how you cound 
render an entire mesh with multiple rows of quads as a single strip. For example, rendering the first 
row of a strip would seem easy enough, but once we get to the end of the first row, how could we tell 
the device not to draw a connecting triangle between the first and second row, and then continue 
rendering the second row as normal? The answer is that you cannot; at least not quite in that way. But 
you can use something known as a degenerate triangle and this will help you accomplish that goal. 
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Let us first look at how the vertices will be arranged in the vertex buffer. The following diagram shows 
the vertices in world space, with the origin of the coordinate system at the bottom left vertex. We are 
looking down on the vertices from above with the increasing Z-axis going up the screen. In the 
diagram the vertices are arranged in 3 rows of 6 vertices (a 6x3 mesh if you like). In our application 
each mesh will be similar to this but will be arranged as 17 rows of 17 vertices. 

 
As we read in each row of the image, the vertices are arranged in rows stretching out from the origin 
along both the positive X- and Z-axes. The vertex buffer really is as simple as that. Each mesh vertex 
buffer will be a 17x17 pool of vertices arranged in rows. 
 
The index buffer is going to be a little more complicated. We want each group of four vertices to form 
a quad (2 triangles). In the above example, the middle row of vertices will be reused in both the first 
and second row of quads. This is where indices pay off. Without them, each row of quads would need 
its own duplicate vertices and that would significantly increase the terrain vertex count. 
The following image shows one way to connect the vertices into quads to create a piece of terrain. In 
the following diagram, each quad has its two triangles colored differently so that we can better see the 
triangle count and arrangement: 
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You can see that vertex v8 is used in four separate quads (and specifically in six triangles). Because we 
are using indices we do not have to duplicate this vertex six times; we simply have to make sure that 
each triangle in the index buffer that uses it has its index. 
 
We will now need to order the indices in the index buffer so that we create an indexed strip for 
rendering. Given what we already know about strips, it is easy to see how the first row of indices could 
be ordered. This is shown in the following image. The run of indices will start at the vertex v1 and 
move right along the bottom row. 
 

 
 
Recall that in the case of a triangle strip primitive type, the first three indices define the first triangle 
and every additional index will define a new triangle. The last two indices from the previous triangle 
are used along with the new index to define the next triangle.  
 
Vertex Buffer =  v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , v9 , v10 , v11 , v12 
 
Since indices are zero based, v1 = index[0] and v7 = index[6] and so on. 
 
Index Buffer   = 0 , 6 , 1 , 7 , 2 , 8 , 3 , 9 , 4 , 10 , 5 , 12 
 
So the first three indices will define the triangle (v1, v7, v2) and the fourth index will create triangle 
(v7, v2, v8). The fifth index will define triangle (v2, v8, v3) and the sixth index will define triangle 
(v8, v3, v9). These six indices have defined two quads (four triangles) of our terrain. The pattern 
continues for the rest of the row. The pattern here is that for each pair of rows, we add horizontally 
matched pairs (a vertex from each row). The bottom row of quads in the above diagram could have the 
indices built in code like so: 
 
for ( int a=0; a< NumberOfVerticesInRow; a++) 
{ 
 AddIndexToIndexBuffer ( a ); 
 AddIndexToIndexBuffer ( a + NumberOfVerticesInRow); 
} 
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At the end of this loop the first row of quads would be complete. In the above code, a is the index of 
the vertex in the bottom row in the image and a+NumberOfVerticesInRow is the index of the vertex 
in the next row. 
 
Of course we know that when we pass the array of indices as a strip, each triangle is supposed to be 
connected. This means that we cannot just get to the end of the current row and start the next row or 
the result would be a large triangle stretching right across the terrain: 
 

 
 
The final three indices (10, 5, and 11) in the first row describe triangle (v11, v6, v12). Remember that 
each new index added generates a new triangle using the last two indices from the previous triangle. So 
adding the index of vertex v7 (index 6) would do the following: 
 
Indices before vertex v7 has its index is added 
 
10 , 5 , 11 
 
Indices after v7 has its index is added 
 
5 , 11 , 6 
 
This result is the unwanted triangle stretching across the terrain. Things get worse when you note that 
we add two vertices from two rows at a time (the quad top and quad bottom vertices). So, if we then 
added the index to vertex v13, another unwanted triangle would be formed (the blue triangle in the 
image below). 
 
Indices after vertex v13 has its index added: 
 
11 , 6 , 12 
 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 40 of 45 

 

TeamLRN



 

 
To solve these problems we will start the second row from the opposite side so that the terrain strip is 
indexed using a snaking pattern. The first row has its triangles indexed from left to right, then the next 
row has its triangles index from right to left, then left to right, and so on. 
 
There are a few items to consider. First, we still need a way to move up to the next row without a 
triangle being rendered. Second, we recall that when we use strips, the device expects every odd 
triangle in the strip to have a counter clockwise winding order and every even triangle to have a 
clockwise winding order. If at any time an even triangle has a counter clockwise winding or if an odd 
triangle has a clockwise winding order, the device interprets this as a back facing triangle and culls it. 
So let us say that the last triangle in the first row was represented by indices to v11, v6 and v12. This is 
an odd triangle and is counter clockwise and therefore it is interprested as a valid triangle facing the 
camera. We will want to start the next row where the first triangle would be constructed from indices 
to vertices v12, v18, and v11. 
 

 
 
While this looks like it should solve the problem, it actually does not. Let us examine why: 
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That last triangle in the first row has indices to v11, v6, and v12. The next triangle we need is at the 
end of the second row made from indices to vertices v12, 18, and v11. But this is impossible because 
we add one index at a time and each new index creates an entirely new triangle.  
 
So at the end of the first row, we have indices to vertices: 
 
(v11, v6, v12) 
 
Since v12 is the ideal starting index of our first row two triangle, we might try to add an index to v18 
next so that the index buffer looks like this: 
 
(v6, v12, v18) 
 
If you look at the diagram you will see that we have just created another triangle that we certainly do 
not want to render. So we need a way to move from triangle (v11, v6, v12) to (v12, v18, v11) without 
drawing intermediate triangles. 
 
 
Degenerate Triangles  
 
A degenerate triangle is a triangle that has no volume. It is invalid for rendering and is quickly rejected 
by the device. They represent the solution to the problems discussed in the last section. We will use 
degenerate triangles to move from one row to the next without having to draw inappropriate triangles. 
We do this by inserting one index in such a way that it creates three degenerate triangles. After that our 
index buffer will be in the right order to start ordering the next row.  
 
A classic example of a degenerate triangle is one where all of the indices reference the same vertex (or 
a vertex in the same position). The triangle in this case would be infinitely small and would be rejected 
by the pipeline. Another example would be when a triangle has two vertices that are the same. This 
means that there are only two unique vertex positions forming the triangle (essentially describing an 
infinitely thin line). Although we have primitive types that we can use to render lines, when we 
describe a triangle as a line in this way, it is rejected because it has no volume.  
 
We will use both of these types of degenerate triangles to aid us in moving from one row to the next. 
Without degenerate triangles we would not be able to render the submesh as a single strip using a 
single call to DrawIndexedPrimitive. Degenerate triangles like this are quickly rejected so they carry 
very little performance penalty, if any. We will insert an extra index at the start of each new row 
(except the first row), which will actually cause three degerate triangles to be created.  Let us have a 
look how this works. 
 
The following diagram shows the final quad of the first row. The row of quads is indexed left to right 
by adding a vertex from each row. For example, we add indices for v4 and v10, then v5 and v11, 
followed by indices for v6 and v12. The final valid triangle on that row is made from indices using 
vertices v11, v6, and v12. 
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At this point we have reached the end of the row and can move up and start adding the pairs of vertices 
for the next row of quads (consisting of vertex pairs in rows 2 and 3). For example, v12 and v18 
followed by v11 and v17, and so on. However, before we start the second row, we add the first index 
twice. In our example, this means we add an extra index to vertex v12 before we start adding the 
indices for the second row. Remember that the index list almost works like a FIFO buffer. The last 
three indices added are used to render the current triangle. This changes the index buffer so that a new 
triangle is constructed as follows. 
 

 
 
Because the last triangle was (v11, v6, v12), adding an extra v12 at the start of the next row creates a 
triangle where two to of its indices reference the same vertex. This is rejected by the pipeline and it is 
not rendered. 
 
Now we can start constructing the second row. First we add the first index of the first vertex (v12). We 
now have a situation where the last three indices in the index buffer are now all the same. This creates 
another degenerate triangle as shown below. 
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It is now time to add the index to the second vertex from quad row two, which will be the top of the 
quad in row 3 (v18). This creates another degernate triangle, since the last three indices now looks like 
this: 
 

 
At this point the whole thing has sorted itself out and we can carry on adding the vertices for the row 
as normal. Next we add an index to vertex v11 and we now have our first proper triangle for row 2. 
The last three vertices in the index buffer are now v12, v18, and v11. Adding an index to v17 creates 
the second triangle (v18, v11, v17) and so on until we reach the end of the row. 

 
 
Take some time to reread this section before continuing if you are still not sure how this works. Try 
getting some paper and a pencil and sketch it out for yourself. 
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In terms of writing code, this is all very simple. For every row but the first, we add its first vertex index 
twice instead of just once. This will generate the three degenerate triangles and allow us to shuffle the 
indices in such a way that we can move to the next row without error. 
 
 
Conclusion 
 
We have just studied some of the most important aspects of 3D graphics programming with DirectX. 
We learned how to render using vertex buffers as well as indexed primitives. We learned about 
efficiently creating device resources and proper use of memory pools. We also learned how to index 
and render rows of quads as a single triangle strip using degenerate triangles. And we learned how to 
efficiently lock and fill dynamic buffers. 
 
There were a few functions that we did not cover in our second demo relating to the way the camera 
works. These functions will be examined in great detail in the next chapter.  
 
 
Further Reading: 
 
You can find a wealth of information on vertex buffers and index buffers and how to use them 
efficiently at the nVidia website www.nvidia.com. 
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The Lab Projects in this lesson will teach us how to: 
 

• create and use vertex buffers for primitive rendering 
• load height map image data 
• generate terrain geometry 
• create and use index buffers for indexed primitive rendering 
• represent complex meshes using indexed triangle strips 
• use dynamic vertex buffers for simple animation tasks 

 
Note: Lab Project 3.2 contains source code for a camera class that you can use in your own applications. It 
implements multiple camera modes such as a First Person, Third Person, and Cockpit. The code will be 
discussed in detail in our next lesson (Chapter 4). 

 

Lab Project 3.1: Primitive Rendering with Vertex Buffers 
 

 
 
Fortunately, this will be our last cube demo for a while. The code is essentially the same as the code 
we used in Chapter 2 except we will use vertex buffers for rendering. We will briefly discuss only the 
relevant code changes. 
 
The first change to the application is that we have disposed of the CMesh and CPolygon classes. Recall 
that until now each object (CObject) had an array of CPolygon objects. Each CPolygon contained an 
array of CVertex objects. Now we have only a CObject class and a CVertex class. The CVertex class is 
unchanged from Chapter 2; it holds a position and a diffuse color. Each CObject now includes a 
pointer to the IDirect3DVertexBuffer9 interface pointing to a vertex buffer that contains a cube mesh. 
The vertex buffer is essentially a replacement for the CMesh class. We will now be able to render the 
entire cube (all 12 triangles) with a single call to DrawPrimitive as a triangle list. This is in contrast to 
our last demo where each face (two triangles) was rendered using separate calls to DrawPrimitiveUP. 
 

Note: Always aim to reduce calls to DrawPrimitive. With a real game level where polygon counts are 
higher than our simple two-cube example, your application should be trying to render 200 – 500 
triangles per call. 
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The CObject Class 
 
The new CObject class can be found in CObject.h and CObject.cpp. Here is the new class definition: 
 
class CObject 
{ 
  public: 
  //------------------------------------------------------------------------- 
     Constructors & Destructors for This Class. 
  //------------------------------------------------------------------------- 
   
    CObject( LPDIRECT3DVERTEXBUFFER9 pVertexBuffer ); 
    CObject( ); 
    virtual ~CObject( ); 
    void SetVertexBuffer ( LPDIRECT3DVERTEXBUFFER9 pVertexBuffer ); 
 //------------------------------------------------------------------------- 
 // Public Variables for This Class 
 //-------------------------------------------------------------------------   
    D3DXMATRIX              m_mtxWorld;         // Objects world matrix 
    LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer;    // Vertex Buffer we are instancing 
}; 

 
The class holds only two pieces of information: a world matrix and a pointer to a vertex buffer.  
 
The default constructor performs simple initialization: 
 
CObject::CObject() 
{ 
    // Reset / Clear all required values 
    m_pVertexBuffer = NULL; 
    D3DXMatrixIdentity( &m_mtxWorld ); 
} 

 
The second constructor accepts a pointer to an IDirect3DVertexBuffer9 interface and copies it into its 
own internal variables. Notice that it increases the reference count of the interface. Be sure you get 
used to reference count management as it will save you a headache later on when you cannot figure out 
why an object is being destroyed early (or not being destroyed at all -- causing a memory leak). 
 
CObject::CObject( LPDIRECT3DVERTEXBUFFER9 pVertexBuffer ) 
{ 
    // Reset / Clear all required values 
    D3DXMatrixIdentity( &m_mtxWorld ); 
 
    // Set Vertex Buffer 
    m_pVertexBuffer = pVertexBuffer; 
    m_pVertexBuffer->AddRef(); 
} 
 
We include a SetVertexBuffer function that can be used to assign the vertex buffer to the object: 
 
CObject::SetVertexBuffer ( LPDIRECT3DVERTEXBUFFER9 pVertexBuffer ) 
{ 
    // Make sure to release any previous interface 
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    if (m_pVertexBuffer) m_pVertexBuffer->Release(); 
    
    // Set Vertex Buffer 
    m_pVertexBuffer = pVertexBuffer; 
   
    // If we are setting it to null then bail 
    if (!m_pVertexBuffer) return;     
    m_pVertexBuffer->AddRef(); 
} 
 

The destructor releases the object’s claim on the interface by decreasing the reference count and 
assigning its own vertex buffer interface pointer to NULL. 
 
CObject::~CObject( ) 
{ 
    // Release our vertex buffer (de-reference) 
    if ( m_pVertexBuffer ) m_pVertexBuffer->Release(); 
    m_pVertexBuffer = NULL; 
} 

 
 
The CGameApp Class 
 
 
CGameApp::BuildObjects 
The CGameApp::BuildObjects function is where our cube mesh is constructed. Unlike the last demo, a 
static vertex buffer is created and the vertices will be stored there. The CGameApp class maintains 
primary ownership of the vertex buffer that will be used by both of the game objects in our world.  
 
bool CGameApp::BuildObjects() 
{ 
    HRESULT  hRet; 
    CVertex *pVertex = NULL; 
    ULONG    ulUsage = D3DUSAGE_WRITEONLY; 
 
    // Seed the random number generator 
    srand( timeGetTime() ); 
 
    // Release previously built objects 
    ReleaseObjects(); 
 
    // Build our buffers usage flags (i.e. Software T&L etc) 
    VERTEXPROCESSING_TYPE vp = m_D3DSettings.GetSettings()->VertexProcessingType; 
    if ( vp != HARDWARE_VP && vp != PURE_HARDWARE_VP ) 
       ulUsage |= D3DUSAGE_SOFTWAREPROCESSING; 
 
    // Create our vertex buffer ( 36 vertices (6 verts * 6 faces) ) 
    hRet = m_pD3DDevice->CreateVertexBuffer( sizeof(CVertex) * 36, ulUsage, 
                                      D3DFVF_XYZ | D3DFVF_DIFFUSE, 
                                      D3DPOOL_MANAGED, &m_pVertexBuffer, NULL ); 
    if ( FAILED( hRet ) ) return false; 
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The first step is to determine whether or not we want to create the vertex buffer with the 
D3DUSAGE_SOFTWAREPROCESSING flag. If the device selected after enumeration is a hardware device 
then we cannot specify this flag. If we are using a software device then we should specify this flag 
(even though the behavior is implied). The CGameApp class stores a copy of the CD3DSetting 
structure used to create the device so we can query this structure for the current vertex processing type 
being used by the device. In this example, the flag is only used if we have a software vertex-processing 
device, or if we are using a mixed mode device that has currently been set by the user to use software 
vertex processing.  
 
We call IDirect3DDevice9::CreateVertexBuffer to create a managed static vertex buffer. We expect 
maximum performance due to the D3DUSAGE_WRITEONLY flag being specified. On a hardware vertex-
processing device, the vertex buffer will be created in video memory and a system memory copy will 
be maintained by the device object. The vertex buffer will automatically be restored should the device 
become lost and then reset. 
 
If the vertex buffer was created successfully, we will store the interface pointer returned in 
CGameApp::m_pVertexBuffer.  
 
Because we are using a triangle list, we will have duplicated position vertices. We will need 36 
vertices to represent the cube (six faces w/ two triangles each -- 6*2*3 = 36). We will add the vertices 
to the buffer using a Lock call with a local CVertex pointer. We will use that pointer to iterate through 
the vertex buffer and add data. 
 
    // Lock the vertex buffer ready to fill data 
    hRet = m_pVertexBuffer->Lock( 0, sizeof(CVertex) * 36, (void**)&pVertex, 0 ); 
 
    if ( FAILED( hRet ) ) return false; 
     
    // Front Face 
    *pVertex++ = CVertex( -2,  2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2,  2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2, -2, -2, RANDOM_COLOR ); 
     
    *pVertex++ = CVertex( -2,  2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2, -2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex( -2, -2, -2, RANDOM_COLOR ); 
     
    // Top Face 
    *pVertex++ = CVertex( -2,  2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2,  2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2,  2, -2, RANDOM_COLOR ); 
     
    *pVertex++ = CVertex( -2,  2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2,  2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex( -2,  2, -2, RANDOM_COLOR ); 
 
    // Back Face 
    *pVertex++ = CVertex( -2, -2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2, -2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2,  2,  2, RANDOM_COLOR ); 
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    *pVertex++ = CVertex( -2, -2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2,  2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex( -2,  2,  2, RANDOM_COLOR ); 
 
    // Bottom Face 
    *pVertex++ = CVertex( -2, -2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2, -2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2, -2,  2, RANDOM_COLOR ); 
     
    *pVertex++ = CVertex( -2, -2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2, -2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex( -2, -2,  2, RANDOM_COLOR ); 
 
    // Left Face 
    *pVertex++ = CVertex( -2,  2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex( -2,  2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex( -2, -2, -2, RANDOM_COLOR ); 
     
    *pVertex++ = CVertex( -2,  2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex( -2, -2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex( -2, -2,  2, RANDOM_COLOR ); 
 
    // Right Face 
    *pVertex++ = CVertex(  2,  2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2,  2,  2, RANDOM_COLOR );  
    *pVertex++ = CVertex(  2, -2,  2, RANDOM_COLOR ); 
     
    *pVertex++ = CVertex(  2,  2, -2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2, -2,  2, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  2, -2, -2, RANDOM_COLOR ); 
 
    // Unlock the buffer 
    m_pVertexBuffer->Unlock( ); 
 
We now have a vertex buffer that contains the vertices for the cube mesh. Next we set each object’s 
internal vertex buffer interface pointer so that it uses this vertex buffer object. 
 
    // Our two objects should reference this vertex buffer 
    m_pObject[ 0 ].SetVertexBuffer ( m_pVertexBuffer ); 
    m_pObject[ 1 ].SetVertexBuffer ( m_pVertexBuffer ); 
    
The last part of the function generates an initial world matrix for each of the two cube objects. 
 
    // Set both objects matrices so that they are offset slightly 
    D3DXMatrixTranslation( &m_pObject[ 0 ].m_mtxWorld, -3.5f,  2.0f, 14.0f ); 
    D3DXMatrixTranslation( &m_pObject[ 1 ].m_mtxWorld,  3.5f, -2.0f, 14.0f ); 
     
    // Success! 
    return true; 
} 
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CGameApp::SetupRenderStates 
CGameApp::SetupRenderStates is called before the main rendering loop begins. We have added a call 
to the IDirect3DDevice9::SetStreamSource function to bind the vertex buffer of the first object to 
stream 0. Both objects in our game world have pointers to the same vertex buffer -- much like the 
shared CMesh in our previous projects. We set the stream source here because we will not have to 
change vertex buffers during this application. 
 
void CGameApp::SetupRenderStates() 
{ 
    // Set up new perspective projection matrix 
    float fAspect = (float)m_nViewWidth / (float)m_nViewHeight; 
    D3DXMatrixPerspectiveFovLH(&m_mtxProjection, D3DXToRadian(60.0f), 
                               fAspect, 1.01f, 1000.0f); 
 
    // Setup our D3D Device initial states 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
    m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
 
    // Setup our vertex FVF code 
    m_pD3DDevice->SetFVF( D3DFVF_XYZ | D3DFVF_DIFFUSE ); 
    m_pD3DDevice->SetStreamSource( 0, m_pObject[i].m_pVertexBuffer, 0, sizeof(CVertex) ); 
     
    // Setup our matrices 
    m_pD3DDevice->SetTransform( D3DTS_VIEW, &m_mtxView ); 
    m_pD3DDevice->SetTransform( D3DTS_PROJECTION, &m_mtxProjection ); 
} 
 
 
CGameApp::FrameAdvance 
The FrameAdvance function has been simplified now that we are using vertex buffers. Most of the 
code is unchanged from the previous chapter so we will look only at the scene rendering portions that 
have changed: 
 
    // Animate the two objects 
    AnimateObjects(); 
 
    // Clear the frame & depth buffer ready for drawing 
    m_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xFFFFFFFF, 1.0f, 0); 
     
    // Begin Scene Rendering 
    m_pD3DDevice->BeginScene(); 
     
    // Loop through each object 
    for ( ULONG i = 0; i < 2; i++ ) 
    { 
        // Set our object matrix 
        m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_pObject[i].m_mtxWorld ); 
 
        // Set the vertex stream source 
        m_pD3DDevice->SetStreamSource( 0, m_pObject[i].m_pVertexBuffer,  
                                       0, sizeof(CVertex) ); 

TeamLRN



 
        // Render the primitive (Hardcoded, 12 primitives) 
        m_pD3DDevice->DrawPrimitive( D3DPT_TRIANGLELIST, 0, 12 ); 
     
    } // Next Object 
 
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 
     
    // Present the buffer 
    if ( FAILED(m_pD3DDevice->Present( NULL, NULL, NULL, NULL )) ) m_bLostDevice = true; 
 

 
Notice that we rendered the cube mesh with one call to DrawPrimitive. Rendering polygons in small 
batches  (1 polygon at a time for example) on a hardware vertex-processing device typically results in 
only 1% – 5% of the potential power of the GPU being used. Vertex buffers encourage us to batch 
primitives and this is required for optimal performance. 
 
That is all there is to our first vertex buffer application. Please make sure that you fully understand the 
code in this project before continuing. From this point on in the course we will use vertex buffers for 
all primitive rendering. They are faster for the GPU to process but they must be created with care so 
that we get the best performance we can out of them. Unfortunately, it is often easier to create a vertex 
buffer the wrong way than the right way. 
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Lab Project 3.2: Basic Terrain Demo 
 
In this project we will take a step beyond our low polygon cubes and create a series of meshes totaling 
66,049 vertices in all. Do not fear, we are not going to code all of these vertices by hand. Instead we 
will be using a 2D image to help generate the mesh. This image will be 257x257 pixels and each pixel 
in the image will be a shade of gray. If we use only one color component of each pixel (ex. the red 
component) then this value will be a number between 0 and 255. We will take this color value and 
multiply it by a scaling factor to assign a height to each vertex in the mesh. The image used for this 
purpose is referred to as a height map because each pixel in the image represents a vertex (or to be 
more precise, a vertex height value). 
 
Height Maps 
 
Lab Project 3.1 includes a folder called ‘Data’ which contains the image that will be used for the 
height map. The image is in .RAW format. This format is supported by most popular paint and image 
editing packages. It is a grayscale image, using 8 bits per pixel. In this demo we will use the value of 
each pixel to generate a world space pixel height for a vertex. 
 
RAW files are very easy to read since they have no header or any other extraneous information. They 
simply contain a sequential list of color values. Our height map will be 257x257 in dimensions. 
Because each pixel represents a single vertex, our terrain will be 257x257 vertices in its dimensions as 
well (total = 66,049 vertices). 
 
If you would like to view the image in a package such as Paint Shop Pro, simply open it up as a RAW 
file and fill in its dimensions as 257x257. This is important to do because the file contains no header 
and the program would have no idea what dimensions the file should be. The height map used in our 
demo is seen below: 
 

 
 
All we will need to do is load this image into a height array (a height map). Technically, we will only 
need to load the red component of each pixel into the height map. Once we have the array, we can use 
each pixel position and color to generate a vertex position in world space. 
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For example, the first pixel in the height map is at position x=0 : y=0. The x coordinate of this pixel 
will be used as the x component of the first world space vertex and the y component will be used as its 
z component. The height value extracted from the pixel color’s red component will be used as the Y 
component of the first world space vertex.  
 
The following table shows how pixel positions and color values in the image could be used to create 
world space vertex positions. 
 
Image Pixel Position Pixel Color (Grayscale) Generated World Space Vertex 
X=5     : Y=15 100 = RGB ( 100 , 100 , 100) X:5      Y:100    Z:15 
X=0     : Y=100 64   = RGB ( 64 ,     64 ,   64) X:0      Y:64      Z:100 
X=134 : Y=200 127 = RGB ( 127 , 127 , 127) X:134  Y:127    Z:200 
 
Normally we will want to scale the image pixel positions by some amount or else the height of the 
vertices will be limited to the 0-255 range and all of the vertices will be located only 1 world space unit 
away from their neighbouring vertices along the X and Z axes. A larger scale is preferred in most 
cases. For example, we might decide to scale the image space pixel positions by a factor of 2 so that 
the terrain is twice as large in the X and Z dimensions. We may also decide to scale the height values 
by 4 to provide the topology more definition 
 
D3DXVECTOR3 ScaleVector (2.0f, 4.0f, 2.0); 
 
The following table shows the same image pixel positions and colors with the world space vertex 
positions after they have been multiplied by the scale vector. 
 
Image Pixel Position Pixel Color (GreyScale) Generated World Space Vertex 
X=5     : Y=15 100 = RGB ( 100 , 100 , 100) X:10     Y:400    Z:30 
X=0     : Y=100 64   = RGB (   64 ,   64 ,   64) X:0       Y:256    Z:200 
X=134 : Y=200 127 = RGB ( 127 , 127 , 127) X:268   Y:508    Z:400 
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The following images show the results of using this very straightforward technique. Notice that the 
lighter the pixel is in the image, the higher the vertex generated from it will be. Look at how the dark 
strips on the image map create deep ravines in the terrain: 
  

The 2D Image Map                                          The 3D Terrain 

  
 
When the camera is placed onto the terrain you can see that even an un-textured terrain can look quite 
impressive (certainly better than two cubes). 
 

 
 

 
The first thing to consider before we start looking at code is the fact that the image space Y coordinate 
is being used (indirectly) as the world space Z coordinate. If this is not immediately clear to you then 
imagine that you have moved the camera so that it is far above the terrain looking down on the center 
such that the 3D terrain just about fills the entire screen. Also imagine that the camera orientation is 
such that your look vector is aligned with the world’s negative Y-axis (straight down). This means that 
you are perpendicular to the terrain such that it looks like a 2D image. You might think that viewing 
the terrain from this perspective would produce an image of the terrain similar to the height map 
image. But instead what you will see is that the terrain appears flipped on its horizontal axis. The world 
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space coordinate (x=0, y=0) would actually be at the bottom left of the frame buffer and not the top left 
as in image space. This is because given the way we are looking at the terrain, the world Z-axis 
increases going up the screen whilst in image space the Y-axis (which is mapped to the world space Z-
axis) increases going down the screen.   
The left image below shows the height map with the image space axis origin in its top left corner. The 
image on the right shows how the terrain would look in world space. The X-axis in both coordinate 
systems moves in a positive direction from left to right. The Y-axis in image space (which becomes the 
Z-axis in world space) gets inverted.  
 

 
As you can see in the above images, the top left corner of the image will be at world space position (0, 
0). Of course, we could choose to move the entire terrain to any position in the 3D world simply by 
translating the vertices by some arbitrary amount. You could also choose to change your indexing 
strategy when reading the values out of the height map during terrain construction to avoid the 
inversion effect, but we have decided to keep things simple for this demonstration. 
 

 
Buffer Size and Primitive Batching 

 
It might seem logical to build one big terrain mesh vertex buffer (and index buffer), and render the 
entire terrain with a single call to DrawIndexedPrimitive. After all, we have already discussed that we 
want to minimize calls to DrawIndexedPrimitive. However, while it is true that batching is vitally 
important, there are limits to this strategy. Sending too much data to the pipeline can actually cause 
performance to begin to drop off. Hardware manufacturers like nVidia® recommend keeping the 
number of primitives rendered in a single call to DrawPrimitive or DrawIndexedPrimitive to 200+ 
triangles. (Note that 200 triangles rendered as a non-indexed triangle list translates to 600 vertices.) 
While we should always try to send at least this many triangles to the card when possible, the + part of 
this 200+ concept could use a little more examination. So to get a better feel for the range, we decided 
to break our terrain into different sized meshes and observe the effect on frame rate. These results are 
listed below. In all cases, the same total number of triangles was rendered. The tests subdivided the 
terrain mesh into separate meshes where each sub mesh required its own DrawIndexedPrimitive call. 
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Terrain 
SubMeshes 

 
SubMesh 
Size 

 
Number Of Triangles 

 
Frames Per 
Second 

Millions of 
Triangles per 
Second 

8 x 8 33 x 33 2141 181 24,801,344 
4 x 8 64 x 33 4189 177 23,726,496 
4 x 4 64 x 64 8381 176 23,600,896 
2 x 4 129 x 65 16573 174 23,069,616 
2 x 2 129 x 129 33149 173 22,939,108 
8 x 16 33 x 17 1069 179 24,492,928 
16 x 16 17 x 17 557 191 27,235,072 
32 x 32 9 x 9 149 79 12,053,504 
 
The results are interesting. The best performance came when we broke the terrain down into a grid of 
16x16 separate sub meshes, each containing 17x17 vertices in its vertex buffer. This worked out to 557 
triangles being rendered with each call to DrawIndexedPrimitive until the entire terrain was rendered.  
 
We also see that the 16x16 case outperformed the terrain that was broken into 2x2 large sub meshes. In 
that case, each index buffer contained 33,149 triangles and required only four calls to the 
DrawIndexPrimitive function. If sending as many vertices as possible was the overriding factor, then 
this approach should have produced the best results. But on our test machine it actually turned out to 
be next to the bottom performance wise. The lowest score came when we subdivided the mesh too 
much and stored only 149 triangles in each sub mesh. The result was many more calls to 
DrawIndexedPrimitive. While 79 frames per second may not seem like a bad score, note that 
performance dropped by almost 60% (112 fps) compared to the best case. 
 
So we can see that sending too many triangles or too few triangles affects performance; the latter 
seeming to be less preferable. Based on the results of these tests (not conclusive across all hardware by 
any means) we have decided that for this project we will create our terrain as a grid of 16x16 sub 
meshes. To be clear, this means we will have 256 separate meshes each with their own vertex buffer. 
Rendering the terrain will consist of looping through each sub mesh, setting its vertex and index 
buffers, and calling DrawIndexedPrimitive.  
 
You are encouraged to use similar testing strategies to benchmark any application you write so that 
you can be at least fairly confident that you are using the appropriately sized data structures (vertex 
buffers and index buffers in this case) for best performance. This is not an exact science. A good size 
on one hardware configuration might not produce the same results on another but you can begin to 
develop some good approximations. At the very least, you will begin to develop the habit of 
benchmarking your code and testing your assumptions. 
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Application Framework Changes 
 
The changes to the CGameApp class are fairly straightforward. We are going to move the rendering 
and management of the terrain into its own class (see CTerrain.h and CTerrain.cpp). We have also 
added a CCamera class for view and projection matrix maintenance. The camera class implements 
three different camera styles: 1st person, 3rd person, and spacecraft. The CCamera class will be 
explained in detail in Chapter 4. 
 
We will use the same untransformed and pre-lit vertex format as in previous demos. We will not use 
the CObject class in this demonstration since we will not need to instance meshes. The main change is 
in the CMesh class since it now includes a vertex buffer and an index buffer with helper functions to 
aid in their management. Each CMesh object will represent one of the sub meshes of our terrain (there 
will be 256 of these) and each one will store 17x17 vertices. The CTerrain class will manage an array 
of these CMesh objects and will be responsible for rendering them when needed. 
 
 
The CMesh Class 
 
Let us take a look first at the new CMesh class (see CObject.h and CObject.cpp). 
 
class CMesh 
{ 
public: 
   // Constructors & Destructors for This Class. 
       CMesh( ULONG VertexCount, ULONG IndexCount ); 
       CMesh(); 
       virtual ~CMesh(); 
    
 
   //  Public Functions for This Class 
        long            AddVertex( ULONG Count = 1 ); 
        long            AddIndex ( ULONG Count = 1 ); 
 
        HRESULT BuildBuffers(LPDIRECT3DDEVICE9 pD3DDevice, bool HardwareTnL, 
                             bool ReleaseOriginals = true ); 
 
    // Public Variables for This Class 
    ULONG                   m_nVertexCount;      // Number of vertices stored 
    CVertex                *m_pVertex;           // Simple tempo rary vertex array. 
    ULONG                   m_nIndexCount;       // Number of indices stored 
    USHORT                 *m_pIndex;            // Simple temporary index array 
    LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer;     // Vertex Buffer to be Rendered 
    LPDIRECT3DINDEXBUFFER9  m_pIndexBuffer;      // Index Buffer to be Rendered 
}; 

 
CVertex *m_pVertex 
ULONG   m_nVertexCount  
m_pVertex is a pointer to a temporary vertex array (m_nVertexCount defines the number of vertices in 
the array). It is used to hold vertices that were added via CMesh::AddVertex until such a time as the 
vertex buffer is created using CMesh::BuildBuffers. This was done simply for convenience. This 
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memory is freed when the vertex buffer is created, although there may be situations when you might 
prefer to keep the local memory copy around (to rebuild the buffers after a lost device is recovered if 
you are using the default pool for example).  
 
USHORT               *m_pIndex                
ULONG                   m_nIndexCount   
Just as the vertices added to the class are contained in a temporary array until the vertex buffer is 
created and ready to be filled, so too are the indices. The application calls the CMesh::AddIndex 
function to add another index to the temporary array. Once all the indices have been added, the 
application will call BuildBuffers. This will create the vertex and index buffer and will copy the 
indices and vertices from the temporary arrays into the vertex and index buffers and release the 
memory that was being used by the temporary arrays. 
 
LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer     
LPDIRECT3DINDEXBUFFER9     m_pIndexBuffer      
Vertex and index buffer interface pointers that are created by the BuildBuffers function.  
 
 
CMesh::CMesh () 
The default constructor sets all pointers to NULL and initializes all variables to zero: 
 
CMesh::CMesh() 
{ 
    // Reset / Clear all required values 
    m_pVertex       = NULL; 
    m_pIndex        = NULL; 
    m_nVertexCount  = 0; 
    m_nIndexCount   = 0; 
 
    m_pVertexBuffer = NULL; 
    m_pIndexBuffer  = NULL; 
 
} 
 
The next constructor allows you to specify how many vertices and indices you will need so that it can 
pre-allocate the temporary arrays. This avoids later resizing when one vertex is added at a time and 
should reduce fragmentation. 
 
CMesh::CMesh( ULONG VertexCount, ULONG IndexCount ) 
{ 
    // Reset / Clear all required values 
    m_pVertex       = NULL; 
    m_pIndex        = NULL; 
    m_nVertexCount  = 0; 
    m_nIndexCount   = 0; 
 
    m_pVertexBuffer = NULL; 
    m_pIndexBuffer  = NULL; 
 
    // Add Vertices & indices if required 
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    if ( VertexCount > 0 ) AddVertex( VertexCount ); 
    if ( IndexCount  > 0 ) AddIndex( IndexCount ); 
} 
 
 
CMesh::~CMesh () 
The destructor releases the vertex buffer and index buffers and deletes the temporary arrays (if they 
have not already been deleted by the BuildBuffers function). 
 
CMesh::~CMesh() 
{ 
    // Release our mesh components 
    if ( m_pVertex ) delete []m_pVertex; 
    if ( m_pIndex  ) delete []m_pIndex; 
     
    if ( m_pVertexBuffer ) m_pVertexBuffer->Release(); 
    if ( m_pIndexBuffer  ) m_pIndexBuffer->Release(); 
 
    // Clear variables 
    m_pVertex       = NULL; 
    m_pIndex        = NULL; 
    m_nVertexCount  = 0; 
    m_nIndexCount   = 0; 
 
    m_pVertexBuffer = NULL; 
    m_pIndexBuffer  = NULL; 
} 

  
 
CMesh::AddVertex 
The AddVertex function allows us to add more space to our temporary vertex array for additional 
vertices. To do this it has to create a new array large enough to hold the old vertices and the new 
amount to be added. The old vertices are copied and the previous temporary array is released.  
 
long CMesh::AddVertex( ULONG Count ) 
{ 
    CVertex * pVertexBuffer = NULL; 
     
    // Allocate new resized array 
    if (!( pVertexBuffer = new CVertex[ m_nVertexCount + Count ] )) return -1; 
 
    // Existing Data? 
    if ( m_pVertex ) 
    { 
        // Copy old data into new buffer 
        memcpy( pVertexBuffer, m_pVertex, m_nVertexCount * sizeof(CVertex) ); 
 
        // Release old buffer 
        delete []m_pVertex; 
 
    } // End if 
 
    // Store pointer for new buffer 
    m_pVertex = pVertexBuffer; 
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    m_nVertexCount += Count; 
 
    // Return first vertex 
    return m_nVertexCount - Count; 
} 

 
The AddIndex function is the same as above with the exception that it resizes the temporary index 
array. 
 
 
CMesh::BuildBuffers 
BuildBuffers builds the vertex and index buffers from the two temporary arrays. We pass it a pointer to 
the IDirect3DDevice9 interface, a Boolean specifying whether we are creating this mesh for a 
hardware or software vertex-processing device, and a boolean specifying whether we want the 
temporary arrays to be freed after the vertex and index buffers have been created. This boolean is here 
because you may want to keep the temporary arrays around if you need to rebuild the vertex buffers at 
a later date (eg. if the device is lost while using the D3DPOOL_DEFAULT pool). 
 
HRESULT CMesh::BuildBuffers( LPDIRECT3DDEVICE9 pD3DDevice, bool HardwareTnL, bool 
ReleaseOriginals ) 
{ 
    HRESULT     hRet     = S_OK; 
    CVertex    *pVertex  = NULL; 
    USHORT     *pIndex   = NULL; 
    ULONG       ulUsage  = D3DUSAGE_WRITEONLY; 
 
    // Should we use software vertex processing ? 
    if ( !HardwareTnL ) ulUsage |= D3DUSAGE_SOFTWAREPROCESSING; 
 
    // Release any previously allocated vertex / index buffers 
    if ( m_pVertexBuffer ) m_pVertexBuffer->Release(); 
    if ( m_pIndexBuffer  ) m_pIndexBuffer->Release(); 
    m_pVertexBuffer = NULL; 
    m_pIndexBuffer  = NULL; 

 
The first thing we do is setup the flags that will be used to create our vertex and index buffers. We use 
the D3DUSAGE_WRITEONLY flag for best performance. We also add the 
D3DUSAGE_SOFTWAREPROCESSING flag if the mesh is being used on a software vertex-processing 
device. If any vertex buffer or index buffer currently exists, we release it first to avoid a memory leak. 
 
The next block of code populates the buffers using the data in the temporary arrays. 
 
    // Create our vertex buffer 
    pD3DDevice->CreateVertexBuffer( sizeof(CVertex) * m_nVertexCount, ulUsage, 
                                    D3DFVF_XYZ | D3DFVF_DIFFUSE, 
                                    D3DPOOL_MANAGED, &m_pVertexBuffer, NULL ); 
     
    // Lock the vertex buffer ready to fill data 
    m_pVertexBuffer->Lock( 0, sizeof(CVertex) * m_nVertexCount, (void**)&pVertex, 0 ); 
 
    // Copy over the vertex data 
    memcpy( pVertex, m_pVertex, sizeof(CVertex) * m_nVertexCount ); 
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    // We are finished with the vertex buffer 
    m_pVertexBuffer->Unlock(); 
 
    // Create our index buffer 
    pD3DDevice->CreateIndexBuffer( sizeof(USHORT) * m_nIndexCount, ulUsage, D3DFMT_INDEX16, 
                                   D3DPOOL_MANAGED, &m_pIndexBuffer, NULL ); 
 
    // Lock the index buffer ready to fill data 
    m_pIndexBuffer->Lock( 0, sizeof(USHORT) * m_nIndexCount, (void**)&pIndex, 0 ); 
 
    // Copy over the index data 
    memcpy( pIndex, m_pIndex, sizeof(USHORT) * m_nIndexCount ); 
    // We are finished with the indexbuffer 
    m_pIndexBuffer->Unlock(); 

     
If the caller requested that the temporary arrays be destroyed, the memory is freed and the counts reset.   
 
       // Release old data if requested 
    if ( ReleaseOriginals ) 
    { 
        // Release our mesh components 
        if ( m_pVertex ) delete []m_pVertex; 
        if ( m_pIndex  ) delete []m_pIndex; 
 
        // Clear variables 
        m_pVertex       = NULL; 
        m_pIndex        = NULL; 
        m_nVertexCount  = 0; 
        m_nIndexCount   = 0; 
 
    } // End if ReleaseOriginals 
 
    return S_OK; 
} 
 

 
 
The CGameApp Class 
 
Let us next examine the changes to CGameApp.h. The only change is the addition of two new member 
variables: 
 
CTerrain     m_Terrain;         // Simple terrain object (stores data) 
CCamera      m_Camera;          // Camera class used to manipulate our player view 

 
The CGameApp class owns a single CTerrain object. This terrain object contains functions for loading 
the image and generating the height map as well as building the 256 meshes using the height map data. 
It also is responsible for rendering each mesh. The CCamera object allows the player to move around 
the game world and will be covered in Chapter 4. 
 
One of the biggest changes to the CGameApp class is in the SetupGameState function. It now uses the 
CCamera class to manage the view and projection matrices. This means we no longer have to create 
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these matrices within the CGameApp class itself. Matrix initialization is handled by the CCamera class 
based on the parameters we pass into a member function. The CCamera class uses the CPlayer class to 
position the camera in the world (the CPlayer class has the Camera attached to it). When the player 
moves, its attached camera is moved automatically. 
 
 
CGameApp::SetupGameState 
 
void CGameApp::SetupGameState() 
{ 
    // Generate an identity matrix 
    D3DXMatrixIdentity( &m_mtxIdentity ); 
 
    // App is active 
    m_bActive = true; 
 
    m_Player.SetCameraMode( CCamera::MODE_FPS ); 
    m_pCamera = m_Player.GetCamera(); 
 
    // Setup our player's default details 
    m_Player.SetFriction( 250.0f ); // Per Second 
    m_Player.SetGravity( D3DXVECTOR3( 0, -400.0f, 0 ) ); 
    m_Player.SetMaxVelocityXZ( 125.0f ); 
    m_Player.SetMaxVelocityY ( 400.0f ); 
    m_Player.SetCamOffset( D3DXVECTOR3( 0.0f, 10.0f, 0.0f ) ); 
    m_Player.SetCamLag( 0.0f ); 
     
    // Set up the players collision volume info 
    VOLUME_INFO Volume; 
    Volume.Min = D3DXVECTOR3( -3, -10, -3 ); 
    Volume.Max = D3DXVECTOR3(  3,  10,  3 ); 
    m_Player.SetVolumeInfo( Volume ); 
 
    // Setup our cameras view details 
    m_pCamera->SetFOV( 60.0f ); 
    m_pCamera->SetViewport(m_nViewX,m_nViewY,m_nViewWidth,m_nViewHeight,1.01f,5000.0f); 
 
 
    // Set the camera volume info (matches player volume) 
    m_pCamera->SetVolumeInfo( Volume ); 
 
    // Add the update callbacks required 
    m_Player.AddPlayerCallback( CTerrain::UpdatePlayer, (LPVOID)&m_Terrain ); 
    m_Player.AddCameraCallback( CTerrain::UpdateCamera, (LPVOID)&m_Terrain ); 
     
    // Lets give a small initial rotation and set initial position 
    m_Player.SetPosition( D3DXVECTOR3( 430.0f, 400.0f, 330.0f ) ); 
    m_Player.Rotate( 25, 45, 0 ); 
 
} 

 
The CCamera class creates a projection matrix with a FOV of 60 degrees and is set to First Person 
camera mode. We also send it the dimensions of our front buffer and the distance to the near and far 
planes in the call to CCamera::SetViewport. All of this will be examined in detail in our next lesson. 
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CGameApp::SetupRenderStates 
 
SetupRenderStates now includes two new function calls into the CCamera class to instruct the camera 
to set its internally managed view and projection matrices as the current view and projection matrices 
for the device. The rest of the states are unchanged from our last demo. 
 
void CGameApp::SetupRenderStates() 
{ 
    // Setup our D3D Device initial states 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
    m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
 
    // Setup our vertex FVF code 
    m_pD3DDevice->SetFVF( D3DFVF_XYZ | D3DFVF_DIFFUSE ); 
 
    // Update our device with our camera details (Required on reset) 
    m_Camera.UpdateRenderView( m_pD3DDevice ); 
    m_Camera.UpdateRenderProj( m_pD3DDevice ); 
} 

 
We pass in a pointer to the device interface so that the camera can update its view and projection state 
matrices. CCamera member functions (such as SetPosition and Rotate) alter only the internally 
managed matrices. We call the UpdateRenderView and UpdateRenderProj functions to commit the 
changes to the device. 
 
 
CGameApp::BuildObjects 
BuildObjects first checks the device settings to determine if we are using a hardware vertex-processing 
device. The CTerrain class will want to know this so that it can instruct its CMeshes to build the vertex 
and index buffers with the correct flags. We also call ReleaseObjects so that if this function has been 
called when the game objects already exist, their memory will be released so that they can safely be 
rebuilt. Next we send the CTerrain class a pointer to the device interface and a Boolean indicating 
whether it is using software or hardware vertex processing. Then we can call 
CTerrain::LoadHeightMap to load the file ‘HeightMap.Raw’ and use it to build a height map. This will 
also build all of the terrain meshes in turn. 
 
Finally, the function creates a single cube mesh that will be used to render the player object (think of it 
as a placeholder for an animated character mesh) when the camera is in 3rd person mode. The mesh is 
added to the CPlayer object using the CPlayer::Set3rdPersonMesh function. The CPlayer class will be 
covered in Chapter 4 when we examine camera systems.  
 
bool CGameApp::BuildObjects() 
{ 
    VERTEXPROCESSING_TYPE vp = m_D3DSettings.GetSettings()->VertexProcessingType; 
    bool HardwareTnL = true; 
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    // Are we using HardwareTnL ? 
    if ( vp != HARDWARE_VP && vp != PURE_HARDWARE_VP ) HardwareTnL = false; 
 
    // Release previously built objects 
    ReleaseObjects(); 
 
    // Build our terrain data 
    m_Terrain.SetD3DDevice( m_pD3DDevice, HardwareTnL ); 
    if ( !m_Terrain.LoadHeightMap( _T("Data\\HeightMap.raw"), 257, 257 )) return false; 
 
    // Build a 'player' mesh (this is just a cube currently) 
    CVertex * pVertex = NULL; 
    srand( timeGetTime() ); 
 
    // Add the 8 cube vertices to this mesh 
    if ( m_PlayerMesh.AddVertex( 8 ) < 0 ) return false; 
 
    // Add all 4 vertices 
    pVertex = &m_PlayerMesh.m_pVertex[0]; 
     
    // Add bottom 4 vertices 
    *pVertex++ = CVertex( -3, 0, -3, RANDOM_COLOR ); 
    *pVertex++ = CVertex( -3, 0,  3, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  3, 0,  3, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  3, 0, -3, RANDOM_COLOR ); 
     
    // Add top 4 vertices 
    *pVertex++ = CVertex( -3, 20, -3, RANDOM_COLOR ); 
    *pVertex++ = CVertex( -3, 20,  3, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  3, 20,  3, RANDOM_COLOR ); 
    *pVertex++ = CVertex(  3, 20, -3, RANDOM_COLOR ); 
 
    // Add the indices as a strip (with one degenerate) ;) 
    if ( m_PlayerMesh.AddIndex( 16 ) < 0 ) return false; 
    m_PlayerMesh.m_pIndex[ 0] = 5; 
    m_PlayerMesh.m_pIndex[ 1] = 6; 
    m_PlayerMesh.m_pIndex[ 2] = 4; 
    m_PlayerMesh.m_pIndex[ 3] = 7;                 
    m_PlayerMesh.m_pIndex[ 4] = 0;                 
    m_PlayerMesh.m_pIndex[ 5] = 3;                 
    m_PlayerMesh.m_pIndex[ 6] = 1;                 
    m_PlayerMesh.m_pIndex[ 7] = 2;                 
    m_PlayerMesh.m_pIndex[ 8] = 3; // Degen Index  
    m_PlayerMesh.m_pIndex[ 9] = 7;                 
    m_PlayerMesh.m_pIndex[10] = 2;                  
    m_PlayerMesh.m_pIndex[11] = 6;                  
    m_PlayerMesh.m_pIndex[12] = 1;                  
    m_PlayerMesh.m_pIndex[13] = 5;                  
    m_PlayerMesh.m_pIndex[14] = 0; 
    m_PlayerMesh.m_pIndex[15] = 4; 
 
    // Build the mesh's vertex and index buffers 
    if (FAILED(m_PlayerMesh.BuildBuffers( m_pD3DDevice, HardwareTnL, true ))) return false; 
 
    // Our object references this mesh 
    m_Object.m_pMesh = &m_PlayerMesh; 
 
    // Link this object to our player 
    m_Player.Set3rdPersonObject( &m_Object ); 
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        return true; 
} 

 
Notice that cube was created as an indexed triangle strip so that it can be rendered with a single call to 
DrawPrimitive. We will discuss the technique for creating indexed triangle strips when we talk about 
rendering the terrain. Appendix A at the end of the chapter details how to represent a cube as an 
indexed triangle strip. 
 
 
CGameApp::FrameAdvance 
The render loop in CGameApp::FrameAdvance has been simplified since the terrain will handle its 
own mesh rendering. We call the CTerrain::Render function to draw the terrain meshes. If the camera 
is in 3rd person mode we also call the CPlayer::Render function to draw the placeholder cube avatar.  
 
   // Poll & Process input devices 
    ProcessInput(); 
 
    // Animate the game objects 
    AnimateObjects(); 
 
    // Clear the frame & depth buffer ready for drawing 
    m_pD3DDevice->Clear( 0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0x79D3FF, 1.0f, 0 ); 
     
    // Begin Scene Rendering 
    m_pD3DDevice->BeginScene(); 
     
 
    // Render our terrain objects 
    m_Terrain.Render( ); 
 
    // Request our player render itselfs 
    m_Player.Render( m_pD3DDevice ); 
     
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 
     
    // Present the buffer 
    if ( FAILED(m_pD3DDevice->Present( NULL, NULL, NULL, NULL )) ) m_bLostDevice = true; 

 
The ProcessInput function has changed quite a bit now that we can move the camera around, but we 
will leave that discussion until Chapter 4. AnimateObjects does nothing in this demo since the terrain 
is not animated; it is left as an empty function.  
 
We note that the terrain sub meshes actually have their vertices specified in world space coordinates. 
This means we no longer need to perform an object space to world space transformation and can set 
the device world matrix to an identity matrix for terrain rendering.  
 
For the IDirect3DDevice9::Clear method we have passed a light blue color for the frame buffer. This 
provides a simple colored background for our sky. 
 

TeamLRN



Between the BeginScene and EndScene calls there is a call to CTerrain::Render for rendering the 
terrain sub meshes as well as a call for rendering the player mesh (which will only be visible in 3rd 
person mode).  
 
 
The CTerrain Class  
 
The CTerrain class will load a height map and construct an array of meshes from that height map such 
that each mesh represents a portion of the terrain. This means that it has to be able to calculate the 
vertex positions from the height map and also be able to build an index list so that the vertices form 
suitable triangles. Rendering the terrain will actually be the easiest part since it only involves looping 
through each mesh and calling DrawIndexedPrimitive using that mesh’s vertex and index buffers. A 
single call to DrawIndexedPrimitive will render an entire mesh. The terrain for this project will be 
divided into 256 different meshes. You can change this simply by changing a few variables in the 
application. Each mesh will be 17 vertices wide and 17 vertices deep. Each group of 4 vertices will be 
a quad made using two triangles. So each mesh will be 16x16 quads in dimensions because the number 
of quads is always equal to number of vertices – 1. This is precisely why we used the odd numbers 
257x257 for the height map since it creates a terrain of 256x256 quads.  
 
The following image shows how two rows of three vertices (2x3) produce an array of (1x2) quads.  
 

 
 
If we used the same diffuse color for every vertex it would be difficult to see any of the terrain detail. 
This is why lighting is so important in 3D games. Textures improve the situation, but without them it is 
difficult to tell where each polygon ends and another one begins. Since lighting will not be covered 
until Chapter 5 we will have to fake some lighting calculations to generate a diffuse color for each 
vertex. We will color each vertex using an approach that factors in an imaginary light source position 
in the world and the orientation of the triangles that use the vertex. We will use a brown diffuse color 
and scale it so that triangles facing away from the light source are cast into shadow.  
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The CTerrain class definition is found in CTerrain.h:  
 
class CTerrain 
{ 
public: 
// Constructors and Destructors 
          CTerrain(); 
 virtual ~CTerrain(); 
 
// Public member functions 
    void SetD3DDevice(LPDIRECT3DDEVICE9 pD3DDevice, bool HardwareTnL ); 
    bool LoadHeightMap(LPCTSTR FileName, ULONG Width, ULONG Height ); 
    bool LineOfSight(D3DXVECTOR3& vecRayStart, D3DXVECTOR3& vecRayEnd,float Accuracy=0.2f); 
    float  GetHeight     ( float x, float z ); 
    void   Render        ( ); 
    void   Release       ( ); 
     
    // Static call-back functions 
    static void     UpdatePlayer  ( LPVOID pContext, CPlayer * pPlayer, float TimeScale ); 
    static void     UpdateCamera  ( LPVOID pContext, CCamera * pCamera, float TimeScale ); 
 
 
private: 
// private member variables 
    D3DXVECTOR3          m_vecScale;         // Amount to scale the terrain meshes 
    UCHAR               *m_pHeightMap;       // The physical heightmap data loaded 
    ULONG                m_nHeightMapWidth;  // Width of the 2D heightmap data 
    ULONG                m_nHeightMapHeight; // Height of the 2D heightmap data 
     
    CMesh              **m_pMesh;            // Simple array of mesh pointers 
    ULONG                m_nMeshCount;       // Number of meshes stored here 
    LPDIRECT3DDEVICE9    m_pD3DDevice;       // D3D Device to use for creation / rendering. 
    bool                 m_bHardwareTnL;     // Used hardware vertex processing ? 
 
    ULONG               m_nPrimitiveCount;  // Pre-Calculated. Num render primitives 
 
// private member functions 
    long            AddMesh             ( ULONG Count = 1 ); 
    bool            BuildMeshes         ( ); 
    D3DXVECTOR3     GetHeightMapNormal  ( ULONG x, ULONG z ); 
}; 
 
D3DXVECTOR3     m_vecScale; 
Although each pixel in the image describes a vertex position, we will often want to scale the image 
position to generate a larger terrain. In our demo we will set this vector to (8,2,8). This multiples the 
image pixel position by 8 so that a pixel at coordinate (2, 4) will generate a vertex at (X=16, Z=32). 
The red color component of the pixel is multiplied by 2 in this case so the world space vertex heights 
will be in the range [0,  512]. 
 
UCHAR * m_pHeightMap; 
This byte array will hold the actual height map data used for building the terrain. As we read the image 
file, we only read in the first byte of each color (the red component) and store it in this array. Each byte 
in this array represents the height of a vertex once it is multiplied by the scale vector. The height map 
and scaling vector are only used to build the terrain meshes. They are not used during rendering, so the 
height map can be discarded after the meshes have been generated. 
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ULONG m_nHeightMapWidth; 
ULONG m_nHeightMapHeight; 
These values store the dimensions of the image file and the height map. We are using a 257x257 image 
so the height map will be 257x257 as well. 
 
CMesh  **m_pMesh; 
This is an array of CMesh pointers that will contain pointers to all terrain sub meshes.  
 
ULONG     m_nMeshCount;     
The number of mesh pointers in the mesh array. This will initially be zero until the terrain is generated. 
Using our default setting, there should be 256 (16x16) meshes created. 
 
LPDIRECT3DDEVICE9   m_pD3DDevice;        
A pointer to the Direct3D device interface. 
 
bool   m_bHardwareTnL;    
Used to store whether the above device is a software or hardware vertex-processing device. 
 
ULONG   m_nPrimitiveCount;        
This will be used to store the pre-calculated primitive count for an entire sub mesh. Because we will be 
rendering a mesh with a single call to DrawIndexedPrimitive, we must tell the device how many 
primitives to draw. This value has not been hard-coded so that we can easily change the sizes of each 
mesh to subdivide the terrain to a greater or lesser extent.  
 
 
CTerrain::CTerrain() 
The constructor makes sure our data is initialized. 
CTerrain::CTerrain() 
{ 
    // Reset all required values 
    m_pD3DDevice         = NULL; 
 
    m_pHeightMap         = NULL; 
    m_nHeightMapWidth    = 0; 
    m_nHeightMapHeight   = 0; 
 
    m_pMesh              = NULL; 
    m_nMeshCount         = 0; 
 
    m_vecScale           = D3DXVECTOR3( 1.0f, 1.0f, 1.0f ); 
} 
 
 

CTerrain::~CTerrain() 
The destructor calls the CTerrain::Release() function to clean up memory allocated by the terrain class. 
Moving the clean up code into its own function lets us release the terrain memory from elsewhere in 
our application or from elsewhere within the CTerrain class itself when the terrain needs to be rebuilt 
or simply destroyed.  
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CTerrain::~CTerrain() 
{ 
    Release(); 
} 
 
 
CTerrain::Release 
The Release function deletes the height map and mesh pointer arrays. The CMesh class index and 
vertex buffers are released in the CMesh destructor. We also careful to release our claim of usage on 
the device interface, which will decrement its reference count.  
 
void CTerrain::Release() 
{ 
    // Release Heightmap 
    if ( m_pHeightMap ) delete[]m_pHeightMap; 
 
    // Release Meshes 
    if ( m_pMesh )  
    { 
        // Delete all individual meshes in the array. 
        for ( ULONG i = 0; i < m_nMeshCount; i++ ) 
        { 
            if ( m_pMesh[i] ) delete m_pMesh[i]; 
         
        } // Next Mesh 
 
        // Free up the array itself 
        delete []m_pMesh; 
     
    } // End if 
 
    // Release our D3D Object ownership 
    if ( m_pD3DDevice ) m_pD3DDevice->Release(); 
 
    // Clear Variables 
    m_pHeightMap        = NULL; 
    m_nHeightMapWidth   = 0; 
    m_nHeightMapHeight  = 0; 
    m_pMesh             = NULL; 
    m_nMeshCount        = 0; 
    m_pD3DDevice        = NULL; 
} 
 
 
 
CTerrain::SetD3DDevice 
The first CTerrain method to be called from the CGameApp::BuildObjects function is 
CTerrain::SetD3DDevice. This application passes in a pointer to the device interface used for 
rendering the terrain. The function simply stores the device interface pointer in its own member 
variable and increases its reference count. We also pass a boolean (to be stored) indicating whether or 
not the device passed is a hardware vertex-processing device. 
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void CTerrain::SetD3DDevice( LPDIRECT3DDEVICE9 pD3DDevice, bool HardwareTnL ) 
{ 
    // Validate Parameters 
    if ( !pD3DDevice ) return; 
 
    // Store D3D Device and add a reference 
    m_pD3DDevice = pD3DDevice; 
    m_pD3DDevice->AddRef(); 
 
    // Store vertex processing type for buffer creation 
    m_bHardwareTnL = HardwareTnL; 
} 

 
 
CTerrain::LoadHeightMap 
CTerrain::LoadHeightMap kick starts the terrain generation process. When this function returns, the 
terrain meshes will have been constructed and are ready to be rendered. This function takes the RAW 
file name along with its width and height. We pass these dimensions so that it knows how the data 
should be organized into rows. A RAW file is essentially a single array of sequential RGB data where 
each color component is a byte wide. The array is laid out using the following format: 
 
{ R , G , B , R , G , B , R , G , B , R , G , B , R , G , B ,………} 
 
bool CTerrain::LoadHeightMap( LPCTSTR FileName, ULONG Width, ULONG Height ) 
{ 
    FILE *pFile = NULL; 
 
    // Cannot load if already allocated (must be explicitly released for reuse) 
    if ( m_pMesh ) return false; 
 
    // Must have an already set D3D Device 
    if ( !m_pD3DDevice ) return false; 
     
    // First of all store the information passed 
    m_nHeightMapWidth  = Width; 
    m_nHeightMapHeight = Height; 
 
We return from the function if the CMesh array already exists because these will need to be released 
first. We also return failure if the class has not yet had its device interface pointer set to a valid 
IDirect3DDevice9 interface. We store the passed the width and height of the image in member 
variables.  
 
Next we calculate the scale vector. We found that a scale factor of 4 in the image space X and Y 
dimensions (world space X and Z) produced a nice sized terrain for a 512x512 height map for our 
purposes. We use this fact to calculate a good scale value for the X and Z vertex components of any 
arbitrarily sized height map image so that it scales in proportion to scaling a 512x512 height map by 4.  
 
    // Use nice scale 
    m_vecScale.x = 4.0f * (512 / (m_nHeightMapWidth - 1)); 
    m_vecScale.y = 2.0f; 
    m_vecScale.z = 4.0f * (512 / (m_nHeightMapHeight - 1)); 
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So our height map of 257x257 equates to scale values: 
 
m_vecScale.x = 4.0 * (512 /  256 ) =8 
m_vecScale.z = 4.0 * (512 / 256 ) =8; 
 
The scale vector Y component can be used to flatten the terrain peaks and ravines (by lowering the 
value) or to emphasize them (by using a higher value). You should experiment with all of these values 
yourself to find a combination that works for your application.  
 
Now we allocate memory for the height map array and open the file. We loop through each pixel and 
read only the first byte of each set of three (R from RGB). The following two bytes are skipped using 
the fseek function so that we are ready to read the red component of the next adjacent pixel in the file 
during the next loop iteration. 
   
    // Attempt to allocate space for this heightmap information 
    m_pHeightMap = new UCHAR[Width * Height]; 
 
    // Open up the heightmap file 
    pFile = _tfopen( FileName, _T("rb") ); 
   
    // Read the heightmap data (Read only 'Red' component) 
    for ( ULONG i = 0; i < Width * Height; i++ ) 
    { 
        fread( &m_pHeightMap[i], 1, 1, pFile ); 
        fseek( pFile, 2, SEEK_CUR ); 
    } // Next Value 
     
At this point we have read all of the information and it is time to close the file. 
 
    // Finish up 
    fclose( pFile ); 
 
The next function that is called is CTerrain::AddMesh. It allocates an array large enough to hold 
pointers for as many meshes as we need. The next calculation tells the function how many meshes we 
are going to have to allocate memory for: 
 
    // Allocate enough meshes to store the separate blocks of this terrain 
    if ( AddMesh( ((Width - 1) / QuadsWide) * ((Height - 1) / QuadsHigh) ) < 0 ) return 
false; 
 
When rendering a grid-like construct such as a height map, it is more convenient and intuitive to think 
in terms of quads rather than triangles. The constants QuadsWide and QuadsHigh are defined at the top 
of the CTerrain.cpp source file. These are wrapped in a nameless namespace so that they cannot be 
externed to another source code module (deliberately or accidentally). 
 
namespace 
{ 
    const USHORT BlockWidth  = 17;            // Number of vertices in a terrain block (X) 
    const USHORT BlockHeight = 17;            // Number of vertices in a terrain block (Z) 
    const USHORT QuadsWide   = BlockWidth - 1;   // Number of quads in a terrain block (X) 
    const USHORT QuadsHigh   = BlockHeight - 1;  // Number of quads in a terrain block (Z) 
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}; 
 
This approach allows us to quickly change the subdivision strategy. In this case each mesh will be a 
grid of 17x17 vertices and thus a 16x16 grid of quads representing a section of the terrain. The 
AddMesh function is being called as follows: 
 
AddMesh ( (256/16) * (256/16) ) = AddMesh ( 16 * 16 ) = 256 meshes needed 
 
With the mesh array pointer allocated, we now need to build a vertex and index buffer for each mesh 
using the height map data. This needs to be done such that each mesh can be rendered as a single 
indexed triangle strip. 
 
    // Build the mesh data itself 
    return BuildMeshes( ); 
} 
 
Here is the LoadHeightMap function in its entirety (without error checking): 
 
bool CTerrain::LoadHeightMap( LPCTSTR FileName, ULONG Width, ULONG Height ) 
{ 
    FILE * pFile = NULL; 
     
    if ( m_pMesh ) return false; 
    if ( !m_pD3DDevice ) return false; 
     
    // First of all store the information passed 
    m_nHeightMapWidth  = Width; 
    m_nHeightMapHeight = Height; 
 
    // calculate scale vector 
    m_vecScale.x = 4.0f * (512 / (m_nHeightMapWidth - 1)); 
    m_vecScale.y = 6.0f; 
    m_vecScale.z = 4.0f * (512 / (m_nHeightMapHeight - 1)); 
 
    // Allocate Heightmap  
    m_pHeightMap = new UCHAR[Width * Height]; 
   
    pFile = _tfopen( FileName, _T("rb") ); 
   
    for ( ULONG i = 0; i < Width * Height; i++ ) 
    { 
        fread( &m_pHeightMap[i], 1, 1, pFile ); 
        fseek( pFile, 2, SEEK_CUR ); 
    }  
     
    fclose( pFile ); 
 
    // Allocate enough meshes to store the separate blocks of this terrain 
    if ( AddMesh( ((Width - 1) / QuadsWide) * ((Height - 1) / QuadsHigh) ) < 0 ) 
         return false; 
 
    // Build the mesh data itself 
    return BuildMeshes( ); 
} 
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CTerrain::AddMesh 
The AddMesh call is used to add new meshes to the CTerrain mesh array. We pass in the number of 
meshes to make space for. Note that the CTerrain mesh array is an array of CMesh pointers and not 
CMesh objects. 
 
long CTerrain::AddMesh( ULONG Count ) 
{ 
    CMesh **pMeshBuffer = NULL; 
     
    // Allocate new resized array 
    if (!( pMeshBuffer = new CMesh*[ m_nMeshCount + Count ] )) return -1; 
 
    // Clear out slack pointers 
    ZeroMemory( &pMeshBuffer[ m_nMeshCount ], Count * sizeof( CMesh* ) ); 
 
At this point we have a clean array with enough room to store old and new mesh pointers. If any 
existed previously, we copy them over into the new array: 
 
    if ( m_pMesh ) 
    { 
        // Copy old data into new buffer 
        memcpy( pMeshBuffer, m_pMesh, m_nMeshCount * sizeof( CMesh* ) ); 
 
        // Release old buffer 
        delete []m_pMesh; 
    }  
     
    // Store pointer for new buffer 
    m_pMesh = pMeshBuffer; 
 
Now we can allocate a new CMesh object for each pointer in the array. 
 
    // Allocate new mesh pointers 
    for ( UINT i = 0; i < Count; i++ ) 
    { 
        // Allocate new mesh 
        if (!( m_pMesh[ m_nMeshCount ] = new CMesh() )) return -1; 
 
        // Increase overall mesh count 
        m_nMeshCount++; 
    }  
     
    // Return first mesh 
    return m_nMeshCount - Count; 
} 
 
When this function returns control to the LoadHeightMap function, the terrain will have an array of 
256 CMesh pointers to valid CMesh objects The CMesh objects have not been initialized with any 
useful data yet. We will do that in the CTerrain::BuildMeshes function which we will examine next. 
 
 
 
 

TeamLRN



CTerrain:: BuildMeshes 
The first thing BuildMeshes must do is calculate how many blocks wide and how many blocks high 
the terrain will be. A block in this case actually means a mesh since the entire terrain is basically a 
rectangular grid of meshes.  
 
bool CTerrain::BuildMeshes( ) 
{ 
    long x, z, vx, vz, Counter, StartX, StartZ; 
    long BlocksWide = (m_nHeightMapWidth  - 1) / QuadsWide; 
    long BlocksHigh = (m_nHeightMapHeight - 1) / QuadsHigh; 
 
BlocksWide now holds the value of how many meshes the terrain will be divided into along the X-
axis. BlocksHigh holds how many meshes will make up the terrain along the Z-axis. We are 
calculating how many quads in total are required in the X and Z dimensions for the entire terrain 
(number of vertices –1 in each dimension), and then dividing this figure by how many quads will make 
up each dimension of a single mesh. This tells us how many meshes we will need to subdivide the 
terrain into along each dimension. In our case: 
 
BlocksWide = (256)/16 = 16 
BlocksHigh  = (256)/16  = 16 
 
Our terrain will thus be a grid of 16x16 meshes, where each mesh is a grid of 17x17 vertices forming 
16x16 quads per mesh. 
 
In this next line of code we set up an imaginary light vector. There is no actual light in our scene, but 
this vector will be used in the color calculations for determining a diffuse color for each vertex. You 
can think of this as a standard unit length vector just like a face normal. Instead of describing which 
way a polygon is facing, it is describing which direction an imaginary light is shining. We will use this 
approach to fake some static lighting. We cover true DirectX Graphics lighting in Chapter 5. 
 
    D3DXVECTOR3 VertexPos, LightDir = D3DXVECTOR3( 0.650945f, -0.390567f, 0.650945f ); 
 
If we imagine the positive world Z-axis as north and the positive world X-axis as east, this vector is 
pointing northeast and down slightly. This will simulate the direction the sun may shine on our scene 
just as it is about to set.  
 
Next we need to count how many indices each terrain mesh will need. Typically the index count 
needed for a triangle strip is NumberOfTriangles + 2. Think of two quads for example; we would need 
six indices (two rows of three) and as there are two triangles to a single quad, four triangles in total. 
We also need to take into account that every row but the last one will need an extra index to create the 
three degenerate triangles discussed in the text. 
     
    // Calculate IndexCount....  
    //(Number required for quads) + (Extra Degenerates verts -- 
    //                               one per quad row except last)) 
    ULONG IndexCount  = ((BlockWidth * 2) * QuadsHigh) + ( QuadsHigh - 1 ); 
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Now we can calculate how many primitives these indices will create. We will need to know this for 
our DrawIndexedPrimitive call. 
     
    //Calculate Primitive Count 
    //((Number of quads ) * 2) + (3 degenerate tris per quad row except last) 
    m_nPrimitiveCount = ((QuadsWide * QuadsHigh) * 2) + ((QuadsHigh - 1) * 3); 
 

The CTerrain::AddMesh call has already created an array of CMeshes at this point, but they are 
uninitialized. So we will loop through each mesh in the array and tell it how much space it will need to 
reserve in its temporary arrays to hold the vertex and index data we are about to add. 
   
  // Loop through and generate the mesh data 
    for ( z = 0; z < BlocksHigh; z++ ) 
    { 
        for ( x = 0; x < BlocksWide; x++ ) 
        { 
            CMesh * pMesh = m_pMesh[ x + z * BlocksWide ]; 
 
            // Allocate all the vertices & indices required for this mesh 
            if ( pMesh->AddVertex( BlockWidth * BlockHeight ) < 0 ) return false; 
            if ( pMesh->AddIndex( IndexCount ) < 0 ) return false; 
 
 
We call the CMesh::AddVertex function to reserve enough space for 17x17 vertices. We also reserve 
the correct number of indices using the IndexCount value just calculated. 
 
Our next goal is to loop through the rows and columns for the current mesh and fill in the vertex 
buffer. The CMesh initially stores its vertices in a temporary array. Once the vertices and the indices 
have been added we will call CMesh->BuildBuffers to build the vertex and index buffer from these 
temporary arrays. Filling in the vertex data is much easier than the index buffer. We simply create the 
meshes one row at a time, where each row has its vertices specified left to right. 
 
            // Calculate Vertex Positions 
            Counter = 0; 
            StartX  = x * (BlockWidth  - 1); 
            StartZ  = z * (BlockHeight - 1); 
            for ( vz = StartZ; vz < StartZ + BlockHeight; vz++ ) 
            { 
                for ( vx = StartX; vx < StartX + BlockWidth; vx++ ) 
                { 
                    // Calculate and Set The vertex data. 
                    pMesh->m_pVertex[ Counter ].x = (float)vx * m_vecScale.x; 
                    pMesh->m_pVertex[ Counter ].z = (float)vz * m_vecScale.z; 
 
                    float t = (float)m_pHeightMap[ vx + vz * m_nHeightMapWidth ] 
                    pMesh->m_pVertex[ Counter ].y = t * m_vecScale.y; 
 
                    Counter++; 
                } // Next Vertex Column 
            } // Next Vertex Row 
 
We loop through the 17 rows and 17 columns of the current mesh and use the StartX and StartY 
variables to create the vertex values relative to the mesh to which they belong. For example, if we are 
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generating the mesh in the third column of the first row, the X component of the first vertex in that 
mesh will be X (which equals 2 because this is the third block) * block width - 1 (which is 16). So the 
first vertex in this mesh will have an X component of 32 (the start of the third block). The same 
calculation is done for the Z component using the current row of the block we are calculating. Once we 
have the X and Z values offset properly into the current column and row for the mesh, we multiply 
them by their respective components in the scale vector. The Y component of each vertex is pulled 
from the height map. This value is scaled by its respective component in the scale vector.  
 
 
Simple Vertex Lighting 
 
To understand how to calculate the diffuse color at each terrain vertex, we will take a brief detour to 
discuss some basic lighting concepts. These concepts will be revisited again in much more detail in 
Chapter 5. 
 
Lambert’s Law states that for an ideal diffuse surface, the intensity of the reflected light is proportional 
only to the cosine of the angle between the surface normal and normalized vector from the point to the 
light source.  
 

 
 
If we assume that N describes a surface normal vector and L describes a normalized vector from the 
surface point P to the light source S: 
 

L = | S – P | 
 
As we discovered in Chapter 1, we can calculate the cosine of the angle between two unit length 
vectors using the dot product: 
 

cosθ = N  ·  L 
 
To determine the final intensity at a point, we scale the light intensity by this value: 
 

Ipoint = Ilight  (N  ·  L) 
 
We can use values in the range of [0.0, 1.0] for each component of an RGB color to define a set of 
diffuse reflectance coefficients Mdiff_refl for use in determining a final color for the surface point Pcolor. 
These coefficients are based on the properties of the surface material.  
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Pcolor = Mdiff_refl  Ipoint 

 
Combining the equations we get:  
 

Pcolor = Mdiff_refl  Ilight (N  ·  L) 
 
Like its parent surface, a vertex can also store a normalized 3D vector describing its own orientation. 
For a single triangle, each vertex normal would be the same as the face normal since the points are all 
co-planar. If a vertex is shared by two or more triangles, the normals of those surfaces can be averaged 
to produce a final value for the vertex. We will cover vertex normals in more detail in Chapter 5. 
 
So, assuming that N in the above equation now represents a vertex orientation vector, we can simply 
assign our terrain its diffuse reflectance properties (in our case we will choose a brown color for a 
default) and determine a lighting effect for each vertex.  
 

Different shades of the color brown 
at each vertex. 

Constant color: All vertices  are the same 
 color, therefore so are the triangles. 

 
 
The following code uses a function called GetHeightMapNormal to generate a vertex normal for a 
given pixel in the height map. We will actually calculate the normal for all four vertices in the current 
quad and average them so that we get a smoother color distribution across the vertices. Since the vertex 
normal will be used to help generate the diffuse color of the vertex, vertices that are next to each other 
but have very different normals would create abrupt changes in color from vertex to vertex. By 
averaging the four normals in the neighborhood of each vertex we can smooth out the color transitions. 
 
The next section of the function loops through each vertex, and for each vertex calculates the dot 
product between the unit length light direction vector, and the normals of the neighbouring vertices in 
the height map that are calculated in the GetHeightMapNormal function. Once we have the cosine of 
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the angle between these vertex normals and the light source, we average the angle so that the angle 
roughly describes the cosine between the current quad direction vector (much like a face normal) and 
the light vector. 
             
Note: The code that follows will make more complete sense when we cover the helper function called 
CTerrain::GetHeightMapNormal in a later section.  
 
            // Calculate vertex color 
            Counter = 0; 
            for ( vz = StartZ; vz < StartZ + BlockHeight; vz++ ) 
            { 
                for ( vx = StartX; vx < StartX + BlockWidth; vx++ ) 
                { 
                    // Retrieve vertex position 
                    VertexPos = (D3DXVECTOR3&)pMesh->m_pVertex[ Counter ]; 
 
                    // Calculate vertex colour scale 
                    float fRed = 1.0f, fGreen = 0.8f, fBlue = 0.6f, fScale = 0.25f; 
                        

We define three floats (fRed, fGreen, and fBlue) to store our diffuse reflectance coefficients. We 
specify a base reflectance for the terrain that has 100% red intensity, 80% green intensity and 25% blue 
intensity. The result (given our white light source) is the light brown color shown in the image above. 
 
                    // Generate average scale (for diffuse lighting calc) 
                    fScale  = D3DXVec3Dot( &GetHeightMapNormal( vx, vz ), &LightDir); 
                    fScale += D3DXVec3Dot( &GetHeightMapNormal( vx + 1, vz ), &LightDir); 
                    fScale += D3DXVec3Dot( &GetHeightMapNormal( vx + 1, vz + 1 ), 
                                                                              &LightDir); 
                    fScale += D3DXVec3Dot( &GetHeightMapNormal( vx, vz + 1 ), &LightDir); 
                    fScale /= 4.0f; 
 
Four vertex normals are created (one for each vertex in the quad region) and the cosine of the angle 
between these vectors and the light direction vector is calculated and accumulated into fScale and then 
averaged.  
 
Next, we adjust the scale value to ensure that every vertex has at least some lighting (even if they are 
facing completely away from the light source) by adding 0.05 to the scale value and then clamp the 
result to min and max values: 
 
                    // Increase Saturation 
                    fScale += 0.05f;  
 
                    // Clamp colour saturation 
                    if ( fScale > 1.0f ) fScale = 1.0f; 
                    if ( fScale < 0.25f ) fScale = 0.25f; 
 
We now have a scale value between 0.25 and 1.0, which describes how much to scale the base color 
components based on the orientation of the vertex and the light source. Next we use the 
D3DCOLOR_COLORVALUE macro, which accepts four floats that describe an RGBA color with 
components between 0.0 and 1.0 and returns a DWORD where each component is mapped to the [0, 
255] range. We store this DWORD in our vertex structure as the diffuse color. 
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Finally we scale the base color by the averaged cosine of the angle between the current quad and the 
light direction vector. This will scale the color of the vertex based on the quad’s orientation with 
respect to the light vector. This is simple but effective diffuse lighting formula used by many 3D 
rendering engines. 
 
         // Store Colour Value 
         pMesh->m_pVertex[ Counter ].Diffuse = D3DCOLOR_COLORVALUE( 
                    fRed  * fScale, 
   fGreen * fScale, 
   fBlue  * fScale, 
           1.0f ); 
                    
         Counter++; 
                 
        } // Next Vertex Column 
             
   } // Next Vertex Row 
 
          
Note that a light source color was never specified in the above code because our demo assumes a white 
light source (1.0 for all components). We also set the alpha value of the color to 1.0 in the call to 
D3DCOLOR_COLORVALUE. We will use alpha values later in Chapter 7, but until then we will 
continue to set them to 1.0 (completely opaque). 
 
We now have our current mesh with its vertex array complete. Each vertex has a color that is some 
shade of the base vertex color. Now it is time to add the indices. Remember that we will insert a 
duplicate index to the first vertex at the start of each row (except the first row) to create our degenerate 
triangles. 
 
Counter = 0; 
 
// Calculate the indices for the terrain block tri-strip  
for ( vz = 0; vz < BlockHeight - 1; vz++ ) 
{ 
   // Is this an odd or even row ? 
   if ( (vz % 2) == 0 ) 
   { 
     for ( vx = 0; vx < BlockWidth; vx++ ) 
     { 
          // Force insert winding order switch degenerate ? 
          if ( vx == 0 && vz > 0 ) 
             pMesh->m_pIndex[ Counter++ ] = (USHORT)(vx + vz * BlockWidth); 
 
          // Insert next two indices 
          pMesh->m_pIndex[ Counter++ ] = (USHORT)(vx + vz * BlockWidth); 
          pMesh->m_pIndex[ Counter++ ] = (USHORT)((vx + vz * BlockWidth) + BlockWidth); 
 
        } // Next Index Column 
                    
     } // End if even row 
  else 
  { 
    for ( vx = BlockWidth - 1; vx >= 0; vx--) 
    { 
        // Force insert winding order switch degenerate ? 
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        if ( vx == (BlockWidth - 1) ) 
           pMesh->m_pIndex[ Counter++ ] = (USHORT)(vx + vz * BlockWidth); 
 
        // Insert next two indices 
        pMesh->m_pIndex[ Counter++ ] = (USHORT)(vx + vz * BlockWidth); 
        pMesh->m_pIndex[ Counter++ ] = (USHORT)((vx + vz * BlockWidth) + BlockWidth); 
     } // Next Index Column 
 
  } // End if odd row 
             
} // Next Index Row 
 
We start off by doing the first row (row[0]) of indices. This is an even row. We move along the width 
of the row adding indices for the current vertex and the vertex above it (below it in image space) just as 
we saw in the text. When we get to the end of the row, the vz loop increments and we enter the odd 
row vx loop in vz’s next iteration (the else statement). This starts adding pairs of vertices in reverse 
order from right to left. Notice that the first thing it does is insert the duplicate index into the first 
vertex of that row. We then add the row vertices as usual. The duplicate index creates the three 
degenerates described in the lesson. Once we reach the end of that row (remember that we are adding 
odd rows from right to left and even rows from to left to right) the vz loop increments again to take us 
to the third row (row[2]). The order switches again and we start adding pairs of vertices from the start 
of this row, working left to right as we did in the first row. Because this is not the first row, the 
duplicate index is added to the first vertex in this even row causing the three degenerate triangles again 
on the left side. We repeat this procedure until all rows are complete. When the loops exit, the mesh 
has completely filled its vertex and index arrays.  
 
The final step is construction of the vertex and index buffers using the CMesh::BuildBuffer function 
discussed previously. 
 
            // Instruct mesh to build buffers 
            if ( FAILED(pMesh->BuildBuffers( m_pD3DDevice, m_bHardwareTnL )) )  
                 return false; 
 
We repeat this process for every mesh in the terrain (16x16 meshes in our example). 
 
        } // Next Block Column 
    } // Next Block Row 
 
    // Success! 
    return true; 
} 
 
Below we see the complete CTerrain::BuildMeshes function without any interruptions.  
 
bool CTerrain::BuildMeshes( ) 
{ 
    long x, z, vx, vz, Counter, StartX, StartZ; 
    long BlocksWide = (m_nHeightMapWidth  - 1) / QuadsWide; 
    long BlocksHigh = (m_nHeightMapHeight - 1) / QuadsHigh; 
     
    D3DXVECTOR3 VertexPos, LightDir = D3DXVECTOR3( 0.650945f, -0.390567f, 0.650945f ); 
 
    ULONG IndexCount  = ((BlockWidth * 2) * QuadsHigh) + ( QuadsHigh - 1 ); 
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    m_nPrimitiveCount = ((QuadsWide * QuadsHigh) * 2) + ((QuadsHigh - 1) * 3); 
 
    // Loop through and generate the mesh data 
    for ( z = 0; z < BlocksHigh; z++ ) 
    { 
        for ( x = 0; x < BlocksWide; x++ ) 
        { 
            CMesh * pMesh = m_pMesh[ x + z * BlocksWide ]; 
 
            // Allocate all the vertices & indices required for this mesh 
            if ( pMesh->AddVertex( BlockWidth * BlockHeight ) < 0 ) return false; 
            if ( pMesh->AddIndex( IndexCount ) < 0 ) return false; 
 
            // Calculate Vertex Positions 
            Counter = 0; 
            StartX  = x * (BlockWidth  - 1); 
            StartZ  = z * (BlockHeight - 1); 
            for ( vz = StartZ; vz < StartZ + BlockHeight; vz++ ) 
            { 
                for ( vx = StartX; vx < StartX + BlockWidth; vx++ ) 
                { 
                    // Calculate and Set The vertex data. 
                    pMesh->m_pVertex[ Counter ].x = (float)vx * m_vecScale.x; 
                    pMesh->m_pVertex[ Counter ].y = \ 
                                           (float)m_pHeightMap[vx+vz*m_nHeightMapWidth]*m_vecScale.y; 
                    pMesh->m_pVertex[ Counter ].z = (float)vz * m_vecScale.z; 
                    Counter++; 
                 
                }  
             
            }  
 
            // Calculate vertex lighting 
            Counter = 0; 
            for ( vz = StartZ; vz < StartZ + BlockHeight; vz++ ) 
            { 
                for ( vx = StartX; vx < StartX + BlockWidth; vx++ ) 
                { 
                    // Retrieve vertex position 
                    VertexPos = (D3DXVECTOR3&)pMesh->m_pVertex[ Counter ]; 
                  
                       // Calculate vertex colour scale 
                       float fRed = 1.0f, fGreen = 0.8f, fBlue = 0.6f, fScale = 0.25f; 
                         
                       // Generate average scale (for diffuse lighting calc) 
                        fScale  =  D3DXVec3Dot( &GetHeightMapNormal( vx, vz ), &LightDir); 
                        fScale += D3DXVec3Dot( &GetHeightMapNormal( vx + 1, vz ), &LightDir); 
                        fScale += D3DXVec3Dot( &GetHeightMapNormal( vx + 1, vz + 1 ), &LightDir); 
                        fScale += D3DXVec3Dot( &GetHeightMapNormal( vx, vz + 1 ), &LightDir); 
                        fScale /= 4.0f; 
 
                        // Increase Saturation 
                        fScale += 0.05f;  
 
                        // Clamp colour saturation 
                        if ( fScale > 1.0f ) fScale = 1.0f; 
                        if ( fScale < 0.25f ) fScale = 0.25f; 
                    
                       // Store Colour Value 
                       pMesh->m_pVertex[ Counter ].Diffuse = D3DCOLOR_COLORVALUE( fRed * fScale, 
                                                                                  fGreen * fScale, 
                                                                                  fBlue * fScale, 
                                                                                   1.0f ); 
                     
                    Counter++; 
                 
                } // Next Vertex Column 
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            } // Next Vertex Row 
 
            Counter = 0; 
            // Calculate the indices for the terrain block tri-strip  
            for ( vz = 0; vz < BlockHeight - 1; vz++ ) 
            { 
                // Is this an odd or even row ? 
                if ( (vz % 2) == 0 ) 
                { 
                    for ( vx = 0; vx < BlockWidth; vx++ ) 
                    { 
                        // Force insert winding order switch degenerate ? 
                        if ( vx == 0 && vz > 0 )  
                          pMesh->m_pIndex[ Counter++ ] = (USHORT)(vx + vz * BlockWidth); 
 
                        // Insert next two indices 
                        pMesh->m_pIndex[ Counter++ ] = (USHORT)(vx + vz * BlockWidth); 
                        pMesh->m_pIndex[ Counter++ ] = (USHORT)((vx + vz * BlockWidth) + BlockWidth); 
 
                    } // Next Index Column 
                     
                } // End if even row 
                else 
                { 
                    for ( vx = BlockWidth - 1; vx >= 0; vx--) 
                    { 
                        // Force insert winding order switch degenerate ? 
                        if(vx == (BlockWidth - 1)) 
                           pMesh->m_pIndex[Counter++] = (USHORT)(vx + vz * BlockWidth); 
 
                        // Insert next two indices 
                        pMesh->m_pIndex[ Counter++ ] = (USHORT)(vx + vz * BlockWidth); 
                        pMesh->m_pIndex[ Counter++ ] = (USHORT)((vx + vz * BlockWidth) + BlockWidth); 
 
                    } // Next Index Column 
 
                } // End if odd row 
             
            } // Next Index Row 
 
            // Instruct mesh to build buffers 
            if ( FAILED(pMesh->BuildBuffers( m_pD3DDevice, m_bHardwareTnL )) ) return false; 
 
        } // Next Block Column 
     
    } // Next Block Row 
 
    // Success! 
    return true; 
} 

 
The hard part is now over. Please make sure that you take the time to understand how the whole 
process works. Learning how to represent a grid of quads as a triangle strip will prove to be very useful 
to you in your programming future.  
 
CTerrain::GetHeightmapNormal 
The GetHeightMapNormal function takes as input the location of a pixel in the height map (which is 
also a vertex in the terrain) and returns a unit length normal vector describing the direction in which 
the pixel (vertex) is facing in world space. Notice that the parameters are labeled x and z instead of x 
and y. In reality we are passing in the x:y coordinates of the pixel in the height map to generate the 
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normal for a vertex stored at x:z in world space. Just remember that the image space Y-axis is the 
world space Z-axis. 
 
D3DXVECTOR3 CTerrain::GetHeightMapNormal( ULONG x, ULONG z ) 
{ 
     D3DXVECTOR3 Normal, Edge1, Edge2; 
     ULONG       HMIndex, HMAddX, HMAddZ; 
     float       y1, y2, y3; 
 
    // Make sure we are not out of bounds 
     if ( x < 0.0f || z < 0.0f || x >= m_nHeightMapWidth || z >= m_nHeightMapHeight ) 
          return D3DXVECTOR3(0.0f, 1.0f, 0.0f); 
 
The first thing we do is make sure that the image coordinates passed are not outside the bounds of the 
image. If the point is out of bounds, we simply return a vector aligned with the world space Y-axis. 
This vector is a good generic normal for a terrain if the worst comes to the worst. Provided that valid 
coordinates have been specified, we now need to know what the offset of that pixel is in our height 
map array. Remember that the height map is a one-dimensional linear array. All of the rows are 
arranged in memory one after another. To calculate the index of the desired pixel in the array, we 
multiply the row number by the number of pixels that are in a row and then add the column number. 
 
    // Calculate the index in the heightmap array 
    HMIndex = x + z * m_nHeightMapWidth; 
 
If the image map was 10x10 pixels in size and we specified a coordinate of (3, 7) this would be 
calculated as: 
 
3 + (7*10) = 74 
 
So array element 73 in the height map array would be the height for pixel (3, 10) in the image. 
 
When we discussed face normals in Chapter 1, we realized that when we have three vertices that define 
a triangle, we can calculate the direction that triangle is facing by creating two vectors using two of its 
edges and then performing a cross product operation on them. The result is a vector that is 
perpendicular to the other two. This is the face normal. 
 
Although we do not actually have a triangle as such, we do have the height map. Every pixel in the 
height map is essentially a virtual vertex. Therefore, we can create two edge vectors to form a virtual 
triangle and perform the cross product on these two vectors to get the pixel normal. 
 
In order to create the two vectors, we will need three vertices. We already have the index of the first 
vertex in the height map (HMIndex) based on the pixel coordinate passed in. We can use the pixel 
immediately to the right of it and the pixel immediately below it as the second and third vertices. We 
now have three vertices with which to create two edge vectors. The following image shows a 
magnified view of the pixels at the top left corner of the height map. If the coordinates passed in were 
(0, 0) then we wish to calculate the normal for the first pixel at the top left corner (HMIndex). We also 
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use the pixel immediately to the right (HMIndex+HMAddX) and the pixel below 
(HMIndex+HMAddy).  

 
If the coordinate passed in is for a pixel at either the far right edge of the image or at the bottom row of 
the image, we reverse direction and use the pixel to the right or above it respectively. We control this 
with the HMAddX and HMAddY variables as shown below. 
 
    // Calculate the number of pixels to add in either direction to 
    // obtain the best neighbouring heightmap pixel. 
    if ( x < (m_nHeightMapWidth - 1))   
        HMAddX = 1;  
    else 
        HMAddX = -1; 
 
    if ( z < (m_nHeightMapHeight - 1)) 
        HMAddZ = m_nHeightMapWidth; 
    else  
        HMAddZ = -(signed)m_nHeightMapWidth; 
  
We add these offsets to HMindex and retrieve the neighbouring pixels: 
 
    // Get the three height values 
    y1 = (float)m_pHeightMap[HMIndex] * m_vecScale.y; 
    y2 = (float)m_pHeightMap[HMIndex + HMAddX] * m_vecScale.y;  
    y3 = (float)m_pHeightMap[HMIndex + HMAddZ] * m_vecScale.y; 
 
The above code samples the three L-Shaped height values from the height map and scales them by the 
Y component of our scale vector so that we can create two edge vectors with the correct scale of our 
terrain. 
  
    // Calculate Edges 
    Edge1 = D3DXVECTOR3( m_vecScale.x, y2 - y1, 0.0f ); 
    Edge2 = D3DXVECTOR3( 0.0f, y3 - y1, m_vecScale.z ); 
    
The scale vector we used in our demo is (8, 2, 8). If we passed in image coordinate (0, 0) and pixel (0, 
0) had a value of 20 in the height map and pixel (0, 1) has a height of 40, we would create the first 
edge vector: 
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(m_vecScale.x , 40-20 * m_vecScale.y, m_vecScale.z) = Edge 1 = (8 , 40 , 8) 
 
This vector accurately describes the slope from pixel/vertex (0, 0) to pixel/vertex (0, 1) as shown 
below. The following image is a 3D representation of our height map. It is as if we lowered ourselves 
into the image map and were looking at the top left corner of the image. 
 

 
Once we have the two edge vectors we can perform a cross product to generate a vector that is 
perpendicular to the two edge vectors and then normalize it.  
 
    // Calculate Resulting Normal 
    D3DXVec3Cross( &Normal, &Edge1, &Edge2); 
    D3DXVec3Normalize( &Normal, &Normal ); 
  
    // Return it. 
    return Normal; 
} 

 
Here is the complete code to the function without interruption: 
 
D3DXVECTOR3 CTerrain::GetHeightMapNormal( ULONG x, ULONG z ) 
{ 
    D3DXVECTOR3 Normal, Edge1, Edge2; 
    ULONG       HMIndex, HMAddX, HMAddZ; 
    float       y1, y2, y3; 
 
   // Make sure we are not out of bounds 
    if ( x < 0.0f || z < 0.0f || x >= m_nHeightMapWidth || z >= m_nHeightMapHeight )  
         return D3DXVECTOR3(0.0f, 1.0f, 0.0f); 
 
    // Calculate the index in the heightmap array 
    HMIndex = x + z * m_nHeightMapWidth; 
     
    // Calculate the number of pixels to add in either direction to 
    // obtain the best neighbouring heightmap pixel. 
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    if ( x < (m_nHeightMapWidth - 1))  HMAddX = 1; 
    else HMAddX = -1; 
    
    if ( z < (m_nHeightMapHeight - 1)) HMAddZ = m_nHeightMapWidth; 
    else HMAddZ = -(signed)m_nHeightMapWidth; 
  
    // Get the three height values 
    y1 = (float)m_pHeightMap[HMIndex] * m_vecScale.y; 
    y2 = (float)m_pHeightMap[HMIndex + HMAddX] * m_vecScale.y;  
    y3 = (float)m_pHeightMap[HMIndex + HMAddZ] * m_vecScale.y; 
    
    // Calculate Edges 
    Edge1 = D3DXVECTOR3( m_vecScale.x, y2 - y1, 0.0f ); 
    Edge2 = D3DXVECTOR3( 0.0f, y3 - y1, m_vecScale.z ); 
    
    // Calculate Resulting Normal 
    D3DXVec3Cross( &Normal, &Edge1, &Edge2); 
    D3DXVec3Normalize( &Normal, &Normal ); 
  
    // Return it. 
    return Normal; 
}  
 
 
 
CTerrain::Render 
Recall that our code framework repeatedly calls the FrameAdvance function to render the frame. This 
function will in turn call CTerrain::Render. Our task here is actually quite straightforward. The 
function will simply loop through each mesh, sets its vertex and index buffer and call 
DrawIndexedPrimitive to render the entire mesh as a single indexed triangle strip. 
 
void CTerrain::Render( ) 
{ 
    // Validate parameters 
    if( !m_pD3DDevice ) return; 
     
    // Render Each Mesh 
    for ( ULONG i = 0; i < m_nMeshCount; i++ ) 
    { 
        // Set the stream sources 
        m_pD3DDevice->SetStreamSource(0, m_pMesh[i]->m_pVertexBuffer, 0, sizeof(CVertex)); 
        m_pD3DDevice->SetIndices( m_pMesh[i]->m_pIndexBuffer ); 
 
        // Render the vertex buffer 
        m_pD3DDevice->DrawIndexedPrimitive( D3DPT_TRIANGLESTRIP, 0, 0,  
                                            BlockWidth * BlockHeight, 
                                            0, m_nPrimitiveCount ); 
 
    } // Next Mesh 
} 
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Lab Project 3.3: Dynamic Vertex Buffers 
 
Our previous demonstrations have used static vertex buffers because our data never needed to be 
modified after it was created. There are circumstances however when we will want to manipulate the 
vertices in a buffer relatively frequently (like once per frame for example). In these cases, we will need 
to utilize dynamic vertex buffers.  
 
Imagine for example if we had a function that returns only the visible polygons from the current 
position of the camera. The call might look something like this: 
 
VisibilitySystem->GetVisibleTriangles(&mtxView,  pVertexBuffer); 

 
If the game world was made up of hundreds of thousands of polygons, we might not want to store them 
all in a video memory vertex buffer. This would take up a good deal of space that may be better 
reserved for textures and other important resources. We could store the level in a system memory 
vertex buffer but rendering from system memory vertex buffers is a slow process. 
 
The best bet may be to store the level in a standard application memory array that we can access 
quickly without the overhead of locking buffers. In that case, the visibility system could collect only 
the visible polygons and throw them into a dynamic vertex buffer for rendering. Writing to a dynamic 
vertex buffer is typically fast. It can be stored in video memory without taking up too much room since 
it will only hold a relatively low number of triangle vertices each frame. We would repeat the process 
every frame. The previous frame’s vertex buffer would be flushed and the visibility system would fill 
the dynamic buffer for the next frame (which might contain a different subset of polygons if the 
camera is in a different position). The dynamic vertex buffer in this case essentially provides a vertex 
caching system where the application can add the polygons needed for the frame, render, flush and 
repeat. 
 
Animation presents another common use for a dynamic vertex buffer and this will be the subject of our 
final demonstration for this lesson. Our project will look at a technique that can be used to create a 
simple wave effect. The mesh we use will be a flat surface made up of rows of quads much like our 
terrain arrangement. We can alter the positions of the vertices every frame to create the effect of 
ripples or waves in the mesh. We can lock the dynamic buffer using the D3DLOCK_DISCARD and 
D3DLOCK_NOOVERWRITE flags to inform the driver that it can either issue us a new buffer to write our 
vertices or that it can go on rendering from the buffer because we are not going to overwrite any data. 
This same technique can be applied to other circumstances that involve such motion (wind blown flags 
for example).  
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The image above is taken from the final demonstration application that we will create in this chapter. 
The application begins with a flat sheet (patch) of quads. This sheet will be stored in a single dynamic 
vertex buffer. There will be 33 x 33 vertices so the triangle strip will consist of 32 rows of 32 quads. 

 
 
We already know how to create one of these vertex sheets because we did it in our last project. This 
time however we will not generate the vertex buffer at application startup. Instead, we will build the 
vertex buffer on the fly each frame in the AnimateObjects function. This function will fill the vertex 
buffer with 33x33 vertices using a sine wave to adjust the height of each vertex. This will propagate 
the change over distance and time.  
 
Note that since we know in advance how the vertices will be arranged in the vertex buffer, we can 
build the index buffer at application startup, even though the vertex buffer is not built until later. 
Changing the values or rewriting the height value of a vertex does not change which triangles it 
belongs to. 
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The CGameApp Class 
 
The entire patch will be stored using one vertex buffer and one index buffer so we added only a few 
new members to the CGameApp class. No extra classes are used in this demo (like CTerrain for 
example) since it is very simple. The code is almost all contained in the CGameApp.cpp file. 
 
Changes to CGameApp class member variables 
 
D3DXMATRIX               m_mtxView;          // View Matrix 
D3DXMATRIX               m_mtxProjection;    // Projection matrix 
 
LPDIRECT3DVERTEXBUFFER9  m_pVertexBuffer;    // Vertex Buffer to be Rendered 
LPDIRECT3DINDEXBUFFER9   m_pIndexBuffer;     // Index Buffer to be Rendered 
ULONG                    m_nIndexCount;      // Number of indices stored. 
bool                     m_bAnimation;       // Mesh Animation enabled / disabled 
 
This demo has no camera movement, so there is no need to include our CCamera class. The view and 
projection matrices will be created at application startup and never touched again. The index buffer 
will be filled once at application startup and never touched again, so we will want to create a static 
index buffer. The vertex buffer will be created at application startup also but it will not be filled until 
just before rendering each frame. Finally, we also have a boolean variable which allows the user to 
stop/start the animation of the vertices. 
 
The first framework function that has some changes that require explanation is BuildObjects. Since 
this is the function that assembles objects and meshes for all of our demos, it will almost always be 
completely different for each demo we write. 
 
 
CGameApp::BuildObjects 
The code for building the index buffer is exactly the same as the last demo. The vertex buffer creation 
code now creates a dynamic vertex buffer instead of a static one, but we will not fill it here.  
 
First we determine whether we are using a hardware or software vertex-processing device. This allows 
us to set appropriate D3DUSAGE flags when we create the vertex buffer. We then call the 
IDirect3DDevice9::CreateVertexBuffer function as shown below. 
 
bool CGameApp::BuildObjects() 
{ 
    HRESULT  hRet; 
    CVertex *pVertex = NULL; 
    USHORT  *pIndex  = NULL; 
    ULONG    ulUsage = D3DUSAGE_WRITEONLY; 
    long     vx, vz; 
 
    // Seed the random number generator 
    srand( timeGetTime() ); 
 
    // Release previously built objects 
    ReleaseObjects(); 

TeamLRN



 
    // Build our buffers usage flags (i.e. Software T&L etc) 
    VERTEXPROCESSING_TYPE vp = m_D3DSettings.GetSettings()->VertexProcessingType; 
    if ( vp != HARDWARE_VP && vp != PURE_HARDWARE_VP ) 
        ulUsage |= D3DUSAGE_SOFTWAREPROCESSING; 
 
    // Create our vertex buffer  
    m_pD3DDevice->CreateVertexBuffer(sizeof(CVertex) * (BlockWidth * BlockHeight), 
                    D3DUSAGE_DYNAMIC | ulUsage,  
                                     D3DFVF_XYZ | D3DFVF_DIFFUSE, D3DPOOL_DEFAULT, 
                                     &m_pVertexBuffer, NULL ); 
     
BlockWidth and BlockHeight are constants with values of 33. This means that we are creating a vertex 
buffer with enough room for 33x33 vertices. Note that we use the D3DUSAGE_DYNAMIC flag when 
creating the vertex buffer and that we use the D3DPOOL_DEFAULT pool instead of the D3DPOOL_MANAGED 
pool used in previous demos. We must make sure that we remember to rebuild the vertex buffer in 
response to the device becoming lost because D3DPOOL_DEFAULT resources are not automatically 
rebuilt when the device is reset. We can do this simply by calling the BuildObjects function again. This 
approach works because the function always calls the ReleaseObjects function prior to building its 
objects to clean up any outstanding resources.  
 
The next section of code builds the index data. First we calculate the index count. QuadsHigh is set to 
32 because 33x33 vertices create 32x32 quads. As with the previous demo, we also add an extra index 
for all rows but the first to create the three degenerate triangles necessary to render the single strip. 
 
   // Calculate IndexCount.... 
   //( Number required for quads ) + ( Extra Degenerates (one per quad row except last) ) 
   m_nIndexCount = ((BlockWidth * 2) * QuadsHigh) + ( QuadsHigh - 1 ); 
 
   m_pD3DDevice->CreateIndexBuffer( sizeof(USHORT) * m_nIndexCount, 
                                    ulUsage, D3DFMT_INDEX16, 
                                    D3DPOOL_DEFAULT, &m_pIndexBuffer, NULL ); 

     
The index buffer is locked and filled exactly as it was in the previous demonstration. The only 
difference is that we fill the buffer directly rather than using the temporary array approach seen last 
time. 
 
    // Lock the index buffer (we only need to build this once in this example) 
    m_pIndexBuffer->Lock( 0, sizeof(USHORT) * m_nIndexCount, (void**)&pIndex, 0 ); 
 
    // Calculate the indices for the patch block tri-strip  
    for ( vz = 0; vz < BlockHeight - 1; vz++ ) 
    { 
        // Is this an odd or even row ? 
        if ( (vz % 2) == 0 ) 
        { 
            for ( vx = 0; vx < BlockWidth; vx++ ) 
            { 
                // Force insert winding order switch degenerate ? 
                if ( vx == 0 && vz > 0 ) *pIndex++ = (USHORT)(vx + vz * BlockWidth); 
 
                // Insert next two indices 
                *pIndex++ = (USHORT)(vx + vz * BlockWidth); 
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                *pIndex++ = (USHORT)((vx + vz * BlockWidth) + BlockWidth); 
            }  
        }  
        else 
        { 
            for ( vx = BlockWidth - 1; vx >= 0; vx--) 
            { 
                // Force insert winding order switch degenerate ? 
                if ( vx == (BlockWidth - 1) ) *pIndex++ = (USHORT)(vx + vz * BlockWidth); 
 
                // Insert next two indices 
                *pIndex++ = (USHORT)(vx + vz * BlockWidth); 
                *pIndex++ = (USHORT)((vx + vz * BlockWidth) + BlockWidth); 
            }  
        }  
    } // Next Index Row 
 
    // Unlock the index buffer 
    if ( FAILED(m_pIndexBuffer->Unlock()) ) return false; 
     
    // Force a rebuild of the vertex data 
    AnimateObjects(); 
     
    // Success! 
    return true; 
} 
 
Notice that we make a call to CGameApp::AnimateObjects before exiting. This function is usually 
called from CGameApp:FrameAdvance in our main render loop to build the world matrices for our 
objects. We only have one object in this demo and the vertices are in world space, so no world matrix 
is required for the patch. Instead, AnimateObjects locks the dynamic the vertex buffer (discarding any 
previous contents), and refills the vertex data each frame. When the vertices are added, the Y 
component will be adjusted each time. This causes the vertices to move in a ripple like pattern. The 
reason we call the function here in BuildObjects is to force an initial build of the vertex buffer before 
we start the main rendering loop. 
 
The SetupGameState function is very simple in this project. It uses the D3DXMatrixLookAtLH 
function to build a view matrix and makes sure that m_nAnimation is initially set to true so that our 
vertices are animated each frame. 
 
void CGameApp::SetupGameState() 
{ 
    // Setup Default Matrix Values 
    D3DXMatrixIdentity( &m_mtxView ); 
 
    // Set our cameras look at 
    D3DXMatrixLookAtLH( &m_mtxView,  
                        &D3DXVECTOR3(-24.0f, 90.0f, -24.0f ),  
                        &D3DXVECTOR3(-23.0f, 88.5f, -23.0f ),  
                        &D3DXVECTOR3(  0.0f,  1.0f,   0.0f ) ); 
     
    // Enable animation 
    m_bAnimation = true; 
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    // App is active 
    m_bActive    = true; 
} 

 
The SetupRenderState function initializes the projection matrix, device render states, and flexible 
vertex format. It attaches the vertex buffer to stream zero and binds the index buffer using SetIndices. 
Finally, it sends the view and projection matrices to the device and the transformation pipeline is ready 
to be used. 
 
void CGameApp::SetupRenderStates() 
{ 
    // Set up new perspective projection matrix 
    float fAspect = (float)m_nViewWidth / (float)m_nViewHeight; 
    D3DXMatrixPerspectiveFovLH( &m_mtxProjection, D3DXToRadian( 60.0f ), 
                                fAspect, 1.01f, 1000.0f ); 
 
    // Setup our D3D Device initial states 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
    m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
 
    // Setup our vertex FVF code 
    m_pD3DDevice->SetFVF( D3DFVF_XYZ | D3DFVF_DIFFUSE ); 
 
    // Set the stream sources 
    m_pD3DDevice->SetStreamSource( 0, m_pVertexBuffer, 0, sizeof(CVertex) ); 
    m_pD3DDevice->SetIndices( m_pIndexBuffer ); 
 
    // Setup our matrices 
    m_pD3DDevice->SetTransform( D3DTS_VIEW, &m_mtxView ); 
    m_pD3DDevice->SetTransform( D3DTS_PROJECTION, &m_mtxProjection ); 
} 
 

Because the patch is rendered as a single indexed triangle strip, you can probably anticipate how 
simple the FrameAdvance function will be in this demo. The following code shows the relevant section 
of the FrameAdvance function. It consists of a single call to DrawIndexedPrimitive to render the entire 
patch. 
 
    // Animate the meshes  
    if ( m_bAnimation ) AnimateObjects(); 
 
    // Clear the frame & depth buffer ready for drawing 
    m_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xFFFFFFFF, 1.0f, 0); 
     
    // Begin Scene Rendering 
    m_pD3DDevice->BeginScene(); 
 
    // Render the primitive      
    m_pD3DDevice->DrawIndexedPrimitive( D3DPT_TRIANGLESTRIP, 0, 0,  
                                       (BlockWidth * BlockHeight), 0, m_nIndexCount - 2 ); 
     
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 
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    // Present the buffer 
    if ( FAILED(m_pD3DDevice->Present( NULL, NULL, NULL, NULL )) ) m_bLostDevice = true; 
 
 
CGameApp::AnimateObjects 
This is the animation routine for our ripple effect. To begin, we create a static float that is initialised to 
360 the first time the function is called. This value will be decremented each time the function is called 
so that it runs down from 360 to 0 to be reset to 360 again at that point. This will be our means of 
animation. Larger decrements will result in faster waves. 
 
void CGameApp::AnimateObjects() 
{ 
    static float Distance = 360.0f; 
 
    ULONG       x, z; 
    HRESULT     hRet; 
    float       fHeight; 
    CVertex    *pVertex  = NULL; 
    D3DXVECTOR3 vecScale = D3DXVECTOR3( 4.0f, 6.0f, 4.0f ); 
 
We create a scale vector like we did in the last demo because we will want to scale the vertex positions 
as we add them to the vertex buffer. If we did not do this, our 33x33 vertex terrain patch would be 
limited to a size of 33x33 units in world space. We will scale the vertex positions by 4 in the X and Z 
dimensions and 6 in the Y dimension (effectively making our 33x33 vertex patch 132x132 world space 
units). 
 
The next piece of code is responsible for the vertex animation. All it does is subtract a scaled elapsed 
time value from the static Distance variable and loops back around to 360 when the value becomes less 
than zero. 
         
    // Work out time shift 
    Distance -= 5.0f * m_Timer.GetTimeElapsed(); 
    if (Distance < 0.0f) Distance += 360.0f; 
 
Our next task is to lock the dynamic vertex buffer. We use D3DLOCK_DISCARD to inform the driver that 
we will be filling it with new vertex data and do not need any data from the previous frame. This is 
very important because if we did not specify this flag and the driver was currently rendering from this 
vertex buffer, we would have to wait until it had finished before it released its claim on the buffer. This 
causes a stall in the pipeline and our application will sit idle until the GPU is finished with the buffer.  
 
With this flag set, if the GPU is currently rendering from the vertex buffer we wish to lock, we will not 
have to wait. A new buffer pointer will be returned and we can write our vertices to this buffer at the 
same time the GPU is rendering from the old one. This is called vertex buffer renaming and happens 
behind the scenes.  
 
 
   // Lock the vertex buffer 
    hRet = m_pVertexBuffer->Lock( 0, sizeof(CVertex) * (BlockWidth * BlockHeight), 
                                 (void**)&pVertex, D3DLOCK_DISCARD ); 

TeamLRN



Now we are going to create two nested loops so that we can loop through the rows and columns of our 
patch and add a vertex at each point. 
 
    // Loop through each row 
    for ( z = 0; z < BlockHeight; z++ ) 
    { 
        // Loop through each column 
        for ( x = 0; x < BlockWidth; x++ ) 
        { 
            // Calculate height of the vertex 
            float fx = ((BlockWidth / 2.0f) - x); 
            float fz = ((BlockHeight / 2.0f) - z); 
            float fDist = sqrtf(fx * fx + fz * fz) ;//+ Distance; 
            fHeight = sinf(fDist) * (vecScale.y / 2.0f); 
 
The above code calculates the height for vertex (X, Z) on the grid using the sine (sinf) trigonometry 
function. Vertex heights will be calculated using a sine wave pattern. Let us examine this a little more 
closely. 
 
First we calculate fx and fz by subtracting the vertex position (X, Height , Z) from the grid center 
point. We now have a 2D vector relative to the center point of the patch. The black arrow in the 
following image is a 2D vector (fx,fz) describing the orientation and distance from the center of the 
terrain to grid point (X:Z). 
 

 
The next thing we do is calculate the length of this vector:   
 
           float fDist = sqrtf(fx * fx + fz * fz) + Distance; 
 
Notice that we add the Distance value to the calculated vector length. The Distance variable is the 
animation variable that cycles over time from 360 to 0. 
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Forgetting about the Distance value for a moment, we could say that if this vector length was assigned 
to the vertex height (the Y component), then we can imagine that vertices further from the center have 
longer vectors, and are therefore higher in the 3D world. Vertices closer to the center of the grid would 
have lower values. If we were to render the patch in this state it would look like a dried up slice of 
bread: low in the middle and highest at the four corners points): 
 
 

 
 
The sin function can now help us modify the vertex heights so that we begin to see waves.  
 
The sin function has a range of –1 to +1. Whatever value you pass, you will always get back a float in 
that range.  The function does not clamp the input value so that it produces an output in the [–1, 1] 
range. It works more like our Distance function where values that would generate an output larger than 
1 for example, will be rolled over into the –1 range. The following image shows outputs from the sin 
function with inputs between 0 – 18. 
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Now imagine that those input values are the distances from the center of the grid to its vertices. You 
can see that the output values do indeed fall into in the range of –1 to +1. These periodic values 
produce a wave-like result. Instead of just using the vertex vector length for its height, we can feed in 
the vector length to sin and get a height in the –1 to +1 range. If we want to scale the values up to be a 
bit to make our waves more prominent than heights of –1 to +1, we can multiply the result by the Y 
component of our scale vector.  
 
            // Calculate height of the vertex 
            float fx = ((BlockWidth / 2.0f) - x); 
            float fz = ((BlockHeight / 2.0f) - z); 
            float fDist = sqrtf(fx * fx + fz * fz) + Distance; 
            fHeight = sinf(fDist) * (vecScale.y / 2.0f ); 

 
We use a scale vector with a Y component of 6. This describes the length we would like a vector to be 
from the lowest wave position to the highest wave position. We divide the scale vector by 2 because if 
we did not, the result would be height values in the range of –6 to +6, which is actually a scale of 12. 
Since our desired scale is 6, we divide by 2 to get height values in the range of –3 to +3. By increasing 
the Y component of the scale vector we can make the waves much bigger. 
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This next image was taken with a scale vector that had a Y component of 30 (vertex heights range [-
15,15]). 
 

 
 
If we look at the figures in the sin graph, we can see that if we add a constantly decreasing or 
increasing variable to each value before we send it into the function, the height of each vertex would 
bob up and down on the sine wave. For example, imagine we have a vertex with a height of 8. On the 
next frame we add 1 to this amount so it becomes 9 and then in the following frame we add two and it 
becomes 10. Now look at the image of the sin graph again. The height of the vertex would follow the 
graph line from 8 to 11. If we keep incrementing the value each time, the vertex height will follow the 
curve of the graph. Each vertex will be at a different position along the curve at any given time to 
create the sine wave animation. Because the input range of the sin function is 360 degrees (6.28 
radians) we use this Distance value. The end of the sine wave now links up with the start of the sin 
wave producing a periodic wraparound effect. 
 
We also want to give each vertex a colour based on its height so that the ripples can be clearly seen. 
We decided to make every vertex a different shade of red.  
 
                               R      G B A 
VertexColor = (Height, 0, 0, 1) 
 
The red colour component will be a function of the vertex height. Higher vertices will have higher 
intensities and vice versa. We need to calculate the red component based on a vertex height in the 
range of [0, 1] so we will need to map the height from the –3 to +3 range. To do this we will add half 
the of Y component of our scale vector to take it from [–3, +3] to [0,  6].  We do not want the lowest 
vertices to be totally black so we will add on minimum color value of 4.0 as shown below. 
 
            // Calculate the color of the vertex 
            float fRed = (fHeight + ( vecScale.y / 2.0f )) + 4.0f; 
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We are adding the minimum color in world space values since the color is based on the vertex height. 
For example, let us imagine the current vertex had a height of +1.5. The red component would be 
calculated as: 
 

1.5 +3 + 4 = 8.5 
 
If we divide this red value by the maximum vertex height taking into account we have added 4.0 we 
get code that looks like this: 
 

fRed = fRed / (vecScale.y + 4.0f); // Normalize the colour value 
             
which results in: 
 

8.5 / 10 = 0.84 
 
It is not a perfect linear mapping but it is easy to do and creates values relative to the height of the 
vertex. 
 
We now know everything we need to know about the vertex. We have its height, its colour, and we 
also know its X and Z components. We use the D3DCOLOR_COLORVALUE macro to pack the four floats 
into a DWORD representation of the colour and we are done. 
 
            *pVertex++ = CVertex( x * vecScale.x, fHeight, z * vecScale.z, 
                                  D3DCOLOR_COLORVALUE( fRed, 0.0f, 0.0f, 1.0f ) ); 
        } // Next Column 
    } // Next Row 
    m_pVertexBuffer->Unlock( ); 
} 
 
Here is the function in its entirety: 
 
void CGameApp::AnimateObjects() 
{ 
    static float Distance = 6.28f; 
 
    ULONG       x, z; 
    float       fHeight; 
    CVertex    *pVertex  = NULL; 
    D3DXVECTOR3 vecScale = D3DXVECTOR3( 4.0f, 30.0f, 4.0f ); 
         
    // Work out time shift 
    Distance -= 5.0f * m_Timer.GetTimeElapsed(); 
    if (Distance < 0.0f) Distance += 6.28f; // (2*PI) 
 
    // Lock the vertex buffer 
    m_pVertexBuffer->Lock( 0, sizeof(CVertex) * (BlockWidth * BlockHeight),  
                     (void**)&pVertex, D3DLOCK_DISCARD ); 
     
    // Loop through each row 
    for ( z = 0; z < BlockHeight; z++ ) 
    { 
        // Loop through each column 
        for ( x = 0; x < BlockWidth; x++ ) 
        { 
            // Calculate height of the vertex 
            float fx = ((BlockWidth / 2.0f) - x); 
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            float fz = ((BlockHeight / 2.0f) - z); 
            float fDist = sqrtf(fx * fx + fz * fz) + Distance; 
            fHeight = sinf(fDist) * (vecScale.y / 2.0f ); 
 
            // Calculate the color of the vertex 
            float fRed = (fHeight + (vecScale.y/2.0f)) + 4.0f; 
            fRed = fRed / (vecScale.y + 4.0f); // Normalize the colour value 
             
            *pVertex++ = CVertex( x * vecScale.x, fHeight-50, z * vecScale.z+5,  
                                    D3DCOLOR_COLORVALUE( fRed, 0.0f, 0.0f, 1.0f ) ); 
        } // Next Column 
    } // Next Row 
    m_pVertexBuffer->Unlock( ); 
} 

 
 
 
Questions and Exercises 
 

1. Why would you want to place a vertex buffer in system memory even on a hardware-
processing device? 

2. Does creating a vertex buffer with the D3DPOOL_DEFAULT flag always place it in video 
memory? 

3. Can we use indices to eliminate duplicate vertices under all circumstances? 
4. What vertex buffer type can be rendered faster: static or dynamic? 
5. Why is locking a static vertex buffer in a time critical situation a bad move? 
6. What does the D3DLOCK_DISCARD flag do and when should it be used? 
7. Can we render triangle lists using indices or are we limited to rendering only indexed triangle 

strips? 
8. What is a degenerate triangle? 
9. Should we always try to store as many vertices as possible in a vertex buffer? 
10. Why is reading from AGP memory slow? 
11. What is a height map? 

 
 
 
 
 
 
 
 
 
 
 
Appendix A - Representing a Cube as an Indexed Triangle Strip 
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In this lesson, we learned how degenerate triangles can be used to create a continuous triangle strip 
even when the triangles that need to be rendered do not form a consecutive line of primitives. We used 
degenerate triangles to move from the end of one row up to the beginning of another row in such a way 
that the rows were connected by invisible triangles.  
 
In the BuildObjects function of Lab Project 3.2 we built a cube mesh as an indexed triangle strip to be 
rendered when the camera is in 3rd person mode. We did this by inserting a single additional index, 
which created two extra triangles. Interestingly, these two triangles will not actually be degenerate. 
Instead they will be inward facing such that they cannot be seen from outside of the cube mesh. The 
following image shows the vertex positions in the cube as well as the first four indices in the list, 
which create the two triangles that form the top face of the cube.  
 

 
 
Remember that for indexed tri-strip, after the first two indices in the index array, every additional 
index from that point on creates a new primitive using the new index and the last two indices from the 
previous triangle. Also remember that unlike other primitive types, the driver expects every even 
numbered triangle in the list to have a clockwise winding order in view space and every odd numbered 
triangle in the list to have a counter-clockwise winding order in view space. In the image above, if the 
camera was looking down at the top face of the cube, the first triangle (0) is clockwise and the second 
triangle (1) is counter-clockwise so they would both be considered to be facing the camera.  
 
Next, we added two more indices and created the next two triangles. These triangles created the front 
face of the cube. The first triangle has a clockwise winding order when viewed from the front and the 
second face is counter-clockwise as expected. If the camera were positioned in front of this cube 
looking directly at the front face, both of these faces would be considered to be facing the camera and 
would not be back face culled. As we can see in the next image, adding index 0 creates the new 
triangle (4,7,0) and adding index 3 creates the second triangle of the front face (7,0,3). 
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We now have the top and front faces represented as a single strip. Next we add an index to vertex 1 
and another to vertex 2 which creates triangles (0,3,1) and (3,1,2) respectively.  

 
 
At this point we have the top, front, and bottom faces of the cube stored as a continuous strip of 
triangles. This is where things get tricky. We could carry on up the back side of the cube in the same 
way but then there would be no way to render the left and right face without breaking our strip or 
generating unattractive in-between triangles. What we can do instead is use the fact that because we 
have just rendered an odd triangle, the next triangle must be an even triangle. The even triangle should 
have its vertices in clockwise order in view space when the triangle is viewed from the bottom side. 
We add index 3, which we can call a degenerate index because it is used to create triangles that will 
not be seen but are used as a way of moving from one vertex to another in the strip. When combined 
with the previous two vertices, this creates triangle (1,2,3). This is very important because the driver 
will be expecting a clockwise winding order for this triangle. We have just defined it using vertices 
that will be viewed as counter-clockwise in view space (just imagine a camera under the cube looking 
up at the bottom face). This triangle will be culled.  

 
 
Now when we add the next index (index 7) this creates a triangle on the right side of the cube (2,3,7). 
You might think at first that it should be visible since it is obviously clockwise, but remember that we 
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are on an odd triangle now. The driver will consider only counter-clockwise view space winding orders 
visible in this case. What we have just done is have switched the clockwise/counterclockwise order of 
the last two triangles so that they are never seen from the outside.  
 

 
 
Now we have the strip where we want it. By adding the next index (to vertex two) we are back on an 
even triangle and we have a clockwise winding order creating triangle (3, 7, 2). Since we are back on 
track, we can simply add an index to vertex 6 next to create the second triangle of the left side of the 
cube (7,2,6) and carry on around the remaining two faces (the back and right sides). To do this we 
simply add the indices in the correct order as shown in the following and final image: 
 

 
 
To sum this method up, we represent the top, front, and bottom faces as a normal strip. We then insert 
an additional index to vertex 3, which creates two incorrectly ordered triangles. This gets us into the 
position where we can then represent the left, back, and right faces in the same way.  
 
The result is one cube, eight vertices, fourteen triangles and a single call to DrawIndexedPrimitive. 
Despite the two additional triangles, this will be much more efficient than rendering each face with a 
separate call to DrawPrimitive.  
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Introduction  
 
In Lab Project 3.2 we concentrated on the rendering code for a terrain demo.  But that application also 
allowed the player to maneuver around the terrain in one of three camera modes: first person, third 
person, or spacecraft. This allowed us to pitch, roll, and yaw the camera as well as strafe and lean it 
from side to side. We included a limited gravity system that forced the camera fall to the ground when 
it found there was no ground underneath it, and a simple friction model that allowed for smooth 
movement and direction changes over the terrain. In this chapter we will discuss that camera system, as 
well as how to create your own camera management system. By the time we are finished you should 
have a thorough understanding of how to work with the view matrix at a low level and you will be able 
to create almost any camera system you need for your games.  
 
Matrix Inversion and Local Space 
 
In Chapter 1 we learned to think of a camera in terms of an inverse transformation that repositions 
scene geometry in such a way that the relationship with the origin of the world coordinate system 
reflects the relationship the geometry would have with the local position and orientation of the camera. 
Repositioning the geometry in this way means that when we render the scene, we are essentially 
rendering it from the world origin as if we were looking through the lens of a virtual camera positioned 
there. To accomplish this, we need to apply the opposite rotations and translations we applied to our 
camera to every vertex in our world.  
 
This is intuitive when we think of what is occurring. We know that we can take any vertex P from 
model space and produce a new vertex P’ in world space by applying a series of transformations using 
matrix multiplication. The relationship between these two vertices is represented as: 
 

P’ = P * Mworld  
 
Note that the algebraic inverse of this equation describes the reverse relationship. To solve for P:  
 

(1 / Mworld ) P’ =   P  * (1 / Mworld ) Mworld   
 

P = Mworld
-1  P’ 

 
Mworld

-1 is the inverse of matrix Mworld. When we multiply the world space point P’ by this matrix, we 
get back the original local space point P as expected. So we can say that Mworld

-1 undoes the effect that 
Mworld had on P. Again this makes sense since we used one to cancel out the other in the equation 
above so that P was left alone on one side of the equation. 
 
More generally, if matrix M holds a series of equations that transform points from coordinate space A 
into coordinate space B, then its inverse M-1 will hold equations that reverse the relationship -- taking 
points from space B into space A. If space A is the local coordinate space of entity X, then any points 
that exist in space B can enter into local space A simply by multiplying them by X’s inverse matrix. 
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This is the fundamental idea behind any camera system. When we render a scene, we wish to do it with 
respect to the camera through which the scene is viewed. The goal then is to transform every vertex in 
the world into the local space of the camera. If we build a world matrix for the camera based on user 
input, that matrix tells us where the camera is in the world and how it is oriented with respect to the 
world axes. To get some other object in the world into the local space of the camera for the purposes of 
rendering, all we need to do is multiply its world space vertices by the inverse of that camera’s world 
matrix (which we call the view matrix).  
 
An alternative way of thinking about it is that we are actually undoing the effect of moving the camera 
around and bringing it back to the world origin such that it looks down +Z (just as it does in its own 
local space given a left-handed coordinate system). As expected then, any matrix multiplied by its 
inverse returns the identity matrix: 

I = M * M-1 
 
The rows and columns of an identity matrix perfectly describe the primary 3D coordinate system. 
Thus, it is as though we never moved or rotated the camera at all.  
 
Creating a virtual camera is usually done by writing a class that exposes methods such as 
Camera::MoveForward and Camera::PitchUp and Camera::Strafe, etc. The camera class has the job of 
maintaining the view matrix (the camera local space matrix), and rebuilding it to comply with calls to 
its methods. This class need not only be a view matrix manager. It is often useful to let it manage the 
projection matrix as well. This way we can expose functions to change the field of view and set the 
near and far clip planes. 
 
Before we start writing any code, let us first examine in more detail some of the view matrix properties 
introduced in Chapter 1. We want to understand exactly why inverse matrices look and work the way 
they do. In particular, we want to see why storing the right, up, and look vectors of the virtual camera 
in the columns of the view matrix -- rather than the rows as we do in a world matrix -- transforms 
vertices from world space to view space. We will also examine why the fourth row of the view matrix 
has to be calculated using three dot products instead of simply negating the world space position 
vectors of the camera. 

 
The View Matrix  
 
We recall from Chapter 1 that a standard world matrix contains the orientations of an object’s local 
coordinate system as well as the current position of that system origin in the world coordinate space: 
 
World Matrix 
Right Vector.x Right Vector.y Right Vector.z 0 
Up Vector.x Up Vector.y Up Vector.z 0 
Look Vector.x Look Vector.y Look Vector.z 0 
Position.x Position.y Position.z 1 
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The following table shows that the view matrix contains three vectors describing the inverted local 
coordinate system of the camera and a vector in the fourth row which contains an inverse translation 
based on the camera position. This translation will move vertices in such a way that their resulting 
positions will share a relationship with the world origin that previously reflected their relationship with 
the camera (world) position. 
 
View Matrix 
Right Vector.x Up Vector.x Look Vector.x 0 
Right Vector.y Up Vector.y Look Vector.y 0 
Right Vector.z Up Vector.z Look Vector.z 0 
- (Position•RightVector) - (Position•UpVector) - (Position• LookVector) 1 
 
The Right vector is stored in the first column of the matrix and describes the orientation of the camera 
local space X axis. The second column contains the camera Up vector which describes the orientation 
of the camera local space Y axis. Finally, the Look vector describes the orientation of the camera local 
space Z axis (Fig 4.1).  
 

 
 

Figure 4.1 
 
The vectors in the view matrix describe the camera local coordinate system axes along with relative 
positional information that we will discuss momentarily. If we take a view matrix and invert it, we 
would get back a world matrix describing the cameras location and orientation in the world (Fig 4.2). 
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Figure 4.2 
 
 
Fig 4.2 shows how the camera object might be drawn as a mesh using the inverse of the view matrix. 
Remember that the view matrix is already inverted, so inverting again it results in a standard world 
matrix. If we wanted to draw the camera as a mesh object, this is the matrix we would use. 
 
We know that to draw the sphere, we want its coordinates to be relative to the camera local system. As 
discussed, to get an object A into the local space of another object B, we need only multiply all of A’s 
vertices by the inverse of B’s world matrix. Since B in this case is our camera, we need only invert its 
world matrix and we are all set. This inversion produces what we commonly refer to as the view 
matrix. Fig 4.3 shows the sphere object after it has been transformed into view space. Notice that the 
camera is at the system origin and that the sphere is still directly in front of the camera, as it was in 
world space. The relationship is perfectly maintained when the sphere moves into camera local space. 
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Figure 4.3 
 

 
Vectors Revisited 
 
In order to understand why multiplying a vector with a matrix transforms that vector from one virtual 
space to another, we revisit the subject of vectors and matrices and discuss another way of thinking 
about them -- which you may or may not already be doing at this point. For the purposes of this 
discussion when we refer to a vector, we are talking about a position vector, although this concept 
applies more generally. 
 

Note: To be clear up front, we are going to take a very informal approach to the mathematics in this 
chapter -- as we have tried to do all along. This will make the concepts as reader-friendly as possible 
for those who are not so mathematically inclined. We hope that those of you who are schooled 
mathematicians forgive the liberties we take with some of the subject matter. If you require a more 
precise and formal understanding of vectors, vector spaces, subspaces, etc. a linear algebra course 
would be required.  

 
Although we discuss many different spaces (model space, world space, and view space) we are, in a 
sense, ultimately dealing with a single mathematical space. In this space we can define locations using 
a coordinate system (left handed in our case) where the X axis runs from left to right, the Y axis runs 
from bottom to top and the Z axis runs from back to front. This is the same coordinate system used to 
characterize our data mathematically whether we are said to be in model space, view space, or world 
space. All of these spaces are essentially subsets of the single coordinate space, and in each, 3D vectors 
are used represent a location. For example, a vector of (10, 20, 30) represents a position that is offset 
from the system origin along the X axis a distance of 10, offset along the Y axis a distance of 20 and 
offset along the Z axis at a distance of 30.  
 
A vector belongs to a particular subspace based on our selection of system origin and orientation. 
When we are talking about a model space vector for example, we are using the vector as a position 
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relative to the center of the mesh. When we transform the mesh vertices into world space, all we have 
really done is simply moved the vertex to a new position in the same mathematical coordinate system. 
Now the vertices of the mesh are not centered about the origin of the local coordinate system anymore 
(although they still could be) and are instead centered about some other location in the world that is 
assumed to be the object’s world space position. In world space, the origin of the coordinate system is 
now assumed to be the origin of the entire world and all vectors are now defined relative to it. In a 
sense, the vectors have simply had their positions altered. When we apply the view space 
transformation to the vertices of an object to take it from world space to view space, all we have done 
is once again reposition the vertices in the same mathematical space such that the cameras position is 
assumed to be at the origin of the system. All vertex positions have been recharacterized relative to this 
new origin. Therefore, all these transformations are doing, however complex they may seem at first, is 
moving around some collection of vertices within the same mathematical 3D representation. With each 
transformation, the origin is assigned a new meaning and the positions reflect new distance values 
relative to that origin. This is a very important point.  
 
Up until now, we have thought of vectors in one of two ways. We have thought of a vector as a set of 
offsets describing a position that is some distance away from the origin of the mathematical space 
along the X, Y, and Z axes by the amounts described in each vector component. We have also thought 
of a vector as describing a direction and magnitude from the origin of that mathematical space. That is, 
travelling in the direction of the vector from the origin of the coordinate system for the length of the 
vector will bring us to that same location in the 3D world. Whether we think of a vector as a collection 
of offsets or as a direction and a magnitude they both still describe the same location in 3D space.  
 
There is yet another way that we can think of vectors which is especially useful when trying to 
understand transformations. Hopefully this will allow us to perceive transformation matrices in a much 
more intuitive way.  
 
Matrices and Planes 
 

1
0100
0010
0001

cba

For the time being, we will forget all about the concept of world, view, and model 
space and simply think of a more general mathematical space. We will call it 3-space 
because it has three dimensions.  We will use a coordinate system in 3-space to find 
our way around. In this system, the x axis will run from right to left, the Y axis from 
bottom to top and the Z axis from back to front. These system properties have been 
shared by all of our relative spaces so far: model, view and world.  
 
We can see that the columns of the upper 3x3 portion of the matrix on the right cont
The first column contains a vector that describes the orientation of the 3-space X axis. The second 
column contains a unit length vector describing the orientation of the 3-space Y axis. Finally, the third 
column contains a vector describing the 3-space Z axis. When we multiply a vector with a matrix, we 
know that we perform a dot product between the input vector and each column of the matrix. The 
resulting vector’s X component is the result of the dot product between the input vector and the X 
column of the matrix. The Y component of the resulting vector is the result of performing a dot 

ain unit vectors. 
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product between the input vector and the second column of the matrix. And of course, the resulting 
vector’s Z component is calculated by performing a dot product between the input vector and the third 
column of the matrix. Now, it may not be obvious at this point why multiplying the input vector with 
these three columns would transform it from one space to another. But let us start thinking about the 
unit length vectors stored in the columns of a transformation matrix in another way. 
 
In the lecture for Chapter 1 we discussed the plane equation and how it could be used to classify a 
point with respect to a plane. The common form of the plane equation is: 
 

Ax+By+Cz+D = 0 
 
If the result is zero, the point is said to lie on the plane. Otherwise the result is some distance from the 
point to the plane where a positive value means the point is in front of the plane and a negative value 
means the point is behind the plane. 
 
x, y, and z in this equation are the components of the point P that we are classifying. A, B, and C are 
the 3-space components of the plane normal. Finally, D describes the plane’s distance from the origin. 
That is, this is the distance you would have to travel from the origin of the coordinate system, 
following the direction of the plane normal until you intersected the plane. When a plane passes 
through the system origin then D = 0. As such, only the normal will be needed to represent a plane of 
this type and the equation can be simplified: 
 

Ax+By+Cz = 0 
 

This calculation should look familiar since it is just a dot product between the vector and the plane 
normal.  
 
We noted that the upper 3x3 section of the matrix above contained unit vectors. We can now think of 
each of these three vectors as being normals for three planes that pass through the system origin. 
Remembering that plane normals are always perpendicular to the plane, we can see that in the case of 
an identity matrix, the X column of the matrix represents a plane normal of (1, 0, 0). This describes a 
plane that passes through the origin of the coordinate space -- the YZ plane. The second column 
represents the normal of the 3-space XZ plane that passes through the origin. Finally, the third column 
represents a normal that describes the 3-space XY plane, once again that passes through the origin.  
 
In Fig 4.4 we clearly see the three planes described by the 3x3 identity matrix. As these planes have 
zero distances (D = 0), they pass through the origin of the coordinate system.  
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Figure 4.4 
 

When we multiply a vector by a matrix, we can see that each dot product is simply classifying the 
input vector against each of these three planes. When we perform the dot product between the input 
vector and the X column of the matrix, we are calculating the distance from the input vector to the YZ 
plane. This distance becomes the X component of the resulting vector. When we multiply the input 
vector with the second column of the matrix, we are classifying the point against the XZ plane and the 
resulting distance becomes the Y component of the output vector. Finally, the dot product between the 
input vector and the third column calculates the distance from the input vector to the XY plane, which 
becomes the resulting vector’s Z component. So we can think of the transformed 3D vector as being a 
collection of three distances that describe a location relative to the YZ, XZ and XY planes respectively.  
 
The vector (10,12,15) in Fig 4.4 describes a location that is a distance of 10 units from the YZ plane 
along the YZ plane normal, 12 units from the XZ plane along the XZ plane normal and 15 units from 
the XY plane along the XY plane normal. Now we see why an identity matrix creates an output vector 
identical to the input vector. If we define a vector as a set of distances relative to the world aligned 
planes and the identity matrix contains these same world planes, we get back these same distances in 
our vector components.  
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To better understand this, let us break down the vector/matrix multiplication process so that we can see 
the vector being multiplied with each column individually. First, we will see an example of 
multiplying the input vector with the X column of the matrix. This produces a distance that is used as 
the X component in the resulting vector. Note that Fig 4.5 labels the first column of the matrix as being 
the Right vector. You are probably thinking that this is only true for an inverse matrix but that is not 
quite so. For example, a world matrix stores the object’s right vector in the first row rather than the 
column of the matrix as we have seen already, but the right vector of the coordinate system is always 
contained in the first column. This will become clear in a moment. 
 
Fig 4.5 shows how the X component of the 
resulting vector from a vector/matrix multiply 
is the result of classifying the input vector 
against the YZ plane. This distance is 
calculated by performing a dot product 
between the input vector and the YZ plane 
normal. Always remember that when we 
perform a dot product between a unit vector 
and a non-unit vector, we can think of the 
non-unit vector as the point in space and the 
unit vector as a normal describing a plane that 
passes through the origin. The dot product can 
be understood in terms of the plane equation 
in the instances when the plane distances are 
zero. You will find this quite a useful way of 
thinking about the dot product. 
 
 
 

                                                                                     Figure 4.5 
 
Fig 4.6 shows how the Y component of the resulting vector is calculated as the distance between the 
input vector and the XZ plane normal stored in the second column of the transformation matrix. 
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Figure 4.6 
 
Once again, we refer to the second column of the transformation matrix as the Up vector of the 
coordinate system for which the input vector is going to be redefined. This does not change the fact 
that the second row of a world matrix contains an object’s Up vector.  
 
 
Finally, Fig 4.7 shows the result of calculating the Z component of the transformed vector. It is the 
distance from the input vector to the XY plane along the XY plane normal. Note again that the matrix 
in this case is an identity matrix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 
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Thinking of vectors as being a set of distances and matrices as containing a set of planes that pass 
through the origin of a coordinate system really does allow us to visualize transformations from one 
space to another in a more robust way. We now know that when we multiply a vector with a matrix we 
are in fact classifying the vector against three planes to create a new vector. When we apply a rotation 
to the matrix, we are in fact rotating the Right, Up, and Look vectors in the columns of the matrix, 
which means, we are in fact rotating the planes themselves. When we have a rotated matrix such as 
this, multiplying it with the input vector -- which has its distances defined relative to the three world-
aligned planes -- redefines the vector such that its distances are now relative to the rotated planes 
stored in the matrix. We will now go on to see exactly what this means by looking at the view space 
transformation. This will hopefully put all of the pieces into place. 
 
 
The View Space Planes 
 
We now know that an identity matrix contains three planes aligned with the 3-space X, Y, and Z axes. 
If our camera has been rotated, then its Right, Up, and Look vectors will no longer be aligned with the 
world coordinate axes and the planes stored in the view matrix must have rotated also. 
 
View Matrix 
Right Vector.x Up Vector.x Look Vector.x 0 
Right Vector.y Up Vector.y Look Vector.y 0 
Right Vector.z UpVector.z Look Vector.z 0 
- (Position•RightVector) - (Position•UpVector) - (Position• LookVector) 1 
 
Looking at the upper 3x3 section of the view matrix then, we can say that the first column of the view 
matrix contains the normal of the camera’s local YZ plane, the second column contains the normal of 
the camera’s local XZ plane and the third column represents the normal of the camera’s local XY 
plane. 
 
Let us consider a quick example. We start with a camera that is perfectly aligned with the world X, Y, 
and Z axes. We now want to rotate it left around the world Y axis by an angle of 45 degrees. A positive 
angle will always rotate an object clockwise about the rotation axis from the perspective of looking 
from the positive end of the axis towards the negative end of the axis -- referred to as ‘looking down 
the axis’. We can build a matrix that yaws the camera left by 45 degrees by creating a standard rotation 
matrix: 
 
D3DXMatrixRotationY(&mtxViewMatrix, D3DXToRadian(-45)); 
 
This call produces the following matrix: 
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Rotation 
0.707107 0 0.707107 0 
0 1 0 0 
-0.707107 0 0.707107 0 
0 0 0 1 
 
Because we will wish to use this matrix as a view matrix, we do not need a matrix that will rotate an 
object left 45 degrees. Instead we need an inverted matrix that will rotate all of the vertices in our 
world right 45 degrees; this will create the appearance that our camera has rotated left. The above 
matrix is the camera’s world matrix. If we were rendering the camera as a mesh, this matrix would 
rotate the camera mesh left 45 degrees – as it would any other mesh (a matrix is a matrix – it has no 
particular affiliation with a specific object). Inverting a matrix consists of transposing (swapping the 
rows and the columns) the upper 3x3 portion of the matrix and adding an equation (discussed 
momentarily) to calculate the fourth row of the matrix. We note that the relationship between the 
inverse and the transpose does not hold true in all cases and in fact, some matrices are not invertible at 
all. But when we are dealing with orthogonal unit vectors as we are with our linear transformation 
matrices, this will always work. Again, we refer you to a more serious study of linear algebra for the 
precise rules and properties. 
 
For now our camera is assumed to have a position of (0,0,0) because the fourth row of our matrix is 
zeroed out. The inverted matrix is: 
 
D3DXMatrixInverse(&mtxViewMatrix, NULL, &mtxViewMatrix); 
 
Inverse Rotation 
0.707107 0 -0.707107 0 
0 1 0 0 
0.707107 0 0.707107 0 
0 0 0 1 
 
Inverting a matrix is not a cheap operation. Since all we are doing is negating the rotation angle, we 
could generate the same view matrix simply by flipping the sign of the angle passed into the function: 
 
D3DXMatrixRotationY(&mtxViewMatrix, D3DXToRadian(45)); 
 
We now pass a positive angle instead. The resulting rotation matrix will be the same as if we had 
passed in the negative angle above and then inverted the result. This is actually quite an important 
point, because we can apply rotations to the view matrix simply by building a rotation matrix and 
multiplying it with the current view matrix to achieve an additive rotation. The previous discussion had 
just taught us, that if we wanted to pitch a mesh 45 degrees upwards we would need to create an X axis 
rotation matrix that rotated the mesh –45 degrees about its X axis. You are reminded again that 
positive rotation angle values perform a clockwise rotation from the perspective of looking towards the 
negative end of the rotation axis from the positive end. 
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D3DXMATRIX mtxViewMatrix , mtxRotationMatrix; 
pDevice->GetTransform(D3DTS_VIEW, &mtxViewMatrix); 
 
D3DXMatrixRotationX(&mtxRotationMatrix, D3DXToRadian(-45)); 
D3DXMatrixMultiply(&mtxViewMatrix, &mtxViewMatrix, &mtxRotationMatrix); 
 
pDevice->SetTransform(D3DTS_VIEW, &matViewMatrix); 
 
The above code will actually rotate the camera about its own local X axis (its right vector). Changing 
the order of the multiplication to: 
 
D3DXMatrixMultiply(&mtxViewMatrix, &mtxRotationMatrix, &mtxViewMatrix);  
 
would rotate the camera about the world’s X axis and not its own. We will see why this is the case in a 
moment.  
 
The above code is erroneous in that we wanted to pitch the camera up 45 degrees. Although we know 
that a negative angle should pitch the camera upwards, the rotation matrix has not been inverted but is 
being multiplied by the view matrix -- which is an inverse matrix. Therefore, we would actually 
achieve a rotation in the opposite direction and the above code would pitch the camera down 45 
degrees. We can fix this by inverting the rotation matrix before we multiply it with the view matrix; 
this would rotate the camera in the direction we would expect and is consistent with the way a world 
matrix would be rotated. However, an inverse is an expensive operation and we know that if we invert 
a rotation matrix we get the same matrix as if we had created that matrix with a negated angle to begin 
with. It would seem then that in this case it would be much cheaper to build a rotation matrix with an 
opposite angle of rotation rather than generate it normally and then flip it. Below, we show two ways 
that we could rotate the camera upwards about its own X axis. 
 
Example 1: Rotate Camera upwards 45 degrees 
D3DXMatrixRotationX (&mtxRotationMatrix, D3DXToRadian (-45)); 
D3DXMatrixInverse   (&mtxRotationMatrix, NULL, &mtxRotationMatrix); 
D3DXMatrixMultiply  (&mtxViewMatrix, &mtxViewMatrix, &mtxRotationMatrix); 
 
This example rotates the camera as we would expect in keeping with our rotation rules. A negative X 
axis rotation should rotate an object upwards about its X axis, but as we are dealing with the view 
matrix -- which is inverted -- this means we actually want to build a matrix that instead rotates the 
world down. Because the view matrix is inverted, we also invert the rotation matrix. This will change 
the rotation matrix such that it now contains a positive rotation and not a negative rotation. In other 
words, it will rotate vertices downwards, which is what we want. Finally we multiply it with the view 
matrix and we have a new view matrix that now rotates vertices down 45 degrees. This gives the 
illusion that the camera has been rotated up 45 degrees. Therefore, the inversion of the rotation matrix 
allows us to rotate the camera using the same (sign) angle of rotation as we would use for normal 
world objects.  
 
Example 2 : Rotate Camera upwards 45 degrees 
D3DXMatrixRotationX (&mtxRotationMatrix, D3DXToRadian(45)); 
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D3DXMatrixMultiply  (&mtxViewMatrix, &mtxViewMatrix, &mtxRotationMatrix ) 
 
In this second example we avoid the overhead of the inversion at the cost of inconsistency when 
specifying rotation angles to rotate the camera. Our code now has to know that angles must be negated. 
A slight hack, but faster certainly.  
 
So assuming that we have a view matrix that has been rotated to some degree, the Look, Up and Right 
vectors have been rotated as well. They are pointing in new directions whilst still remaining orthogonal 
to each other. As these vectors can also be perceived as plane normals, the planes have also been 
rotated in the same way. Whichever method we use to rotate the camera left 45 degrees about its Y 
axis, would result in the following view matrix: 
 
Inverse Rotation 
Right Vector                      Up Vector      LookVector 
0.707107 0 -0.707107 0 
0 1 0 0 
0.707107 0 0.707107 0 
0 0 0 1 
 
This matrix describes the camera as being at the origin of world space looking halfway between the 
negative X axis and the positive Z axis. Let us now examine the transformation of a vector into view 
space using this view matrix. 
 
 
The View Space Transformation (Under the Microscope) 

 
Fig 4.8 depicts a two-dimensional scene viewed top-down. It contains a virtual camera described by 
the example view matrix above and a world space vector (-2, 0, 10). This specific top-down view was 
chosen because the camera has an Up vector that is perfectly aligned with the world Y axis (0,1,0) and 
our world space vector Y component will not be altered by the transformation. Therefore, we can 
simplify this transformation in the diagram and think of it in terms of only the Right vector and the 
Look vector of the view matrix.  
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Figure 4.8 

 
The black horizontal line is the world space X axis (the world space XY plane) and the vertical black 
line is the world space Z axis (the world YZ plane). Because we are looking down on the world, we 
cannot see the Y axis. In the circular inset at the top left of the diagram you can see that the orientation 
of the virtual camera is a 45 degree rotation to the left about the Y axis. The position of the camera is 
assumed to be at the origin of the world space coordinate system in this example. The two red arrows 
show the orientation of the Look and Right vectors stored in the matrix and the blue and green lines 
show the planes that these two vectors describe. For example, the Look vector, when treated as a plane 
normal, describes the blue plane (the camera local XY plane). The Right vector describes the plane 
shown as the green line (the camera local YZ plane). As we can see, the camera space XY and YZ 
planes are misaligned from the world space XY and YZ planes by 45 degrees. 
 
Now we get to the really important part. We know that when we have a vector such as the one shown 
in the diagram, it is defined as a collection of distances from the world space planes. The world space 
position seen above (-2, 0, 10) simply means that this vector is –2 units from the world YZ plane, a 
distance of 0 units from the world XZ plane and a distance of 10 units from the world XY plane. When 
we multiply our world space vector with the view matrix, we are actually recalculating the three 
distances such that they are now relative to the planes stored in the view matrix instead of the world 
space planes. When we multiply our vector with the first column of the matrix we are classifying the 
point against the camera local YZ plane. You can see that this returns a distance 5.6. The dot product 
between the input vector and the Y column of the matrix simply leaves the input value (0) unchanged 
because the second column of our view matrix in this example is a Y identity column. The Z column 
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result -- the distance from the vector to the camera local XY plane -- is 8.6. Therefore, the vector has 
been transformed from world space vector (-2, 0, 10) to a new view space vector (5.6, 0.0 ,8.6).  
 
Now look at Fig 4.8 and rotate your head left 45 degrees so that the camera XY plane looks like the 
world Z axis. You will see what relationship this vector will have with the origin -- which will be 
assumed to be the camera position. Now, slowly rotate your head back upright and imagine that the 
camera planes and the world space point are rotating with you. The camera planes should now be 
aligned with the world planes. At this point we see that the new view space point describes the location 
of the world space point having been rotated 45 degrees to the right. Remember, the camera is 
imagined to be rotated left so we move the vector right. This is an intuitive way to think of 
transformations. We are simply classifying the input point against the planes. This has the same effect 
as taking those planes and rotating them until they align with the world planes and rotating the point 
along with them. As such, we treat it like any other point in that the distances are assumed to be offset 
from the world space planes. This creates the rotation shown in Fig 4.9. 

 
Figure 4.9 

 
We classify the input vector against the camera local planes and then use the returned vector to 
describe a position relative to the world aligned planes. The result is the perceived rotation. 
 
 
The Inverse Translation Vector 
 
If the translation vector in the view matrix is zeroed out as in the above example then this completes 
the transformation from world space to view space. Otherwise, we noted that the fourth row of the 
inverse matrix was calculated by performing three dot products between the world space camera 
position and the respective vector axis stored in that column. We have highlighted the inverse 
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translation section of the view matrix below. This will only be zeroed out when the camera is 
positioned at the origin of world space. 
 
 
View Matrix 
Right Vector.x Up Vector.x Look Vector.x 0 
Right Vector.y Up Vector.y Look Vector.y 0 
Right Vector.z UpVector.z Look Vector.z 0 
- (Position•RightVector) - (Position•UpVector) - (Position• LookVector) 1 
 
We learned in Chapter 1 (before we started using matrices) that all we had to do was subtract the 
camera position from the input vector and then perform the rotation. This rotated the input vector about 
the camera position instead of the world space origin. However, when using concatenated matrices we 
do not have the luxury of choosing the order in which our rotation and translation is done. The rotation 
is performed first (per vector component that is). If we were to simply store the negated camera 
position in the translation vector of the matrix, the results would be incorrect. Instead we need to know 
how much to subtract from the input vector after it has been rotated about the world space origin such 
that it sits in the corrected position in view space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10 
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Fig 4.10 depicts a top down view of world space with a camera rotated 45 degrees left about the Y 
axis. The Y axis in this diagram cannot be seen because we are looking directly down it onto the 
world. This time the camera position is not at the origin but is at world position (-3.5, 0, 11.5). We see 
two example world space vectors shown as the red spheres in the image. If we were not using matrices, 
we would simply subtract the camera position from each vector such that the virtual camera is moved 
back to the origin. We would then perform the three dot products with the world space position vectors 
and each of the camera local planes as we did above, which effectively rotates the camera local planes 
right 45 degrees (along with the world space vectors) such that they are aligned with the world space 
planes. This means that the vertices of a mesh would be rotated 45 degrees right about the camera 
position. The problem we face now is that the rotation happens before the translation when using 
matrices. So we need to know how much to subtract from the input vector after it has been rotated into 
its new position.  
 
Imagine that we subtracted the camera position from each of the two world vectors. You should be 
able to see how the position of these vectors would indeed share a relationship with the origin that they 
had previously shared with the camera position. We know that before the translation vector gets added 
to the input vector, the input vector is classified against the camera local planes. In this example it 
would create a new vector that has been rotated 45 degrees right about the origin from its previous 
position. Now imagine that the two world space vectors shown above had been rotated about the origin 
45 degrees right but had not yet had the translation vector applied. You could say at this point that the 

vectors are not in world space or view 
space but rather some intermediate 
space. The position of these intermediate 
space vectors is seen in Fig 4.11. 
 
Figure 4.11 
 
We can see that if we subtracted the 
camera world space position (-3.5, 0, 
11.5) from these intermediate space 
vectors, the resulting vectors would not 
have a relationship with the origin that 
they had previously had with the camera. 
This is because we can think of the 
intermediate space vectors and the 
camera world space position vector as 
being in two different spaces at this 
point. No immediately meaningful 
relationship exists yet between them. 
Therefore, we need to know how much 
to subtract the vectors in intermediate 
space, not in world space. 
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The answer is surprisingly simple. If we look at Fig 4.10 and Fig 4.11 and imagine that instead of just 
rotating the vectors 45 degrees by classifying them against the camera local planes, we also rotated the 
actual camera position itself, once again by classifying the camera position against the local planes 
stored in the view matrix, this rotates not only the input vector into the new intermediate rotated 
position, but also rotates the camera position itself 45 degrees about the origin into intermediate space. 
Fig 4.11 shows that in this example, the intermediate camera position vector would be (5.65, 0, 10.60). 
Now that the camera position and the vector we are transforming are in intermediate space and have 
had their relationships maintained, we can simply subtract the distances stored in this new camera 
position from each of the intermediate space vectors and get them into true view space.  
 
If we look at the fourth row of the view matrix, we see that it contains three dot products. When we 
think about how the input vector is multiplied against the first three columns of the matrix to classify 
the input vector against the three matrix planes, we can see that exactly the same thing is happening 
here. Only now we are classifying the camera position against the camera local planes instead of the 
input vector. Therefore, the fourth row is like an inline vector/matrix multiply -- a vector/matrix 
multiply within a matrix. So then all that is happening here is that we are classifying the camera 
position itself against the camera local planes. Thus in our example, the position is rotating 45 degrees 
to the right. We can see in the first of the two previous diagrams that the fourth row of the first column 
of the matrix calculated the distance from the camera position to the cameras local ZY plane (x = 
5.65). The camera is not pitched at all so the Y component of the transformed vector will remain zero 
(y = 0). Finally, when we multiply the camera position against the Look vector in the third column of 
the fourth row, we are calculating the distance from the camera position to the camera local XY plane 
(z = 10.60). The image above shows what the new rotated camera position would look like if it actually 
existed as a physical object. At this point we can simply subtract this new camera position vector from 
the input vector. We note that the fourth row of the matrix is added and not subtracted from the 
resulting vector component currently being calculated. So we negate the value and it will now subtract 
the adjusted camera position. Now the input vector is successfully transformed into view space. We 
can see in Fig 4.10 that when we add the intermediate camera position (-5.65, 0, -10.60) to the 
intermediate space vectors, we effectively move the intermediate space vectors into their final view 
space positions and the camera is then situated at the origin. Of course, all of this is actually done per-
component of the resulting vector, so adding the fourth row as a separate stage is not what happens. 
Instead we rotate and inverse translate each component one at a time to get the same results. 
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Viewports 
 
In DirectX Graphics, we have the ability to limit scene rendering to only a portion of the frame buffer. 
We use the D3DVIEWPORT9 structure to inform the device of the rectangular region of the frame 
buffer to which rendering should be limited. The D3DVIEWPORT9 structure is shown below. 
 
typedef struct _D3DVIEWPORT9  
{ 
    DWORD X; 
    DWORD Y; 
    DWORD Width; 
    DWORD Height; 
    float MinZ; 
    float MaxZ; 
} D3DVIEWPORT9; 
 
DWORD X 
DWORD Y 
These members define the coordinate of the top left corner of the viewport rectangle in frame buffer 
pixel coordinates. If you set both of these to zero, then the top left corner of the viewport will match 
the top left corner of the frame buffer. 
 
DWORD WIDTH 
DWORD HEIGHT 
These values define the width and height of the viewport in frame buffer pixel coordinates. The 
viewport will be a rectangular region on the frame buffer with the coordinates (X, Y, X+Width, 
Y+Height). 
 
Float MinZ 
Float MaxZ 
These values can be used to remap the Z-Buffer depth values calculated by the projection matrix and 
the divide by W into another range of values. Usually you will set these to 0.0 and 1.0 so that the depth 
values calculated from the projection matrix and the divide by W are passed straight through to the 
rasterizer. 
 
 
The Viewport Matrix 

 
In Chapter 1 we learned that after the divide by W, our vertex coordinates are in 2D projection space 
coordinates in the range [–1, 1] in the X and Y dimensions. In our software pipeline demo we used the 
following formula to map these coordinates into screen space coordinates: 
 
ScreenX =  projVertex.x * ScreenWidth  / 2  + ScreenWidth  / 2 
ScreenY = -projVertex.y * ScreenHeight / 2  + ScreenHeight / 2 
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This works correctly when we are assuming that the frame buffer is taking up the entire screen (or the 
entire window). When rendering to a viewport however, DirectX Graphics also has to take into 
account the viewport origin and its width and height so that all of the projection space coordinates in 
the –1 to +1 range get mapped to coordinates that fall only within the viewport rectangle. 
 
ScreenX =   projVertex->x *  ViewportWidth / 2  + ViewportX  + ViewportWidth  / 2; 
ScreenY =  -projVertex->y *  ViewportHeight / 2 + ViewportY  + ViewportHeight / 2; 
 
When we discussed the DirectX transformation pipeline in earlier lessons we examined the core 
matrices that are used in the process: World, View and Projection. There is actually a fourth matrix 
which the vertices are multiplied by which contains the above formula to map projection space 
coordinates into screen space coordinates. This matrix is shown below. The third column maps the 
vertex depth value into the [minZ, maxZ] range of the view port. 
 
The Viewport Matrix 

12/2/
000
002/0
0002/

nZViewportMiViewportYightViewportHedthViewportWiViewportX
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−

 
 
All of this is managed behind the scenes by the device object. We simply fill in the details of the 
D3DVIEWPORT9 structure and send it to the device with a call to: 
 
IDirect3DDevice9::SetViewport(CONST D3DVIEWPORT9 *pViewport); 
 
The function will force the device to rebuild its viewport matrix based on the settings that we have 
passed in with the D3DVIEWPORT9 structure. When the device is first created, the default state of the 
viewport matrix is to map projection space coordinates to the entire area of the frame buffer. If we 
created a 640x480 frame buffer, the default viewport will be 640x480 also, with its top left corner at 
(0, 0). Just to be clear, when we set a viewport, this does not simply truncate the portions of the scene 
that are outside the viewport. The entire scene is rendered into the view port as shown in Fig 4.12: 
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                                                                                           Figure 4.12 
 

In the above example, we have a 640x480 frame buffer and a viewport rectangle of (0, 0, 320, 160). 
Note that the entire scene is rendered into the viewport rectangle within the frame buffer. When we 
present the frame buffer (assuming we do not provide a presentation rectangle) the entire frame buffer 
is still displayed.  
 
Viewports can be very useful. For example, you may use them when programming a split screen two 
player game. You could set the view port so that it takes up the top half of the frame buffer and then 
render the scene in that viewport from player one’s position. Then you could set the view port such 
that it takes up the bottom half of the frame buffer and render the scene again, this time from the 
second player’s position. 
 
Viewport Aspect Ratios 

 
We must ensure that if we use a viewport that does not span the entire frame buffer, that we use the 
aspect ratio calculated using ViewportWidth/ViewportHeight rather than 
FrameBufferWidth/FrameBufferHeight when we build the projection matrix. The previous image 
showed us that the frame buffer had an aspect ratio of 1.3333333, but when we set the viewport to 
320x160 the aspect ratio of the viewport was 2.0. It is important that we use the aspect ratio of the 
viewport since this is where the scene will be rendered. Using the 320x160 viewport shown above, the 
image would look squashed if we did not adjust the aspect ratio to reflect the new settings. Just 
because we may have an elongated viewport, does not mean we wish to see the geometry in our scene 
elongated. Fig 4.13 shows how the same image of the terrain would look using a wide but shallow 
viewport without recalculating the aspect ratio of the viewport. 
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Figure 4.13 
 

 
Note: As with all device states, when the device is lost, the viewport information is also reset. 
Therefore you must remember to reset your viewport settings when resetting a device. 
 

 
Camera Manipulation I 

 
In Chapter 1 we discovered that we can multiply one matrix with another matrix to generate a resulting 
matrix that will transform vectors in the same way that the two source matrices would have done 
individually. Therefore, it is safe to assume that if we were to build a rotation matrix, let us say a 
matrix that rotates vectors 45 degrees around the X axis, and then multiply our view matrix by that 
rotation matrix, we would have created a resulting matrix that not only transforms the vertices from 
world space into view space, but one that also rotates them around the world X axis. The following 
code snippet retrieves the currently set view matrix from the device and rotates it 45 degrees about the 
X axis (pitching it down).  
 
D3DXMATRIX matView, matRotx; 
 
// Get View matrix from device (will not work on a pure device) 
pDevice->GetTransform(D3DTS_VIEW, &matView); 
 
// Built Rotation matrix about X axis 
D3DXMatrixRotationX(&matRotx, D3DXToRadian(-45)); 
 
// Multiply the view matrix with rotation matrix 
D3DXMatrixMultiply(&matView, &matView, &matRotx); 
 
//Set the new modified view matrix 
pDevice->SetTransform(D3DTS_VIEW, &matView); 
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Because all of the same the transformations can be applied to the view matrix as to any world matrix, 
we can think of the view matrix as a physical camera object even if this is not technically correct. Let 
us assume that the view matrix was set to an identity matrix before the above code was executed. We 
already know that if the view matrix is an identity matrix then the Look, Up, and Right vectors in the 
view matrix exactly match the axes of the world coordinate system. 
 
Because of the order of the above matrix multiplication, we are in fact performing what is known as a 
camera local rotation. Instead of rotating the camera about the world X axis, we are in fact rotating the 
camera about its own Right vector. The red arrow in Fig 4.14 shows the direction of rotation the code 
would generate.  
 

 
Figure 4.14 

 
Because the code performed a camera relative rotation, we see now that we can perform accumulative 
rotations. Regardless of the orientation of the camera in world space, the above code will always pitch 
the camera down (or up if we negate the rotation angle) relative to itself and not the world. For 
example, if you stand on your head and look up, you are looking at the floor. But it is still ‘up’ with 
respect to your current situation. If somebody was observing you however, they might describe you as 
looking down at the floor, given their perspective.  
 
If we were to change the matrix multiplication order from ViewMatrix*RotationMatrix to 
RotationMatrix*ViewMatrix this would rotate the camera about the world X axis. This would not 
perform a localized rotation but would instead perform a world rotation. So take care to use the matrix 
multiplication order that produces the results you desire. When rotating a non-inverted matrix (an 
object world matrix for example) the opposite is true: WorldMatrix*RotationMatrix would perform a 
non-localized rotation and RotationMatrix*WorldMatrix would apply localized rotation.  
 
D3DX includes helper functions that allow us to build rotation matrices for the Y and Z axes also.  
 
D3DXMATRIX matView, matRoty; 
 
// Get View matrix from device (will not work on a pure device) 
pDevice->GetTransform(D3DTS_VIEW , &matView); 
 
// Built Rotation matrix about Y axis 
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D3DXMatrixRotationY(&matRoty, D3DXToRadian(45)); 
 
// Multiply the view matrix with rotation matrix 
D3DXMatrixMultiply(&matView, &matView, &matRoty); 
 
//Set the new modified view matrix 
pDevice->SetTransform(D3DTS_VIEW, &matView); 
 

Notice the matrix multiplication order we are using to rotate the camera about its own Up vector (view 
space Y axis). This allows us to yaw the camera left or right relative to itself. Changing the 
multiplication order would change this so that the camera was always rotated about the world Up 
vector rather than the camera Up vector 
 

 
 

Figure 4.15 
 
This system provides us with a convenient way to handle rotating left and right in a game. Notice that 
the red arrow in the Fig 4.15 shows the direction of rotation about the Up vector that the camera will 
have applied to it. As we now know, a positive angle would create a matrix that would rotate vectors 
right, but because we are not inverting the rotation matrix before multiplying it with the view matrix 
(which is already inversed) the rotation direction is switched. Therefore, a positive rotation angle 
would rotate the camera left.  
 
Finally the above code could also be changed to rotate the camera about the Z axis to create a Roll 
effect. Rolling is the effect you get in a flight simulation where pushing left and right on the joystick 
banks the plane. 
 
D3DXMATRIX matView, matRotz; 
 
// Get View matrix from device (will not work on a pure device) 
pDevice->GetTransform(D3DTS_VIEW, &matView); 
 
// Built Rotation matrix about z axis 
D3DXMatrixRotationZ(&matRotz, D3DXToRadian(-45)); 
 
// Multiply the view matrix with rotation matrix 
D3DXMatrixMultiply (&matView, &matView, &matRotz); 
 
//Set the new modified view matrix 
pDevice->SetTransform(D3DTS_VIEW, &matView); 
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Figure 4.16 

 
 
The red arrow in Fig 4.16 shows the direction of rotation that this code would apply to the cameras Up, 
Right and Look vectors stored in the view matrix. Again, we would typically associate a negative 
rotation angle as applying a clockwise rotation (roll right) when rotating a world matrix, but since we 
are applying the rotation matrix (without inverting it) to the view matrix, the rotational direction is 
flipped. 
 
So we now have the ability to easily rotate a virtual camera about all three of its axes. As we know, 
matrix multiplication is not commutative and the order in which the matrices are passed to the 
multiplication function is critically important.  
 
 
Camera Manipulation II 
 
In this section we are going to look at an easier way to ensure proper local camera rotations. We are 
going to abandon the D3DXMatrixRotate functions as a means of applying rotations to our view 
matrix. Instead, we will manually rotate the Look, Up, and Right vectors in the view matrix ourselves 
so that the rotations are always relative to any desired arbitrary axis. We can maintain and rotate these 
vectors separately and simply rebuild the view matrix each time they change. Not only will this allow 
us to perform the relative rotations that matrix multiplication provided, but it will allow us to rotate our 
vectors around any axis we choose. This might not sound so easy until you realize that D3DX has a 
function for building a matrix that rotates vectors about any arbitrary axis. We simply send the 
function a unit vector and an angle: 

 
D3DXMatrixRotationAxis(D3DXMATRIX *pOut, CONST D3DXVECTOR3 *pV,  FLOAT Angle); 
 
D3DXMATRIX *pOut 
This is the address of a D3DXMATRIX structure that will contain the newly generated matrix. 
 
D3DXVECTOR3 *pV 
This is in an arbitrary unit length vector that is treated as the axis of rotation. For example, if you 
passed in a vector of (1,0,0) then this would produce the same rotation matrix as 
D3DXMatrixRotationX. Because we can pass in vectors that are not limited to the world space axes, it 
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means that we can generate a rotation matrix that will rotate the camera about any arbitrary world 
space axis, as well as the camera Look, Up and Right vectors when camera-relative rotations need to 
be applied.  
 
FLOAT Angle 
The angle in radians to rotate about the passed axis. 
 
Now let us imagine that we are trying to create a spacecraft camera system. Assume that we want the 
left and right actions on the joystick to produce local yaw, the forward/back actions on the joystick to 
produce local pitch and a left/right action on the joystick with the fire button down to produce local 
roll.  Fig 4.17 shows the where the virtual camera might be in the world:  
 

 
 

Figure 4.17 
 
Now let us see what the code might look like that reacts to the user pulling the joystick backwards. 
Your input routine may call a function like the following to rotate the camera about its local X axis by 
the specified angle. Note that we are extracting the vectors from the view matrix but you would 
probably store the four view matrix vectors (look, up, right, and position) as variables for easier access 
and to run this with a pure device. 
 
void Pitch(IDirect3DDevice9* pDevice, float Angle) 
{ 
 D3DXMATRIX matView , matRotx; 
 D3DXVECTOR3 RightVector, UpVector, LookVector; 
 
 pDevice->GetTransform (D3DTS_VIEW , &matView); 
  
 RightVector.x = matView._11; 
 RightVector.y = matView._21; 
 RightVector.z = matView._31; 
 
 UpVector.x = matView._12; 
 UpVector.y = matView._22; 
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 UpVector.z = matView._32; 
 
       LookVector.x = matView._13; 
 LookVector.y = matView._23; 
 LookVector.z = matView._33; 
 
 D3DXMatrixRotationAxis (&matRotx , &RightVector , Angle ); 
  
       D3DXVec3TransformNormal (&UpVector , &UpVector , &matRotx); 
 D3DXVec3TransformNormal(&LookVector , &LookVector , &matRotx); 
 
       matView._12=UpVector.y;   matView._13=LookVector.z;  

matView._22=UpVector.y;   matView._23=LookVector.z; 
matView._32=UpVector.y;   matView._33=LookVector.z; 
 
pDevice->SetTransform(D3DTS_VIEW , &MatView); 

} 
 

This example assumes we are not using a PURE device since it uses the GetTransform function to 
retrieve the current view matrix from the device. Our final code will manage its own copy of the view 
matrix making this call unnecessary but we have used that method here to better show the process. The 
code does the following: 
 

• It retrieves the current view matrix 
• It manually extracts the cameras local axes from the view matrix and stores them in 

RightVector, UpVector and LookVector for the local X,Y and Z axes respectively. 
• Because we are pitching up, we wish to rotate the camera about the RightVector (local X axis). 

We build a rotation matrix that will rotate vectors about that axis (whatever orientation it may 
be). Because the rotation is about the Right vector, the vector itself will be unchanged. All we 
have to do is rotate the Look and Up vectors about the Right vector. 

• Once we have multiplied the Look and Up vectors with the rotation matrix, we place them back 
into the view matrix so that the view matrix now contains the new orientation.  

• Notice that we do not have to place the Right Vector into the view matrix because it has not 
been changed by this function. 

 
Fig 4.18 shows what the view matrix and its vectors would look like if the above function was called to 
pitch the camera up 45 degrees (a negative angle would rotate downwards). Notice how the right 
vector is unchanged, but the Look vector and the Up vector have been rotated such that they are no 
longer aligned with the world Y and Z axes: 
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Figure 4.18 
 

So in order to rotate the camera about its local X axis, all we have to is rotate the Up and Look vectors 
about the Right vector. Regardless of the orientation of the Right vector in the world, this will always 
pitch the camera up and down relative to itself. Hopefully, the above code snippet has given you 
everything you need to write a function that Yaws. Looking at the diagram, you should be able to see 
that in order to perform local Yaw we have to rotate the Right and Look vectors about the Up vector. 
Fig 4.19 shows what the camera should look like if we were to apply a 45 degree Yaw. 
 

 
 

Figure 4.19 
 
The next piece of code is a function that allows the camera to rotate left and right about its own Y axis. 
This function is very similar to the Pitch function with the exception that we now wish to rotate the 
Right and Look vectors about the Up vector. This means the Up vector will be unchanged. 
 
void Yaw (IDirect3DDevice9* pDevice , float Angle) 
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{ 
 D3DXMATRIX matView , matRoty; 
 D3DXVECTOR3 RightVector, UpVector, LookVector; 
 
 // Retrieve device view matrix  

pDevice->GetTransform (D3DTS_VIEW , &matView); 
  
 // extract right, up and look vectors 
 RightVector.x = matView._11; 
 RightVector.y = matView._21; 
 RightVector.z = matView._31; 
 
 UpVector.x = matView._12; 
 UpVector.y = matView._22; 
 UpVector.z = matView._32; 
 
       LookVector.x = matView._13; 
 LookVector.y = matView._23; 
 LookVector.z = matView._33; 
 
 // build matrix to rotate vectors about the Up vector 

D3DXMatrixRotationAxis ( &matRoty , &UpVector , Angle ); 
  
       // rotate right and look vectors about the up vector 

D3DXVec3TransformNormal (&RightVector , &RightVector , &matRoty); 
 D3DXVec3TransformNormal( &LookVector , &LookVector , &matRoty); 
 
 // place modified vectors back into the view matrix 
       matView._11=RightVector.y;     matView._13=LookVector.z;  

matView._21=RightVector.y;     matView._23=LookVector.z; 
matView._31=RightVector.y;     matView._33=LookVector.z; 
 
// send modified view matrix to the device 
pDevice->SetTransform(D3DTS_VIEW , &MatView); 

} 

You should now have little trouble writing your own Roll function that rotates the camera about its 
local Z axis. It would be a good idea if you opened up Notepad right now and had a go at this to make 
sure that you understand what is happening. Remember to refer back to the table for the ViewMatrix to 
remind yourself which vectors are stored in which columns. Once you have tried implementing this 
function yourself, check it against the code listed below: 
 
void Roll (IDirect3DDevice9* pDevice , float Angle) 
{ 
 D3DXMATRIX matView , matRotz; 
 D3DXVECTOR3 RightVector, UpVector, LookVector; 
 
 // Get Current View Matrix 
       pDevice->GetTransform (D3DTS_VIEW , &matView); 
  
 // Extract the right, up and look vectors 
       RightVector.x = matView._11; 
 RightVector.y = matView._21; 
 RightVector.z = matView._31; 
 
 UpVector.x = matView._12; 
 UpVector.y = matView._22; 
 UpVector.z = matView._32; 
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       LookVector.x = matView._13; 
 LookVector.y = matView._23; 
 LookVector.z = matView._33; 
 
 // Build matrix to rotate vector about the LookVector 
       D3DXMatrixRotationAxis ( &matRotz , &LookVector , Angle ); 
  
       // Rotate Up and Right vectors about the Look vector    
       D3DXVec3TransformNormal (&UpVector , &UpVector , &matRotz); 
 D3DXVec3TransformNormal( &RightVector , &RightVector , &matRotz); 
 
       // Place modified vectors back into view matrix 
       matView._11=RightVector.x;    matView._12=UpVector.y;    

matView._21=RightVector.y;    matView._22=UpVector.y;    
matView._31=RightVector.z;    matView._32=UpVector.y;    
 
// Send the modified view matrix back to the device 
pDevice->SetTransform(D3DTS_VIEW , &matView); 

} 

 
Another thing to bear in mind is that we can store the world space position of the camera and allow our 
application to work with that position vector just like any other object position in the world. When the 
position or orientation of the camera changes, we can place the Look, Up, and Right vectors into a 
view matrix and calculate the inverse translation vector using the camera world space position. It is 
much more intuitive for our application to move the camera using a world space position and calculate 
the inverse translation vector when inserting it into the fourth row of the view matrix rather than have 
to store the position as an inverse translation vector.  

 
 

Vector Regeneration 
 
The finite resolution of floating point numbers on the PC leads to some trouble as we continually rotate 
our vectors. The vector/matrix multiplications we are performing involve many floating point 
multiplications and over time, errors can start to accumulate. The problem is that a float can only store 
a finite number of digits. Let us imagine that we want to store the value of PI (defined as 
3.14159265358979323846…) within a single precision float. This value will be truncated before it is 
stored, so that perhaps our float variable holds 3.141593. 
 
If we multiply this float by 36.0 we should see a return value of 113.097384. However, because of the 
floating-point limitation, the result is rounded to 113.0974 before storage. If we divide by the same 
value again (36.0), we find that we end up with a value of 3.141594444444444, which is again 
rounded to 3.141594. 
 
So simply multiplying and then dividing by the same value produces a float which is 0.000001 adrift 
from the original value. This may not seem like much, but over time this type of error accumulates. 
When these errors creep into our vectors, we can end up with a situation where the camera coordinate 
system axes are no longer perpendicular to each other: 
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Figure 4.20 

 
As you can imagine, the problem gets worse as we perform more consecutive operations. You can see 
in Fig 4.20 that rotating the camera around the corrupted Up vector would no longer perform a proper 
Yaw. Additionally, the accumulations can also cause the vectors to lose their unit length status which 
also has adverse effects. To combat this, we must perform vector regeneration on these vectors at 
regular intervals. This means rebuilding the vectors to ensure that they remain orthogonal and unit 
length. In our application, we will do this every time the camera is rotated in some way. The technique 
for regenerating the vectors is shown below. 
 

• Normalize the Look vector so that it is always unit length 
• Regenerate the Up vector by performing a cross product with the Look and Right vectors to 

return a new Up vector that is perpendicular to them 
• Normalize the new Up vector to make sure it is unit length 
• Regenerate the Right vector by performing a cross product with the Look and Up vectors to 

return a Right vector that is perpendicular to them. 
• Normalize this new Right vector to make sure it is unit length 

We now have a regenerated set of unit length vectors that are mutually perpendicular. Notice that we 
only normalize the Look vector and do not actually regenerate it by performing a cross product 
between the Up and Right vectors. This would cause the Look vector to be snapped suddenly to 
another vector and would cause a noticeable shift to the player. For this reason, we leave the 
orientation of the Look vector alone and simply normalize it.  
 
The following code handles rotation about all three axes and regenerates the vectors before placing 
them back into the view matrix. This function expects rotations to be specified in radians. 

 
void Rotate (IDirect3DDevice9* pDevice ,  float x ,  float y ,  float z  ) 
{ 
    D3DXMATRIX     matRotate , matView; 
    D3DXVECTOR3   RightVector , UpVector , LookVector; 
 
    // Extract Local Camera axes from view matrix 
    pDevice->GetTransform ( D3DTS_VIEW , &matView); 
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    RightVector.x = matView._11;  UpVector.x = matView._12 ;  LookVector.x = matView._13; 
    RightVector.y = matView._21;  UpVector.y = matView._22 ;  LookVector.y = matView._23; 
    RightVector.z = matView._31;  UpVector.z = matView._32 ;  LookVector.z = matView._33; 
  
    if ( x != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &matRotate, &RightVector, x  ); 
        D3DXVec3TransformNormal( &LookVector, &LookVector , &matRotate ); 
        D3DXVec3TransformNormal( &UpVector    , &UpVector    , &matRotate ); 
    } // End if Pitch 
 
    if ( y != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &matRotate, &UpVector,   y  ); 
        D3DXVec3TransformNormal( &LookVector, &LookVector,  &matRotate ); 
        D3DXVec3TransformNormal( &RightVector, &RightVector, &matRotate ); 
    } // End if Yaw 
 
    if ( z != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &matRotate, &LookVector,  z  ); 
        D3DXVec3TransformNormal( &UpVector    , &UpVector    , &matRotate ); 
        D3DXVec3TransformNormal( &RightVector, &RightVector, &matRotate ); 
    } // End if Roll 
         
    // Perform vector regeneration 
    D3DXVec3Normalize( &m_vecLook, &m_vecLook ); 
    D3DXVec3Cross( &m_vecRight, &m_vecUp, &m_vecLook ); 
    D3DXVec3Normalize( &m_vecRight, &m_vecRight ); 
    D3DXVec3Cross( &m_vecUp, &m_vecLook, &m_vecRight ); 
    D3DXVec3Normalize( &m_vecUp, &m_vecUp ); 
 
    // Place the new rotated vectors back into the view matrix   
    matView._11 = RightVector.x;  mtxView._12 = UpVector.x;  mtxView._13 = LookVector.x  
    mtxView._21 = RightVector.y;  mtxView._22 = UpVector.y;  mtxView._23 = LookVector.y; 
    mtxView._31 = RightVector.z;  mtxView._32 = UpVector.z;  mtxView._33 = LookVector.z; 
   
    // Send the new view matrix back to the device 
    pDevice->SetTransform ( D3DTS_VIEW , &matView );  
} 

Note: Whether you are rotating your camera by rotating its Look, Up and Right vectors manually as 
shown above, or whether you rotating the camera by performing matrix multiplication as shown earlier, 
vector regeneration still needs to be done when performing cumulative rotations. Even when 
performing cumulative matrix multiplication, we are really just rotating the Look, Up and Right vectors 
inside the view matrix. So you will need to periodically extract the vectors, regenerate them and insert 
them back into the matrix. 
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First Person Cameras 
 
The previous function rotates the camera about its own Up, Right, and Look vectors. This is ideal for a 
space ship camera system. For a first person camera system however, we need to make some changes. 
We will discuss those changes briefly since we will cover the complete camera code in the workbook. 

 
• Pitch must be limited so that we cannot loop completely upside down. In a first person game, 

the camera acts as the head of the player with regards to up/down rotation. In reality, our head’s 
rotational capacity is limited by our neck. Generally we clamp pitch to +89 degrees up and –89 
degrees down. 

• Yaw (Y Axis rotation) has to be handled differently for a first person camera. In the previous 
camera code above, we always rotated about the camera local Y axis (the Up vector). This does 
not work for a first person camera. If you load up any first person perspective game and rotate 
your head so that you are looking at the roof (or floor) and then move the mouse left or right, 
you will notice that the camera will no longer move left or right relative to itself, but will 
actually spin around in a tight circle. This is because in a first person camera situation, we want 
to always to yaw around the world Y axis instead of the camera Y axis. Fig 4.21 demonstrates 
this concept. 
 
  

 
 
 

Figure 4.21 
 
This actually makes perfect sense since pitching up and down is equivalent to rotating your head up 
and down. Yawing left and right is equivalent to actually spinning your whole body around in a circle. 
Therefore, if you yaw whilst the camera is pitched up, it is equivalent to standing in a room, looking up 
at the ceiling, and spinning around. 
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Third Person Cameras 
 
Third person camera systems are used in games like Tomb Raider™, Splinter Cell™, Mario64™ and 
many others. A third person camera is quite different than the other types we discussed because we 
have to limit the player’s ability to move the camera such that it does not lose focus on what it is 
supposed to be looking at. The idea is that the user no longer directly controls the camera, but instead 
controls the player avatar. The camera stays focused on that avatar as it moves around the 
environment. In our third person camera system, although the camera will always be looking at the 
player, we will have the ability to specify an offset vector that allows us to control the distance and 
angle from which the player should be viewed. You can think of this as attaching the camera to the 
player avatar with a large stick. When the player moves, the camera will move also. When the player 
turns left or right, so will the camera.  
 
If this was the limit of our control, then the camera system would seem far too rigid. Let us imagine 
that we specify an offset vector that puts the camera directly behind the player object. This would 
mean that we would always be looking at the back of the avatar no matter how quickly they rotate left 
or right. To make things more interesting and fluid we can introduce a time lag when the player rotates. 
In this case the camera will still be behind the player but it may take ¼ of a second to catch up to a new 
rotation. This allows us to see our player turn before the camera drifts into the correct position again. 
 
Fig 4.22 is a crude representation of this concept. The camera is attached to the player and offset by the 
vector shown as the white line. In our demo, the camera is always positioned behind and above the 
player as specified by the offset vector that we specify. In third person mode, the player object can be 
yawed left or right, and the camera has its position rotated about the player in a large circle using a 
radius specified by the offset vector. 
 

 
 

Figure 4.22 
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The View Frustum 
 
As discussed earlier in the course, the projection matrix defines a camera view volume. Recall that the 
1st and 2nd columns of the projection matrix store values that define the angle of the horizontal and 
vertical field of view respectively. We also use the 3rd column of the projection matrix to map view 
space vertex Z components to the finite [0, 1] range used for depth buffering. To achieve this mapping 
we used the projection matrix to set minimum and maximum view distances, referred to as the near 
and far planes. Any view space vertices with Z components greater than the far plane distance stored in 
the projection matrix are rejected by the pipeline prior to the homogeneous W divide (i.e. the 
projection). Likewise, any view space vertices that have Z components smaller than the near plane 
distance will also be rejected in the same place by the pipeline. When we consider the shape of the 
space defined by the viewing angles as well as the minimum and maximum depths, we note that the 
result resembles a truncated pyramid. This pyramidal volume is called a frustum. It is similar to a 
typical pyramid shape except that the tip of the pyramid is sliced off by the near plane and the base is 
sliced off by the far plane (Fig 4.23).  
 

 
 

Figure 4.23 
 
 
It could be said that the 1st column of the projection matrix describes the normal for two planes: the left 
and right planes of the view frustum (where one is the negation of the other). Polygons that fall 
between these two planes are thus within the horizontal field of view of the camera. The 2nd column of 
the projection matrix could likewise be said to describe a normal for two planes, the top plane and the 
bottom plane of the frustum. If a polygon exists between these two planes, then it is within the 
camera’s vertical field of view. Finally, the 3rd column of the projection matrix could be said to 
describe two additional frustum planes: the near plane and the far plane. If a polygon is positioned such 
that it lies completely or even partially within the area between all six of these planes, then all or part 
of it is considered inside the viewing frustum and would therefore be visible to the viewer.  
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In a moment we will see how and why the columns of the projection matrix describe these six frustum 
planes, but for now just take it on faith that they do. Bear in mind that the orientations of these planes 
are controlled by the values we store in the projection matrix. As a result, we have the ability to change 
the shape of the view frustum. Nevertheless, whilst we can change the depth, width, and height of the 
frustum, it will always be constructed from six planes and will look like the shape shown in Fig 4.23. 
 
Frustum Culling 
 
While the pipeline will test each triangle against the view frustum prior to projection, and reject the 
polygon from further processing if it is outside the frustum (or clip it when it is half inside and half 
outside), this test is run after the vertices have been transformed from model space to homogenous clip 
space. So while the frustum rejection mechanism in the DirectX pipeline does enable the system to 
avoid rendering polygons that will never be seen, it is only after the expensive transformation and 
lighting calculations have been performed for each vertex that this rejection becomes possible.  
 
Ideally what we would like to do is perform this test prior to our polygons entering the pipeline and 
thus avoid these calculations when possible. It would also be nice if we could do this without having to 
test every single polygon in a level. Considering the size of modern game levels, a higher level frustum 
test at the object (mesh) level would be much more efficient.   
 
 

 
 

Figure 4.24 
 
 
In Fig 4.24, we see a camera and its view frustum in world space along with a handful of geometric 
objects in the scene. (Remember that the frustum has six planes -- we just cannot see the top and 
bottom planes in this diagram given the top-down view). The sphere is well beyond the far plane of the 
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frustum and therefore all of its polygons will be rejected by the pipeline. The cylinder is partially 
behind and to the right of the camera, so it too will be rejected by the pipeline. The torus has all of its 
polygons inside the six planes of the frustum and therefore will not be rejected by the pipeline -- it will 
be rendered in its entirety. Finally, the cone is partially inside the view frustum and in this case, all of 
its triangles that are beyond the far plane will be rejected and any cone triangles that span the far plane 
(half inside/half outside) will be clipped by the pipeline so that only the section of the triangle that is 
inside the far plane would be rendered. 
 
If the cylinder and sphere were 20,000 polygon objects, and we rejected them in such a way that we 
would not even bother calling DrawPrimitive, consider how many tens of thousands of potential 
calculations we would save in that case. And keep in mind that they would ultimately be discarded by 
the pipeline anyway, but only after all of their vertices had been transformed and lit. 
 
All we need is a way to get access to the frustum planes in world space (or even model space) and we 
could perform the frustum test ourselves, rendering only the polygons that we find are visible. That is, 
we would like to cull the visible polygons in our scene and make sure they are rendered, while the rest 
are ignored. This process is called frustum culling and it is exactly what we are going to study in the 
remaining portions of this lesson. Since we generally do not want to do this test at the per-polygon 
level or take on the responsibility of clipping triangles, we will also need to figure out some way to run 
this test at the object/mesh level. If we did the per-polygon testing and clipping ourselves (even if we 
did not have to transform the vertices) on the CPU, it would still be slower than just running the entire 
process on the GPU and letting it deal with these issues.  
 
We should think of our frustum culling code as less of an exact frustum culler and clipper than a first 
line of defence for quickly rejecting the vast bulk of scene geometry before it enters the rendering 
pipeline. If we leave the borderline cases (i.e. partial intersections) for the pipeline to handle, we can 
come up with an extremely efficient way of rejecting large batches of polygons with a few simple tests.  
 
 
Axis-Aligned Bounding Boxes (AABB) 
 
Given the infinite number of complex shapes our meshes can assume, testing a mesh for intersection 
with the frustum would be difficult indeed. What sort of algorithm could we design that could handle 
any mesh we throw at it that did not require per-polygon testing at the end of the day? Forget it. We 
will need an alternative polygon aggregate that can be created easily and tested quickly for intersection 
against the frustum (i.e. the planes of the frustum) for real-time work. The solution is to bound our 
complex objects with simple volumetric shapes and then test these bounding volumes for collision 
with the frustum.  
 
Depending on the volume we choose, our intersection tests will have different levels of accuracy and 
efficiency, generally trading off one for the other. The most common bounding volumes are simple 
shapes like boxes, spheres, cylinders, cones, and so on (boxes and spheres are generally the most 
popular). For now, we will keep things simple and focus on boxes. In the next course in this series, we 
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will discuss other bounding volumes and even more efficient ways to do frustum intersection at the 
scene level. 
     
For this lesson we will use a box shaped bounding volume whose orientation is such that its sides are 
always aligned with the standard axes (1,0,0), (0,1,0), and (0,0,1). This is called an axis-aligned 
bounding box (AABB). In Fig 4.25 we see an example of our models and their AABBs. Our culling 
system now resolves to a set of frustum/AABB intersection tests for each object in the scene.  
 

 
 

Figure 4.25 
 
We can see in Fig 4.25 that both the sphere and cylinder objects do not require any rendering since 
they are outside the frustum. This can be determined using a simple box/frustum test for each object 
rather than N polygon/frustum tests. If these two objects had 20,000 polygons each, we have just 
avoided transforming, lighting, and ultimately rejecting 40,000 polygons. Remember that T+L takes 
place at the vertex level, so this is a substantial savings indeed. 
 
As the cone bounding box partially intersects the frustum, we will just render the object and let the 
pipeline cull and clip the object as usual. Likewise for the torus as its bounding box is completely 
inside the frustum. In fact, we could theoretically speed things up in the torus case by telling the 
pipeline not to bother trying to test any polygons for clipping, but for the time being we will not worry 
about this concept.  
 
For now our approach will be to render any mesh whose AABB is not fully outside of the frustum. 
Any objects with intersecting AABBs will be rendered as we normally do. In the next course in this 
series we will explore ways to optimize this system using spatial partitioning and scene graphs. In that 
case the scene itself will be divided into a hierarchical arrangement of bounding volumes so that even 
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objects themselves can be aggregated and tested against the frustum (sort of like bounding volumes 
around groups of bounding volumes). Again, for now we will stick to the basics. 
 
We know at this point that we will need our meshes and/or objects to store a bounding box. The 
coordinate space we choose for the intersection tests requires some consideration. If we perform the 
test in world space, then we will need to convert the frustum planes to world space. We will also have 
to recalculate the extents of the AABB if the object moves or rotates (because the AABB will be 
described in world space units). We can see in Fig 4.26 how a single cone mesh would have different 
sized and shaped AABBs depending on its position and orientation in the world. Certain objects can 
rotate without altering the shape of the AABB (a sphere for example). In that case we could get away 
with not recalculating the bounding box, but simply updating its position when the object is moved. 
 
 

 
 

Figure 4.26 
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Recalculating an AABB can be costly if the mesh consists of thousands of vertices. This is because 
calculating an AABB requires our looping through each vertex and recording the highest and lowest X, 
Y, and Z vertex extents. Of course, this is only an issue if the object is dynamic -- and many objects in 
a scene are not. In the case of our terrain for example, we divided the entire terrain into a grid of 
smaller meshes. Each one of these meshes could have its AABB calculated at application start-up and 
never require re-calculation because the terrain meshes never move. Since the terrain meshes are 
defined in world space to begin with, storing their AABBs in world space and performing the frustum 
test in world space is probably the best choice. We will simply need to extract the frustum planes from 
the projection matrix and convert them into world space just once at the beginning of each frame. We 
can then reuse them for testing all world space AABBs. Note that there are faster solutions for 
recalculating an AABB after a rotation, but the result will generally be a less tightly fit bounding 
volume which can result in false positives on the intersection test. (Everything is a tradeoff.)  
 
For high polygon dynamic objects, recalculating a world space AABB can become expensive, so a 
model space AABB (which will never change) might be a better choice. That is, you would build the 
bounding box using the model space (un-transformed) vertex positions. Of course, for this to be useful 
we would need to transform the frustum planes into model space using the inverted mesh world matrix 
to perform the intersection test. Depending on the number of such objects in your scene, this can also 
become expensive. The more common solution for dynamic objects is to use a bounding sphere since it 
will not need to be recalculated if the object rotates. Spheres are very fast to test, but do not generally 
provide as tight a fit as a box. The result is an increase in false positives for intersection tests and thus 
rendering objects that are, in reality, fully outside the frustum. A common solution to this problem is to 
perform multiple tests. For example, one might do a sphere/frustum test first for rough culling. Since a 
sphere test is faster than a box test, this is a good first choice. If the sphere test indicates an 
intersection, a second test can be done using a tighter fitting bounding volume (like a box) to see if the 
intersection result was indeed accurate.  
 
Even view space frustum testing is possible if desired, although it is not very commonly used. By and 
large the preferred choice is to use world space intersection testing whenever possible since it requires 
no transformations to take place prior to the test. This is the method we will discuss here in this lesson 
and the one we will use in our lab projects. 
 
 
Calculating an AABB 
 
Calculating an AABB is a straightforward process regardless of whether we are calculating it in model 
space, world space, or even view space. An AABB can be stored using just two 3D vectors (6 floats) 
which keep track of the minimum and maximum X, Y, and Z components of the mesh respectively. 
The following snippet of code shows how we calculate the bounding box for each of our terrain 
meshes in our demonstration project. Because the terrain vertices are already stored as world space 
vertices, there is no need for us to multiply the vertex position by the mesh world matrix. However, if 
each mesh was defined in model space and we wanted to calculate a world space bounding box for it, 
we would first need to transform the vertex by the world matrix. Then the code would be identical to 
that shown.  
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   // Calculate the mesh bounding box extents 
    m_BoundsMin  = D3DXVECTOR3( 999999.0f, 999999.0f, 999999.0f ); 
    m_BoundsMax = D3DXVECTOR3(-999999.0f, -999999.0f, -999999.0f); 
     
    for ( ULONG i = 0; i < m_nVertexCount; ++i ) 
    { 
        D3DXVECTOR3 * Pos = (D3DXVECTOR3*)&m_pVertex[i]; 
        if ( Pos->x < m_BoundsMin.x ) m_BoundsMin.x = Pos->x; 
        if ( Pos->y < m_BoundsMin.y ) m_BoundsMin.y = Pos->y; 
        if ( Pos->z < m_BoundsMin.z ) m_BoundsMin.z = Pos->z; 
        if ( Pos->x > m_BoundsMax.x ) m_BoundsMax.x = Pos->x; 
        if ( Pos->y > m_BoundsMax.y ) m_BoundsMax.y = Pos->y; 
        if ( Pos->z > m_BoundsMax.z ) m_BoundsMax.z = Pos->z; 
    }  
 
As you can see in the above example code, we represent the bounding box using two 3D vectors: one 
to store the minimum extents of the bounding box and one for the maximum extents. We could 
subsequently select components from each vector to describe the eight corner points of the box.  
 
Notice how we set the minimum vector components initially to very high values and set the maximum 
vectors components to very small values. We then loop through every (world space) vertex in the mesh 
and test each X, Y, and Z component against the corresponding component in both the minimum and 
maximum vectors. If for example we find that the vertex X component is larger than the current 
maximum vector X component, then the vertex X component will become the new maximum X 
component. Likewise, if the vertex X component is smaller than the currently stored X component in 
the minimum vector, then this becomes the new minimum X component. We do this for all vertices 
and all components so that when the loop ends, we have stored the minimum and maximum extents of 
the mesh along all three coordinate system axes. These two vectors now represent a world space axis 
aligned bounding box and all the mesh vertices will be contained inside. Again, remember that if you 
want a world space bounding volume and your vertices are defined in model space, then you will need 
to multiply each vertex by the object’s world matrix before performing the component tests above. 
 
 
Camera Space Frustum Plane Extraction 
 
Now we will need to learn how to extract the frustum planes for use in intersection testing. Before 
continuing, it is important that you fully understand the projection matrix topics discussed in Lessons 1 
and 2, so refer back to those discussions if you are feeling a little rusty. 
 
This discussion also assumes that you know what a plane is, so we will not cover that topic in great 
detail. However, we should note that there are two popular methods for storing plane representations. 
The first form stores the plane normal and a point known to be on that plane. The second form stores 
the plane normal and a distance to that plane from the origin of the coordinate system. For example, if 
we have a plane in world space, the distance tells us how close that plane passes by the world origin 
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(0,0,0). If a plane passes through the origin of the coordinate system then the distance to the plane is 0. 
This second form is the one we will be using for frustum extraction. 
 
The great thing about the projection matrix is that it holds all of the plane information for the view 
frustum. This means that instead of having to pump every vertex in our scene through the projection 
matrix to see if it is visible or not, we can extract the frustum planes from the projection matrix so that 
they are in camera space (or world space, but more on that later) and then use those planes for fast 
intersection testing on the CPU. 
 
Let us look at an example projection matrix that has a near plane of 10.0 and a far plane of 100.0 with 
an FOV of 60 degrees along the Y axis. As discussed in Lesson 1, the X axis FOV will be slightly 
different to compensate for screen distortion caused by the aspect ratio of the current screen or 
viewport dimensions.  
 
To create this projection matrix using D3DX: 
 
D3DXMatrixPerspectiveFovLH(&proj_m, D3DXToRad(60.0f), 1.333333f ,10.0f, 100.0f); 
 
Just to refresh your memory, the following shows us how the values of the projection matrix are 
calculated by the function. The actual projection matrix follows.  
 

Ratio = 11111111.1
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00732050808.10
000299038109.1
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In the projection matrix, the first three rows of each column represent a vector of varying magnitude 
that is aligned with the camera space X, Y, and Z axes respectively. You can see for example, that the 
first three rows of column 1 is a vector that points down the positive X axis in camera space. 
 
X Vector = (1.299038109, 0, 0) 
 
This vector is fully aligned with the camera space x axis (1, 0, 0) and the only difference is that it is not 
a unit length vector. If we were to normalize this vector so that it had a length of 1.0, it would be 
exactly the same as the X axis in camera space: 
 
Normalized X Vector = camera space Z Axis =  (1, 0, 0) 
 
This is also true for the first three rows of the Y column. It is a non-unit length vector exactly aligned 
with the Y axis in camera space.  
 
The first three rows of the W column represent a unit length vector aligned with the camera space Z 
axis.  
 
W Vector = camera space Z Axis = (0, 0, 1) 
 
It is important to us that the X and Y vectors are not unit length, because these vectors hold vital 
information about the relationship they have with each other. The W vector describes a movement of 
1.0 unit down the cameras space Z axis, and the Y vector (for example) describes the ratio of 
movement down the Y axis for each unit of W. In other words, the direction of the plane normals are 
described as ratios of movement along the X or Y axes, in relation to one unit of movement along the Z 
axis. If you do not recall why this would be the case, just remember that W = Z axis. 
 
Furthermore, the fourth row of each column can be used to extract the plane distance so that we will 
then have our complete set of plane information. For the moment however, forget about the fourth row 
of each vector since the Left, Right, Top, and Bottom clip planes all have distances of 0 in camera 
space. We will be using only the first three rows (which represent the plane normals) for the time 
being. 
 
Let us first see how we could extract the Bottom frustum plane normal of our 60 degree FOV frustum 
so that the normal is facing outwards. The following line of pseudo-code creates an un-normalized 
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plane normal for the bottom frustum plane by adding the W column of the projection matrix to the Y 
column of the projection matrix. We will discuss why we negate the result in a moment. 
 
BottomPlane->Normal = - (Column_4 + Column_2) 
 
Fig 4.27 should make everything clear. In the diagram we are looking down the negative X axis in 
camera space. The camera space Y axis is assumed to run bottom to top and the camera space Z axis 
from left to right. 
 

 
 

Figure 4.27 
 
First look at the camera space origin, and notice how the W vector of the projection matrix (0,0,1) 
represents a point at (0,0,1) along the camera space Z axis. Also note how the Y vector of our 
projection matrix represents a point at (0, 1.732050808, 0) along the camera space Y axis. If we 
combine these two vectors using the calculation shown above, we end up with the vector: 
                                                                                                 X          Y            W   
Column_4 + Column_2 = (0, 0, 1) + (0, 1.732050808, 0) = (0, 1.732050808, 1) 
 
We have now created a 3D coordinate in camera space. If we forget about the X coordinate for now 
because it is 0, and plot this point on some graph paper with a side-on view of camera space (Fig 4.27), 
we can see that this coordinate is plotted at Y=1.732050808 and Z=W=1. Remember that a coordinate 
is really just a direction vector that describes the direction and distance to a point from the origin of the 
coordinate system (camera space in this example). The green arrow in the above diagram shows the 
direction this vector is facing and we can see that it is in fact the un-normalized plane normal for the 
bottom frustum plane. A plane is always perpendicular to its normal, so to test this, if we rotate the 
normal around by 90 degrees, we should have a line representing the bottom frustum plane in the 
above diagram. We can see that this is the case; the blue line in the above diagram is at 90 degrees to 
the green direction vector. The angle between this plane and the camera space Z axis is exactly half of 
our FOV. This is correct because when we extract the Top plane, which will also be at an angle of 30 
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degrees from the camera Z axis, together they will form an angle of 60 degrees (30 degrees top and 
bottom) off the camera space Z axis. So indeed we can see that the vector that we have just created (the 
green arrow) describes the orientation of the Bottom frustum plane. It is not yet unit length of course, 
but if we were to normalize it, we would have the plane normal such that the ‘front’ of the Bottom 
frustum plane would be facing inwards (pointing towards the Top plane actually). 
 
Our preference in this lesson will be that our frustum planes have their normals face outwards instead 
of inwards. To do this, we simply negate the resulting vector, which has the effect of flipping the green 
line in the above diagram (see the direction of the blue arrow labelled ‘Reversed Plane Normal’). That 
is why we used the minus sign in the initial formula. After normalizing this inverted vector, we would 
have our outward facing plane normal (blue arrow) for the Bottom frustum plane. Note that the choice 
to flip the direction of the plane normal vectors during extraction is a matter of preference only. We 
did this because when the frustum planes all point outwards and we test a point against the plane, the 
results of the dot products are more intuitive. If any point is found to be outside a frustum plane, it will 
have a positive distance returned.  
 
This technique can be repeated to extract all six clip planes. It should be clear from the diagram, that if 
we subtracted column 2 from column 4, rather than adding them like we did above, we will end up 
with a coordinate: 
                                                                                                   X             Y            W   
Column_4 – Column_2 = (0, 0, 1) - (0, 1.732050808, 0)   =  (0, -1.732050808, 1) 
 
This new vector is the green arrow in Fig 4.28.  We can see that it works exactly the same way as the 
previous diagram. This time, subtracting the Y vector instead of adding it to the W vector, returned the 
un-normalized, inward facing plane normal for the Top clip plane. 
 

 
Figure 4.28 
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Since we prefer our plane normals to face outward, we flip the direction 180 degrees by negating the 
result so that the green arrow in the above diagram would face in the same direction as the blue arrow. 
So the extraction of the top frustum plane becomes: 
 
TopPlane->Normal =-(Column_4 – Column_2) 
 
Keep in mind that this vector is not normalized, so if we need normalized planes we will have to do 
this next. 
 
Take some time to study how the above examples worked. If you have fully understood everything 
discussed, you should be able to figure out how the Left and Right frustum plane normals could be 
extracted. In this case we add or subtract the X column of the projection matrix from the W column 
instead (and invert the result for outward facing planes).  
 
LeftPlane->Normal   =-(Column_4 + Column_1) 
RightPlane->Normal =-(Column_4 – Column_1) 
 
Fig 4.29 shows how the Left plane extraction works. The diagram looks at camera space from a top-
down view such that the camera space Z axis runs from bottom to top and the camera space X axis 
runs from left to right. 
 

 
 

Figure 4.29 
 
By adding column 1 of the matrix to column 4 of the matrix, we create a vector that is perpendicular to 
the left clip plane (the green arrow). Because we have created the vector using column 1 instead of 
column 2, we end up with a left clip plane that is 39.99 degrees from the camera space Z axis. 
Remember that this describes only half the FOV since the Right clip plane will also be at an angle of 
39.99 degrees from the camera space Z axis.  
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So far we have looked only at extracting the plane normal from the matrix. However, the distance to 
the plane is also calculated as part of the process.  
 
Left Plane->Normal=-(Column_4 + Column_1) 
 
In this case we are in fact extracting four pieces of information about the plane. If we look at the 
addition at the component level, we would see this more clearly: 
 
Left Plane->Normal.X= - (m14 + m11) 
Left Plane->Normal.Y= - (m24 + m21) 
Left Plane->Normal.Z= - (m34 + m31) 
Left Plane->Distance = - (m44 + m41)  
 
We have not discussed how it is exactly that the fourth row contains the distance parameter, and for 
good reason. Because plane extraction from the projection matrix extracts the planes in camera space, 
the camera is the center of the origin. As the center of camera space is the origin for the Left, Top, 
Right, and Bottom planes (our view cone starts at camera (0,0,0)), it means the distance for these 
planes will always be 0.  
 
The Near and Far planes however are perpendicular to the camera, and are also some distance away. In 
our example so far, we know that our near plane is at a distance of 10 units and our far plane is at a 
distance of 100 units (these were our settings when we created the matrix). Let us look at the how we 
extract the far plane first: 
 
Far Plane->Normal = -(Column_4 – Column_3) 
 
Do you see the recurring pattern here? 
 
Just as with the other planes, we use column 4 again, but this time use column 3 as the vector to 
subtract from it, because this column contains the Z information for the near and far planes. If we write 
out the far plane extraction formula above, we can more clearly see what is happening: 
 
Far Plane->Normal.x = - (m14 - m13) 
Far Plane->Normal.y = - (m24 - m23) 
Far Plane->Normal.z = - (m34 - m33) 
Far Plane->Distance  = - (m44 - m43) 
  
Have another look at the projection matrix we are working with: 
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First let us see what subtracting the first three rows of W and Z produces as a direction vector: 

 
 
-(Column_4 – Column_3) = -( (0,0,1)-(0,0,1.11111111) ) = (0 , 0 , 0.11111111) 
 
This result certainly seems correct, for if the vector were normalized it would become: 
 
Normalize( (0, 0, 0.111111) ) = (0, 0, 1) 
 
This is just what the far plane normal should be -- facing down the camera space Z axis.  
 
Now let us see what happens when we try to extract the distance to this plane (which we know to be 
100 units away from the camera): 
 
Distance = -(m44 – m43) = -( 0 - -11.11111111 )= -11.1111111111 
 
That is not correct at all now is it?  
 
Remember that the plane normals must be normalized in order to make them unit length. What we 
have to do then is, in addition to normalizing the plane normals, normalize the distance as well. 
Therefore, we could say that whilst the projection matrix does indeed contain the frustum plane 
information, this plane information on the whole is not normalized. When we normalize the plane, the 
plane normals we have extracted will become unit length and the plane distances we have extracted 
will also be scaled by the same amount. This way they will accurately describe the plane distance. If 
we do this for all six planes, we will finally have our six normalized frustum planes.  
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Normalizing a Plane 
 
Recall from Lesson 1 that normalizing a vector scales the vector so that it has a length of 1 while still 
keeping the individual components of the vector in proportion with each other. To calculate the length 
of a vector we used the following formula: 
 

ZYXthVectorLeng 222 ++=  
  
If for example, we had a vector of (3,0,9), the length of that vector would be calculated as: 
 

4868329.9)9*9()0*0()3*3( =++=thVectorLeng  
 
This vector is quite clearly not a unit vector because it has a length greater than 1.0. In order to make 
this vector unit length, we divide each component of the vector by its length: 
 

)9486833.0,0,316227768.0(
4868329.9

9,
4868329.9

0,
4868329.9

3
=






=UnitVector  

 
Just to verify that this worked and that we indeed have a unit normal, let us calculate its magnitude: 
 

0.1)9486833.0*9486833.0()0*0()316227768.0*316227768.0( =++=thVectorLeng  
 
We now know how to normalize a vector, but to normalize a plane we must also normalize the 
distance value. This is not a problem. All we have to do is divide the distance value by the length of 
the direction vector also, because the direction vector and distance value are proportional to each other 
in the matrix. So, we will get the length of the plane vector that we extract from the projection matrix 
and divide this vector by its own length to normalize it. This creates a unit length frustum plane 
normal. Then we divide the plane distance by the vector length and we are done. Let us try that now 
with our Far plane information: 
 
Far Plane->Normal.x = - (m14 - m13) = - (0 – 0)    =0 
Far Plane->Normal.y = - (m24 - m23) = - (0 – 0)    =0 
Far Plane->Normal.z = - (m34 - m33) = - (1 - 1.11111111) =0.11111111 
Far Plane->Distance  = - (m44 – m43)= - (0 - -11.11111111)      = -11.1111111111 
  
First we normalize the plane direction vector (0, 0, 0.11111111): 
 
Vector Length= 11111111.0)11111111.0*11111111.0()0*0()0*0( =++  
 
Now we need to divide each component of the vector by this length to normalize it to a proper plane 
normal:  
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Plane Normal= )1,0,0(
11111111.0
11111111.0,

11111111.0
0,

11111111.0
0

=





  

 
Finally, we divide the distance by the original vector length (0.11111111) and see what happens: 
 

Distance= 100
11111111.0

11111111.11
−=

−  

 
Now there is our correct plane distance. In case you are wondering why it is a negative number, the 
distance is always negative if we are behind the plane. Because we have flipped our far plane so that it 
faces away from the camera, the origin of camera space is indeed 100 units behind the plane. 
 
So frustum plane extraction is really just a case of adding/subtracting the X, Y and Z vectors from the 
projection matrix to/from the W vector of that same matrix. Then we normalize the planes by dividing 
the vector by its length, and divide the plane distance by the vector length as well. 
 
Before we list all of the extraction formulas for each plane, for completeness, let us look at how the 
final plane extraction works (the Near plane). We know that it should be 10 units away from the 
camera in camera space and, unlike the far plane, have its normal facing towards the camera. 
 
The near plane is actually an exception to the approach we have been using, in that we do not have to 
use the W column vector for addition/subtraction. In fact it is the easiest case, because the full set of 
plane information is already contained inside the Z vector of the projection matrix. All we have to do 
is extract and normalize the 3rd column of the matrix and we have our near plane. 
 
Our 3rd column looked as follows: 

 



















− 11111111.11
11111111.1

0
0

 

 
If you have forgotten what these numbers represent, then refer back to Lesson 2 where we talked about 
how to set up this column in detail. The plane can be extracted simply by doing the following: 
 
Near Plane = -(Column_3) 
 
Therefore: 
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Near Plane->Normal.x=-m13 
Near Plane->Normal.y=-m23 
Near Plane->Normal.z=-m33 
Near Plane->Distance =-m43 
 
All we have to do is normalize the above information, and we will have a plane normal of (0, 0, -1) and 
a plane distance of 10.0.  
 
First we extract the normal, which will of course be (0, 0, -1.11111111). Remember that the value 
1.11111111 was our scaling ratio to map the input z value to a Z-Buffer value. Also recall that the 4th 
row in the column is the actual distance to the near plane, multiplied by the ratio. Therefore, both of 
these values need to be divided by the scaling ratio to reduce the normal to a unit vector and reduce the 
distance back into a camera space distance (which should result in a distance of 10.0).  
 

Vector Length= 11111111.111111111.10.00.0 222 =++ −  
 

Near Plane->Normal= =





−
11111111.1
11111111.1,

11111111.1
0,

11111111.1
0


  (0, 0, -1) 

 

Near plane->Distance= =
11111111.1
11111111.11 10.0 

 
 
Frustum Extraction Code 
 
The following code snippet assumes that we have a plane structure defined as follows: 
 
struct PLANE 
{ 
    D3DXVECTOR3 Normal; 
    FLOAT     Distance; 
};  
 
It also assumes that we have allocated an array of six PLANE structures to hold the six frustum planes. 
 
PLANE Planes[6]; 
 
Finally, our code assumes that the projection matrix has already been set up correctly. 
 
D3DXMATRIX M;  //our projection matrix 
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The following code extracts and normalizes the planes. If you prefer inward facing planes then simply 
remove the minus sign from the beginning of each line. 
 
// Left clipping plane 
Planes[0].Normal.x = -(M._14 + M._11); 
Planes[0].Normal.y = -(M._24 + M._21); 
Planes[0].Normal.z = -(M._34 + M._31); 
Planes[0].Distance = -(M._44 + M._41); 
 
// Right clipping plane  
Planes[1].Normal.x = -(M._14 - M._11); 
Planes[1].Normal.y = -(M._24 - M._21); 
Planes[1].Normal.z = -(M._34 - M._31); 
Planes[1].Distance = -(M._44 - M._41); 
 
// Top clipping plane  
Planes[2].Normal.x = -(M._14 - M._12); 
Planes[2].Normal.y = -(M._24 - M._22); 
Planes[2].Normal.z = -(M._34 - M._32); 
Planes[2].Distance = -(M._44 - M._42); 
 
// Bottom clipping plane  
Planes[3].Normal.x = -(M._14 + M._12); 
Planes[3].Normal.y = -(M._24 + M._22); 
Planes[3].Normal.z = -(M._34 + M._32); 
Planes[3].Distance = -(M._44 + M._42); 
 
// Near clipping plane  
Planes[4].Normal.x = -(M._13); 
Planes[4].Normal.y = -(M._23); 
Planes[4].Normal.z = -(M._33); 
Planes[4].Distance = -(M._43); 
 
// Far clipping plane  
Planes[5].Normal.x = -(M._14 - M._13); 
Planes[5].Normal.y = -(M._24 - M._23); 
Planes[5].Normal.z = -(M._34 - M._33); 
Planes[5].Distance = -(M._44 - M._43); 
 
// Normalize the planes 
for ( int i = 0; i < 6; i++ )  
{ 
            // Get magnitude of Vector 
 float denom = 1.0f / D3DXVec3Length(&Planes[i].Normal);  
            Planes[i].Normal.x *= denom; 
 Planes[i].Normal.y *= denom; 
 Planes[i].Normal.z *= denom; 
 Planes[i].Distance *= denom; 
}  
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It is worth mentioning that you are not required to normalize the planes if you all you want to do is 
classify a point against a plane to see if it is in front or behind. The sign of the classification will be 
correct even if the planes are not normalized -- which is all you need for simple front/back tests. If you 
need to know the correct distance to the plane, then they will need to be normalized.  
 
 
World Space Frustum Plane Extraction 
 
As mentioned, extracting the planes from the projection matrix results in planes defined in camera 
space. This means that the distance value of the Top, Bottom, Left and Right planes will always be 
zero. If this is the case, then why extract it at all? Why not just set it to 0 in the plane structure 
automatically? We do this is because we can combine the view matrix with the projection matrix, and 
without any alteration to our extraction code, extract the frustum planes in world space.  
 
The problem with our frustum planes being in camera space is that testing geometry or AABBs against 
these planes requires that we transform all objects from world space into camera space. With even a 
moderately sized scene, this can mean pushing a lot of vertices through the view matrix. With the 
frustum planes in world space, we do not have to do this since our objects (and their bounding 
volumes) are generally defined in world space to begin with. This is far more optimal. 
 

NOTE: The code to extract the frustum planes in world space is exactly the same as the code we have 
already created. All we have to do is combine the View Matrix and the Projection Matrix (multiply them 
together) prior to extracting the planes. This will automatically extract planes in world space. This is 
also why, in the previous code, we extracted the distance for the Top, Bottom, Left, and Right planes. 
In world space, the Left, Top, Right, and Bottom frustum planes (which always pass through the 
camera origin) may not be anywhere near the origin of world space. They might also be rotated at an 
angle so that the camera space Z axis is not aligned to the world space Z axis. In this situation the 
distance of each plane will be the distance from the plane to the origin of world space. Thus, the 
distances of all planes will most often not be zero anymore. 

 
To extract the frustum planes in world space, all we have to do is concatenate the view and projection 
matrices before running the plane extraction code: 
 
D3DXMatrixMultiply(&M , &ViewMatrix, &ProjMatrix); 
 
M is the matrix that stores the result of the matrix multiplication. 
 
What you must remember is that if the camera moves, we have to re-extract the frustum planes, 
because they move and rotate with the camera when the view matrix is updated. Usually this means 
extracting the frustum planes once each frame, or at least every time the view matrix is changed. This 
is not necessary if you are extracting planes in camera space since the projection matrix usually 
remains unchanged throughout the life of the application.  
 
Combining the view matrix with the projection matrix has the effect of rotating and translating the 
plane information using the camera’s positon and orientation. Before we finish up here, let us see this 
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working using some real numbers. We will use the same 60 degree projection matrix from our 
previous example, and we will create a new view matrix to test it out.  
 
For this example, let us set up a simple view matrix that will make things easy to follow. We will 
position the camera at (0,0,0) in world space (camera space origin=world space origin), but will rotate 
the camera 45 degrees to the right. The Up vector will be aligned with the world Up vector (0,1,0). 
 

Note: Remember that all vectors MUST be unit length vectors in the view matrix 
 

RIGHT      UP     LOOK 



















−
1000
0707107.00707107.0
0010
0707107.00707107.0

 

 
 

In our example view matrix, the Look vector is pointing in equal proportion along the X and Z axes. 
Since the Look vector is actually the camera space Z axis, you should be able to see that the angle 
between the world Z Axis (0,0,1) and the camera space Z Axis (0.707107, 0, 0.707107) is 45 degrees. 
The Up vector (camera space Y) is the same as the world Y axis, since we have not pitched or rolled 
the camera at all. The angle between the Right vector (camera space X) and the world space X axis is 
also 45 degrees -- as it should be.  
 
When we multiply the above matrix with our projection matrix, the frustum plane normals should be 
rotated 45 degrees. We will test this out by extracting the Left plane to make sure that this definitely 
works out.  

 
RIGHT      UP     LOOK                      X                       Y                        Z             W 



















−
1000
0707107.00707107.0
0010
0707107.00707107.0



















−

×

011111111.1100
111111111.100
00732050808.10
000299038109.1

 

                             View Matrix    Projection Matrix 
 
The resulting combined matrix is shown next: 
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X                 Y                  Z                 W 



















−
−

0111111.1100
707107.0785674.00918559.0

00732051.10
707107.0785674.00918559.0

 

 
While the numbers in the above matrix may not immediately leap out at you as explaining what has 
happened, it is easy to verify our theory if we plot the X, Y, and W values on some graph paper. 
However, if you look at the new W vector, it should make things clear. Remember that this vector in 
the projection matrix points straight down the camera Z axis (W=0,0,1). In camera space this is always 
the camera Look vector. In the resulting matrix however, it has now been rotated to match the Look 
vector in the view matrix, which makes clear that it has been rotated 45 degrees. The same is true for 
the X, Y, and Z vectors – they have all been rotated 45 degrees as well.  
 
Fig 4.30 shows an example of a Left frustum plane extraction. The image on the left is the camera 
space version and it is identical to the one we saw earlier. On the right, we have plotted the vectors 
from the new combined matrix to see how the Left plane has been rotated. Recall that the normal 
vector and the distance for the left clip plane are still extracted as:  
 
Left Plane->Normal.X = - (m14 + m11) = 1.62566 
Left Plane->Normal.Y = - (m24 + m21) = 0 
Left Plane->Normal.Z = - (m34 + m31) = -0.211452 
Left Plane->Distance  = - (m44 + m41) = 0 
 
 

 
 

Figure 4.30 
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The green arrows in Fig 4.30 show the plane normal stored in the matrix while the plane itself is shown 
by the thick blue lines. Notice in the image on the right (where we see the rotated camera) that the 
green vector has also been rotated – indicating the left plane has been rotated as well. 
 
Before finishing up here, it is worth mentioning that you can extract the frustum planes for model 
space testing using the following set of combined matrices: 
 
 WorldMatrix*ViewMatrix*ProjectionMatrix 
 
The world matrix would belong to the object whose local space you wish to run the test in. 
 
 
Frustum Culling an AABB 
 
In order to test whether or not an AABB is within the frustum, we have to check each of the six 
frustum planes against the bounding box. You might be thinking that in order to test whether or not an 
AABB is within the frustum, all we have to do is check the eight corner points of the box to see if any 
of them are behind all the frustum planes and therefore at least partially contained within the frustum.  
In fact, this is not sufficient, as Fig 4.31 demonstrates: 
  

 
Figure 4.31 

 
In Fig 4.31, although the corner points of the bounding box are outside the view frustum, the bounding 
box would still be considred partially visible, as one of its edges intersects the frustum.  
 
The solution is to test each plane against a single point on the bounding box. This point will be one of 
the corners of our bounding box, but which corner we use depends on the orientation of the current 
frustum plane being tested. If we imagine that the AABB is completely outside the frustum and just 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 59 of 64 

 

TeamLRN



 

about to intersect the current plane being tested, the point we wish to test would be the first corner 
point on the box that would intersect it. This point is called the negative or near point. 
 
What we will do is examine each component of the plane normal, and select an appropriate AABB 
corner as the near point. We can then test this near point against the plane and if it is outside the plane 
then we know for a fact that the entire bounding box is also outside the frustum. This near point 
selection process will happen once for each plane, because each plane will have a different orientation. 
The basic concept is as follows: 
 
For each frustum plane, we examine the components of the plane normal: 
 

• If the 'x' component of the plane normal is negative, then we use the bounding box's x 
maximum point as our near point's x component.  Otherwise, we use the bounding box's x 
minimum component.  

 
• If the 'y' component of the plane normal is negative, then we use the bounding box's y 

maximum point as our near point's y component.  Otherwise, we use the bounding box's y 
minimum component.  

• If the 'z' component of the plane normal is negative, then we use the bounding box's z 
maximum point as our near point's z component.  Otherwise, we use the bounding box's z 
minimum component.  

At this point, we will have constructed a near point (3D vector) to test against the current frustum 
plane. If this point is in front of the current plane (remember that frustum planes point outwards), then 
we can exit the test immediately. We do not have to check the other planes in this case, because the 
near point being outside (in front) of a plane tells us that the entire AABB must be outside the frustum. 

If the near point is behind the plane, then we must continue to test the other planes. For every plane 
that we test, we have to build a new near point using the logic above. Again, if at any point the current 
near point is in front of the current plane being tested, then we can exit the test and know that the 
AABB is completely outside the frustum.  If we test all six planes and do not find a near point that is in 
front of one of the planes, then this means that the AABB is at least partially inside the frustum. In our 
workbook example code, when this happens, the function returns a value of ‘true’ and the object will 
be rendered. 

If you are having trouble visualizing this concept, the following diagram should help. It depicts two 
AABBs (A and B) and a set of six frustum planes. 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 60 of 64 

 

TeamLRN



 

 

Let us imagine that we first want to 
check the left (L) clip plane of the 
frustum and the camera is facing due 
north. In this case, the left clip plane’s 
normal would be facing in the negative 
x direction, which means that we will 
use the AABB x maximum point as our 
near point x component. The same is 
true for the z component of the plane 
normal. This too would be a negative 
component, meaning we would use the 
AABB maximum z component as the 
near point’s z component. (Forget about 
y for now, because we are looking top-
down and the plane has no y 
orientation.)  In this case then, the near 
point (corner point of the AABB) used 
will be in the top right of the box, as
indicated by the green square (the left 
box in the diagram). Looking at this 
corner point on Box A and remembering 
that planes are infinite, you should be 
able to see that if this near point is in 
front of the left plane, the whole AABB 
must be as well -- and therefore there is 
no way that this AABB can be inside or 
even partially inside the frustum.
 
When testing the right plane, a different 
near point is used because the plane 
normal’s x component now faces in a 
positive direction, which means we use 
the AABB's x minimum component as 
the near point’s x component. Z is still 
facing the same way (negative), so we 
still use the AABB's max z component. 
This gives us the corner indicated by the 
red boxes in the diagram 
 
Look at Box B and you should also be 
able to see that if the red corner is in 
front of the right plane, then the entire 
AABB must be also.   
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Let us do a quick run through for the bounding boxes depicted in the previous diagram. We will start 
with Box A.  First we test the left frustum plane, which creates the green near point seen above.  For 
Box A, the near point is in front of the left plane, so the box is not within the frustum and the function 
returns false.  Next we test Box B. Once again, we test the left plane against the near point (green 
corner) and discover that this point is behind the left plane. This means it might be within the frustum.  
In this case, instead of returning from the function, we move on to test the next plane, which in this 
case is the right plane. Because we are testing the right plane now, a different near point is created (the 
red corner) and tested against the right plane. In this case, however, the near point of Box B is in front 
of the right plane, so the entire AABB must be in front also. This causes the function to return false. 
We will do this for all six planes, unless we find that the current near point is in front of the current 
plane being tested. In summary, if an AABB is within the frustum, then the near points generated for it 
during the test will be behind all six of the planes. 

Let us now take a look at a function called IsBoxInFrustum, which will be passed a bounding box as 
two vectors (minimum and maximum extents) along with an array of six planes containing the frustum. 
The frustum planes should have already been extracted at this point and stored in this array using code 
similar to the extraction code discussed earlier. IsBoxInFrustum can be called while we are rendering 
to see whether an object about to be drawn can actually be seen given the current position and 
orientation of the camera represented by the input planes. If the function returns false, then we do not 
want to draw the object. The code is basically a bunch of conditional statements that build the near 
point for the current plane being tested. Once the near point is found, a simple dot product between the 
near point and the plane determines whether or not the near point is in front of or behind the plane: 

bool IsBoxInFrustum(D3DXVECTOR3 *bMin, D3DXVECTOR3 *bMax, PLANE *FrustumPlanes) 
{ 
 D3DXVECTOR3  NearPoint; 
 PLANE *Plane=FrustumPlanes; 
 
 for (int i=0;i<6;i++) 
 { 
   if (Plane->Normal. x > 0.0f) 
   { 
    if (Plane->Normal. y > 0.0f) 
    { 
     if (Plane->Normal. z > 0.0f) 
     { 
       NearPoint. x = bMin. x; NearPoint. y = bMin. y; NearPoint. z = bMin. z; 
     }  
     else 
     { 
       NearPoint. x = bMin. x; NearPoint. y = bMin. y; NearPoint. z = bMax. z; 
     } 
    } 
    else 
    { 
     if (Plane->Normal. z > 0.0f) 
      { 
       NearPoint. x = bMin. x; NearPoint. y = bMax. y; NearPoint. z = bMin. z; 
      } 
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      else 
      { 
       NearPoint. x = bMin. x; NearPoint. y = bMax. y; NearPoint. z = bMax. z; 
       } 
     }  
   } 
   else 
   { 
    if (Plane->Normal. y > 0.0f) 
    { 
     if (Plane->Normal. z > 0.0f) 
      { 
       NearPoint. x = bMax. x; NearPoint. y = bMin. y; NearPoint. z = bMin. z; 
      } 
      else 
      { 
       NearPoint. x = bMax. x; NearPoint. y = bMin. y; NearPoint. z = bMax. z; 
      } 
    } 
    else 
    { 
     if (Plane->Normal. z > 0.0f) 
      { 
       NearPoint. x = bMax. x; NearPoint. y = bMax. y; NearPoint. z = bMin. z; 
      }  
      else  
      { 
       NearPoint. x = bMax. x; NearPoint. y = bMax. y; NearPoint. z = bMax. z; 
      } 
    } 
 } 
 
 // near extreme point is outside, and thus 
 // the AABB is totally outside the polyhedron 
 if(D3DXVec3Dot(&Plane->Normal, &NearPoint) + Plane->Distance > 0) 

 return false; 
 
 Plane++;  
} 
 
return true; 
} 
 

 
The camera class in our lab project contains very similar code to what we have explored here in these 
last few sections. A function called CCamera::CalcFrustumPlanes takes no parameters and extracts the 
planes from the camera view matrix and stores them in the CCamera::m_Frustum array (an array of six 
plane structures). Although this function is called each frame to keep the world space frustum planes 
up to date, the camera maintains a Boolean variable called ‘m_FrustumDirty’ which is set to true only 
when the projection matrix or the view matrix has been updated. The function will test this Boolean 
and re-extract the frustum planes only if one of these matrices has been altered. During the 
CTerrain::Render function, the bounding box of each terrain mesh is passed into the 
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CCamera::BoundsInFrustum function. The call will return true if the bounding box is inside or 
partially inside the frustum and we will know that the terrain submesh needs to be rendered. Be sure to 
look at the source code to the CCamera class for more details. 

This concludes our coverage of frustum culling for this course. However, in the next course in this 
series, our frustum culling code will take a significant leap forward. Not only will it allow for more 
bounding volume types to be tested, but it will also add code that distinguishes between ‘fully inside’ 
and ‘partially inside’. This will be important for the types of hierarchical bounding volume structures 
we will be working with in our engine design. Finally, we will add some optimization code that 
minimizes redundant plane testing in scene hierarchies and also provides frame-to-frame coherence 
(i.e. the intersection status that resulted in the last frame is often going to be the same in the next frame 
– we can speed things up considerably with this in mind).  Do not concern yourself with these issues 
for the moment. For now, just be sure that you understand the basic concepts discussed here in this 
lesson. We will be getting to more complex visibility determination strategies in due time.  

 
Conclusion 
 
We now have a good understanding of transformations, the view matrix, and the differences between 
various popular camera systems. We have also had another look at the projection matrix and now 
better understand the relationship it has with what things are considered visible and what items in the 
scene do not need to be drawn. Please turn to your workbook and examine the source code and 
additional discussion for this lesson. The camera and player classes we create in this lesson will 
provide a nice framework on which to build and refine your own camera systems down the road.  
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In this lesson we will implement and examine the code for a reusable camera system for our games. 
We begin with a brief introduction to the overall design goals and then proceed to examine the source 
code. Note that the camera system we study in this lesson is the same one used in Lab Project 3.2. We 
will learn how to: 
 

• implement first person, third person and cockpit style camera perspectives 
• perform local and world transformations on our camera 
• move our camera around in the environment with some simple physics 
• use the camera frustum to cull geometry that cannot be seen 

 
 
Lab Project 4.1: Designing a Camera System 
 
We would like to implement the three camera types so that they can be used together in a single 
application and can be seamlessly switched from one to the next. It would nice for example, to be able 
to attach a camera to any non-player character in your game world and be able to change between first 
person camera mode (where you are looking through its eyes) and third person camera mode where 
you are following the character itself. We will implement this connectivity between cameras and 
meshes by implementing two new classes. The first class will be the CCamera class which has the core 
functionality you might expect. The second class we will implement will actually be the class we use 
to indirectly control the camera. This class will be called CPlayer and it has the following qualities: 
 

• Our application will not directly move the camera. It will attach the camera to a CPlayer object. 
Our application will call functions such as CPlayer::Move. This will move the player and the 
camera that is attached to the player depending on whether the Player has been put into first 
person mode, third person mode, or space craft camera mode. 

• The CPlayer object can have a CObject attached to it. This is the CObject class we have been 
using in previous demos which basically contains a world matrix for the object and the CMesh 
of the object. 

• If the CPlayer is in third person camera mode, the CObject has its mesh rendered, and the 
camera is placed at the offset from the model that we specify. Moving the CPlayer will move 
the CObject model. The camera is reset when the player is moved so that it follows the model. 
The camera remains at a distance from the mesh specified by the CPlayer’s offset vector which 
we set with a call to CPlayer::SetCamOffset. This is totally configurable. 

• In first person mode, the CMesh is not rendered. In this mode you can think of the player as 
being the body position of the mesh, and the camera as being at the position of the mesh’s head. 
The CPlayer offset vector is used to offset the camera much like it is in third person mode. In 
our demonstration, we set the CPlayer object into first person mode at application start-up and 
call CPlayer::SetCamOffset with a vector of          (0, 10 ,0). This places the camera 10 units 
vertically above the position of the CPlayer object. 

• In space craft camera mode, we set the camera offset to zero (0,0,0) where the camera is 
situated exactly at the position of the CPlayer. This can all be configured, but seemed nice for 
our demonstration. 
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• The CPlayer object will experience gravity. This will be configurable with a call to 
CPlayer::SetGravity. A vector is passed by the application describing the direction and 
magnitude of the gravity vector. We use a gravity vector of (0,-400, 0) which seemed to work 
nicely for our demo. The gravity vector is applied to the CPlayer object each frame so that the 
CPlayer always has a downward acceleration applied to it. Obviously, if the CPlayer object is 
already on the terrain, then this is cancelled out, but if the CPlayer object finds itself in mid air 
(such as if you walk off the edge of one of the higher parts of the terrain) the CPlayer will fall 
to the ground. The rate at which it falls depends on the length of the gravity vector combined 
with how we set the maximum Y velocity (more on this later). Notice that we could send in a 
vector such as (0,500,0) which would actually be like gravity in reverse where the CPlayer 
would naturally float upwards to simulate buoyancy although it is probably not very useful to 
do it this way. 

• We can set a camera lag value which provides a more fluid camera tracking system in third 
person mode. This way, when the CPlayer rotates, the camera does not rotate instantly like it is 
stuck on a big wooden rod. Instead, the player will rotate first with the camera catching up a 
fraction of a second later. We call the CPlayer::SetCameraLag function to specify in seconds 
the lag that we desire. Specifying a value of 0.25 for example would cause a ¼ of a second 
delay between the CPlayer rotating and the CCamera realigning itself with the player. The lag 
value is only applied to the camera in third person camera mode. 

• The player object can have a friction value applied each frame which is set with a call to 
CPlayer::SetFriction. This allows the camera to slow to a halt gracefully instead of just coming 
to an abrupt stop when the forward key is released. So when we press the forward key, we 
apply acceleration along the velocity vector. If we had no friction, then one tap of the key 
would set the velocity vector and then this velocity vector would be added to the camera 
position every frame. This means, one tap on the key would make our CPlayer travel on forever 
even if the key was released. By specifying a friction value, this value is decreased from the 
velocity vector each frame. If the key is being held down (and providing we set our friction 
correctly) the acceleration being applied by the key press will overpower the friction allowing 
us to accelerate to some maximum full speed. Once we release the key however, and we are no 
longer applying any forces, the friction value will decrement the speed in small portions until it 
becomes zero and our player comes to a complete stop. If the friction you specify is larger than 
the acceleration applied each frame, your CPlayer object will not move at all since it does not 
have enough forward momentum to break through the friction force. All of this will be 
configurable so you can tailor the system to suit your needs. 

 
 
While this seems like quite a lot of stuff too implement, it is not nearly as difficult as it sounds once we 
understand the basic system. Let us first review how the CPlayer and CCamera classes will be used 
before we cover the code that actually implements their functionality. 
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CPlayer / CCamfirstPerson Overview 
 
In first person mode, you can think of the CPlayer object as being the body of the player where the 
attached camera is its head. Moving the body of the player moves its head, but the head may also be 
rotated independently (looking up and down for example). So the CPlayer object and the CCamera 
object will need to maintain a set of local axes (Up, Look, and Right vectors). Usually, when we set the 
CPlayer object into first person mode, we will want to specify some offset using 
CPlayer::SetCamOffset to position the head in the correct position. In our application we use a vector 
of (0, 10, 0) so the camera is placed at a distance of 10 units above the player to emulate roughly where 
the position of the head might be in relation to the body. The CPlayer axes define the player’s local 
coordinate system where the axes meet at the feet of the player. The camera local axes define the 
camera local coordinate system where the axes meet in the center of the players head. 
 

 
 
The CPlayer object can be rotated about all three axes with a call to CPlayer::Rotate (X, Y, Z).  
 
X Rotation (Pitch) 
When we specify an X axis rotation, we wish to pitch the player upwards or downwards. It makes little 
sense for the player object to rotate about its own X axis. In real life if we wanted to look up or down 
we would rotate our heads back or forward, not our whole body. So, when the player is in first person 
camera mode, the rotation request is passed straight to the camera class by calling the 
CCamfirstPerson::Rotate(X,Y,Z) function. The first person camera class rotates the camera about its 
own right vector (not the player right vector) allowing us to pivot the camera up and down like a head 
belonging to a body, as shown in the previous picture. Even though the CPlayer object does not 
directly pitch itself, it does retain the current pitch angle of the camera and restricts rotations past 89 
degrees in both directions. This mirrors real life where your head will only look up or down so far and 
will not rotate completely around so that you are looking behind you. So then, in first person mode, the 
camera pitches by a limited amount around its own right vector. 
 
Y Rotation (Yaw) 
The Y axis rotation is the one rotation that does physically affect the orientation of the player in first 
person mode. This is because the Y axis rotation is like the body of the person rotating himself/herself 
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left or right so that they are now facing in a new direction. Therefore, when a Y axis rotation is 
specified, both the head (the camera) and the body (the player) are rotated about the player Up vector 
(local Y Axis). The result is that the right vectors of both the CCamera and the CPlayer remain 
synchronized because they always yaw together.  
 
The following image shows how a Yaw works. The camera has already been pitched up so that it is 
rotated about its own Right vector. This is like the user rotating his head up to look at something in the 
sky. Now if we were to perform a Y axis rotation on the player, he would rotate about his own Up 
vector and forward the Y rotation request to the camera. The CCamfirstPerson class would rotate the 
camera about the player Up vector so that they both yaw about the same axis together. 
 

 
 
Z Axis Rotation (Roll) 
One might think that the player should ignore Z axis rotation requests when in first person camera 
mode. But we will actually use this request to lean the camera. This is used in many of today’s games 
(Metal Gear Solid™, Splinter Cell™, etc.) to give the user the ability to poke his head around a corner 
to see what is coming without revealing his body as a target.  
 
When the player is in first person camera mode, the CPlayer object does not do anything with the 
request except record the current roll angle of the camera and limit this roll angle if it is greater than 20 
degrees (an angle that worked well for our purposes). After that, it sends the request to the first person 
camera class which rotates itself about the player Look vector as the following image shows: 
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The image above shows the effect of using our demo application values for camera offset. As you can 
see, the camera is not rotated about its own look vector, but is instead rotated about the look vector of 
the CPlayer object. This is basically like rotating the camera about the player’s feet by 20 degrees. If 
you imagine the camera to be the player’s head and the CPlayer coordinate system origin to be the feet, 
the green line which is the camera Up vector (local Y Axis) represents the attitude of the leaning body. 
One could argue that we are in fact dislocating the head from the body here, but remember that in first 
person mode there is no physical body that we are rendering. To do the same thing in third person 
mode would require an animation for the character such that it looks like they are peering around the 
corner when this request is made. 
 
 
CPlayer / CCamthirdPerson Overview 
 
The nice thing about driving all the camera classes from a single base class is that the CPlayer does not 
need to know which CCamera derived class it is using. It can simply call all functions through the base 
class interface. Therefore, if a CCamera derived class does not want to do anything in reaction to the 
player being rotated about his X axis, it can simply ignore such requests in its own rotation function. 
The player can still call the CCamera::Rotate function to pass on the request, but what the camera class 
actually does with that request is up to the camera. The CCamthirdPerson makes use of this fact to 
some extent. Firstly, the camera is never rotated explicitly at all by the CPlayer object (or the 
application). In fact it does not even implement a rotate function. When CPlayer calls the 
CCamthirdPerson::Rotate function, the base class implementation is called -- which does nothing at 
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all. Furthermore, whenever the CPlayer is updated, it calls the CCamera::Update function, which is 
also ignored in the case of the first person and space craft camera classes. But in the case of the third 
person camera, this function is used to align the camera so that it looks at the player model center 
point.  
 
When we set the CPlayer into third person mode, we will specify an offset vector which describes how 
far and in what direction to offset the camera position from the player model.  We choose to place the 
camera behind and slightly above the player in our code but you can change this so that you are always 
viewing the player from the front if desired. Usually, when you place the CPlayer into third person 
mode you will want to attach a CObject to the CPlayer object by using the 
CPlayer::SetthirdPersonObject function. Unlike all other modes, when in third person mode, this 
object (if it has been attached) will be rendered when a request to CPlayer::Render is issued from our 
main render loop (in CGameApp::FrameAdvance). If we are not using third person mode, the call to 
CPlayer::Render does nothing. 
 
In third person mode, CPlayer ignores X and Z rotations passed into the CPlayer::Rotate(X,Y,Z) 
function. This is because the player can only rotate left and right. This was true in first person mode 
also, but we had the ability to pitch or roll the camera as the head of the player. In response to a Y 
rotation, the player is rotated (which also rotates its attached mesh) about his Up vector. 
 

 
 
When the player is rotated about his Up vector, no rotation is applied to the camera initially. Later in 
the CPlayer::Update function (called every frame from ProcessInput) the camera offset vector is 
rotated around the player Up vector by the same amount. This retrieves a point in space that is ideally 
where we wish the camera to rotate to in order for us to keep the relationship between the camera and 
player the same after the rotation. The CCamthirdPerson camera class then calculates a vector from its 
previous position to the new ideal position and moves along this vector. The speed at which it moves 
along this vector is determined by specifying the camera lag value. In our application we set a lag 
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value of 0.25 which is ¼ second. This means the camera now drifts into its new position instead of 
instantly just being there to create a much more fluid feeling. So the camera will not reach its ideal 
position until ¼ of a second later. In the meantime it is travelling along the camera lag vector shown in 
the following diagram. Every frame however, the camera is made to look at the CPlayer object, so that 
even whilst the camera is travelling along the camera lag vector, it is always constantly updated to look 
at the CPlayer object.  
 
In the following image, the red block represents the CMesh (for now, just imagine that it is a really 
cool character model from Unreal 2™) which belongs to the CObject attached to the CPlayer. The 
CPlayer can only yaw in this mode. 
 

 
 
We will take a close look at the code to all the camera classes in just a bit. For now we just need to 
understand what we will need each camera class to accomplish.  
 
 
CPlayer / CCamSpaceCraft Overview 
  
When the player is in space craft mode, the camera used will be a CCamSpaceCraft object. This is 
actually the easiest camera mode to understand since it works exactly like the code we studied in the 
textbook. Unlike the other two modes where the CPlayer could only be rotated about the Y axis, in this 
mode we can rotate about all axes. Thus the space craft camera must also rotate itself about the player 
in the same way. You will probably never use a camera offset vector in space craft mode, but it is 
perfectly acceptable to do so. This would come in handy if your player object was attached to a space 
ship model when in third person mode so that their origin was positioned at the center of mass for the 
ship. If the user places the camera into space craft mode (to actually fly the ship) you might want the 
camera to be positioned high above the center of the CPlayer object to emulate looking through the 
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window of the bridge tower. Even so, the camera and CPlayer have their rotations synchronized so that 
their Look, Right, and Up vectors always share the same orientations. 
 
In our demo application, we set the camera offset to zero when the CPlayer is placed into space craft 
mode. This places the camera at the origin of the player’s coordinate system so that both the camera 
position and axis vectors are an exact match of the CPlayer position and axis vectors: 
 
 
 
 

 
 
In this mode, X, Y, and Z rotations are allowed. This rotates the CPlayer about its own local axes 
allowing us to perform pitch, yaw and roll whilst the camera is also pitched, yawed and rolled about 
the same axes. Because we use a camera offset of 0 for this mode, this has the effect of rotating the 
camera about its own local axes. 
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CGameApp::SetupGameState 
 
If we revisit the CGameApp::SetupGameState function from Lab Project 3.2, we will see that this is 
where we initially place the camera (indirectly through the CPlayer object) into first person mode. We 
specify an offset vector of (0, 10, 0) which places the camera 10 units above the position of the 
CPlayer object. We set the camera lag to zero since this is not used by the first person camera, and we 
also set friction to 250 units per second. We pass a gravity vector that pushes vertically down on the Y 
axis at 400 units per second.  
 
void CGameApp::SetupGameState() 
{ 
    // Generate an identity matrix 
    D3DXMatrixIdentity( &m_mtxIdentity ); 
 
    // App is active 
    m_bActive = true; 
 
    // Setup the players camera, and extract the pointer. 
    // This pointer will only ever become invalid on subsequent 
    // calls to CPlayer::SetCameraMode and on player destruction. 
    m_Player.SetCameraMode( CCamera::MODE_FPS ); 
    m_pCamera = m_Player.GetCamera(); 
 
    // Setup our player's default details 
    m_Player.SetFriction( 250.0f ); // Per Second  
    m_Player.SetGravity( D3DXVECTOR3( 0, -400.0f, 0 ) ); 
    m_Player.SetMaxVelocityXZ( 125.0f ); 
    m_Player.SetMaxVelocityY ( 400.0f ); 
    m_Player.SetCamOffset( D3DXVECTOR3( 0.0f, 10.0f, 0.0f ) ); 
    m_Player.SetCamLag( 0.0f ); 
    
    // Set up the players collision volume info 
    VOLUME_INFO Volume; 
    Volume.Min = D3DXVECTOR3( -3, -10, -3 ); 
    Volume.Max = D3DXVECTOR3(  3,  10,  3 ); 
    m_Player.SetVolumeInfo( Volume ); 
    
   // Setup our cameras view details 
    m_pCamera->SetFOV( 160.0f ); 
    m_pCamera->SetViewport(m_nViewX,m_nViewY,m_nViewWidth,m_nViewHeight,1.01f,5000.0f); 
  
    // Set the camera volume info (matches player volume) 
    m_pCamera->SetVolumeInfo( Volume );  
    
    // Add the update callbacks required 
    m_Player.AddPlayerCallback( CTerrain::UpdatePlayer, (LPVOID)&m_Terrain ); 
    m_Player.AddCameraCallback( CTerrain::UpdateCamera, (LPVOID)&m_Terrain ); 
 
    // Lets give a small initial rotation and set initial position 
    m_Player.SetPosition( D3DXVECTOR3( 430.0f, 400.0f, 330.0f ) ); 
    m_Player.Rotate( 25, 45, 0 ); 
}   

 
The CPlayer object creates the CCamera derived first person camera object and we retrieve a pointer to 
it. We set the friction, gravity, camera offset, camera lag, and the maximum velocity in both the XZ 
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direction, and the Y direction. The XZ maximum velocity is the maximum amount of speed our 
camera can travel (horizontally) across the terrain. 125 units per second is the ceiling for this demo. 
We apply a much faster downwards maximum velocity which makes sense -- we should fall much 
faster than we can walk. We also set a volume for both the camera and the player object to be used for 
collision detection against the terrain. These volume functions will be covered later on.  
 
Finally, we call the CPlayer::AddPlayerCallback and CPlayer::AddCameraCallback functions to add a 
function pointer to both of the CPlayer call-back arrays. This will be covered in more detail later. At a 
high level, when we update the CPlayer object each frame (by calling CPlayer::Update) the CPlayer -- 
and its attached camera -- will be moved to a new position. After this has happened, the CPlayer object 
has an array of function pointers that it can call so that external objects can agree to the changes in 
position, or possibly update the position of the CPlayer or the camera object if it is not valid. The 
CTerrain class has a function called UpdatePlayer. When the player updates their position based on 
user input (and gravity) it calls the CTerrain::UpdatePlayer function. This function will check the new 
position of the CPlayer object and if it has fallen into or through the terrain it will correct the CPlayer 
position so that it is correctly placed on top of the terrain. The same thing happens when the CPlayer 
moves the camera. It calls the CTerrain::UpdateCamera function to give the terrain a chance to update 
the camera position so that it does not get embedded inside the terrain. Although we only add a single 
callback for the camera and the player, it is possible to add many more. This may be useful if we had a 
terrain with a few scenery meshes (like trees for example). Each scenery mesh could add a call-back 
function to the CPlayer array so that it can check that the camera or player has not collided with it 
when the camera or player is updated. Just to be clear, this most definitely is not the type of collision 
detection system we will build later in the curriculum, but it does serve our purposes for now due to its 
simplicity and the relatively small scenes we are using.  
 
We set the player parameters according to the camera mode we intend to use. The following code 
snippet is from the CGameApp::DisplayWndProc function in Lab Project 3.2. It is executed in 
response to the user selecting third person camera mode from the menu. 
 
 
case ID_CAMERAMODE_THIRDPERSON: 
 // Set camera mode to third person style 
 ::CheckMenuRadioItem( m_hMenu, ID_CAMERAMODE_FPS, ID_CAMERAMODE_THIRDPERSON, 
                                ID_CAMERAMODE_THIRDPERSON, MF_BYCOMMAND ); 
 
 // Setup Player details 
 m_Player.SetFriction        ( 250.0f ); // Per Second 
 m_Player.SetGravity         ( D3DXVECTOR3( 0, -400.0f, 0 ) ); 
 m_Player.SetMaxVelocityXZ   ( 125.0f ); 
 m_Player.SetMaxVelocityY    ( 400.0f ); 
 m_Player.SetCamOffset       ( D3DXVECTOR3( 0.0f, 40.0f, -60.0f ) ); 
 m_Player.SetCamLag          ( 0.25f ); // 1/4 second camera lag 
                     
 // Switch camera mode 
 m_Player.SetCameraMode      ( CCamera::MODE_THIRDPERSON ); 
 m_pCamera = m_Player.GetCamera(); 
 break; 
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When we place the player into third person mode, we set a camera offset vector that is initially 40 units 
above the player mesh and 60 units behind it. We also set the camera lag to ¼ of a second. 
 
The next snippet of code from the same function shows how the settings are changed again to 
accommodate the camera being put into space craft mode. 
 
case ID_CAMERAMODE_SPACECRAFT: 
 // Set camera mode to SPACECRAFT style 
 ::CheckMenuRadioItem( m_hMenu, ID_CAMERAMODE_FPS, ID_CAMERAMODE_THIRDPERSON, 
                                ID_CAMERAMODE_SPACECRAFT, MF_BYCOMMAND ); 
 
 // Setup player details 
 m_Player.SetFriction        ( 125.0f ); // Per Second 
 m_Player.SetGravity         ( D3DXVECTOR3( 0, 0, 0 ) ); 
 m_Player.SetMaxVelocityXZ   ( 400.0f ); 
 m_Player.SetMaxVelocityY    ( 400.0f ); 
 m_Player.SetCamOffset       ( D3DXVECTOR3( 0.0f, 0.0f, 0.0f ) ); 
 m_Player.SetCamLag          ( 0.0f ); // No camera lag 
 
 // Switch camera mode 
 m_Player.SetCameraMode      ( CCamera::MODE_SPACECRAFT ); 
 m_pCamera = m_Player.GetCamera(); 
 break; 

 
In space craft mode, we zero out the gravity vector so that no gravity is applied. This allows us to 
hover in the air and fly about the terrain. 
 
 
Player Controls  
 
CGameApp::ProcessInput 
 
In Lab Project 3.2, a function called CGameApp::ProcessInput is called every frame from the 
CGameApp::FrameAdvance function. This function is responsible for reading the current state of the 
keyboard and moving/rotating the player object in response to the keys that are currently pressed. It is 
also responsible for calling the CPlayer::Update function which applies any movement, rotation, 
friction, and gravity to the velocity vector of the CPlayer object. This CPlayer object will also take care 
of updating its currently attached camera so that it is positioned correctly. This means that we do not 
have to explicitly move the camera from our CGameApp class. Once the CPlayer object has been 
updated, we call the CTerrain::UpdatePlayer function. This function makes sure that the player -- or 
the camera -- is not embedded in the terrain and correctly positions the camera/player so that it is on 
the terrain at the correct height. Without this function, the gravity vector would allow our 
player/camera to fall right through the terrain.  
 
At this point, the player and camera variables have been updated to represent the new player and 
camera positions. All that is left to do is to instruct the camera object to build a new view matrix based 
on its current variables and send it to the device. 
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We will now look at the ProcessInput function a few lines at a time. It is called every frame from the 
CGameApp::FrameAdvance function prior to rendering the scene. When this function returns, the 
camera is in the correct position and the correct view matrix has been set. 
 
void CGameApp::ProcessInput( ) 
{ 
    static UCHAR pKeyBuffer[ 256 ]; 
    ULONG        Direction = 0; 
    POINT        CursorPos; 
    float        X = 0.0f, Y = 0.0f; 
 
    if ( !GetKeyboardState( pKeyBuffer ) ) return; 
 
First we call the Win32 function GetKeyboardState and pass the address of a 256 element unsigned 
char array. This function will record the state of all 256 virtual keys into the array which we can then 
use to check whether a particular key is pressed. The application will use the Virtual Key Code defines 
as indices into the array to check the state of a particular key. For example, the virtual key code 
VK_UP holds the index of the byte in the array that has the state information for the UP cursor key. If 
the high bit of this byte is set, the key is pressed. So we can check the state of the UP cursor key with 
the following code. 
 
if (pKeyBuffer[ VK_UP ] & 0xF0 )  { //Key is Pressed } 
 
As you can see, we use the value 0xF0 to mask the high bit. 
 
 
Note: The status changes as a thread removes keyboard messages from its message queue. The status does 
not change as keyboard messages are posted to the thread's message queue, nor does it change as keyboard 
messages are posted to or retrieved from the message queues of other threads. 
 
 
At this point we have the state information for all keys in our array. We now check the keys that are 
pressed and respond accordingly: 
 
    if ( pKeyBuffer[ VK_UP    ] & 0xF0 )  Direction |= CPlayer::DIR_FORWARD; 
    if ( pKeyBuffer[ VK_DOWN  ] & 0xF0 )  Direction |= CPlayer::DIR_BACKWARD; 
    if ( pKeyBuffer[ VK_LEFT  ] & 0xF0 )  Direction |= CPlayer::DIR_LEFT; 
    if ( pKeyBuffer[ VK_RIGHT ] & 0xF0 )  Direction |= CPlayer::DIR_RIGHT; 
    if ( pKeyBuffer[ VK_PRIOR ] & 0xF0 )  Direction |= CPlayer::DIR_UP; 
    if ( pKeyBuffer[ VK_NEXT  ] & 0xF0 )  Direction |= CPlayer::DIR_DOWN; 
 
The Direction variable is a DWORD that can have several bits set indicating whether it should move 
backwards, forwards, left, right, up or down. To make things easier (so that we do not have to 
remember which bits mean what) we can use the DIRECTION enumerated type which is part of the 
CPlayer namespace. This is defined in CPlayer.h as shown below. 
 
enum DIRECTION  
{  
        DIR_FORWARD      = 1,  
        DIR_BACKWARD     = 2,  
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        DIR_LEFT         = 4,  
        DIR_RIGHT        = 8,  
        DIR_UP           = 16,  
        DIR_DOWN         = 32, 
        DIR_FORCE_32BIT  = 0x7FFFFFFF 
 }; 

 
We can bitwise OR a combination of these flags into the Direction DWORD. This will be passed into 
the CPlayer::Move function which extracts the bits from the DWORD and moves the camera in the 
specified directions. 
 
The next section of code is only executed if the window currently has capture of the mouse. The 
application window captures the mouse when the left mouse button is pressed and releases capture 
when the left button is released.  This is done in the CGameApp::DisplayWndProc function shown 
below. Notice that when we capture the mouse in response to a WM_LBUTTONDOWN function, we 
also record the position of the mouse in the CGameApp member variable m_OldCursorPos. 
 
//Code Snippet from the CGameApp::DisplayWndProc function (Message Processing Function) 
case WM_LBUTTONDOWN:       
            SetCapture( m_hWnd ); 
            GetCursorPos( &m_OldCursorPos ); 
            break; 
 
case WM_LBUTTONUP: 
            ReleaseCapture( ); 
            break; 

 
If capture is set in the CGameApp::ProcessInput function, then the left mouse is button currently being 
held down. This is important for us to know, because if this is the case, we want movement of the 
mouse to actually rotate the player in our scene. When the capture is not set, we want to allow the user 
to move the mouse cursor over the application window.  The next section of code measures the offset 
from the previous cursor position (which was initially recorded when the mouse button was first 
pressed in DisplayWndProc) to the current cursor position. It divides these X and Y offsets by 3 to turn 
the cursor offset into an X:Y offset that it is a more suitable to be used to rotate our player object. If 
you wish to change this setting, the less you divide by, the faster the camera will rotate. Admittedly, 
this is not the most robust input system you can conceive and is certainly not optimal, but it does serve 
as a means for getting user input into our application. You should really use DirectInput to manage 
your user input in performance critical code. Although DirectInput is beyond the scope of this course, 
there is a course teaching DirectInput techniques right here at the Game Institute. Check the website 
for more details. 
 
    if ( GetCapture() == m_hWnd ) 
    { 
        SetCursor( NULL ); 
        GetCursorPos( &CursorPos ); 
        X = (float)(CursorPos.x - m_OldCursorPos.x) / 3.0f; 
        Y = (float)(CursorPos.y - m_OldCursorPos.y) / 3.0f; 
        SetCursorPos( m_OldCursorPos.x, m_OldCursorPos.y ); 
    }  
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The above code checks whether the left button is currently down (i.e. we have capture) and sets the 
mouse cursor to NULL. This removes the arrow cursor from the screen and stops it from being 
displayed in the frame. It then gets the current position of the cursor in screen coordinates. It subtracts 
the old position from the new position so that we have the amount that we have moved in both the X 
and Y dimensions. Finally, we set the cursor position back to the previous position so that the (now 
invisible) mouse cursor never hits the side of the screen. If we did not do this, every time the cursor 
reached the extents of the screen, we lose the ability to rotate further. We obviously want the user to be 
able to continue yawing as long as they wish. By setting it back, we are in effect creating a treadmill 
concept: we record the movement, reset, and go to the next frame where the process starts all over 
again. The X and Y values that result from being divided by 3 will be used as degree values passed 
into the CPlayer::Rotate function. 
 
At this point, we have a DWORD containing a bit set for each direction we wish to move. We also 
have two values (X and Y) that contain the rotation angle in degrees. The axis by which we rotate is 
dependant on the mode the CPlayer object is currently in: first person, third person or space craft. The 
following snippet of code checks how we need to rotate or move the camera.  
 
    // Update if we have moved 
    if ( Direction > 0 || X != 0.0f || Y != 0.0f ) 
    { 
        // Rotate our camera? 
        if ( X || Y )  
        { 
            // Are they holding the right mouse button ? 
            if ( pKeyBuffer[ VK_RBUTTON ] & 0xF0 ) 
                m_Player.Rotate( Y, 0.0f, -X ); 
            else 
                m_Player.Rotate( Y, X, 0.0f ); 
         
        } // End if any rotation 
 

The above code is the core interaction between the user and the CPlayer object (and therefore 
indirectly, the camera). First we check if X or Y is set to some value other than zero. If so, it means 
that the mouse has been moved with the left button down and the user is requesting player rotation. We 
call the CPlayer::Rotate function in response. It accepts X, Y, and Z values describing the angles to 
rotate around the relative axis of rotation. If the right button is also pressed, we use the Y value 
(calculated from vertical mouse movements) to rotate the player about its X axis (pitch). We use the X 
value (calculated from horizontal mouse movement) to roll the camera.  
 
You can roll the camera/player left or right by holding down both mouse buttons and performing 
horizontal mouse movements. If the CPlayer is in first person camera mode, this causes the camera to 
rotate about the player’s center point and emulates a ‘lean around a corner’ manoeuvre. If the CPlayer 
is in space craft mode then this will rotate the camera about its local Z axis, allowing you spin upside 
down. In the third person camera mode, the third parameter passed into this function is ignored, since 
the camera cannot roll. This will all become much clearer when we look at the CPlayer and CCamera 
source code in a moment. If the Right mouse button is not held down (just the left is), then a typical 
rotation occurs. The X value is still used for pitch but the Y value is used for yaw. If the CPlayer is in 
first person mode, this causes the camera to rotate about the world Y axis. In space craft mode, this 
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allows the camera to rotate about its own local Y axis (Up vector). Finally, if we are in third person 
mode, the camera rotates around the player (the mesh) at a radius specified by the offset vector when 
the class was initialised. The offset was set with a call to CPlayer::SetCamOffset. 
 
At this point any rotations that needed to be applied will have been applied. The player will have been 
rotated and the camera attached to the player will be set as well. Next we need to check whether any 
movement (translation) is required. If any of the bits have been set in our local scope Direction 
variable, it means that at least some keys were pressed. If this is the case, we call the CPlayer::Move 
function to move the player/camera in the world. We pass in the Direction DWORD so that the 
CPlayer object knows what keys were pressed, and we also pass an acceleration value (500 units per 
second in this case). The final parameter specifies whether you wish this acceleration to be applied to 
the player’s velocity vector or simply applied as an absolute movement: 
 
        // Any Movement ? 
        if ( Direction )  
        { 
            // Move our player (Force applied must be greater than total friction) 
            m_Player.Move( Direction, 500.0f * m_Timer.GetTimeElapsed(), true ); 
 
        } // End if any movement 
 
    } // End if some movement occurred 
 
If we pass in true as the third parameter (this is the default) then the distance is added to the velocity 
vector calculated in the CPlayer::Move function. Since we use friction in our demo, this value is not 
necessarily the distance you will move.  
 
If we pass in false as the third parameter, then the player and camera are physically moved 500 (in our 
example) units along the direction vector calculated by the CPlayer::Move function. This is an absolute 
translation from its current position along the direction vector by the specified amount. 
 
The actual processing of the CPlayer object is in the CPlayer::Update function. This is where the 
friction and gravity are applied and where the player and camera are moved along the velocity vector. 
The Update function then loops through its internal list of camera call-back functions and player call-
back functions calling each one in turn. These call-backs may modify the position of the CPlayer or the 
Camera if the movement was illegal.  
 
The following code is called every frame to ensure that all gravity, friction, and velocity can be applied 
in a time relative fashion. 
  
    // Update our camera (updates velocity etc) 
    m_Player.Update( m_Timer.GetTimeElapsed() ); 
 
At this point, the camera and player have been moved and the terrain class has sorted out any possible 
collisions so that the camera and player are in legal positions on the terrain. All that is left to do now is 
to instruct the attached camera class to build a view matrix based on its internal variables and send it 
off to the device. 
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    // Update the device matrix 
    m_pCamera->UpdateRenderView( m_pD3DDevice ); 
}  

 
If you look at the complete code for the CGameApp::ProcessInput function you will see that it is 
actually very straightforward: 
 
void CGameApp::ProcessInput( ) 
{ 
    static UCHAR pKeyBuffer[ 256 ]; 
    ULONG        Direction = 0; 
    POINT        CursorPos; 
    float        X = 0.0f, Y = 0.0f; 
 
    // Retrieve keyboard state 
    if ( !GetKeyboardState( pKeyBuffer ) ) return; 
 
    // Check the relevant keys 
    if ( pKeyBuffer[ VK_UP    ] & 0xF0 ) Direction |= CPlayer::DIR_FORWARD; 
    if ( pKeyBuffer[ VK_DOWN  ] & 0xF0 ) Direction |= CPlayer::DIR_BACKWARD; 
    if ( pKeyBuffer[ VK_LEFT  ] & 0xF0 ) Direction |= CPlayer::DIR_LEFT; 
    if ( pKeyBuffer[ VK_RIGHT ] & 0xF0 ) Direction |= CPlayer::DIR_RIGHT; 
    if ( pKeyBuffer[ VK_PRIOR ] & 0xF0 ) Direction |= CPlayer::DIR_UP; 
    if ( pKeyBuffer[ VK_NEXT  ] & 0xF0 ) Direction |= CPlayer::DIR_DOWN; 
     
    // Now process the mouse (if the button is pressed) 
    if ( GetCapture() == m_hWnd ) 
    { 
        // Hide the mouse pointer 
        SetCursor( NULL ); 
 
        // Retrieve the cursor position 
        GetCursorPos( &CursorPos ); 
 
        // Calculate mouse rotational values 
        X = (float)(CursorPos.x - m_OldCursorPos.x) / 3.0f; 
        Y = (float)(CursorPos.y - m_OldCursorPos.y) / 3.0f; 
 
        // Reset our cursor position so we can keep going forever :) 
        SetCursorPos( m_OldCursorPos.x, m_OldCursorPos.y ); 
 
    } // End if Captured 
 
    // Update if we have moved 
    if ( Direction > 0 || X != 0.0f || Y != 0.0f ) 
    { 
        // Rotate our camera 
        if ( X || Y )  
        { 
            // Are they holding the right mouse button ? 
            if ( pKeyBuffer[ VK_RBUTTON ] & 0xF0 ) 
                m_Player.Rotate( Y, 0.0f, -X ); 
            else 
                m_Player.Rotate( Y, X, 0.0f ); 
         
        } // End if any rotation 
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        // Any Movement ? 
        if ( Direction )  
        { 
            // Move our player (Force applied must be greater than total friction) 
            m_Player.Move( Direction, 500.0f * m_Timer.GetTimeElapsed(), true ); 
 
        } // End if any movement 
 
    } // End if camera moved 
 
    // Update our camera (updates velocity etc) 
    m_Player.Update( m_Timer.GetTimeElapsed() ); 
     
    // Update the device matrix 
    m_pCamera->UpdateRenderView( m_pD3DDevice ); 
} 
 
And that is literally all there is to using the camera class. If we look back at the 
CGameApp::FrameAdvance function in Lab Project 3.2 we will see that we also call the 
CPlayer::Render method. This only renders the CPlayer object’s attached mesh if the camera is in third 
person mode. Otherwise this function call does nothing. Below we see the section of interest from the 
CGameApp::FrameAdvance function: 
 
    // Begin Scene Rendering 
    m_pD3DDevice->BeginScene(); 
     
    // Reset our world matrix 
    m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_mtxIdentity ); 
 
    // Render our terrain objects 
    m_Terrain.Render( ); 
 
    // Request our player render itself 
    m_Player.Render( m_pD3DDevice ); 
 
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 

 
So let us briefly review the connectivity information between our camera, our player, and the mesh that 
gets rendered in third person mode. The CPlayer class ties everything together. It has a pointer to a 
CCamera derived class that it manages. This can be a pointer to a CCamfirstPerson, a 
CCamthirdPerson, or a CCamSpaceCraft class. The CPlayer object automatically destroys and 
recreates the relevant camera when we set it to a different mode with a call to 
CPlayer::SetCameraMode.  
 
We can attach a CObject to the CPlayer class so that its mesh is rendered when we are in third person 
mode. The CPlayer class also manages alterations to the CObject world matrix. The CObject has a 
CMesh attached to it just like in previous demo applications -- where the CObject is basically just a 
container for a world matrix and a CMesh.  
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Coding the Camera System 
 
The CPlayer Class 
 
class CPlayer 
{ 
public: 
    //------------------------------------------------------------------------- 
    // Enumerations 
    //------------------------------------------------------------------------- 
    enum DIRECTION {  
        DIR_FORWARD     = 1,  
        DIR_BACKWARD    = 2,  
        DIR_LEFT        = 4,  
        DIR_RIGHT       = 8,  
        DIR_UP          = 16,  
        DIR_DOWN        = 32, 
 
        DIR_FORCE_32BIT = 0x7FFFFFFF 
    }; 
 
    //------------------------------------------------------------------------- 
    // Constructors & Destructors for This Class. 
    //------------------------------------------------------------------------- 
             CPlayer(); 
    virtual ~CPlayer(); 
 
    //------------------------------------------------------------------------- 
    // Public Functions for This Class. 
    //------------------------------------------------------------------------- 
    bool                SetCameraMode      ( ULONG Mode ); 
    void                Update             ( float TimeScale ); 
   
    void                AddPlayerCallback    ( UPDATEPLAYER pFunc,   LPVOID pContext ); 
    void       AddCameraCallback    ( UPDATECAMERA pFunc,   LPVOID pContext ); 
    void       RemovePlayerCallback ( UPDATEPLAYER pFunc,   LPVOID pContext ); 
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    void       RemoveCameraCallback ( UPDATECAMERA pFunc,   LPVOID pContext );     
 
    void       SetthirdPersonObject ( CObject * pObject     )     { m_pthirdPersonObject = pObject; } 
    void       SetFriction        ( float Friction        )       { m_fFriction = Friction; } 
    void       SetGravity         ( const D3DXVECTOR3& Gravity  ) { m_vecGravity = Gravity; } 
    void       SetMaxVelocityXZ   ( float MaxVelocity        )    { m_fMaxVelocityXZ = MaxVelocity; } 
    void       SetMaxVelocityY    ( float MaxVelocity         )   { m_fMaxVelocityY = MaxVelocity; } 
    void       SetVelocity        ( const D3DXVECTOR3& Velocity ) { m_vecVelocity = Velocity; } 
    void       SetCamLag          ( float CamLag )                { m_fCameraLag = CamLag; } 
    void       SetCamOffset       ( const D3DXVECTOR3& Offset ); 
    void                SetVolumeInfo      ( const VOLUME_INFO& Volume ); 
    const VOLUME_INFO&  GetVolumeInfo      ( ) const; 
 
    CCamera           * GetCamera       ( ) const { return m_pCamera; } 
    const D3DXVECTOR3 & GetVelocity     ( ) const     { return m_vecVelocity; } 
    const D3DXVECTOR3 & GetCamOffset    ( ) const     { return m_vecCamOffset; } 
 
    const D3DXVECTOR3 & GetPosition     ( ) const     { return m_vecPos; } 
    const D3DXVECTOR3 & GetLook         ( ) const     { return m_vecLook; } 
    const D3DXVECTOR3 & GetUp           ( ) const     { return m_vecUp; } 
    const D3DXVECTOR3 & GetRight        ( ) const     { return m_vecRight; } 
     
    float       GetYaw          ( ) const { return m_fYaw; } 
    float       GetPitch        ( ) const { return m_fPitch; } 
    float       GetRoll         ( ) const { return m_fRoll; } 
 
    void        SetPosition     ( const D3DXVECTOR3& Position ) { Move( Position - m_vecPos, false ); } 
 
    void        Move            ( ULONG Direction, float Distance, bool Velocity = false ); 
    void        Move            ( const D3DXVECTOR3& vecShift, bool Velocity = false ); 
    void        Rotate          ( float x, float y, float z ); 
    void        Render          ( LPDIRECT3DDEVICE9 pDevice ); 
 
private: 
    //------------------------------------------------------------------------- 
    // Private Variables for This Class. 
    //------------------------------------------------------------------------- 
    CCamera       * m_pCamera;              // Our current camera object 
    CObject       * m_pthirdPersonObject;     // Object to be displayed in third person mode 
    VOLUME_INFO     m_Volume;               // Stores information about players collision volume 
    ULONG           m_CameraMode;           // Stored camera mode 
     
    // Players position and orientation values 
    D3DXVECTOR3     m_vecPos;               // Player Position 
    D3DXVECTOR3     m_vecUp;                // Player Up Vector 
    D3DXVECTOR3     m_vecRight;             // Player Right Vector 
    D3DXVECTOR3     m_vecLook;              // Player Look Vector 
    D3DXVECTOR3     m_vecCamOffset;         // Camera offset 
    float           m_fPitch;               // Player pitch 
    float           m_fRoll;                // Player roll 
    float           m_fYaw;                 // Player yaw 
     
    // Force / Player Update Variables 
    D3DXVECTOR3     m_vecVelocity;          // Movement velocity vector 
    D3DXVECTOR3     m_vecGravity;           // Gravity vector 
    float           m_fMaxVelocityXZ;       // Maximum camera velocity on XZ plane 
    float           m_fMaxVelocityY;        // Maximum camera velocity on Y Axis 
    float           m_fFriction;            // The amount of friction causing the camera to slow 
    float           m_fCameraLag;           // Amount of camera lag in seconds (0 to disable) 
 
    // Stored collision callbacks 
    CALLBACK_FUNC   m_pUpdatePlayer[255];   // Array of 'UpdatePlayer' callbacks 
    CALLBACK_FUNC   m_pUpdateCamera[255];   // Array of 'UpdateCamera' callbacks 
    USHORT          m_nUpdatePlayerCount;   // Number of 'UpdatePlayer' callbacks stored 
    USHORT          m_nUpdateCameraCount;   // Number of 'UpdateCamera' callbacks stored 
}; 
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If the class seems complex at first, just note that most of these are simple functions to set and retrieve 
member variables. Only a handful of functions will need to have their function bodies implemented in 
CPlayer.cpp. Also note that the CPlayer::SetVolumeInfo function takes as its parameter a 
VOLUME_INFO structure; this too is in CPlayer.h and is shown next: 
 
typedef struct _VOLUME_INFO 
{ 
    D3DXVECTOR3 Min;         
    D3DXVECTOR3 Max; 
} VOLUME_INFO; 
 
This structure is used to represent a bounding volume by specifying two vectors that describe the 
minimum and maximum extents of the volume. We use it in our application to represent an axis 
aligned bounding box (AABB) around the player object. It is used by the CTerrain class to check for 
collisions with the terrain. We will discuss this in more detail later in the lesson. First we will look at 
the member variables that are managed by this class. They are listed below with a description of their 
purpose. 
 
CCamera *m_pCamera 
This is a pointer to a CCamera derived class. The CPlayer class will automatically create the 
appropriate camera (and then destroy the previous one) when the application requests that the CPlayer 
change camera modes. This is done with a call to CPlayer::SetCameraMode. This pointer is initialised 
to NULL. 
 
CObject *m_pthirdPersonObject 
This pointer is initialized to NULL but can point at a CObject containing the CMesh that you would 
like to have rendered when the CPlayer is in third person mode. If you have no intention of using third 
person mode, then you do not need to set this pointer. This pointer is assigned to a CObject using the 
CPlayer::SetthirdPersonObject function, whose body is shown above. 
 
VOLUME_INFO m_Volume 
We use this to set up a bounding box around the CPlayer object. It will be used for collision detection 
by the CTerrain class in this demo. We interpret the bounding volume as a bounding box, but the 
VOLUME_INFO min and max vectors could be used to represent other bounding volumes such as 
cylinders, spheres or ellipsoids.   
 
ULONG m_CameraMode 
This contains the mode that the Player object is currently in (first person, third person, or space craft). 
 
D3DXVECTOR3 m_vecPos  
This vector stores the position of the CPlayer object in the 3D world. We can make the CPlayer object 
move through the world by updating this vector. 
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D3DXVECTOR3 m_vecUp, m_vecRight, m_vecLook 
These three vectors describe the orientation of the local coordinate system axes. We can rotate the 
CPlayer object by rotating these vectors. 
 
D3DXVECTOR3 m_vecCamOffset 
This vector describes a camera offset from the CPlayer object.  
 
float    m_fPitch,  m_fRoll,  m_fYaw 
These variables maintain the current rotation values in degrees applied to the CPlayer class. For 
example, the m_fYaw contains the current angle at which the CPlayer has been rotated about its Up 
vector. This allows us to apply the rotation to the attached CObject world matrix in third person mode. 
The m_fRoll variable contains the angle that we are currently leaning in first person mode. This is used 
to check that we have not tried to exceed our maximum lean angle. Likewise, m_fPitch is used in first 
person camera mode to maintain the current angle that the camera is pitched up or down. The CPlayer 
class checks this value before applying a rotation to the attached camera such that it is not rotated more 
than 89 degrees in either direction (up or down). 
 
D3DXVECTOR3 m_vecVelocity 
This vector is used to maintain the player direction and speed.  
 
D3DXVECTOR3     m_vecGravity 
This is the gravity vector. It will be combined with the velocity vector every frame. In space ship 
mode, our application sets this to zero so that we can fly the camera about in the sky without falling to 
the ground. In first and third person camera modes we use a gravity vector of (0,-400, 0) to apply a 
constant downward acceleration of 400 units. Feel free to experiment with any of these values; 400 just 
happened to work nicely for our demonstration. 
 
float           m_fFriction 
This value contains our friction coefficient. It will be applied to the velocity vector each frame. This is 
used to generate a friction vector that is subtracted from the velocity vector to slow the player down. 
The friction vector is generated by creating a unit length version of the velocity vector, inverting it so 
that it faces in the opposite direction, and then scaling it by the friction value. You can also consider 
this to be a drag coefficient if you prefer.  
 
float           m_fCameraLag  
This variable is set by calling CPlayer::SetCamLag. It is passed on to the CCamthirdPerson::Update 
function to control a delay (in seconds) that should be applied to the camera when rotating into a new 
position behind the player.      
 
float           m_fMaxVelocityXZ 
This is used to set a maximum speed limit in the XZ plane that the CPlayer can move in a single frame. 
It is specified in world units per second. 
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float           m_fMaxVelocityY 
This is used to set a maximum speed limit that the CPlayer can move upwards or downwards in a 
single frame. In the first person and third person modes, we set this a fair bit higher than the 
MaxVelocityXZ variable, because we will want the CPlayer to fall from the sky (if you walk off a 
mountain edge) much faster than the CPlayer can physically walk in the XY plane. In Space Craft 
mode however, we set these last two values equally as this mode does not have gravity applied in our 
demo. Of course, you can choose to apply gravity to the space craft mode so that the spaceship slowly 
falls from the sky when you are not travelling upwards or if you wanted to model a more random hover 
pattern where the craft slowly bobs up and down. Of course, you would need to account for the 
upwards velocity in this latter case. 
 
CALLBACK_FUNC   m_pUpdatePlayer[255];       
CALLBACK_FUNC   m_pUpdateCamera[255];     
These members are two arrays that can be used to hold CALLBACK_FUNC structures. The 
CALLBACK_FUNC structure is defined in CPlayer.h. 
 
typedef struct _CALLBACK_FUNC  
{ 
    LPVOID  pFunction;          // Function Pointer 
    LPVOID  pContext;           // Context to pass to the function 
} CALLBACK_FUNC; 

 
When the application calls CPlayer::Update to update the position of the CPlayer and its attached 
camera, it is possible that the player (or its camera) can become embedded in the terrain. These call-
back functions allow the terrain a chance to handle collision response. After the position of the CPlayer 
has been modified by the CPlayer::Update function, it loops through the m_pUpdatePlayer array 
(which contains one or more function call-backs) and calls each function in this array passing in a 
pointer to the CPlayer object itself. In our application, we add a single function call-back to the 
m_pUpdateArray: a pointer to the CTerrain::UpdatePlayer static function. When this function is called 
and passed the address of the CPlayer object, the terrain can check whether the CPlayer is intersecting 
it and then adjust the position of the player object so that it is positioned properly on top of the terrain. 
The same is true for the m_pUpdateCamera array. When the CPlayer::Update function moves the 
camera, it goes through the same procedure. It loops through the m_pUpdateCamera array and if any 
elements exist, the call-back function is called, this time passing in a pointer to the Camera so that the 
call-back function can modify its position. 
 
We add function call-backs to the CALLBACK_FUNC arrays by calling the 
CPlayer::AddPlayerCallback and CPlayer::AddCameraCallback to add call-back functions for the 
CPlayer and the CCamera respectively. These functions are shown again below. 
 
   void        AddPlayerCallback       ( UPDATEPLAYER pFunc,  LPVOID pContext ); 
   void        AddCameraCallback       ( UPDATECAMERA pFunc,  LPVOID pContext ); 
 
Our application calls these functions one time each during initialization. This provides our CPlayer 
object with one call-back for the CPlayer and one call-back for the CCamera. We pass in a pointer to 
the call-back function and a pointer to a user defined context. Let us take a look at the way these 
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functions are called from the CGameApp::SetupGameState function to hopefully help keep things 
clear: 
 
  m_Player.AddPlayerCallback( CTerrain::UpdatePlayer,  (LPVOID)&m_Terrain ); 
  m_Player.AddCameraCallback( CTerrain::UpdateCamera,  (LPVOID)&m_Terrain ); 
 

As you will see later, the CTerrain class has two functions called CTerrain::UpdatePlayer and 
CTerrain::UpdateCamera which are static methods of the CTerrain class. These functions are the call-
back functions passed in to the above two functions that are added to the two CPlayer call-back arrays. 
Note that the function takes a void pointer to a context in parameter two. Our application passes the 
address of a CTerrain instance. These two pointers are stored in a CALLBACK_FUNC structure and 
added to the two call-back arrays. 
 
In Chapter One we discussed the fact that call-back functions either have to be global functions or 
static class methods. Static class methods are like global functions, but are accessed as part of the class 
namespace. This means that the static function can always be called and always exists in memory even 
when instances of the class have not been created. A static class function can only access static 
member variables from the same class and is shared among all instances of that class. With this in 
mind, we need a way for the CTerrain static function to actually work with an instance of the terrain. 
This is why we pass in the address of an instance of the terrain class. That way, the pointer to the 
actual instance of the CTerrain class can be sent to the static CTerrain call-back functions during the 
CPlayer update. Although our application only uses a single instance of the CTerrain class, the static 
member function will need a pointer to an instance in order to access non-static class members. 
Another nice thing about making a call-back a static member of a class is that the call-back function 
can automatically access the private member variables of the instance passed in. The description of the 
call-back arrays will be covered in more detail later. Just bear in mind that these two arrays hold 
functions pointers which are called when the CPlayer moves so that classes external to the 
CPlayer/CCamera classes can commit to the position changes.  

 
USHORT          m_nUpdatePlayerCount 
USHORT          m_nUpdateCameraCount 
These two variables hold the number of call-back functions that have been added to the 
m_pUpdatePlayer and the m_pUpdateCamera arrays respectively. 
 
Let us now look at the member functions. As mentioned, many of the member functions are just 
variable assigner/retrievers which are inlined and shown in the above code. These functions will not be 
discussed.  
 
 
CPlayer::CPlayer() 
 
The first function we will look at is the CPlayer class constructor which assigns default values to the 
member variables. This is shown below. 
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CPlayer::CPlayer() 
{ 
    // Clear any required variables 
    m_pCamera            = NULL; 
    m_pthirdPersonObject = NULL; 
    m_CameraMode         = 0; 
     
 
    // Initially no call-backs added to either array 
    m_nUpdatePlayerCount = 0; 
    m_nUpdateCameraCount = 0; 
 
    // Players position & orientation (independant of camera) 
    m_vecPos            = D3DXVECTOR3( 0.0f, 0.0f, 0.0f ); 
    m_vecRight          = D3DXVECTOR3( 1.0f, 0.0f, 0.0f ); 
    m_vecUp             = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ); 
    m_vecLook           = D3DXVECTOR3( 0.0f, 0.0f, 1.0f ); 
 
    // Camera offset values (from the players origin) 
    m_vecCamOffset      = D3DXVECTOR3( 0.0f, 10.0f, 0.0f ); 
    m_fCameraLag        = 0.0f; 
 
    // The following force related values are used in conjunction with 'Update' only 
    m_vecVelocity       = D3DXVECTOR3( 0.0f, 0.0f, 0.0f ); 
    m_vecGravity        = D3DXVECTOR3( 0.0f, 0.0f, 0.0f ); 
    m_fMaxVelocityXZ    = 125.0f; 
    m_fMaxVelocityY     = 125.0f; 
    m_fFriction         = 250.0f; 
 
    // Set default bounding volume so it has no volume 
    m_Volume.Min        =  D3DXVECTOR3 (0.0f , 0.0f , 0.0f); 
    m_Volume.Max        =  D3DXVECTOR3 (0.0f , 0.0f , 0.0f);   
 } 
 
These initial values are mainly insignificant since we will want to set them up by calling the CPlayer 
member functions before using the camera.  
 
CPlayer::~CPlayer() 
 
The destructor deletes the attached camera if one exists. The CPlayer is responsible for creating the 
camera when we call CPlayer::SetCameraMode. Notice that it does not delete the CObject since this 
class is not responsible for creating it. The CObject is created by the application and attached to the 
CPlayer class with a call to CPlayer::SetthirdPersonObject. 
 
CPlayer::~CPlayer() 
{ 
    // Release any allocated memory 
    if ( m_pCamera ) delete m_pCamera; 
     
    // Clear required values 
    m_pCamera            = NULL; 
    m_pthirdPersonObject = NULL; 
} 
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CPlayer::SetCameraMode 
 
CPlayer::SetCameraMode is the first CPlayer member function called by 
CGameApp::SetupGameState. This is called to initially place the CPlayer into first person camera 
mode. It is also called again in response to the user requesting a change of camera mode from the 
application menu. This function is responsible for releasing any previous cameras and creating a new 
camera object of the correct type.  
 
This function first checks that the user is not selecting a camera mode that the CPlayer class is 
currently using. If so, it simply returns true. If this is not the case then we allocate a new camera object 
based on the type requested.  
 
bool CPlayer::SetCameraMode( ULONG Mode ) 
{ 
    CCamera * pNewCamera = NULL; 
 
    // Check for a no-op 
    if ( m_pCamera && m_CameraMode == Mode ) return true; 
 
    // Which mode are we switching into 
    switch ( Mode ) 
    { 
        case CCamera::MODE_FPS: 
            if ( !(pNewCamera = new CCamfirstPerson( m_pCamera ))) return false; 
            break; 
 
        case CCamera::MODE_THIRDPERSON: 
            if ( !(pNewCamera = new CCamthirdPerson( m_pCamera ))) return false; 
            break; 
 
        case CCamera::MODE_SPACECRAFT: 
            if ( !(pNewCamera = new CCamSpaceCraft( m_pCamera ))) return false; 
            break; 
   }  
 
    // Validate 
    if (!pNewCamera) return false; 
 
If the allocation fails, then we return false. Notice that because at this time we have not deleted the 
previous camera (if one exists) and have not changed the CCamera member pointer, we can return 
from the function failure, but still leave the current camera intact. 
 
If the previous camera mode was spacecraft mode, we need to reset its local axis so that it is aligned to 
the XZ plane. Remember, in spacecraft mode we may have rotated the player completely upside down, 
so what we do before setting it into first or third person camera modes is zero out the pitch and roll 
values and reset the Y component of the Look and Right vectors such that the CPlayer is not pitched 
up -- which is not allowable in first or third person camera mode. By removing the Y component from 
the Look and Right vectors, we have made them non-unit length, so we will normalize them to make 
sure that they are. At this point we now have a set of up and look vectors that are parallel to the XZ 
plane and an Up vector that points directly up, aligned with the world Y axis.  
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    // If our old mode was SPACECRAFT we need to sort out some things 
    if ( m_CameraMode == CCamera::MODE_SPACECRAFT ) 
    { 
        // Flatten out the vectors 
        m_vecUp      = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ); 
        m_vecRight.y = 0.0f; 
        m_vecLook.y  = 0.0f; 
 
        // Now normalize them 
        D3DXVec3Normalize( &m_vecRight, &m_vecRight ); 
        D3DXVec3Normalize( &m_vecLook, &m_vecLook ); 
 
The following image is a side-on view of the CPlayer Up and Look vectors. The vectors in spaceship 
mode are rotated back and up 45 degrees respectively. Then we reset the Y vector to (0, 1, 0) and 
remove the Y component from the look vector. We normalize it to make it unit length and we now 
have a perpendicular set of axes which are no longer pitched. 
 

 
      
In space craft mode the yaw, pitch, and roll values have no meaning since there is total freedom of 
rotation. But we must calculate what the Yaw angle is now that the axes have been reset if we are 
going to first person mode. We use the dot product to measure the cosine of the angle between the new 
look vector and the world Z axis. We feed this into the acos function to convert this into an angle in 
radians. This is all inside the braces of the D3DXToDegree function so we will eventually get the yaw 
angle in degrees.  The dot product returns the cosine of the angle between two vectors but does not tell 
us the relationship. So we check the x component of the look vector: if it is negative then we have a 
negative yaw angle. This means that we can tell the difference if the bearing from the look vector to 
the world z axis is 10 degrees or –10 degrees: 
   
       // Reset our pitch / yaw / roll values 
        m_fPitch = 0.0f; 
        m_fRoll  = 0.0f; 
        m_fYaw   = D3DXToDegree(acosf(D3DXVec3Dot(&D3DXVECTOR3(0.0f,0.0f,1.0f), \ 
                                                                          &m_vecLook))); 
        if ( m_vecLook.x < 0.0f ) m_fYaw = -m_fYaw; 
    }  
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The following image shows two look vectors (top-down view) that are oriented differently but which 
the dot product would return the same 45 degree angle for. We check the sign of the X component to 
determine which side of the world Z axis the new look vector points, giving us our positive or negative 
yaw angle. 
 

 
If we are changing from another mode to space craft mode, then we need to synchronize the camera 
Up, Look, and Right vectors with the CPlayers Up, Look and Right vectors because in space craft 
mode, the camera is perfectly synchronized to the axes and rotations of the CPlayer class. 
 
    else if (m_pCamera && Mode == CCamera::MODE_SPACECRAFT) 
    { 
   m_vecRight = m_pCamera->GetUp()  ; 
   m_vecLook  = m_pCamera->GetLook(); 
   m_vecUp    = m_pCamera->GetUp()  ; 
    } 

 
Next we tell the newly created camera which CPlayer object it is attached to. We do this by calling the 
CCamera::AttachToPlayer function and pass in a pointer to this CPlayer object. We also store the new 
camera mode. 
 
    // Store new mode 
    m_CameraMode = Mode;  
 
    // Attach the new camera to 'this' player object 
    pNewCamera->AttachToPlayer( this ); 
 

Finally, we delete the old camera if one exists, and assign the member variable camera pointer to the 
newly created camera object. 
 
    // Destroy our old camera and replace with our new one 
    if ( m_pCamera ) delete m_pCamera; 
    m_pCamera = pNewCamera; 
 
    // Success!! 
    return true; 
} 
 
Here is the function in its entirety: 
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bool CPlayer::SetCameraMode( ULONG Mode ) 
{ 
    CCamera * pNewCamera = NULL; 
    if ( m_pCamera && m_CameraMode == Mode ) return true; 
 
    // Which mode are we switching into 
    switch ( Mode ) 
    { 
        case CCamera::MODE_FPS: 
            if ( !(pNewCamera = new CCamfirstPerson( m_pCamera ))) return false; 
            break; 
 
        case CCamera::MODE_THIRDPERSON: 
           if ( !(pNewCamera = new CCamthirdPerson( m_pCamera ))) return false; 
            break; 
 
        case CCamera::MODE_SPACECRAFT: 
           if ( !(pNewCamera = new CCamSpaceCraft( m_pCamera ))) return false; 
            break; 
    }  
    if (!pNewCamera) return false; 
 
    // If our old mode was SPACECRAFT we need to sort out some things 
    if ( m_CameraMode == CCamera::MODE_SPACECRAFT ) 
    { 
        // Flatten out the vectors 
        m_vecUp      = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ); 
        m_vecRight.y = 0.0f; 
        m_vecLook.y  = 0.0f; 
 
        // Finally, normalize them 
        D3DXVec3Normalize( &m_vecRight, &m_vecRight ); 
        D3DXVec3Normalize( &m_vecLook, &m_vecLook ); 
 
        // Reset our pitch / yaw / roll values 
        m_fPitch = 0.0f; 
        m_fRoll  = 0.0f; 
        m_fYaw   = D3DXToDegree(acosf( D3DXVec3Dot(&D3DXVECTOR3(0.0f,0.0f,1.0f), 
                                                                 &m_vecLook))); 
        if ( m_vecLook.x < 0.0f ) m_fYaw = -m_fYaw; 
    }  
    else if (m_pCamera && Mode == CCamera::MODE_SPACECRAFT) 
    { 
         m_vecRight = m_pCamera->GetUp(); 
         m_vecLook  = m_pCamera->GetLook(); 
         m_vecUp    = m_pCamera->GetUp(); 
    } 
     
    // Store new mode 
    m_CameraMode = Mode; 
 
   // Attach the new camera to 'this' player object 
    pNewCamera->AttachToPlayer( this ); 
 
    // Destroy our old camera and replace with our new one 
    if ( m_pCamera ) delete m_pCamera; 
    m_pCamera = pNewCamera; 
    // Success!! 
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    return true; 
} 
 
 
 

CPlayer::AddPlayerCallback 
CPlayer::AddCameraCallback 
These functions add call-back functions to the two call-back arrays. We will show the code only to the 
AddPlayerCallback function here as the AddCameraCallback code is exactly the same, with the 
exception that it adds the CALLBACK_FUNC structure to the m_pCameraUpdate array instead of the 
m_pPlayerUpdate array. 
 
void CPlayer::AddPlayerCallback( UPDATEPLAYER pFunc, LPVOID pContext ) 
{ 
    // Store callback details 
    m_pUpdatePlayer[m_nUpdatePlayerCount].pFunction = (LPVOID)pFunc; 
    m_pUpdatePlayer[m_nUpdatePlayerCount].pContext  = pContext; 
    m_nUpdatePlayerCount++; 
} 

 
This function takes as its first parameter a pointer to a call-back function and as its second parameter a 
void pointer to the associated context that you would like to have passed to the call-back function 
when it is called. In our application, the first parameter is a pointer to the CTerrain::UpdatePlayer 
function and the second parameter is a pointer to the actual instance of the terrain that is maintained by 
the CGameApp class. 
 
 
Function Pointers 
For those of you not familiar with function pointers, the UPDATEPLAYER type is typedef’d in the CPlayer.h file 
as: 
 
typedef void (*UPDATEPLAYER)(LPVOID pContext, CPlayer *pPlayer, float TimeScale); 
 
This means that we can declare variables to be of type UPDATEPLAYER as shown below. 
 
UPDATEPLAYER MyFuncPointer; 
 
MyFuncPointer is now a pointer to a function that returns void and accepts the three parameters shown above. 
Once we declare a function pointer, we can assign it the address of a pointer stored in our call-back array and 
ultimately call that function using the pointer. 
 
The following code shows how this type of pointer is used in the CPlayer::Update function to call a function that 
is stored in the m_pPlayerUpdate array:  
 
UPDATEPLAYER UpdatePlayer = (UPDATEPLAYER)m_pUpdatePlayer[i].pFunction; 
 
And finally, we can call that function: 
 
UpdatePlayer( m_pUpdatePlayer[i].pContext, this, TimeScale ); 
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CPlayer::SetCamOffset 
 
The next function of consequence called from CGameApp::SetupGameState is 
CPlayer::SetCamOffset. It allows us to specify where the camera is to be placed in relation to the 
CPlayer object. In first person mode our application sets this vector to (0, 10, 0) so that the camera is 
placed 10 units above the CPlayer object. This function is also called whenever the user changes 
camera modes from the application window menu. If changing to space craft mode, the offset is set to 
zero. When changing to third person mode, we set the offset vector to        (0, 40, -60) so the camera is 
always tracking the CPlayer object from a distance of 40 units above and 60 units behind. 
 
The function sets the internal member variable to the passed offset and then calls the camera class 
function SetPosition to set the position of the camera to the new position. Remember that the position 
of the camera should be the position of the CPlayer plus the offset vector. This means if the CPlayer 
was currently at world space position (0, 500, 1000) and we passed an offset vector of (0, 50, -100) 
then the camera would be positioned at      (0 , 550 , 900). We will cover the camera class functions 
later. 
 
void CPlayer::SetCamOffset( const D3DXVECTOR3& Offset ) 
{ 
    m_vecCamOffset = Offset; 
 
    if (!m_pCamera) return; 
    m_pCamera->SetPosition( m_vecPos + Offset ); 
} 

 
Those are all of the set-up functions that we need to cover for the CPlayer object. Let us now move on 
to the functions that are called from within the main game loop to update the CPlayer position and 
orientation. 
 
CGameApp::ProcessInput is called every frame to get the state of the keyboard and mouse and to 
determine whether any rotations need to occur. If the mouse is moved left or right, or up and down, 
then the mouse movement is turned into degrees and CPlayer::Rotate is called with the desired rotation 
angles. 
 
 
CPlayer::Rotate 
 
This function works differently depending on the camera mode so the first thing we do is get the 
attached camera’s current mode to check it. 
 
void CPlayer::Rotate( float x, float y, float z ) 
{ 
    D3DXMATRIX mtxRotate; 
 
    // Validate requirements 
    if (!m_pCamera) return; 
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    // Retrieve camera mode 
    CCamera::CAMERA_MODE Mode = m_pCamera->GetCameraMode(); 
 
If we are in first person mode or third person mode, then the rotations are applied differently than if we 
are in space craft mode. The next section shows the code executed when are not in space craft mode.  
 
    if ( Mode == CCamera::MODE_FPS || Mode == CCamera::MODE_THIRDPERSON ) 
    { 
        // update & clamp pitch / roll / yaw values 
        if ( x ) 
        { 
            // Make sure we don't overstep our pitch boundaries 
            m_fPitch += x; 
            if ( m_fPitch >  89.0f ) { x -= (m_fPitch - 89.0f); m_fPitch = 89.0f; } 
            if ( m_fPitch < -89.0f ) { x -= (m_fPitch + 89.0f); m_fPitch = -89.0f; } 
        }  
 
The first thing we do is add the rotation angle to our current pitch value. The pitch value is only used in 
first person mode and is used to rotate the camera up and down. The pitch range is 89 degrees in both 
directions so we must clamp the pitch to 89 or –89 depending on whether we are rotating up or down. 
All we have done at this point is add the x rotation angle to our pitch value.  The pitch value is never 
used to pitch the CPlayer object but will be forwarded on to the attached camera object. If the camera 
is a first person camera, it will use this value to rotate itself about its own Right vector. This value is 
ignored if the attached camera is a third person camera. 
 
Next we do the same with the Y angle by adding it to the current yaw value, but we do not clamp the 
result in this case. In both first and third person camera modes, the CPlayer object is allowed to rotate 
endlessly about its Up vector. We do make sure to roll the value back around again if it exceeds the 0 – 
360 degree range. If we rotate past 360 it becomes zero again and vice versa 
 
        if ( y ) 
        { 
            // Ensure yaw (in degrees) wraps around between 0 and 360 
            m_fYaw += y; 
            if ( m_fYaw >  360.0f ) m_fYaw -= 360.0f; 
            if ( m_fYaw <  0.0f   ) m_fYaw += 360.0f; 
        }  

 
Finally we do the same for the Z axis rotation, but this time we clamp the value to 20 degrees in each 
direction. This value is not used by the CPlayer class but is forwarded to the attached camera class. If 
the camera is a third person camera, this value is ignored. If the camera is a first person camera, it uses 
this angle to rotate the camera about the player’s Look vector to perform a lean. 
         
        if ( z )  
        { 
            // Make sure we don't overstep our roll boundaries 
            m_fRoll += z; 
            if ( m_fRoll >  20.0f ) { z -= (m_fRoll - 20.0f); m_fRoll = 20.0f; } 
            if ( m_fRoll < -20.0f ) { z -= (m_fRoll + 20.0f); m_fRoll = -20.0f; } 
        }  
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Now that we have added our rotation values to the internal values and clamped them to their limits, we 
pass these angles to the attached camera class by calling the CCamera::Rotate function: 
 
        // Allow camera to rotate prior to updating our axis 
        m_pCamera->Rotate( x, y, z ); 

 
If the attached camera is a first person camera, the camera will rotate about the proper axis by the 
specified amount. If we are using a third person camera, the Rotate function is empty and does nothing. 
This is because we never actually rotate the third person camera; it is automatically adjusted to always 
look at the CPlayer object. 
 
Finally, we use the Y value to rotate the CPlayer object itself by rotating its Look and Right vectors 
about its Up vector. This is because in both first and third person modes, the Y rotation will yaw the 
player object his Up vector. 
 
        // Now rotate our axis 
        if ( y ) 
        { 
            // Build rotation matrix 
            D3DXMatrixRotationAxis( &mtxRotate, &m_vecUp, D3DXToRadian( y ) ); 
             
            // Update our vectors 
            D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
            D3DXVec3TransformNormal( &m_vecRight, &m_vecRight, &mtxRotate ); 
        }  
    } // End if MODE_firstPerson or MODE_thirdPerson 
 
If we are in spacecraft mode then the rotation code is different because the player can be rotated about 
all three axes. In this mode, the camera and the player are rotated in sync. This is the same code as the 
example rotation function we looked at in the textbook which showed how us to rotate the camera 
about its own axes. 
    
    else if ( Mode == CCamera::MODE_SPACECRAFT ) 
    { 
        // Allow camera to rotate prior to updating our axis 
        m_pCamera->Rotate( x, y, z ); 
 
        if ( x != 0 )  
        { 
            // Build rotation matrix 
            D3DXMatrixRotationAxis( &mtxRotate, &m_vecRight, D3DXToRadian( x ) ); 
            D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
            D3DXVec3TransformNormal( &m_vecUp, &m_vecUp, &mtxRotate ); 
        }  
 
        if ( y != 0 )  
        { 
            // Build rotation matrix 
            D3DXMatrixRotationAxis( &mtxRotate, &m_vecUp, D3DXToRadian( y ) ); 
            D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
            D3DXVec3TransformNormal( &m_vecRight, &m_vecRight, &mtxRotate ); 
        }  
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        if ( z != 0 )  
        { 
            // Build rotation matrix 
            D3DXMatrixRotationAxis( &mtxRotate, &m_vecLook, D3DXToRadian( z ) ); 
            D3DXVec3TransformNormal( &m_vecUp, &m_vecUp, &mtxRotate ); 
            D3DXVec3TransformNormal( &m_vecRight, &m_vecRight, &mtxRotate ); 
         
        }  
    }// end space craft 
 
At this point, the camera and the CPlayer object have had their Up, Look, and Right vectors rotated to 
represent their new orientations. All we have to do now before we return is perform vector 
regeneration on the CPlayer axes to prevent floating point accumulation errors from creeping in. 
 
    // Vector regeneration 
    D3DXVec3Normalize( &m_vecLook, &m_vecLook ); 
    D3DXVec3Cross( &m_vecRight, &m_vecUp, &m_vecLook ); 
    D3DXVec3Normalize( &m_vecRight, &m_vecRight ); 
    D3DXVec3Cross( &m_vecUp, &m_vecLook, &m_vecRight ); 
    D3DXVec3Normalize( &m_vecUp, &m_vecUp ); 
} 

 
 
CPlayer::Move 
 
Recall that in the ProcessInput function, after and rotations have been made, the current state of the 
keys are recorded in a DWORD bit set and sent to CPlayer::Move: 
 
m_Player.Move( Direction, 500.0f * m_Timer.GetTimeElapsed(), true ); 
 

The first parameter holds the bit set and the second parameter is the acceleration we wish to apply. We 
also pass in a Boolean to determine whether we wish to work through the velocity vector of the 
CPlayer (true) or rather to instantly displace the player by this amount (false). Our application passes 
true, which means that it is added to the velocity vector and will have gravity and friction applied to 
create a final velocity vector.  
 
This function does not actually apply any movement to the camera in ‘true’ mode, it simply calculates 
a direction vector based on keys pressed and acceleration applied. 
 
void CPlayer::Move( ULONG Direction, float Distance, bool Velocity ) 
{ 
    D3DXVECTOR3 vecShift = D3DXVECTOR3( 0, 0, 0 ); 
 
    // Which direction are we moving ? 
    if ( Direction & DIR_FORWARD  ) vecShift += m_vecLook  * Distance; 
    if ( Direction & DIR_BACKWARD ) vecShift -= m_vecLook  * Distance; 
    if ( Direction & DIR_RIGHT    ) vecShift += m_vecRight * Distance; 
    if ( Direction & DIR_LEFT     ) vecShift -= m_vecRight * Distance; 
    if ( Direction & DIR_UP       ) vecShift += m_vecUp    * Distance; 
    if ( Direction & DIR_DOWN     ) vecShift -= m_vecUp    * Distance; 
 
    // Update camera vectors 
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    if ( Direction ) Move( vecShift, Velocity ); 
} 

 
Assume we have a player facing down the world X axis -- his Look vector would be (1,0,0) and his Up 
vector would be (0,1,0). If we press both the left and up keys and pass in an acceleration of 350, the 
direction vector created would be (-1 * 350 , 1 * 350 , 0) = (-350 , 350 ,0). We now pass this vector to an 
overloaded version of the Move function shown next. If we have passed true to the previous function, 
then the direction vector is added to the CPlayer current velocity vector. If we pass false, then the 
CPlayer and the attached camera are instantly moved along this vector into their new positions. 
 
void CPlayer::Move( const D3DXVECTOR3& vecShift, bool Velocity ) 
{ 
    // Update velocity or actual position ? 
    if ( Velocity ) 
    { 
        m_vecVelocity += vecShift; 
    }  
    else 
    { 
        m_vecPos += vecShift; 
        m_pCamera->Move( vecShift ); 
    }  
 } 
 

 
CPlayer::Update 
 
This function will be called every frame to apply friction and gravity to the velocity vector, to move 
the CPlayer and its attached camera to its new position along the velocity vector, and to give the 
camera a final chance to update itself before the frame is drawn.  
 
void CPlayer::Update( float TimeScale ) 
{ 
    // Add on our gravity vector 
    m_vecVelocity += m_vecGravity * TimeScale; 
 
The first thing we do is apply gravity to the velocity vector. In our demo, gravity is a vector pointing 
vertically down with a magnitude of 400 world units.  
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Before we apply the new velocity to the CPlayer position, we make sure that we are not moving further 
in the XZ plane than is permitted in the elapsed time. Therefore, we calculate the length of just the X 
and Z components of the velocity vector and clamp them to their maximum ranges if necessary.  
 
    // Clamp the XZ velocity to our max velocity vector 
    float Length = sqrtf(m_vecVelocity.x * m_vecVelocity.x +  
                         m_vecVelocity.z * m_vecVelocity.z); 
    if ( Length > m_fMaxVelocityXZ ) 
    { 
        m_vecVelocity.x *= ( m_fMaxVelocityXZ / Length ); 
        m_vecVelocity.z *= ( m_fMaxVelocityXZ / Length ); 
    }  
 
We only clamp the XZ components because we are allowed to have a different maximum velocity in 
the Y dimension. Using the vectors in the above image as an example, if we had a maximum XZ 
velocity of 100, then the velocity vector would be clamped because it is currently moving 200 units in 
the X dimension. 

 
Next we clamp the Y component of the velocity vector if it exceeds the maximum allowed range: 
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    // Clamp the Y velocity to our max velocity vector 
    Length = sqrtf(m_vecVelocity.y * m_vecVelocity.y); 
    if ( Length > m_fMaxVelocityY ) 
    { 
        m_vecVelocity.y *= ( m_fMaxVelocityY / Length ); 
    }  
         
We now have a vector that describes the direction and distance that we would like to move. We call 
CPlayer::Move and pass in the velocity vector and a flag value of false so that the velocity vector is 
directly added to the position of the CPlayer and Camera objects.  
 
    // Move our player (will also move the camera if required) 
    Move( m_vecVelocity * TimeScale, false ); 
 
One interesting thing about the above function call is that it moves the player and then moves the 
attached camera by calling the camera’s Move function. This function body is implemented in both the 
first person and space craft camera classes which causes the camera to move in sync with the player. If 
the attached camera is a third person camera however, the Move function is empty and does nothing, 
 
At this point, the player has moved itself into his new position, but the CPlayer object has no concept 
of the CTerrain class or that the terrain even exists. This means of course, that the player may have 
moved themselves right into a mountain or some other such illegal place. In our example, the CTerrain 
class has added a call-back function to the internal call-back arrays, so the next job of the Update 
function is to loop through each element in the m_pPlayerUpdate array and call each call-back 
function that has been added to this array. There is only one function in this array in our demo and that 
is the CTerrain::UpdatePlayer function. This function is passed the CPlayer and can check its position 
against the terrain. The nice thing about this system is that virtually any routine can use the CPlayer 
object without the CPlayer object having any knowledge of the scene geometry. As long as the scene 
geometry database provides a call-back function (or perhaps a few call-backs) the CPlayer will call it 
in its update function allowing for position modification. Once again we strongly emphasize that this is 
not a robust or recommended collision determination system – it simply serves our purposes for these 
small demonstrations. You will more likely use a higher level collision manager as part of a larger 
Physics engine that handles all object-object and object-environment interaction. The Game Institute 
offers training in Physics for game development so be sure to check out the course when you are ready 
to increase the capabilities of your engine. 
 
    // Allow all our registered call-backs to update the player position 
    for ( i =0; i < m_nUpdatePlayerCount; i++ ) 
    { 
        UPDATEPLAYER UpdatePlayer = (UPDATEPLAYER)m_pUpdatePlayer[i].pFunction; 
        UpdatePlayer( m_pUpdatePlayer[i].pContext, this, TimeScale ); 
    }  
 
At this point, the player has been moved to their new position and so has the camera -- provided it is 
not a third person camera; in which case it is still unaltered. Next we call the CCamera::Update 
function to give the attached camera class an opportunity to modify itself in its new position. This 
function does nothing in the first person and spacecraft camera modes but it does have an 
implementation in third person mode. It is in the CCamthirdPerson::Update function that the new 
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position of the CPlayer is retrieved to calculate where the third person camera should move. Each time 
the update function is called, the third person camera moves slowly (depending on camera lag) into its 
desired position. It also ensures the camera is looking at the CPlayer. 
 
    // Let our camera update if required 
    m_pCamera->Update( TimeScale, m_fCameraLag ); 
 
As with the CPlayer object, the camera may have been moved into an illegal position with respect to 
the scene geometry. As we did with the m_pUpdatePlayer array, we now loop through the 
m_pUpdateCamera and call every call-back function contained within. This gives external classes a 
chance to modify/correct the camera position. 
 
    for ( i =0; i < m_nUpdateCameraCount; i++ ) 
    { 
        UPDATECAMERA UpdateCamera = (UPDATECAMERA)m_pUpdateCamera[i].pFunction; 
        UpdateCamera( m_pUpdateCamera[i].pContext, m_pCamera, TimeScale ); 
    }  

 
Before we leave this function, we will apply the friction/drag coefficient to the velocity vector for 
deceleration. If we did not do this, the player would carry on moving forever along the velocity vector. 
In order to do this, we create a deceleration vector and add it to the velocity vector at the end of the 
update. To calculate the deceleration vector, we create a vector that points in the opposite direction of 
the velocity vector and store the result in another vector called vecDec. 
 
    // Calculate the reverse of the velocity direction 
    D3DXVECTOR3 vecDec = -m_vecVelocity; 
 

 
    
We now scale the inverted velocity vector such that it has a length that is equal to the friction/drag 
value we have set. We do this by normalizing the inverted vector so that it has a length of 1, and then 
multiply it by the friction/drag value so that its length is equal to that value.  
 
    // Normalize the deceleration vector 
    D3DXVec3Normalize( &vecDec, &vecDec ); 
 
    // Retrieve the actual velocity length 
    Length = D3DXVec3Length( &m_vecVelocity ); 
 
    // Calculate total deceleration based on friction values 
    float Dec = (m_fFriction * TimeScale); 
    if ( Dec > Length ) Dec = Length; 
 
    // Apply the friction force 
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    m_vecVelocity += vecDec * Dec; 
} 
 
The next time this function is called, the velocity vector will have decreased (assuming the application 
has not requested additional acceleration). Remember that acceleration is always applied when the user 
is holding down one of the movement keys. The following image depicts scaling the unit deceleration 
vector by a drag coefficient of 200 units. 
 

 
 
Finally, this deceleration is added to the velocity vector so that its length is diminished. 
 

 
 
Here is the Update function in its entirety: 
 
void CPlayer::Update( float TimeScale ) 
{ 
    // Add on our gravity vector 
    m_vecVelocity += m_vecGravity * TimeScale; 
 
    // Clamp the XZ velocity to our max velocity vector 
    float Length = sqrtf(m_vecVelocity.x * m_vecVelocity.x +  
                         m_vecVelocity.z * m_vecVelocity.z); 
    if ( Length > m_fMaxVelocityXZ ) 
    { 
        m_vecVelocity.x *= ( m_fMaxVelocityXZ / Length ); 
        m_vecVelocity.z *= ( m_fMaxVelocityXZ / Length ); 
    }  
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    // Clamp the Y velocity to our max velocity vector 
    Length = sqrtf(m_vecVelocity.y * m_vecVelocity.y); 
    if ( Length > m_fMaxVelocityY ) 
    { 
        m_vecVelocity.y *= ( m_fMaxVelocityY / Length ); 
    }  
     
    // Move our player (will also move the camera if required) 
    Move( m_vecVelocity * TimeScale, false ); 
 
    // Allow all our registered callbacks to update the player position 
    for ( i =0; i < m_nUpdatePlayerCount; i++ ) 
    { 
        UPDATEPLAYER UpdatePlayer = (UPDATEPLAYER)m_pUpdatePlayer[i].pFunction; 
        UpdatePlayer( m_pUpdatePlayer[i].pContext, this, TimeScale ); 
    }  
 
    // Let our camera update if required 
    m_pCamera->Update( TimeScale, m_fCameraLag ); 
     
    // Allow all our registered callbacks to update the camera position 
    for ( i =0; i < m_nUpdateCameraCount; i++ ) 
    { 
        UPDATECAMERA UpdateCamera = (UPDATECAMERA)m_pUpdateCamera[i].pFunction; 
        UpdateCamera( m_pUpdateCamera[i].pContext, m_pCamera, TimeScale ); 
    }    
 
    // Calculate the reverse of the velocity direction 
    D3DXVECTOR3 vecDec = -m_vecVelocity; 
    D3DXVec3Normalize( &vecDec, &vecDec ); 
 
    // Retrieve the actual velocity length 
    Length = D3DXVec3Length( &m_vecVelocity ); 
 
    // Calculate total deceleration based on friction values 
    float Dec = (m_fFriction * TimeScale); 
    if ( Dec > Length ) Dec = Length; 
 
    // Apply the friction force 
    m_vecVelocity += vecDec * Dec; 
} 

 
 
CPlayer::Render 
 
This function is responsible for rendering the attached CObject when we are in third person mode. In 
our application this is a simple cube which is rendered as an indexed triangle strip using a single call to 
DrawIndexedPrimitive. In order to render the CObject in its correct position, we must create a world 
matrix. As you will see, we build this matrix using the CPlayer Right, Up, Look and position vectors. 
We then set the matrix as the device world matrix and render the CObject mesh.  
 
void CPlayer::Render( LPDIRECT3DDEVICE9 pDevice ) 
{ 
    CObject * pObject = NULL; 
 
    // Select which object to render 
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    if ( m_pCamera ) 
    { 
        if ( m_CameraMode == CCamera::MODE_THIRDPERSON ) pObject = m_pthirdPersonObject; 
    }  
    else 
    { 
        // Select the third person object (viewed from outside) 
        pObject = m_pthirdPersonObject; 
    }  
 
    // Validate 
    if (!pObject) return;     
 
    // Update our object's world matrix 
    D3DXMATRIX * pMatrix = &pObject->m_mtxWorld; 
    pMatrix->_11 = m_vecRight.x; pMatrix->_21 = m_vecUp.x; pMatrix->_31 = m_vecLook.x; 
    pMatrix->_12 = m_vecRight.y; pMatrix->_22 = m_vecUp.y; pMatrix->_32 = m_vecLook.y; 
    pMatrix->_13 = m_vecRight.z; pMatrix->_23 = m_vecUp.z; pMatrix->_33 = m_vecLook.z; 
    pMatrix->_41 = m_vecPos.x; 
    pMatrix->_42 = m_vecPos.y - 10.0f; 
    pMatrix->_43 = m_vecPos.z; 
 
    // Render our player mesh object 
    CMesh * pMesh = pObject->m_pMesh; 
    pDevice->SetTransform( D3DTS_WORLD, &pObject->m_mtxWorld ); 
    pDevice->SetStreamSource( 0, pMesh->m_pVertexBuffer, 0, sizeof(CVertex) ); 
    pDevice->SetIndices( pMesh->m_pIndexBuffer ); 
    pDevice->DrawIndexedPrimitive( D3DPT_TRIANGLESTRIP, 0, 0, 8, 0, 14 ); 
} 

 
The local scope CObject pointer is not assigned to the third person object if we are using any camera 
other than third person. If a camera is attached to the CPlayer but it is not a third person camera, then 
the CObject pointer remains a NULL pointer and the function returns without rendering the model. 
 
 
Next we will examine the various camera classes at our disposal. The CCamera class is very 
straightforward, and the three derived classes (CCamfirstPerson, CCamthirdPerson, and 
CCamSpaceCraft) simply override a handful of virtual functions to provide different behaviours.  
 
 
The CCamera Base Class 
 
The CCamera class manages the view matrix as well as the projection matrix. For the view matrix, it 
will need to maintain a camera position and the Look, Up, and Right vectors. This means it will need 
to provide functions that allow the application to set the position and orientation of the camera. We 
have already seen these functions (CCamera::Move and CCamera::Rotate) called from the CPlayer 
class. To encapsulate the building and management of the projection matrix, we need variables that 
contain information such as the current field of view and the positions of the near and far clip planes. 
We will also need functions that allow us to attach or detach this camera to/from a CPlayer object. 
Finally, the camera class will maintain a bounding volume much like the CPlayer class. It is used by 
the CTerrain class to check whether the camera has collided with scene geometry.  
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Below we see the CCamera class declaration contained in the CCamera.h file. Many of these functions 
set/get member variables and as such their bodies are inlined in the header file. Many of the functions 
are also declared as virtual functions that will be overridden in derived classes. Some of these are 
simply empty functions in the base class (such as the Rotate, Move and Update functions). These are 
the functions that we will override to give specific functionality to the derived classes. 
 
class CCamera 
{ 
public: 
    // Enumerator 
    enum CAMERA_MODE { 
        MODE_FPS         = 1, 
        MODE_THIRDPERSON = 2, 
        MODE_SPACECRAFT  = 3, 
 
        MODE_FORCE_32BIT = 0x7FFFFFFF 
    }; 
 
    // Constructors & Destructors for This Class. 
    CCamera( const CCamera * pCamera ); 
    CCamera(); 
    virtual ~CCamera(); 
 
    // Public Functions for This Class. 
    void  SetFOV        (float FOV) { m_fFOV = FOV; m_bProjDirty = true; } 
    void  SetViewport   (long Left, long Top, long Width, long Height, float NearClip, 
                         float FarClip, LPDIRECT3DDEVICE9 pDevice = NULL ); 
 
    void  UpdateRenderView  ( LPDIRECT3DDEVICE9 pD3DDevice ); 
    void  UpdateRenderProj  ( LPDIRECT3DDEVICE9 pD3DDevice ); 
     
    const D3DXMATRIX&   GetProjMatrix  ( );     
    float               GetFOV         ( ) const    { return m_fFOV;  } 
    float               GetNearClip    ( ) const    { return m_fNearClip; } 
    float               GetFarClip     ( ) const    { return m_fFarClip; } 
 
    const D3DVIEWPORT9& GetViewport    ( ) const { return m_Viewport; } 
    CPlayer *           GetPlayer      ( ) const { return m_pPlayer;  } 
    const D3DXVECTOR3&  GetPosition    ( ) const { return m_vecPos;   } 
    const D3DXVECTOR3&   GetLook         ( ) const { return m_vecLook;  } 
    const D3DXVECTOR3&   GetUp           ( ) const { return m_vecUp;    } 
    const D3DXVECTOR3&   GetRight        ( ) const { return m_vecRight; } 
    const D3DXMATRIX&    GetViewMatrix   ( ); 
     
    void                SetVolumeInfo    ( const VOLUME_INFO& Volume ); 
    const VOLUME_INFO&  GetVolumeInfo    ( ) const; 
 
    // public virtual functions 
    virtual void   AttachToPlayer   ( CPlayer * pPlayer ); 
    virtual void   DetachFromPlayer ( ); 
    virtual void   SetPosition(const D3DXVECTOR3& Position) 
                                        {m_vecPos = Position; m_bViewDirty = true;} 
 
    virtual void   Move(const D3DXVECTOR3& vecShift) 
                                       { m_vecPos += vecShift; m_bViewDirty = true; } 
    virtual void   Rotate( float x, float y, float z )   {} 
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    virtual void   Update( float TimeScale, float Lag )  {} 
    virtual void   SetCameraDetails( const CCamera * pCamera )     {} 
    virtual CAMERA_MODE GetCameraMode( ) const = 0; 
 
    protected: // Member Variables 
     
    CPlayer        * m_pPlayer;        // The player object we are attached to 
    VOLUME_INFO      m_Volume;         // Stores information about cameras collision volume 
    D3DXMATRIX       m_mtxView;        // Cached view matrix 
    D3DXMATRIX       m_mtxProj;        // Cached projection matrix 
    bool             m_bViewDirty;     // View matrix dirty ? 
    bool             m_bProjDirty;     // Proj matrix dirty ? 
     
    // Perspective Projection parameters 
    float           m_fFOV;            // FOV Angle. 
    float           m_fNearClip;       // Near Clip Plane Distance 
    float           m_fFarClip;        // Far Clip Plane Distance 
    D3DVIEWPORT9    m_Viewport;        // The viewport details into which we are rendering. 
 
    // Cameras current position & orientation 
    D3DXVECTOR3     m_vecPos;           // Camera Position 
    D3DXVECTOR3     m_vecUp;            // Camera Up Vector 
    D3DXVECTOR3     m_vecLook;          // Camera Look Vector 
    D3DXVECTOR3     m_vecRight;         // Camera Right Vector 
}; 
 
Most of the Set()/Get() functions are implemented in the header file and we will not cover these since 
their behaviour is obvious. First we will take a look at the member variables and their purpose. 
 
CPlayer *m_Player 
This is a pointer to a CPlayer object which the camera may be attached to. This is initialized to NULL. 
 
VOLUME_INFO m_Volume 
This is used to describe the bounding volume of the camera (an axis aligned bounding box in our 
application). 
 
D3DXMATRIX m_mtxView 
This is a 4x4 matrix used to hold the current state of the view matrix.  
 
D3DXMATRIX m_mtxProj 
This is a 4x4 matrix used to hold the current state of the projection matrix. 
 
Bool m_bViewDirty, m_bProjDirty 
These two Boolean variables are used to indicate that alterations have been made to the camera class 
that require the projection matrix or the view matrix to be rebuilt. For example, when we call the 
CCamera::SetPosition function to modify the position of the camera, the view matrix is not instantly 
rebuilt; instead the m_bViewMatrix flag is set to true. This allows us to make several sequential 
changes to the camera without the cost of rebuilding the matrix each time. When we wish to set the 
view matrix as the device view matrix, we call the CCamera::GetViewMatrix function. If this flag is 
set to true, then it recalculates the new view matrix before returning it. If it has not been modified since 
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the last call to CCamera::GetViewMatrix, then we can just return the currently cached copy. The 
m_bProjDirty function works the same way with regards to the projection matrix. 
 
float m_fFOV 
This value contains the angle of the current field of view (FOV) in degrees. It is used when the 
projection matrix needs to be rebuilt. We set the camera FOV by calling the CCamera::SetFOV 
function. 
 
float m_fNearPlane and m_fFarPlane 
These values contain the view space distance to the near and far planes of the projection matrix. We set 
these values in the call to CCamera::SetViewport. 
 
D3DVIEWPORT9    m_Viewport 
This is the desired rendering viewport for the camera. 
 
D3DXVECTOR3     m_vecPos 
This vector contains the current world space position of the camera. 
 
D3DXVECTOR3     m_vecRight 
D3DXVECTOR3     m_vecUp 
D3DXVECTOR3     m_vecLook 
These three vectors describe the orientation of the camera local Look, Up and Right vectors. They 
define the camera local coordinate system axes. 
 
 
CCamera::CCamera() 
 
There are two constructors for our camea. The first simply initializes all values to a good set of 
defaults. The view and projection matrices are set to identity and the Right, Up, and Look vectors are 
aligned with the world X, Y and Z axes respectively. The CPlayer pointer is set to null because the 
object is not yet attached to a CPlayer object. The field of view is initialized to 60 degrees (a nice 
default value) and the near and far clip planes are set at a distance of 1.0 and 100.0 from the camera 
respectively. The default viewport is 640x480 pixels and is positioned so that its top-left corner is 
located at coordinate (0,0) in the frame buffer.  
 
CCamera::CCamera() 
{ 
    // Reset / Clear all required values 
    m_pPlayer         = NULL; 
    m_vecRight        = D3DXVECTOR3( 1.0f, 0.0f, 0.0f ); 
    m_vecUp           = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ); 
    m_vecLook         = D3DXVECTOR3( 0.0f, 0.0f, 1.0f ); 
    m_vecPos          = D3DXVECTOR3( 0.0f, 0.0f, 0.0f ); 
 
    m_fFOV            = 60.0f; 
    m_fNearClip       = 1.0f; 
    m_fFarClip        = 100.0f; 
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    m_Viewport.X      = 0; 
    m_Viewport.Y      = 0; 
    m_Viewport.Width  = 640; 
    m_Viewport.Height = 480; 
    m_Viewport.MinZ   = 0.0f; 
    m_Viewport.MaxZ   = 1.0f; 
 
    // Set matrices to identity 
    D3DXMatrixIdentity( &m_mtxView ); 
    D3DXMatrixIdentity( &m_mtxProj ); 
} 
 
The second constructor takes a pointer to a CCamera class to allow derived classes to initialize 
themselves based on the settings of previously created cameras. It is similar to a typical copy 
constructor. 
 
CCamera::CCamera( const CCamera * pCamera ) 
{ 
    // Reset / Clear all required values 
    m_pPlayer         = NULL; 
    m_vecRight        = D3DXVECTOR3( 1.0f, 0.0f, 0.0f ); 
    m_vecUp           = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ); 
    m_vecLook         = D3DXVECTOR3( 0.0f, 0.0f, 1.0f ); 
    m_vecPos          = D3DXVECTOR3( 0.0f, 0.0f, 0.0f ); 
 
    m_fFOV            = 60.0f; 
    m_fNearClip       = 1.0f; 
    m_fFarClip        = 100.0f; 
    m_Viewport.X      = 0; 
    m_Viewport.Y      = 0; 
    m_Viewport.Width  = 640; 
    m_Viewport.Height = 480; 
    m_Viewport.MinZ   = 0.0f; 
    m_Viewport.MaxZ   = 1.0f; 
 
    // Set matrices to identity 
    D3DXMatrixIdentity( &m_mtxView ); 
    D3DXMatrixIdentity( &m_mtxProj ); 
} 
 
 
CCamera::~CCamera() 
 
The CCamera class does not allocate any memory that needs to be released. Therefore, the default 
destructor has no function body and does nothing. Note that we use a virtual destructor so that if the 
object is destroyed via a pointer to the base class, the destructor for the object will be called correctly. 
 
 
CCamera::SetViewport 
 
CCamera::SetViewport takes input parameters for the viewport left (X) and top (Y) coordinates as well 
as its width and height. These values are copied into the D3DVIEWPORT9 member variable. MinZ 
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and MaxZ are hard coded to 0.0 and 1.0 respectively and you will likely never need to change this. The 
last two parameters we pass are the distances to the near and far clip planes. These are not actually 
related to setting the viewport itself, but they do influence the projection matrix that will need to be 
recalculated.  
  
void CCamera::SetViewport( long Left, long Top, long Width, long Height, float NearClip, 
                           float FarClip, LPDIRECT3DDEVICE9 pDevice ) 
{ 
    // Set viewport sizes 
    m_Viewport.X      = Left; 
    m_Viewport.Y      = Top; 
    m_Viewport.Width  = Width; 
    m_Viewport.Height = Height; 
    m_Viewport.MinZ   = 0.0f; 
    m_Viewport.MaxZ   = 1.0f; 
    m_fNearClip       = NearClip; 
    m_fFarClip        = FarClip; 
    m_bProjDirty      = true; 
 
    // Update device if requested 
    if ( pDevice ) pDevice->SetViewport( &m_Viewport ); 
} 
 
The final parameter is a pointer to an IDirect3DDevice9 interface. This parameter defaults to NULL, 
but if you pass in the address of a device interface, this function will call the 
IDirect3DDevice9::SetViewport function to send your viewport parameters to the device. Note that we 
also set the m_bProjDirty variable to true. This means that the next time the application queries the 
state of the projection matrix, it will be rebuilt, taking the new aspect ratio of the viewport into 
account, as well as the new near and far plane values. 
 
 
CCamera::GetProjMatrix 
 
This function rebuilds the projection matrix and returns the result. The function only recalculates the 
projection matrix if the m_bProjDirty flag is set. It sets the m_bProjDirty flag to false after it is 
complete.  
 
  const D3DXMATRIX& CCamera::GetProjMatrix()  
  { 
    // Only update matrix if something has changed 
    if ( m_bProjDirty )  
    {      
        float fAspect = (float)m_Viewport.Width / (float)m_Viewport.Height; 
 
        // Set the perspective projection matrix 
        D3DXMatrixPerspectiveFovLH(&m_mtxProj, D3DXToRadian( m_fFOV / 2.0f ), fAspect, 
                                    m_fNearClip, m_fFarClip ); 
             
        // Proj Matrix has been updated 
        m_bProjDirty = false;  
    }  
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    // Return the projection matrix. 
    return m_mtxProj; 
  } 

 
The function is called by the CCamera::UpdateRenderProj matrix which is in turn called from the 
CGameApp class whenever the projection matrix of the camera needs to be updated. For example, 
when the window is resized, the viewport will need to be changed and the aspect ratio of this new 
window size calculated. So in the WM_SIZE handler, we would get the new window dimensions and 
call CCamera::SetViewport to record the data, and then call CCamera::UpdateRenderProj -- which 
would call the GetProjMatrix function -- to calculate the new projection matrix and set it as the device 
projection matrix. 
 
 
CCamera::UpdateRenderProj / CCamera::UpdateRenderView 
 
These functions are used to set the device view and projection matrices. Local matrices are rebuilt 
when their respective m_bProjDirty or m_bViewDirty Booleans are set to true. 
 
void CCamera::UpdateRenderProj( LPDIRECT3DDEVICE9 pD3DDevice ) 
{   
    if (!pD3DDevice) return; 
    pD3DDevice->SetTransform( D3DTS_PROJECTION, &GetProjMatrix() ); 
} 
 
 
void CCamera::UpdateRenderView( LPDIRECT3DDEVICE9 pD3DDevice ) 
{   
    if (!pD3DDevice) return; 
    pD3DDevice->SetTransform( D3DTS_VIEW, &GetViewMatrix() ); 
} 
 

 
 
CCamera::GetViewMatrix 
 
This function places the camera Right, Up, and Look vectors into columns 1, 2 and 3 of the view 
matrix respectively. It then places the inverted, view-space transformed position into the fourth row of 
the matrix. The view matrix is only rebuilt if its dirty flag is set. Just like the CPlayer class, we 
remember to perform vector regeneration at regular intervals to keep the axes perpendicular and unit 
length. 
 
const D3DXMATRIX& CCamera::GetViewMatrix() 
{ 
    // Only update matrix if something has changed 
    if ( m_bViewDirty )  
    { 
        D3DXVec3Normalize( &m_vecLook, &m_vecLook ); 
        D3DXVec3Cross( &m_vecRight, &m_vecUp, &m_vecLook ); 
        D3DXVec3Normalize( &m_vecRight, &m_vecRight ); 
        D3DXVec3Cross( &m_vecUp, &m_vecLook, &m_vecRight ); 
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        D3DXVec3Normalize( &m_vecUp, &m_vecUp ); 
 
        // Set view matrix values 
        m_mtxView._11 = m_vecRight.x;m_mtxView._12 = m_vecUp.x;m_mtxView._13 = m_vecLook.x; 
        m_mtxView._21 = m_vecRight.y;m_mtxView._22 = m_vecUp.y;m_mtxView._23 = m_vecLook.y; 
        m_mtxView._31 = m_vecRight.z;m_mtxView._32 = m_vecUp.z;m_mtxView._33 = m_vecLook.z; 
        m_mtxView._41 =- D3DXVec3Dot( &m_vecPos, &m_vecRight ); 
        m_mtxView._42 =- D3DXVec3Dot( &m_vecPos, &m_vecUp    ); 
        m_mtxView._43 =- D3DXVec3Dot( &m_vecPos, &m_vecLook  ); 
 
        // View Matrix has been updated 
        m_bViewDirty = false; 
    }  
    // Return the view matrix. 
    return m_mtxView; 
} 

 
 
 
The CCamfirstPerson Class 
 
The first derived class we will examine will be the first person camera class. The class declaration can 
be found in CCamera.h. 
 
class CCamfirstPerson : public CCamera 
{ 
public: 
     //Contructors 
    CCamfirstPerson( const CCamera * pCamera ); 
    CCamfirstPerson(); 
 
     // Public Base Class Overrides 
    CAMERA_MODE      GetCameraMode    ( ) const { return MODE_FPS; } 
    void             Rotate           ( float x, float y, float z ); 
    void             SetCameraDetails ( const CCamera * pCamera ); 
}; 

There are two constructors, the first of which is a default constructor and the second of which is an 
overridden constructor that takes a pointer to a CCamera. Because we know that we are creating a first 
person camera in this constructor, we know exactly what information we need to extract from the 
passed camera in order to set the initial values. Also notice that the GetCameraMode function is 
implemented in the class declaration and simply returns MODE_FPS identifying that this is a first 
person camera object. 
 
 
CCamfirstPerson:: CCamfirstPerson() 
 
This constructor takes a CCamera object pointer so that it can clone its properties. It simply calls the 
CCamfirstPerson::SetCameraDetails functions to copy over the properties. 
 
CCamfirstPerson::CCamfirstPerson( const CCamera * pCamera ) 
{ 
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    // Update the camera from the camera passed 
    SetCameraDetails( pCamera ); 
} 
 
 
CCamfirstPerson::SetCameraDetails 
 
The SetCameraDetails function copies properties from one camera to another. We did not hardcode the 
property copying code into the constructor so that the application can call SetCameraDetails to clone 
the settings of a camera at any time -- not just at camera class construction.  
 
The first thing we do is check that a valid (non-NULL) pointer was passed. If this is not the case, we 
simply return. We can do this because the base class version of the function will have already been 
called, initialising the values to good defaults. We copy the position, clip planes, FOV, viewport, and 
volume information from the passed camera, as well as its Up, Look and Right vectors. If the camera 
we are cloning is a spacecraft camera then we need to flatten out the vectors. This is because the 
spacecraft mode is the only camera mode for which complete freedom of rotation is allowed about all 
three local axes. Finally, we make sure that we dirty both the projection matrix and the view matrix to 
force them to be rebuilt the next time they need to be sent to the device. 
 
void CCamfirstPerson::SetCameraDetails( const CCamera * pCamera ) 
{ 
    // Validate Parameters 
    if (!pCamera) return; 
 
    // Reset / Clear all required values 
    m_vecPos     = pCamera->GetPosition(); 
    m_vecRight   = pCamera->GetRight(); 
    m_vecLook    = pCamera->GetLook(); 
    m_vecUp      = pCamera->GetUp(); 
    m_fFOV       = pCamera->GetFOV(); 
    m_fNearClip  = pCamera->GetNearClip(); 
    m_fFarClip   = pCamera->GetFarClip(); 
    m_Viewport   = pCamera->GetViewport(); 
    m_Volume     = pCamera->GetVolumeInfo(); 
 
    // If we are switching building from a spacecraft style cam 
    if ( pCamera->GetCameraMode() == MODE_SPACECRAFT ) 
    { 
        // Flatten out the vectors 
        m_vecUp      = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ); 
        m_vecRight.y = 0.0f; 
        m_vecLook.y  = 0.0f; 
 
        // Finally, normalize them 
        D3DXVec3Normalize( &m_vecRight, &m_vecRight ); 
        D3DXVec3Normalize( &m_vecLook, &m_vecLook ); 
 
    } // End if MODE_SPACECRAFT 
 
    m_bViewDirty = true; 
    m_bProjDirty = true; 
} 
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CCamfirstPerson::Rotate 
 
The Rotate function is an overridden virtual function. Recall that in CGameApp::ProcessInput we call 
CPlayer::Rotate in response the mouse being dragged with one or more buttons down. The 
CPlayer::Rotate function rotates the CPlayer Up, Look and Right vectors and then calls the attached 
camera’s Rotate function.  
 
void CCamfirstPerson::Rotate( float x, float y, float z ) 
{ 
    D3DXMATRIX mtxRotate; 
 
    if ( x != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &mtxRotate, &m_vecRight, D3DXToRadian( x ) ); 
         
        // Update our vectors 
        D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecUp, &m_vecUp, &mtxRotate ); 
     }  
 
The first thing to check is whether an X axis rotation has been requested. Remember that in first person 
camera mode, we want the up/down mouse movements to rotate the camera about its own axis so the 
head can tilt up and down independent of the body. We build a rotation matrix that rotates vectors 
about the Right vector (the camera local X axis) and then rotates the Up and Look vectors around it by 
the specified angle.  
 

 
 
Next we handle Y rotation if requested. In first person mode, the camera and the player yaw together, 
so the camera is rotated about the CPlayer Up vector.  
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    if ( y != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &mtxRotate, &m_pPlayer->GetUp(), D3DXToRadian( y ) ); 
         
        // Update our vectors 
        D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecUp, &m_vecUp, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecRight, &m_vecRight, &mtxRotate ); 
     
    } // End if Yaw 
 
When a Z axis rotation has been requested, we need to implement a lean.  Here we rotate the camera’s 
Up, Look, and Right vectors as well as its position around the player Look vector: 
 

 
 
Unlike other rotations, we need to rotate the axes of the camera and the camera world space position. 
Since all rotations are relative to the origin of the coordinate system, we must subtract the world space 
position of the player from the position of the camera, such that the player coordinate axes are situated 
at the origin. At this point we can rotate the position vector about the CPlayer Look vector (as shown 
in the above diagram) so that the camera is pivoted into a new position. We also rotate the camera local 
axes since these will change orientation. We use the function D3DXVec3TransformCoord to multiply 
a world space coordinate with a matrix, instead of the usual D3DXVec3TransformNormal: 
 
    if ( z != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &mtxRotate, &m_pPlayer->GetLook(), D3DXToRadian( z ) ); 
         
        // Adjust camera position 
        m_vecPos -= m_pPlayer->GetPosition(); 
        D3DXVec3TransformCoord ( &m_vecPos, &m_vecPos, &mtxRotate ); 
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        m_vecPos += m_pPlayer->GetPosition(); 
 
        // Update our vectors 
        D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecUp, &m_vecUp, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecRight, &m_vecRight, &mtxRotate ); 
    }  
         
    // Set view matrix as dirty 
    m_bViewDirty = true; 
} 
 
Below we see the CCamfirstPerson::Rotate function in its entirety. 
 
void CCamfirstPerson::Rotate( float x, float y, float z ) 
{ 
    D3DXMATRIX mtxRotate; 
    if ( x != 0 )  
    { 
        // Build Rotation matrix 
        D3DXMatrixRotationAxis( &mtxRotate, &m_vecRight, D3DXToRadian( x ) ); 
         
        // Update our vectors 
        D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecUp, &m_vecUp, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecRight, &m_vecRight, &mtxRotate ); 
 
    }  
 
    if ( y != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &mtxRotate, &m_pPlayer->GetUp(), D3DXToRadian( y ) ); 
         
        // Update our vectors 
        D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecUp, &m_vecUp, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecRight, &m_vecRight, &mtxRotate ); 
     
    }  
 
    if ( z != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &mtxRotate, &m_pPlayer->GetLook(), D3DXToRadian( z ) ); 
         
        // Adjust camera position 
        m_vecPos -= m_pPlayer->GetPosition(); 
        D3DXVec3TransformCoord ( &m_vecPos, &m_vecPos, &mtxRotate ); 
        m_vecPos += m_pPlayer->GetPosition(); 
 
        // Update our vectors 
        D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecUp, &m_vecUp, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecRight, &m_vecRight, &mtxRotate ); 
     
    }  
         
    // Set view matrix as dirty 
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    m_bViewDirty = true; 
} 
 
 
 
The CCamSpaceCraft Class 
 
The declaration for the third person camera class is identical to the first person camera, and can also be 
found in CCamera.h. It overrides the same functions from the base class to provide custom rotations. 
Note that the GetCameraMode function returns MODE_SPACECRAFT. 
 
 
class CCamSpaceCraft : public CCamera 
{ 
public: 
    // Constructors  
    CCamSpaceCraft( const CCamera * pCamera ); 
    CCamSpaceCraft(); 
 
    // Public functions 
    CAMERA_MODE         GetCameraMode    ( ) const { return MODE_SPACECRAFT; } 
    void                Rotate           ( float x, float y, float z ); 
    void                SetCameraDetails ( const CCamera * pCamera ); 
}; 
 

The constructors are identical to that of the previous class, with a constructor that accepts a CCamera 
pointer and passes the request on to the SetCameraDetails function.  
 
 
CCamSpaceCraft::SetCameraDetails 
 
The SetCameraDetails function in this class is slightly different in that the spacecraft camera has total 
freedom of rotation. It does not have to flatten out any vectors as was the case with the 
CCamfirstPerson::SetCameraDetails function. This means that it simply copies the values straight into 
the class variables as shown below. 
 
void CCamSpaceCraft::SetCameraDetails( const CCamera * pCamera ) 
{ 
    // Validate Parameters 
    if (!pCamera) return; 
 
    // Reset / Clear all required values 
    m_vecPos    = pCamera->GetPosition(); 
    m_vecRight  = pCamera->GetRight(); 
    m_vecLook   = pCamera->GetLook(); 
    m_vecUp     = pCamera->GetUp(); 
    m_fFOV      = pCamera->GetFOV(); 
    m_fNearClip = pCamera->GetNearClip(); 
    m_fFarClip  = pCamera->GetFarClip(); 
    m_Viewport  = pCamera->GetViewport(); 
    m_Volume    = pCamera->GetVolumeInfo(); 
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    // Rebuild both matrices 
    m_bViewDirty = true; 
    m_bProjDirty = true; 
} 
 
 
CCamSpaceCraft::Rotate 

 
Unlike the first person camera mode where the camera can have rotations independent from the 
CPlayer (such as pitching the camera up and down about its own axes) the spacecraft camera has its 
rotations synchronized with the CPlayer rotation. If the player rotates about his Y axis, then the 
spacecraft camera also rotates about the CPlayer Y axis. In our application, we set the camera offset to 
zero when the change is made to spacecraft mode so that the camera is always in exactly the same 
position as the player. Because rotations are paralleled by both classes, the Up, Right, and Look 
vectors of both remain identical throughout. You can think of the CPlayer object as a spaceship with 
total freedom of rotation, and the camera as the pilot in the cockpit who rotates when the space craft 
rotates. For example, you may decide that your space craft is a big mother ship and the bridge of the 
ship is offset 50 units from the player origin. That is why this rotation function always rotates the 
camera about the CPlayer axes. Doing this makes sure that rotations are handled correctly even if there 
is a camera offset being used. The only difference in the code is that we must subtract the player 
position from the camera position so that the rotation happens relative to the origin of the coordinate 
system. Once the position has been rotated, we add the CPlayer positions back on to the camera 
position to restore it to its new position in world space. 
 
void CCamSpaceCraft::Rotate( float x, float y, float z ) 
{ 
    D3DXMATRIX mtxRotate; 
 
    if ( x != 0 )  
    { 
        // Build rotation matrix about players X axis 
        D3DXMatrixRotationAxis( &mtxRotate, &m_pPlayer->GetRight(), D3DXToRadian( x ) ); 
        D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecUp, &m_vecUp, &mtxRotate ); 
 
        // Rotate about player 
        m_vecPos -= m_pPlayer->GetPosition(); 
        D3DXVec3TransformCoord( &m_vecPos, &m_vecPos, &mtxRotate ); 
        m_vecPos += m_pPlayer->GetPosition(); 
 
 
    } // End if Pitch 
 
    if ( y != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &mtxRotate, &m_pPlayer->GetUp(), D3DXToRadian( y ) ); 
        D3DXVec3TransformNormal( &m_vecLook, &m_vecLook, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecRight, &m_vecRight, &mtxRotate ); 
 
        // Adjust position 
        m_vecPos -= m_pPlayer->GetPosition(); 
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        D3DXVec3TransformCoord( &m_vecPos, &m_vecPos, &mtxRotate ); 
        m_vecPos += m_pPlayer->GetPosition(); 
     
    }  
 
    if ( z != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &mtxRotate, &m_pPlayer->GetLook(), D3DXToRadian( z ) ); 
        D3DXVec3TransformNormal( &m_vecUp, &m_vecUp, &mtxRotate ); 
        D3DXVec3TransformNormal( &m_vecRight, &m_vecRight, &mtxRotate ); 
 
        // Adjust position 
        m_vecPos -= m_pPlayer->GetPosition(); 
        D3DXVec3TransformCoord( &m_vecPos, &m_vecPos, &mtxRotate ); 
        m_vecPos += m_pPlayer->GetPosition(); 
     
    }  
         
    // Set view matrix as dirty 
    m_bViewDirty = true; 
} 
 

 
The CCamthirdPerson Class 
 
This class is implemented quite differently than the previous two. First we notice that the Move and 
Rotate functions are overridden but have no function bodies. Any calls from the CPlayer to move or 
rotate the third person camera are ignored. We have also overridden the CCamera::Update function. 
Recall that in the CPlayer::Update function, CPlayer::Move is called to update the player position 
using the current velocity vector. This function then passes the move request on to the camera. In first 
person and spacecraft camera modes, this move request moves the camera along the velocity vector to 
its new position. In this class however, it does nothing. The next thing that the CPlayer::Update 
function does after the CPlayer has been moved to its new position, is call the CCamera::Update 
function. This function does nothing in first person and spacecraft camera mode, but in this class it is 
used to move the camera to a new position that follows the CPlayer object.  
 
class CCamthirdPerson : public CCamera 
{ 
public: 
    // Constructors 
    CCamthirdPerson( const CCamera * pCamera ); 
    CCamthirdPerson(); 
 
    // Public Functions for This Class. 
    CAMERA_MODE         GetCameraMode    ( ) const { return MODE_THIRDPERSON; } 
    void                Move             ( const D3DXVECTOR3& vecShift ) {}; 
    void                Rotate           ( float x, float y, float z )   {}; 
    void                Update           ( float TimeScale, float Lag ); 
    void                SetCameraDetails ( const CCamera * pCamera ); 
    void                SetLookAt        ( const D3DXVECTOR3& vecLookAt ); 
}; 
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We will not look at the code to the SetCameraDetails function since it is identical to that of its 
CCamfirstPerson equivalent. It simply copies over the details of the passed CCamera and flattens out 
the vectors on to the XZ plane if the camera passed was previously in spacecraft mode. Remember that 
the CPlayer in third person mode is limited to rotation about its Y axis only (Yaw). 
 
 
CCamthirdPerson::Update 
 
The CCamthirdPerson::Update function is the core of this class. It is called every frame of the game 
(because it is called from CPlayer::Update which is called every frame) and makes sure that the camera 
follows the player. It uses the camera lag setting to smooth any rotations that occur. 
 
When this function is called from the CPlayer::Update function, it is passed the elapsed time since the 
last frame as well as the camera lag setting (previously set with a call to CPlayer::SetCamLag). This 
controls how quickly the camera catches up to changes in player orientation and position. We will 
multiply the elapsed time by the reciprocal of the lag value and use this as a scaling value for this 
frame. Larger lags result in slower camera movement along its movement vector in a single update. 
 
void CCamthirdPerson::Update( float TimeScale, float Lag ) 
{ 
    D3DXMATRIX  mtxRotate; 
    D3DXVECTOR3 vecOffset, vecPosition, vecDir; 
 
    float fTimeScale = 1.0f, Length = 0.0f; 
    if ( Lag != 0.0f ) fTimeScale = TimeScale * (1.0f / Lag); 
 
Now that we have the time scale, we need to take the camera offset vector (set by SetCamOffset) and 
transform it so that it is relative to the player. Why do we do this? Let us imagine that we initially set 
the camera offset vector to (0, 0,-10) to indicate that we want the camera to be 10 units behind the 
player. We will want this to be true regardless of the way the player is oriented. We know that if the 
player has a look vector of (1, 0, 0) they are looking down the world X axis. In this instance, if the 
player were positioned at the origin, 10 units ‘behind’ the player would actually be (-10, 0, 0) since the 
back side of the player is facing down the -X axis. Therefore, we need to take the offset and convert it 
from a player space offset vector into a world space offset vector. To do this, we build a temporary 
rotation matrix (without the translation vector in the fourth row) for the player and multiply the offset 
vector by this matrix. It is rotated by the CPlayer local axes so that the offset is now a world space 
offset. All we have to do is add this world space offset to the player world space position and we have 
the world space position of the point where the camera belongs. 
 
    // Rotate our offset vector to its position behind the player 
    D3DXMatrixIdentity( &mtxRotate ); 
    D3DXVECTOR3 vecRight = m_pPlayer->GetRight(), vecUp = m_pPlayer->GetUp(),  
                vecLook = m_pPlayer->GetLook(); 
    mtxRotate._11 = vecRight.x; mtxRotate._21 = vecUp.x; mtxRotate._31 = vecLook.x; 
    mtxRotate._12 = vecRight.y; mtxRotate._22 = vecUp.y; mtxRotate._32 = vecLook.y; 
    mtxRotate._13 = vecRight.z; mtxRotate._23 = vecUp.z; mtxRotate._33 = vecLook.z; 
 
    // Calculate our rotated offset vector 
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    D3DXVec3TransformCoord( &vecOffset, &m_pPlayer->GetCamOffset(), &mtxRotate ); 
 
    // vecOffset now contains information to calculate where our camera position SHOULD be. 
    vecPosition = m_pPlayer->GetPosition() + vecOffset; 
 
If we were not using lag, then we could immediately update the camera position to this newly 
calculated position. However, such a transition would appear abrupt and we would prefer that our 
camera gently glides into place over the the next few frames. So we will calculate a direction vector 
from the camera current position to the newly calculated position and move the camera along this 
vector instead. The distance we move along this vector is dependant on the time scale calculated 
above. The next image makes clear our objectives. 
 

 

 
 
    vecDir = vecPosition - m_vecPos; 
    Length = D3DXVec3Length( &vecDir ); 
    D3DXVec3Normalize( &vecDir, &vecDir ); 
 
    // Move based on camera lag 
    float Distance = Length * fTimeScale; 
    if ( Distance > Length ) Distance = Length; 
 
    // If we only have a short way to travel, move all the way 
    if ( Length < 0.01f ) Distance = Length; 
     
    // Update our camera 
    if ( Distance > 0 ) 
    { 
        m_vecPos += vecDir * Distance; 
     
        // Ensure our camera is looking at the axis origin 
        SetLookAt( m_pPlayer->GetPosition() ); 
 
        // Our view matrix parameters have been update 
        m_bViewDirty = true; 
    }  
} 
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We calculate the vector from the current position to the desired position and record the length of this 
vector so that we know how far we have to travel in that direction. We then normalize the vector so 
that it is unit length. Next we scale the distance by the time scale to get the distance we can travel in 
this single update. If the distance to the desired position is very small, we immediately assign the 
desired position to the camera position. Otherwise, we scale the new direction vector by the time scale 
to produce a velocity vector for this update. This vector is then added to the camera position.  
 
CCamthirdPerson::SetLookAt 
 
In third person mode, we will make sure that the camera always faces the player. This function adjusts 
the Look, Up, and Right vectors so that the camera points in the correct direction. Rather than calculate 
the new vectors ourselves, we can use the D3DXMatrixLookAtLH function to build the matrix for us. 
We can then extract the new vectors from the matrix directly into the camera member variables.  
 
void CCamthirdPerson::SetLookAt( const D3DXVECTOR3& vecLookAt ) 
{ 
    D3DXMATRIX Matrix; 
 
    // Generate a look at matrix 
    D3DXMatrixLookAtLH( &Matrix, &m_vecPos, &vecLookAt, &m_pPlayer->GetUp() ); 
     
    // Extract the vectors 
    m_vecRight = D3DXVECTOR3( Matrix._11, Matrix._21, Matrix._31 ); 
    m_vecUp    = D3DXVECTOR3( Matrix._12, Matrix._22, Matrix._32 ); 
    m_vecLook  = D3DXVECTOR3( Matrix._13, Matrix._23, Matrix._33 ); 
 
    // Set view matrix as dirty 
    m_bViewDirty = true; 
} 

 
The function is passed the position in world space we wish to look at. This value, along with the 
camera current position and the player Up vector, is passed into the D3DX function to build the matrix. 
What we are doing here is building a matrix for an object situated at m_vecPos (camera current 
position) looking at the player position (vecLookAt) in such a way that its Up vector is aligned with 
the player Up vector. Keep in mind that the D3DXMatrixLookAt function builds a view matrix, which 
is an inverse matrix. This is why we extract the vectors from its columns and not its rows. 
 
 
CTerrain Revisited 
 
All that is left to do is discuss the functions that handle the player and camera collision detection 
against the terrain. As we have already mentioned, the CTerrain class provides two static call-back 
functions which are added to the CPlayer call-back function arrays. The first function we will look at is 
the CTerrain::UpdatePlayer function. It is called by CPlayer::Update to allow CTerrain to modify the 
position of the CPlayer object when it intersects the terrain. 
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CTerrain::UpdatePlayer  (static) 
 
void CTerrain::UpdatePlayer( LPVOID pContext, CPlayer * pPlayer, float TimeScale ) 
{ 
    // Validate Parameters 
    if ( !pContext || !pPlayer ) return; 
 
    VOLUME_INFO Volume    = pPlayer->GetVolumeInfo(); 
    D3DXVECTOR3 Position  = pPlayer->GetPosition(); 
    D3DXVECTOR3 Velocity  = pPlayer->GetVelocity(); 
    bool        ReverseQuad = false; 

 
First we store the values we will need to test for terrain collision. In a moment, we will call 
CTerrain::GetHeight to retrieve the current height of the terrain at the position of the player. 
Essentially, GetHeight uses the current X and Z position of the player to find the four pixels in the 
height map which define the quad the player is currently standing on. It will then interpolate the height 
values between these four corner points to find the actual height of the terrain -- which may be some 
point in between those four points. In order to do this, the GetHeight function needs to know whether 
we are on an even or odd row of the terrain. In Chapter Three we saw that the terrain is represented as 
a triangle strip. The first row is rendered from left to right, the second row is rendered right to left, the 
third row is rendered left to right, and so on. We determine odd or even by dividing the player world 
space Z position by CTerrain::m_vecScale. This converts the Z coordinate into a height map space 
row. If we have a 10x10 height map and we have a terrain scale factor of 10, then the terrain will be 
100x100 in world space. If the Z coordinate of our player was 25: 

 
CPlayer.Z = 25 
CTerrain.m_vecScale = 10; 
Row = 25/10 = 2 ( We are on the third row , so this is an odd row) 
 

Here is the code to the function that calculates this. 
 
    // Determine which row we are on 
    int PosZ = (int)(Position.z / ((CTerrain*)pContext)->m_vecScale.z); 
    if ( (PosZ % 2) != 0 ) ReverseQuad = true; 

 
Here we call CTerrain:GetHeight to retrieve the height of the terrain under the player. We make sure to 
pass in the Boolean we just calculated so that the function knows whether we are on an odd or even 
row.    
 
  // Retrieve the height of the terrain at this position 
  float vy = Volume.Min.y; 
  float fHeight = ((CTerrain*)pContext)->GetHeight(Position.x, Position.z, ReverseQuad) – 
vy; 

 
We pass the X and Z position of the CPlayer to index into the height map and calculate the terrain 
height at a specific point. Once this height is returned, we subtract the world space Y position of the 
bounding volume minimum Y point. We do this because we wish to know if the terrain intersects the 
player bounding volume. Note that the lowest point in the bounding volume may be lower than the 
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actual position of the player himself. For example, we may have a defined a bounding box where the 
player position is at the center. So we need to test that the bottom of the bounding box does not 
intersect the terrain.  
 
Finally, we check to see if the world space position of the player is lower than the height of the terrain 
at that point. If so, the height of the player is modified so that its new position is exactly the height of 
the terrain. This means if the bounding volume was intersecting the terrain, it will be moved upwards 
so that the bounding volume sits on the terrain at the correct height. 
 
    // Determine if the position is lower than the height at this position 
    if ( Position.y < fHeight ) 
    { 
        // Update camera details 
        Velocity.y = 0; 
        Position.y = fHeight; 
 
        // Update the camera 
        pPlayer->SetVelocity( Velocity ); 
        pPlayer->SetPosition( Position ); 
 
    } // End if colliding 
} 
 

Here is the CTerrain::UpdatePlayer function in its entirety: 
 
void CTerrain::UpdatePlayer( LPVOID pContext, CPlayer * pPlayer, float TimeScale ) 
{ 
    // Validate Parameters 
    if ( !pContext || !pPlayer ) return; 
 
    VOLUME_INFO Volume   = pPlayer->GetVolumeInfo(); 
    D3DXVECTOR3 Position = pPlayer->GetPosition(); 
    D3DXVECTOR3 Velocity = pPlayer->GetVelocity(); 
    bool        ReverseQuad = false; 
 
    // Determine which row we are on 
    int PosZ = (int)(Position.z / ((CTerrain*)pContext)->m_vecScale.z); 
    if ( (PosZ % 2) != 0 ) ReverseQuad = true; 
 
    // Retrieve the height of the terrain at this position 
    float vy = Volume.Min.y; 
    float fHeight = ((CTerrain*)pContext)->GetHeight(Position.x, 
                                                     Position.z,  
                                                     ReverseQuad) – vy; 
 
    // Determine if the position is lower than the height at this position 
    if ( Position.y < fHeight ) 
    { 
        // Update camera details 
        Velocity.y = 0; 
        Position.y = fHeight; 
 
        // Update the camera 
        pPlayer->SetVelocity( Velocity ); 
        pPlayer->SetPosition( Position ); 
    }  
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} 
 
 
CTerrain::UpdateCamera 
 
CPlayer::UpdateCamera is called by the CPlayer::Update function every frame to give CTerrain a 
chance to modify the position of the camera if it has moved into an illegal position. This function is 
very similar to the UpdatePlayer function so we will show it in its entirety with only a brief 
description. 
 
 
void CTerrain::UpdateCamera( LPVOID pContext, CCamera * pCamera, float TimeScale ) 
{ 
    // Validate Requirements 
    if (!pContext || !pCamera ) return; 
    if ( pCamera->GetCameraMode() != CCamera::MODE_THIRDPERSON ) return; 
 
    VOLUME_INFO Volume   = pCamera->GetVolumeInfo(); 
    D3DXVECTOR3 Position = pCamera->GetPosition(); 
    bool        ReverseQuad = false; 
 
    // Determine which row we are on 
    ULONG PosZ = (ULONG)(Position.z / ((CTerrain*)pContext)->m_vecScale.z); 
    if ( (PosZ % 2) != 0 ) ReverseQuad = true; else ReverseQuad = false; 
 
    float vy = Volume.Min.y; 
    float fHeight = ((CTerrain*)pContext)->GetHeight(Position.x, 
                                                     Position.z, 
                                                     ReverseQuad) – vy; 
 
    // Determine if the position is lower than the height at this position 
    if ( Position.y < fHeight ) 
    { 
        // Update camera details 
        Position.y = fHeight; 
        pCamera->SetPosition( Position ); 
 
    } // End if colliding 
 
    // Retrieve the player at which the camera is looking 
    CPlayer * pPlayer = pCamera->GetPlayer(); 
    if (!pPlayer) return; 
 
    // We have updated the position of either our player or camera 
    // We must now instruct the camera to look at the players position 
    ((CCamthirdPerson*)pCamera)->SetLookAt(  pPlayer->GetPosition() ); 
} 
 
We start by retrieving the information from the passed camera and then calculate whether the camera 
position is on an odd or even row in height map space. Next we call CTerrain::GetHeight to retrieve 
the current height of the terrain underneath the camera. Note that this function returns immediately if 
the camera is not a third person camera. Only in third person mode does the camera really have a 
chance to intersect the terrain of its own accord. In first person mode for example, the camera is fixed 

TeamLRN



at a specified offset from the terrain. If the player is embedded in the terrain and corrected by the 
UpdatePlayer function, the camera position will also be adjusted as a result. 
 
We test whether the camera Y coordinate is lower than the terrain at that height and if so, the position 
is adjusted to the new height. This is very important in third person mode since the camera is trying to 
follow the player and as such, its path might take it straight through the landscape. This code ensures 
that even when the player is on the other side of a mountain, the camera will gracefully drift over the 
top of the mountain to catch up, instead of flying straight through it. 
 
Finally, we must make sure that the camera is still looking directly at the player at all times. If this 
function had to correct the camera position by a significant amount, it is entirely possible that the 
camera would be moved such that it no longer directly faces the player. Therefore, when we correct the 
camera position, we also call the CCamthirdPerson::SetLookAt function to make sure the Look vector 
is adjusted appropriately. 
 
 
 
CTerrain::GetHeight 
 
This function uses the world space X and Z coordinates to determine the exact height of the terrain at 
that point. It does this by first dividing the world space X and Z coordinates by the terrain scale vector 
so that the coordinate pair is in image space. Now those values will describe a pixel in the height map 
– i.e. a height value. We can use this image space point to calculate the three neighbouring image 
space pixel heights. This gives us four pixels in the height map describing the heights of the quad 
corner points. This is the quad that the world space point is positioned over. 
 
float CTerrain::GetHeight( float x, float z, bool ReverseQuad ) 
{ 
    float fTopLeft, fTopRight, fBottomLeft, fBottomRight; 
 
    // Adjust Input Values 
    x = x / m_vecScale.x; 
    z = z / m_vecScale.z; 
 
    // Make sure we are not OOB 
    if ( x < 0.0f || z < 0.0f || x >= m_nHeightMapWidth || z >= m_nHeightMapHeight ) 
        return 0.0f;  
 
    // First retrieve the Heightmap Points 
    int ix = (int)x; 
    int iz = (int)z; 
  
    // Calculate the remainder (percent across quad) 
    float fPercentX = x - ((float)ix); 
    float fPercentZ = z - ((float)iz); 
 
We divide the world space coordinate pair by the scale vector to produce an image space value.  Thus, 
if the terrain is 100x100 and has a scale vector of 10 and we pass in coordinates (72, 28): 
 
flImageSpaceX  = 72/10 = 7.2 
flImageSpaceZ  = 28/10 = 2.8  (Remember, the Z value is really the Y coordinate in image space.) 
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The result indicates that the point is between the 7th and 8th pixel horizontally in the image map and 
between the 2nd and 3rd pixels vertically down the image map.  
 

iImageSpaceX = 7 
iImageSpaceY = 2 
 
We now have an image space coordinate that describes one of the points making up the quad that the 
world space point is currently over. We will use the remainder as a percentage between 0.0 and 1.0 to 
describe how close this point is to each point in the quad. We subtract the integer from the float so that 
we are left with the remainders shown below. 
 
PercentX = 2  (This means the world space position is between pixel 7 and 8. If you were to draw a 
line horizontally between pixels 7 and 8, the position would be 20% along this line.) 
 
PercentZ = 8  (This means that the position is between rows 8 and 9 in the image. If you were to draw 
a vertical line from row 8 to row 9, the position would be 80% along this line. In other words the point 
is nearer to row 9.) 
 
The next image shows how we will use these percentage values to determine a virtual location between 
four neighbouring pixels in the height map. 
 

 
 
We know that the image map cannot use fractional coordinates because its pixels are at discrete 
locations. For example, there is no way for us to access pixel (7.2, 2.8) in an image. But the above 
image shows that if we imagine a virtual height map such that this is the case, we find that the pixels 
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are spaced out much like the terrain vertices after they have been scaled by the scaling vector. We can 
see that the coordinate (72, 28) is inside the quad represented by pixels/vertices (7, 2), (8, 2), (8, 3) and 
(7, 3). When we imagine the image pixels in the height map being spaced out like this, we can see that 
it actually mirrors the way the terrain vertices were created. They were originally assigned pixel 
positions (right next to each other in the height map with no gaps in between them) and then the vertex 
positions were scaled and the vertices were separated. Every four vertices defined two triangles (a 
quad) on the terrain. We cannot simply extract a height value from a pixel in the height map since the 
world space position passed in may be between vertices and thus between the integer height values in 
the height map. So we calculated an offset (7, 2) into the height map to give us one of the quad 
positions. We then use the remainder of each coordinate to tell us the position between adjacent pixels 
in the height map. In the above image, the coordinate (7.2, 2.8) describes a virtual location between 
rows 2 and 3 and between columns 7 and 8 (marked as a red star). Retrieving the height values of the 
four integer locations of the quad in the height map allow us to interpolate the actual height of the 
position that falls between those four points. 
 
Remember that the image space points give us the unscaled height of each vertex in the quad that we 
are over. This means that all we have to do is multiply the four values by the scale vector (just as we 
did when we built the terrain vertices initially) and we get the four height values for the four vertices 
making up the quad in the terrain. We will refer to these points as TopLeft, TopRight, BottomLeft, and 
BottomRight. Because the quad is actually made up of two triangles which may belong to different 
planes, we first retrieve the two corner points of the dividing edge that splits the two triangles. We use 
will use these edge points later to determine which triangle the point is in. One thing you have to 
remember when looking at the following code is that the dividing edge faces a different way depending 
on whether we are on an odd or even row of the terrain. This is the result of the degenerate triangles 
used to move up to the next row in the strip. Also keep in mind that if you were to position the camera 
high above and look down on the terrain, the Y direction of the image is flipped when it is used as the 
Z component of each vertex. This is because in image space, the first pixel is at the top left corner of 
the screen with increasing X values to the right. In world space, pixel zero is mapped to vertex zero 
which is at the bottom left corner of the terrain. When we access image data, we must take this Y-Z 
flip into account and remember that the dividing edges are actually in opposite directions. 
 
The following picture shows two rows of quads. The top image shows how the quads are built if we 
were to draw the quads in image space. The bottom image shows what they look like in world space if 
we were looking down on the terrain. Notice how the X coordinates increase in the same direction in 
both image space and world space, but the Y coordinate increases down the screen in image space 
while the Z coordinate of the vertex increases up the screen. 
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We can see from this image that on even rows in image space, the dividing edge of the two triangles 
making up a quad goes from top right to bottom left. On odd rows, the dividing edge goes from top left 
to top right. This is why we needed to calculate whether the player or camera position was on an odd 
or even row in the calling function. 
 
With this knowledge, we calculate the dividing edge height points first. After we do that we need to 
calculate the next two points such that the four points make a planar quad. Since the two triangles 
making up the quad may not be planar, we do a test between the X percentage and the Z percentage to 
figure out which triangle we are in. Once we have the triangle, we have three planar points. With these 
points, we can then calculate the final point of the planar quad. Notice in the following code that this 
has to be done differently depending on whether we are on an odd or even row (reversed quad or not).  
 
    if ( ReverseQuad ) 
    { 
        // First retrieve the height of each point in the dividing edge 
        fTopLeft     = (float)m_pHeightMap[ix + iz * m_nHeightMapWidth] * m_vecScale.y; 
        fBottomRight = (float)m_pHeightMap[(ix + 1) + (iz + 1) * \ 
                                                  m_nHeightMapWidth] * m_vecScale.y; 
 
We now have the dividing edge if this is a reverse quad (a quad from an odd row). The variables were 
multiplied by the terrain scale vector (Y component only) so that they now contain the world space 
vertex heights of the two vertices making up the dividing edge of the quad.  
 
Now we need to figure out which triangle of the quad we are in. Fortunately, because we are working 
with height map coordinates, the quad is still a perfect square. This would not be the case if we were 
dealing with world space X and Z coordinates -- where the scale vector of the terrain might have scaled 
the positions more along the X axis than the Z axis. This means that the line forming the dividing edge 
is a perfect diagonal. Testing whether any point is within the top right triangle or the bottom left 
triangle is a simple case of comparing the X coordinate to the Z coordinate. If the X coordinate is 

TeamLRN



smaller than the Z coordinate, then we are in the top right triangle, otherwise we are in the bottom left 
triangle as the next image demonstrates: 
 

 
 
Once we know which triangle we are in, we get the final point of the triangle and construct a point that 
is on the triangle plane to build a planar quad. The following code does this depending on whether the 
point is in the left or right triangle:  
 
        // Which triangle of the quad are we in ? 
        if ( fPercentX < fPercentZ ) 
        { 
             fBottomLeft = (float)m_pHeightMap[ix + (iz + 1) * \ 
                                                     m_nHeightMapWidth] * m_vecScale.y; 
       fTopRight   = fTopLeft + (fBottomRight - fBottomLeft); 
        } // End if Left Triangle 
 

The fBottomLeft variable contains the height of the bottom left vertex in the quad. We use the three 
triangle points to create a top right vertex height which is co-planar with the other three triangles 
points. This top right vertex may not be the height of that vertex in the terrain, but it does not matter. 
We already know that we are in the left triangle, so we just need a planar quad to interpolate the actual 
height value. 
 
If the X coordinate is greater than the Z coordinate, then we are in the right triangle. This means we 
need the top right height value to complete our triangle points, and we need to build the bottom left 
height value such that we have a planar quad. Remember, the quad may not actually be planar in our 
actual terrain, but the triangle is the correct world space triangle. The fourth point is needed so that we 
have a temporary planar quad to interpolate the height value. 
 
        else 
        { 
            fTopRight   = (float)m_pHeightMap[(ix + 1) + iz * \ 
                                                     m_nHeightMapWidth] * m_vecScale.y; 
       fBottomLeft = fTopLeft + (fBottomRight - fTopRight); 
        } // End if Right Triangle 
    } // End if Quad is reversed 
     
At this point we have a planar quad if we are processing a reversed quad. If this is not a reversed quad 
and we are processing a quad from an even row, then we need to take into account the fact that the 
dividing edge will be facing the other way as the image below shows: 
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In this case the edge is between the top right and bottom left points in the height map: 
 
    else 
    { 
        // First retrieve the height of each point in the dividing edge 
        fTopRight   = (float)m_pHeightMap[(ix + 1) + iz * \ 
                                                  m_nHeightMapWidth] * m_vecScale.y; 
        fBottomLeft = (float)m_pHeightMap[ix + (iz + 1) * \ 
                                                  m_nHeightMapWidth] * m_vecScale.y; 
 
Because the line is facing in the other direction, we need to modify the test to determine which triangle 
the point is in. In this case we have to test if fPercentX is smaller than 1.0-fPercentZ. For example, if 
we take the point (0.8, 0.2) and use that in our example, we can see that 0.8 is smaller than 1.0 - 0.1 = 
0.9. So we are in the left triangle in that case. We can also see that for the second point above, 0.3 is 
not smaller than 1.0 - 0.9 = 0.1 so we must be in the right triangle. Depending on which triangle we are 
in, we extract the third point of the triangle from the height map and build the fourth point for the 
planar quad. Here is the code: 
 
        // Calculate which triangle of the quad are we in ? 
        if ( fPercentX < (1.0f - fPercentZ))  
        { 
            fTopLeft = (float)m_pHeightMap[ix + iz * m_nHeightMapWidth] * m_vecScale.y; 
            fBottomRight = fBottomLeft + (fTopRight - fTopLeft); 
         
        } // End if Left Triangle 
        else 
        { 
            fBottomRight = (float)m_pHeightMap[(ix + 1) + (iz + 1)* m_nHeightMapWidth]; 
            fBottomRight *= m_vecScale.y; 
            fTopLeft = fTopRight + (fBottomLeft - fBottomRight); 
 
        } // End if Right Triangle 
     
    } // End if Quad is not reversed 
     
At this point we have a planar quad of height values. We multiply the top right height value by the 
fPercentX fraction and add this to the top left height value. This creates an edge between the top left 
and right points in the quad. We interpolate along the edge to get the height of that edge at the correct 
horizontal position. 
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    // Calculate the height interpolated across the top and bottom edges 
    float fTopHeight    = fTopLeft    + ((fTopRight - fTopLeft) * fPercentX ); 
 
We now do exactly the same with the bottom edge of the quad as shown below. 
  
     float fBottomHeight = fBottomLeft + ((fBottomRight - fBottomLeft) * fPercentX ); 
 

So we now have two height values: one on the top edge and one on the bottom edge. The following 
image shows how the top and bottom height values would be calculated using some example values for 
both the four vertex height values and using a PercentX of 0.2: 
 

 
As you can see, the PercentX value tells us how far we have to interpolate the height value along the 
top and bottom edges. In the above example, the final height values for the top and bottom edges are 
22 and 24 for the top and bottom edges respectively. 
 
The previous image should give you a hint as to how we calculate the final height. We interpolate 
along the line formed from the top and bottom height values. The interpolation distance is what 
PercentZ is used for. 
 
    // Calculate the resulting height interpolated between the two heights 
    return fTopHeight + ((fBottomHeight - fTopHeight) * fPercentZ ); 
} 
 
The next image shows how the last line of code works to calculate the actual height value: 
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float CTerrain::GetHeight( float x, float z, bool ReverseQuad ) 
{ 
    float fTopLeft, fTopRight, fBottomLeft, fBottomRight; 
 
    // Adjust Input Values 
    x = x / m_vecScale.x; 
    z = z / m_vecScale.z; 
 
    // Make sure we are not OOB 
    if ( x < 0.0f || z < 0.0f || x >= m_nHeightMapWidth || z >= m_nHeightMapHeight ) return 0.0f;  
 
    // First retrieve the Heightmap Points 
    int ix = (int)x; 
    int iz = (int)z; 
  
    // Calculate the remainder (percent across quad) 
    float fPercentX = x - ((float)ix); 
    float fPercentZ = z - ((float)iz); 
 
    if ( ReverseQuad ) 
    { 
        // First retrieve the height of each point in the dividing edge 
        fTopLeft     = (float)m_pHeightMap[ix + iz * m_nHeightMapWidth] * m_vecScale.y; 
        fBottomRight = (float)m_pHeightMap[(ix + 1) + (iz + 1) * m_nHeightMapWidth] * m_vecScale.y; 
 
        // Which triangle of the quad are we in ? 
        if ( fPercentX < fPercentZ ) 
        { 
            fBottomLeft = (float)m_pHeightMap[ix + (iz + 1) * m_nHeightMapWidth] * m_vecScale.y; 
      fTopRight = fTopLeft + (fBottomRight - fBottomLeft); 
         
        } // End if Left Triangle 
        else 
        { 
            fTopRight   = (float)m_pHeightMap[(ix + 1) + iz * m_nHeightMapWidth] * m_vecScale.y; 
      fBottomLeft = fTopLeft + (fBottomRight - fTopRight); 
 
        } // End if Right Triangle 
     
    } // End if Quad is reversed 
    else 
    { 
        // First retrieve the height of each point in the dividing edge 
        fTopRight   = (float)m_pHeightMap[(ix + 1) + iz * m_nHeightMapWidth] * m_vecScale.y; 
        fBottomLeft = (float)m_pHeightMap[ix + (iz + 1) * m_nHeightMapWidth] * m_vecScale.y; 
 
        // Calculate which triangle of the quad are we in ? 
        if ( fPercentX < (1.0f - fPercentZ))  
        { 
            fTopLeft = (float)m_pHeightMap[ix + iz * m_nHeightMapWidth] * m_vecScale.y; 
            fBottomRight = fBottomLeft + (fTopRight - fTopLeft); 
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        } // End if Left Triangle 
        else 
        { 
            fBottomRight = (float)m_pHeightMap[(ix + 1) + (iz + 1) * m_nHeightMapWidth] * m_vecScale.y; 
            fTopLeft = fTopRight + (fBottomLeft - fBottomRight); 
 
        } // End if Right Triangle 
     
    } // End if Quad is not reversed 
     
    // Calculate the height interpolated across the top and bottom edges 
    float fTopHeight    = fTopLeft    + ((fTopRight - fTopLeft) * fPercentX ); 
    float fBottomHeight = fBottomLeft + ((fBottomRight - fBottomLeft) * fPercentX ); 
 
    // Calculate the resulting height interpolated between the two heights 
    return fTopHeight + ((fBottomHeight - fTopHeight) * fPercentZ ); 
} 

 
You should find the GetHeight function to be very useful in the future. Knowing how to get the height 
of an arbitrary position in a quad and finding height values in conjunction with height maps are 
important ideas. Height maps are used very often in computer games so these techniques will serve 
you well in later projects. 
 
 
Exercises 
 

1. What is vector regeneration and why is it necessary? 
2. If you resize your viewport such that it changes the aspect ratio, do you need to rebuild the 

projection matrix? 
3. This final exercise will demonstrate whether you have a thorough understanding of this new 

material. We would like you to add a third-person spacecraft mode to the camera system. This 
will allow the CPlayer to behave like a space craft but will have a camera that is a third person 
camera following the CPlayer. This might sound like you will need to create a new camera 
class, but actually you can use the third person camera and just make some minor adjustments 
to the CPlayer class. In Chapter 5 we will make available a new version of the CPlayer class 
that implements a third person space craft mode so that you can see if you implemented 
correctly.  Here are a few hints that will help you on your way: 

 
• You will need to add a new mode to the CPlayer CAMERA_MODE enumerated type. 

You could call this MODE_THIRDPERSON_SC (sc= space craft). 
• You will not need to create a new CCamera derived class. You can use the 

CCamthirdPersom class to attach to your CPlayer when it is in this new mode. 
• You will need to make changes to the CPlayer::SetCameraMode function such that it 

deals with this additional mode. If the mode is MODE_THIRDPERSON_SC you will 
want to attach CCamthirdPerson camera to the CPlayer. 

• If you are changing modes from this new mode you will need to flatten out the CPlayer 
vectors just as we do now with the standard 3rd person mode. 

• You will need to add an additional option to the application camera mode menu to 
allow the user to switch to this new third person space craft mode. 
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Introduction 
 
The interaction between light and the surfaces that reflect it is responsible for everything we see. 
Consider what happens when we enter a completely dark room. Until we turn on a light, we would be 
unable to see any of the objects within the room. Now imagine turning on a small overhead lightbulb. 
As the light comes on, its energized photons are emitted outwards in all directions striking surfaces, 
being absorbed and reflected, each time losing a little more of their energy. Objects are now visible to 
us as the photons reflected off of their surfaces reach our eyes. The color of those objects depends on 
the frequency of the light as well as the various properties of the surface. If the surface properties were 
such that the surface would only reflect red light, then the blue and green color components of the light 
would be absorbed and only the red component would be reflected back to the viewer. This object 
would appear red to us. If we shone a green light at such a surface, the surface would appear black 
because it absorbs the green and blue components and only reflects red. Some surfaces, such as metal, 
are shiny and when light is reflected off of them we notice highlights on their surface. Again, this is a 
result of the properties of the surface, not the light itself.  
 
Given that light is ultimately responsible for what we see in the real world, it is fair to say that the 
more realistically we can model it in the virtual world, the more realistic our games will look. Light 
and shadow play a critical role in creating mood and establishing atmosphere in a game. A brightly lit 
dungeon is not likely to be very eerie or frightening from the player’s perspective. Lighting techniques 
are one of the most researched topics in the computer game industry and new and more sophisticated 
approaches are constantly evolving. The recent advent of programmable hardware shader programs 
really opened up new doors to game developers. You can see this reflected in many of the titles hitting 
shelves today. Creating realistic lighting effects that run in real time is a challenging task to say the 
least. This chapter starts us down that path.  
 
In this lesson we will assemble a mathematical model for scene lighting suitable for use in real-time 
applications. This model will necessarily be only an approximation (at best) since producing lighting 
that is even close to being physically correct is simply not possible on modern hardware. In the next 
course in this series we will examine techniques that generate more realistic looking lighting than the 
model we are about to study.  
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Emissive Illumination 
 
We begin our lighting model at the most basic level -- one where the surface itself emits its own 
illumination based on some inherent property of its material. We refer to this as the emissive property. 
One might think of a neon sign or even a light source itself as examples. The material produces its own 
illumination even in the absence of a specific external light source. 
 
Global Illumination 
 
When a surface reflects incoming light, those photons will strike other surfaces in the scene and 
contribute to their coloring. This process continues in all directions for every surface in the scene until 
eventually a global level of lighting is established and all surfaces are lit equally. This is referred to as 
indirect global illumination because all surfaces are lit indirectly as a result of light scatter from other 
surfaces rather than directly by a scene light source. A global ambient lighting term can be used to 
very roughly approximate this general effect of light scattering in the environment. This approach can 
be used to provide a constant global illumination level for all vertices in the scene. The ambient color 
will be set to a desired value that is added to each vertex color.  
 
Ambient light is useful when there are areas in the scene not affected by any of the direct light sources. 
Without ambient lighting (or an alternative technique), such areas would be rendered totally black. 
Since ambient light is evenly dispersed everywhere in the scene, it is applied to all vertices in equal 
amounts. As a result, we generally set it to a very low intensity so as not to interfere with the effects of 
our direct light sources. With only ambient light enabled and no other direct light sources in the scene, 
the color of each surface will be identical -- assuming that they all use the same material.  Fig 5.1 
shows a cylinder and a sphere rendered only with a blue global ambient light setting. 
 
 

 
 

Figure 5.1  
 
Fig 5.2 shows the same cylinder and sphere with no ambient light and one yellow point light source 
added to the scene and positioned between the cylinder and the sphere. We will examine point lights in 
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the next section when we discuss direct lighting, but for now we notice that the vertices (and therefore 
the faces) that are facing away from the light source are not lit at all. This is because the vertex 
normals of the top cylinder face and those toward the back of the sphere are facing away from the light 
source.  
 

 
 

Figure 5.2 
 
Now look at the same cylinder and sphere lit with a white point light and a light grey global ambient 
light setting (Fig 5.3). All faces will include the minimum grey color even if they are not influenced by 
the point light:  
 
 

 
 

Figure 5.3 
 
As we will see later on, even direct light sources can include ambient light emitting properties to add to 
the global ambient light level of the scene. It should also be noted that in both of the diagrams above, it 
is assumed that the surface material reflects all ambient light. If the material did not reflect ambient 
light, then the ambient light color would have no effect on the final color of the rendered surface. This 
would indicate that the material absorbs all ambient light and reflects none back to the viewer. 
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While a global ambient lighting term is one way to make sure that surface vertices that are not directly 
influenced by the directional light sources in the scene do not remain completely black, the downside 
is that all surfaces will receive the same color. There are a number of ways around this limitation; one 
example would be to attach a directional light source to the player/camera that aligns with the Look 
vector. This is often called a headlight. Essentially it allows for a direct light source to affect areas of 
the scene in the player’s view where the static light sources may not have reached. It is not a perfect 
solution, but it can often produce satisfactory results.  
 
 
Direct Lighting 
 
Direct lighting generally makes the largest contribution to the final appearance of a surface. It is 
broken into two sub-categories: positional (where light emanates from a specific identifiable point in 
space) and directional (where light comes from a general direction whose source is infinitely far 
away).   
 
We can add light sources to a scene that have positions, orientations, ranges, colors, and intensities. 
The lighting engine can calculate which lights in the scene contribute to the color of every vertex 
rendered. Each vertex is first checked to see if it is within the range of a given light. If it is, light can be 
attenuated with respect to distance and the remaining light color (intensity) scaled by the cosine of the 
angle between the vertex normal and the vector describing the direction of the light source from that 
vertex. The resulting light color is then used to determine two different types of reflections: diffuse and 
specular. How much of that diffuse and specular color gets reflected depends on the material we 
currently have set. We will discuss materials later in the lesson. 
 
 
Diffuse Light 
 
The effect of a diffuse light source on a surface is dependant upon the spatial relationship between the 
two. When a surface is perpendicular to a directional light source then the full intensity of the light 
strikes the surface. When the surface is oriented at an arbitrary angle with respect to the light source, 
the intensity of the reflected light is reduced. Lambert’s Law describes the amount of diffuse light that 
strikes some point in space as the full intensity of the light scaled by the cosine of the angle between 
two vectors. The first of these vectors is a unit length vector describing the direction from the point in 
space to the light source. The second vector is another unit length vector describing the direction that 
point is facing.  
 
Fig 5.4 shows a ray of light striking a point on a surface, and the surface normal. If we invert and 
normalize the incoming light direction vector and perform the dot product between this vector and the 
face normal, the cosine of the angle returned can be used to scale the contribution of the incoming light 
source. 
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Figure 5.4 

 
In Chapter 3 we modeled the effect of incoming light at a particular surface point – a vertex. The 
assumption was that our terrain surfaces were ideal diffuse Lambertian surfaces that scatter light 
equally in all directions. We will continue to make that assumption for all diffuse surfaces in this 
lesson. 
 
The color of the surface at a particular point does not depend on the location or orientation of the 
viewer because light reflecting off of a diffuse surface travels equally in all directions. Together with 
the diffuse reflectance property of the currently set material, diffuse light is responsible for 
contributing to what we would perceive to be the actual color of a vertex. If we have a light that emits 
white diffuse light and we have a material that reflects only the red component of the diffuse light, then 
the vertex will appear to be red. 
When a vertex has its color calculated, the diffuse colors of all the direct lights that influence that 
vertex are combined. The position of each light source, the normal of the vertex, and the orientation, 
range, and attenuation of the light are all factors used to calculate the total diffuse light at a given 
vertex. This light is then modulated with the diffuse reflectance properties of the material to create the 
perceived color of the object. 
 

 
 

Figure 5.5 
 
Fig 5.5 shows the same cylinder and sphere lit by a white directional light source. No ambient light is 
used (global ambient light color = black). The material describes the diffuse reflection as medium grey 
where the angle between the incident light vector and the vertex normal is 0 degrees (they are facing 
each other exactly). As you can see, as the angle between the vertex normal and the incident light 
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vector increases, the grey color is scaled down. At some point the incident light vector and the vertex 
normal is greater than 90 degrees. At that point the vertex will no longer be lit since its normal is 
facing in the opposite direction of the light direction vector. With Gouraud shading enabled, the faces 
using such vertices fade away into darkness. 
 
Fig 5.6 shows a cylinder lit by a white directional light shining in from the left side. The material used 
reflects all incoming diffuse light. This means that if the entire object is lit by white light, the vertices 
will reflect all the white light that reaches it. However, take a close look at the image. 
 

 
 

Figure 5.6 
 
Notice that the vertices are only completely white at the exact points where the vertex normal and the 
incident light vector are the same. The other vertices reflect all diffuse light as well (because they use 
the same material) but they do not receive the same amount of light due to the angle between their 
vertex normals and the incident light vector.  
 
Fig 5.7 shows the same cylinder with the same intense white light shining on it. However, in this 
example, the material used by the cylinder only reflects green diffuse light. So the red and blue color 
components of the diffuse light that hit each vertex are totally absorbed and the object appears green.  
 
 

 
 

Figure 5.7 
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Specular Light 
 
Specular lighting creates surface highlights that make objects appear shiny and smooth. Unlike diffuse 
lighting, specular lighting is view dependant because light is not scattered equally in all directions. A 
perfect specular surface (like a polished mirror) would reflect light such that it mirrored the incoming 
ray. A rougher specular surface like a metallic facade introduces some scattering but nevertheless 
reflects light in a roughly mirrored fashion (i.e. still primarily along one directional axis). As the 
angular relationship between the camera look vector, the vector between the vertex and the viewer, and 
the vector between the vertex and the light source changes, the highlights will appear to move across 
the surface of the object.  
 

 
 

Figure 5.8 
In Fig 5.8, we see a sphere lit by a bright white diffuse light shining in from the right. The light also 
includes a white specular component. The material reflects green diffuse light and all specular light. 
The highlight helps us to gauge the location of the light source more accurately. This is another 
important visual cue that contributes to the overall realism of the lighting chosen for the scene. 
 
In addition to emitting a diffuse color, each light in our scene can be configured to emit a specular 
color using a separate property. This color will be modulated with the specular reflectance properties 
of the currently set material to control the color of the highlight. 
 
To better see that diffuse and specular colors are calculated separately, Fig 5.9 shows the same sphere 
and the same white light. This time we are using a material that reflects only blue diffuse light and red 
specular highlights. A dark green global ambient color is used to make the faces completely in shadow 
on the left side of the sphere visible. All of these colors are added together so that the red specular 
highlight has been modulated with the blue diffuse color to create a purple/pink highlight. 
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Figure 5.9 
 
 
The Basic Lighting Equation 
 
The total illumination (I) level of a vertex can now be described by: 
 

I = A + D + S + E 
 
A (Ambient Light) is the sum of the global ambient light color and the ambient color emitted from all 
lights that influence the vertex -- modulated by the material ambient reflectance property. 
 
D (Diffuse Light) is the sum of all the diffuse colors from each light source that influences the vertex -
- modulated by the material diffuse reflectance property. 
 
S (Specular Light) is the sum of all specular colors from each light that influences the vertex -- 
modulated by the material specular reflectance property. 
 
E (Emissive Light) is a color that is emitted by the vertex itself, not by a light source. A material can 
be used that has an emissive color such that even if the vertex receives no light of any kind, the 
emissive color will contribute to the vertex color.   
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DirectX Graphics – The Lighting Pipeline 
 
The DirectX Graphics fixed function pipeline conducts lighting operations at the per-vertex level. This 
is the lighting we looked at in Chapter 3 when we added color to our terrain. Vertex lighting is 
generally fast enough to be done dynamically, but it does have limitations. We will discuss some of the 
benefits and limitations of including vertex level lighting support in our games later in the lesson.  
 
In the CTerrain::BuildMeshes function in Lab Project 3.2, we calculated the color of each vertex in our 
terrain by generating a temporary vertex normal using heightmap data. This normal was used to 
measure the angle between the vertex and the incoming light’s direction vector using the dot product. 
The cosine of the angle between these two vectors scaled the color and then we stored the color in the 
vertex. As each triangle was rendered, the colors stored at each vertex in the triangle were interpolated 
across the surface during rendering (Gouraud shading). This was simple but effective vertex lighting 
and is not much different from what we are going to see throughout this lesson. The calculations will 
be a bit more complicated at times, but the concepts will be the same. 
 
We did not enable the DirectX lighting pipeline in our demo because we had already lit the vertices 
when the terrain was assembled.  The device was told that the vertices already contained their colors 
and dynamic calculation was unnecessary. The obvious drawback with this technique is that it is 
completely static. If we wanted to change the direction a light was shining, we would need to 
recalculate the lighting for every vertex affected by that light all over again. This is a slow CPU bound 
process and our preference is not to have to run it in real time. But enabling the DirectX Graphics 
lighting module allows for hardware – or fast software – lighting of vertices that can be run in real time 
applications. If the graphics card does not have hardware support for lighting, then we can create a 
software vertex processing device and the DirectX graphics software lighting module will be used 
instead. Although it runs on the CPU, the software lighting module that ships with DirectX Graphics is 
actually very respectable performance-wise and can be used in commercial applications.  
 
When we call one of the DrawPrimitive functions with lighting enabled, the vertices passed in 
(typically in a vertex buffer) will not only be transformed but will also have their color calculated. We 
will no longer store a color value in our vertex which describes the final color of the vertex but will 
instead store a vertex normal at each vertex describing the direction the vertex is facing in model 
space. When a vertex position is transformed, so is its normal. Once the vertices are fully transformed, 
the lighting module will take into account all of the active light sources in the scene to determine their 
influence on a particular vertex. If a vertex is within the range of the light’s influence, that light’s 
color, and the angle between the vertex normal and the light direction vector (along with a few other 
factors to be explored later in the lesson) will be used to determine a final vertex color.  
 
Adding lights to a scene is not sufficient to inform the lighting pipeline how the vertex should have its 
final color calculated. The way a surface reflects light is a major factor in determining the final color. 
As we will discover a little later in the lesson, a material (a collection of reflectance property settings) 
will describe how light should be reflected or absorbed by a vertex.  
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Note: there are alternative approaches that do not transform the vertex normals directly but instead 
back transform light sources into local model space using inverse matrices. This is done for efficiency; 
the results are the same.  

 
 
Enabling DirectX Graphics Lighting 
 
In order to effectively use the DirectX Graphics lighting pipeline we will need to do the following: 

• Enable the lighting pipeline 
• Ensure that all vertices that need to be lit include vertex normals. 
• Add lights to the scene. 
• Define and set materials to describe the reflectance properties of the vertices. 

 
Enabling/Disabling the lighting pipeline is done using the IDirect3DDevice9::SetRenderState function: 
 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, TRUE ); //enables Direct3D lighting module 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); //disables Direct3D lighting module 
 
One thing to bear in mind is that an application can mix pre-lit meshes with unlit meshes. In a space 
based game you may want to light all of the vertices of your space craft and planets using the light 
from a local sun or nebula. The color of each vertex will be calculated based on the orientation of the 
meshes with respect to the light sources. So objects in the scene would use unlit vertices with vertex 
normals so that they can be updated dynamically. 
 
But we may also want to render a HUD (heads-up display) to provide information about the speed of 
the craft, laser energy remaining, shield integrity, etc. We would probably want this HUD to be a 
constant brightness at all times. You would not want the HUD information to become dull or perhaps 
even unreadable when the pilot positioned his spaceship such that the HUD was facing away from a 
light source. In the case of the HUD, you will make sure that the vertices store the colors themselves. 
After all other objects had been rendered you could disable lighting and render the HUD using pre-lit 
vertices. A render loop that uses both types might look like: 
 
m_pDevice->BeginScene() 
 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, TRUE ); 
 
CSpaceCraft->Render(); // This mesh does not have its final color stored in the vertex. 
                       // It includes vertex normals defined in model space.  
                       // The lighting pipeline will use this to calculate the vertices 
                       // final color by calculating the relationship between light sources 
                       // in the scene and each vertex  
 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
 
CHeadsUpDisplay->Render(); // This mesh’s vertices have no vertex normals. 
                           // Color is stored in the diffuse member of the vertex  
                           // structure. This is the type of mesh we have been using in  
                           // previous applications. 
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m_pDevice->EndScene(); 

 
 
Enabling Specular Highlights 
Specular highlights are not calculated by the lighting pipeline by default so you must explicitly turn on 
the specular calculations with the following render state: 
 
IDirect3DDevice9::SetRenderState(D3DRS_SPECULARENABLE, TRUE) // enable specular highlights 
IDirect3DDevice9::SetRenderState(D3DRS_SPECULARENABLE, FALSE)// disable specular highlights 

 
Enabling specular highlighting will reduce performance to some degree, but it does dramatically add to 
the realism of the scene.  
 
Enabling Global Ambient Lighting 
To set the global ambient color in DirectX Graphics, we must enable the lighting pipeline and then set 
the appropriate render state for the device: 
 
//                    A R G B 
DWORD MyCOLORARGB = 0x00FF0000; 
m_pd3dDevice->SetRenderState( D3DRS_AMBIENT, MyCOLORARGB); 
 
We specify the color of the ambient light as an ARGB DWORD. Each byte holds a value in the range 
[0, 255] for each of the alpha, red, green, and blue components. In lighting calculations, the alpha 
component has no effect and can be set to zero. The color value that we specify here will be added to 
each vertex that is rendered while this render state is set. We can change the color of the ambient light 
at any point throughout the lifetime of our application by calling the above function again and 
specifying the new ambient light color. 
 
Unlit Vertices 
 
The vertices we have used in previous applications have been using a pre-lit format, where the color 
stored in the diffuse component of the vertex is sent directly to the rasterizer for color interpolation 
across the pixels of the triangle. In order to use the DirectX lighting pipeline, we must store a vertex 
normal in our vertex structure. 
 
struct UnlitVertex 
{ 

float x; 
float y; 
float z; 
D3DXVECTOR3 Normal; 

}; 

 
We have removed the diffuse color component from our vertex structure and added a new 3D vector 
member called Normal to hold the orientation of the vertex in model space. The following code 
snippet is from Lab Project 5.1 (in CObject.h) and shows our new CVertex class: 
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class CVertex 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
    CVertex( float fX, float fY, float fZ, const D3DXVECTOR3& vecNormal )  
                  { x = fX; y = fY; z = fZ; Normal = vecNormal; } 
     
    CVertex()   { x = 0.0f; y = 0.0f; z = 0.0f; Normal = D3DXVECTOR3( 0, 0, 0 ); } 
 
    // Public Variables for This Class 
     
    float       x;                               // Vertex Position X Component 
    float       y;                               // Vertex Position Y Component 
    float       z;                               // Vertex Position Z Component 
    D3DXVECTOR3 Normal;     // Vertex Normal 
 }; 

 
Most of the time, we will load geometry from a file that was created using a world editor such as 
GILES™ or a modeling package like 3D Studio MAX™. Vertex normals are often calculated in the 
editor and saved into the file so that the application can load the data directly into vertex buffers. Later 
in the lesson, we will load in an IWF file exported from GILES™ to see how to extract the appropriate 
vertex information. There may be times however when you will need to calculate vertex normals 
yourself, so let us take a look at what vertex normals are used for and how they can be generated. 
 
 
Vertex Normals 
 
Your first thought might be to simply supply DirectX Graphics with a surface normal for each triangle 
we render. Or perhaps even better, the DirectX pipeline could generate the face normal for our triangle 
automatically and just use it on the spot. But this will not work. First, a vertex may be shared by two or 
more faces and each face might have completely different surface normals. Second, The DirectX 
Graphics pipeline calculates the lighting in the transformation and lighting stage. This occurs before 
the vertices are assembled into primitives to be rendered. When using a software vertex processing 
device, the device will transform and light an entire range of vertices long before any per-triangle 
relationship has been established. And of course, the purpose of the lighting calculation module is to 
generate colors for each vertex, not just for each face.  
 
 
Since a vertex is a single point in space, it may be a little strange to think of it having its own 
orientation. But in fact this is actually not so confusing if you consider a vertex to be a single sample 
point on a surface where we can collect light. We recall that a triangle is planar and that the plane itself 
has orientation. The vertices themselves share that orientation – as would all points on that plane. 
 
Imagine if you took a single triangle and subdivided it into millions of smaller triangles. Now we can 
think of the vertices of these sub-triangles as tiny points filling the surface. Our light will strike these 
points and be reflected based on the orientation of the surface. Since the surface is really the sum of its 
parts (the tiny triangles) it would make sense that they all assume the same orientation in space. If we 
were to bend the corner points of the big triangle such that we created a curved bulging surface, we 
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recognize that the orientations of many of those subtriangles -- and thus their vertices -- changes. Now 
imagine the little triangles starting to merge together, welding themselves into larger triangles. The 
curve starts to become less smooth as the process moves along. The orientation of a specific vertex on 
the surface becomes more of an average orientation based on the triangles meeting at that point. Of 
course, this was always the case from the beginning, even before we bent the triangle. It is just that the 
average normal for the subtriangle vertices in that case would always result in the same value: the 
normal of the surface.  
 
Assigning a normal to each vertex gives us finer control of the color that gets generated. Vertices 
belonging to the same triangle can each have different vertex normals. Each can describe an average 
orientation of triangles that meet at that point, rather than just the orientation of a single parent triangle. 
This provides smoother shading effects. The more vertices (and vertex normals) available to capture 
light samples, the more accurate a lighting model we achieve.   
 
The cube in Fig 5.10 image depicts vertex normals that are the same as their parent surface normal. 
The arrows depict the direction of the vertex normals belonging to each face.  
 

 
Figure 5.10 

 
This arrangement actually works well for a cube since each face of the cube reacts to the light as a 
whole. The top face is a lighter shade of gray because its surface normal is parallel to the light source 
shining down. The front and side faces are not so brightly lit because they point away. Using a single 
surface normal for each face of the cube provides very sharp and distinct edges. It easy to see where 
one face ends and the next face begins. Note that there are three vertex normals at each corner point of 
the cube. In this particular case, we find ourselves back in a situation where we need to duplicate 
vertices between faces. At any given corner of the cube, there are three vertices with duplicated 
positions and different vertex normals.  
 
The cube example is a rare case where we typically do not want to share vertex normals because we 
want a sharp and defined edge between each face. In Chapter 3 we learned that eliminating this sort of 
redundancy is very desirable. We did this by generating normals for shared vertices that were an 
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average of the normals of all of the faces to which a shared vertex belongs. Fig 5.11 shows a cylinder 
with duplicated vertices. 
 

 
Figure 5.11 

 
Just like the cube, each face in the cylinder above has its own unique set of vertices. Each vertex has a 
normal that is equal to the face normal to which it belongs. Unlike the cube mesh however, a cylinder 
mesh should usually be perceived as a more rounded object. Sharp and defined edges between faces 
are not ideal. 
 
Fig 5.12 shows the same cylinder where the side faces share vertices with neighboring faces. Each 
vertex is shared by two faces and the color in both faces at that point is the same. We no longer have 
sharp color changes as we move from one face to the next. This makes for a more rounded appearance. 
Note that the top face does maintain its own unique set of vertices because we do want a sharp edge 
between it and the side faces. 
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Figure 5.12 

The vertex normals that are shared among faces have been averaged so that they are no longer aligned 
with any particular face normal. Their orientations describe a vector halfway between the two parent 
face normals.  
 
It is easy to generate averaged normals. Simply calculate a normal for each face to which the vertex 
belongs, add them together, and normalize the result to ensure a unit length vector.  
 
D3DXVECTOR3 CalculateVertexNormal( int VertexIndex , int *IndexArray ) 
{ 
  D3DXVECTOR3 VertexNormal ( 0.0f , 0.0f , 0.0f ) 
  for (int a=0; a< NumberOfIndices/3;a+=3) 
   { 
      int index1 = IndexArray[a]; 
      int index2 = IndexArray[a+1]; 
      int index3 = IndexArray[a+2]; 
     
      if ( index1==VertexIndex || index2==VertexIndex || index3==VertexIndex) 
      { 
           VertexNormal += CrossProduct ( index1 , index2 , index3); 
      } 
   } 
   Normalize (&VertexNormal); 
   return VertexNormal; 
} 
 
The above code snippet assumes that IndexArray is a list of triangle indices. It accepts a vertex index 
and then checks to see if any triangles reference that vertex. If so, then the cross product is performed 
on the three vertices and the resulting face normal is added to VertexNormal. At the end of the 
function, we normalize the result to ensure unit length and return the average vector. 
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Obviously the above code completely depends on how the vertex and index data is stored. But it 
should give you enough of an idea to use it as a template to write your own function. 
 
With each vertex now containing its own normal, the pipeline line has what it needs to accurately the 
compare the relationship between the direction the vertex is facing and the orientation of any lights in 
the scene.  
 
There is one important thing to note about the use of vertex normals and the DirectX lighting pipeline. 
Vertex normals are transformed by the upper 3x3 portion of the currently set world matrix (technically 
the concatenated world/view matrix) during the render call. This insures proper world space orientation 
for the normal since it is assumed that the vertex normals passed in were created using model space 
data. If your world transformation matrix uses a scaling component, this will be part of that upper 3x3 
matrix (see Chapter 1). This scaling creates an undesirable outcome since the normals that are scaled 
will wind up losing their unit length status. When this happens, the results of the dot product used in 
the lighting equation will be affected and the lighting engine will not produce correct results. To 
address this problem, there are two solutions.  
 
The first solution is provided by DirectX. There is a render state that can be activated prior to the call 
to DrawPrimitive that will re-normalize the vertex normal data after the transformation. As you might 
imagine, this can be a costly operation since normalization involves three multiplications and a square 
root calculation. To enable and disable this render state, simply call: 
 
IDirect3DDevice9::SetRenderState(D3DRS_NORMALIZENORMALS, TRUE);   //turn on  
IDirect3DDevice9::SetRenderState(D3DRS_NORMALIZENORMALS, FALSE);  //turn off  
 
The second solution, which is generally preferable, is not to include scaling data in your world 
matrices. That is, make sure that your models conform to the appropriate world scale before you export 
them from your modeling package. While this may sound like a cop out and it is indeed nice to be able 
to scale models on the fly, we generally prefer to avoid the overhead of the per-vertex re-normalization 
processing in a real-time situation. 
 
 
Setting Lights 
  
DirectX Graphics allows your application to store a set of properties for each light in your scene in an 
array of memory slots on the device. IDirect3DDevice9::SetLight is called to assign light properties to 
specific memory slots.  Calling IDirect3DDevice9::SetLight by itself does not make a light active. By 
default, lights are disabled until explicitly turned on, even after they have been set. The device simply 
stores these settings until such time as you enable that light with a call to 
IDirect3DDevice9::LightEnable.  
 
HRESULT IDirect3DDevice9::SetLight(DWORD Index, CONST D3DLIGHT9 *plight) 
 
DWORD Index 
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This zero-based offset is used to specify the desired slot for the property set contained in the second 
parameter.  
 
D3DLIGHT9 *plight 
The second parameter to the SetLight function will be the address of a D3DLIGHT9 structure. This 
structure contains settings which describe how a light should be used by the device to contribute to 
vertex coloring. These settings include the type of light it is, the position of the light in the world, the 
direction the light is facing, the range of the light and many other properties which will be discussed in 
this lesson.  
 
typedef struct _D3DLIGHT9 
{ 
    D3DLIGHTTYPE    Type; 
    D3DCOLORVALUE   Diffuse; 
    D3DCOLORVALUE   Specular; 
    D3DCOLORVALUE   Ambient; 
    D3DVECTOR       Position; 
    D3DVECTOR       Direction; 
    float           Range; 
    float           Falloff; 
    float           Attenuation0; 
    float           Attenuation1; 
    float           Attenuation2; 
    float           Theta; 
    float           Phi; 

} D3DLIGHT9; 
 
The light type you choose to create determines which members need to be filled in. For example, the 
Theta and Phi values are only used by the device if the light is of type D3DLIGHT_SPOT (a spot light).  
 
Your application can call IDirect3DDevice9::SetLight at any time to update light properties. This 
allows for dynamic effects like pulsing lights or lights that move about the level. In Lab Project 5.1, we 
will use this technique to move some lights around our terrain in real time. 
 
 
Light Limits 
 
There is no maximum limit on the number of lights that you can set (memory permitting), but there is a 
limit on the number of lights that can be active at any one time. This limit is generally eight active 
lights even on many of the latest 3D graphics cards. You can find out how many lights can be 
simultaneously enabled by checking the MaxActiveLights member of the D3DCAPS9 structure. The 
following snippet of code demonstrates how you could retrieve and store the number of active lights 
supported by the current device.  
 
DWORD     MaxLights; 
D3DCAPS9 DeviceCaps; 
pD3DDevice->GetDeviceCaps (&DeviceCaps); 
MaxLights = DeviceCaps.MaxActiveLights; 
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Although this limit might seem offputting at first, it is quite unlikely that the application would need 
any more than eight lights to affect a single vertex. Often only two or three will suffice. Too many 
lights may result in washing out the vertex as the light colors are accumulated.  
 
While the light limit does not pose a problem from the perspective of a single vertex, it is common that 
a game world will have many lights, perhaps even hundreds. So the active light limit does mean that 
we will need to implement some form of light management system that enables lights in the immediate 
vicinity of the object being drawn and disables the rest.  
 
Finally, although vertex lighting is fast when compared to other more complex lighting techniques, 
each light adds a per-vertex cost. Keeping the number of lights for any particular group of vertices to a 
minimum is an important performance consideration. 
 
Lab Project 5.2 will implement a basic light management system. It will load in level data created with 
the GILES™ level editor that will have many lights in it. We will learn how to implement a system 
that allows us to enable only the minimum amount of lights for each rendered object and still achieve 
good visual results. 
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Light Types 
 
There are three types of direct light sources that can be added to the scene with the SetLight function. 
Each behaves differently and requires certain members of the D3DLIGHT9 structure to be filled in 
correctly. DirectX Graphics supports point lights, spot lights and directional lights.  
 
typedef enum _D3DLIGHTTYPE  
{ 
    D3DLIGHT_POINT = 1, 
    D3DLIGHT_SPOT = 2, 
    D3DLIGHT_DIRECTIONAL = 3, 
    D3DLIGHT_FORCE_DWORD = 0x7fffffff 
} D3DLIGHTTYPE; 
 
 
 

Point Lights 
 

 
Figure 5.13 

 
Point lights will probably be a light type you will use very often, as it works much like a light bulb in 
the real world. When we create a point light, we supply a world space position as well as a range value 
that describes a spherical bounding radius around the light position. This is the range of the light’s 
intensity. Any vertices that are close enough to the light source to fall within its radius will have their 
color influenced to some degree, provided the vertex is not facing away from the light source. Point 
lights emit light from the center outward in all directions as Fig 5.13 shows.  
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A point light can be initialized so that the amount of light a vertex within its range receives is scaled by 
the distance from the vertex to the light. This property is called attenuation. The D3DLIGHT9 
structure has three attenuation members that allow us to supply constants to be used in the attenuation 
equation. We will talk about this equation in more detail later in the lesson. Vertices that are outside 
the range of the light are not influenced by the light at all and are quickly rejected by the lighting 
module. At the outer ranges of the point light radius the contribution of that light on the vertex is very 
slight. Vertices gradually fade out of range rather than transitioning abruptly at the boundary of the 
sphere. This minimizes any sudden changes from light to dark. 
 
The following code sets up a point light that emits yellow diffuse light, white specular light, and dark 
blue ambient light. 
 
D3DLIGHT9 MyPointLight; 
MyPointLight.Type = D3DLIGHT_POINT; 
 
First we fill in the desired light type, which in this case is a point light. Next we will setup the three 
color values that any light source can emit: diffuse, specular, and ambient. Each is represented in the 
D3DLIGHT9 structure as a D3DCOLORVALUE structure: 
 
typedef struct _D3DCOLORVALUE  
{ 
    float r; 
    float g; 
    float b; 
    float a; 
} D3DCOLORVALUE; 
 
Each member is normally in the range [0.0, 1.0] although numbers outside the range can be used. A 
value of 1.0 for any color component means the component is at full intensity. If we set the r, g, and b 
fields to 1.0 then the color will be bright white. If we set all the members to 0.0, the color will be 
black. The alpha component is ignored when specifying light colors. 
 
MyPointLight.Diffuse.r = 1.0f; 
MyPointLight.Diffuse.g = 1.0f; 
MyPointLight.Diffuse.b = 0.0f; 
 
If the currently set material reflects the red and green components of diffuse light, then the vertex color 
will have the resulting yellow diffuse color added to its color. Next we can set up the specular color of 
the light source. Usually you will want specular highlights to be white, but you can set any value you 
wish:  
 
MyPointLight.Specular.r = 1.0f; 
MyPointLight.Specular.g = 1.0f; 
MyPointLight.Specular.b = 1.0f; 
 
Because specular lighting is view dependant, the number of vertices that have their color modified by 
the specular calculation is typically small – although the calculation itself still takes place for each. The 
angle between the camera, the vertex and the light direction vector is used to scale the specular color of 
the light source.  Then the color is scaled by the attenuation values so that the distance from the vertex 
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to the position of the light is taken into account. The remaining color is modulated with the specular 
reflectance property of the material and added to the diffuse color and ambient color of the vertex. 
 

 
 

Figure 5.14 
 
The sphere in Fig 5.14 has a material that reflects all diffuse, specular, and ambient light. The specular 
highlights are white even though the color of the sphere is mostly yellow. The sphere is reflecting all 
of the yellow light it receives. Notice that the polygons facing away from the light source are colored 
by dark blue ambient light. 
 
The D3DLIGHT9 structure includes an Ambient member. Earlier we talked about ambient lighting at 
the global level set through a render state call. Additionally, each light source can also emit its own 
ambient light color which is used when the ambient light for each vertex is calculated by the pipeline. 
The ambient light that is added to each vertex is equal to the sum of the global ambient light color and 
all of the other ambient lights that influence that vertex. The following code sets the ambient light 
emitted by the light source to dark blue. 
 
MyPointLight.Ambient.r = 0.0f; 
MyPointLight.Ambient.g = 0.0f; 
MyPointLight.Ambient.b = 0.2f; 
 
When a vertex is in range of a light source that includes an ambient color, the ambient light color is 
also added to the vertex color. Vertex normal orientation is not a factor here. However, unlike the 
global ambient light level that is applied to all vertices equally, the ambient color applied to each 
vertex from the direct light source is attenuated and is only received by vertices within the range of the 
light source. In Fig 5.14, no global ambient light level was used so only the vertices within the range of 
the light source were updated 
 
Position 
 
Point lights and spot lights are both positional light sources with actual locations in the world. With a 
point light, light is emitted from this position equally in all directions. This is analogous to real life, 
where a bed side lamp for example emits light from a position in the real world -- the position of the 
light bulb.  
 
To set the light position we fill in the Position member of the D3DLIGHT9 structure. For example, to 
set the world space position of the light source to location (40, 90, 20): 
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MyPointLight.Position = D3DXVECTOR3(40.0f , 90.0f , 20.0f );   
 
Direction 
 
Direction is a unit length 3D vector which specifies the direction that the light source is shining. Point 
lights emit light equally in all directions so this member will not be used for this light type. Directional 
lights and spot lights do not emit light equally in all directions and we will specify an orientation 
vector for those light sources. 
 
Range 
 
Range determines the outer boundary of the light source. Point lights and spot lights use the Range 
member to determine if a particular vertex falls within their zone of influence. Directional light sources 
do not specify a range because they are infinite. For a point light, range describes a spherical radius. 
DirectX Graphics can quickly calculate whether a vertex is outside this sphere and reject it before more 
costly calculations are done.  
 
FallOff 
 
The FallOff member of the D3DLIGHT9 structure is only used with spot lights. We will discuss the 
FallOff member when we discuss spot lights later in the lesson. 
 
Attenuation 
 
Under normal circumstances the illumination from a point light source decreases according to the 
inverse square of the distance between the light source and the surface (or vertex in this case): 
 

Attenuation   =   1/D2 
 

D = | (VertexPosition – LightPosition) | 
 
Attenuation scales the intensity of the light as distance increases between the light source and the 
surface. The problem with using the attenuation formula above is that as distance values get closer to 
the maximum range of the light source, the difference between values becomes insignificant. As 
distance gets closer to zero the variations become much larger very quickly. Coefficients and new 
variables can be added to the equation to address some of these concerns: 
  

Color(current)  = 
)3()2(1

1
2DnAttenuatioDnAttenuationAttenuatio ×+×+

 * Color(orig) 

 
The Attenuation1 member describes a constant attenuation factor, Attenuation2 describes a linear 
attenuation factor, and Attenuation3 describes a squared attenuation factor. These values taken 
together can create a variety of attenuation curves. Notice that the equation does not take account of 
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the Range value of the light source in any way. The constant value allows us to avoid 0 in the 
denominator. 
 
Generating the correct attenuation curve requires some degree of experimentation to get the correct 
falloff over the range of the light. Vertices that are outside the range of the light are not lit at all, so if 
you do not set the attenuation values properly (so that the intensity of the light degrades to 
approximately zero as D reaches the range of the light), you will see a sharp cutoff point. Therefore 
you must think carefully about the values you use. For example, if you set the following attenuation 
values, you would get no attenuation at all: 
 

Attenuation1 = 1.0    Attenuation2 = 0.0     Attenuation3 = 0.0 
 

Attenuation Value = 
)0()0(1

1
2DD ×+×+

= 1.0 

 
Color(current)  = Attenuation Value * Color(orig) 

 
Color(current)  = Color(orig) 

 
In this case vertices within the range of the light are lit with the same intensity irrespective of the 
distance between the vertex and light source. If you want your light intensity to attenuate, then you will 
often have to experiment with these values so that they provide attenuation consistent with the range of 
the light. One easy way to do this is to manipulate the values in a spreadsheet so that the intensity of 
the light is near zero at the light’s range.  
 
In the following attenuation graphs, the point light source has a range of 200 world units. The goal is to 
find values such that the light intensity is close to full power (1.0) at a distance of zero from the light 
source and decreased to nearly zero near the outer range (i.e. at a distance of 200 units from the light). 
 
Example 1:            Attenuation1 = 1.0     Attenuation2 = 0.0002     Attenuation3 = 0.0009 
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The above graph shows how the color emitted from the light would be scaled by distance. At a 
distance of 200 units it is close enough to zero not to produce a noticeable illumination discontinuity at 
the edge of the light’s range. Changing the attenuation values allows you to modify the shape of the 
graph. This is certainly not a very linear attenuation. Look at the way the curve dips within the first 90 
units of the light’s range. Only 50 units from the light source, the color that would reach the vertex is 
less than half of its full intensity.  
 
The results are subjective and it can take some trial and error to find an attenuation curve you are 
happy with. Often you will not be able to manipulate the coefficients of the equation to produce the 
exact curve that you desire but you can usually find something that looks good in practice.  
 
In this next example, we used some different attenuation values for the same light source. Once again, 
the goal is to make the attenuation decrease as near to zero as possible at the light’s max range. The 
following values are not quite as successful at doing this as the last example, but it does provide a more 
linear attenuation. 
 
Example 2:             Attenuation1 = 1.0      Attenuation2 = 0.004     Attenuation3 = 0.0001 
 

 
 

The graph above indicates a much more linear falloff, but at the max range (200) the light intensity is 
still just under 0.2. This indicates that vertices just inside the range will still be receiving 20% of the 
light’s full power while vertices just outside the lights range will receive none. This may cause a visual 
glitch in the lighting but it is not likely to be too noticeable.  
 
Adjusting the squared coefficient from 0.0001 to 0.0007 drastically alters the shape of the graph so that 
it is very close to zero at the light’s range but without as linear an attenuation: 
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Example 3:                Attenuation1 = 1.0          Attenuation2 = 0.004     Attenuation3 = 0.0007 
  

 
 
If you wish your light source to have its intensity attenuate, you will need to create attenuation values 
that suit the range of your light source. The above values would not be at all suitable for a light that 
only had a range of 30 units because at the light’s outer range, the vertex would still receive 
approximately 65% of the color. This would cause a steep decline in illumination for vertices just 
outside the lights range.  
 
For those of you familiar with the Microsoft Excel® spreadsheet application, we have included with 
this lesson the spreadsheet used to create the attenuation graphs in the previous pages. This will allow 
you to experiment with the coefficients to produce settings that suit your own light sources.  
 
Point lights and spot lights both use the Attenuation1, Attenuation2, and Attenuation3 members of the 
D3DLIGHT9 structure as coefficients in an equation that scales light intensity based on the distance 
from the vertex to the light source.  Directional lights do not use the attenuation values because they 
have infinite range. 
 
Theta and Phi 
 
Theta and Phi are only used for spotlights. We will cover spot lights in the next section. 
 
 
In this next example, we will create a point light at world space position (10, 60, 20) with a range of 
200 units. We will use the attenuation settings from our final attenuation graph above. 
 
// Setup a point light 
D3DLIGHT9 MyLight; 
ZeroMemory(&MyLight , sizeof(D3DLIGHT9)); 
 
MyLight.Type  = D3DLIGHT_POINT;                // Point Light 
 
MyLight.Diffuse.a  = 1.0f;                     // Blue Diffuse Light 
MyLight.Diffuse.r  = 0.0f;       
MyLight.Diffuse.g  = 0.0f; 
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MyLight.Diffuse.b  = 1.0f; 
 
MyLight.Specular.a = 1.0f;                     // White Specular Light 
MyLight.Specular.r = 1.0f;       
MyLight.Specular.g = 1.0f; 
MyLight.Specular.b = 1.0f; 
 
MyLight.Ambient.a  = 1.0f;                     // Dark Grey Ambient Light     
MyLight.Ambient.r  = 0.2f;       
MyLight.Ambient.g  = 0.2f; 
MyLight.Ambient.b  = 0.2f; 
 
MyLight.Position  = D3DXVECTOR (10.0f , 60.0f , 20.0f);    // Position 
MyLight.Range     = 200;                                   // Range         
 
 
MyLight.Attenuation0 = 1.0f;                   // Attenuation Coefficients                          
MyLight.Attenuation1 = 0.004; 
MyLight.Attenuation2 = 0.0007; 
 
m_pDevice->SetLight   (0, &MyLight);           // Set this light as light index zero                
m_pDevice->LightEnable(0, TRUE);               // Turn the light on      
 
 
Spot Lights 
 
A spot light is a positional light that emits light in a specific direction. A DirectX spot light is very 
much like the type of spot light you would see in a theatre: a cone shaped beam of light shining toward 
the stage. The cone can be narrowed or widened to focus the beam of light on a single actor or an 
entire cast. When we fill in the D3DLIGHT9 structure for a spot light, we set the position and direction 
of the light vectors in the D3DLIGHT9 Position and Direction members respectively. The Phi and Theta 
members are angle values used to define the light cone exiting the spotlight and traveling along its 
direction vector. Just as a point light has a sphere of influence in which all vertices inside it are 
considered for lighting, the Phi and Theta members define a cone of influence for the spot light. 
Techically, these values describe two cones of influence: an inner and outer cone as we will see 
momentarily.  

 
Figure 5.15 
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Let us begin by discussing which members of the D3DLIGHT9 structure are used to create a spot light 
effect and how to fill them in correctly. 
 
Diffuse, Ambient, and Specular 
The diffuse, ambient, and specular members of the D3DLIGHT9 structure are the same for spot lights 
as they were for point lights. They describe the diffuse, ambient, and specular colors emitted by the 
spot light. Any vertices that are within the range of the light and within its cone of influence will 
receive these colors to some extent, provided the vertex normals are not facing away from the light 
source. How much of this color ultimately makes it into the vertex is dependant on how we set the 
attenuation values, the falloff values, and the inner and outer cone angles in the D3DLIGHT9 structure. 
It also depends on the angle between the vertex normal and the light direction vector (excluding the 
ambient color which is not scaled by this angle but still has range and attenuation applied). 
 
Position 
A spot light is assigned a position in the 3D world that describes the origin of the light source. 
 
Direction 
A spot light must be assigned a direction vector that describes the direction the spot light beam travels 
in the 3D world.  
 
Range 
Like a point light source, the Range member of the D3DLIGHT9 structure is interpreted as the radius 
of a sphere of influence. Values outside this range are not affected by the light. If a vertex is within 
range of the light, then another test is performed to test if it is within the outer cone of light. If the 
vertex is outside the outer cone, it will not receive any of the light color. If the vertex is within the 
outer cone and is not facing away from the light source, then the vertex will receive at least some of 
the light color.  
 
Attenuation 
The Attenuation1, Attenuation2, and Attenuation3 members of the D3DLIGHT9 structure are the same 
for spotlights as they are for point lights. They can be configured so that the light intensity diminishes 
in relation to the vertex distance from the light source. The distance value considered is the length of a 
vector from the light source position to the vertex. 
 
Phi and Theta 
The Phi and Theta members of the D3DLIGHT9 structure describe the angle (in radians) of the outer 
and inner spotlight cones respectively. Vertices that fall within the inner cone receive the color of the 
light scaled by distance using the attenuation values. Vertices that are outside the inner cone but within 
the outer cone receive the color as well, but it is scaled by another form of attenuation called falloff. 
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Figure 5.16 
 
Fig 5.16 shows that Phi describes the angle of the outer cone and Theta describes the angle of the inner 
cone, both projecting outwards from the light source along the direction vector. You can set up the 
inner and outer cones of the spot light so that vertices within the inner cone are lit more brightly than 
vertices outside the inner cone but still inside the outer cone. Vertices in the outer cone can slowly fade 
in intensity as they approach the boundary of the outer cone. Obviously, if you set both angles to the 
same value then you will see not any falloff on the vertices. By setting the Falloff member of the 
D3DLIGHT9 structure we can model an additional attenuation.  
 
FallOff 
The FallOff member of the D3DLIGHT9 structure attenuates the light color for vertices falling within 
the outer cone of the light but outside the inner cone. To calculate falloff the pipeline first measures the 
angle between the direction vector and a vector from the light to the vertex to return the cosine of the 
angle between them.  
 

 
 

Figure 5.17 
 
The vector L is negated and the dot product performed to return the cosine of the angle between the 
two vectors. 
 

DL •−=αcos  
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This angle can then be directly compared to the outer and inner cone angles (Phi and Theta) specified 
in the D3DLIGHT9 structure to determine if the vertex is within the inner or outer cones. The Phi and 
Theta values are divided by 2 prior to being compared with α because they describe total cone angles 
when we actually want the angle relative to the direction vector L at the center if the inner cone. The 
cones have an angle that sweeps out α /2 on each side of vector L.  
 
After Phi and Theta have been divided by 2, the pipeline compares them with α to see if the vertex is 
within the cones. If α  is larger than the Phi/2 then it is totally outside the outer cone and is rejected 
from further consideration for this light. If this is not the case then α  is compared against Theta/2. If 
α  is less than Theta/2, then it is within the inner cone and will not have the additional attenuation 
(FallOff) applied to it. Remember that Falloff is separate from the three attenuation settings that scaled 
the intensity of the light based on the distance from the light source. Even if the vertex is at the center 
of the cone, it will still have the distance based attenuation equation applied to it. However, it will not 
be scaled by the falloff equation. If the vertex does lie within the outer cone but is outside the inner 
cone, the color is additionally scaled by the result of the following equation: 
 

S = 
Falloff









−
−

)cos()cos(
)cos()cos(

φθ
φα  

    
   α  = Angle between vectors L and D 

         φ   = Phi / 2 (Half the outer cone angle) 
         θ   = Theta / 2 (Half the inner cone angle) 

Falloff = Falloff property of the D3DLIGHT9 structure  
 
 
The equation produces an S value between 0.0 and 1.0. This is used to further scale the light color to 
account for falloff. This is referred to as the spot factor. By altering the Falloff property of the 
D3DLIGHT9 structure we can adjust the falloff curve. Unlike the distance based attenuation that we 
discussed earlier (which is also applied to the color before reaching the vertex), the falloff curve is not 
nearly as difficult to manipulate since it does not rely on world space distances. This means for 
example that a falloff value of 1.0 will always give a linear falloff regardless of the other properties of 
the light. This should be clear enough given that an exponential value of 1.0 in the above equation does 
not affect the the ratio. This approach allows you to create consistent falloff curves that can be used by 
all of your spot lights. 
 
The graph in Fig 5.18 shows three examples of falloff values: 1.0, 0.2, and 5.0. 
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Figure 5.18 
 
Your applications will usually set the Falloff member to 1.0 which causes linear attenuation between 
the inner and outer cones to be applied to vertices in the outer cone. There is a small performance 
penalty incurred when using falloff values other than 1.0 and as the attenuation effect between the 
inner and out cones is usually extremely subtle it is often not worth doing. 
 
In the next code example we create a spot light at position(10, 50, 10) with a direction vector that 
orients it down the positive Z axis (0, 0, 1). We set the range of the light to 400 and use the same 
attenuation values we used in our point light example. We set the falloff value of the structure to 1.0 to 
provide linear attenuation between the inner and outer cones, where the angle of the outer cone is 60 
degrees and the inner cone is 30 degrees. The light emits green diffuse light, white specular light, and 
no ambient light (black ambient color). Finally we set the light as light index 1. If we used this code 
after the preceding point light code we would have the point light as light 0 and the spot light as light 
1. 
 
// Setup a point light 
D3DLIGHT9 MyLight; 
ZeroMemory(&MyLight , sizeof(D3DLIGHT9)); 
 
MyLight.Type           = D3DLIGHT_SPOT;       // Spot Light 
 
MyLight.Diffuse.a      = 1.0f;                // Green Diffuse Light 
MyLight.Diffuse.r      = 0.0f;       
MyLight.Diffuse.g      = 1.0f; 
MyLight.Diffuse.b      = 1.0f; 
 
MyLight.Specular.a     = 1.0f;                // White Specular Light 
MyLight.Specular.r     = 1.0f;       
MyLight.Specular.g     = 1.0f; 
MyLight.Specular.b     = 1.0f; 
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MyLight.Ambient.a      = 1.0f;                // No ambient light     
MyLight.Ambient.r      = 0.0f;       
MyLight.Ambient.g      = 0.0f; 
MyLight.Ambient.b      = 0.0f; 
 
MyLight.Position     = D3DXVECTOR (10.0f , 50.0f , 10.0f);   // Position 
MyLight.Direction    = D3DXVECTOR3( 0.0f , 0.0f ,1.0);       // Direction vector  
 
MyLight.Range        = 400;                                  // Range         
 
MyLight.Attenuation0 = 1.0f;                                 // Attenuation Coefficients            
MyLight.Attenuation1 = 0.004; 
MyLight.Attenuation2 = 0.0007; 
 
MyLight.Theta   = D3DXToRadian (30);                  // Inner Cone angle (30 degrees)       
MyLight.Phi     = D3DXToRadian (60);                  // Outer Cone angle (60 degrees)      
MyLight.Falloff = 1.0f;                               // Falloff (linear = 1.0) 
 
m_pDevice->SetLight (1, &MyLight);                    // Set this as light index 1                  
 
m_pDevice->LightEnable(1, TRUE);                      // Turn the light on      

 
Spot lights are generally more computationally expensive than point lights because of the extra 
calculations involved for both determining if the vertex is within the inner or outer cones and for 
calculating the falloff between the cones. While this is true on a per-vertex basis, these unique 
properties of a spot light are such that they will generally affect fewer vertices in the scene than other 
light types. As a result, using spot lights can sometimes result in better performance than point lights 
under certain circumstances. Nevertheless, as a general rule, they are the most computationally 
expensive light type, followed by point lights, and then directional lights. 
 
 
Directional Lights 
 
Directional lights are the least computationally expensive light source and are ideal for simulating far 
away light sources such as the sun. A directional light does not have a position in the 3D world and 
does not have a limited range. A directional light is essentially nothing more than a unit length 
direction vector describing the direction in which the light is shining on all vertices in the scene. A 
directional light can emit ambient, diffuse, and specular colors just like point and spot lights, but the 
Position, Range, Falloff, Theta, Phi and the three attenuation members of the D3DLIGHT9 structure 
are all unused. 
 
This is very much like the type of lighting that we used in Lab Project 3.2 when we calculated the 
colors of the terrain vertices. When there is a directional light in the scene, all vertices have their vertex 
normals compared to its direction vector and the diffuse and specular colors of the light are scaled by 
the cosine of the angle between them. Its ambient color is applied without prejudice to all vertices in 
the scene. Because the diffuse and specular colors are scaled by the angle between the vertex normal 
and the light direction vector, this simplified lighting calculation still provides smooth lighting. As 
vertex normals become less parallel to the light source direction vector, the colors received by the 
vertex are scaled down to a greater degree. We can think of the directional light source as emitting an 
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infinite number of rays of light parallel to the direction vector throughout the 3D world.  Fig 5.19 
shows four meshes that are lit by a bright white directional light shining from right to left. 
 

 

 
 

Figure 5.19 
 
Remember that a directional light has no position. Every vertex in the world perceives the directional 
light to be an infinite distance away shining rays along the same vector. In Fig 5.19, notice that there 
are no ambient light sources in the scene, so vertices facing away from the direction vector do not 
receive any light. This creates a smooth fade to black effect for the sphere, cylinder, and torus. Since 
the cube has many fewer faces, the change from light to dark is much less gradual. It looks as if the 
back face of the cube (with relation to the light vector) is missing, but it is there. It simply receives no 
light because the vertices of that face have normals that are facing away from the direction vector. This 
is a good example of why we might consider setting a global ambient color; so that such faces are 
rendered using at least a very low intensity color. Again, a possible alternative is to use a low intensity 
directional light that shines along the view vector. You will typically use only 1 or 2 directional light 
sources in your scene (if at all) since they will affect all vertices.  
 
The following code creates a red diffuse directional light with white specular light and a small amount 
of blue ambient light. The light has a direction vector aligned with the world’s negative X axis (i.e. the 
light is emitting parallel rays from right to left in world space) and is set at index 2. 
 
// Setup a directional light 
D3DLIGHT9 MyLight; 
ZeroMemory(&MyLight , sizeof(D3DLIGHT9)); 
 
MyLight.Type           = D3DLIGHT_DIRECTIONAL;       // Spot Light 
 
MyLight.Diffuse.a      = 1.0f;                       // Green Diffuse Light 
MyLight.Diffuse.r      = 0.0f;       
MyLight.Diffuse.g      = 1.0f; 
MyLight.Diffuse.b      = 1.0f; 
 
MyLight.Specular.a     = 1.0f;                       // White Specular Light 
MyLight.Specular.r     = 1.0f;       
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MyLight.Specular.g     = 1.0f; 
MyLight.Specular.b     = 1.0f; 
 
MyLight.Ambient.a      = 1.0f;                       // No ambient light     
MyLight.Ambient.r      = 0.0f;       
MyLight.Ambient.g      = 0.0f; 
MyLight.Ambient.b      = 0.0f; 
 
MyLight.Direction      = D3DXVECTOR3( 0.0f , 0.0f ,1.0);          // Direction vector  
 
m_pDevice->SetLight (2 , &MyLight);                              // Set as light index 2            
m_pDevice->LightEnable(2, TRUE);                                  // Turn the light on      

 
At this point we know how to set up the three different light types. We also know (roughly) how the 
pipeline scales the colors emitted from a light source using the angle between the vertex normal and 
the light source. We examined the attenuation equation, which further scales the light source based on 
a distance from the light, and in the case of a spot light, the colors may be further attenuated by a 
falloff equation. So a vertex may receive only a fraction of a light’s full intensity when its position, 
orientation, and distance from the light source are taken into account.  
 
Note that the color components of a D3DLIGHT9 structure are not limited to the [0.0, 1.0] range, 
although it is the range we will most commonly use. We could for example create a light that has 
negative color components which would actually ‘remove’ light from the scene. This could be used to 
create shadowy areas within the level. Simply place a ‘dark light’ where you want the shadowy area to 
appear and any vertices that are within the influence of the light will have the light’s color subtracted 
from their total color. The following snippet of code shows how you might setup the diffuse members 
of a D3DLIGHT9 structure to create a light that removes diffuse lighting from the scene. 
 
//dark light 
MyLight.Diffuse.r = -0.5; 
MyLight.Diffuse.g = -0.5; 
MyLIght.Diffuse.b = -0.5; 
MyLight.Diffuse.a =  1.0; 
 
You could also use this strategy to create a light that removes only certain color components from a 
scene (ex. a diffuse color with a negative red component to subtract only the redness from vertices). 
Note as well that we can also use intensity values that exceed 1.0 to create an oversaturation effect (i.e. 
a ‘bright light’).  Because the color of a vertex is clamped to its maximum color intensity (bright 
white), creating a bright light can cause vertices to have a much higher intensity color added to them. 
This causes them to be clamped to their maximum color much sooner. This causes a light saturation 
effect where every vertex within range is lit to full intensity. 
 

Note: When you pass the D3DLIGHT9 structure into the IDirect3DDevice9::SetLight function, a copy of 
the information is made by the device and this copy is used. Therefore, after calling SetLight, you can 
safely delete the D3DLIGHT9 variable (or let it go out of scope) without it deleting or corrupting the 
light in the scene. After the call to SetLight, the passed structure is NOT attached to the physical light. 
It is just used to create it. 
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Materials 
 
Materials are used to determine how a vertex reacts to incoming light and ultimately, what color it is 
perceived to be. They do so by specifying which color components are absorbed and which are 
reflected. In Fig 5.20 we see a white directional light shining on the objects from right to left.  
 

 
 

Figure 5.20 
 
Although all of the objects in Fig 5.20 receive the same white light, each object is a different color 
because they have different materials that define how they react to the light. All of the objects above 
use a material that reflects red ambient light and we can see that the faces that point away from the 
light source take on a red coloring to some degree. The torus has a material that only reflects green 
diffuse light; the red and blue color components of the white directional light are absorbed by the 
material and only the green is reflected. The sphere uses a material that reflects all diffuse lighting so it 
appears white when fully lit and fades to red as faces leave the influence of the direct light source and 
have only the red ambient color applied. The material the cylinder uses reflects only blue diffuse light. 
The cube reflects all three color components but reflects the red color of a light source to a much 
stronger degree. It appears as a light red color since it also reflects some blue and green.  
 
The device object has a memory slot for exactly one material, so we can only set one material at a time 
for rendering. Usually you will have a polygon structure that contains an index into an array of 
D3DMATERIAL9 structures created by your application. When a triangle is rendered, we will need to 
make sure that the material it uses is set as the current device material by calling the 
IDirect3DDevice9::SetMaterial member function. 
 
For each vertex, its final color is calculated by the pipeline as follows: 
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Vertex Color = (AmbientLight * A) + (DiffuseLight * D) + (SpecularLight * S) + E 
           
AmbientLight –This is the total ambient light color that has reached a vertex after attenuation and 
falloff have been taken into account for direct light sources. The global ambient light color is also 
added to this color. 
 
DiffuseLight –This is the total diffuse light color that has reached the vertex after angle, attenuation, 
and falloff have been taken into account. 
 
SpecularLight –This is the total specular light color that has reached a vertex after angle, attenuation, 
and falloff have been taken into account. 
 
A, D, S and E are colors that we can specify using either materials or vertex colors. We will ignore 
using vertex colors in this equation for the time being and concentrate on materials. Later we will see 
how we can use colors stored in the vertex as variables in the above equation. 
 
Each value in the above equation is an ARGB group of floats. We are modulating inbound light color 
with colors stored in the material. The above equation could be rewritten as: 
 
VertexColor =   (AmbientLight(a,r,g,b) * A(a,r,g,b))  + 
                       (DiffuseLight  (a,r,g,b) * D(a,r,g,b)) + 
                       (SpecularLight(a,r,g,b) * S(a,r,g,b)) + E(a,r,g,b) 
 
If for example the color of A was (0.5, 0.5, 0.5, 0.5) then the incoming ambient light color would be 
scaled by half, giving the impression that the surface has absorbed half of the ambient light. If the 
incoming ambient light was bright white (1.0, 1.0, 1.0, 1.0) and the color A was (1.0, 0.0, 0.5, 0.0) we 
can see that the following ambient light reflectance calculation would occur: 
 
Vertex Color = (AmbientLight * A) …. 
Vertex Color = (1.0, 1.0, 1.0, 1.0) * (1.0, 0.0, 0.5, 0.0) 
Vertex Color = (1.0, 0.0, 0.5, 0.0) 
 
The red and blue ambient light would be completely absorbed by the surface and we would reflect 
green ambient light at half intensity. The same logic obviously holds true for the other color types. 
 
So a material is really nothing more than a collection of four ARGB colors with color components in 
the range of 0.0 to 1.0. The structure used to represent materials in DirectX Graphics is called 
D3DMATERIAL9. We store an ambient, diffuse and specular color in this structure which maps to A, D 
and S in the above we equation respectively. Although you can think of these as colors that control the 
color of the vertex that uses it, you can also think of them as simple being a collection of four 
component values in the range of 0.0 to 1.0 that are used to scale the incoming ambient, diffuse and 
specular light.   
 
The D3DMATERIAL9 structure contains a fourth color called Emissive (E in the above equation). The 
emissive color of a material is a color that is always added to the vertex even if it is not receiving any 
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light whatsoever. We can think of this as a color emitted by the vertex itself. Unlike light sources, the 
color emitted by the vertex is not projected onto neighboring vertices.  
 
Fig 5.21 shows a torus rendered using an emissive red color and a green diffuse color. There is a single 
bright white diffuse directional light source in the scene. Notice that the vertices that are facing the 
directional light source reflect only the green component of the light color. Also notice how the 
vertices that are facing away from the light source receive no light but that the material always emits a 
red emissive color.  
 

 
 

Figure 5.21 
 
Emissive colors in materials can look really nice. You often see them used in space combat games to 
emit a glow effect on the engines of a space craft. As the space ship leaves the sun’s illumination, its 
hull fades into darkness. But its engines still glow fully bright. This can be done using a material with 
an emissive property when rendering the engines. You might also use emissive colors in a first-person 
shooter game on the mesh of a fireplace so that the bricks glow an orange color even when there is no 
light shining on the fireplace. 
 
The D3DMATERIAL9 structure is shown below. The Power floating point member is used to control the 
application of specular highlights and will be discussed momentarily. 
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typedef struct _D3DMATERIAL9 
{ 
  D3DCOLORVALUE Diffuse;   // D in the above equation 
  D3DCOLORVALUE Ambient;   // A in the above equation 
  D3DCOLORVALUE Specular;  // S in the above equation 
  D3DCOLORVALUE Emissive;  // E in the above equation 
  float Power;             // Controls the sharpness of highlights                      
} D3DMATERIAL9; 

 
The following code example creates a material that reflects only green diffuse light and emits its own 
red color as seen in Fig 5.21. No specular or ambient light are reflected. 
 
D3DMATERIAL9 mat; 
 
mat.Diffuse.a = 1.0f;     
mat.Diffuse.r = 0.0f; 
mat.Diffuse.g = 1.0f;  // reflects only green diffuse light 
mat.Diffuse.b = 0.0f; 
 
// reflects no ambient or specular light 
mat.ambient.a = mat.ambient.r = mat.ambient.g = mat.ambient.b = 0.0f; 
mat.specular.a = mat.specular.r = mat.specular.g = mat.specular.b = 0.0f;  
 
mat.Emissive.a = 1.0f;   
mat.Emissive.r = 1.0f; // the material emits its own red color onto vertices that use it 
mat.Emissive.g = 0.0f; 
mat.Emissive.b = 0.0f; 
 
mat.Power = 0.0f;      // Not reflecting specular highlights so set power to zero 
 
Once we have the material structure filled out, we can set the material as the current device material 
using the IDirect3DDevice9::SetMaterial function: 
 
HRESULT IDirect3DDevice9::SetMaterial(CONST D3DMATERIAL9 *pMaterial) 
 
We pass in the address of our material structure so that the device can copy the values into its local 
material properties memory. Our code would do something like this: 
 
m_pd3dDevice->SetMaterial( &mat ); 

 
Note: After the call to SetMaterial, a copy is made of the material properties by the device. The 
material structure can be safely deleted (or allowed to go out of scope) without affecting the material 
settings of the device. 

 
At this point we can render all of the polygons that use this material and they will have the correct 
reflectance properties applied in their color calculations. Every triangle that is rendered thereafter will 
use this material until such a time that the material is changed to a new material or the lighting pipeline 
is disabled. Therefore, you could create many material structures in an array and store indices into this 
array in your object or polygon structures to set the required material before rendering. In our 
workbook we will discuss batch rendering so that we are not calling SetMaterial before we render 
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every polygon. This would be very slow and render state changes should be minimized as they can be 
expensive. 
 
 
Specular and Power 
 
We know that the specular color of the material is used as a multiplier with the specular color received 
from the light source to generate the specular color that will be applied to the vertex. However, 
specular highlights on objects are spread across many vertices depending on the position of the camera 
and the light source with respect to the object. The Power member is used to control the dispersion of 
highlights across the range of vertices. Specular highlights are more computationally expensive than 
calculating the diffuse lighting for a vertex because we need to factor in view dependant information. 
As a result, specular highlights are disabled by default and must be enabled by setting the following 
renderstate: 
 
m_pDevice->SetRenderState (D3DRS_SPECULARENABLE , TRUE); 
 
If you set this condition to false, specular highlights will not be calculated and the specular material 
properties will be ignored. This speeds up the lighting pipeline but the visual results are not as 
pleasing. 
 
Although the code we saw earlier set Power to 0.0 and the specular color to black, you must be sure to 
disable the D3DRS_SPECULARENABLE renderstate to prevent the specular calculation from occurring 
unnecessarily. 
 
Let us look at how the Power member of the material can be used to alter the spread and intensity of 
specular highlights. Higher powers yield sharper specular highlights and vice versa. The range of 
values that you can use in the Power member is the range of a float. You will usually wind up using 
values between 0.0 and 250.0. 
 
Fig 5.22 depicts a sphere illuminated by a white (diffuse and ambient) directional light. The material 
used to render the sphere reflects red diffuse light, white specular light, and dark red ambient light. 
Altering the Power of the material changes the size of the specular highlight: 
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Power = 2 

 

Power = 5 

 

Power = 10 

 

Power = 30 

 

  
Figure 5.22 

 
At this point we have now covered the requirements for using DirectX Lighting: 
 

• Create materials for your objects. 
• Add your lights to the scene. 
• Enable lighting. 
• Enable specular highlights if desired. 
• Begin render loop. 

• Set material for current triangles to be rendered. 
• Render triangles that use the currently set material. 
• Repeat until all triangles have been rendered. 

• End render loop. 
• Present scene. 

 
Notice that we render the triangles in batches based on the materials they use. This is important 
because we want to reduce number of calls to DrawPrimitive and render (within reason) as many 
triangles as is optimal. The problem is that we can only set a different material between DrawPrimitive 
calls. Therefore, in order to reduce the number of calls to DrawPrimitive, you will want to reduce the 
number of times a new material has to be set. In order to do this you will want to (in a pre-process) 
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batch your triangles together into groups depending on the material they use. Then you can just set 
material 1 and render all triangles that use material 1, then set material 2 and render all triangles that 
use material 2, and so on. This allows you to render the scene with the minimum amount of 
DrawPrimitive calls and a minimal number of material changes. Changing state assigned objects like 
materials, textures, and vertex buffers can be expensive operations inside of a render loop (although 
some are certainly far more expensive than others). We should always look to minimize state changes 
as best we can.  
 
 
 
Material Sources 
 
What happens if we enable lighting and give our vertices a vertex normal, but also include diffuse and 
specular color components at the same time? In previous weeks we treated the inclusion of these colors 
as a sign that the vertices were pre-lit. We might assume that when using the lighting pipeline, any 
color stored in the vertex would be ignored. As we will soon see, this assumption may or may not be 
true depending on how we set up our material source render states. Let us look again at our simplified 
equation for calculating the color of a vertex: 
 

Vertex Color = (AmbientLight * A) + (DiffuseLight * D) + (SpecularLight * S) + E 
 
Recall that in this equation, AmbientLight, DiffuseLight and SpecularLight represent the total amount 
of light that hits the vertex collected from all light sources. This light was scaled by distance 
attenuation and the angle of the vertex normal with the incident light vector. Then each sub-group of 
the total light is scaled by the corresponding material component (A, D, S, and E). 
 
We can change these relationships so that if desired, we could store a color (or two colors) in the 
vertex itself and can instruct the device not to use a particular material component as the reflectance 
property but instead use the color in the vertex. This means for example, that you could instruct the 
device to use the currently set material members for calculating ambient (A) and diffuse (D) reflection, 
but use the two colors stored in each vertex as the specular (S) and emissive (E) reflectance properties. 
This would allow a per-vertex emissive property which is simply not possible using materials. This is 
just one example and there are many combinations available.  
 
There are four device render states that allow the application to configure the source of A, D, S and E 
in the above equation. They determine whether a reflectance property is taken from the currently set 
material or from one of the two color components that can be stored in a vertex.  
 
SetRenderState ( D3DRS_DIFFUSEMATERIALSOURCE   , D3DMATERIALCOLORSOURCE) 
SetRenderState ( D3DRS_AMBIENTMATERUALSOURCE , D3DMATERIALCOLORSOURCE) 
SetRenderState ( D3DRS_SPECULARMATERIALSOURCE , D3DMATERIALCOLORSOURCE) 
SetRenderState ( D3DRS_EMISSIVEMATERUAL SOURCE, D3DMATERIALCOLORSOURCE) 
 
We pass in a member of the D3DMATERIALCOLORSOURCE enumerated type: 
 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 42 of 51 

 

TeamLRN



 

typedef enum _D3DMATERIALCOLORSOURCE  
{ 
    D3DMCS_MATERIAL = 0, 
    D3DMCS_COLOR1 = 1, 
    D3DMCS_COLOR2 = 2,  
    D3DMCS_FORCE_DWORD = 0x7fffffff 
} D3DMATERIALCOLORSOURCE; 
 
D3DMCS_MATERIAL - This instructs the device that the color for the current material source being 
set is found in the material. If we were currently setting the D3DRS_AMBIENTMATERIALSOURCE 
render state and used D3DMCS_MATERIAL, then the lighting calculations would use the ambient color 
stored in the material as A in our lighting equation to reflect incoming ambient light. 
 
D3DMCS_COLOR1 – This instructs the device that the color for the material source being set is to be 
taken from the diffuse color member of the vertex. For this to work you must have defined your vertex 
structure to have a color component and must set your FVF flags so that they include the 
D3DFVF_DIFFUSE flag. If we were setting the D3DRS_AMBIENTMATERIALSOURCE renderstate and 
used D3DMCS_COLOR1, then the lighting calculations would use the color stored in the diffuse 
member of the vertex as A in our lighting equation to reflect incoming ambient light. 
 
D3DMCS_COLOR2 – This instructs the device that the color for the material source is to be taken 
from the specular color member of the vertex. For this to work you must have defined your vertex 
structure with a color component and set your FVF flags to include the D3DFVF_SPECULAR flag. If we 
were currently setting the D3DRS_AMBIENTMATERIALSOURCE renderstate and were using 
D3DMCS_COLOR2, then the lighting calculations would use the color stored in the specular member of 
the vertex as A in our lighting equation to reflect incoming ambient light. 
 
In summary, we can configure A, D, S, and E to be taken from the corresponding color in the currently 
set material or from one of two possible colors that could be stored at each vertex. Let us examine 
some examples. We start with a vertex structure that will contain a vertex normal and two color values 
which could be used as material sources in lighting calculations. 
 
CVertex 
{ 
 D3DXVECTOR3 Position; 
 D3DXVECTOR3 Normal; 
 DWORD Diffuse; 
 DWORD Specular; 
}; 
  
m_pDevice->SetFVF( D3DFVF_XYZ | D3DFVF_NORMAL  | D3DFVF_DIFFUSE | D3DFVF_SPECULAR) 
 
Notice that the two color components in the vertex structure are described as diffuse and specular 
members by the FVF flags. This is slightly misleading in the general case. When we are not using 
DirectX lighting, then these two colors do indeed store the diffuse and specular components of the 
vertex. The colors are passed straight through to the rasterizer which combines these colors to create 
the color of the vertex which is then interpolated over the surface. In this case, DirectX Graphics 
expects that you have calculated the correct diffuse color and specular colors yourself and stored them 
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in the vertex. Referring to the color members of the vertex as diffuse and specular components is 
accurate and makes perfect sense.  
 
When using the lighting pipeline however, referring to the two color members as diffuse and specular 
is not quite as accurate since these members are no longer used specifically to store the diffuse and 
specular colors. These are colors used as material reflectance properties. With the render states covered 
above, we can use the two colors in the vertex as either A, D, S or E in the lighting equation. This 
means of course, that in FVF terms, the diffuse member of the vertex could be used as the emissive 
reflectance property in place of the material emissive property, or the specular member could be used 
as the diffuse reflectance property in place of the material diffuse member. While there is not much we 
can do to avoid this unfortunate naming dilemma at the FVF level, we can at least modify our structure 
to more accurately reflect what we are trying to do: 
 
CVertex 
{ 
 D3DXVECTOR3 Position; 
 D3DXVECTOR3 Normal; 
 DWORD Color1; 
 DWORD Color2; 
}; 

 
Of course, you can call the color members whatever you like. We simply chose names that were 
generic enough to make sense when we wish to store material colors in the vertex. Note that even if 
you store reflectance properties in the vertex, you will still need to use them alongside materials if you 
wish to model all four material properties (ambient, diffuse, specular, and emissive) since we can only 
store two colors in the vertex. 
 
The vertex structure we will use in Lab Project 5.1 will not have colors stored at the vertex. This 
means that A, D, S and E in the lighting equation will be taken from the currently set material 
Ambient, Diffuse, Specular and Emissive members. We will not explicitly set any of the material 
source renderstates. This would lead us to believe that the default state of the device is to simply take 
A, D, S and E in the lighting equation from the currently set material and ignore any color components 
stored in the vertex unless the device is set otherwise. This is not actually the case. In fact, the default 
state of the device is to take the material reflectance properties from the sources listed in the following 
table when they exist. 
 
 
Material Color Source Render 
State 

Default Value Description 

D3DRS_DIFFUSEMATERIALSOURCE D3DMCS_COLOR1 If the vertex has a diffuse component  
(D3DFVF_DIFFUSE), this color is used 
as the diffuse reflectance property (D 
in the lighting equation). If the vertex 
does not have a diffuse member then 
the currently set material diffuse 
member is used instead.     
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D3DRS_SPECULARMATERIALSOURCE D3DMCS_COLOR2 If the vertex has a specular component 
(D3DFVF_SPECULAR), this color is 
used as the specular reflectance 
property (S in the lighting equation). If 
the vertex does not have a specular 
component then the currently set 
material specular member is used 
instead. 

D3DRS_AMBIENTMATERIALSOURCE D3DMCS_MATERIAL The Ambient member of the currently 
set material is used as A in the lighting 
equation. 

D3DRS_EMISSIVEMATERIALSOURCE D3DMCS_MATERIAL The Emissive member of the currently 
set material is used as E in the lighting 
equation. 

 
As you can see, the default device state uses the diffuse and specular color components stored in the 
vertex instead of the material. If the vertex does not contain the appropriate color members, then the 
device uses the material members. However if our vertex did have one or two color components then 
we would need to explicitly set the diffuse and specular material color sources to that of the material if 
we wanted the material members to be used. 
 
The main difference between the two concepts is that vertex colors are stored as DWORDs and 
material colors are stored as D3DCOLORVALUEs (4 floats). Therefore, when storing colors in the 
vertex you must combine them into a DWORD. Fortunately, there is a DirectX macro that allows us to 
pass in four floats and returns a DWORD representation of that color. This macro is shown below and 
is found in d3d9types.h. 
 
#define D3DCOLOR_COLORVALUE(r,g,b,a) \  
D3DCOLOR_RGBA((DWORD)((r)*255.f),(DWORD)((g)*255.f),(DWORD)((b)*255.f),(DWORD)((a)*255.f)) 

 
This system provides a good deal of flexibility to our application since it allows per-vertex control of 
reflectance properties. Normally we would set the current material and render the triangle(s) that apply 
the material properties to all of the vertices within the triangle(s). By storing reflectance properties in 
the vertex also, we can render a triangle where each vertex within that triangle has a unique set of 
reflectance properties. 
 
// Example 1:  In this example, if the vertex has a diffuse or specular color component (or both) they 
are completely ignored by the lighting calculations. The reflectance properties for the diffuse, ambient, 
specular and emissive light are all taken from the relevant members of the currently set material. 
 
m_pDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE  , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE  , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE , D3DMCS_MATERIAL); 
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With these device states: 
 
A = Material.Ambient 
D = Material.Diffuse 
S = Material.Specular 
E = Material.Emissive 
 
// Example 2: In this example, the ambient and diffuse reflectance properties used in the lighting 
calculations are stored in the diffuse and specular color components of the vertex. The specular and 
emissive reflectance properties are taken from the specular and emissive members of the currently set 
material. 
 
m_pDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE  , D3DMCS_COLOR1); 
m_pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE  , D3DMCS_COLOR2); 
m_pDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE , D3DMCS_MATERIAL); 

 
With these device states: 
 
A = Vertex.Diffuse 
D = Vertex.Specular 
S = Material.Specular 
E = Material.Emissive 
 
// Example 3:  This is a combination which you will probably never use, but it does make a good 
example. In this next example none of the currently set material members are used and the diffuse 
color of the vertex is used to reflect the incoming ambient and specular light as well as being used as 
the emissive color. The specular color of the vertex is used to reflect incoming diffuse light. 
 
m_pDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE  , D3DMCS_COLOR1; 
m_pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE  , D3DMCS_COLOR2); 
m_pDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE , D3DMCS_COLOR1); 
m_pDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE , D3DMCS_COLOR1); 
 

With these device states: 
 
A = Vertex.Diffuse 
D = Vertex.Specular 
S = Vertex.Diffuse 
E = Vertex.Diffuse 
 
 

 // Example 4:  The final example shows ambient, diffuse and specular reflectance properties taken 
from the currently set material. The diffuse color component of the vertex is used as the emissive 
color.  
 
m_pDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE  , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE  , D3DMCS_MATERIAL); 
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m_pDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE , D3DMCS_COLOR1); 
 

With these device states: 
 
A = Material.Ambient 
D = Material.Diffuse 
S = Material.Specular 
E = Vertex.Diffuse 
 
Unless you require per-vertex reflectance properties (probably not very often), you will use materials 
almost exclusively and will not need to store colors in your vertices.  
 
 
 
DirectX Vertex Lighting Advantages 
 

• Speed: On nearly all modern 3D graphics cards, lighting calculations are done in hardware on 
the GPU.  

• Dynamic: Unlike many lighting techniques which are usually done as a pre-process, vertex 
lighting is calculated each frame as the vertices are passed through the transformation and 
lighting pipeline. So vertex lighting is a viable choice for implementing dynamic lighting 
effects. By simply updating a light source’s properties each frame, we can animate its position, 
orientation, and even its color to create dynamic lighting effects.  

• Simplicity: Vertex lighting is easy to use. All we need is a way to record the positions of where 
each light is placed in the scene and a way to apply materials to different polygons. Almost all 
3D modeling packages provide this functionality. The GILES™ level editor certainly allows 
you to do all these things quickly and easily. Because GILES™ was written to compliment this 
course and DirectX specifically (although it is in no way limited to being used for DirectX 
applications) you will notice that setting materials and lights in GILES™ is almost identical to 
setting them in DirectX. So you can more easily understand all of our discussions simply by 
firing up GILES™ and experimenting. Using GILES™ to create you game world and to set 
your lights and materials makes using DirectX lighting very easy. In Lab Project 5.2 we will 
load in a simple level made in GILES™ and look at all of these features. 

• Clarity: Vertex lighting is ideal for beginners to 3D graphics. It helps them more easily see how 
light sources affect geometry and add realism to a scene.  

 
 

DirectX Vertex Lighting Disadvantages 
 

• Resolution: One of the major disadvantages of vertex lighting is its fixed relationship to the 
geometric level of detail. Changes in illumination are only reflected from vertex to vertex 
rather than at the pixel level, so in order to have nice looking vertex lighting, we need meshes 
that use a lot of vertices. If a mesh contains only a few vertices (such as a cube) much detail 
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and nuance is lost. Fig 5.23 depicts a cylinder and a sphere made from nmerous triangles (and 
therefore many vertices). The ambient color in the scene is blue and each meshes have a 
spotlight shining on them.  

 
Figure 5.23 

 
Keep in mind that although we view these meshes as solid triangle based objects, the lighting 
pipeline works only with the vertices of the mesh. Therefore, what is really happening to the 
vertices is shown in Fig 5.24: 
 

 
 

Figure 5.24 
 
If a light is placed such that it does not influence any vertices, the light will have no effect. 
Now this may seem like an obvious point to make, but think about a situation where we have a 
cube face. Imagine that we created a bright white spot light with a narrow cone such that it 
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shone on the center of the quad but that the corner points were outside the cone. Although the 
quad should have a circle of white light at its center, the light would have no effect. The only 
way we could get this effect would be to subdivide the quad into smaller quads, perhaps using a 
10x10 vertex grid for example. This gives us a lit quad, but at the expense of having many 
more vertices than we need. Each of these additional vertices will need to be transformed and 
lit by the pipeline thus slowing the performance of our game engine. 
 
Fig 5.25 shows cylinders with low and high polygon counts and a green spot light shining on 
their surfaces.  
 
 

High Vertex Count Cylinder 
Vertices inside the cone receive the 
green light. Because the surface of the 
cylinder is made up of many vertices 
in close proximity, the surface reacts 
to light in a more realistic way.  

Low Vertex Count Cylinder 
Vertices are placed only at the top and 
bottom of the cylinder and as such, 
none of the vertices fall within the 
cone of light. Therefore, the light has 
no effect on the color of the cylinder. 

 
Figure 5.25 

 
This is a very common and constant problem when using vertex lighting. The answer could be 
to make sure that your entire world is highly tessellated, but usually this is in direct opposition 
to what you are trying to accomplish. Level designers are generally encouraged to restrict 
polygon budget so that the game engine does not have to transform, light, and render too many 
triangles each frame. It is often for this reason that vertex lighting is not usually solely relied 
upon for the illumination of game worlds in modern commercial games. 
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• No Occlusion: Another disadvantage of vertex lighting is a lack of accounting for occlusion. It 
illuminates vertices without considering the positions of other triangles in the world. If polygon 
B is positioned between polygon A and the light source, polygon B will not block the light and 
cast Polygon A into shadow as would be expected in real life. The lighting pipeline does not 
cast shadows. The result is a major loss of scene realism and mood.   

 
In Fig 5.26 there is a green point light behind the pillar. In real life, the pillar would block the 
light and cast certain parts of the wall into shadow. As you can see, the light passes right 
through the pillar. 
 

 
 

Figure 5.26 
 

If you have very tessellated geometry (high polygon counts) you can simulate area shadowing 
by placing dark lights (negative color values) in appropriate places. The problem with the 
technique of course (even beyond the extra polygons) is that it would be difficult or nearly 
impossible to recreate the shape of a particular object’s shadow. However, it may be good 
enough for your game to use only pools of shadow like this.  

 
• The final disadvantage is the limit on the number of simultaneously active light sources. The 

problem is not that vertices will not receive adequate coloring (in practice, only two or three 
light sources are needed for that), it is that we will have to create a light management system 
that knows how to activate only the lights that influence the polygon(s) being rendered and 
disable the rest.  
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Conclusion 
 
This lesson taught us the basics of DirectX lighting and materials. We understand the different light 
types available to our application as well as some of the mathematics of the lighting pipeline. In 
addition to reviewing many of these concepts, our lecture will focus in on the mathematics in greater 
detail, so be sure to take the time to go through it and take notes. Also, make sure that you spend time 
exploring the projects in your workbook since we have only covered the high level theory here in the 
text. The lab projects for this lesson will teach you more practical concepts such as how to: 
 

• emulate the lighting equations yourself to record light influences at each vertex 
• work around the the simultaneous light limit imposed by hardware vertex processing devices 
• use batching strategies to keep render state changes and DrawPrimitive calls minimized 
• use the IWF SDK helper classes to load geometry from GILES™ 
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Lab Project 5.1 – Dynamic Lighting 
 
In our previous terrain demos we performed our own static vertex lighting. We generated temporary 
vertex normals and created a light direction vector describing the orientation of the light source. We 
used the dot product between these two unit length vectors to scale the light brown default color of 
each vertex to generate shading. Once we had the color, we stored it in the vertex and discarded the 
vertex normals and the light vector as they were no longer needed. Essentially, we created our own 
static directional light. Because we have much of the framework already in place, converting our 
application to use DirectX lighting is trivial. For example, we already generate the vertex normals, so 
all we have to do is store them in the vertices instead of discarding them. We will have to change the 
terrain vertex format so that it no longer stores a diffuse color but instead stores a vertex normal. Then 
all we have to do is add some lights to the scene, setup a default material that all vertices will use, and 
render the terrain using that material. As the changes to the terrain demo are very small, we will only 
discuss the code that has changed from Lab Project 3.2. 
 
Lab Project 5.1 will use 5 lights to light up the terrain. The application will create one white directional 
light which will light the whole terrain, much like our color calculations did in Lab Project 3.2. It will 
also create four point lights with different colors. They will have their positions animated so that the 
colored lighting effects will move about the terrain. The application will also allow the user to enable 
or disable each light individually. The directional light is a global lighting source (much like the 
lighting the sun would produce in the real world), while the point lights provide localized illumination 
only to regions of terrain in range of their positions.  
 

All Lights Enabled Directional Light Disabled 

  
 
 
Let us start digging into the code for Lab Project 5.1 beginning with the modified CVertex class 
(CObject.h): 
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class CVertex 
{ 
 public: 
 // Constructors 
 CVertex(float fX, float fY, float fZ, const D3DXVECTOR3& vecNormal) 
            { x = fX; y = fY; z = fZ; Normal = vecNormal; } 
 Cvertex()  { x = 0.0f; y = 0.0f; z = 0.0f; Normal = D3DXVECTOR3( 0, 0, 0 ); } 
 
 // Public Member Functions  
 float       x;          // Vertex Position X Component 
 float       y;          // Vertex Position Y Component 
 float       z;          // Vertex Position Z Component 
 D3DXVECTOR3 Normal;     // Vertex Normal 
}; 

CGameApp now includes two new members to hold the properties of the five lights in our scene: 
 
D3DLIGHT9      m_Light[5];         // Lights we are using in the scene 
bool           m_LightEnabled[5];  // Are lights enabled / disabled ? 
D3DMATERIAL9   m_BaseMaterial;     // Base material 

 
We store the light and material properties for cases where the device is lost and then reset. Just as we 
need to reset all render states, we also need to reset and re-enable all of the lights and materials. Notice 
that this application uses a single material for all faces. We will look at the properties of this material 
in a moment. 
 
CGameApp::SetupGameState 
The first function that has changed is the CGameApp::SetupGameState function. This function is 
called at application startup to setup the global state of the application. The first part of the function is 
unchanged; it sets up the camera and player classes, places the camera in first person mode and sets up 
the player physics: 
 
void CGameApp::SetupGameState() 
{ 
    // Generate an identity matrix 
    D3DXMatrixIdentity( &m_mtxIdentity ); 
 
    // App is active 
    m_bActive = true; 
     
    m_Player.SetCameraMode( CCamera::MODE_FPS ); 
    m_pCamera = m_Player.GetCamera(); 
 
    // Setup our player's default details 
    m_Player.SetFriction( 250.0f ); // Per Second 
    m_Player.SetGravity( D3DXVECTOR3( 0, -400.0f, 0 ) ); 
    m_Player.SetMaxVelocityXZ( 125.0f ); 
    m_Player.SetMaxVelocityY ( 400.0f ); 
    m_Player.SetCamOffset( D3DXVECTOR3( 0.0f, 10.0f, 0.0f ) ); 
    m_Player.SetCamLag( 0.0f ); 
     
    // Set up the players collision volume info 
    VOLUME_INFO Volume; 
    Volume.Min = D3DXVECTOR3( -3, -10, -3 ); 
    Volume.Max = D3DXVECTOR3(  3,  10,  3 ); 
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    m_Player.SetVolumeInfo( Volume ); 
 
    // Setup our cameras view details 
    m_pCamera->SetFOV( 160.0f ); 
    m_pCamera->SetViewport( m_nViewX, m_nViewY, m_nViewWidth, m_nViewHeight, 1.01f, 5000.0f 
); 
 
    // Set the camera volume info (matches player volume) 
    m_pCamera->SetVolumeInfo( Volume ); 
 
    // Add the update callbacks required 
    m_Player.AddPlayerCallback( CTerrain::UpdatePlayer, (LPVOID)&m_Terrain ); 
    m_Player.AddCameraCallback( CTerrain::UpdateCamera, (LPVOID)&m_Terrain ); 
     
    // Lets give a small initial rotation and set initial position 
    m_Player.SetPosition( D3DXVECTOR3( 430.0f, 400.0f, 330.0f ) ); 
     
The above code is the same as our last demo. Next we set up a default material that will be used to 
render all of the terrain faces with a brownish color: ARGB (1.0, 1.0, 0.8, 0.6).  This is the diffuse 
reflectance property of the material: 
 
     // Build base white material 
     ZeroMemory( &m_BaseMaterial, sizeof(D3DMATERIAL9)); 
     m_BaseMaterial.Diffuse.a = 1.0f; m_BaseMaterial.Diffuse.r = 1.0f; 
     m_BaseMaterial.Diffuse.g = 0.8f; m_BaseMaterial.Diffuse.b = 0.6f; 
  
We then set the ambient material property to reflect all ambient light. None of the lights in this demo 
will emit their own ambient color, so this means the terrain will have only the global ambient color (set 
with SetRenderState) added to the color of all faces for a base level of illumination. 
    
     m_BaseMaterial.Ambient.a = 1.0f; m_BaseMaterial.Ambient.r = 1.0f; 
     m_BaseMaterial.Ambient.g = 1.0f; m_BaseMaterial.Ambient.b = 1.0f; 
 
The material has no emissive property and does not reflect specular light since this would not be 
suitable for a terrain. Notice that the specular color, power, and emissive color members are set to zero 
by the call to ZeroMemory before setting up the structure. At this point CGameApp::m_BaseMaterial 
now holds the material properties used to inform the device of the reflectance properties of the terrain. 
 
Now we can setup each of the five lights used by the application by filling out the members of 
CGameApp::m_Light array (an array of D3DLIGHT9 structures). First we zero out the entire array so 
that we do not have to explicitly set members to zero that we do not wish to use. 
 
    // Setup initial light states 
    ZeroMemory( &m_Light, 5 * sizeof(D3DLIGHT9) ); 
     
The first light we set up is a white directional light. It only emits diffuse light and is similar to the 
directional light vector we used to calculate our vertex colors in Lab Project 3.2. We also set the 
Boolean ‘Enabled’ flag to true so that the light is enabled by default. The user of the application can 
enable or disable the individual lights.  
 
    // Main static directional light 
    m_Light[0].Type       = D3DLIGHT_DIRECTIONAL; 
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    m_Light[0].Direction = D3DXVECTOR3( 0.650945f, -0.390567f, 0.650945f ); 
    m_Light[0].Diffuse.a = 1.0f; 
    m_Light[0].Diffuse.r  = 1.0f; 
    m_Light[0].Diffuse.g = 1.0f; 
    m_Light[0].Diffuse.b  = 1.0f; 
    m_LightEnabled[0]    = true; 
 
The next five lights are all point lights with various positions, colors, ranges and attenuation properties. 
They are all enabled by default. 
 
    // Players following light 
    m_Light[1].Type           = D3DLIGHT_POINT; 
    m_Light[1].Position       = m_Player.GetPosition(); 
    m_Light[1].Range          = 70.0f; 
    m_Light[1].Attenuation1   = 0.02f; 
    m_Light[1].Attenuation2   = 0.002f; 
    m_Light[1].Diffuse.a      = 1.0f; 
    m_Light[1].Diffuse.r      = 1.0f;      // Red Light 
    m_Light[1].Diffuse.g      = 0.0f; 
    m_Light[1].Diffuse.b      = 0.0f; 
    m_LightEnabled[1]         = true; 
 
    // Dynamic floating light 1 
    m_Light[2].Type       = D3DLIGHT_POINT; 
    m_Light[2].Position   = D3DXVECTOR3( 500, 0, 500 ); 
    m_Light[2].Position.y = m_Terrain.GetHeight(m_Light[2].Position.x, 
                                                m_Light[2].Position.z)+30.0f; 
    m_Light[2].Range        = 500.0f; 
    m_Light[2].Attenuation1 = 0.0002f; 
    m_Light[2].Attenuation2 = 0.0001f; 
    m_Light[2].Diffuse.a    = 1.0f;     // Green Light 
    m_Light[2].Diffuse.r    = 0.0f;  
    m_Light[2].Diffuse.g    = 1.0f; 
    m_Light[2].Diffuse.b    = 0.0f; 
    m_LightEnabled[2]       = true; 
 
    // Dynamic floating light 2 
    m_Light[3].Type       = D3DLIGHT_POINT; 
    m_Light[3].Position   = D3DXVECTOR3( 1000, 0, 1000 ); 
    m_Light[3].Position.y = m_Terrain.GetHeight(m_Light[3].Position.x, 
                                                m_Light[3].Position.z)+30.0f; 
    m_Light[3].Range        = 500.0f; 
    m_Light[3].Attenuation1 = 0.000002f; 
    m_Light[3].Attenuation2 = 0.00002f; 
    m_Light[3].Diffuse.a    = 1.0f; 
    m_Light[3].Diffuse.r    = 0.0f;  
    m_Light[3].Diffuse.g    = 0.0f; 
    m_Light[3].Diffuse.b    = 1.0f;        // Blue light 
    m_LightEnabled[3]       = true; 
 
    // Dynamic floating light 3 
    m_Light[4].Type       = D3DLIGHT_POINT; 
    m_Light[4].Position   = D3DXVECTOR3( 1500, 0, 1500 ); 
    m_Light[4].Position.y = m_Terrain.GetHeight(m_Light[4].Position.x, 
                                                m_Light[4].Position.z)+30.0f; 
    m_Light[4].Range        = 500.0f; 
    m_Light[4].Attenuation1 = 0.00002f; 
    m_Light[4].Attenuation2 = 0.00002f; 
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    m_Light[4].Diffuse.a    = 1.0f; 
    m_Light[4].Diffuse.r    = 1.0f;      // Red/ blue light 
    m_Light[4].Diffuse.g    = 1.0f; 
    m_Light[4].Diffuse.b    = 0.5f; 
    m_LightEnabled[4]       = true; 
} 

 
Lights 2-3 will be animated in a circular pattern as we will see when we look at the 
CGameApp::AnimateObjects function. Light 1 is initially set to the position of the player object and 
will be updated whenever the position of the player is updated. This creates a light that follows the 
player about the terrain.  Notice that we use the CTerrain::GetHeight function to position the other 
point lights at a position 30 units above the terrain. 
 
CGameApp::SetupRenderStates 
As usual, the SetupRenderStates function is called at application startup and when the device is lost 
and then reset, to set the state of the device object. This is where we will add the code that enables 
lighting, sets the material and sets and enables our five lights. Most of this function should be self 
explanatory. 
 
void CGameApp::SetupRenderStates() 
{ 
    // Validate Requirements 
    if (!m_pD3DDevice || !m_pCamera ) return; 
 
    // Setup our D3D Device initial states 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
    m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_AMBIENT, 0x0D0D0D ); 
 
The lighting pipeline is now enabled and the global ambient lighting value initialized. 
 
    // Setup option dependant states 
    m_pD3DDevice->SetRenderState( D3DRS_FILLMODE, m_FillMode );                 
 
We inform the device that our vertices now include a vertex normal to be used for lighting: 
  
    // Setup our vertex FVF code 
    m_pD3DDevice->SetFVF( D3DFVF_XYZ | D3DFVF_NORMAL ); 
 
    // Update our device with our camera details (Required on reset) 
    m_pCamera->UpdateRenderView( m_pD3DDevice ); 
    m_pCamera->UpdateRenderProj( m_pD3DDevice ); 
 
Next we set the terrain material. If we did not set a material, we would not see anything on the screen 
because the default material reflects no light whatsoever (faces would be totally black). 
 
    // Set base material 
    m_pD3DDevice->SetMaterial( &m_BaseMaterial ); 
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Finally, we loop through the five lights in the m_Light array and set each light as a device light at the 
appropriate index. We enable the light if the corresponding m_LightEnabled Boolean is set to true for 
a given index. These values are all set to TRUE when the application is initialized, but they can be 
toggled by the user.    
 
    // Set and enable all lights 
    for ( ULONG I = 0; I < 5; I++ ) 
    { 
        m_pD3DDevice->SetLight( I, &m_Light[I] ); 
        m_pD3DDevice->LightEnable( I, m_LightEnabled[I] ); 
    } // Next Light 
} 

 
The device now has all the information it needs to correctly light our vertices. That is essentially all we 
would need to do under normal circumstances. But in this demo we wish to animate our lights, so we 
place some code in the CGameApp::AnimateObjects function to update the positions of the lights each 
frame. 
 
CGameApp::AnimateObjects 
This function is called once per frame to give our application a chance to update the positions of any 
objects. We will use it to animate the light positions. The first light (Light[0]) is not animated as it is a 
directional light that has no position (although we could animate the direction vector if desired). The 
second light (Light[1]) is the light that follows the player around the terrain. We will copy the CPlayer 
position into the light position and resend the light properties to the device. 
 
void CGameApp::AnimateObjects() 
{ 
    static float Angle1 = 0; 
    static float Angle2 = 6.28f; 
 
    // Update Light Positions 
    m_Light[1].Position = m_Player.GetPosition(); 
    m_pD3DDevice->SetLight( 1, &m_Light[1] ); 
 
The rest of the lights rotate around a point in 3D space along a radius of 250 units. We use the sin and 
cosine functions to move around the circumference of a 2D circle. Light[2] has its X and Z positions 
calculated as being at some point on a circle in the XZ plane with its center point at (X=500, Z=500) in 
world space and a radius of 240 units. The Angle1 variable is incremented each frame to allow the XZ 
coordinate pair to specify a new position on the circumference of the circle.  The new Y position of the 
light is simply +30 above the terrain height which can be found using the XZ coordinate pair. Finally, 
we send the new light properties to the device using the SetLight function. If the light slot is currently 
enabled, the changes will be seen immediately. If the light is disabled, the properties of the light are 
still updated in the device, but the light will not be used in lighting calculations until it is enabled.  
 
    m_Light[2].Position.x = 500.0f + (sinf( Angle1 ) * 250); 
    m_Light[2].Position.z = 500.0f + (cosf( Angle1 ) * 250); 
    m_Light[2].Position.y = m_Terrain.GetHeight(m_Light[2].Position.x, 
                                                m_Light[2].Position.z)+30.0f; 
    m_pD3DDevice->SetLight( 2, &m_Light[2] ); 
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We use the same approach for the remaining two lights. We animate their X and Z coordinates so that 
they step incrementally around a circle with a radius of 250 units. For Light[3], this circle has XZ 
position (1000,1000). Light[4] has XZ position (1500, 1500). 
 
    m_Light[3].Position.x = 1000.0f + (sinf( Angle2 ) * 250); 
    m_Light[3].Position.z = 1000.0f + (cosf( Angle2 ) * 250); 
    m_Light[3].Position.y = m_Terrain.GetHeight(m_Light[3].Position.x, 
                                                m_Light[3].Position.z)+30.0f; 
    m_pD3DDevice->SetLight( 3, &m_Light[3] ); 
 
    m_Light[4].Position.x = 1500.0f + (sinf( Angle1 ) * 250); 
    m_Light[4].Position.z = 1500.0f + (cosf( Angle1 ) * 250); 
    m_Light[4].Position.y = m_Terrain.GetHeight(m_Light[4].Position.x, 
                                                m_Light[4].Position.z)+30.0f; 
    m_pD3DDevice->SetLight( 4, &m_Light[4] ); 
 
Two angle variables are used to introduce some variety into the animation pattern of the lights. They 
are incremented/decremented so that they step through 360 degrees (0.0 to 6.28 radians). 
 
    // Update angle values 
    Angle1 += 0.5f * m_Timer.GetTimeElapsed(); 
    if ( Angle1 > 6.28f ) Angle1 -= 6.28f; 
 
    Angle2 -= 1.0f * m_Timer.GetTimeElapsed(); 
    if ( Angle2 < 0.0f ) Angle2 += 6.28f; 
} 
 
Lastly, we look at the new case that has been added to the message processing code in 
CGameApp::DisplayWndProc. This case is triggered by the user selecting a menu item to enable or 
disable one of the five lights. 
 
 case ID_LIGHT_0: 
 case ID_LIGHT_1: 
 case ID_LIGHT_2: 
 case ID_LIGHT_3: 
 case ID_LIGHT_4: 
  
   // Enable / Disable the specified light 
   ULONG LightID = LOWORD(wParam) - ID_LIGHT_0, Flags = MF_BYCOMMAND; 
   m_LightEnabled[ LightID ] = !m_LightEnabled[ LightID ]; 
   m_pD3DDevice->LightEnable( LightID, m_LightEnabled[ LightID ] ); 
 
 
   // Adjust menu item 
   if ( m_LightEnabled[ LightID ] ) Flags |= MF_CHECKED; else Flags |= MF_UNCHECKED; 
     CheckMenuItem( m_hMenu, LOWORD(wParam), Flags ); 
    
   break; 
 
 
Because the ID_LIGHT identifiers have sequential values and because these are the command values 
assigned to the lighting menu options, we can simply subtract the value of ID_LIGHT_0 from the 
menu ID passed in to the function in the low word of the wParam parameter. This will leave us a value 
between 0 and 4 describing which light needs to be enabled or disabled. Next, we toggle the selected 
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light’s Enabled state so that if it is enabled it gets disabled and vice versa. We use this state to 
enable/disable the light on the device. A disabled light will be ignored by the device during lighting 
calculations even though the settings of the light properties still remain intact (short of deliberately 
overwriting them with new values).  
 
That is essentially all of the relevant code for Lab Project 5.1. Things will be somewhat more complex 
in the next demonstration when we implement a system that can be used to manage many lights in a 
scene and still abide by the maximum number of simultaneously active lights that the graphics 
hardware allows us to use.  
 

Lab Project 5.2: Scene Lighting 
 

  
 
Screenshot from Chapter5Demo2: Level created in GILES™ and stored in IWF 2.0 file format. 

 
With a thorough discussion of the lighting pipeline behind us and the terrain demo modified to use 
vertex lighting, we can now attempt to load and render a fully lit 3D world. We will not bog ourselves 
down with file loading code in this project. If you are unfamiliar with GILES™ or the IWF file format 
and would like to learn how to load these levels into your game engine, please read the IWF SDK 
Overview document included with this lesson.  
 
We have covered all of the basic DirectX fixed function lighting concepts. We know how to set up 
lights and materials and we also know how the lighting calculations work at a high level. We also 
learned that we can use render states to set the global ambient scene lighting or to change the color 
sources used by the lighting calculations. 
 
But knowing how to set up a few lights and materials is not enough to be able to use them in a real 
game situation. For starters, while most game worlds include many light sources (perhaps 100s or even 
1000s), the number of lights supported on a device can also vary widely across systems. Even a 
modern 3D card typically supports no more than 8 active lights with earlier cards supporting even 
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fewer. If the hardware does not support lighting, then all of the lighting calculations will have to be 
done on the CPU by the DirectX lighting module. We will need a way to manage the many lights in a 
scene so that only the allowable numbers of lights are enabled at any one time. This is exactly what we 
will be doing in Lab Project 5.2.  
 
We have already discussed how important it is to minimize the number of DrawPrimitive calls so that 
we can render as many triangles as possible in a single call (remaining within our efficiency threshold 
of course). This poses a problem once we start rendering triangles that use different materials. 
Certainly we could loop through each triangle, set the material it uses and render it with a 
DrawPrimitive call, but this would be a very inefficient approach. We would spend more time caught 
up in function call overhead for all of the DrawPrimitive and SetMaterial calls then we would for 
rendering the triangles themselves.  
 
The solution is to use batch triangles together that share the same properties. Batching is a concept that 
we better start getting used to, because the idea of grouping things together into chunks for faster 
processing is something we will do in all of our game programming projects. Doing so will allow us to 
minimize render state changes and maximize triangles sent to the hardware in a single DrawPrimitive 
call. In Lab Project 5.2, we will batch our polygons together into groups that are categorized by the 
material that they share. For example, we will have all the triangles that use material 1 stored together, 
followed by all triangles that use material 2, and so on. We minimize redundant render states by 
rendering all of the triangles that use a material in one go. The following list shows the rendering order 
using batching: 
 

• BeginScene 
• Set Material 1 
• Render all triangles that use Material 1 
• Set Material 2 
• Render all triangles that use Material 2 
• Set Material 3 
• Render all triangles that use Material 3 
• EndScene 

 
Even if we had thousands of triangles in the above case, as long as we had pre-grouped them into three 
batches based on their material, we could render them with only three calls to SetMaterial and 
DrawPrimitive. 
 
We will also implement a system that allows us to set an arbitrary number of lights in a scene. Our 
code will test all of the lights in the scene against the polygons in the scene as a pre-process and will 
create groups of polygons called “light groups”. These light groups will batch polygons together 
according to the groups of lights that most influence them. Since we may only be allowed to set 8 
lights at one time, each light group will contain 8 lights and a list of polygons that consider those lights 
their most dominant color contributors. So even if we have a situation where the scene has 100 lights 
within range of a polygon, our code will calculate which of those lights contribute most to the resulting 
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colors of the vertices in the polygon and use them when rendering. The number of lights in a single 
light group will typically be the maximum number of simultaneous lights allowed by the device. We 
can also set some light slots aside to use for dynamic lights. 
 
Let us imagine that each group contains eight lights and that there are multiple light groups consisting 
of different light combinations. We can see that we not only have to batch by material, but also by light 
group as the following pseudo code shows. In this example we are assuming that the maximum 
number of allowable simultaneous lights is eight. We are also assuming that there are three materials 
used by the scene and that all polygons are affected by one of three possible light groups.  
 

• BeginScene 

• Disable any previous lights and enable all 8 lights in light group 1 

• Set Material 1 

• Render all triangles that use material 1 and light group 1 

• Set Material 2 

• Render all triangles that use material 2 and light group 1 

• Set Material 3 

• Render all triangles that use material 3 and light group 1 

• Disable any previous lights and enable all 8 lights from light group 2 

• Set Material 1 

• Render all triangles that use material 1 and light group 2 

• Set Material 2 

• Render all triangles that use material 2 and light group 2 

• Set Material 3 

• Render all triangles that use material 3 and light group 2 

• Disable any previous lights and enable all 8 lights from light group 2 

• Set Material 1 

• Render all triangles that use material 1 and light group 3 

• Set Material 2 

• Render all triangles that use material 2 and light group 3 

• Set Material 3 

• Render all triangles that use material 3 and light group 3 

• End Scene 
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As long as we use light groups (and attach lists of polygons to those light groups) we can stay within 
the maximum simultaneous light limit. The level designer does not need to worry about placing lights 
in such a way that no more than the allowable number of active lights influences a polygon. Each 
polygon can simply store an index into an array of light groups describing the light group to which it 
belongs. The calculating of light groups will be done as a pre-process at the start of the application and 
we will cover this in a moment.  
 
 
Material Batching 
 
After we load in our IWF file, we will have a large array of meshes. Each mesh will have an array of 
surfaces and each surface will contain an array of vertices (and possibly indices). If these surfaces all 
have their vertices stored as triangle fans, a naïve first approach to rendering this scene might be: 
 
for (every mesh in the scene) 
{ 
 for (every surface in this mesh) 
  { 
  pDevice->SetMaterial      ( &Face->Material); 
  pDevice->DrawPrimitive ( D3DPT_TRIANGLEFAN , Face->Vertices); 
 } 
} 
 
While this may seem easy enough, it is not the recommended rendering strategy for the reasons we 
discussed earlier (too many calls to SetMaterial and DrawPrimitive).  
 
Instead we need to pre-sort our polygons into vertex buffers so that they are grouped together by the 
material that they use. If our scene used ten materials, we could have ten vertex buffers; one for each 
material. When we load our geometry, we could examine all of the faces of each mesh to see which 
material each one uses. This would tell us which vertex buffer this face’s vertices should belong to. 
This means that vertex buffer[0] for example might contain all of the faces that contain material[0] in 
the material list (even if these faces originally existed in different meshes). Once this process is 
complete, we no longer have the scene stored on a per-mesh basis, but instead simply have an array of 
vertex buffers (one for each material). Our render loop would become: 
 
BeginScene 
 
SetMaterial 1 
DrawPrimitive ( Vertex Buffer[1] ) 
 
SetMaterial 2 
DrawPrimitive ( Vertex Buffer[2] ) 
 
SetMaterial 3 
DrawPrimitive ( Vertex Buffer[3] ) 
 
SetMaterial 4 
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DrawPrimitive ( Vertex Buffer[4] ) 
… 
etc etc 
.. 
End Scene 
 
 
Triangle Fans to Triangle Lists 
 
Since we are using IWF files for this demonstration, we need to be aware of one issue. Currently, the 
majority of our faces are stored in CFileIWF meshes as triangle fans and as we learned in Chapter 
Two, triangle fans are only good for rendering connected triangles. Because a single vertex buffer in 
the above scheme might contain faces from many different meshes, we can no longer simply render the 
entire vertex buffer as a triangle fan. What we must do instead is store each face as an indexed triangle 
list. Now, some of the faces in the IWF file may already be stored this way, but if not, we will make 
the index lists ourselves. We will create an index list for each face such that every three indices 
describe a separate triangle which was originally part of the surface. Because these triangles are not 
connected to other triangles (as is the case with other primitive rendering types such as strips or fans), 
indexed triangles from different meshes can exist in the same vertex buffer and be rendered correctly 
with a single DrawIndexedPrimitive call. 
 
The following image shows an octagon and how it may be stored as a fan-ordered list of vertices inside 
the IWF file (and therefore inside the iwfSurface vertex pool): 
 

 
Passing these eight vertices to DrawPrimitive as a triangle fan primitive type will render six connected 
triangles. However, because the vertex buffer might contain many vertices from other faces -- possibly 
even from other meshes -- we will need to store this surface with a list of indices describing each of its 
triangles. We want to be able to render the entire vertex buffer as an indexed triangle list such that 
every three indices describes a triangle, and each triangle is completely unconnected from other 
triangles in the vertex buffer.  
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For example, imagine we have two octagon faces which belong to different meshes, but which use the 
same material. In this case both octagons can be placed in the same vertex buffer. The idea is not to 
think of these in terms of octagons anymore, but to think of them in terms of the six triangles that make 
up each octagon. So we would wish to build a vertex buffer that consists of the 16 vertices (8 vertices 
from each octagon) and an index buffer which describes 12 triangles (six for each octagon).  
 
Av = Vertex from Polygon A (8 vertices) 
Bv = Vertex from Polygon B (8 vertices) 
 
If we created a vertex buffer big enough to hold all sixteen vertices, and if we were to copy in the first 
8 vertices from polygon A and the 8 vertices from polygon B, the vertex buffer containing both of 
these polygons vertices would look as follows: 
 
Pos. in Buffer     0     1       2       3       4      5      6      7      8       9      10    11    12    13     14     15 
VertexBuff = Av1, Av2, Av3, Av4, Av5, Av6, Av7, Av8, Bv1, Bv2, Bv3, Bv4, Bv5, Bv6, Bv7, Bv8 
 
Vertex positions 0-7 contain polygon A’s vertices and vertex positions 8–15 in the vertex buffer would 
contain polygon B’s vertices. If we were to generate indices for the octagon faces based on the diagram 
shown above, the triangles would be as follows: 
 
Polygon A Index List = 0,1,2 , 0,2,3 , 0,3,4 , 0,4,5 , 0,5,6 , 0,6,7  
 
Study the diagram to make sure that you understand this concept. Remember that index [0] references 
vertex v1, index2 [v1], etc. This face local index list can be copied into the global index buffer used to 
reference the global vertex buffer because polygon A’s vertices are the first set of vertices in the vertex 
buffer. Although polygon B would have the same indices generated (because it is identical) it can no 
longer be copied into the index buffer unaltered. If that were the case, it would reference vertices 0 
through 7 in the vertex buffer, which are polygon A’s vertices. When we add the second polygon to the 
vertex buffer, we will need to add the number of vertices already stored in the vertex buffer (polygon 
A’s vertices) to each index of the next polygon’s indices. For example: 
 
First we add polygon A’s vertices to the global vertex buffer (vertices 1 through 7) and then calculate 
the indices for this polygon: 
 
Polygon A Index List = 0,1,2 , 0,2,3 , 0,3,4 , 0,4,5 , 0,5,6 , 0,6,7 
 
Now we add polygon B’s vertices to the vertex buffer but we remember the vertex count that was in 
the vertex buffer prior to polygon B’s vertices being added. We will call this variable 
m_OldVertexCount. Before adding polygon B’s vertices to the vertex buffer, there were 8 vertices in 
the vertex buffer. Therefore, we first calculate the indices for polygon B local to the face which gives 
us the face local index list shown above. Because Polygon B’s first vertex now begins at position 
m_OldVertexCount in the vertex buffer, we add this amount to each index in the second polygon: 
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Polygon B Index List  = 8,9,10 , 8,10,11 , 8,11,12 , 8,12,13 , 8,13,14 , 8,14,15 
 
This means we will have a vertex buffer with 16 vertices in it describing both polygons and a global 
index list describing all the triangles in that vertex buffer. This index buffer will contain 36 indices. 
The first 18 indices reference vertices 0 through 7. The next 18 indices reference vertices 8 through 15. 
 
The following pseudo code shows how we could build a vertex buffer and an index buffer for every 
material used by the scene. If there were 10 materials used by the scene, we could have 10 vertex 
buffers containing the vertices of all triangles that use that material. We could also have 10 index 
buffers describing how to render each of those vertex buffers as an indexed triangle list. 
 
For (m = 1 to  Material Count ) 
{ 
  Create Vertex Buffer for Material m 
  Create an Index Buffer for Material m 
 
  For Each(Mesh in scene) 
  {     
      For Each (Surface in Mesh) 
      { 
            If (Surface->MaterialIndex ==1 ) 
            { 
    m_OldVertexCount = Vertices currently in vertex buffer m 
    Copy vertices from Surface into vertex buffer m 
    Generate local indices for this surface (if they don’t already exist) 
    Add m_OldVertexCount to each of the generated indices 
    Copy indices into Index Buffer m  
            } 
       }Next surface 
    }Next mesh 
 }Next material 
    
At this point, we no longer have the scene stored in a per-mesh arrangement and the original meshes 
and surfaces can be released from memory if there is no further need for them in the application. The 
geometry of our scene is now stored as a series of vertex buffers grouped by material.  We will 
examine the code to accomplish all of this as well as the code to convert many other primitive types to 
indexed triangle lists later in the lesson. 
 
 
Light Batching 
 
We now have geometry storage and rendering strategies that appear to be efficient -- we minimize both 
rendering calls and render state changes. But there is more we must consider. As mentioned 
previously, we need to render our triangles so that we can use the most influential lights enabled for 
that face so that we can work within the limited number of lights that can be simultaneously active on 
the device.  
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The number of active lights supported by the device can be checked in the device’s D3DCAPS9 
structure and is stored in the MaxActiveLights member. This figure is usually quite low -- typically 8 
or 16 for modern hardware. If we are using a software device, then there is no actual limit on the 
number of lights that can be active simultaneously, but software devices are typically much slower 
when performing lighting calculations. Even if this was not the case, we would still need to design a 
system that will work within the hardware limits. In the following discussions we will use a 
simultaneous active limit of 8 lights.  
 
We must also contend with the fact that different lights influence different faces according to the 
spatial relationships between the lights and the scene polygons. So not only do we need to make sure 
that we have no more than 8 lights active when rendering our faces, but we also need to make sure that 
we have the correct 8 lights that are most important to each face. If we simply used the first 8 lights in 
the IWF file and ignored the rest, then faces that were influenced by lights 9 through 14 (for example) 
would receive no light and would be rendered as black.  
 
This is obviously getting more complicated. It seems that we want to batch our polygons based on 
material, but we must also make sure that each face is rendered using the most influential lights. 
Forgetting for now exactly how we figure out which are the most influential lights (we will cover this 
later) and assuming that we already have this information at our disposal, the problem then becomes 
how we render our geometry efficiently. Certainly we still want to render polygons in batches without 
having to set up the lights for each face before we render it, all the while minimizing calls to 
SetMaterial. So in this demonstration we will create a batching approach that we will call light groups. 
 

Note: In practice, light groups work better than they sound. If a face is lit by 10 lights, we render it 
with a light group containing the 8 most influential lights. The discarding of the 2 least influential lights 
sounds like it is a bad solution but these lights will typically have a negligible effect on the color of a 
polygon. You will find that in nearly all levels, the designer will usually place lights so that not more 
than 3 or 4 lights significantly affect a single face (often fewer). If a face receives color from too many 
light sources simultaneously, these colors combine to make the final color bright white. 

 
 
Light Groups 
 
In our demonstration we will define a light group as a set of lights and the faces they influence. Since 
we have been assuming a light limit of 8, let us say that in that case, a light group would be a collection 
of 8 lights, and a vertex buffer containing all of the triangles that those 8 lights affect most. If there are 
many lights in the scene, then there may be many unique combinations of 8 sets of lights. If we built 
every combination, we could have hundreds of light groups or more. However, in practice, faces 
within the same spatial region as other faces will often share the same 8 most influential lights. There 
will certainly be many combinations of light sets that are not the 8 most influential to any faces in the 
level. Therefore, we only have to build light groups that will be used by faces. The basic approach to 
constructing light groups will be as follows: 
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• Load in scene so we have access to all meshes 
• Loop through every mesh in the scene 
• Loop through every face in the mesh 
• Loop through every light in the scene and find the 8 most influential lights for the current face 
• Search our light group list to see if a light group with these 8 lights already exists, 

o if exists, add this face to that light group vertex buffer 
o else, we have found a new light combination  

 create a new light group with these 8 lights 
 add this face to the light group 

 
The scene is pre-processed at application startup so that it does not consume time in our main 
rendering loop. Of course, this scheme does not yet take materials into account but we will get to that 
in a moment. 
 
With faces stored in light groups, rendering becomes batched by light group to minimize calls to 
DrawPrimitive and to minimize the disabling/enabling of lights. We can now render the scene one light 
group at a time, only having to change lights as we move to each light group. The following basic steps 
comprise our rendering code: 
 
 

• Loop through each light group 
• Disable any lights currently being used by the device. 
• Enable the 8 lights of this light group 
• Render the light group vertex buffer 

 
Keep in mind that we are using 8 lights only as an example. If the D3DCAPS9::MaxActiveLights 
member returns a higher or lower number than this, we will adjust the number of lights each light 
group can handle to suit this maximum. You can also deliberately use fewer light sources per group to 
increase performance with the potential (although likely very low) for sacrificing image quality. 
 
Even without seeing the details, this system still does not work as well as we would like. Although we 
have batched our faces by light group, we cannot simply render all the faces belonging to a light group 
with a single call since they may all use different materials.  An inappropriate solution would be as 
follows: 
 

• Loop through each light group 
• Disable any lights currently used by the device 
• Enable the 8 lights of this light group 
• Loop through each face in this light group 
• Set the material used by this face on the device 
• Render this face 
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The trouble here is clear. We include no meaningful polygon batching whatsoever from a performance 
perspective. If there were 10,000 polygons in our scene, 10,000 SetMaterial and 10,000 DrawPrimitive 
calls would follow. Fortunately, the solution is rather straightforward. Instead of batching by either 
light group or materials, we will batch by both. We will batch first by light group and then within each 
of those light groups we will batch by material.  
 
 
Batching Lights and Materials 
 
We will create a light group class that contains a vertex buffer for all of the vertices of the faces that 
belong to a light group. When we are calculating which faces belong to which light group we will do it 
in the following order. 
 

• Loop through each material 
• Loop through each face 
• For each face that uses this material 
• Calculate the 8 most influential lights for this face and either: 

o  add them to a light group which has these 8 lights, or 
o  create a new light group that has these 8 lights 

• Add the vertices of this face to the light group vertex buffer 
 
As we are primarily looping and assigning faces by matching material and then adding them to the 
light group to which they belong, we end up with the vertices in the vertex buffer for each light group 
batched together by the material they use. If you step through the above routine in your head with three 
materials and if you imagine for simplicity that all faces belong to the same light group, you can see 
that all of the faces that use the first material would be placed in the light group vertex buffer first, 
followed by all the faces that use the second material and finally, all the vertices that use the third 
material. Using this method, we have one vertex buffer per light group, but when we render each group 
of faces, we can render them one section of the vertex buffer at a time, setting the material that the 
section uses before rendering it. We now have our faces batched primarily by light group, but batched 
in the vertex buffer by material.  
 

 
 
Remember that the DrawPrimitive and DrawIndexedPrimitive methods of the device interface allow us 
to render vertex buffer in sections so this works out perfectly. Alternatively, we could just give the 
light group class an array of vertex buffers, one for each material it uses, but we find this approach 
more manageable (and it avoids the multiple calls to SetStreamSource). 
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We discussed earlier that for all of these different faces to exist in a single vertex buffer, we will need 
to render them as indexed triangles. So we will need our light group class to record the starting vertex 
and the vertex count of where each material’s vertices start and end in the vertex buffer. This way we 
know which sections to render with each material. We will also need to generate index lists for each 
section of the vertex buffer, so in the above diagram, we would have one vertex buffer in our light 
group, but would need three sets of indices -- one for the triangles in each of our three sections on our 
vertex buffer. To help manage this system, we will create a second class which will be a child of the 
light group class. This class will be called a property class. 
 
If a light group has faces in its vertex buffer that use five different materials, it will still have a vertex 
buffer stored at the light group level containing all the vertices as discussed above. It would also have 
an array of five child property classes. Each property class contains a material index, a starting position 
into the light group vertex buffer where the material’s vertices start and a vertex count describing how 
many vertices past the vertex start position use this material. It will also contain an index buffer storing 
the triangles in that section of the vertex buffer. Indeed we could have used a shared index buffer in the 
light group here as well, but we have to leave something for homework assignments right? 
 
Our new rendering strategy will look like this: 
 

• Loop through each light group 
• Activate lights for this light group 
• Loop through each property group of this light group 
• Set the material for this property group 
• Render the indexed triangle list stored at this property group 

 
We now have a decent batching strategy beginning to come together. If we have eight light groups, 
then we only have to bother setting up lights eight times per frame. For each light group, we render the 
faces batched by material -- what we will now refer to as batching by property. The property class will 
be generic so that is can be used to batch by texture and/or material, and each property group can also 
have child property groups (although this functionality will be shown next week when we cover 
texturing). In this project we will be using the property class to batch only by material. 
We now have some good ideas for the CLightGroup class and the CProperty class that we will need to 
create. We know already that the CLightGroup will manage an array of CPropertyGroup objects. The 
number of light groups that are created will be equal to the number of unique combinations of lights 
used by faces in our level. The number of lights in a light group will be equal to the maximum number 
of lights that the device supports (actually this is not quite true as we will discuss in a moment). 
Finally, the number of property groups that a light group will have in its CPropertyGroup array will be 
equal to the number of different materials used by the faces in the light group vertex buffer. 
 
The following diagram describes the relationship between the CLightGroup and CPropertyGroup 
classes: 
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Each light group contains an array of lights (technically it is an array of indices into a global array of 
D3DLIGHT9 structures used by the entire scene). These lights are the lights we must set during our 
rendering loop before rendering the faces belonging to the light group. It also has a vertex buffer 
containing all of the vertices for all the faces belonging to this light group. The vertices are placed into 
the vertex buffer ordered by the material they use. Finally, the light group contains an array of 
CPropertyGroup objects -- one for each different material used by the faces in the vertex buffer. 
 
Each CPropertyGroup contains a material number describing the number of the material that must be 
set before rendering the faces belonging to this group. It contains a VertexStart member describing the 
offset into the vertex buffer where the faces using this material start in the vertex buffer. There is also a 
VertexCount variable so we know how many vertices after the offset use this material and can be 
rendered with a single call to DrawIndexPrimitive. Each CPropertyGroup can contain an array of child 
CPropertyGroups, but this will be set to NULL in our demo since we will not be using nested property 
groups in this chapter. Finally, each property group will contain an index buffer describing the faces 
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belonging to this material using an indexed triangle list. Because we will be adding faces to the index 
buffer on a face-by-face basis, the values in each index buffer will be zero based for each index buffer. 
This might seem at first as if the indices will always describe triangles using vertices at the beginning 
of the vertex buffer but if you remember back to our discussion on the DrawIndexedPrimitive function, 
we can pass in an offset parameter to the function which is added to each index by the transformation 
pipeline before transforming and rendering the triangles. Below we see the parameter list to the 
DrawIndexedPrimitive function again to refresh your memory. 
 
HRESULT DrawIndexedPrimitive 
(       
    D3DPRIMITIVETYPE Type, 
    INT BaseVertexIndex, 
    UINT MinIndex, 
    UINT NumVertices, 
    UINT StartIndex, 
    UINT PrimitiveCount 
); 
 
In all of our previous demos we have set BaseVertexIndex to 0 because we needed no offset added to 
our index buffers. But now we will use this parameter to pass in the CPropertyGroup::VertexStart 
value. To better understand this, imagine that we are rendering the index buffer for material 2 and that 
the first vertex using material 2 is at position 100 in the vertex buffer. The VertexStart member of this 
property group will be set to 100. Also keep in mind that the first index in the index buffer will 
reference vertex[0]. When we pass in 100 as BaseVertexIndex the pipeline will add this value to each 
index so that 0=100, 1=101, 2=102 and so on. So the index values in the index buffer will be correctly 
mapped to the correct sections in the vertex buffer. 
 

The CLightGroup Class 
 
The CLightGroup is defined in CScene.h with its code implementation in CScene.cpp. 
 
class CLightGroup 
{ 
public: 
      // Constructors & Destructors for This Class. 
      CLightGroup( ); 
     ~CLightGroup( ); 
 
     // Public Functions for This Class 
     bool            SetLights        ( ULONG LightCount, ULONG LightList[] ); 
     bool            GroupMatches     ( ULONG LightCount, ULONG LightList[] ) const; 
     long            AddPropertyGroup ( USHORT Count = 1 ); 
     long            AddVertex        ( USHORT Count = 1 ); 
     bool            BuildBuffers     ( LPDIRECT3DDEVICE9 pD3DDevice, bool HardwareTnL,  
                                        bool ReleaseOriginals = false ); 
     
    // Public Variables for This Class 
    ULONG                m_nLightCount;          // Number of lights in this group 
    ULONG              * m_pLightList;           // Lights to be set active in this group. 
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    USHORT               m_nPropertyGroupCount;     // Number of property groups stored 
    USHORT               m_nVertexCount;            // Number of vertices stored. 
    CPropertyGroup**     m_pPropertyGroup;          // Simple array of property groups. 
    CVertex             *m_pVertex;                 // Simple vertex array 
 
    LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer;        // Vertex Buffer 
}; 

 
ULONG m_nLightCount; 
This holds the number of lights in the light group. Often it will be the same as the maximum active 
light count, but it may be less. We will discuss later how we way want to reserve a few of the device 
light resources so that we have one or two lights free to use for dynamic light sources. So if we had 
hardware that supported 8 lights simultaneously, we could for example, specify that we only want our 
light groups to contain 6 lights maximum. Then, we have two free light slots independent of our light 
group system that we can animate in our scene. This variable ultimately describes the number of light 
indices in the m_pLightList array. 
 
ULONG *m_pLightList; 
This is a pointer to an array of light indices. We do not actually store the D3DLIGHT9 structures in 
each light group but instead store all the lights used by the scene in one big D3DLIGHT9 array global 
to the scene. Therefore, this array holds a number of 32-bit values where each one describes the index 
of a light in the D3DLIGHT9 array managed by the scene. 
 
USHORT m_nPropertyGroupCount; 
This member holds the number of property groups that are in the CPropertyGroup Array. If the faces in 
this light group vertex buffer reference 6 different materials, this will be set to 6 -- indicating that there 
are 6 property groups as children of this light group. 
 
CPropertyGroup **m_pPropertyGroup; 
This is a pointer to an array of CPropertyGroup pointers. Each property group contains a material, and 
a group of faces that use that material.  
 
USHORT m_nVertexCount; 
This contains the number of vertices in the vertex buffer belonging to this light group. 
 
LPDIRECT3DVERTEXBUFFER m_pVertexBuffer; 
This is a pointer to the vertex buffer that contains all the vertices belonging to this light group. All the 
property groups will have index buffers indexing into this vertex buffer. 
 
CVertex *m_pVertex; 
When we build the light groups, the vertices will be added to this intermediate array first. Only after all 
of the vertices have been added to the light group will we use the CLightGroup::BuildBuffers function 
to copy these vertices into the vertex buffer. This is handy because we also have the choice to keep this 
copy of the vertices in system memory. If the device is lost and then reset, we can rebuild our vertex 
buffers by calling CLightGroup::BuildBuffers again. We can choose to delete this array when we build 
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the vertex buffer but this will result in having to recalculate the light groups when the device is reset 
(depending on memory pool). 
CLightGroup() 
The constructor simply initializes all member variables to either 0 or NULL. 
 
CLightGroup::CLightGroup() 
{ 
    // Reset / Clear all required values 
    m_nPropertyGroupCount  = 0; 
    m_nVertexCount         = 0; 
    m_nLightCount          = 0; 
    m_pPropertyGroup       = NULL; 
    m_pVertex              = NULL; 
    m_pLightList          = NULL; 
    m_pVertexBuffer        = NULL; 
} 

 
~CLightGroup() 
The destructor deletes each of the property groups and then deletes the property group array. We also 
delete the vertex array, the light list array, and release the light group vertex buffer.  
 
CLightGroup::~CLightGroup() 
{ 
    // Release our group components 
    if ( m_pPropertyGroup )  
    { 
        // Delete all individual groups in the array. 
        for ( ULONG i = 0; i < m_nPropertyGroupCount; i++ ) 
        { 
            if ( m_pPropertyGroup[i] ) delete m_pPropertyGroup[i]; 
        } 
 
        // Free up the array itself 
        delete []m_pPropertyGroup; 
     
    } // End if 
 
    // Release flat arrays 
    if ( m_pVertex ) delete []m_pVertex; 
    if ( m_pLightList ) delete m_pLightList; 
 
    // Release D3D Objects 
    if ( m_pVertexBuffer ) m_pVertexBuffer->Release(); 
 
    // Reset / Clear all required values 
    m_nPropertyGroupCount  = 0; 
    m_nVertexCount         = 0; 
    m_nLightCount          = 0; 
    m_pPropertyGroup       = NULL; 
    m_pVertex              = NULL; 
    m_pLightList           = NULL; 
    m_pVertexBuffer        = NULL; 
} 
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CLightGroup::SetLights 
The SetLights function receives an array of light indices and a count describing how many indices are 
in the passed array and copies these into the light indices array. This function will be used to set the 
lights for a light group.  When we find a unique combination of lights, we will need to create a new 
light group. After light group creation, we just call this function to pass in the numbers of the lights 
that belong to it. These are indices into a global D3DLIGHT9 array which we will see later. 
 
bool CLightGroup::SetLights( ULONG LightCount, ULONG LightList[] ) 
{ 
    // Release previous set if any 
    if ( m_pLightList ) delete m_pLightList; 
 
    // Allocate enough room for these lights 
    m_pLightList = new ULONG[LightCount]; 
    if (!m_pLightList) return false; 
 
    // Store values 
    m_nLightCount = LightCount; 
    memcpy( m_pLightList, LightList, LightCount * sizeof(ULONG) ); 
 
    // Success 
    return true; 
} 

 
Notice that we are careful to make sure we de-allocate the memory taken up by any previous light 
index list. 
 
CLightGroup::GroupMatches 
Before we create new light groups using the above function, we will first check to see if the list of 
lights already exists in another light group. We pass this method an array of light indices and the 
function will return true if the lights belonging to this group match the lights passed in the array. For 
each face we will find a number of lights that most influence it. This function will then see if these 
lights already exist in a light group. If so, the face is added to that light group. If we do not find a 
matching light group then a new light group will be created with this collection of lights using 
SetLights.  
 
The code compares a list of light indices with the light group light index array. It returns true if a 
match is found. If the number of lights passed does not equal the number of lights in this light group 
then there is no way that this group has a matching light list and we have an early out without doing 
the memory compare. Next, we use the memcmp function to do a high speed compare between the two 
arrays. memcmp returns zero if the contents of the memory areas match. 
 
bool CLightGroup::GroupMatches( ULONG LightCount, ULONG LightList[] ) const 
{ 
    // If length does not match, neither can the list 
    if ( m_nLightCount != LightCount ) return false; 
 
    // Compare the light lists (Match even if no lights stored) 
    if ( m_nLightCount > 0 ) 
    { 
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        if ( memcmp( m_pLightList, LightList, LightCount * sizeof(ULONG)) != 0 ) 
            return false; 
    }  
 
    // Matches 
    return true; 
} 

 
 
CLightGroup::AddVertex 
When we find a face that belongs to a light group, its vertices are eventually added to the light group 
vertex buffer. The vertex buffer for a light group is not built until all the vertices have been added and 
that is why we use a system memory vertex array to collect the vertices initially. This function is used 
to allocate additional space inside the CVertex array. Once we have finished adding vertices, we will 
copy the array into the vertex buffer. We pass in a count specifying how many elements we would like 
the array to grow by. This is used to allocate a new memory buffer large enough to hold the existing 
vertices and the new ones.  
 
long CLightGroup::AddVertex( USHORT Count ) 
{ 
    CVertex * pVertexBuffer = NULL; 
     
    // Allocate new resized array 
    if (!( pVertexBuffer = new CVertex[ m_nVertexCount + Count ] )) return -1; 
 

If the light group already has vertices in its vertex array, this data must be copied into the newly 
allocated array and the old array released: 
 
    if ( m_pVertex ) 
    { 
        // Copy old data into new buffer 
        memcpy( pVertexBuffer, m_pVertex, m_nVertexCount * sizeof(CVertex) ); 
 
        // Release old buffer 
        delete []m_pVertex; 
    } 
 
Next we add the count (how many vertices we have added) to the light group m_nVertexCount 
variable and point its m_pVertex pointer at the new memory buffer. 
 
    // Store pointer for new buffer 
    m_pVertex = pVertexBuffer; 
    m_nVertexCount += Count; 
 
    // Return first vertex 
    return m_nVertexCount - Count; 
} 
 
Note that this function does not add the vertex data to the array. It returns the vertex count prior to the 
new amount being added to indicate the index of the first position in the array where the newly 
allocated vertices start. Our application can use this index to add the actual vertex data. The following 
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example code assumes that we are adding three vertices stored in a temporary array (called NewVert[]) 
to a light group. 
 
NewVertsIndex = MyLightGroup.AddVertex(3); 
 
for ( i=0; i< 3; i++) 
{ 
        MyLightGroup.m_pVertex[NewVertexIndex++] = NewVert[i]; 
} 
 
 
CLightGroup::AddPropertyGroup 
Our application will call the AddPropertyGroup function during the process of building the light 
groups when we wish to assign a new face to a light group which uses a material that does not match 
any property group already in the light group.  This function works similar to the AddVertex function 
since it basically just resizes the property group array and returns the index of the new property 
group(s) that was added. The application can then use this information to access the property group at 
that index and set its properties. 
 
The light group stores an array of property group pointers (not property group objects) so we first 
allocate a new buffer large enough to hold any existing property groups plus the new amount that we 
have passed in as the parameter (default = 1). We then initialize this new memory to be safe. 
 
long CLightGroup::AddPropertyGroup( USHORT Count /* = 1  */ ) 
{ 
    CPropertyGroup ** pGroupBuffer = NULL; 
 
    if (!( pGroupBuffer = new CPropertyGroup*[ m_nPropertyGroupCount + Count ] )) return -
1; 
    ZeroMemory( &pGroupBuffer[ m_nPropertyGroupCount ], Count * sizeof( CPropertyGroup* ) 
); 
 
If property groups already exist, then we copy all of the property group pointers from the previous 
array into the new one and delete the previous array: 
 
    if ( m_pPropertyGroup ) 
    { 
       // Copy old data into new buffer 
       memcpy(pGroupBuffer,m_pPropertyGroup,m_nPropertyGroupCount*sizeof(CPropertyGroup*)); 
 
       // Release old buffer 
       delete []m_pPropertyGroup; 
    }  
     
After we point the m_pPropertyGroup member pointer at this new pointer array, we allocate the new 
property groups and add their pointers to this array: 
 
    m_pPropertyGroup = pGroupBuffer; 
 
    // Allocate new property groups 
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    for ( UINT i = 0; i < Count; i++ ) 
    { 
        // Allocate new group 
        if (!( m_pPropertyGroup[ m_nPropertyGroupCount ] = new CPropertyGroup() )) 
           return -1; 
 
        // Increase overall group count 
        m_nPropertyGroupCount++; 
    }  
 

Finally we return the index of the first newly added property group so the calling application can 
retrieve its pointer and set its properties. 
     
    // Return first group 
    return m_nPropertyGroupCount - Count; 
} 
 
This is all fairly standard C/C++ programming which you are no doubt used to. We are showing it here 
so that you will have a better understanding of what each call is doing when it is called from the light 
group compiler function later. 
 
 
CLightGroup::BuildBuffers 
The BuildBuffers function is called after the vertex array has been filled. It is responsible for creating 
and filling the vertex buffer with the vertex data in the array. It also calls the 
CPropertyGroup::BuildBuffers function for each of its property groups. This instructs the property 
groups to build their index buffers. 
 
We pass this function three parameters. The first is a pointer to the device for which the vertex buffer 
(and index buffers) will be built. The second is a Boolean indicating whether we want to use hardware 
or software vertex processing. The third Boolean indicates whether we want the function to delete the 
vertex array after its contents have been copied into the vertex buffer.  
 
bool CLightGroup::BuildBuffers( LPDIRECT3DDEVICE9 pD3DDevice, bool HardwareTnL, 
                                bool ReleaseOriginals ) 
{ 
    HRESULT     hRet    = S_OK; 
    CVertex    *pVertex = NULL; 
    ULONG       ulUsage = D3DUSAGE_WRITEONLY; 
 
    // Should we use software vertex processing ? 
    if ( !HardwareTnL ) ulUsage |= D3DUSAGE_SOFTWAREPROCESSING; 
 
    // Release any previously allocated vertex / index buffers 
    if ( m_pVertexBuffer ) m_pVertexBuffer->Release(); 
    m_pVertexBuffer = NULL; 
 
    // Create our vertex buffer 
    hRet = pD3DDevice->CreateVertexBuffer( sizeof(CVertex) * m_nVertexCount, 
                                           ulUsage, VERTEX_FVF, 
                                           D3DPOOL_MANAGED, &m_pVertexBuffer, NULL); 
    if ( FAILED( hRet ) ) return false; 

TeamLRN



 
We release any previous vertex buffer if one exists and then create a vertex buffer which is large 
enough to hold the number of vertices in the light group vertex array. This value is stored in the 
member variable m_nVertexCount. The VERTEX_FVF parameter contains the flexible vertex format 
flags describing the vertex structure we will be using in our demonstration and is defined in CObject.h: 
 
#define VERTEX_FVF      D3DFVF_XYZ | D3DFVF_NORMAL 
 
If vertex buffer creation was successful, we lock the buffer to obtain a pointer to its data area so we can 
start copying data into the buffer.     
 
    hRet = m_pVertexBuffer->Lock(0, sizeof(CVertex)*m_nVertexCount, (void**)&pVertex, 0); 
    if ( FAILED( hRet ) ) return false; 
 
Because we already have the vertex data stored in the vertex array in the correct format we can simply 
memcpy the vertex data from the array into the vertex buffer. 
 
    memcpy( pVertex, m_pVertex, sizeof(CVertex) * m_nVertexCount ); 
 
We are done copying vertices at this point so we need to unlock the vertex buffer. We release the 
vertex array as well if the caller requested it. 
 
    // We are finished with the vertex buffer 
    m_pVertexBuffer->Unlock(); 
 
    // Release old data if requested 
    if ( ReleaseOriginals ) 
    { 
        if ( m_pVertex ) delete []m_pVertex; 
        m_pVertex       = NULL; 
    }  
 
All that is left to do is to loop through each entry in the property group array and call its BuildBuffers 
function to build the index arrays for the property groups.  
 
    // Build buffers for each child property group 
    for ( USHORT i = 0; i < m_nPropertyGroupCount; i++ ) 
    { 
          if(!m_pPropertyGroup[i]->BuildBuffers(pD3DDevice, HardwareTnL, ReleaseOriginals)) 
              return false; 
    }  
 
    // Success 
    return true; 
} 
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The CPropertyGroup Class 
 
Although we are using property groups in this chapter to store settings on a per material basis, the 
CPropertyGroup class can be used to group objects together using any common property. We currently 
have an enumerated type which is part of the CPropertyGroup namespace called PROPERTY_TYPE 
which can be used to describe exactly what is being batched on. In our next demo all of our property 
groups will have an m_PropertyType member with the value set to PROPERTY_MATERIAL because we 
will be using property groups to batch faces by their material property.  
 
class CPropertyGroup 
{ 
public: 
    
     // Enumerators for this class 
     enum PROPERTY_TYPE { PROPERTY_NONE = 0, PROPERTY_MATERIAL = 1, PROPERTY_TEXTURE = 2 }; 
     
    //Constructors & Destructors for This Class. 
    CPropertyGroup(); 
    virtual ~CPropertyGroup(); 
 
    // Public Functions for This Class 
    long         AddPropertyGroup ( USHORT Count = 1 ); 
    long         AddIndex         ( USHORT Count = 1 ); 
    bool         BuildBuffers     ( LPDIRECT3DDEVICE9 pD3DDevice, bool HardwareTnL, 
                                    bool ReleaseOriginals = false ); 
    // Public Variables for This Class 
    PROPERTY_TYPE    m_PropertyType;         // Type of property this is. 
    ULONG            m_nPropertyData;        // 32 bit property data value. 
    USHORT           m_nIndexCount;          // Number of indices stored 
    USHORT           m_nPropertyGroupCount;  // Number of child properties 
    USHORT          *m_pIndex;               // Simple index array 
    CPropertyGroup **m_pPropertyGroup;       // Array of child properties. 
    USHORT          m_nVertexStart;     // First vertex used in the mesh vertex array 
    USHORT          m_nVertexCount;     // Number of vertices used in the mesh vertex array 
 
    LPDIRECT3DINDEXBUFFER9  m_pIndexBuffer;      // Direct3D Index Buffer 
}; 
 
PROPERTY_TYPE   m_PropertyType; 
This member describes the property that the group represents. When a property group is first created 
this will be set to PROPERTY_NONE in the constructor -- meaning it has no useful information yet. In this 
project we will use property groups to represent faces batched by material so as soon as we create a 
new property group, we will be setting this value to PROPERTY_MATERIAL. In the next lesson we will 
learn to use textures and we will also want to batch faces together with regard to the texture that they 
use. In those cases this member will be set to PROPERTY_TEXTURE. We will also see property groups 
that have child property groups so that we can batch by multiple keys. We could for example have a 
light group containing five PROPERTY_TEXTURE property groups that batch faces that share the same 
texture. Each property group could then contain three child PROPERTY_MATERIAL groups to sort the 
faces again by common material within the texture property group.  
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ULONG  m_nPropertyData; 
This is a 32-bit value used to store the data that this group represents. Since our sorting criteria can be 
practically anything, we will use this value in conjunction with m_PropertyType to fully represent our 
batching. In our current application this will contain the index of the material assigned to this property 
group. But it could also be used to store a pointer to a texture or some other data structure. If our 
application checks the m_nPropertyType member variable and discovers that it is set to 
PROPERTY_MATERIAL, then it knows that the m_nPropertyData member contains an index into the 
application’s global material list and that all the faces in this group share that common attribute. 
 
USHORT  m_nPropertyGroupCount;   
The number of child property groups that this property group has in its m_pPropertyGroup array. This 
will be set to zero in this project because we are batching only by material. If a property group has 
child property groups then it is usually these children that contain the indices and the parent property 
group acts like a node in a hierarchical tree structure. In this case the parent will have an empty index 
buffer because the indices are sorted into the child property groups.  
 
CPropertyGroup **m_pPropertyGroup; 
If the m_nPropertyGroupCount member is not zero then this member will point to an array of child 
property group pointers.  
 
USHORT  m_nIndexCount; 
This member holds the number of indices stored in this property group. In our application, each 
property group will hold one or more faces stored as indexed triangle lists. Each triangle will be 
described by three unique indices so this count should always be a multiple of three. 
 
USHORT  *m_pIndex;    
As we assign the vertices from a face to a light group and copy the indices (either loaded from file or 
generated) of that face into the relevant property group, the indices are copied into this array. Once all 
indices have been added to all property groups and all light groups are complete, our application calls 
CLightGroup::BuildBuffers for each light group. This will spawn calls to 
CPropertyGroup::BuildBuffers for each of its property groups. It will take the indices stored in this 
array and create a new index buffer to which the indices will be copied and used for rendering. This 
array can be optionally released from memory at this point but it may be beneficial to maintain it so 
that the index buffers can be rebuilt quickly in the event of a lost device. 
 
USHORT   m_nVertexStart;  
This member stores the offset into the parent light group vertex buffer where the vertices that are used 
by this index list begin. Property group indices always start from 0, so we pass this value into the 
DrawIndexedPrimitive function so that the pipeline can add it to each of our indices before accessing 
the vertex buffer.             
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USHORT    m_nVertexCount;  
This is the number of vertices in the vertex buffer used by this property group starting from 
m_nVertexStart. Together with m_nVerexStart, these two members describe the section of the light 
group vertex buffer that is mapped to this property group index buffer. 
 
LPDIRECT3DINDEXBUFFER9  m_pIndexBuffer;  
This is a pointer to the property group index buffer interface. The index buffer is not created until all 
indices have been added to the m_pIndex array. At that point they will be copied over when the 
application calls the CLightGroup::BuildBuffers function which in turn calls 
CPropertyGroup::BuildBuffers for each of its child property groups.  
 
This class has three member functions, AddIndex, AddPropertyGroup and BuildBuffers which are 
identical in form and function to the AddVertex, AddPropertyGroup and BuildBuffers methods of the 
CLightGroup class. As such, that code will not be covered here. Please check the accompanying source 
code for more information. 
 
 
The CGameApp Class 
 
There are minimal changes to CGameApp in this demonstration; one new member variable which is a 
pointer to a CScene object. We will discuss this class momentarily.  
 
CScene   m_Scene;            // Scene management class. 

 
The CScene object will load our scene from an IWF file and maintain lists of geometry, materials, and 
lights. These are the material and light arrays that are referenced from the light and property groups. 
The CGameApp class will call only two of its functions, one to load the IWF file, and another to 
instruct the scene to render itself each frame. This demo still uses the CCamera and CPlayer classes to 
move about the world. 
 
CGameApp::SetupRenderStates 
The SetupRenderStates function -- called by our framework to initialize device settings on application 
startup and when the device is reset -- is only slightly different. We now enable specular highlights in 
the lighting pipeline and set a dark gray global ambient color.  
 
void CGameApp::SetupRenderStates() 
{ 
    // Validate Requirements 
    if (!m_pD3DDevice || !m_pCamera ) return; 
 
    // Setup our D3D Device initial states 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
    m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SPECULARENABLE, TRUE ); 
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    m_pD3DDevice->SetRenderState( D3DRS_AMBIENT, 0x0D0D0D ); 
 
    // Setup option dependant states 
    m_pD3DDevice->SetRenderState( D3DRS_FILLMODE, m_FillMode );                 
 
    // Setup our vertex FVF code 
    m_pD3DDevice->SetFVF( VERTEX_FVF ); 
 
    // Update our device with our camera details (Required on reset) 
    m_pCamera->UpdateRenderView( m_pD3DDevice ); 
    m_pCamera->UpdateRenderProj( m_pD3DDevice ); 
 } 
 
 
CGameApp::BuildObjects 
The BuildObjects function -- called by our framework to build or prepare geometry -- has been 
simplified. We now use CScene::Load to load an IWF file and extract the information into light 
groups. 
 
bool CGameApp::BuildObjects() 
{ 
    CD3DSettings::Settings * pSettings = m_D3DSettings.GetSettings(); 
    bool                     HardwareTnL = true; 
    D3DCAPS9                 Caps; 
     
    // Should we use hardware TnL ? 
    if ( pSettings->VertexProcessingType == SOFTWARE_VP ) HardwareTnL = false; 
 
    // Release previously built objects 
    ReleaseObjects(); 
 
    // Retrieve device capabilities 
    m_pD3D->GetDeviceCaps( pSettings->AdapterOrdinal, pSettings->DeviceType, &Caps ); 
 
    // Set up scenes rendering / initialization device 
    m_Scene.SetD3DDevice( m_pD3DDevice, HardwareTnL ); 
 
    ULONG LightLimit = Caps.MaxActiveLights; 
    if ( !HardwareTnL ) LightLimit = 0; 
 
    // Load our scene data 
    if (!m_Scene.LoadScene( _T("Data\\Colony5.iwf"), LightLimit, 1 )) return false; 
 
    // Success! 
    return true; 
} 
 
First we retrieve the settings of the device so we know whether we want software or hardware vertex 
processing. We will pass this information into the CScene::SetD3DDevice function so that it knows to 
create the vertex buffers and index buffers for the light and property groups. The function copies the 
passed device pointer and the HardwareTnL Boolean into CScene member variables so that they can 
be accessed from the rest of the CScene code.  
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Next, we retrieve the capabilities of the device and record the maximum simultaneous active light 
count that the device is capable of. This information will be passed to the CScene::Load function so 
that it knows to create lights groups with no more than this number of lights per group. Notice that we 
also pass in a third parameter to CScene::Load which tells the scene how many of the device light slots 
we would like to reserve for our application to use as dynamic lights. Because the light groups are 
calculated as a pre-process (and this is quite a lengthy process) it means that these lights must remain 
static. If we wanted to move a light belonging to a light group, we would have to calculate all of the 
light groups again because the relationships between the lights and the polygons in the scene would 
have changed. This is far too slow to do during the rendering loop, so once we have calculated our 
light groups they remain fixed. If we want to use a dynamic light source then we can tell the light 
group system not to use all of the light slots available for each light group and keep some slots open for 
this scenario. In our application we reserve 1 light for dynamic use.  
 
CGameApp::FrameAdvance 
The rendering of the scene has been moved into CScene::Render, so the core section of the 
FrameAdvance function now looks like this: 
 
    // Clear the frame & depth buffer ready for drawing 
    m_pD3DDevice->Clear( 0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0x79D3FF, 1.0f, 0 ); 
     
    // Begin Scene Rendering 
    m_pD3DDevice->BeginScene(); 
     
    // Render the scene 
    m_Scene.Render( ); 
 
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 
     
    // Present the buffer 
    if( FAILED(m_pD3DDevice->Present( NULL, NULL, NULL, NULL )) ) m_bLostDevice = true; 
 
 

The CScene Class 
 
The CScene class manages the complete scene including all geometry, materials, and lights loaded 
from our IWF file. It has only four public member functions which we will examine as we move along. 
The CScene class definition is contained in the file CScene.h. 
 
class CScene 
{ 
public: 
     // Constructors & Destructors for This Class. 
     CScene( ); 
    ~CScene( ); 
 
    // Public Functions for This Class 
    void            SetD3DDevice( LPDIRECT3DDEVICE9 pD3DDevice, bool HardwareTnL ); 
    bool            LoadScene   ( TCHAR * strFileName, ULONG LightLimit = 0, 
                                  ULONG LightReservedCount = 0 ); 
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    void            Release     ( ); 
    void            Render      ( ); 
     
    // Public Variables for This Class 
    D3DMATERIAL9   *m_pMaterialList;      // Array of material structures. 
    D3DLIGHT9      *m_pLightList;         // Array of light structures 
    D3DLIGHT9       m_DynamicLight;       // Single dynamic light for testing. 
    CLightGroup   **m_ppLightGroupList;   // Array of individual lighting groups 
    ULONG           m_nMaterialCount;     // Number of materials stored 
    ULONG           m_nLightCount;        // Number lights stored here 
    ULONG           m_nLightGroupCount;   // Number of light groups stored here. 
     
private: 
   // Private Functions for This Class 
    bool ProcessMeshes(CFileIWF & pFile); 
    bool ProcessVertices(CLightGroup *pLightGroup, 
                         CPropertyGroup *pProperty,iwfSurface *pFilePoly); 
    bool ProcessIndices(CLightGroup *pLightGroup, 
                        CPropertyGroup *pProperty,iwfSurface *pFilePoly); 
    bool ProcessMaterials(const CFileIWF& File); 
    bool ProcessEntities(const CFileIWF& File); 
    float GetLightContribution (iwfSurface *pSurface, D3DLIGHT9 *pLight); 
    long  AddLightGroup(ULONG Count); 
    bool  BuildLightGroups(std::vector<iwfSurface*> &SurfaceList, long MaterialIndex); 
 
    // Private Variables for This Class 
    ULONG               m_nReservedLights;  // Number of light slots to leave empty 
    ULONG               m_nLightLimit;   // Number of device lights available. 
    LPDIRECT3DDEVICE9   m_pD3DDevice;    // D3D device used for rendering / initialization 
    bool                m_bHardwareTnL;  // Objects should be build taking into account TnL 
}; 

 
Public Member Variables 
D3DMATERIAL9   *m_pMaterialList;      
This member will point to an array of all materials used by the scene. The LoadScene function will call 
the private ProcessMaterials function to extract all of the material data from the IWF file and store it in 
this array. Each property group will contain a material index into this scene array of materials. 
 
D3DLIGHT9         *m_pLightList;              
This member will point to an array of all lights contained in the IWF file used by the scene. Each light 
group will contain an array of light indices that index into this array.  
 
D3DLIGHT9          m_DynamicLight;        
In our application we will reserve one light to be used as a dynamic light and this member holds the 
D3DLIGHT9 information and settings for this light. This light will always be in device slot zero and 
our light groups will use light slots 1 – MaxActiveLights. This light will be updated each frame as our 
application updates its position and resends it to the device. If you wanted to use more than one 
dynamic light you would want to make this an array. 
 
CLightGroup      **m_ppLightGroupList;  
This member is an array of all scene CLightGroup pointers. The array contains all of the geometry in 
the scene divided among light groups, and further divided into property groups based on material. 
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ULONG                 m_nMaterialCount;    
The number of materials in the material array -- equal to the number of materials stored in the IWF 
file.  
   
ULONG                 m_nLightCount;           
The number of lights in the light array -- equal to the number of lights entities stored in the IWF file. 
 
ULONG                 m_nLightGroupCount;  
The number of light groups that were built to represent the scene during the light group building 
process. 
 
Private Member Variables 
ULONG    m_nReservedLights;          
This member will contain the number of reserved lights that will be used by the application. This is 
used to limit the maximum number of lights stored in our light groups to MaxActiveLights – 
m_ReservedLights. 
 
ULONG     m_nLightLimit;  
The value stored in this member will be the MaxActiveLights value describing how many active lights 
the device supports at any one time. This is used along with the m_nReservedLights member to 
calculate the maximum number of lights that can be stored in a light group. 
                 
LPDIRECT3DDEVICE9   m_pD3DDevice;   
This is a pointer to the rendering device. 
              
bool    m_bHardwareTnL;    
This Boolean is set to true or false depending on whether we are using hardware or software vertex 
processing. The scene needs this information to correctly build the vertex and index buffers so that 
DirectX can place them in the appropriate memory pool. 
 
 
CScene::CScene() 
The constructor initializes all values to zero or null and also sets up the parameters for the one dynamic 
light that our scene will use. We create a red light source and place it at position (320, 10, 500) -- the 
main hanger area of the level. These settings are stored in the m_DynamicLight member variable.  

 
CScene::CScene() 
{ 
       // Reset / Clear all required values 
    m_nLightLimit      = 0; 
    m_nReservedLights  = 0; 
 
    m_nMaterialCount   = 0; 
    m_nLightCount      = 0; 
    m_nLightGroupCount = 0; 
    m_pMaterialList    = NULL; 
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    m_pLightList       = NULL; 
    m_ppLightGroupList = NULL; 
    m_pD3DDevice       = NULL; 
    m_bHardwareTnL     = false; 
 
    // Set up our dynamic light properties 
    ZeroMemory( &m_DynamicLight, sizeof(D3DLIGHT9) ); 
    m_DynamicLight.Type      = D3DLIGHT_POINT; 
    m_DynamicLight.Range     = 150.0f; 
    m_DynamicLight.Diffuse.a = 1.0f; 
    m_DynamicLight.Diffuse.r = 1.0f; 
    m_DynamicLight.Position  = D3DXVECTOR3( 290, 10, 500 ); 
    m_DynamicLight.Attenuation0=1.0; 
} 

 
 
CScene::~CScene() 
The destructor calls the CScene::Release function to release all of the arrays allocated to hold the 
materials, lights, and light groups. This means the arrays can be destroyed either when the object is 
destroyed or if the application explicitly calls the CScene::Release member function.  
 
CScene::~CScene() 
{ 
    // Release allocated resources 
    Release(); 
} 
 

 
CScene::Release 
The first thing this function does is release the light groups array. Since it is an array of pointers we 
loop through each element in the array and delete it first, and then we delete the actual pointer array as 
shown below. 
 
void CScene::Release( ) 
{ 
    ULONG i; 
 
     // Release any allocated memory 
     if ( m_ppLightGroupList ) 
     { 
         for ( i = 0; i < m_nLightGroupCount; i++ ) 
         { 
             if ( m_ppLightGroupList[i] ) delete m_ppLightGroupList[i]; 
         }  
         delete []m_ppLightGroupList; 
     }  
      
Next we delete the material and light arrays and call release on the device to decrease the reference 
count. 
 
    // Release the materials array 
     if ( m_pMaterialList ) delete []m_pMaterialList; 
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    // Release the lights array    
    if ( m_pLightList )     delete []m_pLightList; 
 
    // Release Direct3D Objects 
    if ( m_pD3DDevice ) m_pD3DDevice->Release(); 
 
Finally, we set all members to zero or null. 
 
    // Clear Variables 
    m_nMaterialCount      = 0; 
    m_nLightCount         = 0; 
    m_nLightGroupCount    = 0; 
    m_pMaterialList       = NULL; 
    m_pLightList          = NULL; 
    m_ppLightGroupList    = NULL; 
    m_pD3DDevice          = NULL; 
    m_bHardwareTnL        = false; 
} 
 
 
CScene::LoadScene 
This function uses a CFileIWF object (one of the IWF SDK objects) to load the IWF file data: 
 
bool CScene::LoadScene(TCHAR *strFileName, ULONG LightLimit /* = 0 */,  
                       ULONG LightReservedCount /* = 0 */) 
{ 
        CFileIWF File; 
 
        // Attempt to load the file 
        File.Load( strFileName ); 
 
Once the IWF file has been loaded into memory, its data exists in the CFileIWF internal STL vectors 
(see IWF Overview document included with this lesson). We extract the scene information from the 
CFileIWF object through the following two function calls: 
 
        // Copy over the entities and materials we want from the file 
        if (!ProcessEntities( File )) return false; 
        if (!ProcessMaterials( File )) return false; 
 
ProcessEntities is responsible for looping through the CFileIWF entity vector and copying lights into 
the m_pLightList array. When this function returns, all of the lights that were in the IWF file will have 
their information in the m_pLightList array stored in D3DLIGHT9 format. The ProcessMaterials 
function works the same way. It extracts all materials from CFileIWF and copies them into the 
m_pMaterialList array where they are stored in D3DMATERIAL9 format ready for use by the device.  
 
        // Store values 
        m_nLightLimit     = LightLimit; 
        m_nReservedLights = LightReservedCount; 
 
If the light limit has a value of zero, then the calling application does not want to limit the number of 
simultaneously active lights in any way. This can be useful if we are using a software vertex 
processing device which does not have a maximum simultaneous light limit. When using a software 
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vertex processing device, if a face is influenced by 100 lights, we can set all 100 lights (at the cost of 
severe performance degradation for real-time play) and enable them on the device simultaneously. 
When there is no light limit we simply set the light limit to the total number of lights in the scene plus 
the number of reserved lights. In this case a light group could contain every light in the scene although 
it would be very unlikely that a face would be affected by all of the lights in the scene. 
 
        // Check for unlimited light sources 
        if ( m_nLightLimit == 0 ) m_nLightLimit = m_nLightCount + LightReservedCount; 
         
Next we call the ProcessMeshes member function to extract the mesh data from the CFileIWF object 
and build all of the light groups.  
 
        // Now process the meshes and extract the required data 
        if (!ProcessMeshes( File )) return false; 
 
When this function returns, all light groups have been created and all faces have been assigned to the 
relevant light/property groups. Now we loop through each light group and call its BuildBuffers 
function which will copy all the vertices stored in its CVertex array into the final vertex buffer. Each 
light group also calls the BuildBuffers function of each of its property groups instructing them to build 
their index buffers. 
 
        // Build vertex / index buffers 
        for ( USHORT i = 0; i < m_nLightGroupCount; i++ ) 
        { 
            if (!m_ppLightGroupList[i]->BuildBuffers(m_pD3DDevice, m_bHardwareTnL, true)) 

               return false; 
        }  
 
All data has been extracted from the CFileIWF object now so we can instruct it to free up its internal 
arrays.  
 
        // Allow file loader to release any active objects 
        File.ClearObjects(); 
 
        // Success! 
        return true; 
} 
 
 
CScene::ProcessEntities 
The ProcessScene function retrieves light information from the passed CFileIWF object. After we have 
retrieved the number of lights in the entity vector, we allocate a D3DLIGHT9 array (m_pLightList) 
large enough to hold them. Then we extract the information from this vector and store it in our newly 
allocated CScene::m_pLightList array. Note that we cannot simply retrieve the number of lights by 
using the STL vector ‘size’ function because the vector may contain other entity types. We are only 
interested in entities that have the ENTITY_LIGHT ID as shown below. 
 
bool CScene::ProcessEntities( const CFileIWF& File ) 
{ 
    D3DLIGHT9 Light; 
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    ULONG     i; 
    ULONG     LightCount = 0; 
     
    for ( i = 0; i < File.m_vpEntityList.size(); i++ ) 
    { 
        // Retrieve pointer to file entity 
        iwfEntity * pFileEntity = File.m_vpEntityList[i]; 
 
        // Only build if this is a light entity 
        if ( pFileEntity->EntityTypeID == ENTITY_LIGHT && pFileEntity->DataSize > 0 ) 
            LightCount++; 
    }  
 
We loop through each entity and increase the local LightCount variable if the entity is a light and has a 
data size which is not zero (this is just for safety -- we should never encounter a light entity with a 0 
data size member with scenes exported from GILES). Next, we check if the light count is zero. If so, 
then the scene contains no lights and we can exit the procedure. Otherwise, we allocate the 
CScene::m_pLightList array large enough to hold LightCount lights. 
 
    // Detect no-op 
    if ( LightCount == 0 ) return true; 
 
    // Allocate enough space for all our lights 
    m_pLightList = new D3DLIGHT9[ LightCount ]; 
    if (!m_pLightList) return false; 
 
We can now loop through each element in the CFileIWF::m_vpEntityList vector and extract the 
information from any light entities we find. 
 
    // Loop through and build our lights 
    for ( i = 0; i < File.m_vpEntityList.size(); i++ ) 
    { 
        // Retrieve pointer to file entity 
        iwfEntity * pFileEntity = File.m_vpEntityList[i]; 
 
If the entity ID indicates a light then we copy all of the parameters we need into the local D3DLIGHT9 
variable Light. 
 
 
        if ( pFileEntity->EntityTypeID == ENTITY_LIGHT && pFileEntity->DataSize > 0 ) 
        { 
            LIGHTENTITY *pFileLight = (LIGHTENTITY*)pFileEntity->DataArea; 
 
We use the IWF SDK LIGHTENTITY structure to access the data area of the light entity. First we 
check that this light is of a type our application will use. Our application will not use ambient lights 
because we will be setting the ambient light level using a render state as we discussed earlier. 
             
            // Skip if this is not a valid light type (Not relevant to the API) 
            if ( pFileLight->LightType == LIGHTTYPE_AMBIENT ) continue; 
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If we get here, then the light is a point light, a spot light, or a directional light, so we copy the 
information into the local D3DLIGHT9 variable. First we extract the diffuse, ambient and specular 
colors of the light. 
 
            // Extract the light values we need 
            Light.Type     = (D3DLIGHTTYPE)(pFileLight->LightType + 1); 
            Light.Diffuse  = D3DXCOLOR(pFileLight->DiffuseRed, pFileLight->DiffuseGreen, 
                                       pFileLight->DiffuseBlue, pFileLight->DiffuseAlpha ); 
            Light.Ambient  = D3DXCOLOR(pFileLight->AmbientRed, pFileLight->AmbientGreen,  
                                       pFileLight->AmbientBlue, pFileLight->AmbientAlpha ); 
            Light.Specular = D3DXCOLOR(pFileLight->SpecularRed, pFileLight->SpecularGreen, 
                                       pFileLight->SpecularBlue, pFileLight->SpecularAlpha 
); 
             
Next, we copy the position and orientation of the light. This information is represented in a world 
matrix stored within the entity. We extract the position information from the 4th row of the matrix and 
the direction vector from the 3rd row of the world matrix. 
 
            Light.Position = D3DXVECTOR3( pFileEntity->ObjectMatrix._41, 
                                          pFileEntity->ObjectMatrix._42, 
                                          pFileEntity->ObjectMatrix._43 ); 
 
            Light.Direction = D3DXVECTOR3( pFileEntity->ObjectMatrix._31, 
                                           pFileEntity->ObjectMatrix._32, 
                                           pFileEntity->ObjectMatrix._33 ); 
 
Finally, we extract the remaining light information such as range and attenuation which may be 
relevant to this light type. 
 
            Light.Range         = pFileLight->Range; 
            Light.Attenuation0  = pFileLight->Attenuation0; 
            Light.Attenuation1  = pFileLight->Attenuation1; 
            Light.Attenuation2  = pFileLight->Attenuation2; 
            Light.Falloff       = pFileLight->FallOff; 
            Light.Theta         = pFileLight->Theta; 
            Light.Phi           = pFileLight->Phi; 
 
We add the new light to our light array and increase our CScene::m_nLightCount variable so that it 
correctly tracks how many lights are in the array. 
 
            // Add this to our vector 
            m_pLightList[ m_nLightCount++ ] = Light; 
        } // End if light 
    } // Next Entity 
 
    // Success! 
    return true; 
} 
 
 
After the above function has been called from CScene::LoadScene we have all the lights stored in the 
CScene light array. Next the LoadScene function calls ProcessMaterials to extract the materials from 
the CFileIWF object into the CScene::m_pMaterials array. 
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CScene::ProcessMaterials 
This function checks the size of the CFileIWF m_vpMaterialList vector, updates the 
CScene::m_nMaterialCount, and allocates the CScene::m_pMaterialList array to hold that many 
D3DMATERIAL9 structures. 
 
bool CScene::ProcessMaterials( const CFileIWF& File ) 
{ 
    ULONG i; 
     
    // Allocate enough room for all of our materials 
    m_pMaterialList = new D3DMATERIAL9[ File.m_vpMaterialList.size() ]; 
     
    m_nMaterialCount = File.m_vpMaterialList.size(); 
 
We now loop through every material in the CFileIWF materials vector and copy the relevant 
information into the newly allocated CScene material list array. 
 
    // Loop through and build our materials 
    for ( i = 0; i < File.m_vpMaterialList.size(); i++ ) 
    { 
        // Retrieve pointer to file material 
        iwfMaterial * pFileMaterial = File.m_vpMaterialList[i]; 
 
        // Retrieve pointer to our local material 
        D3DMATERIAL9 * pMaterial = &m_pMaterialList[i]; 
 
        // Copy over the data we need from the file material 
        pMaterial->Diffuse  = (D3DCOLORVALUE&)pFileMaterial->Diffuse; 
        pMaterial->Ambient  = (D3DCOLORVALUE&)pFileMaterial->Ambient; 
        pMaterial->Emissive = (D3DCOLORVALUE&)pFileMaterial->Emissive; 
        pMaterial->Specular = (D3DCOLORVALUE&)pFileMaterial->Specular; 
        pMaterial->Power    = pFileMaterial->Power; 
         
    } // Next Material 
 
    // Success! 
    return true; 
} 
 
 
CScene::ProcessMeshes 
The ProcessMeshes function is responsible for assigning mesh surfaces to their appropriate light 
groups sorted in material order. One thing to note before examining the code is that an IWF file may 
contain faces with no materials applied to them. While this is not possible with surfaces exported using 
GILES, it is a possibility if another 3rd party IWF exporting application is used. Because of this 
possibility we will start our material loop at  –1 instead of zero and use this initial pass through the 
loop to collect all surfaces that have no materials. When we then send this collection to the 
BuildLightGroups function they will end up in a light group that has no lights. It is important to have a 
light group that has no lights so that we have somewhere to store geometry that either A) has no 
material applied or B) has a material applied but is not lit by any light sources. When we render 
polygons in this group they will appear completely black. It is quite possible that the level designer 
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may have one or two faces not affected by any light sources in a level and wants them to appear black, 
so we must allow for these surfaces. Discarding them would create holes in the level where those faces 
used to be. In the case of the faces with no materials, you could change this code to create a default 
white material for such faces, but our code treats them like the unlit faces that they will share a light 
group with.  
 
First we declare an STL vector to hold iwfSurface structure. 
 
bool CScene::ProcessMeshes( CFileIWF & pFile ) 
{ 
    long i, j, k; 
    std::vector<iwfSurface*> SurfaceList; 
 
Then we loop through each material (starting at –1 since the first iteration will be used to catch 
surfaces with no materials). 
         
    for ( i = -1; i < (signed)m_nMaterialCount; i++ ) 
    { 
 
Next we loop through each mesh and then every face belonging to that mesh and get a pointer to the 
current iwfSurface we are testing.     
 
        for ( j = 0; j < pFile.m_vpMeshList.size(); j++ ) 
        { 
            iwfMesh * pMesh = pFile.m_vpMeshList[j]; 
            for ( k = 0; k < pMesh->SurfaceCount; k++ ) 
            { 
                iwfSurface * pPoly = pMesh->Surfaces[k]; 
 
If the material loop is currently at -1 then this is the initial sweep through the outer loop where we 
search for faces with no materials. We do this by testing if the surface has the 
SCOMPONENT_MATERIALS component flag set, indicating that the surface stores a valid material 
index. If not, or if this surface has a channel count of zero, then the surface does not have a material 
assigned to it. In that case we add it to the vector and continue to test the next surface in the loop. 
 
                if ( i == -1 ) 
                { 
                    if(!(pPoly->Components & SCOMPONENT_MATERIALS) || 
                         pPoly->ChannelCount == 0) 
                    { 
                        SurfaceList.push_back( pPoly ); 
                        continue; 
                     
                    } // End if no material properties 
 
                } // End if processing null materials 
 
If we are not in the initial iteration of the materials loop (in other words i  > -1) then we have a surface 
that does have a material. We need to check whether this surface’s material index matches the material 
we are currently collecting surfaces for. If so, then we add the current surface to the vector.          
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                // If the material matches, add it to our list 
                if ( pPoly->MaterialIndices[0] == i ) SurfaceList.push_back( pPoly ); 
 
            } // Next SUrface 
 
        } // Next Mesh 
 
At this point in the material loop we have collected all of the faces from all of the meshes that use the 
current material into the SurfaceList vector. If there is at least one surface in this vector, we will call 
the BuildLightGroups function to assign them to the relevant light/property groups to which they 
belong. 
 
        // Build our scene light groups from this sorted list. 
        if ( SurfaceList.size() > 0 ) 
        { 
            if (!BuildLightGroups( SurfaceList, i )) return false; 
         }  
 
At this point, the surfaces using the current material have all been assigned to light groups, so we 
empty the vector and it can be used in the next iteration of the material loop. 

 
        // Clear our surface list 
        SurfaceList.clear(); 
 
    } // Next Material 
 
All light groups now have their property groups created and the surfaces have been assigned. We can 
return program flow back to CScene::LoadScene where it will build the vertex buffers and index 
buffers for each light group and hand flow back to the main application. 
 
    // Success!! 
    return true; 
} 
 
Here is the ProcessMeshes function again in its entirety so that you can read it without any 
interruptions. 
 
bool CScene::ProcessMeshes( CFileIWF & pFile ) 
{ 
    long i, j, k; 
    std::vector<iwfSurface*> SurfaceList; 
     
    // Here we must sort our scene polygons, by material, into lists 
    // We start from -1 to still sort those that have no material 
    for ( i = -1; i < (signed)m_nMaterialCount; i++ ) 
    { 
        // Now we must search for all surfaces which use this material 
        for ( j = 0; j < pFile.m_vpMeshList.size(); j++ ) 
        { 
            iwfMesh * pMesh = pFile.m_vpMeshList[j]; 
            for ( k = 0; k < pMesh->SurfaceCount; k++ ) 
            { 
                iwfSurface * pPoly = pMesh->Surfaces[k]; 
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                // If the surface has no material properties and we are 
                // processing material -1, add this to that list 
                if ( i == -1 ) 
                { 
                    if ( !(pPoly->Components & SCOMPONENT_MATERIALS) ||  
                           pPoly->ChannelCount == 0 ) 
                    { 
                        SurfaceList.push_back( pPoly );  continue; 
                    }  
                }  
 
                // If the material matches, add it to our list 
                if ( pPoly->MaterialIndices[0] == i ) SurfaceList.push_back( pPoly ); 
 
            } // Next SUrface 
 
        } // Next Mesh 
 
        // Build our scene light groups from this sorted list. 
        if ( SurfaceList.size() > 0 ) 
        { 
            if (!BuildLightGroups( SurfaceList, i )) return false; 
        }  
 
        // Clear our surface list 
        SurfaceList.clear(); 
 
    } // Next Material 
 
    return true; 
} 
 
 
CScene::BuildLightGroups  
We will discuss the BuildLightGroups function as a three step process. Keep in mind that we have 
passed in the current material index that we are processing (from the ProcessMeshes function) along 
with a vector containing the faces that use the material. Step 1 has the job of allocating two arrays: a 
light contribution table that will be used to record the scores of how influential all the lights in the 
scene are to each face, and a selected lights table that will be used to record the most influential lights 
in the light contribution table for the face that we are currently processing. Once we have the selected 
lights for a face, we enter Step 2 which has the job of finding whether a light group already exists that 
includes these selected lights. If a light group is found, then the face is added to that light group and we 
search the light group property groups to see if a property group exists within that light group that is 
mapped to the current material we are processing. If a property group is found then the face is added to 
the property group. If not, a new property group is added to the light group which has the material 
index we are currently processing along with the faces. If we cannot find a light group, then a new one 
will be created and the selected lights will be stored. We will add a property group to this new light 
group which has the material index we are currently processing. Finally the face will be added to this 
new light group/property group. We do this for each face in the vector passed. Step 3 copies the 
vertices of the face into the light group vertex buffer and copy the indices into the property group 
which is mapped to the current material we are processing. 
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Step 1: Determining Light Influence  
 
We begin by allocating a float array called LightContribution which will be large enough to hold a 
single float value for every light in the scene. We will also allocate a second ULONG array large 
enough to hold the maximum number of lights that are allowed to exist in a single light group. 
 
bool CScene::BuildLightGroups( std::vector<iwfSurface*> & SurfaceList, long MaterialIndex ) 
{ 
    ULONG           i, j, k, *SelectedLights = NULL, LightCount = 0; 
    float          *LightContribution        = NULL, BestScore = 0.0f; 
    CLightGroup    *pLightGroup  = NULL; 
    CPropertyGroup *pProperty    = NULL; 
    long            BestLight    = -1; 
 
    // Setup our light contribution tables 
    LightContribution = new float[ m_nLightCount ]; 
    if (!LightContribution) goto BuildFailure; 
 
    SelectedLights = new ULONG[ (m_nLightLimit - m_nReservedLights) ]; 
    if (!SelectedLights) goto BuildFailure; 
 
m_nLightLimit holds the maximum number of simultaneous lights allowed by the device. We must 
subtract the number of lights the application would like to reserve for its own uses to obtain how many 
lights can exist in a single light group. 
 
The next step is to loop through every face in the passed STL vector. For each face, we loop through 
every light in the scene and record an influence score in the LightContribution table. At the end of the 
light loop, we have a score for every light describing how influential it is to the final color of the face. 
We call the GetLightContribution function to return an influence score for each light with the current 
face we are processing. This function will be covered in the next section. For now just know for now 
that it will typically return a value between –2.0 and +3.0 where a higher value indicates that the light 
influences the surface to a higher degree.  
     
    // Loop through each Mesh 
    for ( i = 0; i < SurfaceList.size(); i++ ) 
    { 
        iwfSurface * pSurface = SurfaceList[i]; 
 
        // Now we will determine which lights affect this surface 
        ZeroMemory( LightContribution, m_nLightCount * sizeof(float)); 
        for ( j = 0; j < m_nLightCount; j++ ) 
        {     
            LightContribution[j] = GetLightContribution( pSurface, &m_pLightList[j] ); 
        }  
 
At this point, if there were 100 lights in the scene, we would have 100 influence scores. Our next job is 
to loop through this score table and store the index of the most influential lights (those with the highest 
score) in our SelectedLights array. At the end of the loop the SelectedLights array will describe the 
lights that most influence the surface, as shown in the following diagram: 
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Notice that we zero out the LightContribution array for each face that we are testing, since this is a per-
face process. We loop though each slot in the SelectedLights array with the intention of finding the 
best light to put in it. During each loop iteration, we set a local variable called BestScore to zero, and 
then loop through every light in the scene. If we find a light with a higher score than the current best 
score we record its score and its index. At the end of the light loop, we have the index of the best light 
and we copy it into the SelectedLights slot that we are currently processing. Then we set the score of 
this best light to 0 in the LightContribution array so that in the next iteration of the loop, we do not get 
the same best light again. Instead we get the second best light and copy that into the selected lights 
array. We repeat this process until we have enough lights that influence the surface to fill up the 
SelectedLights array or until we run out of lights.  
 
        // Now we have the light contribution table, we can select 
        // the best lights for the job (with an acceptable error) 
        LightCount = 0; 
        for ( j = 0; j < (m_nLightLimit - m_nReservedLights); j++ ) 
        { 
            // Reset our best score 
            BestScore = 0.0f; 
            BestLight = -1; 
 
            // Find the light with the best score 
            for ( k = 0; k < m_nLightCount; k++ ) 
            { 
                if ( LightContribution[ k ] > BestScore ) 
                { 
                    BestScore = LightContribution[ k ]; 
                    BestLight = k; 
                } 
            } // Next Light 
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            // Have we run out of lights ? 
            if ( BestLight < 0 ) break; 
 
            // Select our best light. We reset it's score here. 
            SelectedLights[ LightCount++ ] = BestLight; 
            LightContribution[ BestLight ] = 0.0f; 
        
        } // Next Light Slot 
 
At this point we have an array of lights (this can never be more than our light limit minus the reserved 
light count) which describes the lights that our surface should share a light group with.  
 
Step 2: Finding a Light Group  
 
We now search the CScene light group array to find a light group that matches the set of lights we have 
in the SelectedLights array from Step 1. We call CLightGroup::GroupMatches to compare the light 
indices in the SelectedLights array with the light indices stored within the light group. It returns true if 
the light indices match. If they do match, we will remember this light group (using the local 
pLightGroup pointer) so that we can use this pointer to search its property groups (more on this in a 
moment). The local variable LightCount contains the number of lights in the SelectedLights array. 
        
        pLightGroup = NULL; 
        for ( j = 0; j < m_nLightGroupCount; j++ ) 
        { 
            if ( m_ppLightGroupList[j]->GroupMatches( LightCount, SelectedLights ) ) 
            { 
                // Select this light group and bail 
                pLightGroup = m_ppLightGroupList[j]; 
                break; 
            } // End if group matches 
        } // Next Light group 
 
If we could not find a light group with the correct combination of lights in it then we have to create a 
new light group for this light set. We do this by first allocating a new light group and then calling 
CScene::AddLightGroup which resizes the CScene light group array to make space for another light 
group pointer at the end. We copy the new light group pointer onto the end of the array and use the 
SetLight function to pass in the selected lights (we covered this function earlier). This function extracts 
the lights out of the SelectedLights array and into the light group. It is important to realize that all of 
our light groups will be created here since this is the only place in the application where light groups 
are selected. 
 
        // If we didn't find a light group, allocate and add one 
        if ( !pLightGroup ) 
        { 
            if (!(pLightGroup = new CLightGroup) ) goto BuildFailure; 
             
            // Add it to the list 
            if ( AddLightGroup( 1 ) < 0 ) goto BuildFailure; 
            m_ppLightGroupList[ m_nLightGroupCount - 1 ] = pLightGroup; 
            pLightGroup->SetLights( LightCount, SelectedLights ); 
        }  
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The local pointer pLightGroup now points to a pre-existing light group or to one which was newly 
created. Also remember that we passed in a material index that describes the material the current face 
is using. Now it is time to search the light group’s CPropertyGroup array to try to find a property group 
which is already using this material. If one is found, we break from the loop. The loop counter variable 
(j) will describe the index of this property group within the CPropertyGroup array. 
 
        // Determine if we already have a property group for this material 
        for ( j = 0; j < pLightGroup->m_nPropertyGroupCount; j++ ) 
        { 
            // Break if material index matches 
            if ( (long)pLightGroup->m_pPropertyGroup[j]->m_nPropertyData == MaterialIndex ) 
break; 
        } 
 
If the loop counter (j) is equal to the number of property groups that the light group contains, it means 
that a property group could not be found that already uses the current material. If this is the case then 
we need to add a new property group to the CPropertyGroup array that will use this material: 
 
        // If we didn't have this property group, add it 
        if ( j == pLightGroup->m_nPropertyGroupCount ) 
        { 
            if ( pLightGroup->AddPropertyGroup( ) < 0 ) goto BuildFailure; 
             
            // Set up new property group data 
            pProperty = pLightGroup->m_pPropertyGroup[ j ]; 
            pProperty->m_PropertyType  = CPropertyGroup::PROPERTY_MATERIAL; 
            pProperty->m_nPropertyData = (ULONG)MaterialIndex; 
            pProperty->m_nVertexStart  = pLightGroup->m_nVertexCount; 
            pProperty->m_nVertexCount  = 0; 
         }  
 
This is an important piece of code because it is the only place where a new property group gets created. 
Remember, the first time this function is called by ProcessMeshes there will be no property groups and 
no light groups. These will be created as ProcessMeshes calls this function once for every material 
used by the scene. 
 
In the above code we have used CLightGroup::AddPropertyGroup to resize the CPropertyGroup array 
so that there is space at the end for a new property group. We assign the property group the 
PROPERTY_MATERIAL property type so that we know this is a material property and we store the 
material index that this property group is mapped to in the m_nPropertyData member. Finally, we 
record the current number of vertices that are in its parent light group vertex array in the 
m_nVertexStart member. This is important because this is where the faces for this property group will 
start in the vertex buffer and will be used during the DrawIndexedPrimitive function so that the 
pipeline knows to add this amount to each index belonging to this property group. This works because 
the BuildLightGroups function is called one per material from the ProcessMeshes function. If 10 faces 
in the passed vector belong to this property group, they will all have their vertices copied into the 
vertex buffer together.  
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Section 3 : Adding Vertices to Light Groups and Indices to Property Groups 
 
At this point in the function we have a pointer to the light group and the property group to which the 
face belongs. We call CScene::ProcessVertices to copy the vertices of the current face into the light 
group vertex buffer. We also call CScene::ProcessIndices to copy or create the indices that will be 
placed into the property group index buffer.  
 
        // Process the vertices / indices and store in this property group 
        pProperty = pLightGroup->m_pPropertyGroup[ j ]; 
        if (!ProcessIndices( pLightGroup, pProperty, pSurface ) ) return false; 
        if (!ProcessVertices( pLightGroup, pProperty, pSurface ) ) return false; 
         
    } // Next Surface 
 
As you can see, this process occurs for every surface passed into the function in the STL vector. 
Remember that all of the surfaces in that vector share the same material. This is how we make sure that 
faces are being placed into the various light group vertex buffers in material order. 
 
All of the surfaces passed in have now been assigned to light groups, so we can delete the 
LightContribution array and the SelectedLights array since we no longer need them. Finally, we return 
success. 
 
   // Release memory 
    if ( LightContribution ) delete []LightContribution; 
    if ( SelectedLights ) delete []SelectedLights; 
 
    // Success! 
    return true; 
 
The BuildFailure label can be jumped to from several places in the code if a memory allocation fails. 
Using a goto command prevents us having to duplicate memory release code in several places if 
something goes wrong. 
 
BuildFailure: 
    // If we dropped here, something bad happened :) 
    if ( LightContribution ) delete []LightContribution; 
    if ( SelectedLights ) delete []SelectedLights; 
 
    // Failure! 
    return false; 
} 
 
 
CScene::GetLightContribution 
This function accepts a light and a surface and returns an influence score for that light with regards to 
the surface.  
 
A naïve first approach might be to base the score on the distance from each vertex in the surface to the 
light source and average them. This is not a good idea. Even if a light is extremely close to a vertex it 
does not necessarily mean the light has a large influence on the resulting color of the vertex. The light 

TeamLRN



may be extremely dim such that a much brighter light source further away would contribute more color 
to the vertex. 
 
It would seem the only way we can find out for sure what influence the light will have is if we use it to 
light the vertices in the surface and then examine the resulting color. So how exactly do we do this? 
 
In our textbook, we examined the lighting calculations that are performed by the pipeline. So all we 
have to do is emulate that model and we will have the final vertex color for every vertex in the face. 
This involves calculating the amount of color that reaches each vertex from the light source and then 
modulating this color with the material members of the material assigned to the surface. At this point, 
we have the final color of the vertices. Remember we are doing this for a single light source only in 
this function, so the color/intensity of each vertex directly describes the amount of color contributed by 
this light source only.  
 
At this point, we could just add up the RGB components of the brightest vertex and return this as the 
score, but this would not be successful in all situations. Imagine for example a vertex color of RGB 
(0.5, 0.5, 0.5) which is a half intensity light (a gray light). This would have a combined score of (0.5 + 
0.5 + 0.5) = 1.5.  Now this is not a particularly brightly lit vertex, whereas a vertex color of (1.0, 0.0, 
0.0) would have a lower score but have full intensity red. This is something we want to watch out for 
because if we place a full intensity red light in our scene, it would only affect the red color component 
of the vertices it lights. Therefore, what we will do is use the highest color component (R, G, or B) of 
the vertex as the vertex score and return the highest vertex score found for the surface.  
 
We must also make sure that we do not take sign into account when doing this scoring because as we 
mentioned earlier, it is possible to place dark lights in the scene which have negative color emitting 
properties. These lights detract light color from the vertices they influence and since we are doing this 
for only a single light, this would result in negative RGB values for the vertices in the surface. But this 
does not mean that the light is any less important in determining the final color of the vertex, so we 
must make this an absolute value comparison.  
 
Once we have collected the highest R, G, or B component from the vertices of the face, it is this 
highest color component that is returned to the calling function (BuildLightGroups) and entered into 
the LightContribution table. 
 
The overall process looks like this: 
 

• Best Score = 0 
• For each vertex in passed surface 
• Calculate the diffuse color emitted from the light and modulate it with the material diffuse 

property 
• Calculate the ambient color emitted from the light and modulate it with the material ambient 

property 
• Add these colors together to get the overall color of the vertex received from this light source. 
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• Find which color component is higher for this vertex and if this is higher than the highest color 
component found from previous vertices in the loop, make this the new best score 

• Return the best score 
 

Notice how we only calculate the diffuse and ambient contributions of the light source and not the 
specular. This is because specular lighting is camera position dependant and as the camera position 
contantly changes, it will not accurately describe the importance of that light to a vertex. However 
given this arrangement it is important to note that if you do wish specular lights to exist in the scene, 
they must not be separate light objects. They should be included with a light that has a diffuse and/or 
ambient color source as well so that they are not ignored by this process. 
 
The nice thing about this code is that it gives us additional insight into how the DirectX pipeline 
calculates vertex colors. This could be very handy if you are not using DirectX lighting but are instead 
storing the vertex colors within each vertex (pre-lit vertices). You could use a function similar to this 
one as a pre-process to generate your vertex colors such that it looks like they are being lit by the 
DirectX pipeline**. There is a real benefit to doing this because it relieves the pipeline from having to 
perform lighting calculations at runtime.  
 
 
The Lighting Calculations Revisited 
 
The vertex coloring process can be described as follows: 
 
VertexDiffuse   = MaterialDiffuseColor * LightDiffuseColor * Dot * AttFactor * SpotFactor. 
VertexAmbient = MaterialAmbientColor * LightAmbientColor * AttFactor * SpotFactor 
VertexColor      = VertexDiffuse + VertexAmbient 
 
** we are not taking specular color into account here 
MaterialDiffuseColor – This is the diffuse reflectance property of the material. It is an RGB color 
describing how to scale the RGB components of incoming diffuse light. 
 
MaterialAmbientColor – This is the ambient reflectance property of the material. It is an RGB color 
describing how to scale the RGB components incoming ambient light. 
 
LightDiffuseColor – This is the diffuse color of the light source. 
 
LightAmbientColor – This is the ambient color of the light source. 
 
Dot – This is the result of the dot product between the vertex normal and the vector from the vertex to 
the light source. As both of these vectors are unit length, this equates to the cosine of the angle 
between these two vectors and will be between 0.0 and 1.0. This is used to scale the result of 
MaterialDiffuseColor*LightDiffuseColor in the above diffuse equation to take the orientation between 
the vertex and the light into account. 
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AttFactor – For directional light types this will always be 1.0 and will not scale the color in any way. 
For spot lights and point lights, the AttFactor is the result of the attenutation equation discussed earlier 
and shown below. This value will be between 0.0 and 1.0 and is used to scale the color based on how 
the light attenuates as distance to the vertex from the light increases. 
 

AttFactor = 
)3()2(1

1
2DnAttenuatioDnAttenuationAttenuatio ×+×+

 

 
Attenuation1, Attenuation2 and Attenuation3 are the attenuation settings of the light source and D is 
the distance from the light source to the vertex. 
 
SpotFactor – If the light is a directional light or a point light then this value will always be set to 1.0. 
The SpotFactor is used to further scale the color only when a spot light is being processed. The spot 
factor, which will be between 0.0 and 1.0, is used to scale the color based on the position of the vertex 
between the inner and outer cones of the spot light.  
 
We calculate the dot product of the vertex normal and a vector from the vertex to the light. This gives 
us the cosine of the angle between them and is used to determine which cone the vertex falls into. If 
the angle is smaller than the inner cone angle/2 then the vertex is within the inner cone and the 
SpotFactor should be set to 1.0. If the angle is larger than the outer cone angle/2 then the vertex is 
completely outside the cones of influence of the spot light and so the SpotFactor should be set to 0.0. 
Otherwise the vertex is located between the inner and outer cone and we calculate the SpotFactor using 
the following equation. 
 

   α  = Angle between Vertex Normal and VertexToLight direction vector  
         φ   = Phi / 2 (Half the outer cone angle) 
         θ   = Theta /2 (Half the inner cone angle) 

Falloff = Falloff property of the D3DLIGHT9 structure  
 

SpotFactor = 
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Now it is time to put all of this into code. We break things up one section at a time to make for easier 
reading: 
 
float CScene::GetLightContribution( iwfSurface * pPoly, D3DLIGHT9 * pLight ) 
{ 
    D3DXVECTOR3 Direction, LightDir = pLight->Direction; 
    float       Contribution = 0.0f, MaxContribution = 0.0f; 
    D3DXCOLOR   Diffuse, Ambient, Color; 
    float       Atten, Spot, Rho, Dot; 
    float       Distance; 
    ULONG       i; 
 
    // We can only get light contribution of we have a material 
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    if ( pPoly->ChannelCount == 0 || !(pPoly->Components & SCOMPONENT_MATERIALS )) 
        return 0.0f; 
    if ( pPoly->MaterialIndices[0] < 0 ) 
        return 0.0f; 
     
The first thing we do is check to see if the passed surface has a material applied. If not, then this 
surface cannot reflect light and as such this light will have no influence on the face. It is possible for 
surfaces not to have materials but this is never the case with IWF files exported from GILES.     
 
Next we retrieve the material that this surface uses from the CScene::m_pMaterialLight array. It is 
possible that a surface may have multiple channel counts, but GILES only allows a single material per 
surface, so the material index will always be stored in array element zero. 
 
    // Retrieve the material for colour calculations 
    D3DMATERIAL9 * pMaterial = &m_pMaterialList[ pPoly->MaterialIndices[0] ]; 
 
Now we will loop through each vertex in the face to calculate their colors. We start be calculating the 
light direction vector (the vector from the vertex to the light). We also record the length of this vector 
which will tell us the distance from the light to the vertex. We use this to check if the vertex is within 
range of the light. If it is not, then we can skip this vertex because it is not influenced by this light. 
Notice that we only skip an out of range vertex if the light we are processing is not a directional light 
because directional lights have infinite range. After that, we normalize the light direction vector so that 
it is ready to use later when we perform the dot product with it and the vertex normal. 
 
    // Loop through each vertex 
    for ( i = 0; i < pPoly->VertexCount; i++ ) 
    { 
        // Retrieve lighting forumla params 
        Direction = (D3DXVECTOR3&)pPoly->Vertices[i] - pLight->Position; 
        Distance  = D3DXVec3Length( &Direction ); 
 
        // Skip if the light is out of range of the vertex (does not apply to directional) 
        if ( pLight->Type != D3DLIGHT_DIRECTIONAL && Distance > pLight->Range ) continue; 
         
        // Normalize our direction from the vertex to the light 
        D3DXVec3Normalize( &Direction, &Direction ); 
 
Now we will calculation the attenuation factor using the attenuation values stored in the light and the 
distance from the light to the vertex we calculated above. We initially set the attenuation factor to 1.0 
and skip the calculation if this is a directional light because directional lights have infinite range and do 
not attenuate with distance.  
 
      // Calculate light's attenuation factor. 
      Atten = 1.0f; 
      if ( pLight->Type != D3DLIGHT_DIRECTIONAL ) 
      { 
          Atten = ( pLight->Attenuation0 + pLight->Attenuation1 * Distance  
                   + pLight->Attenuation2 * (Distance * Distance)); 
        if ( Atten > 0 ) Atten = 1 / Atten; // Avoid divide by zero case 
      } // End if not a directional light 
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Now we calculate the SpotFactor -- this is 1.0 for any other light type except spot lights. First we 
calculate the cosine of the angle between the light direction vector and the vertex normal by 
performing a dot product between them (Rho).  
 
        // Calculate light's spot factor 
        Spot = 1.0f; 
        if ( pLight->Type == D3DLIGHT_SPOT ) 
        { 
            // Calculate RHO 
            Rho = fabsf(D3DXVec3Dot( &(-LightDir), &Direction )); 
             
Next we compare this angle with the cosine of half the angle of the inner cone. We use half the inner 
cone angle because the light center runs down the middle of the cone with an angle theta/2 on either 
side of this center point. If Rho is larger than the cosine of the half angle, then the vertex is inside the 
inner cone and should not have falloff applied (we set the spot factor to 1.0). If Rho is smaller than half 
the outer cone angle then the vertex is completely outside the outer cone and is not influenced by the 
light (spot factor should be set to 0). 
 
            if ( Rho > cosf( pLight->Theta / 2.0f ) )  
                Spot = 1.0f; 
            else if ( Rho <= cosf( pLight->Phi  / 2.0f ) )  
                Spot = 0.0f; 
            else 

 
If none of the above cases are true, then we calculate the falloff using the spot factor equation shown 
above. In this case the vertex falls in the space between the inner and outer cones of the spot light.           
 
            { 
                Spot = ((Rho - cosf( pLight->Phi / 2.0f)) / (cosf( pLight->Theta / 2.0f) 
                       - cosf( pLight->Phi / 2.0f))) * pLight->Falloff; 
            }  
        } // End if Spotlight 
          
At this point we have the spot factor and the attenuation factor, so all that is let to do is to calculate the 
diffuse color and ambient colors reflected by the material and store them in the vertex. 
 
Diffuse lighting must be scaled by the cosine of the angle between the vertex normal and the light 
direction vector, so we take the dot product between them, which we will refer to as the dot factor. 
Note that for diffuse lights we must take account of vertices that are facing away from the light source 
– they should not receive any diffuse light. 
 
        Dot = D3DXVec3Dot( (D3DXVECTOR3*)&pPoly->Vertices[i].Normal, &Direction ); 
        if(Dot <= 0) Dot = 0; 
         
Now we can multiply the material diffuse color with the light diffuse color and scale all of this by the 
dot, attenuation, and spot factors as shown below. Notice that we ignore the alpha color component as 
it is not used for lighting.  
 
        // Calculate diffuse contribution for this vertex (Cd*Ld*(N.Ldir)*Atten*Spot) 
        Diffuse.a = 0; 
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        Diffuse.r = pMaterial->Diffuse.r * pLight->Diffuse.r * Dot * Atten * Spot; 
        Diffuse.g = pMaterial->Diffuse.g * pLight->Diffuse.g * Dot * Atten * Spot; 
        Diffuse.b = pMaterial->Diffuse.b * pLight->Diffuse.b * Dot * Atten * Spot; 
 
We now calculate the ambient contribution of the light source in exactly the same way with the 
exception that the dot factor is not used because ambient light is not orientation dependant.      
  
        // Calculate ambient contribution for this vertex (Ca*[Ga + sum(Lai)*Atti*Spoti]) 
        Ambient.a = 0; 
        Ambient.r = pMaterial->Ambient.r * (  pLight->Ambient.r * Atten * Spot ); 
        Ambient.g = pMaterial->Ambient.g * (  pLight->Ambient.g * Atten * Spot ); 
        Ambient.b = pMaterial->Ambient.b * (  pLight->Ambient.b * Atten * Spot ); 
         
We need to add these two colors together (diffuse and ambient) to get the final vertex color as received 
from this light source. 
         
        Color = Ambient + Diffuse; 
 
To get the highest color component of this new color we perform comparisons using the fabs function 
so that negative numbers still have weight. 
 
        // Calculate light contribution (fabsf() because even dark-lights contribute) 
        Contribution = fabsf(Color.r); 
        if ( fabsf(Color.g) > Contribution ) Contribution = fabsf(Color.g); 
        if ( fabsf(Color.b) > Contribution ) Contribution = fabsf(Color.b); 
  
With the highest color component for this vertex found, we check it against the current highest 
component found so far. If the new color is higher, this becomes the new high score. 
        
        // Store the maximum contribution to this surface. 
        if ( Contribution > MaxContribution )  MaxContribution = Contribution; 
         
    } // Next Vertex 

 
By the time we have done the above for each vertex in the surface, the local variable MaxContribution 
will contain the highest single color component calculated for any of the surfaces vertices. We return 
this value which will become this light’s score in the light contribution table for this surface. 
 
    // Return the total contribution this light gives to face 
    // This will be put in the light contribution table. 
    return MaxContribution; 
 } 

 
We call this function for each light in the scene once for every surface that we process. This means that 
we build a light score table one surface at a time. The scores in this table we have just discovered 
indicate the highest color component that was calculated for the surface vertices using the relevant 
light. 
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CScene::ProcessVertices 
The ProcessVertices function takes the vertices in the passed surface and adds them to the light group 
CVertex array. First the function stores the current vertex count so that it knows the array element 
where the new vertices will be placed. Then the function calls CLightGroup::AddVertex to resize the 
CVertex array to make room for the new vertices. We then loop through every vertex in the passed 
surface and copy them into the CVertex array. 
 
bool CScene::ProcessVertices( CLightGroup * pLightGroup, CPropertyGroup *pProperty, 
                              iwfSurface * pFilePoly ) 
{ 
    ULONG i, VertexStart = pLightGroup->m_nVertexCount; 
 
    // Allocate enough vertices 
    if ( pLightGroup->AddVertex( pFilePoly->VertexCount ) < 0 ) return false; 
 
    // Loop through each vertex and copy required data. 
    for ( i = 0; i < pFilePoly->VertexCount; i++ ) 
    { 
        // Copy over vertex data 
        pLightGroup->m_pVertex[i + VertexStart].x      = pFilePoly->Vertices[i].x; 
        pLightGroup->m_pVertex[i + VertexStart].y      = pFilePoly->Vertices[i].y; 
        pLightGroup->m_pVertex[i + VertexStart].z      = pFilePoly->Vertices[i].z; 
        pLightGroup->m_pVertex[i + VertexStart].Normal =  
                                              (D3DXVECTOR3&)pFilePoly->Vertices[i].Normal; 
        pProperty->m_nVertexCount++; 
 
    } // Next Vertex 
 
    // Success! 
    return true; 
} 
 
 
Because this function is called from BuildLightGroups (on a per material basis), vertices will always 
be added to groups with other vertices that use the same materials. 
 
 
CScene::ProcessIndices 
The ProcessIndices function is called from the BuildLightGroups function once we have located a 
property group that has the same material as the face. The surface passed in has to have its indices 
added to the index array (there may be other indices from other faces already stored). This index array 
will later be copied into the property group index buffer using the BuildBuffers function. 
 
There is one problem to consider: in some cases, the surface passed into this function may not have 
indices pre-generated for it or even if it does, they may be stored as strips or fans. Bearing this in mind, 
this function has to allow for these cases. If the surface passed into the function does not contain 
indices, then we will need to generate an indexed triangle list ourselves. If the surface does have 
indices and they are arranged as an index triangle list, then we can copy them directly into the index 
array. However, if the indices in the surface are not in indexed triangle list format (indexed strips or 
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indexed fans) we will need to convert these indices into an index triangle list before we add them to the 
array.  
 
Before we cover the code to the function itself, we need to look at the different ways a surface can be 
stored and discuss what is involved in generating an indexed triangle list for it. We will first cover the 
case of surfaces that do not include indices. They will have an ordered vertex list and the vertices may 
be stored in triangle list, triangle strip, or triangle fan format.  
 
 
Generating an Indexed Triangle List from a Triangle List 
 
If a surface is stored as a triangle list, it means that are three unique vertices for each triangle in the 
surface. If we have a surface made from 6 triangles, there will be exactly 18 (6*3) vertices. Generating 
an indexed triangle list for this type of surface is easy because the numbers of the vertices in the array 
forming each triangle are the actual index numbers themselves. The following picture shows an 
octagon surface stored as a triangle list: 
 

 
 
In this example there is one position in all faces that is duplicated into 6 different vertices 
(v1,v3,v6,v9,v12,15). The vertex list for this surface would be stored as follows: 
 
VertexList = v0,v1,v2 , v3,v4,v5 , v6,v7,v8 , v9,v10,v11 , v12,v13,v14 , v15,v16,v17 
 
If we encounter one of these surfaces, generating the indices for each triangle is as easy as using the 
vertex numbers for each face. In other words, the index list describing triangles 0 through 5 would look 
like so: 
 
Index List { 0,1,2 , 3,4,5 , 6,7,8 , 9,10,11 , 12,13,14 , 15,16,17 }  
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It should be clear that the number of indices we need is equal to the number of vertices in the surface. 
So the code for generating the indexed triangle list and adding it to the property group index buffer 
would look like so: 
 
VertexStart = pLightGroup->m_nVertexCount - pProperty->m_nVertexStart;  
IndexCount  = pProperty->m_nIndexCount; 
 
case VERTICES_TRILIST: 
 
  // Resize the index array large enough to hold the indices we are about to create.  
  // The count is equal to the vertex count 
  if( pPropertyGroup->AddIndex( pFace->VertexCount ) < 0 )  
  for( i = 0; i < pFace->VertexCount; i++ )  
  { 
       pPropertyGroup->m_pIndex[i + IndexCount] = i + VertexStart; 
  }  
 break; 
 
When the passed surface is a triangle list we call the AddIndex function to resize the property group 
index array using the vertex count of the surface. Next, we loop through each vertex in the face and the 
element number of the vertex in the array becomes the index in the index list.  

 
Note: IndexCount is the number of indices in the index array prior to adding this face’s indices. It 
ensures that we add our indices to the end of the index list. Vertex Start is the position in the light 
group vertex buffer where the first vertex used by this property group is. We do this because all indices 
stored in a surface start at 0 and are local to the face. Since many faces may exist in this index buffer 
we must add the number of vertices already being used by this property group onto the index of each 
face added so that the index is no longer relative to the surface but to the entire index buffer to which 
it is being added. 

 
 
Generating and Indexed Triangle List from a Triangle Fan 
 
If the surface is a triangle fan, then the vertices will be ordered in a clockwise winding order and there 
will be no duplicated vertices. No index list will exist so we will have the generate one. Because we 
use the first vertex (v0) for every face, the code for generating the indexed triangle list is 
straightforward.  
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We need three indices per face and we know the triangle count of a triangle fan is VertexCount-2. 
Therefore, if we multiply this by 3 we have the correct number of indices for every triangle in the face. 
In the above example you can see that the triangle count is:  
 
VertexCount-2 = 8 – 2 = 6 Triangles 
 
6*3 = 18 indices required 
 
The following code shows that if we use the number of the first vertex in vertex list in every triangle, 
then generating the indices can be done by stepping through the number of faces, each time 
incrementing the other two vertices. For example, 0,1,2 followed by 0,2,3 followed by 0,3,4 and so on. 
 
VertexStart = pLightGroup->m_nVertexCount - pPropertyGroup->m_nVertexStart;  
IndexCount  = pPropertyGroup->m_nIndexCount; 
  
case VERTICES_TRIFAN: 
 
     // Allocate space in the property groups index array (NumberOfTris * 3) 
     if ( pPropertyGroup->AddIndex( (pFace->VertexCount - 2 ) * 3 ) < 0 ) ; 
           
     for ( Counter = IndexCount, i = 1; i < pFace->VertexCount - 1; i++ ) 
     { 
           pPropertyGroup->m_pIndex[ Counter++ ] = VertexStart; 
           pPropertyGroup->m_pIndex[ Counter++ ] = i + VertexStart; 
           pPropertyGroup->m_pIndex[ Counter++ ] = i + 1 + VertexStart; 
     } // Next triangle 
break; 
 

 
 
Note: In the code above, IndexCount is the number of indices in the property group prior to this 
surface’s indices being added -- it is the index where the new values should be added in the array. 
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Generating an Indexed Triangle List from a Triangle Strip 
 
If the surface is stored in triangle strip format, then there will be no duplicated vertices and the vertex 
list will be ordered to describe a continuous set of triangles. The number of triangles created by the list 
of vertices is calculated as VertexCount-2. We multiply this by 3 to get the number of indices we need 
to describe this surface as an indexed triangle list. 
 

 
 
In Chapters Two and Three we examined the culling order requirements for triangle strips. We know 
that DirectX expects every second face to have a counter-clockwise winding order in order to render a 
strip correctly. You can see in the above image that the second triangle (v1,v2,v3) and the fourth 
triangle (v3,v4,v5) meet this standard. To ensure that indexed triangle list rendering does not cull these 
faces, we must flip the order of every second triangle in the surface so that their indices are clockwise.  
 
case VERTICES_TRISTRIP: 
 
       // Allocate index we need (NumberOfTris * 3) 
       if ( pPropertyGroup->AddIndex( (pFace->VertexCount - 2) * 3 ) < 0 ) ; 
       for ( Counter = IndexCount, i = 0; i < pFace->VertexCount - 2; i++ ) 
       { 
           // Starting with triangle 0. 
           // Is this an 'Odd' or 'Even' triangle 
           if ( (i % 2) == 0 ) 
             { 
                pProperty->m_pIndex[ Counter++ ] = i + VertexStart; 
                pProperty->m_pIndex[ Counter++ ] = i + 1 + VertexStart; 
                pProperty->m_pIndex[ Counter++ ] = i + 2 + VertexStart; 
              }  
           else 
             { 
                pProperty->m_pIndex[ Counter++ ] = i + VertexStart; 
                pProperty->m_pIndex[ Counter++ ] = i + 2 + VertexStart; 
                pProperty->m_pIndex[ Counter++ ] = i + 1 + VertexStart; 
             }  
       } // Next vertex 
 
break; 
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Generating a Indexed Triangle List from an Indexed Triangle List 
 
If the surface we are assigning to this property group already has an array of indices in indexed triangle 
list format, we can simply copy the indices from the surface straight into the index array as shown 
below. We must remember to add on the VeretxStart value to each index to be sure that the index 
values are relative to the first vertex used by the property group in the light group vertex buffer. 
 
 
case INDICES_TRILIST: 
             
      // We can do a straight copy (converting from 32bit to 16bit if necessary) 
      if ( pPropertyGroup->AddIndex( pPropertyGroup->IndexCount ) < 0 )  
     for ( i = 0; i < pFace->IndexCount; i++ )  
     { 
          pPropertyGroup->m_pIndex[i + IndexCount] = pFace->Indices[i] + VertexStart; 
     }                 
break;  
 
 
 
Generating an Indexed Triangle List from an Indexed Triangle Fan 
 
When the imported surface is an indexed triangle fan, the vertices are not guaranteed to be in any 
specific order but the list of indices accompanying the surface describes the correct vertices to form a 
triangle fan. The number of triangles in the face can be calculated as IndexCount - 2.  
 

 
 

Calculating the triangle list indices that we need for our index buffer is almost exactly the same as the 
way we did it for the non-indexed triangle fan case:  
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  if ( pPropertyGroup->AddIndex( (pFace->IndexCount - 2 ) * 3 ) < 0 ); 
  for ( Counter = IndexCount, i = 1; i < pFace->VertexCount - 1; i++ ) 
  { 
         pPropertyGroup->m_pIndex[ Counter++ ] = pFace->Indices[ 0 ] + VertexStart; 
         pPropertyGroup->m_pIndex[ Counter++ ] = pFace->Indices[ i ] + VertexStart; 
         pPropertyGroup->m_pIndex[ Counter++ ] = pFace->Indices[ i + 1 ] + VertexStart; 
  }  

 
Instead of using the loop variable i as the index to the vertex as in the non-indexed case, we use it to 
index into the surface index list to return the number of the vertex at that index. It is this value that is 
used to build the indices of our triangle list. 
 
Generating an Indexed Triangle List from an Indexed Triangle Strip 
 

 
 
With an indexed triangle strip, the vertices not guaranteed to be in any particular order because the 
index list is responsible for describing the vertices in strip format. When using an indexed triangle 
strip, the number of indices is equal to the number of vertices, and the number of triangles created by 
the strip is calculated as IndexCount - 2.  In the above example 6 - 2 = 4 is correct because there are 
four triangles. 
 
case INDICES_TRISTRIP: 
         
        if ( pPropertyGroup->AddIndex( (pFace->IndexCount - 2) * 3 ) < 0 ) ; 
        for ( Counter = IndexCount, i = 0; i < pFace->IndexCount - 2; i++ ) 
        { 
              // Starting with triangle 0. 
              // Is this an 'Odd' or 'Even' triangle 
              if ( (i % 2) == 0 ) 
              { 
                   pPropertyGroup->m_pIndex[Counter++] = pFace->Indices[i] + VertexStart; 
                   pPropertyGroup->m_pIndex[Counter++] = pFace->Indices[i+1] + VertexStart; 
                   pPropertyGroup->m_pIndex[Counter++] = pFace->Indices[i+2] + VertexStart; 
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              }  
              else 
              { 
                   pPropertyGroup->m_pIndex[Counter++] = pFace->Indices[i]   + VertexStart; 
                   pPropertyGroup->m_pIndex[Counter++] = pFace->Indices[i+2] + VertexStart; 
                   pPropertyGroup->m_pIndex[Counter++] = pFace->Indices[i+1] + VertexStart; 
              }  
        } // Next vertex 
 
break; 

 
Below you can see the code to the ProcessIndices function in its entirety. It includes all of the code 
snippets we have just covered above. We pass in the surface that is about to have its indices added to 
the property group, a pointer to the property group itself, and the light group to which the property 
group belongs. 
 
 
bool CScene::ProcessIndices(CLightGroup *pLightGroup, CPropertyGroup *pProperty,  
                            iwfSurface * pFilePoly ) 
{ 
    ULONG i, Counter, VertexStart, IndexCount; 
         
    VertexStart = pLightGroup->m_nVertexCount - pProperty->m_nVertexStart;  
    IndexCount  = pProperty->m_nIndexCount; 
 
    // Generate indices 
    if ( pFilePoly->IndexCount > 0 ) 
    { 
        ULONG IndexType = pFilePoly->IndexFlags & INDICES_MASK_TYPE; 
     
        // Interpret indices (we want them in tri-list format) 
        switch ( IndexType ) 
        { 
            case INDICES_TRILIST: 
             
                // We can do a straight copy (converting from 32bit to 16bit) 
                if ( pProperty->AddIndex( pFilePoly->IndexCount ) < 0 ) return false; 
                for ( i = 0; i < pFilePoly->IndexCount; i++ ) 
                     pProperty->m_pIndex[i + IndexCount] = \ 
                                                pFilePoly->Indices[i] + VertexStart; 
                break; 
 
            case INDICES_TRISTRIP: 
             
                // Index in strip order 
                if ( pProperty->AddIndex( (pFilePoly->IndexCount - 2) * 3 ) < 0 ) 
                   return false; 
                for ( Counter = IndexCount, i = 0; i < pFilePoly->IndexCount - 2; i++ ) 
                { 
                    // Starting with triangle 0. 
                    // Is this an 'Odd' or 'Even' triangle 
                    if ( (i % 2) == 0 ) 
                    { 
                        pProperty->m_pIndex[Counter++] = \ 
                                                  pFilePoly->Indices[i] + VertexStart; 
                        pProperty->m_pIndex[Counter++] = \ 
                                                  pFilePoly->Indices[i + 1] + VertexStart; 
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                  pProperty->m_pIndex[Counter++] = pFilePoly->Indices[i + 2] + VertexStart; 
                     
               } // End if 'Even' triangle 
               else 
               { 
                   pProperty->m_pIndex[Counter++]= pFilePoly->Indices[i] + VertexStart; 
                   pProperty->m_pIndex[Counter++]= pFilePoly->Indices[i + 2] + VertexStart; 
                   pProperty->m_pIndex[Counter++]= pFilePoly->Indices[i + 1] + VertexStart; 
 
                } // End if 'Odd' triangle 
 
             } // Next vertex 
 
            break; 
 
            case INDICES_TRIFAN: 
 
            // Index in fan order. 
            if ( pProperty->AddIndex( (pFilePoly->IndexCount - 2 ) * 3 ) < 0 )  
               return false; 
                
            for ( Counter = IndexCount, i = 1; i < pFilePoly->VertexCount - 1; i++ ) 
            { 
              pProperty->m_pIndex[ Counter++ ] = pFilePoly->Indices[ 0 ] + VertexStart; 
              pProperty->m_pIndex[ Counter++ ] = pFilePoly->Indices[ i ] + VertexStart; 
              pProperty->m_pIndex[ Counter++ ] = pFilePoly->Indices[ i + 1 ] + VertexStart; 
            } // Next Triangle 
 
            break; 
 
        } // End Switch 
 
    } // End if Indices Stored 
    else 
    { 
        // We are going to try and build the indices ourselves 
        ULONG VertexType = pFilePoly->VertexFlags & VERTICES_MASK_TYPE; 
 
        // Interpret vertices (we want our indices in tri-list format) 
        switch ( VertexType ) 
        { 
            case VERTICES_TRILIST: 
 
                // Straight fill 
                if ( pProperty->AddIndex( pFilePoly->VertexCount ) < 0 ) return false; 
                for ( i = 0; i < pFilePoly->VertexCount; i++ ) 
                     pProperty->m_pIndex[i + IndexCount] = i + VertexStart; 
 
                break; 
 
            case VERTICES_TRISTRIP: 
 
                // Index in strip order 
                if ( pProperty->AddIndex( (pFilePoly->VertexCount - 2) * 3 ) < 0 ) 
                    return false; 
                for ( Counter = IndexCount, i = 0; i < pFilePoly->VertexCount - 2; i++ ) 
                { 
                    // Starting with triangle 0. 
                    // Is this an 'Odd' or 'Even' triangle 
                    if ( (i % 2) == 0 ) 
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                    { 
                        pProperty->m_pIndex[ Counter++ ] = i + VertexStart; 
                        pProperty->m_pIndex[ Counter++ ] = i + 1 + VertexStart; 
                        pProperty->m_pIndex[ Counter++ ] = i + 2 + VertexStart; 
                     
                    } // End if 'Even' triangle 
                    else 
                    { 
                        pProperty->m_pIndex[ Counter++ ] = i + VertexStart; 
                        pProperty->m_pIndex[ Counter++ ] = i + 2 + VertexStart; 
                        pProperty->m_pIndex[ Counter++ ] = i + 1 + VertexStart; 
 
                    } // End if 'Odd' triangle 
 
                } // Next vertex 
 
                break; 
 
            case VERTICES_TRIFAN: 
             
                // Index in fan order. 
                if ( pProperty->AddIndex( (pFilePoly->VertexCount - 2 ) * 3 ) < 0 ) 
                    return false; 
                for ( Counter = IndexCount, i = 1; i < pFilePoly->VertexCount - 1; i++ ) 
                { 
                    pProperty->m_pIndex[ Counter++ ] = VertexStart; 
                    pProperty->m_pIndex[ Counter++ ] = i + VertexStart; 
                    pProperty->m_pIndex[ Counter++ ] = i + 1 + VertexStart; 
 
                } // Next Triangle 
 
                break; 
 
        } // End Switch 
 
    } // End if no Indices stored 
     
    // Success! 
    return true; 
}  
 
 
CScene::Render 
To render the scene we must traverse each light group, set up its lights and its vertex buffer, and then 
loop through each of the property groups, set the material and index buffer for the property group and 
call DrawIndexedPrimitive. 
 
void CScene::Render( ) 
{ 
    ULONG         i, j; 
    CLightGroup * pLightGroup = NULL; 
    ULONG       * pLightList  = NULL; 
 
    // Set up our dynamic lights 
    m_pD3DDevice->SetLight( 0, &m_DynamicLight ); 
    m_pD3DDevice->LightEnable( 0, TRUE ); 
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In the above section we set our dynamic light in the reserved device light slot 0 and enable it. We set 
the light each frame because the light may be animated and we want to make the device aware of the 
new settings. 
 
Now, we loop through each light group in the CScene light group array and get a pointer to both the 
current light group and the light group’s light list: 
 
    // Loop through each light group 
    for ( i = 0; i < m_nLightGroupCount; i++ ) 
    { 
        // Set active lights 
        pLightGroup = m_ppLightGroupList[i]; 
        pLightList  = pLightGroup->m_pLightList; 
 
Since dynamic lights will be using the lower device slot values, we just count up from the number of 
reserved lights slots allocated by the application to the maximum simultaneous light limit, and set and 
enable the lights of our light group. First we check if the light slot we are processing has a light in the 
current light group that should go there and if not, we disable any lights there. This is important 
because if the light group before used eight lights and the current group only uses four, there will be 
lights that remain active that we will want disabled before rendering the current polygon batch. 
 
        for ( j = m_nReservedLights; j < m_nLightLimit; j++ ) 
        { 
            if ( (j - m_nReservedLights) >= (pLightGroup->m_nLightCount ) ) 
            { 
                // Disable any light sources which should not be active 
                m_pD3DDevice->LightEnable( j, FALSE ); 
             
            } // End if no more lights 
            else 
            { 
                // Set this light as active 
                m_pD3DDevice->SetLight( j, 
                                       &m_pLightList[pLightList[j - m_nReservedLights]]); 
                m_pD3DDevice->LightEnable( j, TRUE ); 
 
            } // End if set lights 
 
        } // Next Light 
 
Once we have setup all the lights for the current light group, we set the light group vertex buffer as the 
current vertex stream.    
 
        // Set vertex stream 
        m_pD3DDevice->SetStreamSource( 0, pLightGroup->m_pVertexBuffer, 
                                       0, sizeof(CVertex)); 
 
Next we loop through the light group property group array. We retrieve the material from the current 
property group and set it as the device material. Next we set the index buffer of the property group as 
the current device index buffer. Finally we call the DrawIndexedPrimitive function to render the 
triangles in the property group index buffer.  
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        // Now loop through and render the associated property groups 
        for ( j = 0; j < pLightGroup->m_nPropertyGroupCount; ++j ) 
        { 
            CPropertyGroup * pProperty = pLightGroup->m_pPropertyGroup[j]; 
            m_pD3DDevice->SetMaterial(&m_pMaterialList[(long)pProperty->m_nPropertyData] ); 
            m_pD3DDevice->SetIndices(pProperty->m_pIndexBuffer); 
            m_pD3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 
                                               pProperty->m_nVertexStart, 0, 
                                               pProperty->m_nVertexCount, 0, 
                                               pProperty->m_nIndexCount / 3 ); 
         
        } // Next Property Group 
    } // Next Light group 
} 
 
Notice how we pass the pProperty->VertexStart value into the render call to tell the device what value 
should be added to each index in the property group index buffer before it is used to reference a vertex 
in the vertex buffer. This makes sure that the indices in the property group (which are zero based and 
relative to the property group) are mapped to the correct section of the light group vertex buffer. 
 
 
Study Questions  
 

1. What is a vertex normal and why do we need them? 
2. Explain the differences between a spot light, a point light and a directional light. List as many 

of the characteristics of all three that you can think of. 
3. Is it possible for a directional light to attentuate with distance? 
4. What is ambient light and is the vertex normal taken into account when reflecting it? 
5. Specular highlights depend on the positions and orientation of the viewer. TRUE or FALSE? 
6. The D3DLIGHT9 structure has a Falloff member. This member is only applicable to one light 

type, which type? (Spot, Point or Directional) 
7. Does the DirectX lighting pipeline perform light occlusion to produce shadows? 
8. Explain what the attentuation properties of the D3DLIGHT9 structure allow us to control? 
9. Do directional lights have a limited range? 
10. The emissive color of a material is added to the color of each vertex using that material whether 

the vertex is within range of a light or not. TRUE or FALSE? 
11. What does the Power member of the D3DMATERIAL9 structure allow us to appear the 

appearance of? 
12. When using a Software Vertex Processing Device all lighting calculations are still done on the 

3D hardware but just not as fast as with Hardware Vertex Processing. TRUE or FALSE? 
13. All Software Vertex Processing Device must use no more than 8 lights. TRUE or FALSE? 
14. How can we find out how many simultaneously active lights the hardware supports? 
15. Why do you think DirectX lighting (and other similar techniques) are referred too as vertex 

lighting techniques? 
16. If the DirectX lighting pipeline is enabled, why would you wish to store color components at 

the vertex level, and how could they be used? 
17. What is the meant when people comment that you should ‘batch render your primitives’? 
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Chapter 5 Appendix A  Device States  
 

RenderState Type  Argument  Description 
D3DRS_LIGHTING  TRUE or FALSE  Enables/Disables the 

DirectX fixed function 
lighting pipeline. 
Vertices passed to 
DrawPrimitive should 
have normals that will 
be used in the lighting 
calculations. Lights 
should have been 
placed into the scene 
and a material should 
be set describing the 
reflectance properties 
used in the lighting 
calculation. 

D3DRS_AMBIENT  D3DCOLOR  Used to set the color of 
the global ambient 
light of the scene. This 
color is modulated with 
the ambient reflectance 
property of the device 
material (or the vertex) 
and the result is added 
to the color of each 
vertex. This is in 
addition to any ambient 
light that may be 
received by a vertex 
from nearby light 
sources. 

D3DRS_SPECULARENABLE  TRUE or FALSE  Used to enable or 
disable specular 
highlight calculations 
by the lighting 
pipeline. Has no effect 
if lighting is disabled. 
Specular highlights add 
view dependand 
highlights adding to the 
realism of the scene. 
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Specular highlights are 
more expensive to 
calculate and so should 
be disabled when not 
required. 
 

D3DRS_DIFFUSEMATERIALSOUR
CE 
D3DRS_AMBIENTMATERIALSOU
RCE 
D3DRS_SPECULARMATERIALSOU
RCE 
D3DRS_EMISSIVEMATERIALSOU
RCE 

 D3DMATERIALCOLORSO
URCE 

 If lighting is enabled, 
these four render states 
tell the lighting 
pipeline where to get 
the reflectance 
properties for the 
diffuse, ambient, 
specular, and emissive 
calculation. They can 
be set to use the 
relevant member in the 
current material, the 
first color stored in the 
vertex or the second 
color stored in the 
vertex.  

 
 
 Misc Device State Types 
 
Device State Function  Parameters  Description 
SetLight  DWORD Index ,  

D3DLIGHT9 * Light 
 Binds a set of light 

properties to device light 
slot [Index]. 

LightEnable  DWORD Index, 
BOOL bEnable 

 Enable/Disable the light at 
device light slot [Index]. 
If the lighting pipeline is 
not enabled, this will have 
no effect. 

SetMaterial  D3DMATERIAL9 *pMaterial  Sets the material 
properties of the device 
used by the lighting 
pipeline. If lighting is 
disabled then the material 
has no effect. When 
lighting is enabled, the 
material contains the 
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reflectance properties 
used by the lighting 
calculations to determine 
how much of the 
incoming light received 
by a vertex is reflected. 
This effects the overall 
color of the vertex. 
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Introduction 
 
In this lesson we will learn: 

• what a texture is  
• how it is stored in memory 
• how to create textures 
• how to load texture images from files 
• how to store texture coordinates in our vertex structure 
• how blend multiple textures together 
• how to use compressed textures 

 
In nature, a surface such as a wooden board or a metal sheet can have a near infinite amount of detail 
and randomness caused by surface imperfections, wear and tear over time, etc. Moreover, it is 
generally true that two surfaces are never exactly the same. Consider two planks of wood purchased 
from the same timber merchant. Even if the wood is of the same type, each plank of wood will have its 
own unique grain pattern and color. 
 
We cannot possibly hope to model this behavior in our applications in real-time, but we can give the 
surfaces of our objects much more detail than we have to date. One approach is to use many more 
vertices in our models. If we wanted to render a rectangle that it looked like a piece of wood, instead of 
building it from four vertices, we might make it from a grid of quads (like our terrain grid in Chapter 
3) and give each little quad its own color. This way the parent rectangle would look like it was made 
up from many hundreds or thousands of shades of brown and more closely resemble a piece of wood. 
The problem with this approach is that at the scene level it would potentially require million of vertices 
that will need to be processed (transformed and lit). 
 
This is why the concept known as texturing is so important. It is a method of ‘painting’ image detail 
(usually a 2D image created in a paint program or with the use of a digital camera) onto a polygon as it 
is rendered. Instead of creating thousands of tiny quads to give the wood surface many different colors, 
we can instead use an image of a piece of wood to achieve the same end. If we had some means to 
keep the rectangle as a simple 4 vertex construct but paint the 2D image onto the surface of the 
polygon as it was rendered, we would experience the best of both worlds -- we would have a very low 
polygon object with a highly detailed surface. Fig 6.1 shows a quad with a wood image applied. 
 

 
Figure 6.1 
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The quad in Fig 6.1 does not exhibit the true imperfections of a real piece of wood and the surface is 
still perfectly flat. Nevertheless to the naked eye, the surface does not appear completely flat and does 
indeed look like a piece of wood planking. 
 
The process of mapping images to polygons is referred to as texturing (or texture mapping). The 
image which is being mapped onto these polygons is referred to as a texture (or a texture map). 

 
Note: The word texture usually describes the way something feels to touch. In 3D graphics 
programming, a texture refers to an image that is used by the rendering pipeline to provide per-pixel 
color information for a polygon during the rendering process. The two are not totally unrelated. The 
idea is to give objects the appearance of a surface that has texture. 

 
Recall the way that color is stored at the vertices and then interpolated across the triangle as it is 
rendered. Imagine if we also stored 2D coordinates (referred to as texture coordinates) at each vertex 
that described a pixel in the texture such that the color of that pixel in the texture is assigned as the 
color of the vertex. Now imagine that the 2D coordinates themselves are interpolated across the surface 
for each pixel. Each pixel of the polygon now has its own set of 2D coordinates which describe a pixel 
location in the texture.    

 
Note: To avoid confusion when referring to both pixels on the screen (or in the frame buffer) and 
pixels within a texture image, a pixel within a texture is referred to as a texel.  

 
The images in Fig 6.2 show our scene from Lab Project 5.3 both with and without textures. 
 
 

Without Textures With Textures 
 

  
Figure 6.2 
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For most of our scenes we will use many texture images. Creating these textures is usually the 
responsibility of the project texture artist or someone else on the artistic team. You can see in the Fig 
6.2 that this small section of a level has a different texture for the door, walls, floor, ceiling, window 
frame and even a transparent texture applied to the glass of the window. 
 
Fig 6.3 shows some 2D images that might be used as textures in a game level.  These were created 
using the popular paint programs Adobe Photoshop™ and Jasc’s Paint Shop Pro™. 
 

  
A Brick Texture A Stone Texture 

  
A Wood Texture A Floor Tile Texture 

 
Figure 6.3 

 

Looking at the visuals for some of the latest games, it should be clear that a modern 3D application has 
to load and maintain many texture maps. Generating quality textures can be quite difficult and time 
consuming work for the artists. Fortunately for us, as game programmers our job is actually much less 
difficult than theirs in this respect. We simply need to load the textures they create into memory and be 
sure to apply them to the correct polygons in a given scene. We will even be receiving assistance from 
the DirectX API to make that job easier. DirectX Graphics will allow us to bind textures to polygons 
with ease and even automates loading the textures from file and managing them in memory. 

Although we will cover the complete the texturing process in this chapter, the following list describes a 
brief summary of the steps involved: 

• Use a level editor or modeling program to assign textures to faces. 
• Have the level editor or modeling program generate texture coordinates at the vertices. 
• Load the vertex data from the file containing texture coordinate set(s) per vertex. 
• Load the texture images from files. 
• Set the texture(s) as the device texture(s). 
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• Render all the triangles that use the current texture(s).  
• Repeat last two steps for each texture in the scene. 

 
Since the first two steps are typically not our responsibility, we can concentrate on allocating and 
loading textures properly, and setting the device to get the best texture image quality when rendering. 
We will examine later in the lesson how to calculate texture coordinates for a vertex. Although most of 
the time the texture coordinates will be generated for us in the level editing package, there will be 
times when we may want to calculate texture coordinates ourselves in code. 

 

Texture Memory 
 

Because of the way our textures will be loaded, it is important that we discuss how textures are stored 
in memory first. When we load texture images from a file, we can specify several parameters that 
describe to the D3DX texture loading functions how we would like them stored in memory.  

Before the release of DirectX 8.0, there was a DirectX API called DirectDraw. It was used to perform 
2D operations and render 2D graphics to surfaces. We would store 2D image data on DirectDraw 
surfaces which if possible, would be stored in video memory for optimal performance. These surfaces 
would typically be used to hold bitmap data and the DirectDraw surface could be blitted to the screen 
or to another DirectDraw surface very quickly with the aid of hardware acceleration. 

While the notion of a surface being used as the main means for transporting and storing image data has 
been diminished in favor of the IDirect3DTexture9 interface, at the driver level DirectDraw remains a 
core asset. In fact, DirectDraw surfaces are still used to hold our texture image data. The 
Direct3DTexture9 object is used to manage and work with textures and completely encapsulates the 
underlying surface object containing the texture image data.  There is a Direct3DSurface9 object as 
well which allows us to store and work with surfaces directly. These surface objects are typically used 
for performing 2D operations like blitting title screens for example, rather than being used directly for 
texture work. Because the texture image data is stored in a surface within the texture object, we need to 
look at how surfaces are stored in memory. This will enable us to work with both texture and surface 
objects alike. 

Note: It may seem a strange fact that under the bonnet DirectX also stores vertex buffer data as 
DirectDraw surfaces. This is not so strange however when you consider that they are simply blocks of 
linear memory as we shall soon see. 

Regardless of where a surface is stored, we can think of it as a rectangle with a width and height and a 
memory area for the image data. In reality, this memory is just a linear block of bytes. You might think 
that you could calculate how many bytes a surface is using by multiplying the width by the height and 
then multiplying the result by the number of bytes used by each pixel, but this is not the case. When a 
surface is created, the driver may choose to insert extra bytes in the surface at the end of each row of 
image data such that the data is aligned to memory address boundaries. This is done so that the driver 
can work with or copy the image data in an optimal way. Since each row of the surface may have one 
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or more extra bytes of data allocated, the length of a row in the surface is referred to as the pitch. So 
the number of bytes used by a surface can accurately be calculated as Pitch x Height x Bytes Per Pixel 
(BPP) as shown in Fig 6.4. 

 

 
Figure 6.4 

 

Although these extra bytes on the end of each row are not rendered when the texture is drawn and are 
not considered to be part of the image data, we still have to be aware of this fact when we work with 
image data. Just like vertex buffers, the IDirect3DTexture9 and the IDirect3DSurface9 interfaces both 
include Lock methods to lock the resource and return a pointer to the image data for reading and/or 
writing pixels. When we have a pointer to image data, we normally think to advance to the next line in 
the image by: 

   pImageData += ImageWidth 
 
But with a DirectX texture/surface, because of the padding bytes on the end, this approach might leave 
the pointer stranded in the wrong location. Therefore, when we have a pointer to the image data of a 
DirectX surface, we must advance to the next line of image data by: 
 
pImageData += ImagePitch 

 

Note: We have been using the terms surface and texture interchangeably. Technically, the surface is 
the actual memory holding the image data and the Direct3DTexture9 object is an object that 
encapsulates the surface and allows us to work with it. The IDirect3DSurface9 object is another object 
that encapsulates image data, but we will discuss surfaces in the context of the data encapsulated by 
the Direct3DTexture9 object for now. 
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Texture Formats 
 

When we initialized our rendering device in Chapter 2, we had to choose a format for the frame buffer. 
We did this using the D3DFORMAT enumerated type. While this type has many members, during frame 
buffer creation we were limited to only a small subset of formats. When creating textures, we have a 
much wider range of formats that we can choose from. We use the D3DFORMAT type to create a texture 
or load a texture such that its image data is stored in memory using the specified color component 
arrangement for each pixel.  

Not all of the possible texture formats are shown in Table 6.1, since many are obscure and not widely 
supported. However, we do list the common formats that you are likely to use along with a description 
of how the color information is stored in a single pixel within the surface. Typically you will be using 
one of the 32-bit or 16-bit formats when creating your textures. Popular texture formats supported by 
most hardware are highlighted in grey. 

Table 6.1 Texture Formats 

D3DFORMAT 
Member 

Description 

32-bit Surface Formats 
D3DFMT_A8R8G8B8 Each pixel in the surface will be a 32-bit value. 8 bits 

are used for alpha (transparency information), and 8 
bits each for red, green and blue. 

D3DFMT_X8R8G8B8 8 bits for red, 8 bits for green and 8 bits for blue (8 bits 
are unused -- X8). This gives 24 bit color resolution on 
a 32-bit surface. This is useful because many graphics 
adapters to not support 24 bit textures so this allows us 
to use a 32-bit surfaces to store 24 bit color. 

D3DFMT_A2B10G10R10 2 bits for alpha, 10 bits for each red, green and blue. 
D3DFMT_A8B8G8R8 8 bits for alpha followed by 8 bits for each blue, green 

and red. The components are arranged in memory in 
ABGR format as opposed to 32-bit ARGB. 

D3DFMT_X8B8G8R8 8 bits for red, green and blue stored in XBGR format. 
There are 8 bits of each pixel not used (X8)  

D3DFMT_G16R16 A rarely used format where each pixel contains 16-bits 
for green and 16-bits for red. You will rarely ever use 
this for textures because of the lack of its blue color 
component limiting the colors that can be stored. 

D3DFMT_A2R10G10B10 2 bits for alpha and 10 bits for each red, green and blue 
component. Rarely used. 

16-bit Surface Formats 
D3DFMT_R5G6B5 This 16-bit RGB format has 5 bits reserved for red, 6 

bits for green and 5 bits for blue. 
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D3DFMT_X1R5G5B5 5 bits for each red, green and blue component with one 
bit unused. 

D3DFMT_A1R5G5B5 This ARGB surface stores 1 bit for alpha and 5 bits for 
each red, green and blue component. 

D3DFMT_A4R4G4B4 4 bits for each alpha, 4 bits for red, 4 bits for green and 
4 bits for blue. 

D3DFMT_A8R3G3B2 Rarely used ARGB format with 8 bits for alpha, 3 bits 
each for both red and green color components and 2 
bits for blue. 

D3DFMT_X4R4G4B4 4 bits unused and 4 bits each for red, green and blue 
color components.  

 
In addition to the more common surface formats described above, DirectX Graphics also supports 
compressed texture formats. Compressed textures allow the application to use much larger and more 
detailed textures that otherwise might not fit in video memory. These large textures retain an amazing 
amount of detail even when the player is standing very close to them. They can also be used to 
optimize smaller textures by saving video memory. The formats are D3DFMT_DXT1 through 
D3DFMT_DXT5. Compressed textures are now quite widely supported and all future 3D cards released 
will certainly support them.We will examine compressed textures in detail later on in the lesson.  

 
Validating Texture Formats 
 
It is likely that not all of the 16 and 32-bits formats listed in Table 6.1 will be supported on all devices. 
We have highlighted the most common formats and the ones you will most likely use in your own 
applications, but you should always check the support for any format before using it. It is possible that 
a format may be supported by the current hardware but perhaps not with the current frame buffer/depth 
buffer format. 

Once we have created a device, we know the frame buffer and depth buffer formats we are using. With 
this information, we can check a given format against the device using 
IDirect3D9::CheckDeviceFormat to see if this is a valid texture format for the current device. 

We used this function in the enumeration code in Chapter 2 to check if the depth buffer and frame 
buffer could work together on the device we were trying to create.  

HRESULT CheckDeviceFormat 
(       
    UINT Adapter, 
    D3DDEVTYPE DeviceType, 
    D3DFORMAT AdapterFormat, 
    DWORD Usage, 
    D3DRESOURCETYPE RType, 
    D3DFORMAT CheckFormat 
); 
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In the following example we are trying to find a supported 32-bit format that we can tell DirectX to use 
when creating our textures. As each one fails, we check the next in line until we find one which is 
supported. Otherwise we move on to testing 16-bit formats. The following code assumes we are using 
the primary display adapter and a HAL device. It also assumes that our adapter is in 32-bit X8R8G8B8 
format and that we are testing to see if we can find support for a 32-bit texture format.  
 

  D3DFORMAT SupportedFormat = D3DFMT_UNKOWN 
 
if(SUCCEEDED(pD3D->CheckDeviceFormat(D3DADAPTER_DEFAULT,  //Adapter 
          D3DDEVTYPE_HAL,      //Device Type 
                 D3DFMT_X8R8G8B8,     //Adapter Format 
          0,      //Usage flags 
                 D3DRTYPE_TEXTURE,    //Resource Type 
           D3DFMT_A8R8G8B8     //Requested Format 
          )) 
      
SupportedFormat = D3DFMT_A8R8G8B8; 
 
else 
if(SUCCEEDED(pD3D->CheckDeviceFormat(D3DADAPTER_DEFAULT, 
     D3DDEVTYPE_HAL, 
     D3DFMT_X8R8G8B8, 
     0, 
     D3DRTYPE_TEXTURE, 
     D3DFMT_X8R8G8B8 // Requested Format?  
     )) 
 
SupportedFormat = D3DFMT_X8R8G8B8; 
 
else 
if(SUCCEEDED(pD3D->CheckDeviceFormat(D3DADAPTER_DEFAULT, 
           D3DDEVTYPE_HAL, 
           D3DFMT_X8R8G8B8, 
           0, 
           D3DRTYPE_TEXTURE, 
           D3DFMT_X8B8G8R8 //Requested format? 
          )) 
      
SupportedFormat = D3DFMT_X8R8G8B8;   
      
We perform this process for all formats we are interested in. Fortunately, D3DX includes a texture 
loading function that simply loads the file with the file name you supply and automatically creates a 
compatible texture format that most closely matches the bit depth and pixel format of the image in the 
file. The CheckDeviceFormat function is useful if we are looking for a very specific set of formats. For 
example, if we want our textures to use an alpha channel, then we could use the code above to check 
all formats that have alpha components until a suitable one is found.  
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Note: Unlike choosing a back buffer and front buffer format in fullscreen device mode, we are not 
limited to choosing a texture format that matches either the front buffer or the frame buffer. It is 
acceptable to run the graphics card in 16-bit mode while still creating and using 32-bit texture formats. 
The textures, unlike the frame buffer that needs to be flipped to an identical front buffer format in full 
screen mode, are containers of per-pixel information accessed on a per-texel basis by the renderer. The 
performance overhead of using a 32-bit texture while the adapter (and frame buffer) is in 16-bit mode 
(or vice versa) is typically quite small. The color is converted during rendering fairly quickly on the 
hardware. However, for maximum performance you should try to use a texture format that matches 
your frame buffer format whenever it is possible or convenient. 

D3DX also includes a function called D3DXLoadSurfaceFromSurface which allows you to copy 
image data in one surface to a destination surface of the same or different format. For example, if we 
have a source surface of D3DFMT_X8R8G8B8 and a destination surface in D3DFMT_DXT1 (compressed 
format), the function will take the image data in the source surface and copy it into the compressed 
format required by the destination surface. This gives us a mechanism to covert between arbitrary 
surface formats with ease. We will take a look at the D3DX texture functions shortly when we discuss 
the various ways of creating and filling textures. 

 

Note: Often we will not need to manipulate texture data at the pixel level. Letting the D3DX loader 
functions choose a texture format for us is generally fine. If we do need to lock the texture and work 
with image data directly, we will need to be aware of the format so that we know how the pixels are 
arranged in memory. 

 
Understanding Surface Formats 
 
We will briefly cover the D3DFORMAT type and the way texels are arranged in memory since there will 
be times where you will want to manipulate the surface images directly. Let us use as our first 
example, the process of reading and writing to the individual pixels within a texture that has been 
created with a 32-bit ARGB format (D3DFMT_A8R8G8B8). Although each of the formats in Table 6.1 
store colors in a different configuration for each texel, the A8R8G8B8 case should shed some light on 
accessing texels in texture surfaces stored in other formats. 
 
A D3DFMT_A8R8G8B8 surface means that every 32 bits (4 bytes) of surface data represents a single texel 
color. The name of this format makes sense when we consider that we have one byte (8 bits) for each 
color component. Although we have not discussed what the alpha component of a color is at this point 
in the text (see Chapter 7), just know that a pixel can include an alpha component that describes how 
transparent it is. This value determines how the pixel will be blended with another color already in the 
frame buffer at the same pixel location. If the alpha component is at full intensity then the pixel is 
considered opaque and should overwrite any pixel in the frame buffer at that location, assuming it 
passes the appropriate tests (depth, etc.). 
 
As you may recall, this idea of packing four color components into a 32-bit ARGB DWORD can be 
found in cases such as the Diffuse and Specular vertex color components. In a moment we will look at 
how to extract the individual color values from this type of variable.  
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Although we do not yet know how to create a Direct3DTexture9 object, assume for now that we have 
created one that stores a 32-bit image surface that we wish to access. As is the case with vertex buffers, 
the IDirect3DTexture9 interface does not expose the surface data directly, so we have to lock the 
surface first. We do this using the IDirect3DTexture9::LockRect method shown below. 
 
IDirect3DTexture9::LockRect 
(       
    UINT Level, 
    D3DLOCKED_RECT *pLockedRect, 
    CONST RECT *pRect, 
    DWORD Flags 
); 
 
Ignore the first parameter for now -- we will disuss it in the next section. The second parameter accepts 
the address of a D3DLOCKED_RECT structure. If the lock call is successful it will contain a pointer to the 
image data that our application can use to read from or write to the surface. The D3DLOCKED_RECT will 
also contain an integer value describing the pitch of the surface in bytes. 
 
typedef struct _D3DLOCKED_RECT 
{ 
      INT Pitch; 
      void *pBits; 
} D3DLOCKED_RECT; 
 
The third parameter to the LockRect function allows our application to pass in a rectangle specifying 
the region of the texture surface that we would like to lock. If you set this to NULL then the pointer 
returned in the D3DLOCKED_RECT structure will contain a pointer to the first byte of the first pixel in the 
surface. This can be understood as the pixel in the top left corner of the image. If you specify a 
rectangle on the surface, then the pointer returned will point to the first byte of the pixel in the top left 
corner of the rectangle on the surface.  
 
The fourth parameter allows us to specify a series of flags that can be used to supply DirectX Graphics 
with hints regarding the most efficient locking strategy. Unlike vertex buffers which can always be 
locked (even static ones in video memory at a severe performance cost), not all textures are lockable. 
Typically textures that exist in video memory are not lockable and ideally most of our required textures 
will exist there.  However if a texture is created with the D3DUSAGE_DYNAMIC flag, then it can be 
locked even if it does exist in video memory.   
 
The Flags parameter of the lock function can be set to one or more of the following: 

• D3DLOCK_DISCARD   
• D3DLOCK_NO_DIRTY_UPDATE   
• D3DLOCK_NO_SYSLOCK  
• D3DLOCK_READONLY 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 12 of 108 

 

TeamLRN



 

These flags will not be discussed just yet, although you might recognize them from Chapter 3 when we 
locked our vertex buffers.  Their functioning is very similar for textures since, at the driver level, both 
vertex buffers and texture resources are stored on DirectDraw surfaces.  
 
The following example will lock a 32-bit surface and extract the individual color components of the 
texel at coordinates (x =10, y = 4). We use the surface pitch to calculate the correct row width.  
 
IDirect3DTexture9 * pTexture; 
… 
… 
D3DLOCKED_RECT  LockInfo; 
 
// Lock the texture to retrieve its lock info. 
pTexture->LockRect( 0 , &LockInfo , NULL , 0); 
 
We want to cast the void pointer returned in the D3DLOCKED_RECT structure to a 32-bit pointer to access 
the data on a per-pixel level. 
 
// create a 32-bit pointer to the surface pixel data 
unsigned long *pPixelData = NULL; 
pPixelData = (unsigned long *)LockInfo->pBits; 
 
To retrieve the pixel at location (10, 4) we calculate the offset of that pixel as: 
 
Row = LockInfo.Pitch * 4;  (Y=4 so we need to move 4 rows down) 
TotalOffset = Row + 10;    (X=10, so we move to 10th pixel in 4th row) 
 
// Adjust pointer to point at correct pixel 
pPixelData += TotalOffset; 
 
Now simply dereference the pointer to extract the pixel: 
 
unsigned long SrcColor = *pPixelData; 
  
When specifying a 32-bit color using hexadecimal, each full byte is represented as 0xFF (255). The 
hexadecimal layout of the color in code allows us to clearly see the two digits for each color 
component. Now let us see how we can break the DWORD into its separate A, R, G and B byte 
components using bitwise AND operations. Assume that SrcColor has a value of 0xFF326C94. To 
break the color into its separate BYTE components: 

// SrcColor = 0xFF326C94; 
unsigned long DestColor = 0; 
 
// Lets extract each individual color component 
unsigned char Alpha = (SrcColor & 0xFF000000) >> 24;  // 0xFF 
unsigned char Red   = (SrcColor & 0x00FF0000) >> 16;  // 0x32 
unsigned char Green = (SrcColor & 0x0000FF00) >> 8;   // 0x6C 
unsigned char Blue  = (SrcColor & 0x000000FF);        // 0x94 
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At this point we have the alpha, red, green and blue components stored separately as byte values 
between 0 and 255. To pack this information back into the DWORD and write it to our 32-bit surface 
we use a series of bitshifting operations. A new color (if desired) could then be directly written to our 
surface as follows:   
 
// Lets now take each of these values and rebuild it 
DestColour = (Alpha << 24) | (Red << 16) | (Green << 8) | (Blue); 
 
// Write Pixel to surface 
pPixelData = DestColor; 
  
So a color component is extracted by masking off the byte in which that component is contained and 
then shifting it to the right until it occupies the low (first) byte. Since bit masking is sometimes 
confusing for newcomers to programming, let us extract the red color component as a quick example.  
 

 
                         (Bit 32)...................(Bit1) 

SrcColor   = 11111111001100100110110010010100 // 0xFF326C94 
 

 
 
We mask out the component by &’ing the value with a bit mask of 0x00FF0000: 
 

 
 

   BitMask = 00000000111111110000000000000000 // 0x00FF0000 
 
& 
 

 SrcColor = 11111111001100100110110010010100 // 0xFF326C94 
 
= 
 

TempColor = 00000000001100100000000000000000 // 0x00320000 
 

 
All of the values contained within the alpha, green and blue components now equal 0. Only red bits 
remain set. The value now stored in the variable ‘TempColor’ has a hex value of 0x00320000. Since 
there are now 16 empty bits to the right of our red component value we will shift it so that it lines up 
with bit locations 1 through 8 (the bits which describe values between 0 and 255).  
 
 

TempColor = 00000000001100100000000000000000 // 0x00320000 
 

>> 16 
 

    Result = 00000000000000000000000000110010 // 0x00000032 
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The green and blue components essentially drop off the end leaving a red value of 0x00000032 (hex) -- 
50 in decimal.  
 
The same operation is applied to the other three color components. The only differences between the 
processes used to extract the colour components is that they each utilize unique bit masks and bit 
shifting values in order to extract that component’s information. Try out the remaining three for 
yourself and see what you come up with. 
 
We should be able to adjust the above code to extract color components from a 16-bit A4R4G4B4 
surface just as easily. The only difference is that there are two bytes in total to store the colors (each 
color component is represented by 4 bits instead of 8). This of course reduces the available colors 
significantly. At 32-bits we had 255 intensity levels per component, but with a 4444 surface we have 
only 16 levels of intensity per color. This does not mean that the components cannot be as bright as a 
32-bit color, but that between zero intensity and full intensity there are only 16 different shades of that 
color component available. When separated out, each component should have a value between 0 and 
15. Finally, it should be clear that the color masks for each format would have to be constructed 
differently based on the color format. The following example shows how to extract the colors from an 
A4R4G4B 16-bit surface just for completeness -- the other formats you should be able to figure 
yourself by looking at the two examples provided. 
 
For a single component to be at full intensity, all four bits would have to be set (1111). We know from 
the binary number system that this is equal to 15 in decimal, or ‘F’ in hexadecimal. We will use an 
example color of 0xF8C4 (ARGB = (15, 8, 12, 4)).  

 
 

  (Bit 16)………………(Bit1) 
SrcColor   = 1111001011000100 // 0xF8C4 

 
 
To retrieve the red color component we need to isolate the first 4 bits in the high byte of the word. To 
mask off the green color value, we need to mask off the last 4 bits in the low word, and so on.  
 
// WORD SrcColor  = 0xF8C4; 
WORD DestColor = 0; 
 
// Lets extract each individual color component 
unsigned char Alpha  = (SrcColor & 0xF000) >> 12;  // 0xF 
unsigned char Red    = (SrcColor & 0x0F00) >> 8;   // 0x8 
unsigned char Green  = (SrcColor & 0x00F0) >> 4;   // 0xC 
unsigned char Blue   = (SrcColor & 0x000F);        // 0x4 
 
Notice that we mask off the 4 bits of interest and reduce the number of bits that need to be shifted. In 
the 32-bit example the red bits started at bit 16, now they start at bit 8. So we only have to shift down 
by 8 bits this time to convert it to a byte value in the range of 0 - 15.  

 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 15 of 108 

 

TeamLRN



 

 
 

   BitMask = 0000111100000000 // 0x0F00 
 
& 
 

 SrcColor = 1111001011000100 // 0xF8C4 
 
= 
 

TempColor = 0000001000000000// 0x0800 
 
 

 
TempColor = 0000001000000000 // 0x0800 

 
>> 8  
 

    Result = 0000000000000010 // 0x08 
 
 
If we wish to build a color with this format we use the same approach and shift the bytes into position.  

// Lets now take each of these values and rebuild it 
DestColour = (Alpha << 12) | (Red << 8) | (Green << 4) | (Blue); 
 
// Write Pixel to surface 
pPixelData = DestColor; 
 
 
Textures and Memory Pools 

 
Like vertex and index buffers, textures are resources that derive their interface from 
IDirect3DResource9. As with all resources, when they are created, we must choose the memory pool 
where we want them to be stored. We covered the D3DPOOL enumerated type when we discussed vertex 
buffers in Chapter 3, and most of the same rules apply. We will briefly examine memory pool usage as 
it applies to textures. 
 
D3DPOOL_DEFAULT 
When textures are placed in D3DPOOL_DEFAULT we are indicating that we would like the driver to place 
the texture in the memory pool it considers optimal for rendering performance. This will typically be 
local video memory or non-local video memory (AGP memory). Unlike vertex and index buffers 
created in this pool, a D3DPOOL_DEFAULT texture cannot be locked unless it is created with the 
D3DUSAGE_DYNAMIC usage flag. The reason is that a driver may manipulate and rearrange the bits of 
data so that it can work with the texture data using its own format for maximum speed. This is called 
swizzling. Once the texture data has been swizzled, locking the surface could return a pointer to a 
texture format we no longer understand – one that does not correspond to the DirectX standard 
formats. If we specify a dynamic texture, we inform the driver that we will want to lock it at some 
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point. It now knows that the texture data should not be converted to an unknown format because we 
expect to read/write from the texture using the format that it was created with. This can carry a 
performance penalty because the driver will typically more efficiently with swizzled data. 
 
Note that this is also the only pool type you can choose if you intend to use the 
IDirect3DDevice9::StretchRect function to copy one texture surface to another with automatic scaling. 
The same is true of the IDirect3DDevice9::ColorFill function which can be used to fill a texture 
surface with a color. We will examine both of these functions later in the lesson. 
 
Video memory management falls to the application in this case. If there is not enough video memory to 
create a texture, you may need to evict other (perhaps least recently used) textures to make room for it.  
You should also create all of your D3DPOOL_DEFAULT resources before creating any D3DPOOL_MANAGED 
resources. Otherwise the memory management system employed by DirectX9 for your 
D3DPOOL_MANAGED resources will not be able to accurately track available memory. 
 
Like other resources in this pool, when the device is lost, all textures in the D3DPOOL_DEFAULT pool are 
lost also and must be recreated.  
 
 
D3DPOOL_MANAGED 
When a texture is created in the D3DPOOL_MANAGED pool a copy is created first in system memory and 
then the data is uploaded to device memory as it is needed. The DirectX resource management system 
will make sure the texture data exists in the optimal device memory pool and that it can be locked. 
When the texture is locked we get back a pointer to the system memory copy of the surface. This 
makes reads and writes relatively fast. When the surface is unlocked, the modified image data is 
uploaded from the system memory copy into the actual texture surface (typically in video memory) 
and the changes to the texture will take effect. 
 
One of the biggest advantages of using this pool is that the DirectX memory management system will 
remove least recently used textures from video memory and promote more recently used ones into that 
space. Each texture is given a time stamp describing the last time it was used. When a polygon(s) is 
about to be rendered that uses a texture not already in video memory, the texture with the oldest time 
stamped is removed and the required texture has its data uploaded from the system memory copy into 
video memory. The application can assign each texture a priority if desired. This way if two textures in 
memory currently have the same time stamp, the texture with the lowest priority gets evicted from 
video memory first. This allows us to hint that certain textures are more important than others. We 
might do this if the texture is large -- where constantly evicting and uploading it would affect 
performance. 
 
Like all managed resources, these textures will not have to be recreated when a lost device is 
recovered. The device can automatically recreate the texture surface when the device is reset and 
upload the texture data from the system memory copy. This is done automatically; making 
D3DPOOL_MANAGED a reasonable default memory pool for applications that simply create textures from 
images loaded from files and use them to render texture mapped polygons. 
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There are several cases where you may not want to use D3DPOOL_MANAGED textures. This pool cannot 
be used if you need to call any of the following IDirect3DDevice9 functions: 

• StretchRect 
• ColorFill 
• UpdateSurface 
• UpdateTexture 
 

D3DPOOL_SYSTEMMEM 
Textures created with this pool are placed in system memory and do not need to be recreated when the 
device is reset. Hardware accelerated devices generally cannot usually use system memory textures 
directly for rendering. You can check whether this is the case by checking the D3DCAPS9::DevCaps 
member returned from the IDirect3DDevice9::GetDeviceCaps function. This member is a bit field so 
you can check to see if it has the D3DDEVCAPS_TEXTURESYSTEMMEMORY flag set as follows: 
 
D3DCAPS9 caps; 
pDevice->GetDeviceCaps(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, &caps); 
if(cap.DevCaps & D3DDEVCAPS_TEXTURESYSTEMMEMORY)   
{ 
 //Texturing from system memory is supported 
} 
 
Typically, software devices (such as the reference rasterizer) are limited to only using system memory 
textures and cannot use video memory textures. You can check if a device can or can not support video 
memory textures by checking the DevCaps member for the D3DDEVCAPS_TEXTUREVIDEOMEMORY flag. 
This is not something your application will usually need to do because if you use the 
D3DPOOL_MANAGED or D3DPOOL_DEFAULT pool types then the driver will create the texture in the 
memory pool preferred by the device. This will normally be in video memory for hardware devices 
and system memory for software devices. 
 
Since most applications will be using a hardware device you might wonder if there would ever be a 
need to create system memory texture resources on a hardware device if they cannot be used directly 
for texturing. As it happens there is a need for this resource type if you intend to manage texture 
memory yourself (using D3DPOOL_DEFAULT) and need to frequently alter the contents of the texture. 
 
When managing textures yourself, your application will typically want to create a system memory 
copy of all of the D3DPOOL_DEFAULT created textures.  If the application needs to update the contents of 
the texture, it is usually fastest to make the alterations to the system memory copy and then transfer the 
contents up to the video memory version with the IDirect3DDevice9::UpdateTexture member function. 
This function is designed specifically for this purpose. It accepts two textures (a source and a 
destination texture) where the source texture must be a system memory texture and the destination 
texture must be a D3DPOOL_DEFAULT texture.  These copies are also useful when the device becomes 
lost because D3DPOOL_DEFAULT textures will need to be recreated. Since D3DPOOL_SYSTEMMEM textures 
persist, they are available for copying back up to the hardware.  
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D3DPOOL_SCRATCH 
In this pool the texture is created in system memory but is not accessible to the device. These textures 
can be understood as simple data containers. While they can be locked, and their bits copied to and 
from the surfaces of other textures, we cannot use a texture in this pool to render textured polygons.  
 
We will shortly see that devices often put restrictions on textures used for rendering. A common 
prerequisite is that the texture dimensions be a power of 2 (and on some very old hardware textures 
must be perfectly square). Some hardware devices may impose a maximum texture size such as 
256x256 or 512x512.  Textures created in the D3DPOOL_SCRATCH pool do not have any of these 
restrictions – but that is hardly surprising since these restrictions are imposed by the device and the 
device cannot access textures in the D3DPOOL_SCRATCH pool.  
 

 
MIP Maps 
 
We continue our exploration of textures and texture memory with a brief discussion of MIP maps. Let 
us begin by examining their origins and move on to storage implications. 
 
When working exclusively with 2D graphic images, we can choose to maintain precise dimensions 
when copying images to the screen. For example, we could sample an image with a pixel/texel ratio of 
1:1 -- every texel in the source image mapping precisely to one pixel on the display. But when working 
in 3D we generally will not have this ability. We may have textures that are mapped to a polygon far in 
the distance taking up fewer pixels on the screen than there are texels in the texture. The polygon may 
have screen space dimensions of 64x64 pixels, while the texture mapped to it has 128x128 texels. 
When this is the case, it is clear that we can no longer copy all of the texture detail onto the polygon. 
As each screen space pixel is mapped back to a 2D texel coordinate by the rasterizer, some texels will 
have to be left out (every other texel in the aforementioned case). 
 
If you have ever done any sound recording, you can liken this process to sampling a sound. Provided 
we use a high enough sample rate, the recorded sound will be very close to the original -- as is the case 
with music recorded on compact discs. Reducing the sample rate results in the the loss of accuracy and 
detail. Texture mapping a polygon on the display is much like this. The fewer pixels we have to work 
with on the display, the less detail we will be able to preserve.  
 
Simply skipping texels like this can result in the loss of important detail information that we may not 
be prepared to sacrifice. But if you have ever scaled down an image in a paint package, you know that 
detail preservation is attempted. Most paint packages include filters that use pixel averages to reduce 
the picture in such a way that it remains a good approximation of the original image. If you use a pixel 
discarding process, you will notice that when scaling down by large amounts the image can be quickly 
distorted -- especially noticible if there is text on the original image. In the downsampled result, the 
loss of detail may be significant. Fig 6.5 shows a 128x128 texture (left) mapped to a (64x64) quad. A 
simple pixel skipping algorithm is used to make the texture fit the polygon: 
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128x128 Texture 64x64 Quad 

 

 

 
Figure 6.5 

 
The scaled down image in Fig 6.5 looks rather bad and the text has become totally unreadable. This 
would only get worse as the polygon gets smaller. Further, it will also produce a shimmering artifact as 
the interpolated floating point texture coordinate for each pixel in the polygon is mapped into the 2D 
texture space and snapped to the nearest integer texture coordinate. The floating point rounding causes 
a given pixel’s corresponding texel in the texture map to fluctuate between neighboring texels and 
pixel colors can appear to change as the object moves nearer or further away from the viewer.  
 
There are also problem with the opposite scenario. As polygons approach the camera and begin to 
occupy more pixels than the texture, we reach a point where we are mapping 1 texel to multiple pixels. 
This stretches the texture image to fill the surface of the quad causing an undesirable blocky 
appearance (Fig 6.6). 
 
A 64x64 texture map will look fine when 
applied to a polygon of approximately the 
same size. 

A blockiness and lack of detail appears 
when the polygon is larger than the texture 
and many pixels map to a single texel. 

 

 
Figure 6.6 

 
A common solution to both of these problems is MIP mapping. MIP is short for Multum In Parvo -- a 
Latin phrase meaning ‘much in small’ (i.e. many things in a small place).  A MIP map is essentially an 
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ordered series of texture surfaces where each one is half the size in each dimension as its predecessor. 
For example, we could create a texture to hold a 256x256 image. If we instruct our texture loading 
function to create a MIP map chain, it should create an array of surfaces such that the next one in the 
chain is 128x128 and the next is 64x64 and the next is 32x32 – all the way down to 1x1 if that many 
MIP levels are desired. Since we will use D3DX texture loading functions for this procedure, in 
memory, each one of these surfaces will be a separate surface object that is managed by the main 
Direct3DTexture9 object. We instruct the D3DX texture loading functions to take the image stored in 
the top level surface (this is our base texture image) and sample the image down into all of the 
descending MIP surfaces as shown in Fig 6.7. 
 

 
Figure 6.7 

 
Note: In Fig 6.7 all of the textures are square but this does not have to be the case. The MIP levels 
reflect the scaled dimensions of the top level surface. Some older 3D graphics cards do insist on square 
textures, so we will discuss how to check the device for that limitation later in the lesson. 

The D3DX texture loading functions can use filtering algorithms to generate a high quality 
downsampled image. They do this by calculating the color of every texel in a MIP surface using a 
weighted average of neighboring pixels in the preceding surface in the chain. Most paint packages such 
as Jasc’s Paint Shop Pro™ use similar filters that allow you to scale the image down by a fair amount 
before the image starts to become conspicuously corrupt. The following set of images show a 128x128 
texture, followed by this same texture downsampled onto a 64x64 quad by the rasterizer. The third 
image is a 64x64 MIP level generated by a D3DX texture loading function. 
 

 

A 128x128 image. When the texture has MIP surfaces, this will be the 
dimensions and image in the top level MIP surface (Level 0). When the 
texture does not have MIP surfaces, this will be the only surface used for 
texturing the polygons that use it regardless of their distance from the 
camera. 
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When the texture does not have MIP surfaces the image is downsampled 
onto a 64x64 quad by the rasterizer using a fast but crude algorithm 
causing crude sampling artifacts. 

 

If the texture has MIP surfaces the correct MIP surface will be used to 
texture the quad. The D3DX loading function has done a much nicer job 
of downsampling the image to this resolution 

 
 
We can access each surface separately by using the IDirect3DTexture9::LockRect function and 
specifying the MIP level (zero based indices) that we want to retrieve a pointer to. This is what the first 
parameter in the LockRect function is used for. For example, your artist may think that despite the 
advanced filtering algorithms provided by D3DX, some important detail has become unacceptably 
blurred. In such case they may want to create a new touched up image for a given MIP level. Although 
this is probably not something that will happen very often, the ability to access each MIP surface 
individually and copy data directly provides you with this capability.  
 
The next example shows a 128x128 texture downsampled by the D3DX texture loading functions to fit 
on a 64x64 MIP surface. Compare that to the same image sampled down by the artist and copied into 
the 64x64 MIP level. In the example, the floor tile looks basically the same and there has been no real 
benefit over the automatic downsampled version. However, the artist has chosen to use a smaller, 
sharper font for the text which makes it appear cleaner. 
 

 

In this image we have let the D3DX texture loading function generate the 64x64 
MIP level by downsampling the original 128x128 image using filtering. It has 
done a fair job although the text is slightly blurred and hard to read.  

 

In this image, the 64x64 image was created by the artist in a paint package and a 
different font was added that was cleaner and looked better at a smaller resolution. 
This image could be loaded and copied into the 64x64 MIP surface of our texture. 

 
If you decide that the texture you are creating will not have MIP maps, then the first LockRect 
parameter will always be 0 to specify the top level (and in that case, the only) surface.  
 
When the device is rendering the scene, it will perform a distance calculation to determine which MIP 
level should be used to texture a polygon (pixel). If we are rendering a polygon that is close to the 
camera, it might use the top level surface of the texture (perhaps a 512x512 texture with lots of detail). 
As the polygon gets further away and becomes increasingly smaller, then the device will automatically 
select a smaller MIP surface that more closely matches the size of the polygon being rendered. This is 
more efficient and minimizes aliasing artifacts. 
 
We can also gain a performance boost using MIP maps at the cost of additional memory footprint.  
Rather than render a single texture with one resolution, it is faster to use multiple textures at varying 
resolutions. When rendering a small polygon with MIP maps, a smaller MIP level will be chosen. 
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Many more of the texels we intend to use will fit into the cache memory during rendering and fewer 
will have to travel across the bus when uploading to the hardware is necessary. In the best case when 
we are using the lowest MIP levels (1x1, 2x2, 4x4, etc.), the entire MIP surface could be cached for the 
rendering of distant polygons. 
 
 
Loading Textures 
 
Let us now look at how to load image data in from a file. Fortunately, we can accomplish this with a 
single function call using D3DX. There are two functions for creating and loading textures in DirectX 
Graphics (D3DXCreateTextureFromFile and D3DXCreateTextureFromFileEx). The first is the easiest 
to use and takes fewer parameters as it assumes certain default values. The second function provides 
much more flexibility but includes a larger parameter list. We will cover the latter first so that we can 
better understand the default values used by the former. 
 
D3DXCreateTextureFromFileEx 
 
HRESULT D3DXCreateTextureFromFileEx 
(       
    LPDIRECT3DDEVICE9 pDevice, 
    LPCSTR pSrcFile, 
    UINT Width, 
    UINT Height, 
    UINT MipLevels, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    DWORD Filter, 
    DWORD MipFilter, 
    D3DCOLOR ColorKey, 
    D3DXIMAGE_INFO *pSrcInfo, 
    PALETTEENTRY *pPalette, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 
 
LPDIRECT3DEVICE9 pDevice 
This parameter is a pointer to the device interface. It is needed because the device owns the texture 
memory and because this function calls the D3DXCheckTextureRequirements function to check that 
the other inputs to this function are valid (i.e. that properties such as the width, height, and format are 
supported by the current device). If the any of the inputs are invalid, then they are adjusted to find the 
best supported match.  
 
LPCSTR pSrcFile 
This is a pointer to a string storing the texture filename. It can include relative or absolute paths -- or 
no path at all to load a texture from the application’s current working directory. D3DX supports a wide 
range of image formats (bmp, tga, jpg, png, dib, dds). This function automatically handles the creation 
of the texture object and the conversion of image data from the file into the texture surface. 
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UINT Width 
This is the width of the desired texture. It does not have to be the same as the width of the image that 
we are loading because the function will scale the image to fit using one of the filter types specified in 
the Filter parameter to this function. If we specify D3DX_DEFAULT for this parameter, then the width is 
taken from the image in the file. If this width is not a supported texture width, then the closest 
supported width is chosen and the image is scaled to fit. 
 
UINT Height 
This is the height of the desired texture. Same rules as above. 
 
UINT MipLevels 
This is where we specify the desired number of MIP map levels for the texture. A value of 1 indicates 
a texture with a top level surface only. If the value we specify is not a valid number it will be adjusted 
to create a texture with a MIP level count supported by the device. D3DX_DEFAULT (or a value of 0) will 
create a texture with a MIP chain down to 1x1 in dimensions. This means a 128x128 texture would 
have 8 levels with dimensions shown below: 
 

128 x 128 Level 0 
64   x  64  Level 1 
32   x  32  Level 2 
16   x  16  Level 3 
8     x   8  Level 4 
4     x   4  Level 5 
2     x   2  Level 6 
1     x   1  Level 7 

    
Once the image has been loaded into the top level surface and scaled (if necessary) using the filtering 
algorithm specified in the Filter parameter, it is sampled from the top level down through to the 
bottom level automatically. The filtering algorithm used to resize the image from one MIP level to the 
next does not need to be the same as the filtering algorithm use to scale the image file at the top level 
surface. We specify the filtering algorithm we would like the function to use when generating the MIP 
map images with the MipFilter parameter to this function.  
   
DWORD Usage 
For general texture use, you will usually set this flag to zero. You can however specify the 
D3DUSAGE_DYNAMIC flag if you wish the function to create a dynamic texture. You can check to see if 
the device supports dynamic textures using the IDirect3DDevice9::CheckDeviceFormat function, 
passing in the texture format and the D3DUSAGE_DYNAMIC flag.  The other flag that we can specify is 
the D3DUSAGE_RENDERTARGET flag. If a texture is created as a render target, we can tell the device to 
render the scene to the texture surface instead of the frame buffer.  
 
D3DFORMAT Format 
This parameter indicates the pixel format that we desire. If the format is not supported by the current 
device then the function will find the next closest match. This format does not need to be the same 
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format or bit depth as the image we are loading. Once the texture has been created, the function will 
copy the image data to the surface performing the appropriate color conversion. This is useful because 
it allows us to request a texture format that is identical to the frame buffer format. When we do so and 
then use this texture for rendering, no color conversion has to be performed and we can render at 
maximum speed. If we specify D3DFMT_UNKNOWN then the texture surface created will be the closest 
match to the pixel format of the image data in the file. Because of this, the function will very rarely fail 
-- unless the file name is incorrect or an invalid device was passed.  
 
D3DPOOL Pool 
This is where we specify the memory pool that we would like the texture to be created in.  
 
DWORD Filter 
If the size of the image being loaded does not match the size of the texture we are creating, the image 
will be scaled to fit the texture surface. This parameter allows us to specify the filtering technique that 
should be used to downsample (or upsample) the image to the top level surface. The possible 
algorithms that we can choose from are listed below and vary in the quality of filtering they provide. 
These are the more common filtering options, but be sure to refer to the SDK documentation for a 
more complete listing. 
 

D3DX_FILTER_NONE 

No filtering takes place at all. If the image from the file does 
not fit on the created texture surface it is simply cropped to fit. 
If the image is smaller than the texture surface then all unused 
pixels in the texture will be transparent black.  

D3DX_FILTER_POINT Each texel gets its color from the nearest equivalent pixel in 
the file image. This can cause resizing artifacts. 

D3DX_FILTER_LINEAR 
Each pixel in the texture surface is computed by averaging the 
four nearest pixels in the source image. 
 

D3DX_FILTER_TRIANGLE 

This is the slowest filter but provides the best re-sampling 
quality. Every pixel in the source image contributes equally to 
the image on the destination texture surface. This is the 
default filtering type used if you specify D3DX_DEFAULT 
for either the Filter or MipFilter parameters. 

D3DX_FILTER_BOX 

Each pixel is computed by averaging a 2×2(×2) box of pixels 
from the source image. This filter works only when the 
dimensions of the destination are half those of the source (as 
is the case with MIP maps). 

D3DX_FILTER_DITHER 
The resulting image is dithered using a 4x4 ordered dithering 
algorithm. This can be combined with any of the above filter 
types.  

 
If we set this parameter D3DX_DEFAULT then the filtering method used is equivalent to specifying both 
D3DX_FILTER_TRIANGLE and D3DX_FILTER_DITHER. 
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DWORD MipFilter 
While the Filter parameter specifies the filter used to sample the source image into the top level texture 
surface, the MipFilter parameter allows us to specify the filter type used to filter images down through 
the MIP chain surfaces. All of the filters listed above are valid, and the default is a combination of 
D3DX_FILTER_TRIANGLE and D3DX_FILTER_DITHER. 
 
D3DCOLOR ColorKey 
The ColorKey allows us to create textures that have transparent regions. This is useful for texture 
images such as windows, chain link fences, foliage, etc. where the viewer should be able to see 
through portions of the texture into sections of the scene that are rendered behind it. When each pixel 
is read from the source image and converted into the texture surface format, it is compared against the 
ColorKey color -- which has itself also been converted into the destination format. If the pixels match 
exactly, then the color of the pixel is replaced with transparent black. When alpha testing is enabled 
during rendering (Chapter 7), pixels with an alpha value of 0 can be ignored, even when they pass the 
depth test and are closer than a pixel already in the frame buffer.  
 
D3DXIMAGE_INFO *pSrcInfo 
When the function returns, this structure will hold information about the original image data found in 
the file. NULL can be passed if your application does not require this information. 

            typedef struct _D3DXIMAGE_INFO 
{ 
    UINT Width; 
    UINT Height; 
    UINT Depth; 
    UINT MipLevels; 
    D3DFORMAT Format; 
    D3DRESOURCETYPE ResourceType; 
    D3DXIMAGE_FILEFORMAT ImageFileFormat; 
} D3DXIMAGE_INFO; 
 

In this structure we will find the width, height, and pixel format of the image in the file that was 
loaded. We can also retrieve the number of MIP levels that were in the file and the resource that 
represents the type of the texture stored in the file (D3DRTYPE_TEXTURE, D3DRTYPE_VOLUMETEXTURE, or 
D3DRTYPE_CUBETEXTURE). All files imported using the dds surface format (used by DirectX) provide 
this resource information. The Depth parameter is only applicable to 3D textures (volume textures). 
Finally, the D3DXIMAGE_FILEFORMAT member describes the type of file that contained the image and is 
expressed as one of the members of the enumerated type shown below. 

 
typedef enum _D3DXIMAGE_FILEFORMAT 
 { 
    D3DXIFF_BMP = 0, 
    D3DXIFF_JPG = 1, 
    D3DXIFF_TGA = 2, 
    D3DXIFF_PNG = 3, 
    D3DXIFF_DDS = 4, 
    D3DXIFF_PPM = 5, 
    D3DXIFF_DIB = 6, 
    D3DXIFF_FORCE_DWORD = 0x7fffffff 
} D3DXIMAGE_FILEFORMAT; 
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PALETTEENTRY *pPalette 
This member is used when we are creating 8 bit surfaces that use a color palette. Palletized surfaces 
contain a maximum of 256 possible pixel colors. We will not use such textures in this course as we 
will prefer a greater range of colors. Support for this type of texture on more modern graphics cards 
may even be unavailable, so be sure to check the device capabilities if you intend to use one. 
 
LPDIRECT3DTEXTURE9 *ppTexture 
This is the address of a pointer to an IDirect3DTexture9 interface. It will be assigned a valid interface 
if the function is successful. We use the IDirect3DTexture9 interface to work with the texture surface 
and to send it to the device for rendering.  
 
The following code shows how to use this function to load a file based image into a 256x256 32-bit 
RGB surface in the managed memory pool:  
 
IDirect3DTexture9 *pNewTexture = NULL; 
 
D3DXCreateTextureFromFileEx(m_pDevice,  // Our Device 
                            “Brickwall.bmp”, // File name of texture 
                            256,  256,  // We want a 256x256 texture  
                            D3DX_DEFAULT, // Create MIP chain to 1x1 
        0,   // No special usage flags 
        D3DFMT_X8R8G8B8,  // Desired texture format 
        D3DPOOL_MANAGED,  // A Managed texture 
        D3DX_DEFAULT,     // Use default filtering if 
                                              // image needs scaling to fit 
                                              // texture 
        D3DX_DEFAULT,     // Use default filtering to  
                                              // generate mip map images   
        0,          // No Color key  
        NULL,         // Don’t want file info 
               NULL,         // No palletized surface 
        &pNewTexture);    // Pointer to created texture 
 
That is basically all there is to loading a texture and preparing it for use. Later we will see how to send 
the texture to the device for rendering. 

 
D3DXCreateTextureFromFile 

 
The D3DXCreateTextureFromFile function does not have the flexibility of the extended version of the 
function, but it has a much more manageable parameter list. 

HRESULT D3DXCreateTextureFromFile 
(       
    LPDIRECT3DDEVICE9  pDevice, 
    LPCSTR   pSrcFile, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 27 of 108 

 

TeamLRN



 

All we have to do is pass in our device, a filename, and a pointer to a texture interface pointer. It is the 
equivalent of calling D3DXCreateTextureFromFileEx with the excluded parameters set to either 
D3DX_DEFAULT or 0. This function can be used as shown below: 

IDirect3DTexture9 *pTexture = NULL; 
D3DXCreateTextureFromFile( pDevice , “Brickwall.bmp” , &pTexture); 
 
The equivalent would be calling D3DXCreateTextureFromFileEx with the following parameters:  

D3DXCreateTextureFromFileEx 
( 
    pDevice,      //Pass our device 
    pSrcFile,      //Image file name 
    D3DX_DEFAULT,   //Choose closest compatible width 
    D3DX_DEFAULT,   //Choose closest compatible height 
    D3DX_DEFAULT,   //Generate complete MIP map chain  
    0,       //No special usage flags 
    D3DFMT_UNKNOWN, // Choose closest compatible pixel format 
    D3DPOOL_MANAGED,// Create texture in the Managed tool 
    D3DX_DEFAULT,   // Use default scaling filter 
    D3DX_DEFAULT,   // Use default Mip sampling filter 
    0,       // No color key 
    NULL,      // No Image information returned 
    N      // No Palette info returned ULL, 
    &pTexture      // Pointer to the created texture interface 
); 
 
 
D3DXCreateTexture 
 
If we need to generate a blank texture and fill in the image data ourselves, D3DX includes functions 
that allow us to create a texture object without loading file image data into it. We may need to do this if 
we have our own texture file reading code, or if we wanted to generate texture images in our code 
(procedural texturing). D3DXCreateTexture includes a parameter list similar to the file loading 
function we saw previously.  
 
HRESULT D3DXCreateTexture 
(       
    LPDIRECT3DDEVICE9  pDevice, 
    UINT Width, 
    UINT Height, 
    UINT MipLevels, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 
 
If we specify an unsupported width, height, or format, the function will find the next closest match that 
is supported and should not fail. To use the function: 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 28 of 108 

 

TeamLRN



 

IDirect3DTexture9 * pTexture = NULL; 
D3DXCreateTexture( pDevice , 100 , 100 , 6 , 0 , D3DFMT_A4R4G4B4, 
                              D3DPOOL_MANAGED, &pTexture ); 
 

Note: When a texture or surface has a pixel format with an alpha component, the texture is said to use 
an ‘Alpha Channel’. This per-pixel alpha can be used when alpha blending is enabled to provide per-
pixel transparency (Chapter 7). 

D3DXCreateTextureFromFileInMemoryEx  
 
There are two D3DX functions to create textures from files stored in memory. This can be useful if 
you load the complete contents of the file (header and all) into a memory location. Simply provide a 
pointer to this memory location and the textures are created in exactly the same way with the exception 
that the data is read from memory rather than a file. These two functions are called 
D3DXCreateTextureFromFileInMemoryEx and D3DXCreateTextureFromFileInMemory. Both are 
analogous to D3DXCreateTextureFromFileEx and D3DXCreateTextureFromFile respectively. The 
function prototypes are shown below. The only difference is that we pass a void pointer to the first 
byte in the memory block containing the file. 
 
HRESULT D3DXCreateTextureFromFileInMemoryEx 
(       
    LPDIRECT3DDEVICE9 pDevice, 
    LPCVOID pSrcData, 
    UINT SrcDataSize, 
    UINT Width, 
    UINT Height, 
    UINT MipLevels, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    DWORD Filter, 
    DWORD MipFilter, 
    D3DCOLOR ColorKey, 
    D3DXIMAGE_INFO *pSrcInfo, 
    PALETTEENTRY *pPalette, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 

 
We will not explain the parameter list again. However, the second parameter should now be a pointer 
to the file in memory (as opposed to string containing the file name) and the third parameter should 
describe the size of the file in memory in bytes. 
 
D3DXCreateTextureFromFileInMemory uses a simplified parameter list with D3DX_DEFAULT, 0, or 
NULL values as substitutes for the absent parameters. 
 
HRESULT D3DXCreateTextureFromFileInMemory 
(       
    LPDIRECT3DDEVICE9 pDevice, 
    LPCVOID pSrcData, 
    UINT SrcDataSize, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 
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D3DXCreateTextureFromResourceEx 
 
There are two functions that allow you to create textures from files stored as application resources. 
When binding a file into your resource file you should make sure that you use either the RT_BITMAP 
resource type to store bitmap files (bmp) or the RT_DATA type to store files for other supported 
formats (tga, png , jpg, etc.). When we create a texture from a resource, we pass the handle of the 
module that contains the resource and the string identifying the resource within that module using the 
second and third parameters. 
 
HRESULT D3DXCreateTextureFromResourceEx 
(       
    LPDIRECT3DDEVICE9 pDevice, 
    HMODULE hSrcModule, 
    LPCSTR pSrcResource, 
    UINT Width, 
    UINT Height, 
    UINT MipLevels, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    DWORD Filter, 
    DWORD MipFilter, 
    D3DCOLOR ColorKey, 
    D3DXIMAGE_INFO *pSrcInfo, 
    PALETTEENTRY *pPalette, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 

 
The simplified version of this function is shown below: 
 
HRESULT D3DXCreateTextureFromResource 
(       
    LPDIRECT3DDEVICE9 pDevice, 
    HMODULE hSrcModule, 
    LPCSTR pSrcResource, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 
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Creating Textures Manually 
 

D3DX functions are essentially wrappers around the texture and surface creation functions exposed by 
the device. The IDirect3DDevice9::CreateTexture method can be used to create a blank texture in 
much the same way as D3DXCreateTexture: 
 
HRESULT CreateTexture 
(       
    UINT Width, 
    UINT Height, 
    UINT Levels, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    IDirect3DTexture9 **ppTexture, 
    HANDLE* pHandle 
); 
 

Note: The final parameter is reserved for future use. It should be set to NULL. 

There are several parameters that are absent when compared to the D3DXCreateTexture function. The 
reason is that this function simply tries to create the specific texture object that is indicated by the 
parameters. The missing filtering parameters make sense since this is a blank texture (possibly with 
blank MIP surfaces). If you choose not use D3DX functions then you will need to write your own code 
to import the different image file formats and convert them into the proper surface color format. You 
will also need to deal with scaling, filtering, and filling MIP surfaces yourself.   
 
The call will fail if the parameters are invalid or if the requested settings (format, width, height, or 
usage) are not supported on the current device. It is the application’s responsibility to test for failure 
and adjust the parameters accordingly. Furthermore, when the application is creating textures in this 
way it should check the device capabilities -- especially the common ones listed below. Once you get 
the D3DCAPS9 structure using the IDirect3DDevice9::GetDeviceCaps function, you should check the 
following fields to determine support: 
 
MaximumTextureWidth  
A device will typically have a maximum texture width. If the image you are loading is wider than this 
limit then you will need to scale the image to fit the maximum texture size. If you try to create a 
texture using the above function and you specify a texture wider than this limit, the texture creation 
function will fail.  
 
MaximumTextureHeight 
This specifies a value describing the maximum texture height. If you try to create texture with a larger 
height value than this, texture creation will fail.  
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TextureCaps 
The TextureCaps flag is a bit field. We will need to check the following bits to make sure that the 
width and height of our desired texture is supported by the device. The two bits we need to check are: 
 

D3DTEXTURECAPS_POW2 – If this bit is set then it means the width and height of the 
texture must be a power of two (ex. 64x32, 128x256 and 512x512). If you need to adjust a 
value so that it is a power of 2, simply start with a value of 1 and shift it left, each time testing 
whether it is greater than or equal to the original number. The following function would accept 
a width or height parameter and if it is not a power of 2, round up to the nearest power of 2. 

int GetPowerOfTwo (int Number) 
{ 
 int n = 1; 
 while (n < Number) n<<1; 
 return n; 
}  

 
D3DTEXTURECAPS_SQUARE – If this bit is set then the device only supports textures that 
are perfectly square (width = height). 

Lab Project 6.5 examines how to create textures using IDirect3DDevice9::CreateTexture rather than a 
D3DX helper function. It will check the capabilities of the device and modify the texture creation 
parameters when they are not supported. For all other demos we will use the D3DX texture loading 
functions so that all of this labor is handled automatically. 

 
Setting a Texture 
 
A typical game level will use many textures and your faces will probably contain indices into a 
(global) scene level texture array. The application can create all required textures at application 
initialization or as needed – although initialization is preferred. Before rendering a face or a group of 
faces, we will call IDirect3DDevice9::SetTexture to tell the device which texture to use with the next 
DrawPrimitive call. For the time being, you can think of it as analogous to the 
IDirect3DDevice9::SetMateral function. Like that function, the texture will persist for DrawPrimitive 
calls until changed.  
  
HRESULT SetTexture(DWORD Stage, IDirect3DBaseTexture9 *pTexture); 

 
If we created an array of three textures: 
 
IDirect3DTexture9 *Textures[3]; 
D3DXLoadTextureFromFile (m_pDevice , “Texture1.bmp” , &Texture[0]); 
D3DXLoadTextureFromFile (m_pDevice , “Texture2.bmp”,  &Texture[1]); 
D3DXLoadTextureFromFile (m_pDevice , “Texture3.bmp”,  &Texture[2]); 
 
We could then render all of the faces that use these textures as follows: 
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m_pDevice->BeginScene 
  m_pDevice->SetTexture (0 , Textures[0]); 
  m_pDevice->DrawPrimitive ( Render all triangles that use texture 1 ); 
  m_pDevice->SetTexture (0 , Textures[1]); 
  m_pDevice->DrawPrimitive ( Render all triangles that use texture 2 ); 
  m_pDevice->SetTexture (0 , Textures[2]); 
  m_pDevice->DrawPrimitive ( Render all triangles that use texture 3 ); 
m_pDevice->EndScene 
 
Note that we see polygon state batching once again. Later in our workbook we will revisit the IWF 
level loaded in the last chapter and see to how load in textures referenced from an IWF file. We will 
also adjust the CLightGroup class used in Lab Project 5.3 to batch by both texture and material. 

 

Note: Batching polygons to reduce the number of SetTexture calls is very important since the 
SetTexture device state change can be one of the most expensive. This is especially true if there is not 
enough video memory on the card to contain all of the textures used to render a single frame. For 
example, when using managed textures on a hardware device, if a texture used for rendering is not 
currently in video memory because there is not sufficient room, then a texture currently in video 
memory will need to be evicted to make room for the new texture. The system memory copy of the 
texture will then be uploaded to the hardware so that the rasterizer can access it. Passing texture data 
over the bus can be slow given the number of potential pixels involved. If we do not batch calls to 
SetTexture, this could result in a texture being evicted and then uploaded to video memory several 
times in a single frame. This is minimized if we batch by texture, because once all of the polygons that 
use a texture have been rendered, the texture can be evicted and will not be needed until the next 
frame -- at which point it will be uploaded again. Ideally, you will have enough video memory available 
to fit the textures for entire regions in a level (or perhaps even entire scenes) so that textures are only 
evicted and uploaded as new areas are entered by the player.  

The Stage parameter above will be discussed later in the lesson. For now just know that you can 
simultaneously set multiple textures that will be blended together during rendering and that each 
texture (along with certain settings) is assigned to a texture stage. We will forget about multiple 
textures for the time being and simply set the Stage member to 0. This is the top level texture stage that 
must be used when we are only using single textured polygons.  
 

Texture Coordinates 
 

Texture coordinates are ordered tuples that define a mapping from locations on the polygon surface 
back to pixel locations in texture space. 2D coordinates are by far the most common since almost all 
texture maps we use will be two dimensional images. However 1D and 3D texture coordinates are also 
possible for special circumstances and texture types. For 2D coordinates we use a normalized 
coordinate system where both the horizontal (U) and vertical (V) axis range is [0.0, 1.0] regardless of 
texture size (Fig 6.8). Every pixel in the image can be accessed using UV coordinates in this range.  

The process is similar to what we saw with colors stored at vertices. Recall that when Gouraud shading 
is enabled, the vertex positions are converted into screen space coordinates and then the color of each 
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pixel is calculated by calculating its distance from each of the three vertices. We then used these 
distances to calculate a weighted blend of the three vertex colors to generate a final pixel color.  

The rasterizer will calculate a 2D set of texture coordinates for each pixel that can be used to index into 
the texture surface and retrieve a color. Just as we needed to supply a per-vertex color that was 
interpolated across the surface, we need to supply a set of per-vertex texture coordinates for surface 
interpolation as well. This interpolation will generate a per-pixel texture coordinate by calculating the 
distance of the pixel from each vertex in the polygon. Using these distances, we perform a weighted 
interpolation for the current pixel. Once a per-pixel texture coordinate is found, a color is retrieved 
from the texture and used to fill the pixel. This is a simplified description of the process, but serves our 
purposes for this discussion.  

 

 
Figure 6.8 

 
Texture coordinates will usually be generated in a level editing package and the data simply loading in 
along with the rest of the vertex data.  
 
Let us briefly look at how to calculate a correct UV coordinate for any 
texel in a texture using a simple calculation. In Lab Project 6.1 we 
return to the infamous spinning cubes (right image). This time the faces 
of our cubes will have textures mapped to them. We will apply a 
different one to every face in the cube mesh. 
 
In the texture coordinate system, the UV coordinate (0, 0) is considered 
to be the top left texel in the image and (1, 1) is the texel in the bottom 
right corner. Fig 6.10 shows how a texture might be mapped to a quad. 
Each vertex in the quad stores a coordinate pair that maps to the 
corresponding corner in the texture map. The texture is assumed to be 
256x256 texels in this example but it does not matter what size the texture is. These texture coordinates 
will map the entire contents of the texture to the surface of the quad when it is rendered.  
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Figure 6.10 
 

 Fig 6.10 we see how to calculate the UV coordinates for a pixel in the image at location (128, 64). 
Note that we must take the dimensions of the i ccount using a division. The coordinate (128, 
4) in the above 256x256 image would generate a UV coordinate pair of (0.5, 0.25).  

ture but rather to 
nly a particular section of the image. This section is them mapped over the entire surface when the 

In
mage into a

6
 
Fig 6.11 is a bit more revealing. Here we see a 128x128 texture mapped to a quad. This time however, 
the texture coordinates stored in the vertices do not map to the four corners of the tex
o
quad is rendered, and scaled to fit. The green diagonal line reminds us that the quad is really two 
triangles: 
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Figure 6.11 

 
The texture coordinates stored at each vertex in Fig 6.11 describe a rectangle on the texture surface. 
This is the section used to map to the polygon. Note that if we were to alter these texture coordinates 
between frames, we could give the appearance of making the texture slide across the surface.  
 
Ultimately we can think of texture coordinates as defining a window. Anything on the texture surface 
that falls within the window is mapped to the polygon and texels outside the window are not.  
 
Although we have looked at rectangular regions, this need not be the case. Typically, you will want the 
window described by the polygon vertices to be the shape of the polygon itself so that the image on the 
texture is not unevenly squished out of shape -- but this is not a requirement. Your texture coordinates 
can define any shape, or even map to the same texel.  
 
In Fig 6.12 we are mapping a texture to a triangle. We will usually want the texture coordinates of its 
vertices to define a triangular region on the texture of similar proportion so that the image does not 
look too distorted when its texels are interpolated across the surface. 
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Figure 6.12 
 
Vertex Texture Coordinates 
 
The texture coordinate set for a vertex is stored in the vertex itself and is typically represented by two 
floating point values. As discussed in Chapter 2, we use flags to tell the pipeline that our vertex 
structure has one (or more) sets of texture coordinates.  The Flexible Vertex Format flags are listed 
again below with the ones we are currently interested in highlighted. 

 
Common FVF Flags       Description  

D3DFVF_XYZ Informs the device that the vertices are untransformed and will need to 
be sent through the transformation pipeline. 

D3DFVF_XYZRHW 

Informs the device that this vertex is pre-transformed and should not be 
sent through the transformation and lighting pipeline. The X and Y 
members of the vertex describe the screen space coordinates and the Z 
member describes the depth buffer value between 0.0 and 1.0. 

D3DFVF_NORMAL 
This flag can be used to inform the device that the vertex contains a 
normal vector that is used by the lighting pipeline to calculate diffuse 
and specular lighting. 

D3DFVF_DIFFUSE 

If lighting is disabled the vertex have a diffuse color component. If 
lighting is enabled this may be used as a material reflectance property. 
If lighting is not enabled then this contains the vertex diffuse color. If 
the vertex also contains a specular color these are added together to 
become the final color of the vertex.  

D3DFVF_SPECULAR 
The vertex has a specular component. When lighting is enabled this can 
store a material reflectance property. When lighting is disabled this 
describes the specular color of the vertex. 

D3DFVF_TEX0 through 
D3DFVF_TEX8 

DirectX Graphics supports vertices with up to 8 sets of texture 
coordinates. Many graphics cards available at this time however do not 
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support single pass blending of as many as 8 textures. You can check 
the MaxSimultaneousTextures member of the D3DCAPS9 structure 
returned from the IDirect3D9::GetDeviceCaps function to inquire about 
a device’s texture blending capabilities. Although many 3D graphics 
cards will only support 2 to 4 textures being blended simultaneously, 
this does not limit the ability to store 8 texture coordinates in a single 
vertex. This is because you may wish to store the texture coordinates in 
the vertex and render the polygon several times using different sets.  

 
So we will specify one of the D3DFVF_TEX0 through D3DFVF_TEX8 flags to tell the pipeline how 
many sets of texture coordinates the vertex includes. As mentioned earlier, we can set different 
textures in different texture stages for blending onto a single polygon. Thus we can store multiple sets 
of textures coordinates in a vertex so that the polygon can map its vertices to separate independent 
regions of the textures being blending. Lab Project 6.1 uses only a single texture with a single pair of 
texture coordinates per vertex. 
 

Untransformed, Pre-Lit Vertex with Texture Coordinates 
 
 #define PreLitVertex D3DFVF_XYZ | D3DFVF_TEX1 
 

When we set this vertex format, the device knows to expect a vertex with a position that needs to be 
transformed and a pair of UV coordinates. Our vertex structure would look something like this: 
 
struct MyTexVertex 
{ 
       float x; float y; float z; // Model/World space position 
       float u;          // U Texture Coordinate  
       float v;          // V Texture Coordinate 
}; 
 
We would use this vertex type with lighting disabled. If no diffuse or specular color is specified in the 
vertex when lighting is disabled, the pipeline treats the vertex as if it has bright white diffuse and 
specular colors (0xFFFFFFFF). We will discuss in detail how to enable blending between the texture 
color and the polygon color later in the lesson. 
 
In this next example, we create another pre-lit vertex with texture coordinates. We use a vertex with a 
diffuse color (instead of relying on a default white diffuse color) and a set of texture coordinates so that 
the interpolated texel and diffuse colors can be blended together.  
 
#define PreLitVertex2 D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1 
 
struct MyPreLitVertex2 
{ 
   float x; floaty; floatz; // Object/World space position 
   DWORD diffuse;  // Pre-lit diffuse color of vertex 
   float u;         // U Texture Coordinate 
   float v;         // V Texture Coordinate 
}; 
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Untransformed, Unlit Vertex with Texture Coordinates 

 
In this next example we see a vertex structure with texture coordinates designed to work with the 
DirectX lighting pipeline (includes a vertex normal). 

 
#define UnLitVertex D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1 

 
struct MyUnlitVertex 
{ 

float x; float y; float z; // Object/World space position 
D3DXVECTOR Normal;   // Normal used for lighting 
float u;            // U Texture Coordinate  
float v;            // V Texture Coordinate 

}; 
 
The lighting pipeline calculates the per-vertex color (Chapter 5) and the vertex colors are interpolated 
to provide a per-pixel diffuse color. We can instruct the pipeline to blend this color with the texel color 
in the texture for a given pixel. If a vertex is outside the range of all lights, it will have a black color 
interpolated across the surface, thus darkening the texels mapped to the polygon. 
 
In the next example we see an unlit vertex with a diffuse vertex color that could be used as a material 
reflectance property (Chapter 5). You might use a structure like this if you wanted each vertex in the 
object to have a per-vertex emissive property (instead of per-face). 

 
#define UnLitVertex D3DFVF_XYZ| D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX1 
 
struct MyUnlitVertex 
{ 

float x; float y; float z; // Object/World space position 
D3DXVECTOR Normal;        // Normal used for lighting 
DWORD      Diffuse;        // Diffuse Color 
float u;                 // U Texture Coordinate  
float v;                 // V Texture Coordinate 

}; 
 

Note: To be technically correct we should refer to a pixel that has not yet been rendered in the frame 
buffer as a fragment (or color fragment). This is because a pixel is used to describe a displayed point 
on the monitor screen and any fragment passing through the pipeline may be rejected by a depth test 
or some other test. Therefore, a fragment can be thought of as a potential pixel because it is a color 
that will be plotted on the screen as a pixel only if it does not get rejected at some point in the pipeline.  
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Sampler States 
 
IDirect3DDevice9::SetSamplerState configures the way the device samples texels during rendering. 
Sampler states are analogous to render states. When a sampler state is set, it remains set until it is 
either unset or changed to some other state.  
 
HRESULT SetSamplerState 
(       
  DWORD Stage, 
  D3DSAMPLERSTATETYPE Type, 
  DWORD Value 
); 

 
Sampler states can be used to control what happens when the U or V coordinate of a vertex is outside 
the [0.0, 1.0] range. They can also be used to modify the way the device maps texels to pixels. Other 
settings are possible and we will see such examples as the lesson progresses. 
 
DWORD Stage 
This parameter is the zero-based integer index of the texture stage that we are setting the sampler state 
for.  
 
D3DSAMPLERSTATETYPE Type 
This is the sampler state that we would like to set or change the property for. We specify one of the 
D3DSAMPLERSTATETYPE enumerated types defined below.  
 

typedef enum _D3DSAMPLERSTATETYPE 
 { 
    D3DSAMP_ADDRESSU = 1, 
    D3DSAMP_ADDRESSV = 2, 
    D3DSAMP_ADDRESSW = 3, 
    D3DSAMP_BORDERCOLOR = 4, 
    D3DSAMP_MAGFILTER = 5, 
    D3DSAMP_MINFILTER = 6, 
    D3DSAMP_MIPFILTER = 7, 
    D3DSAMP_MIPMAPLODBIAS = 8, 
    D3DSAMP_MAXMIPLEVEL = 9, 
    D3DSAMP_MAXANISOTROPY = 10, 
    D3DSAMP_SRGBTEXTURE = 11, 
    D3DSAMP_ELEMENTINDEX = 12, 
    D3DSAMP_DMAPOFFSET = 13, 
    D3DSAMP_FORCE_DWORD = 0x7fffffff 
} D3DSAMPLERSTATETYPE; 

 
 
DWORD Value 
This value is interpreted based on the sampler state being set. For one state this might contain a 
D3DCOLOR while another may use the value to determine which MIP level is used for texturing. We 
will see more alternatives for this parameter as we examine various sampler states. 
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As one quick example, the following code could be used to limit stage 0 to only use the first three MIP 
maps (MIP levels 0, 1, and 2 -- which are the largest) in the chain when rendering. Even if the texture 
in stage 0 had 16 MIP levels, levels 3 through 15 would not be used, even when the polygon being 
rendered is very small. While this is not something you will usually want to do because it could cause 
aliasing artifacts, it does show us how to set a sampler state: 
 
m_pDevice->SetSamplerState(0, D3DSAMP_MAXMIPLEVEL, 2); 
 
Like the SetRenderState function, this function has a partner function to retrieve the current sampler 
states for a given stage on the device: 
 
HRESULT GetSamplerState 
(       
    DWORD Sampler, 
    D3DSAMPLERSTATETYPE Type, 
    DWORD* pValue 
); 
 
 
Texture Addressing Modes 

 
The job of fetching the texel from the current texture using the UV coordinate pair belongs to the 
sampler unit. How the sampler interprets texture coordinates outside the [0.0, 1.0] range depends on 
the texture addressing algorithm used. We will look at these algorithms in a moment.  
 
The sampler states we set or modify to change the addressing mode are D3DSAMP_ADDRESSU and 
D3DSAMP_ADDRESSV for the U and V coordinates respectively. The value passed will be a 
member of the D3DTEXTUREADDRESS enumerated type: 
 
typedef enum _D3DTEXTUREADDRESS 
{ 
    D3DTADDRESS_WRAP = 1, 
    D3DTADDRESS_MIRROR = 2, 
    D3DTADDRESS_CLAMP = 3, 
    D3DTADDRESS_BORDER = 4, 
    D3DTADDRESS_MIRRORONCE = 5, 
    D3DTADDRESS_FORCE_DWORD = 0x7fffffff 
} D3DTEXTUREADDRESS; 
 
 
Wrapping (D3DTADDRESS_WRAP) 
 
This is the default addressing mode used for both the U and V texture coordinates when either (or 
both) is outside the [0, 1] range. UV coordinates outside the range cause the texture to be tiled across 
the surface.  
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The Texture 
The Texture is repeated over the 
quad surface using WRAP address 
mode. 

 

 
 

Figure 6.13 
 
Wrapping works simply by taking the interpolated texture coordinate and dropping the integer term. 
This can be affected in the U or V direction separately (or both as in Fig 6.13). When texture 
coordinates are negative, the tiling would still work in the same way, only in the opposite direction. 
The GILES™ level editor uses this addressing mode to allow you to scale and tile your textures across 
faces. In Fig 6.13, if we were to change the bottom left coordinate to (0,8) and the bottom right to 
(4,8), the textures would tile four times across the surface and eight times down as seen in Fig 6.14. 

 
Figure 6.14 

 
You will normally want to use textures that will tile without visible seams. For example, making your 
own textures with a digital camera is easy to do, but generally they do not tile properly and will require 
some touching up in a photo editing package.  
 
Setting WRAP addressing mode for both U and V 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSU , D3DADDRESS_WRAP); 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSV , D3DADDRESS_WRAP); 
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Mirroring (D3DTADDRESS_MIRROR) 
 

When we set either the U or V address modes to D3DTADDRESS_MIRROR, any coordinates 
outside the [0, 1] range are tiled much like D3DTADDRESS_WRAP except that every time the 
texture repeats along that axis, the coordinates are flipped. The best way to understand this is to see it 
in action. In Fig 6.15 we have a texture of the planet Earth mapped to a quad with UV coordinates in 
the range [0.0, 2.0]. The texture is tiled as in the previous mode but this time it is mirrored as it is 
repeated. 
 

 
Figure 6.15 

 
The flipping of the image happens at the texture boundary. If Fig 6.15 had coordinates in the 0.0 to 4.0 
range, it would be repeated 4 times along the U and V axes with the 2nd and 4th tiles mirrored and the 
1st and 3rd tiles the same as the original source image. 
 
Sometimes using mirror mode can help break up repeating patterns when applying a texture over a 
large area. This makes the results appear somewhat more random to the viewer  

 
Setting MIRROR addressing mode for both U and V 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSU , D3DTADDRESS_MIRROR); 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSV , D3DTADDRESS_MIRROR); 

 
. 

Bordering (D3DTADDRESS_BORDER) 
 

Unlike other texture addressing modes which involve a single state change per axis to set that mode, 
border addressing mode requires that we set an additional sampler state. This second state will be a 
color that to be used to generate a border beyond the [0, 1] range. When a pixel maps to a texture 
coordinate outside this range, the sampler returns the border color. In the following example, we set 
the border color to opaque red using the D3DSAMP_BORDERCOLOR sampler state and then map 
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the texture to a quad so that some of its pixels fall outside the [0, 1] range. We can see that these pixels 
are colored red (Fig 6.16). 

 
Setting BORDER addressing mode and color for both U and V 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSU , D3DADDRESS_BORDER); 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSV , D3DADDRESS_BORDER); 
m_pDevice->SetSamplerState( 0 , D3DSAMP_BORDERCOLOR , 0xFFFF0000); 
 

 
                                                                                 Figure 6.16 
 
You can use this mode to make sure that only one copy of the texture is assigned to each polygon 
rendered with it.  
 
Clamping (D3DTADDRESS_CLAMP) 
 
Clamping (like the border address mode) is also useful when you want only one copy of the texture to 
appear on a polygon. U coordinates for pixels outside the 0.0 to 1.0 range are clamped to the color of 
the last (or first if U < 0) texel color in the given row. V coordinates outside the range are clamped to 
the last (or first if V < 0) texel in the given column (Fig 6.17).  

 
Figure 6.17 

 
Mirror Once (D3DTADDRESS_MIRRORONCE) 
 
This is analogous to using D3DTADDRESS_MIRROR and D3DTADDRESS_CLAMP addressing 
modes. It takes the absolute value of the texture coordinate (thus, mirroring around 0), and then clamps 
it to the maximum value.  
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Texture Coordinate Wrapping 
 

In addition to the sampler being assigned a texture addressing mode, we can also assign each set of 
texture coordinates a wrapping mode. This is often confused with the D3DTADDRESS_WRAP 
texture addressing mode described above, but texture wrapping modes are quite different.  
 
To understand wrapping modes we first have to understand how texture coordinates are interpolated 
when wrapping is disabled. The following diagram shows how two vertices belonging to an edge of a 
triangle may be mapped to texels in the current texture being used. As you would expect, the 
interpolated per-pixel UV coordinates of the edge step across the texture and maintain the rule that 
higher U values are to the right of lower U values and higher V values are below lower V values. The 
texels along the edge of the line are returned to the renderer by the sampler unit for each fragment 
along the edge of the polygon.  

 
Figure 6.18 

 
When wrapping is enabled along either the U or V axis of the texture coordinate system, we interpolate 
along the edge formed by the per-vertex texture coordinates using the shortest distance between the 
two coordinates along the given axis.  
 
In Fig 6.19, we see an edge that will be interpolated between the same two points when wrapping is 
enabled along the U axis. Notice that it takes the shortest distance along the U axis by wrapping off the 
left hand side of the texture and back again onto the right hand side.  
 

 
 

                                                                                  Figure 6.19 
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Notice that only U wrapping is enabled in Fig 6.19. The V interpolation still carries on vertically down 
the texture as usual. The edge is only wrapped if the length of the edge will be shorter by doing so. 
Otherwise, the edge will be interpolated across the face of the texture in the normal fashion. 
 
We can also enable texture wrapping along the V axis in the same way. The difference here is that if 
the edge is vertically shorter by wrapping off the top/bottom of the texture, then this approach is used 
(Fig 6.20).  

 
 

                                                                                Figure 6.20 
 
Note that the U edge is not wrapped and steps along the edge of the texture from left to right. The V 
coordinate is wrapped and the edge is shorter vertically if the edge is wrapped off the top edge of the 
texture and up through the bottom. 
 
Finally, we can enable texture wrapping on both the U and V axes of the texture coordinate system 
which, in Fig 6.21, causes the edge to be wrapped both horizontally and vertically: 
 

 
                                                                                 Figure 6.21 

 
Wrapping can be very useful when generating texture coordinates to wrap a texture around a sphere or 
cylinder (Fig 6.22).  
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                                                                                  Figure 6.22 

 
Because this wrapping is really a manipulation of the interpolation of per-vertex texture coordinates, it 
is performed by the renderer and not in the texture stage sampler unit. Therefore, this kind of wrapping 
is actually a render state and not a sampler state.  
 
Wrapping is not enabled on a per-texture state basis, but rather on sets of texture coordinates within the 
vertices. Earlier we discussed how a vertex may have more than one set of texture coordinates so that 
they can be used to address multiple textures (or into the same texture more than once). If we enable 
texture wrapping for texture coordinate 3 for example, then all vertices that are rendered with three sets 
of texture coordinates (or more) will have their 3rd set wrapped by the renderer when they are used to 
access the texture into which they are indexing. This will make more sense later in the lesson when we 
cover multiple texture blending and multiple texture coordinate sets. 
 
To enable wrapping we will use the IDirect3DDevice9::SetRenderState function. The D3DRS_WRAP0 – 
D3DRS_WRAP15 render state types will enable wrapping for texture coordinate sets 0-15 respectively. 
The second parameter specifies the axis we wish to enable wrapping for (D3DWRAPCOORD_0 or 
D3DWRAPCOORD_1 for U and V respectively and D3DWRAPCOORD_2 and D3DWRAPCOORD_3 for wrapping 
3D or 4D texture coordinates).  
 
The following example shows how to enable wrapping on the V axis for the 1st texture coordinate set 
stored at a vertex. 
 
d3dDevice->SetRenderState(D3DRS_WRAP0, D3DWRAPCOORD_1); 
 
The next example shows how to enable texture wrapping for the 3rd set of texture coordinates (for 
vertices that have them) on the U axis. 
 
d3dDevice->SetRenderState(D3DRS_WRAP2, D3DWRAPCOORD_0); 
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Texture Filtering  
 

Texture filtering improves the visual quality of our rendered image. Earlier we saw that using MIP 
maps can help reduce aliasing artifacts that occur when textures are mapped to polygons that are much 
smaller or larger than the dimensions of the texture.  
 
The process of mapping a texture to a polygon such that it has to be reduced (use fewer texels) is 
referred to a minification. When a texture image is reduced in size, ideally each pixel rendered would 
be sampled using a weighted average of all texels in the texture image. However this would be far too 
expensive to be done in real-time and this is where MIP maps can really help. MIP maps provide pre-
generated images that are scaled down using this exact filtering technique (by default). Nevertheless 
the MIP map downsampling is only available at discrete intervals. We can still suffer minification 
artifacts when a polygon is at a distance that places it between two MIP levels.  
 
As discussed earlier, minification is only half the story. When the polygon is very close to the viewer, 
it occupies many more pixels on the screen than are in the texture. This process is called 
magnification -- where many pixels are mapped to the same texel. Magnification gives a blocky result 
as shown in Fig 6.23. 
 

A Textured Quad 

 

 

 
In this image the camera is moved so close to the quad 
that a small area in the center of the texture is mapped 
to the entire frame buffer. 

 
Figure 6.23 

 
DirectX 9 supports several filters that can be used independently for both minification and 
magnification artifacts. These filters affect the way a floating point per-pixel UV coordinate is used to 
sample the texel in the texture. Forgetting about MIP maps for the time being, we will describe the 
filtering techniques from the perspective of using a one level texture (non-MIP mapped). Then we will 
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discuss how the minification and magnification filters can be used with MIP maps to provide 
additional image quality.  
 
If you are an avid gamer or games programmer you have probably heard terms like bilinear filtering, 
trilinear filtering, and anisotropic filtering. Using sampler states to set the minification, magnification 
and MIP map filters is how we get our applications to use these well-known filtering techniques. If a 
texture has to be scaled down to fit the polygon being rendered then the minification filter is used to 
fetch the correct texel from the texture for the corresponding pixel. If the texture has to be magnified to 
fill the on-screen region then the magnification filter is used. (Often you will use the same filtering 
technique for both.) 
 
Magnification Filters & Minification Filters 
 
There are two sampler states that we can set (using SetSamplerState) to independently set the filtering 
technique used for magnification and/or minification.  
 
m_pDevice->SetSamplerState( stage , D3DSAMP_MINFILTER , D3DTEXTUREFILTERTYPE); 
m_pDevice->SetSamplerState( stage , D3DSAMP_MAXFILTER , D3DTEXTUREFILTERTYPE); 
 
In the above code, stage should be set to the texture stage for which you wish to set the filter. If we 
have multiple textures being used (in different stages) we can tell the device to use a different filtering 
technique for each stage. The third parameter must be set to one of the D3DTEXTUREFILTERTYPE 
enumerated type members: 
 

typedef enum _D3DTEXTUREFILTERTYPE  
{ 
    D3DTEXF_NONE = 0, 
    D3DTEXF_POINT = 1, 
    D3DTEXF_LINEAR = 2, 
    D3DTEXF_ANISOTROPIC = 3, 
    D3DTEXF_PYRAMIDALQUAD = 6, 
    D3DTEXF_GAUSSIANQUAD = 7, 
    D3DTEXF_FORCE_DWORD = 0x7fffffff 
} D3DTEXTUREFILTERTYPE; 

 
The enumeration is used to set the minification and magnification types as well as the MIP filter type 
which we will explain in a moment. Because of this, not all types are valid for all three sampler states.  
 
No Filtering (D3DTEXF_NONE) 
This is only a valid filter type when setting a MIP filter. It should not be used with minification and 
magnification filters. When tested with minification and magnification filters the results can differ 
across hardware and drivers. Some hardware defaults to D3DTEXF_POINT whilst others default to 
D3DTEXF_LINEAR. As D3DTEXF_POINT is basically no filtering at all, you should use point filters to 
disable filtering as seen next. 
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Point Filtering (D3DTEXF_POINT) 
 
This is the default minification and magnification filter for all texture states. Point filtering essentially 
equates to no filtering at all; the per-pixel UV coordinate is truncated to an integer value used to index 
the correct texel in the texture. For example, if a pixel’s UV coordinates were (10.2, 15.3) then this 
would be snapped to the integer set (10, 15).  
 

Note: A UV coordinate is not simply snapped to an integer coordinate. It is first mapped from texture 
coordinate space into an image space UV coordinate using the following formula: 

U = u x ImageWidth – 0.5 

V = v x Image Height – 0.5 

Where u and v are the floating point texture coordinates and U and V are floating point coordinates 
mapped into image space but not yet snapped to an integer texel coordinate. Therefore, in the above 
paragraph and in future discussions in this section, when we talk about the UV coordinates being 
snapped to an integer, we are referring to the coordinates after they have been transformed into image 
space using the above equation. It is this snapped coordinate that is then considered the true integer 
coordinate of the nearest texel in the texture. 

When the texture is magnified, many pixels in the polygon being rendered will be snapped to the same 
integer texel and therefore will have exactly the same color. This is what causes the blocky appearance 
in Fig 6.23. When the texture is minified, this filtering technique leads to texels in the source image 
being skipped. Since the skipped texels may have been important contributors to the integrity of the 
image, aliasing artifacts occur as discussed earlier. 
 
Bilinear Filtering (D3DTEXF_LINEAR) 
 
After the integer UV coordinate is found, the color of the corresponding texel and the four neighboring 
texels are combined together to create the final color returned from the sampler. The amount of weight 
that each texel contributes to the final color is based on the distance from that integer texel coordinate 
to the ideal float point UV coordinate (Fig 6.24). 
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Figure 6.24 

 
In Fig 6.24 an image space floating point UV coordinate of (20.15, 115.75) is passed to the sampler 
unit from the rasterizer. The ideal image space coordinate is somewhere between the four texels. The 
offset between the ideal UV image space coordinate and each integer texel coordinate is used to scale 
the contribution of that texel to the final color. In this case, the color returned will be a blend between 
the colors found at integer texture coordinates (20,115), (21,115), (20,116) and (21,116).  
 
Using this filter (especially during magnification) means that abrupt color changes in the surface 
caused by the snapping of floating point UV coordinates to a single integer texture coordinate are 
smoothed (Fig 6.25).  
 
Point Filtering Bilinear Filtering 

                             
 

Figure 6.25 
 
When used for minification, this helps alleviate the problems caused by skipping pixels in the source 
image. Pixels that would otherwise we completely skipped with point filtering now contribute to the 
neighboring pixel color. Bilinear minification works exceptionally well when used alongside MIP 
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maps because the smaller images sampled at far distances means that there is a lower chance of any 
texel in the source image not contributing to the screen representation of the image in some way.  
 
 
Anisotropic Filtering (D3DTEXF_ANISOTROPIC) 
 
Anisotropic means ‘no equal shape’.  When anistropic filtering is enabled, the shape of the filter in 
texture space and the number of texels sampled take polygon orienatation into account. To understand 
the need for anisotropic filtering we must first understand the problems associated with using bilinear 
filtering (or trilinear filtering discussed later). Bilinear filtering is done using a 2x2 square sampling 
grid. Using a square grid is fine when the plane of the polygon is oriented directly with the view plane, 
but as the orientation of the polygon changes with respect to the viewer, this perspective should be 
taken into account when choosing the shape of the filter used for sampling the texture map. 
 

 
Figure 6.26 

 
In Fig 6.26, the gray slab represents the monitor screen and the textured quad behind it is directly 
facing the viewer. In this example we have used a circular spot to indicate a region of pixels on the 
screen that would be mapped back into texture space. We can see that the shapes are the same, as they 
should be. Imagine that the red circle on the screen is a spotlight shining on the screen which is then 
projected onto the texture. When the polygon is facing the viewer, using a box shaped filter to sample 
textures is ideal, but look at what happens to our spotlight projection when the polygon is oriented 
away from the viewer (Fig 6.27). 
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Figure 6.27 

 
The spotlight shining through the screen onto the quad is now elongated because of perspective. Using 
this as an analogy, we can see that when the texture/viewer angle is large, a box shaped filter no longer 
describes the correct region in the texture to sample. When the angle is large, many more texel colors 
should be taken into account to produce the final perspective correct samples for each pixel. Because 
of this, when using bilinear filtering, polygons at large angles with respect to the view plane can appear 
exceptionally blurry. Anisotropic filters use this perspective concept to provide a more accurate filter 
shape when sampling (much more like the projected shape of our spotlight). 
 
More recent 3D cards support anisotropic filtering in hardware. Some ealier cards (the TNT™ 
generation) did support some level of anisotropic filtering but it typically resulted in significant 
performance degradation. Typically a graphics card that supports anisotropic filtering will support 
multiple levels of anisotropy between 1 and MaxAnisotropy. MaxAnisotropy can be found by querying 
the device capabilities and examining the D3DCAPS9::MaxAnisotropy member. This is typically 
between 1 and 16 but can be higher on the latest graphics hardware. A level of 1 will provide no visual 
improvement whilst the higher levels will provide better results (at a higher performance cost). 
Additionally, some cards only support anisotropy for specific filters. For example, the early models of 
the nVidia GForce3™ supported only anisotropic filtering as a minification filter. 
 
Although it can be expensive on older cards, anisotropic filtering looks about as good as we can expect 
things to get at this time. There are other filters in the D3DTEXTUREFILTERTYPE enumerated type not 
mentioned above, but at the time of this writing they are unsupported in hardware and are terribly slow 
in software. Therefore, the applications in this chapter will use anisotropic filtering as the top level 
filtering technique that you can enable. If you would like more information on the 
D3DTEXF_PYRAMIDALQUAD and D3DTEXF_GAUSSIANQUAD filters, please consult the DirectX 9 SDK 
documentation. 
 
Setting Minification and Magnification Filters 
   
The following code shows us how to set the minification filter to sample texels using bilinear filtering 
and the magnification filter to sample using an anisotropic filter of the highest level supported by the 
graphics hardware. These settings are applied to texture stage 0. 
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// Get the devices maximum supported anisotropy level 
D3DCAPS9 caps; 
m_pDevice->GetDeviceCaps ( &caps ); 
DWORD MaxLevel = caps.MaxAnisotropy; 
 
// Set Sampler filters in State0 
m_pDevice->SetSamplerState (0, D3DSAMP_MINFILTER ,D3DTEXF_LINEAR ); 
m_pDevice->SetSamplerState (0, D3DSAMP_MAXFILTER ,D3DTEXF_ANISOTROPIC);  
m_pDevice->SetSamplerState (0, D3DSAMP_MAXANISOTROPY, MaxLevel ); 
 
It is important to realize that these filters are applied in conjunction with MIP mapping when it is 
enabled. Minification and magnification filters will be applied to the current MIP level being used for 
rendering. This means that if we have a polygon in the distance such that its closest match in size is 
MIP level 8 in the texture surface, the minification and magnification filters will be applied to MIP 
surface 8 to sample the color. 
 
Enabling MIP maps 
 
We talked earlier about how MIP maps can be used to provide pre-filtered images of a texture at 
different size resolutions. They also provide an even greater benefit when a given MIP level is filtered 
using the minification and magnification filters discussed above. Not only do we have a pre-filtered 
image of approximately the size of the rendered polygon, but the slight aliasing that would occur 
between the closest-match MIP level sizes will further be reduced using bilinear or anisotropic filtering 
when sampling the MIP level. 
 
It is worth noting that the correct MIP map is chosen for a given polygon at an arbitrary distance partly 
based on the MIP filter selected. This is in addition to the minification and magnification filters for 
MIP surface texels. To set the MIP filter, we use the SetSamplerState function with the following 
sampler state: 
 
m_pDevice->SetSamplerState(stage, D3DSAMP_MIPFILTER , D3DTEXTUREFILTERTYPE); 
 
We pass in the stage which we are setting the filter for, along with a member of the 
D3DTEXTUREFILTERTYPE enumerated type (whose members we used to set the minification and 
magnification filters in the last section). Let us briefly discuss how these filters affect the selection of 
the MIP level and ultimately the color sent back from the sampler. 
 
D3DTEXF_NONE 
When this is the MIP filter, the MIP mapping mechanism for the texture stage is disabled. Whether the 
texture has MIP levels or not, the top level surface will always be used. This can cause aliasing 
artifacts, even with the minification filter set to bilinear or anisotropic.  
 
D3DTEXF_POINT 
If the texture includes MIP levels, then the correct MIP map is selected to fetch texels using the 
currently active minification and magnification filters. In Fig 6.28 both terrains use bilinear filtering 
for minification and magnification filters. In the bottom image, MIP map textures are used with the 
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D3DTEXF_POINT MIP filter state. As you can see, even with the minification and magnification filters 
turned on, the top image, which does not use MIP maps, still suffers aliasing artifacts. It looks even 
worse when the camera is moving because the pixels in the distance noticably shimmer. 
 

 

 
 

 
Figure 6.28 

 
In the bottom image in Fig 6.28, the distant hill polygons do not suffer significant aliasing because a 
higher level (lower resolution) MIP map surface is being used for sampling. As the polygons get 
progressively further from the viewer, the correct MIP map is used that most closely matches the ideal 
size of a 1:1 pixel-to-texel ratio. Because these MIP maps have been pre-filtered, they look much better 
than the top image, which is simply downsampled from the maximum texture size for each polygon. 
 
D3DTEXF_POINT is adequate for sampling from the closest ideal MIP map, but it is far from perfect. 
Because the number of MIP values is so low in comparison to the number of possible distance values, 
the MIP map generally selected for sampling will only be a closest match. Let us say for example that 
a polygon is at a distance such that its ideal MIP level is 1.2 (i.e. 20% between levels 1 and 2). With a 
point MIP filter, this fraction will not be taken into account and level 1 would be used exclusively. 
When walking closer to a wall you might even see its texture change as it is snapped up to the next 
MIP level. Likewise, when walking away from the wall you will see its MIP level visibly switch as 
distance increases.  
 
D3DTEXF_LINEAR 
 
When we enable linear MIP filtering we are performing a sampling between the two closest MIP 
levels. In Fig 6.29 we can see that the ideal MIP level of 1.2 places the pixel between MIP levels 1 and 
2. The texel is sampled from both MIP maps using the bilinear minification and magnification filters 
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on each, and then the resulting colors from both MIP levels are blended together based on the distance 
from the ideal MIP level. In this particular case, the final color contains 80% of the level 1 sampled 
color and 20% of the level 2 color. This is called trilinear MIP map interpolation or simply, 
trilinear filtering. 
 

 
 

Figure 6.29 
 
Fig 6.29 could have used anisotropic filtering for magnification and/or minification to further increase 
visual quality. Alternatively a point filter could have been used to extract the nearest texel from each 
level and blend them together. 
 
When we enable trilinear MIP filtering, we no longer see transitions between MIP levels when the 
viewer moves through the world. The two MIP levels are taken into account and gradually interpolate 
from one to the other, making for a smoother transition.  
 
D3DTEXF_ANISOTROPIC 
This is not a valid MIP filter. 
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Texture Stages 
 
The texture stages form the core of the DirectX blending cascade. The cascade determines the color 
and opacity of a fragment as it passes through the pipeline on its way to becoming a pixel in the frame 
buffer. When we call the SetTexture function, we specify a texture stage that the given texture will be 
assigned to. Texture stages are fed texel colors from the sampler unit. The sampler determines how 
texels are sampled from the texture bound to that stage. DirectX 9 has eight texture stages, so 
theoretically eight textures can be stored and subsequently blended together in a single pass. In practice 
however, most hardware supports somewhere between two and four stages -- although the most recent 
cards support eight or more. When using only one texture at a time, we will bind that texture to stage 0.  
 
 
Texture Color 
 
If we have a texture in stage 0 and our vertices include texture coordinates, then the sampler unit will 
retrieve the color for each pixel in the polygon from the corresponding texel in the texture. This color 
fragment is forwarded to the texture stage where it can be used as an argument to a blending function 
to produce the final color. In previous lessons we saw how to store vertex colors and interpolate them 
across each pixel in a polygon. Once the interpolated color for each pixel is determined, it can be sent 
to a texture stage.  
 

Note: If lighting is enabled then we do not calculate the vertex colors ourselves since the lighting 
calculations in the pipeline will determine those values. From that point on, vertex colors calculated by 
the pipeline are interpolated to generate a per-pixel color. This color can be sent to a texture stage. 

 
Texture colors and vertex colors are not mutually exclusive. When a green 
light is placed near a vertex for example, the vertex will have a green color 
generated for it (assuming proper material conditions). This ultimately leads to 
the pixel colors generated via interpolation being green as well. The cylinder 
on the right has a green light shining on it.  If we were unable to use this per-
pixel color information when texturing was enabled, we would effectively lose 
the lighting pipeline completely.  
 
 

eed. 

s it happens, when texturing is enabled, every pixel in the polygon being 

The cylinder to the left, while textured, lacks shading. A 
world without shading would look very flat and boring ind
 
A
rendered has both a texel color sampled for it and a diffuse and a specular color 
generated for it. These colors are passed to the texture stages where we can 
choose how we wish to blend them together.  
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In the next cylinder image we see the result of modulating the texel color sampled for each pixel with 
the diffuse color generated for each pixel. Notice how the brick wall texture detail can still be seen, but 
that the cylinder is also affected by the green light nearby.  

 
 
Every polygon pixel is sent through the texture blending cascade. In fact, it is perhaps more precise to 
say that the possible pixel ingredients are sent to the stages. By this we mean that the texture stages can 
be sent the diffuse and specular colors, the texel color, and even a constant color to construct the final 
pixel value.  
 
 
Setting Texture Stage State 
 
Our application can configure the behavior of a texture stage through state settings. The function that 
controls this is called SetTextureStageState and is a member of the IDirect3DDevice9 interface.  
 
HRESULT IDirect3DDevice9::SetTextureStageState 
(       
    DWORD Stage, 
    D3DTEXTURESTAGESTATETYPE Type, 
    DWORD Value 
); 
  
Just as IDirect3DDevice9::SetRenderState and IDirect3DDevice9::SetSamplerState can be used to set 
render states and sampler states respectively, the SetTextureStageState function can be used to set the 
states of any textures stage. We simply pass in the stage we wish the state change to apply to, the state 
type we wish to set, and a state specific value. 

 

Note: We do not bind a texture to a stage using the SetTextureStageState function. There is a 
separate function for binding textures to stages called SetTexture. 

 

Fig 6.30 shows what a texture stage looks like internally. 
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Figure 6.30 
 

Once the ARGB color has been calculated for each pixel and the texture has been sampled, the color 
and alpha components are separated (Fig 6.30). The texture stages actually use two pipelines so that 
RGB and A can be processed separately. The Color unit and the Alpha unit are each fed three inputs 
called Arg0, Arg1, and Arg2. Our application will configure which information is routed through these 
inputs. We could decide for example, that Arg0 should be the diffuse pixel color and Arg1 should be 
the sampled texel color. We can then set the color operation unit to multiply these two colors together. 
The final result is the output for that texture stage. In the simplest case, using only one stage and no 
alpha blending, the output of the texture stage becomes the final fragment color that will become a 
pixel if it passes the depth test. The alpha unit will also have its own arguments and operations 
(Chapter 7). 
 
 
Texture Stage States 
 
Let us now examine the different states that can be set using this function. We will first look at a list of 
all available states with a brief description of each. This will be followed by much closer examination 
of the states that we are interested in for this lesson. The rest of the texture stage states will be covered 
throughout the remainder of this course and in the next course in this series. 
 
 
 
 
 
 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 59 of 108 

 

TeamLRN



 

typedef enum _D3DTEXTURESTAGESTATETYPE 
{ 
    D3DTSS_COLOROP = 1, 
    D3DTSS_COLORARG1 = 2, 
    D3DTSS_COLORARG2 = 3, 
    D3DTSS_ALPHAOP = 4, 
    D3DTSS_ALPHAARG1 = 5, 
    D3DTSS_ALPHAARG2 = 6, 
    D3DTSS_BUMPENVMAT00 = 7, 
    D3DTSS_BUMPENVMAT01 = 8, 
    D3DTSS_BUMPENVMAT10 = 9, 
    D3DTSS_BUMPENVMAT11 = 10, 
    D3DTSS_TEXCOORDINDEX = 11, 
    D3DTSS_BUMPENVLSCALE = 22, 
    D3DTSS_BUMPENVLOFFSET = 23, 
    D3DTSS_TEXTURETRANSFORMFLAGS = 24, 
    D3DTSS_COLORARG0 = 26, 
    D3DTSS_ALPHAARG0 = 27, 
    D3DTSS_RESULTARG = 28, 
    D3DTSS_CONSTANT = 32, 
    D3DTSS_FORCE_DWORD = 0x7fffffff 
} D3DTEXTURESTAGESTATETYPE; 
 
Below we discuss the texture stage states listed above but not necessarily in the order specified.  
 
D3DTSS_COLORARG0 
D3DTSS_COLORARG1 
D3DTSS_COLORARG2 
These states configure the inputs for the color operation specified with the D3DTSS_COLOROP texture 
stage state. We use them to assign the diffuse pixel color to ARG1 for example, or the texel color to 
ARG2, etc. These states are used for configuring the arguments to the color unit only. When setting 
one of these states using the SetTextureStageState function, the third parameter should be one of the 
DirectX defined D3DTA_ values listed below with a description of its meaning. (TA is short for Texture 
Argument). Most of the available color blending functions use only two arguments (ARG1 and ARG2) 
but there are a few that use ARG0. 
 
D3DTA_DIFFUSE  
The interpolated per-pixel diffuse color is routed to the specified input. For example, the following 
code snippet would specify that the ARG1 input to the color unit in texture stage 0 should be the 
interpolated diffuse color. 
 
pDevice->SetTextureStateState(0, D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 

 
Using the above code, any color operations that use ARG1 during blending will use the diffuse color. 
The next example shows how you would set the diffuse color to ARG2 for the color unit in texture 
stage 3. 
 
pDevice->SetTextureStateState(3, D3DTSS_COLORARG2 , D3DTA_DIFFUSE); 
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D3DTA_TEXTURE 
Binds the texel color sampled for the current pixel as an argument to one of the blending equations. To 
use this as an argument for a color unit you should have a texture assigned to the stage. The texel color 
used as an argument will be the one returned from the sampler unit. The following example shows how 
to configure ARG1 in the color unit to receive the texture color. 
 
pDevice->SetTextureStateState(0, D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
 
D3DTA_SPECULAR 
If we are using pre-lit vertices then we can store a specular color in our vertex structure -- if we do not 
store it, then the specular component in our vertex defaults to black. When using the lighting pipeline, 
the specular color is calculated by DirectX. This state allows us to assign the interpolated per-pixel 
specular color to one of the arguments of a color operation. The following code shows to assign the 
specular color as an input argument. 
 
pDevice->SetTextureStateState(0, D3DTSS_COLORARG0 , D3DTA_SPECULAR); 
 
D3DTA_CURRENT 
This argument is the key to using multiple stages. When we assign this value to an argument in a stage 
that is not stage 0, the color of that argument is the output from the previous texture stage. This means 
for example, that we could modulate the diffuse color and the texture color in stage 0 so that the result 
is output to stage 1 where it is used in another blending operation, perhaps with sampled texels from 
the texture assigned to stage 1.  
 
When used as an argument for stage 0 it simply defaults to the same behaviour as D3DTA_DIFFUSE. 
This is because stage 0 is the first stage in the cascade and there is no previous stage data to use as an 
input.  
  
The following code shows how we might set ARG1 in the second texture stage such that it uses the 
color output by texture stage 0.   
 
pDevice->SetTextureStateState(1, D3DTSS_COLORARG1 , D3DTA_CURRENT); 

 
D3DTA_TFACTOR 
We can provide texture stages with access to a constant color. This can be useful for a number of tasks. 
Perhaps we might decide to perform an ADD operation so that the texture factor color is added to the 
color input into the stage. Or perhaps we wish to darken some pixels by modulating with a half-
intensity color like (128, 128, 128, 128). These values will be converted to floating point numbers (0.5, 
0.5, 0.5, 0.5) for use in blending operations. The application will set the color using a render state 
rather than a texture stage state and it will be global across all texture stages.  
 
pDevice->SetRenderState (D3DRS_TEXTUREFACTOR , 0xFF0000FF); 
pDevice->SetTextureStageState(0 , D3DTSS_COLORARG2 , D3DTA_TFACTOR); 
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D3DTA_CONSTANT 
This allows a particular stage to use an application set constant color in its blending operations. Unlike 
the TFACTOR argument, this color will only be available to that stage.  
 
pDevice->SetTextureStageState(0 , D3DTSS_CONSTANT , 0xFF0000FF); 
pDevice->SetTextureStageState(0 , D3DTSS_COLORARG1 , D3DTA_CONSTANT);  

 
If you intend to use a per-stage constant color then you will need to check the device capabilities. Such 
constants are not supported on most hardware, at least not at the time of this writing. If this feature is 
supported, then the D3DPMISCCAPS_PERSTAGECONSTANT bit will be set in the PrimitiveMiscCaps 
member of the D3DCAPS9 structure: 
 
D3DCAPS9 caps; 
pDevice->GetDeviceCaps(&caps); 
if(Caps.PrimitiveMiscCaps & D3DPMISCCAPS_PERSTAGECONSTANT) 
   Supported = TRUE;  

 
D3DTSS_TEXCOORDINDEX 
By default, if we are using stage 0, then the first set of texture coordinates in the vertex describe the 
mapping of the texture in stage 0 to the polygon. If there is a texture in stage 1, then the second set of 
vertex texture coordinates describe how the texture in stage two is mapped to the polygon. And so on 
up until the final stage.  
 
We can use this texture stage state to change these defaults and instruct a given stage to use any of the 
available coordinate sets in the vertex. For example, you might have 2 textures, one in stage 0 and one 
in stage 1. Assume that the same texture coordinates describe how they are mapped to the polygon. In 
this case, rather than store a duplicate set, you could set both stages to use texture coordinate set 0. 
 
pDevice->SetTextureStageState(0 , D3DTSS_TEXCOORDINDEX , 0); 
pDevice->SetTextureStageState(1 , D3DTSS_TEXCOORDINDEX , 0); 
 
 
D3DTSS_CONSTANT 
Set the per-stage constant color.  
 
pDevice->SetTextureStageState(0 , D3DTSS_CONSTANT , 0xFF0000FF); 
 
D3DTSS_ALPHAARG1 
D3DTSS_ALPHAARG2 
D3DTSS_ALPHAARG3 
These states allow us to specify inputs for the alpha pipeline and its blending functions. We will 
examine alpha blending in Chapter 7 so for now, just be aware that D3DTA_ values allow us to pass 
parameters to the alpha pipeline as well as the color pipeline. 
 
pDevice->SetTextureStageState(0 , D3DTSS_ALPHAARG1 , D3DTA_DIFFUSE); 
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D3DTSS_COLOROP 
We use this state to configure the color blending operation for the texture stage. The third parameter to 
the SetTextureStageState function should be one of the members of the D3DTEXTUREOP 
enumerated type shown below.  

 
typedef enum _D3DTEXTUREOP 
{ 
    D3DTOP_DISABLE = 1, 
    D3DTOP_SELECTARG1 = 2, 
    D3DTOP_SELECTARG2 = 3, 
    D3DTOP_MODULATE = 4, 
    D3DTOP_MODULATE2X = 5, 
    D3DTOP_MODULATE4X = 6, 
    D3DTOP_ADD = 7, 
    D3DTOP_ADDSIGNED = 8, 
    D3DTOP_ADDSIGNED2X = 9, 
    D3DTOP_SUBTRACT = 10, 
    D3DTOP_ADDSMOOTH = 11, 
    D3DTOP_BLENDDIFFUSEALPHA = 12, 
    D3DTOP_BLENDTEXTUREALPHA = 13, 
    D3DTOP_BLENDFACTORALPHA = 14, 
    D3DTOP_BLENDTEXTUREALPHAPM = 15, 
    D3DTOP_BLENDCURRENTALPHA = 16, 
    D3DTOP_PREMODULATE = 17, 
    D3DTOP_MODULATEALPHA_ADDCOLOR = 18, 
    D3DTOP_MODULATECOLOR_ADDALPHA = 19, 
    D3DTOP_MODULATEINVALPHA_ADDCOLOR = 20, 
    D3DTOP_MODULATEINVCOLOR_ADDALPHA = 21, 
    D3DTOP_BUMPENVMAP = 22, 
    D3DTOP_BUMPENVMAPLUMINANCE = 23, 
    D3DTOP_DOTPRODUCT3 = 24, 
    D3DTOP_MULTIPLYADD = 25, 
    D3DTOP_LERP = 26, 
    D3DTOP_FORCE_DWORD = 0x7fffffff 
} D3DTEXTUREOP; 
 

Note: The default color operation for texture stage 0 is diffuse/texture color modulation. 
 
Most of the operations work exlusively with arguments 1 and 2 and are relatively simple mathematical 
operations like add, subtract, multiply (modulate), and so on. Some of the modes are more advanced 
and will be covered later in the course and in the next course in this series.  
 
In the following descriptions, R is used to indicate the result of the color operation. ARG1, ARG2 and 
ARG3 represent color inputs as arguments to the color or alpha pipelines. We will not discuss all the 
above texture operations but will concentrate on the ones relevant to us at this time.  
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D3DTOP_SELECTARG1  
The operation routes the ARG1 input straight to the output of the stage, ignoring all other inputs.  
 

R = ARG1 
 
D3DTOP_SELECTARG2  
The operation routes the ARG2 input straight to the output of the stage, ignoring all other inputs.  
 

R = ARG2 
 
D3DTOP_MODULATE  
The inputs to the texture stage are multiplied together. This is the default color operation for stage 0. It 
can be used to modulate the diffuse color and the texture color as discussed above. Note that because 
this is floating point multiplication, the result is actually darker than one or both input colors -- which 
may or may not be desirable. For example, (0.9 , 0.9 , 0.9)  x  (0.5, 0.5, 0.5) = (0.45 , 0.45 ,0.45) 
 

R = ARG1 x ARG2 
 
 
D3DTOP_MODULATE2X  
This is a useful operation if D3DTOP_MODULATE creates undesirably dark results. It performs the 
multiplication and then doubles the result -- therefore doubling its brightness.  
 

R = (ARG1 x ARG2) << 1 
 
 
 
D3DTOP_MODULATE4X  
Modulate the colors and then multiply the result by four. This can be useful when blending two very 
dark textures or where you need to over-brighten. For general use, this will often cause a washed out 
look as the resulting color components exceed the 1.0 max limit and are clamped. 
 

R= (ARG1 x ARG2) << 2 
 
 
 
 
D3DTOP_ADD  
This operation adds the two colors together. If the ARG1 and ARG2 matching components are both 
over 0.5, they will exceed the 1.0 range and be clamped to 1.0 (bright white).  
 

R = ARG1 + ARG2 
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D3DTOP_ADDSIGNED  
Add the two arguments together and subtract 0.5. This makes the effective range of values [–0.5, 0.5].  
  

R = ARG1 + ARG2 – 0.5 
 
This allows us to blend two textures together without suffering from over brightening. The results are 
comparable to D3DTOP_MODULATE2X. 
 
D3DTOP_ADDSIGNED2X  
ADDSIGNED with the result multiplied by two. 
 

R = (ARG1 + ARG2 – 0.5) << 1 
 
D3DTOP_SUBTRACT  
Subtract ARG2 from ARG1. 
 

R= (ARG1 – ARG2) 
 
D3DTOP_MULTIPLYADD  
This blending operation uses all 3 arguments. ARG2 and ARG3 are multiplied and ARG1 is added to 
the result. ARG3 is set using D3DTSS_COLORARG0 and D3DTSS_ALPHAARG0 for the respective pipelines. 
 

R = ARG1 + (ARG2 * ARG3) 
 
D3DTOP_LERP  
Linearly interpolates using all three input arguments. ARG3 is set using D3DTSS_COLORARG0 and 
D3DTSS_ALPHAARG0 for the respective pipelines. 
 

R = (ARG1) * ARG2 + (1- ARG1) * ARG3. 
 

 
D3DTOP_DISABLE  
This disables the stage and it will output no color results. Because the texture stages are connected in 
ascending order, disabling the color operations in a given texture stage will also disable color 
operations in subsequent stages. By default, when the device is first created, stages 1 – 7 are disabled 
and only stage 0 is enabled.  
 

Note: Alpha operations should not be disabled when color operations are enabled as this can result in 
undefined behavior. Make sure to set D3DTOP_DISABLE in both the color and alpha pipelines at the 
same time for a given stage.  
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Texture Stage Usage 
 
In these first examples we will only be using stage 0. After you have studied the code for Lab Project 
6.1, we can examine using multiple stages to perform single-pass and multi-pass texture blending.  
 
Example 1: Blending Diffuse and Texture Color 
 
These settings are actually the default states for texture 0. We use a color modulate operation to blend 
the diffuse color with the texture color currently set at that stage. 
  
pDevice->SetTexture           ( 0 ,  pBrickWallTexture); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLOROP , D3DTOP_MODULATE ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
 
 

 
Figure 6.31 

 
 

Example 2: Texture Color Only  
 
In this example, the diffuse fragment color will be ignored and only the color of the texture will be 
used.  
 
pDevice->SetTexture           ( 0 ,  pBrickWallTexture); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLOROP , D3DTOP_SELECTARG1 ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
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Example 3: Adding Texture and Diffuse colors 
 
The texture color is added to the diffuse color, which would cause the scene to be rendered brighter.  
 
pDevice->SetTexture           ( 0 ,  pBrickWallTexture); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLOROP , D3DTOP_ADD ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
 
Note: Burnout happens when color overflows the allowed range and is clamped. In the extreme case, 
this would cause the scene to be rendered completely white. 
 
 
Example 4: Adding Diffuse to a Constant Color 
 
In some ways it might be preferable thinking of texture stages simply as color stages. As this next 
example shows, we do not need to use textures in order to benefit from the color operations the texture 
stages supply. In this case we will not use a texture at all. Instead we will set a constant color which 
will then be added to the diffuse color of all objects rendered.  
 
pDevice->SetRenderState       ( D3DRS_TEXTUREFACTOR , 0xFF008800); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLOROP , D3DTOP_ADD ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG2 , D3DTA_TFACTOR); 

 
 
Example 5: Modulating the Texture with the Texture Factor 
 
In this example we take the texture color for each pixel and scale it by the texture factor. In this case it 
has half intensity RGB components which will scale the texture color by half.  
 
pDevice->SetRenderState       ( D3DRS_TEXTUREFACTOR , 0xFF888888); 
pDevice->SetTexture           ( 0 ,  pBrickWallTexture ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLOROP , D3DTOP_MODULATE ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG2 , D3DTA_TFACTOR); 
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Multi-Texturing 
 

As discussed earlier in the lesson, the texture stages form a texture blending cascade. Input starts at the 
top of the cascade (stage 0) and the result of operations conducted in that stage can be passed to the 
next stage as an input argument. In this next stage, it can be blended with the color of the texture 
assigned to that stage (or some other argument) and passed on yet again. Fig 6.32 shows the texture 
blending cascade using the first four stages to perform four color operations. 
 

 
 

Figure 6.32 
 
In Fig 6.32, the diffuse color and the texture are assigned to stage 0 as input arguments. They are 
modulated and the result is passed as stage 1’s first argument. In this stage, the texture assigned to 
stage 1 is used as the second argument and added to argument 1 -- the output from the previous stage. 
The result is passed to stage 2 where it is modulated with the texture assigned there. The result of this 
operation is passed to stage 3 where the texture color there is subtracted from it. The result is the pixel 
color sent to be rendered. While this may be an unlikely set of operations, it does get the point across. 
Note as well that if you use multiple stages, you must use them in order. You cannot just use stages 0, 
1, and 5 for example.   
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By default, only stage 0 is active and the color operations and alpha operations in all other stages are 
set to D3DTOP_DISABLE. To enable consecutive stages, we simply set the color (or alpha) operation 
we desire in that stage and assign the inputs. You will usually want one of the inputs to these texture 
stages set to D3DTA_CURRENT to access the result of a previous stage.  
 
Fig 6.33 sets up two texture stages: a brick wall texture in the first stage and a yellow light texture (a 
simple light map) in the second stage. We pass the stage 0 texture color to stage 1 where it will be 
added to the color of the light texture. 

 

  +     =  

 
Figure 6.33 

 
The texture stage settings to achieve this effect are shown below.  
 
pDevice->SetTexture          ( 0 , pBrickWallTexture); 
pDevice->SetTextureStageState( 0 , D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState( 0 , D3DTSS_COLOROP , D3DTOP_SELECTARG1); 
 
pDevice->SetTexture          ( 1 , pYellowLightTexture); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLOROP , D3DTOP_ADD ); 
 
Mastering multiple texture blending techniques is critical to making visually compelling games. In this 
course, we only begin to scratch the surface. The next course in this series will spend a great deal of 
time examining multi-texturing techniques to achieve realistic scene lighting and other interesting 
visual effects.  
 
The next example adjusts the previous texture stage states so that stage 0 modulates the texture with 
the diffuse vertex color before sending it on to stage 1. The resulting color is passed to stage 2 where 
its color is scaled in half by modulating all components by the texture factor. 
 
pDevice->SetTexture          ( 0 , pBrickWallTexture); 
pDevice->SetTextureStageState( 0 , D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState( 0 , D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState( 0 , D3DTSS_COLOROP , D3DTOP_MODULATE); 
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pDevice->SetTexture          ( 1 , pYellowLightTexture); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLOROP , D3DTOP_ADD ); 
 
pDevice->SetRenderState      ( D3DRS_TEXTUREFACTOR,0x88888888 ); 
pDevice->SetTextureStageState( 2 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState( 2 , D3DTSS_COLORARG2 , D3DTA_TFACTOR);  
pDevice->SetTextureStageState( 2 , D3DTSS_COLOROP , D3DTOP_MODULATE); 
 

Note: Video cards have varying levels of support for the number of allowable texture stages. Some 
even impose limitations on the order of the arguments. For example, some drivers prefer the 
D3DTA_TEXTURE argument to always be ARG1 for a given stage. Tom Forsyth’s blogspot is an 
excellent resource for analysis of the texture stage support on various hardware. 

http://tomsdxfaq.blogspot.com/ 

If your texture stage state configurations perform strangely on certain video cards, this website should 
be your first port of call in identifying whether there is a card or driver specific problem. Often, there is 
a way to re-order your texture stage operations to find a configuration that works. 

 
Our application should check the capabilities of the device to see how many texture stages are 
supported and how many different textures can be blended simultaneously. A device might support 
four texture stages for example, but only allow you to blend three textures. There are two members of 
the D3DCAPS9 structure which give us this information: MaxTextureBlendStages and 
MaxSimultaneousTextures.  
 
D3DCAPS9 Caps; 
m_pDevice->GetDeviceCaps(&Caps); 
DWORD MaxTextures = Caps.MaxSimultaneousTextures; 
DWORD MaxStages   = Caps.MaxTextureBlendStages; 
 
You should also test to make sure that the color operations and alpha operations you intend to use are 
supported by the current device. The IDirect3DDevice9 interface exposes the ValidateDevice function 
for this purpose. First set up the texture stages and render states as they would be used in the render 
loop. Then call this function to test whether the current stages will render in a single pass. 
 
HRESULT ValidateDevice(DWORD *pNumPasses); 
 
The HRESULT returned will be one of the values in the following table. 
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D3DERR_CONFLICTINGTEXTUREFILTER The current texture filters cannot be used together.

D3DERR_DEVICELOST The device has been lost but cannot be reset at this 
time. Therefore, rendering is not possible. 

D3DERR_DRIVERINTERNALERROR Internal driver error. Applications should 
generally shut down when receiving this error. 

D3DERR_TOOMANYOPERATIONS The application is requesting more texture filtering 
operations than the device supports. 

D3DERR_UNSUPPORTEDALPHAARG The device does not support a specified texture-
blending argument for the alpha channel. 

D3DERR_UNSUPPORTEDALPHAOPERATION The device does not support a specified texture-
blending operation for the alpha channel. 

D3DERR_UNSUPPORTEDCOLORARG The device does not support a specified texture-
blending argument for color values. 

D3DERR_UNSUPPORTEDCOLOROPERATION The device does not support a specified texture-
blending operation for color values. 

D3DERR_UNSUPPORTEDFACTORVALUE The device does not support the specified texture 
factor value. 

D3DERR_UNSUPPORTEDTEXTUREFILTER The device does not support the specified texture 
filter. 

D3DERR_WRONGTEXTUREFORMAT The pixel format of the texture surface is not valid.
 
Notice that we pass in the address of a DWORD. The function will fill it with the number of passes 
needed to render with the current state setup. If the value > 1, then we are trying to use either more 
textures than the maximum amount or more stages. We will need to break the texture stage 
configuration down into smaller sub-configurations and render the polygon multiple times using a 
subset of the states each time.  

 
 
 

Color Blending 
 
DirectX allows us to blend the polygon pixels we are about to render with the pixels already rendered 
in the frame buffer -- rather than simply overwriting them. This process is commonly referred to as 
alpha blending and the result is a transparent effect. This choice of wording is somewhat unfortunate 
because we are not limited to blending based only on the alpha component of a color. The technique 
can also be used quite successfully for general RGB color blending. In Chapter 7 we will examine 
alpha blending based solely on the alpha component of a color. In this chapter, we will discuss RGB 
color blending. 
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In Fig 6.34 the smaller cube was rendered using our standard approach. Then we rendered the larger 
cube with color blending enabled and a color blending operation setup. The final color of each pixel 
rendered to the frame buffer was calculated by combining the color of the fragment output from the 
texture stages with the color of the pixel already in the frame buffer (the smaller cube pixels). The left 
image used an addition operation to add the pixel to the current contents of the frame buffer. The right 
image used a modulate operation so that each pixel was multiplied with the current pixel color in the 
frame buffer. 

 

  
 

Figure 6.34 
 
After we have finished rendering the color blended polygons, we can disable color blending and 
continue to render any other polygons normally. Usually you will want to sort your polygons such that 
you can render all opaque polygons first followed by those that need to be color blended. This will cut 
down on the number of render state changes. 
 
To enable color blending, we will set three render states. The first state 
(D3DRS_ALPHABLENDENABLE) informs the device to enable blending with the frame buffer. 
We set it to either true or false. Do not be put off by the name, it can be used to perform both alpha 
blending and color blending.  
 
m_pDevice->(D3DRS_ALPHABLENDENABLE , TRUE);  //enable blending 
m_pDevice->(D3DRS_ALPHABLENDENABLE , FALSE); //disable blending 
 
Once blending has been enabled, the device will take the values generated by the color and alpha 
pipelines in the texture stage cascade and use them as input to a blending operation. Fig 6.35 shows the 
color and alpha components output from the texture stages moved into the rasterizer module. By 
default, alpha blending is disabled and alpha values output from the texture stages will be ignored. In 
this case, the color will be copied directly into the frame buffer overwriting anything that exists there 
(assuming the pixel has passed the depth test). When we enable blending however, the rasterizer can 
use these inputs (alpha, color, or both) as variables in a blending function that blends the pixel we are 
about to render with the pixel already in the frame buffer. 
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Figure 6.35 

 
When blending is enabled, the following formula calculates the final color written to the frame buffer: 
 

FinalColor = (SrcColor * SrcBlend) + (DestColor * DestBlend) 
 
SrcColor is the color output from the texture stage cascade (Input Color in Fig 6.35) and DestColor is 
the color of the pixel that is already in the frame buffer. The SrcBlend and DestBlend variables 
control the behavior of the blending equation using a set of blend modes. To set the source and 
destination blend modes we use the D3DRS_SRCBLEND and D3DRS_DESTBLEND render states: 
 
m_pDevice->SetRenderState(D3DRS_SRCBLEND , SourceBlendMode);  
m_pDevice->SetRenderState(D3DTS_DESTBLEND , DestBlendMode ); 
 
For the second parameter, we pass a member of the D3DBLEND enumerated type: 
 
typedef enum _D3DBLEND 
{ 
    D3DBLEND_ZERO = 1, 
    D3DBLEND_ONE = 2, 
    D3DBLEND_SRCCOLOR = 3, 
    D3DBLEND_INVSRCCOLOR = 4, 
    D3DBLEND_SRCALPHA = 5, 
    D3DBLEND_INVSRCALPHA = 6, 
    D3DBLEND_DESTALPHA = 7, 
    D3DBLEND_INVDESTALPHA = 8, 
    D3DBLEND_DESTCOLOR = 9, 
    D3DBLEND_INVDESTCOLOR = 10, 
    D3DBLEND_SRCALPHASAT = 11, 
    D3DBLEND_BOTHSRCALPHA = 12, 
    D3DBLEND_BOTHINVSRCALPHA = 13, 
    D3DBLEND_BLENDFACTOR = 14, 
    D3DBLEND_INVBLENDFACTOR = 15, 
    D3DBLEND_FORCE_DWORD = 0x7fffffff 
} D3DBLEND; 
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These blend modes are used to scale the source color and the destination color by some given amount. 
Let us take a look at a few of them to see what they do. 
 
D3DBLEND_ZERO = ARGB (0, 0, 0, 0) 
Multiply all components of the color by 0. The color will not contribute to the final color in any way. 
 
D3DBLEND_ONE = ARGB(1, 1, 1, 1) 
Multiply all components of the color by 1. The color is not diminished at all by the operation and the 
final color will be at least as bright as the color for which this scale factor is used. 
 
D3DBLEND_SRCCOLOR = ARGB (S_alpha, S_red, S_green, S_blue) 
The ARGB components will be multiplied by the source color ARGB components. 
 
D3DBLEND_INVSRCCOLOR = ARGB (1-S_alpha, 1-S_red, 1-S_green, 1-S_blue) 
This multiplies each component of the color by the inverse of the source color.  
 
D3DBLEND_DESTCOLOR = ARGB(D_alpha, D_red,  D_green, D_blue) 
This multiplies the components of the color by the components of the frame buffer color. 
 
D3DBLEND_INVDESTCOLOR = ARGB (1-D_alpha, 1-D_red, 1-D_green, 1-D_blue) 
Each component of the color is multiplied by one minus the corresponding component of the frame 
buffer color. 
 
Example 1 (Source Pixel Overwrites Frame Buffer Pixel) 
 
m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE); 
m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO); 
 
In this example we multiply each component of the source color by 1, so it is unaltered. The current 
frame buffer color has been multiplied by 0 so of course it will not play a part in the final pixel color 
when the two are added. This is the same result we would see if alpha blending was disabled. This is 
for example only. We would not want to use this mode for standard rendering since blending will be 
slower. Using these blend modes, the blending equation would be as follows: 
 
FrameBufferColor = Source(ARGB)  * 1 + Dest(ARGB) * 0 
FrameBufferColor = Source(ARGB)  * (1,1,1,1) + Dest(ARGB) * (0,0,0,0) 
FrameBufferColor = Source(ARGB) + (0,0,0,0)  
                               = Source(ARGB) 
 
Example 2 (Frame Buffer Unchanged by Source Pixel) 
 
m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO); 
m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE); 
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The final color is the source color multiplied by 0 plus the frame buffer pixel color multiplied by 1. So, 
the source pixel does not alter the frame buffer in any way.   
 
FrameBufferColor = Source(ARGB) * 0 + Dest(ARGB) * 1 
FrameBufferColor = Source(ARGB) * (0,0,0,0) + Dest(ARGB) * (1,1,1,1) 
FrameBufferColor = (0,0,0,0) + Dest(ARGB) 
                               = Dest(ARGB) 
 
Example 3 (Additive Blend between Source and Frame Buffer Pixels) 
 
m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE); 
m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE); 

 
Let us imagine that we have a source pixel ARGB (0.5, 0.5, 0.5, 0.5) and a frame buffer pixel ARGB 
(0.2, 0.2, 0.2, 0.2). The final color in the frame buffer would be: 
 
FrameBufferColor = Source(ARGB)  * 0 + Dest(ARGB) * 1 
FrameBufferColor = (0.5,0.5,0.5,0.5) * (1,1,1,1) + (0.2,0.2,0.2,0.2) * (1,1,1,1) 
FrameBufferColor = (0.5, 0.5, 0.5, 0.5) + (0.2, 0.2, 0.2, 0.2)  
                               = (0.7, 0.7, 0.7, 0.7) 
 
 
 
 
 
 
 
 
 
 

Figure 6.36 
 
In Fig 6.36 we see the results of an addition operation similar to the equation above.  
 
When using addition to blend already bright pixels, this can result in burnout. 
Burnout happens when detail is lost because many of the pixels have been 
clamped to white. Neighboring pixels that would normally be subtly different 
shades of color will now all be clamped to the same color. The image on the 
right shows this happening when the cylinder is rendered after the cube with 
color blending enabled. Because both objects have fairly bright textures 
applied already, we can see that where they overlap, the result is washed out. 
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Example 4 (Source Color Intensity Blend) 
 
m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR); 
m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCCOLOR); 

 
 
This blending configuration uses the intensity of the source color to 
control the weight of the frame buffer color. As the source color increases, 
the destination color contributes to a lesser extent. When the source color 
is 0, the frame buffer color is used. When the source color is full intensity 
(1.0) the frame buffer color does not contribute at all.  
 
 
 
 
 
 
 
 
 

 
FrameBufferColor = Src(ARGB) * Src(ARGB) + Dest(ARGB) * (1 – Src(ARGB)) 
FrameBufferColor = (0.25, 0.25, 0.25, 0.25) * (0.25, 0.25, 0.25, 0.25) 
                               + (0.5, 0.5, 0.5, 0.5) * (1–0.25, 1-0.25, 1-0.25, 1-0.25) 
FrameBufferColor = (0.062, 0.062, 0.062, 0.062) + (0.75, 0.75, 0.75, 0.75) 
FrameBufferColor = (0.812, 0.812, 0.812, 0.812) 
 
Example 5 (Emulating the Modulate2x Texture Stage Color Operation) 
 
m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_DESTCOLOR); 
m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_SRCCOLOR); 
 
This example is useful, especially for multiple render passes, because it works like the modulate2x 
color operation in the texture stages. In effect we are modulating the source color and the destination 
color together twice and adding the results.  
 
FrameBufferColor = (SourceColor*DestColor) + (DestColor*SourceColor) 
FrameBufferColor = (SourceColor * DestColor) * 2 
  
Let us assume that we have a source pixel color of (0.5, 0.5, 0.5, 0.5) and a destination color of (0.75, 
0.75, 0.75, 0.75). 
 
FrameBufferColor = (0.5, 0.5, 0.5, 0.5) * (0.75, 0.75, 0.75, 0.75)  
                               + (0.75, 0.75, 0.75, 0.75) * (0.5, 0.5, 0.5, 0.5) 
FrameBufferColor = (0.375, 0.375, 0.375, 0.375) + (0.375, 0.375, 0.375, 0.375) 
FrameBufferColor = (0.75, 0.75, 0.75, 0.75) 
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If the source color is exactly half intensity (0.5), then the frame buffer is unchanged by the operation. 
If the source color is less than half intensity, then the frame buffer result will be darkened to some 
degree. If the source color is greater than half intensity then the frame buffer result will be lightened to 
some degree. This is the blending mode we will use in Lab Project 6.2 for detail texturing. 
 

The image on the left shows a brick texture 
and a high-detail gray cement texture, each 
mapped to its own quad. The quads are 
rendered without any alpha blending. As 
expected, the second polygon (the gray one) 
overwrites the first one. In the image on the 
right, we render the gray polygon with the 
blending operation just discussed. We note 
that it has added a grainy detail to the 
otherwise smooth brick wall texture. Also 
notice that because we are doing what is 

operation, the intensity of the blended pixels has been mostly maintained. 
essentially a modulate2x 

 

Note: One of the blend modes that we can specify is D3DBLEND_BLENDFACTOR. This allows us to use 
a constant color as a blend factor much like the TextureFactor constant discussed earlier. It is set with a 
call to SetRenderState. The following example sets a half-intensity color which can be used in the alpha 
blending equation during frame buffer blending.  

m_pDevice->SetRenderState(D3DRS_BLENDFACTOR, 0x88888888); 

This functionality is available if the D3DPBLENDCAPS_BLENDFACTOR capabilities bit is set in the 
SrcBlendCaps member of D3DCAPS9 or the DestBlendCaps member of D3DCAPS9. This identifies 
whether the blend factor can be used as a source blend mode or a destination blend mode respectively.  

Please open your workbook now to Lab Project 6.2. This project will use multi-texturing to blend two 
textures onto a terrain in a single pass. If multi-texturing is not available on the current hardware, we 
will implement the texture blending using multiple passes. This means that we will render the terrain 
with the first texture, and then render it again with the second texture using alpha blending to color 
blend the second pass with the results of the first. 
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Compressed Textures 
 

Compressed textures reduce the storage requirements for texture resources. This allows us to store 
more textures in video memory at any one time, and also to reduce the amount of bandwidth required 
to upload the data to the card during texture swapping. While there is some small amount of overhead 
involved when rendering with compressed textures due to on-the-fly decompression, this overhead is 
generally minimal compared to the cost of storing uncompressed textures and transferring them across 
the bus to the graphics card. The potential downside to compression is lossiness -- some image data 
may be discarded to save space -- which might affect texture detail and quality. However, when using 
texture compression, we can work with much larger textures and, for the most part, this addresses any 
potential loss in quality. 

 
The D3DXCreateTextureFromFileEx function makes loading and compression simple and easy. Let us 
imagine that we would like to use compressed textures of the type D3DFMT_DXT1 (do not worry what 
this actually means for the moment). There are two steps that we must perform. First, we will use 
IDirect3DDevice9::CheckDeviceFormat to determine whether or not the desired compressed format 
can be used with our current device. If so, then we can proceed to the second step and load the texture. 
 
 
ULONG      Ordinal = pSettings->AdapterOrdinal; 
D3DDEVTYPE Type    = pSettings->DeviceType; 
D3DFORMAT  AFormat = pSettings->DisplayMode.Format; 
 
if ( SUCCEEDED( m_pD3D->CheckDeviceFormat( Ordinal, Type, AFormat, 0, 
                                           D3DRTYPE_TEXTURE, D3DFMT_DXT1))) 
{      
   
D3DXCreateTextureFromFileEx(m_pD3DDevice,FileName,D3DX_DEFAULT,D3DX_DEFAULT,  
                               D3DX_DEFAULT,0,D3DFMT_DXT1,D3DPOOL_MANAGED, 
                               
D3DX_DEFAULT,D3DX_DEFAULT,0,NULL,NULL,&pTexture); 
} 
 
 
We used the D3DXCreateTextureFromFileEx form of the function because we want to specify the 
precise surface format that we want the source image converted to. If we had just used the 
D3DXCreateTextureFromFile function, then it would have chosen a texture format that most closely 
matched the image format in the file. When the function returns, we will have a pointer to our 
compressed texture and we can use it just like a normal texture from this point on.  The texture can 
even be locked and the pixel data manipulated, although this will cause the compressed data to be 
decompressed into a temporary surface for reads and writes. After we unlock the surface, the modified 
image data will be compressed again. 
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Compressed Texture Formats 
 
There are five compressed texture formats available for use in DirectX Graphics. They are members of 
the D3DFORMAT enumerated type and are listed below along with brief descriptions. We will go on 
to examine each in further detail in the next few sections. 
 
D3DFMT_DXT1 
 

The DXT1 format is primarily used when the texture is not required to store an alpha 
component, or in cases where we might only require a single alpha level (i.e. on/off). This will 
probably be the compression format used most within your scene because in most cases 
textures are either fully opaque or are being used for entities such as billboards for rendering 
trees, grass, etc. In the former case, no transparency is required. In the latter, it is often the case 
that we are only required to trace the outline of the billboard texture itself. 

 
D3DFMT_DXT2 & D3DFMT_DXT3 
 

These two formats are commonly used in situations where the texture requires several levels of 
alpha. This is often the case with textures used for effects like lens flares, user interface 
elements, and other special effects. Although the two provide similar functionality, there is one 
key difference between them. When a texture is created using the DXT2 format, each pixel’s 
color data is multiplied by any per-pixel alpha information stored within the texture. This is 
done as a pre-process, before texture creation is completed. For the DXT3 format, no such 
multiplication takes place.  
 

D3DFMT_DXT4 & D3DFMT_DXT5 
 

Like DXT2 and DXT3, these formats also provide variable levels of alpha information. As with 
the previous two, DXT4 is the pre-multiplied format, and DXT5 is the standard format. The 
only difference between these two formats and the previous two formats is that the DXT2 and 
DXT3 both store their alpha information explicitly. This means that each pixel within the 
texture maintains its own alpha value. However, when using DXT4 or DXT5, much of the 
alpha information is discarded and is instead interpolated over a wide area of pixels. As a 
result, you would likely only use these formats in situations where the accuracy of the alpha 
information is not extremely important. 

 
 
Pre-multiplied Alpha Texture Formats 
 
Probably one of the most confusing aspects about compressed texture formats is why we need the 
option to create texture surfaces that have their colors pre-multiplied by their alpha components. 
Although the alpha information is not discarded after the multiplication takes place, and we gain no 
compression/bandwidth benefits from this alone, the advantage to this approach is that it will speed up 
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the per-pixel calculations required to perform certain color blending operations. To understand why 
this is the case, we first need to take a look at the most typical alpha blending formula. It blends two 
colors together, taking into account the texture alpha: 
 

R(RGB) = (C1(RGB) * Alpha) + (C2(RGB) * (1 – Alpha)) 
 
In this formula, R is the resulting color, C1 and C2 are the two colors we are blending together, and 
Alpha is the alpha value being used. In this case, the alpha value is the one stored within the 
compressed texture. It is assumed that each component (R,G,B,A) is within the range [0.0, 1.0]. 
 
Note that we perform two multiplications. But if both C1 and Alpha originate in the same texture, we 
can speed up the formula by moving part of it out of the per-pixel operation and into a pre-process. 
This is where the pre-multiplication concept comes into play. Take a look at the formula again, and 
assume that Alpha originates in the same texture as C1: 
 

R(RGB) = (C1(RGB) * C1(Alpha)) + (C2(RGB) * (1 – C1(Alpha))) 
 

This is exactly the same formula with the exception that the alpha value is taken from the same 
location as the first color input. We notice that the first portion of the runtime per-pixel processing 
(C1(RGB) * C1(Alpha)) can be optimized. Rather than waste precious cycles, we can do this 
multiplication once as a pre-process when we create the texture and remove it from the formula 
altogether. So when we use a pre-multiplied texture for our C1 input value, we know in advance that 
the color components have already undergone this multiplication. Thus, we can then reduce the 
formula to: 
 

R(RGB) = C1(RGB) + (C2(RGB) * (1 – C1(Alpha))) 
 
Bear in mind that this is a per-pixel operation, so if we use a 1280x1024 frame buffer for example, we 
just eliminated up to 1,310,270 potential multiplications. This can be a significant savings indeed. 

 
 

Texture Compression Interpolation 
 
One of the primary methods by which DirectX Graphics reduces texture storage space when using 
compressed textures is interpolation. This is true for color as well as alpha values. Let us start with an 
example. Take a look at the following 300 pixel wide gradient: 
 

 
 
This block of color slowly changes from blue to red as we move from left to right. This transition takes 
place over 300 pixels, and thus requires 300 sets of color values to correctly express the gradient. 
Interestingly, we can store this entire image with as few as two color values if we were to use 
interpolation. Let us simplify this a bit and take a look at how interpolation works using an example 
which is only 3 pixels wide: 
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We can see here that the image uses 3 distinct colors. On the left, the first pixel has a bright blue color: 
RGB (0.0, 0.0, 1.0). On the right the third pixel has a bright red color: RGB (1.0, 0.0, 0.0). The pixel in 
the middle is a purple color: RGB (0.5, 0.0, 0.5). This pixel is positioned between the blue and red 
pixels and is rendered using a color value that is also directly between the neighboring pixel values. If 
we were to use interpolation to interpret the above image, we could store the color values for pixels 1 
and 3 only, and then interpolate between the two to come up with the color for pixel 2. This concept 
can be applied to a much wider span of pixels of course. We could then render this arbitrarily wide 
gradient using these two stored colors with some code that is similar to the following: 
 

// Calculate the color shift between each pixel of the gradient 
// We subtract one from GradientWidth so that the last pixel = Color_2 
// this ensures that during the loop (GradientWidth-1)/(GradientWidth-1) = 1.0  
Color_Shift = (Color_2 – Color_1) / (GradientWidth – 1); 
 
// Render the gradient 
for ( i = 0; i < GradientWidth + 1; i++ )  

SetPixel( i, 0, Color_1 + (Color_Shift * i) ); 
 
This is the concept used for the majority of the texture compression techniques used by DirectX 
Graphics. Let us now examine how DirectX Graphics stores the color data within a compressed texture 
format and how interpolation applies. 
 
 

 

Compressed Data Blocks - Color Data Layout 
 
Texture compression divides the texture into a series of 4x4 texel blocks. This allows the interpolation 
to be performed across each individual block of 4x4 texels, and works to maintain image data integrity.  
Each block is essentially a mini palletized image. Each of the 16 individual texels stores their 
information using 2 bits. These bits serve as an index (between 0 and 3), that look up a color in what 
we might consider a virtual palette.  

As we can see in the image to the left, each block contains two colors (not four 
as might be expected given the index range). We referred to the palette as 
‘virtual’ because the other two colors to be indexed are generated at runtime by 
interpolating between the two colors provided within the block.  
 
Referring back to the previous example, let us assume for a moment that 
Color_0 contains the bright blue color and Color_1 the bright red color. The 
third and fourth color values would now be calculated such that the third color is 
2/3rd blue and 1/3rd red, and the fourth color is 1/3rd blue and 2/3rd red. We can 
think of this as generating a four pixel wide gradient using Color_0 and Color_1 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 81 of 108 

 

TeamLRN



 

as the outer bounds. This can reduce image quality to some degree, but in most cases, unless the 
texture is extremely small and scaled over a large area, the effect is hardly noticeable.  
 
The images on the right show comparisons of 
the uncompressed (explicit) 4x4 block and the 
block using interpolated color values. We also 
see the resulting images (actual size) making 
use of each type. When we inspect the block 
colors close up, we can see a significant 
difference between the two. In the explicit 
block, we are using seven distinct colors and in 
the interpolated case we used four. The 
interpolated block (50X magnification) would 
not be of sufficient quality as an image on in its 
own. However, the key to this technique is that 
each block of 16 texels can have its own unique 
virtual palette. So we can vary the range of 
colors used by each block in the image. If we 
take a look at the two results, we note that even 
in this extreme case, the result is a barely 
noticeable difference in the overall color 
between them. 

 
Explicit Block 

 
Interpolated Block 

 
Explicit Result 

 
Interpolated Result   

 

 
Explicit Block 

 
Interpolated Block 

 
Explicit Result 

 
Interpolated Result 

In the more practical example on the left, even though it 
is possible to spot the difference between the two 
blocks when magnified, the resulting images are 
practically indistinguishable even at this relatively low 
resolution of 128x128 (non-filtered, actual size). The 
larger the texture, the less you will be able to see the 
visible signs of compression. This is due to the fact that 
more and more texels will be mapped to the polygon 
currently being rendered. This is really an ideal 
situation because it encourages us to increase the size 
and quality of our textures. We gain significant benefits 
in doing so because we can provide a far richer game 
environment without requiring more video memory on 
the card. 
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The compressed texture block is laid out and interpolated as follows: 
 

 
 

The first portion holds the actual color data. These are the two extents between which our two 
interpolated colors will be computed. They are stored in a 16-bit R5G6B5 format. The 4x4 grid values 
specify the two bit binary code used as the index into the virtual palette. Recall that 00(bin) = 0(dec), 
01(bin) = 1(dec), 10(bin) = 2(dec) and 11(bin) = 3(dec). Thus, each color block uses only 64 bits        
(8 bytes) of memory, and provides reasonably good image quality.  
 
Let us now interpolate the color values. As discussed earlier, the first interpolated color uses 2/3rd of 
Color_0 and 1/3rd of Color_1. The second interpolated color uses 1/3rd of Color_0 and 2/3rd of Color_1.  
 
Interpolated_0(red) = (2 * (Color_0(red) / 3)) + (1 * (Color_1(red) / 3)); 
Interpolated_0(red) = (2 * Color_0(red) + Color_1(red)) / 3; 

 
Interpolated_1(red) = (1 * (Color_0(red) / 3)) + (2 * (Color_1(red) / 3)) 
Interpolated_1(red) = (Color_0(red) + 2 * Color_1(red)) / 3; 

 
Ex. 
Color_0(red) = 140 
Color_1(red) = 173 

 
Interpolated_0(red) = (2 * 140 + 173) / 3; 
Interpolated_1(red) = (140 + 2 * 173) / 3; 

 
Interpolated_0(red) == 151 
Interpolated_1(red) == 162 

 

Referring back to the previous diagram, we realize that this works out exactly as our results 
demonstrated for the red components. If you follow this calculation through, you should find that it 
also works out for both the green and blue components too. 
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When decoding the 4x4 bit-map area of the block, we will extract the data for each row one byte at a 
time. 
 

 
 

Here we see a single row of our example color data block. The row consists of 8 bits of data. In binary 
form, the byte consists of the bits 00 01 10 10. When converted to decimal, this value = 26. The code 
snippet below demonstrates how we might extract the indices from each 2 bit section of this byte. 
Remember that when using a little-endian system (as is the case with the Intel 80x86 architecture), bit 
7 is furthest left and bit 0 is furthest right, as labeled above. 
 

RowByte = 26; // Assume this is the first row 
Texel[0][0] = Color[(RowByte & 0x03)];      // 2(dec) = 10(bin) 
Texel[1][0] = Color[(RowByte & 0x0C) >> 2]; // 2(dec) = 10(bin) 
Texel[2][0] = Color[(RowByte & 0x30) >> 4]; // 1(dec) = 01(bin) 
Texel[3][0] = Color[(RowByte & 0xC0) >> 6]; // 0(dec) = 00(bin) 

 
This code extracts the 2 bit index from the row’s bit data and uses it to look up one of the four colors 
calculated earlier. The result is stored in a 4x4 texel color array. We would obviously have to do this 
three more times (for the three remaining rows) to complete the full decoding of the block. 
 

Note: You might have noticed that the least significant bits in the byte describe the first texel for that 
image’s row. This is not a typo, the image data is actually encoded in this way. 

Take a moment to examine the following tables. They compare memory footprint between standard 
non-compressed textures, and their opaque DXT1 compressed counterparts. Remember that each 
DXT1 color block is 8 bytes in size. 
 
 

Standard 16bit / 32bit Uncompressed Textures 
Dimensions Bits Per Pixel Pixel Count Size (Bytes) 
128x128 16 16,384 32,768 
128x128 32 16,384 65,536 
256x256 16 65,536 131,072 
256x256 32 65,536 262,144 
512x512 16 262,144 524,288 
512x512 32 262,144 1,048,576 
1024x1024 16 1,048,576 2,097,152 
1024x1024 32 1,048,576 4,194,304 
2048x2048 16 4,194,304 8,388,608 
2048x2048 32 4,194,304 16,777,216 
4096x4096 16 16,777,216 33,554,432 
4096x4096 32 16,777,216 67,108,864 
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Opaque DXT1 Compressed Textures 
Dimensions Block Count Size (Bytes) 
128x128 1,024 (32x32) 8,192 
256x256 4,096 (64x64) 32,768 
512x512 16,384 (128x128) 131,072 
1024x1024 65,536 (256x256) 524,288 
2048x2048 262,144 (512x512) 2,097,152 
4096x4096 1,048,576 (1024x1024) 8,388,608 

 
This is a significant reduction. Note as well that the storage space and bandwidth savings are 
exponential as the size of the texture increases. In addition, each block is exactly 64 bits in size. This 
allows for optimal (practically best case) transfer rate when sending the texture data to the card. As a 
general rule, we can use a compressed texture with dimensions (Width*2) x (Height*2) beyond those 
of an uncompressed 16-bit texture and take up no additional storage, with acceptable lossiness. 
 

Note: Due to the fact that each block describes a 4x4 texel area, and because of other optimizations 
that may be performed, compressed textures must always use dimensions equal to (N2). This is true 
even in cases where the graphics adapter supports non-‘power of two’ image dimensions for 
uncompressed textures. 

 
Compressed Data Blocks - Alpha Data Layout 
 
Although the layout of the color data stays basically the same between compressed texture formats 
(with one exception to be discussed shortly), we have several options when it comes to how we store 
alpha information and how it is interpolated.  
 
D3DFMT_DXT1 - Opaque or 1 Bit Alpha 
 
The DXT1 format has the ability to store a single bit of alpha information. This basically describes 
whether or not the resulting pixel should be rendered (i.e. totally transparent or totally opaque).  
 
As discussed previously, we store 2 bits for each texel stored in the 4x4 color data block. In order to 
provide transparency, we will discard one of the interpolated color values in favor of having a ‘free’ 
index available (11(bin) or 3(dec)). Here we will specify whether a texel is transparent or not. So in 
this case we now have three color values: the two encoded into the block itself and a single 
interpolated value (created using ½ Color_1 and ½ Color_2). The consequence is some additional 
lossiness. Fortunately, this is determined on a block-by-block basis during compression, so only those 
blocks which happen to contain transparent pixels will suffer as a result. 
 
To determine whether a compressed data block contains transparency information during 
decompression / rendering, rather than use a flag, this format uses a little hardcoded logic. If the block 
does not contain transparency information then Color_0 will be greater than Color_1. If it does contain 
transparency information then the situation is reversed and Color_1 will be greater than Color_0.  
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if ( (Color_0 > Color_1) || Format != D3DFMT_DXT1 ) 
{ 
    // No transparency, this block uses all four colors 
    Color_2 = (2 * Color_0 + Color_1) / 3; 
    Color_3 = (Color_0 + 2 * Color_1) / 3; 
} 
else 
{ 
    // Contains transparency, use only three colors 
    Color_2 = (Color_0 + Color_1) / 2; 
    Color_3 = transparent; 
} 

 
Notice that the above ‘if’ statement takes into account the fact that this transparency technique applies 
only to the DXT1 compressed texture format. All other formats always assume four color encoding. 
 
 
D3DFMT_DXT2 & D3DFMT_DXT3 - Explicit Alpha 
 

These two formats both store their color data in exactly the same way as the 
opaque version of the DXT1 format. However, they store their alpha values 
separately. These explicit alpha formats provide a unique 4 bit alpha value for 
each texel in the block. This data is stored in a separate 64-bit 4x4 transparency 
block. It is encoded before the color block, as seen in the image on the left. 
 
When explicit alpha is used, the size of each data block (transparency block + 
color block) adds up to a total of 128 bits (16 bytes). This is obviously not as 
significant a space savings as DXT1, but when we need relatively accurate, 
explicit per-texel alpha values, these formats provide the best of both worlds. 
 
For DXT2 and DXT3 formats, the 4-bit alpha encoding for each texel can be 
achieved using several methods, such as dithering or simply truncation using 
only the 4 most significant bits (4 through 7). The latter is the method DirectX 
Graphics uses when compressing alpha information using either of these two 
formats. Since we are truncating the alpha information into 4 bits, the texture is 

only capable of describing 16 unique alpha levels. During compression, any original alpha values that 
are less than 16 will become completely transparent (0). 
 
Because the alpha values are explicit, and use 4 bits per texel, decoding the transparency block is 
relatively easy when using these formats. We read the entire row into a single WORD (2 bytes).  
 
Let us assume that the row we are processing is split up into 4 bit chunks as [1101 0010 1100 0101] 
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RowWord = 53957; // Assume this is the first row 
Alpha[0][0] =  (RowWord & 0x000F) << 4;            //   80(dec) = 01010000(bin) 
Alpha[1][0] = ((RowWord & 0x00F0) >> 4 ) << 4; // 192(dec) = 11000000(bin) 
Alpha[2][0] = ((RowWord & 0x0F00) >> 8 ) << 4; //   32(dec) = 00100000(bin) 
Alpha[3][0] = ((RowWord & 0xF000) >> 12) << 4; // 208(dec) = 11010000(bin) 
 
As with the code used to extract the color indices, this process must also be repeated for the remaining 
three rows. Shifting each value to the left by 4 bits converts the 4-bit value back into a byte within the 
range [0, 255]. One potential optimization is to simplify the right and left shifts to one operation:       
(ex. >> 12 followed by a  << 4 is changed to a  >> 8).  
 

Note: The least significant bits in the word describe the first alpha value for that physical texture row. 
This is not a typo, the alpha data is actually encoded in this way. 

Remember that DXT2 has its color data encoded using pre-multiplied alpha and DXT3 does not. If you 
are encoding these formats manually, do not forget to do this multiplication. 
 
 
D3DFMT_DXT4 & D3DFMT_DXT5 - Interpolated Alpha 
 

DXT4 and DXT5 also store their own transparency block encoded before the 
color block. For alpha, they will use interpolation in much the same way as the 
color block. There are two key differences. First, the two alpha values used to 
generate the interpolated values are stored as 8-bit (one byte) values. This 
allows a full range between 0 and 255. Second, each index in the bit-map uses 3 
bits, providing up to 8 interpolated alpha values to be specified (0 through 7). 
 
As with the interpolated color values, we will need to generate a certain number 
of alpha values that fall within the range specified by the Alpha_0 and Alpha_1 
values contained within the transparency block. Because our data area uses 3-bit 
indices, we can address a maximum of 8 unique values. When these formats are 
decoded, we will generate 6 alpha values interpolated between the two values 
specified within the block. The following code snippet generates each of these 6 
alpha values. 
 
 

 
// Alpha_0 = First 8 bits of transparency block   - Bit code 000 
// Alpha_1 = Second 8 bits of transparency block  – Bit Code 001 
Alpha_2 = ( 6 * Alpha_0 +     Alpha_1 ) / 7; //   - Bit Code 010 
Alpha_3 = ( 5 * Alpha_0 + 2 * Alpha_1 ) / 7; //   - Bit Code 011 
Alpha_4 = ( 4 * Alpha_0 + 3 * Alpha_1 ) / 7; //   - Bit Code 100   
Alpha_5 = ( 3 * Alpha_0 + 4 * Alpha_1 ) / 7; //   - Bit Code 101 
Alpha_6 = ( 2 * Alpha_0 + 5 * Alpha_1 ) / 7; //   - Bit Code 110 
Alpha_7 = (     Alpha_0 + 6 * Alpha_1 ) / 7; //   - Bit Code 111 
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Each of these values is distributed evenly between the Alpha_0 and Alpha_1 such that: 
 
Alpha_2 uses 6/7th Alpha_0 and 1/7th Alpha_1, 
Alpha_3 uses 5/7th Alpha_0 and 2/7th Alpha_1, 
Alpha_4 uses 4/7th Alpha_0 and 3/7th Alpha_1,  
… 
 
As with the color data, there is a special case which can be used on a block-by-block basis. If Alpha_1 
is greater than Alpha_0, we assume a 6-alpha block, as opposed to the 8-alpha block described above: 
 
// Alpha_0 = First 8 bits of transparency block       - Bit code 000 
// Alpha_1 = Second 8 bits of transparency block      – Bit Code 001 
if ( Alpha_0 > Alpha_1 ) 
{ 
    Alpha_2 = ( 6 * Alpha_0 +     Alpha_1 ) / 7; //   - Bit Code 010 
    Alpha_3 = ( 5 * Alpha_0 + 2 * Alpha_1 ) / 7; //   - Bit Code 011 
    Alpha_4 = ( 4 * Alpha_0 + 3 * Alpha_1 ) / 7; //   - Bit Code 100   
    Alpha_5 = ( 3 * Alpha_0 + 4 * Alpha_1 ) / 7; //   - Bit Code 101 
    Alpha_6 = ( 2 * Alpha_0 + 5 * Alpha_1 ) / 7; //   - Bit Code 110 
    Alpha_7 = (     Alpha_0 + 6 * Alpha_1 ) / 7; //   - Bit Code 111 
} 
else 
{ 
    Alpha_2 = ( 4 * Alpha_0 +     Alpha_1 ) / 5; //   - Bit Code 010 
    Alpha_3 = ( 3 * Alpha_0 + 2 * Alpha_1 ) / 5; //   - Bit Code 011 
    Alpha_4 = ( 2 * Alpha_0 + 3 * Alpha_1 ) / 5; //   - Bit Code 100   
    Alpha_5 = (   * Alpha_0 + 4 * Alpha_1 ) / 5; //   - Bit Code 101 
    Alpha_6 = 0;                                 //   - Bit Code 110 
    Alpha_7 = 255;                               //   - Bit Code 111 
} 
 
As you can see, this approach creates only 4 interpolated values and explicitly defines the extremes. 
This can be used in cases where we want no blending to occur (total opacity or transparency). 
 
Decoding the data area for three-bits per texel can be a little bit tricky. The easiest way is to read the 
entire data area (48 bits) into a single 64-bit variable (using an __int64) and parse it.  
 
__int64 BlockData = 195010219826458; // Assume this is the first row 
 
// In this example, BlockData binary is shown below 
// 101 100 010 101 110 001 011 010 111 000 010 101 110 100 011 010 
TAlpha[0][0] = Alpha[(BlockData & 0x7)]; // 2(dec) = 010(bin) 
BlockData >>=3; 
TAlpha[1][0] = Alpha[(BlockData & 0x7)]; // 3(dec) = 011(bin) 
BlockData >>=3; 
TAlpha[2][0] = Alpha[(BlockData & 0x7)]; // 4(dec) = 100(bin) 
BlockData >>=3; 
TAlpha[3][0] = Alpha[(BlockData & 0x7)]; // 6(dec) = 110(bin) 
BlockData >>=3; 
... 
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Again, this process repeats for the remaining three rows. As we saw earlier, we start with the least 
significant bits of the data type being processed. We strip off the 3 least significant bits used in the 
previous calculation, so that the next 3 bits in the data area become the least significant bits in their 
place. This is also a valid way of decoding the other data blocks and is extremely useful if you wish to 
place your extraction code in a loop. 
 
Finally, remember that DXT4 color data is encoded using pre-multiplied alpha and DXT5 is not.  
 
 
Texture Coordinate Transformation 
 
Each of the eight texture stages owns a 4x4 matrix that can be used to apply transformations to the 
texture coordinates associated with that stage. This provides an easy way to animate texture 
coordinates at run-time as they are pumped through the cascade. We can think of the texture 
coordinates as normal 2D vectors, such that multiplying them with the texture matrix works in exactly 
the same way as multiplying our vertex positions with a 4x4 matrix (see Chapter 1). By default, texture 
coordinate transformations are disabled for each stage and the matrix stored at each stage is an identity 
matrix.  
 
Our first concern is figuring out how to multiply a 2D texture coordinate with a 4x4 matrix (the 2D 
coordinate is a 1x2 matrix and the inner dimensions do not match the 4x4 matrix). Recall that we used 
homogeneous coordinates in the form (x,y,z,1) to solve this problem for 3D vectors. This also gave us 
the ability to place addition/subtraction into the matrix for translations. The DirectX pipeline uses a 
similar approach with texture coordinates. Note that even though we have only used 2D texture 
coordinates so far, you can also use 1D, 3D, and even 4D coordinates with DirectX. If N is the 
dimension of the texture coordinates, the coordinate set will be padded to a 4D vector prior to 
multiplication with the texture matrix such that component N+1 will have the value 1. The remaining 
values in the vector are padded to 0.  
 
Let us assume that we have a 2D set of texture coordinates in our vertex structure (u, v). If texture 
transformations are enabled in the stage that uses those coordinates, the texture coordinates will be 
padded to 4D texture coordinates for the matrix multiplication. The 2D texture coordinate would now 
be (u, v, 1, 0). A 1D texture coordinate (u) would be padded to (u, 1, 0, 0). A 3D coordinate (u, v, w) 
would be padded to (u, v, w, 1). 
 

2D Texture Coordinate Translation Matrix 
 

Texture Matrix 



















44434241
34333231
24232221
14131211

mmmm
mmmm
mmmm
mmmm
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Let us imagine that we have a texture matrix assigned to stage 0 as an identity matrix.  
 

Texture Matrix 



















1000
0100
0010
0001

 

 
When we are using 3D vertex positions (x, y, z, 1) we know that the translation vector should go in the 
fourth row. However, when using 2D texture coordinates (u, v, 1, 0), this will not suffice:  
 
U = u * m11 + v * m21 + 1 * m31 + 0 * m41 
V = u * m12 + v * m22 + 1 * m32 + 0 * m41 
U = u * m11 + v * m21 + 1 * m31 
V = u * m12 + v * m22 + 1 * m32 
 
Instead we see that since the third component of the texture coordinate is set to 1 prior to the 
multiplication. Thus, the third row in the matrix provides us with the ability to add or subtract values 
from the input components.  
 
Assume UV components of (0.5, 0.9). If we wanted to translate our U coordinates by 2 and our V 
coordinates by –5 we would generate the following matrix: 
 
 

2D Texture Translation Matrix 



















−
1000
0152
0010
0001

 

 
U = 0.5*1   +   0.9*0   +   1*2 
U = 2.5 
 
V = 0.5*0   +   0.9*1   +   1*-5 
V = -4.1 
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Next we see how to setup a matrix to translate a 1D texture (u, 1, 0, 0) by du and dv: 
 

1D Texture Translation Matrix 



















1000
0100
00
0001

dvdu
 

 
 

In Lab Project 6.3 we will use texture coordinate animation to 
make the water underneath the wooden bridge look like it is 
flowing. We do this by setting the texture stage matrix to a 
translation matrix that continuously increments the translation 
amount of the texture coordinates each time the face is rendered. 
This offsets the texture coordinates a little more each frame.  
 
Before rendering each water 
polygon, we will set the texture 
stage texture matrix to increment 
the U component of the texture 

coordinates. Since the default texture addressing mode wraps 
coordinates outside the [0, 1] range, as the texture is tiled we will see 
a scrolling effect. The top part of the image on the right shows the 
water texture mapped to a quad in its entirety. The bottom image 
shows what the quad would look like if we subtracted 0.5 from the U 
coordinate using the translation matrix. The white line lets us see 
where one tile ends and the next one begins, but is for the purposes 
of the diagram only – it will be a seamless join in the application.  
 
If we subtract a small amount from the U coordinate each frame, the 
white line would scroll slowly from right to left (from 0.0 to 1.0). 
Once it reached 1.0 it would just wrap around to 0.0. This means that 
our water texture will look like it is endlessly scrolling. In the demo 
we only translate the U coordinates because the room design is such 
that the water flow is aligned with our world X axis. If the room was 
oriented diagonally between the X and Z axes, we would have 
translated both the U and V coordinates by equal measure.  
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We can also perform texture scaling and rotations on our UV coordinates. The following matrix scales 
the u coordinate by 5 and the v coordinate by 2. 

 

A 2D texture coordinate scale matrix 



















1000
0100
0020
0005

 

 

 

Setting up the Texture Transformation 
 
To enable texture transformation we first use the D3DTTS_TEXTURETRANSFORMFLAGS texture stage state 
as shown below: 
 
pDevice->SetTextureStageState(0, D3DTSS_TEXTURETRANSFORMFLAGS, flags); 

 
We use this function to inform the device about the texture coordinate size. The 4D texture coordinate 
will be padded and the output will be trimmed accordingly. We specify one of the members of the 
D3DTEXTURETRANSFORMFLAGS enumeration: 
 
typedef enum _D3DTEXTURETRANSFORMFLAGS 
{ 
    D3DTTFF_DISABLE = 0, 
    D3DTTFF_COUNT1 = 1, 
    D3DTTFF_COUNT2 = 2, 
    D3DTTFF_COUNT3 = 3, 
    D3DTTFF_COUNT4 = 4, 
    D3DTTFF_PROJECTED = 256, 
    D3DTTFF_FORCE_DWORD = 0x7fffffff 
} D3DTEXTURETRANSFORMFLAGS; 
 
 
D3DTTFF_DISABLE 
Texture transformations are disabled. This is the default state for each texture stage. 
 
 
D3DTTFF_COUNT1 
This tells the device to trim the 4D texture coordinate output from the texture matrix multiplication to 
its first component. All other components are discarded. The rasterizer now knows to expect 1D 
coordinates. 
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D3DTTFF_COUNT2 
This tells the device to trim the 4D texture coordinate output from the texture matrix multiply to its 
first two components. All other components are discarded. The rasterizer now knows to expect 2D 
coordinates. 
 
 
D3DTTFF_COUNT3 
This tells the device to trim the 4D texture coordinate output from the texture matrix multiply to its 
first three components. The 4th component is discarded. The rasterizer now knows to expect 3D 
texture coordinates. 
 
 
D3DTTFF_COUNT4 
The 4D vector output from the matrix multiplication is passed straight to the rasterizer. 
 
 
D3DTTFF_PROJECTED 
This flag can be combined with any of the above flags.  The 4D texture coordinates output from the 
matrix are all divided by the last component before being passed to the rasterizer. For example, if this 
flag is specified with the D3DTTFF_COUNT3 flag, the first and second texture coordinates are divided by 
the third coordinate before being passed to the rasterizer. This flag is used for projective texturing. We 
will discuss this feature in detail during the next course in this series. 
 
 
 
Thus, to enable transformations in stage 0 for 2D texture coordinates: 
 
pDevice->SetTextureStageState(0, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTFF_COUNT2); 

 
To set the transformation matrix we use the SetTransform function, passing one of the 
D3DTS_TEXTURE0 – D3DTS_TEXTURE7 transform states. The number on the end describes which 
texture stage we are setting matrix for. The following code creates a texture translation matrix that 
scrolls the U coordinates by 0.1 and assigns it to stage 0. 
 
D3DXMATRIX  mat; 
D3DXMatrixIdentity (&mat); 
Mat._31 = 0.1; 
pDevice->SetTransform ( D3DTS_TEXTURE0 , &Mat); 
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The IDirect3DTexture9 Interface 
 
It is tempting to think of the IDirect3DTexture9 interface as an interface to an object that encapsulates 
an image stored on a surface. However, this is not quite true. As we have already discovered, the 
texture object can actually manage multiple surfaces called MIP maps. (It would be appropriate 
however to think of the IDirect3DSurface9 interface as an object that encapsulates a single image 
surface.) Each MIP mapped texture object is really an object that manages an array of surface objects. 
Each of these surfaces can be accessed and operated on using the methods of the IDirect3DSurface9 
interface.  With the release of DirectX 9.0 the IDirect3DTexture9 interface was extended, allowing you 
to lock any surface belonging to a texture without the need to use an intermediate IDirect3DSurface9 
interface. The IDirect3DSurface9 interface is nevertheless quite important. Not only is it used to 
operate on surfaces that are not textures (such as the frame buffer for example), there are still D3DX 
functions that operate on IDirect3DSurface9 rather than IDirect3DTexture9. Since IDirect3DTexture9 
includes a function to return an IDirect3DSurface9 interface for any one of its MIP levels, we can use 
these D3DX functions with individual texture surfaces with no trouble.  
 
Let us briefly examine some of the methods exposed by the IDirect3DTexture9 interface. Some of 
these you will use very rarely, while others may be used quite regularly. 
 
LockRect(UINT Level, D3DLOCKED_RECT *pLockedRect, CONST RECT *pRect, DWORD Flags); 
This function locks a rectangular area on the texture and returns a pointer to the first pixel in the top 
left corner of the rectangle. If the RECT pointer is set to NULL, a pointer to the first pixel in the top 
left corner of the entire surface is returned. This pointer can be used to read and write directly to or 
from the surface. The Level paramater specifies the MIP map level you wish to lock. The 
D3DLOCKED_RECT structure is filled with a pointer to the bits of the image surface and the pitch 
of the surface. 
 
 
UnlockRect(UINT Level); 
When a surface has been locked you must remember to unlock it after you have finished reading or 
writing. We pass in the MIP level we wish to unlock. 
 
 
DWORD GetLevelCount(VOID); 
This function returns the number of MIP levels in the texture. 
 
 
GetLevelDesc(UINT Level, D3DSURFACE_DESC *pDesc); 
This function is used to get specific information about a particular surface level in a texture. The Level 
parameter specifies the MIP level we wish to inquire about. The D3DSURFACE_DESC will be filled with 
the width, height and format information about that surface level. The D3DSURFACE_DESC structure is 
shown below.  
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typedef struct _D3DSURFACE_DESC 
{ 
    D3DFORMAT Format; 
    D3DRESOURCETYPE Type; 
    DWORD  Usage; 
    D3DPOOL Pool; 
    D3DMULTISAMPLE_TYPE MultiSampleType; 
    DWORD  MultiSampleQuality; 
    UINT  Width; 
    UINT  Height; 
} D3DSURFACE_DESC; 
 
The D3DSURFACE_DESC is used to contain information about all sorts of surfaces. For example, it could 
be used for frame buffer information as well as texture information. The Format, Width, Height, 
Usage, and Pool members have been discussed in detail already. The MultiSampleType and 
MultiSampleQuality members are only relevant for surfaces that can be used as render targets (i.e. 
frame buffer or render target textures). The Type parameter identifies the type of surface this is. For a 
standard 2D texture surface, this will always be D3DRTYPE_TEXTURE. The other D3DRESOURCETYPE 
members are shown below and some of the following types we have not yet covered. 
 
typedef enum _D3DRESOURCETYPE 
 { 
    D3DRTYPE_SURFACE = 1, 
    D3DRTYPE_VOLUME = 2, 
    D3DRTYPE_TEXTURE = 3, 
    D3DRTYPE_VOLUMETEXTURE = 4, 
    D3DRTYPE_CUBETEXTURE = 5, 
    D3DRTYPE_VERTEXBUFFER = 6, 
    D3DRTYPE_INDEXBUFFER = 7, 
    D3DRTYPE_FORCE_DWORD = 0x7fffffff 
} D3DRESOURCETYPE; 
 
 
GetSurfaceLevel(UINT Level, IDirect3DSurface9 **ppSurfaceLevel); 
Individual texture MIP surfaces can be retrieved using this function. It will return a pointer to an 
IDirect3DSurface9 interface based on the MIP surface level specified in the Level parameter.  
 
 
void PreLoad (void); 
We use this function to inform the DirectX memory manager that the texture will soon be used for 
rendering. This function is used for managed textures only. A managed texure resource may have been 
temporarly unloaded from video memory to make room for other textures. Calling this function forces 
the texture manager to upload the texture to video memory immediately. Often when textures are first 
created, they will not be loaded up to video memory until the first time they are used. This can result in 
stutters or delays at the start of an application. Calling PreLoad on all of your managed textures can 
help minimize this occurance by making sure the textures are in video memory before rendering. 
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void AddDirtyRect(CONST RECT *pDirtyRect); 
When using managed textures, whenever a texture is locked, the rectangle that was locked is flagged as 
dirty. When the texture is unlocked, the texture manager updates the video memory copy of the texture 
with the new image data from the system memory copy. When we are not using managed textures, we 
manage this system memory copy of the texture ourselves. The IDirect3DDevice9::UpdateTexture 
function can be used to copy data from the system memory texture to the video memory texture. This 
function copies all the dirty rectangles of the system memory texture. We can use the AddDirtyRect 
function to specify additional dirty regions. This forces either the memory manager or the 
IDirect3DDevice9::UpdateTexture function to push the system memory copy to the card even if the 
system does not officially consider them to be dirty.  
 
 
DWORD SetPriority(DWORD PriorityNew); 
This function is used to set the priority of a managed texture. By default, all managed textures begin 
life with a priority level of 0. When the memory manager is deciding which textures to remove from 
video memory to make room for newly requested ones, it will choose textures with a lower priority. 
This means that we can assign a priority number > 0 to make sure that a texture is not removed from 
memory. This can be usful if we know a texture will be used lots of times throughout the scene. The 
function returns the previous priority level of the texture. This is only used with managed textures. 
 
 
HRESULT IDirect3DDevice9::UpdateTexture(IDirect3DBaseTexture9 *pSourceTexture, 
                                                                                 IDirect3DBaseTexture9 *pDestinationTexture); 
This function is used to copy a system memory texture to a texture in the default memory pool. 
Typically you will use this function when updating textures that are not in the D3DPOOL_MANAGED 
resource pool. This function will copy only the dirty regions of the texture. Locking a texture makes 
the locked rectangle dirty, provided that the texture rectangle was not locked using the 
D3DLOCK_NO_DIRTY_UPDATE or D3DLOCK_READONLY flags. Note that using the 
IDirect3DDevice9::AddRect function is another way to add dirty rectangles to a texture. 
 
The source texture must have been created in the D3DPOOL_SYSTEMMEM memory pool and the 
destination surface must have been created in the D3DPOOL_DEFAULT memory pool. This function 
cannot be used for managed textures. There are a few other semantics that must be obeyed when using 
this function and the full details are disussed in the DirectX SDK documentation. 
 
 
 
 
 
 
 
 
 
 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 96 of 108 

 

TeamLRN



 

The IDirect3DSurface9 Interface 
 
IDirect3DSurface9 is an interface used to interact with an indivdual surface, such as a single MIP 
surface in a texture object. This is an important interface because not all surfaces are texture surfaces. 
The frame buffer, front buffer, and depth buffer are good examples. They are not necessarily limited to 
the same size and shape restrictions that texture surfaces may be limited to. Note that although we 
cannot physically write to the front buffer for example, the IDirect3DDevice9::GetFrontBufferData 
makes a copy of the front buffer and returns an IDirect3DSurface9 interface. This is ideal for grabbing 
a screen shot and saving it to a file. 
 
The IDirect3DSurface9 interface also includes many useful methods that are not available through 
IDirect3DTexture9. For example, let us imagine that we have a texture with 10 MIP levels and we 
wish to write some text to the top level surface. It would be handy if we could use the Win32 GDI text 
output functions since they are familiar and easy to use (assuming speed is not a concern). 
IDirect3DSurface9 exposes a GetDC function that allows us to do just that. Once you have the device 
context, you can use GDI functions to render to the surface as though it were a window. For example: 
 
// assumes that pTexture is a valid IDirect3DTexture9 interface… 
IDirect3DSurface9 *pSurface; 
HDC hDC; 
 
pTexture->GetSurfaceLevel(0, &pSurface); 
pSurface->GetDC( &hDC ) 
 
::SetTextColor( hDC, 0xFFFFFF ); 
::TextOut( hDC , 10 , 10 , “Hello World” , 11); 
 
pSurface->ReleaseDC( hDC ); 
pSurface->Release(); 
 
D3DXFilterTexture(pTexture, NULL, 0, D3DX_DEFAULT); 
 
The first thing we do is retrieve an IDirect3DSurface9 for the current texture level (0 in this example). 
Once we have the surface interface, we use the GetDC function to retrieve a device context handle for 
drawing to the surface. In this example we set the text color of the device context to white and then 
print the text ‘Hello World’ using the 2D device context coordinates X=10, Y=10. Once we are done 
writing to the surface, we release the device context and the surface interface as they are no longer 
needed. Finally, we called the D3DXFilterTexture function (see next section) to ensure that the 
changes to the top level surface are downsampled to all subsequent MIP levels.  
 

Note: While the GDI is too slow to be used in a time critical situation, it can be used during initialization of your 
application to write to or copy from texture surfaces. 
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IDirect3DDevice9 Surface Functions 
 
The IDirect3DDevice9 interface has a few useful methods for working with surfaces. They are listed 
below along with a description of their use, followed by a description of their parameters. 
 
HRESULT ColorFill(IDirect3DSurface9 *pSurface, CONST RECT *pRect, D3DCOLOR color); 
 
The IDirect3DDevice9::ColorFill function is used to fill a surface (or a rectangular portion thereof) 
with a specified color. 
 
IDirect3DSurface9 *pSurface 
We use this parameter to pass an IDirect3DSurface9 pointer to the surface we wish to fill. 
 
CONST RECT *pRect 
The rectangular region on the surface that we wish to be filled. If we pass NULL, then the entire 
surface will be filled with the color. 
 
D3DCOLOR Color 
The color we will use for the fill operation. 
 
//ex.Fill the entire surface with opaque green.
pDevice->ColorFill (pSurface, NULL, 0xFF00FF00);  

 

 
 
HRESULT CreateOffscreenPlainSurface(UINT Width, UINT Height, D3DFORMAT Format, 
                                          DWORD Pool, IDirect3DSurface9** ppSurface, HANDLE* pHandle); 
 
This function creates a new surface object which we will typically want to place in system memory. 
When we we create an offscreen plain surface, we are not limted by any of the device restrictions that 
apply to textures. This makes them ideal for storing images that are too large to fit into a texture. 
 
For example, if we had a title screen image that was 1024x768 and we loaded this as a texture on a 
device that was limited to textures of 256x256 in size, the D3DXCreateTextureFromFile function 
would automatically resize the image so that it would fit onto a 256x256 texture surface. When the 
image was stretched over the entire screen, magnification artifacts would be the result.  So instead, 
CreateOffscreenPlainSurface should be used to create a blank surface of the correct size. We can then 
use the D3DXLoadSurfaceFromFile function to load the image data and the 
IDirect3DDevice9::UpdateSurface function to copy the image from the offscreen surface to the frame 
buffer surface. If the frame buffer and offscreen surface are different sizes, we can use the 
IDirect3DDevice9::StretchRect function to copy from the offscreen surface to the frame buffer. This 
performs the color conversion and image resizing to fit the frame buffer.  
 
Remember that this function only creates the surface. Your application is responsible for filling it with 
image data. 
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UINT Width 
UINT Height 
The first two parameters specify the pixel width and pixel height of the surface to be created. 
 
D3DFORMAT Format 
This is the pixel format of the surface and it must be a valid format that the device supports. We verify 
this using the IDirect3D9::CheckDeviceType function as shown below.  
 
DWORD UsageFlags = 0; 
D3DFORMAT CheckFormat = D3DFMT_X4R4G4B4; 
pD3D->CheckDeviceFormat(Adapter, DeviceType, AdapterFormat, UsageFlags, 
                        D3DRTYPE_SURFACE, CheckFormat); 

 
DWORD Pool 
This is the memory pool we would like the surface to be created in. This will be either 
D3DPOOL_SYSTEMMEM or D3DPOOL_DEFAULT depending on how we intend to use the surface. 
 
IDirect3DSurface9 **pSurface 
If surface creation is successful, this will point to the new IDirect3DSurface9 interface. 
 
HANDLE *pHandle 
Reserved. Set this parameter to NULL 
 
Typically you will find that you will be creating offscreen surfaces for holding images like title 
screens. In this case, you will want the offscreen surface format to match the back buffer surface 
format because no color conversion would have to take place. Also, no stretching or shrinking of the 
image is performed so we must copy an area of MxN pixels from the source surface to an area of MxN 
pixels on the destination surface. If you wanted to use IDirect3DDevice9::UpdateSurface to copy the 
offscreen surface to the frame buffer, then you would probably want to create your offscreen surface 
using an approach like this: 
 
IDirect3DSurface9 pMySurface; 
pDevice->CreateOffscreenPlainSurface(BackBufferWidth, BackBufferHeight, 
                                     BackBufferFormat, D3DPOOL_SYSTEMMEM, 
                                     &pMySurface, NULL); 

 
Note that when we use the UpdateSurface function, we must create our offscreen surface in the 
D3DPOOL_SYSTEMMEM pool. 
 
The problem with this using this method to present a title screen is that the surface is bound to the 
dimensions frame buffer. If the frame buffer is resized, we will need to create a new offscreen surface 
matching the new dimensions. The IDirect3DDevice9 interface has another surface-to-surface copying 
function called StretchRect which is a lot more flexible. We will cover this function shortly. 
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HRESULT UpdateSurface(IDirect3DSurface9* pSourceSurface,  CONST RECT* pSourceRect, 
                            IDirect3DSurface9* pDestinationSurface,  CONST POINT* pDestinationPoint); 
 
If you have ever used DirectX prior to version 9.0, you may recall a function called CopyRects. It was 
used to do a direct bit copy from one image surface to another. This function has been replaced in 
DirectX 9 with the IDirect3DDevice9::UpdateSurface function. The pixel formats of the source and 
destination surfaces must be the same or the copy will fail. The function performs no color conversion 
between surface formats and no shrinking or stretching to fit the destination surface dimensions. 
 
IDirect3DSurface9* pSourceSurface 
This is a pointer to the surface that will be the source for the copy operation. This surface must have 
been created in the D3DPOOL_SYSTEMMEM pool for the copy to be successful. It must not be currently 
locked or have any outstanding device contexts. 
 
CONST RECT* pSourceRect 
If this parameter is NULL then the entire source surface will be copied to the destination surface. If 
not, then this is a pointer to a RECT structure that defines a rectangular region on the surface that 
should be copied. The top left corner of the source rectangle will be mapped to the specified point on 
the destination surface (4th parameter). Be sure to verify that the copied pixels will fit onto the 
destination surface starting at this position. 
 
IDirect3DSurface9* pDestinationSurface 
This is a pointer to the destination surface. The surface must have been created in the 
D3DPOOL_DEFAULT pool. This surface must not be currently locked or have any outstanding device 
contexts. 
  
CONST POINT* pDestinationPoint 
This is a 2D point on the destination surface where the source pixels will be copied. The top left corner 
pixel of the source rectangle in the source image will be mapped to this point on the destination 
surface. If you specify NULL, then the source rectangle will be copied starting at the top left corner of 
the destination surface. 
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Surface Types 
 
The following table contains permissible source/destination surface combinations for various surface 
types. It is assumed that the source surfaces are all created in the D3DPOOL_SYSTEMMEM pool and the 
destination surfaces have been created in the D3DPOOL_DEFAULT pool.  
 
Key: Source Surface Type       Destination Surface Type 
 

 Texture 
Surface 

Texture 
Render Target 

Render Target 
Surface 

Off-screen 
Plain 

Texture Surface Yes Yes Yes* Yes 
TextureRender Target No No No No 
Render Target Surface No No No No 
Off-screen Plain Yes Yes Yes Yes 

 
* If the device does not support copying from a texture surface to a render target surface (such as the 
frame buffer) then this will be emulated using a lock and pixel copy operation. 
 
Finally, there are two additional rules to keep in mind when copying surfaces: 

• Neither the source surface nor the destination surface can have been created with 
multisampling capabilities. The only valid flag for both surfaces is D3DMULTISAMPLE_NONE.  

• The pixel formats of both surfaces must match and they must not be a depth stencil format. 
 
 
HRESULT StretchRect(IDirect3DSurface9 *pSourceSurface,  CONST RECT *pSourceRect, 
                                          IDirect3DSurface9 *pDestSurface,      CONST RECT *pDestRect,  
                                          D3DTEXTUREFILTERTYPE Filter);                                                                         
 
DirectX 9.0 introduced a new 2D surface copying function called IDirect3DDevice9::StretchRect. This 
function is used primarily for copying images from surfaces to render target surfaces. Unlike the 
UpdateSurface function, the pixel formats of the source and destination pixel formats do not have to 
match because color conversion will be applied if necessary. Also, the source and destination 
rectangles do not require matching dimensions either. This allows us to magnify/minify the source 
image onto the destination surface using a specified filtering technique. While the function looks 
simple enough, there are some rules and restrictions that must be considered. We will discuss these as 
we move along. 
 
IDirect3DSurface9 *pSourceSurface 
The source surface of the copy operation. This surface must have been created in the 
D3DPOOL_DEFAULT memory resource pool. 
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CONST RECT *pSourceRect 
The source rectangle that marks a region on the source surface that is to be copied onto the destination 
surface. If this parameter is NULL, the entire contents of the surface will be copied. 
 
IDirect3DSurface9 *pDestSurface 
This is the destination surface for the copy operation. This surface must have been created in the 
D3DPOOL_DEFAULT memory resource pool and will typically be a render target such as the frame buffer 
or a texture that has been created as a render target. This surface need not match the pixel format of the 
source surface. This cannot be the same surface as the source surface. 
 
CONST RECT *pDestRect 
The destination rectange on the destination surface. The pixels that fall within the source rectangle on 
the source surface will be copied, color coverted if necessary, and resized to fit within this rectangle on 
the destination surface. If this is set to NULL, the source rectangle will be resized to fill the entire 
destination surface. 
 
D3DTEXTUREFILTERTYPE Filter 
If the pixels copied from the source image need to be resized to fit the destination rectangle, this 
parameter describes one of three possible filter types used to reduce aliasing. Possible values are 
D3DTEXF_NONE, D3DTEXF_POINT or D3DTEXF_LINEAR. If D3DTEXF_NONE is specified, the driver will 
choose a filtering algorithm. If you intend to explicity set a filter type you should check that the filter 
type is supported for the device. The D3DCAPS9 structure has a member called 
StretchRectFilterCaps. You can check one of the following filter flags for support: 
 
 

D3DPTFILTERCAPS_MINFPOINT 

Device supports point-sample filtering for minifying 
rectangles. This filter type is requested by calling 
IDirect3DDevice9::StretchRect using 
D3DTEXF_POINT. 

D3DPTFILTERCAPS_MAGFPOINT 

Device supports point-sample filtering for magnifying 
rectangles. This filter type is requested by calling 
IDirect3DDevice9::StretchRect using 
D3DTEXF_POINT. 

D3DPTFILTERCAPS_MINFLINEAR 

Device supports bilinear interpolation filtering for 
minifying rectangles. This filter type is requested by 
calling IDirect3DDevice9::StretchRect using 
D3DTEXF_LINEAR. 

D3DPTFILTERCAPS_MAGFLINEAR

Device supports bilinear interpolation filtering for 
magnifying rectangles. This filter type is requested by 
calling IDirect3DDevice9::StretchRect using 
D3DTEXF_LINEAR. 
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The following code shows how we could perform a copy from one surface to another using a driver 
selected filtering type. 
 
pDevice->StretchRect(pSrcSurface, NULL, pDestSurface, NULL, D3DTEXF_NONE);  
 
There are a few issues we need to look out for if we are converting between different image formats. 
First, once we have checked that the surface formats are supported by the device using the 
CheckDeviceFormat function, we must check that the device can handle color conversion between the 
two formats that we are using. Just because the device supports both formats does not mean that it 
supports copying from one to the other. The following code shows how we can use the 
IDirect3D9::CheckDeviceFormatConversion function to test if color conversion is supported between 
an A8R8G8B8 and a X4R4G4B4 surface.  
 
if(SUCCEEDED(pDevice->CheckDeviceFormatConversion(Adapter, DeviceType,  
                                          D3DFMT_X8R8G8B8, D3DFMT_X4R4G4B4)); 
{ 
  // Success 
} 
 
There are also restrictions on the combinations of source and destination surfaces that can be used 
together. Some of this depends on the driver. DX8 drivers cannot use a normal texture surface as a 
source surface for the copy operation but a DX9 driver can. Furthermore, a DX8 driver can only use 
render target textures as source surfaces if no stretching/shrinking of the image is required. While there 
is no easy way to know whether our application is running on DX8 or DX9 drivers, we can check the 
D3DCAPS9::DevCaps2 member for D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES. This tells us 
whether the device supports using a texture surface as a source surface when calling StretchRect. DX8 
drivers will not, whilst DX9 drivers will.  
 
D3DCAPS9 Caps; 
pDevice->GetDeviceCaps( &Caps ); 
if(Caps.DevCaps2 & D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES) 
{ 
   // DirectX9 Driver -- supports texture surfaces as source surfaces 
} 
 
The following table shows the surface type combinations that can be used for both DX8 and DX9 
drivers, with and without pixel resizing. 
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Key : Source Surface Type       Destination Surface Type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DX8 Driver 
(No Stretching) Texture Surface Texture Render 

Target 
Render Target 
Surface 

Off-screen 
Plain 

Texture Surface No No No No 
Texture Render Target No Yes Yes No 
Render Target Surface No Yes Yes No 
Off-screen Plain Yes Yes Yes Yes 
DX8 Driver  
(Stretching) Texture Surface Texture Render 

Target 
Render Target 
Surface 

Off-screen 
Plain 

Texture Surface No No No No 
Texture Render Target No No No No 
Render Target Surface No Yes Yes No 
Off-screen Plain No Yes Yes No 
DX9 Driver 
(No Stretching) Texture Surface Texture Render 

Target 
Render Target 
Surface 

Off-screen 
Plain 

Texture Surface No No No No 
Texture Render Target No Yes Yes No 
Render Target Surface No Yes Yes No 
Off-screen Plain Yes Yes Yes Yes 
DX9 Driver  
(Stretching) Texture Surface Texture Render 

Target 
Render Target 
Surface 

Off-screen 
Plain 

Texture Surface No Yes Yes No 
Texture Render Target No Yes Yes No 
Render Target Surface No Yes Yes No 
Off-screen Plain No Yes Yes No 
 
The IDirect3DDevice9::StretchRect function can fail for a number for reasons: 

• If pSourceSurface and pDestSurface are the same.  
• If stretching or shrinking is involved and either surface has a DXTn compressed format.  
• If the source surface is multisampled.  
• If the destination surface is an off-screen plain surface but the source is not. 
• If the destination surface is an off-screen plain surface and stretching is involved. 

 
For more information, please consult the DirectX 9 SDK documentation. 
 
 
HRESULT GetBackBuffer(UINT iSwapChain, UINT BackBuffer, 
                                            D3DBACKBUFFER_TYPE Type,IDirect3DSurface9 **ppBackBuffer); 
 
We use the IDirect3DDevice9::GetBackBuffer function to retrieve a surface interface to the frame 
buffer or to any surface in the back buffer swap chain. You could then call the surface interface GetDC 
function to write some text to the back buffer or perhaps call the IDirect3DDevice9::StretchRect 
function to copy an image surface to the frame buffer. 
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UINT iSwapChain 
This is an integer specifying the swap chain. It is possible to create multiple swap chains that can be 
used as rendering targets. Specifying 0 selects the swap chain connected to the device which contains 
the frame buffer setup at device creation. 
 
UINT BackBuffer 
This parameter specifies the number of the surface in the swap chain that we wish to retrieve. 
Specifying index 0 returns an interface for the current frame buffer. 
 
D3DBACKBUFFER_TYPE Type 
This parameter must be set to D3DBACKBUFFER_TYPE_MONO in DirectX 9. 
 
IDirect3DSurface9 **ppBackBuffer 
The address of an IDirect3DSurface9 interface that will point to a valid surface interface if the function 
is successful. Remember to release the surface interface after you have finished using it or else you 
will cause a memory leak. 
 
 
HRESULT GetFrontBufferData(UINT iSwapChain, IDirect3DSurface9 *pDestSurface); 
 
This function retrieves a copy of the front buffer. Due to its slow speed given the video memory read, 
this function should not be used in performance critical code.  Remember to release the surface 
interface after you have finished using it or else you will cause a memory leak. 
 
UINT iSwapChain 
Integer specifying the swap chain. This will usually be zero. 
 
IDirect3DSurface9 *pDestSurface 
This is an interface to a surface which has already had its buffer created by the application. This 
function does not create the surface memory buffer, it only copies the data into it. Thus it is the 
application’s responsibility to allocate the surface correctly. It should be a surface created in the 
D3DPOOL_SYSTEMMEM resource pool and the pixel format of this surface should be 32-bit 
D3DFMT_A8R8G8B8. It must also be large enough to hold the image data. If this is a windowed device 
then the surface should be the size of the entire desktop, if it is a fullscreen device, it should match the 
dimensions of the current adapter mode. 
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D3DX Texture Functions 
 
D3DX includes a number of functions that can be used to assist with common texture housekeeping 
tasks. We already discussed the D3DX texture loading functions, but there are a few more worth 
mentioning. 
 
D3DXFilterTexture(LPDIRECT3DBASETEXTURE9 pBaseTexture, 
                                    CONST PALETTEENTRY *pPalette, UINT SrcLevel, DWORD MipFilter); 
 
There may be times when you need to force MIP map image regeneration. This will be the case in Lab 
Project 6.4 when we use GDI to write to a texture surface. Once we write to the top level surface, we 
need the changes to be filtered down to all subsequent MIP levels. This function provides the solution. 
We pass a pointer to the texture we wish to have refiltered as the first parameter.  
 

Note: LPDIRECT3DBASETEXTURE9 is a pointer to an IDirect3DBaseTexture9 interface. This is the 
interface from which all other texture interfaces are derived.  

The second parameter is used only with palletized textures (we will simply set it to NULL). The third 
parameter specifies the MIP level at which the generation should begin. For example, if we specified 3 
then the image in MIP level 3 would be filtered down to the subsequent MIP levels. Specifying 0 will 
ensure that the top level image is filtered down through all levels. The last parameters describes the 
filter we would like the function to use when downsampling. This can be a combination of one or more 
D3DX_FILTER members as we discussed when examining the D3DXCreateTextureFromFileEx 
function.  Specifying D3DX_DEFAULT for this parameter is the equivalent of specifying 
D3DX_FILTER_BOX if the texture size is a power of two, and D3DX_FILTER_BOX | D3DX_FILTER_DITHER 
otherwise. 
 
 
D3DXSaveTextureToFile(LPCTSTR pDestFile, D3DXIMAGE_FILEFORMAT DestFormat,
 LPDIRECT3DBASETEXTURE9 pSrcTexture, const PALETTEENTRY *pSrcPalette); 
 
This function is useful when you wish to save a texture image to a file. This can be useful if you want 
to load it into a paint program for viewing or editing. We pass in the desired file name and a member 
of the D3DXIMAGE_FILEFORMAT enumerated type. This describes the image file format we would like 
the file to be saved in. 
 
typedef enum _D3DXIMAGE_FILEFORMAT { 
    D3DXIFF_BMP = 0, 
    D3DXIFF_DDS = 4, 
    D3DXIFF_DIB = 6, 
    D3DXIFF_JPG = 1, 
    D3DXIFF_PNG = 3, 
    D3DXIFF_PPM = 5, 
    D3DXIFF_TGA = 2, 
    D3DXIFF_FORCE_DWORD = 0x7fffffff 
} D3DXIMAGE_FILEFORMAT; 
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The third parameter is a pointer to the texture whose image we wish to save. The fourth parameter 
allows us to pass in an image palette if we are using palletized textures.  
 
 
D3DXGetImageInfoFromFile(LPCSTR pSrcFile,  D3DXIMAGE_INFO *pSrcInfo); 
 
The first parameter is the file name of the image we wish to extract the information for. The second 
parameter should be a pointer to a D3DXIMAGE_INFO structure which will contain the information about 
the image if it is successful. The D3DXIMAGE_INFO structure is defined as: 
 
typedef struct _D3DXIMAGE_INFO  
{ 
    UINT Width; 
    UINT Height; 
    UINT Depth; 
    UINT MipLevels; 
    D3DFORMAT Format; 
    D3DRESOURCETYPE ResourceType; 
    D3DXIMAGE_FILEFORMAT ImageFileFormat; 
} D3DXIMAGE_INFO; 
 
The members of this structure should be self explanatory by now as we have covered them throughout 
this course. In Lab Project 6.4, we are interested in the width and height members so that we can use it 
to create our offscreen surface. We will create the offscreen surface in the pixel format of the frame 
buffer so that we have an exact match when copying for maximum speed. Once we have created the 
surface in the format and dimensions we desire, we call D3DXLoadSurfaceFormFile to load the image 
into the surface we have created. The image will be color converted into the format of our surface 
which in our demo example is the format of the frame buffer.  
 
 
D3DXLoadSurfaceFromFile(LPDIRECT3DSURFACE9 pDestSurface, 
                                      CONST PALETTEENTRY* pDestPalette,  CONST RECT* pDestRect, 
                                      LPCTSTR pSrcFile, CONST RECT* pSrcRect,  
                                      DWORD Filter,  D3DCOLOR ColorKey, D3DXIMAGE_INFO* pSrcInfo); 
 
There are several flavors of the D3DXLoadSurfaceFromXX function, just as there were for the 
D3DXCreateTextureFromXX functions. These functions load surfaces from files, resources, and from 
memory. Since they are all essentially the same, we will look at just one of them. You should consult 
the SDK documentation for details on the other types. 
 
LPDIRECT3DSURFACE9 pDestSurface 
This is the pointer to the surface into which the image data will be loaded. 
 
CONST PALETTEENTRY* pDestPalette 
This parameter is a pointer to a palette used for palettized surfaces. We will pass in NULL for this 
parameter since we will not be using such textures in this course. 
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CONST RECT* pDestRect 
Specifies a rectangle on the surface that the image will be loaded into. Often this will be set to NULL 
and the image will be loaded into the entire surface area. This function handles color conversion and 
resizing of the source image area to the destination rectangle. 
 
LPCTSTR pSrcFile 
A string specifying the image file name to load. 
 
CONST RECT* pSrcRect 
This parameter defines a rectangular region of the source file to be loaded. Often this will be set to 
NULL so that the entire image is loaded into the destination surface rectangle.  
 
DWORD Filter 
If the source image pixels have to be stretched or squashed to fit within the destination rectangle, then 
we can specify a filter to minimze aliasing. We pass one of the D3DX_FILTER values discussed ealier. 
Specifying D3DX_DEFAULT for this parameter is the equivalent of specifying D3DX_FILTER_TRIANGLE 
| D3DX_FILTER_DITHER. 
 
D3DCOLOR ColorKey 
This parameter can be used to specify a 32-bit color to be replaced with transparent black pixels. We 
discussed color keys earlier in the lesson when examining texture loading from files. 
 
D3DXIMAGE_INFO* pSrcInfo 
Pointer to a D3DXIMAGE_INFO structure to be filled with a description of the data in the source file. We 
can pass NULL if we are not interested in this information. 
 
 
 
Conclusion 
 
We covered a lot of ground in this lesson. We now know quite a bit about the various texturing options 
at our disposal in DirectX Graphics. We know how to load them, blend them, filter them, and even 
how to compress and decompress them. Make sure that you thoroughly review the Lab Projects for this 
lesson since texturing will be an important part of all of our projects as we move forward. This will be 
especially true when we get to the next course in this series since it will deal almost exclusively with 
advanced texturing concepts to produce incredibly realistic lighting and other popular special effects.  
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Lab Project 6.1: Basic Texturing 
 
Lab Project 6.1 will demonstrate: 
• Loading and creating textures with MIP maps. 
• Using vertices with texture coordinates. 
• Enabling MIP mapping and setting the minification, magnification, and MIP filters. 
• Setting texture states for texture stage 0. 
• The construction and rendering of a “Sky Box” 

 
 

To keep things simple for our first demo, we will 
render cubes again. The cube on the left will use 
bilinear filtering for magnification and 
minification and MIP maps with a linear MIP 
filter (i.e. trilinear filtering). The cube on the 
right is rendered without any MIP maps and 
without any filtering for magnification and 
minification.  
 
We assigned textures to each face along with 
green and red colors stored at the vertices. 
Vertex colors are interpolated across the face and 
modulated with the texture in the texture stage. 
The application will use pre-lit vertices with 
diffuse colors stored at the vertex. Every face but 

one has all its vertices set to white (0xFFFFFFFF).  
 
 
 
The CVertex Class 
 
We add two floats to our CVertex class to store the UV texture coordinates. 
 
class CVertex 
{ 
public: 
    // Constructors & Destructors for This Class. 
    Cvertex (float fX, float fY, float fZ,  
             ULONG ulDiffuse = 0xFF000000, 
             float ftu = 0.0f, float ftv = 0.0f )  
             { x = fX; y = fY; z = fZ; Diffuse = ulDiffuse; 
               tu = ftu; tv = ftv; } 
     
    CVertex(){x = 0.0f; y = 0.0f; z = 0.0f; 
              Diffuse = 0xFF000000; tu = 0.0f; tv = 0.0f; } 
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    // Public Variables for This Class 
    float       x;                 // Vertex Position X Component 
    float       y;                 // Vertex Position Y Component 
    float       z;                 // Vertex Position Z Component 
    ULONG       Diffuse;           // Diffuse colour component 
    float       tu;                // Texture u coordinate 
    float       tv;                // Texture v coordinate 
  }; 
 
The constructors have been altered to allow input texture coordinates for each vertex created. We 
are not using the lighting pipeline, so we store a diffuse color at the vertex. The vertex flags are 
defined in CObjects.h: 
 
#define VERTEX_FVF   D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1 
 
We are using the D3DFVF_TEX1 flag to inform the device that we have one set of texture 
coordinates in the vertex. 
 
 
The CGameApp Class 
 
The CGameApp class now includes an array of IDirect3DTexture9 interfaces. This will hold all of 
the textures that our demo will use. The textures themselves are in the /Data subdirectory and are 
listed below along with their filenames. 
 

 
 
LPDIRECT3DTEXTURE9      m_pTextures[6];   // Store six texture pointers here 
LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer;  // Vertex Buffer to be Rendered 
CObject                 m_pObject[2];     // Objects storing mesh instances 

 
 
CGameApp::BuildObjects 
In this demo we will duplicate vertices for each face rather than use the indexed strip method from 
Chapter 3. We do this because we wish to use a different texture for each face and require unique 
texture coordinates. The first part of the function is unchanged. We create a vertex buffer large 
enough to hold all the vertices and then create and lock it as shown below. 

 
 
bool CGameApp::BuildObjects() 
{ 
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    HRESULT  hRet; 
    CVertex *pVertex = NULL; 
    ULONG    ulUsage = D3DUSAGE_WRITEONLY; 
 
    // Seed the random number generator 
    srand( timeGetTime() ); 
 
    // Release previously built objects 
    ReleaseObjects(); 
 
    // Build our buffers usage flags (i.e. Software T&L etc) 
    VERTEXPROCESSING_TYPE vp; 
    vp = m_D3DSettings.GetSettings()->VertexProcessingType; 
 
    if ( vp != HARDWARE_VP && vp != PURE_HARDWARE_VP )  
         ulUsage |= D3DUSAGE_SOFTWAREPROCESSING; 
 
    // Create our vertex buffer ( 24 vertices (4 verts * 6 faces) ) 
    hRet = m_pD3DDevice->CreateVertexBuffer(sizeof(CVertex) * 24, 
                                            ulUsage, VERTEX_FVF, 
                                            D3DPOOL_MANAGED, 
                                            &m_pVertexBuffer, NULL ); 
    if ( FAILED( hRet ) ) return false; 
 
    // Lock the vertex buffer ready to fill data 
    hRet = m_pVertexBuffer->Lock(0, sizeof(CVertex)*24,(void**)&pVertex,0); 
    if ( FAILED( hRet ) ) return false; 

 
Below we see the first three faces created. Notice the vertex winding order. We are using one strip 
per-face. The front, back and top faces will have their vertex colors set to white. The textures that 
these faces use will thus be unaltered by the modulation in the texture stage and the texture colors 
will be copied to these surfaces unmodified. Each face has their texture coordinates set to map to 
the four corners of the texture and thus the entire texture will be mapped to the surface with no 
tiling.  

     
    // Front Face 
    *pVertex++ = CVertex( -2, -2, -2, 0xFFFFFFFF, 0.0f, 1.0f ); 
    *pVertex++ = CVertex( -2,  2, -2, 0xFFFFFFFF, 0.0f, 0.0f ); 
    *pVertex++ = CVertex(  2, -2, -2, 0xFFFFFFFF, 1.0f, 1.0f ); 
    *pVertex++ = CVertex(  2,  2, -2, 0xFFFFFFFF, 1.0f, 0.0f ); 
     
    // Top Face 
    *pVertex++ = CVertex( -2,  2, -2, 0xFFFFFFFF, 0.0f, 1.0f ); 
    *pVertex++ = CVertex( -2,  2,  2, 0xFFFFFFFF, 0.0f, 0.0f ); 
    *pVertex++ = CVertex(  2,  2, -2, 0xFFFFFFFF, 1.0f, 1.0f ); 
    *pVertex++ = CVertex(  2,  2,  2, 0xFFFFFFFF, 1.0f, 0.0f ); 
     
    // Back Face 
    *pVertex++ = CVertex( -2,  2,  2, 0xFFFFFFFF, 0.0f, 1.0f ); 
    *pVertex++ = CVertex( -2, -2,  2, 0xFFFFFFFF, 0.0f, 0.0f ); 
    *pVertex++ = CVertex(  2,  2,  2, 0xFFFFFFFF, 1.0f, 1.0f ); 
    *pVertex++ = CVertex(  2, -2,  2, 0xFFFFFFFF, 1.0f, 0.0f ); 
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The bottom face uses a white diffuse color also but the texture coordinates are in the range [0.0, 
4.0] along the U and V axes. This means that the texture will be tiled 4 times horizontally and 
vertically across the face.  

 
    // Bottom Face 
    *pVertex++ = CVertex( -2, -2,  2, 0xFFFFFFFF, 0.0f, 4.0f ); 
    *pVertex++ = CVertex( -2, -2, -2, 0xFFFFFFFF, 0.0f, 0.0f ); 
    *pVertex++ = CVertex(  2, -2,  2, 0xFFFFFFFF, 4.0f, 4.0f ); 
    *pVertex++ = CVertex(  2, -2, -2, 0xFFFFFFFF, 4.0f, 0.0f ); 

     
The left face uses diffuse vertex colors so that you can see the color blending taking place in the 
texture stage. We assign a pure green diffuse color to the bottom two vertices in the face, a red 
color to the top right face, and a white diffuse color to the top left vertex.  
 
    // Left Face 
    *pVertex++ = CVertex( -2, -2,  2, 0xFF00FF00, 0.0f, 1.0f ); 
    *pVertex++ = CVertex( -2,  2,  2, 0xFFFF0000, 0.0f, 0.0f ); 
    *pVertex++ = CVertex( -2, -2, -2, 0xFF00FF00, 1.0f, 1.0f ); 
    *pVertex++ = CVertex( -2,  2, -2, 0xFFFFFFFF, 1.0f, 0.0f ); 

     
Finally, the right face has all white vertices but they are not mapped to the four corners of the 
texture. Instead they are mapped to the square in the middle of the brown texture with the diamond 
shape on it. Because the texture coordinates are in the range [0.4, 0.6] this takes the middle region 
of the texture and stretches it to fill the entire face. This face is a good test of the magnification 
filters. The right cube is not using bilinear filtering and the diamond edges looks blocky when you 
move the camera up close to it.  
 
    // Right Face 
    *pVertex++ = CVertex(  2, -2, -2, 0xFFFFFFFF, 0.4f, 0.6f ); 
    *pVertex++ = CVertex(  2,  2, -2, 0xFFFFFFFF, 0.4f, 0.4f ); 
    *pVertex++ = CVertex(  2, -2,  2, 0xFFFFFFFF, 0.6f, 0.6f ); 
    *pVertex++ = CVertex(  2,  2,  2, 0xFFFFFFFF, 0.6f, 0.4f ); 
     
    // Unlock the buffer 
    m_pVertexBuffer->Unlock( ); 
 
    // Our two objects should reference this vertex buffer 
    m_pObject[ 0 ].SetVertexBuffer( m_pVertexBuffer ); 
    m_pObject[ 1 ].SetVertexBuffer( m_pVertexBuffer ); 

 
We assigned the same vertex buffer to both objects and now we set the world matrix for each 
object to their initial positions and orientations. 

 
    // Set both objects matrices so that they are offset slightly 
    D3DXMatrixTranslation(&m_pObject[ 0 ].m_mtxWorld, -2.5f,  2.0f, 10.0f ); 
    D3DXMatrixTranslation(&m_pObject[ 1 ].m_mtxWorld,  2.5f, -2.0f, 10.0f ); 

 

TeamLRN



Finally, we load all the textures this application uses and store them in the CGameApp’s 
IDirect3DTexture9 array. 

 
    // Load all 6 textures used in this example. 
    hRet = D3DXCreateTextureFromFile( m_pD3DDevice, "Data\\texture_01.jpg", 
                                     &m_pTextures[0] ); 
    if ( FAILED(hRet) ) return false; 
    hRet = D3DXCreateTextureFromFile( m_pD3DDevice, "Data\\texture_02.jpg", 
                                     &m_pTextures[1] ); 
    if ( FAILED(hRet) ) return false; 
    hRet = D3DXCreateTextureFromFile( m_pD3DDevice, "Data\\texture_03.jpg", 
                                     &m_pTextures[2] ); 
    if ( FAILED(hRet) ) return false; 
    hRet = D3DXCreateTextureFromFile( m_pD3DDevice, "Data\\texture_04.jpg", 
                                     &m_pTextures[3] ); 
    if ( FAILED(hRet) ) return false; 
    hRet = D3DXCreateTextureFromFile( m_pD3DDevice, "Data\\texture_05.jpg", 
                                     &m_pTextures[4] ); 
    if ( FAILED(hRet) ) return false; 
    hRet = D3DXCreateTextureFromFile( m_pD3DDevice, "Data\\texture_06.jpg", 
                                     &m_pTextures[5] ); 
    if ( FAILED(hRet) ) return false; 
     
    // Success! 
    return true; 
} 

 
We used the simplified version of the D3DXCreateTextureFromFile function to load the textures. 
This function will generate the MIP chain for each texture and will store them in the 
D3DPOOL_MANAGED pool. This is what we want because we will not have to bother reloading 
them if the device becomes lost. 

 
   CGameApp::SetupRenderStates 

CGameApp:SetupGameStates now includes additional code to setup the texture stage states.  
 
void CGameApp::SetupRenderStates() 
{ 
    HRESULT  hRet; 
    D3DCAPS9 Caps; 
 
    // Set up new perspective projection matrix 
    float fAspect = (float)m_nViewWidth / (float)m_nViewHeight; 
    D3DXMatrixPerspectiveFovLH(&m_mtxProjection, D3DXToRadian( 60.0f ), 
                               fAspect, 1.01f, 1000.0f ); 
 
    // Setup our D3D Device initial states 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
    m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
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Although these next states are the default states for stage 0, we explicitly set them anyway just in 
case the driver is not as well behaved as it should be (which has been known to happen from time 
to time). 

 
    // Setup our Texture Stage States 
    m_pD3DDevice->SetTextureStageState(0,D3DTSS_COLOROP,D3DTOP_MODULATE); 
    m_pD3DDevice->SetTextureStageState(0,D3DTSS_COLORARG1,D3DTA_DIFFUSE); 
    m_pD3DDevice->SetTextureStageState(0,D3DTSS_COLORARG2,D3DTA_TEXTURE); 

 
We let the device know about our new flexible vertex format with the UV coordinate. 

 
    // Setup our vertex FVF code 
    m_pD3DDevice->SetFVF( VERTEX_FVF ); 
 
    // Setup our matrices 
    m_pD3DDevice->SetTransform( D3DTS_VIEW, &m_mtxView ); 
    m_pD3DDevice->SetTransform( D3DTS_PROJECTION, &m_mtxProjection ); 

 
Although we would normally enable our MIP map, magnification, and minification filters in this 
function, we deliberately have not done so in this demo. We will enable them when we render the 
left cube and disable them for the right cube so that we can see the differences.  What we will do 
however is query the device caps to make sure that the magnification, minification, and MIP filters 
support the D3DTF_LINEAR capabilities. This way we will know if they can be safely enabled 
for the left cube. We did not put this test in CMyD3DInit::ValidateDevice because we would not 
want to reject the device from enumeration and possible selection if these filters were not 
supported (which will probably almost never be the case since even most older 3D cards included 
bilinear filtering and MIP map support).  
  
   // Retrieve device caps, the following states are not required 
    hret = m_pD3D->GetDeviceCaps( 
                               m_D3DSettings.GetSettings()->AdapterOrdinal, 
                               m_D3DSettings.GetSettings()->DeviceType, 
                               &Caps); 
    if ( FAILED(hRet) ) return; 
 
    // Determine if linear filtering is supported 
    m_bFilterEnabled = false; 
     
    if((Caps.TextureFilterCaps & D3DPTFILTERCAPS_MAGFLINEAR) && 
       (Caps.TextureFilterCaps & D3DPTFILTERCAPS_MINFLINEAR))   
         m_bFilterEnabled = true; 
 
    // Determine if linear mip-mapping is supported 
    m_bMipEnabled = false; 
    if(Caps.TextureFilterCaps & D3DPTFILTERCAPS_MIPFLINEAR) 
  m_bMipEnabled = true; 
 } 
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   CGameApp::FrameAdvance 

The first part of the function is unchanged from the previous cube demos. We call ProcessInput to 
update the view matrix if the user has pressed the cursor keys. Then we call the AnimateObjects 
function to build each world matrix. Finally, we clear the frame buffer and prepare to render our 
new scene. 

 
    // Poll & Process input devices 
    ProcessInput(); 
 
    // Animate the two objects 
    AnimateObjects(); 
 
    // Clear the frame & depth buffer ready for drawing 
    m_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 
                        0xFFFFFFFF, 1.0f, 0 ); 

 
We are about to render the first cube, so we will enable the supported filters. This is why we 
recorded the boolean variable during the SetupRenderStates function. 

     
    // Begin Scene Rendering 
    m_pD3DDevice->BeginScene(); 
         
    // Enable Linear Filter for object[0] if supported 
    if ( m_bFilterEnabled ) 
    { 
        m_pD3DDevice->SetSamplerState(0,D3DSAMP_MAGFILTER,D3DTEXF_LINEAR); 
        m_pD3DDevice->SetSamplerState(0,D3DSAMP_MINFILTER,D3DTEXF_LINEAR); 
    }  
 
    // Enable mip-mapping for object[0] if supported 
    if ( m_bMipEnabled ) 
    { 
        m_pD3DDevice->SetSamplerState(0,D3DSAMP_MIPFILTER,D3DTEXF_LINEAR); 
    }  

     
Now we loop through each object and set its world matrix and vertex buffer.  
 
    // Loop through each object 
    for ( ULONG i = 0; i < 2; i++ ) 
    { 
        // Set our object matrix 
        m_pD3DDevice->SetTransform(D3DTS_WORLD, &m_pObject[i].m_mtxWorld); 
 
        // Set the vertex stream source 
        m_pD3DDevice->SetStreamSource(0, m_pObject[i].m_pVertexBuffer, 0, 
                                      sizeof(CVertex) ); 

 
For each object we loop through each of its six faces. For each face, we assign the texture to 
texture stage 0 by calling SetTexture and then render the face as a triangle strip. 
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        // Render one face per texture 
        for ( ULONG j = 0; j < 6; j++ ) 
        { 
            // Set the texture for this primitive 
            m_pD3DDevice->SetTexture( 0, m_pTextures[j] ); 
 
            // Render the primitive (1 strip per face in the vertex buffer) 
            m_pD3DDevice->DrawPrimitive( D3DPT_TRIANGLESTRIP, j * 4, 2 ); 
        } 

 
With the cube rendered, we now disable filtering so that when the next cube is drawn, MIP maps 
are disabled and the minification and magnification filters are set to point sampling. When the 
loop exits, we present the scene. 

 
        // Disable linear filtering and mip-maps (for object[1]) 
        m_pD3DDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT); 
        m_pD3DDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT); 
        m_pD3DDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_NONE); 
     
    } // Next Object 
 
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 
     
    // Present the buffer 
    if(FAILED(m_pD3DDevice->Present( NULL, NULL, NULL, NULL )))  
        m_bLostDevice = true; 
} 

 
Before continuing with the next project, experiment with the code. Try out some of the other 
texture blending operations. Set your own vertex colors and try new texture coordinates for each 
face to see the results.  
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Lab Project 6.2: Multi-Texturing 
 
In Lab Project 3.2 we created a terrain using a height map. We used the values stored at each pixel 
in the height map to set the height of the corresponding pixel in the mesh. The terrain was not 
textured but it did include a color at each vertex. This was determined using simple lighting 
equations when the terrain was constructed. In Lab Project 5.3 we replaced the pre-calculated 
vertex lighting code and began using DirectX lighting. In this project we will apply two textures to 
the terrain. Note that we have removed the lighting from the demo so that it does not distract us 
from our studies. You should have no trouble adjusting the code to re-enable lighting (when you 
do so in your exercises).  
  
The first thing we need to do is to generate a terrain texture. This is not as hard as you might think. 
There is a wonderful terrain generation package called Terragen™ which will make our job very 
easy. You can download a shareware version for free from the following website:  
 

http://www.planetside.co.uk/terragen/ 
 
This is the package we used to generate the texture for this application. Terragen™ not only 
enables you to build textures for your terrain, but it also allows you to create a height map for your 
terrain as well. Appendix A walks you quickly through the process of using Terragen™ to 
generate terrain textures and height maps if you are unfamiliar with the application.  
 
 
Texturing a Terrain 
 
In the following images we see a terrain texture that was created using Terragen™ (left). The 
image on the right reminds us what our height map looks like. This is the same height map used in 
previous lab projects. Notice how Terragen has created a texture that is synchronized with our 
height map. 
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The height map is 257x257 pixels. Each pixel represents a vertex in our terrain. The texture that 
will be mapped to the terrain however is much bigger (1024x1024). We use a large texture 
because it will be stretched over the entire terrain. Given the large area of our terrain, a larger 
texture will provide for more surface detail. You might recall that in flight simulation games not 
long ago, the terrain looked either too blurry or too blocky when you flew low to the ground. This 
was because the textures were being stretched over several miles of terrain and texels were 
mapped to large areas of land. While we will use filters to minimize blockiness in our project, the 
terrain will look quite blurry due to the size of a single texel in the game world. We will discuss 
how to address this concern shortly. 
 
Generating Terrain Texture Coordinates 
 
Applying the base texture to the terrain is remarkably easy regardless of the size of the texture as 
we will essentially drape it over the entire terrain. The four corners of the texture will be mapped 
to the four corners of the terrain patch. Our vertex structure will need to hold a pair of texture 
coordinates for the base texture and we will look at our revised vertex structure in a moment. We 
know that the top left corner of the texture is UV coordinate (0, 0) and that the bottom right corner 
of the texture is UV coordinate (1, 1). Therefore, every other vertex in between will have UV 
coordinates within that range. 
 
In order to calculate the U texture coordinate of each vertex, we will take the index of the vertex in 
the current row of the terrain and divide this by the number of vertices in a row (257 in this case). 
For example, we know that the top right vertex of the terrain should be mapped to the top right 
corner of the texture. This is the 257th vertex in the row 
 
U = VertexRowOffset / NumberOfVerticesInARow 
U = 257 / 257; 
U = 1.0;  // top right texel of texture 
 
If this is the first vertex in the row then the U coordinate should be 0: 
 
U= VertexRowOffset / NumberOfVerticesInARow 
U= 0 / 257 
U= 0.0 // top left texel in the texture 
  
If the vertex was halfway through a row (row position 128 approximately), then the U coordinate 
should be roughly halfway through the texture (~0.5). 
 
U = VertexRowOffset / NumberOfVerticesInRow 
U = 128 / 257 
U = 0.498  // approximately halfway across the texture horizontally 
 
The process works identically for the V coordinate. We divide the position of the vertex vertically by the 
number of rows in our terrain to get the V coordinate. If we had a 257x129 terrain of vertices, we could 
calculate the UV coordinates for each vertex as follows. 
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for ( Z = 0 ; Z < 129 ; Z++) // For Each Row 
{ 
 for (X = 0 ; X < 257 ; X++) // For Each Column 
 { 
  Vertex[Z][X].u = X / 257; 
  Vertex[Z][X].v = Z / 129; 
 } 
}  
 
 
Note:  To keep things simple for now, the code assumes that the vertices are stored in a multi-
dimensional array in the form: Vertex[Row][Column]. In reality they will be stored in a vertex buffer. 
 
 
This loop will generate a UV coordinate for every vertex in the terrain. The range for each UV 
coordinate would be [0.0, 1.0]. Using our 257x257 terrain, the texture would be mapped to the 
terrain as shown in the following image: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While this terrain texture is fairly large, it still is not big enough to provide enough detail when 
viewed up close. The solution is  
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not to simply build a larger texture because many cards do not support textures larger than 
1024x1024 (some cards do not even support textures larger than 256x256). But even if we could 
store a large texture that provided enough detail (4000x4000) for example, the memory costs 
would be considerable.  
 
As it stands now, our 1024x1024 texture will look blurred when viewed up close as this image 
demonstrates. 
 
 
While the image above is not necessarily a terrible sight, we can certainly do much better…  
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This second image looks a good deal better. The solution was a simply multi-texturing technique 
called detail mapping. 
 
 
Single Pass Detail Mapping 
 
A detail map is a tileable texture with a high-frequency pattern. This project uses a 512x512 detail 
texture map which is shown below. 

 
This is a texture that will tile quite nicely. We certainly cannot 
simply stretch this texture over the terrain as we did our base 
texture or it would suffer from the same problem. In fact it 
would look worse because this texture is much smaller. 
However you should recall from the text that when we specify 
texture coordinates outside the 0.0 to 1.0 range with wrap 
texture addressing mode enabled, the texture will repeat across 
the polygons. So we can calculate a second set of texture 
coordinates for our vertices that would tile the detail texture 
across the terrain many times over. This means that the detail 
texture would not be stretched. Even when viewed up close, a 
sizeable section of the detail texture is mapped to our immediate 

vicinity as shown below. The image to the right shows only the detail texture applied to the 
terrain. 
 
 
As you can see, even when standing right next to the 
terrain there is still plenty of texture to see. When 
blended with our terrain texture, this detail map will 
provide a much more visually compelling terrain. 
 
 
 
 
 
 
 
 
In the next image you can see what this look like when we zoom out a bit. With MIP mapping 
disabled we are able to see quite clearly the amount of detail we will be adding.  
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The detail map selected for this project is somewhat 
terrain specific. You will note what look like small 
rocks and similar pieces of debris that make sense for 
the effect we want to achieve. However, detail maps 
are certainly not limited to terrain rendering. They can 
be used in any scene to achieve the same purpose. For 
non-terrain scenes you will probably prefer more of a 
random noise pattern. You will find many free 
resources on the Internet that would serve as good 
detail maps or you can just as easily generate one in a 

paint 
program. A gray cement/concrete texture that tiles 
without seams would make a pretty good detail map 
for scenes with brick walls for example. 
 
 
 
The image to the left demonstrates that even one tile 
of detail texture significantly changes the way we 
perceive the terrain underneath it. Unlike the base 
texture which has limited texels to devote to this 
terrain section, the detail map is mapped in its 
entirety to the section highlighted in the white box. 
 
 
 

 
 
 
The image on the right depicts how the detail map 
will be tiled over the terrain by using texture 
coordinates that tile. The borders are drawn in 
only to make it easier to see the effect; they would 
certainly not be there in the actual application. In 
this project we will tile the detail texture 
approximately 43 times horizontally and the same 
vertically. As a result, every 5 quad square of the 
terrain will have its own full detail map. 
 
Let us now begin examining the code for this 
project. 
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The CVertex Class 
 
Because we are not using lighting or vertex colors in this first project, we only need our vertex to 
hold an XYZ position and two sets of 2D texture coordinates. The vertex class definition is shown 
below and can be found in CObjects.h 
 
class CVertex 
{ 
public: 
 
    // Constructors & Destructors for This Class. 
    CVertex(float fX, float fY, float fZ, float ftu=0.0f, float ftv=0.0f)  
        { x = fX; y = fY; z = fZ; tu = ftu; tv = ftv; } 
     
    CVertex()  
        { x = 0.0f; y = 0.0f; z = 0.0f; tu = 0.0f; tv = 0.0f; } 
 
    // Public Variables for This Class 
    float       x;          // Vertex Position X Component 
    float       y;          // Vertex Position Y Component 
    float       z;          // Vertex Position Z Component 
    float       tu;         // Texture u coordinate 
    float       tv;         // Texture v coordinate 
    float       tu2;        // 2nd Texture U coordinate 
    float       tv2;        // 2nd Texture V coordinate 
};. 
 
 
The flexible vertex flags to accompany this vertex structure will need to indicate that our vertices 
now have two sets of 2D vertex coordinates:  
 
#define VERTEX_FVF  D3DFVF_XYZ | D3DFVF_TEX2 
 

Note: Although the terrain is storing texture coordinates, we will still use the old pre-lit vertex 
structure to render our CPlayer object (the cube). This means we will need to change vertex types 
with a call to IDirect3DDevice9::SetFVF between rendering the terrain and the CPlayer object.  If 
you look in the CObject.h file you will see that we also have a set of FVF flags to describe the pre-
lit vertex format the CPlayer mesh uses. 
 
#define LITVERTEX_FVF  D3DFVF_XYZ | D3DFVF_DIFFUSE 
 
class CLitVertex 
{ 
public: 
    // Constructors & Destructors for This Class. 
    CLitVertex( float fX, float fY, float fZ, ULONG ulDiffuse = 0xFF000000 )  
                          { x = fX; y = fY; z = fZ; Diffuse = ulDiffuse; } 
     
    CLitVertex() { x = 0.0f; y = 0.0f; z = 0.0f; Diffuse = 0xFF000000; } 
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   // Public Variables for This Class 
    float       x, y, z;           
    ULONG       Diffuse; 
}; 

 
The base texture will be set in texture stage 0. Stage 0 will by default use the first set of texture 
coordinates in the vertex to map the base texture to the terrain. In the second stage, we will assign 
the detail map. This stage by default will use the second set of texture coordinates.  The first set of 
texture coordinates will all be in the [0.0, 1.0] range. The second set of texture coordinates will use 
a larger range to tile the texture. The texture stage setup will look like the following: 
 
// Set texture addressing and color ops 
m_pD3DDevice->SetTexture ( 0 , pBaseTexture); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP  , D3DTOP_SELECTARG1 ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_TEXCOORDINDEX, 0 ); 
 
m_pD3DDevice->SetTexture(  , pDetailTexture); 
m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLORARG1, D3DTA_CURRENT ); 
m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLORARG2, D3DTA_TEXTURE ); 
m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLOROP    , D3DTOP_ADDSIGNED ); 
m_pD3DDevice->SetTextureStageState( 1, D3DTSS_TEXCOORDINDEX, 1 ); 
 
In the above code we bind the base texture to stage 0 as ARG1.  We then use the 
D3DTOP_SELECTARG1 color operation to take the sampled texture color and output it to the next 
stage. If we were using DirectX lighting (or vertex colors) you would want assign D3DTA_DIFFUSE 
to ARG2 and modulate the texture and diffuse color before sending the result on to the next stage. 
Finally, although it is the default state, we inform the device that the first set of texture coordinates 
in the vertex are the ones that should be used to sample the texture in this stage.  
We assigned the detail texture to stage 1 as input argument ARG2. We use the add-signed color 
operation because it is ideal for detail mapping. If this operation is not supported by the current 
hardware we could use a modulate2X instead to achieve similar results.  
 
Provided the hardware supports at least two simultaneous textures, this is all we will need to do. 
We do not need to enable alpha blending or do any frame buffer blending because all of the color 
blending is done in the texture stages. If the system does not support multi-texturing then we will 
need to render the terrain in two passes (because texture stage 1 will not be available to us). 
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Multi-Pass Detail Mapping 
 
If the device does not support multi-texturing then we will be limited to using just texture stage 0. 
We will have to render our polygons using a single texture at a time. When this is the case our 
application will have to do the following in our render loop. 
 

1. Assign base texture map to stage 0 
2. Set texture stage 0 to use the first set of texture coordinates in our vertex 
3. Set the texture stage color operation to use the texture color assigned to that stage 
4. Render the terrain 
5. Assign detail texture map to stage 0 
6. Set texture stage 0 to use second set of texture coordinates in the vertex 
7. Set texture stage color operation to use the texture color 
8. Enable alpha blending 
9. Set the source and destination blend modes for frame buffer blending 
10. Render the terrain again 
11. Disable alpha blending 
12. Continue with render loop 

 
This form of multi-texturing is referred to as multiple pass texture blending (or simply multi-pass 
blending). Performance will suffer some because we have to render the terrain twice -- once with 
the base texture and once with the detail map. When we render it the second time, we enable alpha 
blending to blend the polygons rendered in the second pass with the polygons in the frame buffer 
that exist from the previous render pass.  
 
In the text we discussed the fact that setting the source blend factor to the frame buffer color and 
the destination blend factor to the source color, we generate a modulate2X blending function. This 
will provide similar results to the add-signed blending used in the single pass case. A multiple pass 
technique might look similar to the code listed below.  
 
m_pD3DDevice->SetTexture( 0 , pBaseTexture ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP  , D3DTOP_SELECTARG1 ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_TEXCOORDINDEX, 0 ); 
RenderTerrain(); 
 
We set the base texture in stage 0 and setup the color operation to output the color. We also set the 
stage to use the first set of texture coordinates. Then we render the first pass of the terrain.  
 
Now we need to render the terrain one more time. So we will set the detail texture and make sure 
that the second set of texture coordinates are used to map the detail texture to the terrain. Once 
again we simply output the color from the stage: 
 
m_pD3DDevice->SetTexture( 0 , pDetialTexture ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
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m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP  , D3DTOP_SELECTARG1 ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_TEXCOORDINDEX, 1 ); 
 
Finally, we enable alpha blending, setup our frame buffer blend modes and re-render the terrain. 
 
m_pD3DDevice->SetRenderState( D3DRS_SRCBLEND ,  D3DBLEND_ONE ); 
m_pD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_ZERO ); 
m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
 
RenderTerrain(); 
 
m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE ); 

 
 
The CMesh Class 
 
Since will be using two different types of vertices in our application (one for the terrain vertices 
and one for the CPlayer mesh) the CMesh class will have to be modified slightly so that it can 
handle arbitrary vertex formats.  
 
 class CMesh 
{ 
public: 
// Constructors & Destructors for This Class. 
    CMesh( ULONG VertexCount, ULONG IndexCount ); 
    CMesh(); 
  virtual ~CMesh(); 
 
    // Public Functions for This Class 
    void        SetVertexFormat ( ULONG FVFCode, UCHAR Stride ); 
    long        AddVertex       ( ULONG Count = 1 ); 
    long        AddIndex        ( ULONG Count = 1 ); 
    HRESULT     BuildBuffers(LPDIRECT3DDEVICE9 pD3DDevice, bool HardwareTnL, 
                             bool ReleaseOriginals = true ); 
 
    // Public Variables for This Class 
    ULONG        m_nVertexCount;  // Number of vertices stored 
    UCHAR       *m_pVertex;      // Temporary vertex array of any format 
    ULONG        m_nIndexCount;  //  Number of indices stored 
    USHORT      *m_pIndex;       //  Simple temporary index array 
    LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer; // Vertex Buffer to be Rendered 
    LPDIRECT3DINDEXBUFFER9  m_pIndexBuffer;  // Index Buffer to be Rendered 
    UCHAR                   m_nStride;      // The stride of each vertex 
    ULONG                   m_nFVFCode;     // Flexible vertex format code. 
}; 
 
Recall that the CMesh class uses a temporary CVertex array to store vertices until the 
BuildBuffers function is called to create a vertex buffer. The modified class now points to a vertex 
array using a UCHAR pointer. We also store the stride (the size of the vertex structure) and the 
FVF flags that describe the vertices in the mesh. Now the BuildBuffers function will know how to 
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create the vertex buffer regardless of vertex type. When filling the temporary array, we can simply 
cast the UCHAR pointer to a pointer of the type of vertex we intend to store and then write to the 
array as usual. Also note that the AddVertex function has been modified. In previous projects it 
only knew how to allocate enough space for a CVertex structure. Now it will use the stride to 
determine how many bytes to allocate per vertex. Therefore it is important that you set the stride 
before adding vertices. 
 
 
The CGameApp Class 
 
Below you will see that we have grayed out the functions and members that have been in the class 
for a while and that you should be familiar with at this point. We show only the new functions and 
member variables added to this demo.  
 
class CGameApp 
{ 
public: 
   // Constructors & Destructors for This Class. 
       CGameApp(); 
       virtual ~CGameApp(); 
 
    // Public Functions for This Class 
    LRESULT DisplayWndProc( HWND hWnd, UINT Message, WPARAM wParam, LPARAM 
lParam ); 
    bool    InitInstance( HANDLE hInstance, LPCTSTR lpCmdLine, int iCmdShow ); 
    int     BeginGame( ); 
    bool    ShutDown( ); 
  
private: 
    // Private Functions for This Class 
    bool        BuildObjects      ( ); 
    void        ReleaseObjects    ( ); 
    void        FrameAdvance      ( ); 
    bool        CreateDisplay     ( ); 
    void        ChangeDevice      ( ); 
    void        SetupGameState    ( ); 
    void        SetupRenderStates ( ); 
    void        AnimateObjects    ( ); 
    void        ProcessInput      ( ); 
    bool  TestDeviceCaps( );  // Test which filters, blend modes are supported 
    void  SelectMenuItems( ); // Setup initial menu options 
     
    // Private Static Functions For This Class 
    static LRESULT CALLBACK StaticWndProc(HWND hWnd, UINT Message, WPARAM 
wParam,  
                                          LPARAM lParam); 
 
   // Private Variables For This Class 
    CTerrain   m_Terrain; // Simple terrain object (stores data) 
    CPlayer    m_Player;  // Player class used to manipulate our player object 
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    CCamera   *m_pCamera;  // A cached copy of the camera attached to the 
player 
 
    D3DXMATRIX  m_mtxIdentity;      // A basic identity matrix 
     
    CTimer      m_Timer;            // Game timer 
    ULONG       m_LastFrameRate;    // Used for making sure we update only when 
                                                               // fps changes. 
     
    HWND        m_hWnd;               // Main window HWND 
    HICON       m_hIcon;              // Window Icon 
    HMENU       m_hMenu;             // Window Menu 
     
    bool        m_bLostDevice;        // Is device currently lost ? 
    bool        m_bActive;            // Is the application active ? 
 
    LPDIRECT3D9          m_pD3D;              // Direct3D Object 
    LPDIRECT3DDEVICE9    m_pD3DDevice;        // Direct3D Device Object 
    CD3DSettings         m_D3DSettings;       // Settings used to initialize 
D3D 
     
    D3DFILLMODE           m_FillMode;         // fill mode we are using  
    D3DTEXTUREOP          m_ColorOp;          // color op we are using 
    D3DTEXTUREFILTERTYPE  m_MagFilter;        // Magnification Filter to use. 
    D3DTEXTUREFILTERTYPE  m_MinFilter;        // Minification Filter to use. 
    D3DTEXTUREFILTERTYPE  m_MipFilter;        // Mip-Map filter to use. 
    ULONG                 m_Anisotropy;       // Anisotropy level to use. 
    bool                  m_bSinglePass;    // Use single pass rendering  
 
    bool m_MagFilterCaps[10]; // Capabilities supported for required filters 
    bool m_MinFilterCaps[10]; // Capabilities supported for required filters 
    bool m_MipFilterCaps[10]; // Capabilities supported for required mip 
filters 
    bool m_ColorOpCaps[30];   // Capabilities supported for required color ops 
    ULONG m_MaxTextures;       // Capabilities supported for required pass 
count 
    ULONG m_MaxAnisotropy;     // Capabilities supported for anisotropy filter 
 
    ULONG        m_nViewX;            // X Position of render viewport 
    ULONG        m_nViewY;            // Y Position of render viewport 
    ULONG        m_nViewWidth;        // Width of render viewport 
    ULONG        m_nViewHeight;       // Height of render viewport 
  
    POINT        m_OldCursorPos;      // Old cursor position for tracking 
 
    CObject      m_Object;     // The object referencing the player mesh 
    CMesh        m_PlayerMesh;        // The player mesh (cube ;) 
 
    CMesh                   m_SkyMesh;        // The skybox mesh (also a cube) 
    LPDIRECT3DTEXTURE9      m_SkyTextures[6]; // The skybox textures 
}; 
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D3DFILLMODE  m_FillMode 
This variable is controlled via a menu option to switch between D3DFILL_WIREFRAME and 
D3DFILL_SOLID. 
 
D3DTEXTUREOP m_ColorOp 
This will hold the texture operation used in texture stage 1 when performing single pass multi 
texturing. By default this is D3DTOP_ADDSIGNED if that color operation is supported on the current 
hardware. The reason we record the operation is that the user is allowed to switch between color 
operations. 
 
D3DTEXTUREFILTERTYPE    m_MagFilter;          
D3DTEXTUREFILTERTYPE    m_MinFilter;          
D3DTEXTUREFILTERTYPE    m_MipFilter;          
This application allows the user to select different filter types for the magnification, minification, 
and MIP filter types. These variables record which filters the user has selected and are currently in 
use. 
 
ULONG   m_Anisotropy;   
The application will allow the user to enable anisotropic filtering if supported on the hardware. If 
anisotropic is enabled, this variable holds the number of levels of anisotropic filtering that the user 
has currently selected. The higher the level, the more expensive it is, but the better it looks. 
       
bool          m_bSinglePass;      
If the application is capable of rendering the terrain in a single pass using two texture stages then 
this Boolean will be set to true. If not, it will be set to false. We test this Boolean during rendering 
to see if we have to do multiple passes of the terrain or whether we can just assign the two textures 
to the two stages and render it once. 
 
bool          m_MagFilterCaps[10]; 
bool          m_MinFilterCaps[10]; 
bool          m_MipFilterCaps[10]; 
bool          m_ColorOpCaps[30];  
These Boolean arrays contain either true or false if the relevant filter or color op is supported. The 
array element will correspond with the value of the member of the enumerated type. So we would 
be able to check whether we can do D3DTEXF_LINEAR MIP mapping for example by doing the 
following: 
 
if (m_MipFIlterCaps[ D3DTEXF_LINEAR ] ) // We can set linear filtering 
 
Likewise, we will be able to check if the application can perform the D3DTOP_MODULATE2X color 
operation by checking like so: 
 
If (m_ColorOpCaps[ D3DTOP_MODULATE2X] ) // We can do modulate2X 
 
We will fill out these Boolean arrays in the CGameApp::TestDeviceCaps function. 
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ULONG                   m_MaxTextures;   
This member will hold the maximum number of simultaneous textures that the hardware can use 
in a single pass. If this is smaller than 2, then we will have to set m_bSinglePass to false and 
render our terrain in two separate passes. 
 
ULONG                   m_MaxAnisotropy;      
This will be filled out in the TestDeviceCaps function and will hold the maximum level of 
anisotropy that the hardware can support. This allows the user to change levels at run time using 
the menu interface. 
 
CMesh                                        m_SkyMesh;           
LPDIRECT3DTEXTURE9      m_SkyTextures[6];   
These final two members that we have added to the CGameApp class  require some explanation. If 
you have already run the .exe file from Lab Project 6.2 you will likely have noticed the addition of 
a sky to our outdoor environment. This looks superior to just rendering our terrain polygons on top 
of a blue frame buffer as we did in earlier lessons. There are a number of techniques that can be 
used to create an environment complete with sky, clouds, and even scenery. The approach we used 
here, called a sky box, is one of the most commonly used and easy to implement.  
 
 
Sky Boxes 
 
A sky box is a mesh (typically a cube) that completely surrounds the camera at all times. The 
winding order of the cube faces are such that the face normals of each cube face point inwards 
towards the camera located at the center of the cube.  
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The box is situated in our 3D world such that the camera itself is always located directly at its 
center. Whenever the cameras position us updated, so too is the position of the sky box mesh so 
that the camera always remains at its center. Note that whilst the sky box mesh has its position in 
the 3D world synchronized to the position for the camera, the camera is allowed to rotate freely 
inside the sky box, allowing the camera to look up at the sky or down at the ground. The sky box 
mesh itself is never rotated and always remains aligned with the world axes.  
 
On each of the six faces of the box, a texture is placed. These textures should be seamless so that 
taken as a whole they depict a full panoramic view of the surrounding environment. This provides 
an easy way to add distant scenery and realistic atmospheric effects to outdoor environments. The 
sky box textures can be created offline using any number of rendering packages. TerraGen™ 
includes an easy to use interface specifically for this purpose. Each texture will be fully mapped 
and clamped to the appropriate box face when the cube is rendered.  
 
Since the distant scenery depicted in a sky box will never occlude scene objects, sky boxes are 
generally rendered before any other object in the scene. It is worth noting that the cube geometry 
that envelops the camera is not itself generally large enough to surround the entire scene in world 
space. In fact, very often the cube mesh itself is quite small to help minimize texture stretching 
artifacts. As a result, given that our camera is located ‘inside’ the cube, we do not wish the sky box 
to occlude our actual 3D scene objects. For example, the cube might be quite small in size such 
that if rendered in the normal way with depth buffering enabled, the front face of the sky box 
might be closer to the camera than other objects in our scene that we would always want to appear 
to be inside it. Therefore depth buffering will be disabled when we render our sky box to avoid 
pixel depth values entering the buffer that would prevent other object pixels from being seen. 
Certainly there is little point in performing thousands of per-pixel depth tests when the outcome of 
those tests is known in advance. This means we will typically render the sky box at the start of our 
scene rendering function before any other objects are rendered. Because the sky box depth values 
will not be written to the depth buffer, we can rest assured that regardless of the size of the sky 
box or the distance between the camera and the sky box faces, all objects rendered thereafter will 
be rendered ‘on top of’ the sky box pixels. This creates the illusion that our sky box is a huge 
scene-encompassing box. 
 
We can think of sky rendering as being more akin to painting the frame buffer. Since the rendering 
of a sky box completely fills the frame buffer with color, we can actually avoid clearing the frame 
buffer if we wish. This is a small optimization to be sure, as frame buffer clearing is generally 
quite rapid, but worth mentioning nonetheless.  
 
One thing we must make sure we do if using the lighting pipeline is disable it before we render the 
sky box. We will typically use pre-lit vertices for the sky box, such that every vertex in the cube is 
assigned the same color (usually white). This is because we wish to hide the seams where the cube 
faces meet. If lighting was enabled prior to rendering the sky box, then the Gouraud shading 
functionality in the pipeline will calculate the diffuse color of each vertex, taking the position and 
orientation of the vertex and its normal into account. This may result in slightly different per-
vertex colors being calculated. The following image shows what can happen when lighting is 
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enabled. We can see that in the bottom corner of the sky box mesh where the left, right, and 
bottom faces meet, each has had slightly different per-vertex colors calculated by the lighting 
pipeline. Although this shading is usually desirable, in the case of a sky box, it emphasizes that the 
player is inside of a cube, thus destroying the illusion of a smooth panoramic view. 
 

 
     
With lighting disabled and identical vertex colors assigned, these edges are no longer visible: 
 

 
  
Although we will see later how the sky box is constructed and how it is rendered, we now know 
enough about what a sky box is to understand the two new members (shown above) that we have 
added to our CGameApp class. The first is a CMesh object which contains the geometry for the 
sky box (a cube with faces pointing inwards). The second new member is an array of six 
IDirect3DTexture9 interfaces. This array will be used to hold the six sky box textures shown in the 
above images. 
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CGameApp() 
 
CGameApp::CGameApp() 
{ 
   // Reset / Clear all required values 
    m_hWnd          = NULL; 
    m_pD3D          = NULL; 
    m_pD3DDevice    = NULL; 
    m_hIcon         = NULL; 
    m_hMenu         = NULL; 
    m_bLostDevice   = false; 
    m_LastFrameRate = 0; 
     
    // Set up initial states (these will be adjusted later if not supported) 
    m_FillMode      = D3DFILL_SOLID; 
    m_ColorOp       = D3DTOP_ADDSIGNED; 
    m_MinFilter     = D3DTEXF_LINEAR; 
    m_MagFilter     = D3DTEXF_LINEAR; 
    m_MipFilter     = D3DTEXF_LINEAR; 
    m_bSinglePass   = true; 
    m_Anisotropy    = 1; 
} 
 
By default, the constructor sets all filters to linear (trilinear filtering) and assigns m_bSinglePass to 
true because this is our preferred way to render (single pass). We also choose the 
D3DTOP_ADDSIGNED texture stage color operation as our preferred color blending operation in the 
texture stages. These values may change based on the device capabilities. 
 
CGameApp::InitInstance 
This function has not changed much but it might be helpful just to remind ourselves of the 
program flow.  
 
bool CGameApp::InitInstance( HANDLE hInstance, LPCTSTR lpCmdLine, int iCmdShow 
) 
{ 
    // Create the primary display device 
    if (!CreateDisplay()) { ShutDown(); return false; } 
 
    // Build Objects 
    if (!BuildObjects()) { ShutDown(); return false; } 
 
    // Set up all required game states 
    SetupGameState(); 
 
    // Setup our rendering environment 
    SetupRenderStates(); 
 
    // Success! 
    return true; 
} 
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CGameApp::SetupRenderStates 
The first thing this function does is call the new CGameApp class function TestDeviceCaps to 
query all of the device states and fill in our filter and color blending arrays.  
 
void CGameApp::SetupRenderStates() 
{ 
    // Test the device capabilities. 
    if (!TestDeviceCaps( )) { PostQuitMessage(0); return; } 
 
Next we disable lighting and set the standard states (enable z-buffer, Gouraud shading, etc.): 
 
    // Setup our D3D Device initial states 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
    m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
 
Now we set the default minification, magnification, and MIP filters for stage 0. Although these 
variables were all set to D3DTEXF_LINEAR by default in the constructor, if linear filtering is not 
supported, the TestDeviceCaps function called above will have correctly assigned these variables 
to a default filtering mode that is supported on the current hardware. 
 
    // Set up sampler states. 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MINFILTER    , m_MinFilter ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MAGFILTER    , m_MagFilter ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MIPFILTER    , m_MipFilter ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MAXANISOTROPY, m_Anisotropy); 
 
Next we setup the color operation in stage 0. As we have already discussed we will not be using 
any blending here so we will assign the texture to ARG1 and output the sampled texel directly. 
We also inform stage 0 that it should use the first set of texture coordinates in the vertex to index 
into the texture assigned to that stage. Remember that the base texture will be assigned to this 
stage. 
     
    // Set texture / addressing / color ops 
    m_pD3DDevice->SetTextureStageState(0,D3DTSS_COLORARG1,D3DTA_TEXTURE); 
    m_pD3DDevice->SetTextureStageState(0,D3DTSS_COLOROP,D3DTOP_SELECTARG1); 
    m_pD3DDevice->SetTextureStageState(0,D3DTSS_TEXCOORDINDEX,0); 
     
The TestDeviceCaps function will have set the m_bSinglePass Boolean to true if the current 
hardware is capable of using the two texture stages to render the terrain in a single pass. We pass 
this Boolean to CTerrain::SetRenderMode (a new function) which simply makes a copy of this 
Boolean so that it knows how to render itself. Remember that CTerrain::Render actually renders 
the terrain, so it will need to know whether it has to do it in a single pass or multiple passes. 
 
    // Inform the terrain of how it should render 
    m_Terrain.SetRenderMode( m_bSinglePass ); 
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If the device is capable of single pass multi texturing then we can use stage 1 to blend the detail 
texture during rendering. If this is the case we setup stage 1 so that it blends the output from stage 
0 (the base texture) with the texture assigned to stage 1 (the detail texture). We also set the color 
operation which is stored in the m_ColorOp variable. Preferably it will have been set to 
D3DTOP_ADDSIGNED by the TestDeviceCaps function. If not, then another blending function will 
be set instead. We also inform stage 1 to index into the detail map using the second set of texture 
coordinates in the vertex. Finally, we setup the filters for stage 1 as we did with stage 0. 
 
    // If we are performing single pass rendering 
    if ( m_bSinglePass ) 
    { 
      m_pD3DDevice->SetTextureStageState(1,D3DTSS_COLORARG1,D3DTA_CURRENT); 
      m_pD3DDevice->SetTextureStageState(1,D3DTSS_COLORARG2,D3DTA_TEXTURE); 
      m_pD3DDevice->SetTextureStageState(1,D3DTSS_COLOROP, m_ColorOp); 
      m_pD3DDevice->SetTextureStageState(1,D3DTSS_TEXCOORDINDEX,1);  
      m_pD3DDevice->SetSamplerState(1,D3DSAMP_MINFILTER,m_MinFilter); 
      m_pD3DDevice->SetSamplerState(1,D3DSAMP_MAGFILTER,m_MagFilter); 
      m_pD3DDevice->SetSamplerState(1,D3DSAMP_MIPFILTER,m_MipFilter); 
      m_pD3DDevice->SetSamplerState(1,D3DSAMP_MAXANISOTROPY,m_Anisotropy); 
    }  
    else 
    { 
      // Disable second stage processing 
      m_pD3DDevice->SetTextureStageState(1,D3DTSS_COLOROP,D3DTOP_DISABLE); 
      m_pD3DDevice->SetTexture( 1, NULL ); 
    }  
  
The else statement is executed if the m_bSinglePass Boolean is false and we have to use multiple 
passes. Therefore, we make sure that the texture stage is disabled and any texture that may be 
assigned to it cleared before proceeding. 
 
Next, we set the fill mode and FVF flags and update the camera settings: 
    
    // Setup option dependant states 
    m_pD3DDevice->SetRenderState( D3DRS_FILLMODE, m_FillMode );                 
 
    // Setup our default vertex FVF code 
    m_pD3DDevice->SetFVF( VERTEX_FVF ); 
 
    // Update our device with our camera details (Required on reset) 
    if ( !m_pCamera ) return;  
    m_pCamera->UpdateRenderView( m_pD3DDevice ); 
    m_pCamera->UpdateRenderProj( m_pD3DDevice ); 
 
Finally we call SelectMenuItems to enable or disable menu items that are available or not.  
 
    // Set up the menu item selections  
    //(Which may have changed during device validations) 
    SelectMenuItems(); 
} 
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Recall that this function will be called when the device is changed by the user. So if the user 
decides to change from a windowed device to a fullscreen device, the capabilities may well have 
changed for the fullscreen device. 
 
 
CGameApp::TestDeviceCaps 
TestDeviceCaps checks the device capabilities and fills out the available filter and color op arrays. 
Since it includes a lot of repetitive code we will look only at the first section.  
 
The first thing we do is get the device caps and clear the CGameApp filter and color operation 
arrays.  
 
bool CGameApp::TestDeviceCaps( ) 
{ 
    HRESULT  hRet; 
    D3DCAPS9 Caps; 
    ULONG    Enable, Value; 
 
    // Retrieve device caps 
    hRet = m_pD3D->GetDeviceCaps( 
                      m_D3DSettings.GetSettings()->AdapterOrdinal, 
                      m_D3DSettings.GetSettings()->DeviceType, &Caps ); 
    if ( FAILED(hRet) ) return false; 
     
    // Reset our caps storage. 
    // Note: These store the available of actual state values 
    ZeroMemory( m_MinFilterCaps   , 10 * sizeof(bool) ); 
    ZeroMemory( m_MagFilterCaps   , 10 * sizeof(bool) ); 
    ZeroMemory( m_MipFilterCaps   , 10 * sizeof(bool) ); 
    ZeroMemory( m_ColorOpCaps     , 30 * sizeof(bool) ); 
     
    // Set up those states always supported 
    m_MinFilterCaps[D3DTEXF_NONE] = true; 
    m_MagFilterCaps[D3DTEXF_NONE] = true; 
    m_MipFilterCaps[D3DTEXF_NONE] = true; 
    m_MaxTextures   = 0; 
    m_MaxAnisotropy = 0; 
Now we will test the texture filtering capabilities of the device. These are stored in the 
D3DCAPS9::TextureFilterCaps member. We can test the bits to see if anisotropic, linear, or 
point minification filters are supported. For each one that has its bit set, we set its corresponding 
Boolean to true in the m_minFilterCaps array. We also enable that corresponding menu item in the 
application menu. 
 
    // Test Texture Filter Caps 
    Value = Caps.TextureFilterCaps; 
 
    // Determine if anisotropic minification filtering is supported 
    Enable = MF_ENABLED; 
    if(!(Value & D3DPTFILTERCAPS_MINFANISOTROPIC)) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_MINFILTER_ANISOTROPIC, MF_BYCOMMAND | Enable ); 
    if( Enable == MF_ENABLED ) m_MinFilterCaps[D3DTEXF_ANISOTROPIC] = true; 
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    // Determine if linear minification filtering is supported 
    Enable = MF_ENABLED; 
    if(!(Value & D3DPTFILTERCAPS_MINFLINEAR)) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_MINFILTER_LINEAR, MF_BYCOMMAND | Enable ); 
    if( Enable == MF_ENABLED ) m_MinFilterCaps[D3DTEXF_LINEAR] = true; 
     
    // Determine if point minification filtering is supported 
    Enable = MF_ENABLED; 
    if(!(Value & D3DPTFILTERCAPS_MINFPOINT)) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_MINFILTER_POINT, MF_BYCOMMAND | Enable ); 
    if( Enable == MF_ENABLED ) m_MinFilterCaps[D3DTEXF_POINT] = true; 
 
Now we repeat the process for magnification filters. If we find support for a filter mode we set the 
corresponding Boolean in the CGameApp::m_MagFilterCaps array to true and enable the relevant 
menu item. 
 
    // Determine if anisotropic magnification filtering is supported 
    Enable = MF_ENABLED; 
    if(!(Value & D3DPTFILTERCAPS_MAGFANISOTROPIC)) 
          Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_MAGFILTER_ANISOTROPIC, MF_BYCOMMAND | Enable ); 
    if( Enable == MF_ENABLED ) m_MagFilterCaps[D3DTEXF_ANISOTROPIC] = true; 
 
    // Determine if linear magnification filtering is supported 
    Enable = MF_ENABLED; 
    if(!(Value & D3DPTFILTERCAPS_MAGFLINEAR)) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_MAGFILTER_LINEAR, MF_BYCOMMAND | Enable ); 
    if( Enable == MF_ENABLED ) m_MagFilterCaps[D3DTEXF_LINEAR] = true; 
     
    // Determine if point magnification filtering is supported 
    Enable = MF_ENABLED; 
    if(!(Value & D3DPTFILTERCAPS_MAGFPOINT)) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_MAGFILTER_POINT, MF_BYCOMMAND | Enable ); 
    if( Enable == MF_ENABLED ) m_MagFilterCaps[D3DTEXF_POINT] = true; 
 
Finally, we test the MIP filtering methods and record the results in the m_MipFilterCaps array. 
Anisotropic is not a valid MIP filter so we check for only Point and Linear filtering methods. 
     
    // Determine if linear mip filtering is supported 
    Enable = MF_ENABLED; 
    if ( !(Value & D3DPTFILTERCAPS_MIPFLINEAR) )  
         Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_MIPFILTER_LINEAR, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_MipFilterCaps[D3DTEXF_LINEAR] = true; 
 
    // Determine if point mip filtering is supported 
    Enable = MF_ENABLED; 
    if ( !(Value & D3DPTFILTERCAPS_MIPFPOINT) ) 
         Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_MIPFILTER_POINT, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_MipFilterCaps[D3DTEXF_POINT] = true; 
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Next we check supported color operations. While we will not be requiring all of them, we will 
provide a nice selection of color operations to choose from. This enables us to see the effect of the 
different blending parameters between the detail and base textures. To check the various texture 
state blending operations we need to check the bits of the D3DCAPS9::TextureOpCaps member.  If 
one of the color operations we are testing is supported, we will enable its menu item and set the 
relevant Boolean to true in the CGameApp::m_ColorOpCaps array.     
 
 
    // Test texture operation caps 
    Value = Caps.TextureOpCaps; 
 
    // Determine if 'Add Signed' op is supported 
    Enable = MF_ENABLED; 
    if ( !(Value & D3DTEXOPCAPS_ADDSIGNED) ) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_COLOROP_ADDSIGNED, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_ColorOpCaps[D3DTOP_ADDSIGNED] = true; 
 
    // Determine if 'Modulate 2x' op is supported 
    Enable = MF_ENABLED; 
    if ( !(Value & D3DTEXOPCAPS_MODULATE2X) ) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_COLOROP_MODULATE2X, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_ColorOpCaps[D3DTOP_MODULATE2X] = true; 
 
    // Determine if 'Modulate' op is supported 
    Enable = MF_ENABLED; 
    if ( !(Value & D3DTEXOPCAPS_MODULATE) ) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_COLOROP_MODULATE, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_ColorOpCaps[D3DTOP_MODULATE] = true; 
 
    // Determine if 'Add' op is supported 
    Enable = MF_ENABLED; 
    if ( !(Value & D3DTEXOPCAPS_ADD) ) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_COLOROP_ADD, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_ColorOpCaps[D3DTOP_ADD] = true; 
 
    // Determine if 'Add Signed 2x' op is supported 
    Enable = MF_ENABLED; 
    if ( !(Value & D3DTEXOPCAPS_ADDSIGNED2X) ) 
    Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_COLOROP_ADDSIGNED2X, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_ColorOpCaps[D3DTOP_ADDSIGNED2X] = true; 
 
    // Determine if 'Modulate 4x' op is supported 
    Enable = MF_ENABLED; 
    if ( !(Value & D3DTEXOPCAPS_MODULATE4X) ) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_COLOROP_MODULATE4X, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_ColorOpCaps[D3DTOP_MODULATE4X] = true; 
 
    // Determine if 'Subtract' op is supported 
    Enable = MF_ENABLED; 
    if ( !(Value & D3DTEXOPCAPS_SUBTRACT) ) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_COLOROP_SUBTRACT, MF_BYCOMMAND | Enable ); 
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    if ( Enable == MF_ENABLED ) m_ColorOpCaps[D3DTOP_SUBTRACT] = true; 
 
Our next task is to query the device to see if the device can handle two simultaneous textures. If it 
can, then we will enable the menu choice to select between multi-pass and single-pass rendering. 
If the device does not support at least two textures, then we must disable the menu choice for 
single-pass. We get this information by querying the D3DCAPS9::MaxSimultaneousTextures 
variable. 
 
    // Determine if single-pass 2 stage texturing is supported 
    Enable = MF_ENABLED; 
    if ( Caps.MaxSimultaneousTextures < 2 ) Enable = MF_DISABLED | MF_GRAYED; 
    EnableMenuItem( m_hMenu, ID_RENDERMODE_SINGLEPASS, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_MaxTextures = Caps.MaxSimultaneousTextures; 
 
The next section of code queries the D3DCAPS9::MaxAnisotropy member to retrieve the 
maximum level of anisotropy on the device. Our application menu allows anisotropy levels that 
start at 1 and increase in powers of 2. The following code enables the menu items that are less than 
or equal to max anisotropy: 
 
    // Test anisotropy levels 
    Value = Caps.MaxAnisotropy; 
 
    // Determine which anisotropy levels are supported 
    if ( Value < 1 ) 
       Enable = MF_DISABLED | MF_GRAYED; else Enable = MF_ENABLED; 
    EnableMenuItem( m_hMenu, ID_MAXANISOTROPY_1, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_MaxAnisotropy = 1; 
 
    if ( Value < 2 )  
       Enable = MF_DISABLED | MF_GRAYED; else Enable = MF_ENABLED; 
    EnableMenuItem( m_hMenu, ID_MAXANISOTROPY_2, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_MaxAnisotropy = 2; 
 
    if ( Value < 4 ) 
       Enable = MF_DISABLED | MF_GRAYED; else Enable = MF_ENABLED; 
    EnableMenuItem( m_hMenu, ID_MAXANISOTROPY_4, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_MaxAnisotropy = 4; 
 
    if ( Value < 8 )  
        Enable = MF_DISABLED | MF_GRAYED; else Enable = MF_ENABLED; 
    EnableMenuItem( m_hMenu, ID_MAXANISOTROPY_8, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_MaxAnisotropy = 8; 
 
    if ( Value < 16 ) Enable = MF_DISABLED | MF_GRAYED; 
    else Enable = MF_ENABLED; 
    EnableMenuItem( m_hMenu, ID_MAXANISOTROPY_16, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_MaxAnisotropy = 16; 
     
    if ( Value < 32 ) Enable = MF_DISABLED | MF_GRAYED; 
    else Enable = MF_ENABLED; 
    EnableMenuItem( m_hMenu, ID_MAXANISOTROPY_32, MF_BYCOMMAND | Enable ); 
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    if ( Enable == MF_ENABLED ) m_MaxAnisotropy = 32; 
 
    if ( Value < 64 ) Enable = MF_DISABLED | MF_GRAYED; 
    else Enable = MF_ENABLED; 
    EnableMenuItem( m_hMenu, ID_MAXANISOTROPY_64, MF_BYCOMMAND | Enable ); 
    if ( Enable == MF_ENABLED ) m_MaxAnisotropy = 64; 
 
Finally, we need to set our default modes. Remember, although the m_MinFactor variable may 
hold the default desired minification filter set in the class constructor, it may not be supported on 
the hardware. Furthermore, if the user has switched devices, the filters may not be applicable on 
the new device. This function is called every time the device is built to reset menu items and 
assign default settings that work with the device. We test to see if the currently set minification 
filter is supported by checking the Boolean in the minification array that we have just filled out 
earlier in the function. If it is not supported, then we start at the top and search for one that has its 
corresponding Boolean set to true in the array. 
 
    // Now determine if our currently selected states are supported, swap otherwise 
    if ( m_MinFilterCaps[ m_MinFilter ] == false ) 
    { 
        if ( m_MinFilterCaps[ D3DTEXF_ANISOTROPIC ] ) 
           m_MinFilter = D3DTEXF_ANISOTROPIC; 
        else if ( m_MinFilterCaps[ D3DTEXF_LINEAR      ] ) 
           m_MinFilter = D3DTEXF_LINEAR; 
        else if ( m_MinFilterCaps[ D3DTEXF_POINT       ] ) m_MinFilter = D3DTEXF_POINT; 
        else if ( m_MinFilterCaps[ D3DTEXF_NONE        ] ) m_MinFilter = D3DTEXF_NONE; 
        else return false; 
    } 
 
We do the same thing for the magnification filter and the MIP filter.  
 
    if ( m_MagFilterCaps[ m_MagFilter ] == false ) 
    { 
        if ( m_MagFilterCaps[ D3DTEXF_ANISOTROPIC ] ) 
           m_MagFilter = D3DTEXF_ANISOTROPIC; 
        else if ( m_MagFilterCaps[ D3DTEXF_LINEAR      ] )  
           m_MagFilter = D3DTEXF_LINEAR; 
        else if ( m_MagFilterCaps[ D3DTEXF_POINT       ] ) m_MagFilter = D3DTEXF_POINT; 
        else if ( m_MagFilterCaps[ D3DTEXF_NONE        ] ) m_MagFilter = D3DTEXF_NONE; 
        else return false; 
     
    } // End if Filter not supported 
 
    if ( m_MipFilterCaps[ m_MipFilter ] == false ) 
    { 
        if ( m_MipFilterCaps[ D3DTEXF_ANISOTROPIC ] ) m_MipFilter = 
D3DTEXF_ANISOTROPIC; 
        else if ( m_MipFilterCaps[ D3DTEXF_LINEAR      ] ) m_MipFilter = 
D3DTEXF_LINEAR; 
        else if ( m_MipFilterCaps[ D3DTEXF_POINT       ] ) m_MipFilter = D3DTEXF_POINT; 
        else if ( m_MipFilterCaps[ D3DTEXF_NONE        ] ) m_MipFilter = D3DTEXF_NONE; 
        else return false; 
     
    } // End if Mip-Filter not supported 
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Finally we employ the same technique to find a default color operation. If the current one is not 
supported (D3DTOP_ADDSIGNED from the constructor) we step through the color operations in 
preferred order to find one that is: 
 
    if ( m_ColorOpCaps[ m_ColorOp ] == false ) 
    { 
        if ( m_ColorOpCaps[ D3DTOP_ADDSIGNED   ] )      m_ColorOp = D3DTOP_ADDSIGNED; 
        else if ( m_ColorOpCaps[ D3DTOP_MODULATE2X  ] ) m_ColorOp = D3DTOP_MODULATE2X; 
        else if ( m_ColorOpCaps[ D3DTOP_MODULATE    ] ) m_ColorOp = D3DTOP_MODULATE; 
        else if ( m_ColorOpCaps[ D3DTOP_ADD         ] ) m_ColorOp = D3DTOP_ADD; 
        else if ( m_ColorOpCaps[ D3DTOP_ADDSIGNED2X ] ) m_ColorOp = D3DTOP_ADDSIGNED2X; 
        else if ( m_ColorOpCaps[ D3DTOP_MODULATE4X  ] ) m_ColorOp = D3DTOP_MODULATE4X; 
        else if ( m_ColorOpCaps[ D3DTOP_SUBTRACT    ] ) m_ColorOp = D3DTOP_SUBTRACT; 
        else return false; 
    } // End if ColorOp not supported 
 
If we determined that the maximum number of simultaneous textures was less than two, we set the 
m_bSinglePass Boolean to false. This informs the application and the terrain class that it must 
render the terrain in multiple passes. 
 
    // Test for single pass capabilities. 
    if ( m_MaxTextures < 2 ) m_bSinglePass = false; 
 
    // Test max anisotropy 
    if ( m_Anisotropy > m_MaxAnisotropy ) m_Anisotropy = m_MaxAnisotropy; 
 
    // Success!! 
    return true; 
} 
 
 
CGameApp::BuildObjects 
The ‘BuildObjects’ function is virtually unchanged from the previous terrain demos we have 
written. It basically calls the ‘CTerrain’ objects ‘LoadHeightMap’ function to construct the terrain 
and then builds the little ‘Cube’ that we use as the player mesh. There is however an additional 
line at the end of the function that calls a brand new ‘CGameApp’ member function. This function 
( called ‘BuildSkyBox’ ) builds the 6 cube faces of the Sky Box mesh and loads the six textures 
for the  sky box.  
 
 
    // Build the skybox 
    if ( !BuildSkyBox() ) return false; 
 
 
CGameApp::BuildSkyBox 
The following code should be self explanatory to you by now with your knowledge of creating 
vertex data and adding that data to a CMesh object. In this example, we make room in the ‘Sky 
Box’ mesh for 24 vertices ( 6 faces * 4 vertices ). We then add the vertices for each quad one at a 
time to the meshes temporary vertex array. You will see if you plot our vertex positions out on 
paper that this defines a cube that has faces that have a clockwise winding order when inside the 
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cube. This is quite an important point because usually the winding order of a cube face would be 
defined such that it would be back face culled with the camera placed inside it. We reverse the 
winding here so that is not the case. 
 
Once the vertices have been added we then generate the indices such that the cube is described as 
an array of triangles ( as we know must be the case ). We then call the CMesh::BuildBuffers 
member function so that the actual index and vertex buffers of the CMesh get generated using our 
newly generated index and vertex data. We end the function by loading the 6 Sky Box textures 
into the ‘CGameApp::m_SkyTextures’ array. 
 
    bool CGameApp::BuildSkyBox() 
{ 
    HRESULT hRet; 
     
    // Allocate our 24 mesh vertices 
    m_SkyMesh.SetVertexFormat( VERTEX_FVF, sizeof(CVertex) ); 
    if ( m_SkyMesh.AddVertex( 24 ) < 0 ) return false; 
     
    // Build the skybox vertices 
    CVertex * pVertices = (CVertex*)m_SkyMesh.m_pVertex; 
 
    // Front quad (remember all quads point inward) 
    pVertices[0]  = CVertex( -10.0f,  10.0f,  10.0f, 0.0f, 0.0f ); 
    pVertices[1]  = CVertex(  10.0f,  10.0f,  10.0f, 1.0f, 0.0f ); 
    pVertices[2]  = CVertex(  10.0f, -10.0f,  10.0f, 1.0f, 1.0f ); 
    pVertices[3]  = CVertex( -10.0f, -10.0f,  10.0f, 0.0f, 1.0f ); 
 
    // Back Quad 
    pVertices[4]  = CVertex(  10.0f,  10.0f, -10.0f, 0.0f, 0.0f ); 
    pVertices[5]  = CVertex( -10.0f,  10.0f, -10.0f, 1.0f, 0.0f ); 
    pVertices[6]  = CVertex( -10.0f, -10.0f, -10.0f, 1.0f, 1.0f ); 
    pVertices[7]  = CVertex(  10.0f, -10.0f, -10.0f, 0.0f, 1.0f ); 
 
    // Left Quad 
    pVertices[8]  = CVertex( -10.0f,  10.0f, -10.0f, 0.0f, 0.0f ); 
    pVertices[9]  = CVertex( -10.0f,  10.0f,  10.0f, 1.0f, 0.0f ); 
    pVertices[10] = CVertex( -10.0f, -10.0f,  10.0f, 1.0f, 1.0f ); 
    pVertices[11] = CVertex( -10.0f, -10.0f, -10.0f, 0.0f, 1.0f ); 
 
    // Right Quad 
    pVertices[12] = CVertex(  10.0f,  10.0f,  10.0f, 0.0f, 0.0f ); 
    pVertices[13] = CVertex(  10.0f,  10.0f, -10.0f, 1.0f, 0.0f ); 
    pVertices[14] = CVertex(  10.0f, -10.0f, -10.0f, 1.0f, 1.0f ); 
    pVertices[15] = CVertex(  10.0f, -10.0f,  10.0f, 0.0f, 1.0f ); 
 
    // Top Quad 
    pVertices[16] = CVertex( -10.0f,  10.0f, -10.0f, 0.0f, 0.0f ); 
    pVertices[17] = CVertex(  10.0f,  10.0f, -10.0f, 1.0f, 0.0f ); 
    pVertices[18] = CVertex(  10.0f,  10.0f,  10.0f, 1.0f, 1.0f ); 
    pVertices[19] = CVertex( -10.0f,  10.0f,  10.0f, 0.0f, 1.0f ); 
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    // Bottom Quad 
    pVertices[20] = CVertex( -10.0f, -10.0f,  10.0f, 0.0f, 0.0f ); 
    pVertices[21] = CVertex(  10.0f, -10.0f,  10.0f, 1.0f, 0.0f ); 
    pVertices[22] = CVertex(  10.0f, -10.0f, -10.0f, 1.0f, 1.0f ); 
    pVertices[23] = CVertex( -10.0f, -10.0f, -10.0f, 0.0f, 1.0f ); 
 
    // Allocate the indices 
    if ( m_SkyMesh.AddIndex( 24 ) < 0 ) return false; 
    USHORT * pIndices = m_SkyMesh.m_pIndex; 
 
    // Set the indices for each face (tri strip) 
    for ( ULONG i = 0; i < 6; i++ ) 
    { 
        // Build the skybox indices 
        *pIndices++ = (i*4); 
        *pIndices++ = (i*4) + 1; 
        *pIndices++ = (i*4) + 3; 
        *pIndices++ = (i*4) + 2; 
     
    } // Next 'face' 
 
    VERTEXPROCESSING_TYPE vp=m_D3DSettings.GetSettings()->VertexProcessingType; 
    bool HardwareTnL = true; 
     
    // Are we using HardwareTnL ? 
    if ( vp != HARDWARE_VP && vp != PURE_HARDWARE_VP ) HardwareTnL = false; 
 
    // Build the mesh buffers 
    if ( FAILED(m_SkyMesh.BuildBuffers( m_pD3DDevice, HardwareTnL ))) return 
false; 
 
    // Load Textures 
    hRet  = D3DXCreateTextureFromFile( m_pD3DDevice, 
_T("Data\\SkyBox_Front.jpg") , &m_SkyTextures[0] ); 
    hRet |= D3DXCreateTextureFromFile( m_pD3DDevice, 
_T("Data\\SkyBox_Back.jpg")  , &m_SkyTextures[1] ); 
    hRet |= D3DXCreateTextureFromFile( m_pD3DDevice, 
_T("Data\\SkyBox_Left.jpg")  , &m_SkyTextures[2] ); 
    hRet |= D3DXCreateTextureFromFile( m_pD3DDevice, 
_T("Data\\SkyBox_Right.jpg") , &m_SkyTextures[3] ); 
    hRet |= D3DXCreateTextureFromFile( m_pD3DDevice, _T("Data\\SkyBox_Top.jpg")   
, &m_SkyTextures[4] ); 
    hRet |= D3DXCreateTextureFromFile( m_pD3DDevice, 
_T("Data\\SkyBox_Bottom.jpg"), &m_SkyTextures[5] ); 
    if ( FAILED(hRet) ) return false; 
     
    // Success!! 
    return true; 
} 
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CGameApp::FrameAdvance 
The FrameAdvance function has also not changed since the last demo but we include it simply to 
remind you of the program flow. The only addition to this function which is worthy of note is that 
before we render the terrain we now call the CGameApp::RenderSkyBox function. This function ( 
which we will cover momentarily ) will synchronize the position of the Sky Box mesh with the 
camera and render it with depth buffering disabled. 
 
   // Clear the frame & depth buffer ready for drawing 
   m_pD3DDevice-
>Clear(0,NULL,D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,0x79D3FF,1.0f,0); 
     
   // Begin Scene Rendering 
   m_pD3DDevice->BeginScene(); 
     
   // Reset our world matrix 
   m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_mtxIdentity ); 
 
   // Render the sky box 
   RenderSkyBox( ); 
 
   // Render our terrain objects 
   m_Terrain.Render( ); 
    
   // Request our player render itselfs 
   m_Player.Render( m_pD3DDevice ); 
 
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 
     
    // Present the buffer 
    if(FAILED(m_pD3DDevice->Present(NULL,NULL,NULL,NULL)))m_bLostDevice = true; 
 
 
The final member function of the CGameApp class that we need to cover is the ‘RenderSkyBox’ 
function . This is called before we render any objects in our so that it paints the frame buffer with 
the image of our sky as viewed from the camera. 
 
 
CGameApp::RenderSkyBox 
The first thing this function does ( after validating that the device and the camera are valid objects 
) is get the current world space position of the camera. This is because we need to update the 
position of the Sky Box mesh too so that it remains synchronized with the camera. We then use 
the cameras position to build a world matrix that will be used to render the faces of the sky box. 
Notice how we slightly offset the position of the Sky Box center point 1.3 units from the cameras 
position along the Y axis. The only reason we did this is because is it looked slightly better that 
way. Once the world matrix has be built for the Sky Box we make sure that we disable lighting ( 
just in case it was enabled for some reason ) and disable Z Writing so that the sky boxes depth 
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values are not written to the depth buffer when rendered. This is important because we do not want 
our Sky Box to occlude any object in our scene rendered thereafter. Finally, we set the texture 
addressing mode for stage 0 ( the stage the sky box textures will be bound too ) to 
D3DTADDRESS_CLAMP. This is another important step because we need to make sure that no 
seams appear between our cube faces. Because we are using filtering, the texels along the edge of 
each texture will be averaged with surrounding texels. This will also cause seams so we want to 
make sure that the pixels at the edge of each texture are rendered to the screen exactly ‘as is’ so 
that the textures on each face line up correctly. 
 
  void CGameApp::RenderSkyBox( ) 
{ 
    D3DXMATRIX mtxWorld; 
    D3DXMatrixIdentity( &mtxWorld ); 
 
    // Validate parameters 
    if ( !m_pCamera || !m_pD3DDevice ) return; 
     
    // Generate our sky box rendering origin and set as world matrix 
    D3DXVECTOR3 CamPos = m_pCamera->GetPosition(); 
    D3DXMatrixTranslation( &mtxWorld, CamPos.x, CamPos.y + 1.3f, CamPos.z ); 
    m_pD3DDevice->SetTransform( D3DTS_WORLD, &mtxWorld ); 
 
    // Set up rendering states for the sky box 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
    m_pD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP );  
 
If  we are using single pass multi-texturing then we must make sure that we disable the second 
stage as we will only be using stage zero to render the Sky Box. Following the disabling of texture 
stage one we then set the FVF of our sky box mesh and bind the index buffer and the vertex buffer 
of the mesh to the device so that it will be used in the following ‘DrawPrimitive’ calls. When then 
loop through each of the 6 faces of our cube, setting the appropriate texture and rendering the 
appropriate face. As each face is basically a quad, we now we can access each one using the ‘I*4’ 
calculation. 
 
  // Disable second stage if enabled 
    if ( m_bSinglePass ) m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLOROP, 
D3DTOP_DISABLE ); 
     
    // Render the sky box 
    m_pD3DDevice->SetFVF( m_SkyMesh.m_nFVFCode ); 
    m_pD3DDevice->SetIndices( m_SkyMesh.m_pIndexBuffer ); 
    m_pD3DDevice->SetStreamSource( 0, m_SkyMesh.m_pVertexBuffer, 0, 
m_SkyMesh.m_nStride ); 
     
    // Render the 6 sides of the skybox 
    for ( ULONG i = 0; i < 6; ++i ) 
    { 
        m_pD3DDevice->SetTexture( 0, m_SkyTextures[i] ); 
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        m_pD3DDevice->DrawIndexedPrimitive( D3DPT_TRIANGLESTRIP, 0, 0, 24, i * 
4, 2 ); 
 
    } // Next side 
 
    // Reset our states 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP ); 
    m_pD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE ); 
    m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_mtxIdentity ); 
 
    // Re-enable second stage if enabled 
    if ( m_bSinglePass ) m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLOROP, 
m_ColorOp ); 
} 
 
Finally, we reset the default states that were changed by this function. We set the texture 
addressing modes back to D3DTADDRESS_WRAP, enable Z-Writing and re-enable the second 
texture stage is the application is going to use multiple texture stages to render the terrain in a 
single pass.  
 
 
The CTerrain Class 
 
The CTerrain class has three new members. It now contains a Boolean variable specifying whether 
the terrain should use two texture stages or must be rendered using multiple passes. This variable 
was set from the CGameApp::SetupRenderStates function with a call to the 
CTerrain::SetRenderMode in response to querying whether the device could handle two textures 
simultaneously. We also need pointers to two IDirect3DTexture9 interfaces for the two textures 
used by the terrain.  
 
bool                m_bSinglePass;      // Use single pass rendering method? 
LPDIRECT3DTEXTURE9  m_pBaseTexture;     // Base terrain texture 
LPDIRECT3DTEXTURE9  m_pDetailTexture;   // Terrain detail texture. 
 
 
CTerrain::LoadHeightMap 
The CTerrain::LoadHeightMap now includes two calls to D3DXCreateTextureFromFile to load 
texture images for the base map and the detail map. Below we see the LoadHeightMap code with 
the two new lines.  
 
bool CTerrain::LoadHeightMap( LPCTSTR FileName, ULONG Width, ULONG Height ) 
{ 
    HRESULT hRet; 
    FILE  * pFile = NULL; 
 
    // First of all store the information passed 
    m_nHeightMapWidth  = Width; 
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    m_nHeightMapHeight = Height; 
 
    // A scale of 4 is roughly the best size for a 512 x 512 quad terrain. 
    // Using the following forumla, lowering the size of the terrain  
    // simply lowers the vertex resolution but maintains the map size. 
    m_vecScale.x = 4.0f * (512 / (m_nHeightMapWidth - 1)); 
    m_vecScale.y = 2.0f; 
    m_vecScale.z = 4.0f * (512 / (m_nHeightMapHeight - 1)); 
 
    // Attempt to allocate space for this heightmap information 
    m_pHeightMap = new UCHAR[Width * Height]; 
 
    // Open up the heightmap file 
    pFile = _tfopen( FileName, _T("rb") ); 
 
    // Read the heightmap data (Read only 'Red' component) 
    for ( ULONG i = 0; i < Width * Height; i++ ) 
    { 
        fread( &m_pHeightMap[i], 1, 1, pFile ); 
        fseek( pFile, 2, SEEK_CUR ); 
    }  
     
    // Finish up 
    fclose( pFile ); 
 
    // Load in the textures used for rendering the terrain 
    D3DXCreateTextureFromFile( m_pD3DDevice, BaseTextureName, &m_pBaseTexture ); 
    D3DXCreateTextureFromFile( m_pD3DDevice, DetailTextureName, &m_pDetailTexture ); 
     
    // Allocate enough meshes to store the separate blocks of this terrain 
    if ( AddMesh( ((Width - 1) / QuadsWide) * ((Height - 1) / QuadsHigh) ) < 0 ) 
        return false; 
 
    // Build the mesh data itself 
    return BuildMeshes( ); 
} 
 
 
The D3DXCreateTextureFromFile function loads the images into the D3DPOOL_MANAGED memory 
pool and generates a complete MIP chain of filtered surfaces. Remember that the AddMesh 
function takes care of adding a number of CMesh objects to the CTerrain mesh array (see Chapter 
3).  
 
CTerrain::BuildMeshes 
We will examine only a very small section of this function since it is virtually unchanged. The 
main difference now is the calculation of texture coordinates for the base and detail textures.  
 
for ( vz = StartZ; vz < StartZ + BlockHeight; vz++ ) 
{ 
    for ( vx = StartX; vx < StartX + BlockWidth; vx++ ) 
    { 
        // Calculate and Set The vertex data. 
        pVertex[Counter].x  = (float)vx * m_vecScale.x; 
        pVertex[Counter].y  = (float)m_pHeightMap[vx + vz * m_nHeightMapWidth]\ 
                                  * m_vecScale.y; 
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        pVertex[Counter].z  = (float)vz * m_vecScale.z; 
                    
        pVertex[Counter].tu = (float)vx / (m_nHeightMapWidth - 1); 
        pVertex[Counter].tv = (float)vz / (m_nHeightMapHeight - 1); 
        pVertex[Counter].tu2 = (float)vx / 6.0f; 
        pVertex[Counter].tv2 = (float)vz / 6.0f; 
        Counter++; 
               
   } // Next Vertex Column 
             
} // Next Vertex Row 
 
Recall that this process is repeated for each 17x17 terrain block. For each block in a row, StartX is 
increased by 17. For each row, StartZ is increased by 17. This means that for any block, vz and vx 
define the offset of that vertex in the height map and vx*m_vecScale.x and vz*m_vecScale.z 
describe the actual world space position of the vertex along the X and Z axes. This means that vx 
will always describe the number of the vertex in the row and vz will describe the number of the 
row the vertex is in (in the entire terrain). If we divide vx by the total number of vertices the terrain 
has in a row, we get the U coordinate between 0.0 and 1.0. This describes the exact U coordinate 
for the base map. If we do the same for vz and divide this by the total number of terrain rows, we 
get a V coordinate in the range of 0.0 to 1.0.  
 
Calculating the second set of texture coordinates is even easier. We simply divide the vx and vz 
vertex positions by 6. This means that we are mapping the entire detail texture to each 6x6 quad 
square. This tiles the detail texture across the terrain just less than 43 times in each dimension. The 
choice to device by 6 was determined by trial and error so feel free to experiment with this value 
until you have something that suits your own tastes.  
 
Our vertices now have the texture coordinates they need for both stage 0 and stage 1. The base and 
detail texture maps will now be mapped onto our quads correctly. 
 
CTerrain::Render 
 
void CTerrain::Render( ) 
{ 
    ULONG i; 
 
    // Validate parameters 
    if( !m_pD3DDevice ) return; 
 
First we assign the base texture to texture stage 0 and assign the detail texture to stage 1. Notice 
how we only assign the detail texture to stage 1 if the device supports multi-texturing. If not, we 
cannot use stage 1 and will have to switch textures in stage 0 later to render the terrain with a 
second pass. 
     
    // Set our base texture in stage 0 
    m_pD3DDevice->SetTexture( 0, m_pBaseTexture ); 
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    // Set detail texture in stage 1 if supported 
    if ( m_bSinglePass ) m_pD3DDevice->SetTexture( 1, m_pDetailTexture ); 
 
We set the FVF flags used by the terrain vertices so that the device object knows to expect two 
sets of texture coordinates. 
 
    // Set the FVF code for the terrain meshes, these will always 
    // be identical between each mesh stored here, so we can simply 
    // use the first. 
    if ( m_nMeshCount > 0 ) m_pD3DDevice->SetFVF( m_pMesh[0]->m_nFVFCode ); 
 
Remember that at this point the texture stage operations have already been set up by the 
CGameApp::SetupRenderState function. Therefore, we can simply render the terrain as normal.  
 
    // Render Each terrain Mesh 
    for ( i = 0; i < m_nMeshCount; i++ ) 
    { 
        // Set the stream sources 
        m_pD3DDevice->SetStreamSource( 0, m_pMesh[i]->m_pVertexBuffer, 0, 
                                       m_pMesh[i]->m_nStride ); 
        m_pD3DDevice->SetIndices( m_pMesh[i]->m_pIndexBuffer ); 
 
        // Render the vertex buffer 
        m_pD3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLESTRIP, 0, 0,  
                                           BlockWidth * BlockHeight, 0, 
                                           m_nPrimitiveCount ); 
    }  
 
If the device supports single pass multi-texturing then the function can exit at this point. However, 
if single pass blending was not supported then only stage 0 would have been used when rendering 
the above terrain polygons. This means the color of the base texture in stage 0 would have been 
used as the final color for the terrain. We will have to now render the terrain again using the detail 
texture. The following code assigns the detail map to stage 0 and adjusts the texture coordinate 
index state of this stage so that it will use the second set of texture coordinates in each vertex. We 
also enable alpha blending and setup the frame buffer blending modes to get the proper blending 
effect. 
 
 
    // If we are not using single pass we render detail in a second pass 
    if ( !m_bSinglePass ) 
    { 
        // Set our detail texture in stage 0, use 2nd texture coordinates. 
        m_pD3DDevice->SetTexture( 0, m_pDetailTexture  ); 
        m_pD3DDevice->SetTextureStageState( 0, D3DTSS_TEXCOORDINDEX, 1 ); 
 
        // Enable alpha blending to blend the dest and src colors together 
        m_pD3DDevice->SetRenderState( D3DRS_SRCBLEND , D3DBLEND_DESTCOLOR ); 
        m_pD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_SRCCOLOR ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
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        // Render Each Mesh 
        for ( i = 0; i < m_nMeshCount; i++ ) 
        { 
            // Set the stream sources 
            m_pD3DDevice->SetStreamSource(0, m_pMesh[i]->m_pVertexBuffer, 0,  
                                          m_pMesh[i]->m_nStride ); 
            m_pD3DDevice->SetIndices( m_pMesh[i]->m_pIndexBuffer ); 
 
            // Render the vertex buffer 
            m_pD3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLESTRIP, 0, 0, 
                                               BlockWidth * BlockHeight, 0, 
              m_nPrimitiveCount ); 
 
        }  
 
        // Reset states for next call 
        m_pD3DDevice->SetTextureStageState( 0, D3DTSS_TEXCOORDINDEX, 0 ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE ); 
     
    } // End if requires second pass 
} 
 
 
Remember to reset alpha blending to false and the texture coordinate index of stage 0 to zero for 
the next time we render.  
 

Note: Be sure to set your texture stage textures to NULL when you are finished rendering your scene. If 
you do not do this, memory leaks may occur. 
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Lab Project 6.3: Scene Texturing  
 
Lab Project 6.3 implements a textured version of the IWF scene imported in the last lesson (see 
Lab Project 5.2). This project will demonstrate loading and using compressed textures, and 
blending vertex lighting with texture colors in texture stage 0. The demo will continue to use the 
DirectX lighting pipeline as well as the light group method described in detail in the last lesson. 
We will add textures to the property groups and assign each texture property group an array of 
child material property groups. These material property groups will store the triangles (their 
indices). A light group will continue to maintain the main vertex buffer used by its children. The 
current design is shown below. 
 

 
We see in the above diagram that each light group will have a CPropertyGroup array. Each one 
will contain a texture index rather than a material index as we used in Chapter 5.  Each texture 
CPropertyGroup will not contain any indices but they will contain an array of child 
CPropertyGroups. Each child contains an index into the main material array as well as the triangle 
indices. These indices describe the triangles that use the material property, the texture of the parent 
property group, and the lights of the top level light group. The result is that we are batching first 
by light group, then by texture, and finally by material. Rendering would then follow the 
approach: 
 
• Begin Scene 
• For Each Light Group (L) 
• Setup Lights 
• For Each Texture Group (T) 
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• SetTexture T->Texture 
• For Each Material Group(M) of Texture Group (T) 
• Set Material M->Material 
• DrawIndexedPrimitive ( L->Vertices , M->Indices) 
• End Scene 

 
Setting a texture is a more expensive operation than setting a material. This is especially true if the 
texture is not currently in video memory and has to be uploaded by the memory manager. This is 
why we make textures the primary key of the property chain. This final arrangement ensures that 
we are minimizing the number of SetLight, SetTexture, and SetMaterial calls and maximizing the 
number of primitives we can render with a single call to DrawIndexedPrimitive.  
 
Note that we will only discuss code changes and additions in this chapter, so be sure that you are 
comfortable with the initial project in Chapter 5 before continuing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This level does not use any multi-texturing so we will require only a single set of 2D texture 
coordinates per vertex. Our vertex class will also store a vertex normal for lighting purposes. 
 
class CVertex 
{ 
public: 
   float       x;  
   float       y; 
   float       z;           
   D3DXVECTOR3 Normal;      
   float       tu; 
   float       tv;         
}; 
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The corresponding flexible vertex flags are shown below. 
 
#define VERTEX_FVF  D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1 

 
The CGameApp Class 
 
The CGameApp class has carried over all of the changes from Lab Project 6.2. It includes a 
TestDeviceCaps function which queries filters and related device capabilities. We have added 
support for texture format querying. The TestDeviceCaps function will first determine support for 
compressed textures. If that fails then it will try 32-bit textures and ultimately drop down to 16-bit 
textures if necessary. Once we find a supported texture format we will store this information in the 
members variables defined below. 
 
D3DFORMAT               m_TextureFormat;     
This is the best texture format supported by the current device. The CScene class will use it in the 
D3DXCreateTextureFromFileEx function so that the images are stored in this format. By default, 
the TestDeviceCaps function will consider the compressed texture format D3DFMT_DXT1 
optimal. We selected this format because the textures used in this project contain no alpha 
information. 
 
D3DFORMAT               m_AlphaFormat;        
This variable will not actually be used in this project, but will be used in future projects. 
TestDeviceCaps will also try and find the best supported texture format that supports an alpha 
channel. We can use this format if we have texture images that include alpha channels and require 
an appropriate format. By default, the TestDeviceCaps function considers compressed alpha 
format D3DFMT_DXT3 optimal, but will fall back to uncompressed 32-bit alpha formats or even 
16-bit alpha formats if necessary.  
 
 
CGameApp::TestDeviceCaps 
Below we show the last section of the CGameApp::TestDeviceCaps function. This code finds the 
best supported texture formats for both alpha and non-alpha texture surfaces. The rest of the 
function is unchanged from the previous incarnation. 
 
ULONG      Ordinal = pSettings->AdapterOrdinal; 
D3DDEVTYPE Type    = pSettings->DeviceType; 
D3DFORMAT  AFormat = pSettings->DisplayMode.Format; 
     
m_TextureFormat    = D3DFMT_UNKNOWN; 
m_AlphaFormat      = D3DFMT_UNKNOWN; 
     
// find texture formats we would like to use 
// Prefer compressed textures in this demo 
if(SUCCEEDED(m_pD3D->CheckDeviceFormat(Ordinal, Type, AFormat, 0, 
                                       D3DRTYPE_TEXTURE, D3DFMT_DXT1))) 
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         m_TextureFormat = D3DFMT_DXT1; 
else  
if(SUCCEEDED(m_pD3D->CheckDeviceFormat(Ordinal, Type, AFormat, 0, 
                                       D3DRTYPE_TEXTURE, D3DFMT_X8R8G8B8 ))) 
         m_TextureFormat = D3DFMT_X8R8G8B8; 
else  
if(SUCCEEDED(m_pD3D->CheckDeviceFormat(Ordinal, Type, AFormat, 0, 
                                       D3DRTYPE_TEXTURE, D3DFMT_R5G6B5 )) ) 
         m_TextureFormat = D3DFMT_R5G6B5; 
else  
 
if(SUCCEEDED(m_pD3D->CheckDeviceFormat(Ordinal, Type, AFormat, 0,  
                                       D3DRTYPE_TEXTURE, D3DFMT_X1R5G5B5 )) ) 
         m_TextureFormat = D3DFMT_X1R5G5B5; 
 
After this code executes we have the best compatible non-alpha texture format supported by the 
device. We store it in the CGameApp::m_TextureFormat member so that it can be used later to 
create our textures. We now repeat the process for the best alpha capable texture format.  
 
// Find alpha texture formats we would like to use 
// Prefer compressed textures in this demo 
if ( SUCCEEDED( m_pD3D->CheckDeviceFormat( Ordinal, Type, AFormat, 0, 
                                           D3DRTYPE_TEXTURE, D3DFMT_DXT3)))  
        m_AlphaFormat = D3DFMT_DXT3; 
 
else  
 
if ( SUCCEEDED( m_pD3D->CheckDeviceFormat( Ordinal, Type, AFormat, 0, 
                                           D3DRTYPE_TEXTURE, D3DFMT_A8R8G8B8))) 
        m_AlphaFormat = D3DFMT_A8R8G8B8; 
     
else  
 
if ( SUCCEEDED( m_pD3D->CheckDeviceFormat( Ordinal, Type, AFormat, 0, 
                                           D3DRTYPE_TEXTURE, D3DFMT_A1R5G5B5))) 
        m_AlphaFormat = D3DFMT_A1R5G5B5; 
 
else  
 
if ( SUCCEEDED( m_pD3D->CheckDeviceFormat( Ordinal, Type, AFormat, 0,  
                                           D3DRTYPE_TEXTURE, D3DFMT_A4R4G4B4))) 
        m_AlphaFormat = D3DFMT_A4R4G4B4; 
 
   return true; 
} 
 
The last resort alpha format is the 16-bit ARGB4444 (supported by some hardware). This is a non-
optimal format as it only has 4 bits per color component and thus can only store 15 shades of 
intensity. When converting from 32-bit pixel formats into 16-bit ARGB4444 format you will 
usually notice a distinct loss in image quality because of the limited number of colors it supports. 
 

TeamLRN



CGameApp::SetupRenderStates 
The only other function that has changed in the CGameApp class from Lab Project 5.2 is 
CGameApp::SetupRenderStates -- called when the device is first created or reset. The function 
now calls TestDeviceCaps to gather information about supported texture formats, filter types, etc. 
Then it sets up the render states we have come to expect. We set an ambient light level, enable 
lighting, enable specular highlights, and the Z-Buffer. 
 
void CGameApp::SetupRenderStates() 
{ 
    // Test the device capabilities. 
    if (!TestDeviceCaps( )) { PostQuitMessage(0); return; } 
 
    // Setup our D3D Device initial states 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
    m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SPECULARENABLE, TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_AMBIENT, 0x0D0D0D ); 
 
We use the same code from the previous terrain demo to set the filter types and anisotropy 
settings. 
 
    // Set up sampler states. 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MINFILTER    , m_MinFilter ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MAGFILTER    , m_MagFilter ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MIPFILTER    , m_MipFilter ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MAXANISOTROPY, m_Anisotropy ); 
 
We set the color operation in this blending stage to modulate the diffuse color calculated by the 
lighting pipeline with the texel color sampled from the texture in stage 0. The diffuse color is 
bound to argument 1 and the texture color to argument 2.  We also inform the stage that it should 
use the first (and only) set of texture coordinates in our vertices. 
    
    // Set texture / addressing / color ops 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP  , D3DTOP_MODULATE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_TEXCOORDINDEX, 0 ); 
 
Next we set the fill mode and vertex format our application will be using and then set the view and 
projection matrices as usual. 
 
    // Setup option dependant states 
    m_pD3DDevice->SetRenderState( D3DRS_FILLMODE, m_FillMode );                 
 
    // Setup our vertex FVF code 
    m_pD3DDevice->SetFVF( VERTEX_FVF ); 
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    // Update our device with our camera details (Required on reset) 
    m_pCamera->UpdateRenderView( m_pD3DDevice ); 
    m_pCamera->UpdateRenderProj( m_pD3DDevice ); 
 
Now we call the new CScene function SetTextureFormat to inform the class of the texture format 
that it should use for texture creation. 
 
    // Inform texture loading objects which format to use 
    m_Scene.SetTextureFormat( m_TextureFormat ); 
 
Finally, we call SelectMenuItems to enable/disable the supported filter and fill mode options that 
were recorded in the TestDeviceCaps function. 
 
    // Set up the menu items (which may have changed during device validations) 
    SelectMenuItems(); 
} 
 
 
The CScene Class 
 
Recall that level loading and light group and property group initialization begins in 
CScene::LoadScene. It is called from the CGameApp::BuildObjects function. Also recall that the 
CScene::Render function called by CGameApp::FrameAdvance actually renders the scene. 
Therefore, it is the CScene class handles most of our logic. Let us start by examining the changes 
we have had to make to this class in order to support texturing. This includes loading textures, 
building the light groups and taking textures into account, and batch rendering the scene with 
textures. 
 
CScene includes a few new member variables to aid our texture management tasks. Below is a 
complete list of the CScene member variables with the new members in bold. 
 
D3DMATERIAL9       *m_pMaterialList;    // Array of material structures. 
LPDIRECT3DTEXTURE9 *m_pTextureList;     // Array of texture pointers 
D3DLIGHT9          *m_pLightList;             // Array of light structures 
D3DLIGHT9           m_DynamicLight;      // Single dynamic light for testing. 
CLightGroup       **m_ppLightGroupList;  // Array of individual lighting groups 
ULONG               m_nMaterialCount;    // Number of materials stored 
ULONG               m_nTextureCount;    // Number of textures stored 
ULONG               m_nLightCount;        // Number lights stored here 
ULONG               m_nLightGroupCount; // Number of light groups stored here. 
     
long             m_nWaterTexture;  // Index for our animating tex coords 
D3DXMATRIX       m_mtxTexture;     // Texture matrix for animating our tex 
cords 
ULONG              m_nReservedLights;  // Number of light slots to leave empty 
ULONG              m_nLightLimit;      // Number of device lights available. 
LPDIRECT3DDEVICE9  m_pD3DDevice;       // Direct3D Device  
bool               m_bHardwareTnL;    //  TnL support 
D3DFORMAT          m_fmtTexture;      // Texture format for building textures. 
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LPDIRECT3DTEXTURE9 *m_pTextureList; 
This member points to an array of IDirect3DTexture9 interfaces -- one for each texture loaded 
from the IWF file. Each texture property group will contain an index into this array describing the 
texture the faces use.  
 
ULONG m_nTextureCount; 
The number of textures in the above texture array. 
 
long        m_nWaterTexture; 
This member stores the index of the texture used as our water texture. During rendering of the 
scene, faces that use the water texture will have a texture transformation matrix enabled before 
being rendered. Each frame, we will adjust the translation vector in this matrix to animate their 
texture coordinates and thus make the water appear to flow using a simple scrolling animation. 
 
D3DXMATRIX  m_mtxTexture; 
This is our texture matrix. Each frame we will increment the m31 element of the matrix to create 
the scrolling animation. The range is [0, 1] and we will loop back around at 1.0 to effect the 
scrolling. After we adjust this matrix, we call IDirect3DDevice9::SetTransform to send it to the 
device. 
 
D3DFORMAT  m_fmtTexture; 
This contains the texture format we will use to load/create our textures. This was determined in the 
CGameApp::TestDeviceCaps function. 
 
 
CScene::LoadScene 
The LoadScene function contains only one new line. It is shown below in bold. 
 
bool CScene::LoadScene(TCHAR *strFileName, ULONG LightLimit /* = 0 */,  
                       ULONG LightReservedCount /* = 0 */ ) 
{ 
    CFileIWF File; 
 
    // Attempt to load the file 
    File.Load( strFileName ); 
 
    // Copy over the entities, textures  and materials we want from the file 
    if (!ProcessEntities( File )) return false; 
    if (!ProcessMaterials( File )) return false; 
    if (!ProcessTextures( File )) return false; 
 
    // Store values 
    m_nLightLimit     = LightLimit; 
    m_nReservedLights = LightReservedCount; 
 
    // Check for unlimited light sources 

TeamLRN



    if ( m_nLightLimit == 0 ) 
         m_nLightLimit = m_nLightCount + LightReservedCount; 
         
    // Now process the meshes and extract the required data 
    if (!ProcessMeshes( File )) return false; 
 
    // Build vertex / index buffers for each light group 
    for ( USHORT i = 0; i < m_nLightGroupCount; i++ ) 
    { 
       if(!m_ppLightGroupList[i]->BuildBuffers(m_pD3DDevice, 
                                               m_bHardwareTnL,true ))  
           return false; 
    }  
 
    // Allow file loader to release any active objects 
    File.ClearObjects(); 
     
    return true; 
} 
 
Recall from Chapter 5 that ProcessEntities and ProcessMaterials extract the lights and materials 
from the IWF file and store them in the CScene::m_pLightList and m_pMaterialList arrays 
respectively. ProcessTextures is similarly used to extract the texture names from the IWF file, load 
the files, and add the textures to the CScene::m_pTextureList array. ProcessMeshes does the work 
of building the light groups and property groups and assigning vertices and indices. 
  
 
CScene::ProcessTextures 
The CFileIWF object (an IWF SDK class used to facilitate file loading) contains a vector of 
TEXTURE_REF structures for each texture used by the scene. The TEXTURE_REF structure is shown 
below as defined in LibIWF.h. In IWF files, texture images can be stored either as a list of file 
names, or the image data itself can be embedded inside the IWF file in an arbitrary format. GILES 
exports only the texture file names. Each TEXTURE_REF structure in the 
CFileIWF::m_vpTextureList vector describes how the texture is stored as well as the name of the 
file or the format of the internal image data, depending on how the file was created. 
 
typedef struct _TEXTURE_REF  
{               
    UCHAR       TextureSource;               
    USHORT      NameLength;                 
    char       *Name;                        
    UCHAR       TextureFormat;    
    USHORT      TextureSize;                
    UCHAR      *TextureData;  
}TEXTURE_REF; 
 
UCHAR TextureSource 
This member indicates whether the texture is stored as image data or only as a file name. This can 
be one of two values shown below (defined in LibIWF.h): 
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#define TEXTURE_EXTERNAL                   0x1 
#define TEXTURE_INTERNAL                   0x2 
 
All of the textures in our IWF files will be of type TEXTURE_EXTERNAL in this demo, so we will 
load them ourselves using the stored file names and the D3DX functions discussed in the lesson. 
 
 
USHORT NameLength 
UCHAR *Name 
If TextureSource is set to TEXTURE_EXTERNAL then Name will contain the texture file name and 
NameLength will contain the length of the file name in bytes.  
 
UCHAR TextureFormat 
If the TextureSouce member is set to TEXTURE_INTERNAL then this member identifies the format 
of the internal image data. It can be any one of the following values defined in LibIWF.h: 
 
#define TEXFORMAT_RAW      0x1 
#define TEXFORMAT_CUSTOM            0x2 
#define TEXFORMAT_BMP      0x3 
#define TEXFORMAT_JPEG      0x4 
#define TEXFORMAT_TGA      0x5 
#define TEXFORMAT_PNG      0x6 
#define TEXFORMAT_PCX      0x7 
#define TEXFORMAT_GIF      0x8 
#define TEXFORMAT_PSD      0x9 
#define TEXFORMAT_TIFF      0xA 
#define TEXFORMAT_PPM      0xB 
 
There are many well known formats listed here in addition to a custom format. The latter is used if 
you wish to store the image data in your own application specific formats. This is not used when 
TextureSource is set to TEXTURE_EXTERNAL.        
 
USHORT TextureSize 
UCHAR * TextureData 
If TextureSource is set to TEXTURE_INTERNAL then TextureData is a BYTE pointer to the image 
data and TextureSize describes the size of the image data in bytes. 
 
Since GILES exports only texture file names, our ProcessTextures function will need to extract the 
file names from each TEXTURE_REF structure and then load the data. Every iwfSurface in the 
CFileIWF file also stores a texture index into the TEXTURE_REF vector describing the texture it 
uses. Therefore, we can loop through each TEXTURE_REF in the vector, extract the file name, load 
the texture and add it to our CScene::m_pTextureList array. Then, every iwfSurface can index into 
this array instead.  
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bool CScene::ProcessTextures( const CFileIWF& File ) 
{ 
    ULONG i; 
    char  FileName[MAX_PATH]; 
     
    // Allocate enough room for all of our textures 
    m_pTextureList = new LPDIRECT3DTEXTURE9[ File.m_vpTextureList.size() ]; 
    if ( !m_pTextureList ) return false; 
    m_nTextureCount = File.m_vpTextureList.size(); 
 
    // Loop through and build our textures 
    ZeroMemory( m_pTextureList, m_nTextureCount * sizeof(LPDIRECT3DTEXTURE9)); 
 Here we exact the number of textures in the file and assign this to the CScene::m_nTextureCount 
variable. We also allocate the IDirect3DTexture9 pointer array (CScene::m_pTextureList) to hold 
this many IDirect3DTexture9 pointers. Now we can loop through each TEXTURE_REF stored in the 
CFileIWF::m_vpTextureList vector and extract the file name.  
 
    for ( i = 0; i < File.m_vpTextureList.size(); i++ ) 
    { 
        // Retrieve pointer to file texture 
        TEXTURE_REF * pFileTexture = File.m_vpTextureList[i]; 
 
        // Skip if this is an internal texture (not supported by this demo) 
        if ( pFileTexture->TextureSource != TEXTURE_EXTERNAL ) continue; 
 
        // Build the final texture path 
        strcpy( FileName, TexturePath ); 
        strcat( FileName, pFileTexture->Name ); 
 
Now that we have the file name we can use the D3DXCreateTextureFromFileEx function to load 
the image file and create the texture. Notice that we pass the CScene::m_fmtTexture format 
variable as the texture format we wish to use for our textures. Hopefully this will be the 
compressed texture format discussed earlier. The final texture is loaded into the relevant slot in the 
texture pointer array. 
 
        // Load the texture from file 
        D3DXCreateTextureFromFileEx(m_pD3DDevice, FileName, D3DX_DEFAULT,  
         D3DX_DEFAULT, D3DX_DEFAULT, 
                                    0, m_fmtTexture,  
         D3DPOOL_MANAGED, D3DX_DEFAULT, 
                                    D3DX_DEFAULT, 0,  
         NULL, NULL, &m_pTextureList[i] ); 
 
Finally, we check the name of the texture we are loading to see if it has the same name as the 
water texture. If it does, then we record the index of this texture in the CScene::WaterTexture 
member variable. We use this during rendering to enable the texture transformation matrix for 
faces that use this texture. 
 
     // Store the index to the texture we want to animate if this is the one 
     if(strcmp(pFileTexture->Name, "Water Bump Map 001.jpg") == 0) 
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  m_nWaterTexture = i; 
         
   } // Next Texture 
 
   // Success! 
   return true; 
} 
 
When this function returns, we have all of our textures loaded with their pointers in our texture 
array. The ProcessEntities and ProcessMaterials functions are unchanged in this demo and simply 
load the materials and lights into the CScene arrays.  
 
 
CScene::ProcessMeshes 
The ProcessMeshes function is responsible for building the light groups and sorting the scene 
faces into the relevant light groups, texture property groups and material property groups. While 
much of the function remains the same as the version in Lab Project 5.2, some of the order in 
which tasks are executed has changed to support texture property groups.  
 
We will modify the BuildLightGroups function and call it only once at the start of the 
ProcessMeshes function. It works in almost exactly the same way -- it loops through every 
iwfSurface stored in the file and calculates the light group it belongs to or creates a new one if a 
match could not be found. However we are now looping through every face in the file and not just 
the surfaces in the material vector as was the case before. Once we find a matching light group, we 
will simply store the light group index inside the iwfSurface. It just so happens that the iwfSurface 
structure includes a member variable that we are not using called iwfSurface::CustomData, so we 
will use it to store this index. This means that the BuildLightGroups function has had all of the 
code that searches for the correct property groups removed and is therefore simplified 
significantly. When BuildLightGroups returns control back to the ProcessMeshes function, the 
CScene::m_mppLightGroupList will contain all of the light groups created along with their array 
of lights, but it will contain no face data or child property groups at this point. The iwfSurfaces 
stored inside the CFileIWF object however will each contain the light group to which they belong. 
ProcessMeshes will then assign each surface to the light group it belongs to and create the 
appropriate property groups. We will not look at the BuildLightGroups function since it is 
virtually identical to its prior version.  
 
bool CScene::ProcessMeshes( CFileIWF & pFile ) 
{ 
    long i, j, k, l, m, TextureIndex, MaterialIndex; 
    CLightGroup    * pLightGroup = NULL; 
    CPropertyGroup * pTexProperty = NULL; 
    CPropertyGroup * pMatProperty = NULL; 
 
    // Allocate the light groups, and assign the surfaces to them 
    if (!BuildLightGroups( pFile )) return false; 
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The first thing this function does is call BuildLightGroups. When this function returns the 
CScene::m_ppLightGroupList array contains pointers to all the light groups the scene will need. 
The light groups will have their lights assigned to them but not yet have any surfaces. The 
iwfSurfaces stored inside the CFileIWF object will each contain an index describing which light 
group they belong to.     
 
Now we enter a series of nested loops to iterate through the textures, then the materials, followed 
by the meshes, and finally the individual surfaces. We want to find every surface that uses the 
current texture, and inside that loop find the surfaces that also use each material. 
 
    // For each texture (including no texture, -1) 
    for ( l = -1; l < (signed)m_nTextureCount; l++ ) 
    { 
        // For each material (including no material, -1) 
        for ( m = -1; m < (signed)m_nMaterialCount; m++ ) 
        { 
            // Loop through each mesh 
            for ( i = 0; i < pFile.m_vpMeshList.size(); i++ ) 
            { 
                iwfMesh * pMesh = pFile.m_vpMeshList[i]; 
  
         // and then loop through each surface in this mesh 
                for ( j = 0; j < pMesh->SurfaceCount; j++ ) 
                { 
                    iwfSurface * pSurface = pMesh->Surfaces[j]; 
 
The surface stores both the material and texture indices it is using so we retrieve both of these 
values: 
  
                    // Determine the material and texture indices we are using. 
                    MaterialIndex = -1; 
                    TextureIndex  = -1; 
 
// Get material Index for this face                   
if((pSurface->Components & SCOMPONENT_MATERIALS) && pSurface->ChannelCount > 0)  
   MaterialIndex = pSurface->MaterialIndices[0]; 
 
// Get Texture Index for this face 
if((pSurface->Components & SCOMPONENT_TEXTURES) && pSurface->ChannelCount > 0) 
   TextureIndex  = pSurface->TextureIndices[0];     
 
We are looking for a surface that uses the current texture and the current material. If this surface 
does not then skip it so that it can be processed in future iterations. 
 
                    // Skip if this is not in order 
                    if ( TextureIndex != l || MaterialIndex != m ) continue; 
 
Now we need to find the light group the current surface belongs to. Recall that the 
BuildLightGroups function stored the light group index in the iwfSurface::CustomData member.  
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                    // Retrieve the lightgroup pointer for this surface 
                    pLightGroup = (CLightGroup*)pSurface->CustomData; 
 
We need to search the current light group child property groups to see if one already exists that 
uses this texture. If there is no property group in the light group which contains the current texture 
then we create a new one. Unlike the earlier version of this demo that used no textures, each child 
property group will now have its m_nPropertyData member used to store a texture index instead 
of a material index. Therefore, we search for property groups in the current light group using this 
search key as shown below. 
 
                   // see if we already have a property group for this texture 
                   for ( k = 0; k < pLightGroup->m_nPropertyGroupCount; k++ ) 
                   { 
                      // Break if texture index matches 
                     if((long)pLightGroup->m_pPropertyGroup[k]->m_nPropertyData 
                          == TextureIndex )  
                          break; 
                   } 
 
If a property group could not be found then we add a new one and store the current texture index 
in it. Notice that we now use the PROPERTY_TEXTURE enumerated type to describe the 
property group as a texture property group: 
 
                    // If we didn't have this property group, add it 
                    if ( k == pLightGroup->m_nPropertyGroupCount ) 
                    { 
                        if ( pLightGroup->AddPropertyGroup( ) < 0 ) 
                           return false; 
 
                        // Set up property group data for primary key 
                        pTexProperty = pLightGroup->m_pPropertyGroup[ k ]; 
                        pTexProperty->m_PropertyType  =  
                      CPropertyGroup::PROPERTY_TEXTURE; 
                        pTexProperty->m_nPropertyData = (ULONG)TextureIndex; 
                    } 
 
                    // Process for secondary key (material) 
                    pTexProperty = pLightGroup->m_pPropertyGroup[ k ]; 
             
At this point, we have a pointer to the property group that uses the texture. Unlike the earlier 
version of this demo, we will use the CPropertyGroup::m_pPropertyGroup array so that each 
property group can store pointers to child property groups. So we have the light group the surface 
belongs to and the property group the texture belongs to. We now have to find a child property 
group for the texture property group that matches the current material for this surface. For all child 
property groups of texture property groups, the CPropertyGroup::m_nPropertyData member will 
hold a material index. If we do not find a child property group that contains the material index of 
the current surface, we create a new material group and add it to the texture property groups array.  
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                   // see if we already have a property group for this material 
                   for ( k = 0; k < pTexProperty->m_nPropertyGroupCount; k++ ) 
                   { 
                     // Break if texture index matches 
                    if((long)pTexProperty->m_pPropertyGroup[k]->m_nPropertyData 
                         == MaterialIndex )  
                        break; 
                   }  
 
                   // If we didn't have this property group, add it 
                   if ( k == pTexProperty->m_nPropertyGroupCount ) 
                   { 
                       if ( pTexProperty->AddPropertyGroup( ) < 0 )  
                          return false; 
 
                        // Set up property group data for primary key 
                        pMatProperty = pTexProperty->m_pPropertyGroup[ k ]; 
                        pMatProperty->m_PropertyType  =  \ 
                                             CPropertyGroup::PROPERTY_MATERIAL; 
                        pMatProperty->m_nPropertyData = (ULONG)MaterialIndex; 
                        pMatProperty->m_nVertexStart  = \ 
                                                   pLightGroup->m_nVertexCount; 
                        pMatProperty->m_nVertexCount  = 0; 
                    }  
 
We now have the light group, the texture group inside the light group, and the material group 
inside the texture group that the surface belongs to. Therefore, we can call the ProcessIndices and 
ProcessVertices functions (unchanged from last demo) to add the vertices of the surface to the 
light group and the indices of the surface to the material group.  
 
                    // Process the vertices / indices 
                    pMatProperty = pTexProperty->m_pPropertyGroup[ k ]; 
                    if(!ProcessIndices( pLightGroup, pMatProperty, pSurface ) )  
   return false; 
                    if(!ProcessVertices( pLightGroup, pMatProperty, pSurface) )  
   return false; 
 
                } // Next Surface 
 
            } // Next Mesh 
 
        } // Next Material 
     
    } // Next Texture 
 
We used the iwfSurface::CustomData member to hold the index of the texture temporarily. This 
member is usually used to store a pointer to custom data and as such when the CFileIWF object is 
deleted, this member is assumed to be a pointer and is deleted. If we do not clean up after 
ourselves, then the class would interpret the texture index as a custom data chunk address and try 
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to delete it. This would not be good. So we will set them all to NULL again after we have finished 
using them.  
 
    // Clear the custom data pointer so that it isn't released 
    for ( i = 0; i < pFile.m_vpMeshList.size(); i++ ) 
    { 
        iwfMesh * pMesh = pFile.m_vpMeshList[i]; 
        for ( j = 0; j < pMesh->SurfaceCount; j++ ) 
   pMesh->Surfaces[j]->CustomData = NULL; 
    } 
 
    // Success!! 
    return true; 
}  
 
CScene::AnimateObjects 
The CGameApp::FrameAdvance function calls CScene::AnimateObjects once per frame. This is a 
new function whose purpose is to increment the translation vector U coordinate in the texture 
matrix to scroll the water texture. 
void CScene::AnimateObjects( CTimer & Timer ) 
{ 
    // Shift the texture coordinates along the U axis 
    m_mtxTexture._31 += 0.5f * Timer.GetTimeElapsed(); 
    if ( m_mtxTexture._31 > 1.0f ) m_mtxTexture._31 -= 1.0f; 
} 
 
We scroll the U coordinate at a rate of 0.5 units per-second and wrap back to 0.0 when it exceeds 
1.0. This matrix will be set in the CScene::Render function when rendering faces that have the 
water texture applied to them. 
 
CScene::Render 
This function has been changed to set the texture matrix and to render our scene using the new 
batching scheme. 
 
void CScene::Render( ) 
{ 
    ULONG         i, j, k; 
    CLightGroup * pLightGroup = NULL; 
    ULONG       * pLightList  = NULL; 
  
First we loop through each light group and enable the specified lights. 
 
    // Loop through each light group 
    for ( i = 0; i < m_nLightGroupCount; i++ ) 
    { 
        // Set active lights 
        pLightGroup = m_ppLightGroupList[i]; 
        pLightList  = pLightGroup->m_pLightList; 
        for ( j = m_nReservedLights; j < m_nLightLimit; j++ ) 
        { 
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            if ( (j - m_nReservedLights) >= (pLightGroup->m_nLightCount ) ) 
            { 
                // Disable any light sources which should not be active 
                m_pD3DDevice->LightEnable( j, FALSE ); 
             
            } // End if no more lights 
            else 
            { 
                // Set this light as active 
                m_pD3DDevice->SetLight( j, 
                             &m_pLightList[pLightList[j - m_nReservedLights]]); 
                m_pD3DDevice->LightEnable( j, TRUE ); 
            } // End if set lights 
        } // Next Light 
 
Now that we have set the current light group, we set the light group vertex buffer as the current 
vertex stream for rendering. 
 
        // Set vertex stream 
        m_pD3DDevice->SetStreamSource(0, pLightGroup->m_pVertexBuffer, 0,  
                                      sizeof(CVertex)); 
 
Now we loop through each of the texture property groups and set the current texture. 
 
        // Now loop through and render the associated property groups 
        for ( j = 0; j < pLightGroup->m_nPropertyGroupCount; ++j ) 
        { 
            CPropertyGroup * pTexProperty = pLightGroup->m_pPropertyGroup[j]; 
            long TextureIndex = (long)pTexProperty->m_nPropertyData; 
             
            // Set Properties 
            if ( TextureIndex >= 0 ) 
            { 
                m_pD3DDevice->SetTexture( 0, m_pTextureList[ TextureIndex ] ); 
            }  
            else 
            { 
                m_pD3DDevice->SetTexture( 0, NULL ); 
            }  
 
Note that we set the texture unless this property group has no texture applied to it. If any faces 
exist which do not have textures applied, they will be in a property group with a –1 texture index. 
 
Next we check to see if this texture property group contains the water texture and if so, we set the 
texture coordinate transformation matrix in stage 0. We also inform the device that we are using 
2D texture coordinates.. 
 
            // Set the texture matrix for our animating water example 
            if ( TextureIndex == m_nWaterTexture ) 
            { 
                m_pD3DDevice->SetTextureStageState(0, 
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                                                  D3DTSS_TEXTURETRANSFORMFLAGS, 
                 D3DTTFF_COUNT2 ); 
                m_pD3DDevice->SetTransform( D3DTS_TEXTURE0, &m_mtxTexture ); 
            } 
 
For every material property group we set the material and render the triangles stored in that group. 
 
   // Render child property group 
   for ( k = 0; k < pTexProperty->m_nPropertyGroupCount; ++k ) 
   { 
      CPropertyGroup * pMatProperty = pTexProperty->m_pPropertyGroup[k]; 
              
      m_pD3DDevice->SetMaterial(&m_pMaterialList[(long)pMatProperty->m_nPropertyData]); 
      m_pD3DDevice->SetIndices( pMatProperty->m_pIndexBuffer ); 
      m_pD3DDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST, 
                                          pMatProperty->m_nVertexStart , 0, 
                                          pMatProperty->m_nVertexCount, 0,  
                                          pMatProperty->m_nIndexCount / 3 ); 
  } 
 
Finally, if we just rendered a water texture property group then we should remember to disable 
texture coordinate transformations.  
 
            // Disable the texture matrix 
            if ( TextureIndex == m_nWaterTexture ) 
            { 
                m_pD3DDevice->SetTextureStageState( 0, D3DTSS_TEXTURETRANSFORMFLAGS, 
                                                    D3DTTFF_DISABLE ); 
            } // End if Water Texture 
             
        } // Next Property Group 
         
    } // Next Light Group 
 
} 
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Lab Project 6.4 Writing to Surface with GDI 
 
This project demonstrates locking top level texture surfaces 
and writing to them using GDI. Once we have written the 
text to each top level texture surface, we call the 
D3DXFilterTexture function to filter the text onto each 
MIP surface of the texture. As with Lab Project 6.1, the 
cube on the left has filtering techniques applied and the one 
on the right does not. This is actually a good demonstration 
of filtering results. We can see clearly how text becomes 
aliased as you zoom the camera out. 
 
This demo is so similar to Lab Project 6.1 that we will only 
need to examine the section of the 
CGameApp::BuildObjects function that has changed. This 
function is called at application startup to build the cube 
meshes and to load the textures used by each face.  
 
The following code snippet from CGameApp::BuildObjects is executed just after the cube mesh 
has been created. It loops through each of the six textures used by the application, retrieves an 
IDirect3DSurface9 interface to the top level MIP surface, and then uses this surface interface to 
get a device context. We then create a font and write the surface name on the image surface as a 
text string. Finally, the code calls D3DXFilterTexture to filter the changes down through the MIP 
chain. 
 
 
// Load all 6 textures used in this example. 
hRet = D3DXCreateTextureFromFile(m_pD3DDevice,"Data\\texture_01.jpg",&m_pTextures[0] ); 
hRet = D3DXCreateTextureFromFile(m_pD3DDevice,"Data\\texture_02.jpg",&m_pTextures[1] ); 
hRet = D3DXCreateTextureFromFile(m_pD3DDevice,"Data\\texture_03.jpg",&m_pTextures[2] ); 
hRet = D3DXCreateTextureFromFile(m_pD3DDevice,"Data\\texture_04.jpg",&m_pTextures[3] ); 
hRet = D3DXCreateTextureFromFile(m_pD3DDevice,"Data\\texture_05.jpg",&m_pTextures[4] ); 
hRet = D3DXCreateTextureFromFile(m_pD3DDevice,"Data\\texture_06.jpg",&m_pTextures[5] ); 
  
if ( FAILED(hRet) ) return false; 
 
HDC   hDC   = NULL; 
HFONT hFont = NULL, hOldFont = NULL; 
LPDIRECT3DSURFACE9 pSurface = NULL; 
char            Buffer[20]; 
LOGFONT         logFont; 
D3DSURFACE_DESC Desc; 
RECT            rc; 
     
// Set up common font settings 
ZeroMemory( &logFont, sizeof(LOGFONT) ); 
_tcscpy( logFont.lfFaceName, "Tahoma" ); 
     
// Lets go crazy and draw on all of our textures 
for ( i = 0; i < 6; i++ ) 
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{ 
    // Skip if this texture failed to load 
    if ( !m_pTextures[i] ) continue; 
 
    // Retrieve this texture's top level surface and it's description 
    if ( FAILED(m_pTextures[i]->GetSurfaceLevel(0, &pSurface )) ) continue; 
    pSurface->GetDesc( &Desc ); 
     
    // Retrieve a device context for this surface 
    if ( FAILED(pSurface->GetDC( &hDC )) ){ pSurface->Release(); continue; } 
     
    // Get the actual height of this font, from the point size, in the DC 
    logFont.lfHeight = -MulDiv(Desc.Width / 10, ::GetDeviceCaps(hDC, LOGPIXELSY), 72); 
      
    // Create the actual Font Handle and select it 
    hFont = ::CreateFontIndirect( &logFont ); 
    hOldFont = (HFONT)::SelectObject( hDC, hFont ); 
 
    // Set up our GDI rendering properties 
    ::SetBkMode( hDC, TRANSPARENT ); 
    ::SetTextColor( hDC, 0xFFFFFF ); 
 
    // Set up the drawing rectangle from the surface description 
    rc.left = 0; rc.right  = Desc.Width; 
    rc.top  = 0; rc.bottom = Desc.Height; 
 
    // Build a string and draw the text 
    sprintf( Buffer, "Surface %i", i ); 
    ::DrawText(hDC, Buffer, strlen(Buffer), &rc, 
               DT_CENTER | DT_SINGLELINE | DT_VCENTER); 
 
    // Clean up DC (very important) 
    ::SelectObject( hDC, hOldFont ); 
    ::DeleteObject( hFont ); 
       
    // Release the DC and the surface 
    pSurface->ReleaseDC( hDC ); 
    pSurface->Release(); 
 
    // Filter the changes made to the top level surface, down to the mip-maps 
    D3DXFilterTexture( m_pTextures[i], NULL, 0, D3DX_DEFAULT ); 
 
} // Next Texture 

  
Note that we are not limited to getting an IDirect3DSurface9 interface to a texture surface only. 
We could alternatively use a surface interface (and the GetDC method) to draw to the frame buffer 
or even the depth buffer (although that will not be a very common undertaking). 
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Lab Project 6.5 Title Screen Demo 
 
This final project loads an image from a file into a surface and 
copies the image surface to the frame buffer image using the 
IDirect3DDevice9::StretchRect function. This means that we 
can resize the window to any arbitrary size and the image will 
still fill the client area of the window. 
 
This demo introduces some of the D3DX helper functions for 
working with surfaces as we will see now when we examine 
the code. 
 
 
 
 
CGameApp::BuildObjects 
 
In the CGameApp::BuildObjects function -- called at application start up and device reset -- we 
call D3DXGetImageInfoFromFile to open up the image file on disk and extract information about 
its dimensions and colour depth. We use this information to create an IDirect3DSurface9 object of 
the correct dimensions to load the image data into the surface. Here is the function in its entirety. 
 
bool CGameApp::BuildObjects() 
{ 
    HRESULT         hRet; 
    D3DXIMAGE_INFO  Info; 
 
    // Release previous objects just in case 
    ReleaseObjects(); 
 
    // Retrieve device settings 
    CD3DSettings::Settings * pSettings = m_D3DSettings.GetSettings(); 
 
    // Get the source file info 
    if ( FAILED(D3DXGetImageInfoFromFile( "Data\\Image.jpg", &Info ))) return false; 
     
    // Create the off screen surface 
    hRet = m_pD3DDevice->CreateOffscreenPlainSurface(Info.Width, Info.Height, 
                                            pSettings->BackBufferFormat, 
       D3DPOOL_DEFAULT, &m_pSurface, NULL); 
    if ( FAILED(hRet) ) return false; 
 
    // Load in the image 
    hRet = D3DXLoadSurfaceFromFile( m_pSurface, NULL, NULL, "Data\\Image.jpg", NULL, 
                                    D3DX_DEFAULT, 0, NULL ); 
    if ( FAILED(hRet) ) return false; 
         
    // Success! 
    return true; 
} 
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CGameApp::FrameAdvance 
 
Now that the image has been loaded into our surface, all that is left to do is blit it to the frame 
buffer in our render loop. Admittedly we could get away with just copying the data once, but we 
put it in our render loop so that it is copied every frame in case we wish to render some 3D 
graphics over the top of it. This might be useful if you wanted to use the image as a backdrop for a 
3D scene. 
 
This function retrieves a pointer to an IDirect3DSurface9 interface for the frame buffer and calls 
the IDirect3DDevice9::StretchRect function to copy the offscreen surface image. 
 
// Begin Scene Rendering 
m_pD3DDevice->BeginScene(); 
     
LPDIRECT3DSURFACE9 pBackBuffer = NULL; 
if(SUCCEEDED(m_pD3DDevice->GetBackBuffer( 0, 0, D3DBACKBUFFER_TYPE_MONO, &pBackBuffer 
))) 
{ 
      if(m_pSurface) 
        m_pD3DDevice->StretchRect( m_pSurface, NULL, pBackBuffer, NULL, D3DTEXF_NONE ); 
       
      pBackBuffer->Release(); 
}  
     
// End Scene Rendering 
m_pD3DDevice->EndScene(); 
     
// Present the buffer 
if ( FAILED(m_pD3DDevice->Present( NULL, NULL, NULL, NULL )) ) m_bLostDevice = true; 
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Review Questions 
1. What is MIP mapping and how does it improve visual quality? 
2. Do MIP maps consume more memory than regular textures? 
3. Are there are speed benefits to using MIP maps? 
4. What is Bilinear filtering? 
5. What is Trilinear filtering? 
6. What is Anisotropic filtering? 
7. What are texture coordinates? 
8. Where do we store texture coordinates? 
9. What is the pitch of a surface and how do we use it? 
10. What is a texel? 
11. Why are compressed texture formats beneficial? 
12. How does the D3DTADDRESS_CLAMP texture addressing mode work? 
13. What is a detail texture? 
14. How many texture stages would we need to blend three textures onto a polygon in a single pass? 
15. Can we use texturing and lighting together? 
16. Are texture sizes limited to 256x256? 
17. What does the magnification filter do? 
18. What does the minification filter do? 
19. What does the MIP filter do? 
20. Can you lock textures created in the D3DPOOL_DEFAULT resource pool? 
21. Can we use D3DPOOL_MANAGED surfaces as source surface parameters to the StretchRect and 

UpdateSurface functions? 
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Appendix A Texture Stage, Render, and Sampler States 
 
New Render States Table 

Render State Parameters Description 

D3DRS_ALPHABLENDENABLE True or False 

Enables alpha blending with the frame 
buffer. The fragment color output from 
the texture stages is involved in a 
blending operation based on source and 
destination blend modes that we 
specify. 

D3DRS_SRCBLEND 
A member of the 
D3DBLEND eumerated 
type. 

When alpha blending is enabled this 
state specifies how the source color is 
to be blended with the frame buffer.  

D3DRS_DESTBLEND 
A member of the 
D3DBLEND enumerated 
type. 

When alpha blending is enabled this 
state specifies how the destination color 
is blended with the source color.  

D3DRS_TEXTUREFACTOR 

A D3DCOLOR value in 
the form 
0xAARRGGBB. The 
default state is opaque 
white (0xFFFFFFFF) 

This state can be used to set a constant 
color that can be accessed by the 
texture stage states during color and 
alpha blending in a texture stage. If a 
texture stage input argument is set to 
D3DTA_TFACTOR, this color will be 
used. If the state is blending two colors 
using the D3DTOP_BLENDFACTORALPHA 
color operation, the alpha component of 
this color is used to blend the two input 
colors. 

D3DRS_WRAP0 To D3DRS_WRAP15 
D3DWRAPCOORD0 
To 
D3DWRAPCOORD3 

This render state allows us to set the 
wrapping mode used by a texture stage 
for a given axis. The wrapping mode is 
not to be confused with the texture 
addressing mode of a texture stage. The 
wrapping mode controls how the 
sampler interpolates between two sets 
of coordinates on a texture.  

D3DRS_BLENDOP 

 
A member of the 
D3DBLENDOP 
enumerated type. 
 
 

This is used to set the calculation 
carried out when blending is enabled. 
The default operation is 
D3DBLENDOP_ADD as shown 
below: 
Src*SrcBlend + Dest*DestBlend 
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D3DRS_BLENDFACTOR 
A D3DCOLOR value. 
The default is white 
0xFFFFFFFF. 

This allows us to set a constant color 
value that can be used when blending is 
enabled. Either the SourceBlend or 
DestinationBlend modes can be set to 
D3DBLEND_BLENDFACTOR to use this 
color in the blending operation. 

 
 
New Texture Stage States Table 

Texture Stage State Parameters Description 

D3DTSS_COLOROP 
A member of the 
D3DTEXTUREOP enumareted 
type 

This allows us to choose a 
blending function for the color 
inputs to the texture stage. The 
default color operation for texture 
stage 0 is D3DTOP_MODULATE and 
for all other stages the default is 
D3DTOP_DISABLE. 

D3DTSS_COLORARG1 One of the D3DTA constant 
values should passed 

This is used to set the first color 
argument of a texture stage. The 
default is D3DTA_TEXTURE 
meaning that the first input color 
to the texture stage is the color 
sampled from the texture. 

D3DTSS_COLORARG2 One of the D3DTA constant 
values should passed 

This is used to set the second 
color argument of a texture stage. 
The default is D3DTA_CURRENT 
meaning that the second input 
color to the texture stage is the 
color output from a previous stage 
or the diffuse vertex color if this 
is used in stage 0.. 

D3DTSS_COLORARG0 One of the D3DTA constant 
values should passed 

This is used to set the third color 
argument used in triadic color 
blending operations. 

D3DTSS_ALPHAOP 
A member of the 
D3DTEXTUREOP enumareted 
type 

This allows us to choose a 
blending function for the alpha 
inputs to the texture stage. The 
default alpha operation for texture 
stage 0 is D3DTOP_SELECTARG1 
meaning the 1st alpha input is 
passed from the stage unaltered 
and no blending of alpha values 
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takes place within the stage. 
The default for all other stages is 
D3DTOP_DISABLE. 
 

 
D3DTSS_ALPHAARG1 

One of the D3DTA constant 
values should passed 

This is used to set the first alpha 
argument of a texture stage alpha 
pipeline. The default is 
D3DTA_TEXTURE meaning that the 
first alpha input to the texture 
stage is the alpha sampled from 
the texture or 0xFF if not alpha 
channel is present in the texture 
bound to this stage. 

D3DTSS_ALPHAARG2 One of the D3DTA constant 
values should passed 

This is used to set the second 
alpha argument of the current 
texture stage. The default is 
D3DTA_CURRENT meaning that the 
second alpha input to the texture 
stage is the alpha value output 
from a previous stage or the 
diffuse vertex alpha if this is used 
in stage 0. 

D3DTSS_ALPHAARG0 One of the D3DTA constant 
values should passed 

This is used to set the third alpha 
argument used in triadic alpha 
blending operations. 

D3DTSS_TEXCOORDINDEX 

Zero based index of the 
texture coordinate set within 
the vertices that this stage 
should use for sampling the 
texture. 

The default values for each stage 
is for each stage to use the texture 
coordinate set that is equal to the 
stage number.For example, stage 
0 uses the 1st set of texture 
coordinates in the vertex, stage 1 
uses the 2nd, stage 2 uses the 3rd, 
and so on. 

D3DTSS_TEXTURETRANSFORMFLAGS 
A member of the 
D3DTEXTURETRANSFORMFLAGS 
enumerated type. 

This is used to enable the texture 
coordinate transfomation matrix 
for a given stage. It also informs 
the renderer how many texture 
coordinates it should expect to be 
output from the matrix. In our 
example we are using 2D texture 
coordinate that we want passed to 
the renderer so we set this to 
D3DTTFF_COUNT2. 
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D3DTSS_CONSTANT 

A D3DCOLOR that can be set 
as a per-stage constant color 
for use in color/alpha 
blending operations within 
the stage. 

If we set any of the texture stages 
color or alpha arguments to 
D3DTA_CONSTANT, this color will 
be used as the color for that 
argument. Each stage can have its 
own contant color, unlike the 
D3DRS_TEXTUREFACTOR render 
state which is accessible from all 
texture stages. 

 
 
 
New Sampler States Table 

Sampler State Parameters Description 

D3DSAMP_ADDRESSU 
A member of the 
D3DTEXTUREADDRESS 
enumerated type. 

Allows you to set the 
addressing mode used when U 
component of a texture 
coordinate is outside the 0.0 to 
1.0 range. The default value 
for each stage is 
D3DTADDRESS_WRAP which 
means the texture is repeated 
along the U axis. 

D3DSAMP_ADDRESSV 
A member of the 
D3DTEXTUREADDRESS 
enumerated type. 

Allows you to set the 
addressing mode used when 
the V component of a texture 
coordinate is outside the 0.0 to 
1.0 range. The default value 
for each stage is 
D3DTADDRESS_WRAP which 
means the texture is repeated 
along the V axis. 

D3DSAMP_ADDRESSW 
A member of the 
D3DTEXTUREADDRESS 
enumerated type. 

Allows you to set the 
addressing mode used when 
W component of a 3D texture 
coordinate is outside the 0.0 to 
1.0 range. The default value 
for each stage is 
D3DTADDRESS_WRAP which 
means the texture is repeated 
along the W axis. 

D3DSAMP_BORDERCOLOR A D3DCOLOR specifying the If any of the addressing 
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border color to be used. modes are set to 
D3DTSSADDRESS_BORDER for a 
given axis, then area of the 
polygon outside the 0.0 to 1.0 
range are set to this border 
color. The default value is 
black 0x00000000. 

D3DSAMP_MINFILTER 
A member of the 
D3DTEXTUREFILTERTYPE 
enumerated type. 

This sets the minification 
filter used when sampling 
texels from a texture bound to 
the stage.The default state for 
each stage is D3DTEXF_POINT. 

D3DSAMP_MAGFILTER 
A member of the 
D3DTEXTUREFILTERTYPE 
enumerated type. 

This sets the magnification 
filter used when sampling 
texels from a texture bound to 
the stage.The default state for 
each stage is D3DTEXF_POINT. 

D3DSAMP_MIPFILTER 
A member of the 
D3DTEXTUREFILTERTYPE 
enumerated type. 

This sets the MIP filter used 
when sampling texels from a 
texture bound to the stage that 
has MIP level surfaces.The 
default state for each stage is 
D3DTEXF_NONE which means 
the nearest MIP level is used. 

D3DSAMP_MIPMAPLODBIAS A value between -n and n 

This allows us to bias the 
calculation used by the 
sampler when determining 
which MIP level is closest to 
the ideal MIP level. 
Effectively, this allows us to 
alter the point at which a new 
MIP level is selected based on 
distance. You will usually 
leave this at its default value 
of zero to allow Direct3D to 
select the correct MIP level 
for a given polygon without 
modification. If you feel that 
the MIP levels are being 
selected too late or too early 
you can adjust the selection 
formula by forcing the next 
MIP level to be selected 
sooner or later by specifying 
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negative or positive values 
respectively. 

D3DSAMP_MAXMIPLEVEL 
A value between 0 and n-1 where 
n is the number of MIP levels 
present in a texture. 

This allows us to clamp the 
largest MIP level used during 
rendering to the specified 
value. The default value is 
zero meaning that all textures 
in the MIP chain are used. If 
you set this value to 2 for 
example, then the largest MIP 
levels (0 and 1) would not be 
used when rendering. 

D3DSAMP_MAXANISOTROPY 

A DWORD describing the 
maximum anisotropic filtering 
level that should be used during 
texture sampling for a given 
stage. 

The default value is 1 which is 
the quickest but least effective 
anisotropic filtering level. 
You can determine the 
maximum level of anisotropy 
available for a given device 
by checking the 
D3DCAPS9::MaxAnisotropy 
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Appendix B Making Terrain Textures in Terragen™ 
 
First we will need to generate or import a height-map. To do this, open the Landscape dialog. If this is not 
currently visible at start-up (or you have shut it down) this can be accessed by selecting the following 
toolbar button: 
 

 
 
At this point, you will be presented with the main landscape dialog which allows us to generate / load 
terrain height-maps, set surface properties, and specify other landscape related effects. You can generate 
your own height-map here by selecting the Generate Terrain button. Simply provide the required 
properties in the newly opened dialog.  
 
To import an existing terrain, select the Import button in the upper right portion of the Landscape dialog. 
Then select the RAW height-map file. We will use a 257x257 resolution, and store 8 bits per pixel 
(grayscale). 
 
Once you have generated or imported your height-map data, the viewport on the left hand side should 
have been updated to reflect this as shown below: 
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You can now modify the terrain using several sculpting techniques. Either click the Modify Terrain button 
or use the sculpting tools with the Terrain & Bulldozer icons above the height-map view. You can paint 
directly onto the height-map view directly below them. If you have edited or generated a new terrain, you 
can export the file to disk using the Export button. This file will be saved as a 257x257 RAW file using 8 
bits per pixel. You can then import this file into the demo applications we built in this course. 
 
Now that we have our height-map imported, we need to give it some texture. Terragen comes with some 
very nice pre-created texture sets. These are called Surface Maps. They contain both the texture data itself 
and the parameters used to inform the application about where these materials should be applied (ex. only 
on sheer cliff faces). This is referred to as the landscape’s Ecology. To provide these settings, we will 
need to open a surface map. Just select the Open button inside the Surface Map group on the Landscape 
dialog shown above. In this example, we will choose one of the pre-packaged surface maps called 
DesertAndGrass.srf. After you have opened the map, the list containing the words Surface Map should be 
replaced with a list of all map property types that will be used during the generation of the scene. We will 
leave these as default settings for now, but you can modify their properties easily. For example, try 
selecting Sand, and press then the Edit button seen on the right hand side. 
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We are done with the Landscape dialog for now, so you can either close it or minimize it. Next we need to 
open up the Rendering Control dialog by selecting the following toolbar button: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Your dialog should be similar to 
that shown to the left. Using the 
default settings (with the 
exception of the Detail slider 
which has been moved all the 
way to the right), and then 
selecting Render Preview will 
render a small image so that we 
can take a quick look at how the 
Terrain is currently shaping up. 
 
At this point, we can see our 
height-map in the lower right 
portion of the dialog and the 
resulting image in the top left. 
We now need to set up our 
camera properties to ensure that 
we render from a top-down 
viewpoint.  
 
The following list of steps will 

set up Terragen to render our terrain texture from the correct viewpoint: 
 

• Un-check the Sky check box on the left hand side of the dialog. 
• At the top of the Camera group, select the Terrain Units radio button. 
• Un-check both Fixed Height Above Surface check boxes. 
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• Set Camera Position XYZ to (128.5, 128.5, 5500). 
• Set Target Position XYZ to (128.5, 128.5, 0). 

 
The ‘Camera Orientation’ should already contain the following values, but make sure that the XYZ edit 
boxes contain (0, -90, 0) 
Move the Zoom slider all the way to the right. This helps eliminate perspective, and is why we specified 
such a large distance above the terrain. 
 
After setting up the camera, we will need to specify how our scene will be lit. For this we need to open up 
the Lighting Conditions dialog: 
 

 
 
The settings you choose within this dialog are largely scene specific, but a heading of around 225 with an 
altitude of 30 is a good place to start. You can also enable or disable the various shadow casters in this 
dialog, so if you don’t want the terrain to cast shadows onto itself; then you will need to disable it here. 
Finally we need to adjust our atmosphere settings so that when our terrain is rendered from such a great 
height (470,000 feet roughly) it doesn’t appear as if we are looking through a glass of milk ☺ To do this, 
we need to open up yet another dialog, this time the ‘Atmosphere’ dialog. 
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To remove the atmospheric effects that will be applied to our image, simply move both Density sliders 
and the Decay slider all the way to the left. We want Haze, Atmospheric Blue and Light Decay/Red 
values all set at 0% as shown below: 
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Go back to the Rendering Control dialog. Now set up the image size. In the shareware version of the 
application we are limited to generating images of a maximum size of 1280x960. This is not a problem 
because we can scale our terrain to the required size later. In general, the settings used above work best 
with an image size ratio of 1.33333. At this point, make sure that your detail slider is at maximum (all the 
way to the right) and save these settings so that you never need to set them again for this terrain. Below 
we see a screenshot of the Rendering Control dialog in the state it should be in at this point: 
 

 
 
As we see above, we rendered a quick preview image. The terrain is viewed from a top-down perspective 
and is roughly the correct size. All that is left to do now is to render the final image which can be done 
using the Render Image button. This process can be quite slow if you are using a complex surface map. 
Fortunately it should only take a few minutes for our examples. You will now be presented with the final 
terrain image. You should probably save it to file using the Save button in the Image Window. 
 
We still have a bit more work to do before we can use this as a texture in our engine. The resulting image 
is surrounded by large black borders down either side. To fix this you can simply crop (or trim) the image 
using your favorite paint package.  
 
Finally you want to scale the image to its final size, preferably using bilinear or bicubic resampling. We 
selected a set of nice round numbers at this point and scaled the image to 1024x1024. You can also apply 
a small amount of blurring to remove any jagged edges if you wish (a Gaussian blur works very well for 
this purpose). Be careful not to go overboard or you may blur out important surface detail. Once done, 
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you might need to flip your image (top-to-bottom) because Terragen inverts the heighmap. Simply save 
the image out again, using your desired format, and it is ready to be applied to the terrain. 
 
While this all seems like a very complex process, once you set up Terragen and save out the settings, it 
really just becomes a simple process: 

• Load settings 
• Import or generate height-map 
• Set surface map (if different from that saved) 
• Render 
• Crop, Size, Save 
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   Alpha Blending and Fog 
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Introduction 
 
In this chapter we will examine the relationship between alpha and transparency as well as how to use 
our alpha components to achieve a number of important rendering effects. Our discussions and 
subsequent lab projects will cover: 
 

• Vertex alpha values 
• Texture alpha values (alpha channels) 
• Material alpha and the DirectX Graphics lighting pipeline 
• Alpha values in the texture blending cascade  

 
 

Alpha Components 
 
In ealier lessons we saw that colors can be described as three component RGB values or four 
component ARGB values where the alpha value is included. Regardless of the current video mode we 
are working in and the current color bit depth being used, we always specify colors explicitly using one 
of two approaches. The first is the 32-bit four component ARGB value stored as a DWORD 
(D3DCOLOR). This is the case when specifying vertex colors. Each component uses 8 bits and has a 
range of [0, 255] decimal or [0, FF] hexadecimal. The second approach uses the D3DCOLORVALUE 
structure which includes four floating point member variables -- one for the alpha, red, green, and blue 
components respectively. We used a D3DCOLORVALUE structure in Chapter 5 when specifying colors for 
lights and materials. When using the D3DCOLORVALUE structure we typically specify each component in 
the range [0.0, 1.0]. An important point to keep in mind is that whether we are using a DWORD or a 
D3DCOLORVALUE, the colors will be converted into the bit depth currently being used for scene 
rendering. For example, a DWORD color will be scaled to fit into a 16-bit WORD by the renderer if 
the device is in 16-bit color mode. 

 
The following example shows the DWORD representing the ARGB color (128, 255, 64, 64) or in hex, 
0x80FF4040. Hexadecimal specification makes color component assignment intuitive. The decimal 
value of this DWORD would be 2164211776. This provides no visual clue as to the color being stored. 
With hex we see clearly that every two digits represent a BYTE of the DWORD between 0 and FF. 
 
 Alpha Red Green Blue 

80 FF 40 40 
128 255 64 64 
31                         24 23                              16 15                             8 7                       0  

Hex 
Dec 
Bits 
 

Figure 7.1 
 
This color has a half intensity alpha component, a full intensity red component, and quarter intensity 
green and blue components. 
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We can think of the alpha value as a packet of information that accompanies the main RGB color 
components. Although alpha is technically a component that can carry any information, it is used 
primarily to store values that will be used in the color and alpha blending pipelines in the texture stages 
as well as for alpha blending pixels with the existing contents of the frame buffer. If we do not perform 
any alpha dependant color blending in the texture stages or any alpha dependant alpha blending with 
the frame buffer, the alpha value of a color is simply ignored by the renderer and plays no part in the 
final rendered image.  
 
The advantage to using alpha values in blending operations is that they allow us to perform color 
(RGB) independent blending operations. For example, color A can be blended with color B such that 
the alpha value stored in color A controls the ratio that each color plays in the final blended result.  
 
 

Note: Alpha Blending technically means blending two colors using alpha values to determine the 
resulting color. The distinction between color blending and alpha blending has been blurred by the 
naming conventions of the DirectX API. When we enable alpha blending in DirectX 9, we set the 
following renderstate: 
 
pDevice->SetRenderState ( D3DRS_ALPHABLENDENABLE , TRUE ); 
 
This call does not guarantee that we will be doing alpha blending specifically. Instead it enables a more 
generic frame buffer blending operation. Whether we actually use the alpha or color components of the 
source and destination colors during blending depends on how we set up the source and destination 
blend modes. In chapter 6 we saw how to set up the source and destination blend states to perform a 
modulation of the color of the pixel about to be written to the frame buffer with the color of the pixel 
already in the frame buffer. Recall from our lab project that this was how we blended the detail map 
with the base terrain texture in multi-pass rendering mode. Although we had to enable the alpha 
blending render state to do this, we did not technically perform alpha blending since we performed the 
blend by modulating RGB components and did not use alpha values at all. Therefore, the 
D3DRS_ALPHABLENDENABLE simply informs the renderer that we wish to perform some form of 
blending with the frame buffer, be it color or alpha blending. Once alpha blending is enabled, the 
renderer uses the states of the D3DRS_SRCBLEND and D3DRS_DESTBLEND render states to determine 
whether to use alpha components in the blend or just RGB color components. 
 
Further confusion is introduced by the fact that alpha blending can also be performed in the texture 
stages -- much earlier in the pixel pipeline. This is independent from the D3DRS_ALPHABLENDENABLE 
render state. While a more fitting name for this render state might have been 
D3DRS_FRAMEBUFFERBLENDENABLE, we will just have to be aware of the differences. 
 
In keeping with the DirectX API conventions, when we refer to the process of ‘enabling alpha blending’ 
in the text, we will be referring to the process of enabling frame buffer blending using the 
D3DRS_ALPHABLENDENABLE render state. 
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Alpha Blending  
 
Let us begin by looking at an example of blending two colors together using an alpha value. The most 
common usage of this technique is blending with the frame buffer to increase or decrease pixel 
opacity. Usually a source pixel about to be written will contain an alpha component and the color value 
in the frame buffer will not. This source alpha value governs the percentage of both the source and the 
destination color used to create the blended result. For this example we will assume that DestColor is a 
32-bit pixel already in the frame buffer and SrcColor is a 32-bit pixel about to be written which 
includes an alpha component. Below we see the colors in their hexadecimal form and in their floating 
point equivalent form. This should make the mathematics easier to follow. 
 
SrcColor  = 0x80800000 (Alpha: 0.5; Red: 0.5; Green: 0.0; Blue:0.0)  
DestColor= 0xFF008000 (Alpha: 1.0; Red: 0.0; Green: 0.5; Blue:0.0) 
 
Assume that we enable alpha blending and use the blend mode configurations shown next. 
 
pDevice->SetRenderState( D3DRS_ALPHABLENDENABLE , TRUE); 
pDevice->SetRenderState( D3DRS_SRCBLEND , D3DBLEND_SRCALPHA); 
pDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA); 
 
Remember that these blend modes are assigned as multipliers to both the source and destination colors 
in the blending equation. The DirectX documentation describes these two blend modes as follows: 
 
D3DBLEND_SRCALPHA = ARGB (sA , sA , sA , sA); 
Each component of the color is multiplied by the alpha component of the source color. The alpha value 
of the source color directly controls how much of the color is allowed into the resulting color. The 
higher the source alpha value, the larger contribution the color makes to the resulting color. 
 
D3DBLEND_INVSRCALPHA = ARGB (1-sA , 1-sA , 1-sA , 1-aA); 
The color has each of its components multiplied by one minus the source alpha to create an inverse 
weighting multiplier. The higher the source alpha value, the less contribution the color makes to the 
resulting color. 
 
 
Note: sA = source color alpha. Source color is the color about to be written to the frame buffer. 
 
 
When alpha blending is enabled, the renderer performs the following calculation between the pixel 
color about to be written and the frame buffer pixel color (see Chapter 6): 
 
Final Color = SourceColor * SrcBlendMode + DestColor * DestBlendMode 
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Using the blend modes above, this equates to the following calculation being performed: 
 
Final Color = SourceColor * D3DBLEND_SRCALPHA + DestColor * D3DBLEND_INVSRCALPHA; 
 
This means that we will use the alpha component of the source color to directly control the mixture of 
both colors in the final result. In our example, we have a source alpha value of 0.5. This should give an 
equal blend of both the source and destination colors (50% of each) to create the final color written to 
the frame buffer.  
 
Final Color = (sA, 0.5, 0, 0) * (sA, sA, sA, sA) + (1.0, 0, 0.5, 0) * (1 –sA, 1-sA, 1-sA, 1-sA) 
Final Color = (0.5, 0.5, 0, 0) * (0.5, 0.5, 0.5, 0.5) + (1.0, 0, 0.5, 0) * (1-0.5, 1-0.5, 1-0.5, 1-0.5) 
Final Color = (0.25, 0.25, 0, 0) + (0.5, 0, 0.25, 0) 
Final Color = (0.75, 0.25, 0.25, 0);   
 
RGB Color = (0.25, 0.25, 0) 
 
We can see that the final RGB color is a blend of 50% source RGB and 50% destination RGB. Figure 
7.2 shows the source and destination colors used in this example and the resulting color blend in the 
overlapped area of the two squares. 
 

 
Figure 7.2 

 
This common alpha blending equation certainly does make the source pixel appear to be transparent.  
 

Note: The front buffer pixel format never supports alpha components. Although the frame buffer can, 
its alpha information is lost when flipping. Alpha format frame buffers are not very commonly used. The 
alpha component of the destination color is not used (defaults to 1.0) in the blending process if the 
frame buffer does not support alpha information. 

 
We will try one more example source color. We will use the same RGB components but this time will 
include an alpha component of 0.75. This should cause the final color to be 75% percent of the source 
color and only 25% of the destination color. 
 
SrcColor   = 0xC0800000 (Alpha: 0.75; Red: 0.5;  Green: 0.0;   Blue:0.0)  
DestColor = 0xFF008000 (Alpha: 1.0;   Red: 0.0;  Green: 0.5;   Blue:0.0) 
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Final Color = (sA, 0.5, 0, 0) * (sA, sA, sA, sA) + (1.0, 0, 0.5, 0) * (1 –sA, 1-sA, 1-sA, 1-sA) 
Final Color = (0.75, 0.5, 0, 0) * (0.75, 0.75, 0.75, 0.75) +  
                    (1.0, 0, 0.5, 0) * (1-0.75, 1-0.75, 1-0.75, 1-0.75) 
Final Color = (0.56, 0.375, 0, 0) + (0.25, 0, 0.125, 0) 
Final Color = (0.81, 0.375, 0.125, 0);   
 
RGB Color = (0.375, 0.125, 0) 
 
Figure 7.3 shows the results. Using an alpha value of 0.75 decreases the transparency effect on the red 
square. The final blended color is no longer an equal mixture of both colors, but is instead 75% source 
color and only 25% destination color. 
 

 
Figure 7.3 

 
By altering the alpha value in the source color, we manipulate the color mixture in the blending 
equation. If the alpha value was set to 1.0 in the above example, the resulting color would be the 
unaltered source color and the destination color would not be blended with the source color at all. If 
however the source color alpha value was 0.0, then the source color would not contribute to the final 
color. This means that the alpha value in the source color allows direct control over how transparent 
the source pixel appears to be. The higher the alpha value, the more opaque the source pixel will be. 
Lower values result in greater pixel transparency. 
 
This degree of transparency control was not possible in the previous chapter when we used blend 
modes based solely on the color information. We used blending modes such as D3DBLEND_SRCCOLOR 
and D3DBLEND_DESTCOLOR where the actual RGB components of source and destination pixels became 
multipliers in the equation to control transparency effect. It is difficult, if not impossible, to achieve 
certain results using this approach. When we store an alpha value in the source color, we can use it to 
describe very specific blending percentages regardless of the colors being blended.  
 
Alpha blending is used to produce transparent effects that require precision. Glass, water, fire and other 
related game features are typical uses of this blending formula.  
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Storing Alpha Components 
 
Alpha values can be stored just about anywhere that a color is stored. Let us now examine the different 
places we might choose to store our alpha components. We will look more closely at each example as 
we progress though the lab projects accompanying this lesson.  
 
Vertex Alpha – Pre-Lit Vertices 
 
This section looks at storing alpha values for vertices that are not using the lighting pipeline. As we 
have seen in previous chapters when using pre-lit vertices, our application explicitly stores the color of 
the vertex in the vertex structure. Because this is a four component color, storing the alpha value 
happens automatically when we specify the vertex color because the color of a vertex is specified in 
32-bit ARGB format.  
 
Let us say for example that we wanted all of the vertices in a given triangle to be full intensity green 
and 75% transparent. We start with a pre-lit vertex structure: 
 
struct MyVertex 
{ 
    float x; 
    float y; 
    float z; 
    DWORD Diffuse; 
}; 
 
Since each color component will be in the [0, 255] range, in order to make our green face ¾ 
transparent, the alpha component will need to be set to 64 (0x40). If you were expecting a value of 
192, remember that when the alpha value is 0, the color is totally transparent and when the alpha value 
is 255 the color is totally opaque. Therefore, in order to make our color ¾ transparent we need to 
subtract 192 (3/4 of 256) from 256 to give 64. 
 
for (int i = 0;  i < Polygon.VertexCount;  i++) 
{ 
 Polygon.Vertex[i].diffuse = 0x4000FF00; 
} 
 
At the end of the above loop, every vertex in the polygon would be full intensity green and have an 
alpha value of 64 (0x40).  Since every vertex in the triangle has the same color, the face would be a 
consistent green color across the entire surface. Since each vertex in the face would also have the same 
alpha value, the face would have a consistent transparency level for each pixel. The color at each 
vertex as it is stored in the DWORD is shown in the next table.  
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 Alpha Red Green Blue 
40 0 FF 0 
64 0 255 0 
31                         24 23                              16 15                               8 7                           0 

Hex 
Dec 
Bits 
 
Whether or not the face is rendered transparently depends on whether alpha blending is enabled or 
whether alpha operations are used in the texture stages. We will address these cases in a moment. The 
important thing to grasp is that using this method provides the ability to store a per-vertex alpha value 
for each face to be used later by the vertex and pixel pipelines. 

 
Figure 7.4 
 
Recall that per-vertex colors are interpolated across 
the surface of a polygon when Gouraud shading is 
enabled. This generates a per-pixel color that can be 
accessed by the texture stages and finally passed on 
to the rasterizer. When the per-vertex color is 
interpolated, the alpha component is interpolated as 
well. The interpolation will generate both a per-
pixel RGB value and a per-pixel alpha value. 
Consequently, we can have a polygon with different 
vertex alpha values and thus adjust the transparency 
so that it changes between vertices in a face. Fig 7.4 
shows a simple quad rendered after the main scene 

has already been rendered into the frame buffer. The quad has an opaque white color (0xFFFFFFFF) 
stored at three of its vertices, but the bottom right vertex has the color (0X00FFFFFF) which is a white 
color with an alpha value of zero (full transparency).  
 
Notice that when the alpha values are interpolated across the quad from the top left corner to the 
bottom right corner, the results are a per-pixel partial transparency beginning at the lower right corner 
and fading as we move up and to the left. This process takes place at the same time the color 
components are calculated.  
 
Whether we use the resulting per-pixel alpha values for alpha blending depends on how the texture 
stages are configured. Just as we can set the stages to use the vertex and/or texture color, we can also 
configure the texture stages to use the per-pixel alpha values generated from this interpolation. 
Alternatively, we could decide to ignore the alpha information generated here and use alpha 
information stored in a texture, as we will discuss later on in the lesson. 
 
Finally, if you are specifying your own colors at the vertices then you may also be storing the specular 
highlight color at the vertex too. Just as diffuse colors are four component colors, so are specular 
colors. These two colors are added together at render time to create the true ARGB color of each pixel 
in the surface being rendered. 
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Material Alpha 
 
In Chapter 5 we learned how to use materials to store polygon colors for the DirectX lighting pipeline. 
The material structure determines how polygons react to incoming light and the colors that are 
ultimately reflected. Recall that materials use four component colors and allow us to specify alpha 
values for the diffuse, ambient, emissive, and specular properties in addition to the RGB values.   
 
The D3DCOLORVALUE type used by materials use floats that are typically in the range [0.0, 1.0]. The 
following example demonstrates setting up a material for a green quad with white specular highlights. 
We have given the diffuse color an alpha value of 0.5 so that any pixels that receive diffuse light will 
be 50% transparent.  
 
D3DMATERIAL9 Material; 
ZeroMemory(&Material, sizeof(D3DMATERIAL9)); 
 
Material.Diffuse.a = 0.5f; 
Material.Diffuse.r = 0.0f; 
Material.Diffuse.g = 1.0f; 
Material.Diffuse.b = 0.0f 
 
Material.Specular.a = 1.0; 
Material.Specular.r = 1.0; 
Material.Specular.g = 1.0; 
Material.Specular.b = 1.0;  
 
In Chapter 5 we discussed how the pipeline uses the material properties to calculate a final per-vertex 
color. The alpha component is calculated in exactly the same way since it is just another component of 
the color. Thus we can give different reflective properties their own alpha values within the same 
material. This means that the polygon will be more or less transparent depending on the type of light 
that is contributing most to the final color of the vertex. For example, we know that a material can 
reflect white diffuse light and green ambient light to cause any polygon rendered using it to be white 
when lit by a light source but green when only ambient light is affecting it. Since alpha is just another 
color component, the same applies. We might have an alpha value of 1.0 specified in the diffuse 
member of the material so that polygons rendered would be completely opaque when being light by a 
directional light source. Then we could include an alpha value of 0.5 in the ambient color so that when 
the directional light is no longer shining on the object and it is only lit by ambient light, it would be 
semi-transparent:  
 
D3DMATERIAL9 Material; 
ZeroMemory(&Material, sizeof(D3DMATERIAL9)); 
 
Material.Diffuse.a = 1.0f; 
Material.Diffuse.r = 1.0f; 
Material.Diffuse.g = 1.0f; 
Material.Diffuse.b = 1.0f 
 
Material.Ambient.a = 0.5; 
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Material.Ambient.g = 1.0; 
Material.Ambient.b = 1.0;  
 
You could take this idea a step further and have different alpha values for emissive and specular 
reflectance properties as well. However we will generally want a polygon to have a consistent 
transparency setting across all light types and we will set all material alpha components to the same 
value. 
 
Vertex Alpha 
 
The problem with using only materials to inform the lighting pipeline of the surface reflectance 
properties is that we are limited to a polygon being a single color. This is because we set the material, 
and then render the polygon (or polygons) that use that material. Every vertex rendered has its color 
calculated by the lighting pipeline using the same reflectance properties as the currently set material. 
For example: 
 
pDevice->SetMaterial(&Material); 
RenderFaces (); 
 
This approach seems to limit us to having a per-face alpha value for each reflectance property. If a 
material has a diffuse alpha component of 0.5 for example, then it would appear that every vertex 
rendered using that material will have a diffuse alpha property of 0.5 as well. However you should 
recall that even when using the lighting pipeline, we can store colors at the vertices and instruct the 
lighting pipeline to use these colors as reflectance properties in the lighting equations instead of some 
of the colors in the currently set material. Using this technique we can store up to two colors in each 
vertex which can be substituted for the reflective properties of the material. This allows us to continue 
to use the lighting pipeline but have per-vertex alpha properties when necessary.  
 
In the following example we use a vertex structure with a color to store our diffuse reflectance instead 
of the using the diffuse material property. In order to do this, we must remember to set the diffuse 
material source so that the lighting pipeline takes it from the color in the vertex instead of the diffuse 
member of the material. 
 
struct Vertex 
{ 
    float x; float y; float z; 
    DWORD Color; 
}; 
 
Assume that we have three vertices stored in the above format and that we wish to use the lighting 
pipeline. Each vertex in the triangle has the same RGB color (0, 255, 0), but the first vertex has ¾  
transparency, the second vertex has ½ transparency and the third has ¼  transparency. 
 
 
Note that only the diffuse reflectance property is taken from the vertex. The emissive, specular and 
ambient reflectance properties in the material will still be used to calculate the final color of the vertex. 
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Vertex[0].Color = 0x4000FF00; // ARGB ( 64 , 0 , 255 , 0); 
Vertex[1].Color = 0x8000FF00; // ARGB ( 128, 0 ,255 , 0); 
Vertex[2].Color = 0xC000FF00; // ARGB ( 192, 0 , 255 , 0); 
   
We now enable lighting and inform the device that the diffuse reflectance property should be taken 
from the first color in the vertex and not the diffuse member of the currently set material. 
 
pDevice->SetRenderState( D3DRS_LIGHTING , TRUE ); 
pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE , D3DMCS_COLOR1); 
 
When the triangle is rendered, each vertex will have a different diffuse alpha value that is interpolated 
over the surface. This provides the same level of control that we had when using pre-lit vertices. Bear 
in mind that the final color of the vertex is calculated by adding the ambient, diffuse, specular and 
emissive light reflected by the vertex. So we could have different alpha values for different light types.  
 
In this final example, we will look at an example of creating vertices that store a ½ transparent green 
diffuse color and a ¾ transparent blue emissive color. This will render polygons that have a per-vertex 
diffuse alpha and a different per-vertex emissive alpha. When the vertices are being lit by a white 
diffuse light, the polygon will be ½ transparent and green in color. When no light is shining on the 
vertices, the polygon will be emissive blue and will be ¾ transparent. 
 
The vertex will now need to store two colors. 
 
struct Vertex 
{ 
   float x; float y; float z; 
   DWORD Color1; 
   DWORD Color2; 
}; 
 
Vertex[0].Color1 = 0x8000FF00;   // ARGB ( 128 , 0 , 255 , 0); 
Vertex[1].Color1 = 0x8000FF00;   // ARGB ( 128,  0 , 255 , 0); 
Vertex[2].Color1 = 0x8000FF00;   // ARGB ( 128,  0 , 255 , 0); 
Vertex[0].Color2 = 0x400000FF;   // ARGB ( 64 ,  0 , 0 , 255); 
Vertex[1].Color2 = 0x400000FF;   // ARGB ( 64,   0 , 0 , 255); 
Vertex[2].Color2 = 0x400000FF;   // ARGB ( 64,   0 , 0 , 255); 
 
Again, we need to enable lighting and inform the device that the diffuse reflectance property should be 
taken from the first color in the vertex and that the emissive reflectance property should be taken from 
the second color in the vertex: 
 
pDevice->SetRenderState( D3DRS_LIGHTING , TRUE ); 
pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE , D3DMCS_COLOR1); 
pDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE , D3DMCS_COLOR2); 
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Remember that the final color of a vertex is calculated as: 
 
Vertex Color = (AmbientLight * A) + (DiffuseLight * D) + (SpecularLight * S) + E 
 
Where: 
 
A = Ambient Reflectance Property 
D = Diffuse Reflectance Property 
S = Specular Reflectance Property 
E = Emissive Property 
 
Since the alpha value of the color is just one of its components, we know that the alpha value generated 
for a vertex by the lighting pipeline is therefore: 
 
Vertex Color.a = (AmbientLight * A.a) + (DiffuseLight * D.a) + (SpecularLight * S.a) + E.a 
 

Where: 
 
a = the alpha component of the color 
 
Once the lighting pipeline has calculated the per-vertex color and alpha values, the process continues 
as usual. The triangle is assembled and the per-vertex values are interpolated over the surface to 
generate per-pixel color and alpha values that will be accessible in the texture cascade. 
 
 
Constant Alpha 
 
If we need a constant level of transparency for a set of polygons, we can use the 
D3DRS_TEXTUREFACTOR to set a constant alpha value that is accessible in the texture stages. In Chapter 
6 we discussed how to use the texture factor as a constant color and how to select its RGB values as 
inputs into the texture stage color pipeline. In a short while we will discuss how the alpha component 
of this color can also be selected as an input into the alpha pipeline of the texture cascade for blending 
with other alpha sources or simply passed to the rasterizer for frame buffer blending. For now we are 
simply trying to understand where alpha components can be stored. The following code shows how we 
could set a red texture factor color with ½ intensity alpha.  
 
pDevice->SetRenderState(D3DRS_TEXTUREFACTOR, 0x80FF0000); 
 
Remember that the device has only one texture factor property, so setting this color will overwrite any 
previous color stored.  
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Per-Stage Constant Alpha 
 

In chapter 6 we also discussed using the D3DTSS_CONSTANT texture stage state to set a per-stage 
constant color as an input argument. This color is also a four component color so we can provide each 
stage with an RGB constant and a constant alpha component to be used in the alpha pipeline. The 
following code shows how we could set a half intensity blue constant color for texture stage 2 along 
with a half intensity alpha component: 
 
pDevice->SetTextureStageState(2, D3DTSS_CONSTANT, 0x80000080); 
 
The color and alpha components of this color can be selected as input arguments to a texture stage by 
using the D3DTA_CONSTANT parameter as one of the arguments to the color or alpha pipelines of the 
stage. 
 
 
Texture Alpha 
 
Alpha components can also be stored in textures. In previous chapters we looked at a number of pixel 
formats that contain alpha components. One such format was the 32-bit ARGB texture format 
D3DFMT_A8R8G8B8. Another was the 16-bit alpha pixel format D3DFMT_A4R4G4B4. There are quite a 
few more such formats and there are also compressed texture formats that support alpha information. 
 
Just as each texel contains a red, green, and a blue component, we can create textures whose texels 
include alpha components too. When the texels in a texture also contain an alpha component, the 
texture is said to have an alpha channel. Alpha channels allow us to specify per-texel alpha. This 
provides a good deal more flexibility than the other storage methods we just examined.   
 
Although per-vertex alpha is interpolated to create per-pixel alpha values, we have very little control 
over the per-pixel alpha values generated. Per-vertex alpha is fine if we require only that limited degree 
of control, but for more complex scenarios it becomes too restrictive. Consider the window texture 
shown below to the right. Assume that it is mapped to a quad and that there is geometry on the other 
side of the window that is currently being obscured. If this were a real window we would want to see 
the objects on the other side through the glass panes. Giving each vertex in the quad an alpha value 
would not work because the bars of the window on the texture would also become transparent. 

 
So let us instead give each pixel belonging to one 
of the window panes an alpha value of 128 (semi-
transparent) and each pixel belonging to one of 
the window bars an alpha value of 255. If we used 
the alpha values in the texture to perform frame 
buffer blending, only the window panes would be 
transparent and we would see the geometry in the 
distance. You can see this effect in the image on 
the left. Notice that the bars of the window still 
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obscure the geometry behind the window but that the glass panes allow the background geometry to 
show through while still retaining the rough texture of window pane itself. 
 
There are a couple of ways to add alpha information to a texture. We could lock the texture and 
manually set the alpha component of each pixel, but this would not be recommended in most cases. 
The more common approach is to use an image editing/paint package. Most paint programs like Jasc 
Paint Shop Pro 7™ or Adobe PhotoShop™ provide a mechanism for writing alpha values to the pixels 
of a texture. This makes the creation of the alpha channel much like drawing normal RGB values. 
These texture images can be saved out in a format that supports alpha channel images (.tga is a popular 
choice) and then loaded into our application using the D3DXCreateTextureFromFile function. The 
DirectX SDK includes a utility application in the DXUtils folder called DxTex.exe. This is a simple 
tool that allows you to load an image and manipulate its format.  You might decide to add an alpha 
channel or simply to change the surface format to some other color depth. You can even load another 
image directly into the texture alpha channel if desired. The application exports images in .DDS format 
which is the DirectX native format for storing surfaces. These formats are supported by the 
D3DXCreateTextureFromFile functions and are stored in exactly the same format used by DirectX. 
The chapter appendices include a short tutorial on adding an alpha channel to a bitmap in Paint Shop 
Pro 7™. This is a powerful paint package that is affordably priced.  
 
 
The Texture Stage Alpha Pipeline 
 
In Chapter 6 we looked at color blending in the color pipeline of a texture stage. We learned that there 
is also a separate alpha pipeline in each stage that uses nearly all of the same blending operations and 
input argument types as the color pipeline. Fig 7.5 shows a single texture stage with its RGB and 
Alpha pipelines along with possible color/alpha sources that can be used as arguments for the stage. 

 
Figure 7.5 
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We know from Chapter 6 that we can set up the inputs of a texture stage to sample per-pixel colors 
from a variety of different color sources. In the following example we set up the color pipeline in stage 
0 for a modulate2x operation.  
 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP   , D3DTOP_MODULATE2X); 
 
The RGB color components from the interpolated vertex colors will be blended with the RGB color 
components of the current texel in the texture to generate a new set of RGB color values that are output 
from the texture stage. The output is a single RGB color either sent to the next stage, or if this is the 
last active stage in the cascade, sent to the rasterizer as the source color for any frame buffer blending 
operation enabled. If alpha blending is not enabled, the source color will be written directly to the 
frame buffer if the depth test is passed.  
 
The texture stage states shown above only configured the arguments and blending operations 
performed on the RGB values of the selected arguments. However, each texture stage also has a 
separate alpha unit which can be used to extract the alpha values from all of the different sources 
shown in the Fig 7.5. Moreover, these sources need not be the same color sources that the RGB values 
are being extracted from. For example, we might generate a pixel RGB color that is a modulation 
between the diffuse color (RGB only) and the texture color (RGB only) but decide that we want the 
alpha information to be taken from the texture factor color.  This would extract the alpha component 
from the texture factor and push it into the alpha pipeline. 
 
As discussed earlier in the lesson, the diffuse vertex color, the texture factor color, and the per-stage 
constant color include an alpha value -- even if it is just the fully opaque default (0xFF). The texture 
color source is slightly different as the texture might not contain an alpha channel (non-alpha pixel 
format). If this is the case then any attempt to sample an alpha value from a texel will simply return a 
value of (0xFF). 
 
We will use the D3DTSS_ALPHAARGn texture stage states to determine which color source(s) the alpha 
information is extracted from. The D3DTSS_ALPHAOP texture stage state sets up a blending operation for 
multiple alpha input values to create a final alpha value that is output from the stage. Every stage 
outputs an RGB color and an Alpha value and these are either passed to the following stage as input 
arguments or to the rasterizer when the last active stage is reached.  
 
 

Note: The default alpha operation is D3DTOP_SELECTARG1 for texture stage 0 and for all other 
stages it is D3DTOP_DISABLE. The default value of D3DTSS_ALPHAARG1 is D3DTA_TEXTURE, 
so the alpha values will be taken from the texture or equal 0xFF if no texture is bound to the stage. 
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RGB = (Vertex*Texture) : Alpha = Texture 
 
In this code snippet we setup the texture stage states to modulate the texture color with the diffuse 
color and select alpha values from the texture alpha channel. This alpha setup would be useful when 
you wish to make sure that only certain pixels are transparent (like the window example discussed 
previously). We divide the texture states above into two sections to clearly show the division between 
setting up the RGB pipeline and the Alpha pipeline.  
 
// Each pixel RGB is a combination of the texel color 
// and the interpolated vertex diffuse color  
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP   , D3DTOP_MODULATE); 
 
// Each pixel alpha value is taken from the alpha component 
// of the texel in the texture 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAOP   , D3DTOP_SELECTARG1); 
  
RGB = Texture : Alpha = Vertex  
 
In this next example, the color of each pixel is taken directly from the texel and the alpha value from 
the alpha component of the interpolated diffuse vertex color. This is a useful alpha pipeline setup if 
your texture does not include an alpha channel. It is also useful when you are only interested in a 
constant level of alpha across the entire polygon or if you need alpha control only at the vertex level. 
Lab Project 7.1 will use this alpha configuration. 
 
// Each pixel RGB color is taken from the texel in the texture 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP   , D3DTOP_SELECTARG1); 
 
// Each pixel alpha value is taken from the 
// interpolated diffuse vertex color (alpha component) 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAOP   , D3DTA_SELECTARG1); 
 
RGB = (Texture*Vertex)+TextureFactor : Alpha = (Texture*TextureFactor) 
 
The next configuration sets up a blue texture factor color with a ¼ intensity alpha component. The 
texture RGB components from stage 0 are modulated with the diffuse vertex RGB components and 
passed on to stage 1 where the texture factor RGB components are added to the result. The alpha 
component in the first stage is taken from the alpha channel of the texture and is passed to the second 
stage where it is modulated with the alpha component of the texture factor. 
 
 
// Set a blue texture factor color with an ¼ intensity alpha component 
pDevice->SetRenderState( D3DRS_TEXTUREFACTOR , 0x400000FF ); 
 
// Each pixel RGB color is (texture*vertex) + texture factor 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
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pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP   , D3DTOP_MODULATE; 
pDevice->SetTextureStageState ( 1 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState ( 1 , D3DTSS_COLORARG1 , D3DTA_TFACTOR); 
pDevice->SetTextureStageState ( 1 , D3DTSS_COLOROP   , D3DTOP_ADD ); 
 
// Each pixel alpha value is taken from the 
// interpolated diffuse vertex color (alpha component) 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAOP   , D3DTA_SELECTARG1); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAARG2 , D3DTA_TFACTOR); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAOP   , D3DTA_MODULATE); 
 
This example may look complex, but that is only because we are using two stages. In the color pipeline 
we instruct the device to modulate the diffuse vertex color and texture color in stage 0. The result of 
this stage is used as the first argument to the next stage (D3DTA_CURRENT) where it is added to the RGB 
components of the texture factor that had been set previously as a render state. The resulting RGB 
color will be output from stage 1 and passed as an input to the rasterizer later on in the pipeline. 
 
We can see that the alpha pipeline is setup quite differently than the color pipeline in this example. 
This shows us the flexibility of using the alpha and RGB pipelines together. In the first stage, we use 
the alpha value from the sampled texel of the texture bound to that stage as the output from stage 0. 
This becomes the input to the second stage alpha pipeline (D3DTA_CURRENT) and we multiply it with 
the alpha component of the texture factor color. The resulting alpha value is output from the texture 
stage cascade and passed down the pipeline where it will become the source alpha value input to the 
rasterizer’s color/alpha blending equations if frame buffer blending is enabled.  
 
RGB = Texture : Alpha = (Texture*Diffuse)+TextureFactor 
 
In this next example the RGB components are taken from the texture color, but the alpha component is 
calculated by doing a signed add between the texture alpha and diffuse alpha. The result is then added 
to the texture factor alpha in the second stage. 
 
// Each pixel RGB color sampled from texture  
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP   , D3DTOP_SELECTARG1); 
pDevice->SetTextureStageState ( 1 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState ( 1 , D3DTSS_COLOROP   , D3DTOP_SELECTARG1);  
 
// Alpha = (Texture*Diffuse) + TFactor 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG2 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAOP   , D3DTOP_ADDSIGNED); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAARG2 , D3DTA_TFACTOR); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAOP   , D3DTOP_ADD ); 
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Figure 7.6 

 
Note that the second stage in the color pipeline does not seem to be doing much beyond passing the 
color value from the previous stage through as output (Fig 7.6). The color pipeline technically needs 
only one texture stage but the alpha operations require two. This means the RGB components output 
from the first stage need to be passed through the second stage unaltered. The reason we have to do 
this is that we need the second stage enabled to do alpha operations, but we do not wish to perform any 
operations on the RGB components. The important concept to understand is the flow of components 
from one stage to the next active stage in the cascade. 
 
There are other texture operations that can blend RGB components in a stage using the alpha 
components (from the other pipeline) but we will discuss these a little later in the lesson. These blend 
modes will be useful for performing true alpha blending inside the texture stages. Our main focus at 
the moment is to configure the texture stages for frame buffer blending. The RGB and Alpha 
components output from the texture blending cascade become the two inputs into the alpha blending 
equation. This will merge the color output from the stage with the frame buffer. 
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Alpha Blending with the Frame Buffer 
 
So far we have seen where we can store alpha information and how we can select this information into 
the texture cascade. The texture stages allow us to select which color source we will extract the alpha 
from and they allow us to use multiple sources to blend the alpha components together to create new 
alpha values. After the final stage, an RGB color and an Alpha value are output to become the 
SourceColor and SourceAlpha colors in the frame buffer alpha blending equation. 
 
If the D3DRS_ALPHABLENDENABLE render state has not been enabled, then the SourceAlpha value 
output from the texture stage cascade is discarded. The source color is written to the correct location in 
the frame buffer and (assuming the depth test is passed) overwrites any previous pixel color that may 
already exist there.  
 
If the D3DRS_ALPHABLENDENABLE render state has been enabled, then the source color and source alpha 
values output from the texture stage cascade are fed into the frame buffer blending equation as 
potential multipliers. Let us remind ourselves of the calculation that generates the final pixel color 
written to the frame buffer when alpha blending is enabled: 
 
Pixel Color = SourceColor * SrcBlendMode + DestColor * DestBlendMode 
 
SourceColor is the RGB color output from the texture stage cascade and DestColor is the color of the 
pixel already in the frame buffer. We use the SrcBlendMode and DestBlendMode values to control 
how much of the SourceColor and how much of the DestColor are used to create the final color.  
 
We also briefly discussed how to use the alpha value output from the texture stage cascade.  The 
following is the standard alpha blending equation used for controlling the ratio of the SourceColor and 
DestColor used to create the final color: 
 
PixelColor = SourceColor * SourceAlpha + DestColor * (1 – SourceAlpha) 
  
The above blending approach allows us to perform RGB independent transparency effects and is the 
most common blend mode configuration for generating transparency effects. The equation will be 
configured using the following render states: 
 
pDevice->SetRenderState ( D3DRS_ALPHABLENDENABLE , TRUE); 
pDevice->SetRenderState ( D3DRS_SRCBLEND   , D3DBLEND_SRCALPHA); 
pDevice->SetRenderState ( D3DRS_DESTBLEND  , D3DBLEND_INVSRCALPHA); 
 

Note: It is also possible for the frame buffer or render target to have an alpha channel. You could 
instead choose this alpha value (called DestAlpha) to control blending, but this is not as common. 

 
There are certainly many more ways that we can setup the alpha blending modes. For example, you 
may recall that in Chapter 6 we used blend modes that did not use the SourceAlpha value output from 
the texture stage cascade. Instead we performed frame buffer blending using the colors themselves as 
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scaling factors. In the following example, although alpha blending is enabled, the alpha value output 
from the texture stages is not used at all: 
 
PixelColor = SrcColor * SrcColor + DestColor * (1-SrcColor) 
 
pDevice->SetRenderState ( D3DRS_ALPHABLENDENABLE , TRUE); 
pDevice->SetRenderState ( D3DRS_SRCBLEND   , D3DBLEND_SRCCOLOR); 
pDevice->SetRenderState ( D3DRS_DESTBLEND  , D3DBLEND_INVSRCCOLOR); 
 
Again, there are many blending combinations available since each blend mode can be used as either 
the source blend mode or the destination blend (or both). We discussed many of these in Chapter 6 so 
please refer back to that lesson when necessary.  
 
Let us finally look now at the blending modes available when working with the source alpha value 
output from the texture stages (such as D3DBLEND_SRCALPHA for example). We see the complete 
D3DBLEND enumerated type below. Most of these blend modes were covered in Chapter 6.  
 
typedef enum _D3DBLEND  
{ 
    D3DBLEND_ZERO = 1, 
    D3DBLEND_ONE = 2, 
    D3DBLEND_SRCCOLOR = 3, 
    D3DBLEND_INVSRCCOLOR = 4, 
    D3DBLEND_SRCALPHA = 5, 
    D3DBLEND_INVSRCALPHA = 6, 
    D3DBLEND_DESTALPHA = 7, 
    D3DBLEND_INVDESTALPHA = 8, 
    D3DBLEND_DESTCOLOR = 9, 
    D3DBLEND_INVDESTCOLOR = 10, 
    D3DBLEND_SRCALPHASAT = 11, 
    D3DBLEND_BOTHSRCALPHA = 12, 
    D3DBLEND_BOTHINVSRCALPHA = 13, 
    D3DBLEND_BLENDFACTOR = 14, 
    D3DBLEND_INVBLENDFACTOR = 15, 
    D3DBLEND_FORCE_DWORD = 0x7fffffff 
} D3DBLEND; 
 
D3DBLEND_SRCALPHA   (As, As, As, As).  
This blend mode multiplies every component in the color (either source or destination color depending 
on whether it is being used as a source blend or destination blend mode) with the alpha component of 
the source color.  
 
D3DBLEND_INVSRCALPHA  (1 - As, 1 - As, 1 - As, 1 - As).  
Every color component in the color (source or destination color) is multiplied with the result of 1 
minus the alpha component of the source color.  
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D3DBLEND_DESTALPHA  (Ad, Ad, Ad, Ad).  
If the frame buffer or render target contains an alpha channel, the destination color (the color of the 
pixel currently in the frame buffer) may also have an alpha value which could be used in the blending 
equation. This is not commonly used, but can be useful for some advanced effects. 
 
D3DBLEND_INVDESTALPHA  (1 - Ad, 1 - Ad, 1 - Ad, 1 - Ad).  
The source or destination color is multiplied by the result of 1 minus the destination alpha component. 
 
D3DBLEND_BOTHSRCALPHA  
Obsolete. You can achieve the same effect by setting the source and destination blend factors to 
D3DBLEND_SRCALPHA and D3DBLEND_INVSRCALPHA in separate calls.  
 
D3DBLEND_BOTHINVSRCALPHA  
Source blend factor is (1 - As, 1 - As, 1 - As, 1 - As) and destination blend factor is (As, As, As, As). The 
destination blend selection is overridden. This blend mode is supported only for the D3DRS_SRCBLEND 
render state. This is a single mode that performs the reverse of the SrcAlpha and InvSrcAlpha modes 
used for standard alpha blending. With this blend mode, the larger the alpha value the more transparent 
the source pixel will appear to be. 
 

 
Figure 7.7 
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Fig 7.7 shows the complete picture of alpha blending with the frame buffer. As discussed, alpha values 
can be stored in vertices, textures, or constants. The texture stages manipulate the RGB and Alpha 
values to create a final output color consisting of RGB and Alpha components. We refer to these as 
SourceColor and SourceAlpha respectively.  
 
If alpha blending is not enabled, then the SourceAlpha value is ignored and the RGB color is written to 
the frame buffer (and converted to the correct pixel format). If the frame buffer does have an alpha 
channel, then the alpha value will also be written to the frame buffer where it could be used as a color 
blending argument with the D3DBLEND_DESTALPHA blending modes.  
 
If alpha blending is enabled then the color and alpha components are fed into the alpha blending 
equation where the source color and destination color (the color already in the frame buffer) are 
blended together. The alpha value output from the stage can be used in the blending equation to scale 
the colors contributions for the final pixel color. This controls the transparency of the source pixel. 
 
Please turn to your workbooks and examine Lab Project 7.1. This first demonstration will add a 
transparent water layer to our terrain application using per-vertex alpha components. 
 
 
Alpha Ordering 
 
Transparency effects with alpha blending present certain obstacles. Regardless of how transparent or 
opaque the output color of the alpha blending equation, when it is written to the frame buffer, its pixel 
is also written to the depth buffer. We will see later in this chapter that we will take steps to render our 
non-alpha polygons first and then render the alpha polygons in a second pass. Additionally, we will 
usually have to sort the alpha polygons before they are rendered so that the furthest alpha polygons are 
rendered first. This is quite logical of course. Let us say for example that we have a red window 
polygon which is partially transparent. We know that the objects on the other side of the window from 
the camera should be tinted red as a result. This will only happen if the window is rendered after all of 
the polygons behind it, so that its color can be blended with the colors already in the frame buffer.  
 
Consider what would happen if we did not order our rendering such that alpha polygons were rendered 
last. In this example our red window might be the first polygon rendered. At this point the frame buffer 
would be empty and may have been cleared to a black color. The alpha blending equation would blend 
the red color of the window with the black color of the frame buffer resulting in a very dark red color. 
This would in no way represent the color that it should be because in the scene there may be a bright 
blue polygon immediately behind the window. So in reality there should be a blend of red and blue and 
not red and black, but this is what we would have. In fact, the problem can get much worse. Now 
imagine that in this scenario the window polygon also has its Z values written to the Z-Buffer. When 
we then try to render the polygons on the far side of the window, they will fail the depth test because 
they are further away from the camera than the window polygon that is already in the frame buffer. As 
a result we lose the ability to render anything behind our supposedly transparent window. 
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Fig 7.8 shows a scene with transparent polygons. The image on the left renders all alpha polygons in 
the scene after it has rendered the opaque polygons. Because all opaque polygons that are behind the 
window are rendered first, when the window is rendered, the frame buffer contains what would truly 
be behind the window. The alpha blending equation then correctly blends the color of the window with 
the color of all objects behind the window already in the frame buffer. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.8 

 
The image on the right is the same scene but with no particular rendering order applied to the 
polygons. We can see that the blue window has been rendered before the polygons on the other side of 
it. Even though the polygon is transparent, at the time it was rendered there was nothing in the frame 
buffer. So its pixels were simply blended with the empty frame buffer color. The depth of each pixel 
was stored in the depth buffer and all polygons rendered after the window that are further away from 
the camera are rejected by the depth test. This is an important point to remember. Just because the 
color of a pixel includes an alpha value, it does not alter the behaviour of the Z-Buffer.  We can clearly 
see here why it is important to render our alpha polygons after all of the non-alpha polygons.  
 
While rendering our alpha polygons after our opaque polygons would seem to be an easy solution to 
the problems discussed above, there are additional considerations. If any alpha polygons occlude each 
other, then we will also have to render the alpha polygons such that they are sorted and rendered back 
to front with respect to their distance from the camera. The artifacts that result if we do not do this are 
not quite as obvious as those seen in Fig 7.8 but they can still be severe under certain circumstances. 
 
Fig 7.9 shows a case where one transparent window occludes another transparent window. Both 
windows have slightly different colors. In our alpha rendering pass, we should render the furthest 
window from the camera first and render the closest window to the camera last. This way the second 
window blends its color with the color of the first window -- which itself was blended with the color of 
the frame buffer opaque polygons rendered previously.  
 
One might think that we could avoid any problems if we disabled Z buffer writing when rendering the 
alpha polygons. If we did this, an alpha polygon already in the frame buffer that is closer to the camera 
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would not cause another alpha polygon behind it (but rendered afterwards) to be rejected by the depth 
test. While this will certainly prevent transparent polygons from occluding each other, it will still result 
in incorrect color blending (Fig 7.9). 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.9 

he image on the left has been rendered correctly. The furthest window was rendered first, which 
nted the frame buffer pixels appropriately. The closest window was rendered last. Its pixels were 
lended with the pixels in the frame buffer -- which are themselves the result of a blend between the 
rst window and the opaque polygons behind it. As we can see, when we are sorting our alpha 
olygons, the transparency results are correct even if two or more alpha polygons overlap from a given 
iewpoint.  

 the image on the right, after drawing the opaque polygons, the alpha polygons are rendered in the 
rder in which they are stored in the file. In this instance the closest window was rendered first and 
lended with the opaque polygons in the frame buffer. Then the second window was rendered and 
lended with the contents of the frame buffe  second window was not rejected by the Z-
uffer tests because we disabled Z writes during the rendering of the alpha polygons. So when we 

is rendered but its depth values are not written to the depth buffer. So from a depth buffer 
erspective, it is as though the polygon is not there. 
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rendered the closest window first, its depth values were not recorded in the depth buffer. Although this 
certainly prevents the second window from failing the depth test, it still results in an incorrect blend 
because the two windows are are blended in the wrong order. Remember, when we disable Z writes, 
the alpha polygons will still be tested against the depths that are currently in the buffer and rejected if 
occluded by any of the opaque polygons that were rendered in the first pass. If the alpha polygon is not 
occluded, it 
p
 
While the artifacts in the image on the right may not initially strike you as incorrect, we can certainly 
see when we compare the two images that the blending results are not the same. Therefore, when we 
have alpha polygons, we will usually want to sort them before rendering. We will discuss sorting 
strategies later in this chapter.  
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Alpha Testing 
 
Very often we will be rendering polygons that have a level of transparency such that the pixels are 
either fully opaque or fully transparent. Think about a texture of a tree mapped to a quad for example. 
We would want the pixels in between the leaves and branches to be totally transparent so that when 
rendered on top of the scene, the scene polygons between the branches are visible. The actual branches 
nd leaves themselves however would be fully opaque, occluding anything underneath them in the 

s we can see in the 
olor and 

lpha values are output 

e nature of the 

s 

a
frame buffer. The DirectX pipeline provides an alpha testing function which is disabled by default 
when the device is first created. When it is enabled, it is actually executed before the alpha blending 
equation that calculates the final pixel color. 
 
A
diagram, the c
a
from the texture stage 
cascade. If alpha testing 
is enabled then a 
comparison is made 
between the alpha value 
and some reference value 
that our application 
provides. We can specify 
th
comparison function that 
is performed between the 
alpha value and the 
reference value. A 
common alpha testing 
comparison function is 
D3DCMP_GREATEREQUAL. 
In this case, if the alpha 
value output from the 
texture stages is greater than
continues down the pipelin
You do not need to have alpha
 
If a pixel is rejected by the
Buffer and it will not occlude
useful when we have polygons
 
We can use alpha testing to 
the sake of example, let u
each pixel (totally transpare
 

 or equal to the reference value, then the pixel passes the test and 
e. Notice that Alpha Testing is completely separate from alpha blending. 

 blending enabled to use alpha testing and vice versa. 

 alpha testing mechanism then its depth value will not be written to the Z-
 any pixels behind it. Thus these pixels are not rendered or stored. This is 
 where the alpha values are providing simple on/off transparency.  

mask out pixels that have an alpha value less than the reference value. For 
imagine that we have polygons that are black and have alpha values of 0 for 
nt).  
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RenderState( D3DRS_ALPHAFUNC , D3DCMP_GREATEREQUAL ); 
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The image on the left shows a scene rendered using no 
particular sorting order. In this image the black 
window polygon is totally transpar

simply alpha blended with a black frame buffer. In 
this example, Z writing is not disabled so the window 
rendered to the frame buffer has its Z values writt

 
Let us see what happens when we enable alpha testing 

depth buffer.  
 
We enable alpha testing using the D3DRS_ALPHA
 
pDevice->SetRenderState( D3DRS_ALPHATE
 
The next step is to set the reference value. In
opaque so we will set the alpha reference valu
D3DCMP_GREATEREQUAL. The default alpha testing com
means that every pixel always passes the alpha 
 

ESTENABLE render state.  

TENABLE , TRUE ); 

this example we will reject pixels that are not totally 
 to 255 and the alpha testing comparison function to 

st regardless of its alpha value.  

pDevice->SetRenderState( D3DRS_ALPHAREF  ,(DWORD)0x000000FF ); 
pDevice->Set
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testing. As you can see, a
are windows, nothing 
are rendered afterward
of the frame buffer are still correctly rendered 
underneath. When using totally transparent surfaces or 
polygons that have totally transparent regions (for 
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We can control the alpha testing function using the D3DRS_ALPHAFUNC render state. We pass in one of 
the members of the D3DCMPFUNC enumerated type shown below. 
 
typedef enum _D3DCMPFUNC  

   D3DCMP_FORCE_DWORD = 0x7fffffff 

number of comparison options at our disposal. In Lab Project 7.2 we will 
 values stored in a texture alpha channel.  

o keep in mind about alpha testing pixels that use on/off transparency 
t have to worry about disabling Z writes when rendering these polygons 

efore they are written to the depth buffer. Second, if we are using 
ending for transparent pixels. As a result there is 

 pass after the opaque polygons. This in turn means there 
 also no need to sort them before they are rendered.  

{ 
    D3DCMP_NEVER = 1, 
    D3DCMP_LESS = 2, 
    D3DCMP_EQUAL = 3, 
    D3DCMP_LESSEQUAL = 4, 
    D3DCMP_GREATER = 5, 
    D3DCMP_NOTEQUAL = 6, 
    D3DCMP_GREATEREQUAL = 7, 
    D3DCMP_ALWAYS = 8, 
 
} D3DCMPFUNC; 
 
As you can see, there are a 
use alpha testing with alpha
 
There are some final points t
(0x00 or 0xFF). First, we do no
because the pixels will be rejected b
simple on/off transparency, there will be no color bl

 these polygons in a secondno need to render
is
 
Transparent Polygon Sorting 
 
As discussed earlier, when we render scenes that include partially transparent polygons, we will need 
to use alpha blending and render all opaque polygons first. We will then render our alpha polygons in a 
second pass in back-to-front order with respect to the camera. When using alpha blending, the order we 
blend the polygons into the frame buffer is significant. For example, imagine that we have a blue frame 
buffer and we render an alpha blended green polygon followed by an alpha blended red polygon in the 
same location. We would not get the same result if we reversed the rendering order as the following 

emonstrates.   

ixel Color = SourceColor * SrcAlpha + DestColor * (1-SrcAlpha) 

d
 
P
 
Example 1: Blue * Green * Red 
Blend Green Quad First 
Pixel Color = GreenQuad * 0.5 + BlueFrameBuffer * (1 - 0.5) 
Pixel Color = ( 0, 1.0 , 0)  * 0.5 +  (  0 , 0 , 1.0 )  * 0.5 
Pixel Color = ( 0, 0.5,  0)           +  (  0 , 0 , 0.5 ) 
Pixel Color = ( 0, 0.5 , 0.5 )    

ixel Color =  Murky Blue Color P
 

www.gameinstitute.com  Graphics Programming with DX9 
 Page 28 of 57 

 

TeamLRN



 

www.gameinstitute.com  Gra

 

phics Programming with DX9 
 Page 29 of 57 

ow Blend Red Quad 
 +   MurkyBlue * (1 – 0.5) 

 * 0.5 +   (0.0 , 0.5 , 0.5) * 0.5 

N
PixelColor  = RedQuad   * 0.5
PixelColor  = ( 1.0 , 0 , 0 )
PixelColor  = ( 0.5 , 0 , 0 )          +   (0.0 , 0.25 , 0.25 ) 
Pixel Color = ( 0.5,  0.25 , 0.25 ) 
Pixel Color = Brownish Color 
 
Example 2: Blue * Red * Green 
Blend Red Quad First 

 * 0.5   + BlueFrameBuffer * (1 - 0.5) 

le 

ow Blend Green Quad 
 +    Half Intensity Purple * (1 – 0.5) 

* 0.5    +    (0.5 , 0.0 , 0.5) *  0.5 

ide clear evidence that we really do need to render our alpha 
olygons in back-to-front order if they are going to overlap.  

use a back-to-front rendering 
orting all of our polygons every frame would 

be slow and that even if we did sort our 
polygons before rendering, there would be cases 
where rendering order could not be fully 
resolved. The image to the left reminds us of 

 us to forget about these problems by 
viding depth testing at the pixel level, we 

Pixel Color = RedQuad
Pixel Color = ( 1.0, 0, 0 ) * 0.5 +  (  0 , 0 , 1 ) * 0.5 
Pixel Color = ( 0.5, 0, 0 )          +  (  0 , 0 , 0.5 ) 
Pixel Color = ( 0.5, 0, 0.5 )    
Pixel Color =  Half Intensity Purp
 
N
PixelColor = GreenQuad  * 0.5
PixelColor =  ( 0 , 1 , 0 )
PixelColor  = ( 0 , 0.5 , 0 )         +    (0.25 , 0  , 0.25 ) 
Pixel Color = ( 0.25, 0.5 , 0.25 ) 
Pixel Color = Grayish Green Color 
 
The different colors generated prov
p
   
In Chapter 2 we saw that without a depth buffer, we would need to 
technique like the Painters Algorithm. We also said that s

one such case. Although the depth buffer 
allowed
pro
now find ourselves in a similar situation once 
again, with the need to sort our alpha polygons 
back to front.  
 
Although optional, we will usually want to 
disable Z writes when rendering alpha polygons 
in the second pass so that they do not occlude 
anything in the depth buffer. As transparent 
objects are supposed to be non-occluders by 
their very nature, it is often best not to write 
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their depth values. Disabling Z writes can speed up rendering a little as well because although the 
depth test is still done, the pipeline does not have to update the pixel in the depth buffer each time. In 

ab Project 7.3 we will disable Z writes when rendering the alpha polygon list. This is done with via a 

ng the 
plit into two 
g by polygon 

 of this course 

yway since 
othing in the scene can occlude them (as is often the case with many such screen space effects – user 

 
 a function of the particular effect you are trying to achieve. 

L
render state call: 
 
m_pD3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE); //Z Writes Off 
m_pD3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);  //Z Writes On 
 
As it turns out, there is no correct order that can be determined in the above example. A common way 
o solve the problem is to compile the alpha polygons into a BSP tree, which splits polygons alot

planes of other polygons. In the example above, the green polygon would actually be s
nnew polygons – one on the front side of the red polygon, the other on the backside. Sorti

en becomes straightforward again. However, compiling BSP trees is beyond the scopeth
and will not be discussed until the third course in this series. Besides, while a BSP tree is an elegant 
solution, it is not always necessary. Because we are rendering only the alpha polygons without the 
assistance of a depth buffer, the odds of such overlaps are pretty small. But even if there are overlaps, 
often the scene can be modified in the world editor to remove or rearrange them if the game engine 
does not want to address this issue. If such polygons are few and far between, it is sometimes 
preferable to live with the fact that the blending may be incorrect at times. Even in some commercial 
titles, if you know what you are looking for, you can see places where alpha polygons are sometimes 
blended in an ‘incorrect’ way. The errors produced are often quite subtle and generally go unnoticed 
unless you are specifically looking for them. Therefore, we will decide -- for the time being at least -- 
that we will proceed with a higher level technique like the Painter’s Algorithm and if such a situation 
should arise, we will accept any blending errors produced by intersecting alpha polygons.  
 
Before moving on, it is also worth mentioning at this point that certain effects may benefit from 
disabling the Z buffer completely while they are being rendered. The water polygon in Lab Project 7.1 
is a good example. In that case we are drawing a very large polygon, potentially over the entire 
viewport. Since we know in advance that all of its pixels will pass the depth buffer test an
n
interfaces, etc.) there is no point in running all of those per-pixel depth tests. We would prefer to 
simply forget about testing the polygon pixels and writing them to the depth buffer at all. To deactivate 
the depth buffer entirely (writes would be also be deactivated as a result), another render state is used: 
 
m_pD3DDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE); //Z Buffer Deactivated 
m_pD3DDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE);  //Z Buffer Activated 
 
Whether you choose to deactive depth buffer writing or the entire depth buffer testing/writing process
is
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Sorting Criteria 

ow that we have decided to sort the alpha polygons and render them back-to-front using the Painter’s 
lgorithm, the next question is, how will we determine if one polygon is behind or in front of another? 

r case where a BSP tree would help, but usually, we cheat a little and simply sort 
ased on distance from the camera to the center of the polygon. This approach comes with some risks 

 
N
A
This is actually anothe
b
as a very large polygon may be overlapping a smaller polygon that is more distant. Because the large 
polygon is so large, its center point may be further away from the camera than the smaller polygon 
center point. But its nearest edge may be closer to the camera, or vice versa, as shown in Fig 7.10. 
 
 

 
Figure 7.10 

 
In Fig 7.10 we see a camera position (the red sphere) and a large gray polygon and a small red 
polygon. From the camera’s perspective, the red polygon is overlapping the gray polygon such that if 
we were using alpha blending, we would wan e gray polygon first and then alpha blend the 

d polygon on top of it. However, we can see that because the sizes of the polygons are so different, 

ple averaging technique. Simply sum the 
olygon vertex positions and divide the result by the number of vertices. For example, in Lab Project 

t to render th
re
the distance from the camera position to the center point of the gray polygon is shorter than the 
distance from the camera position to the center point of the red polygon. When we render back to front 
such that polygons that have greater distances to their center points are rendered first, the red polygon 
would be rendered before the gray polygon. This produces incorrect blending results. Fortunately, 
since alpha polygons are relatively few in number this is another situation that does not typically arise 
very often and as such is something we can often live with.  
 
Calculating the Polygon Center 
 
Calculating a polygon center point can be done using a sim
p
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7.3, where we store geometry as triangle lists, we calculate the center point of a triangle using the 
llowing code: 

int   = *v1; 
     CenterPoint + = *v2; 

rtex positions of a triangle, it will return a world space 
ctor describing the position of the center point of the triangle.  The center points are world space 

ring rendering to subtract the position of the camera. This will return 
ector whose magnitude describes the distance from the camera position to the center point of a 

heir distance from the camera. For each polygon, we will calculate its distance from the 
amera by subtracting the camera position vector from the alpha polygon center point. This builds a 

e distance calculations and the center point sorting as quickly as we 
ossibly can. As discussed in Chapter 1, calculating the length of a vector is not a fast process. It 

uared length of the vector by doing (X*X) + (Y*Y) + (Z*Z) and then 
e result. Unfortunately, the square root operation is one of the slower 

tead of 
alculating the actual distance, we will calculate the squared distance instead. This avoids the square 

root and simply returns (X*X) + (Y*Y) + (Z*Z). As it happens, just as D3DX contains a function to 

fo
 
D3DXVECTOR3 CalculateCenterPoint(D3DXVECTOR3 *v1,D3DXVECTOR3 *v2,D3DXVECTOR3 *v3) 
{ 
      D3DXVECTOR3 CenterPoint; 
      CenterPo
 
      CenterPoint + = *v3; 
    CenterPoint   = CenterPoint / 3;   

 
      return CenterPoint; 
} 
 
If the function is passed the three world space ve
ve
center points that will be used du
a v
polygon. The center points do not need to be updated when the camera position changes because the 
world space center points of the alpha polygons do not change unless the alpha polygons are animated 
or modified in some way. Usually we can calculate and store the center points of all alpha polygons as 
a pre-process. There is no need to store the center points for the opaque polygons as we do not need to 
sort them. 
 
In our lab project, when we encounter alpha polygons during the first render pass we will simply store 
them for later use. After the opaque polygons have been rendered, we will sort the alpha polygons 
based on t
c
vector that describes the direction and magnitude of travel from the camera to the center point to the 
polygon. The length of this vector is the distance to the center point from the camera. We can store that 
alpha polygon in a list or an array along with its distance. The next step will be to sort that list and then 
render it in back-to-front order. 
 
Performance Concerns 
 
Certainly we will want to do th
p
involves first calculating the sq
performing a square root on th
math routines for a computer to perform and it would surely be preferable if we could avoid it.  
 
If we need the true distance value, then this cost is something we simply have to accept. However, we 
do not need the true distance. We only need a number that we can use to accurately describe ordering 
information, such that the relationship between all polygon distances is maintained. So ins
c
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return the true length of a vector (D3DXVec3Length), it also includes a function for calculating the less 
computationally expensive squared length of a vector. 
 
FLOAT D3DXVec3LengthSq(CONST D3DXVECTOR3 *pV); 
 
Like its counterpart, this function accepts the address of the vector you wish to know the length of. The 
function returns a single floating point value describing the squared length of the vector.  

 polygon render pass, we will subtract the 
amera position from the polygon center point and call the above function to calculate the squared 

se. We certainly want an efficient routine that scales well since we may have a scene with many 
undreds of alpha polygons that need to be drawn. 

here are many well-known sorting algorithms that programmers use to sort data. We will briefly 

typically one of the fastest. Of course much of this 
epends on the data set being sorted, but in general, this is usually the case.  

ne thing to keep in mind is that if the quick sort algorithm is implemented in a recursive fashion, 

ygons at any one time. But even if we were rendering thousands of alpha polygons 
ach frame, the quick sort would still be a fine choice.  

where its level of complexity can approach a 
onstant O(n). The more general case however is O(n2). While other sorting algorithms also have 

he bubble sort is significantly less efficient than most of the alternatives. 

 
When we encounter an alpha polygon during our opaque
c
length of the resulting vector. This is the distance we will store with the polygon and use for sorting. 
 
Choosing a Sorting Algorithm 
 
After we have created our unsorted list of alpha polygons, we must decide which sorting algorithm to 
u
h
 
T
discuss two of the most popular (and extreme): the bubble sort and the quick sort. Other sorting 
algorithms usually perform somewhere between the bubble sort and the quick sort. The bubble sort is 
just about the slowest choice and the quick sort is 
d
 
The quick sort is very fast for arbitrary data sets, although it can be difficult to understand due to its 
recursive nature. The bubble sort is generally much easier to understand and code because it uses a 
simpler algorithm.  
 
O
large data sets may cause a stack overflow. However, if we did utilize a quick sort for our alpha 
polygons, we would probably not be in any danger due to the fact that we are typically only sorting a 
handful of alpha pol
e
 
The Bubble Sort 
 
The bubble sort is probably the simplest sorting algorithm to implement. It generally performs best 
when passed an already sorted or nearly sorted list, 
c
complexities of O(n2), t
 
The bubble sort works by visiting each item in the list, comparing its value to the item next to it, and 
swapping them if required. This depends on whether you want the list sorted in ascending or 
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descending order. This process is repeated until we pass through the list and find that no items need to 
be swapped.  
 
If we think about smaller values sorted towards the beginning of the list and higher values pushed 
towards the end of the list, we can see how this sorting algorithm gets its name. A higher value slowly 
sinks towards the end of the list with each sorting pass while smaller values slowly bubble up towards 
the front of the list. The following code example shows how one might implement a function that 
erforms a bubble sort on a passed array of integers. 

{ 

{ 
if  (ListOfNumbers[b-1] > ListOfNumbers[b]) 

                     { 
umbers[b-1]; 

                             ListOfNumbers[b-1] = ListOfNumbers[b]; 
        rs[b] = temp; 

                       } 
            

} 
 
Althou ubble sort should definitely not be used for repetitive 
sorts or for sorting lists than contain more than a few hundred items. It certainly should not be used in 
time critical code (like our render loop). 

he Quick Sort 

t work with specific data sets to outperform quick sort, for the 
eneral case, the quick sort is the top choice when it comes to speed. The quick sort uses an approach 

to understand in words but is harder to grasp in code. Essentially, it is a divide-
nd-conquer technique that is normally implemented using recursion. The algorithm implements the 

her than the Pivot Point. 
• The left list contains values lower than the Pivot Point. 

 

p
 
void bubbleSort(int ListOfNumbers[], int ListSize) 
{ 

int a, b , temp; 
 
for (a = (ListSize - 1) ; a >= 0 ; a--) 

   for (b = 1 ; j <= a ; j++) 

  
  
                                 temp = ListOfN
    
                         ListOfNumbe

} 
} 

gh easy to understand and implement, the b

 
T
 
The quick sort is the fastest of the common sorting algorithms. While it is possible to write special 
purpose optimized sorting techniques tha
g
that is relatively easy 
a
following basic steps to achieve the sort: 
 

• If the list has only one (or zero) elements then exit -- the list is already sorted. 
• Select a number in the list as the Pivot Point. 
• Split the list into two lists (left and right).  
• The right list contains numbers hig

• Recursively repeat the above steps on the two child lists. 
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So the quick sort repeatedly chooses a Pivot Point, reorganizes the numbers in the array such that 
valu  her values end up on the right side. 
We ft and right of the Pivot Point) into the 
qui s mpletely sorted.   

he data passed into 
e quick sort will be mostly sorted, you are better off choosing a random Pivot Point from the list. As 

ight ) 

   
RightStart  = Right; 

 PivotPoint  = ListOfNumbers[Left]; 

while ( Left <  Right ) 

while ( (Left < right) && ( ListOfNumbers[Right] >= PivotPoint ) ) Right--; 
 

ight) 
 

       ListOfNumbers[Left] = ListOfNumbers[Right]; 

} 
    

while ( ( Left < Right ) && (ListOfNumbers[Left] <= pivot) )  Left++; 
  

   eft != Right ) 
      
        fNumbers[Right] = ListOfNumbers[Left]; Right--; 

    
} 

 
ListOfNumbers[Left] = PivotPoint; 

tPoin
eft  = S tLeft; 

tPoint)  QSort ( ListOfNumbers, Left , PivotPoint -1 ); 
( ListOfNumbers, PivotPoint+1, Right ); 

 
 

es smaller than the Pivot Point end up on the left side, while hig
 then recursively send the two sections of the list (to the le
ck ort function again and repeat the process until the list is co

 
The efficiency can depend very much on the value chosen as the Pivot Point for a given data set. Often 
the leftmost value in the list will simply be selected as the Pivot Point by default. In the absolute worst 
case, complexity can approach O(n2). This occurs when the leftmost value is selected as the Pivot Point 
and the list passed into the quick sort is already perfectly sorted. If you suspect that t
th
long as the Pivot Point is chosen randomly, the quick sort has a complexity of O(n log n). Below, we 
see a simple quick sort implementation: 
 
void QuickSort ( int ListOfNumbers[] , int ListSize ) 
{ 

QSort( ListOfNumbers, 0 , ListSize - 1); 
} 
 
oid QSort ( int ListOfNumbers[], int Left , int Rv

{ 
  int PivotPoint, LeftStart, RightStart; 
 

LeftStart   = Left; 
   
  
   
  

{ 

    
if ( Left != R

     { 

       Left++; 

  if ( L
{ 
 ListO
} 

Pivo t = Left;  
L tar
Right = StartRight; 
if ( Left < Pivo
if ( Right > PivotPoint) QSort 

}
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If you d tely understand the code above, do not panic. Most people find that they have to 
sketch it out with a pen and paper to understand what is happening the first time around. Fortunately, 
we do n  has been a part of the C standard for 

ite some time. The function is called qsort and to use it all you have to do is include stdlib.h. The 
sort function accepts four parameters as shown below: 

     int (__cdecl *compare )(const void *elem1, const void *elem2 )  

The fir ould be a pointer to the array of elements that you wish to sort. The second 
umber of elements in the array. The third parameter describes the size in 

ication defined 
ack function that returns an  and accepts two void pointers.  For every element comparison that 

eeds to take place during the quick sort, the callback is called to determine if element 1 is larger, 

o not immedia

ot have to implement our own quick sort function since it
qu
q
 
void qsort 
( 

void *base, 
      size_t num, 
      size_t width,  
 
); 
 

st parameter sh
parameter describes the n
bytes of a single element in the array. The fourth parameter is a pointer to an appl

intcallb
n
smaller, or equal to element 2. This is necessary because the qsort function has no idea about the data 
you are sorting (it has only a void pointer). You can use the qsort function to sort arrays of arbitrary 
structures because you are responsible for writing the callback function that you register with qsort. 
The callback function should return the following integer values to describe the relationship between 
element 1 and element 2. 
 

Return Value Description 

        < 0 elem1 less than elem2 

          0 elem1 equal to elem2 

        > 0 elem1 greater than 

trate the use of the qso
ame obje

elem2 

 
 
Here is a bit of code to demons rt function -- just in case you decide to use it to 
sort your own g cts. 
 
include <stdlib.h> 
include <string.h> 

arg1, const void *arg2); // Our compare call back function 
nt List[5] = { 9 , 3 , 100 , 1 , 5 }; 

#
#
#include <stdio.h> 
 
int compare(const void *
i
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void main( void ) 
{ 
  int i;  
  
  /* Sort the list using our ‘compare’ function for comparisons */  
 qsort( (void *) List,  5, sizeof( int ), compare ); 
 
  
 
  /* Output sorted list: */ 

 0; i < 5; ++i )   printf( "%d ", List[I] ); 
printf( "\n" ); 

t compare( const void *arg1, const void *arg2 ) 

greater than Arg 2 
 (int) *arg2 ) return –1;   // Arg  2 greater than Arg 1 

return 0;                           // Arg1 = Arg2 

 Project 7.3 will not use a bubble sort or quick sort to sort alpha polygons. It will use a data 
ructure called a hash table. Hash table sorting is really a rather simple and elegant idea and it works 

r situation. Hash tables provide fast random access to data. They do this 
nown as a hash function. This function accepts some data element as input 

nd then converts it into a number that indicates where in the table that data should reside. This 

mapping it into an integer range of 
etween zero and the size of the array, and then inserting the polygon into the array at that location, 

 
   for( i =
   
} 
 
in
{ 
   if ( (int)*arg1 > (int) *arg2 ) return 1;    // Arg 1 
   if ( (int)*arg1 <
   
} 
 
 
Hash Table Sorting 
 
Lab
st
quite well in this particula
through the use of what is k
a
number is called a hash key. Depending on the nature of the data to be stored, along with any number 
of other factors, hashing functions can range from the very simple to the very complex. Fortunately for 
us, our hashing function will turn out to be quite straightforward. 
 
At the end of our first render loop, we have an unsorted list of alpha polygons. Each polygon is stored 
with its squared distance from the camera. Let us imagine that we had an array and that we could use 
the distance value as the index of the element in the array to which a given polygon should be 
assigned. By taking the distance value of each alpha polygon, 
b
polygons will be added to the array automatically sorted by distance. This is essentially the core of our 
hashing function. Polygons with higher distance values will be at the back of the list and polygons with 
smaller distance values will be at the front of the list. Then all we have to do is enable alpha blending 
and render the list, starting at the back and working towards the front -- rendering each alpha polygon 
stored at each index. There may of course be many elements in the array with no polygons assigned (a 
sparse array) and we would skip these because the element would be set to NULL. In effect, this gives 
us nearly free sorting. 
 
Let us start off with an example that uses small values to better illustrate the process. Imagine that we 
have our far plane set such that it is a distance of 100 units away from the camera in view space. Also 
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imagine that our camera is at position <0,0,10> in world space and that there is an alpha polygon with 
a center point at <0,0,20> in world space. In this example we will use a hash table of 1000 pointers. 

ach element in the array is a pointer to a polygon that will (potentially) eventually be stored there. We 

a olygo calculate the squared distance: 

->CenterPoint – CameraPos; //(0, 0, 30) 
(&DistanceVector); 

e end up with a value in the 
e far 

value 
 the polygon distance is a squared distance and the far plane 

istance is not. So we will square the far plane distance and use the result to divide the polygon center 

is example is 1000 elements in size, so we multiply the value by 1000 to take 
 into the integer range of [0, 999] and add the polygon to the hash table array at that index. 

LONG Index = fIndex * (HashTableSize-1); //0.09 * 999 = 89; 

ight say that it suffers from the opposite problem of that of the depth buffer. Because we are using 
r range of hash table keys. 
a to the polygon and a far 

lane distance of 100. We are using values that make it easy to see that the polygon center point is 

E
can easily increase or decrease the size of our hash table to improve sorting speed and accuracy. 
 
FarPlane        = 100 
CameraPos            = (0, 0, 10); 
AlphaPoly->CenterPoint = (0, 0, 40); 
HashTableSize          = 1000; 
Polygon **HashTable[ HashTableSize ]; 
 
For each alph  p n encountered, we 
 

phaPolyD3DXVECTOR3 DistanceVector = Al
float PolyDistanceSq = D3DXVec3LengthSq
    //(0*0)+(0*0)+(30*30) = 900  

 
ow we will map the distance value into the far plane range so that wN

range [0.0, 1.0]. Thus a value of 1.0 would describe a polygon that has its center point right on th
ide the polygon distance plane. If we were not dealing with a squared distance we could just div

by the far plane distance value. However
d
point squared distance. 
 
float fIndex = PolyDistanceSq / (FarPlane * FarPlane);  // 900 / 10,000 = 0.09  
 
Now, we simply map this floating point value to the size of our hash table array to generate our hash 
key. Our hash table in th
it
 
U
HashTable[ Index ] = Poly; 
 
Note that this approach does not map the distance values linearly to hash table indices. In fact, one 
m
squared distances, polygons nearer the back of the scene will map to a large

on-squared distance of 30 from the camerIn the above example, we had a n
p
30% of the distance between the camera and far plane. Therefore, with a hash table size of 1000 you 
would expect the index generated for this polygon to be 30% of the hash table array size 1000/100*30 
= 300. However, we can see that because we are using squared distances, we actually get a value of 89. 
Therefore, the first 30% of the scene in this example is mapped to the first 9% of the hash table array. 
We could of course decide to use non-squared distances but that would involve a square root per-
polygon. To solve this problem we could increase the size of the hash table. This reduces 
polygon/index ambiguities and it will be less likely that polygons in the near distance will be mapped 
to the same key value in the hash table.  
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In reality, it is not so terrible if we end up with multiple polygon distances mapped to the same hash 
key (a hashing phenomenon known as a collision). After all, we are not limited to storing only a single 
polygon at each element in the hash table. The pointers themselves can simply be used as the head of a 
sorted linked list. This is exactly the technique that we will use in Lab Project 7.3.  

st where the alpha 
olygon belongs, we add it there. Polygons with smaller distance values are now at the tail of the 

ished looping through each polygon, the frame buffer will contain all opaque polygons and 
e hash table will contain all alpha polygons. Closer polygons will be at the top of the hash table and 

 
Once we have calculated the index of an alpha polygon, we check the element in the array. If it is set to 
NULL, then we store the polygon pointer at that array element because no other polygon has 
previously been stored there. If the pointer is not NULL then we step through the linked list and 
compare the squared distances. Once we locate the exact place in the linked li
p
linked list. 
 
In summary, our render function loops through each polygon in the scene. If the polygon is opaque it is 
rendered. If the polygon is an alpha polygon, we calculate a hash table index (a hash key) based on the 
distance from the camera formula and add it to the hash table using the technique just discussed. Once 
we have fin
th
distant polygons will be towards the bottom of the table. At this point we loop through the hash table, 
from bottom to top, and render each polygon -- or linked list of polygons -- with alpha blending 
enabled. At the end of this process, our alpha polygons have been rendered and blended with the frame 
buffer correctly. 
 
Fig 7.11 depicts a ten element hash table. It just so happens that in this example, ten polygons have 
been added to the table using some particular hash function.  
 

 
 

Figure 7.11 
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Notice how each polygon in Fig 7.11 is stored in the list ordered by distance, and that some elements 
are NULL when no polygon distance maps to that index. Also notice that array elements 3 and 8 in this 
example have more than one polygon mapped to their hash key (i.e. there was a collision). For these 
cases we use a linked list sorted so that larger distance values are stored at the head of the list and 
smaller values are stored towards the tail. 
 
The alpha polygons can be rendered in the correct back-to-front order using the following pseudo code. 
It loops through the hash table array in reverse order and traverses the linked lists stored at each index 
in the array. 
 
POLYGON *Poly = NULL: 
for ( ULONG i = HashTableSize-1  ; i  > = 0 ; i -- ) 
{ 
 for ( Poly = ppHashTable[i]; Poly; Poly = Poly->Next )  
 {  
               Poly->Render(); 
 } 
} 
 

pare performance.  

Note that while the hash table approach is useful, it is not a panacea. To be sure, you will wind up 
using other sorting algorithms (especially quick sort) many times in your coding projects. Please spend 
some time now looking over the code for Lab Project 7.3. Make sure that you understand the sorting 
algorithm and try to think about how you might use an alternative algorithm like the quick sort as well. 
Perhaps take the time to test both and com
 
 
Alpha Surfaces 
 
One very useful technique involves extracting alpha values in the texture stages from one or more 

ly going to be used for color rendering. For example, you could have a 
x color and rendered with the terrain 

ygons as normal. However, you could also have a second set of texture coordinates in your vertex 
his second texture might 

from a rendering perspective but could be used to describe how 
 the first texture stage blend with the frame buffer. We can do 

 using the alpha value sampled from the texture in the second texture stage.  

 from the texture cascade unaltered. The 
xture assigned to stage 1 does not have its RGB values sampled at all, and it will not contribute to the 

olor output from the texture stage cascade.  

textures that are not actual
terrain texture assigned to stage 0 that is modulated with the verte
pol
used to sample the alpha value from a texture assigned to the second stage. T
not actually be mapped to the polygon 

ors from the texture inthe sampled col
this
 
In the following code snippet, we see an example of this technique. We have a normal color texture 
assigned to the first texture stage, and we assign a texture with an alpha channel to the second stage. 
We set the first stage to modulate the color sampled from the texture in stage 0 with the interpolated 
vertex color. The result is passed on to the next stage. In stage 1, we set the color operation to simply 
accept the result of the previous color operation and output it
te
c
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In stage 0, we set the alpha operation to sample the alpha from the assigned texture. This is done 
simply to enable the alpha flow through the pipeline. In fact, this alpha value will not be used at all and 
will be replaced in stage 1.  
 
// Stage 0 Coloring : Modulate vertex color and texture color 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_MODULATE ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE ); 
 
// stage 0 alpha : Just set up flow to next stage 

pled from this second texture will be output from the 
xture cascade as the final alpha value along with the color value calculated in the first texture stage.  

eStageState( 1, D3DTSS_COLOROP, D3DTOP_SELECTARG1 ); 
_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLORARG1, D3DTA_CURRENT ); 

 
 

e face of each polygon using 
e interpolated vertex alpha, and an alpha 

alue sampled from the texture assigned to stage 1. The alpha operation in stage 0 is only significant in 

 
o use for 
ould be 
 

tion 

 

m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_CURRENT ); 
 
// Bind the render texture (the color texture) to stage 0 
m_pD3DDevice->SetTexture( 0 , pMyColorTexture ); 
 
In stage 1, the alpha value is sampled from the assigned texture using the second set of texture 
coordinates by default. The alpha value sam
te
 
// stage 1 coloring : Output stage 0 texture color unaltered by this stage 
m_pD3DDevice->SetTextur
m
     
// stage 1 alpha : Output alpha sample from texture assigned to this stage.
m_pD3DDevice->SetTextureStageState( 1, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 );
m_pD3DDevice->SetTextureStageState( 1, D3DTSS_ALPHAARG1, D3DTA_TEXTURE ); 
 
// Bind the alpha texture to stage 1 
m_pD3DDevice->SetTexture( 1 , pMyAlphaTexture); 
 
 
Assuming alpha blending is enabled, the blending equation will color th
the color resulting from modulating the first texture with th
v
that it ensures that the alpha pipeline is enabled.  
 
DirectX Graphics includes a pure alpha surface format. In a pure alpha surface, each pixel is an 8-bit
alpha value and it does not contain red, green, or blue components. This is an ideal surface t
the above example, where we only need the second texture for alpha information and w

 is:otherwise wasting memory. The D3DFORMAT enumerated type that describes an alpha surface
 
 
D3DFMT_A8; //Used to create Textures/Surfaces that just contain alpha info

 
rma
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Note: At the time of this writing, pure alpha surfaces (D3DFMT_A8) have only minimal support on 
some graphics cards and no support on many others. Therefore, our demos will continue to use normal 

p with some interesting additional uses for them (storing 
per-pixel lighting data for example). The only time our alpha textures will be used is when sampling 

 
 
 

use a separate texture as an alpha-only source in the texture cascade, it is a technique that you will find 
adds significant enhancements to your terrain application (and can be useful in other areas as well). 
Please refer to your course workbook for further details on texture splatting and its implementation 
before 
 
 
 
 
 
 
 
 
 
 
 

ARGB textures for the ‘alpha texture’, but will only store meaningful values in the alpha component at 
each pixel.  
 
Note that while the RGB pixel components of our alpha texure will be not be used by the color pipeline 
in our demos, you could theoretically come u

alpha in the 2nd texture stage.  
 
Regardless of whether we are using a pure alpha surface or just using the alpha channel of an ARGB 
surface, the techniques are the same.  
 

Lab Project 7.4 uses this technique to implement an interesting and relatively advanced concept called
texture splatting. Although a demo of this complexity is technically not necessary to show us how to

continuing with the next section. 
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Fog 
 
Let us now turn our attention to another form of blending used to create the effect of fog in our scenes. 

 we were to describe fog technically we could say that it is the phenomenon produced when water 
nd dust particles suspended in the air are dense enough to scatter light. If we were to give fog a non-
chnical description, we might say it was a misty substance that obscures our viewing of distant 
bjects. Fog is definitely a key ingredient for providing a sense of atmosphere and mood and is often a 
ust-have in many computer games. 

 addition to aesthetic appeal, fog also provides a way to optimize our rendering engine. As you 
now, we have a projection matrix that defines a view frustum with a near and a far plane. Objects on 
e opposite side of the far plane are considered out of viewing range and are not rendered. Even if we 

se very large viewing distances, we can often see objects popping in and out of view as our camera is 
avigated about the game world. If we had a far plane of 5000 units for example and an object was 
laced at a distance of 5100 units away from our camera along the Z axis, the object would be rejected 
y the pipeline and would not be rendered because it is considered outside the view frustum. If we 
ere to move our camera forward a couple of hundred units along Z, the object would suddenly appear 

its position would then fall between the near and far planes of the view frustum. Although we can 
ush the far plane out to a very far distance so that objects that pop in and out are relatively small, this 

pter 2).  

If
a
te
o
m
 
In
k
th
u
n
p
b
w
since 
p
is usually in direct contrast to what we want to do to make the rest of our application run as smoothly 
as possible. Usually, we want to render as little as we can get away with. One way to optimize our 
rendering is to bring the far plane closer to the camera so that objects in the distance do not get 
rendered. The closer we bring the far plane, the fewer objects we have to render.  Also recall that we 
discussed the various depth buffer artifacts that can occur if the distance between the near and far 
planes of our frustum is too great (Cha
 
Fog provides a solution for both of these problems. We can set the fog such that as an object’s distance 
with respect to the camera increases -- and it approaches the far plane -- the object begins to become 
more and more obscured by fog. At the point where the object is about to be clipped by the far plane, it 
is no longer visible and therefore we do not see it suddenly disappear from the scene. As objects first 
enter the frustum at the far plane, they are initially obscured by fog, so we do not see them suddenly 
appear. Instead, they slowly fade into view, appearing out of the fog. This hides the fact that we have a 
far clip plane at all.  
 
Fig 7.11 shows two views of the same scene. The image on the left shows our demo level from 
previous chapters rendered normally. The image on the right shows the same scene rendered using fog 
supplied by the DirectX Graphics pipeline. 
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Figure 7.11 
 
The image on the right uses a very dense fog. It does not look very good, but it was done to prove a 
point. We have to be careful not to overuse fog at the expense of severely limiting the player’s ability 
to see more than a few meters. This can make the game frustrating to play and quite claustrophobic. 
For example, the original Turok: The Dinosaur Hunter™ on the Nintendo 64™ was quite graphically 
impressive. But in order to achieve high frame rates on a relatively low powered console (by today’s 
standards) the developers used very dense fog settings and the player could usually only see a short 
distance in front of himself. This was done to minimize the number of polygons that had to be rendered 
each frame, but unfortunately it marred the game experience because players could not see what they 
were firing at until it emerged from the fog (often only a few meters away and with deadly intent).  
 

irectX Fog 
 

 DirectX Graphics, fog is implemented as a form of color blending. We typically set a fog color 

the 
amera and thus not obscured by fog will have a fog factor of 1.0. We can configure the pipeline to use 

rent equations to calculate the fog factor. These equations will change the way fog 
ffects our scene. We can choose the Linear Fog Model, the Exponential Fog Model, or the Squared 

D

In
along with other properties like density and range, and then enable the fog mechanism with a single 
render state. When objects are rendered, the color of the object is blended with the fog color based on 
the distance between the object and the camera and how we currently have the fog set to change over 
distance. When objects are close to the viewer, their colors are only lightly blended with the fog color 
while objects far away (towards the back of the fog range) will have their colors heavily blended with 
the fog color.  
 
The pipeline calculates a value called the fog factor. This is a scalar between 0.0 and 1.0. Far away 
objects that are completely obscured by fog will have a fog factor of 0.0. Objects very close to 
c
one of three diffe
a
Exponential Model. We will look at how we set the fog model in a moment but for now, just keep in 
mind that each of these fog models produces a fog factor in the range of [0.0, 1.0].  
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The pipeline alters the original color of an object by blending its color with the fog color using the 
following color blending equation: 
 
Cfinal = Ffactor x Coriginal + (1 – Ffactor) x Cfog 
 
Cfinal       = Final color after fog has been applied.  
Coriginal = Original color prior to fogging.  
Ffactor     = Fog Factor value between 0.0 and 1.0.  
Cfog         = Application defined fog color.  

nding equation we 
iscussed earlier. In this case, the fog factor replaces the alpha value, the original color is the source 

e alpha component of the specular color calculated for each vertex. 
his means that even if we are not using the DirectX transformation pipeline and we are rendering 

calculate the fog factor for each vertex ourselves and store 
is value in the alpha component of our vertex specular color. If fog has been enabled and a fog color 

x fog to our scene. When using the transformation 
he fog factors automatically for each vertex/pixel, using one 

e are not using the transformation pipeline and we 
n use whatever fog model we choose to produce fog factors. 

e will discuss these models momentarily. 

Device->SetRenderState( D3DRS_FOGENABLE, FALSE); 

oors. We will usually want to match the background 
olor with the fog color so that objects fade into the horizon appropriately. For example, consider the 

eing rendered with fog that is equal in 

 
You might have noticed that this is essentially the same structure as the alpha ble
d
color, and the fog color is the destination color. In fact, when performing vertex fog, the pipeline 
internally stores the fog factor in th
T
using transformed and lit vertices, we can 
th
has been set, the pipeline will still apply verte
pipeline however, DirectX will calculate t
of the three fog models mentioned above. If w
calculate the fog factors ourselves, we ca
W
 
Enabling Fog  
 
If the application is to use fog, then it must enable the fogging module on the Direct3DDevice. Just as 
we turned on lighting using a render state, we will do the same with fog. To enable or disable DirectX 
fog, we use the D3DRS_FOGENABLE render state and pass in either TRUE or FALSE to enable to disable 
the fog calculations in the pipeline respectively. 
 
// Enable Fog Calculations 
pDevice->SetRenderState( D3DRS_FOGENABLE , TRUE ); 
 
// Disable Fog Calculation 
p
 

 
Setting the Fog Color 
 
Although we often think of fog as being white or perhaps grayish white, our application can set the fog 
color to any value we choose. However, when choosing the fog color we must be cognizant of our 
backgrounds – especially skies when we are outd
c
two images in Fig 7.13. The image on the left shows a terrain b
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color to the color of the sky. We see that the terrain fades slowly into the sky color in the distance until 
ever uses a purple fog color. When the 
llow the terrain to fade smoothly with 

istance. Instead it simply renders the distant terrain as fog colored polygons. 

it slowly disappears from view. The image on the right how
errain is rendered into the blue frame buffer it does not at

d
 

   
Figure 7.13 

 
To set the fog color we use the D3DRS_FOGCOLOR render state and pass in a DWORD containing the 32-
bit ARGB color. Only the RGB components are used. To specify the color red, we would pass 
0x00FF0000. In the following example we set a green fog color: 
 
// Setting the Fog Color 
pDevice->SetRenderState ( D3DRS_FOGCOLOR , 0x0000FF00 ); 
 
 
Fog Types 
 

irectX can provide fog at the per-vertex lev el level. We will usually use either one or 

the vertex level -- much 
lems as vertex lighting 

hapter 5). Vertex fog is performed in the DirectX transformation pipeline, so if you are not using the 
ipeline, you will need to calculate the fog factors for each vertex yourself and store them in the alpha 

f the vertex specular color.  

D el or the per-pix
the other although if the hardware supports both types, we could enable both simultaneously (although 
there is little point in doing so).  
 

ertex Fog  V
 
Vertex fog is typically the least desirable fog type because it is calculated at 
ike vertex lighting. This means that it suffers from many of the same probl

(C
p
component o
 
When vertex fog is enabled, the pipeline calculates the fog factor for each vertex. This is typically 
quite expensive, especially when using one of the exponential fog models. By default, this fog factor is 
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calculated using the view space Z component of a vertex as the distance variable in its equations. Note 
e true distance from the vertex to the camera; it is only the Z displacement. However 

ace Z component is convenient because it is already available to the pipeline because we 
         

have a normalized W column of (0, 0, 1, 0) you will need to 
ake your projection matrix W-friendly by scaling every other element of your matrix by the inverse 

that this is not th
the view sp
have a ‘W-friendly’ projection matrix. This means that our projection matrix has a W column of  
(0, 0, 1, 0) -- which is a Z identity column (Chapter 1). Recall that a view space vertex multiplied with 
our projection matrix will have its Z component copied into the W component of the output vector 
where it can be used by the fog calculations (and W buffers incidentally). If for some reason the 
projection matrix you are using does not 
m
of element m34 as shown below. 
 
Non-W-Friendly matrix where ‘e’ does not equal 1: 
 















000
00

000
000

d
ec

b
a

 

 
To force the matrix to be W friendly, divide all elements by element m34 (‘e’) and set m34 to 1: 
 












 000

100

000

e
d

e
c

e
b
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000e







 
ll of the projection matrices we have used in our applications, and the projection matrices returned by 

e this 

When using the view space Z component as the distance for fog factor calculations, rotational artifacts 
may result. This is because the view space Z component only tells us the depth of the vertex along the 
Z axis and not the true distance. When the camera rotates, a vertex Z component can move in and out 
of the fog zone. Fig 7.14 demonstrates the problem. 
 

A
the D3DXMatrixPerspectiveLH function, are W-friendly matrices. They will not need to hav

rocess applied to them. p
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Figure 7.14 
 
In Fig 7.14, the light purple boxes show where the fog starts and ends with respect to the camera. 

bjects inside the purple boxes will receive fogging to some degree. The image on the left shows our 
amera before it has been rotated. Using the view space Z component we can see that object 1 is not 

considered to be inside the fog zone. This is because we have set the fog to start at a certain distance 
om the camera and the view space Z component of object 1 is not large enough to be considered 

urface. 

 

O
c

fr
inside the fog zone. The problem here is that we are only considering the Z component of the object 
and not its true distance (which would account for the X and Y offsets in view space also). If you draw 
a line from the camera to object 1 in the left diagram and then rotate object 1 about that line such that it 
was now directly in front of the camera, you should be able to see that it does indeed have a distance 
from the camera which is larger than the fog start distance. Thus it should be contained inside the fog 
zone. However, since we are only using the view space Z component as the distance, it is not. Now 
perhaps we could accept this flaw, but note what happens if the camera was to rotate left 45 degrees. It 
is now facing object 1 as shown in the image on the right. The Z depth of object 1 (tilt your head to the 
left when looking at the diagram to see view space) is now greater than our fog start distance and the 
object would be fogged. The unfortunate result is that as we rotate the camera, objects seem to 
suddenly pop in and out of the fog. 
 
Some hardware supports an additional render state that instructs the pipeline to calculate the true 
distance from the camera to the vertex rather than the view space Z depth. This eliminates the 
rotational artifacts at the cost of performance. This is called range based fog. Range based fog is only 
supported for the vertex fog state.  
 
After the pipeline has calculated the fog factor for each vertex and stored it inside the alpha component 
of the specular color, if Gouraud shading is enabled, the fog factor is interpolated across the face of the 
polygon just like any other color/alpha value stored in a vertex. This is later used to generate the 
fogged color for each pixel on the s
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Enabling Vertex Fog 
 
To enable vertex fog we will set a render state and specify the fog model we would like to use. Before 
we do this, we should check the RasterCaps member of the D3DCAPS9 structure returned by the 
Direct3DDevice::GetDeviceCaps function for the D3DPRASTERCAPS_FOGVERTEX flag. If it is set, 
en the device supports vertex fog. 

ed 
 

d, we enable it by setting the D3DRS_FOGVERTEXMODE render 
ate and specifying a mem erated type as the second parameter to the 

choose the fog model used to calculate 
below. 

ypedef enum _D3DFOGMODE  

   D3DFOG_FORCE_DWORD = 0x7fffffff 

lt setting when the device is created. Essentially it means that vertex fog is 
le vertex fog by choosing one of the three fog models: D3DFOG_EXP, 

EAR. We will discuss the three fog models in detail shortly. 

de snippet enables vertex fog using the linear fog model. Note that we specify two 
iew space distances. The first specifies the minimum distance a vertex would need to be from the 

 camera used 
 calculate the fog factor rather than the view space Z component (at a higher performance cost). 

I
th
 
D3DCAPS9 Caps; 
pDevice->GetDeviceCaps( &Caps ); 
 
if ( Caps.RasterCaps & D3DPRASTERCAPS_FOGVERTEX ) 
{ 
 // Vertex Fog is Support
}
 
Once we know that vertex fog is supporte

ber of the D3DFOGMODE enum
ction. The D3DFOGMODE has four members which allow us 

st
fun
the fog factor. These members are shown 
 
t
{ 
    D3DFOG_NONE = 0, 
    D3DFOG_EXP = 1, 
    D3DFOG_EXP2 = 2, 
    D3DFOG_LINEAR = 3, 
 
} D3DFOGMODE; 
 
D3DFOG_NONE is the defau
disabled. We can enab
D3DFOG_EXP2 or D3DFOG_LIN
 
The following co
v
camera in order to be influenced by fog (D3DRS_FOGSTART). The second specifies the distance at which 
a vertex would be fully fogged (D3DRS_FOGEND). Notice that we also check for range fog support and 
enable it when available. This means that each vertex will have its true distance from the
to
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D3DCAPS9 Caps; 
evice->GetDeviceCaps(  &Caps ); 

 ( Caps.RasterCaps & D3DPRASTERCAPS_FOGVERTEX ) 

pD
 
if
{ 
  pDevice->SetRenderState (D3DRS_FOGENABLE  , TRUE ); 
 pDevice->SetRenderState (D3DRS_FOGCOLOR  , 0x00AAAAAA ); 
 pDevice->SetRenderState (D3DRS_FOGVERTEXMODE , D3DFOG_LINEAR ); 

RCAPS_FOGRANGE ) 
 { 

BLE , TRUE ) 
} 

 (&fStart) ); 
vice->SetRenderState (D3DRS_FOGEND,   *(DWORD*) (&fEnd) ); 

y items regarding the above code. First of all, we are checking the 
lag against the RasterCaps member of the D3DCAPS9 structure to see if 
nge-based vertex fog. If it does, we enable it using the 

odel, we must also 
applies fog to objects 

h that fog intensity increases linearly between these two distances. We will discuss these two values 

e current hardware we will usually want to use 
 instead of vertex fog. Pixel fog uses many of the same settings as vertex fog. For example, we still 
et the fog color using the D3DRS_FOGCOLOR render state and we can also use the same three fog 

 squared exponential. The fog factor calculations are exactly the same, 
a per-pixel basis in the driver instead of a per-vertex basis in the 

 
  
  
  
   if ( Caps.RasterCaps & D3DPRASTE
  
    pDevice->SetRenderState (D3DRS_RANGEFOGENA
   
 
   float fStart = 100; 
   float fEnd   = 1000; 
 
   pDevice->SetRenderState (D3DRS_FOGSTART, *(DWORD*)
   pDe
} 
 
Thera are a few noteworth
D3DPRASTERCAPS_FOGRANGE f

e hardware supports rath
D3DRS_RANGEFOGENABLE render state. Next, because we are using the linear fog m
specify the fog start and fog end values described above. The linear fog model 
suc
in more detail when we cover the fog models, but it is worth taking note of the way the values are 
passed into SetRenderState. The SetRenderState function expects a DWORD as its second 
parameter, but our values need to be floats when we use fog. Therefore, we cast the address of the float 
to a DWORD pointer and then de-reference the result.  
 
 
Pixel Fog (Table Fog) 
 
Pixel fog calculates the fog intensity for each pixel rather than each vertex and provides much better 
looking fog effects. Thus, if pixel fog is available on th
it
s
models: linear, exponential and

nly they are performed on o
transformation pipeline.  
 
The idea of calculating a per-pixel fog factor raises obvious concerns about performance. To address 
such concerns, the driver builds a lookup table containing fog factors for a number of fixed distances. 
When the fog factor for a pixel is needed, the view space Z depth of the pixel is used to look up a fog 
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factor that has been pre-calculated for that depth and stored in the table. This concept has led to pixel 
fog commonly being referred to as table fog. 

te to a member of the D3DFOGMODE enumerated type, 
escribing which of the three fog models we would like to use. Also, remember that whether we are 

we must always have the D3DRS_FOGENABLE render state set to TRUE in 
rder for fog calculations to be performed.  

ent of the vector output from the projection matrix (see 
hapter 1). If eye relative depth calculations are supported by the device, we can describe the FogStart 

 case, we must use the [0, 1] 
istance range for FogStart and FogEnd. 

ing the linear model for the fog factor calculations. We also 
ee how to convert our fog start and fog end distances into the [0, 1] range if W-based fog is not 

 
Enabling Pixel Fog 
 
To determine whether or not a device supports pixel fog, we check the RasterCaps member of the 
D3DCAPS9 structure for the D3DPRASTERCAP_FOGTABLE flag. If it is set, then we can enable pixel fog by 
setting the D3DRS_FOGTABLEMODE render sta
d
using vertex or pixel fog, 
o
 
We have one more thing to consider if we intend to use the linear fog model with pixel fog. To 
alleviate fog-related graphic artifacts caused by uneven distribution of z values in a depth buffer, most 
hardware devices will use the view space Z component of a vertex to produce an eye relative depth 
value that can be used to lookup the fog factor for that depth. You will recall that the view space Z 
component is preserved in the W compon
C
and FogEnd parameters for the linear fog model using view space units (just as we did when setting up 
the linear fog model for vertex fog). However, if the hardware does not support the use of W-based 
fog, then we will need to specify the FogStart and FogEnd parameters in device coordinates (depth 
buffer coordinates) in the range of [0.0, 1.0]. This will only need to be done if we are using the linear 
fog model because the exponential and squared exponential fog models do not use the FogStart and 
FogEnd render states. We can check the RasterCaps member of the D3DCAPS9 structure to see if the 
D3DPRASTERCAPS_WFOG flag is set. If so, then the preferred W-based fog will be supported and used 
automatically -- provided we are using a W-friendly projection matrix. 
 
There is also a D3DPRASTERCAPS_ZFOG flag that can be set in the RasterCaps member. One might 
assume that if W-based fog was not available, then Z-based fog would be supported. But the 
relationship is a little more complex. Although a W-based fog capable device will always use W-based 
fog by default, this will only be possible if we have a W-friendly projection matrix. If we do not, then 
Z fog will be used instead as a next best option for pixel fog. In this
d
 
It is possible that a device may support W-based fog, but not support Z-based fog as a backup. In such 
a case, we must be absolutely sure that we set a W-friendly projection matrix in order for fog to work 
correctly. Note that if pixel fog is supported, at least one of these two fog types will also be supported. 
 
The following code enables pixel fog us
s
supported (where Z-based fog will be used automatically). We assume that the projection matrix is W-
friendly. 
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D3DCAPS9 Caps; 
pDevice->GetDeviceCaps( &Caps ); 
 
if ( Caps.RasterCaps & D3DPRASTERCAPS_FOGTABLE ) 
{ 
 float fStart = 100; //Fog starts at 100 from the camera 

float fEnd  = 1000; //Fog reaches full intensity at a distance of 1000 units  
 
  etRenderState (D3DRS_FOGENABLE  , TRUE ); 

DRS_FOGCOLOR  , 0xAAAAAA ); 
pDevice->SetRenderState (D3DRS_FOGTABLEMODE, D3DFOG_LINEAR ); 

// if W fog is not supported we need start/end distances in device units 

   fStart /= fFarPlaneDistance ; 

    pDevice->S
 pDevice->SetRenderState (D3
 
  
 
      if ( !(Caps.RasterCaps & D3DPRASTERCAPS_WFOG) ) 
      { 
 
    fEnd   /= fFarPlaneDistance ;  
      } 
 

D3DRS_FOGSTART  >SetRenderState ( , * (DWORD*) (&fStart) ); 

odel to linear, set the fog type as table (pixel) fog, and 
sed fog or not. If it is not, then we need to divide our fog 

stances by the far plane distance e built our projection matrix. This only needs to be 

 the next example, we will look at some code that sets up fog using the exponential model. The code 

s used to calculate the fog factors. We will look at these 
quations in the next section. 

ate (D3DRS_FOGENABLE  , TRUE ); 
pDevice->SetRenderState (D3DRS_FOGCOLOR  , 0xAAAAAA ); 

SetRenderState (D3DRS_FOGTABLEMODE    , D3DFOG_EXP ); 
DRS_FOGDENSITY , * (DWORD*) (&fDensity) ); 

se 

    pDevice-
 pDevice->SetRenderState (D3DRS_FOGEND,   * (DWORD*) (&fEnd) ); 
} 

 
In the above code we enable fog, set the fog m

see if the device is going to use W-bacheck to 
di  specified when w
done if we are using a linear fog model. 
 
In
will try to use pixel fog if it is supported on the current device and fall back to vertex fog if it is not. 
Notice that when we use either the exponential or squared exponential model, we no longer specify 
start and end distances. Instead we specify a fog density value between 0.0 and 1.0. This is used as a 
weight in the exponential fog formula
e
 
D3DCAPS9 Caps; 
pDevice->GetDeviceCaps( &Caps ); 
float fDensity = 0.6;  
 
if ( Caps.RasterCaps & D3DPRASTERCAPS_FOGTABLE ) 
{ 
       pDevice->SetRenderSt
 
 pDevice->
 pDevice->SetRenderState (D3
} 
el
if ( Caps.RasterCaps & D3DPRASTERCAPS_FOGVERTEX ) 
{ 
       pDevice->SetRenderState (D3DRS_FOGENABLE  , TRUE ); 
 pDevice->SetRenderState (D3DRS_FOGCOLOR  , 0xAAAAAA ); 
 pDevice->SetRenderState (D3DRS_FOGVERTEXMODE   , D3DFOG_EXP ); 
 pDevice->SetRenderState (D3DRS_FOGDENSITY , * (DWORD*) (&fDensity) ); 
} 
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The density value is used to scale the vertex or pixel distance values when either the EXP or EXP2 fog 
eing applied to the scene at all. A value of 1.0 

ed. V  allow us to control where 
ent with a few different 

ne. W  the default 
ensity is 1.0 and everything will be fogged. 

models are enabled. A value of 0.0 equates to no fog b
means everything in the scene will be completely fogg alues in between
the fog starts (at least at a significan ften necessary to experimt intensity). It is o

lues to find the density level that best suits your sce hen the device is first created,va
d
 
 
Fog Factor Formulas 
 
When using either fog type (vertex or pixel) we will specify the model that is used to calculate fog 
factors. Each model calculates the way fog intensity increases with distance in a different fashion. 

here are three equations that we can choose from and they are selected by passing in a member of the 
3DFOGMODE enumerated type when setting the D3DRS_FOGVERTEXMODE or D3DRS_FOGTABLEMODE. The 

D3DFOG_NONE which means that no fog model is being used. Our options are: 

T
D
default mode for both is 
 
Linear Fog (D3DFOG_LINEAR) 
 

ff

f

startend
dend

f
−

−
=  

 
f         = Resulting Fog Factor. 
startf  = FogStart value. 
endf   = FogEnd value. 
d        = Distance. 
 

inear fog is the fastest but least visually appealing model available. In the formula, f is the fog factor 
control the blending of the vertex/pixel color with the fog color. The 

start and end values set by the application to linearly distribute fog to objects 
.  

 this equation is used for table fog and W-based fog is active, then the start and end values will be 

ordinates. 

L
that is used by the pipeline to 
calculation also uses the 
between those distances
 
If
view space distances and the pixel distance d will be the view space z component of the pixel 
(interpolated). If W-based fog is not being used, then the start and end values will be device 
coordinates (depth buffer coordinates) in the range of 0.0 to 1.0 and the distance d will be the depth of 
the pixel in depth buffer co
 
If this equation is used for vertex fog, then the start and end distances will be specified by the 
application in view space units. If range-based vertex fog is enabled, then the vertex distance d will be 
the actual distance between the camera and the vertex. Otherwise d will be the view space Z 
component of the vertex. 
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The linear model does not accurately represent how we perceive fog density to change over distance. 

hen we plot this function as a graph, we see a diagonal line demonstrating that fog density increases 

In real life, as the distance between an object and the viewer increases, the density of the fog appears to 
increase exponentially. Therefore, for more realistic fog we would use the more performance heavy 
exponential or the squared exponential fog model.  
 
W
linearly and predictably with distance. Fig 7.15 uses a fog start value of 0.0 and a fog end value of 200. 
We plot for distances along the X axis in 10 unit increments from 0 to 210.  
 

 
 

Figure 7.15 
 
Note that the fog factor is 0 when the object is far away (totally fogged) and 1.0 when the object is 
very close to the camera (no fog). If you read the line from right to left instead of from left to right, you 
can more easily visualize how fog increases with distance under the linear fog model.  

At first it may seem counterintuitive to think tor as being 0 when an object needs to have 
tal fog applied and 1.0 to have no fog applied. However, recall that the fog factor as used in the 

g takes place. 

 
 of the fog fac

to
blending equation is an inverse. When the fog factor is zero, then none of the original color is used and 
all of the fog color is used; if the fog factor is 1 then all of the original color is used and none of the fog 
color is used. If the fog factor is between 0.0 and 1.0 then some degree of color blendin
 
Exponential Fog (D3DFOG_EXP) 
 
Unlike linear functions, where the graph increases or decreases uniformly with respect to distance, 
exponential function graphs have abrupt and steep changes. Exponential functions generally take the 

form xaxf =)( .  In this formula, a is a real number that is referred to as the base of the exponential 
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function. This can be any number that fulfills the requirements of the function. x is the number we pass 
s the exponent. 

 a less dense fog and vice versa.  

into the function which will be used a
 
When discussing exponential functions, there is one very important number that can be used as a base. 
This special number is called the natural base and is represented by the symbol e. When an 
exponential function uses the natural base, it is referred to as the natural exponential function or 
sometimes just the exponential function -- which just goes to show just how significant it is. The 
natural base is approximately 2.7182818284590452354.  
 
The reason the natural base and the natural exponential function are so important is that they help to 
accurately model rates of change. The natural exponential function has been used to predict the rate at 
which populations expand, the effect of interest rate increases and decreases on investment, and more 
importantly to this discussion, the rate at which fog density changes over distance. When using the 
exponential fog model, we no longer pass in fog start and end distances, but instead pass a fog density 
alue in the range [0.0, 1.0]. Smaller density values lead tov

 

 
 

Figure 7.16 
 
By altering the density value we can shape the intensity curve. We see in Fig 7.16 that although fog 
intensity varies over the view space range of 200 units, the fog intensity increases rapidly in the first 80 
view space units. Objects situated at view space distances greater than 80 will receive almost total fog. 
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This provides much greater control over modeling the way distance affects fog intensity. Contrast this 
with the D3DFOG_LINEAR mode where intensity increases rigidly in direct proportion to distance. 
 
When the D3DFOG_EXP model is used for vertex or table fog mode, the following formula is used. This 
calculation is more expensive than the linear model fog factor calculation. 
 

1f =  
densityde *

 
f           = Resulting Fog Factor 
e          = Natural Base 
d          = Distance 
density = Application specified density in the range [0, 1] 
 

G_EXP2)
 
Exponential Squared (D3DFO  

l is very similar to the previous model. It is also the most expensive performance-
denominator of the equation. Once again we 

ill want to experiment with the density value in order to find a fog curve that suits our application. 
he fog factor is calculated using the following equation: 

 
Our final fog mode
wise. The difference is that it squares the exponent in the 
w
T
 

2
)*(

1
densityde

f =  

 
f           = Resulting Fog Factor 
e          = Natural Base 
d          = Distance 
density = Application specified density in the range [0, 1] 
 

your workbook for this lesson, you will have an opportunity to 
og models in action. Try to experiment with some of the different fog models 

ngs in the various lab projects. Look at the results of fog in your indoor scenes as 
the position of your far plane and see what 

ffects this has on frame rate.  

 

 
If you spend some time examining 
examine these various f
and associated setti
well as your outdoor scenes. Experiment with modifying 
e
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Conclusion 
 
In this lesson we have examined a number of important new techniques. With our discussions in 
Chapter 6, and again in this lesson, we now have a very strong understanding of the various blending 
options available in DirectX Graphics. We know how to use color and alpha data in vertices, materials, 
onstants, and textures. 

 how to configure our pipeline to produce any number of transparency based effects. 
hese are the bedrock concepts upon which all of our important special effects will be based. From 

took a look at adding fog to our scenes to add mood and atmosphere and to 
timize engine performance. Configuring the pipeline to add fog was a relatively simple process, so 

ussed here, as usual, you will also find a good deal of 
iscussion on other relevant topics in 3D graphics programming. We will look at geometry 

 we finish up 
is course and prepare for the next one.   

c
  
We also know
T
magic spells, to fire, to explosions, we will be ready to immediately tackle all sorts of special effects 
programming techniques with little effort. 
 
To wrap things up, we 
op
you should have no trouble adding it to your scenes in the specified workbook exercises. 
 
Please make sure that you spend time examining the workbook projects for this week. In addition to 
the implementations of the concepts disc
d
manipulation, polygon splitting, ray intersections, screen space polygons, and much more. You will 
find this to be a very exciting lesson, so take your time, and enjoy the new coding techniques you 
learn. They will prove to be very valuable as we move forward into new subject areas as
th
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Workbook Chapter Seven: 
Alpha Blending and Fog 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
© 2003, eInstitute, Inc. 
 
You may print one copy of this document for your own personal use.  You agree to destroy any 
worn copy prior to printing another.  You may not distribute this document in paper, fax, 
magnetic, electronic or other telecommunications format to anyone else. 
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Lab Project 7.1: Vertex Alpha 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One of the simplest ways to perform alpha blending is by specifying the alpha component in the 
diffuse color of the vertex. This color is interpolated across the surface of the polygon at render time to 
generate a per-pixel color value that is fed into the texture stage cascade. The alpha value is part of the 
color, so it is treated in exactly the same way as its RGB counterparts. When the polygon is assembled 
to be rendered, the alpha value is interpolated over the surface to generate a per-pixel alpha that is fed 
into the texture stage cascade.  
 
Up to this point the alpha and the RGB components of the color have been fused together as a four 
component color. Interpolating the color automatically interpolated the alpha value along with the 
RGB values. But once the per-pixel four component color has been interpolated, the per-pixel alpha 
value is conceptually separated from the RGB components of the color, and the alpha value is sent 
through the alpha pipeline of the texture blending cascade. RGB components are sent into the color 
pipeline of the texture blending cascade.  
 
In the above image we can see that the water polygons are transparent so that we can see the terrain 
through the water. We can increase or decrease how transparent the water is by adjusting the value of 
the alpha component of the color stored at each vertex. As it turns out, the addition of water to the 
terrain in this project is really just a matter of adding a single quad to the scene. 
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In the above image we create an XZ aligned quad that is the same size as the terrain. The water quad 
has a water texture mapped to it that was also generated in TerraGen™. The quad is placed in the 
world such that its corners align with the terrain, but is offset by a certain height from the bottom of the 
terrain.  
 

 
 
Since the height of the terrain is 0.0 at its lowest points, placing a water quad at a height of 10.0 means 
that the water will only be visible where there are troughs in the terrain whose heights are lower than 
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10.0. Portions of the water quad will be occluded by sections of the terrain that are higher than 10.0. 
Although this looks odd from the side view in the above picture, when our player is on the terrain they 
see only the water plane where the terrain dips. This creates a nice collection of rivers and lakes.  
 
We set the color of each vertex in the water quad such that it has an alpha value of 191 (¼ transparent). 
It is rendered with alpha blending enabled after the terrain has been drawn. The color of each pixel in 
the quad is sampled from the water texture whilst the alpha for each pixel in the quad is interpolated 
from the vertex alpha. In this example every vertex has the same alpha value, so we could achieve the 
same effect by using a Texture Factor color. However, in this project we want to learn how to store and 
use per-vertex alpha.  
 
There are two new functions added to our CTerrain class from previous chapters. The 
CTerrain::RenderWater function is called at the end of the CTerrain::Render function to render the 
water quad after the main terrain has been drawn. The CCamera::RenderScreenEffect function is called 
at the end of CTerrain::RenderWater and the purpose of this function will become clear shortly. 
 
Rendering the water quad is very easy. We simply build a quad, map the water texture to its four 
corner vertices and render the terrain with alpha blending enabled. The texture stages are configured to 
take the alpha values from the vertices of the quad.  
 
We need to consider what will happen if the player positions the camera underneath the water plane. 
The image below shows that the illusion of water is lost in this case since the terrain would look the 
same under the water. 
 

 
 
Certainly the terrain should not look the same when we are under the water. At the very least, it should 
be tinted (blue) since we are viewing it through a volume of (blue) water. There are other effects we 
can use to enhance our water, but those will have to wait until the next course in this series. To solve 
our immediate problem we will introduce the use of pre-transformed vertices.  
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Introduction to Transformed and Lit Vertices 
 
A pre-transformed vertex is a vertex where the x and y components of the vertex are in screen space 
and the z component is in device space. The [0, 1] range for z describes its Z-buffer value. We can use 
these vertices to bypass the transformation and lighting pipeline and specify polygons in pixel 
coordinates. They are referred to as transformed and lit vertices (T&L vertices) because we explicitly 
provide the screen space information and color usually generated by the transformation and lighting 
pipeline. These vertices can still be used with all of the pixel blending techniques we have discussed, 
such as alpha blending. However, one thing to note is that the Direct3D fixed function pipeline does 
not support texture coordinate transformation when using pre-transformed vertices since the 
transformation pipeline is essentially bypassed.  
 
In our application, we can check to see if the camera is under the water and if so, create a blue screen 
space quad (using T&L vertices) that covers the entire screen. We then alpha blend it with the contents 
of the frame buffer after the terrain and water plane have been rendered. This is a cool idea that is 
extremely easy to implement. The result is shown in the next image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The device knows whether a vertex needs to be transformed/lit or whether it has been defined in screen 
space by checking the flexible vertex format flags used to create the vertex.  
 

Note: Transformed and lit vertices are useful if you are converting a software engine to DirectX. In that 
case, the transformation pipeline has already been programmed, so DirectX would be used only for 
rendering the polygon. 

 
When creating a screen space vertex, we need the x and y positions describing the screen space 
location of the vertex in pixel coordinates and a z value between 0.0 and 1.0 that describes the Z-
Buffer space vertex distance. The latter is necessary because the Z-Buffer test is still performed for 
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T&L vertices (unless specifically disabled). We also need a 1/W value for W-Buffer and fog 
calculations. 1/W is called the reciprocal of homogeneous W (RHW). As discussed in Chapters 1 and 
2, the W component is usually just the same as the view space Z coordinate of the vertex, so RHW will 
also be a value between 0.0 and 1.0. A vertex with a higher RHW value will be regarded as being 
closer to the camera. Each vertex will usually have a diffuse color and may also include a specular 
component. The rasterizer will add these two colors together and interpolate them for each pixel 
rendered.  
 
 
The CTLitVertex Class 
 
We will create an additional vertex class to store transformed and lit vertices used to render the screen 
space quad (which we will call the ScreenEffect). We will not need texture coordinates or specular 
color as we will simply be alpha blending a blue quad on the screen. We will need four floats to hold 
the X, Y, Z, and RHW (1/w) components and a diffuse (blue) color. The alpha value specified with this 
color will describe how transparent the screen space quad should be.  
 
class CTLitVertex 
{ 
public: 
    //------------------------------------------------------------------------- 
    // Constructors & Destructors for This Class. 
    //------------------------------------------------------------------------- 
    CTLitVertex ( float fX, float fY, float fZ, float fW, ULONG ulDiffuse = 0xFF000000 )  
                          { x = fX; y = fY; z = fZ; w = fW; Diffuse = ulDiffuse; } 
     
    CTLitVertex()  { x = 0.0f; y = 0.0f; z = 0.0f; w = 0.0f; Diffuse = 0xFF000000; } 
 
    //------------------------------------------------------------------------- 
    // Public Variables for This Class 
    //------------------------------------------------------------------------- 
    float       x;                 // Vertex Position X Component 
    float       y;                 // Vertex Position Y Component 
    float       z;                 // Vertex Position Z Component 
    float       w;                 // Vertex Position W Component 
    DWORD       Diffuse;    // Diffuse vertex color component 
}; 

 
We will use the IDirect3DDevice9::SetFVF function to inform the device of the structure of our 
vertices before using them to render the screen effect. We do this with the flexible vertex formats flags 
shown below (defined in CObject.h). 
 
#define TLITVERTEX_FVF  D3DFVF_XYZRHW | D3DFVF_DIFFUSE 

 
When the device encounters the D3DFVF_XYZRHW flag it will not to transform or light the vertices. 
It assumes that the x and y components of the vertex are already in screen space. Thus, defining a quad 
that completely covers the screen (using a triangle fan) can be done with the simple code shown below: 
 
CTLitVertex TopLeftVertex ( 0.0 , 0.0 , 0.0 , 1.0 , 0x800000FF); 
CTLitVertex TopLeftVertex ( ViewPortWidth , 0.0 , 0.0 , 1.0 , 0x800000FF); 
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CTLitVertex TopLeftVertex ( ViewPortWidth , ViewPortHeight , 0.0 , 1.0 , 0x800000FF); 
CTLitVertex TopLeftVertex ( 0.0 , ViewPortHeight , 0.0 , 1.0 , 0x800000FF); 

 
Note: Remember that in screen space increasing Y moves downwards towards the bottom of the 
screen. 

 
Since we want the screen quad to be rendered on the top of everything else in the frame buffer, we set 
the Z value of the vertex to 0.0. This will put it right at the front of the Z-Buffer on the near clip plane. 
We set the RHW value to 1.0 so that if we are using a W-Buffer or W-based fog (covered later), the 
distance is also calculated correctly. Remember RHW is 1/w where w is usually the view space Z 
coordinate. An RHW value of 1.0 means the Z view space Z distance was 0. An RHW value of 0.0 
means the vertex is at the back of the frustum on the far clip plane. When using a W-Buffer instead of 
a Z-Buffer it is this RHW value that is used for depth testing instead of the Z value. This gives a more 
artifact free rendering of the scene over a far distance. Although W-Buffers have been largely forgotten 
now that graphics cards support 24 and 32-bit Z buffers, the RHW value is still used to calculate the 
distance to the vertex for fog effects. 
 
The vertices defined in the above code render a blue quad over the entire viewport. Each vertex also 
contains a ½ intensity alpha value for later blending. This is exactly the approach we will use in our 
project. 
 
 
 
Handling Partial Submersion 
 
It is possible for the camera to be positioned either just above the water line or just below it. For 
example, the water line may be positioned half-way up the screen. As the player starts to sink into the 
water there comes a point at which half of their view is above the water line and half is below. In that 
case we would want the bottom half of the frame buffer to have the blue screen space quad blended 
over it, but not the top half. One might assume that we could simply take the height of the water in 
world space and convert this into screen space and use it as the height from the bottom of the screen 
for the quad. While this would work under certain circumstances, our camera can bank (roll) left and 
right and this approach would not produce correct results. So we cannot rely on the fact that the screen 
effect can even be rendered as a simple quad. The following image shows the camera positioned such 
that the viewer can see both above and below the water line at the same time. Note that the camera is 
also banked.  
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We will need to calculate the slope of the water line with relation to our camera and build a screen 
space polygon with the same slope so that it connects properly to the water plane itself. 
 
So let us now revise what we need to do to accomplish our water effect: 
 

1. Render terrain 
2. Render water quad using alpha blending 
3. Calculate the slope vector of the water on the near plane 
4. Create a screen space polygon with the correct height and slope so that it aligns with the slope 

of the water quad on the near plane. 
 

Item number 4 in the above list is slightly problematic. 
On some drivers and on some hardware we noticed that 
calculating the slope of the water line for our screen 
effect did not perfectly line up with the water plane that 
the DirectX transformation pipeline had rendered and 
clipped. This is no doubt due to epsilon errors or some 
other clipping optimization that makes the clipping 
slightly less accurate than it could be. The following 
image shows the problem that occurs when we use the 
DirectX pipeline to clip our water plane to the near 
plane. 
 
You can see gaps caused by the slight misalignment between the quad and the water polygon. To 
address this, we will do the clipping of the water plane to the near plane of the frustum ourselves to 
ensure accuracy. We also want to be sure that when we calculate the screen space height and slope of 
our screen effect quad, that it lines up exactly with the slope of the water polygon being clipped to the 
near plane.  
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The revised to-do list now looks like this: 
 

1. Render Terrain 
2. Clip water polygon to near plane of frustum 
3. Render water polygon 
4. Calculate the height and slope of the water polygon on the screen 
5. Create a screen space polygon that has a top edge that matches this height and slope 

 
 
Classifying a point against a plane 
 
As mentioned above, we will have to clip the water plane to the near plane of the frustum ourselves 
because the pipeline may not have done a sufficient job. We need this clipping to be exact so that the 
water plane and the screen effect line up exactly on the screen. 
 
Clipping a polygon to a plane is a relatively easy procedure. The first thing we need to be able to do is 
classify a point against a plane. This informs us of the distance to the plane from the point. More 
importantly in this case, the distance is a signed result which we can interpret to indicate whether the 
point is in front of the plane or behind the plane for any point where the distance is not zero. If the 
distance from the point to the plane is zero, then the point is said to lie on the plane. 
 

Note: In Chapter 1 we learned that a plane consists of a 3D unit vector describing the plane normal 
(A,B,C) and a distance value D describing the distance to the plane from the origin. Thus, we could 
store a plane using a 4D vector (where x,y,z,w map to A,B,C,D). However, the D3DX library includes a 
D3DXPlane structure defined specifically for storing planes: 
 
typedef struct D3DXPLANE 
{ 
    FLOAT a; 
    FLOAT b; 
    FLOAT c; 
    FLOAT d; 
} D3DXPLANE; 

 
 
We will need to make use of the Plane Equation to accomplish our objective. The equation can 
actually take one of two forms: 
 
Plane Equation 1:  Ax + By + Cz + D = 0 
Plane Equation 2:  Ax + By + Cz – D = 0 
 
Which one you use depends on whether the distance (D) is considered positive or negative when the 
origin is behind the plane. Let us have a look at this in a bit more detail. 
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To calculate the plane distance we perform a dot product between the plane normal and a point known 
to be on the plane. This returns a value that is negative if the origin is in front of the plane and positive 
when behind. When using the distance in this manner, we need to use Plane Equation 2 to classify a 
point in space against the plane. Often this is the more intuitive of the two. If the origin is behind the 
plane, then the distance will be positive. Remember that this is the distance you would have to travel 
along the plane’s normal vector from the origin to be at a point that was on the plane.  
 
However, many functions (including the D3DX helper functions) use Plane Equation 1. When using 
this form of the plane equation, the distance will be negative when the point is behind the plane and 
positive when it is in front. In this case the distance no longer describes the length of travel down the 
plane normal, but instead describes the length of travel down the reverse of the plane normal. This may 
be a little less intuitive but ultimately it is a matter of preference. 
 
Let us quickly look at using the two different plane representations. Remember that the only difference 
between the two is that equation 1 expects the plane distance to be positive when the origin is in front 
of the plane and equation 2 expect the plane distance to be negative when the origin is in front of the 
plane.  
 
If we use equation 2, we calculate the distance as follows: 
 

 
In this example we have a plane normal that is pointing down the positive Z axis and a point known to 
be on the plane (a polygon vertex for example). We perform the dot product between this point and the 
plane normal and get back the distance to the plane from the origin along the plane normal. We can see 
that the plane is at a distance of 20 units from the origin. Using this method, the distance is positive 
when the origin is behind the plane (on the opposite side of the plane to which the plane normal is 
facing) and negative if the point is in front of the plane.  
 
(0,0,0) + (0,0,1) * Distance = Point on Plane nearest to origin 
(0,0,0) + (0,0,1) * 20           = ( 0 , 0 , 20 ) 
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When we have our planes stored in this form, we can classify any point in space against the plane to 
find the distance of the point to the plane. We use the plane equation Ax+By+Cz-D as shown in the 
following diagram: 
 

 
 
In this equation we subtract the plane distance from the dot product of the point and the plane normal. 
If the point is in front of the plane, the distance from the point to the plane will be a positive value. If 
the point is sitting on the plane then the result will be zero. Finally if the point is behind the plane the 
result will be negative. You can see that Point B is at a distance of 9 units from the plane. Because it is 
behind the plane, its distance is negative.  
 
The other form of the plane equation is Ax+By+Cz+D. Planes can have the sign of their distance 
component flipped such that the plane distance is positive if the origin is in front of the plane and 
negative if the plane distance is behind the plane. The D3DX function D3DXPlaneDotCoord function 
classifies points against planes using this approach. The results are interpreted the same way as the first 
approach (negative if the point is behind or positive if the point is in front) but the plane distance has 
the opposite sign. So we will have the plane stored with a distance of –20 units in this case because 
origin is behind the plane instead of in front of it. 
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Because we will be using the Ax+By+Cz+D form of the plane equation, we must make sure that our 
planes have positive distance values if they are facing the origin. 
 
The D3DXPLaneDotCoord function is shown below: 

 
FLOAT D3DXPlaneDotCoord 
( 
 CONST D3DXPLANE *pP, 
 CONST D3DXVECTOR3 *pV 
); 
 
The function takes the address of a D3DXPLANE structure and the address of a 3D vector 
representing the point to be classified. The 4th component of the point will be treated as a 1.0 (making 
it a homogeneous coordinate) sp that a 4D dot product can be performed: 
 
FLOAT D3DXPlaneDotCoord ( D3DXPLANE * pP , D3DXVECTOR3 *pV) 
{ 
     return ( pP->x * pV->x ) +  ( pP->y * pV->y ) + ( pP->z * pV->z ) + (pP->d *  1.0) 
} 
 
We can interpret the result of this function as shown below. Remember that we should use a positive 
plane distance if the plane normal is facing the origin. 
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Point/Plane classification is critical because it will determine how we clip polygons to a plane. In this 
particular demo we want to clip the water polygon to the near plane of our viewing frustum in world 
space. But the technique can be used in other situations as well where clipping is needed. 
 
Let us assume that we wish to clip a triangle against a plane. We can loop through each vertex in the 
polygon and test to see if it is in front, behind, or on the plane.  Any vertex that is behind the plane will 
be clipped. New vertices will occur at the points of intersection as shown below: 
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Thus the procedure for each polygon to be clipped would be: 
 

1. Test each edge of the polygon by classifying each point in the edge against the plane 
2. If both points of the edge are in front of the plane then keep the two vertices and this entire 

edge because it is not clipped by the plane at all (Edge 3 in the above example).   
3. If both vertices in the edge are behind the plane then the edge should be completely clipped. 

Neither of these vertices will exist in the new clipped polygon. 
4. If one of the points in an edge is in front of the plane and another is behind the plane then we 

have an edge that is spanning the plane. When this is the case we must calculate the point on 
the plane where the edge intersects the plane. This point will become a new vertex which will 
replace the vertex that is behind the plane. In the above example we see that Edge 1 is spanning 
the plane. The intersection point is calculated and added to the new polygon and the original v1 
is discarded. The same happens when we check Edge 2, which is also spanning. v1 has already 
been rejected but we still need to calculate the intersection point with the plane and add it to the 
clipped polygon. 

5. We do this for each edge in the original polygon, building a new polygon as shown in the right 
hand image. 

 
The clipped polygon does not always have the same vertex count as the pre-clipped polygon, and new 
edges can be introduced on the plane (v1-v2 in the right diagram above). While this may sound 
complicated, it is actually quite simple to do. We will simply treat our edges as 3D lines and use a 
line/plane intersection test to find points of intersection. We will discuss this test shortly. 
 
Now that we understand at a high level how to clip a polygon to a plane, we can start to see how we 
can clip our water polygon to the near plane. The near plane will have a normal that is facing the 
camera in world space. Because of this, we will need to clip the water quad to the near plane such that 
only the area of the quad that exists behind the plane survives.  
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In order to study the clipping procedure in more detail, let us start analyzing some of the source code to 
Lab Project 7.1.  
 
 
CTerrain::RenderWater 
 
The RenderWater function builds, clips, and renders the water quad. We define a constant called 
WaterLevel which contains the height of the water polygon on the terrain. 
 
const float  WaterLevel  = 54.0f;    
  
This height value is defined in height map space just as the height of each pixel in the height map is. 
As such the first thing the function must do is use the terrain scale to convert the water level into the 
world space height of the water polygon. 

 
void CTerrain::RenderWater( CCamera * pCamera ) 
{ 
    CLitVertex  Points[5]; 
    int         PointCount = 0; 
 
    // Retrieve floating point world space water height 
    float WaterHeight = WaterLevel * m_vecScale.y; 
 
If we are well above the water then we can simply render the water quad as is. We only need to clip it 
if we are going to need to do an underwater screen effect. So in our demo, when the height of the 
camera is more than 10 world units above the water plane, there is no way that camera can see 
underwater and therefore no need to run the clipping operation. When this is the case then the quad is 
simply built and rendered. If the camera is even partially underwater however we need to clip the water 
polygon to the near plane. The Points array allocated at the top of the function will be used to hold the 
vertices of the clipped water polygon. 
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    // If we are close enough to the water, we need to clip 
    if ( pCamera && (pCamera->GetPosition().y - 10.0f) < WaterHeight )   
    { 
        // Build a combined projection / view matrix 
        D3DXMATRIX mtxCombined = pCamera->GetViewMatrix() * pCamera->GetProjMatrix(); 
     
        // Extract the near clipping plane. 
        D3DXPLANE NearPlane; 
        NearPlane.a = -(mtxCombined._13); 
        NearPlane.b = -(mtxCombined._23); 
        NearPlane.c = -(mtxCombined._33); 
        NearPlane.d = -(mtxCombined._43); 
        D3DXPlaneNormalize( &NearPlane, &NearPlane ); 
 
We extract the near plane in accordance with our discussion in Chapter Four. When the information is 
extracted from the matrix it is not normalized. However, a plane that has not been normalized can still 
be used with the plane equation to classify whether a point is in front or behind because the sign of the 
value returned will still be the same (although the distance value will not be). We have nevertheless 
decided to normalize the plane normal because we may need it later to correctly calculate the distance. 
 
The near plane is defined when we setup the projection matrix. It will always have a plane normal that 
points in the opposite direction of our look vector. Therefore we can think of our camera look vector as 
always pointing at the near plane (which is at some distance in front of the camera). In turn we can 
think of the near plane normal as pointing back at the camera in the opposite direction as shown in the 
previous diagram. So we will clip away any part of the water plane that is in front of the near plane and 
keep any vertices that are behind it. 
 
Our next task is to build the initial water quad. This quad is built from four pre-lit, untransformed 
vertices -- the same as the type used in the terrain itself. For simplicity we will use the 
DrawPrimitiveUP function since we only have to quickly build and render a single quad. Nevertheless, 
a vertex buffer approach would be preferred and at the end of the lesson, you should try this as an 
exercise.  
 
Our vertices will define the four corner points of the water polygon and they are placed at the four 
corner points of the terrain. Each vertex has a Y value equal to the desired height of the water level. A 
white diffuse color with an alpha value of 191(0xBF) is also included for transparency. The RGB color 
will not be used since the quad will have a water texture to provide color. Thus we will need to set the 
texture coordinate at each vertex so that each corner of the quad is mapped to the relevant corner of the 
texture. 
 
        // Build initial 4 corner vectors 
        CLitVertex vecWaterPoints[4]; 
         
        vecWaterPoints[0] = CLitVertex( 0.0f, WaterHeight, 0.0f, 0xBFFFFFFF, 0.0f, 0.0f ); 
         
        vecWaterPoints[1] = CLitVertex(0.0f, WaterHeight, m_nHeightMapHeight*m_vecScale.z, 
                                       0xBFFFFFFF, 0.0f, 1.0f); 
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        vecWaterPoints[2] = CLitVertex( m_nHeightMapWidth * m_vecScale.x, WaterHeight, 
                                        m_nHeightMapHeight * m_vecScale.z, 0xBFFFFFFF, 
                                        1.0f, 1.0f ); 
         
        vecWaterPoints[3] = CLitVertex( m_nHeightMapWidth * m_vecScale.x, WaterHeight, 
                                        0.0f, 0xBFFFFFFF, 1.0f, 0.0f ); 
 

 
 
Now we have our near plane in world space as well as our big water quad, so we can now run our 
clipping operation. The resulting polygon will be stored in the CLitVertex array ‘Points’ allocated at 
the beginning of the function. Notice that we allocated enough space for five vertices rather than four 
as you might have expected. When a quad is clipped, the resulting polygon can have an extra vertex 
added when two edges connecting to the same point intersect the plane (see diagram).  
 

 
The image on the left shows the quad before clipping and the image on the right shows the resulting 
polygon. Clipping a quad to a single plane can only introduce one new vertex (at most) in the resulting 
polygon. 
 
So we will loop through each vertex in the quad and classify it against the plane. If it is on the plane 
then it must exist in the resulting polygon, so it is added straight away. We also classify the next vertex 
because these two vertices will form an edge. We then classify the second vertex in the edge against 
the plane so that we know the location of each vertex in the edge with respect to the plane. 
 
Let us walk through a quad clipping example in theory first before we write at the actual code. 
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We loop through each vertex in the 
source polygon starting with vertex 
0. Since it is behind the plane we 
will keep it and it is added to the 
clipped polygon vertex list as the 
first vertex. Before finishing up the 
first iteration of the loop, we need to 
test that v1 is not on the opposing 
side of the plane to v0. In that case 
the edge spans the plane and 
additional work has to be done. In 
this example this is not the case, so 
we continue with the next loop 
iteration. v1 is tested and is also 
behind the plane so it is copied into 
the clipped polygon’s list. There are 
now two vertices in the clipped 
polygon vertex list. Before finishing this iteration of the loop we check if the next vertex (v2) is on the 
opposite side of the plane. Since this is indeed the case, the edge formed by v1 and v2 needs to be 
clipped. Our next job is to calculate the point on the plane where the edge intersects the plane. Once 
found, this vertex (x1) is added to the clipped polygon list and we have finished with the second 
iteration of the loop.  We move on to the third iteration where we test v2. This vertex is in front of the 
plane so it should not be added to the clipped polygon and we can skip it. Again, before leaving the 
current iteration of the loop we must check that the next vertex in the loop is not on the opposite side 
of the plane. Quite clearly we see that v2 is in front but v3 is behind and as such, a new vertex has to 
be added at the intersection point. As before, we calculate the point at which the edge v2-v3 intersects 
the plane (x2) and add it to the clipped polygon list. The clipped polygon now has four vertices in its 
list (v0, v1, x1, x2). Finally we enter the fourth and final iteration of the loop where we test v3 against 
the plane. v3 is behind the plane so it is added to the clipped polygon vertex list. We also check that 
the next vertex in the list (which has looped back round to v0) is not on the opposite side of the plane. 
However, v3 and v0 are both on the back side of the plane so our work is done.  
 
We can now look at the main loop in this function. It classifies each vertex in the source quad against 
the clip plane and copies them over into the clipped polygon array when they are behind the plane.  
 
        // Clip this quad against the plane, discard anything in front 
        for ( int v1 = 0; v1 < 4; v1++ ) 
        { 
            int v2 = (v1 + 1) % 4; 
         
            // Classify each point in the edge 
            int Location1 = 0, Location2 = 0; 
 
            float result = D3DXPlaneDotCoord(&NearPlane,(D3DXVECTOR3*)&vecWaterPoints[v1]); 
            if ( result < -1e-5f ) Location1 = -1; // Behind 
            if ( result >  1e-5f ) Location1 =  1; // In Front 
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       // Keep it if it's on plane 
            if ( Location1 == 0 ) 
            { 
                Points[ PointCount++ ] = vecWaterPoints[v1]; 
                continue; // Skip to next vertex 
            } 
             
            result = D3DXPlaneDotCoord( &NearPlane, (D3DXVECTOR3*)&vecWaterPoints[v2] ); 
            if ( result < -1e-5f ) Location2 = -1; // Behind 
            if ( result >  1e-5f ) Location2 =  1; // In Front 
 
The line that assigns a value to v2 basically says “let v2 equal v1+1 unless v1 is the last vertex in the 
quad, in which case v2 will be set to zero”. This is because the edges of the quad are formed by the 
vertices as shown below. 
 
Edge1 v0  v1 
Edge2 v1  v2 
Edge3 v2  v3 
Edge4 V3  v0  
 
So when processing edge 4, we need to loop back around to the first vertex. Note that although we are 
actually checking two vertices here, it is only the first vertex that will either be rejected or added to the 
resulting polygon. The second vertex in the edge is used only to determine whether the edge spans the 
plane. The next line checks if the current vertex is behind the plane and adds it to the new vertex array 
for the resulting clipped polygon if it is. 
 
           // If its not in front, keep it. 
           if ( Location1 != 1 ) Points[ PointCount++ ] = vecWaterPoints[v1]; 
 
If the second vertex in the edge is either on then plane or on the same side of the plane as the first 
vertex then it means the edge formed by these two vertices is not spanning. We can then continue on to 
the next iteration of the loop where the second vertex from this iteration will become the first vertex of 
the edge in the next iteration.         
 
     // If the next vertex is not causing us to span the plane then continue 
     if ( Location2 == 0 || Location2 == Location1 ) continue; 
   
If the second vertex is on the opposite side of the plane then the edge is spanning and we need to 
calculate the intersection point. This point will be come a new vertex in the polygon -- in place of the 
vertex that was in front of the plane.  
 
The D3DX library includes a function called D3DXPlaneIntersectLine which take two edge points (the 
two vertices of the edge we are processing) and a plane and returns the intersection point as a 3D 
vector. We can simply call this function using our test vertices and retrieve the intersection point 
containing the new x,y,z coordinates of the vertex we need to insert which lies on the plane (x1 or x2 
from the previous diagram). 
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D3DXVECTOR3 *D3DXPlaneIntersectLine 
(       
    D3DXVECTOR3 *pOut, 
    CONST D3DXPLANE *pP, 
    CONST D3DXVECTOR3 *pV1, 
    CONST D3DXVECTOR3 *pV2 
); 

 
While D3DX obviously makes life easier for us, this is a test worth examining since it is rather 
common and you may need to implement your own line/plane intersection routines in the future should 
you find yourself programming in an environment where D3DX is not available. So let us take a quick 
detour just to explain how this function works and then return to covering the rest of the 
CTerrain::RenderWater function. 
 
 
Line/Plane Intersection 
 
Our line will be defined by a start and end point in 3D space. We will treat each edge of the polygon as 
a line and perform a line/plane intersection. The process is quite easy to understand provided we have a 
thorough understanding of the dot product. 
 
 

 
 
In the above image you can see that EdgeStart and EdgeEnd points could be the two vertices of the 
edge that we are testing. If we subtract EdgeStart from the EdgeEnd we get a new vector that describes 
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the direction of the line from EdgeStart to EdgeEnd. The length of this vector describes the distance 
from EdgeStart to EdgeEnd. We will call this vector EdgeDirection where: 
 
EdgeDirection = EdgeEnd – EdgeStart   
EdgeEnd = EdgeStart + EdgeDirection 
 
Now we must determine where the plane intersects this line. If the line were perfectly aligned with the 
plane normal we could easily determine this by performing a classification of the EdgeStart point 
against the plane. This would return the distance to the plane shown as the solid blue line in the above 
diagram. While this is not the case, we can still use this value. With the distance to the plane along the 
plane normal, we can calculate how long our EdgeDirection line would be if it was rotated to be 
aligned with the plane normal. We can determine this by performing the dot product between the 
EdgeDirection line (the green line) and the plane normal. This will scale the EdgeDirection line by the 
cosine of the angle between the plane normal and the EdgeDirection vector and give us the projected 
length of the EdgeDirection vector along the normal. In other words, this would give us the distance 
from the EdgeStart point to the EdgeEnd point if the line had been rotated to be aligned with the plane 
normal. 
 
Because we know the distance from the EdgeStart point to the plane and we know the distance from 
the EdgeStart point to the Projected EdgeEnd point along the plane normal, dividing the Projected 
EdgeEnd point by the Distance to the plane from the EdgeStart point will return a value between 0.0 
and 1.0. This value describes how far along the line the intersection has happened (where 0.0 is the 
EdgeStart point and 1.0 is EdgeEnd). If the plane intersected the line exactly halfway between 
EdgeStart and EdgeEnd this value would be 0.5. Because this value describes the intersection as a 
percentage, we have called the variable that receives the result ‘Percent’ in the following code. Once 
we know how far along the projected line (the line aligned with the normal) the intersection occurs we 
know that the intersection along the real line occurs at the same place. Therefore we can use the 
parametric form of a line to determine the final point of intersection: 
 
Intersection = EdgeStart + (EdgeDirection * Percent) 
 
EdgeDirection is the vector describing the direction and magnitude of the line and percent describes 
how far along this line (between 0.0 and 1.0) the intersection happens.  The following function shows 
how one might write a LinePlaneIntersection function that works the same way as the 
D3DXPlaneIntersectLine function 
 
D3DXVECTOR3 * PlaneIntersectLine (D3DXVECTOR3 *Intersection , D3DXPLANE * Plane,  

       D3DXVECTOR3 *EdgeStart, D3DXVECTOR3 *EdgeEnd) 
{ 
      D3DXVECTOR3 Normal; 
      Normal.x = Plane->a ;  Normal.y = Plane->b ;  Normal.z = Plane->c;  
      D3DXVECTOR3 EdgeDirection               = *LineEnd – *LineStart; 
      float                ProjectedEdgeLength     = D3DXVec3Dot ( &Direction , &Normal ); 
      float                DistanceToPlane            = D3DXVex3Dot ( EdgeStart , &Normal ) + Plane->d; 
      float                Percent                         = DistanceToPlane / EdgeLength; 
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       *Intersection = *EdgeStart + ( EdgeDirection * Percent ); 
} 
 
Let us now return to our RenderWater function. We left off when we found an edge intersecting the 
plane. This means we need to add the intersection point to the vertex list of the clipped polygon so we 
call D3DXPlaneIntersectLine to calculate this point: 
 
 // Calculate the intersection point 
 D3DXVECTOR3 vecIntersection; 
 D3DXPlaneIntersectLine( &vecIntersection, &NearPlane, (D3DXVECTOR3*)&vecWaterPoints[v1], 
                        (D3DXVECTOR3*)&vecWaterPoints[v2] ); 
 
When this function returns, the vecIntersection variable will contain the x,y,z coordinates in world 
space for the new vertex of our clipped water quad. We build our final vertex using this position value 
and the correct color and alpha values: 
         
 // This is our new point 
Points[PointCount].x = vecIntersection.x; 
Points[PointCount].y = vecIntersection.y; 
Points[PointCount].z = vecIntersection.z; 
Points[PointCount].Diffuse = 0xBFFFFFFF; 
 
At this point we will need to address what to do about the texture coordinates. As you might suspect, 
texture coordinates will also need to be clipped as well. For example if the first vertex had UV 
coordinates (0.5, 0.0) and the second had UV coordinates of (1.5, 1.0) and the plane intersected the 
edge exactly halfway through the length of the edge, then the texture coordinates would have to be 
interpolated to find the new UV coordinates -- which would be (1.0 , 0.5) in this case.  
 
Clipping texture coordinates is very similar to clipping line vertices. In this case, it is actually very 
simple to do because we have the original edge and the new edge. All we have to do is calculate the 
length of the original unclipped edge and the length of the new clipped edge. The unclipped edge is a 
vector created using v1 – v0 and the clipped edge vector can be created by doing Vx – v0 where Vx is 
the new vertex that we have just created which is positioned somewhere along the vector v1-v0. Once 
we have the unclipped and clipped edge vectors we can calculate their lengths. By dividing the length 
of the clipped edge by the length of the unclipped edge, we can determine how far along the original 
edge the intersection happened as percentage between 0.0 and 1.0.   
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The image above shows the edge of a triangle that has intersected a plane and has had the new vertex 
inserted on the plane (Vx). New UV coordinates must now be generated.  
 
The first thing we do is calculate the length of the unclipped edge and the length of the clipped edge. 
 
UnclippedEdgeVector = V1 – V0 = ( 10 , -10 , 0 ) 
ClippedEdgeVector     = Vx - V0 = (  5   , -5   , 0 ) 
 
Next we calculate the length of each vector. In this case the results are: 
 
UnclippedEdgeLength = 14.142136  
ClippedEdgeLength     = 7.071068  
 
If we divide the clipped edge length by the unclipped edge length we get a value between 0.0 and 1.0 
describing how far along the unclipped edge the new vertex was inserted. 
 
Percent = ClippedEdgeLength / UnclippedEdgeLength 
Percent = 7.071068 / 14.142136 = 0.5 
 
We can visually see that the result is correct because the inserted vertex is indeed halfway along the 
unclipped edge vector in the above diagram.  
 
So in this example we know that the new vertex is halfway along the edge. We also know that the 
texture coordinates stored at each of the original vertices form an edge in texture space too. Therefore, 
we can create a 2D vector using the texture coordinates in the unclipped edge and scale it by the 
percent (0.5 in this example) to offset it from the coordinates in the edge: 
 
Vx.tu = v0.tu + ((v1.tu – v0.tu ) * Percent ) 
Vx.tv = v0.tv + ((v1.tv – v1.tv ) * Percent )  
 
Using the values from the above diagram: 
 
Vx.tu = 0.5 + ((1.0 – 0.5 ) * 0.5 ) =  0.5 + 0.25 = 0.75   
Vx.tv = 0.2 + ((0.8 – 0.2 ) * 0.5 ) =  0.2 +  0.3  = 0.5 
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The code that calculates the texture coordinates for the new vertex follows. 
 
   // Calculate the texture coordinates. 
   float LineLength = D3DXVec3Length( &((D3DXVECTOR3&)vecWaterPoints[v2] -   
                                      D3DXVECTOR3&)vecWaterPoints[v1]) ); 
 
   float Distance = D3DXVec3Length(&(vecIntersection - (D3DXVECTOR3&)vecWaterPoints[v1])); 
 
   float dist_len = Distance / LineLength; 
 
   Points[PointCount].tu =  
     vecWaterPoints[v1].tu + ((vecWaterPoints[v2].tu-vecWaterPoints[v1].tu)* dist_len);             
 
   Points[PointCount].tv =  
     vecWaterPoints[v1].tv + ((vecWaterPoints[v2].tv - vecWaterPoints[v1].tv) * dist_len);           
 
   PointCount++; 
             
  } // Next Vertex 
 
} // End if Clip water 
     
This is it for the clipped case. We do this for each vertex in the quad that requires clipping and at the 
end of the loop we have a new polygon stored in the Points[] array. We will render this new polygon in 
a moment. 
 
If the quad does not need to be clipped then we can build the unclipped quad into the Points[] array. 
The quad will be rendered in its entirety because it cannot possibly intersect the near plane. 
 
else 
{ 
       Points[PointCount++] = CLitVertex(0.0f, WaterHeight, 0.0f, 0xBFFFFFFF, 0.0f, 0.0f); 
 
       Points[PointCount++] = CLitVertex(0.0f,WaterHeight,m_nHeightMapHeight*m_vecScale.z, 
                                         0xBFFFFFFF, 0.0f, 1.0f ); 
  
       Points[ PointCount++ ] = CLitVertex( m_nHeightMapWidth * m_vecScale.x, WaterHeight, 
                                            m_nHeightMapHeight * m_vecScale.z, 
                                            0xAFFFFFFF, 1.0f, 1.0f ); 
  
       Points[ PointCount++ ] = CLitVertex( m_nHeightMapWidth * m_vecScale.x, WaterHeight, 
                                            0.0f, 0xBFFFFFFF, 1.0f, 0.0f ); 
}  

 
To render the water polygon we need only one texture stage (stage 0). However in this demo (if the 
device supported single pass multi texturing), the second texture stage will currently contain the terrain 
detail texture. We will need to disable this texture stage to render the water plane because we want the 
alpha and RGB output from stage 0 to be used directly by the rasterizer.  
 
    // Disable second texture stage if in use 
    if(m_bSinglePass)  
        m_pD3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE ); 
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If the Points[] array has less than three vertices in it, then it means the water polygon has been 
completely clipped by the near plane and we do not need to render anything.   
 
    if ( PointCount > 2 ) 
    { 
      
We set the alpha pipeline of stage 0 to extract the alpha value from the vertices. The color operation in 
stage 0 simply uses the RGB value sampled from the texture. 
   
       // Setup alpha states and RGB states for rendering water 
        m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE ); 
        m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
         
        m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
        m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_SELECTARG1 ); 
 
Next we enable alpha blending with the frame buffer and configure the source and destination blend 
render states so that the alpha output from the stage is used to mix the RGB color sampled from the 
water texture with the current contents of the frame buffer. This will provide a blue tint to the terrain 
pixels that can be seen through the water polygon. 
 
        m_pD3DDevice->SetRenderState( D3DRS_SRCBLEND , D3DBLEND_SRCALPHA ); 
        m_pD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
 
 
We set the water texture in stage 0 and inform the device that we will be using pre-lit vertices be 
setting the FVF. 
 
        // Set our water texture into stage 0 
        m_pD3DDevice->SetTexture( 0, m_pWaterTexture ); 
      
        // Set the FVF code for the water mesh. 
        m_pD3DDevice->SetFVF( LITVERTEX_FVF ); 

 
Unlike normal polygons that we wish to have back face culled, we want the water polygon to be 
rendered from the front and the back. If we left back face culling enabled when the camera went 
underneath the water the water polygon would not be seen from underneath and the surface would 
disappear once we were underneath it. Instead we prefer to be able to see the water surface from 
beneath as shown next. 
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To disable back face culling, we simply set the appropriate render state.        
 
        // Disable back face culling (so we see it from both sides)  
        m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE ); 
 
We render the water polygon as a triangle fan using the DrawPrimitiveUP function (see Chapter Two). 
We pass in the number of primitives we wish to draw which (remember for a fan this is 
NumberOfVerts-2), and we pass in the Points[] array containing the vertices. The last parameter 
informs the device about the size of each vertex structure in bytes so that it can quickly move from one 
vertex to the next. Note that we could also reorder the vertices if we wanted to keep backface culling 
on, but it is nice to know how to turn it off and on, just in case. 
         
        // Render polygon 
        m_pD3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 
                                      PointCount - 2, Points, sizeof(CLitVertex)); 
 
Finally we disable alpha blending and re-enable back face counter-clockwise culling so that the terrain 
is rendered correctly in the next frame.  
 
        // Reset states 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE ); 
        m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
  
    } // if pointcount>2 
 
 
If the camera is in the water (intersecting or completely underneath), we will need to render our screen 
effect.  We call the CCamera::RenderScreenEffect function to draw the T&L alpha blended quad. This 
function will be covered in a moment. 
 
    // Render alpha blended quad if we are underwater 
    if ( pCamera && (pCamera->GetPosition().y - 10.0f) < WaterHeight )   
    { 
        pCamera->RenderScreenEffect(m_pD3DDevice,CCamera::EFFECT_WATER, 
                                    *(ULONG*)(&WaterHeight) ); 
         
    } // End if render water effect 
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We re-enable the color operations in the second texture stage again if the device is using single pass 
multi- texturing because we disabled it to render the water polygon. If we did not do this, the next time 
the terrain was rendered the detail texture would be missing. Note that this render state inter-
dependency can be prone to bugs, so we will introduce a system in the next course to allow for proper 
state management across scene objects. 
 
    // Re-enable second texture stage if required 
    if ( m_bSinglePass ) 
         m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLOROP, GetGameApp()->GetColorOp() 
); 
} 
 
The full code listing for this function follows for easier reading: 
 
void CTerrain::RenderWater( CCamera * pCamera ) 
{ 
    CLitVertex  Points[5]; 
    int         PointCount = 0; 
 
    // Retrieve floating point water height 
    float WaterHeight = WaterLevel * m_vecScale.y; 
     
    // If we are close enough to the water, we need to clip 
    if ( pCamera && (pCamera->GetPosition().y - 10.0f) < WaterHeight )   
    { 
        // Build a combined projection / view matrix 
        D3DXMATRIX mtxCombined = pCamera->GetViewMatrix() * pCamera->GetProjMatrix(); 
     
        // Extract the near clipping plane. 
        D3DXPLANE NearPlane; 
        NearPlane.a = -(mtxCombined._13); 
        NearPlane.b = -(mtxCombined._23); 
        NearPlane.c = -(mtxCombined._33); 
        NearPlane.d = -(mtxCombined._43); 
        D3DXPlaneNormalize( &NearPlane, &NearPlane ); 
 
        // Build initial 4 corner vectors 
        CLitVertex vecWaterPoints[4]; 
        vecWaterPoints[0] = CLitVertex(0.0f, WaterHeight, 0.0f, 0xBFFFFFFF, 0.0f, 0.0f); 
        vecWaterPoints[1] = CLitVertex(0.0f,WaterHeight, 
                                       m_nHeightMapHeight*m_vecScale.z, 
                                       0xBFFFFFFF, 0.0f, 1.0f ); 
        vecWaterPoints[2] = CLitVertex(m_nHeightMapWidth * m_vecScale.x, WaterHeight, 
                                       m_nHeightMapHeight * m_vecScale.z, 
                                       0xAFFFFFFF, 1.0f, 1.0f ); 
        vecWaterPoints[3] = CLitVertex(m_nHeightMapWidth * m_vecScale.x, WaterHeight, 
                                       0.0f, 0xBFFFFFFF, 1.0f, 0.0f ); 
 
        // Clip this quad against the plane, discard anything in front 
        for ( int v1 = 0; v1 < 4; v1++ ) 
        { 
           int v2 = (v1 + 1) % 4; 
         
           // Classify each point in the edge 
           int Location1 = 0, Location2 = 0; 
 
           float result = D3DXPlaneDotCoord(&NearPlane,(D3DXVECTOR3*)&vecWaterPoints[v1] ); 
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            if ( result < -1e-5f ) Location1 = -1; // Behind 
            if ( result >  1e-5f ) Location1 =  1; // In Front 
            
            // Keep it if it's on plane 
            if ( Location1 == 0 ) 
            { 
                Points[ PointCount++ ] = vecWaterPoints[v1]; 
                continue; // Skip to next vertex 
            }  
         
            result = D3DXPlaneDotCoord( &NearPlane, (D3DXVECTOR3*)&vecWaterPoints[v2] ); 
            if ( result < -1e-5f ) Location2 = -1; // Behind 
            if ( result >  1e-5f ) Location2 =  1; // In Front 
 
            // If its not in front, keep it. 
            if ( Location1 != 1 ) Points[ PointCount++ ] = vecWaterPoints[v1]; 
         
          // If the next vertex is not causing us to span the plane then continue 
     if ( Location2 == 0 || Location2 == Location1 ) continue; 
      
     // Calculate the intersection point 
          D3DXVECTOR3 vecIntersection; 
          D3DXPlaneIntersectLine( &vecIntersection, &NearPlane, 
                                  (D3DXVECTOR3*)&vecWaterPoints[v1], 
                                  (D3DXVECTOR3*)&vecWaterPoints[v2] ); 
 
            // This is our new point 
            Points[PointCount].x = vecIntersection.x; 
            Points[PointCount].y = vecIntersection.y; 
            Points[PointCount].z = vecIntersection.z; 
            Points[PointCount].Diffuse = 0xBFFFFFFF; 
 
            // Calculate the texture coordinates. 
            float LineLength = D3DXVec3Length( &((D3DXVECTOR3&)vecWaterPoints[v2] – 
                                                (D3DXVECTOR3&)vecWaterPoints[v1]) ); 
             
            float Distance = \ 
                     D3DXVec3Length(&(vecIntersection-(D3DXVECTOR3&)vecWaterPoints[v1])); 
             
            Points[PointCount].tu=vecWaterPoints[v1].tu+ 
                ((vecWaterPoints[v2].tu-vecWaterPoints[v1].tu) * (Distance / LineLength)); 
             
            Points[PointCount].tv=vecWaterPoints[v1].tv+((vecWaterPoints[v2].tv- 
                                  vecWaterPoints[v1].tv) * (Distance / LineLength)); 
            PointCount++; 
             
        } // Next Vertex 
 
    } // End if Clip water 
    else 
    { 
        Points[PointCount++] = CLitVertex(0.0f, WaterHeight, 0.0f, 0xBFFFFFFF, 0.0f, 0.0f); 
        Points[PointCount++] = CLitVertex(0.0f,  WaterHeight, 
                                          m_nHeightMapHeight * m_vecScale.z, 
                                          0xBFFFFFFF, 0.0f, 1.0f ); 
        Points[PointCount++] = CLitVertex(m_nHeightMapWidth * m_vecScale.x, WaterHeight, 
                                          m_nHeightMapHeight*m_vecScale.z, 
                                          0xBFFFFFFF,1.0f,1.0f); 
        Points[PointCount++] = CLitVertex(m_nHeightMapWidth * m_vecScale.x, WaterHeight, 
                                          0.0f, 0xBFFFFFFF, 1.0f, 0.0f ); 
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    } // End if Just Build unclipped 
 
    // Disable second texture stage if in use 
    if ( m_bSinglePass ) 
         m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLOROP, D3DTOP_DISABLE ); 
     
    if ( PointCount > 2 ) 
    { 
        // Setup alpha states for rendering water 
        m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE ); 
        m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
        m_pD3DDevice->SetRenderState( D3DRS_SRCBLEND , D3DBLEND_SRCALPHA ); 
        m_pD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
 
        // Set our water texture into stage 0 
        m_pD3DDevice->SetTexture( 0, m_pWaterTexture ); 
      
        // Set the FVF code for the water mesh. 
        m_pD3DDevice->SetFVF( LITVERTEX_FVF ); 
         
        // Disable back face culling (so we see it from both sides)  
        m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE ); 
         
        // Render polygon 
        m_pD3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 
                                      PointCount - 2, Points, sizeof(CLitVertex)); 
 
        // Reset states 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE ); 
        m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW ); 
     }  
 
    // Render alpha blended quad sreen effect if we are underwater 
    if ( pCamera && (pCamera->GetPosition().y - 10.0f) < WaterHeight )   
    { 
        pCamera->RenderScreenEffect(m_pD3DDevice, CCamera::EFFECT_WATER, 
                                    *(ULONG*)(&WaterHeight) ); 
     }  
 
    // Re-enable second texture stage if required 
    if ( m_bSinglePass )  
         m_pD3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, GetGameApp()->GetColorOp()); 
} 
 
Rendering the water quad was certainly a bit more complicated than we might have first imagined. 
However, we did manage to learn some important new concepts in trying to address the problems. For 
example, we now know how to clip polygons to planes (view frustum or otherwise). This is a 
technique that will come in handy down the road when we study spatial partitioning and advanced data 
structures. We also learned how find the intersection point of a ray with a plane. This can also prove to 
be useful later on when we need to develop collision systems. So while we had to go down a slightly 
bumpy road, the journey was worth the effort.  
 
Note that many games forbid you from doing having a partially submerged camera by automatically 
pushing the player all the way under as soon as they enter the water. If you decided to employ such a 
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strategy as well, you could remove the clipping code from the above function -- reducing the code to a 
mere fraction of its current size. It is nice however to know how to handle the transition if you wish to 
do it the way we did.  
 
Of course, we are not quite done with our water rendering. We still need to examine the code that 
handles the underwater effect.  
 
 
CCamera::RenderScreenEffect 
 
This function renders an alpha blended polygon over the section of the frame buffer which is perceived 
to be underneath the water plane. Because the camera may be rolled or pitched to any arbitrary angle 
this means we will have to also clip this 2D polygon to get the correct slope of the horizon on the top 
edge of the quad. We want it to align with the water polygon just rendered in the last function. 
 

The image on the left shows the effect in action. 
Although it is hard to see in the image, we are half in and 
half out of the water. The actual water quad would be 
seen as a thin blue line going diagonally across the screen 
because we are looking at a cross section of an extremely 
thin polygon. What the RenderScreenEffect function will 
do is fill all the area in the frame buffer that is underneath 
the water line with a blue polygon (alpha blended). This 
transforms the water from being perceived as a thin 
polygon to looking and feeling like a volume of water. 
This involves calculating the water line that the water 

polygon forms on the near plane, building a screen space quad, and clipping it to this line. We then 
alpha blend the quad with the frame buffer and we are done. It certainly sounds easy enough to do but 
there is a little more to it than you might expect, so we will step through the code a section at a time.  
 

 

void CCamera::RenderScreenEffect( LPDIRECT3DDEVICE9 pD3DDevice, SCREEN_EFFECT Effect,  
                                  ULONG Value ) 
{ 

  CTLitVertex Points[5];   
    int         PointCount = 0; 
 
   pD3DDevice->SetRenderState( D 3DRS_ZENABLE, D3DZB_FALSE ); 

he function takes a pointer to a device, a SCREEN_EFFECT parameter, and a value that describes the 
 
T
height of the water. The reason these parameters sound generic is so that we can implement different 
effects in the future. The second parameter is of type SCREEN_EFFECT which is defined in CCamera.h 
as an enumerated type. Currently the only member of the enumerated type is EFFECT_WATER which is 
the value passed into function by the CTerrain::RenderWater function. The third parameter is passed 
the water height value in world space from the CTerrain::RenderFunction. 
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The first thing we do is allocate an array of 5 pre-transformed and pre-lit vertices (screen space 
vertices). There are 5 points because the screen space quad may have to be clipped to emulate the 
water line of the water quad and as we discovered in the previous function, clipping a quad to a plane 
can introduce an additional vertex. 
 
We disabled the Z-Buffer by setting the render state (D3DRS_ZENABLE) to D3DZB_FALSE. While 
we could have just disabled z-writing, there is little point in performing all of the extra per-pixel depth 
tests in this case since we know that nothing will occlude this polygon. Also note that it will be the last 
thing we render in our scene so that nothing will overdraw the water pixels either.  
 
Next we check the value of the SCREEN_EFFECT parameter passed in to make sure that it is 
EFFECT_WATER (currently the only defined screen effect in our camera class). If you decide to add 
new effects to the camera class yourself, you can add additional cases to the following switch 
statement. The first thing we do is extract the near plane from the projection matrix as we did in the 
previous function. 
 
    switch ( Effect ) 
    { 
        case EFFECT_WATER: 
        { 
            D3DXVECTOR3 vecPoint[2], PlaneNormal; 
            float       DistFromPlane, LineLength; 
 
            // Retrieve floating point water height 
            float WaterHeight = *(float*)(&Value); 
             
            // Build a combined projection / view matrix 
            D3DXMATRIX mtxCombined = m_mtxView * m_mtxProj; 
             
            // Extract the near clipping plane. 
            D3DXPLANE NearPlane; 
            NearPlane.a = -(mtxCombined._13); 
            NearPlane.b = -(mtxCombined._23); 
            NearPlane.c = -(mtxCombined._33); 
            NearPlane.d = -(mtxCombined._43); 
            D3DXPlaneNormalize( &NearPlane, &NearPlane ); 
             
            // Store plane normal for easy access later on. 
            PlaneNormal = D3DXVECTOR3( NearPlane.a, NearPlane.b, NearPlane.c ); 
             
It is now time to create our screen effect polygon which may or may not need to be clipped depending 
on the position and orientation of the camera. If the near plane is totally or partially in the water then a 
screen effect polygon will be needed.  
 
First there is the case where a quad covering the entire frame buffer is needed. This happens when the 
camera is completely submerged. We compute the dot product between the near plane normal and the 
water polygon normal (0,1,0) to see if the near plane and the water polygon are coplanar. There are two 
cases when the near plane will be coplanar:  

1. when the camera is looking directly down at the water  
2. when the camera is looking directly away from the water up into the sky 
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In the first case where the camera is looking down at the water, the two normals will be the same and 
the dot product will return 1.0 (approximately) as shown next: 
 

 
 
The second case has the camera facing directly away from the water and the dot product of the two 
vectors would return approximately –1.0. (We say ‘approximately’ because we will use an epsilon 
value of 0.0001 for such comparisons to provide tolerance for floating point inaccuracies). Below you 
can see the second coplanar case where the camera is facing away from the water; the near plane 
normal and the water normal have opposing directions.    
 

 
 
So the first thing we will do is check if the dot product between the two vectors is either –1 or 1 by 
getting the absolute value of the dot product and subtracting from 1.0. If the value is approximately 0.0 
then the camera is either facing the water or facing away from the water directly. If either is true, then 
we know that the screen effect quad will not need to be clipped, even if the camera is in the water. You 
can see that in the first of the two coplanar images above, even if we nudged the near plane down so 
that it is in the water, it will be either under the water or not -- but it cannot be partially in the water. 
We use an epsilon of 1e-3f (0.0003) for checking zero with tolerance. 
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            // If the near plane and water plane are 'almost' coplanar 
            // then we will have problems, so we should test for this case 
            float fDot = fabsf(D3DXVec3Dot( &PlaneNormal, &D3DXVECTOR3( 0, 1, 0 ) )); 
             
            if ( (1.0f - fDot) < 1e-3f ) 
            { 

 
Because the image is rendered on the near plane we must check that it is not in the water. Note that this 
is different than checking the camera position itself, which is always slightly behind the near plane. We 
simply calculate the distance from the camera position to the near plane (using the 
D3DXPlaneDotCoord function) and slide the camera position backwards along the near plane normal. 
We now have a point that is on the plane. We can check whether this point is below the water line or 
not. Note that in the following code we only project the y component of the camera position onto the 
near plane. This is because we only need to know if the y value of the projected point is above or 
below the water line. 
 
                // Project a point, from the camera pos out to the near plane itself 
                // (we only compute the y component here, because we only need the height) 
                float Point = \ 
                      m_vecPos.y+(-PlaneNormal.y*D3DXPlaneDotCoord(&NearPlane,&m_vecPos )); 
                 
Once we have the height of the near plane in world space we to check whether it is under the water or 
not. If not, we can break from the EFFECT_WATER case because there is nothing to do. 
 
                // If this point is above the water line, then bail 
                if ( Point > WaterHeight ) break; 
 
When the near plane is underneath water, we need to render a large blue transparent quad over the 
frame buffer. We are going to use T&L vertices to define the quad in screen space coordinates. So we 
build the four vertices of our quad and store them in the ‘Points[]’ array where they will be rendered 
from later in the function. The four vertices have X and Y values that map to the four corners of the 
frame buffer and all have Z-Buffer values of 0.0. The fourth value is the RHW value which we 
described as being 1/view space z. We set this value to 1.0 as discussed. Finally we set the color of 
each vertex to 0xBF547686 which is color ARGB (191, 84, 118, 134). This gives us a murky 
bluish/green color with ¼ transparency. 
 
                // We should render, so simply build the 4 points 
                Points[PointCount++]=CTLitVertex((float)m_Viewport.X,(float)m_Viewport.Y, 
                                                  0.0f, 1.0f, 0xBF547686); 
                 
                Points[PointCount++]=CTLitVertex((float)m_Viewport.X + m_Viewport.Width,  
                          (float)m_Viewport.Y,  
                                                   0.0f, 1.0f, 0xBF547686 ); 
                 
                Points[PointCount++]=CTLitVertex((float)m_Viewport.X+m_Viewport.Width, 

                                          (float)m_Viewport.Y+m_Viewport.Height, 
                                           0.0f,1.0f, 0xBF547686); 

                 
                Points[PointCount++]=CTLitVertex((float)m_Viewport.X, 

                                          (float)m_Viewport.Y + m_Viewport.Height, 
                                                 0.0f, 1.0f, 0xBF547686); 
            } // End if coplanar 
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The coplanar case is nice and easy because we either render a quad or not depending on the height of 
the camera. If the near plane and water polygon are not coplanar however then it means the camera 
may be partially submerged and possibly even rolled such that the water line travels diagonally across 
the screen. We will need to calculate this water line and clip our screen effect quad so that it reflects 
this water line properly. 
 
           else 
           { 
                D3DXVECTOR3 vecIntersect[2], vecRight, vecOut; 
                 
To calculate the slope of the water line we use the camera right vector and flatten it onto the water 
plane. We make sure to still keep it aligned with the camera actual right vector. We do this by 
performing a cross product between the camera look vector and the water plane’s normal. This will 
return a unit vector which is perpendicular to the two input vectors. The code to calculate this vector is 
shown below. 
 
                D3DXVec3Cross( &vecRight, &D3DXVECTOR3( 0, 1, 0), &m_vecLook ); 
                 
The image below shows a camera that is half in and half out of the water, intersecting the water at a 
complex angle. The diagram also depicts the orientation of the camera look and right vectors at this 
point. 
 

 
 
The next image shows what this new flattened right vector (vecRight) would look like. 
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If we converted this vector into camera space, it would describe the slope of the water on the screen. 
Try it for yourself in your head. Imagine rotating the camera in the image above so that it is facing 
perfectly to the right on the page. Also imagine that you rotated all the vectors and the water plane by 
the same amount when rotating the camera. The flattened right vector and the water polygon would 
now be sloping downwards. The camera right and the flattened right vector would thus describe the 
direction of the slope the water makes on the monitor screen. We will see this being used in a moment. 
 
Next we will need another vector which describes the orientation the camera is facing along the water 
polygon plane. You can think of this as being the camera look vector flattened onto the water plane. 
We perform the cross product on the water polygon normal (0,1,0) and the flattened right vector we 
just calculated to produce the new vector (vecOut).  
 

D3DXVec3Cross( &vecOut, &m_vecRight, &D3DXVECTOR3( 0, 1, 0) ); 
 
The image below shows us what this new vector would look like: 
 

 
 
We now have new right and look vectors projected onto the water polygon plane. These vectors remain 
(partially) aligned to the camera look and up vectors.  We will see why we need these vectors in a 
moment. 
 
Next we need to project the camera position onto the water plane. To do this we set the Y component 
of the camera position to the water height in world space. This provides a world space point that is on 
the water polygon and directly underneath the camera. 
  
                // Project a point (vecPoint[0]) onto the near plane, at the water level. 
                vecPoint[0] = D3DXVECTOR3( m_vecPos.x, WaterHeight, m_vecPos.z ); 
 
If this is hard to imagine, the following image should help. We have taken some liberties with the 
diagram so that we can see things more clearly. The camera is nudged up just out of the water purely 
for demonstration purposes. In reality, the camera would be much closer to the water plane.   
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The projected point which was stored in the 
variable ‘vecPoint[0]’ now sits nicely on the 
water at the center of the axes formed by the 
flattened look and right vectors and the water 
plane normal. 
 
We also see a representation of the world 
space near plane positioned in front of the 
camera. You can think of it as the frame buffer 
converted into world space. Everything that is 
rendered is always rendered on the near plane 
so this is not a really bad analogy. Although 
planes are infinite, we see only a section of the 

near plane. This can be thought of as the projection window on the near plane. Recall from Chapter 
One that any projection coordinates that end up in the range of –1.0 to 1.0 are considered to be inside 
the projection window and rendered to the screen. 
 
Our next job is to take this point on the water and project it along the flattened look vector such that it 
sits on the near plane at its center. 
 

 
 
The above image shows us that in order to do this we need to find the distance from our point to the 
near plane along the flattened look vector. We know that to get the distance from a point to a plane we 
can use the D3DXPlaneDotCoord function. However the problem with this function is that it provides 
the shortest distance from the point to the plane along the plane normal as shown by the green arrow in 
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the above diagram. But in our case we need to calculate the distance along the flattened look vector, 
not the plane normal, as shown by the red arrow above. The solution is easy enough. We first calculate 
the distance to the plane using the D3DXPlaneDotCoord function. This returns the distance to the 
plane from the point along the plane normal. Once we have this distance to the plane we can perform 
the dot product on the flattened look vector and the reversed plane normal. This will return the cosine 
of the angle between the two vectors. We can then use this to scale the distance to the plane such that it 
describes the distance to the plane along the flattened look vector. This technique of calculating the 
distance to a plane along an arbitrary vector is shown below. 
 

 
In this example we used the D3DXPlaneDotCoord function to return the distance from the point 
(vecPoint[0]) to the plane. The result was a distance of 10 units. This is how far we would need to 
move vecPoint[0] along the red dotted line for it to sit on the plane. Next we flip the sign of the plane 
normal so that both vectors are pointing in the same direction. A dot product between the unit length 
flattened look vector (vecOut) and the unit length reverse plane normal is performed. It returns the 
cosine of the angle between the vectors. Because the cosine will be 1.0 when the vectors are the same 
and some smaller value between 0.0 and 1.0 when there is any angle between them, this is the opposite 
of what we want. As the angle increases between the vectors you can see that the length of the blue 
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dotted line in the above diagram would actually increase. This means we would need to push the point 
a larger distance along this line for it to hit the plane. As the angle grows between the vectors, the 
cosine of the angle becomes smaller. Scaling the distance with this value would make it smaller and 
not larger as it should. This is easy enough to remedy. We simply multiply distance by the inverse 
(1/CosineOfAngle). In this case, as the angle between the vectors becomes larger, the distance is scaled 
by a greater amount. Once we have the projected distance to the plane, we can simply move 
vecPoint[0] along the flattened look vector (vecOut) by this amount. The code is shown below. 
 
                // Project the water point onto the plane along the vecOut 
                DistFromPlane  = D3DXPlaneDotCoord( &NearPlane, &vecPoint[0] ); 
                DistFromPlane *= (1 / D3DXVec3Dot( &(-PlaneNormal), &vecOut )); 
                 
                // Shift the point forward so that it sits on the plane. 
                vecPoint[0] += vecOut * DistFromPlane; 
 
We now have a point that is centered on the world space near plane at the height of the water. The 
flattened right vector we calculated earlier describes the direction to the right (and left if we negate this 
vector) of the camera aligned with the water plane. What we will do now is create two extreme points 
off to the far right and far left of the camera, whilst remaining on the water plane. 
 
                //Shift this projected point to the left and right 

         //to get our two intersection points 
                vecIntersect[0] = vecPoint[0] - (vecRight * 1000.0f); 
                vecIntersect[1] = vecPoint[0] + (vecRight * 1000.0f); 
 

 
The two vecIntersect[] points are calculated by 
taking the near plane center point on the water 
line that we just calculated and shunting it 
forwards and backwards along the flattened 
right vector. The exact distance we shunt does 
not really matter as long as it is a large enough 
amount to ensure that when the points are 
converted into projection space, they lay well 
outside the projection window on each side. 
The image on the left shows what 
vecIntersect[0] and vecIntersect[1] now look 
like in world space. The image is not to scale 
since the two points would actually be 
projected out much further to the left and right 

of the camera. All that really matters is that these points are moved outside the camera FOV. Another 
very important point is that these points are still on the water polygon plane. When these points are 
converted into projection space (and later screen space) they will define the two end points of a line. 
This line defines the slope of the water in screen space.  
 
Our next job is to convert these world space end points into view space and then into projection space. 
We do this by multiplying the points with the view matrix and the projection matrix. We already have 
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a combined view/projection matrix available which we used to extract the world space view plane, so 
let us multiply the two end points (vecIntersect[0] and vecIntersect[1]) by this combined matrix. This 
will convert the vertices into projection space. Points in the –1 to +1 range on both the X and Y axis 
are considered to be inside the projection window and within the camera FOV. 
 
                // Project the two intersection points into 'Projection' space 
                D3DXVec3TransformCoord( &vecPoint[0], &vecIntersect[0], &mtxCombined ); 
                D3DXVec3TransformCoord( &vecPoint[1], &vecIntersect[1], &mtxCombined ); 

 
The projection space water line end points are stored in vecPoint[0] and vecPoint[1].  As these are in 
projection space, we may as well define our initial screen quad in projection space too and perform the 
clipping there. Once we have the clipped projection space polygon, we can convert the projection 
space vertices into screen space and render. 
 
Recall from Chapter One that in projection space, the entire visible area of the screen can be defined 
with (X, Y) coordinates in the –1 to +1 range. Coordinate (0, 0) is at the center of the screen, 
coordinate (-1, -1) is the bottom left corner of the screen and coordinate (1, 1) is the top right corner of 
the screen. With this information we can quickly figure out how to build our projection space quad. It 
is simply a square where the top left corner vertex coordinate is (-1, -1) and the bottom right corner 
vertex is at coordinates (1, 1). 
 
In order to clip a polygon, we need a plane to 
clip it to. Our water line describes the slope 
that the plane should have, but it is just a 2D 
line. However this works for us since our 
screen space quad is also a 2D shape. So we 
will do a simple line/polygon clipping routine 
that follows the same logic as our 
plane/polygon approach. In that sense we will 
treat this line as a ‘2D plane’. If we have a 2D 
normal for this line then we can clip the 2D 
quad to it just as we clipped the 3D quad to 
the plane in the previous function. As it 
happens, when we have a line described in 2D 
coordinates, generating the normal is quite 
straightforward: 
 
Line = v0 – v1        (this line is described by our two projection space points) 
EdgeNormal.x =  - (v1.y – v0.y) 
EdgeNormal.y =     (v1.x – v0.x) 
 
Let us imagine that we have a straight horizontal line consisting of v1 (0, 0) and v2 (10, 0). We know 
that because this line is a perfect horizontal, rotating it 90 degrees should give a perfect vertical. This 
vertical would describe the ‘normal’ of the line. 
 
2DNormal.x = - (0 – 0)  = 0 
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2DNormal.y =   (10 - 0) = 10 
 
Therefore we have generated a vector perpendicular to the line as shown below.  
 
2DNormal = (0, 10) 
 
All we have to do now is normalize the 2D vector so that it is unit length and we have a normal for our 
line. We can use it to classify the points of our unclipped screen effect quad while clipping. 
 
In the following image we see the generation of an edge normal for the water line defined by points v0 
and v1. Notice that once we normalize the flipped edge, we have a line cutting right across the 
projection window. This line will be used to clip our projection space quad. 

 
The following code demonstrates generating the edge normal from our water line and creating the 
initial unclipped projection space quad. 
 
                // Generate our 2d plane 
                D3DXVECTOR2 vecPointOnPlane = D3DXVECTOR2( vecPoint[1].x, vecPoint[1].y ); 
                D3DXVECTOR2 vecPlaneNormal; 
                vecPlaneNormal.x = -(vecPoint[1].y - vecPoint[0].y); 
                vecPlaneNormal.y =  (vecPoint[1].x - vecPoint[0].x); 
                D3DXVec2Normalize( &vecPlaneNormal, &vecPlaneNormal ); 
 
                // Build initial 4 corner vectors 
                D3DXVECTOR2 vecScreenPoints[4]; 
                vecScreenPoints[0] = D3DXVECTOR2( -1.0f,  1.0f ); 
                vecScreenPoints[1] = D3DXVECTOR2(  1.0f,  1.0f ); 
                vecScreenPoints[2] = D3DXVECTOR2(  1.0f, -1.0f ); 
                vecScreenPoints[3] = D3DXVECTOR2( -1.0f, -1.0f ); 
 
We are now just about ready to start clipping the quad to our new 2D water line. However we have not 
calculated the distance to the plane from the origin of the coordinate system. As you know already we 
need to define the plane equation to classify points against the plane. Although we could easily 
calculate the plane distance by performing the dot product on the plane normal we just calculated and 
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any point know to be on the plane (any of our line edge points would do) this does present us with a 
nice opportunity to look an alternative way of storing a plane and classifying points against it. 
 
 
Alternative Plane Method 
 
Up to this point we have represented a plane using a plane normal and a value describing the distance 
from the origin of the coordinate system to the plane along the plane normal. This is the most common 
plane representation and plugs nicely into the plane equation. However, we can also work with planes 
even if we do not have the distance value. All we need is the plane normal and a point that is known to 
be on the plane. This can be useful when we are assembling planes from polygons for collision 
detection because we usually know the polygon normal. Furthermore, because all vertices in the 
polygon are coplanar, any vertex in the polygon can be used as the point on the plane.  
 
 

 
 

We already know that we can use a point on the plane to calculate a distance from the origin (see 
Chapter One). Take a look at the point P1 and the vector it forms from the origin (the blue dotted line 
on the left). We know that if we perform the dot product between this vector and the unit length plane 
normal we get the cosine of the angle between them scaled by the length of vector P1. In other words it 
is like taking the plane normal, placing it at the origin and scaling it such that it reaches the plane (the 
blue dotted line on the right). This gives us the distance to the plane. Now, it is because the plane 
normal is placed at the origin for the dot product that we have to add the distance of the plane onto the 
result. Otherwise the plane would be assumed to pass through the origin. In other words, when we use 
D3DXPlaneDotCoord, it temporarily moves the plane so that it passes through the origin, gets the 
cosine of the angle, and then adds the distance back on that had been removed by the dot product. 
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Classifying a point against a plane when we do not have the plane distance is very similar. In the above 
example you can see that we wish to classify the point P2 against the plane. If we subtract this point 
(vector) from the point known to be on the plane we effectively move point P2 to the origin and offset 
the point on the plane (therefore the plane itself) by the same amount. Because P2 is at the origin, the 
classification of the point has been simplified to merely calculating the plane distance -- just like we do 
when we normally calculate the distance of a plane from the origin. When we subtract vector P2 from 
P1 we get a non unit length vector from P2 to P1. When we perform the dot product with this vector 
and the unit length plane normal we get the length of vector (P2-P1) scaled by the cosine of the angle 
between them. This is the length of the green dotted line on the right in the above diagram. Therefore, 
we could calculate the distance from P2 to the plane doing the following: 

 
Distance = D3DXVec3Dot( &(P2-P1) , PlaneNormal) 
 
The result tells us the distance to the plane. The sign of the result tells us whether the point is behind or 
in front of the plane just as this was the case when we used D3DXPlaneDotCoord.  
 
Of course, if you do not like this method then you could just calculate the distance to the plane from 
the origin and then use the D3DXPlaneDotCoord function as before. In our code, we are dealing with 
only 2D vectors but the same still applies; we just perform 2D dot products instead. 
 
 
Clipping the Screen Space Polygon 

 
The next section of code will look familiar as it classifies each of the edges of our projection space 
quad against the water line plane just created. It clips the edges as we did in the previous function 
when clipping the water quad itself. In this section we use the PointOnPlane method of classifying the 
vertices against the plane. The normal of our water line is facing out of the water so we keep the 
section of the quad that is behind the plane and remove the rest.  First we classify each vertex in the 
current edge to see whether they are in front or behind of the plane (above or below the water line 
respectively). 
 
                // Clip this quad against the plane, discard anything in-front 
                for ( int v1 = 0; v1 < 4; v1++ ) 
                { 
                    int v2 = (v1 + 1) % 4; 
                 
                    // Classify each point in the edge 
                    int Location1 = 0, Location2 = 0; 
 
                    floatresult=D3DXVec2Dot(&(vecScreenPoints[v1]-vecPointOnPlane), 
                                            &vecPlaneNormal); 
                    if ( result < -1e-5f ) Location1 = -1; // In Behind 
                    if ( result >  1e-5f ) Location1 =  1; // In Front 
 
                    result=D3DXVec2Dot(&(vecScreenPoints[v2] - vecPointOnPlane), 
                                       &vecPlaneNormal); 
                    if ( result < -1e-5f ) Location2 = -1; // Behind 
                    if ( result >  1e-5f ) Location2 =  1; // In Front 
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When the current vertex is below the water line we need to add it to our new list of screen space 
vertices. Since our quad is currently made of projection space vectors, we need to convert them into a 
screen space. Refer back to Chapter One if you do not remember how to do this. If the current vertex 
we are processing is on the plane itself then we add it to the vertex list of the clipped quad and skip to 
the next vertex. 
 
                    if ( Location1 == 0 ) 
                    { 
                        Points[PointCount].x = vecScreenPoints[v1].x*m_Viewport.Width/2 + 
                                             m_Viewport.X+m_Viewport.Width/2; 
 
                        Points[PointCount].y = -vecScreenPoints[v1].y*m_Viewport.Height/2 + 
                                             m_Viewport.Y + m_Viewport.Height/2; 
 
                        Points[PointCount].z = 0.0f; 
                        Points[PointCount].w = 1.0f; 
                        Points[PointCount].Diffuse = 0xBF547687; 
                        PointCount++; 
                        continue; // Skip to next vertex 
                   }  

 
Next we check to see if the vertex is in front or behind the plane. If the vertex is in front of the plane it 
will be above the water line and should be clipped. If it is behind the plane it is below the water line so 
we will build a screen space vertex from it and add it to our clipped polygon. 
 
                    if ( Location1 != 1 ) 
                    { 
                        Points[PointCount].x = vecScreenPoints[v1].x*m_Viewport.Width/2 + 
                                               m_Viewport.X + m_Viewport.Width  / 2; 
                        Points[PointCount].y = -vecScreenPoints[v1].y*m_Viewport.Height/2 + 
                                               m_Viewport.Y + m_Viewport.Height / 2; 
                        Points[PointCount].z = 0.0f; 
                        Points[PointCount].w = 1.0f; 
                        Points[PointCount].Diffuse = 0xBF547687; 
                        PointCount++; 
                    } // If its behind the plane 
 
We have now added the current vertex to the polygon. If the next vertex does not cause this edge to 
span the plane then we are done with this loop iteration. 
 
                    // If the next vertex is not causing us to span the plane then continue 
         if ( Location2 == 0 || Location2 == Location1 ) continue; 
   
If the next vertex in the edge is on the opposite side of the plane from the current vertex, the edge will 
have to be clipped to the plane. This will create a new vertex on the plane. This is exactly the same 
approach we took with the intersection code in the previous function. The only difference is that we 
convert the point from projection space to screen space as we copy its X and Y values into the new 
vertex. 
      
     // Calculate the intersection point 
                    D3DXVECTOR2 Direction, Direction2; 
                    D3DXVECTOR3 vecIntersection = D3DXVECTOR2( 0.0f, 0.0f ); 
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                    Direction        = vecScreenPoints[v2] - vecScreenPoints[v1]; 
                    LineLength       = D3DXVec2Dot( &Direction, &vecPlaneNormal ); 
                    Direction2       = vecPointOnPlane - vecScreenPoints[v1]; 
                    DistFromPlane    = D3DXVec2Dot( &Direction2, &vecPlaneNormal ); 
                    vecIntersection  = vecScreenPoints[v1]+ \ 
                                                      Direction*(DistFromPlane/LineLength); 
                 
                    // This is our new vertex 
                    Points[PointCount].x =  vecIntersection.x * m_Viewport.Width  / 2 + 
                                            m_Viewport.X + m_Viewport.Width  / 2; 
                    Points[PointCount].y = -vecIntersection.y * m_Viewport.Height / 2 + 
                                            m_Viewport.Y + m_Viewport.Height / 2; 
                    Points[PointCount].z = 0.0f; 
                    Points[PointCount].w = 1.0f; 
                    Points[PointCount].Diffuse = 0xBF547687; 
                    PointCount++; 
                     
                } // Next Vertex 
 
            } // End if not coplanar. 
 
Our new screen space water polygon is now either built at this point or was completely clipped. All 
that is left to do is render it. 
 
            if ( PointCount > 2 ) 
            { 
               // Setup states 
                pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_DIFFUSE ); 
           pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_SELECTARG1 ); 
                pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE ); 
                pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
                pD3DDevice->SetRenderState( D3DRS_SRCBLEND , D3DBLEND_SRCALPHA ); 
                pD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA ); 
                pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
                 
                // Render polygon 
                pD3DDevice->SetFVF( TLITVERTEX_FVF ); 
                pD3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN,PointCount-2, 
                                            Points, sizeof(CTLitVertex)); 
                 
                // Reeset states 
                pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE ); 
                pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
            }  
 
           break; 
         
        } // End Water Case 
 
    } // End Effect Switch 
 
    pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
} 

 
Provided that there are at least three vertices that survived the clipping process, we render the 
polygon(s). The first thing we do is set the color and alpha operations in stage 0 to sample the 
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color/alpha from the interpolated diffuse color. Then we set the source and destination blend modes so 
that the alpha weights the blend with the frame buffer.  
 
Next we set the flexible vertex flag informing the device that we are using pre-transformed and pre-lit 
vertices. We will not be requiring the transformation or lighting pipeline here since our vertices are 
already in screen space and already colored. We then enabled alpha blending and rendered our array of 
clipped vertices as a triangle fan. Finally we disabled alpha blending and reset the color operation to 
sample from the texture again so that everything is put back to the way we found it. At the very end of 
the function we re-enable the Z-Buffer that we disabled at the start of the function. 
 
We now have a nice alpha blended water effect for our terrain demo and we see how to store and use 
alpha values in vertex colors. Of course, this demo also taught us a lot more than we might have 
expected at the outset.  
 
So all of the changes of real significance in ths demo took place in the previous functions. Note that 
under normal circumstances you would probably want to develop a water class that encapsulates all of 
this functionality rather than take the simplistic approach of having the terrain and camera classes 
manage the process. This would make for a good study assignment.  
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Lab Project 7.2: Alpha Channels and Alpha Testing 
 
In our next project we will render two rotating textured spheres; a 
smaller sphere placed inside a larger sphere. Without some form of 
alpha processing we would normally not be able to see the smaller 
sphere because it would be completely occluded by the outer sphere 
polygons. In this project the inner sphere will have a lava texture 
mapped to it and the outer sphere will have a texture of the planet 
Earth mapped to it. The texture map of the Earth used to map to the 
outer sphere includes an alpha channel. Each pixel in the image has 
an alpha value between 0 and 255. The sections of the texture 
representing the oceans have the most transparent alpha values 
(lower values) while the texels that are part of the land masses have 
higher alpha values. We will set up the texture stages such that 
when the outer sphere is rendered, the alpha value for each pixel is sampled from the corresponding 
texel in the texture map. In this demo we are not using alpha blending. Instead we will use alpha 
testing to reject pixels with low alpha values. The outer sphere will find that its ocean pixels will be 
rejected by the test while its land mass pixels pass are rendered. Note that even though the land masses 
may include pixels with alpha values less than 255, since we are only using alpha testing, pixels are 
either rendered or not -- no alpha blending occurs. As long as the land mass pixels have alpha values 
greater than or equal to our reference value, they will be rendered fully opaque. Of course, you could 
render the land masses partially transparent by assigning them alpha values slightly greater than the 
alpha reference value whilst enabling alpha blending with the D3DBLEND_SRCALPHA and 
D3DBLEND_INVSRCALPHA blending modes.     
 
 
Creating an Alpha Channel Image 
 
There are many ways that we can place alpha values in a texture surface and some are more 
troublesome then others. Probably the most difficult way would be to create the image as a normal 
texture in a paint package and then load that image into a texture format that has an alpha component 
such as D3DFMT_A8R8G8B8. We could do this by using the D3DCreateTextureFromFileEx function 
specifying the filename and the alpha surface we desire. Once the image is loaded we could lock the 
surface of the texture and step through each pixel inserting the alpha value into the color of each texel. 
This could be done quite easily if we have an image with a transparent color such as black that we 
wanted to be totally transparent. Recall that the D3DXCreateTextureFromFileEx function allows us to 
specify a color key.  
 
HRESULT D3DXCreateTextureFromFileEx 
(       
    LPDIRECT3DDEVICE9 pDevice, LPCTSTR pSrcFile, UINT Width, UINT Height, 
    UINT MipLevels, DWORD Usage, D3DFORMAT Format, D3DPOOL Pool, 
    DWORD Filter, DWORD MipFilter, D3DCOLOR ColorKey, D3DXIMAGE_INFO *pSrcInfo, 
    PALETTEENTRY *pPalette, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 
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We can now better understand what the ColorKey parameter does. We specify a 32-bit ARGB color 
and the function will search for a match. If one is found, that pixel alpha component will be set to 
totally transparent. The alpha component is also significant in the color that we specify so it is 
important that when you are loading a totally opaque image (an image without an alpha channel) that 
you set the alpha component of this color to 0xFF. Otherwise color tests will fail to find a matching 
RGB. As an example, if we wanted full intensity green pixels in an opaque image to become totally 
transparent, we would specify a color key of 0xFF00FF00. 
 
Swapping a particular color in a texture for a totally transparent color is certainly easy and convenient. 
But it is obviously very limited in scope. Fortunately, most modern paint packages allow you to create 
images with an alpha channel and save the resulting image out to a file format that supports alpha 
(such as .tga or .png). When using a paint package to create an alpha channel image we can literally 
just paint the alpha information into the image just as we do with the more usually RGB components. 
The appendices for this lesson include a brief tutorial on creating an alpha channel for a texture image 
using Jasc’s Paint Shop Pro™. Applications such as Adobe Photoshop™ also support this feature, so if 
that is your preferred editing package then check the accompanying documentation for implementation 
details.  
 
After we have created a texture file with per-pixel alpha information, we can use the D3DX texture 
loading functions to load the image data straight into a surface that supports alpha channels and start 
using it immediately. 
 
There is actually very little new code to examine in this demo since we are essentially just enabling a 
few render and texture stage states. The CScene class will load the two spheres from an IWF file 
created using GILES™. GILES™ includes a spherical texture wrapping feature so this is how the 
texture coordinates were generated for each of the spheres. The application uses two textures and a 
single IWF file stored in the application’s Data folder. 
 
 
 
CGameApp::SetupRenderStates 
 
This function sets up the texture stage states to take the color from the texture and modulate it with the 
interpolated diffuse vertex color. We also setup the alpha pipeline for texture stage 0 to sample the per-
pixel alpha value from the alpha component of the pixel in the texture. Then we setup an alpha testing 
reference value and the comparison function we wish to use. In this project, any alpha value greater 
than or equal to 207 will pass the test. 

 
void CGameApp::SetupRenderStates() 
{ 
    // Validate Requirements 
    if (!m_pD3DDevice || !m_pCamera ) return; 
 
    // Test the device capabilities. 
    if (!TestDeviceCaps( )) { PostQuitMessage(0); return; } 
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    // Setup our D3D Device initial states 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, D3DZB_TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
    m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
 
    // Set up sampler states. 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MINFILTER    , m_MinFilter ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MAGFILTER    , m_MagFilter ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MIPFILTER    , m_MipFilter ); 
    m_pD3DDevice->SetSamplerState( 0, D3DSAMP_MAXANISOTROPY, m_Anisotropy ); 
 
    // Set texture / addressing / color ops 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
    D3DTSS_COLOROP  D3DTOP_MODULAm_pD3DDevice->SetTextureStageState( 0, , TE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP  , D3DTOP_SELECTARG1 ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_TEXCOORDINDEX, 0 ); 
 
    // Enable alpha testing 
    m_pD3DDevice->SetRenderState( D3DRS_ALPHAREF , (DWORD)0x000000CF ); 
    m_pD3DDevice->SetRenderState( D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL ); 
 
    // Set fill mode 
    m_pD3DDevice->SetRenderState( D3DRS_FILLMODE, m_FillMode );                 
 
    // Setup our vertex FVF code 
    m_pD3DDevice->SetFVF( LITVERTEX_FVF ); 
 
    // Update our device with our camera details (Required on reset) 
    m_pCamera->UpdateRenderView( m_pD3DDevice ); 
    m_pCamera->UpdateRenderProj( m_pD3DDevice ); 
 
 

 
We set the reference value to 207 instead of 255 because the land mass pixels do not all have fully 
opaque alpha values. The general range is between 207 and 255. The ocean pixels have much lower 
alpha values between 0 and 40. Setting the alpha reference value to 207 makes certain that we allow 
the land mass pixels to pass the test, while masking out the ocean pixels. Notice that we have not 
enabled alpha testing here. This is because when we render the scene we will only want alpha testing 
enabled for the outer sphere. The inner sphere does not have an alpha channel in its texture so there is 
no need to test it. It would always pass the test because an alpha value of 0xFF would be the 
placeholder value returned from the sampling of the texture in the texture stage. Generally speaking, 
unnecessary per-pixel operations should be disabled when they are not needed. 
 
Finally, notice the call to TestDeviceCaps() at the top of the function. We learned in Chapter Six that 
this function can search for the best standard texture format and the best alpha texture format supported 
by the device. It stores them in the CGameApp member variables m_TextureFormat and 
m_AlphaFormat. These formats are then passed to the scene using CScene::SetTextureFormat where 
they are stored. This enables the CScene class to load the textures in the optimal surface formats when 
it loads the IWF file. 
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     // Inform texture loading objects which format to use 
     m_Scene.SetTextureFormat( m_TextureFormat, m_AlphaFormat ); 
 
     // Set up the menu item selections (Which may have changed during device validations) 
     SelectMenuItems();     
} 

 
 
CScene::LoadScene  
 
There is nothing new in this function. In fact it is merely a stripped down version of the LoadScene 
function that we used in previous lessons. It loads the IWF file using the CFileIWF object and calls 
ProcessMeshes to extract the polygons and ProcessTextures to load the textures. 
 
bool CScene::LoadScene( TCHAR * strFileName ) 
{ 
    CFileIWF File; 
 
    // File loading may throw an exception 
    try 
    { 
        // Attempt to load the file 
        File.Load( strFileName ); 
 
        // Copy over the textures we want from the file 
        if (!ProcessTextures( File )) return false; 
 
        // Now process the meshes and extract the required data 
        if (!ProcessMeshes( File )) return false; 
 
        // Allow file loader to release any active objects 
        File.ClearObjects(); 
         
    } // End Try Block 
 
    // Catch any exceptions 
    catch (...) 
    { 
        return false; 
     
    } // End Catch Block 
 
    // Success! 
    return true; 
} 
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CScene::ProcessTextures 
 
This function loads the textures into alpha supported texture surfaces by specify the m_fmtAlpha pixel 
format to the D3DXCreateTextureFromFileEx function. Preferably this will be a compressed alpha 
pixel format that is supported by the current device (determined in the CGameApp::TestDeviceCaps 
function). 
 
bool CScene::ProcessTextures( const CFileIWF& File ) 
{ 
    ULONG i; 
    char  FileName[MAX_PATH]; 
     
    // Allocate enough room for all of our textures 
    m_pTextureList = new LPDIRECT3DTEXTURE9[ File.m_vpTextureList.size() ]; 
    if ( !m_pTextureList ) return false; 
    m_nTextureCount = File.m_vpTextureList.size(); 
 
    // Loop through and build our textures 
    ZeroMemory( m_pTextureList, m_nTextureCount * sizeof(LPDIRECT3DTEXTURE9)); 
    for ( i = 0; i < File.m_vpTextureList.size(); i++ ) 
    { 
        // Retrieve pointer to file texture 
        TEXTURE_REF * pFileTexture = File.m_vpTextureList[i]; 
 
        // Skip if this is an internal texture (not supported by this demo) 
        if ( pFileTexture->TextureSource != TEXTURE_EXTERNAL ) continue; 
 
        // Build the final texture path 
        strcpy( FileName, TexturePath ); 
        strcat( FileName, pFileTexture->Name ); 
         
        // Load the texture from file 
        D3DXCreateTextureFromFileEx( m_pD3DDevice, FileName, D3DX_DEFAULT, D3DX_DEFAULT,  
                                    D3DX_DEFAULT, 0, m_fmtAlpha, D3DPOOL_MANAGED, 
                                    D3DX_DEFAULT, D3DX_DEFAULT, 0,  
                                    NULL, NULL, &m_pTextureList[i] ); 
     } // Next Texture 
 
    // Success! 
    return true; 
} 
 
 
CScene::Render 
 
When the ProcessMeshes function loads the two sphere meshes from the IWF file, it stores them in a 
two element array of CMesh objects. Therefore, this render call just has to loop through the two 
elements in the array and render each mesh. The first mesh in the array is the outer sphere so we enable 
alpha testing when rendering this mesh and disable it afterwards. 
 
void CScene::Render( ) 
{ 
    // We render in reverse in our example to ensure that the opaque 
    // inner core gets rendererd first. 
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    for ( long i = 1; i >= 0; i-- ) 
    { 
        if ( i == 0) 
  { 
     m_pD3DDevice->SetRenderState( D3DRS_ALPHATESTENABLE, TRUE ); 
  } 
 
  CMesh * pMesh = m_pObject[i].m_pMesh; 
 
        // Set transformation matrix 
        m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_pObject[i].m_mtxWorld ); 
 
        // Set vertex stream 
        m_pD3DDevice->SetStreamSource( 0, pMesh->m_pVertexBuffer, 0, pMesh->m_nStride); 
 
        // Set Properties 
        ULONG TextureIndex = pMesh->m_nTextureIndex; 
        if ( TextureIndex >= 0 )  
        { 
            m_pD3DDevice->SetTexture( 0, m_pTextureList[ TextureIndex ] ); 
         
        } // End if has texture 
        else 
        { 
            m_pD3DDevice->SetTexture( 0, NULL ); 
        } // End if has no texture 
 
        // Set indices, and render 
        m_pD3DDevice->SetIndices( pMesh->m_pIndexBuffer ); 
        m_pD3DDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST, 0, 0, 
                                            pMesh->m_nVertexCount, 0, 
                                            pMesh->m_nIndexCount / 3 ); 
   
   if ( i == 0) 
   { 
       m_pD3DDevice->SetRenderState( D3DRS_ALPHATESTENABLE, FALSE ); 
   } 
 
    } // Next Mesh 
} 
 
 
Believe it or not, that is all there is to this project. Try experimenting with the alpha reference value 
and the alpha comparison function in CGameApp::SetupRenderStates. Make sure that you understand 
how it all works since this feature is a very important one. Alpha testing allows us to do effects like 
chain-link fences, leaves for trees, and a host of other effects that require fully transparent texture 
regions.  
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Lab Project 7.3:  Alpha Sorting  
 

 
In Lab Project 7.3 we will load a simple indoor level that includes many partially transparent windows. 
Our goal will be to implement the sorting and rendering strategies discussed in the text. We will render 
the alpha polygons in a second pass, sorted back to front. The code changes in this demo are relatively 
insignificant. As we did in chapters 5 and 6, we will load an IWF file, batch all polygons into light 
groups, and subsequent texture and material property groups. We will add a new property group to the 
tree to batch polygons in a light group into alpha and non-alpha groups for easy collection during the 
first and second passes of our render function.   
 
Once our light groups have been successfully compiled, the render loop is fairly simple. We loop 
through the polygons in our scene and if a polygon is opaque we render it. If it is a transparent polygon 
we do not render it right away but instead add it to an alpha polygon list. After we have looped through 
each polygon, we will have all of the opaque polygons rendered into our frame buffer and a list of all 
alpha polygons waiting to be rendered. If you know for a fact that none of your alpha polygons will 
ever overlap each other from any point in the level from which the camera can see, you could just loop 
through this alpha list and render the polygons without regard for ordering. This is because there is no 
need to worry about the blending order being incorrect since each alpha polygon would only be 
blended with the frame buffer. However, it is fairly common for alpha polygons to overlap, so we 
would like to be able to sort them properly before we render them to the frame buffer. 
 

Note: If you are using additive color blending with the frame buffer then sorting is not necessary. In 
this case A+B+C creates the same color as A+C+B. This is not the case with the common alpha 
blending mode that we are using (D3DBLEND_SRCALPHA and D3DBLEND_INVSRCALPHA) for the 
source and destination color blending modes. If for example, you were color blending with the following 
blending modes for the source and destination: 
 
Source Blend = D3DBLEND_ONE 
Dest Blend     = D3DBLEND_ONE 

 
These states indicate that the color of the polygon we are about to render will be added to the color 
already in the frame buffer. The rendering order in this case (where we are not scaling based on some 
arbitrary alpha value) is insignificant. In our final chapter we will write a particle system for effects such 
as smoke, rain, snow and water. These systems use many hundreds of polygons that often need to be 
transparent. Fortunately, particle system effects almost always use additive color blending and not 
alpha blending. Thus we are spared the cost of having to sort hundreds of particles every frame. 

 
Alpha polygons will need to be sorted using the distance from the polygon to the camera as the sort 
heuristic. Since the camera can move about from frame to frame, we know that this will constantly 
change the relationship between the camera and the alpha polygons. Thus we cannot sort the polygons 
as a pre-process; sorting must be done at run-time.  
 
As mentioned, we will now batch our polygons by their alpha state (transparent or not) in addition to 
the light group, texture, and material batching. We will add a few functions to our CScene class to add 
alpha polygons to the hash table, and to render the hash table itself after the opaque polygons have 
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been rendered by the main CScene::Render function. Much of this was discussed in the text, so refer 
back if you do not recall how the alpha sorting hash table works at a high level.  
 
CScene::ProcessMeshes will also undergo a few minor changes. Recall that this is the function that is 
called by CScene::LoadScene. It extracts each IWFSurface from each IWFMesh and assigns it to a 
light group based on its light contribution results. This function will now need to test whether the 
surface is an alpha surface or not and assign it to an alpha property group. This is the first level down 
from the light group. This means, at most, each light group will have two child property groups with 
the ID of PROPERTY_ALPHA. This property group type contains no polygons. It stores either a 0 or 
1 in its property data member defining the group as an alpha group or an opaque group respectively. 
Each alpha group has an array of property groups of type PROPERTY_TEXTURE which contain the 
texture index used by all polygons stored in this group. This property group also stores no polygons 
directly. Instead it stores an array of child property groups with the PROPERTY_MATERIAL type 
containing the material used by all polygons stored at this group. This property group contains the 
index buffer for our triangles. At render time, the triangles in that index buffer will all belong to the 
same light group, have the same alpha property, and use the same texture and material.  Ultimately all 
we have done is add another node to our property group hierarchy. The hierarchy is shown in the next 
image: 
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Virtually all of the changes to the code in this project are contained inside the CScene class. We need 
to add the hash table as well as a few housekeeping functions to add polygons to the table.  
 
const ULONG SORT_HASH_SIZE = 1000;   // Size of the alpha sorting hash table 
 
class CScene 
{ 
 …… 
 …… 
 
 ASORT_ITEM         *m_pSortContainer[SORT_HASH_SIZE];   // Hash table for alpha 
sorting 
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SORT_HASH_SIZE defines our hash table size for this demo (1000). Each element in the hash array 
is a pointer to an ASORT_ITEM structure. The ASORT_ITEM structure contains all of the 
information for a single alpha polygon. It will be filled out for each alpha polygon during the 
CScene::Render call. Once we find an alpha polygon in the render loop, we will allocate an 
ASORT_ITEM structure and fill in the polygon information such as its squared distance from the 
camera, the light group it belongs to, the index in the light group vertex buffer where the polygon 
vertices begin in the index buffer, the number of vertices in the polygon, the texture index and the 
material index, and a pointer to the index buffer for easy access. The structure also stores a next pointer 
so that each element in the hash table can exist as a linked list of ASORT_ITEM structures. They will 
be connected to any other ASORT_ITEMS in the linked list ordered by distance. This is necessary to 
resolve collisions when the polygon hash keys map to the same index. The ASORT_ITEM structure is 
shown below. 
 
typedef struct _ASORT_ITEM               // Alpha sorting item. 
{ 
    LPDIRECT3DINDEXBUFFER9  Indices;     // Index buffer pointer 
    USHORT      IndexStart;              // The starting index for this primitive 
    USHORT      BaseVertex;         // BaseVertexIndex passed to DP calls. 
    USHORT      VertexStart;             // The starting vertex where this primitive exists 
    USHORT      VertexCount;             // Number of verts in the above batch. 
    long        TextureIndex;            // Texture to be applied to this primitive 
    long        MaterialIndex;           // Material to be applied to this primitive 
    float       Distance;                // Distance from the camera. 
    CLightGroup  *LightGroup;            // Light group to which this primitive belongs 
    _ASORT_ITEM  *Next;                  // Next item in linked List. 
} ASORT_ITEM; 
 
Our housekeeping functionality will be: 
 
      void    AddAlphaSortItem     ( ASORT_ITEM * pItem, ULONG HashIndex ); 
      void    RenderSortedAlpha    ( ); 
      …. 
      …. 
}; 

 
The AddAlphaSortItem will be called from the main render function whenever an alpha polygon is 
encountered. The render function will pass the polygon information in the ASORT_ITEM and along 
with the hash table index where the data should be added. This function is responsible for adding the 
ASORT_ITEM to the correct index in the hash table. If there is already a linked list of structures stored 
there, it will locate the correct position in the list so that back to front ordering is maintained. 
 
RenderSortedAlpha is called after all opaque polygons have been rendered and the hash table has been 
filled. This function loops through the table starting from the bottom of the array and working towards 
the top, rendering as it goes. When it returns, the alpha polygons will have been rendered in back-to-
front order and will have been correctly blended in the frame buffer. The main render function now has 
to detect alpha polygons, calculate the squared distance, calculate the hash table index, and finally 
copy the polygon information into an ASORT_ITEM structure.  
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In order to calculate the distance from the camera to the polygon during the render pass, we use the 
pre-calculated center points of the alpha polygons. We will calculate these for each alpha face as they 
are added to the index buffer in their material property group to which they belong. As the above 
diagram shows, only the material property groups (the leaf nodes of our batch tree) contain index 
buffers. Thus we will use the material groups to store our center points. Note that these will only be 
stored in material groups that are descendants of an alpha node group. We have no need for the center 
points of opaque polygons in this particular demo.  
 
Each polygon in the property group index buffer will have a corresponding center point stored as a 
vector. So our property group will now contain an additional pointer of type D3DXVECTOR3 that will 
be used to allocate and point to an array of center points, one for each face. Below we see the new 
member variable in the CPropertyGroup class. We also added a new member to the 
PROPERTY_TYPE enumerated type called PROPERTY_ALPHA to identify alpha groups. 
 
class CPropertyGroup 
{ 
   enum PROPERTY_TYPE 
   { PROPERTY_NONE = 0, PROPERTY_MATERIAL = 1, PROPERTY_TEXTURE = 2, PROPERTY_ALPHA = 3 };  
    …. 
    D3DXVECTOR3     *m_pCenterPoints; 
    …. 
    …. 
}; 

 
 
CScene::ProcessMeshes 
 
bool CScene::ProcessMeshes( CFileIWF & pFile ) 
{ 
  long i, j, k, l, m, n, TextureIndex, MaterialIndex; 
  CLightGroup    * pLightGroup    = NULL; 
  CPropertyGroup * pAlphaProperty = NULL; 
  CPropertyGroup * pTexProperty   = NULL; 
  CPropertyGroup * pMatProperty   = NULL; 
 
The first thing we do in this function is call BuildLightGroups to create all light groups and determine 
which groups polygons are assigned to. When this function returns, each IWFSurface will have the 
index of the light group to which it belongs temporarily stored in its CustomData member.  
 
    // Allocate the light groups, and assign the surfaces to them 
    if (!BuildLightGroups( pFile )) return false; 
 
We begin adding the polygons to property groups in a hierarchical fashion. The first loop cycles 
between 1 and 0. When the loop index n equals 1 we will add the alpha polygons to the appropriate 
property groups. When n is 0 we add the opaque polygons to their appropriate property groups. The 
reason we counted backwards in this loop is so that alpha property groups are created for the light 
groups first. This is not a requirement by any means, but it better helps us catch the case where 
incorrect results occur when we do not enable alpha blending and the alpha polygons will still need to 
be rendered first.  
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for ( n = 1; n >= 0; n-- ) 
{ 
  
We will now loop in the following type order: texture, material, mesh, and finally, face. Each iteration 
of these inner loops will extract only polygons that match all current properties and add them to the 
appropriate group. This is the same batching strategy we used in the previous chapters. 
 
   // For each texture (including no texture, -1) 
 for ( l = -1; l < (signed)m_nTextureCount; l++ ) 
 { 
        // For each material (including no material, -1) 
   for ( m = -1; m < (signed)m_nMaterialCount; m++ ) 
   { 
    // Loop through each surface of each mesh 
     for ( i = 0; i < pFile.m_vpMeshList.size(); i++ ) 
     { 
  iwfMesh * pMesh = pFile.m_vpMeshList[i]; 
 
  for ( j = 0; j < pMesh->SurfaceCount; j++ ) 
  { 
               iwfSurface * pSurface = pMesh->Surfaces[j]; 
       
Once we have a pointer to the surface we are currently processing, we will test it against the current 
properties. First, we see if the surface has the invisible IWF surface flag set. If it does then it will not 
rendered and we skip it. It never gets added to any of our light groups and is never used by our scene. 
 
          if ( pSurface->Style & SURFACE_INVISIBLE ) continue; 
 
Our next test looks at the alpha properties of the surface. When a surface in an IWF file has alpha 
properties, it will store a source blend mode and a destination blend mode describing the alpha 
blending equation that the level designer intends the engine to use when rendering this surface. 
Although we are using the standard alpha blending equation in this demo, we can still use the surface 
blend modes to determine if the face needs alpha processing.  If the IWFSurface::Components member 
has the SCOMPONENT_BLENDMODES flag set then it means that this surface has a Blend Modes 
array and as such, is an alpha polygon. If not, then it is opaque. We only read the blend modes from the 
first channel of the surface in this demo. Each source and destination blend mode combination is stored 
inside a BLEND_MODE structure defined in the header file libIWF. It is a simple two byte structure 
where the first byte contains the source blend mode number and the second byte describes the 
destination blend mode number. The IWF specification documentation contains a table of how the 
values map to DirectX blend modes. We create a local BLEND_MODE variable and use it to read in 
the blend modes of the first channel of the surface.  
 
  // Determine the blend modes we are using 
  BLEND_MODE BlendMode = { 0, 0 }; 
  if((pSurface->Components & SCOMPONENT_BLENDMODES) && pSurface->ChannelCount > 0) 
                         BlendMode = pSurface->BlendModes[0]; 
 
If n=0 then we are currently searching for non-alpha polygons. We will skip the current polygon if it 
has non zero blend modes in this case because it is intended to be alpha blended. If n=1 and we are 
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processing alpha polygons, we skip any polygons that have zero source and destination blend modes as 
shown below. 
 
  // Skip if is is not in order 
         if ( (n == 0 && (BlendMode.DestBlendMode != 0 || 
                        BlendMode.SrcBlendMode !=0 )) || 
                   n == 1 && (BlendMode.DestBlendMode == 0 &&  
                        BlendMode.SrcBlendMode ==0 ))) continue; 
 
If we get this far then we have a polygon that matches the n requirement of our outer loop (alpha vs. 
opaque). From this point forward we extract the texture and material indices and proceed building the 
tree as before. 
 
  // Determine the indices we are using 
  MaterialIndex = -1; 
  TextureIndex  = -1; 
   
             if((pSurface->Components & SCOMPONENT_MATERIALS)&&pSurface->ChannelCount > 0) 
                   MaterialIndex = pSurface->MaterialIndices[0]; 
   
             if ((pSurface->Components & SCOMPONENT_TEXTURES)&&pSurface->ChannelCount > 0) 
                   TextureIndex  = pSurface->TextureIndices[0];     
 
  // Skip if this is not in order 
  if ( TextureIndex != l || MaterialIndex != m ) continue; 
 
At this point in the code we have a polygon such that ‘n’ describes its alpha state, ‘l’ describes its 
texture and ‘m’ describes its material. It is now time to add it to the light group to which it belongs. 
Recall that during the call to BuildLightGroups, each IWF surface has a CLightGroup pointer stored in 
its CustomData member.  
 
  // Retrieve the lightgroup pointer for this surface 
  pLightGroup = (CLightGroup*)pSurface->CustomData; 
 
Now that we have the light group to which the polygon should belong, we traverse the child property 
groups. There will at most be only two (alpha and non-alpha). Each immediate child property group 
will be of the type PROPERTY_ALPHA. As you might expect, our next task is to loop through these 
property groups until the correct match is found for the current surface. If we do not find a child 
property group that deals with polygons that match the alpha state of ‘n’ then we need to create a new 
one. 
 
  // Determine if we already have a property group for this alpha state 

       // (enabled / disabled only) 
  for ( k = 0; k < pLightGroup->m_nPropertyGroupCount; k++ ) 
  { 
         if ( (long)pLightGroup->m_pPropertyGroup[k]->m_nPropertyData == n ) 
                        break; 
  }  
 
  // If we didn't have this property group, add it 
  if ( k == pLightGroup->m_nPropertyGroupCount ) 
  { 
                  if ( pLightGroup->AddPropertyGroup( ) < 0 ) return false; 
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                  // Set up property group data for primary key 
      pAlphaProperty = pLightGroup->m_pPropertyGroup[ k ]; 
      pAlphaProperty->m_PropertyType  = CPropertyGroup::PROPERTY_ALPHA; 
      pAlphaProperty->m_nPropertyData = (ULONG)n; 
             }  
 
       // Process for secondary key (texture) 
  pAlphaProperty = pLightGroup->m_pPropertyGroup[ k ]; 
 
The remaining steps are just a similar traversal through the child property groups to find the correct 
match. We start with textures first: 
 
       // Determine if we already have a property group for this texture 
 for ( k = 0; k < pAlphaProperty->m_nPropertyGroupCount; k++ ) 
 { 
      if((long)pAlphaProperty->m_pPropertyGroup[k]->m_nPropertyData== TextureIndex) 

             break; 
 } 
 
 // If we didn't have this property group, add it 
 if ( k == pAlphaProperty->m_nPropertyGroupCount ) 
 { 
            if ( pAlphaProperty->AddPropertyGroup( ) < 0 ) return false; 
 
          // Set up property group data for primary key 
       pTexProperty = pAlphaProperty->m_pPropertyGroup[ k ]; 
       pTexProperty->m_PropertyType  = CPropertyGroup::PROPERTY_TEXTURE; 
       pTexProperty->m_nPropertyData = (ULONG)TextureIndex; 
     }  
 
 // Process for secondary key (material) 
 pTexProperty = pAlphaProperty->m_pPropertyGroup[ k ]; 
 
Testing for a matching material group is next: 
             
      // Determine if we already have a property group for this material 
      for ( k = 0; k < pTexProperty->m_nPropertyGroupCount; k++ ) 
 { 
       if((long)pTexProperty->m_pPropertyGroup[k]->m_nPropertyData == MaterialIndex) 
                     break; 
 } 
 
  // If we didn't have this property group, add it 
   if ( k == pTexProperty->m_nPropertyGroupCount ) 
  { 
     if ( pTexProperty->AddPropertyGroup( ) < 0 ) return false; 
 
       // Set up property group data for primary key 
     pMatProperty = pTexProperty->m_pPropertyGroup[ k ]; 
     pMatProperty->m_PropertyType  = CPropertyGroup::PROPERTY_MATERIAL; 
     pMatProperty->m_nPropertyData = (ULONG)MaterialIndex; 
     pMatProperty->m_nVertexStart  = pLightGroup->m_nVertexCount; 
     pMatProperty->m_nVertexCount  = 0; 
      }  
 
  // Collect the material proprty group 
  pMatProperty = pTexProperty->m_pPropertyGroup[ k ]; 
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Next we call the ProcessIndices function which is also unchanged from previous chapters. This 
function calculates the indices for the polygons and adds them to the index buffer. 
  
   // Process the indices 
   if (!ProcessIndices( pLightGroup, pMatProperty, pSurface ) ) return false; 
 
If this polygon has the SURFACE_TWO_SIDED style flag set then it means that this polygon should 
be rendered from both sides. Rather than disable back face culling when rendering such polygons, the 
ProcessIndices function allows us to pass a boolean parameter indicating that we are adding two sided 
polygons. In this case, we call the function again and back face polygons will have their indices added 
again to the index buffer in counterclockwise order. So instead of having one two-sided polygon, we 
store two one-sided polygons in our index buffers with opposite winding orders. These will now render 
correctly without the need to adjust the culling render state. 
 
   if ( pSurface->Style & SURFACE_TWO_SIDED ) 
   { 
      // Two sided surfaces have back faces added manually 
      if (!ProcessIndices( pLightGroup, pMatProperty, pSurface, true ) ) return false; 
   }  
       
   // Process vertices 
         if (!ProcessVertices( pLightGroup, pMatProperty, pSurface ) ) return false; 
 
         } // Next Surface 
       } // Next Mesh 
     } // Next Material 
  } // Next Texture 
} // Next alpha type 
 
The ProcessVertices function is finally called at the bottom of the inner loop to add the vertices of the 
surface to the light group vertex buffer. 
 
By the time we exit the alpha loop, all scene polygons will exist in their correct property groups ready 
for rendering. Before we return, we loop through each IWFSurface in our scene and reset the 
CustomData member back to zero. We temporarily used it to store light groups, but when the 
destructor is called it will try to de-allocate the CustomData if it is not set to null. This would free our 
light groups from memory. 
 
    // Clear the custom data pointer so that it isn't released 
    for ( i = 0; i < pFile.m_vpMeshList.size(); i++ ) 
    { 
        iwfMesh * pMesh = pFile.m_vpMeshList[i]; 
        for ( j = 0; j < pMesh->SurfaceCount; j++ ) pMesh->Surfaces[j]->CustomData = NULL; 
    }  
 
    // Success!! 
    return true; 
} 
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When program flow returns to the CScene::LoadScene function, it will loop through each of the light 
groups that were created and call BuildBuffers. This call creates the vertex buffers and index buffers 
that are needed for rendering.  
 
CPropertyGroup::BuildBuffers 
 
The CPropertyGroup::BuildBuffers function has been slightly modified for this demo. We added some 
new code to allocate the center points array and calculate the center point of each polygon in the index 
buffer.  
 
The first thing the function does is determine if this is an alpha property group. If so it checks the 
m_nPropertyData member to discover whether the alpha group holds alpha or non-alpha polygons. If 
the m_nPropertyData member is not zero then the alpha polygons will need to be rendered in a sorted 
fashion. The Sortable parameter will be passed down through the child BuildBuffer calls so that 
eventually, any material property groups (which contain the index buffers) that are children of an alpha 
property group that contains alpha polygons, will receive this flag informing the function that a center 
point array will need to compiled.  
 
bool CPropertyGroup::BuildBuffers(LPDIRECT3DDEVICE9 pD3DDevice, bool HardwareTnL, 
                              boolReleaseOriginals, CLightGroup * pLightGroup /* = NULL */, 
                              bool Sortable /* = false */ ) 
{ 
    HRESULT     hRet    = S_OK; 
    USHORT     *pIndex  = NULL, i; 
    ULONG       ulUsage = D3DUSAGE_WRITEONLY; 
 
 // Is this an alpha enable property, override the sortable flag 
 if ( m_PropertyType == PROPERTY_ALPHA && m_nPropertyData != 0 ) Sortable = true; 
 
 // Keep original indices if sortable 
 if ( Sortable ) ReleaseOriginals = false; 
 
If the property group has a non-zero index count then it means it is a material property group at the 
bottom of our hierarchy containing the index buffer. If this is the case then any current index buffer 
will need to be released. 
 
    // Allocate center point array and build, if we store indices here 
    if ( m_nIndexCount > 0 ) 
    { 
 
     // Release any previously allocated vertex / index buffers 
     if ( m_pIndexBuffer ) m_pIndexBuffer->Release(); 
     m_pIndexBuffer = NULL; 
 
If the Sortable flag is set then this material property group has a parent alpha property group that 
contains alpha polygons. As such, the center point array of this property group will need to be 
allocated to hold a center point for each triangle in the index buffer. As we are rendering indexed 
triangle lists, simply dividing the index count of this property group by 3 will provide us with the total 
number of triangles in the index buffer. This will be the number of 3D vectors we will need to allocate. 
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This is done only if it is a Sortable buffer because material groups which do not contain alpha polygons 
do not need to store center points. 
 
// Is this a sortable buffer ? 
if ( Sortable ) 
{ 
   // Bail if there is no light group, or vertex data 
   if ( !pLightGroup || !pLightGroup->m_pVertex )    return false; 
 
   if ( m_pCenterPoints ) delete []m_pCenterPoints; 
   m_pCenterPoints = new D3DXVECTOR3[ m_nIndexCount / 3 ]; 
              
   if (!m_pCenterPoints) return false; 
 
   // Build the center point data 
   D3DXVECTOR3 CenterPoint; 
   for ( i = 0 ; i < m_nIndexCount; i += 3 ) 
   { 

CenterPoint  = (D3DXVECTOR3&)pLightGroup->m_pVertex[m_pIndex[i]+m_nVertexStart]; 
CenterPoint += (D3DXVECTOR3&)pLightGroup->m_pVertex[m_pIndex[i+1]+m_nVertexStart]; 
CenterPoint += (D3DXVECTOR3&)pLightGroup->m_pVertex[m_pIndex[i+2]+m_nVertexStart]; 

       m_pCenterPoints[ i / 3 ] = CenterPoint / 3.0f; 
   }  
} // End if sortable 
 
We calculated triangle center pointse by adding together the vertex positions and dividing by 3. Next 
we create the index buffer, lock it, and copy the indices of this property group into it. We release the 
original indices (non index buffer indices) created during the LightGroup/PropertyGroup building 
process. 
 
     // Should we use software vertex processing ? 
     if ( !HardwareTnL ) ulUsage |= D3DUSAGE_SOFTWAREPROCESSING; 
 
     // Create our index buffer 
    pD3DDevice->CreateIndexBuffer( sizeof(USHORT) * m_nIndexCount, ulUsage, 
                                         D3DFMT_INDEX16, D3DPOOL_MANAGED,  
                                         &m_pIndexBuffer, NULL ); 
      
     // Lock the index buffer ready to fill data 
     hRet = m_pIndexBuffer->Lock(0, sizeof(USHORT)*m_nIndexCount, (void**)&pIndex, 0); 
     if ( FAILED( hRet ) ) return false; 
 
     // Copy over the index data 
     memcpy( pIndex, m_pIndex, sizeof(USHORT) * m_nIndexCount ); 
 
     // We are finished with the index buffer 
     m_pIndexBuffer->Unlock(); 
 
     // Release old data if requested 
     if ( ReleaseOriginals ) 
     { 
      // Release our components 
      if ( m_pIndex ) delete []m_pIndex; 
      m_pIndex = NULL; 
 
     } // End if ReleaseOriginals 
    } // End if indices 
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The code above is only executed when the property group has indices stored -- which is only true if we 
are at the bottom of the hierarchy in a material property group. The material property groups will not 
have any child property groups but the alpha and texture groups will. Therefore, at the end of the 
function we loop through each child of the property groups and call the BuildBuffers function to 
propagate the buffer building process down through the hierarchy. This is also how we pass the 
Sortable flag (determined at the alpha property group level) through the hierarchy so that material 
property groups know whether or not they need to create a center points array. 
 

    // Build buffers for each child property group 
    for ( i = 0; i < m_nPropertyGroupCount; i++ ) 
    { 
        if(!m_pPropertyGroup[i]->BuildBuffers(pD3DDevice,HardwareTnL,  
                                              ReleaseOriginals, 
                                              pLightGroup, Sortable ))  
                return false; 
    }  
 
    // Success 
    return true; 
} 

 
 
CGameApp::SetupRenderStates 
 
Before we move on to rendering, take a moment to examine CGameApp::SetupRenderStates. This is 
where the alpha blending states are set up and the texture stages are configured. This information will 
not change in the main rendering loop. 
 

    // Set texture / addressing / color ops 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP  , D3DTOP_MODULATE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_TEXCOORDINDEX, 0 ); 
 
    // Set Alpha Ops 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP  , D3DTOP_MODULATE ); 
 
    // Select alpha blending states 
    m_pD3DDevice->SetRenderState( D3DRS_SRCBLEND , D3DBLEND_SRCALPHA    ); 
    m_pD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA ); 

 
We instruct the device to take the colors from the vertex and the sampled texel from the texture bound 
to stage 0 and modulate them to create the final color. The alpha states basically do the same thing. 
Usually, alpha values will be stored in either the vertex/material or the texture. However, it is possible 
for a polygon to have alpha values stored at the vertices and have a texture mapped to it that also has 
an alpha channel. Our texture states inform the device that if there is alpha in the vertex and the 
texture, to modulate the values to create one combined alpha value used for frame buffer blending. If 
alpha is stored in only one of the two alpha sources, then the default value for the missing alpha source 
will be assigned a default value of 1.0 (opaque) such that if A is the alpha source, A*1 = A.  
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Finally, we set the common blend modes as described earlier in this lesson so that the alpha value is 
used to weight the blending between alpha polygons and the frame buffer. These blend modes will not 
actually take effect until we enable alpha blending in the CScene::Render function after we have 
rendered the opaque polygons and are about to render the alpha polygons from the hash table. 
 
 
CScene::Render 
 
This function draws the scene. For each light group we loop through each of the child property groups 
and record whether the group contains alpha or opaque polygons. Then we loop through each of the 
texture property groups and get the texture index, then through each of the material property groups of 
the texture group where we finally get access to the material. At this point, we either set the texture and 
the material and render the polygon if it opaque, or calculate the squared distance between the camera 
position and the polygon center point and use this distance to generate a hash table index if it is 
transparent. We then add the transparent polygon to the hash table. Once done, all opaque polygons 
will be rendered and the final pass will render the alpha polygons in the hash table in back-to-front 
order with alpha blending enabled. 
 

 
 
The application has two menu items that allow us to disable the alpha pass. In that case the alpha 
polygons will not be rendered after the opaque polygons but will be rendered in the order they are 
stored inside the light group tree. This allows us to see what happens when alpha polygons are 
rendered in no particular sorted order. With 2nd Pass Alpha enabled, the opaque polygons are rendered 
first and alpha polygons rendered afterwards. Here we have a choice of whether to sort the alpha 
polygons back to front or to render the alpha polygons in no particular order in the second pass. These 
options slightly complicate the render function as we need to handle the alpha polygons in different 
ways depending on the menu items selected, but it is a good exercise to have this feature so that we can 
see that only with 2nd pass alpha enabled with polygon sorting will the alpha polygons truly render 
correctly. 
 
In our previous lessons we discussed the overall operation of light group rendering. We first loop 
through each light group in the outer loop and disable any lights that are set beyond the number of 
lights in the current light group. That is, if the previous light group used 10 lights and this light group 
only uses 5, we will disable light slots 5 through 9. We don’t have to disable light slots 0 through 4 
because these will be replaced by the 5 lights in the current light group as shown below. 
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void CScene::Render( CCamera & Camera ) 
{ 
    ULONG         i, j, k, l, m; 
    CLightGroup * pLightGroup = NULL; 
    ULONG       * pLightList  = NULL; 
 
     // Loop through each light group 
 for ( i = 0; i < m_nLightGroupCount; i++ ) 
 { 
   // Set active lights 
   pLightGroup = m_ppLightGroupList[i]; 
   pLightList  = pLightGroup->m_pLightList; 
   for ( j = m_nReservedLights; j < m_nLightLimit; j++ ) 
   { 
           if ( (j - m_nReservedLights) >= (pLightGroup->m_nLightCount ) ) 
      { 
               m_pD3DDevice->LightEnable( j, FALSE ); 
           }  
      else 
      { 
         // Set this light as active 
         m_pD3DDevice->SetLight(j , 
                                  &m_pLightList[pLightList[j - m_nReservedLights]]); 
         m_pD3DDevice->LightEnable( j, TRUE ); 
           }  
  } // Next Light 

 
The device now has the current lights set. Remember that the m_nReserved member variable describes 
how many light slots our application wanted to reserve for use by dynamic lights. If we have reserved 
two lights, light slots 0 and 1 will not be used by the light group system. Next, we bind the current light 
group vertex buffer to stream zero so its vertices are ready for rendering. 
 

 // Set vertex stream 
 m_pD3DDevice->SetStreamSource(0,pLightGroup->m_pVertexBuffer, 
                                     0,sizeof(CVertex)); 

 
The light group will have either one or two alpha groups depending on whether this light group 
contains both alpha and opaque polygons at the lowest level of its tree (the material property group 
level). Therefore we need to loop through each direct child property group of this light group. These 
will be property groups of type PROPERTY_ALPHA which will have an m_nPropertyData member 
set to either 0 or 1 describing this group as containing either opaque or alpha polygons respectively. 
  

     // Now loop through and render the associated property groups 
 for ( j = 0; j < pLightGroup->m_nPropertyGroupCount; ++j ) 
 { 
     CPropertyGroup * pAlphaProperty = pLightGroup->m_pPropertyGroup[j]; 
     ULONG AlphaEnabled = pAlphaProperty->m_nPropertyData; 

 
In the code above we get a pointer to the current alpha property group we are traversing and store 
whether or not this is a property group that contains alpha polygons (=1) or opaque polygons (=0) in 
the AlphaEnabled variable. 
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Next we need to loop through each child of the alpha property group. These will be texture property 
groups that store texture indices used by all polygons in the group. In the following code, we get a 
pointer to the current texture property group and store the texture index in the local TextureIndex 
variable. 
   

     // Render child property group 
     for ( l = 0; l < pAlphaProperty->m_nPropertyGroupCount; ++l ) 
     { 
        CPropertyGroup * pTexProperty = pAlphaProperty->m_pPropertyGroup[l]; 
  long TextureIndex = (long)pTexProperty->m_nPropertyData; 

 
If the AlphaEnabled local variable is set to zero then it means the alpha property group we are current 
rendering contains opaque polygons. These will be rendered immediately. In that case, we can set the 
texture used by the property group in stage 0. If AlphaEnabled equals 1 then we are rendering a group 
filled with alpha polygons. In this case we will render it later and will not set its texture at this point. 
Instead we set the texture in stage 0 to NULL. Notice that we also set the texture if the 
CGameApp::m_bSecondPassAlpha variable is set to false. This means that the user has decided (via 
the menu options discussed previously) that they want the alpha polygons rendered in the first pass 
without any consideration for rendering order. If this is the case, the alpha polygons are rendered at the 
same time as opaque polygons and we will set the property groups texture. 
        

            // Alpha polys are simply collected 
      if ( AlphaEnabled == 0 || GetGameApp()->m_bSecondPassAlpha == false ) 
      { 
      // Set Properties 
     if ( TextureIndex >= 0 ) 
     { 
         m_pD3DDevice->SetTexture( 0, m_pTextureList[ TextureIndex ] ); 
                 }  
     else 
     { 
         m_pD3DDevice->SetTexture( 0, NULL ); 
            } 
      } // End if alpha primitives 

         
Each texture property group will contain an array of one or more child material property groups. These 
contain the material index used by all of the polygons stored there. So we need to loop through each 
material property group and if we are rendering an alpha group that contains opaque polygons, render 
them immediately. Again, we also render the polygons immediately if m_bSecondPassAlpha has been 
set to false (usually with incorrect blending results). If we are rendering alpha polygons immediately 
(m_bSecondPassAlpha = false) then we must still remember to enable alpha blending before we 
render. Also, while not strictly necessary in this demo, we disable Z buffer writing when rendering 
alpha polygons so that the alpha polygons will not occlude anything in the depth buffer. We reset both 
of these states after the polygons have been rendered.  
  

 
// Render child property group 
for ( k = 0; k < pTexProperty->m_nPropertyGroupCount; ++k ) 
{ 

CPropertyGroup * pMatProperty = pTexProperty->m_pPropertyGroup[k]; 
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if ( AlphaEnabled == 0 || GetGameApp()->m_bSecondPassAlpha == false ) 
{ 
    // Enable alpha blending if we are not performing 2nd pass alpha 
    if ( AlphaEnabled ) 
    { 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
        m_pD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE ); 
    }          
 
    // Simply render opaque polygons 
    m_pD3DDevice->SetMaterial(&m_pMaterialList[(long)pMatProperty->m_nPropertyData]); 
    m_pD3DDevice->SetIndices( pMatProperty->m_pIndexBuffer ); 
    m_pD3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 
                                       pMatProperty->m_nVertexStart, 
                                       0, pMatProperty->m_nVertexCount, 0, 
                                       pMatProperty->m_nIndexCount / 3 ); 
 
    // Enable alpha blending if we are not performing 2nd pass alpha 
    if ( AlphaEnabled )  
    { 
       m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE ); 
       m_pD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE ); 
    } 
} // End if opaque primitives 

  
If the current alpha group contains alpha polygons and we have enabled 2nd Pass Alpha in the menu, 
then the polygons belonging to this material group will not be rendered and will be added to the hash 
table instead. If CGameApp::m_bSortedAlpha is set to true (the default state) then the hash table index 
will be generated based on distance to the polygon center point from the camera. Polygons are inserted 
into the hash table in an ordered way based on this distance. If m_bSortedAlpha has been set to false 
then all alpha polygons will simply be added to the linked list stored at hash table index 0.  
 

else 
{ 
    D3DXVECTOR3 vecCameraPos = Camera.GetPosition(); 
    float       fMaxDistance = powf( Camera.GetFarClip(), 2 ); 
    float       fDistance    = 0.0f; 
    long        Index        = 0; 

 
We are going to calculate the squared distance from the camera to each triangle center point and map it 
to an index using the squared far plane distance. We retrieve the camera’s far plane distance and raise 
it to a power of 2 (to square it) and store the result in the fMaxDistance local variable. 
 
Next, we need to loop through each triangle in the index buffer of the material property group and 
calculate its hash table index. This only happens if the user has enabled the sorting of alpha polygons 
(the default state). 
 
// Alpha primitives must be collected for sorting and subsequent rendering. 
for ( m = 0; m < pMatProperty->m_nIndexCount; m += 3 ) 
{ 

// Are we sorting them ? 
if ( GetGameApp()->m_bSortAlphaPolys ) 
{ 
    // Calculate the distance to the center point (no need to sqrt) 
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          fDistance=D3DXVec3LengthSq(&(pMatProperty->m_pCenterPoints[(m/3)]-vecCameraPos)); 
                                 
    // Transform this into an index within the range supported by our hash table 
    Index = (long)((fDistance / fMaxDistance) * (SORT_HASH_SIZE - 1)); 
 
    // Bail if this is out of range 
    if ( Index < 0 || Index >= SORT_HASH_SIZE ) continue; 
                   
} // End if sort alpha polys 

 
For the hash table index calculation above we start by subtracting the camera position from the center 
point of the current face we are processing. We calculate the squared length of the resulting vector, 
which gives us the squared distance from the camera position to the center point of the current triangle. 
Remember that every three indices in the index buffer is a triangle. Therefore, dividing the current loop 
counter m by three gives us the index of the triangle in the index buffer we are processing. We use this 
index to retrieve the pre-calculated center point for that triangle from the material property group 
center points array. Once we have the squared distance from the camera to the triangle center point we 
divide the squared distance by the squared far plane distance to scale the distance into the 0.0 to 1.0 
range. A center point at the very far side of the scene (touching the far clip plane) will generate a 
floating point index of 1.0. Next we multiply the floating point index by the size of our hash table 
minus 1. Thus if the hash table has 1000 elements, the floating point index would be mapped from the 
0.0 to 1.0 range to the 0 to 999 range. This final integer is the actual index used to assign the triangle to 
the hash table (the hash key). After we have calculated the final index we check to see if it is larger 
than the capacity of the hash table array. If it is, then it means that this polygon must be beyond the far 
plane and will not be rendered by the pipeline anyway. Therefore we can skip this polygon and move 
on to the next iteration of the loop to process the next triangle in the index buffer (if one exists).   
 
Is alpha sorting is enabled we will have correctly calculated the index value we will use to add the 
triangle to the hash table. If alpha sorting is not enabled, the index value will equal 0 and the alpha 
polygons will all be added to a linked list at hash table element 0. Furthermore, because the fDistance 
variable will also be 0, polygons will not be sorted in the linked list since they will all have the same 
distance values. This will allow us to see what the alpha polygons look like if they are rendered in a 
second pass, but not rendered in back to front order. 
 
To add the triangle to the hash table we allocate a new ASORT_ITEM structure and fill in all the 
members with the triangle details: 
 

// Allocate a new sort item for the container 
ASORT_ITEM * pSortItem = new ASORT_ITEM; 
if (!pSortItem) return; 
ZeroMemory( pSortItem, sizeof(ASORT_ITEM)); 
 
// Fill out its values 
pSortItem->LightGroup    = pLightGroup; 
pSortItem->Indices       = pMatProperty->m_pIndexBuffer; 
pSortItem->TextureIndex  = TextureIndex; 
pSortItem->MaterialIndex = (long)pMatProperty->m_nPropertyData; 
pSorttItem->Distance     = fDistance; 
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We also store minimum and maximum vertices used by this triangle in the ASORT_ITEM structure so 
that we can use them when rendering. This enables us to index into the light group vertex buffer 
correctly. Recall that the minimum vertex index and the vertex count are used by a software device to 
transform a block of vertices in one go. Once we have filled out the information for this triangle, we 
call the CScene::AddSortItem function. The first parameter is a pointer to an ASORT_ITEM structure 
that will be added to the hash table, and the second parameter is the hash table index for this triangle.  
 

  // Loop through the three indices for this tri and find the 
  // minimum and maximum vertex indices. 
  USHORT MinIndex = 0xFFFF, MaxIndex = 0, IndexVal; 
   
             IndexVal = pMatProperty->m_pIndex[m]; 
  if ( IndexVal < MinIndex ) MinIndex = IndexVal; 
  if ( IndexVal > MaxIndex ) MaxIndex = IndexVal; 
 
             IndexVal = pMatProperty->m_pIndex[m + 1]; 
  if ( IndexVal < MinIndex ) MinIndex = IndexVal; 
  if ( IndexVal > MaxIndex ) MaxIndex = IndexVal; 
    
             IndexVal = pMatProperty->m_pIndex[m + 2]; 
  if ( IndexVal < MinIndex ) MinIndex = IndexVal; 
  if ( IndexVal > MaxIndex ) MaxIndex = IndexVal; 
 
  // Store these properties to pass to DrawIndexedPrimitive 
  pSortItem->IndexStart    = m; 
              pSortItem->BaseVertex    = pMatProperty->m_nVertexStart; 
  pSortItem->VertexStart   = MinIndex; 
        pSortItem->VertexCount   = (MaxIndex - MinIndex) + 1; 
 
              // Add this item to the hash table 
              AddAlphaSortItem( pSortItem, Index ); 
  
            } // Next Alpha Primitive 
       } // End if alpha primitives 
   } // Next Property Group 
} // Next Property Group 

   } // Next Property Group 
} // Next Light Group 
 
At this point, all opaque polygons have been rendered and the hash table contains all of our alpha 
polygons. All that is left to do is to render the hash table in back to front order with a call to 
CScene::RenderSortedAlpha. 
 

  // Render the alpha polygons (if any) 
  if ( GetGameApp()->m_bSecondPassAlpha ) RenderSortedAlpha( ); 

} 
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CScene::AddAlphaSortItem 
 
Each element in the hash table can be a pointer to a linked list of ASORT_ITEM structures. Therefore 
we must traverse through the linked list and insert polygons into the correct position such that larger 
distances are at the head of the list and smaller distances are stored towards the tail of the list.  
 
void CScene::AddAlphaSortItem( ASORT_ITEM * pItem, ULONG HashIndex ) 
{ 
    float fDistance = pItem->Distance; 
 
    // Attach this item to an element in the sort container hash table 
    ASORT_ITEM * pIterator = m_pSortContainer[ HashIndex ], * pPrevious = NULL; 
     
    // Anything in this list ? 
    if ( !pIterator ) 
    { 
        // Just add the item 
        m_pSortContainer[ HashIndex ] = pItem; 
        pItem->Next = NULL; 
     
    } // End if no linked list 
 
In the above code, we first store the distance in a local variable for easy access and readability. We 
then assign an ASORT_ITEM pointer called ‘pIterator’ the value of the pointer stored in the hash table 
at the passed index. We also create a pointer called ‘pPrevious’ and initially set this to NULL. Next we 
test to see if the pIterator pointer is NULL, and if so, then it means no items have been added to this 
index in the hash table. In that case, we can simply assign the hash table index the address of the 
passed item pointer. We then set the inserted ASORT_ITEM’s next member to NULL indicating that 
this item is the only item in the list and does not have other ASORT_ITEM structures attached.   
 
If pIterator does not equal NULL then it means there must be at least one ASORT_ITEM structure 
already stored at this index. If this is the case, we need to traverse through the linked list until we find 
an ASORT_ITEM that has a smaller distance than the distance of the item we are trying to insert. We 
then insert the item just before it by attaching the item’s Next pointer to the pIterator.  
 
    else 
    { 
        // Add it to the linked list in the correct position 
        for(pIterator=m_pSortContainer[HashIndex]; pIterator; pIterator = pIterator->Next) 
        { 
            if ( pIterator->Distance <= fDistance ) 
            { 
                 
If this is the first iteration of the loop, the pPrevious pointer will be NULL and we should start off by 
inserting the item at the head of the list. We do this by assigning the item’s ‘Next’ pointer to the 
current head of the list, and assigning the hash table pointer (which currently points to the old head of 
the list) to the new item such that our new item is now the new head of the list. The previous head of 
the list is now the second item in the list and is pointed to by our newly inserted item’s Next pointer.
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               if ( !pPrevious ) 
               { 
                   pItem->Next = m_pSortContainer[ HashIndex ]; 
                   m_pSortContainer[ HashIndex ] = pItem; 
               } // End if set as head 

 
If this is not the first iteration of the loop, we need to insert the ASORT_ITEM item such that its Next 
pointer points to the pIterator (the ASORT_ITEM with a smaller distance). The previous item in the 
linked list (the pIterator from the previous iteration of the loop) will have its next pointer set to point at 
the newly inserted item. The passed ASORT_ITEM is inserted in the list like so: 
pPrevious pItem pIterator.            
 
                else  
                { 
                    pItem->Next = pIterator; 
                    pPrevious->Next = pItem; 
                 
                } // End if insert item 
                break; 
                     
            } // End if we should insert here 
 
For each iteration of the loop we store the current pIterator in the pPrevious pointer so that in the next 
iteration of the loop we have access to it. This allows us to insert the item between pPrevious and 
pIterator as was shown above. 
 
            // Store previous item 
            pPrevious = pIterator; 
         
        } // Next Item in linked list 
 
If we get here then pIterator is NULL. This means that we did not find an ASORT_ITEM in the linked 
list with a smaller distance value than the ASORT_ITEM we are trying to insert. Thus, we need to add 
our item to the end of the list. 
 
        // If we reached the end of the list, just place it there 
        if ( !pIterator ) pPrevious->Next = pItem; 
 
    } // End if linked list already here 
} 
 
 
CScene::RenderSortedAlpha 
 
The final function called at the very bottom of the CScene::Render function is 
CScene::RenderSortedAlpha. This function traverses the hash table from bottom to top rendering the 
linked lists of polygons stored at each index in the hash table. 
 
void CScene::RenderSortedAlpha( ) 
{ 
    long          i, j; 
    CLightGroup * pLightGroup        = NULL; 
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    ULONG       * pLightList         = NULL; 
    CLightGroup * pLastLightGroup    = NULL; 
    long          nLastMaterial      = -2; 
    long          nLastTexture       = -2; 
    ASORT_ITEM  * pItem = NULL, * pNextItem = NULL; 
    LPDIRECT3DINDEXBUFFER9 pLastIndices = NULL; 
     
    // Enable alpha blending and disable Z-Writing (to help reduce visible errors) 
    m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE ); 
 
The first thing we do is enable alpha blending and disable Z buffer writes. Then we loop through each 
element in the hash table starting at the end of the array and working our way back to hash table 
element 0. 
 
    // Render back to front order 
    for ( i = SORT_HASH_SIZE - 1; i >= 0; i-- ) 
    { 
        
We now loop through each item stored at element ‘i’ in the hash table. All we are doing here is 
traversing the linked list stored at the hash table index. If there are no polygons (ASORT_ITEM’s) 
stored here, pItem will be NULL and the loop will immediately exit. 
 
       for ( pItem = m_pSortContainer[i]; pItem; pItem = pNextItem ) 
        { 
           // Collect light group 
       pLightGroup = pItem->LightGroup; 
 
            // Only set lights / vertex buffer if lightgroup is different. 
            if ( pLastLightGroup != pLightGroup ) 
            { 
            pLightList  = pLightGroup->m_pLightList; 
            for ( j = m_nReservedLights; j < m_nLightLimit; j++ ) 
            { 
                if ( (j - m_nReservedLights) >= (pLightGroup->m_nLightCount ) ) 
          { 
              // Disable any light sources which should not be active 
              m_pD3DDevice->LightEnable( j, FALSE ); 
                    }  
         else 
         { 
             // Set this light as active 
             m_pD3DDevice->SetLight(j, 
                                           &m_pLightList[pLightList[j-m_nReservedLights]]); 
             m_pD3DDevice->LightEnable( j, TRUE ); 
                  } 
 
            } // Next Light 
 
For each item stored in the linked list at the current hash table index, the above code retrieves a pointer 
to the light group stored. If the light group is different from the light group used to render an alpha 
polygon in a previous iteration of this loop, then we need to setup the device’s lights using the lights in 
the current light group.  
 

TeamLRN



Once we have set the lights up for this new light group we bind the light group vertex buffer to device 
stream 0 and assign the local variable pointer pLastLightGroup the current light group pointer. This 
way in the next iteration of the loop, when processing the next item in the linked list, if the polygon 
stored there uses the same light group, we do not set up all of the same light states unnecessarily. 
 
       // Set vertex stream 
       m_pD3DDevice->SetStreamSource( 0, pLightGroup->m_pVertexBuffer, 
                                            0, sizeof(CVertex)); 
 
             pLastLightGroup = pLightGroup; 
 
          } // End switching light group 
 
Now we extract the texture index for this polygon from the current item in the list and set the texture in 
stage 0. If the texture index is –1 then the polygon is not textured, and the texture stage will have its 
texture set to NULL. Once again, we store the current texture index in the nLastTexture local variable 
so that we do not unnecessarily set a texture if it has been set by the previous item in the list. 
 
     // Set Properties 
          if ( nLastTexture != pItem->TextureIndex ) 
          { 
         if ( pItem->TextureIndex >= 0 ) 
         { 
         m_pD3DDevice->SetTexture( 0, m_pTextureList[ pItem->TextureIndex ] ); 
               }  
         else 
         { 
         m_pD3DDevice->SetTexture( 0, NULL ); 
            }  
            
               nLastTexture = pItem->TextureIndex; 
         
           } // End if different 
 
Next we extract the material index from the ASORT_ITEM. If it is different from a material already 
set, we set the material using the material index from the current item we are processing and store the 
material index in the nLastMaterial local variable to avoid needlessly setting the material in the next 
iteration.    
      
           // Set material  
           if ( nLastMaterial != pItem->MaterialIndex ) 
           { 
           m_pD3DDevice->SetMaterial( &m_pMaterialList[ pItem->MaterialIndex ] ); 
                nLastMaterial = pItem->MaterialIndex; 
           }  
             
Now we set the index buffer used by this item, and again employ the technique of remembering which 
one is set so that we do not needlessly set the index buffer later. Note that an index buffer may contain 
many alpha polygons so there is a very good chance that multiple triangles from the same index buffer 
will be rendered. 
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            // Set Indices 
            if ( pLastIndices != pItem->Indices) 
            { 
                m_pD3DDevice->SetIndices( pItem->Indices ); 
                pLastIndices = pItem->Indices; 
            }  
 
Using the remaining information in the current ASORT_ITEM we are processing, we render the 
polygon stored there. 
    
           // Render this primitive 
       m_pD3DDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST, pItem->BaseVertex, 
                                                pItem->VertexStart, pItem->VertexCount, 
                                                pItem->IndexStart, 1); 
 
Finally, we store a pointer to the next item in the list and delete the current item from the linked list 
and from memory. This is because the ASORT_ITEM structures are allocated, added to the hash table 
and deallocated each frame. Note that this is certainly not the most efficient or memory friendly 
approach, so you are free to replace the dynamic memory allocations with a more robust system of 
your own.  
 
The reason we store what the current item’s Next pointer points to is because at this time, our only way 
to navigate the rest of the list is from this pointer. When the current item is deleted, we would lose the 
ability to access the rest of the linked list. So instead, we simply unhook the current item from the head 
of the list remembering the next item in the list, delete the current head of the list, and make the Next 
item in the list the new head of the list. 
  
          // Clean up after ourselves 
          pNextItem = pItem->Next; 
          delete pItem; 
          m_pSortContainer[i] = pNextItem; 
 
        } // Next item in linked list for this entry 
 
    } // Next hash table entry 
 
    // Reset render states 
    m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE ); 
    m_pD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE ); 
} 
 
After we have rendered all the polygons in our hash table, we re-enable Z writing and disable alpha 
blending. 
 
In this project we learned that whether we are using vertex alpha, texture alpha or both, we need to 
render our alpha polygons after we have rendered our opaque polygons. If the alpha polygons can 
never overlap from the viewer’s perspective then this is all we really need to do. However, in most 
cases the alpha polygons need to be sorted and rendered in a back-to-front order to correctly blend 
properly. We also discussed various ways to generate the sorted alpha list and finally settled on the use 
of a hash table. This is a good solution in many situations but not our only option. The quicksort is also 
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a very common technique when you have a lot of polygons to sort. Whether using the quicksort or 
hash table method of sorting, if the polygons dynamically move about throughout your world, then you 
will need to make sure you re-calculate and update the center points of these polygons. Using the 
center point sorting technique is not a perfect solution as it will generate incorrect results in certain 
situations (such as ‘intersecting polygons’). These problems can only be eliminated using sub-division 
techniques such as BSP trees. However, this technique of sorting polygons will be ample for the vast 
majority of applications and is extremely fast when used with the hash table since no actual 
sorting/swapping needs to take place. 
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Lab Project 7.4:  Alpha Surfaces 
 
Terrain texture 
splatting is a technique 
that allows us to render 
a terrain that is built 
from a number of tiling 
texture layers. Texture 
splatting was used to 
generate the terrain in 
the commercial title 
Drakken II™ for the 
Sony Playstation™. 
 
Unlike our previous 
terrain demos where we 
had to create a large 
terrain texture and map 
it to the four corners of 
the terrain, no such 
specific texture is 
needed when rendering a terrain using texture splatting. When using texture splatting we define a 
terrain as having a number of layers, where each layer is a structure that contains the tileable layer 
texture used by that layer (such as a grass texture or a mud texture for example). In Lab Project 7.4 our 
terrain is constructed using three layers: a rock layer, a grass layer, and a flower layer. These form 
layers 0, 1, and 2 of the terrain respectively. Below you can see the three textures that belong to each 
of our three terrain layers. These textures are ones that are used to render the layer.  
 

Layer 0  
Concrete Texture 

Layer 1 
Grass Texture 

Layer 2 
Flowery Texture 

   
   
These three textures are tileable textures which means that we can set the texture coordinates of the 
terrain vertices outside the [0, 1] range to make them tile over the terrain multiple times without 
noticing the seams. If you look at the screen shot above, you can see the concrete, grass, and flower 
textures all being used to render the terrain. Each layer texture is tiled multiple times across the terrain 
and we can see that the three textures blend flawlessly into one another without the need for us to 
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create a final terrain texture in a paint package. We will simply feed our tileable texture layers into the 
system and let the texture splatting algorithm determine the final per-pixel color of our terrain. We will 
see in a moment how it is the alpha map assigned to each layer that determines how the three layers 
blend with each other. 
 
Even if we had just a single layer, the fact that we are tiling the texture across the terrain at a high 
frequency (much like we did with our detail map in Chapter Six), means that we no longer need a 
detail map. We can set the texture coordinates of the mesh such that a layer texture is repeated multiple 
times across a single quad if we wanted to. 
 

The image on the left shows a terrain constructed from a 17 by 17 height 
map. Hopefully you will remember from previous chapters that this 
means we will have a terrain mesh with 17x17 vertices forming 16x16 
quads. In this image, we are looking the down the negative Y axis of the 
world from above. The mesh for the height map could be calculated as: 
 
CVertex *pVertex = pTerrainVertexArray;  
 
for (int Y = 0; Y < TerrainHeight; Y++) 
{ 
    for (int X = 0; X< TerrainWidth; X++) 
   { 
 pVertex.x = X * Scale.x; 
     pVertex.y = pHeightMap[Y*TerrainWidth + HeightHeight]*Scale.y; 
 pVertex.z = Y * Scale.z; 

     pVertex.tu = X; 
     pVertex.tv = Y; 
       } 
                                                 } 
 
In the above code, pTerrainVertexArray is assumed to be an array of 17x17 vertices. Scale is a 3D 
vector where each component is used to scale the loop variables and the height map value into an 
arbitrary world space size. Notice that for each texture coordinate we just use the offset of the vertex 
into the height map. Thus, the vertex created from height map pixel (2,2) will have UV coordinates of 
(2,2) also. This means that the top left quad of the terrain will have textures coordinates (0,0) top left, 
(1,0) top right, (1,0) bottom left and (1,1) bottom right. We know that this will map the entire texture to 
the first quad. The second quad (moving along horizontally to right from the previous quad) will have 
texture coordinates of (1,0) top left, (2,0) top right, (1,1) bottom left and (2,1) bottom right.  This 
means (provided the default texture coordinate addressing mode is enabled where the sampler states 
D3DSAMP_ADDRESSU and D3DSAMP_ADDRESSV are set to D3DTADDRESS_WRAP) texture 
coordinates outside the 0.0 to 1.0 range will tile repeatedly. So in the above code, each quad in our 
terrain will have the entire tileable texture mapped to it. You can see that the concrete texture has been 
tiled 16 times horizontally and 16 times vertically across the terrain in the picture. The concrete texture 
in this example is 512x512 in size, so we have an ample amount of per-pixel detail per quad. In fact, 
even in this simple mesh example where we are discussing a very small mesh of 17x17 vertices, if we 
wanted to get the same detail using a single texture and draped over the terrain, we would need a 
texture that was 8704x8704 in size. If that was a 32 bit texture it would consume 289 megabytes of 
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video memory -- most graphics cards do not have that much memory. A more realistic terrain mesh 
size, even a modest 128x128 quad terrain constructed from a 129x129 height map, would consist of 
(128*128) 16,384 quads. Using tiling we can map a 512 texture per terrain quad. To get the same 
amount of texture detail using a single texture, the texture would need to have (128*512) * (128*512) 
= 4,294,967,296 pixels. At 32-bit, that is 4 bytes per pixel, which means the texture would consume 16 
gigabytes. 
 
So clearly, using tileable textures and repeating them across the terrain affords us texture resolution 
that would otherwise not be possible. We will see later on that although the mesh is constructed such 
that its texture coordinates map a texture per quad, we can assign each layer a texture matrix used 
whilst rendering. This matrix can be used to scale the texture coordinates on the fly to generate 
arbitrary mappings. In this demo, we will set up each layer’s texture matrix to be a scaling matrix that 
scales the U and V texture coordinates of each vertex by 0.5. So instead of the top left quad of the 
terrain having UV coordinates (0,0) (1,0) (0,1) (1,1) , when the quad is rendered its texture coordinates 
will be scaled to (0,0) (0.5,0) (0,0.5) (0.5,0.5). In this case only the top left quadrant of the texture is 
mapped to the top left texture and we have a mapping of one texture per four quads of terrain.  
 
Tiling a texture across a terrain allows us to easily tweak the texture resolution. However it would now 
seem that we have lost the ability to color our terrain such that some areas are grass, some areas are 
mud, etc. With our old method of generating one big texture and laying it over the terrain, we could 
control which parts of our terrain were grassy and which were rocky simply by coloring the terrain 
manually. However, because the resolution of the texture was so low at the quad level, it made it 
difficult to place things such as roads or rivers in a precise way because one texel might be mapped to 
several quads. If we are going to use tileable generic textures and repeat them over the terrain, how can 
we control which parts of the terrain will use the grass texture and which parts of the terrain will use 
the rock texture? It is precisely this problem that the texture splatting technique is designed to 
overcome.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TeamLRN



Texture Splatting 101 
 
Before we discuss texture splatting and the various implementation considerations we must take into 
account, we will first discuss the concept at a very high level. Texture splatting is a very simply 
technique in theory but does tend to have a slightly more complex implementation in order to make it 
more efficient.  
 
We need a terrain height map… 

 
In our previous terrain demonstrations, we used a height map to generate the 
terrain vertex data. The same will be true in this project as well. To simplify 
the discussion on texture splatting for the time being, we will use a small 
16x16 quad terrain to show the various examples (see image on left). In the 
actual demo we will use a 129x129 height map to generate a 128x128 quad 
terrain.  
 
Our first task is to set up a number of layers. For the sake of this discussion we 
will say that a layer is nothing more than a structure that holds a base texture, 
such as grass, mud or rock etc., and a texture matrix used to describe how the 
texture assigned to that layer is tiled. With this approach a grass layer texture 

may be tiled across the terrain at a frequency of 2x2 quads per texture and a rock layer might be tiled at 
a frequency of 8x8 quads per texture. As a texture matrix can also contain rotational transformations, 
we could also apply a rotation to a layer’s texture coordinates such that one layer might be tiled 
horizontally whilst another layer tiles diagonally. This tiling independence helps break up the uniform 
looking tiling of the texture layers.  
 
At this time, let us imagine our terrain storing an array of vertices describing the terrain mesh, and an 
array of layers. A layer describes the textures stored at each layer and the texture matrix used to 
transform the UV coordinates of the layer. 
 
class CTerrain  
{ 
 IDirect3DVertexBuffer9     *pMeshData;   // Vertex buffer containing vertices 
 DWORD                  VertexCount;     // How many vertices 
 CTerrainLayer                  *pLayers;  // Array of texture layers   
            CTerrainSplat     *pSplats;  // Array of texture splats (one for each layer) 
}; 
 
class CTerrainLayer 
{ 
 IDirect3DTexture9 *  pLayerTexture;   // grass, mud , water etc 
 IDirect3DTexture9 *    pBlendTexture;   // Texture used to blend the layer texture 
            D3DXMATRIX  mtxTexMatrix;    // Controls scling or rotations of mesh UVs    
}; 
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This is only for the sake of discussion. We know from our previous terrain applications that the terrain 
class will contain a lot more than two arrays. The above structures are purely to keep the discussion of 
texture splatting simple at this point. The CTerrain class structure above also contains a pointer to an 
array of CTerrainSplat objects, so we will now discuss what exactly a texture splat is. 
 
 
What is a Texture Splat? 
 
In our simple example, if a terrain has three layers, where each layer describes a tileable texture that 
will be used to paint the terrain, then the terrain will also contain three splats. So there is one splat for 
each layer. A simple splat structure is shown below. 
 
class CTerrainSplat 
{ 
 IDirect3DIndexBuffer9 * pSplatFaces; 
           DWORD      IndexCount; 
           DWORD      PrimitiveCount;   
}; 
 
A splat is a collection of indexed quads from the terrain vertex buffer that use the texture assigned to 
the matching layer. In other words, if we have three layers, then our above terrain will have an array of 
three texture splat objects; one for each layer containing the faces used by that layer. Therefore, if 
TextureLayer[0] is a grass texture, then TextureSplat[0] will contain an index buffer that describes all 
the quads in the terrain that use that grass texture – these will be rendered together when we render 
TextureLayer[0]. So at its most basic level, a texture splat is just an index buffer that contains a 
collection of terrain faces that use the matching layer texture.  
 
Each splat will also contain an alpha texture. When we render the terrain, we start off at the base layer, 
and render each layer one at a time using the matching splat index buffer. For each layer, we set the 
texture in stage 0 and the matching splat alpha texture in stage 1. The color of each fragment is taken 
from the base texture assigned to stage 0, and the alpha value of each fragment is sampled from the 
alpha blend texture set in stage 1. Once we have the stages set for a given layer, we render the index 
buffer belonging to the corresponding terrain splat. So if we are rendering CTerrainLayer[1] for 
example, we assign the layer one texture to stage 0, then assign the blend texture belonging to 
CTerrainSplat[1] to texture stage 1. Then we render the index buffer belong to CTerrainSplat[1]. The 
alpha map assigned to a splat/layer controls how transparent or opaque the layer’s texture is at a given 
point on the terrain.  
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Layer 0 
Rock Texture 

Layer 1 
Grass Texture 

Layer 2 
Flowery Texture 

   
   
In our simple example, we will have an array of three CTerrainSplat objects, one for each texture layer 
depicted above. For simplicity, let us imagine that each splat object has an identical index buffer that 
contains all of the indices required to completely render every quad of the terrain. If we wanted to 
render all of the layers without using the alpha texture stored at each splat level, we could do the 
following: 
 
pDevice->SetStreamSource ( 0 , pMeshData , 0 , sizeof (CVertex) ); 
for (int I = 0; I < NumberOfLayers;  I++) 
{ 
      pDevice->SetTexture     ( 0 ,  &pLayers[I].pLayerTexture ); 
      pDevice->SetIndices      ( pSplats[I].pSplatFaces ); 
      pDevice->SetTransform ( D3DTS_TEXTURE0, &pLayers->mtxTexMatrix ); 
      pDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST, 0, 0, VertexCount,0, 
                                                             pSplats[I]->PrimitiveCount ); 
} 
 
Assuming that the depth comparison function has been left at its default, where pixels are not rejected 
and are rendered if the Z value is less than or equal to a value already stored in the Z-Buffer, we can 
see that after the first iteration of the above loop we will have rendered the first layer (the rock layer). 
The frame buffer would contain the following image: 
 
Terrain after 1st Render Pass 

 

+ = 
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The resulting terrain is pretty much as expected. You could say at this point then, that we have 
rendered the first layer of the terrain, where the index buffer contains the faces used by the splat for 
layer 0. Since, in our current example, each splat index buffer contains an exact copy of all the terrain 
faces, we can see that in the second iteration of the loop, we render the entire terrain again using the 
second layer’s texture (grass). Since we are not yet using the alpha textures, this will completely 
overwrite the terrain faces rendered in the frame buffer previously with the rock texture: 
 
Terrain after 2nd Render Pass 
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We now have the same terrain tiled with the grass texture. No sign of the rock texture remains. Do not 
worry about how useless this seems to be at the moment. Right now we just want to understand that a 
texture splat terrain is rendered by looping through each layer and rendering either all or a portion of 
the terrain in a given number of passes. 
 
Finally, in the third iteration of the loop in the above code, we render the third splat buffer. This will 
overwrite all of the grassy faces shown above with another copy of the terrain using the third layer 
texture: 
 
Terrain after 3rd Render Pass 
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The Alpha Texture 
 
So we build up our terrain by rendering a number of texture splats. In the above example, where each 
splat had identical index buffers, each successive splat that was rendered completely overwrote the 
previous splats/layers that had already been rendered. True, we could simply enable alpha blending to 
allow us to blend each layer such that we could see the splats that had previously been rendered, but 
this would still render a terrain where all layer textures are being mapped to all quads of the terrain, but 
this is not what we want. We want to have some areas specified as grassy and others as rocky for 
example. Furthermore, we also want smooth transitions where the terrain slowly blends from a grassy 
area into a rocky area without sharp edges between textures.  
 
We do this by enabling alpha blending and rendering each splat using an alpha texture. This texture 
will describe how transparent the splat should be a particular point on the terrain. If the alpha value at 
that point is transparent, the contents of the frame buffer will show through. If the alpha value at that 
point is opaque, then anything currently in the frame buffer at that point will be overwritten just as in 
the above examples. If the alpha value is partially transparent at that point on the terrain, then the layer 
texture currently being rendered will be partially blended with the current contents of the frame buffer. 
This allows us to smoothly blend from one region to another. Let us see an example. 
 
The Base Layer – The Rock Layer (No Alpha Map) 
 
The base layer, Layer[0] will never have an alpha map because it never needs to be blended with 
anything underneath it. This is because it is rendered first and there is nothing currently in the frame 
buffer. Therefore, in our simple example, after we have rendered the first layer/splat the frame buffer 
will contain the mesh shown next. This is exactly the same result as when we rendered the mesh in the 
above examples. The texture is completely opaque.  
 

 

= 
 

 
 
The Second Layer – The Grass Layer 
 
Every layer except the base layer needs a texture and an alpha map. This alpha map is not tiled like the 
layer’s base map. It is draped over the entire terrain much like the terrain base texture used in previous 
applications. This means that the terrain vertices will need a second set of texture coordinates where 
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the vertex at the top left corner of the terrain has a UV coordinate of (0,0) and the vertex at the bottom 
right corner of the terrain has a UV coordinate of (1,1).  
 
The alpha map in our example will not be a pure alpha surface although it certainly can be if the 
hardware supports it. For compatibility reasons, we have used a 16-bit A4R4G4B4 texture where the 
RGB components are not used and only the alpha value stored in each texel is used by the pipeline. 
This texture is set in the second texture stage. The stages are configured to sample the alpha from the 
texture and use that as the alpha value output from the pipeline to blend the terrain into the frame 
buffer.  
 
In our application, we created the alpha map by simply creating a 24-bit RGB texture in a paint 
package. We then selected a white spray gun tool and adjusted its opacity settings such that the longer 
you hold the spray gun down over a given pixel the whiter it becomes. The white pixels will become 
the totally opaque pixels, whilst the black pixels will be totally transparent. Every pixel is a shade of 
gray between black and white which means for any pixel of the image, all the RGB components are the 
same. For example, for half intensity gray, the RGB components would be (128,128,128). When we 
load this image into our application, we will only need an alpha value, so we can use any one of the 
color components to get this result and copy it into the alpha component of the alpha texture we are 
creating.  
 
For example, as you will see later in our application, we load the image into memory, create a DirectX 
texture with an alpha channel, and copy only the blue component of each pixel in the source image into 
the destination texture’s corresponding pixel alpha component. After we have filled the alpha 
components of each pixel in our layer alpha texture, we can discard the original 24-bit grayscale image 
from memory since it was only needed to fill out the alpha channel of our texture surface. The 
important point here is that we can easily design our alpha maps as normal 24-bit color images and 
extract the blue component (or red or green) and copy it into the alpha component of the blend texture. 
This blend texture will be assigned to the second texture stage and have its alpha sampled.  
 
In the next image we see the base map (the grass texture) used by layer 1 and its alpha map. Again, 
white pixels represent total opacity and black pixels represent total transparency; pixels of any other 
shade represent a blending of some degree. The rightmost image shows that if we rendered this layer 
by itself into an empty (blue) frame buffer, the alpha map controls the blending of the terrain with the 
frame buffer. 
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Layer 1 
Base Texture 

 Layer 1 
Alpha Map 

 Rendered Blended 
Terrain 
Stage 0 – Base Texture 
Stage 1 – Alpha Map 
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The above images show the output of rendering splat 1. In this example we are rendering the terrain 
using layer 1’s texture assigned to stage 0. The color operations set for that stage sample the color from 
the base texture and the alpha from the alpha texture assigned to stage 1. The color sampled from the 
first stage and the alpha sampled from the second stage, are used to blend with the frame buffer to 
create the final image in the empty frame buffer. Things should be starting to make a little more sense 
now.  
 
What about if we render layer 0 first and follow it with the second layer shown above? Remember that 
layer 0 is never alpha blended and never has an alpha blend map assigned to it. Rather than our grass 
splat mesh being blended with the blue frame buffer, it will instead be blended with the splat mesh 
from layer 1 which already in the frame buffer. The results are shown below: 
 

Render Layer 0 
No Alpha Map 

 Render Layer 1 
Using Alpha Map 
Layer 1 

 Frame Buffer 
Blended Result 
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The 3rd Layer – The Flower Texture 
 
The 3rd layer of our terrain consists of a grassy/flower texture and an alpha map which dots the flower 
texture about the terrain. Below we see the base texture and its alpha map, and the result of rendering 
the splat mesh into an empty frame buffer using our texture/alpha texture stage states that sample the 
color from the base map and the alpha from the alpha map: 
 

Layer 2 
Base Texture 

 Layer 2 
Alpha Map 

 Rendered Blended 
Terrain 
Stage 0 – Base Texture 
Stage 1 – Alpha Map 
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It should be pretty easy to imagine what the final terrain would look like after we have alpha blended 
our third splat mesh into the frame buffer (on top of the previous two splats). Below we see the final 
results of blending the texture from layer 3 into the frame buffer after the first two splats were 
rendered. 

 

Frame Buffer 
after first two 
layers have been 
rendered 
 

 Render Layer 2 
Using alpha map as 
shown above. 

 Frame Buffer 
Blended Result 
consisting of all 3 
layers. 

+ = 
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And there we have it; the basic process of texture splatting. The pseudo-code to render a 3-layer terrain 
is: 
 
// Stage 0 Coloring : Modulate vertex color and texture color 
pDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_MODULATE ); 
pDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
pDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE ); 
 
// stage 0 alpha : Just set up flow to next stage 
pDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
pDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_CURRENT ); 
   
// stage 1 coloring : Output stage 0 texture color unaltered by this stage 
pDevice->SetTextureStageState( 1, D3DTSS_COLOROP, D3DTOP_SELECTARG1 ); 
pDevice->SetTextureStageState( 1, D3DTSS_COLORARG1, D3DTA_CURRENT ); 
     
// stage 1 alpha : Output alpha sample from texture assigned to this stage. 
pDevice->SetTextureStageState( 1, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
pDevice->SetTextureStageState( 1, D3DTSS_ALPHAARG1, D3DTA_TEXTURE ); 
 
pDevice->SetStreamSource ( 0 , pMeshData , 0 , sizeof (CVertex) ); 
 
 
for (int I=0; I< NumberOfLayers; I++) 
{ 
      pDevice->SetTexture     ( 0 ,  pLayers[I].pLayerTexture );    // Set the layer texture 
      pDevice->SetTexture     ( 1 ,  pLayers [I].pBlendTexture );   // Set the  alpha texture 
      pDevice->SetIndices      ( pSplats[I].pSplatFaces );             // Set the splats indices 
      pDevice->SetTransform ( D3DTS_TEXTURE0, &pLayers->mtxTexMatrix ); 
      pDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST, 0, 0, VertexCount,0, // Render the splat 
                                                                              pSplats[I]->PrimitiveCount ); 
}    
 
This is all very simple in theory, but we will need to discuss some optimizations. Firstly, in the above 
example we were rendering the entire terrain three times because all the splats had index buffers that 
contained every face in the terrain. This amount of overdraw will become prohibitive on larger terrains 
and is something we must minimize. Our solution is straightforward enough. If a layer has completely 
transparent quads, then the splat for that layer need not render those quads at all. We should only have 
faces stored in its index buffer that contribute to the frame buffer in some way. Furthermore, if a layer 
has completely opaque quads, then they will completely overdraw any quads in the same position 
belonging to lower level splats. So these quads can also be removed from the lower level splat index 
buffers in a pre-process. The basic process will be as follows: 
 
Load our blend maps, one for each layer 
For Each Blend Map   
   For Each Pixel in Blend Map   
       For (This Layer+1 to all the layers above this one) 
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If the matching pixel in any of the above layers blend maps is 255 (completely opaque)  

                        set the pixel in the current blend map to zero becaue it is completely obscured 
        

 end for This Layer+1 
   End for each Pixel in Blend Map 
End for each Blend Map  
       
The above algorithm is run before the indices for each splat level are calculated. At the end, a blend 
map that has totally opaque pixels will set the corresponding pixels in the lower layer blend maps to 
zero. This is beneficial because when we fill the index buffers of each splat level, we will loop through 
the blend map of each layer and generate a quad only if the four corresponding pixels in the blend map 
are not all zero. Therefore, by canceling out pixels in lower level blend maps, we are also effecting the 
way the splat’s index buffer will be filled -- it will only contains quads that are not completely 
transparent.  
 
This does however raise an interesting question regarding the base layer. Since the base layer has no 
alpha map and is always considered opaque, how do we remove the quads from this layer? Well, 
although the base layer will not need an alpha map during rendering, during the creation of the splats 
for each layer we do temporarily create a blend map for the base layer that starts off with every pixel 
opaque. We do this by allocating the memory and filling each pixel with a bright white color. Next, we 
execute the above algorithm. At the end of the loop, this temporary blend map will have every pixel 
that is completely occluded by the higher level layer blend maps set to black. We then build the base 
layer splat index buffer using this blend map just as we do with the other higher level layers. Once the 
splats for each layer have been generated, this temporary base layer blend map can be discarded.  
 
Below we can see what the splat for the base layer would look like after either completely transparent 
quads or quads completely obscured by higher level splats have been removed from consideration 
when building the splats index buffer. 
 

Base Layer Splat Layer 1 Alpha 
Map 

Rendered Result 
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As you can see, we are no longer rendering the complete terrain. The base layer is now is only a subset 
of the actual terrain quad set. The quads that have not been added to this base layer splat have been 
rejected because when rendering, they would have been overdrawn by higher level splats. You can see 
by looking at the alpha map for the layer above the base layer, that where the pixels in the alpha map 
are white, the quads belonging to the lower layer splat are removed. This is because the second layer’s 
quads will be fully opaque at these points. 
 
You can also see that where the layer above has black pixels in the alpha map, the current layer will 
not be overdrawn and will need to show through, so we leave the quads in place. We only remove 
quads from a splat if the corresponding pixels in the occluding layer’s alpha map are totally white (full 
intensity). You will notice by looking at the alpha map of the 2nd layer that there are also pixels that are 
not full intensity white. These represent quads that will be partially transparent to some degree, and as 
such will not totally occlude the quads in the base layer. It is the quads that correspond to these pixels 
that will allow us to blend smoothly from one layer to the next. 
 
Using this simple quad elimination method, the second layer splat now consists of fewer quads than 
before. It now contains only a subset of terrain quads that are not transparent and not completely 
overdrawn by a higher splat level. It should also start to become clear exactly why we are storing a 
unique index buffer for each splat. After this quad occlusion testing is done, each splat will contain a 
unique list of face in its index buffer describing only the quads used by that splat. Remember however 
that there is only one copy of the terrain vertex data and it is stored in a vertex buffer in the terrain 
class. Each splat is only an index buffer that describes a subset of that vertex buffer for a given layer. 
 

Layer 1 Splat Layer 1 Alpha 
Map 
Layer 2 Alpha 
Map 

Rendered Result 
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In the above diagram we see the alpha map for layer 1 and layer 2 as they both influence the mesh that 
will be created and rendered. We can see by looking at the wire frame mesh, that when the splat is built 
for layer 1 we are only generating quads where the layer map for that layer is not completely black. We 
also see the alpha map for layer 2 here since it will be used at occlusion testing time to drill down 
through the layers (as discussed above) and set any alpha map pixels to black in lower layer alpha 
maps that are occluded by its white pixels. Although the Layer1 map shown above is in its state before 
this occlusion testing has taken place, the rendered result shows that white pixels in the Layer2 map 
have created some transparent holes in the Layer1 map. There was not enough to actually remove any 
quads in this case because the Layer2 alpha map is too sporadic. There are just not enough opaque 
masses in the alpha map to occlude any underlying quad. If you look at the rendered result however, 
you will see that there are now little transparent bits in the grassy regions that are not there in that 
layer’s alpha map. This is where the above layer (the flower layer) completely overdraws the grass 
(and rock) layers. 
 
The following images show the splat created for the third and topmost layer, rendered using our flower 
texture to dot some random looking foliage about the terrain. Notice how the spaces in the splat where 
there are missing quads match up exactly with the larger dark regions of the layer’s alpha map. 
Because this is the top layer splat, its quads cannot be occluded by anything above it. Therefore, the 
rendered result and the mesh created are exactly what we would expect from looking at the associated 
alpha map. 
 

Layer 2 Splat Layer 2 Alpha Map Rendered Result 

 
 

 
 
When we render these three layers using three passes we get the correct results, because quads are only 
missing from a given splat if they would be overdrawn anyway: 
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Hopefully, at this point we are all clear as to what exactly texture splatting is and how it works in 
theory. The following screen shots show the larger terrain that we will use in Lab Project 7.4 to give us 
a better idea of how the individual layers are used to construct the final terrain. In our demo, the base 
layer is rock and the second layer is grass. As a result, we can draw black lines on the grass layer alpha 
map so that the base layer shows through. This creates roads and trails on the terrain.  
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Base Layer – Concrete Splat  1st Layer – Grass Splat 

+

2nd Layer – Flowery Splat  Rendered Result 

=

 

Implementation Considerations 
 
It is now time to take a look at how our application will implement texture splatting. At first you might 
think that it would be much simpler to have the terrain store three layer objects describing the base 
texture and the alpha map for that layer and three splat levels containing the index buffers for each 
layer. However we learned in previous lessons that if we have a large terrain, we want to break it down 
into sub-meshes so that we are not sending too many vertices into the pipeline at one time. In our 
previous demos, each terrain block was really just a vertex buffer describing a terrain submesh. We 
created a terrain from a 257x257 height map which meant that the overall terrain consisted of 257x257 
vertices (and 256x256 quads). We broke this down into sub-blocks where each block stored a 17x17 
capacity vertex buffer and each terrain block was a 16x16 quad sub-terrain. The same technique will be 
employed in this demo although we will be using a 129x129 height map this time to create a 128x128 
quad terrain. Each terrain block will still be a 16x16 quad submesh however. This means we have to 
slightly modify the way that we store our data. It is now the individual terrain blocks that will store the 
three splat levels for that block. Each splat index buffer will describe only the quads for a given layer 
that belong to that terrain block. Rendering the terrain can then be done as follows. 
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For Each Block of the Terrain 
      For Each Layer 
             If (Block.SplatLevel[layer] exists) Render ( Block.Splat(Layer) ) 
      End for Layer 
End for Block 
Notice that we check that a splat exists for a given terrain block before we try to render it. This is 
because we can think of each terrain block as storing three splats, where the splats represent a 16x16 
quad area for a given layer. If a particular layer has totally transparent pixels in that region of the 
terrain, then no quads are generated for that block layer. Therefore, it is possible that although our 
terrain is using three layers in total, not all terrain blocks will have all three splats defined. Imagine for 
example that part of our terrain was fully rock textured and this section was one of our terrain blocks. 
This terrain block would only have one splat level because it does not use quads from the other two 
layers. The bottom line is that not all terrain blocks need to have a splat for each layer.  
 
When we create a height map for our terrain and the various alpha maps for each layer, these alpha 
maps will be defined for the entire terrain. This is, they will be draped over the full terrain. However, 
when we load an alpha map for a given layer, we will carve it up into pieces and assign a piece of the 
alpha map to each terrain block. This means, in a simple example where each terrain block uses all 
three layers of the terrain, each block will store three splats, one for each layer. In that case each splat 
will consist of an index buffer for the terrain block and an alpha texture for that terrain block. 
Rendering each terrain block would consist of rendering all three of its splats, where each splat uses its 
assigned alpha texture during rendering. Once we have carved a layer’s alpha map into terrain block 
sized alpha textures, the original alpha map can be discarded from memory as it will not be needed in 
the rendering process.  
 
Let us have a look at the data structures we will use to represent the terrain in this project: the CTerrain 
class, the CTerrainBlock class, the CTerrainLayer class, and the CTerrainSplat class. In the following 
diagram we see the basic relationships between the four classes as well as some of the more important 
member variables. We also see some examples of data that might be stored in some of those members. 
The CTerrain class has a great deal more to it than is shown in this diagram but what we are looking at 
here is just the new stuff. The rest of the terrain members are the same as our previous terrain demos. 
The CTerrain class contains an array of CTerrainLayer objects as well as the height map data used to 
build each terrain block vertex buffer. The CTerrain class also contains an array of base textures used 
by each layer. In our application there are three base textures: rock, grass, and flower. Each of the three 
CTerrainLayer objects in the CTerrain layer array contains an index into this texture array describing 
which texture the layer uses and a texture matrix describing the transformation for the first set of 
texture coordinates in the layer. This allows us to control the frequency and angle at which the base 
texture is tiled across the terrain. The CTerrainLayer object also contains a blend map, describing the 
alpha information used for the entire terrain. Each layer map, except the base layer alpha map, is 
loaded from a file and all layer maps are 1024x1024 pixels. The base layer map is generated 
programmatically by starting off with a layer map that is completely white (opaque), and then setting 
pixels that are occluded by higher level layer maps to black (transparent). 
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Looking at the above design, we can see that the terrain class builds itself from the height map as a 
series of CTerrainBlocks. Each terrain block contains 16x16 quads and an array of CTerrainSplat 
objects. A terrain block that contains all three layers will have three CTerrainSplat objects. Each 
CTerrainSplat object belonging to a terrain block contains an index buffer with the block quads and a 
blend texture. The CTerrainBlock blend texture is a texture with an alpha channel. It contains only a 
section of the corresponding layer’s alpha map that applies to that block. In the diagram we see the 
blend textures that would be created for the second and third splat objects of the top left 16x16 terrain 
block of the terrain. If all blocks use all layers, then each terrain block will contain three splat objects 
and each splat object will contain an alpha texture that contains the section of the alpha map that 
applied to that block. These CTerrainSplat blend textures are created at application startup by dividing 
the layer maps stored in the CTerrainLayer object into block sized alpha maps. Once the alpha maps 
have been created for all splats, the larger parent blend maps can be discarded. The only information 

TeamLRN



the CTerrainLayer object contains (during rendering) is the index of the base texture used by this layer. 
Notice that each terrain block contains a USHORT array called m_pSplatUsage. If our terrain has three 
layers, then each terrain block will have an m_pLayerUsage with as many elements as the number of 
layers (3 in our example). When we create each terrain block, we will fill this array such that if an 
element of this array is non-zero, then the terrain block has a splat for the corresponding layer. In other 
words, if a terrain block has splats for only layers 0 and 2, the splat usage array will be [1,0,1] for that 
terrain block. This allows us to check quickly during rendering whether a terrain block uses a certain 
layer. If so, then the corresponding splat of that terrain is rendered. The CTerrainBlock class also 
stores a pointer to the parent terrain class and its nine neighboring terrain blocks. This information is 
handy to keep around as we will see later. When we discuss the source code, you should refer back to 
the above diagram to remember how the four objects are related. 
 
The next implementation detail we must discuss is how to set up the various parameters for the terrain 
and each of its layers. Although in previous projects we have simply hard-coded such data items as 
how many blocks our terrain get carved into, and how many quads a terrain block consists of, we now 
have this information and much more that will need to be fed into our texture splatting terrain engine. 
For example, we need to set the base texture and the alpha map texture for each layer. We need to store 
the parameters that allow us to setup a texture matrix for each layer controlling how the base texture is 
tiled. So rather than hard-coding this information, we have decided in this project to store this 
information in an .ini file. Our application will read the information from this file during terrain setup. 
This allows us to tweak the operating parameters of our engine without the need to touch any code or 
have to recompile our application. This technique is something that has been used for many years 
across all sorts of applications. Many Windows applications for example use .ini files to store their 
settings. If you performed a search for .ini files on your computer you would probably find a great 
many listed in the results box. Whilst .ini files have been superseded by the window registry for storing 
permanent application settings, the registry is generally not a good place to store information that we 
wish the user to be able to change easily. An inexperienced user digging about in the windows registry 
can cause damage to the operating system. However, if the user incorrectly alters an .ini file, all he or 
she can do is prevent the application that relies on the .ini file setting from running correctly (or at all). 
 
Before we discuss the splatting source code, let us take a quick look at the .ini file and discuss the sort 
of information our application will expect to be stored there. We will examine how an .ini file is laid 
out and briefly touch on the Windows API functions at our disposal for extracting settings from such a 
file. 
 
 
 
 
 
 
 
 
 
 

TeamLRN



Initialization files 101 
 
.ini files are text files containing key/value pairs. They can be created in Windows Notepad or any 
plain text editor. They are laid out in such a way that we can use Windows API functions to extract the 
information from these files easily, without needing to explicitly read the file ourselves. Associated 
settings can be grouped into ‘sections’. A section is a block of settings surrounded by square brackets. 
All the settings are said to belong to a given section until another section head is encountered in the 
file.  
 
A simple .ini file is shown next. It has two sections that we have called ‘MySection1’ and 
‘MySection2’. MySection1 has three keys: Name, NickName and Age. MySection2 contains two keys 
called Gender and Status. Each of these keys is assigned a value, and it is these values that the 
application will extract using the section name and the key name to describe value we wish to extract 
in the file. 
 
;-------------------------------------------------------------------------- 
; My Example INI File 
; ------------------------------------------------------------------------- 
 
[My Section1] 
Name = Gary Simmons 
NickName = [GI]-Gaz 
Age = 32 
 
[My Section2] 
Gender = Male 
Status  = Single 
 
This simple file shows us all we need to know. Lines that start with a semicolon are comments. We 
have total freedom to call the different sections of our file whatever we like. There are also no limits in 
terms of how many sections we can store and no limit on the number of keys a section can contain. 
This is really a flexible way to store data parameters such that our users can redefine the default 
operating parameters of our applications.  
 
Extracting data from .ini files is very straightforward since the Windows API provides a number of 
easy to use functions. The two that we are interested in are shown below. They are used for extracting 
string and integer values respectively. First we look at how to extract an integer value from our file. 
 
UINT GetPrivateProfileInt 
( 
  LPCTSTR lpAppName,  // address of section name 
  LPCTSTR lpKeyName,  // address of key name 
  INT nDefault,        // return value if key name is not found 
  LPCTSTR lpFileName  // address of initialization filename 
); 
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The first parameter should be a pointer to a string containing the name of the section. For example, we 
would specify “My Section1” if we were trying to extract the Age value from our test file. The second 
parameter is the name of the key. In our example we have only one numerical value assigned to the 
key ‘Age’ in the first section of our file. Therefore, we would pass in “Age” as the second parameter. 
The third parameter allows us to specify a default return value if the key we are looking for does not 
exist in the file. This enables our application to act responsibly and handle missing keys with sensible 
default values. For example, we might specify a value of 18 here in case the Age key is not found. The 
last parameter is a string containing the name of the ‘ini’ file we wish to extract the information from. 
If this parameter does not contain a full path to the file, the system searches for the file in the Windows 
directory. 
 
Next we see how this function can be used to extract the ‘Age’ value stored in the ‘MySection1’ 
section of our .ini file above. In this example, we are expecting the .ini file to be in the ‘Data’ directory 
of the current working directory. If the value is not found for whatever reason, a default value of 18 
will be returned.  
 
char IniFileName[MAXPATH]; 
UINT AgeValue; 
 
// Get the current working directory and append the sub folder and file name 
GetCurrentDirectory( MAX_PATH, IniFileName ); 
strcat( IniFileName, "\\Data\\Level1.ini" ); 
 
// Extract the Age value from the ‘My Section1’ section and store it in th AgeValue variable 
AgeValue = GetPrivateProfileInt (“My Section1” , “Age” , 18 , IniFileName ); 
 
The actual file reading is done for us behind the scenes and we are done.  
 
The second function our application will want to use extracts strings from .ini files. We will need this 
because we store the texture names for each splat layer in the .ini file. This allows us to apply different 
textures to the terrain simply by adjusting the texture names in the file. 
 
DWORD GetPrivateProfileString 
( 
  LPCTSTR lpAppName,        // points to section name 
  LPCTSTR lpKeyName,        // points to key name 
  LPCTSTR lpDefault,           // points to default string 
  LPTSTR lpReturnedString,  // points to destination buffer 
  DWORD nSize,                  // size of destination buffer 
  LPCTSTR lpFileName        // points to initialization filename 
); 
 
Most of the parameters should be fairly obvious given our prior discussion. The only ones to note are 
the fourth and fifth parameters. The fourth parameter is where we pass in a pointer to a destination 
buffer that will receive the extracted string. The fifth parameter specifies the size of our destination 
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buffer so that the function will only copy over data that will fit within the buffer and not overflow the 
buffer accidentally.  
 
The example code below extracts the ‘Name’ string from ‘My Section1’ and the ‘Gender’ string from 
‘My Section2’ in our test file: 
 
char UserName[1024]; 
char UserGender[5]; 
 
// Get the current working directory and append the sub folder and file name 
GetCurrentDirectory( MAX_PATH, IniFileName ); 
strcat( IniFileName, "\\Data\\Level1.ini" ); 
 
// Extract Name value ( ‘Gary Simmons’ ) 
GetPrivateProfileString ( “My Section1” , “Name”   , “ Unkown” , UserName   , 1024 , IniFileName );  
 
// Extract Gender Vlue ( ‘Male’ ) 
GetPrivateProfileString ( “My Section2” , “Gender” , “ Unkown” , UserGender , 5       , IniFileName ); 
 
Now that we see how easy it is to extract values and strings from an .ini file, let us have a quick look at 
the .ini file we created for Lab Project 7.4. We will examine it one section at a time, starting with the 
first. This is the [General] section used to hold settings that apply to the entire scope of the application. 
 
[General] 
Name           = Test Terrain 
Desc             = This terrain is designed to test the texture splatting technique. 
Heightmap  = Heightmap.raw 
Scale            = 190.0, 10.0, 190.0 
TerrainSize = 129, 129 
BlendTexRatio = 8 
BlockSize      = 17, 17 
LayerCount     = 3 
 
The ‘Name’ and ‘Description’ strings are there in case we want to display information about what the 
application is and what it does. The ‘Heightmap’ key contains the name of the heightmap file that our 
application should use to build the terrain. The ‘Scale’ key assigns a scale vector to control how large 
the terrain will be in the world in the X, Y, and Z dimensions respectively. The ‘TerrainSize’ key 
describes the width and height of the height map. This is important to know since the height map is 
stored in a .raw file (which contains raw pixel data and no width or height information). The 
‘BlendTexRatio’ value is our way of specifying the size that our layer blend maps will be. A value of 8 
means that each layer’s alpha map file will be 8 times larger in each dimension. If the terrain if 
128x128 quads, the alpha map files for each layer will be expected to be (128*8) x (128*8) = 
1024x1024 pixels. This ratio means that each quad of our terrain will use an 8x8 square of pixels from 
each alpha map, allowing us to have smooth blending even within a single quad. If you were to lower 
this value to 4 for example, the layer alpha maps would need to be 512x512 pixels and each quad 
would be mapped to a 4x4 block of pixels in each alpha map. The ‘BlockSize’ key contains the size 
that we would like each terrain sub block to be in terms of vertices. In our example, we are stating that 
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the terrain should be broken down into sub meshes that are 17x17 vertices in size (16x16 quads). 
Finally, the ‘Layer’ key in the [General] section describes how many layers this application will use. 
Our demo will use the three layers discussed earlier. The [General] section is a mandatory section for 
our application, so it should not be removed. 
 
The next section in the .ini file is the [Textures] section. This is also a mandatory section. It describes 
how many textures our application will use and the filenames of each layer’s base texture.  
 
[Textures] 
TextureCount  = 3 
Texture[0]    = Textures\leath03.jpg 
Texture[1]    = Textures\grass.tga 
Texture[2]    = Textures\grassmeadow.tga 
 
The next section in the file describes the base layer of the terrain and is called the [Base Layer] section. 
The base layer does not have an alpha map file that needs to be loaded but we will still specify values 
such as scale and rotation for the texture matrix.  
 
[Base Layer] 
TextureIndex   = 0 
Scale          = 0.5, 0.5 
Translation = 0.0 , 0.0 
Rotation = 0 

 
This section describes the texture to use for this layer, which is index 0. If we cross reference this with 
the [Textures] section we can see that it is a texture called leath03.jpg. We also specify a texture 
coordinate scaling factor to control the tiling frequency. In the above example tiling will occur such 
that one texture repeat is mapped to 2x2 quads (4 quads). We can also specify a 2D translation vector 
to apply an offset to the texture coordinates and a rotation value which should be specified as a single 
float in degrees. In this demo, we are not using either value and as such they could be omitted as our 
application will choose the same default values. In fact, in our actual .ini file these two keys are not 
listed in the [Base Layer] section. We show them here simply to make you aware that these keys exist  
 
After the [Base Layer] section, there are a number of [Layer N] sections, where ‘N’ is the number of 
the layer the settings belong to. For example, in our demo that has a base layer and two additional 
layers, there will be a [Layer 1] section and a [Layer 2] section, making three layers in all. The [Layer 
N] sections are similar to the [Base Layer] section except that they also specify a file name for the 
layer blend alpha map. 
 
[Layer 1] 
LayerMap       = Layer1.png 
TextureIndex  = 1 
Scale          = 0.5, 0.5 
Rotation       = 45 
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[Layer 2] 
LayerMap       = Layer2.png 
TextureIndex  = 2 
Scale          = 0.5, 0.5 
Rotation       = 45   
 
We see that [Layer 1] uses texture index 1 as its base texture. When we cross reference this index with 
the [Textures] section we see that this is the ‘grass.tga’ file. This layer also uses a blend map called 
‘Layer2.jpg’ which our application will load and carve up to create the individual blend maps for each 
splat for that layer. The grass texture uses the same (0.5, 0.5) scaling that allows for one texture to be 
mapped to four quads. We also rotated the texture 45 degrees so that the grass tiles diagonally across 
the terrain. 
 
Source Walkthrough 
 
Now that we know what our application will find in the .ini file it is time to step through the code and 
see how all of the things we have discussed can be implemented. The texture splatting code is all part 
of the CTerrain class contained in the file CTerrain.cpp. 
 
Using the splat terrain from the CGameApp class is no different from using our previous terrain class. 
The CGameApp class still has a CTerrain member variable and in the CGameApp::BuildObjects 
function we again instruct the terrain to construct itself. In our previous terrain projects, the 
CGameApp::BuildObjects function called the CTerrain::LoadTerrain function passing in the filename 
of the height map. However, since all of this information is now contained in the .ini file, we will pass 
the name (with path) of the .ini file instead. 
 
GetCurrentDirectory( MAX_PATH, IniPath ); 
strcat( IniPath, "\\Data\\Level1.ini" ); 
 
// Build the terrain data 
m_Terrain.SetD3DDevice( m_pD3DDevice, HardwareTnL ); 
if ( !m_Terrain.LoadTerrain( IniPath )) return false; 

 
The terrain is rendered from the CGameApp::FrameAdvance function as in our prior terrain demos. 
We use a single call to the CTerrain::Render function as shown below. 
 
// Begin Scene Rendering 
m_pD3DDevice->BeginScene(); 
     
 // Render player mesh FIRST because terrain may render alpha components 
 m_Player.Render( m_pD3DDevice ); 
 
// Reset our world matrix (player sets it) 
m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_mtxIdentity ); 
 
// Render our terrain objects 
m_Terrain.Render( m_pCamera ); 
 
// End Scene Rendering 
m_pD3DDevice->EndScene(); 
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As we can see, nothing has really changed with respect to using and rendering the terrain. All of our 
changes are found within the terrain class itself.  
 
 
The CTerrain Class  
 
Let us first look at the CTerrain.h header file and examine the class declaration. We will also look at 
the supporting classes, such as the CTerrainBlock class (a sub mesh of the terrain), the CTerrainLayer 
class (a base texture and alpha map) and the CTerrainSplat class (the index buffer for each layer for 
each splat) along the way.  
 
Below we see the member variables of the CTerrain class. Many of these will be familiar from 
previous terrain implementations. We will not list the member functions here but will cover them as 
we call them from our code. 
 
The first four variables store the information used to build the terrain mesh. These are a pointer to the 
height map data, the width and height of the height map, and the scale that we will use to create a 
world space vertex from an image space height map pixel. The values for each of these four variables 
are extracted from the .ini file. 
 
class CTerrain 
{ 
    private: 
   
    D3DXVECTOR3    m_vecScale;     // Amount to scale the terrain meshes 
    float         *m_pHeightMap;        // The physical heightmap data loaded 
    ULONG          m_nHeightMapWidth;   // Width of the 2D heightmap data 
    ULONG          m_nHeightMapHeight;  // Height of the 2D heightmap data 
 
The next group of variables stores information about how many vertices are going to be assigned to 
each terrain block and how many quads are contained in each block. We also track the number of 
terrain blocks the master terrain is broken into by storing how many blocks wide and high the terrain 
is. This is information that will once again be either directly extracted from the .ini file or calculated 
from information extracted from the .ini file. 
 
    ULONG               m_nBlockWidth;      // Width of an individual terrain block 
    ULONG               m_nBlockHeight;      // Height of an individual terrain block 
    ULONG               m_nQuadsWide;        // Stores the number of quads per block 
    ULONG               m_nQuadsHigh;        // Stores the number of quads per block 
    USHORT              m_nBlocksWide;       // Number of blocks wide 
    USHORT             m_nBlocksHigh;         // Number of blocks high 
     
The next variable describes the size of the layer maps with relation to the terrain dimensions. This is 
another value extracted directly from the .ini file. We use a value of 8 in this demo. This means that a 
terrain constructed from 128 rows of quads with 128 quads in each row will have 1024x1024 layer 
maps. Thus an 8x8 group of texels in each layer map will be mapped to a single terrain quad. Here we 
use a single blend texture ratio for all layers, but you could alter the code so that each layer could store 
its own blend texture ratio.  
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    USHORT    m_nBlendTexRatio;   // Number of blend map texels to map to each terrain quad 
  
The terrain class needs to store a pointer to an array of CTerrainBlocks pointers. Each terrain block is a 
subset of the terrain. The terrain block contains a vertex buffer with that subset’s vertices and an array 
of CTerrainSplat objects. There is a splat for each layer used by the terrain block. Each splat stores an 
index buffer with the quads for that terrain block that belong to its associated layer. The terrain class 
also contains an array of CTerrainLayer objects. Each layer contains an index to a texture used by that 
layer and a pointer to a layer map.   
    
    CTerrainBlock     **m_pBlock;            // Simple array of terrain block pointers 
    ULONG               m_nBlockCount;       // Number of terrain blocks stored here 
    CTerrainLayer     **m_pLayer;            // Simple array of layer pointers 
    USHORT              m_nLayerCount;       // Number of layers stored here 
 
Finally, the CTerrain class needs to hold an array of textures. Since we have three layers (rock, grass, 
flower), there will be three textures in our array. Each CTerrainLayer object contains a texture index 
into this array describing the texture used by that layer. 
 
    LPDIRECT3DTEXTURE9* m_pTexture;     // Array of textures loaded for this terrain 
    USHORT              m_nTextureCount;     // Number of textures loaded. 
}; 
 
 
 
The CTerrainLayer Class 
 
The CTerrain class maintains an array of CTerrainLayer object pointers. There is one pointer for each 
layer that the terrain uses. In our project, this array will contain three pointers. The CTerrainLayer 
class itself has a very simple job to do during rendering. It contains a texture index that will be used to 
determine which base texture will be tiled across the terrain for the current layer and a texture matrix to 
determine how that tiling occurs. The matrix will be filled based on the values specified in the ini file 
for a given layer.  
 
The CTerrainLayer has a temporary use during terrain initialization. Notice that the class contains a 
UCHAR pointer to a blend map. This is the blend map that has its name specified in the ini file. During 
terrain creation we load each layer map into the corresponding CTerrainLayer object where it will later 
be used to build the blend map textures stored in each terrain block. The actual blend textures stored 
for each terrain block will be a small subset of the entire alpha map. They will contain only the alpha 
pixels that are mapped to that terrain block region. Once the blend textures have been built for each 
terrain block, the blend maps stored in the CTerrainLayer class can be discarded. Refer back to the 
earlier diagram to remind yourself of the relationship between the CTerrain, the CTerrainBlocks, the 
CTerrainLayers and the CTerrainSplats.  
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class CTerrainLayer 
{ 
     public: 
 
     // Constructors & Destructors for This Class 
     CTerrainLayer(); 
    ~CTerrainLayer(); 
  
    // Public Variables For This Class 
    D3DXMATRIX          m_mtxTexture;        // The texture matrix applied to this layer 
    UCHAR              *m_pBlendMap;         // The blend map data for this layer 
    ULONG               m_nLayerWidth;       // Width of the layer alpha map 
    ULONG               m_nLayerHeight;      // Height of the layer alpha map 
    short               m_nTextureIndex;     // Index of the texture to use 
 
   // Public Functions for This Class 
    UCHAR   GetFilteredAlpha( ULONG x, ULONG z ); 
}; 
 
GetFilteredAlpha is used to return a filtered average for a given pixel in the alpha map. Earlier we 
discussed that once we have the blend maps loaded, we can drill down through the layer maps and if 
we find a pixel that is totally opaque, set all the pixels in the lower layer alpha maps to zero. This 
prevents quads being built for that layer at those spots. Under normal circumstances we will have 
bilinear filtering enabled in the texture stages when the alpha map texels are sampled, so we cannot 
simply test a single pixel to see if it is white or not. Although a pixel may be totally opaque in our 
alpha map, when it is sampled by the DirectX sampler unit with filtering enabled, adjacent texel colors 
will also be summed up and a weighted average returned. So an opaque pixel in our alpha map might 
be diluted by the sampler given the surrounding texels and the color returned may no longer be totally 
opaque. If we have removed all quads from the lower layers under these circumstances, then we will 
see holes in the terrain. Therefore, the GetFilteredAlpha function allows us to use a filtered average 
while we are testing for occluded pixels in lower layers to avoid the bilinear filtering concern that 
might remove quads inappropriately. 
 
 
 
The CTerrainBlock Class 
 
The CTerrain class maintains an array of CTerrainBlock objects. Each terrain block is a subset of the 
terrain. When we render the terrain, the terrain object will in turn render each of its terrain blocks. 
There are only two public functions in this class and both are called from the CTerrain object. The 
CTerrainBlock::GenerateBlock function is called from the CTerrain class when the terrain is being 
constructed. It is passed the X and Y offset into the parent terrain height map and the width and height 
of each terrain block. This allows the function to index into the height map correctly and generate its 
vertex buffer using only the pixels in the passed section of the height map. The CTerrainBlock::Render 
function is called from the CTerrain::Render function. It is called called once for each block, for each 
layer which requests the CTerrainBlock to render its splat mesh for the layer passed. If there are three 
layers, each terrain block will have its render function called once for each layer.  
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class CTerrainBlock 
{ 
public: 
 
  // Constructors & Destructors for This Class 
     CTerrainBlock(); 
     virtual ~CTerrainBlock(); 
 
 
  // Public Functions For This Class 
      bool    GenerateBlock ( CTerrain * pParent, ULONG StartX, ULONG StartZ,  
                              ULONG BlockWidth, ULONG BlockHeight ); 
      
       void    Render        ( LPDIRECT3DDEVICE9 pD3DDevice, USHORT LayerIndex ); 
 
The following member variables record the X and Y offsets into the parent terrain height map, the 
block vertex width and height, and the block quad width and height. The terrain block also stores a 
pointer to the parent terrain and an array of nine CTerrainBlock pointers. These are pointers to its 
neighbouring blocks (N, NE, E, SE, S, SW, W, NW). 
 
  // Public Variables for This Class 
    ULONG                   m_nStartX;       // X Position in heightmap we start 
    ULONG                   m_nStartZ;        // Z Position in heightmap we start 
    ULONG                   m_nBlockWidth;    // Width of an individual terrain block 
    ULONG                   m_nBlockHeight;   // Height of an individual terrain block 
    ULONG                   m_nQuadsWide;     // Number of quads in this block 
    ULONG                   m_nQuadsHigh;     // Number of quads in this block 
    CTerrain              * m_pParent;        // Parent terrain pointer. 
    CTerrainBlock         * m_pNeighbours[9]; // Neighbour block pointers 
   
The TerrainBlock object also stores an array of unsigned shorts. The array will be large enough to have 
an element for each layer. In our current example where we use three layers, this array will have three 
elements. If an element is zero in this array, then this terrain block does not have a splat for the 
corresponding layer. For example, if the terrain block had a zero only in m_pLayerUsage[1], then the 
terrain block only has quads to render for layers zero and two.  
 
    USHORT                * m_pLayerUsage;     // Layer usage table 
 
Each terrain block contains an array of CTerrainSplat objects. Each splat contains an index buffer used 
for rendering the quads that belong to the terrain for a given layer. This splat index buffer is used to 
specify indices into the parent CTerrainBlock vertex buffer. Therefore, when we render the terrain 
block at the splat level, it will always contain a vertex buffer with the (17x17) section of the terrain. 
 
    USHORT                  m_nSplatCount;     // Number of splat levels stored 
    CTerrainSplat        ** m_pSplatLevel;     // Actual splat levels stored 
    LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer;   // Terrain blocks vertex buffer 
 
Finally, there are a number of private functions in this class that will be called from the public 
CTerrainBlock::GenerateBlock function. These six functions are shown below. 
 
private: 
// Private Functions for this Class 
    bool    CountLayerUsage     ( ); 
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    bool    GenerateSplats      ( ); 
    bool    GenerateSplatLevel  ( USHORT TerrainLayer ); 
    long    AddSplatLevel       ( USHORT Count ); 
    bool    GenerateBlendMaps   ( ); 
}; 
 
The CountLayerUsage function populates the m_pLayerUsage array so that we know if a given layer is 
used by this terrain block. The GenerateSplats function allocates a CTerrainSplat object for each layer 
used by this terrain block and populates the splat index buffer. The GenerateSplats function calls the 
AddSplatLevel function to allocate the memory for the m_pSplatLevel array. In our example, it will 
allocate the array to be large enough to hold pointers to three CTerrainSplat objects. It then loops 
through each layer and calls the GenerateSplatLevel function to set the data for each splat object just 
created. Finally, the GenerateBlendMaps function builds the individual blend maps for each splat.  It 
extracts the data from the global blend maps for each layer, and copies only the section that is relevant 
to this terrain block into the blend texture. The end result is that for a given terrain block, each splat 
has an index buffer that renders quads for the associated layer using its own blend map texture for that 
same associated layer. If a terrain has three layers, then a terrain block will have three splats. Each 
splat will have an index buffer and a blend map describing how to alpha blend this splat into the frame 
buffer. After the large global layer maps have been used to build the per-splat blend maps, the large 
layer maps can be discarded from memory as they will not be used for rendering. 
 
 
The CTerrainSplat Class 
 
Each CTerrainBlock object contains N CTerrainSplat objects where N is the number of layers used by 
the terrain. In our demo project, each terrain block will contain three CTerrainSplat objects. Each splat 
contains an index buffer that indexes into the parent terrain block vertex buffer 
 
class CTerrainSplat 
{ 
public: 
    // Constructors & Destructors for This Class 
    CTerrainSplat(); 
   ~CTerrainSplat(); 
 
    // Public Variables For This Class 
    LPDIRECT3DINDEXBUFFER9  m_pIndexBuffer;     // Index buffer for rendering splat 
    LPDIRECT3DTEXTURE9      m_pBlendTexture;    // Generated blend texture. 
    ULONG          m_nIndexCount;      // Pre-Calculated Number of indices for rendering  
    ULONG          m_nPrimitiveCount;  // Pre-calculated number of primitives for rendering 
    USHORT         m_nLayerIndex;      // Layer index used for this splat level 
}; 
 
Each splat object contains a pointer to an index buffer that describes the quads for this splat as well as 
the corresponding variables describing how many indices are in the buffer and the number of 
primitives stored. Each splat object also contains a layer index describing which layer this splat 
belongs to. Remember that a single terrain block will have a splat for each layer. Finally, we also store 
the alpha map. Each alpha texture is a subset of the original layer’s alpha map that contains only the 
pixels that are mapped to this terrain block. This is the texture that will be set in the second texture 
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stage during rendering and the texture surface from which the alpha value for each fragment will be 
sampled. 
 
It is now time to look at the code to some of these classes and see how we have implemented them. 
The first class we will look at is the new CTerrain class. We will look only at the functions that have 
been added for this demo. We will not examine the code to simple helper functions and constructors 
and destructors -- which simply set default values. If you wish to see the code for such functions please 
check the accompanying source code. 
 
 
CTerrain::LoadTerrain 
 
Our CGameApp class calls the CTerrain::LoadTerrain function passing in the name of the .ini file. 
This function is indirectly responsible for the entire creation process for the terrain. When it returns, 
the terrain will be completely built, along with all of its layers, terrain blocks, and splat levels. 
 
The first thing this code must do is extract the name of the height map from the .ini file as shown 
below. 
 
bool CTerrain::LoadTerrain( LPCTSTR DefFile ) 
{ 
    FILE  * pFile = NULL; 
    char    Buffer  [1025], Section [100], Value[100], FileName[MAX_PATH]; 
    ULONG   i; 
 
    // Cannot load if already allocated (must be explicitly released for reuse) 
    if ( m_pBlock ) return false; 
 
    // Must have an already set D3D Device 
    if ( !m_pD3DDevice ) return false; 
     
    // Read in the terrain definition values specified by the file 
    strcpy( Section, "General" ); 
    GetPrivateProfileString( Section, "Heightmap", "", FileName, MAX_PATH - 1, DefFile ); 
    
The above code searches the [General] section of the ini file for the ‘Heightmap’ key, and if found, 
copies the name of the heightmap into the ‘FileName’ local array. If the key is not found, a default 
string of “” is used. This will eventually cause this function (and the application) to return an error 
when the height map texture cannot be found. 
 
Next we extract the terrain scale. It is stored as a vector in the .ini file where all three values are on one 
line. While vectors are not directly supported by the .ini files, we can just read the line of text assigned 
to the Scale key and parse the string ourselves. The following code extracts the scale string into a local 
char array called Buffer. If the Scale key is not found, a default string of “1,1,1” will be used. We then 
use the ‘sscanf’ to scan the string and extract the values into the floating point components of our scale 
vector. 
 
    GetPrivateProfileString( Section, "Scale", "1, 1, 1", Buffer, 1024, DefFile ); 
    sscanf( Buffer, "%g,%g,%g", &m_vecScale.x, &m_vecScale.y, &m_vecScale.z ); 
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We now extract the size of the terrain so that we know how big the height map will be and how much 
memory to allocate for it. We search for the TerrainSize key in the [General] section of the .ini file and 
copy the line of text into the local buffer. If the terrain size is not specified then a default value of 
257x257 will be assumed. Our height map is only 129x129 so we will specify this in the .ini file. Once 
we have extracted the string, we use sscanf to extract the two values into our m_nHeightMapWidth 
and m_nHeightMapHeight member variables. 
 
    GetPrivateProfileString( Section, "TerrainSize", "257, 257", Buffer, 1024, DefFile ); 
    sscanf( Buffer, "%i,%i", &m_nHeightMapWidth, &m_nHeightMapHeight ); 
  
Next we extract the terrain block size and the blend texture ratio into the appropriate member variables. 
A default terrain block size of 17x17 vertices is used if no value is specified and a blend texture ratio 
of 1 is the default value. This means that the alpha map for each layer would be expected to be the 
same size as the height map (minus 1) and as such, we would only have a blend ratio of 1 blend texel 
per quad. This would not be very good. Our .ini file specifies a blend texture ratio of 8 so that we have 
an 8x8 block of alpha map texels mapped to a single quad of our terrain. As such, each alpha map will 
be expected to be 1024x1024 in size. 
    
    GetPrivateProfileString( Section, "BlockSize", "17, 17", Buffer, 1024, DefFile ); 
    sscanf( Buffer, "%i,%i", &m_nBlockWidth, &m_nBlockHeight ); 
     
    GetPrivateProfileString( Section, "BlendTexRatio", "1", Buffer, 1024, DefFile ); 
    sscanf( Buffer, "%i", &m_nBlendTexRatio ); 

 
Now we calculate how many quads wide and high each terrain block will be. In our application this 
will result in terrain blocks of 16x16 quads. 
 
    // Store secondary data 
    m_nQuadsWide = m_nBlockWidth - 1; 
    m_nQuadsHigh = m_nBlockHeight - 1; 
 
We allocate the memory for heightmap and load it in using the file name just extracted from the .ini.  
 
    // Attempt to allocate space for this heightmap information 
    m_pHeightMap = new float[m_nHeightMapWidth * m_nHeightMapHeight]; 
    if (!m_pHeightMap) return false; 
 
    // Build the heightmap path / filename 
    strcpy( Buffer, DataPath ); 
    strcat( Buffer, FileName ); 
 
    // Open up the heightmap file 
    pFile = _tfopen( Buffer, _T("rb") ); 
    if (!pFile) return false; 
 
    // Read the heightmap data 
    for ( i = 0; i < m_nHeightMapWidth * m_nHeightMapHeight; i++ ) 
    { 
        UCHAR HeightValue; 
        fread( &HeightValue, 1, 1, pFile ); 
 
        // Store it as floating point 

TeamLRN



        m_pHeightMap[i] = (float)HeightValue; 
     
    } // Next Value 
     
    // Finish up 
    fclose( pFile ); 
 
At this point we have our height map data loaded. The next step is calling the 
CTerrain::FilterHeightMap function to apply a simple box filter to our height map to smooth it out a 
bit. Because we are using a smallish height map and are scaling it to create a large terrain, this can 
have the effect of making the terrain appear jagged since the different height values in the height map 
are integer values. The reason we apply a filter in the code rather than in a paint package is that we can 
filter using floating point numbers instead of integers. This allows us to blur the map without integer 
granularity restrictions. The FilterHeightMap function is not part of the main process, and removing it 
will not stop the application from running. You are encouraged to test it yourself both with and without 
this filter being applied.  
 
    // Filter the heightmap data 
    FilterHeightMap(); 
 
 
Now that our height map loaded and filtered, it is time to extract the texture names from the .ini file 
and load the images onto texture surfaces. The first thing we do is extract the ‘TextureCount’ value 
from the [Textures] section of the .ini file. If it is non-zero, then we allocate an array of 
IDirect3DTexture9 interface pointers. 
 
    // Load in the texture data 
    strcpy( Section, "Textures" ); 
    m_nTextureCount = GetPrivateProfileInt( Section, "TextureCount", 0,DefFile ); 
    if ( m_nTextureCount > 0 ) 
    { 
        // Allocate space for specified textures 
        m_pTexture = new LPDIRECT3DTEXTURE9[ m_nTextureCount ]; 
        if ( !m_pTexture ) return false; 
 
We loop and extract the texture name from the [Textures] section of the .ini file. They are stored in the 
form        ‘Texture[N] = XXX’ where XXX is the base texture for layer N.  
 
        // Loop through and read in texture filenames etc. 
        for ( i = 0; i < m_nTextureCount; ++i ) 
        { 
            // Build the Key we are looking for ‘Texture1’ , ‘Texture2’ etc 
            sprintf( Value, "Texture[%i]", i ); 
 
            // Retrieve the filename 
            GetPrivateProfileString( Section, Value, "", FileName, MAX_PATH - 1, DefFile ); 
 
Once we have the base texture name for a given layer, we append it to the DataPath and load it using 
the D3DXCreateTextureFromFileEx function. We store the resulting texture interface pointer in the 
CTerrain::m_pTexture array. 
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            // Build the texture path / filename 
            strcpy( Buffer, DataPath ); 
            strcat( Buffer, FileName ); 
 
            // Load it in (Ignore failure, it's not fatal) 
            D3DXCreateTextureFromFileEx( m_pD3DDevice, Buffer, D3DX_DEFAULT, D3DX_DEFAULT,  
                                        D3DX_DEFAULT, 0, m_fmtTexture, D3DPOOL_MANAGED, 
                                        D3DX_DEFAULT, D3DX_DEFAULT, 0, 
                                        NULL, NULL, &m_pTexture[i] ); 
        } // Next Texture 
    } // If any textures 
 
At this point we have our height map loaded and the base textures for each layer stored in our terrain 
texture array. We then call the CTerrain::GenerateLayers function to load the large global alpha maps 
for each layer and build each layer’s texture matrix based on the values extracted from the ini file. We 
follow this with a call to CTerrain::GenerateTerrainBlocks to build each terrain block and its 
accompanying splat levels and blend maps. 
 
    // Generate the terrain layer data 
    if ( !GenerateLayers( DefFile ) ) return false; 
 
    // Build the terrain blocks 
    if ( !GenerateTerrainBlocks() ) return false; 
 
When CTerrain::GenerateTerrainBlocks returns, the terrain, its terrain blocks, its layers and its splat 
levels will be fully initialized. At this point, the large layer alpha maps that have been loaded by the 
GenerateLayers method and they will have been copied into sub blend maps for each splat and can be 
freed from memory. 
 
 
    // Erase the blend maps, they are no longer required 
    for ( i = 0; i < m_nLayerCount; i++ )  
    { 
        if ( m_pLayer[i]->m_pBlendMap )  
        { delete []m_pLayer[i]->m_pBlendMap; m_pLayer[i]->m_pBlendMap = NULL; }     
    } // Next Layer 
 
    // Success!! 
    return true; 
} 
 
 
CTerrain::FilterHeightMap 
 
The first helper function called from CTerrain::LoadTerrain is CTerrain::FilterHeightMap. It performs 
a blend on the height map to smooth out the steps between integer height values before they are scaled 
into world space. This is very much like using a blend/blur function in a paint package.  
 
Our filter will loop through each pixel in the height map and will sum the color of a 9x9 block of 
pixels with the pixel in the middle. Once we have summed the nine colors together we will divide the 
final color by nine to produce an average pixel color for that region of the terrain as shown below. 

TeamLRN



 
200 0 100 
9 87 99 
128 238 45 

 
Here we are processing a pixel that has a height value of 87. To calculate the new filtered height value 
for this pixel, we sum up the surrounding pixel heights: 
 
200+0+100+9+87+99+128+238+45   /    9   =  100.666 
 
Since we can only do this for pixels that actually have pixels surrounding them on all sides, we will 
start our filter pass at an offset of 1 pixel down and 1 pixel to the right from the top left corner of the 
image. We will filter pixels only contained within the rectangle [1, 1, ImageWidth-1, ImageHeight-1]. 
The following image shows the pixels we would filter (the red ones) in a 10x10 height map. 
 

 
 
void CTerrain::FilterHeightMap( ) 
{ 
    ULONG x, z; 
    float Value; 
 
    // Validate requirements 
    if (!m_pHeightMap) return; 
     
    // Allocate the result 
    float * pResult = new float[m_nHeightMapWidth * m_nHeightMapHeight]; 
    if (!pResult) return; 
 
    // Copy over data to retain edges 
    memcpy(pResult, m_pHeightMap, m_nHeightMapWidth * m_nHeightMapHeight * sizeof(float)); 
 
We allocate memory to store a copy of the height map and copy the height map data into this buffer. 
This allows us to alter the colors in the copy buffer while sampling the 9x9 block of colors for each 
pixel averaged from the original unaltered height map. Once done, the original height map will be 
released and the new filtered height map will become the terrain’s actual height map. Copying into this 
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buffer might seem strange at first since we are calculating the pixel values from this buffer one at a 
time anyway. However this approach makes sure that the four outside edges of the height map (which 
do not get recalculated in our filter loop) are copied into the new filtered height map buffer.  
 
    // Loop through and filter values (simple box style filter) 
    for ( z = 1; z < m_nHeightMapHeight - 1; ++z ) 
    { 
        for ( x = 1; x < m_nHeightMapWidth - 1; ++x ) 
        { 
            Value  = m_pHeightMap[ (x - 1) + (z - 1) * m_nHeightMapWidth ];  
            Value += m_pHeightMap[ (x    ) + (z - 1) * m_nHeightMapWidth ];  
            Value += m_pHeightMap[ (x + 1) + (z - 1) * m_nHeightMapWidth ];  
 
            Value += m_pHeightMap[ (x - 1) + (z    ) * m_nHeightMapWidth ];  
            Value += m_pHeightMap[ (x    ) + (z    ) * m_nHeightMapWidth ];  
            Value += m_pHeightMap[ (x + 1) + (z    ) * m_nHeightMapWidth ];  
 
            Value += m_pHeightMap[ (x - 1) + (z + 1) * m_nHeightMapWidth ];  
            Value += m_pHeightMap[ (x    ) + (z + 1) * m_nHeightMapWidth ];  
            Value += m_pHeightMap[ (x + 1) + (z + 1) * m_nHeightMapWidth ];  
 
            // Store the result 
            pResult[ x + z * m_nHeightMapWidth ] = Value / 9.0f; 
 
        } // Next X 
    } // Next Z 
 
Once we have the filtered image data, we release the old height map data and assign 
CTerrain::m_pHeightMap to point at this new array. 
 
    // Release the old array 
    delete []m_pHeightMap; 
 
    // Store the new one 
    m_pHeightMap = pResult; 
} 
 
 
 
CTerrain::GenerateLayers 
 
GenerateLayers is the second helper function called by CTerrain::LoadTerrain. Its job is to generate 
the terrain layers. This basically means that this function will allocate memory for N CTerrainLayer 
objects (where N is the number of layers specified in the .ini file). Each CTerrainLayer object that is 
allocated has its pointer added to the CTerrain::m_pLayer array. For each layer added we need to 
allocate the memory for the layer alpha map and load it from a file. We also need to extract the values 
from the .ini file to build the texture matrix for that layer. Finally, we will loop through each pixel of 
each layer map and test to see if a pixel in a layer is totally obscured by opaque pixels in higher level 
layer alpha maps. If so, then we set the the occluded pixel value to 0 so that it will prevent a quad from 
being built in that location for that layer.  
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bool CTerrain::GenerateLayers( LPCTSTR DefFile ) 
{ 
    ULONG Width  = (m_nHeightMapWidth  - 1) * m_nBlendTexRatio; 
    ULONG Height = (m_nHeightMapHeight - 1) * m_nBlendTexRatio; 
     
The first thing we do is calculate how large the alpha map for each layer will be. This is done by 
multiplying the size of the terrain (in quads) by the blend texture ratio extracted from the .ini file. Next 
we allocate some local variables whose use will become clear as we progress through the code. 
 
    char  Buffer  [1025], FileName[MAX_PATH], Section [100]; 
    ULONG i, j, x, z, LayerCount; 
    float Angle; 
    UCHAR Value; 
    D3DXVECTOR2 Scale; 
 
    HRESULT             hRet; 
    D3DXIMAGE_INFO      Info; 
    LPDIRECT3DSURFACE9  pSurface = NULL; 
 
Before we allocate the memory for each CTerrainLayer object, we extract the number of layers from 
the [General] section of the .ini file. 
 
    // Read in the terrain layer data 
    strcpy( Section, "General" ); 
    LayerCount = GetPrivateProfileInt( Section, "LayerCount", 1, DefFile ); 
     
Next we use a CTerrain helper function called AddTerrainLayer to allocate the requested 
CTerrainLayer objects and add their pointers to the CTerrain::m_pLayer array (resizing if necessary). 
We will not show the code for this function since it is a simple array resize and object allocation 
function that we have seen many times before. When this function returns, our m_pLayer array will 
have LayerCount pointers to valid CTerrainLayer objects stored in them. 
 
    // Allocate our layer data 
    if ( AddTerrainLayer( LayerCount ) < 0 ) return false; 
 
Now we need to loop through each layer and set its properties. The first thing the following code does 
is obtain a pointer to the current layer. It then builds a string that describes the section in the .ini where 
this layer’s values are stored. This will allow us to query the file through our Windows API functions. 
Remember that all of layer 1’s settings are in the [Layer 1] section, all of layer 2’s settings are in the 
[Layer 2] section, and so on. 
     
    // Read in the element data 
    for ( i = 0; i < m_nLayerCount; i++ ) 
    { 
        CTerrainLayer * pLayer = m_pLayer[i]; 
 
        // Build section string 
        if ( i == 0 ) 
            strcpy( Section, "Base Layer" ); 
        else 
            sprintf( Section, "Layer %i", i ); 
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Now we extract the texture index for this layer. This index describes the base texture for the layer as an 
index into the CTerrain::m_pTexture array. We also set the width and height of the layer (calculated at 
the top of the function). In this implementation, these values will be the same for all layers. 
 
        // Store layer properties 
        pLayer->m_nTextureIndex = (short)GetPrivateProfileInt(Section, "TextureIndex", 
                                                              0, DefFile); 
        pLayer->m_nLayerWidth   = Width; 
        pLayer->m_nLayerHeight  = Height;     
 
If the layer has a translation vector specified in the .ini file then we will extract this value and set the 
third row of its texture matrix. A default translation vector of (0.0, 0.0) is used otherwise. Remember 
that this matrix deals with 2D texture coordinates, so the third row (elements m31 and m32) contain 
the translation vector.     
 
        // Calculate layer texture matrix 
        GetPrivateProfileString(Section, "Translation", "0.0, 0.0", Buffer, 1024, DefFile); 
        sscanf( Buffer, "%g,%g", &pLayer->m_mtxTexture._31, &pLayer->m_mtxTexture._32 ); 

 
If there is a rotation specified, we need to extract the angle from the .ini file and set the top-left 2x2 
section of the texture matrix for this layer. 
  
        GetPrivateProfileString( Section, "Rotation", "0.0", Buffer, 1024, DefFile ); 
        sscanf( Buffer, "%g", &Angle ); 
 
        // Rotate the texture matrix 
        if ( Angle != 0.0f ) 
        { 
           Angle = D3DXToRadian( Angle ); 
           pLayer->m_mtxTexture._11 =  cosf(Angle); pLayer->m_mtxTexture._12 = sinf(Angle); 
           pLayer->m_mtxTexture._21 = -sinf(Angle); pLayer->m_mtxTexture._22 = cosf(Angle); 
         
        } // End if apply any rotation 
 
The section may also include a scale value to control tiling frequency. Once we extract the U and V 
values from the .ini file (default scale is (1, 1)) we apply them to the 3x2 section of the texture matrix. 
 
        // Scale values 
        GetPrivateProfileString( Section, "Scale", "1.0, 1.0", Buffer, 1024, DefFile ); 
        sscanf( Buffer, "%g,%g", &Scale.x, &Scale.y ); 
 
        pLayer->m_mtxTexture._11 *= Scale.x; 
        pLayer->m_mtxTexture._21 *= Scale.x; 
        pLayer->m_mtxTexture._31 *= Scale.x; 
        pLayer->m_mtxTexture._12 *= Scale.y; 
        pLayer->m_mtxTexture._22 *= Scale.y; 
        pLayer->m_mtxTexture._32 *= Scale.y; 
        
We already know how big the alpha map for this layer will be so we will allocate memory to hold one 
byte for each pixel. This array will be used to store the data loaded in from the alpha map files. 
 
        // Allocate our layer blend map array (these are temporary arrays) 
        pLayer->m_pBlendMap = new UCHAR[ Width * Height ]; 
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        if (!pLayer->m_pBlendMap) return false; 
 
Initially we will set every pixel in the layer alpha map to 0 (totally transparent). This value will be 
updated as we load in data from the alpha map files. However, if the current layer we are processing is 
the base layer of the terrain, it will not have an alpha map file and will be set to fully opaque (255) for 
the time being. You are reminded that the base layer never needs to blend on top of any other layer 
because it is always rendered first. So if this layer is the base layer, after we set its alpha map to 
opaque, we skip the rest of the loop because there is nothing else that needs to be done for the time 
being. 
 
        // Set the blend map data to full transparency for now 
        memset( pLayer->m_pBlendMap, 0, Width * Height ); 
 
        // Base layer is always fully opaque 
        if  ( i == 0 ) { memset( pLayer->m_pBlendMap, 255, Width * Height ); continue; } 
         
For every other layer except the base layer, we must load in its associated alpha map. We extract the 
file name from the .ini file for the current layer as shown below. 
 
        // Get layer filename for non base layers 
        GetPrivateProfileString(Section, "LayerMap", "", FileName, MAX_PATH - 1, DefFile); 
 
        // Build the layer map path / filename 
        strcpy( Buffer, DataPath ); 
        strcat( Buffer, FileName ); 
 
We do not want this alpha map to be a texture since it will be used later to build smaller sub textures 
for each terrain block. We can use the D3DX library functions to load the file into a surface format that 
we specify. Once the image data is loaded into that surface format, we can lock it and extract the 
information for each pixel and copy it into our byte array (the alpha map). The first thing we do is call 
D3DXGetImageInfoFromFile and pass it the name of the file and the address of a 
D3DXIMAGE_INFO structure. This function does not load the file; it simply opens the file and 
gathers information about its properties. The information is returned in the passed 
D3DXIMAGE_INFO structure (see Chapter Six).  
 
        // Get the source file info 
        if ( FAILED(D3DXGetImageInfoFromFile( Buffer, &Info ) )) return false; 
 
The only information returned in the D3DXIMAGE_INFO structure that we are interested in is the 
width and height of the image. With these we can create a surface of the correct size to load the image 
into. We create an offscreen plain surface (see Chapter Six) since it does not need to be used as a 
texture or a render target and we are freed from device restrictions like maximum texture size.  
 
        // Create the off screen surface in sys mem, in a format useful to us 
        hRet = m_pD3DDevice->CreateOffscreenPlainSurface( Info.Width, Info.Height, 
                                                          D3DFMT_X8R8G8B8, 
                                                          D3DPOOL_SYSTEMMEM, &pSurface, 
                                                          NULL  ); 
        if ( FAILED(hRet) ) return false; 
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We pass in the width and height of the surface we require and the common X8R8G8B8 32-bit pixel 
format that we would like the surface to use. Note that we specify that we would like this to be in 
system memory because we will be locking and reading back the pixel data. We also pass a pointer to 
an IDirect3DSurface9 interface which will point to a valid surface in the requested format and of the 
requested size. 
 
Our next task is to use D3DXLoadSurfaceFromFile to load the file into our newly created surface. 
Once the function returns, regardless of the format of the alpha map file, we will have it in 32-bit 
X8R8G8B8 format on our temporary surface.  
 
        // Load in the image 
        hRet = D3DXLoadSurfaceFromFile(pSurface, NULL, NULL, Buffer, 
                                       NULL, D3DX_DEFAULT, 0, NULL); 
        if ( FAILED(hRet) ) { pSurface->Release(); return false; } 
         
In our application, we are storing the alpha map for each layer as an array of BYTE values (one for 
each pixel). The surface we have just loaded our alpha map into however is a 32-bit surface. Because 
every pixel in that map is a shade of gray, every component of a given pixel will be the same (ex. (20, 
20, 20)). Therefore, we only need one of the components to represent the alpha level of that pixel. A 
pixel of (20, 20, 20) will describe a transparency level of 20. Therefore, we can lock our surface, loop 
through each pixel, and extract one of the color components into our BYTE array alpha map. We 
extract the blue pixel in our code, but you are free to use any component you wish provided they are all 
the same.  
 
        // Lock the surface and copy over the data into our blend map array 
        D3DLOCKED_RECT LockedRect; 
        hRet = pSurface->LockRect( &LockedRect, NULL, D3DLOCK_READONLY ); 
        if ( FAILED(hRet) ) { pSurface->Release(); return false; } 
 
        ULONG * pBits = (ULONG*)LockedRect.pBits; 
         
        // Loop through each row 
        for ( z = 0; z < Info.Height; ++z ) 
        { 
            // Loop through each column and extract just the blue pixel data 
            for(x = 0; x < Info.Width; ++x ) 
                pLayer->m_pBlendMap[x+z*Width] = (UCHAR)(pBits[x] & (0x000000FF)); 
             
            // Move to the next row 
            pBits += LockedRect.Pitch / 4; 
        } // Next row 
 
We unlock and release the surface after we have finished. We no longer need this 32-bit surface since 
we have the layer alpha map stored in a BYTE array pointed at by the CTerrainLayer::m_pBlendMap 
pointer. 
 
        // Unlock & release the surface, we have decoded it now 
        pSurface->UnlockRect(); 
        pSurface->Release(); 
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Any value that is less than 15 is clamped to 0 while values of 220 or above are set to 255. This is an 
optimization step. If a quad for a given layer has an alpha level of 15, it would be virtually invisible but 
we would still need to render it. Since the quad is not likely to contribute much to our final image we 
can eliminate it. At the max range we have a similar concept. Alpha values greater than 220 generally 
result in the underlying layers being totally occluded. By setting it to 255 our layer occlusion testing 
code will catch this and eliminate all quads in the lower layers at that position (reducing our polygon 
count for the lower levels).  
 
        // Clamp values to min and max 
        for ( j = 0; j < (Width * Height); j++ ) 
        { 
            UCHAR MinAlpha = 15; 
            UCHAR MaxAlpha = 220; 
             
            // Clamp layer value 
            Value = pLayer->m_pBlendMap[ j ]; 
            if ( Value < MinAlpha ) Value = 0; 
            if ( Value > MaxAlpha ) Value = 255; 
            pLayer->m_pBlendMap[ j ] = Value; 
 
        } // Next Alpha Value 
    } // Next Layer 
 
At this point, every layer has had its texture matrix and its texture index set. It also has a pointer to a 
byte array containing its alpha map. The base layer’s blend map is currently fully opaque whilst the 
layers above have alpha maps that reflect the alpha image files.  
 
Our next task is to calculate if any pixels in our layer alpha maps are occluded by totally opaque pixels 
in higher level layers.  We loop through each layer starting at the base level and aquire a pointer to the 
current blend map. 
 
    // Now we need to parse the layers and determine which alpha pixels are occluded 
    for ( i = 0; i < m_nLayerCount; i++ ) 
    { 
        CTerrainLayer * pLayer = m_pLayer[i]; 
 
Next we loop through each row of the blend map and each pixel in that row and extract the value of the 
pixel in the blend map. 
 
        for ( z = 0; z < Height; z++ ) 
        { 
            for ( x = 0; x < Width; x++ ) 
            { 
                // Determine if we need to test occlusion 
                Value = pLayer->m_pBlendMap[ x + z * Width ]; 
 
If the pixel is not fully opaque then we will test whether any of the other layers above this layer have a 
fully opaque pixel in the same position. If so, then we set the current pixel to 0 because it will be 
overdrawn by quads in a higher layer. When we test the pixels in the above layers for opacity, we 
extract the pixel using a filter (CTerrain::GetFilteredAlpha). GetFilteredAlpha samples neighbouring 
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pixels in the higher level blend maps so that a pixel in a lower level layer only gets set to 0 if all the 
neighbouring pixels in a higher level are opaque.  
 
                if ( Value > 0 ) 
                { 
                    // Is this obscured by any layers above ? 
                    Value = 0; 
                    for ( j = i + 1; j < m_nLayerCount; j++ ) 
                    { 
                        Value = m_pLayer[j]->GetFilteredAlpha( x, z ); 
                        if (Value == 255) break; 
                    }  
                     
                    // Layer is obscred if a layer above is opaque 
                    if (Value == 255) pLayer->m_pBlendMap[ x + z * Width ] = 0; 
                 
                } // End if Test Occlusion 
            } // Next Column 
        } // Next Row 
    } // Next Layer 
 
    // Success!! 
    return true; 
} 

At this point in the code, our CTerrainLayer classes have all of their members correctly set and each 
layer’s blend map (including the base map) will have had some of its pixels set to zero because of 
opaque pixels in higher layers. This means that even the base layer blend map is no longer a solid 
opaque block. It only contains information for building quads that are not occluded. 
 
 
CTerrainLayer::GetFilteredAlpha 
 
GetFilteredAlpha samples four neighbouring pixels (plus the filter pixel) in a layer’s alpha map and 
returns the average. In the following image, the red pixel (4, 4) is the current pixel we are filtering.  
 

 
The code simply sums the five pixels and returns the averaged result. 
 
UCHAR CTerrainLayer::GetFilteredAlpha( ULONG x, ULONG z ) 
{ 
    long Total, Sum, PosX, PosZ; 

TeamLRN



 
    // Validate Parameters 
    if ( !m_pBlendMap ) return 0; 
 
    // Loop through each neighbour  
    PosX = x; PosZ = z; 
    Total = m_pBlendMap[ PosX + PosZ * m_nLayerWidth ]; 
    Sum = 1; 
     
    // Above Pixel 
    PosX = x; PosZ = z - 1;         
    if ( PosZ >= 0 ) 
    { 
        Total += m_pBlendMap[ PosX + PosZ * m_nLayerWidth ]; 
        Sum++; 
     
    } // End if Not OOB 
     
    // Right Pixel 
    PosX = x + 1; PosZ = z; 
    if ( PosX < (signed)m_nLayerWidth ) 
    { 
        Total += m_pBlendMap[ PosX + PosZ * m_nLayerWidth ]; 
        Sum++; 
     
    } // End if Not OOB 
     
    // Bottom Pixel 
    PosX = x; PosZ = z + 1; 
    if ( PosZ < (signed)m_nLayerHeight ) 
    { 
        Total += m_pBlendMap[ PosX + PosZ * m_nLayerWidth ]; 
        Sum++; 
     
    } // End if Not OOB 
     
    // Left Pixel 
    PosX = x - 1; PosZ = z; 
    if ( PosX >= 0 ) 
    { 
        Total += m_pBlendMap[ PosX + PosZ * m_nLayerWidth ]; 
        Sum++; 
    } // End if Not OOB 
     
    // Return result 
    return (UCHAR)(Total / Sum); 
} 
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CTerrain::GenerateTerrainBlocks 
 
Once the CTerrain::GenerateLayers call returns back to CTerrain::LoadTerrain, the next function 
called is CTerrain::GenerateTerrainBlocks. This function will create the individual terrain blocks and 
their vertex buffers using the height map. It will also generate the splat levels for each terrain block. 
 
 
The first thing we do is locally record the block width and height that the terrain will be divded into.  
 
bool CTerrain::GenerateTerrainBlocks( ) 
{ 
    ULONG x, z, ax, az, Counter; 
 
    // Calculate block values 
    m_nBlocksWide = (USHORT)(m_nHeightMapWidth - 1) / m_nQuadsWide; 
    m_nBlocksHigh = (USHORT)(m_nHeightMapHeight - 1) / m_nQuadsHigh; 
     
In our example we will use 8x8 = 64 terrain blocks. Our next step is to allocate the 64 terrain blocks 
and add their pointers to the CTerrain::m_pBlock array (resizing if necessary).  
 
    // Allocate enough blocks to store the separate parts of this terrain 
    if ( AddTerrainBlock(  m_nBlocksWide * m_nBlocksHigh )  < 0 ) return false; 
 
Once we have our array of terrain block pointers, we loop through each block, row-by-row and 
column-by- column and will aquire a pointer to the relevant terrain block. 
 
    // Initialize each terrain block 
    for ( z = 0; z < m_nBlocksHigh; z++ ) 
    { 
        for ( x = 0; x < m_nBlocksHigh; x++ ) 
        { 
            CTerrainBlock * pBlock = m_pBlock[ x + z * m_nBlocksWide ]; 
 
Now we will fill out the terrain blocks neighbor array.  
 
            // Calculate Neighbour Information 
            Counter = 0; 
            for ( az = -1; az <= 1; az++ ) 
            { 
                for ( ax = -1; ax <= 1; ax++, Counter++ ) 
                { 
                    // Reset to NULL to begin with 
                    pBlock->m_pNeighbours[Counter] = NULL; 
                     
                    // Bail if we are out of bounds 
                    if((x+ax) < 0 || (z+az) < 0 || 
                       (x+ax) >= m_nBlocksWide || (z+az) >= m_nBlocksHigh) 
                        continue; 
                 
                    // Store Neighbour 
                    pBlock->m_pNeighbours[Counter] = m_pBlock[(x+ax)+(z+az)*m_nBlocksWide];  
 
                } // Next Adjacent Column 
 
            } // Next Adjacent Row 

TeamLRN



             
        } // Next Column 
     
    } // Next Row 
 
Once we have the neighbor array filled out for the current terrain block, we loop through each block 
again and call CTerrainBlock::GenerateBlock. This builds the vertex buffer and the child spat objects. 
 
    // Generate each terrain block 
    for ( z = 0; z < m_nBlocksHigh; z++ ) 
    { 
        for ( x = 0; x < m_nBlocksHigh; x++ ) 
        { 
            CTerrainBlock * pBlock = m_pBlock[ x + z * m_nBlocksWide ]; 
             
            // Generate the block 
            if (!pBlock->GenerateBlock( this, x * m_nQuadsWide, z * m_nQuadsHigh, 
                                       m_nBlockWidth, m_nBlockHeight ))  
                  return false; 
        } // Next Column 
     
    } // Next Row 
 
    // Success!! 
    return true; 
} 
 
When we call CTerrainBlock::GenerateBlock, we pass a pointer to the terrain class and the offset into 
the height map for the top-left vertex in the current terrain block. We also pass in the block width and 
height. We calculate which pixel in the height map will map to the top-left vertex of the terrain block 
by multiplying the offset of the current block in the terrain (x, z) by the number of quads in each 
terrain block (16x16). If we are processing terrain block (2,3) for example, the section of the height 
map that will be used to build will be (2*16) , (3*16) =  pixel offset (32, 64) in the height map. We 
also pass the vertex width and height so that the function will know how many vertices to allocate for 
the vertex buffer. 
 
CTerrainBlock::GenerateBlock 
 
This function builds the vertex buffer and splat meshes for a given terrain block. This implementation 
uses precalculated vertex lighting but it could be quickly modified to use vertex normals and the 
lighting pipeline if preferred. 
 
 
bool CTerrainBlock::GenerateBlock( CTerrain * pParent, ULONG StartX, ULONG StartZ, 
                                   ULONG BlockWidth,  ULONG BlockHeight ) 
{ 
    ULONG             x, z; 
    HRESULT           hRet; 
    ULONG             Usage      = D3DUSAGE_WRITEONLY; 
    USHORT           *pIndex     = NULL; 
    CVertex          *pVertex    = NULL; 
    float            *pHeightMap = NULL; 
    LPDIRECT3DDEVICE9 pD3DDevice = NULL; 
    D3DXVECTOR3       VertexPos, LightDir = D3DXVECTOR3(0.650945f, -0.390567f, 0.650945f); 
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We set up a light direction vector to calculate vertex colors using a lighting technique analogous to the 
DirectX directional light type. Next we check that this terrain block has a parent terrain and that the 
parent has a height map. If not, we exit. 
 
    // Validate requirements 
    if (!pParent || !pParent->GetD3DDevice() || !pParent->GetHeightMap()) return false; 
 
We keep track of some local housekeeping variables that will be used during block creation. 
 
    // Store some values 
    m_pParent      = pParent; 
    m_nStartX      = StartX; 
    m_nStartZ      = StartZ; 
    m_nBlockWidth  = BlockWidth; 
    m_nBlockHeight = BlockHeight; 
    m_nQuadsHigh   = BlockHeight - 1; 
    m_nQuadsWide   = BlockWidth - 1; 
    m_nQuadsHigh   = BlockHeight - 1; 
    pHeightMap     = pParent->GetHeightMap(); 

    
We retrieve the parent’s Direct3D device and query the hardware status so that we can correctly create 
our vertex buffers. We create the vertex buffer (17x17 vertices in this example) in the managed pool. 
Its interface pointer is assigned to the terrain block m_pVertexBuffer pointer. 
 
    pD3DDevice     = pParent->GetD3DDevice(); 
 
    // Calculate buffer usage 
    if ( !m_pParent->UseHardwareTnL() ) Usage |= D3DUSAGE_SOFTWAREPROCESSING; 
 
    // Create the vertex buffer ready for generation 
    hRet = pD3DDevice->CreateVertexBuffer((BlockWidth * BlockHeight) * sizeof(CVertex), 
                                           Usage, VERTEX_FVF, D3DPOOL_MANAGED, 
                                           &m_pVertexBuffer, NULL ); 
    if (FAILED(hRet)) return false; 
 
We lock the vertex buffer to begin filling in our data. Each pixel in the block of the parent terrain’s 
height map that maps to this terrain block will be assigned to the corresponding vertex in the vertex 
buffer. 
 
    // Lock the vertex buffer ready to fill data 
    hRet = m_pVertexBuffer->Lock(0, (BlockWidth*BlockHeight)*sizeof(CVertex), 
                                (LPVOID*)&pVertex, 0); 
    if (FAILED(hRet)) return false; 
 
    // Loop through and generate the vertex data 
    for ( z = StartZ; z < StartZ + BlockHeight; z++ ) 
    { 
        for ( x = StartX; x < StartX + BlockWidth; x++ ) 
        { 
            
To calculate the position of the vertex in the world, we take the current X and Y pixel offsets in the 
height map and copy them into the X and Z components of the vertex. These values are scaled by the 
X and Z components of our scale vector. We read the height value from the pixel in the height map and 
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multiply it with the Y component of our scale vector to produce the world space height of the vertex. 
The vertex color is calculated and clamped exactly as it was in Chapter Three. All of this information 
is then copied to the vertex buffer. 
 
          VertexPos.x = (float)x * m_pParent->GetScale().x; 
          VertexPos.y = pHeightMap[x+z*pParent->GetTerrainWidth()]*m_pParent->GetScale().y; 
          VertexPos.z = (float)z * m_pParent->GetScale().z; 
 
          // Calculate vertex colour scale 
          float fRed = 1.0f, fGreen = 1.0f, fBlue = 1.0f, fScale = 0.25f; 
             
          // Generate average scale (for diffuse lighting calc) 
          fScale  = D3DXVec3Dot(&pParent->GetHeightMapNormal( x, z ), &(-LightDir)); 
          fScale += D3DXVec3Dot(&pParent->GetHeightMapNormal( x + 1, z ), &(-LightDir)); 
          fScale += D3DXVec3Dot(&pParent->GetHeightMapNormal(x + 1, z + 1 ), &(-LightDir)); 
          fScale += D3DXVec3Dot( &pParent->GetHeightMapNormal( x, z + 1 ), &(-LightDir)); 
          fScale /= 4.0f; 
 
          // Increase Saturation 
          fScale += 0.25f; //0.05f;  
 
          // Clamp colour saturation 
          if ( fScale > 1.0f ) fScale = 1.0f; 
          if ( fScale < 0.4f ) fScale = 0.4f; 
 
          // Store Vertex Values 
          pVertex->x       = VertexPos.x; 
          pVertex->y       = VertexPos.y; 
          pVertex->z       = VertexPos.z; 
          pVertex->Diffuse = D3DCOLOR_COLORVALUE(fRed*fScale, fGreen*fScale, 
                                                 fBlue*fScale, 1.0f); 
 
All that is left to do for the current vertex is calculate the two sets of texture coordinates for the base 
texture and the alpha map. By default we will set the UV coordinates of the first texture coordinate to 
the coordinates of the pixel in the height map for which the vertex was generated. As this first set of 
texture coordinates is used in texture stage 0 to tile the base texture across the terrain, each quad will 
have a whole texture mapped to it. Note that this is only the base mapping; the texture matrix for each 
layer will (possibly) be used to transform this one texture per quad relationship into something else. In 
our application we scale the UV coordinate by 0.5 on both U and V so that a single quad has a texture 
tiled twice both horizontally and vertically. So there will be a 4 quad per texture tiling ratio for our 
layers. We can change this tiling for each layer by altering the ini file. 
 
            pVertex->tu      = (float)x; 
            pVertex->tv      = (float)z; 
 
Calculating the second set of texture coordinates is also straighforward but perhaps not obvious at first. 
We know that our layer maps will be divided into terrain block sized blend map textures. For a given 
terrain block, a layer’s blend map will be draped across it such that the blend map texture coordinates 
should map from 0.0 to 1.0 for the second texture coordinate set in the terrain block. In other words, 
each terrain block will have three blend textures, and each blend texture will be mapped to the four 
corners of the terrain block. Thus all we need to do is subtract the offset of the current block in the 
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height map from the current loop counter such that we have coordinates in the range of [0, 16]. We 
then divide the result by 16 to produce coordinates in the range [0.0, 1.0]. 
 
            pVertex->tu2     = (float)(x - StartX) / m_nQuadsWide; 
            pVertex->tv2     = (float)(z - StartZ) / m_nQuadsHigh; 
             
            // Move to next vertex 
            pVertex++; 
 
        } // Next Column 
     
    } // Next Row 
 
    // Finished with the vertex buffer 
    m_pVertexBuffer->Unlock(); 
 
When the loop exits, we have a full vertex buffer and we can unlock it. Before this function returns 
control back to CTerrain::GenerateLayers, we must call three housekeeping functions. 
CTerrainBlock::CountLayerUsage checks each layer map pixel mapped to the terrain block and 
records the the number of non-transparent pixels. This call fills out the 
CTerrainBlock::m_pLayerUsage array so that when we are rendering a given layer, we can check the 
appropriate value in this array. If it is 0, there is nothing in this block to render for the current layer.  
 
    // Determine all the layers used by this block 
    if ( !CountLayerUsage() ) return false; 
 
The next function we will call is CTerrainBlock::GenerateSplats to build the index buffers for each 
layer in the terrain block. It will build only the renderable quads for a given layer. 
 
    // Generate Splat Levels for this block 
    if ( !GenerateSplats() ) return false; 
 
At this point we have a list of child splats for this terrain block. Each contains an index buffer 
describing the quads for that splat. Our final task is generating the blend textures for each splat. This is 
a simple enough case of copying a section of the CTerrainLayer blend maps into a blend texture 
containing only the pixel alpha information. If we have three layers, each terrain block will have three 
CTerrainSplat objects. Each splat object will contain an index buffer and a blend texture describing the 
alpha information that maps to that terrain block.  
 
    // Generate the blend maps 
    if ( !GenerateBlendMaps() ) return false; 
 
    // Success! 
    return true; 
} 
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CTerrainBlock::CountLayerUsage 
 
CountLayerUsage fills out the CTerrainBlock::m_pLayerUsage array with a value describing the 
number of non-transparent pixels in a given layer that map to this terrain block. If any of the values in 
the CTerrainBlock::m_pLayerUsage are still zero when the function completes, then this terrain block 
does not have any quads to render for the corresponding layer. This allows us to know whether a 
terrain block needs to have its Render function called for a given layer.  
 
bool CTerrainBlock::CountLayerUsage() 
{ 
    USHORT i; 
    ULONG  x, z; 
    UCHAR  Value; 
 
First we set the number of layers this terrain uses and allocate the terrain block m_pLayerUsage array 
to hold that many unsigned shorts. We initially set all values in this array to zero.  
 
    // Allocate the layer usage array 
    m_pLayerUsage = new USHORT[ m_pParent->GetLayerCount() ]; 
    if( !m_pLayerUsage ) return false; 
    ZeroMemory( m_pLayerUsage, m_pParent->GetLayerCount() * sizeof(USHORT)); 
 
Our next task is to calculate the rectangle in our 1024x1024 layer alpha maps that will map to this 
terrain block. StartX and StartY already contain the offsets into the height of the rectangle used to 
build this terrain block. Therefore all we have to do is multiply these values by the blend texture ratio 
(8 in our application) and we have the recantagle in each layer map that will be mapped to this terrain 
block. 
 
    // Pre-Calculate loop counts 
    ULONG LoopStartX = (m_nStartX * m_pParent->GetBlendTexRatio()); 
    ULONG LoopStartZ = (m_nStartZ * m_pParent->GetBlendTexRatio()); 
    ULONG LoopEndX   = (m_nStartX + m_nQuadsWide) * m_pParent->GetBlendTexRatio(); 
    ULONG LoopEndZ   = (m_nStartZ + m_nQuadsHigh) * m_pParent->GetBlendTexRatio(); 
 
Now we will loop through each pixel in the rectangle and, for each pixel offset, check the value of the 
pixel in each of the layer alpha maps. If the value is not zero, then we increment the value for that layer 
in the m_pLayerUsage array. At the end of the function, we will have three values for each of our 
terrain blocks. These describe how many pixels in each layer’s alpha map are non-zero.  
 
    // Determine which layers we are using in this block 
    for ( z = LoopStartZ; z < LoopEndZ; z++ ) 
    { 
        for ( x = LoopStartX; x < LoopEndX; x++ ) 
        { 
            // Loop through each layer 
            for ( i = 0; i < m_pParent->GetLayerCount(); i++ ) 
            { 
                CTerrainLayer * pLayer = m_pParent->GetLayer(i); 
 
                // Retrieve alpha value 
                Value = pLayer->m_pBlendMap[ x + z * pLayer->m_nLayerWidth ]; 
                if ( Value > 0 ) m_pLayerUsage[i]++; 
            } // Next Layer 
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        } // Next Column 
    } // Next Row 
     
    // Success!! 
    return true; 
} 
 
 
CTerrainBlock::GenerateSplats 
 
CTerrainBlock::GenerateSplats creates the child splat objects for each terrain block. This function is 
very small because most of the work happens in CTerrainBlock::GenerateSplatLevel (which builds the 
index buffer for each splat).  
 
 
The function retrieves the number of layers used by the terrain and calls 
CTerrainBlock::AddSplatLevel to allocate an array large enough to hold a pointer for each 
CTerrainSplat object. The code to the CTerrainBlock::AddSplatLevel function will not be covered 
here. It is a basic housekeeping function that allocates an array and we have looked at enough of those 
at this point to give you a good idea of how it works.  
 
bool CTerrainBlock::GenerateSplats() 
{ 
    USHORT i; 
 
    // Allocate the required number of splat levels 
    if ( AddSplatLevel( m_pParent->GetLayerCount() ) < 0 ) return false; 
 
Next we loop through each layer and check the m_pLayerUsage array to see if the current layer is used 
by the terrain block. If there is a non-zero usage value, then we call the 
CTerrainBlock::GenerateSplatLevel function to allocate a CTerrainSplat object for that layer and 
generate its index buffer. A zero value indicates that this terrain block does does not have any quads 
for this layer and we continue looping. 
 
    // Loop through each layer 
    for ( i = 0; i < m_pParent->GetLayerCount(); i++ ) 
    { 
        // Is this layer in use ? 
        if ( !m_pLayerUsage[i] ) continue; 
 
        // Generate the splat level for this layer 
        if (!GenerateSplatLevel( i )) return false; 
    }  
 
    // Success!! 
    return true; 
} 
 
When this function returns, the current terrain block will have three child splat objects (in our 
application). Each splat object will have an index buffer (if applicable) describing a series of quads that 
need to be rendered for the the corresponding layer.  
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CTerrainBlock::GenerateSplatLevel 
 
This function is responsible for creating and filling the index buffer with quads for the specified splat 
level. The function is passed the layer index that this splat will be assigned to.  
 
bool CTerrainBlock::GenerateSplatLevel( USHORT TerrainLayer ) 
{ 
    HRESULT   hRet; 
    USHORT   *pIndex = NULL; 
    ULONG     x, z, ax, az; 
    UCHAR     Value; 
    float     BlendTexels = m_pParent->GetBlendTexRatio(); 
 
    LPDIRECT3DDEVICE9 pD3DDevice = m_pParent->GetD3DDevice(); 
    bool HardwareTnL = m_pParent->UseHardwareTnL(); 
    CTerrainLayer * pLayer = m_pParent->GetLayer( TerrainLayer ); 
 
    // Calculate usage variable 
    ULONG Usage = D3DUSAGE_WRITEONLY; 
    if (!HardwareTnL) Usage |= D3DUSAGE_SOFTWAREPROCESSING; 

 
We record whether we are using a hardware or software vertex processing device as we will need this 
information when we generate the index buffer. We begin by allocating a new CTerrainSplat object 
and assigning its pointer to the terrain block m_pSplatLevel array at the index that corresponds to the 
layer for which it is being built. 
 
    // Allocate a new splat 
    CTerrainSplat * pSplat = new CTerrainSplat; 
    if (!pSplat) return false; 
 
    // Store the splat objects pointer the CTerrainBlock::m_pSplatArray 
    m_pSplatLevel[ TerrainLayer ] = pSplat; 
 
    // Store layer index (handy later on) 
    pSplat->m_nLayerIndex = TerrainLayer; 
 
The index buffer will store 6 indices for every quad because we will be rendering our splat quads as 
indexed triangle lists. We can no longer render connected primitives (such as a strip) because only a 
handful of quads may be built for a given layer and they may be scattered about the block.  
 
    // Create the index buffer ready for generation 
    hRet = pD3DDevice->CreateIndexBuffer(((m_nQuadsWide*m_nQuadsHigh)*6) * sizeof(USHORT), 
                                          Usage, D3DFMT_INDEX16, D3DPOOL_MANAGED, 
                                          &pSplat->m_pIndexBuffer, NULL ); 
    if ( FAILED(hRet ) ) return false; 
 
    // Lock the index buffer ready to fill data 
    hRet = pSplat->m_pIndexBuffer->Lock(0,((m_nQuadsWide*m_nQuadsHigh)*6) * sizeof(USHORT), 
                                        (void**)&pIndex, 0 ); 
    if ( FAILED(hRet ) ) return false; 
 
    // Calculate the indices for the splat tri-list 
    for ( z = 0; z < m_nQuadsHigh; z++ ) 
    { 
        // Pre-Calc Loop starts / ends 
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        ULONG LoopStartZ = ( z + m_nStartZ ) * BlendTexels; 
        ULONG LoopEndZ   = LoopStartZ + BlendTexels; 
 
        for ( x = 0; x < m_nQuadsWide; x++ ) 
        { 
            // Pre-Calc Loop starts / ends 
            ULONG LoopStartX = ( x + m_nStartX ) * BlendTexels; 
            ULONG LoopEndX   = LoopStartX + BlendTexels; 
 
We are calculating the rectangle in this layer’s alpha map that maps to the current quad for this terrain 
block. In our demo a single quad has an 8x8 rectangle in the alpha map that maps to the quad.  
m_nStartZ and m_nStartX contain the top left corner offset into the height map for the terrain block. X 
and Z are the loop variables that allow us to step through each quad starting from this offset. Since the 
layer maps are larger than the height map, we multiply by the BlendTexels variable (8 in our demo) so 
that LoopStartZ and LoopStartX describe the top left corner of the rectangle in the image map. 
LoopEndX and LoopEndZ describe the bottom right pixel of the rectangle in the layer alpha map. All 
we do now is test each of the 8x8 texels in the layer alpha map. If we find that all of these texels are 
zero, then there is no need to build a quad there (it would be totally transparent). 
 
            // Determine if element is visible anywhere 
            for ( az = LoopStartZ; az < LoopEndZ; az++ ) 
            { 
                for ( ax = LoopStartX; ax < LoopEndX; ax++ ) 
                { 
                    // Retrieve the layer data 
                    Value = pLayer->m_pBlendMap[ ax + az * pLayer->m_nLayerWidth ]; 
                    if ( Value > 0 ) break; 
                } // Next Alpha Column 
 
                // Break if we found one 
                if ( Value > 0 ) break; 
            } // Next Alpha Row 
 
            // Should we write the quad here ? 
            if ( Value == 0 ) continue; 
 
If we get here, then at least one of the 8x8 texels in the blend map region that maps to this quad is not 
totally transparent. Therefore, we need to add the 6 indices for the quad to the splat index buffer. We 
also increase the CTerrainSplat::m_nIndexCount and CTerrainSplat::m_nPrimitiveCount members so 
that they accurately reflect the number of indices/primitives in the index buffer. 
 
            // Insert next two triangles 
            *pIndex++ = (USHORT)(x + z * m_nBlockWidth); 
            *pIndex++ = (USHORT)(x + (z + 1) * m_nBlockWidth); 
            *pIndex++ = (USHORT)((x + 1) + (z + 1) * m_nBlockWidth); 
 
            *pIndex++ = (USHORT)(x + z * m_nBlockWidth); 
            *pIndex++ = (USHORT)((x + 1) + (z + 1) * m_nBlockWidth); 
            *pIndex++ = (USHORT)((x + 1) + z * m_nBlockWidth); 
 
            // Increase our index & Primitive counts 
            pSplat->m_nIndexCount     += 6; 
            pSplat->m_nPrimitiveCount += 2; 
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        } // Next Element Column 
     } // Next Element ROw 
 
Finally, we unlock the buffer and we are done. 
 
    // Unlock the index buffer 
    pSplat->m_pIndexBuffer->Unlock(); 
 
    // Success!! 
    return true; 
} 
 
 
CTerrainBlock::GenerateBlendMaps 
 
This function generates the blend maps for each terrain block -- one for each layer. This is where the 
global blend maps are carved up into terrain block sized maps to be stored in DirectX texture objects 
for rendering.  
 
bool CTerrainBlock::GenerateBlendMaps( ) 
{ 
    HRESULT hRet; 
    ULONG Width, Height, i, x, z; 
    LPDIRECT3DDEVICE9 pD3DDevice = m_pParent->GetD3DDevice(); 
    D3DLOCKED_RECT LockData; 
    UCHAR Value; 
    ULONG BlendTexels = m_pParent->GetBlendTexRatio(); 
 
    // Bail if we have no data 
    if ( m_nSplatCount == 0 ) return true; 
 
We will need to create textures for each layer to hold the blend maps for this terrain block, so we must 
first calculate how large these textures need to be. We know how many quads wide and high our 
terrain blocks are and we also know that (in our demo) we have an alpha ratio of 8. This means that an 
8x8 block of alpha texels map to a single quad. Therefore, we can calculate the texture size we need as 
follows. 

     
    // Calculate width / height of the texture 
    Width  = (m_nQuadsWide * BlendTexels); 
    Height = (m_nQuadsHigh * BlendTexels); 
 
We now loop through each element in the terrain block splat level array and skip to the next layer if the 
current splat level is NULL. In that case, the terrain block has no quad data for the corresponding 
layer. 
   
    // Calculate each splats blend map 
    for ( i = 0; i < m_nSplatCount; i++ ) 
    { 
        // Bail if this is an empty splat level 
        if ( !m_pSplatLevel[i] ) continue; 
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Next we get a pointer to the current layer we are processing. We skip to the next iteration of the loop if 
this is the base layer because the base layer will not have a blend map.  
 
        CTerrainLayer * pLayer = m_pParent->GetLayer( i ); 
         
        // We never generate an alpha map for terrain layer 0 
        if ( m_pSplatLevel[i]->m_nLayerIndex == 0) continue; 
 
If we get here, then this splat level has an index buffer and it is not the splat level associated with the 
base layer of the terrain block. Therefore, we will need to create a texture to hold the blend map data. 
In this example we create a D3DFMT_A4R4G4B4 texture. We will be configuring the second texture 
stage to sample the alpha values from this texture and the RGB information will not be used at all. 
Again, we could use a pure alpha surface in the format D3DFMT_A8 and this would certainly be more 
memory efficient. The only reason we have not done so in this demo is that pure alpha surface support 
is spotty amongst current graphics cards and drivers. So for compatibility we use a 16-bit ARGB 
texture to keep the size down. When pure alpha surfaces become more widely supported, it would be a 
simple task to replace the 16-bit texture.  
         
        // Create our blend texture 
        hRet = pD3DDevice->CreateTexture(Width, Height, 1, 0, D3DFMT_A4R4G4B4, 
                                        D3DPOOL_MANAGED,&m_pSplatLevel[i]->m_pBlendTexture,  
                                        NULL); 
        if ( FAILED(hRet) ) return false; 
          
The returned texture interface pointer is stored in the current splat object m_pBlendTexture member. 
Our next task is to lock the texture and copy the relevant data from our large layer alpha map into the 
blend texture. The alpha values in our large alpha maps are currently byte values so we will need to 
quantize them into 4-bit values so that they fit in the top 4 bits of the 16-bit pixel. 
 
        // Lock the texture 
        hRet = m_pSplatLevel[i]->m_pBlendTexture->LockRect( 0, &LockData, NULL, 0 ); 
        if ( FAILED(hRet) ) return false; 
          
        USHORT * pBuffer = (USHORT*)LockData.pBits; 
 
Now that we have a pointer to the texture bits, we loop through each pixel in each row and extract the 
byte from the large layer alpha map. Notice that we are only extracting values from the large layer map 
within the rectangle that maps to this terrain block. 
 
        // Loop through each pixel and store 
        for ( z = 0; z < Height; z++ ) 
        { 
            for ( x = 0; x < Width; x++, pBuffer++ ) 
            { 
          // Retrieve alpha value 
                Value = pLayer->m_pBlendMap[(x + (m_nStartX * BlendTexels)) + \ 
                                    (z + (m_nStartZ * BlendTexels))*pLayer->m_nLayerWidth]; 
 
We convert from an 8-bit value to a 4-bit value by shifting it to the left by 8-bits so that it will be 
contained in the top byte of the two byte pixel. We then mask off the bottom 12 bits. We are left with a 
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WORD value where the red, green, and blue components are set to zero and the 4 alpha bits contain a 
scaled down alpha value in the range of 0 to 15. 
 
                // Store value in buffer ( Shift right 4 and left 12 ) 
                *pBuffer = ((LONG)Value << 8) & 0xF000; 
            } // Next Column 
 
We advance the pointer to the texture bits in the next row by taking pitch into account. 
 
            // Add on pitch tail 
            pBuffer += LockData.Pitch - ( Width * sizeof(USHORT) ); 
        } // Next Row 
 
At this point we are done with the splat level for the current layer so we unlock the texture surface. We 
then repeat the procedure for the remaining layers (splat levels). 
 
        // Unlock the blend texture 
        m_pSplatLevel[i]->m_pBlendTexture->UnlockRect( 0 ); 
 
    } // Next Splat Level         
 
    // Success!! 
    return true; 
} 
 
 
CTerrain::Render 
 
The CGameApp::FrameAdvance function renders the terrain with a call to the CTerrain::Render 
function. It accepts a single parameter which is a pointer to our CCamera object.  
 
The first thing the function does is enable alpha blending and setup the alpha blending equation to use 
the common D3DBLEND_SRCALPHA and D3DBLEND_INVSRCALPHA blend modes for the 
source and destination blend modes respectively. 
 
void CTerrain::Render( CCamera * pCamera ) 
{ 
    USHORT i; 
    ULONG  j; 
     
    // Validate parameters 
    if( !m_pD3DDevice ) return; 
 
    // Setup our terrain render states 
    m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, true ); 
    m_pD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_SRCALPHA ); 
    m_pD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA ); 
 
The texture stages are setup such that fragment color is sampled from the base texture set in texture 
stage 0 and alpha is sampled from the blend texture set in texture stage 1. The color in the first stage is 
modulated with the interpolated diffuse vertex color for lighting purposes. 
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    // stage 0 coloring : get color from texture0*diffuse 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_MODULATE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE ); 
 
We will not need to sample alpha from texture stage 0. However we must be careful not to disable the 
alpha operations for a stage since this will cut off the alpha operations in higher texture stages. So we 
will set the alpha operation for stage 0 to D3DTA_CURRENT (the equivalent of D3DTA_DIFFUSE) 
and the interpolated alpha value of the vertex will be used. As our vertices have fully opaque diffuse 
colors, this will equate to an alpha value of 255 being passed to the second stage. This value is ignored 
and we will sample the alpha from the texture stored there instead.  
 
    // stage 0 alpha : nada 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_CURRENT ); 
 
In the second stage we simply select the color from the first stage and output it unaltered. 
     
    // stage 1 coloring : nada 
    m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLOROP, D3DTOP_SELECTARG1 ); 
    m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLORARG1, D3DTA_CURRENT ); 
     
The alpha operations in texture stage 1 sample the alpha value from the texture assigned to that stage. 
This of course is our blend texture.  
 
    // stage 1 alpha : get alpha from texture1 
    m_pD3DDevice->SetTextureStageState( 1, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
    m_pD3DDevice->SetTextureStageState( 1, D3DTSS_ALPHAARG1, D3DTA_TEXTURE ); 
 
Our next task is to setup texture stage 0 (recall that it holds the base texture) to handle texture 
transformations. Each layer has a texture matrix that will be used to transform the first set of UV 
coordinates to control base texture tiling. Therefore, we set the D3DTSS_TEXTURETRANSFORMFLAGS 
texture stage state to D3DTFF_COUNT2 to inform the pipeline that we will be requiring our first set of 
texture coordinates to be multipled by the texture matrix for stage 0 and that we are using 2D 
coordinates. We do not enable texture transforms for stage 1 because the alpha blend texture in that 
stage is mapped to the four corners of each terrain block. This must not be changed. 
 
    // Enable Stage Texture Transforms 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT2 ); 
 
Next we inform the pipeline of the vertex types we will be using so that it knows which components 
each vertex of our terrain will contain. In our case this will be a position, a diffuse color, and two sets 
of 2D texture coordinates. 
     
    // Setup our terrain vertex FVF code 
    m_pD3DDevice->SetFVF( VERTEX_FVF ); 
 
Finally, we loop through each terrain block in our terrain block array, assign its vertex buffer to stream 
0, and then traverse each layer. If the current terrain block uses the current layer we set the layer’s base 
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texture to texture stage 0, assign the texture matrix, and call CTerrainBlock::Render to draw the block. 
We pass the index of the layer we are currently rendering because CTerrainBlock::Render renders an 
individual splat level. 
 
    // Loop through blocks and signal a render 
    for ( j = 0; j < 1/* m_nBlockCount*/; j++ ) 
    { 
        m_pD3DDevice->SetStreamSource(0, m_pBlock[j]->m_pVertexBuffer, 0, sizeof(CVertex)); 
 
        // Loop through all active layers 
        for ( i = 0; i < m_nLayerCount; i++ ) 
        { 
            // Skip if this layer is disabled 
            if ( GetGameApp()->GetRenderLayer( i ) == false ) continue; 
 
            CTerrainLayer * pLayer = m_pLayer[i]; 
            if ( !m_pBlock[j]->m_pLayerUsage[ i ] ) continue; 
 
            // Set our texturing information 
            m_pD3DDevice->SetTexture( 0, m_pTexture[pLayer->m_nTextureIndex] ); 
            m_pD3DDevice->SetTransform( D3DTS_TEXTURE0, &pLayer->m_mtxTexture ); 
            m_pBlock[j]->Render( m_pD3DDevice, i ); 
         
        } // Next Block 
    } // Next Layer 
} 
 

 
CTerrainBlock::Render 
 
This function is called for each layer in each terrain block to render the indicated splat. The function 
sets the splat index buffer as the current device index buffer and assigns the splat blend texture to 
texture stage 1. It concludes with a call to DrawIndexedPrimitive to render the quads. 
 
void CTerrainBlock::Render( LPDIRECT3DDEVICE9 pD3DDevice, USHORT LayerIndex ) 
{ 
    // Bail if this layer is not in use 
    if ( !m_pSplatLevel[LayerIndex] ) return; 
 
    // Set up vertex streams & Textures 
    pD3DDevice->SetIndices( m_pSplatLevel[LayerIndex]->m_pIndexBuffer ); 
    pD3DDevice->SetTexture( 1, m_pSplatLevel[LayerIndex]->m_pBlendTexture ); 
 
    // Render the vertex buffer 
    if ( m_pSplatLevel[LayerIndex]->m_nPrimitiveCount == 0 ) return; 
    pD3DDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST, 0, 0,  
                                     (m_nBlockWidth * m_nBlockHeight), 0, 
                                      m_pSplatLevel[LayerIndex]->m_nPrimitiveCount ); 
} 
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Questions and Exercises 
 

1. Can we use vertex and texture alpha simultaneously when performing alpha blending? 
2. What does it mean if a texture format is said to have an alpha channel? 
3. If a texture uses the format X8R8G8B8, does it contain per-pixel alpha information? 
4. List four locations/sources where alpha values can be stored and retrieved by the texture 

blending cascade. 
5. If we use alpha values stored in materials, is this alpha information described as per-vertex 

alpha, per- pixel or per-triangle/face? 
6. How does the D3DRS_TEXTUREFACTOR render state allow us to make a constant alpha value 

available to all texture stages? How does a texture stage select this alpha value as an alpha 
argument? 

7. What does the D3DTSS_CONSTANT texture stage state allow us to do? 
8.   Describe how texture stage 0 would retrieve its color and alpha information using the following  
      texture stage states. 
         
           pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 ,  D3DTA_TEXTURE); 
           pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP    ,  D3DTOP_SELECTARG1); 
           pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG1 ,  D3DTA_DIFFUSE); 
           pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAOP     ,  D3DTA_SELECTARG1); 

 
9. Describe the color and alpha values output from the texture cascade using the following            
      render states for stage 0 and stage 1. 

 
     pDevice->SetRenderState( D3DRS_TEXTUREFACTOR , 0x400000FF ); 
 
     pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
     pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
     pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP     , D3DTOP_MODULATE; 
     pDevice->SetTextureStageState ( 1 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
     pDevice->SetTextureStageState ( 1 , D3DTSS_COLORARG1 , D3DTA_TFACTOR); 
     pDevice->SetTextureStageState ( 1 , D3DTSS_COLOROP      ,D3DTOP_ADD ); 
 
     pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG1 , D3DTA_TEXTURE); 
     pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAOP     , D3DTA_SELECTARG1); 
     pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAARG1 , D3DTA_CURRENT); 
     pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAARG2 , D3DTA_TFACTOR); 

                pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAOP     , D3DTA_MODULATE); 
 
10.   Why should the following equation be familiar to us and considered significant? 

                          SourceColor * SrcBlendMode + DestColor * DestBlendMode 
 

11. What is alpha testing and when can it be useful? 
12. When polygons are partially transparent, why do we need to render the alpha polygons in a 
second  
       pass? 
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13. Why would we ever need to sort alpha polygons, even when rendering them in a second pass? 
14. Which is the better sorting algorithm to use when many alpha polygons need to be sorted prior 

to rendering: a bubble sort or a quick sort? 
15. What is a hash table and how does it enable us to quickly sort polygons prior to rendering? 
16. Do we need to sort polygons if we are performing additive color blending? 
17. What is a pure alpha surface? 
18.  DirectX graphics provides two fog modes, what are they? 
19. Excluding the lack of any fog as a fog model, how many fog models are available for each fog 

mode? 
20. What is the Fog Factor? 
21. If you were not using the transformation pipeline but still wanted vertex fog, you could enable 

fog and calculate your own vertex fog factors. Where would you store these per-vertex fog 
factors in order for them be accessed and used for fogging by the pipeline? 

22. Why is pixel fog often referred to as table fog? 
23. Do we need to set a different fog color for both vertex fog mode and table fog mode or do they 

share the same fog color render state? 
24. What are the differences between setting up the linear fog model and setting up either of the 

exponential fog models for a given fog mode? 
25. Do you need to set a fog density value when using linear fog? 
26. When using vertex fog mode and the linear fog model, we specify the fog start and fog end 

distances as device coordinates in the 0.0 – 1.0 range. True or False? 
27. What is a W-friendly projection matrix? 
28. When using vertex fog, what causes rotation artifacts and how can we potentially avoid it? 
29. Regardless of whether we are using vertex fog mode or pixel fog mode, we set up all fog 

parameters by setting render states. True or False? 
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Appendix A: Texture Stage States, Render States and Sampler States 
 
Below is a list of texture stage states, render states and sampler states introduced in this chapter. 
 

RenderState Parameters Description 

D3DRS_ALPHABLENDENABLE True or False 

Enable alpha blending in the 
pipeline. When enabled, the 
color and alpha values output 
from the texture stage cascade 
are used in a blending operation 
with the frame buffer to generate 
the pixel color. When disabled, 
the alpha output from the texture 
stage is discarded and the color 
output from the texture stage is 
used as the new frame buffer 
pixel color.  

D3DRS_SRCBLEND A member of the D3DBLEND 
eumerated type. 

When alpha blending is enabled 
this state is used to set how the 
source color that is about to be 
rendered is blended with the 
frame buffer. This allows us to 
specify an input that is used to 
multiply the source color and 
control its weight in the final 
color calculated. 

D3DRS_DESTBLEND A member of the D3DBLEND 
enumerated type. 

When alpha blending is enabled 
this state is used to set how the 
source color that is about to be 
rendered is blended with the 
frame buffer. This allows us to 
specify an input that is used to 
multiply the current frame buffer 
color and control its weight in 
the final color calculated. 

D3DRS_TEXTUREFACTOR 
A D3DCOLOR value in the form 
0xAARRGGBB. The default state 
is opaque white (0xFFFFFFFF) 

This state can be used to set a 
constant color or alpha that can 
be accessed by the texture stage 
states during color and alpha 
blending in a texture stage. If a 
texture stage input argument is 

TeamLRN



 
 
 

set to D3DTA_TFACTOR this color 
will be used. If the state is 
blending two colors using the 
D3DTOP_BLENDFACTORALPHA 
color operation, the alpha 
component of this color is used 
to blend the two input colors. 

D3DRS_ALPHATESTENABLE True or False 

If set to true, before a pixel is 
rendered its alpha value is tested 
against a reference value (set by 
the D3DRS_ALPHAREF) render 
state using a comparison 
function selected by the 
D3DRS_ALPHAFUNC renderstate. 
If the alpha value for a pixel fails 
the comparison test then it is 
rejected and will not be rendered. 

D3DRS_ALPHAFUNC 

A member of the D3DCMPFUNC 
enumerated type. 
This can be one of the following: 
 
D3DCMP_NEVER, 
D3DCMP_LESS, 
D3DCMP_EQUAL, 
D3DCMP_LESSEQUAL, 
D3DCMP_GREATER, 
D3DCMP_NOTEQUAL, 
D3DCMP_GREATEREQUAL, 
D3DCMP_ALWAYS. 
 
The default is 
D3DCMP_ALWAYS in which a 
pixel is never rejected based on its 
alpha value because it always 
passes the comparison test 
 
 

When alpha testing is enabled 
this render state allows us to 
choose the comparison 
performed against the alpha 
reference value. For example, if 
we set the reference function 
D3DCMP_LESS with alpha testing 
enabled, the pixel will only pass 
the test and not be rejected if its 
alpha value is less than the 
reference value set by the 
D3DRS_ALPHAREF function. This 
is useful for rejecting completely 
transparent pixels so that they do 
not have their depth values 
written to the depth buffer. 

D3DRS_ALPHAREF DWORD 
Values can range from 
0x00000000 through 
0x000000FF (0 to 255). 
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New Render States Table 

RenderState Parameters Description 

D3DRS_FOGENABLE TRUE or FALSE 

Enables fog color blending. This 
needs to be enabled even if you 
are not using the transformation 
pipeline and are calculating the 
per vertex fog factors yourself as 
the fog factors will still need to 
be interpolated and the color 
blending performed using these 
fog factors. 

D3DRS_FOGCOLOR DWORD 

Enables us to set the color of the 
fog as an ARGB DWORD. The 
A component of this color is not 
used and can be ignored. 
Therefore, to set a red fog color 
for example, we could set the fog 
color to color 0xFF0000. 

D3DRS_FOGVERTEXMODE 

D3DFOG_NONE 
D3DFOG_LINEAR 
D3DFOG_EXP 
D3DFOG_EXP2 

Sets the fog model used for 
vertex fog mode, or disables 
vertex fog if set to 
D3DFOG_NONE. 

D3DRS_FOGTABLEMODE 

D3DFOG_NONE 
D3DFOG_LINEAR 
D3DFOG_EXP 
D3DFOG_EXP2 

Sets the fog model used for pixel 
fog mode, or disables vertex fog 
if set to D3DFOG_NONE. 

D3DRS_FOGSTART Float (must be past as a DWORD) 

The distance or depth at which 
fog color will start to be blended 
with our pixel or vertex when 
using the linear fog model. If 
using a vertex fog mode or pixel 
fog mode where ‘W’ based fog is 
being used, this should be a view 
space distance. If using pixel fog 
where ‘W’ based fog is NOT 
being used, this should be a 
device depth distance in the 
range of 0.0 to 1.0.  

D3DRS_FOGEND Float (must be past as a DWORD) 

The distance or depth at which 
fog color will be blended with 
our pixel or vertex at full 
intensity when using the linear 
fog model. If using vertex fog 
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mode or pixel fog mode where 
‘W’ based fog is being used, this 
should be a view space distance. 
If using pixel fog where ‘W’ 
based fog is NOT being used, 
this should be a device depth 
distance in the range of 0.0 to 
1.0. 

D3DRS_FOGDENSITY Float (must be past as a DWORD) 

A floating point value between 
0.0 and 1.0 that is used to set the 
fog density value for the 
exponential and squared 
exponential fog models. Not 
used by the linear fog model 

D3DRS_FOGRANGEENABLE TRUE OR FALSE 

Available only for vertex fog 
mode and then only if the 
hardware supports ‘range based’ 
vertex fog. When enabled, the 
true distance from the vertex to 
the camera is used in the fog 
factor calculations eliminating 
rotational artefacts. If set to false, 
which is the default state (or if 
range based fog is not 
supported), the view space Z 
component of the vertex will be 
used instead. ‘Range Based’ 
vertex fog is more 
computationally expensive . 
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Appendix B: A Quick Guide to Creating Alpha Channels in Paint Shop Pro ™ 
 
The following is a quick guide which demonstrates creating an image which contains an alpha channel 
in Paint Shop Pro 7 and above (including the evaluation version). 

 
Before we begin, we need to pick an image that we wish to generate an alpha 
channel for. In this example we have chosen a window pane with 9 separate 
segments (shown to the left). We will create individual areas of translucency 
relatively easily by masking off the separated areas, and filling them in as 
needed. 
 
After starting Paint Shop Pro you can either load the image in using traditional 
means (via the file / open menu), or simply drag and drop the image onto the 

main application work area. Once the image has loaded, we can start working on it. In this example we 
will not be making any adjustments to the image itself, but instead we will be working on the alpha 
information only. Once the image has been loaded (assuming we simply loaded up a single layer file 
such as a bitmap, etc.) you can pop open the Layer Palette window. At this point, you should notice 
that we have a single Background layer, as shown below. 
 

 
 
Paint Shop Pro Masks 
 
Paint Shop Pro™ does not use alpha channels in the traditional sense. Instead, it adopts the concepts of 
masks. These masks can be applied to each layer individually, and can be saved out as an alpha 
channel in the resulting image. The first thing we need to do in order to apply alpha information to our 
image is to create a mask. 

 
To create a mask, we need to select the ‘From Image’ 
item from within the ‘Masks / New’ menu item. After 
selecting this item, we are presented with an options 
dialog as shown below. This dialog allows us to 
specify how we would like our alpha mask to be set 
up initially. For now, we just want a completely 
opaque mask, so we can just choose to create the 
mask from our source image’s current opacity levels, 
making sure that the ‘Invert Mask Data’ check box is 
currently unchecked. For your reference, you can use 
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settings similar to the following to create an opaque mask from your image: 
 
 

 
 

Once you have decided how your mask will be defaulted, select OK, and the mask for the currently 
selected layer will be generated. In this case, we had the single layer named ‘Background’ selected. 
These background layers are special types of raster layers which cannot be made translucent and are, as 
their name suggests, used as a background which will show through any translucent areas of any layers 
above it. Because of the fact that background layers cannot contain alpha information, this layer is 
automatically “promoted” to become a standard raster layer. It should look something like the 
following in the layer palette: 
 

 
 

We can see that the icon for the layer changes to demonstrate the fact that it is no longer a background 
layer. In addition, its name is changed to, for example, ‘Layer 1’. You can rename this layer at this 
point to give it a more meaningful label, but this is merely for your own benefit and plays no part in the 
actual process. One other important point to notice is that an additional icon has been added to the right 
of the layer name, which looks somewhat like a small mask. This is provided to inform you that this 
layer now contains a mask which can be modified, which is exactly what we will be doing next. 
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Editing the Layer Mask 
 
Now that we have created an empty mask, we can edit it to provide the alpha information required for 
our individual window panes to show through any image data rendered underneath. To do this we need 
to put the editor into ‘Mask Edit Mode’. First of all, make sure that the layer containing the mask you 
want to edit is your current selection within the layer palette. Then, from the ‘Mask’ menu, select the 
‘Edit’ menu item. Once you have done this, you will notice that the title bar of both the layer palette 
and the image itself are appended with the text ‘*MASK*’, and that the application’s color palette 
changes to a simple grayscale palette as shown below: 
 

The palette shown to the left (the full color palette) is the traditional layer 
editing palette. The one on the right is used for editing the layer mask, and 
depicts the 256 levels of translucency as black (0 = Fully Translucent) 
through white (255 = Fully Opaque). It is worth noting however that it is 
often a little tricky to select the exact alpha level you want from this small 
quick palette. For this reason you may want to select the value from the main 
color palette, available by clicking in the middle of one of the ‘Style’ color 
blocks found directly underneath this quick entry palette on the ‘Color’ 
control bar. 

 
Now we are ready to edit the mask. First we must select our alpha value, but 
before we do that we must make sure we are in solid color mode. To do this you 
can click on the black arrow contained within the ‘Styles’ color block 
underneath the palette. A small selection box will pop up allowing you to choose 
between ‘Solid’, ‘Gradient’, ‘Pattern’ or ‘Null’ modes. For now we want to select 
the solid mode as shown in the inset image. Once you are sure you are in solid mode, you can select 
your color from the small palette above it, or by click in the centre of that same foreground style box to 
select the color from the main palette. We will choose a mid-range color for now, in our example 
palette index ‘151’ (which has the color RGB(151, 151, 151)). By choosing an alpha value which is 
not totally transparent, we will be able to retain some of the original detail in each window pane 
segment when it is rendered. 
 
As we know, we want to leave the horizontal / vertical bars of our window pane totally opaque. This 
may be a little difficult to achieve, or at least a little laborious, if we were to avoid / adjust these areas 
by hand. We can solve this problem by using the selection tool: 
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As you can see, we can use the selection tool to mask out areas of the image. Similar to many other 
applications of any type, you can multi-select by holding the shift key, and deselect individual areas 
using the ctrl key whilst in the selection mode. These are depicted by a little + or – sign being 
displayed next to the tool’s cursor so that you can easily see which mode you are currently in. 
 
Now that we have masked off the nine individual areas of the image, when we make any 
modifications, the changes will only occur inside those parts contained within the selected region(s), 
leaving our window pane separators completely intact. Of course, we are not currently editing the 
image itself, but the same applies when in mask edit mode, leaving the areas between the glass panes 
totally opaque. 
 
We are now ready to modify our mask. When in mask edit mode we can treat it just as if it was a 
simple palletized image, and can perform many of the same color based operations with it (ex. 
brightness, gamma, noise, etc.) in exactly the same way. With our alpha level “color” chosen, we can 
now pick an editing tool. For this job, we are going to pick the airbrush with the options shown in the 
next image. Which tool you use for editing the alpha mask is image specific, but the airbrush suits us 
well for the current task. 
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We have chosen the airbrush, rather than simply adjusting the ‘Brightness’ of the alpha mask values, 
because this allows us to be a little inaccurate, and to go a little wild when spraying on our alpha 
values. This lets us leave behind dirty smudges, or shaded areas at will. Feel free to experiment with 
the airbrush because remember, only the areas inside your selection will be modified. 
 
 
Once you are completely satisfied with the results of your 
haphazard airbrushing, you should end up with something a 
little like the image to the right, Make sure you leave your 
current selected areas intact. You should notice that, to help 
you visualize the translucent areas, paint shop has rendered 
a checkered pattern behind, which shows through the now 
translucent glass.  Tip: This pattern can be altered on the 
‘Transparency’ tab found via the ‘File / Preferences / 
General Program Preferences’ menu item, to allow for 
easier viewing in certain circumstances. 
 
Now that we have our general alpha values set up, with our 
selection still intact (and still in the mask editing mode) we 
can touch up this image a little bit. We could for instance 
use the ‘Noise’ effect to add a little uniform noise (say 
15%) which gives us a little variation in the alpha values. 
This can help improve the look of compressed alpha textures, or you could add texture effects to add 
cracks, or to allow for the distortion of rain drops. 
 
Saving the Alpha Information 
 
As mentioned, Paint Shop Pro™ stores its alpha information a little differently than a file would store 
an alpha channel, primarily because it requires per-layer alpha information. So, what we now need to 
do is to save our mask into the image’s alpha channel. To do this we simply need to select ‘Save to 
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Alpha Channel’ from the ‘Masks’ menu. After selecting this item, we are presented with the following 
dialog: 
 

 
 

This dialog displays a list of all the alpha channels currently stored within the image (in memory). 
Most file formats support only a single alpha channel, but for the moment you will not have any listed. 
In this case, simply select ‘New Channel’ from the list and press ‘OK’. You will then be prompted to 
provide a name for this alpha channel; this is merely a description. After entering the name, the alpha 
mask from the selected image layer will be saved to a new alpha channel (a preview of which is 
displayed on the right hand side of that same dialog). 
 

Note: Alpha channels are stored separately from the masks themselves. Therefore, if at any point after 
saving the mask to an alpha channel, you modify that mask, you will need to save it once again to the 
alpha channel in the same way, overwriting the original which will be displayed in this dialog. 

 
Before we can save our final image, it is best to save out the image as a standard .PSP file (Paint Shop 
Pro’s™ own internal file format) so that we have a workable copy of the original image, and then to 
delete the alpha mask we created earlier using the ‘Masks / Delete’ menu item, choosing not to merge 
the mask with the selected layer. This important step needs to be performed first because otherwise, 
when we save to our final image format, the mask will be merged with the color layer, altering the 
actual color data itself. This means that if we were to render the texture, using our alpha channel, we 
would actually be alpha blending using the altered color data. Do not forget to remove the mask before 
saving as anything other than .PSP. 
 
We are now free to save the image out to disk using the standard ‘File / Save As’ method, but it is 
important that you select a file format which is capable of storing the alpha information. Your best 
option here, if you are planning to load the texture and its alpha information back into Direct3D, is 
either .TGA or .PNG. 
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Loading an Image with an Existing Alpha Channel 
 
If you want to load an image with an existing alpha channel into Paint Shop Pro, you should first load 
the image in the usual way. You should notice however that the alpha information is not applied to the 
loaded image. Remember that alpha channel information and alpha masks are separate entities. To re-
create the layer mask from your alpha channel information, simply select the ‘Masks / Load From 
Alpha Channel’ menu item. You will be presented with the following dialog: 
 

 
 

Under normal circumstances you will see only one alpha channel listed. Selecting this channel and 
pressing OK will result in the re-creation of the mask, and the ability to edit it once again. Remember 
though, that once you have edited the mask, you must save the alpha channel back out (overwriting the 
one in the above list) using exactly the same methods outlined in the previous section. This includes 
removing the mask again before you save the resulting image file. 
 
After following these steps, you should now have a texture, available for loading into Direct3D (or any 
other API for that matter). Take a look at the image below which demonstrates the result of all our hard 
work. Stonehenge through a dirty window ☺ 
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