& Ll

. mﬁﬂvsromnr SERIES

L CD TNCL L.IDED

1EDITIET-R1C
GAME

-P-RDG-R-FIIYIITI'ING
W1TH

DIRECTX 7.|:|

X I L
SR

DIRECTX

CHECK THE WMEER FOR UPDATESS

To check for updates or corrections relevant to this book and/or CD-ROM visit our updates page on the
WED at http://www.prima-tech.com/updates.

S£END Us YOUR COMMENTS:

To comment on this book or any other PRIMA TECH title, visit our reader response page on the \Web at
http://www.prima-tech.com/comments.

How tTO0 ORDER:S:

For information on quantity discounts, contact the publisher: Prima Publishing, PO. Box 1260BK, Rocklin,
CA 95677-1260; (916) 787-7000. On your letterhead, include information concerning the intended use
of the books and the number of books you want to purchase.

CEO \lumt Games LLC

©2001 by Prima Publishing. All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval sys-
tem without written permission from Prima Publishing, except for the inclusion of brief quotations in a review.

A Division of Prima Publishing

Prima Publishing and colophon are registered trademarks of Prima Communications, Inc. PRIMATECH is a
trademark of Prima Communications, Inc., Roseville, California 95661.

TECH

Publisher: Stacy L. Hiquet

Associate Marketing Manager: Jennifer Breece

Managing Editor: Sandy Doell

Acquisitions Editor: Jody Kennen

Project Editor: Estelle Manticas

Technical Reviewer: Mason McCuskey

Copy Editor: Gayle Johnson

Interior Layout: LJ Graphics: Susan Honeywell, Julia Grosch, Patrick Cunningham
Cover Design: Prima Design Team

Indexer: Sharon Hilgenberg

Microsoft and Microsoft DirectX are registered trademarks of Microsoft Corporation in the United States and/or other
countries.

Important; Prima Publishing cannot provide software support. Please contact the appropriate software manufacturer’s techni-
cal support line or Web site for assistance.

Prima Publishing and the author have attempted throughout this book to distinguish proprietary trademarks from descrip-
tive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Prima Publishing from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources, Prima Publishing, or others, the Publisher does
not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omis-
sions or the results obtained from use of such information. Readers should be particularly aware of the fact that the
Internet is an ever-changing entity. Some facts may have changed since this book went to press.

ISBN: 0-7615-3089-4

Library of Congress Catalog Card Number: 00-107339
Printed in the United States of America
0001020304BB10987654321

For my mother

1someTRIC GAME PROGRANMMING WITH D1RECTX 7.0

HACKNOWLEDGMENTS

First and foremost, 1d like to thank Andre LaMothe for giving me a shot. | would also like to thank all
the people at Prima who were on my project, including Kim Spilker, Jody Kennen, and Estelle Manticas.

Furthermore, | want to thank the following people for various things: Dave Astle and Kevin Hawkins (for
testing my example programs), Mason McCuskey (my technical editor), Chris Ravens (my life mate),
Diana Gruber (for the nice review on amazon and dirty jokes), Mary Jo Beall (my mom), and my sippy-
bottle (filled with Pepsi—it helped me through).

J Thanks also to the iso-people, as I've come to think of them: Jim Adams, Dino Gambone, Yanni
Deliyannis, and the rest.

Also, all of the guys who submitted something for the CD: Joseph Farrell, Everett Bell, Andy Pullis, Octay,
and others. Thanks.

And anyone else I've forgotten: just write your name into the space below, and thank you, too.

AgouTt THE AuUTHOR

AgouT THE AUTHOR

Ernest S. Pazera started programming on a TRS-80 Color Computer 2 in 1986; he switched to PC per-
manently in 1990. He doesn't have a computer science degree, just a high school diploma. Ernest served in
the United States Navy from 1993 until 1996 but never forgot his first love, which was game program-
ming.

In 1995, Ernest picked up a copy of Sid Meier’s Civilization 11, which, in his estimation, is one of the great-
est games of all times. By studying this game he discovered how isometric views worked, and he subse-
quently wrote a few articles on the subject. His interest in isometric game programming lead him to

become part of a group that would eventually create GameDev.net, LLC (http.//www.gamedev.net), and [
his involvement with that group lead him to become the author of this book.

In addition to book authorship and his involvement in GameDev.net, Ernest owns two companies: DTM
Software, which has done contract work on two commercial games, and C&M Tax, where he prepares
personal income tax returns (thus keeping him from starving while writing games as an independent
operator).

Ernest goes by the name TANSTAAFL in #gamedev on afternet in IRC, and can be reached at
tanstaafl@gamedev.net

V111 1somETRIC GAME PROGRANMMING wWITH DTRECTX(7.0

CONTENTS AT A GLANCE

Introduction.......neneeverrencenerennennnnn, xvil
Part I: The Basicsc..coccevvnnne 1
Chapter 1: Introduction to

WIN32 Programming...............cuee. 3
Chapter 2: The World of GDI

and Windows Graphics................... 43
Chapter 3: Fonts, Bitmaps,

and Regionsveeveecrvnerinencnnenens 81
Chapter 4: DirectX at a Glance........... 124
Chapter 5: Using DirectDrauw.............. 132
Chapter 6: Surfacesuunnennnn... 146
Chapter 7: IDirectDrawClipper Objects

and Windowed DirectDraw............... 178
Chapter 8: DirectSound......................... 190
Chapter 9: Game Design Theory 220

Part I1: Isometric Fundamentals...236

Chapter 10: Tile-Based Fundamentals......
237
Chapter 11: Isometric/Hexagonal
Tile Overview......vereevernernerennnnn. 285
Chapter 12: Slide Isometric Tilemaps 297
Chapter 13: Staggered Tilemaps............. 338
Chapter 14: Diamond Maps 359

Chapter 15: The IsoHexCore

Part 111: Isometric Methodology ..410
Chapter 16: Layered Maps and

Optimized Rendering..................... 411
Chapter 17: Further Rendering

OPtimizations.....cececrvencrencvennenenn. 434
Chapter 18: Object Placement

and Movementceevererverernenee 458
Chapter 19: Object Selection................ 510
Chapter 20: Isometric Art..................... 555
Chapter 21: Fringes and Interconnecting

SITUCLUTES .vnveverrrrrnrnrernrnrnininsens 578
Part IV: Advanced Topics........... 600
Chapter 22: World Generation............. 601
Chapter 23: Pathfinding and Al 615

Chapter 24: Introduction to Direct3D 633
Chapter 25: The Much-Anticipated

ISO3D ...ttt 660
Chapter 26 The Road Ahead................. 689
Part V: Appendices..........cccccuv.... 694
Appendix A: Loading Sample Projects

Into the IDE...............ercrcnnnnes 695
Appendix B: Hexagonal

Tile-Based Games............cuurenune. 702
Appendix C: IsoHex Resources............ 705

TARBLE oF CONTENTS

CONTENTS
INtroductioncccceevee e, XVii
Part I: The Basics.................. 1
Chapter 1: Introduction to
WIN32 Programming 3
Conceptual Overview of
Windows Programsccccceeveeeenvenenenn 4
Of HWNDs and HINSTANCES.........c.cc....... 6
Life in an Event-Driven
Operating System.........cccceveeieieeieee e, 7
Window Procedurescccccovevieiiieiieenen. 8
The WinMain Function.............ccccceeeveeinnene 9
RINSTANCE ..o 16
WINdow CIass........ccoevernrnneceseesseseseenns 16
The Message PUMPcccvvveveeiecciecie e 20
Creating a WiNndoWccccevevveiieiiesieennn, 21
AWEXSEYIE ... 21
IPCIasSNaME ... 22
IPWINAOWNEME ..o 22
AWSEYIE ..o 22
Xy Y tetereeteist et 23
nWidth, nHeight...........cccccooiivnicciceee, 23
NHWNAPArentcccceeeieiirrrs e, 23
AMENU.....coviiicccccce e 23
RINSTANCE ..o 23
IPParamcceeiirrcccee e 23
Other Initializationccccceeveveiiveieennns 23
Checking for MeSsagesovuvvvueverereerererenens 24
Processing Messagescoceeeeeererererererernenenen. 25
Running a Single Frame of the Game........... 26
Cleanup and EXit.......cccccovevniennienniens 26
The Window Procedure...........c.cccoeueinnne, 26
Sending Messages to a Window...................... 28
Using Window Messages to Process Input29
MOUSE MESSAQESeeeervreeeriireesieeesrreesnireeans 32
Other Window MesSagesccoerervernene 34

WM_ACTIVATEAPP ...t 34

Managing Your Windowsc.cccceeueneee. 35
SEtWiINdowPOS ..o, 35
MOVEWINAOW.......ccvvrrriiieceecss e, 37
GetWindowlInfo.........cccceeeeniicccceeens 38
GetWindowText and

GetWindowTextLength ... 39
SEtWINAOWTEXLccvcvecieccrrr e, 40

System MEtriCS.......ccvverereeieiese e 40

SUMMATY .. 41

Chapter 2: The World of GDI

and Windows Graphics........... 43

RECT and POINTcccoovievieiree e 44
The POINT Structurecccocevveeenvirnnenes 44
The RECT StruCture........ccocovevvervrerreseeeeeeennns 44
RECT and POINT Functions............c.cccee...... 45

Anatomy of a Windowccccecevervneninnne. 51
GetCHEeNtRECE ..o, 52
GetWINdOWRECLc.cvvevererricr e 52
AdjustWindowRect and Adjust

WINAOWRECTEX ..o 53

Device CONteXtS........cccveevveeveeiieciie e 56
Obtaining Device CONEXLS..........covvereerirrrrnnns 56
MeMOIY DCS.....ccvviiieecieesss e, 58

GDI ODJECES ... 59
SeleCtODjeCt.....cccvviviiicccce e 59

Pixel Plotting with GDIcccoviiiinnne 60
The RGB MaCrOccovvecceierecn et 61
Pixel Manipulation Functionsccce.... 61
A Pixel Plotting Exampleccccoovevriiinnnes 62

USING PENS.....coiveeiieie e 64
CreatePeN ... 64
Drawing FUNCLIONS......cccovvvvvreveenecenenesesieeenes 65
A Line Drawing Example...........cccoovevnniennes 66

Brushes.......cooveviieiie e 69
Brush Creation............cccoeeeveviveveviseeevenenens 69
EXTFIOOFIll ..o, 70
A Brush Example ..., 71

1someTRIC GAME PROGRANMMING WITH DT1RECTX 7.0

Filling in Rectangular Areasccceuuee. 72
Pens and Brushes Together:

Shape FUNCLIONS.........cccevveeeiiereeciee 73
o | T o= TR 73
RECLANGIE ... 74
ROUNARECT ..o 75
POIYGON ..o 76

SUMMATY vt 79
Chapter 3: Fonts, Bitmaps,
and Regionscucuunnnee. 81
Working with FONtS.........coovvviiiieniicie 82
AddFONtRESOUICEcovvviecreieireeiescreiseeen 82
RemoveFONtRESOUICE...........cceverereevirirrnae 83
CreateFont ..., 83
Outputting with FONtScccovevviciricine 85
Creating and Using Regions........................ 92
Creating REQIONS.......cccccvvvivvvvrnee e, 92
USING REJIONS ... 95
Other Uses for Regions..........ccccceceevviinnnes 101
Creating and Using Bitmaps..................... 102
Creating a Blank Bitmap..........ccccoevevvirnnnes 102
Loading a Bitmap from DisKcccccuevenee. 103
Using a Bitmap........cccevvevnenniencens 104
Raster Operation Exampleccccevevnne. 111
An Application of Raster Operations:
Bitmaskingcccoovvvvveceeesscecccece e, 113
A Bitmap Management CIass...........cccoceeue. 115
A CGDICanvas Exampleccccoovvivniinnnn. 118
Double Buffering with GDIcccccoeeene.e. 119
SUMMANY ..o 123
Chapter 4: DirectX at a Glace......
124
DirectX Components........cccceeevereerieennenn 125
DirectX Configurationc.ccecvveeenne. 125
Tradition and COMcccocevivieniiniinnnns 130
Version Control..........cooeveeevnnnnnscceeeenns 131
Reference Countingc.c.cccevvvveeeccverevennnn, 131

SUMMATY ..o 131

Chapter 5: Using DirectDraw 132

Creating the IDirectDraw?7 Object............ 133
About HRESULTccoevvvviieeceeereca 135
Setting the Cooperative Level................... 135
Enumerating Display Modes..................... 136
Setting the Display Mode...........ccccceeueeee. 143
Retrieving the Current Display Mode........ 144
A Final Thing: Releasing Objects.............. 145
SUMMATY ..o 145
Chapter 6: Surfaces 146
What Is a Surface?........ccccoeveveeienennenn 147
Creating a SUrfaceccooevvveeienencniene 147
DDSURFACEDESC2........cccoovviiiinirinininnns 148
Creating a Primary Surface.............ccccevevuene. 151
Creating a Secondary Surface/

Back BUFfer ..., 152
FIIPPING ..o 154
Off-Screen Surfacescoovvveeeeesnnnenns 154

USIiNg SUITaces.......ccoovevereenienieieeiecins 155
GetDC/ReleaseDC, or Using

GDI 0N SUIaces.......ccovevininriinrieeenes 155
Blt .o 158
BIEFASE......ooeceeeieerr e 166
The Nitty-Gritty: Lock and Unlock 167

A DirectDraw Wrapperccccevvevvvenenne 173
DDSURFACEDESC2 Functions.................... 174
DDSCAPS2 FUNCLIONS.......ccveririecncecieiceenne 174
DDBLTFX FUNCLIONScocevrrririrircencecieieiinns 174
Pixel Format FUNCLioNS...........ccooevvivrinenen. 175
LPDIRECTDRAWY Functionscccccce..... 175
LPDIRECTDRAWSURFACEY Functions.....175
Tasks Not Included in the Wrapper............. 176

Empowering the USer.........ccccocvevveiiennnnns 176

SUMMAIY ..o 177

TARBLE oF CONTENTS

Chapter 7: IDirectDrawClipper
Objects and Windowed

DirectDraweeereeeevennnnn. 178
Using IDirectDrawClipper...........ccccoeenee... 179
Creating ClPPErS.......cocovvevriercerine 179
Setting up a Clipping Region...........c.cc.co..... 180
Assigning a Clipper to a Surface................... 183
Windowed DirectDraw............ccoevevevenenee. 184
Differences between Full-Screen and
Windowed DireCtDrawcccoceveeerriennnn. 184
Display MOdESccccvivivrirnverrsee e 185
NO Back BUFfErs........cccoeeerrrrceccciecine 186
Clippers in Windowed DirectDraw 187
SUMMATY ..o 189
Chapter 8: DirectSound........... 190
The Nature of Soundcccceeerieninnens 191
How Our Ears Work (the Really
Simplified Version)ccccccovvevnicnnnnn, 191
How Speakers Work...........cccoovvvvvccrivcnnnnnn, 192
How Sound Cards Work............cccccoeeeurunne. 193
The WIN32 Way to Play Sounds............... 193
The IDirectSound Object............cccceeueeee. 196
Creating the DirectSound Object................ 196
Setting the Cooperative Levelccc...... 197
The IDirectSoundBuffer Object............... 198
Creating Sound BUFfers...........cccoeovvevriennnn. 198
The WAVEFORMATEX Structure 200
Control FIagsovvvvevecererenie e 202
Locking and Unlocking Sound Buffers.......205
Playing SOUNdS.........cccovevrniinniernesies 207
Duplicating Sound Buffers...........cccceveunne. 208
Using WAV Files.......cccvvviiieiiiiiie e 209
Using HANDLEs to Do File Operations......209
The Structure of a WAV file.........cccccvrvveeee. 212
Loading a WAV File from DisK..................... 213

Using CWAVLoader to Load from a
File to a DirectSoundBuffer.............c.......... 215

The DSFuncs Library........c.ccocoovieicnene. 218
LPDSB_LoadFromFile.........c..cccoovvnvirininnnnn. 218
LPDSB_REIEaSEccocvererererericeceeceeie e 218

Empowering the User........cccccceveveeveeennen. 218

SUMMANY ..o 219

Chapter 9: Game

Design Theory...........uucuuncnes 220

A Definition of Game.ccocevvrenienne. 221

The Intangible Nature of Games.............. 221

Why We Playccccooveiieiiececic e, 222

Computer Gamescccovevvveeereereenneennes 223

Game ANalysisScoceveerieiiee e 223

Designing a Game...........cccceeveeveevecinennnns 224
Initial CoNCeptcevvvvrereeeeecrr e 225
Fleshing It QUL ..o, 225

From Theory to Practiceocuuee. 226
The Arcade/Action Genre..........cccocvveennnn. 226
ISOMELIiC GAMES ..o 227

Empowering the User: Giving Thought

to the User Interface..........ccoovvvvvinnnne 229
A Few Notes About Controlsc.cccceuenee 229

Making a Real Gamec.cccoeevcveeiieennen. 230
Game StALe.....cccovvvreceeee e 231

A Few Words about Finishing Games........ 234
A Few Tips for Finishing Games................... 234

SUMMATY ..o 235

Part I1: Isometric

Fundamentals 236

Chapter 10: Tile-Based

Fundamentalsc....... 237

What Does “Tile-Based” Mean?................ 238

Myths about Tile-Based Games 238

X1

Tile-Based Terminology.........cccccvvvuereennenn 239
An Introduction to Rectangular Tiles....... 241
Managing TileSetS.......ccccevvrenirieninenennns 243
A TileSet Class.......ccoererrenienienieieeeene 248
The Class Declaration..........cc.ccceovreenieennn. 248
An Animated Sprite Example 254
SELHNG UP.viviiiiiicccice e 254
The Main LOOpPccoovvvveerrerrrneeceeeens 255
Cleaning uUp ... 256
Taking Control..........ccocovvvviieiiieiicenn, 256
Tilemap BasiCS........cccovvevuveieiieiieeie e 289
More Complicated Tilemaps..........cccceueunene. 261
Rendering a Tilemap........cccccvevvveerieennene 262
SCrEEN SPACE ...t 262
World Space and View Space............cccvuveee. 264
A Simple TileMap Editor..........ccccccvennene 265
CONSLANTS ... 265
GlODAIS ... 266
Setup and Clean up.......ccceevvvvecccesninninnns 266
The Main LOOpPccoovvvieeeernrrrreeeiees 267
AcCepting INPULc.covevcrcere 269
A Few Words about the TileMap Editor272
A Tile-Based Example: Reversi................. 272
Designing REVErSi........cceeerrrererecicieieieenn, 273
Implementation of Reversicccooevenenes 277
Final Words on ReVersi..........cccvevnennnenens 284
SUMMATY .. 28
Chapter 11: Isometric/Hexagonal
Tile Overviewuuueeeeeerenne 285
Introduction to ISOHEX...........cccceuruennee. 286
IsoHex Tiles versus Rectangular Tiles289
IsoHex Tilemaps versus Rectangular
TIlemapscoeeveeececeecee e, 290
Isometric Engines versus Rectangular
ENQGINES....ooiiiiieeeee e 291
THEPIOLEEr ... 291

1somETRIC GAME PROGRANMMING wWiTH DTRECTX(7.0

MOUSEMADcvviveeiiisiee e 291
TileWaIKEN ..o 292
The Three Types of IsoHex Tilemaps292
Slide Maps.......coovieniereeeens 292
Staggered Maps........coceevnnieneeceesnisnins 293
Diamond Maps.........cccceervrvnnsseiernnnnenenens 294
IsoHex Tilesets and the Importance
Of ANChOYS....ccvecieeeeee 294
SUMMATY ..o 296
Chapter 12: Slide Isometric
Tilemaps........ceveeecriunencncnenns 297
Interlocking IsoHex Tiles........c..ccceeveee. 298
Coordinate SySteM..........ccvverereeieeieneniens 305
Tile PIOttiNg......ccoovoiiiiiieece e 306
SCroliNg.....ccveeieiiee e 309
Tile Walking.......ccccoovevieiiieiieccic e 314
NOFtN ..o 317
NOIhEastcccevviriricceee e 317
SOULH .. 318
SOULNWEST ... 318
The Code for IsoHex12 3........cccovvvvveene 322
MOUSEMAPPING ... 325
Step-By-Step Mousemappingc.ccccceveveenee 327
A Mousemapping Example............ccccccce.... 334
SUMMATY ..o 337

Chapter 13: Staggered Tilemaps
338

Coordinate SySteM..........ccovvrereerereneniens 339
Tileplottingccoveveeece e 340
TilewalKingooovevieeiiecieece e 342
Even Y TilewalKing.........cccooovivncenccnnnn 346
Odd Y TilewalKingcccoovvevvninriiirrienn, 347
Mousemapping in Staggered Maps.............. 351
Unique Properties of Staggered Maps 352

NO JAGGIES ..o 352

TARLE OF CONTENTS X111

Cylindrical Mapscccoeevviveieeeeeessiininnns 354
SUMMATY ..eeeiiieeciee e 358
Chapter 14: Diamond Maps ...359
Coordinate SyStem..........ccccevverenieeseennnns 360
Tileplotting.......cccooeveiiiieee e, 361

The Tileplotting Functioncccoceveeee. 362

A Diamond Map Tileplotting Demo............ 362

BIitting Order.........oovovvvenrnceeceeeien, 363
Scrolling Revisitedccoceveviieiineennnn 363

A Diamond Map Scrolling Demo................. 364

TilewalKingccccovovievnrnreeeeeeee s 365
MOUSEMAPPING -..eevvreverriierieeie e eiee e 369
SUMMANY ..o 370
Chapter 15: The IsoHexCore

Engine......ccrerinvniiincnnen, 371
Overview of IsoHexCorec.cceuvneen 372
IsoHexDefs.hcccooovviiieiieee 373

ISODIRECTION.......cooovveivvceccere e 374

ISODIRECTION MaCros.......cccocevrvereernnens 375

ISOMAPTYPE......ccoeiiieenneieesce e 375
IsoTilePlotter.n/lIsoTilePlotter.cpp 376

ISOHEXTILEPLOTTERFN.......cccoeevvrirnne, 377

CTIEPIOLES ..coevviereeercrceeee e 379

Using CTilePIotterccccccvvvvrecccerernn, 382
IsoTileWalker.h/lIsoTileWalker.cpp.......... 383

ISOHEXTILEWALKERFN..........cccovvvvverrne, 383

CTileWalKer ..o 384

Using CTileWalker.........ccccoovvviveicccercrnnnn, 386
IsoScroller.h/1soScroller.cpp........cc.c........ 387

SCROLLERWRAPMODE.........c..ccceevrevrnnne. 389

CSCIOIIEN ...t 389

Using CSCroller ..., 395
IsoMouseMap.h/IsoMouseMap.cpp......... 395

MOUSEMAPDIRECTIONcccovvivviciennns 397

CMOUSEMAP ... 397

Using CMOUSEMAPc.coevevererriiiiececierereins 400
IsoHexCore.n ..o, 401
An IsoHexCore Example.........c.cccoeiennne 401

GlODAIS ... 402

Initialization and Cleanupccccevevveueee. 403

1Y/ T N I To] o P 406

Event Handling ..., 408
SUMMANY ..o 409

Part I11: Isometric

Methodology..........ccccue..... 410
Chapter 16: Layered Maps and
Optimized Rendering 411
Layered Map BasSiCS.........cccoerererrrnenenn 412
Layered Map Methods..........cccccevveiernnnns 413
Tile Scale Layering.........cccoeeeeeesvsnrecrenennns 413
Map Scale Layering......ccccoovvveecicrnrnsnsennnns 417
What's the Big Deal?..........ccccoevnicnninnins 420

A More Efficient Tile Blitting Algorithm ..420
Code Example: Reducing the Number

of Blits per Frameccccocovvvvvcccccnnnnn, 425
SUMMANY ... 433
Chapter 17: Further Rendering

Optimizations........eennee.. 434
Get Rid Of Blt......ccooeviiiiiiciceee 435
Moving to BItFastc.ccccveevvviiccciercrnnnn, 437

A BltFast Example......ccccoovvvnccicicnnnnenenenns 439
Whittling down the Blits per Frame........... 441
Frame Buffer Scrolling..........cccoovvvvivincnee 442
Update Rectangles........cccoceevvivvrcccrererennnn, 443
An Isometric Rendering Class..........cccovvnee. 445
Building CRendererccocoevvevnrceennennes 446

A CRenderer Examplecccoovvnivninennn. 453
SUMMAIY ..o 457

X1v

Chapter 18: Object Placement

and Movement........................ 458
Object Placement (COP versus FOP)459
Coarse Object Placement...........ccccceeeeene 460

Moving Objects Around.........ccccoveeuernieinenns 460
Multiple ODJECES........ccveeererrrrrcee e, 480
Multiple UNitS ..o, 492
SUMMANY ..o 509
Chapter 19: Object Selection..510
Simple Object Selectionccceeuennen 511
Simple Object Selection Design................... 511
Simple Object Selection Implementation...514
Pixel-Perfect Object Selection.................. 537
Making It Happencccccevvvveccccinnnnnn, 538
Minimap, Zones of Control, and the Fog
OF War ..., 543
MINIMAPS ..o 543
Minimap Examplecccocoevvviicccccinn, 544
Zones of Control.........ccccvvvvecnnnnnnnenes 551
FOQ OF WA ..o 553
Implementing a Fog of War............cc.cccoeuenee 553
SUMMATY ..o 554
Chapter 20: Isometric Art.......555
Tile Ripping and Slanting............cccccee.e.. 556
Tile SIaNting ..o 556
Tile RIPPING.....cviirrierece e 563
Extra Graphical Operations 574
Grayscalingcccovevvvvvveeeeceieieneserse s 574
Modulationoooeeerennreeeee e 575
SUMMANY ..o 577

Chapter 21: Fringes and
Interconnecting Structures ...578

FIINQES ..cvvieiecee et 579
Art Requirements for Fringes............cccoeveee 581

1somETRIC GAME PROGRANMMING wWITH D1RECTX(7.0

Making a Lookup Table.........c.ccccovvreverennne, 584
A Fringing Example.......cccocvvvvcicieinnnnnnenn, 586
A Final Note about Fringes...........cccoovvvnenne 593
Interconnecting Structuresc.ccccee.... 593
Four-Direction Structurescccccvrevenenee 593
Eight-Direction Structures..........cccocevvvvrnnne. 599
SUMMANY ..o 599
Part IV: Advanced Topics ..600
Chapter 22: World Generation.....
601
What Is World Generation?............c.......... 602
USING MazZES.......ccvvieeiiiieeeeeeeee 603
What IS 8@ Maze?.........cccoeveeevvieeeiceeeein, 604
Creating a Mazeccoccevvvveveccecesssiins 604
USING @ MAZE ..o 610
A Few Words about Isometric Mazes 611
Growing Continents...........ccocevvvevereneneene 611
SUMMATY ..ot 613
Chapter 23: Pathfinding and Al.....
615
What IS Al? ..o 616
Really Simple Al Stuff ... 616

More Advanced Pathfinding Algorithm621
Step 1: Scan Array for Cells Adjacent to Cells

with Known Distancescccceeeeevrernvnnne, 622
Step 2: Give Adjacent Squares a Known
Distance Value........cccoceevevvvcieccreenienean 623
When It's All DONEccceevvicecccce, 623
Making Pathfinding Useful...................... 631
SUMMANY ..o 632

Chapter 24: Introduction to

Direct3D.......ueueeeeeeeevecvecnnnns 633
Direct3D as a 2D Renderer....................... 635
3D Games (and 3D APIs) Are Still
ONIY 2D ... 635
How Direct3D WOrKS.........ccccvvveeeiervrernrennnn 635
Direct3D BasiCSccceevvevivieiieciiee e 636
Icky COM SEUTT ..o 636
Surface Creationccccccvvveveeceessisnnnnns 637
Creating a DeviCe........cccccvvvrvrvnvirncecececeenns 638
Making & VIEWPOIt......c.covevveierriierieienenns 640
RENAENING ... 642
A Simple Direct3D Example..........ccccouueeee. 649
TEXEUIES ...vvi e 655
What IS @ TeXtUIe?cccoeveeernrrreeeeens 655
Texture Mapping and Texture
CoOrdiNAteScvvveverereirieise e 656
Texture Mapping Exampleccccovvvvennee 658
SUMMATY ..o 659
Chapter 25: The Much-
Anticipated ISO3D................ 660
D3DFuncs.h/D3DFuUNncs.Cpp......ccceeeeuene 661
LPD3D FUNCLIONS........cccevererrirrieeeiceeieveveiens 663
LPD3DDEV FUNCLIONS.........cccvvvveeeecrerninne 663
LPDDS FUNCLIONS......cceueereeirrirceeeceneeenieene 664
Texture FUNCHIONS ... 665
Vector FUNCLION........ccoveeceescc s 665
The D3D Shell Application.........c.cccccvvvenenee 665
Plotting Tiles in 1ISO3Dccccceeveerieenene. 665
2D Sprites Using Direct3D........ccoccvreennnn. 670
Enumerating Texture Formats..................... 670
Texture Format Callbackc.cccovvirviiennee 671
Creating the Texture Surface.......c.ccccoevne. 672
Lock and Unlock ReVIeWcccccceevireenene. 672
Loading Pixel Datacccccevvrvvrvcrcererinnnnn, 674
Render States..........ccceeirnvnvvvsee e 675

TARBLE oF CONTENTS

Setting Up VErticesccccvvvvvccvciceisiinienns 676
3D Transparency Example.........ccccoccvvnnenee 678

Dynamic Lighting........ccccoovviniiiciinenne 679
Height Mapping........ccccoeevvvenininnenennn 682
Tile Selection/Mousemapping 685
SUMMATY oo 688
Chapter 26 The Road Ahead ..689
Current TrendsS.......ccoeeeveereece e, 691
What Lies Ahead..........ccccovvvereecinseninnnn, 691
Part V: Appendices........... 694
Appendix A: Loading Sample

Projects Into the IDE 695
Coding Conventionsccccveveveneneneens 700
Appendix B: Hexagonal

Tile-Based Games................... 702
1SO VErsuS HeXccoveeviiiiiiii e 703
What'’s the Difference?...........cc.cceevvvvennnen. 703
SUMMATY ..o 704
Appendix C: IsoHex Resources.....

705
See the SIteS......covvvvviieieereee e 706
Hit the BOOKS........cccovvevieiiecieseere e 707
Drop Me aLingccooevenireninieesiesn 707

|

1somETRIC GAME PROGRANMMING wWITH D1RECTX(7.0

XV1i

LETTER FROM THE SERIES ED1TOR

Dear Reader,

J First off 1 would like to thank the author of this book, Mr. Ernest Pazera, for writing it. Now the
pressure is off me to cover ISO Game Programming once and for all - thanks Ernest!

If you've picked up this book then you must have an interest in creating Isometric games. You have come
to the right place. Isometric game programming is not the trivial task many 3D programmers think it is—
in fact, Isometric rendering methods are not trivial, nor are they obvious. Moreover, the optimizations are
very subtle. To date, no author has ever tried to write a book on the subject, since not only is the material
complex, but it is in many cases a bit secret.

Luckily for us, Mr. Pazera has put down in these pages an unbelievable amount of information on every
single topic of Isometric graphics and game programming. As I read the text I caught myself thinking,
“So that’s how they do it!” more than once.

The bottom line is, if you want to learn Isometric game programming then you need this book—it’s
the only book that will fill the order. | happen to know that Ernest is obsessed with 1ISO game program-
ming, and that both his attention to detail and his high standards of perfection are illustrated in this work.

oo KT

Andre’ LaMothe
March 2001

INTRODUCTION [BY%T

INTRODUCTION

Thank you for buying my book. I really appreciate it.

Isometric games have been with us since the golden age of arcade machines, with games like Zaxxon and
Q-Bert. They are still with us today—witness games like Nox and Age of Kings—and they are as popular as
ever. Yet there has never been a book on making isometric games. That is the void | am seeking to fill with
Isometric Game Programming with DirectX. 7

This Introduction will give you an overview of both the book itself and an introduction to the chapter
structure contained herein. Over the course of this book you will go from isometric programming novice [
to expert. Okay, maybe novice to intermediate. You can't quite get to expert in just a single book!

WHATYIs 1IN TH15E EooK™®?

This book, as you are no doubt aware, is a book about programming games—how to do so, specifically—
and it emphasizes use of the isometric view. This means that the program examples are mainly concerned
with the graphical aspect of game programming.

Contained herein is also quite a bit of information on the algorithms behind tile-based games. Isometric
games tend to be tile-based. If you wanted to make overhead view tile-based games, the same algorithms
apply.

Why did | write this book, you ask? Because isometric game programming, and isometric algorithms, have
been largely ignored by other game programming books. Sure, you can find plenty of books on how to
program 3D games, and there are plenty of books on 2D games, but none of the in-between stuff, like
isometric games.

You will find the program examples (and there are a ton of them) that go along with the text on the CD
in the back of the book; you will find instructions on how to load and run those examples in Appendix A.
Itis a good idea to turn to that appendix first, even before you start reading. That way, when the first men-
tion of an example is made, you'll be ready to go.

WWHO SHouLrD READ TH1IE EooK™®

You are a programmer who has a reasonable amount of skill in C/C++ (you don't have to be an expert—
I made my code as easy to follow as possible). You must also be interested in making isometric games. You
very likely play strategy games (either real time or turn-based), computer role playing games, or puzzle
games (all of these genres make use of the isometric view quite heavily).

Naturally, your goal is to make the greatest game of all time, and become filthy rich and buy a Corvette.
Yeah, that's my goal too—it hasn't happened quite yet, but I'm patient. As with all things in life, we must
walk before we can run, and before we can walk, we must crawl.

XVI11 1somETRIC GAME PROGRANMMING wWIiTH DTRECTX(7.0

I won't tell you that immediately after reading this book you'll be able to go and make a wonderful game
with the isometric view that will sell millions of copies. I will tell you, however, that this book will help
you build a foundation of knowledge and algorithms that will make you a more valuable programmer.

How TH15E EooK 15 ORGHANIZED

The four parts contained in this book—and the topics they cover—are as follows:

= Part I: The Basics. Introduces the world of tile-based isometric game programming and discusses topics
common to all isometric games.

:I = Part Il Isometric Fundamentals. Delves into different ways of adding realism to isometric tile-based games.

= Part I11: Isometric Methodology. Explores user interaction with isometric games and sheds light on more
rendering topics.

= Part 1V: Advanced Topics. Introduces a final ingredient, artificial intelligence, and fits it together with what
you've learned previously.

= Part V: Appendices. Shows you how to load the example files into your compiler, and offers resaources for
learning more about isometric game programming.

CHAPTER STRUCTURE

The chapters are similar in structure, though the topics vary widely. Each chapter contains all or most of
the following elements:

= Overview. Each chapter starts with a brief overview, in which | give a brief rundown of the topics that will
be discussed in that chapter, as well as a breakdown the chapter’s topic headings.

= Terminology. When a new concept is introduced and a lot of new terms are thrown at you, there is a termi-
nology section early in the chapter. This does not apply to all the chapters, and many of the chapters in Part
0 do not have them.

= How-to Information. Most of the content of each chapter contains information on how to accomplish the
tasks that are covered in that chapter. Usually, a lot of code accompanies the text, and most of the time one
or more sample programs are supplied for you to load, run, and modify to more fully explore the concepts
put forth.

= Libraries and Classes. Some chapters have code libraries that | have written to help you with the tasks you
perform in that chapter. These libraries or classes simplify some otherwise complicated coding topics. After a
library is used in one chapter, most of the rest of the chapters will use it also.

= Empowering the User. Some chapters have a small section called “Empowering the User.” This little section
has some tips on how to not alienate your users and keep them playing your games. Most of the information
is common sense, but many games and game developers have failed for the simple reason that they don't give
the player enough control over his or her game experience. Perhaps an alternative name for the “Empowering
the User” section would be “How to Not Tick off the User”

= Summary. The final part of the chapter consists of the summary. | review the topics we've discussed, and |
often list things you should remember. The summary brings a sense of closure to the chapter.

INTRODUCTION X1X

CoNVENTIONS UsED 1IN TH1SE E0oo0oK

NOTE \

Notes provide additional information about a

feature, or extend an idea about how to do
something.

- LT

CAUTION

Cautions warn you about potential
problems and tell you what not to do.

WWHATYs oN THE CD™

The CD that accompanies this book doesn't autorun and doesn't have a setup program. It just has a num-
ber of folders for you to browse through.

= DirectX. In this folder, you'll find everything you need to install the DirectX 8.0 SDK.

= Source. The Source directory contains a folder for each chapter that has a programming example. Each folder
is named ChapterX, where X is the chapter in question.
Within each ChapterX folder are subfolders for each of the sample programs in the book. These contain the
source code, the resources (such as bitmaps), and a precompiled executable.
Keep in mind that when you copy files from a CD to a hard drive, they are often marked as read-only, so you
need to right-click on them and unset that flag before modifying them.

= Extras. This folder contains, well, extras. Most of them are in zip files, so you'll need WinZip (which you can
download for free at www.winzip.com) to extract them. Some of the extras are written by me, but most are

contributions from others.

1someTRIC GAME PROGRANMMING WITH DT1RECTX 7.0

AND WWETRE OFFunsn

(Psst... This is the summary.)

Al right. You've turned to Appendix A and learned how to load a project, right? No? Well go ahead and
do so. That’s about all you'll need to get started. This first part of the book goes a little fast, from zero to
DirectX in less than 200 pages. | hope you're ready!

Engage, Mr. Paris!

PART |

THE EASICS

This page intentionally left blank

—= b, = | =l [J]_,,_En—wmj '—Fll—‘_ﬂ— o

CHAPTER 1

INTRODUCTION
TO IANTNXZ

FPROGRANMNMING

m CoNceEPTUAL OVERVIEW OF
MWIINDOWS PROGRAMS

_\H = oF HWWNDS AND HINSTHNCES

-

N m THE UWWININMIAIN FUNCTION
CREATING A WWIINDOW
—]

%ﬁb = J_|Jm—_[i]

1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

he Windows platform, no matter what you think of it, is the most viable platform on which

to program for the home computer market. It has its weaknesses, yes, but you gotta love the
market share! Think of it: you can write programs that will run on Windows 95, 98, NT, 2000,
Millennium, CE, and the XBox, and it only takes a modest amount of work to convert them.

This chapter is a bare-bones introduction to WIN32 programming. If you've already got a solid footing
J feel free to skip it, but be sure to look at IsoHex1 1.cpp, located on the CD-ROM. IsoHex1 1.cpp is my
basic WIN32 shell program; all future programs will be based on this foundation.

If you're still here, I'll try to be as brief while remaining complete and understandable. I'm not one for
spouting a bunch of theory—I prefer practical applications. I will assume that you have a solid base in C
and at least a familiarity with C++. I will make use of classes a bit later (but I swear unto you by all that
is holy that there will be no MFC). Before you start pulling at your hair and shouting incoherently, 1 assure
you | won't get too wacky. | won't force class hierarchies and virtual functions on you—ijust a few little
utility classes to make our jobs a bit easier.

No matter what your personal feelings about the Windows OS, the fact that it is truly easy to use—its
main selling point—is undeniable. This is a double-edged sword, of course. Because so much work went
into making the OS easy to usg, it is proportionally more difficult to program for. DOS, which was very
hard to use, was easy to program for. So it goes.

Luckily, there is only a small amount of Windows-specific stuff that you absolutely have to know in order
to program for Windows (and there was much rejoicing). This chapter is here to get you up to speed on those
things. The programs we'll be doing won't be very complicated or functional, but they will provide a good
base on which to get flying!

CoNcEPTUAL OVERVIEW OF
DJIINDOWS PROGRAMS

Windows (including 95, 98, NT, and 2000) is a multitasking, multithreaded operating system. You've
heard that line before, I'm sure. Multitasking means that the computer can run more than one program at a
time. The multithreaded part means that more than one thread (short for “thread of execution”) can exist
within a program. Each program has at least one thread in it.

But, if you have just a single processor, doing more than one thing at a time is impossible, right?
Technically that's correct, but you can make it seem like two or more things are happening simultaneously
by dividing time between the different programs and threads within programs.

INTRODUCTION TO WINXZ PROGRANMMING B

With a a fast-enough processor, the computer can do some of one thing and some of another thing,
switching back and forth between the two, and you, as a human being, cannot tell whether the tasks are
being done simultaneously or not. Neat, huh?

For instance, say you had two applications, Walk.exe and ChewGum.exe. If you ran both of these, Walk.exe
would operate for a millisecond or so, and then the computer would switch to ChewGum.exe for a mil-
lisecond, and then it would switch again, repeating until the applications end, as illustrated in Figure 1.1.

Figure 1.1

Switch to another application .
The computer walking [

)/_\ and chewing gum at

the same time

WALK.EXE CHEW
GUM.EXE
Executes for a time slice Executes for a time slice

~_

Switch to another application

We human beings aren't set up with the proper hardware
to perceive the passing of milliseconds, so to us, it
appears that the computer is indeed walking and NOTE
chewing gum at the same time.

| use the term milliseconds in this

You could also have a program called example. In reality, the amount of time
WalkAndChewGum.exe, and it would create one an application executes a given applica-
thread that walks and another that chews gum. The tion before switching to another one
computer again would switch between the two depends on a number of things and is
threads, and the same effect is achieved within a sin- most likely a unit of time other than
gle program. a millisecond. My use of millisecond is
'I_'he gpparently simultaneous effect is based on idle Srzi;tt;r:rztctgngiﬁ_g\]?ne;;rggfurate
time in the computer. As you add more and more e e e e

applications and threads within those applications, - -

more of the computer’s time is taken up. At some

B 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

point, depending on your processor (how many you have, how fast they are), you reach a threshold where
the simultaneous appearance is gone, and you start to notice some lag in the applications. So how does this
concern us as game programmers?

Game programs are more demanding on the operating system and the hardware then any other type of
program. Sloppy design and/or sloppy programming cause the game program to reach the nonsimultane-
ous threshold all on its own, without any other applications running. This is a bad thing.

None of the programs that you will write in this book will be multithreaded (it becomes confusing and
gives me a headache). Also, none of them will be as optimized as they could be (the code is instruction-
J al—optimized code is by its nature rather cryptic, so it would defeat our purpose).

That's quite enough about multithreading and multitasking. Let's dive in, shall we?

OFfF HWINDs AND HINSTHNCES

Much of what we do in Windows involves handles—most notably, window handles (HwnD). So what are
these handles all about, anyway?

Handles are pointers to pointers—sort of. They are a pre-OOP (object-oriented programming) method of
keeping track of data in a completely dynamic operating system (namely, Windows). At any moment, an
application’s code can be moved from regular memory into virtual memory (that is, saved to disk in a tem-
porary swap file). A handle ensures that no matter where something is, you can still talk to it by passing
the handle into a function. Keeping track otherwise would be a nightmare!

Just treat handles as ordinary variables; you don't really care all that much about their implementation.
Trust the operating system to keep track of windows and other things that use handles.

The three main types of handles that you will be using are HINSTANCE, HWND, and plain old vanilla-flavored
HANDLE, which you will use to access disk files.

= HINSTANCE is a handle to the current instance of an application. (Yes, | know it’s a circular defini-
tion, but I got it right out of MSDN.) Windows internally manages all running applications, and
HINSTANCE IS just a way to keep track of which application owns which windows and which
resources.

= HWND is a handle to a window. It allows us to set the size, shape, and a variety of other aspects
about a window. The operating system manages these windows and determines which are visible, the
order in which to draw them, and the manner in which input (such as keystrokes and mouse move-
ments) is directed.

= HANDLE is what you will use to access files; I'll get to it in Chapter 8. A normal old HANDLE is
pretty generic.

There will be more handle types in the next chapter, so consider yourself warned. They are used quite a bit
with graphical objects in Windows.

INTRODUCTION TO WINXZ2 PROGRAMMING

LiFE 1IN AN EVENT-DRI1VEN
OPERATING SYSTEM

Windows is actually a very simple mechanism. Whenever something happens—a mouse moves, a key is
pressed, a certain amount of time elapses—Windows records it. It records what happened, when it hap-
pened, and which window (and thus which application) it happened to, packs the information into a little
bundle, and sends it to that application’s message queue. A message queue is nothing more than a list of
messages that have been received by Windows but have not yet been processed by the application (much
like huge lines to get on roller coasters). Figure 1.2 shows how the event-driven Windows operating system
works internally. Keep in mind that this diagram is rather simplified. [

Figure 1.2
. Simplified schematic of the
Input Device
Thewser | ———— | (usually Keyboard inner workings of Windows
: or mouse)
Interacts with
/—mds message to
The Operating Application
System — Message
(Windows) Dispatches Queue
message
to
Aits being read by
Application mz;iﬁg?
M
F?jrsT?ge Sends For Application
P Meisage (WNDPROC)
o

The following messages are stored in the MSG structure:

typedef struct tagMSG {
HWND hwnd ;
UINT message;
WPARAM wParam;
LPARAM 1Param;
DWORD time;
POINT pt;

} MSG, *PMSG;

B 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

The members of the MsG structure are explained in Table 1.1.

Table 1.1 MSG Members

Member Purpose

hwnd The window handle corresponding to the window that is to

receive the message
:I message The type of message received (WM_*)

wParam One of the parameters for the message. It is context-sensitive.
Each wM_ message has a different meaning for wParam.

1Param One of the parameters for the message. It is context-sensitive.
Each WM_ message has a different meaning for 1Param.

time Time when this message occurred

pt Cursor coordinate at time of the message, specified in

screen coordinates

JINDOW PROCEDURES

Each Windows application is responsible for checking its message queue for waiting messages. If there are
any, it must either process them or pass them along to the default processing function. If this is not done,
the messages will just pile up, your application will stop responding, and you might lock up the system.

Handle messages by using a window procedure. Here's what one looks like:

LRESULT CALLBACK WindowProc(
HWND hwnd, // handle to window
UINT uMsg, // message identifier
WPARAM wParam, // first message parameter
LPARAM 1Param // second message parameter

INTRODUCTION TO WINXZ PROGRANMMING B

This returns a value dependent on the message received (usually 0). Table 1.2 explains the purpose of
the parameters.

Table 1.2 WindowProc Parameters

WindowProc Parameter Purpose

hwnd The window for which the message is bound
(msg. hwnd) |:
uMsg The type of message (msg.message)
wParam A parameter of the message (msg.wParam)
TParam A parameter of the message (msg.1Param)

NOTE

Your window procedure will not be
named WindowProc.You can name it
anything you wish, as long as it has the
same parameter list and returns an

Got all that? It's time to start coding!

LRESULT and is a CALLBACK function.
Later, you will see that | have given my
window procedure the cunning hame
TheWindowProc, so named because |
only ever deal with a single window.

THE UWININIAIN FUNCTION

To explain the basic Windows stuff, we’ll be using

IsoHex1_1.cpp. Start a WIN32 application work- NOTE

space, and add IsoHex1_1.cpp into it. It is the only A mikch add ddn't dand this book td be
file required for this example. Take a few moments nothing more than a code dump, I'm

to peruse the code. There isn't much, so it shouldn't including the full listing for

take long. IsoHex1_1.cpp here.This will be one of
the only dumps—I promise.

m 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

/***

IsoHex1_1.cpp

Ernest S. Pazera

08APR2000

Start a WIN32 Application Workspace, add in this file

No other 1ibs are required
***/

JI1LTITILTIT 0000000070700 70 0707777770777 7777777711777171177711711117
//INCLUDES

] JI10TI1I0TIT 0070000770777 70 0077077770777 7707777707777777770777771711777117111117
ffdefine WIN32_LEAN_AND_MEAN

#include <windows.h>

LITTTTEELT 77007 r 7000077000000 i i r il
//DEFINES
NNy,
//name for our window class

ftdefine WINDOWCLASS "ISOHEX1"

//title of the application

fidefine WINDOWTITLE "IsoHex 1-1"

NNy,
//PROTOTYPES

LI ii i rrrrrrrirrrirrrrirrirrrrrrrirrrrrgy
bool Prog_Init();//game data initializer

void Prog_Loop();//main game Toop

void Prog_Done();//game cleanup

NN,
//GLOBALS

LITTTTIELDT T L7 r 77 i 7 rr i i i i r iy r s rrrrigg
HINSTANCE hInstMain=NULL;//main application handle

HWND hWndMain=NULL;//handle to our main window

[T i i i i r i r i r i rrrrrrrirrrrrgy
//WINDOWPROC
NNy,
LRESULT CALLBACK TheWindowProc(HWND hwnd,UINT uMsg,WPARAM wParam,LPARAM 1Param)
{

//which message did we get?

INTRODUCTION TO WINXZ PROGRANMMING “

switch(uMsg)
{
case WM_DESTROY://the window is being destroyed

{

//tell the application we are quitting
PostQuitMessage(0);

//handled message, so return 0
return(0); [

fbreak;
case WM_PAINT://the window needs repainting
{

//a variable needed for painting information
PAINTSTRUCT ps;

//start painting
HDC hdc=BeginPaint(hwnd,&ps);

[177000 0117000000170
//painting code would go here
[117700007 77700007 70701177777

//end painting
EndPaint(hwnd,&ps);

//handled message, so return 0
return(0);
fbreak;

//pass along any other message to default message handler
return(DefWindowProc(hwnd,uMsg,wParam,1Param));

NNy,
//WINMATN
NN NN NN NNy,
int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR
ITpCmdLine,int nShowCmd)

{

E 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

//assign instance to global variable
hInstMain=hInstance;

//create window class
WNDCLASSEX wcx;

//set the size of the structure
wcx.cbSize=sizeof (WNDCLASSEX) ;

//class style
] wex.style=CS_OWNDC | CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;

//window procedure
wcx. IpfnWndProc=TheWindowProc;

//class extra
wcx.cbCTlsExtra=0;

//window extra
wcx.cbWndExtra=0;

//application handle
wcx.hInstance=hInstMain;

//icon
wcx.hIcon=LoadIcon(NULL,IDI_APPLICATION);

//cursor
wcx.hCursor=LoadCursor(NULL, IDC_ARROW);

//background color
wcx.hbrBackground=(HBRUSH)GetStockObject (BLACK_BRUSH);

//menu
wcx.lpszMenuName=NULL;

//class name
wcx.1pszClassName=WINDOWCLASS;

//small icon
wcx.hIconSm=NULL;

INTRODUCTION TO WINXZ PROGRANMMING E

//register the window class, return O if not successful
if(!RegisterClassEx(&wcx)) return(0);

//create main window
hWndMain=CreateWindowEx (0, WINDOWCLASS ,WINDOWTITLE, WS_BORDER | WS_SYSMENU
| WS_VISIBLE,0,0,320,240,NULL,NULL,hInstMain,NULL);

//error check
if(lhWndMain) return(0);

//if program initialization failed, return with 0 [
if(!Prog_Init()) return(0);

//message structure
MSG msg;

//message pump
for(;;)
{
//1Took for a message
if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{
//there is a message

//check that we aren’t quitting
if(msg.message==WM_QUIT) break;

//translate message
TranslateMessage(&msg);

//dispatch message

DispatchMessage(&msg);

//run main game loop
Prog_Loop();

//clean up program data
Prog_Done();

1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

//return the wparam from the WM_QUIT message
return(msg.wParam);

LILTLTLTEI TP T i r i r i i i i i i 77000000 r i i i i i iy
//INITIALIZATION
NNy
bool Prog_Init()
{

LILTETET T i riririrri 77y
J //your initialization code goes here
LIVTLTETEI T iy

return(true);//return success

LITTTTIE0077 0077077707700 7700007700 r i rrrrrrrirrrrnrrriigg
//CLEANUP
LITTTTIELTT T 7707707777777 i r 7771000771177 771077
void Prog_Done()
{

L1710 07 71070 777117777

//cleanup code goes here

[177111000771177707711171777

LITTTEELI T 7707770700077 s iy rr i
//MAIN GAME LOOP
[ITTTTELT 7700770000700 000000 i i rr i
void Prog_Loop()
{

[ITTP70EEIr i rrrrrrrilrry

//main game Tlogic goes here

[ITT700001r7 0000 rrrrrrrr7

INTRODUCTION TO WINXZ PROGRANMMING E

Figure 1.3 shows what IsoHex1 1 looks like when it is running.

= IsoHex 1-1 Figure 1.3

IsoHex1_1's output.
Not much to look at,
is it?

When talking about Windows programming, we always start with winMain. On other platforms, the entry
point for a program is the main () function. Not so in WIN32. Instead, we have a winMain function, and
the declaration looks like this:

int WINAPI WinMain(

HINSTANCE hlInstance, // handle to current instance
HINSTANCE hPrevInstance, // handle to previous instance
LPSTR 1pCmdLine, // command Tline

int nCmdShow // show state

)

This returns an exit code for the application (O is the normal termination). Table 1.3 explains the parame-
ter list.

Table 1.3 WinMain Parameters

o NOTE
WinMain Parameter Purpose) !
Unlike window
hinstance Handle to the current instance procedures, our
WinMain func-
hPrevInstance Obsolete tion will always
TpCmdLine String containing parameters passed on the T b? narped
command line.We will not be using this. LT
nCmdShow Integer stating how the main window should

be shown.We will be ignoring this also.

E 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

HINSTANCE

For our purposes, the only parameter of any significance is hinstance. In IsoHex1_1.cpp, you will see
that | took the value of hinstance and assigned it to a global variable called hinstMain:

//copy instance handle into global variable
hInstMain=hInstance;

We can write programs so that doing this is unnecessary, where WinMain passes the value of hinstance to

whatever function needs it (many times, hInstance is never used for anything). However, most game

J code that I've written or seen written has placed hinstance's value into a global variable, whether it is
used or not.

DMIINDOW CLASS

Creating a window class is the next task that the program undertakes. A window class is nothing more
than a structure that describes a type of window. You need one if you want to make your own types

of windows.

typedef struct _WNDCLASSEX {
UINT chSize;
UINT style;
WNDPROC TpfniWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hInstance;
HICON hlcon;
HCURSOR hCursor;
HBRUSH hbrBackground;

LPCTSTR 1pszMenuName;
LPCTSTR ITpszClassName;
HICON hIconSm;

} WNDCLASSEX, *PWNDCLASSEX;

INTRODUCTION TO WINXZ2 PROGRAMMING

Okay...theres a lot of stuff in this structure, and not much of it is very intuitive. A breakdown of
WNDCLASSEX's members can be found in Table 1.4.

Table 1.4 WNDCLASSEX Members

WNDCLASSEX Member Purpose

cbSize
style
TpfnWndProc

cbClsExtra
cbWndExtra
hInstance
hIcon

hCursor
hbrBackground

1pszMenuName

The size of the WNDCLASSEX structure
Class styles (described in text below)

Pointer to a windowproc, the function that we
use to process window messages

Extra bytes to allocate for the class structure
Extra bytes to allocate for the window
Application handle

Icon to show in the upper-left corner

Mouse cursor to use

Brush to use for background color

The menu to use for this window class

IpszClassName Name of the class

hIconSm Small icon to associate with the class

Following is the code you will use to set up your window class:

//create window class
WNDCLASSEX wcx;

//set the size of the structure
wcx.cbSize=sizeof (WNDCLASSEX);
//class style
wex.style=CS_OWNDC | CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;
//window procedure

wcx. IpfnWndProc=TheWindowProc;
//class extra

wcx.chClsExtra=0;

//window extra

E 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

wcx.cbWndExtra=0;

//application handle

wcx.hInstance=hInstMain;

//application icon

wcx.hIcon=LoadIcon(NULL,IDI_APPLICATION);

//cursor

wcx.hCursor=LoadCursor(NULL, IDC_ARROW) ;

//background brush

wcx.hbrBackground=(HBRUSH)GetStockObject (BLACK_BRUSH);
//menu

J wex. TpszMenuName=NULL;

//class name

wcx.1pszClassName=WINDOWCLASS;

//small dicon

wcx.hIconSm=NULL;

Several of the values, like cbSize, hinstance, and so on, are self-explanatory. I'll explain those that are
less so.

WCXseSTYLE

This is the window class style. It's a series of flags that start with c¢s_ values, combined using the bitwise
OR operator (|).

= ¢S_owNDC tells Windows that windows of this class will each have their own device context (DC).
DCs will be explained in more detail in the next chapter.

= CS_HREDRAW and cS_VREDRAW tells Windows that if the windows created with this class are resized
vertically or horizontally, the window must be repainted.

= CS_DBLCLKS tells Windows that you want the window to respond to double-clicks.

wcxXsLPFNIWNDFPROC

This value is a pointer to a window procedure (which I mentioned briefly a little earlier). This member has
been assigned to TheWindowProc, which is a function that you write to handle all the messages your win-
dow will receive.

wWwCcxXsHICON

| promised | wouldn't add any new handle types until the next chapter. I lied. This is a handle to an icon,
which I'm sure you're familiar with. If you have a normal-looking window, with a border and a system
menu and so on, this is shown in the upper-left corner and on the Taskbar. Ve use LoadIcon to load
IDI_APPLICATION, which is a system icon.

E 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

wcx.cbWndExtra=0;

//application handle

wcx.hInstance=hInstMain;

//application icon

wcx.hIcon=LoadIcon(NULL,IDI_APPLICATION);

//cursor

wcx.hCursor=LoadCursor(NULL, IDC_ARROW) ;

//background brush

wcx.hbrBackground=(HBRUSH)GetStockObject (BLACK_BRUSH);
//menu

J wex. TpszMenuName=NULL;

//class name

wcx.1pszClassName=WINDOWCLASS;

//small dicon

wcx.hIconSm=NULL;

Several of the values, like cbSize, hinstance, and so on, are self-explanatory. I'll explain those that are
less so.

WCXseSTYLE

This is the window class style. It's a series of flags that start with c¢s_ values, combined using the bitwise
OR operator (|).

= ¢S_owNDC tells Windows that windows of this class will each have their own device context (DC).
DCs will be explained in more detail in the next chapter.

= CS_HREDRAW and cS_VREDRAW tells Windows that if the windows created with this class are resized
vertically or horizontally, the window must be repainted.

= CS_DBLCLKS tells Windows that you want the window to respond to double-clicks.

wcxXsLPFNIWNDFPROC

This value is a pointer to a window procedure (which I mentioned briefly a little earlier). This member has
been assigned to TheWindowProc, which is a function that you write to handle all the messages your win-
dow will receive.

wWwCcxXsHICON

| promised | wouldn't add any new handle types until the next chapter. I lied. This is a handle to an icon,
which I'm sure you're familiar with. If you have a normal-looking window, with a border and a system
menu and so on, this is shown in the upper-left corner and on the Taskbar. Ve use LoadIcon to load
IDI_APPLICATION, which is a system icon.

INTRODUCTION TO WINXZ PROGRANMMING E

WCEXs HCURS0OR

This is another handle type—this time, to a mouse cursor. In this case, LoadCursor is used to load
IDC_ARROW, Which is the customary arrow that you find every day.

wexXs HEACKGROUND

This is yet another handle type—this time, a brush. Briefly, a brush is used to fill in areas with solid colors
or patterns. GetStockObject is used to specify a black brush. The (HBRUSH) typecast is necessary because
GetStockObject returns voidx.

wWwexXsLPszCLAsSsNAME

This is the name of the window class. If you take a peek up near the top of IsoHex1_1.cpp, you will see
the following lines:

jtdefine WINDOWCLASS "IsoHexl1"
jtdefine WINDOWTITLE "IsoHex Example 1-1"

| don't usually use #define much (I prefer const). Since WINDOWCLASS is used in only two places, | didn't
really see a need to use const. WINDOWTITLE is used only once (when we create our window later), so | felt
that jtdefine was adequate for our needs.

After you have filled out the window class struct, you use the RegisterClassEx function to register it
with Windows. There is a small amount of error checking with the code. If the function returns nuLL, you
were unable to register the class, and you return 0 from winMain, terminating the application.

Notice that wcx is not a global variable. You don't really need to worry about it after you have set it up and
registered it, because you can just use the class’s name.

Once you have registered a window class, you are ready to make a window and start processing messages.

m 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

THE IMESSAGE Pume

I'll show you the remainder of winmain all at once, and then I'll take apart the pieces. Figure 1.4 is a flow-
chart of the process.

2 Figure 1.4

l Flowchart of the
message pump

:I Is there a message?

Translate message
(for key conversion
to characters)

Dispatch message
to proper WNDPROC

Run a
single frame of the game

//create main window
hWndMain=CreateWindowEx(0,WINDOWCLASS,WINDOWTITLE,
WS_SYSMENU| WS_CAPTION | WS_VISIBLE,0,0,320,240,
NULL,NULL,hInstMain,NULL);
if(!hWndMain) return(Q);//error check
if(!Prog_Init()) return(0);//if program initialization failed, then return with 0
MSG msg;//message structure
for(;s;) //message pump
{
if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{

INTRODUCTION TO WINXZ PROGRANMMING E

if(msg.message==WM_QUIT) break;
TranslateMessage(&msg);
DispatchMessage(&msg);

else NOTE

{ Some of the lines are broken into two.
Prog_Loop(); This is because the book format isn’t
} wide enough to contain them. Just
} keep in mind that these lines actually
Prog_Done(); exist as only one line in the real code. [

return(msg.wParam);

CREATING A WINDOW

The first line of this segment of code creates your main window by calling CreateWindowEx:

HWND CreateWindowEx(
DWORD dwExStyle, // extended window style
LPCTSTR 1pClassName, // registered class name
LPCTSTR TpWindowName, // window name

DWORD dwStyle, // window style
int x, // horizontal position of win- NOTE
dow
. . L) Other books tend to
int vy, // vertical position of window use the Createlindow
Tnt ”W”,“h’ ! Wmdow Wth function rather than
int nHeight, // window height CreateWindowEx.The
.HWND hWndParent, // handle to parent or owner only difference between
window CreateWindow and
HMENU hMenu, // menu handle or child identifi- CreateWindowEx is that
er CreateWindow lacks a
HINSTANCE hInstance, // handle to application instance [EMIESAARRPlaleiile)sh
LPVOID TpParam // window-creation data

)

This returns a handle to the newly created window.

DWEXSTYLE

This parameter specifies the extended window style. | have placed O here because extended styles aren't
needed for such a simple application. The help files have a comprehensive list of these flags under the entry
for CreateWindowEx.

E 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

LPCLASSNAME

This parameter specifies the name of the window class to which this window belongs. In our case, this is
WINDOWCLASS.

LPUIINDOWNAME

This parameter specifies the text that will be displayed in the title of the window (if it has one) and also
in the Taskbar. VMe are using WINDOWTITLE.

DWSTYLE

This parameter contains one or more ws_* flags, which are listed next. These flags (or combinations there-
of) change the appearance of your window. Some flags also change the way a window behaves.

= WS_BORDER Creates a window with a thin line border.

= WS_CAPTION Creates a window with a title bar and a thin line border.

= WS_CHILD Creates a child window. Cannot be a pop-up. Cannot have a menu bar.

= WS_CHILDWINDOW See WS_CHILD.

= WS_HSCROLL Creates a window with a horizontal scroll bar.

= WS_ICONIC Createsawindow that is initially minimized.

= WS_MAXIMIZE Creates a window that is initially maximized.

= WS_MAXIMIZEBOX Creates a window with a maximize button.

= WS_MINIMIZE See WS_ICONIC.

= WS_MINIMIZEBOX Creates a window that is initially minimized.

= WS_OVERLAPPED Creates a window that has a border and title bar.

= WS_OVERLAPPEDWINDOW Combines WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX.

= WS_POPUP Creates a pop-up window.

= WS_POPUPWINDOW Combines WS_BORDER, WS_POPUP, and WS_SYSMENU.

= WS_SIZEBOX Creates a window that has a sizing border.

= WS_SYSMENU Creates a window with a window menu on its title bar.

= WS_THICKFRAME See WS_SIZEBOX.

= WS_TILED See WS_OVERLAPPED.

= WS_TILEDWINDOW See WS_OVERLAPPEDWINDOW.

= WS_VISIBLE Creates an initially visible window.

= WS_VSCROLL Creates a window with a vertical scrollbar.

IsoHex1_1.cpp uses WS_CAPTION, WS_SYSMENU, and Ws_vISIBLE. In the future, ws_poPup and wS_vIsI-
BLE will be used.

INTRODUCTION TO WINXZ2 PROGRAMMING E

Xy Y
These parameters contain the upper-left corner of the window. You are using 0,0.

NWM1DTHy NHEIGHT
These parameters contain the width and height of the window. You are using 320,240.

NHWNDFPARENT]

Windows can be children of other windows (using the ws_cH1LD window style), or they can be “owned” [
by other windows. The owner of either of these types of windows is called a parent. You are using NUL L
because this window has no parent.

HIYTENU
Most types of windows can make use of menus. In your case, you aren't using a menu, so pass NULL.

HINSTANCE
The application instance that owns the window (such as hInstMain).

LPPARAM
Extra creation data. You don't have any, so pass NULL.

After we call createlindowEx, check to make sure that you window actually exists by checking that it is
not NULL. If it is NULL, the program exits immediately, without even whimpering. (T heoretically speaking,
if it does fail, you want to give the users of the application a nice message box containing the

reason why the program halted so abruptly. Traditionally, these error messages are as cryptic as you can
make them.)

OTHER TNITIAL1IZATION

Next, call Prog_1nit (), which is your user-supplied bit of initialization code. Later, you'll be initializing
DirectDraw, Loading Bitmaps, and a number of other things, all in this function. For now, the function
simply returns true, which is good, because if it returned false, the program would terminate.

On the next line is the declaration of a variable named msg, which is of type mMsa. This variable will be
what you use to look for, grab, translate, and dispatch Windows messages. I'll cover Windows messages
later in this chapter. You've already seen the MsG struct, but here it is again:

1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

typedef struct tagMSG ({
HWND hwnd ;
UINT message;
WPARAM wParam;
LPARAM 1Param;
DWORD time;
POINT pt;

} MSG, *PMSG;

If you skip down to later in the code, you'll see that it checks the message member against WM_QuIT to
J determine whether or not to exit, but other than that, you just send a pointer to msg to functions.
Windows handles the rest, and thank goodness! (I once developed a messages-based event queue for DOS
by trapping interrupts, and it was a nightmare.)

Now comes the message pump itself—the most important but least interesting part of winmain. It's the
part that does the repetitive task of talking to Windows. It is contained in a for loop that never ends
(well, theoretically never ends).

The message pump does the following (refer to Figure 1.4 for a graphical view):

1. Checks for a message.
2. If there is a message, processes that message.
3. If there is no message, runs a single frame of the game.

CHECKING FOR IMESSAGES

To check for a message, use PeekMessage. This is a departure from normal Windows programming. Most
applications use GetMessage, because nongame applications do very little except in response to user input.
A game, on the other hand, even if it is turn-based, still has tasks to perform when there are no messages.

BOOL PeekMessage(
LPMSG T1pMsg, // message information
HWND hWnd, // handle to window
UINT wMsgFilterMin, // first message
UINT wMsgFilterMax, // last message
UINT wRemoveMsg // removal options

INTRODUCTION TO WINXZ2 PROGRAMMING E

This returns O if there is no message and nonzero if a message is found. Table 1.5 explains the
parameter list.

Table 1.5 PeekMessage Parameters

PeekMessage Parameter Purpose

1pMsg Pointer to a MSG structure that will be filled
with message information if there is one [
available

hWnd Specifies the handle of the window for which

we are looking for messages. Passing NULL
will get messages from any window in the

application.
wMsgFilterMin Lowest value of messages we are looking for
wMsgFilterMax Highest value of messages we are looking for.

Specifying 0 in both wMsgFiTterMin and
wMsgFilterMax will look for any message.

wRemoveMsg Either the value PM_REMOVE or PM_NOREMOVE.
Tells the function to remove or not remove
the message from the message queue.

PROCESSING WMESSAGES

You must do three things in order to process a message. First, check to see if the msg.message is a
WM_QuIT. If it is, break out of the infinite for loop.

Next, call TransTateMessage:

BOOL TranslateMessage(
CONST MSG *1pMsg // message information
)

This function takes wM_KEYDOWN and WM_KEYUP messages and translates them into wM_CHAR messages. (It
also translates wv_sySKEYDOWN and WM_SYSKEYUP into WM_SYSCHAR.) The only parameter is an LPMSG. It
returns O if the message is not translated and nonzero if it is. Either way, you don't really care. If there is
translation to be done, you just want it done.

E 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Finally, call pispatchMessage:

LRESULT DispatchMessage(
CONST MSG *1pmsg // message information
)3

This function takes an LPMSG, just like TransTateMessage does, and it calls the appropriate message han-
dler (usually a window procedure). The return value of DispatchMessage depends on what value is
returned by the message handler it calls.

] RKUNNING A SINGLE FRAME OoF THE GAME

If there is no message, call Prog_Loop (), which runs a single frame of your game. Currently, there is noth-
ing in Prog_Loop.

CLEANUFf AND EXaT

After the infinite for loop has been exited, there are just two more lines, and my explanation of winMain
is done.

The next-to-last thing is calling Prog_Done (), which is the user-defined function that contains any
cleanup code that you need.

And finally, you return the value of msg’s wparam. This specifies your application’s exit code. If the pro-
gram ends as a result of PostQuitMessage, the value passed to that function will be in msg.wparam. Zero
indicates normal termination.

| know I've gone rather quickly through this introductory stuff, and maybe, if you're new to the concept of
WIN32 programming, | left you hanging just a little. | ask you to bear with me, because my goal is to get
to the good stuff as quickly as possible. For more information on any of the functions I've listed here, take
a look at the MSDN documentation (the help files). It has more information than you really want or

need on how everything works. The Winmain function is rather dull; it's almost always written exactly the
same way.

THE UWINDOW PROCEDURE

Here’s the minimal windowproc that is used in IsoHex1 1.

LRESULT CALLBACK TheWindowProc(HWND hwnd,UINT uMsg,WPARAM wParam,LPARAM 1Param)
{
switch(uMsg)
{
case WM_DESTROY://the window is being destroyed
{

INTRODUCTION TO WINXZ2 PROGRAMMING

PostQuitMessage(0);//tell the application we are quitting
return(0);//handled message, so return 0
}break;
case WM_PAINT://the window needs repainting
{
PAINTSTRUCT ps;
HDC hdc=BeginPaint(hwnd,&ps);//start painting
//painting code would go here
EndPaint (hwnd,&ps);//end painting
return(0);//handled message, so return 0O
fbreak; [
}
return(DefWindowProc(hwnd, uMsg,wParam,1Param));

The skinny of the whole thing is this: depending on what message you are handling (such as the contents
of the uMsg parameter), you execute different code; thus you have the switch. If you handle a message, you
have to return O. If you don't handle the message, you pass the parameters on to the default message pro-

cedure (DefWindowProc), which handles the rest of our messages.

The two messages that need to be taken care of are wm_DESTROY and wM_PAINT. There are a number of
WM_* messages, everything from key presses and key releases to mouse movement and mouse button state
changes to timers and so on. Some of them are cryptic, and you won't be using very many.

WM_DESTROY is sent when the window is being destroyed. It’s there to allow you to clean up anything you
might be doing specific to the window. All your data is elsewhere, so you don't have to do much. You just
have to tell the application that you are quitting, with PostQuitMessage(0). The parameter for
PostQuitMessage IS an error code, and O specifies normal termination.

VOID PostQuitMessage(
int nExitCode // exit code

This function returns no value, and it takes as a parameter the exit code for the application.

WM_PAINT is sent whenever a window needs to be repainted. Usually this is when a minimized window is
restored or a background application is brought to the front, if there were overlapping areas.

In order to repaint as little as possible, Windows uses a struct called PATNTSTRUCT, which contains infor-
mation about what part of the window is to be redrawn:

typedef struct tagPAINTSTRUCT {
HDC hdc;
BOOL fErase;
RECT rcPaint;

E 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[32];
} PAINTSTRUCT, *PPAINTSTRUCT;

I'm not going to go too much into this, because you don't use PAINTSTRUCT outside of your handling of a
WM_PATINT message, and even in that, you'll never have much more code than what you've already got.

So, in the wM_PAINT handler, you declare a PAINTSTRUCT variable and then call BeginPaint, passing the
parameters of the window handle (hwnd) and a pointer to your PAINTSTRUCT. The return value you assign
J to a new HDC variable called hdc. Don't worry about what an Hoc is right now. All will be explained in
Chapter 2.

HDC BeginPaint(
HWND hwnd, // handle to window
LPPAINTSTRUCT TpPaint // paint information

Now youd presumably do something with the hdc. Right now, there isn't anything that needs doing (hey,
how hard can it be to manage a black rectangle?)

Finally, you call EndPaint, passing hwnd and a pointer to your PAINTSTRUCT again. This lets Windows
know that you've done your job of repainting. Then O is returned.

BOOL EndPaint(
HWND hWnd, // handle to window
CONST PAINTSTRUCT *1pPaint // paint data

Why must you do all this?\Well, if you don't, Windows will whine, “PAINT YOUR WINDOW! PAINT
YOUR WINDOW! This BeginPaint/EndPaint Stuff is there for no other reason than to shut
Windows up and have it leave you in peace—a noble goal.

S ENDING MESSAGES TO A WINDOW
To send a window message, you just need to use the function SendMessage:

LRESULT SendMessage(
HWND hWnd, // handle to destination window
UINT Msg, // message
WPARAM wParam, // first message parameter
LPARAM 1Param // second message parameter

INTRODUCTION TO WINXZ2 PROGRAMMING E

The return value depends on what is returned from the windowproc that is called. Table 1.6 explains the
parameters.

Table 1.6 SendMessage Parameters

SendMessage Parameter Purpose

hind Window handle to which that you are sending the
message
Msg The message you are sending (WM_*) [
wParam First parameter of the message
TParam Second parameter of the message

There is also a function called PostMessage. It does the same thing, sort of. SendMessage sends the mes-
sage immediately to the window, where it will be processed and then returned, whereas Postmessage just
adds the message to the list of events that the window has yet to handle. PostMessage has the same
parameter list as SendMessage, but its return type is BooL, and it is nonzero on success and O on failure.

UsiNG WIINDOW IMESSAGES TO
PROCESS INPUT

You'll use messages to process any input your window receives. If you're about to ask why I'm not using
DirectInput, | ask you to check how thick this book is already and then factor in a chapter on DI. Also,
for our purposes, window messages will suffice.

KEYROARD NWMESSAGES
You'll use three

messages for the Table 1.7 WM _KEY* Messages
keyboard. There are -

many more than Keyboard Message Meaning of wParam Meaning of IParam
this, but you won't))

need them. Table WM_KEYDOWN Virtual key code (VK_*) Shifts state/repeat
1.7 shows the count/flags

meaning of wParanm WM_KEYUP Virtual key code (vk_*) Shifts state/repeat
and 1pParam for count/flags

these messages. WM_CHAR Character code (ASCIl) Shifts state/repeat

count/flags

m 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

WY_KEYUF/UWM_KEYDOWN ‘
WM_KEYDOWN and WM_KEYUP are very similar in their NOTE

use but are called at separate times. WM_KEYDOWN i Not all keys have a VK_* constant asso-

called when a key is pressed, and wM_kevup is called ciated with them.The most noticeable

when a key is released. (This aint rocket science, lack is the alphabetic and non-numpad

| know) number keys.The constants VK_0
through VK_9 have the same values as

Table 1.8 lists some vk constants and their values. 0 through 9, and VK_A through VK_Z
have the values A through Z. None of
the VK_* constants for numbers or

:| letters actually exist.

-

Table 1.8 VK _* Constants and Their Values

VK_BACK 0x08 VK_RWIN 0x5C VK_F5 0x74
VK_TAB 0x09 VK_APPS 0x5D VK_F6 0x75
VK_RETURN 0x0D VK_NUMPADO 0x60 VK_F7 0x76
VK_SHIFT 0x10 VK_NUMPAD1 0x61 VK_F8 0x77
VK_CONTROL OxI11 VK_NUMPAD?Z 0x62 VK_F9 0x78
VK_MENU 0x12 VK_NUMPAD3 0x63 VK_F10 0x79
VK_PAUSE 0x13 VK_NUMPAD4 0x64 VK_F11 0x7A
VK_ESCAPE 0x1B VK_NUMPADbS 0x65 VK_F12 0x7B
VK_SPACE 0x20 VK_NUMPADG 0x66 VK_F13 0x7C
VK_PRIOR 0x21 VK_NUMPAD7 0x67 VK_F14 0x7D
VK_NEXT 0x22 VK_NUMPAD8 0x68 VK_F15 Ox7E
VK_END 0x23 VK_NUMPAD9 0x69 VK_F16 Ox7F
VK_HOME 0x24 VK_MULTIPLY O0x6A VK_F17 0x80
VK_LEFT 0x25 VK_ADD 0x6B VK_F18 0x81
VK_UP 0x26 VK_SEPARATOR 0x6C VK_F19 0x82
VK_RIGHT 0x27 VK_SUBTRACT 0x6D VK_F20 0x83
VK_DOWN 0x28 VK_DECIMAL Ox6E VK_F21 0x84
VK_SELECT 0x29 VK_DIVIDE Ox6F VK_F22 0x85
VK_PRINT 0x2A VK_F1 0x70 VK_F23 0x86
VK_INSERT 0x2D VK_F2 0x71 VK_F24 0x87
VK_DELETE Ox2E VK_F3 0x72 VK_NUMLOCK 0x90

VK_LWIN 0x5B VK_F4 0x73 VK_SCROLL 0x91

INTRODUCTION TO WINXZ2 PROGRAMMING E

For example, if you wanted to write a handler that closed the main window in response to the user’s press-
ing the Esc key, you would write the message handler like so:

case WM_KEYDOWN:

| if(wParam==VK_ESCAPE)
| DestroyWindow(hWndMain);//destroy main window
ieturn(O);//we handled the message

fbreak; [

WM CHAR

WM_CHAR, on the other hand, responds to characters that the keyboard driver has translated into actual
characters. The contents of wraram are the ASCII values, such as a, b, ¢, and so forth. In many cases, you
don' care about what the key's ASCII code is (you only care if a key is down or not), so you'll use this
message only when you are inputting strings.

The last word on keyboard input has nothing to do with messages. Responding to wm_keYpown and
WM_KEYUP usually gets you where you want to go, but not always. It's absolutely awful for just seeing if a
key is down or not, especially if the user switches applications between the calls of wm_xeypown and
WM_KEYUP. To fix this, in those cases where you only care whether a key is up or not (to move a unit or
character or something), you use GetAsyncKeyState:

SHORT GetAsyncKeyState(
int vKey // virtual-key code
)

vKey represents the virtual key for which you are trying to read the state. In the return value, the most sig-
nificant bit will be 1 if the key is down or O if the key is up. Because the return value is a SHORT (a signed
type), you can check to see if a key is down by checking to see if the return value is negative:

if(GetAsyncKeyState(VK_ESCAPE)<OQ)
{

//stuff to do if the escape key is down
}

E 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

There are a few extra vk_* constants that only GetAsyncKeyState recognizes. These are listed in
Table 1.9.

Table 1.9 VK _* Constants that
Work Only with

GetAsyncKeyState
I NOTE
:I VK_* Code Hex Value
You cannot use the val-

VK LSHIFT 0XAO ues listed in Table 1.9

- with any of the WM_KEY*
VK_RSHIFT OxAl messages. They just
VK_LCONTROL OxA2 won’t work.

VK_RCONTROL 0xA3
VK_LMENU 0xA4
VK_RMENU O0xAb

MousE MESSHAGES

There are a bunch of these, but you need only about a handful. Luckily, they are all formatted the same as
far as the information passed in wParam and 1param. Table 1.10 lists the wm_* messages you will be con-
cerned with.

Table 1.10 Mouse Messages

Message When It Happens

WM_MOUSEMOVE The mouse has been moved.
WM_LBUTTONDOWN The left mouse button has been pressed.
WM_LBUTTONUP The left mouse button has been released.
WM_RBUTTONDOWN The right mouse button has been pressed.

WM_RBUTTONUP The right mouse button has been released.

INTRODUCTION TO WINXZ2 PROGRAMMING E

Its important to note here that “left” and “right” have some subjective meanings. For example, if you
reverse your mouse buttons under your Windows settings, the buttons will be swapped as far as which mes-
sages they generate (as shown in Figure 1.5). In my opinion, this is one of the good features of WWindows.
We don't want to alienate the lefties!

Figure 1.5
Reversed mouse buttons
Generates Generates Generates Generates
WM_RBUTTONDOWN WM_LBUTTONDOWN WM_LBUTTONDOWN WM_RBUTTONDOWN
Left-Handed Mouse Right-Handed Mouse

The contents of wparam for @ mouse message consist of a number of flags, covering stuff like the state of
the Shift and Ctrl keys to the state of the mouse buttons. Table 1.11 is a breakdown of these flags.

Table 1.11 wParam Flags for Mouse Buttons
and Shift States

Mouse Flag Meaning

MK_CONTROL The Ctrl key is down.

MK_LBUTTON The left mouse button is down.
MK_MBUTTON The middle mouse button is down.
MK_RBUTTON The right mouse button is down.
MK_SHIFT The Shift key is down.

1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

If you want to check to see if the left mouse button
is down in your message handler (for example, dur- NOTE

Ing a WM—MOUSEMOVE)' do this. You can also check the state of the mouse

//check for left button down buttons using GetAsyncKeyState
if(wParam&MK_LBUTTON) However, this will not be correct for users
{ who reverse the mouse buttons.

//do something

}

J 1Param contains the x and y position of the mouse cursor. To retrieve these values, use something similar
to the following code:

int x=LOWORD(1Param);//x is contained in the lower 16 bits
int y=HIWORD(1Param);//y is contained in the upper 16 bits

The documentation states that you should use the GET_x_LPARAM and GET_Y_LPARAM macros rather than
the LowoRD and HIWORD macros. Personally, I've not seen a difference.

OTHER WINDOW IMESSAGES

There seem to be thousands of window messages you could respond to. If you want to look at the list,
load up MSDN (the help files should have come with your VC++ compiler). Go to the index tab, type in
WM_, and look aghast at the long, long list of messages. Many or most of them are of limited use. On

the MSDN CDs, the messages are pretty well documented, and the meanings of wParam and 1Param are
made pretty clear.

It seems kind of bizarre that out of hundreds of window messages, we’ll only be using about a dozen, but
that’s just Windows.

There is just one miscellaneous message that I should cover wm_acT1vATEAPP. W'l be using it later.

INYI_ACTIVRATERPP

WM_ACTIVATEAPP is sent to an application when it is activated (if another application was the currently
active one) and when it is deactivated (when the user switches to another application). wParam contains a
boolean variable that specifies whether or not the current application is the one being activated (a nonzero
value) or deactivated (a value of 0).

When your application is deactivated, especially when you are using DirectX in full-screen mode, you will
want to put the application into some sort of “paused” state. It's not a bad idea to do so even when you're
not in full screen, because if the application isn't active, you don't want to continue executing the game
until the user reactivates it.

INTRODUCTION TO WINXZ PROGRANMMING E

WE'Il handle activation with a global variable called bActive:

bool bActive=false;//start as non-active
Somewhere in the Prog_Init() function, you'll set bActive to true.

During Prog_Loop(), you check bActive. If it’s false, you just return from the function without doing
anything.

if(!IbActive) return;

Finally, you respond to the WM_ACTIVATEAPP message:

case WM_ACTIVATEAPP: [
{
bActive=(bool)wParam;
if(bActive)
{

//activation code

//deactivation code
}
Ibreak;

MANAGING YOUR WINDOWS

There are a number of functions for managing windows that you'll probably at least want to be

familiar with. Some of these functions—setWindowPos, MoveWindow, and GetWindowInfo—CcoONCern
themselves with a window’s size and position. The rest of them—sSetWindowText, GetWindowText, and
GetWindowTextLength—concern themselves with the text displayed in the title bar and on the Taskbar.

SETWINDOWPOS

BOOL SetWindowPos(
HWND hWnd, // handle to window
HWND hWndInsertAfter, // placement-order handle
int X, // horizontal position
int Y, // vertical position
int cx, // width
int cy, // height

UINT uFTags // window-positioning options

E 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

SetWindowPos returns nonzero on success and O on failure. Table 1.12 lists the parameters and their
purposes.

Table 1.12 SetWindowPos Parameters

SetWindowPos Parameter Purpose

hWnd Handle to the window you want to reposition

] hWndInsertAfter This is a z-order thing. It’s the handle to another window
in your application that you want your window to be
behind. Can also take some constants.

int X The desired horizontal position of the left edge of
the window

int Y The desired vertical position of the top edge of
the window

int cx The desired width of the window

int cy The desired height of the window

uFlags Flags (see below under “Flags™)

SetWindowPos can optionally change the z-order, position, and size of a window, depending on the
parameters you give it.

Z-ORDER

If you had more than one window, you could set which one was on top of the others by calling
SetWindowPos and specifying this. Besides window handles, SetWindowPos also takes a number of con-
stants in this parameter:

= HWND_BOTTOM Places the window at the bottom of the z-order.

= HWND_NOTOPMOST Makes the window a non-topmost window and places it above all other non-topmost
windows.

= HWND_TOP Places the window at the top of the z-order.

= HWND_TOPMOST Makes the window a topmost window and places it at the top of the topmost z-order.

Some of those explanations sound like gibberish, 1 know, especially when I'm talking about topmost.
Topmost windows are windows that are always on top. They sort of have their own z-order. The Taskbar is
one of these.

E 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

SetWindowPos returns nonzero on success and O on failure. Table 1.12 lists the parameters and their
purposes.

Table 1.12 SetWindowPos Parameters

SetWindowPos Parameter Purpose

hWnd Handle to the window you want to reposition

] hWndInsertAfter This is a z-order thing. It’s the handle to another window
in your application that you want your window to be
behind. Can also take some constants.

int X The desired horizontal position of the left edge of
the window

int Y The desired vertical position of the top edge of
the window

int cx The desired width of the window

int cy The desired height of the window

uFlags Flags (see below under “Flags™)

SetWindowPos can optionally change the z-order, position, and size of a window, depending on the
parameters you give it.

Z-ORDER

If you had more than one window, you could set which one was on top of the others by calling
SetWindowPos and specifying this. Besides window handles, SetWindowPos also takes a number of con-
stants in this parameter:

= HWND_BOTTOM Places the window at the bottom of the z-order.

= HWND_NOTOPMOST Makes the window a non-topmost window and places it above all other non-topmost
windows.

= HWND_TOP Places the window at the top of the z-order.

= HWND_TOPMOST Makes the window a topmost window and places it at the top of the topmost z-order.

Some of those explanations sound like gibberish, 1 know, especially when I'm talking about topmost.
Topmost windows are windows that are always on top. They sort of have their own z-order. The Taskbar is
one of these.

INTRODUCTION TO WINXZ2 PROGRAMMING

FLAGS

SetWindowPos responds to a number of flags, which can optionally turn the various other parameters on
and off:

SWP_NOACTIVATE Tells SetWindowPos not to activate this window when changing it.
SWP_NOCOPYBITS Tells SetWindowPos not to copy the contents of the client area.
SWP_NOMOVE Tells SetWindowPos to ignore X and Y.

SWP_NOSIZE Tells SetWindowPos to ignore cx and cy

SWP_NOZORDER Tells SetWindowPos to ignore hiwndInsertAfter.

MoveEWMINDOW

BOOL MoveWindow(
HWND hWnd, // handle to window
int X, // horizontal position
int v, // vertical position
int nWidth, // width
int nHeight, // height

BOOL bRepaint // repaint option
)3
Returns nonzero on success or 0 on failure. Table 1.13 explains the parameter usage.

Table 1.13 MoveWindow Parameters

MoveWindow Parameter Purpose

hWnd Handle to the window you are moving

X The desired horizontal coordinate for the left edge of
the window

Y The desired vertical coordinate for the top edge of
the window

nWidth The desired width of the window

nHeight The desired height of the window

bRepaint Specifies whether or not you want the window to

be repainted.

m 1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Movelindow does much the same thing that SetwWindowPos does, minus the window position in the
z-order.

//resize the window to be 640x480
MoveWindow(hWndMain,0,0,640,480);

GETMINDOWINFO

BOOL GetWindowInfo(
J HWND hwnd, // handle to window
PWINDOWINFO pwi // window information

This function fetches information about a given window (hwnd) in a WINDOWINFO Structure. It returns
nonzero on success and O on failure.

The WINDOWINFO structure looks like this:

typedef struct tagWINDOWINFO ({
DWORD cbSize;
RECT rcWindow;
RECT rcClient;
DWORD dwStyle;
DWORD dwExStyle;
DWORD dwWindowStatus;
UINT cxWindowBorders;
UINT cyWindowBorders;
ATOM atomWindowType;
WORD wCreatorVersion;

} WINDOWINFO, *PWINDOWINFO, *LPWINDOWINFO;

INTRODUCTION TO WINXZ2 PROGRAMMING E

Table 1.14 explains the members of WINDOWINFO.

Table 1.14 Members of WINDOWINFO

WINDOWINFO Member Purpose

chSize The size of this structure

rcWindow A RECT (more on these in Chapter 2) describing
the area taken up by the window [

rcClient A RECT describing the area taken up by the
client area of the window

dwStyle The window’s styles (WS_*)

dwExStyle The window’s extended styles (WS_EX_*)

dwWindowStatus Whether or not the window is active. 0 means
not active.

cxWindowBorders Width of the window’s border

cyWindowBorders Height of the window’s border

atomWindowType Atom corresponding to the window class to

which this window belongs

wCreatorVersion Version that created this window

GETUWIINDOWTEXT AND
GETUMWIINDOWTEXTLENGTH
int GetWindowText(

HWND hWnd, // handle to window or control
LPTSTR 1pString, // text buffer
int nMaxCount // maximum number of characters to copy

Retrieves a copy of the windowss title in 1pString. nMaxCount IS the string length to retrieve. Returns
the number of characters actually read.

int GetWindowTextLength(
HWND hWnd // handle to window or control
)

1IsomeETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Returns the length of the window’s (hind’s) title.
These two functions are best used together, like so:

//retrieve the Tength of the window title

int nTitlelength=GetWindowTextLength(hWndMain);
//allocate a buffer to the proper size

char* buffer=new char[nTitlelLength];
GetWindowText(hWndMain,buffer,nTitlelLength);

J SETMINDOWTEXT

BOOL SetWindowText(
HWND hWnd, // handle to window or control
LPCTSTR T1pString // title or text

Sets the title of the specified window (hwnd) to the string supplied (1pString).

SYSTEM IYIETRICS

A system metric is a system-wide measurement usually concerning the height or width of something on
the desktop. It also contains the existence of certain devices on the machine.

The function needed to retrieve one of these metrics is GetSystemMetrics.

int GetSystemMetrics(
int nlndex // system metric or configuration setting

)

INTRODUCTION TO WINXZ2 PROGRAMMING

Table 1.15 lists some of the possible nIndex values. There are more than just this, of course, but these are
the ones you are most likely to use with any sort of frequency.

Table 1.15 Values for nindex

Index Return Value
SM_CMOUSEBUTTONS The number of mouse buttons present
SM_CXBORDER, SM_CYBORDER The width and height of a window border [

SM_CXCURSOR, SM_CYCURSOR The width and height of a cursor

SM_CXEDGE, SM_CYEDGE The width and height of a 3D window edge
SM_CXSCREEN, SM_CYSCREEN The width and height of the screen

SM_MOUSEPRESENT TRUE if the mouse is connected, or FALSE if not
SM_SLOWMACHINE TRUE if the machine is slow, or FALSE if not
SM_SWAPBUTTON TRUE if the user setting swaps mouse buttons,

or FALSE if not

SuUMMARY

We've gone through quite a bit in this first chapter, yet we still have only scratched the surface as far
as WIN32 programming is concerned. I can't show you everything in just a few pages, even though Id
like to.

We'Ve gone through basic window management, window messages, and the fundamental way Windows
works. That’s a lot to absorb in a single chapter. Even if you're one of those “I'll only be making full-
screen games, anyway” folks, I ask that you consider the following: yes, most modern games are made full-
screen—at least, the big titles are. However, that doesn't render this basic WIN32 stuff useless. For exam-
ple, you'll need a regular window for some sort of configuration, or for the splash screen that commonly
comes up whenever the CD autoruns (you know—the window with the Install, Play, Configure, and Quit
buttons on it?).

This page intentionally left blank

S Wl g WS s e 1 ._.:__H_J]—H__‘_I_'_,—r—-“‘ﬁ_
] M

—m"—r“.]‘f' ; il — nl_% T i J|_n_

CHAPTER 2

THE WNoRLD OF
GD1 AND
MIINDOWS

GRAPHICS

= RECT AND POINT

_\1 E HANATOMY OF A WIINDOW

B DEVIcCE CONTEXTS
n 1IXEL PLOTTING vuiiTH GD1
i <A

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

indows is a graphical operating system, with the emphasis on graphical. WWindows achieves graph-
w ics through a subsystem called the Graphical Device Interface (GDI). With GDI, it doesn't mat-
ter what you are drawing on—the screen, system memory, a printer, a plotter, or any other graphical
device—because GDI does most of the work for you.

Unfortunately, in many cases the performance of GDI isn't as good as you might want. Games are graphics
J hogs, and they cannot sacrifice speed. That’s why DirectX was created; I'll cover it in Chapter 4, “DirectX
at a Glance.” But first | want to delve into GDI, because even when you get into using DirectX, some GDI
will still be used, especially in the loading of bitmaps.

RECT AND POINT

Before getting into the objects used by GDI, we first have to explore the use of two very useful struc-
tures—pr0oINT and RecT—and the functions that manipulate them. RECT s also used quite a bit in
DirectDraw (discussed in Chapter 5), so this won't be the only time you'll see them.

Before exploring the functions that deal with them, we first have to explore what POINT and RECT
look like.

THE POINT STRUCTURE

typedef struct tagPOINT {
LONG x;
LONG y;

} POINT, *PPOINT;

The poINT structure isn't all that complicated. It just contains an x,y pair of integers.

THE RECT STRUCTURE

typedef struct _RECT {
LONG Teft;
LONG top;
LONG right;
LONG bottom;
} RECT, *PRECT;

THE WoRrLD oF GDOT AND WINDOWS GRAPHICS

RECT describes four points— (left,top), (right,top), (left,bottom) and (right,bottom). These four points
represent a rectangular area.

Something threw me for a while when | was first learning FPOINT

this stuff. The inside of a RECT is where x>=left and x<right FUNCTIONS

and y>=top and y<bottom. In other words, the right and | have these classified into three

bottom edges of the RECT are not a part of the rectangle’s groups of related functions

\(teRgs Assignment functions deal with [
Why? I've got a few guesses. My first guess is that setting up the values of a RECT.

Microsoft, when it decided how RECTs worked, said that a
pixel is between two coordinate points (for example, pixel
(100,100) is between x=100 and x=101 and y=100 and . : . .
y=101). My second guess is that Microsoft did this so that tions deal with getting mforma}tlon
the width of a rectangle is right-left and the height is bot- about a RECT and how something

tom-top, thus minimizing the infamous “off by one” errors. IUEEMEATIUNIEICIRARINERUE
various functions I cover and the

classification into which I've
put them.

Operation functions deal with
manipulating RecTs. Testing func-

In either case, just keep in mind that the right and bottom
are not in the RECT.

Table 2.1 RECT and POINT Functions

Function Category Use

SetRect Assignment Sets a RECT’s members to arbitrary values
SetRectEmpty Assignment Sets a RECT’s members to all 0s
CopyRect Assignment Copies one RECT’s members to another

IntersectRect Operations Finds the common area of two RECTS

UnionRect Operations Finds a RECT that contains both source RECTS
OffsetRect Operations Moves a RECT by an x and y offset
EqualRect Testing Finds if two RECTs have equal members
IsRectEmpty Testing Checks a RECT's members for all Os

PtInRect Testing Checks whether a POINT is within the area of a RECT

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Ass1GNMENT RECT FuNCTIONS
These functions either assign a RECT'S values or copy one RECT into another.

SeTRECT

BOOL SetRect(
LPRECT 1lprc, // rectangle
int xLeft, // left side
int yTop, // top side
J int xRight, // right side
int yBottom // bottom side

This returns nonzero on success or 0 on failure. Table 2.2 explains the parameter list.

Table 2.2 SetRect Parameter List

SetRect Parameter Purpose

Tprc Pointer to a RECT that will be filled with the values
supplied in the other parameters

xLeft Value to put in the RECT’s left member

yTop Value to put in the RECT’S top member

xRight Value to put in the RECT’S right member

yBottom Value to put in the RECT’'S bottom member

SetRect IS equivalent to the following code:

//rc is a RECT
rc.left=xlLeft;
rc.top=xTop;
rc.right=xRight;
rc.bottom=yBottom;

In my opinion, doing this in a single function call is much easier to read, and I think you'll agree.

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS

SeETRECTEMPTY

BOOL SetRectEmpty(
LPRECT 1prc // rectangle

This returns nonzero on success or 0 on failure. The parameter 1prc is a pointer to the ReCT that you
want to set to empty. An empty ReCT has all members equal to O.

SetRectEmpty IS equivalent to this:

//rc is a RECT [
SetRect(&rc,0,0,0,0);

It's a good idea to set any temporary RECT variable you aren't going to use for a while to empty. Following
this practice will help minimize strange glitches.

CoprPYyReECT

BOOL CopyRect(
LPRECT 1prcDst, // destination rectangle
CONST RECT *1prcSrc // source rectangle

This returns nonzero on success or 0 on failure. Copies the members pointed to by 1prcSrc into the
members pointed to by 1prcDst.

It isn't absolutely necessary to use CopyRect t0 Set one RECT equal to another. Indeed, you could just do
the following:

//rcl and rc2 are RECTs
rc2=rcl;

Doing this does the exact same thing as CopyRect. So why don't | suggest its use? Using CopyRect more
accurately indicates the intended operation, and the equal sign does not.

OrPERATION RECT FuNCTIONS
These functions either combine or modify RECTS in some way.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

OfFFsETRECT

BOOL OffsetRect(
LPRECT Tprc, // rectangle
int dx, // horizontal offset
int dy // vertical offset

This returns nonzero on success or 0 on failure. The left and right members pointed to by 1prc are
increased by dx, and the top and bottom members are increased by dy.

J 0f fsetRect IS equivalent to the following code:

//1prc is pointer to RECT
Tprc->left+=dx;
Iprc->top+=dy;
lTprc->right+=dx;
lprc->bottom+=dy;

0ffsetRect IS quite handy when you want to have the same-sized RECT in a different location.

INTERSECTRECT

BOOL IntersectRect(
LPRECT 1prcDst, // intersection buffer
CONST RECT *1prcSrcl, // first rectangle
CONST RECT *1prcSrc2 // second rectangle

If the RECTS pointed to by 1prcSrcl and 1prcSrc2 intersect, this function returns nonzero. If they do
not, it returns 0. 1prcDst is filled with the intersecting RecT. Figure 2.1 illustrates the output of
IntersectRect

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS

Figure 2.1

IntersectRect

(the shaded area

First Source RECT X .
marks the intersection)

Intersection

Second Source RECT

UNIONRECT

BOOL UnionRect(
LPRECT 1prcDst, // destination rectangle
CONST RECT *1prcSrcl, // first rectangle
CONST RECT *1prcSrc? // second rectangle

This returns O if the resulting union (pointed to by 1prcDst) is an empty RECT. It returns nonzero other-
wise. The ReCTs pointed to by 1prcSrct and 1prcSrc2 are combined to make the smallest RecT that

could contain both, (see Figure 2.2).

Figure 2.2

The shaded area shows
the result of a call to
First Source RECT Un 7. onRect

Second Source RECT

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

TESTING RECT FuNCcTiIONS

The testing functions check the status of a RecT in relation to another RECT, in relation to itself, or in
relation to a POINT.

EouRALRECT

BOOL EqualRect(
CONST RECT *1prcl, // first rectangle
CONST RECT *1prc?2 // second rectangle

This returns O if the two rectangles (pointed to by 1prc1 and 1prc2) are not equal, and nonzero if
they are.

1sRECTEMPTY

BOOL IsRectEmpty(
CONST RECT *lprc // rectangle

This returns O if the rectangle pointed to by 1prc is not empty, and nonzero if it is empty.

FTINRECT

BOOL PtInRect(
CONST RECT *1prc, // rectangle
POINT pt // point

Checks to see if the POINT pt is within the RECT pointed to by 1prc. This returns nonzero if it is, and 0
if it is not.

PtInRect is equivalent to the following code:

//1prc is pointer to RECT
BOOL ptinrect=((pt.x>=Iprc->Teft) && (pt.x<Iprc->right) && (pt.y>=lprc->top) &&
(pt.y<Iprc->bottom));

There are a few more ReCT functions, but they aren't very useful and so I didn't cover them. If you're curi-
ous, they are called 1nflateRect and SubtractRect, and they can be found in MSDN.

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS E

ANARTOMY OF A WIINDOW

As you are well aware, a window consists of more than just an area on which you can draw. Depending on
its use, a window contains minimize and maximize buttons, a title bar, a close button, a system menu, a
sizable or nonsizeable border, scroll bars, and so on. The inclusion of these in your window depends on
the style with which you create it. Windows takes care of making these look correct, so you can just con-
cern yourself with drawing on the inside of the window.

The section upon which you can draw is called the client area. The rest of the window is the nonclient area.
Figure 2.3 shows these two areas. When the client area needs repainting, you get WM_PAINT messages from [
Windows.

Non-Client Area Figure 2.3

Client and nonclient
areas of a window

Client Area

NOTE

If you want to, you can override the way Windows draws the non-

client area by responding to the WM_NCPAINT message.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

GETCLIENTRECT
The area contained in the client area can be retrieved with the function GetC1ientRect:
BOOL GetClientRect(
HWND hWnd, // handle to window
LPRECT TpRect // client coordinates
);

J This returns nonzero on success or 0 on failure. Table 2.3 explains the parameter list.

Table 2.3 GetClientRect Parameter List

GetClientRect Parameter Purpose

hind Window for which you would like to retrieve the
client area
TpRect Pointer to a RECT into which the client area informa-

tion is retrieved

The left and top members of the RecT are 0. The right and bottom contain the width and height.

GETUMWIINDOWRECT
The area that contains the entire window can be retrieved with the function GetWindowRect.

BOOL GetWindowRect(
HWND hWnd, // handle to window
LPRECT T1pRect // window coordinates
);

This returns nonzero on success or 0 on failure. Table 2.4 explains the parameter list.

Table 2.4 GetWindowRect Parameter List

GetWindowRect Parameter Purpose

hind Window for which you would like to retrieve the
client area
TpRect Pointer to a RECT into which the client area infor-

mation is retrieved

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS E

The coordinates returned in the RECT are screen coordinates, so this function yields different results when
the window has been moved around.

Let’s say that you are making a game that needs to have a play area that has certain dimensions (640x480,
for example). You may want this application to be windowed, but it is nearly impossible to determine how
big of a window you have to make, because user settings modify how large some types of windows are.

So, what to do?

AHAoousTUINDOWRECT AND
HoJusTUUIINDOWRECTEX [

Luckily, Win32 does have a couple of functions that help you in this area. They are AdjustWindowRect
and AdjustWindowRectEx

ApJusTMMNINDOWRECT

If you used Createlindow to create your main window (or any window you might be adjusting), you
would use AdjustWindowRect to modify the size of your client area.

BOOL AdjustWindowRect(
LPRECT 1pRect, // client-rectangle structure
DWORD dwStyle, // window styles
BOOL bMenu // menu-present option

)

This returns nonzero on success or 0 on failure. Table 2.5 explains the parameter list.

Table 2.5 AdjustWindowRect Parameters

AdjustWindowRect Parameter Purpose

TpRect Pointer to a RECT that contains the desired client
area on entry and the desired window RECT on exit

dwStyTe Style of the window (as sent to CreateWindow)

bMenu TRUE or FALSE, depending on whether or not the

window has a menu

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

AJusTMMINDOWRECTEX

If you used CreatelindowEx to create your window, use AdjustWindowRectEx to modify the size of
your client area.

BOOL AdjustWindowRectEx(

LPRECT TpRect, // client-rectangle structure
DWORD dwStyle, // window styles
BOOL bMenu, // menu-present option

DWORD dwExStyle // extended window style

This returns nonzero on success or 0 on failure. Table 2.6 explains the parameter list.

Table 2.6 AdjustWindowRectEx Parameters

AdjustWindowRectEx Parameter Purpose

TpRect Pointer to a RECT that contains the desired client
area on entry and the desired window RECT on
exit

dwStyle Style of the window (as sent to CreateWindowEx)

bMenu TRUE or FALSE, depending on whether or not the

window has a menu

dwExStyle Extended style of the window (as sent to
CreateWindowEx)

The choice of AdjustWindowRect Versus AdjustWindowRectEx depends solely on whether or not
CreateWindow OF CreatelindowEx Was used to create your window.

THE WMoRLD oF GDT AND WINDOWS GRAPHICS

_ NOTE

Under WIN32, there is absolutely no functional difference
between CreateWindow and CreateWindowEx, nor is there a dif-
ference between AdjustWindowRect and AdjustWindowRectEx
The CreateWindow function is not actually a function at all. It is a
macro that calls CreateWindowEx and supplies the dwExStyle
parameter with a 0. The same goes for AdjustWindowRect. It is
always best to use the Ex version of the function.

—

UsING ADJusTUWINDOWRECTEX
Load IsoHex2_1.cpp into your compiler, and take a look at the Prog_1init function:

bool Prog_Init()

{
//rectangle into which we will place the desired client RECT
RECT rc;
SetRect(&rc,0,0,640,480);
//get the window rect based on our style and extended style
AdjustWindowRectEx(&rc,WS_BORDER | WS_SYSMENU | WS_VISIBLE,FALSE,Q0);
//use movewindow to resize the window
MoveWindow(hWndMain,0,0,rc.right-rc.left,rc.bottom-rc.top,TRUE);
return(true);//return success

In this function, you resize the window using Movelindow S0 that you have a 640x480 client area.

Through my experience with using AdjustWindowRectEx, | have found that sometimes it just doesnt
work, depending on the combination of style and extended style flags for the window. If you want to try
using AdjustWindowRectEx, make sure you get the client ReCT size you want. If you dont, all is not lost.
You can manually get the proper window size by using GetClientRect, GetWindowRect, and
MoveWindow, as shown in the following snippet of code:

//get the client rect

RECT rcClient;
GetClientRect(hWndMain,&rcClient);

//get the window rect

RECT rclWnd;

GetWindowRect (hWndMain,&rcWnd);

//make the window rect left and top be zero

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

OffsetRect(&rcWnd, -rcWnd.left,-rcWnd.top);

//get the difference in the width

int iWidthDelta=rcWnd.right-rcClient.right;

int iHeightDelta=rcWnd.bottom-rcClient.bottom;

//set up desired client rect
SetRect(&rcClient,0,0,640,480);//640 and 480 can be replaced with desired meas-
urements

//adjust the width of the desired client rect
rcClient.right+=iWidthDelta;
rcClient.botom+=iHeightDelta;

J //use movewindow to set desired height and width
MoveWindow(hWnd,0,0,rcClient.right,rcClient.bottom,TRUE);

Up until now this chapter has been little more than a list of functions and parameters. Unfortunately, it
has been necessary to make it so—there are a lot of things you have to know in order to use GDI effec-
tively. Now that you've got the goods on RecT, POINT, and the client area, you can actually start doing
something.

DeviceE CONTEXTS

Windows can draw to several different types of devices—monitors, printers, plotters, and system memory.
Drawing to any of these devices is handled by the exact same mechanism—adevice contexts (DCs). A DC
is an abstraction of something that can be drawn upon. Some devices have varying coordinate systems. For
example, a printer might print at 600dpi, and your screen has 72dpi. DCs ensure that the proper transfor-
mations (scaling, stretching) can be performed, regardless of the coordinate system used internally by the
device. This is a good thing, because it achieves device independence, and you have to deal with only a sin-
gle set of functions instead of a billion different APIs, each for a different device.

Of course, device independence has its cost. Using device contexts is significantly slower than working
directly with the hardware, since commands have to be filtered through several layers of abstraction before
the operation is actually performed. You'll reduce this problem when you make the move to DirectX,
which has a lower level of abstraction. (DirectX talks to hardware drivers, which is as close as you can get
to bare metal in Windows.)

You had slight exposure to DCs in the preceding chapter, when you responded to the wM_PATINT message
and used BeginPaint and EndPaint.

OETAINING DEVICE CONTEXTS

In WM_PAINT, you Use BeginPaint and EndPaint to retrieve a DC, and you can then use that DC for
drawing operations. This is one way to go about it. However, using BeginPaint and EndPaint is limited

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS

to times when areas of the client area have been invalidated (for example covered up by something else, like
another window).

INVALIDATERECT
You can invalidate portions of the client area by using InvalidateRect.
BOOL InvalidateRect(

HWND hWnd, // handle to window

CONST RECT *1pRect, // rectangle coordinates

BOOL bErase // erase state [
)

This returns nonzero on success or 0 on failure. The hund and 1pRect parameters should be self-explana-
tory by now. berase tells the application whether or not to erase the background during the next call to
BeginPaint.

If you really want to, you can use this method. Call 1nvalidateRect, and wait for the wM_PAINT message
to be processed. That would be very Windows-friendly of you. However, you are a game programmer, and
games are rarely Windows-friendly.

GeETDC
Most of the time, you'll grab a window’s DC using GetDC.

HDC GetDC(
HWND hWnd // handle to window

This takes as a parameter the window for which you want the DC, and then it returns that DC. Keep in
mind that Windows is letting you “borrow” this DC. You have to put it back later or suffer the conse-
quences.

ReLeEAsEDC
When you are done with the DC and it's time to give it back, you use ReleaseDC.

int ReleaseDC(
HWND hWnd, // handle to window
HDC hDC // handle to DC

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

CAUTION

If you do not call ReTeaseDC for every call to GetDC, very bad things will
happen.You've been warned.

| | |

So, if you want to perform some drawing operations on your main window, you do this:

J //borrow the dc from the main window
HDC hdc=GetDC(hWndMain);

//draw stuff

//return the dc to the system
ReleaseDC(hWndMain,hdc);

MEMoRY DCs

Not all the DCs you'll be working with will be borrowed from a window. For example, later you'll load
images and place them into memory DCs. A memory DC is nothing more than a bit of your computer’s
memory that behaves as though it is a device upon which you can draw.

CReEATECoOmPATIRLEDC
The mechanism by which you will do this is CreateCompatibledC.

HDC CreateCompatibleDC(
HDC hdc // handle to DC
)

This function creates a memory DC compatible with a supplied hdc and returns the created DC. If you
pass NULL, the DC that is created is compatible with the screen.

DeELeTEDC
When you are done with a memory DC, you use DeleteDC.

BOOL DeleteDC(
HDC hdc // handle to DC

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS E

So, what is in these memory DCs after you create them? Not much, as it turns out. A memory DC con-
tains a 1x1 monochrome bitmap. What good is that? Well, the 1x1 bitmap isn't really good for anything.
However, there has to be something in a DC. Otherwise, it can't exist, and using the DCs in the functions
that need them would cause errors.

GD1 ORJECTS

All this stuff about DCs is great, but we haven't actually covered what to do with them. That’s where GDI
objects come in. They aren't exactly objects in the object-oriented programming sense of the word. They

are Windows objects, and you reference them by way of HANDLES (I told you wed be having more of [
them).

There are five types of GDI objects that you need to be concerned with: HBITMAP, HBRUSH, HPEN, HFONT,
and HRGN:

= An HBITMAP consists of a two-dimensional graphic. In Windows, this usually comes from a .bmp file or is
created to given dimensions on-the-fly.

= An HBRUSH consists of a colored fill pattern. It is used to fill in areas of a DC.

= An HPEN consists of a colored line style and width. It is used to draw primitives (lines, rectangles, ellipses)
onaDC.

= An HFONT consists of a set of characters. It is used to print text on a DC.

= An HRGN represents a shape that can be used for clipping, drawing, framing, or filling. These regions can be
rectangles, ellipses, polygons, or just about anything else you might imagine.

A DC can contain exactly one of each of these at any given time. This may seem a little backwards, but it’s
not. Consider a DC a mechanical device that draws. This machine can select a piece of paper (an
HBITMAP) on which to draw, and it can pick a pen (HPEN) with which to draw, a brush (HBRUSH) with
which to fill areas, a typeface (HFoNT) with which to stamp letters, and an artist’s template (HRGN) with
which to draw shapes or draw on only a particular area.

SELECTORJIECT
In order to place a given object into a DC, you use SelectObject.

HGDIOBJ SelectObject(
HDC hdc, // handle to DC
HGDIOBJ hgdiobj // handle to object
)

This function places the desired GDI Object (HBITMAP, HRGN, HFONT, HPEN, Or HBRUSH) into the DC, and
it returns the GDI object that the new object has replaced (except in the case of HraN—see Chapter 3,
“Fonts, Bitmaps, and Regions”).

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

LT LT

CAUTION

We’'re about to have another “put your toys away” moment here.\When
you create a GDI object, no matter what kind, you have to later destroy
it. Technically, in WIN32, you don’t have to.WIN32 maintains a separate
memory space for each application, and when the application terminates,
all of that application’s resources are released. Still, it’s good program-
ming practice to delete GDI objects when you're done with them.

J — —

So, if you wanted to bring a white brush into a DC and clean it up later, youd do something like the
following:

//create solid white brush

HBRUSH hbrNew=CreateSolidBrush(RGB(255,255,255));

//select the new brush into a dc and save the old one (note the typecast of the
return value)

HBRUSH hbr01d=(HBRUSH)SelectObject(hdc,hbrNew);

//use drawing functions that use the new brush

//return the old brush to the dc

SelectObject(hdc,hbr0ld);

//delete the brush we no Tonger need

DeleteObject(hbrNew);

This is something of a pain, | know (believe me—I know).

PixeEL PLoTTiING wuiTH GD1

A pixel is a pictorial element. It is the smallest piece of graphics that you can manipulate. The number of
pixels on the screen depends on your display settings. I run my machine at 1024x768 most of the time,
so | have over 750,000 pixels on my screen.

Besides width and height, your screen also has color depth. Common color depths (measured in bits per
pixel—bpp) range from 1 (which is monochrome) to 32 (true color with an extra byte). The most com-
mon color depths are 8, 16, 24, and 32. An 8-bit color depth requires a method of color abstraction
known as color indirection and is handled by means of a palette. | won't be covering palettes.

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS E

For 16, 24, and 32 bits per pixel, there is an RGB representation for your pixels. This means that certain
bits represent one of the three primary colors of light—red, green, or blue.

Pixel format will become more of a concern when you get to DirectDraw. In GDI, you get to pretend that
everything is 24bpp, and Windows does all the conversions for you.

In GDI, all colors are represented by COLORREFS. A COLORREF is merely an int. It has 8 bits for each of
red, green, and blue. Because each is 8 bits, you can have red, green, and blue values from 0 to 255. Since a
COLORREF is 24 bits, it can be scaled down to 16 bits, and in 32-bit modes, the number of bits used per
pixel for the color is still only 24.

THE RGE IYIACRO

To assign a color to a COLORREF, use the RGB macro:

Jfdefine RGB(r,g,b)
((COLORREF) (C((BYTE)(r) | ((WORD) ((BYTE)(g))<<8))|(((DWORD)(BYTE)(b))<<16)))

PIiXEL IANIPULATION FUNCTIONS
Essentially, there are three of these: SetPixel, SetPixelV, and GetPixel.

SETPIXEL

COLORREF SetPixel(
HDC hdc, // handle to DC
int X, // x-coordinate of pixel
int Y, // y-coordinate of pixel

COLORREF crColor // pixel color

SetPixel needs an Hoc, an X,Y position, and a COLORREF. It does its best to plot the pixel to the given
HDC. The return value contains the actual color that was plotted.

SETPIXELV

BOOL SetPixelV(
HDC hdc, // handle to device context
int X, // x-coordinate of pixel
int v, // y-coordinate of pixel

COLORREF crColor // new pixel color

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Like SetPixel, SetPixelV needsan HDc, an X,Y position, and a COLORREF. Unlike SetPixel, this func-
tion does not return the color plotted. It returns O on failure or nonzero on success.

GeTPIXEL

COLORREF GetPixel(
HDC hdc, // handle to DC
int nXPos, // x-coordinate of pixel
int nYPos // y-coordinate of pixel

GetPixel needs an HDC and an X,Y position. It returns the color of that position on the specified HoC.

H PixeL PLOTTING EXAMPLE
Now that you can finally draw something (it's about time, I know), let’s do so. Load up IsoHex2_2.cpp.

The only difference between this program and IsoHex1_1.cpp is an added case in the window procedure:

//the mouse moved
case WM_MOUSEMOVE:
{
//if the Teft button is down
if(wParam & MK_LBUTTON)
{
//extract x and y from Tparam
int x=LOWORD(1Param);
int y=HIWORD(1Param);

//borrow the dc from the main window
HDC hdc=GetDC(hWndMain);

//plot the pixel
SetPixelV(hdc,x,y,RGB(255,255,255));

//return the dc to the system
ReleaseDC(hWndMain,hdc);

//handled, so return 0O
return(0);
Ibreak;

THE WoRrLD oF GDOT AND WINDOWS GRAPHICS E

In this little stretch of code, you respond to the wM_MoUSEMOVE message. First, you check to see if the left
button is down. If it is, you borrow the DC from the main window, plot the pixel, and release the DC
back to the system. With this relatively small change, you can now draw. Figure 2.4 demonstrates my lack

of artistic ability.

= IsoHex 2-2 Figure 2.4
Pixel-plotting demo

OK; so it isn't Paint Shop Pro. Heck, it isn't even Microsoft Paint. But it is a step in the right direction,
and that's all that counts.

NOTE

I'd like to point out something about this particular application,
because it applies to most of the applications in the early part of this

book. If you bring another application’s window in front of it, and then
bring it back in front, the part of the overlap will be erased.You’ll read
more about fixing this later.

[—— e S—

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

UsING PENS

Pixels are great, but dealing with just pixels for everything would become a nightmare, and game program-
ming would stop being fun.

So, to draw lines and shapes and so on, you'll use HPENS and functions that use the pens in a DC.

CREATEFPEN
J Creating a pen is simple. The function that does so is named, of all things, Createpen.

HPEN CreatePen(
int fnPenStyle, // pen style
int nWidth, // pen width
COLORREF crColor // pen color
)

This function returns a handle to a pen with the desired style, width, and color. Table 2.7 explains the
parameter list.

Table 2.7 CreatePen Parameters

CreatePen Parameter Purpose

fnPenStyle The style of the pen (see the paragraph after this table)
nWidth Desired width of the pen
crColor Desired color of the pen

The fnPenStyle parameter can have a number of values:

= PS_SOLID A solid pen. May have any width.

PS_DASH A dashed pen. Must have a width of 0 or 1.

PS_DOT A dotted pen. Must have a width of 0 or 1.

PS_DASHDOT A dash dot pen. Must have a width of 0 or 1.
PS_DASHDOTDOT A dash dot dot pen. Must have a width of 0 or 1.
= PS_NULL An invisible pen

To use a pen, you simply select it into a device context using SelectObject, and you're ready to go.

THE WoRrLD oF GDOT AND WINDOWS GRAPHICS E

DRAWING FUNCTIONS
Before we get to drawing functions themselves, let’s take a moment to talk about the current position with-

ina DC.
Internally, a DC maintains a current position. The current position is NOTE
similar to a cursor in a way. It keeps track of where you left off when
drawing. (In this way, you can draw continuous shapes without modify- Some drawing func-
ing more than one line of code.) tions modify the
. . . current position,

You can set or get the current position (CP) with the following two sl Gl GO fei
functions. [
MoveToEXx
BOOL MoveToEx(

HDC hdc, // handle to device context

int X, // x-coordinate of new current position

int v, // y-coordinate of new current position

LPPOINT 1pPoint // old current position

This returns nonzero on success and 0 on failure. Table 2.8 explains the parameter list.

Table 2.8 MoveToEx Parameters

MoveToEx Parameter Purpose

hdc Handle to the device context for which you are setting the CP
X, Y The desired position of the CP
TpPoint A pointer to a POINT.The former CP is placed here.

GETCURRENTPFPOSITIONEX

BOOL GetCurrentPositionEx(
HDC hdc, // handle to device context
LPPOINT 1pPoint // current position

)

This returns nonzero on success or 0 on failure. Table 2.9 explains the parameter list.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Table 2.9 GetCurrentPositionEx Parameters

GetCurrentPositionEx Parameter Purpose

hdc Handle to the device context for which you are
getting the CP

TpPoint Pointer to a POINT structure that will be filled with
the CP

J OK,; so you can get and set the CP. So what? Seems sort of useless.

LINETO
Introducing the LineTo function. LineTo draws a line in the current pen from the CP to a specified point.

BOOL LineTo(
HDC hdc, // device context handle
int nXEnd, // x-coordinate of ending point
int nYEnd // y-coordinate of ending point

This returns nonzero on success or 0 on failure. It moves the CP to nxtnd, nYEnd in the given hdc. It
draws a line as it does so.

A LINE DRAWING EXAMPLE
Since we have a new toy (LineTo), let’s play. Load up IsoHex2_3.cpp.

This program is similar to IsoHex2_2.cpp, but it gets a little more involved. First, you have to create a pen
and select it into your window’s DC, so you declare two global variables, hpenNew and hpen01d.

Here’s the Prog_1nit function:

bool Prog_Init()

{
//create the new pen
hpenNew=CreatePen(PS_SOLID,0,RGB(255,255,255));
//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//select new pen into dc
hpen01d=(HPEN)SelectObject(hdc,hpenNew);

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS

//release dc to system
ReleaseDC(hWndMain,hdc);
return(true);//return success

Here you take care of creating the new pen (it's white) and putting it into the DC.
Now, here’s Prog_Done, on the other end of the program:

void Prog_Done()

{
//borrow dc from main window [
HDC hdc=GetDC(hWndMain);
//restore old pen to dc
SelectObject(hdc,hpen0ld);
//release dc to system
ReleaseDC(hWndMain,hdc);
//delete new pen
DeleteObject(hpenNew) ;

Here you restore the old pen to the DC and delete the pen you created—you put your toys away after you
are done playing with them.

Now that the pen is set up, you can take care of doing the real work. The main work in this case is done
in two window message handlers, WM_MOUSEMOVE and WM_LBUTTONDOWN.

case WM_LBUTTONDOWN:

{
//extract x and y from Iparam
int x=LOWORD(TParam);
int y=HIWORD(TParam);
//borrow the main window’s DC
HDC hdc=GetDC(hWndMain);
//update the CP
MoveToEx(hdc,x,y,NULL);
//return the dc to the system
ReTeaseDC(hWndMain,hdc);
//handled, return 0
return(0);

jbreak;

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

In this handler, you must update the CP of the window’s DC because if you just responded to movements
of the mouse, you would get errors. (Try commenting out the MoveToEx line, and see what | mean.)

case WM_MOUSEMOVE:
{
//if left button is down
if(wParam & MK_LBUTTON)
{
//extract x and y from Tparam
int x=LOWORD(1Param);
J int y=HIWORD(1Param);

//borrow the main window’s DC
HDC hdc=GetDC(hWndMain);

//1ine to the x,y position
LineTo(Chdc,x,y);

//return the dc to the system
ReleaseDC(hWndMain,hdc);

//handled, return O
return(0);
Ibreak;

When the mouse is moved, and the left button is down, you draw a line to the mouse’s position. Doing so
updates the CP.

The resulting program doesn't do too much more than what IsoHex2_2 did, except that it isnt so...well,
pixelated. Figure 2.5 shows the application’s output.

THE WoRrLD oF GDOT AND WINDOWS GRAPHICS E

= IsoHex 2-3 Figure 2.5
Once again, an artist |
am not
NOTE Play around with IsoHex2_3 a bit, changing the pen style and line
This program suffers width and color so that you can see the various effects that can be
from the same erasure created. After you're done, we’ll move on to brushes.

problem that 2_2 did.

EERUSHES

In GDI, you use pens to draw, and you use brushes to fill. You can create brushes using a number of func-
tions. The functions I'm going to cover here are the most commonly used: CreateSolidBrush and
CreateHatchBrush.

ERusH CREATION

HBRUSH CreateSolidBrush(
COLORREF crColor // brush color value

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

CreateSolidBrush takes a color and returns a brush in that color.

HBRUSH CreateHatchBrush(
int fnStyle, // hatch style
COLORREF clrref // foreground color
)3

CreateHatchBrush takes a style and a color and returns a brush with that color and style. Hatch brush
styles are represented by HS_* constants like the following:

= HS_BDIAGONAL A 45-degree stripe that runs downward from left to right
:I = HS_CROSS A combination of horizontal and vertical stripes
HS_DIACROSS A combination of the two diagonal stripes
HS_FDIAGONAL A 45-degree stripe that runs upward from left to right
HS_HORIZONTAL Horizontal stripes

HS_VERTICAL Vertical stripes

To bring a brush into a device context, use SelectObject just like you do with pens. Always be sure to
restore the old brush when you are done. Use Delete0bject to destroy brushes.

EXTFLOODFILL
To fill in a given area, use ExtFloodFill.
BOOL ExtFloodFill(

HDC hdc, // handle to DC
int nXStart, // starting x-coordinate
int nYStart, // starting y-coordinate

COLORREF crColor, // fill color
UINT fuFillType /7 fill type
)

This returns nonzero on success or 0 on failure. Table 2.10 explains the parameter list.

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS

Table 2.10 ExtFloodFill Parameters

ExtFloodFill Parameter Purpose
hdc Handle to a device context in which you would like the
fill to occur
nXStart,nYStart The coordinate at which to begin the fill
crColor Depending on fuFil1Type, either the color at which to
stop filling, or the color to fill over [
fuFil1Style Either the value FLOODFILLBORDER Or FLOODFILLSUR-
FACE. FLOODFILLBORDER fills until crColor is reached,

and FLOODFILLSURFACE fills over any adjacent areas that
are the same color as crColor.

H BERuUsH EXAMPLE

So, another example. Load up IsoHex2_4.cpp. IsoHex2_4.cpp is mostly just IsoHex2_3.cpp with an extra
message handler, WM_RBUTTONDOWN.

case WM_RBUTTONDOWN:

{
//extract x and y from Iparam
int x=LOWORD(TParam);
int y=HIWORD(TParam);
//borrow the main window’s DC
HDC hdc=GetDC(hWndMain);
//Tine to the x,y position
ExtFloodFi11(hdc,x,y,RGB(255,255,255),FLOODFILLBORDER);

//return the dc to the system

ReleaseDC(hWndMain,hdc);

jbreak;

Figure 2.6 shows the output of this sample program.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

B IzoHex 2-4 Figure 2.6

These are clouds.
No, really.

In this app, you still draw lines with the left mouse button, and fill areas with the right.

FILLING 1N RECTANGULAR HAREAS

Possibly the most common brush operation you are likely to do is filling a rectangular area. This operation
is done with the Fi11Rect function.

int FilTRect(

HDC hDC, // handle to DC
CONST RECT *1prc, // rectangle
HBRUSH hbr // handle to brush

)3
On failure, this returns 0. On success, it returns nonzero. Table 2.11 explains the parameter list.

Table 2.11 FillRect Parameters

FillRect Parameter Purpose

hDC Handle to the device context for which you would like a rectangu-
lar area filled

Tprc A pointer to a rectangle describing the area you would like filled

hbr The brush with which you would like the rectangular area of the

DC filled

THE WMoRLD oF GDT AND WINDOWS GRAPHICS

If you wanted, for example, to clear out the entire client area, this is what you would do:

//borrow dc from main window

HDC hdc=GetDC(hWndMain);

//set up rect to contain entire client area

RECT rc;

GetClientRect(&rc);

//fill in given rectangle with black brush
FilTRect(hdc,&rc, (HBRUSH)GetStockObject (BLACK_BRUSH));
//return dc to system

ReleaseDC(hWndMain,hdc);

PENS AND ERUSHES TOGETHERS
SHAPE FUNCTIONS

Now, being able to draw lines is great, and filling in bordered areas and rectangles is cool, too. However, in
order to be a fully functional API, you have to have other primitives—circles, rectangles, polygons. GDI

has these and more. I'm only going to cover E111pse, Rectangle, RoundRect, and Polygon.

With all of these shapes, GDI outlines the shape with the current pen and fills it with the current brush.

ELLIPSE

BOOL El1lipse(
HDC hdc, // handle to DC
int nLeftRect, // x-coord of upper-left corner of rectangle
int nTopRect, // y-coord of upper-left corner of rectangle

int nRightRect, // x-coord of lower-right corner of rectangle
int nBottomRect // y-coord of Tlower-right corner of rectangle

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

This returns nonzero on success or 0 on failure. Table 2.12 explains the parameter list.

Table 2.12 Ellipse Parameters

Ellipse Parameter Purpose
hdc The hdc on which you want the ellipse to be drawn
nLeftRect The left of the rectangle that bounds this ellipse

:I nTopRect The top of the rectangle that bounds this ellipse
nRightRect The right of the rectangle that bounds this ellipse
nBottonRect The bottom of the rectangle that bounds this ellipse

With other graphical APIs, drawing an ellipse is done by specifying the center and then the x and y radlii.
In GDI, however, it is done by supplying the rectangle that bounds the ellipse.

_ NOTE

The center of the ellipse is at x=(nLeftRect+nRightRect)/2 and
y=(nTopRect+nBottomRect)/2.The horizontal (x) radius is
abs(nRightRect-nLeftRect)/2, and the vertical (y) radius is

abs(nBottomRect-nTopRect)/2.The abs is in there because as
far as E111ipse is concerned, nLeftRect does not have to be less
than nRightRect, and nTopRect does not have to be less than
nBottomRect.

—

RECTANGLE

BOOL Rectangle(
HDC hdc, // handle to DC
int nLeftRect, // x-coord of upper-left corner of rectangle
int nTopRect, // y-coord of upper-left corner of rectangle
int nRightRect, // x-coord of Tlower-right corner of rectangle
int nBottomRect // y-coord of Tower-right corner of rectangle

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS

This returns nonzero on success or 0 on failure. Table 2.13 explains the parameter list.

Table 2.13 Rectangle Parameters

Rectangle Parameter Purpose

hdc The hdc on which you would like this rectangle drawn

nLeftRect The left of the rectangle

nTopRect The top of the rectangle [
nRightRect The right of the rectangle

nBottomRect The bottom of the rectangle

Rectangle has the exact same parameters as £111pse, only instead of drawing the ellipse bound by a rec-
tangle, it draws and fills the rectangle.

RouNDRECT

BOOL RoundRect(
HDC hdc, // handle to DC
int nLeftRect, // x-coord of upper-left corner of rectangle
int nTopRect, // y-coord of upper-left corner of rectangle

int nRightRect, // x-coord of lower-right corner of rectangle
int nBottomRect, // y-coord of Tower-right corner of rectangle
int nWidth, // width of ellipse
int nHeight // height of ellipse

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

This returns nonzero on success or 0 on failure. Table 2.14 explains the parameter list.

Table 2.14 RoundRect Parameters

RoundRect Parameter Purpose

hdc The hdc on which you would like this rounded rectangle drawn
nLeftRect The left of the rounded rectangle

:| nTopRect The top of the rounded rectangle
nRightRect The right of the rounded rectangle
nBottomRect The bottom of the rounded rectangle
nWidth The width of the ellipse used for rounding the corners
nHeight The height of the ellipse used for rounding the corners

| think that the RoundRect function is kind of cool. It can be used not only to draw rounded rectangles,
but also plain rectangles (when nwidth and nHeight are both 0) or ellipses (when nwidth and nHeight
equal the width and height of the rectangle itself).

OLYGON
BOOL Polygon(
HDC hdc, // handle to DC
CONST POINT *1pPoints, // polygon vertices
int nCount // count of polygon vertices

)

This returns nonzero on success or 0 on failure. Table 2.15 explains the parameter list.

Table 2.15 Polygon Parameters
Polygon Parameter Purpose

Hdc The hdc on which you want the polygon drawn

LpPoints A pointer to an array of POINTS, containing the vertices
of the polygon

nCount The number of points pointed to by 1pPoints

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS

For the rest of your shape-drawing needs, you have Polygon. 1pPoints must point to at least two vertices.
The polygon drawn will automatically be closed (a line is drawn from the last point to the first point).

The manner in which your polygon is filled depends on two things. The first is whether you have any of
the line segments of the polygon crossing, and the second is the polygon fill mode that you set for the hdc
In question.

FoLyGoN FiLL IMIoDES
You can manipulate the polygon fill mode with SetPolyFil1Mode and retrieve it with GetPolyFil1Mode.

SeTPoLyfFiLLYIopDE

int SetPolyFilIMode(
HDC hdc, // handle to device context
int iPolyFillMode // polygon fill mode

)

This returns the previous fill mode for the given hdc and sets the new fill mode to iPol1yFi11Mode.

GeTFPOoOLyfFiLLYiobpE

int GetPolyFillMode(
HDC hdc // handle to device context
)

This returns the current fill mode for the given hdc.

There are two polygon fill modes—ALTERNATE and WINDING. Instead of explaining what they each mean
(it's a confusing explanation), I'll just show you. Figure 2.7 illustrates the ALTERNATE polygon fill mode.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 2.7

ALTERNATE
ALTERNATE
PolyFillMode

In the ALTERNATE fill mode, a given pixel is filled if a horizontal line is sent in the positive x direction (to
the right, that is) and if the number of line crossings is odd (1, 3, 5, and so on). If the number of cross-
ings is even (0, 2, 4, and so on), no filling is done. 1 told you it was confusing. Figure 2.8 illustrates the

WINDING fill mode.

Figure 2.8

WINDING
WINDING
PolyFillMode

In the wiNDING fill mode, a region is filled if it has a nonzero winding value. What the heck is a winding
value, you ask? Let’s see what MSDN Online (January 2000 edition) has to say about it: “This value is
defined as the number of times a pen used to draw the polygon would go around the region. The direction

of each edge of the polygon is important”

THE WMoRLD oF GDOT AND WINDOWS GRAPHICS

Confused? Me too. Using the wInDING polygon fill mode seems to fill in all of the nooks and crannies of
a polygon, so let’s just leave it at that.

SuUMMARY

This chapter inundated you with basic GDI; no, | won't pay for any therapy you may now need. \We've
gone through everything from Windows anatomy to graphical primitives. Much of this you won't be using
too much, but it's good to know. The information you will be using from this chapter mainly consists of
the RECT and POINT stuff, some of the brush stuff, and the device context stuff.

Most of what I've talked about so far has been listing functions and parameters. This will continue
through at least the rest of this part of the book. Unfortunately, what I'm talking about requires a lot of
knowledge, and I'm trying to get you just the important bits so that you can move on to the good stuff.

This page intentionally left blank

e il g WISV S ‘ S e e e
o=, Wl = — I =1 JLH_E.—J_‘J—J—l—'—FJ—rﬂ" -

CHAPTER 3

FONTS,
E1TmMAFPS, AND
REGIONS

B N OoORKING WITH FONTS
B CREATING AND UsSING REGIONS

- 1 CREATING AND UsING BE1TMAPS

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

'I n the preceding chapter, we explored the basic use of GDI—namely, device contexts, pens, and brush-
es. This chapter builds on your knowledge of DCs, exploring the topics of fonts, bitmaps (including
icons and cursors), and regions.

MWMORKING WITH FONTS

You know what a font is (at least, | hope you do). A font is a typeface, usually containing the alphabet, the
numbers, and punctuation, but sometimes containing graphical characters (like the various wingding
fonts). Various fonts are shown in Figure 3.1.

As aWindows programmer, you have the power to make use of any font installed on the system. There are
even tools that allow you to create your own fonts. The key phrase is “any font installed on the system.” If
you develop your game to use some strange font that exists on only a few machines, you have to make sure
you install the font as part of the installation for your game.

However, you may not want to require that a font be added to a user’s machine—doing so makes the font
available for use with other applications, but it also burdens your user’s computer unnecessarily. If you were
writing a word processing utility it would be appropriate, but you're writing games! So, when you want a
font, you'll load it temporarily and unload it later.

ApDDFoNTRESOURCE
Loading a font temporarily into the system font table is pretty easy. You use AddFontResource:

int AddFontResource(
LPCTSTR 1pszFilename, // font file name
)3

FoONT=Sy, BRiITMAPSy AND REGIONS E

On failure, this function returns 0. On success, it returns the number of fonts added. Its parameter is
described in Table 3.1.

Table 3.1 AddFontResource Parameter

AddFontResource Parameter Purpose
TpszFilename A string containing the file name from which to load
the font into the system font table [

When you are done with that font, you remove it from the system by using RemoveFontResource.

ReEmoveFoNTRESOURCE

BOOL RemoveFontResource(
LPCTSTR 1pFileName, // name of font file

This returns nonzero on success or 0 on failure. This function has the exact same parameter list as
AddFontResource

CREATEFONT
Once you have a font resource loaded, you can create a font (HFONT) by using CreateFont.
HFONT CreateFont(

int nHeight, // height of font

int nWidth, // average character width
int nEscapement, // angle of escapement

int nOrientation, // baseline orientation angle
int fnWeight, // font weight

DWORD fdwlItalic, // italic attribute option

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

DWORD fdwUnderline,
DWORD fdwStrikeOut,

DWORD fdwCharSet,

DWORD fdwOutputPrecision,
DWORD fdwClipPrecision,

DWORD fdwQuality,

DWORD fdwPitchAndFamily,

LPCTSTR 1pszFace

// underline attribute option
// strikeout attribute option
// character set identifier

// output precision

// clipping precision

// output quality

// pitch and family

// typeface name

Scared yet? Yes, this function is a long one. Luckily, you usually won't need to worry about many of the
parameters. Most of them are concerned with localization, and in those fields, you'll just pick whatever the

default value is.

CreateFont returns an HFONT that is the closest match to what is described by all of the parameters. For
the most part, the default value for these parameters is 0. Table 3.2 explains the parameter list.

Table 3.2 CreateFont Parameters

CreateFont Parameter

nHeight
nWidth

nEscapement

nOrientation

fnWeight
fdwltalic
fdwUnderline
fdwStrikelut
fdwCharSet

fdwOutputPrecision

fdwQuality

fdwPitchAndFamily

IpszFace

Purpose

The desired average height of the font, in logical units
The desired average width of the font, in logical units

The angle at which the font is to be drawn, in tenths
of a degree

The angle at which the font’s characters are to be drawn,
in tenths of a degree

The boldness of the font

TRUE for italic, FALSE for nonitalic

TRUE for underline, FALSE for nonunderline
TRUE for strikeout, FALSE for nonstrikeout
The type of character set you want

The desired precision

The desired quality

The family of the font and the pitch of the font

The typeface to use

FoONT=Sy, BRiITMAPSy AND REGIONS E

CreateFont has lots of parameters, and most of them are used only when localization is an issue.
(Localization is a vast topic, and I'm not going to explore it here. Just be aware that making your games
easy to localize is a good idea, because people from many countries may want to play, and you can't always
assume that they speak your language.)

With the exception of nHeight and TpszFace, you can get away with using all Os in your calls to
CreateFont. O loads the default font.

NOTE

You may have noticed that many of the [You can specify any value for nHeignt. Inside [
CreateFont parameters speak of “logical GDlI is a font mapper, and it will try its hardest
units.” In all of your cases, a logical unit is to find a font that matches the height you

one pixel, because you use a mapping mode ask for. Putting 0 in nHeight loads the
called MM_TEXT.There is more than just this default height.

one mapping mode.This is yet another part)

of GDI's device independence. You can specify ISR IIGRUE I IR VgLt
arbitrary mapping modes for different ple, you wanted to use Tahoma, it would
devices. This is just an FYI. If you're curious contain Tahoma.

about mapping modes, read about the

SetMapMode function in the help files.

OuTPUTTING WITH FONTS

In order to use a font in a given DC, you first have to bring it into the DC using SelectObject, which
should be nothing new to you. Again, be sure to save the old font to restore it later. Also, when you are
finished with a font (usually at the termination of a program), be sure to destroy it with a call to
DeleteObject.

Next, you have to select a background mode and a text color. You do this with the SetBkMode and
SetTextColor functions.

SETEKIYIODE
int SetBkMode(
HDC hdc, // handle to DC

int iBkMode // background mode
)

On failure, this function returns 0. On success, it returns the previous background mode.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

The hdc parameter is (of course) a handle to a device context for which you are setting the background
mode. iBkMode IS the new background mode, and it is either TRANSPARENT Or 0PAQUE. This is almost
unnecessary to say, but TRANSPARENT will not write in the background color, and opAQuUE will.

SETTEXTCOLOR

COLORREF SetTextColor(
HDC hdc, // handle to DC
COLORREF crColor // text color

This returns the previous text color or cLR_INVALID on failure. (In this case, returning O would be a valid
color.)

The hdc parameter is the handle to the device context for which you are setting the text color, and
crColor IS the color itself.

TEXTOUT
Finally, to actually get text on the screen, you use the Textout function.
BOOL TextOut(

HDC hdc, // handle to DC

int nXStart, // x-coordinate of starting position
int nYStart, // y-coordinate of starting position
LPCTSTR 1pString, // character string

int cbString // number of characters

This returns 0 on failure or nonzero on success. Table 3.3 explains the parameter list.

Table 3.3 TextOut Parameters

TextOut Parameter Purpose

hdc The handle to the device context on which you want to
write characters

nXStart,nYStart The X,y location for the start of the string
1pString The text string to write

cbString The number of characters to write

FoONT=Sy, BRiITMAPSy AND REGIONS

HA TeExTOUT EXAMPLE

Let’s do a little example. Load up IsoHex3_1.cpp, and be sure that Paganini.ttf is in the same folder as the
project’s workspace.

IsoHex3_1.cpp is a modification of IsoHex1_1.cpp. The main differences are two extra global variables
and a modified Prog_init and Prog_Done.

HFONT hfntNew=NULL;//paganini font [
HFONT hfnt0l1d=NULL;//store old font

bool Prog_Init()

{
//add the paganini font to the system table
AddFontResource("Paganini.ttf");

//create a font that uses paganini
hfntNew=CreateFont(-40,0,0,0,0,0,0,0,0,0,0,0,0,"Paganini");

//borrow dc from main window
HDC hdc=GetDC(hWndMain);

//select new font into dc
hfnt01d=(HFONT)SelectObject(hdc,hfntNew);

//set background mode to transparent
SetBkMode (hdc, TRANSPARENT) ;

//set text color to blue
SetTextColor(hdc,RGB(0,0,255));

//write text to dc
TextOut(hdc,0,0,"Paganini",strlen("Paganini"));

//release dc to system
ReTeaseDC(hWndMain,hdc);

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

return(true);//return success

void Prog_Done()

{
//borrow main window dc
HDC hdc=GetDC(hWndMain);

J //restore original font
SelectObject(hdc,hfnt01d);

//delete the new font
DeleteObject(hfntNew) ;

//return dc to system
ReleaseDC(hWndMain,hdc);

//remove the paganini font
RemoveFontResource("Paganini.ttf");

The output looks like Figure 3.1.

Figure 3.1
TextOut

FoONT=Sy, BRiITMAPSy AND REGIONS E

As you can see, the modifications are relatively minor. You just

added some font-loading stuff and output the text to the NOTE

window’s DC. TextOut, while useful, isn't
Take a few moments with IsoHex3_1.cpp, and play with very good at formatting
SetBkMode, SetTextColor, and the parameters for Createfont. text. | usually use it to dis-
You might even go find a font somewhere and plug it into the pro- play diagnostic information
gram to see how it looks. on-screen, like the mouse

position or the frame rate.

And that’s the shortest way to get a font on the screen.

DRAWTEXT
To do any real sort of application of fonts, you'll want to use DrawText.

int DrawText(

HDC hDC, // handle to DC

LPCTSTR 1pString, // text to draw

int nCount, // text Tength

LPRECT TpRect, // formatting dimensions
UINT uFormat // text-drawing options

)

This usually returns the height of the text outputted, but it might differ depending on the uFormat
parameter (see Table 3.5). Table 3.4 explains the parameter list.

Table 3.4 DrawText Parameters

DrawText Parameter Purpose

hDC The destination device context
1pString The string of characters that you want to display
nCount The number of characters to display. Can be -1 to detect the

size of the string. In this case, 1pString must be a null-termi-
nated string.

TpRect A pointer to the bounding RECT

uFormat The format in which to show the text (see Table 3.5)

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Most of these parameters match those of Textout, except that positioning information is in 1pRect and
formatting options are in uFormat, as shown in Table 3.5.

Table 3.5 uFormat Values

uFormat Value Meaning

DT_BOTTOM Justifies text to the bottom of the rectangle. Must be used with
:I DT_SINGLELINE.

DT_CENTER Centers the text horizontally

DT_LEFT Aligns text to the left

DT_NOCLIP Does not perform clipping

DT_RIGHT Aligns text to the right

DT_SINGLELINE Displays the text on a single line only

DT_TOP Justifies text to the top of the rectangle

DT_VCENTER Centers text vertically. Use with DT_SINGLELINE.

This list is by no means exhaustive. These are just the most commonly used formatting options.

H DRAWTEXT EXAMPLE

Another sample program? Sure, why not! IsoHex3_2.cpp (which is just a slightly modified
IsoHex3_1.cpp) makes use of brawText. The differences lie totally in Prog_Init.

{
//retrieve the client rectangle
RECT rcClient;
GetClientRect(hWndMain,&rcClient);
//add the paganini font to the system table
AddFontResource("Paganini.ttf");
//create a font that uses paganini
hfntNew=CreatefFont(-40,0,0,0,0,0,0,0,0,0,0,0,0,"Paganini");
//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//select new font into dc
hfnt01d=(HFONT)SelectObject(hdc,hfntNew);

FoONT=Sy, BRiITMAPSy AND REGIONS E

//set background mode to transparent

SetBkMode (hdc, TRANSPARENT) ;

//set text color to blue

SetTextColor(hdc,RGB(0,0,255));

//write text to dc

DrawText(hdc,"Paganini",-1,&rcClient,DT_CENTER | DT_VCENTER | DT_SINGLE-
LINE);

//release dc to system

ReTeaseDC(hWndMain,hdc);

return(true);//return success

Figure 3.2 shows what it looks like.

Figure 3.2

DrawText demo

Again, play with I1soHex3_2.cpp using different combinations of the various bT_* constants and different
RECTS. There is a lot of power in the GDI font system, and you'll be making use of it later in
DirectDraw. Unfortunately, it's slower than a custom system you could design specifically for a game. If
you want to further explore fonts, there’s plenty of information about them in MSDN Online.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

CREATING AND UsING REGIONS

A region is a GDI object, just like a pen, brush, or font. Regions are very powerful and flexible tools with
which to accomplish things that would otherwise be very difficult. However, because they are slow, they are
practically ignored.

A region is nothing more than a shape—a rectangle, rounded rectangle, ellipse, polygon, or multiple poly-
gons. You can do a number of things with a region. You can fill it (Fi11Rgn), frame it (FrameRgn), or clip
with it (by selecting it into a device context). You can use it to test whether or not a point is within a given
J nonrectangular shape.

CREATING REGIONS

Regions, like any other GDI objects, are manipulated through the use of handles. In this case, the handle is
HRGN. Table 3.6 lists several different types of regions and several different functions that create them.

Table 3.6 Region Creation Functions

Function Type of Region Created

CreateEl11ipticRgn An elliptical region
CreatePolygonRgn A polygonal region
CreateRectRgn A rectangular region

CreateRoundRectRgn A rounded rectangular region

Most of these region creation functions mirror similar shape functions that use pens and brushes (minus
the HDC parameter, of course).

CrReEATEELLIPTICRGN

HRGN CreateETTipticRgn(
int nLeftRect, // x-coord of upper-left corner of rectangle
int nTopRect, // y-coord of upper-left corner of rectangle
int nRightRect, // x-coord of lower-right corner of rectangle
int nBottomRect // y-coord of TlTower-right corner of rectangle

FoONT=Sy, BRiITMAPSy AND REGIONS E

CreateE111ipticRgn returns a handle to an elliptical region. Table 3.7 explains the parameter list.

Table 3.7 CreateEllipticRgn Parameters

CreateEllipticRgn Parameter Purpose

nLeftRect The left x-coordinate of the bounding rectangle for
the elliptical region

nTopRect The top y-coordinate of the bounding rectangle for [
the elliptical region

nRightRect The right x-coordinate of the bounding rectangle for
the elliptical region

nBottomRect The bottom y-coordinate of the bounding rectangle
for the elliptical region

CReEATEPOLYGONRGN

HRGN CreatePolygonRgn(
CONST POINT *1ppt, // array of points
int cPoints, // number of points in array
int fnPolyFillMode // polygon-filling mode

)s

CreatePolygonRgn returns a handle to a polygon region. Table 3.8 explains the parameter list.

Table 3.8 CreatePolygonRgn Parameters

CreatePolygonRgn Parameter Purpose

Tppt A pointer to an array of POINTS that contains the
vertices of the polygon

cPoints The number of points that are pointed to by Tppt

fnPolyFillMode Either ALTERNATE or WINDING. Specifies the desired

fill mode.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

CrReEATERECTRGN

HRGN CreateRectRgn(
int nlLeftRect, // x-coordinate of upper-left corner
int nTopRect, // y-coordinate of upper-left corner
int nRightRect, // x-coordinate of lower-right corner
int nBottomRect // y-coordinate of lower-right corner

This returns a handle to a rectangular region. Table 3.9 explains the parameter list.

Table 3.9 CreateRectRgn Parameters

CreateRectRgn Parameter Purpose

nLeftRect The left x-coordinate of the rectangle
nTopRect The top y-coordinate of the rectangle
nRightRect The right x-coordinate of the rectangle
nBottomRect The bottom y-coordinate of the rectangle

CrReEATEROoOuUNDRECTRGN
HRGN CreateRoundRectRgn(

int nlLeftRect, // x-coordinate of upper-left corner
int nTopRect, // y-coordinate of upper-left corner
int nRightRect, // x-coordinate of lower-right corner
int nBottomRect, // y-coordinate of Tlower-right corner

int nWidthEllipse, // height of ellipse
int nHeightEllipse // width of ellipse

FoONT=Sy, BRiITMAPSy AND REGIONS E

This returns a handle to a rounded rectangular region. Table 3.10 explains the parameters.

Table 3.10 CreateRoundRectRgn Parameters

CreateRoundRectRgn Parameter Purpose

nLeftRect The left x-coordinate of the bounding rectangle

nTopRect The top y-coordinate of the bounding rectangle

nRightRect The right x-coordinate of the bounding [
rectangle

nBottomRect The bottom y-coordinate of the bounding
rectangle

nWidthEllipse The width of the ellipse used to round the
corners

nHeightEllipse The height of the ellipse used to round the
corners

Deleting a region is accomplished using DeleteObject, just like any other GDI object.

LIsING REGIONS

The most common use of a region is for clipping. Clipping is a method by which you draw on only a cer-
tain portion of your drawing area, similar to an artist’s use of a graphical template (you know.. . the little
plastic thingamajig with circles cut into it).

To use a region for clipping, you simply bring it into a device context using
SelectObject. Unlike other types of GDI objects, Selectobject does-
n't return the previously selected region for that device context. Instead, it TENI@ORF=

returns one of the following values: Regions are the only

= SIMPLEREGION The region consists of a single rectangle GDI objects for
= COMPLEXREGION The region consists of more than one rectangle which this strange
» NULLREGION The region is empty behavior occurs.

Let's do a quick example to show you how to use regions for clipping.
Load up IsoHex3_3.cpp.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

This example has a few extra global variables:

//pens, old and new
HPEN hpenNew=NULL;
HPEN hpen0Td=NULL;
//region

HRGN hrgnClip=NULL;

Also, Prog_Init and Prog_Done have been modified:

bool Prog_Init()
1
//create a solid red pen

hpenNew=CreatePen(PS_SOLID,0,RGB(255,0,0));

//retrieve the client rectangle for the window
RECT rcClient;
GetClientRect(hWndMain,&rcClient);

//create an elliptical region
hrgnClip=Createkl11ipticRgn(0,0,rcClient.right,rcClient.bottom);

//borrow the dc from the main window
HDC hdc=GetDC(hWndMain);

//select the new pen into the dc, and keep the old one
hpen01d=(HPEN)SelectObject(hdc,hpenNew);

//select the clipping region into the dc
SelectObject(hdc,hrgnClip);

//make vertical stripes
int nStripeX=rcClient.right/10;
int nCount;

//1oop through and draw the stripes
for(nCount=0;nCount<10;nCount++)
{
//move to the top of the client area
MoveToEx(hdc,nStripeX*nCount,0,NULL);

//Tine to the bottom of the client area

FoONT=Sy, BRiITMAPSy AND REGIONS

LineTo(hdc,nStripeX*nCount,rcClient.bottom);

//make the horizontal stripes
int nStripeY=rcClient.bottom/10;

//1oop through and draw the stripes
for(nCount=0;nCount<10;nCount++)
{
//move to the left of the client area
MoveToEx(hdc,0,nStripeY*nCount,NULL); [

//Tine to the right of the client area
LineTo(hdc,rcClient.right,nStripeY*nCount);

//return the borrowed dc to the system
ReleaseDC(hWndMain,hdc);

return(true);//return success

void Prog_Done()

{
//borrow the dc from the main window
HDC hdc=GetDC(hWndMain);

//restore the old pen
SelectObject(hdc,hpenQld);

//return the dc to the system
ReleaseDC(hWndMain,hdc);

//delete our gdi objects
DeleteObject(hrgnClip);
DeleteObject(hpenNew) ;

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Without the region stuff, youd get horizontal and vertical stripes (10 of each) running the length and
width of your windowss client area. With this example, you get the same effect, but the lines only get writ-
ten to the elliptical area you have selected as the clipping region, as shown in Figure 3.3.

I IsoHex 3-3 Figure 3.3

Elliptical region

For the moment, click on another window, obscuring this window, and then switch back to the first win-
dow. You might see something like Figure 3.4.

= IsoHex 3-3 Figure 3.4

The dangers of using
clipping regions

FoONT=Sy, BRiITMAPSy AND REGIONS E

As you can see, Windows doesn't erase the part that lies outside of the clipping area. This is an important
thing to think about when using regions. It’s always best to keep a region that encompasses the entire client
area that you select into the DC after you no longer need a DC that covers only a portion.

To see the differences between the various clipping areas you can have, let’s modify IsoHex3_3.cpp slightly.
Replace the line with Createt11ipticRgn in it with the following line:

hrgnClip=CreateRoundRectRgn(0,0,rcClient.right,rcClient.bottom,rcClient.right/2,r
cClient.bottom/2);

If you run this again, you'll see the same stripes, only now they are bounded by a rounded rectangle, as
shown in Figure 3.5.

I IsoHex 3-3 ¥] Figure 3.5

Rounded rectangle
clipping region

Here’s something you may have NOTE

noticed: when you use these Why are nonrectangular regions slower than rectangular
rounded regions, the program ones? The answer is that even a circular or elliptical region
loads rather slowly; this is the still consists of rectangles. Most of these rectangles are
main downfall of regions. just a single pixel high.When you then take that region,
Rectangular regions are much select it in a device context, and use it to clip your output,
faster than curved ones. each pixel drawn has to be compared to this gigantic list

of rectangles to check whether or not the pixel is within

the clipping area. As you might imagine, this can take

quite a bit of time if the clipping region is oddly shaped.

For this reason, when performance counts, use only |
rectangular regions, and use regions only if you absolute- ‘
ly must.

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Change that line again to read as follows:

hrgnClip=CreateRectRgn(0,0,rcClient.right,rcClient.bottom);

When you compile and run this, it should come up a bit faster than the others did, because it'’s much easi-
er to clip to a rectangle than an ellipse or a rounded rectangle (computers don' like doing curves).

We're going to do one more little modification, using a polygon region. Replace the region creation func-
tion with the following code:

ptVerticel[0]
J ptVerticel[0]
ptVerticel[l]
ptVerticel[1]
ptVerticel[2]
ptVerticel[2]
ptVerticel[3]
ptVertice[3]

POINT ptVerticel4];
.x=rcClient.
.y=0;
.x=rcClient.
.y=rcClient.
.x=rcClient.
.y=rcClient.
x=0;
.y=rcClient.

right/2;

right;
bottom/2;
right/2;
bottom;

bottom/2;

hrngClip=CreatePolygonRgn(ptVertice,4,ALTERNATE);

This sets up a small array of points and creates a polygonal region based on them, using the ALTERNATE
fill mode. (Refer to Chapter 2, “The World of GDI and Windows Graphics,” for the different polygon fill
modes.) Figure 3.6 shows what this region looks like.

= IzoHex 3-3

Figure 3.6

A polygon clipping
region

FoONT=Sy, BRiITMAPSy AND REGIONS m

You'll notice that this polygon region takes longer to run than a rectangular region but is not quite as slow
as one of the curved regions. Clipping to arbitrary lines is still more difficult than a rectangle, but it’s easi-
er than clipping to curves.

OTHER UsEs FOR REGIONS

While clipping is the most prevalent use for regions, it is not the only use. You can also use regions to fill
in arbitrary shapes, as you would a rubber stamp on paper.

| won't spend too much time on this subject; I'll just list a few functions and leave you to experiment with
them. You won't be seeing these functions again, but I didn't feel right leaving the topic of regions without [
at least showing them to you.

FiLLRGN

BOOL FiTTRgn(
HDC hdc, // handle to device context
HRGN hrgn, // handle to region to be filled
HBRUSH hbr // handle to brush used to fill the region

This returns nonzero on success or 0 on failure. Fills a shape (specified by hrgn) on hdc using a
brush (hbr).

FPAINTRGN

BOOL PaintRgn(

HDC hdc, // handle to device context

HRGN hrgn // handle to region to be painted
)

This is similar to the Fi11Rgn function, except that the brush used to fill the region is the one that is cur-
rently selected into the hdc.

FRAMERGN

BOOL FrameRgn(
HDC hdc, // handle to device context
HRGN hrgn, // handle to region to be framed
HBRUSH hbr, // handle to brush used to draw border
int nWidth, // width of region frame
int nHeight // height of region frame

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

This returns nonzero on success or 0 on failure. It outlines the region with a brush. nwidth and nHeight
are the width and height of the frame used to surround the region.

Take a breath. We're done with regions. That leaves only one GDI object to cover, easily the most impor-
tant of all.

CRETING AND UsING BE1TmMAPS

And, at long last, bitmaps! In your games, bitmaps (in whatever form) will be your stock in trade. Your ter-
rain, your units, and just about everything else will exist in the form of bitmaps that you will load into
J your program and use on-screen.

You'll be primarily concerned with two types of bitmaps: those that are blank, and those that you load
from disk.

CREATING A BELANK BE1TmAFP

To create a blank bitmap, use CreateCompatibleBitmap. A compatible bitmap has the same color format
of a device context (you usually borrow the DC from the main window and make your blank bitmaps
compatible with it).

HBITMAP CreateCompatibleBitmap(

HDC hdc, // handle to DC
int nWidth, // width of bitmap, in pixels
int nHeight // height of bitmap, in pixels

)

This returns a handle to the created bitmap. Table 3.11 explains the parameters.

Table 3.11 CreateCompatibleBitmap Parameters

CreateCompatibleBitmap Parameter Purpose

hdc The device context with which this bitmap
is to be compatible

nWidth The width of the bitmap
nHeight The height of the bitmap

FoONT=Sy, BRiITMAPSy AND REGIONS m

I T

CAUTION

A bitmap created by a call to CreateCompatibleBitmap will contain
garbage (whatever information was in that memory before the bitmap
was created). In order to fix this, it must be selected into the DC and
cleared out using Fil1Rect or the like.

1 1

LoADING A BE1TmMAFP FROM DhisK

To load a bitmap from disk, use LoadImage. LoadImage is used not only for bitmaps, but also for icons [
and cursors. As a result, the return type has to be typecast.

HANDLE LoadImage(
HINSTANCE hinst, // handle to instance
LPCTSTR 1pszName, // name or identifier of the image

UINT uType, // image type

int cxDesired, // desired width
int cyDesired, // desired height
UINT fuload // load options

This returns a generic handle, which must be typecast into the proper handle type. Table 3.12 explains the
parameter list.

Table 3.12 Loadlmage Parameters

Loadlmage Parameter Purpose

hinst If this bitmap were a resource within the executable, this
would be the application’s handle. Since you are loading
from disk, this can be NULL.

TpszName The file name of the bitmap you want to load

uType The type of image to load (one of IMAGE_BITMAP,
IMAGE_CURSOR, Or IMAGE_ICON)

cxDesired The desired width of the bitmap (0 for the default width)

cyDesired The desired height of the bitmap (0 for the default height)

fulLoad Flags.When loading a bitmap, this should be LR_LOADFROM-

FILE.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

UsiNG A BE1TmRAFP

In order to be of any use, a bitmap must be selected into a device context. Since you usually don't want
bitmaps selected into your window’s DC, you will create memory DCs.

Here are three code snippets. WWhen you load bitmaps, create blank bitmaps, or get rid of a bitmap, these
three code snippets are rather close to the actual code you will need.

SNIPPET 1li CREATING A BELANK E1TmMmAFP

J In this first code snippet, you do all the work necessary to create a blank bitmap except for clearing it out

with Fi11Rect. By the end of this snippet, hdcMem is a memory DC, hbmNew contains a newly created
bitmap, hbm01d contains the bitmap originally in hdcMem, and the new bitmap is selected into the new
DC.

[ITTTEEEII I iiirirrrrrrrrrg
//Creating a blank bitmap

[T rrrriirrrrrrrrirrirlrlry
//borrow window’s dc

HDC hdcCompatible=GetDC(hWndMain);

//hdcMem is an HDC global
hdcMem=CreateCompatibleDC(hdcCompatible);
//hbmNew is an HBITMAP global
hbmNew=CreateCompatibleBitmap(hdcCompatible,WIDTH,HEIGHT) ;
//return the borrowed dc to the system
ReleaseDC(hWndMain,hdcCompatible);

//hbm0Td is an HBITMAP global

//select new bitmap into dc
hbm01d=(HBITMAP)SelectObject(hdcMem, hbmNew) ;

SNIPPET 28 LOADING A B1TmAFP FROMm DI1sK

You may notice that there is very little difference between the first snippet and the second. That’s because
the only difference is where you obtain the bitmap. In other words, you use LoadImage instead of
CreateCompatibleBitmap.

[ITT7700011 7000000170770
//Loading a bitmap

L1177 7000 1700700017077
//borrow window’s dc

HDC hdcCompatible=GetDC(hWndMain);
//hdcMem is an HDC global

RiITMAPSy AND REGIONS E

hdcMem=CreateCompatibleDC(hdcCompatible);

//return the borrowed dc to the system

ReleaseDC(hWndMain,hdcCompatible);

//hbmNew is an HBITMAP global

hbmNew=(HBITMAP)LoadImage(NULL,”FileName.bmp”, IMAGE_BITMAP,0,0,LR_LOADFROMFILE);
//hbm01d is an HBITMAP global

//select new bitmap into dc

hbmO1d=(HBITMAP)SelectObject (hdcMem, hbmNew) ;

SNI1PPET Xi CLEANING UFP [

This final snippet returns the original bitmap into the memory device context and deletes the bitmap and
the device context.

L1777 111077077111770777117177
//Getting rid of a bitmap
L1777 110007711777077117777
//restore old bitmap to dc
SelectObject(hdcMem,hbm01d) ;
//delete bitmap
DeleteObject(hbmNew) ;
//delete dc
DeleteDC(hdcMem) ;

There: short, sweet, and for general use.

Consider the lengths of these code snippets. They aren't long, but if you had 100 bitmaps, they would add
up quickly. Don't worry—Ilater we’ll develop a class to help wrap this up into a neat package. (Oh, don't
groan like that. It'll be easy.)

Ri1TELT

Now comes the fun part—moving information from one device context to another. This is called blitting,
and the primary function in GDI to do this task is called 8itB1t. (8itB1t stands for “bit block transfer.”)

BOOL BitBIt(
HDC hdcDest, // handle to destination DC
int nXDest, // x-coord of destination upper-left corner
int nYDest, // y-coord of destination upper-left corner
int nWidth, // width of destination rectangle
int nHeight, // height of destination rectangle
HDC hdcSrc, // handle to source DC

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

int nXSrc, // x-coordinate of source upper-left corner
int nYSrc, // y-coordinate of source upper-left corner
DWORD dwRop // raster operation code

This returns nonzero on success or 0 on failure. Table 3.13 explains the parameter list.

Table 3.13 BitBIt Parameters

] BitBIt Parameter Purpose
hdcDest The destination device context
nXDest The destination x-coordinate
nYDest The destination y-coordinate
nWidth The destination width
nHeight The destination height
hdcSrc The source device context
nxsrc The source x-coordinate
nySrc The source y-coordinate
dwRop The desired raster operation

BitB1t copies the contents of the source device context (hdcSrc), starting at nxSrc,nYSrc and copying a
width of nwidth and a height of nHeight to the destination device context (hdcDest) at nxDest,nYDest.
It combines the source with the destination, depending on the value of dwRop.

A WorD Aout RASTER OFPERATIONS

Most of the parameters of BitB1t are self-explanatory; however, dwRop is not among them. A raster oper-
ation is just a manner in which the source and destination pixels in a blit are combined.

FoNTsy, R1ITMAPSy AND REGIONS 107

Table 3.14 lists some of the more commonly used raster ops.

Table 3.14 Raster Ops

Raster Operation Constant Meaning

SRCCOPY The source is copied to the destination with no regard
for the contents of the destination.

SRCAND The source and destination are combined using the [
AND operation. Useful for bitmasking.

SRCPAINT The source and destination are combined using the 0R
operation. Useful for adding images while being nonde-
structive.

SRCINVERT The source and destination are combined using the

XOR operation. Blitting the same image to the same
location twice using SRCINVERT restores the original
contents of the destination. Useful for custom cursors.

Example time. Load up IsoHex3_4.cpp, and be sure to have IsoHex3_4.bmp in the same folder as
the project.

In this example, clicking the mouse button blits a bitmap onto the window. In Prog_Init and Prog_Done,
I simply modified the code snippets we covered a little earlier (so | won't repeat them here). The work is
done by the wM_LBUTTONDOWN handler in TheWindowProc.

case WM_LBUTTONDOWN:
{
//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//b1it from the memory dc to the window’s dc
BitB1t(hdc,LOWORD(TParam)-BITMAPWIDTH/2,HIWORD(1Param) -
BITMAPHEIGHT/2,BITMAPWIDTH,BITMAPHEIGHT,hdcMem,0,0,SRCCOPY) ;
//return the borrowed dc to the system
ReleaseDC(hWndMain,hdc);
//handled, so return 0
return(0);
fbreak;

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

BITMAPWIDTH and BITMAPHEIGHT are just constants that | added earlier in the application.
Figure 3.7 shows what this application looks like.

Figure 3.7

B IzoHex 3-4
Blitting bits

You may notice that one image may overwrite part of another if they are too close together. This is
because you are using Srccopy, which has no regard for the destination image.

Modify IsoHex3_4.cpp to use SRCPAINT instead, as shown in Figure 3.8.

Figure 3.8
Demonstrating the
SRCPAINT raster
operation

= IzoHex 3-4

FoONT=Sy, BRiITMAPSy AND REGIONS m

WEll, now you don't have the problem of the black corners obscuring the image below, but the images start
to sort of merge, and it's hard to tell where each one is. The reason for this is that the image uses only
three colors—black (RGB(0,0,0)), dark green (RGB(0,128,0)), and bright green (RGB(0,255,0)).

Table 3.15 specifies how each of these combine when using SRCPAINT.

Table 3.15 Color Combination Using SRCPAINT

Source Pixel

Black Dark Green Bright Green
SRCPAINT | pGB(0,0,0) | RGB(0,128,0) | RGB(0,255,0)
s Black Black Dark Green Bright Green
% | RGB(0,0,0) |RGB(0,0,0) | RGB(0,128,0) | RGB(0,255,0)
a
S | Dark Green | Dark Green Dark Green Bright Green
® |RGB(0,128,0) |RGB(0,128,0) | RGB(0,128,0) |RGB(0,255,0)
c
a Bright Green | Bright Green | Bright Green | Bright Green
& [RRGB(0,2550) |RGB(0,255,0)| RGB(0,255,0) | RGB(0,255,0)

RiTunsE OPERATOR REVIEW

If you're confused, I'm about to help. Let’s review for a moment some of the bitwise operators—namely,
AND, OR, and xoRr. For a given combination of bits, you combine them in different ways. AND yields a TRUE
(1) only if both source bits are true. or yields a TRUE as long as at least one of the source bits is true. xor
yields TRUE only if one but not both of the source bits are true. Table 3.16 is a combined truth table for
these operators.

Table 3.16 Truth Tables for AND, OR, and XOR

First Bit Second Bit First AND Second First OR Second First XOR Second
0 0 0 0 0

0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

How R1TuwnsE OPERATORS ComERINE COLORS

Now, let’s examine two colors, bright red (RGB(255,0,0)) and bright blue (RGB(0,0,255)). First, you
must convert these colors into their binary equivalents.

= NOTE

If you look back at the RGB macro in Chapter 2, you see that the
green component gets shifted left by 8 bits and the blue compo-

nent gets shifted by 16 bits, so the binary formats look some-
] thing like this:

Bright Red = 00000000 00000000 11111111
Bright Blue = 11111111 00000000 00000000

—

Next, combine the individual bits using the appropriate bitwise operator.

AND
00000000 00000000 11111111 (red)
11111111 00000000 00000000 (blue)

00000000 00000000 00000000 (black)

The result is black (RGB(0,0,0)). When you AnD red and blue, you get black, because red and blue have no
bits in common.

OR
00000000 00000000 11111111 (red)
11111111 00000000 00000000 (blue)

11111111 00000000 11111111 (magenta)

The result is magenta (RGB(255,0,255)). Since either or both bits can be set to yield a 1, you thus have a
1 for any column in which there is at least a single 1.

FoONT=Sy, BRiITMAPSy AND REGIONS m

XOR
00000000 00000000 11111111 (red)
11111111 00000000 00000000 (blue)

11111111 00000000 11111111 (magenta)

The result is magenta (RGB(255,0,255)), which is the same as the result from or. Since the two colors
have no bits in common, x0r combines to make the same result as an or.

XOR, TAKE Two [
Let’s take the resulting value and xor it with blue again.

11111111 00000000 11111111 (magenta)
11111111 00000000 00000000 (blue)

00000000 00000000 11111111 (red)

You are left with red again, because both sets of bits have all blue bits set. This shows you that xoring the
same thing twice leaves you with what you started out with.

Are you wondering what I'm up to, or have you figured it out already?

RASTER OPERATION EXAMPLE
Let’s do another example. Load up IsoHex3_5.cpp.

This example looks a lot like IsoHex3_4.cpp. The main differences are the lack of a WM_LBUTTONDOWN
message handler, the addition of a global variable and a function, and a modification of Prog_Init.

//cursor location
POINT ptCursor;

case WM_MOUSEMOVE:
{
//extract x and y from 1Param
int x=LOWORD(TParam);
int y=HIWORD(TParam);
//borrow window’s dc

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

HDC hdc=GetDC(hWndMain);
//write the cursor
ShowTheCursor(hdc);
//update the cursor position
ptCursor.x=x;
ptCursor.y=y;
//write the cursor
ShowTheCursor(hdc);
//return dc to system
ReleaseDC(hWndMain,hdc);
J //handled, so return O
return(0);
Jbreak;

bool Prog_Init()
{
//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//create a memory dc
hdcMem=CreateCompatibleDC(hdc) ;
//1oad in the bitmap
hbmNew=(HBITMAP)LoadImage(NULL,"IsoHex3_5.bmp", IMAGE_BITMAP,0,0,LR_LOAD-
FROMFILE);
//select bitmap into memory dc
hbmO1d=(HBITMAP)SelectObject(hdcMem, hbmNew) ;
//set original cursor position
ptCursor.x=0;
ptCursor.y=0;
//return dc to system
ReleaseDC(hWndMain,hdc);
return(true);//return success

//show the cursor
void ShowTheCursor(HDC hdc)
{

FoONT=Sy, BRiITMAPSy AND REGIONS E

BitBlt(hdc,ptCursor.x-BITMAPWIDTH/2,ptCursor.y-
BITMAPHEIGHT/2,BITMAPWIDTH,BITMAPHEIGHT,hdcMem,0,0,SRCINVERT) ;

}

The ptcursor variable is a POINT, and it keeps track of your “cursor” position. You load IsoHex3_5.bmp
(it's a white diamond shape) and select it into hdcMem. In Prog_Init, you give this position an initial value
of (0,0). It gets shown in the initial call to wm_PAINT.

During the wM_MOUSEMOVE, you call ShowTheCursor again. Since ShowTheCursor USeS SRCINVERT to show
the cursor (using the xor operator), it erases the cursor currently showing. Then, you update the cursor
position and show the cursor again. You have just a black background currently, so this doesn't look like a
big deal. Later, when we get to double buffering, the uses of ShowTheCursor will become much more
apparent. Figure 3.9 shows the output.

= IsoHex 3-5 Figure 3.9
Cursor demo

HIN ArPPLICATION OF RASTER OFPERATIONS:

R1TMASKING

Now that you've seen at least one application of raster operations, let's look at another—hbitmasking.
Bitmasking is @ method of writing oddly-shaped graphics when you can only blit rectangles. It is one of sev-
eral methods by which you can achieve transparency. For bitmasking to work you must rely on a few rules
of bitwise operators.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

F1RsST RuLE oF RiTunisE OPERATORS

Any bit, when you AND it with a 1, yields the bit’s value.

0 AND 1=0
1 AND 1=1

Therefore, any color AnDed with white (11111111 11111111 11111111) gives you the original color.

Se£coND RuLe oFf RiTtuwuisE OPERATORS

Any bit, when you AND it with 0, yields O.

J 0 AND 0=0
1 AND 0=0

Therefore, any color Anped with black (00000000 00000000 00000000) gives you black.

THIRD RuLeE oFf RiTunisE OPERATORS

Any bit ored with 0 yields the bit’s value.

0 OR 0=0
1 OR 0=1

So, using the preceding three rules, you can write any oddly-shaped graphic using 8it81t and the raster
operations SRCAND and SRCPAINT.

Load up IsoHex3_6.cpp, and be sure to have IsoHex3 6-1.bmp and IsoHex3_6-2.bmp in the project
folder. This example is pretty much just an enhanced I1soHex3_4.cpp. An extra bitmap is loaded, and dur-
ing the wM_LBUTTONDOWN, there are two BitB1t calls instead of just one. | won't put the code here; you can
take a look yourself. Figure 3.10 shows the output.

Figure 3.10

= IzoHex 3-6

Bitmasks in action

FoONT=Sy, BRiITMAPSy AND REGIONS E

Bitmasking is really important if you're going to use GDI to make isometric or hexagonal games (since iso-
hex games tend not to use rectangular areas). Once you get into DirectDraw, you'll use transparency
instead of bitmasking, but it's good to know about bitmasking, since you may still make your level editors
and tools using GDI.

H BE1TmAPsP MIANAGEMENT CLASS

As you've seen, the creation or loading of each bitmap, the selection of them into a device context, and the
later destruction of them requires several lines of code, and with the more bitmaps and device contexts
you add, the more code you get. Logically, you would wrap this activity, either in function form or class [
form. I'm something of an object-oriented nut, so I'm going to make a class. If you're a C person, I'll try

to go easy on you.

First, our class (which I call cGpIcanvas) has two purposes. One is to load a bitmap, and the other is to
make a blank bitmap of an arbitrary size. You will make a member function for each of these. Also, our
class must take care of deleting all the associated bitmaps and DCs, so there will be a member function for
that as well.

The data logically contained in cGDICanvas consists of two handles to bitmaps and a handle to a DC.
One last thing: I don't want to have to pull out a member each time in order to do a BitB1+t using
CGDICanvas, SO I'm going to add a conversion operator.

Here’s the declaration of cabicanvas (which you can find in GDICanvas.h):

class CGDICanvas
{
private:
//memory dc
HDC hdcMem;
//new bitmap
HBITMAP hbmNew;
//01d bitmap
HBITMAP hbmO1d;
//width and height
int nWidth;
int nHeight;
pubTic:
//constructor
CGDICanvas();
//Toads bitmap from a file
void Load(HDC hdcCompatible,LPCTSTR IpszFilename);
//creates a blank bitmap
void CreateBlank(HDC hdcCompatible, int width, int height);

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

//destroys bitmap and dc
void Destroy();
//converts to HDC
operator HDC();

//return width

int GetWidth();

//return height

int GetHeight();
//destructor

J ~CGDICanvas();

Private means that you can't touch those members from outside of the class, and public means you can. It's a
security thing. Allowing the user to play with hdcMem or hbmNew could be disastrous, so I made them pri-
vate.

Something else that might be throwing you is the functions in the public section—especially the operator.
The power of C++ classes is such that you can take what would normally be a struct (which is what the
private part of the class looks like) and add functions that operate on that data.

Here are the equivalent C declarations to do the same thing:

struct GDICanvas
{
//memory dc
HDC hdcMem;
//new bitmap
HBITMAP hbmNew;
//0ld bitmap
HBITMAP hbmO1d;
//width and height
int nWidth;
int nHeight;
b
//1oads bitmap from a file
void GDICanvas_load(struct GDICanvas* pgdic,HDC hdcCompatible, LPCTSTR
IpszFilename);
//creates a blank bitmap
void GDICanvas_CreateBlank(struct GDICanvas* pgdic,HDC hdcCompatible, int width,
int height);
//destroys bitmap and dc
void GDICanvas_Destroy(struct GDICanvas* pgdic,);

FoNTsy, R1ITMAPSy AND REGIONS 117

And there would be nothing wrong with having these declarations. However, since the functions and the
struct are tightly coupled (the functions are of no use except with the struct), it makes sense to make it a
class.

You may have noticed that some of the functions were missing in the declarations for C. Getting the
width, height, or hdc would just be done through the struct, so the extra functions were unnecessary. Also,
the cGbicanvas and ~CGDICanvas were missing (these are the constructor and destructor). In C++, the
constructor is used to initialize the values of a class, and a destructor makes sure that the class cleans up
after itself. You never call either of these functions.

You can take a look at the implementation of cabicanvas on your own (it's in GDICanvas.cpp). There’s
not much to it, really. It just has the various code snippets for loading, making, and destroying bitmaps [
and DCs.

LoADING TMAGES uniTH CGDICANVAS
With cabIcanvas, loading images is much easier.

//declare a CGDICanvas variable
CGDICanvas gdiclmage;

//borrow the window’s dc

HDC hdc=GetDC(hWndMain);

//1oad the image
gdicImage.lLoad(hdc,"filename.bmp");
//release the window’s dc
ReleaseDC(hWndMain,hdc);

CReEATING A BLANK BE1TmAP LiTH CGDICANVAS
To create a blank bitmap instead, you can replace gdicImage. Load with this:

//create blank image
gdicImage.CreateBlank(hdc,100,100);

Do this to destroy it later:
gdicImage.Destroy();

You can see that this is a much more simplified process. cGbIcanvas has a few other features of which you
should be aware.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

CGDICANVAS INFORMATION RETRIEVAL FuNCTIONS
To retrieve the width or height of the image, you can use GetWidth Of GetHeight.

//get width and height
int w=gdicImage.GetWidth();
int h=gdicImage.GetHeight();

CoNVERSION TO HDC
J Also, because of the operator HDC (), you can use a CGDICanvas anywhere that an HDC is needed.

//b1it from the image
BitB1t(hdcDst,0,0,gdicImage.GetWidth(),gdicImage.GetHeight(),gdicImage,0,0,SRC-
COPY);

You have now drastically simplified your life (at least in the loading and creating bitmaps area) with
CGDICanvas.

A CGDICANVAS EXAMPLE

Load up IsoHex3_7.cpp. It requires the use of GDICanvas.h and GDICanvas.cpp, so be sure to have them
in there. Also, be sure to have the IsoHex3_7 bitmaps in the project directory.

Compile and run IsoHex3_7.cpp. It does the exact same thing as IsoHex3_6.cpp, except that it uses
CGDICanvas, which makes much of the initialization and cleanup code shorter. As you can see, Prog_Init
IS quite a bit shorter.

bool Prog_Init()

{
//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//Toad the images
gdicTile.Load(hdc,"IsoHex3_7-1.bmp");
gdicMask.Load(hdc,"IsoHex3_7-2.bmp");
//return dc to system
ReleaseDC(hWndMain,hdc);
return(true);//return success

FoONT=Sy, BRiITMAPSy AND REGIONS E

See how much easier it is?

You'll use Gbicanvas quite a bit (which is why it doesn't have a normal IsoHexX_Y name). Even when
you get into DirectDraw, you will still use Gbicanvas to load your graphics.

DougLE BRuFfFFfFERING wuiitTH GDI1

One thing that may be vexing you is that when you switch from one of the IsoHex examples and then
switch back, most if not all of the content is erased

by the windows that were in front. This is annoy-
ing in little sample cases like the ones we have NOTE [
been doing here, but it would be disastrous in any
sort of real application (like a game). This con-
tent-erasure happens because Windows doesn't

keep a copy of your_cllent area, eXC?pt Or? the this isn’t a difficult feat. Just make the blank
screen, so if something draws over it you're out bitmap the size of the client area after you

of luck. have adjusted it. However, if you were making

Not to worry, though: you can protect yourself an application where the user can resize the
against losing content by double buffering. A border, you'd have to make the blank bitmap
Double buffer is nothing more than an image larger—ssy, the size of the entire scregf
stored elsewhere (that is, not on the screen) that é":gcz g’:r:M‘;Vfﬂgsr)eg;ﬁvso?]}l’e“tﬂ;g oSN
is copied to the screen as it is needed. To double ab ou{ ' d

buffer, you need a blank bitmap selected into a '

DC, two Styrofoam cups, and a string. (Just kid-
ding about the Styrofoam cups and string.)

And what you do with this blank bitmap is write to it instead of to the main window’s DC. Doing so cre-
ates a problem, however: updating the window’s client area. If you draw to your double buffer, you cannot
see the double buffer unless you copy it onto your window; there are a few ways in which you can do so.
One, you could blit the contents of the double buffer to the window every frame (in Prog_Loop). That’s
one solution, but not the one you want. Two, you could update only the regions that change. As a game
programmer, you never want to draw anything you don't have to, and you especially never want to redraw
anything you don't have to. So solution one is out, and two is in.

How to implement this fine idea? Use an update rectangle. Here’s how it will work: if the update rectangle
is an empty rectangle, you will do no drawing; if the update rectangle is not empty, you will copy the con-
tents of the double buffer to the screen, but only from that rectangle. Now that you know how you'll be
drawing with it, you also need to know how you'll determine the update rectangle.

This blank bitmap has to be large enough to
contain the entire client area of your applica-
tion. With the examples we’ve been doing,

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

When the update rectangle is empty, any rectangle added to it becomes the new update rectangle. When
the update rectangle is not empty, any rectangle added to it is combined with the new rectangle using
UnionRect. When wM_PAINT is called, you add a rectangle the size of the client area to the update
rectangle.

DourgLE BRuFFER EXAMPLE
Load up IsoHex3_8.cpp. You'll need the IsoHex3_8 bitmaps, GDICanvas.h, and GDICanvas.cpp.
Again, this example looks exactly like 1soHex3_6 and IsoHex3_7. However, if you switch to another

J application and obscure some or all of the example, when you return, the contents of the client area
remain because of the double buffer (gdicBackbuffer in the code).

CREATING THE DouUuRLE RUFFER
Creation of the double buffer consists of simply a few function calls:

//get the client rectangle

RECT rcClient;

GetClientRect(hWndMain,&rcClient);

//create a blank bitmap with the client area’s dimensions
gdicBackbuffer.CreateBlank(hdc,rcClient.right,rcClient.bottom);

//clear out the blank bitmap

FillRect(gdicBackbuffer,&rcClient, (HBRUSH)GetStockObject (BLACK_BRUSH));
//clear the update region

ClearUpdate();

First, you get the client area so that you can create a double buffer of adequate size. Next, you clear out
the double buffer with a black brush (a stock object). Finally, you clear out the update area (making sure
that you initialize it properly).

The update rectangle itself is contained in a global variable called rcupdate, declared near the top of the
source file.

FoONT=Sy, BRiITMAPSy AND REGIONS E

UrPDATE RECTANGLE NIANAGEMENT

Management of the update rectangle is done by use of three functions: c1earUpdate, AddUpdate, and
RenderUpdate.

ClearUpdate is rather simple. It just sets the update rectangle to empty.

//clears the update rectangle

void ClearUpdate()

{

//set the update rect to empty
SetRectEmpty(&rcUpdate); [

AddUpdate does one of three things, depending on the current update rectangle and the rectangle
being added.

= |If you are attempting to add an empty rectangle, it returns immediately, because no real work needs to
be done.

= If the current update rectangle is empty, it copies the added rectangle to the update rectangle.

= |f the current update rectangle is not empty, AddUpdate Uses UnionRect to combine the two rectangles
and places that union into rcUpdate.

//adds the update rectangle
void AddUpdate(RECT* prcAdd)
{
//if the new rectangle is empty, return without doing anything
if(IsRectEmpty(prcAdd)) return;
if(IsRectEmpty(&rcUpdate))
{
//if the rectangle is empty
//copy the new rectangle to the update rectangle
CopyRect(&rcUpdate,prcAdd);

else

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

//if the rectangle is not empty

//create a temporary rectangle

RECT rcTemp;

//combine the new rectangle with the old rectangle in the temporary rect
UnionRect(&rcTemp,&rcUpdate,prcAdd);

//copy the temporary rectangle to the update rect
CopyRect(&rcUpdate,&rcTemp);

J RenderUpdate does one of two things.

= If the update rectangle is empty, there is no need to render anything, so it returns immediately.
= If the update rectangle is not empty, it grabs the DC from the window supplied in hwndDs't, copies over the
part of hdcSrc corresponding to rcUpdate, and finally clears out the update rectangle.

//renders the update
void RenderUpdate(HWND hwndDst, HDC hdcSrc)
{
//if the update rectangle is empty, return without doing anything
if(IsRectEmpty(&rcUpdate)) return;
//borrow the dc from the destination window
HDC hdcDst=GetDC(hwndDst);
//blit the update area
BitB1t(hdcDst,rcUpdate.left,rcUpdate.top,rcUpdate.right-
rcUpdate.left,rcUpdate.bottom-rcUpdate.top,hdcSrc,rcUpdate.left,rcUpdate.top,SRC-
COPY);
//return the destination dc to the system
ReleaseDC(hwndDst,hdcDst);
//clear the update area
ClearUpdate();

Double buffering is a good tool for any application that has to live in a window. Redrawing all content
each frame is a hassle, and it can kill performance. Using a double buffer and an update rectangle can
streamline the process somewhat.

FoONT=Sy, BRiITMAPSy AND REGIONS E

SuUMMARY

You thought | was going to go on forever about bitmaps, didn't you? VeI, it was necessary. It's an impor-
tant topic, and I'm still not entirely sure I gave it all the attention it deserves. In any case, | certainly hope
I've given you enough GDI stuff to work with.

CHAPTER 4

D1RECTX AT A
GLANCE

B D RECTX COMPONENTS

B D RECTX CONFIGURATION

[

bl

.

Di1REcCTX AT A GLANCE E

elcome to the wonderful world of DirectX! With it, you can grab control of your machine’s
w capabilities and do a lot more a lot faster than with Windows. In the dark days before DirectX,
taking full advantage of the enhanced capabilities of hardware was the domain of DOS applications. The
first fledgling version of DirectX did little better. Now things are pretty darn good, and DirectX has
become the norm for game programming for the Windows platform.

DT'ReECTX COMPONENTS

DirectX 7 (which, because of backward compatability, is included with DirectX 8) has a number of com-
ponents, of which you'll use only a scant few. The main components and their uses are as follows:

= DirectDraw (DD). The visible component of DirectX, DirectDraw encapsulates your video driver(s). With
DirectDraw, you control the resolution of the screen, the system’s cooperation with the windowed environ-
ment (either full-screen or windowed). You also control the use of display memory. DirectDraw allows you to
program the machine independently for a variety of video cards.

= Direct3D (D3D). Direct3D is a cousin of DirectDraw. (In DirectX 8, DirectDraw and Direct3D will be
combined.) It encapsulates a 3D hardware driver if one is present or emulates one if needed. Like
DirectDraw, D3D achieves device independence. Hardware support in the driver allows the use of more of
D3D’s advanced features.

= DirectSound (DS). The audible component of DirectX, DirectSound encapsulates a computer’s sound driv-
ers. It is used to play digital sounds in a machine-independent manner.

= DirectMusic (DM). This is DirectSound’s cousin. It allows an easy (well, not easy) way to play music on a
variety of machines while still having it sound the same.

= Directlnput (DI). Directinput encapsulates the drivers for various input devices, like keyboards, mice, joy-
sticks, gamepads, flight-yokes, and a variety of specialized controllers.

= DirectPlay (DP). DP encapsulates network drivers, allowing an independent way to get information from
one computer to another, making multiplayer games easier to create.

= DirectSetup. A minor component of DirectX, DirectSetup allows you to install the latest release of DirectX
on a user’s machine with a few simple function calls. In addition, it allows customization of the interface you
present to the user during the setup process.

DhTReECTX CONFIGURATION

Before you get flying, you need to get DirectX set up on your machine. The first step in doing so is
installing the Software Developer’s Kit (Installing the SDK is covered in Appendix A). Once you have the
SDK installed, select Tools, Options, as shown in Figure 4.1.

E 1someETRIC GAME PROGRANMMING WITH DI1RECTX{ 7.0

o Miciosoll Visusl Ces

[Do £ Vo fnsen Projct id | Touts irdowr b
|d) | W@ 4 @ | 2 2 Vinasl Compoment Manazer
I] = A Begeies Corirol

‘2l

Figure 4.1

Selecting Tools,
Options

lals

|
|15, o (Db P e T P i 7 el 7 Tl
Charews coteos _

el

You will see the Options dialog box, as shown in Figure 4.2. Click on the Directories tab, and make sure

that the top two combo boxes read WIN32 and Include files.

-, Micaosoll Visuasl Ces

|| fle G& View jooem Projsct uld Jock Windsw leb

@ | S e em 2 - D[R | Gy feeriace

1L =l
ST

Edioi | Tabi | Debug | Compasbity | Dudd Dwectocss | | [G]3]
Sher duschones bor

Irachuder Flers "i

Ox ++

C\Fangram Files'Mecimsoll Visual S o)y TSPMFOINCLUDE
C:\Pangram Files\Micsnaoh Visual S udntVTSEPATLUNCLUDE

Figure 4.2

The Options dialog box

=

T

DiReEcCTX AT A GLANCE 127

Click on the first empty line in the list box, and enter the path to the SDK’s Include folder, or use the
ellipsis button (...) to browse for it, as shown in Figure 4.3.

.. Micamioll Visual Ces
[|Ete foe iow inien Boet it Jook indew ik
Lﬂ.@ Mo el 2 - DS Gyfmtedsce
I | =
- s

Figure 4.3
Adding a folder

Gdioi | Tabs | Debug | Compuibdiy | Bubd Disscoims | |]3]
Pratoarc Shew i for

[z =] [e =]
| Diecioros: [l A
I \Program Filesblesomnli Vinaal ShudeWEENRCLUDE -

C\Paogram FilerMirsosn Vsl Stuce WESEMFCUNCLUDE
Files'bics Vipaal Shuche’y TL

ks
[

<l

[E R, wivs (Do}, Fed v Pl 5 Find i Filoa 2, P 7 Tl gl
Bmsdy

Now; click on one of the other items to unselect that line, and use the up arrow button to move your new
entry to the top of the list box. (See Figure 4.4.)

. Micamoll Visuasl Ces
|| £8 viw iron Proect Duld Took Window biel -
[[e @ el - o S | Gafredace [1 Bringing the new
I = | =i g% < folder to the top of
2l .
the list

Figure 4.4

Edior | Tabs | Debug | Compatidly | Buld Disctonss | | [G]]

Pratiostr Shirs ceectonss for
[wingz %] [ichute s =

| Divectnuiex X + 4

I \Paogram Fileshiesneof Vil ShadaWVCSNINCLUDE
I \Paogram Files\Micsnanh Visusl Studa\WCSMFCUNCLLIDE
IC:\Pangram Files\Micsnsof Visual Sudo\WCSNATLINCLUDE

Lals

[
i

E 1someETRIC GAME PROGRANMMING WITH DI1RECTX{ 7.0

Finally, do the same thing for the library files. The result is shown in Figure 4.5.

. Micaosalt Visual Cos Figure 45
|[Be £ Wiew Insen Poiest fudd Took Window L _
) | W@ ¥ i - R | Gafeerece =[Sl SR ETIENE) Library directories
I | | |
el

Platloerrc

I'Wr-'i! .
:I Dieciones: X &

CWPangram FiesrMiesosol Vil Shuda' VTSRS
I \Paogram Files\Micsnsol Vinual S hudio®VCSSWFCALIB

lals

Al b waea (e Frd s Pl T Find il 23, P Tl o
Eosd

Thankfully, you have to do this only once, and all the applications you write will have DirectX available
to them.

W\Ell, almost. There is one last thing you have to do for each application. VWhen you are working on your
application (and it's best to set this up somewnhat early in the development so you won't forget and get a
bazillion errors), select Project, Settings, as shown in Figure 4.6.

Di1REcCTX AT A GLANCE E

% IsoHend i - Miciosoit Visual Cos - (lsohexd_ f.op] 5 Figure 4.6
5 Ele £t Yew Inoen | Eroect Duid Tocki Window pen BEIE . .
@A L 0 SethciePue * | Gy femtertoce nllOom= s me Project, Settings
i Bad To Proyct » £

||C.Iobu:| 1 = :I M-
- relipdate. acTenp)

(T wobrors 1o 8| Epatbistatie,

A laoHead 8 bes

=423 nace Files fresent P ik Wah s
|2) GONCanvai cox { —
2] leoHexd B epp it pedat tangl npit g

=14 Headen Fims il {IsFectiEapty(becllpdate)) return
(W) GDACanvat

[Recunce Py
¥ (] Ftermusd Dhepeenatens

HVKD hwndDet, HDC hdoSec)

HOC hdeDst =Gt DC{ hwndDst)
BitBLt (hdeDst relipdate. lel i rellpdate . bop, rellpdate. raght=rellpdatie . lef

RelessslC(hvndDst . hdcDst) |:

ClearOpdate().

i —]
] ||y
x

il

(] t‘il

<[5 b, won (Tibugk Fird i Files 1, Find i Fles 2 Finauis / ET] W

Alternatively, you can press Alt+F7 to get to the same place.
After you have done either of these, you will be met with the dialog box shown in Figure 4.7.

.. lsuHend @t - Miciosolt Visiesl Cos - [lioiesd_ @ cpp) £ Figu re 4.7
I Ele G iew fasn Browct fubd Tocks Window Meb =l=l .
& G RO Be o o B Gl G RN The Project
[| T | | Settings dialog box
m Project Settings A
Breottea f Getlegnfor [wmizlomg 7] | Beemal lml Efer | Lok | Resue [2]7]
= e - m
CER =]
5142 Header
G
_Iﬂm(Miiopolt Foundation Claaies:
5 O Extranst [T - |
Drspnd drecosies clpdate. lel
[rtmadais flat
[cirbasy
‘I w” =
"2 Cie] =]
LIS E _.r
:"I' ™ Ao poi -t bagrbaces epmndaracats. =
o] emd |
L5 R, wesa (Tiebug), Frd v Pl 13, Pt s Pl 2 Pl / KT o]
ey T T T

E 1someETRIC GAME PROGRANMMING WITH DI1RECTX{ 7.0

Click on the Link tab, shown in Figure 4.8. In the Object/library modules text box, add any extra libs to
which you want to link. In the case of DirectDraw, you'll want to put in ddraw.lib and dxguid.lib.

. lohand_il - Miciosolt Viswsl Cos - ok esd_@.cpp] 2l Figure 4.8
B3 Eie Bt Voo et Pocesct ikt Tock Window Wb SLIE .
|8 S @0 me o DR Gl Hn |G mx s The Link tab
| E=T0 [gobaimenbest] =[5 Bt
ijw Project S ettings =

5‘-]“.“7.—.3_(SettrgsFox: [z Dot =] | | Gewwral | Debug || Gs | Lok I Fiessascy [1T7]
7T 8 oo = — Covsr EETR—T] 5|
= _"ﬁ;luI:: Outpes s e
:I [Gon [Cetupictiond_fiese
Lo Oty o
|mmhr‘ql|l|"m'\ﬂi'l’|lﬂﬁl£'hgi&"l\m!n’n
7 G g i T Ignar s s clpdate. lal
F Lk porsertaly 7 Goneale poplie
™ Enable profing
i _
Eaﬁ.‘ mmmm;mymmn'{'mwym EI _'l_
.ﬂ— H:._‘Wltluumﬂwad\'ux’ﬁ;dﬂﬂb
| ole X2 I oheand 32 1 vl iy oodbe T2 W oobrcop)2 i :I =
ok | comn |
| <[x By o {Tiebiog Find i Files 1, Fied s Flos 2, Fouls / Tlnl o
Fiosds Mo Tl [REC liie Wioe [REAT
When you get to DirectSound a little later, you'll add
dsound.lib and winmm.lib to this list as well. NOTE

When you’re developing, you nor-

That's all you need to do to set up your compiler to use edllly AT the Dbl sarfigura:

DirectX. tion.When it comes time to dis-
tribute your code, you’ll switch to

TRADITION AND COIM the Release configuration.\When
you do so, you’'ll have to select

In every book ever written about DirectX, the tradition is to Projects, Settings because the

spend some time talking about how DirectX works and how libraries you link depend on what

COM works. Who am | to break with tradition? configuration you are in.

COM stands for Component Object Model. Hmm. You

don't seem particularly impressed. OK. The why and wherefore
of COM is pretty boring stuff anyway. Instead, let me tell you what COM can do for you, as far as
DirectX programming is concerned. Number one: no matter what version of DirectX you

use to write your game, it will run on any machine that has that version or later of the DirectX runtime
installed on it. Number two: when you use DirectX objects, most of the housekeeping is done for you.
You create your objects with the various create functions and member functions, and you release them
when you no longer need them. Each Create is paired with a Release, and that’s all you have to do.
COM and DirectX take care of the rest.

Di1REcCTX AT A GLANCE E

VERSION CONTROL

First, let's address DirectX benefit number one, version control. You'll be using DirectX version 7. This
version has a number of interfaces (an interface is just a set of functions used to access an object). These
interfaces are I1DirectDraw7, IDirectDrawSurface7, and IDirectDrawClipper. There are a few others
that you won' be using.

In order for users to run your program, they must have DirectX 7 or later installed on their systems.

However, what happens when later versions come out, and what happens if they drastically change the way
things are done? Not a problem. 1DirectDraw7 and the rest will still be there, and new interfaces will have
been made available to access the latest features. [

Pretty cool. This means you can get a copy of some of the stuff I did using DirectX 5, and it'll still work.
Backward compatibility is good.

REFERENCE COUNTING

Now, DirectX benefit number two. As | said before, you'll be using a number of interfaces. I also
explained that an interface is just a set of functions that allow you to talk to an object. In most cases in
DirectX, the existence of one object depends on the existence of another object. Namely, an
IDirectDrawSurface7 Object depends on an IDirectDraw7 oObject to work properly. This could be disas-
trous if you deleted the 1Directdbraw7 object (by calling its Release function) before you were done
using the 1DirectDrawSurface7 Object.

That's where COM’s reference counting comes in. When you create your 1DirectDraw7 Object, its refer-
ence count becomes 1. When you use that object to create an 1DirectDrawSurface7 object, it is increased
to 2. When the 1DirectDraw7 object is released, it drops to 1 again, but it is not deleted, because
IDirectDrawSurface7 Still needs it. Only when 1DirectDrawSurface7’s Release is called is the
IDirectDraw’ Object deleted.

If you design a class or module that depends on one or more of DirectX’s objects, you can also make use
of reference counting. That is, if you design a class or module that needs an object, you can call AddRef t0
increment the reference count, and Release When you no longer need the object.

If you didn't get all of that in a single pass, don't worry. Suffice it to say that COM and DirectX protect
you from yourself somewhat, but, of course, this doesn't give you a license to be sloppy.

SuUMMARY

This short chapter just showed you how to get DirectX up and running on your machine. We'll be getting
into DirectDraw next, so be prepared.

S g e e 2 W
LFJLKJ—'_‘E Lt 1 .~ Lan—l_mj—|—"—r|JJ P

CHAPTER 5

LISING
DhT1RECTDRAW

B CREATING THE TDITRECTDRAWT
O=JECT

B SETTING THE COOPERATEIVE LEVEL

v T ENUMERATING DI1sPLAY NYIODES

HjiLLJ—x J—dl,_qﬂf —

W—L/_\f\;ﬂ_lﬁﬂrf——%__ T

UsiNnGg D ReEcCTDRAW E

irectDraw (DD), along with its cousin, Direct3D (D3D), is the visible component of DirectX,
D and traditionally, it is always the first component a person new to DirectX learns. DD has one
primary task, and that is granting you control over your video hardware—something that you wouldn't
otherwise have under Windows. Or, at least, you couldn't control it very well or with any sort of good per-
formance.

This chapter will get you up to speed on the component of DD that exerts your control over display [
resources, the 1pirectDraw7 interface. Chapter 6, “Surfaces,” covers DD’ stock in trade,
IDirectDrawSurface7 and IDirectDrawClipper.

CREATING THE TIDhReEcTDRAW?7 ORJECT

All of the DirectX interfaces are used through the use of pointers, and each object has a special typed
pointer that you use to talk to its interface. In the case of 1DirectDraw7, this pointer type is LPDIRECT-
DRAW7. In a game or application, you need only one of these (unless you have a multiple-monitor system,
in which case you could use two or more, but multimon systems are beyond the scope of what I'm show-
ing you here).

So, when using DD, always declare a global variable that points to an 1DirectDraw7 interface:

//IDirectDraw/ pointer
LPDIRECTDRAW7 Tpdd=NULL;

And somewhere early in your initialization (Prog_Init), create your object using DirectDrawCreatex:

HRESULT WINAPI DirectDrawCreateEx(
GUID FAR *1pGUID,
LPVOID *1plpDD,
REFIID 1iid,
IUnknown FAR *pUnkQuter
)

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

This returns an HRESULT, which is bD_0K or some DDERR_* constant. The parameters are explained in
Table 5.1.

Table 5.1 DirectDrawCreateEx Parameters

DirectDrawCreateEx Parameter Purpose
TpGUID A pointer to a GUID (globally unique identifier)
:I that identifies the display drivers to use with the

IDirectDraw7 object.

Tp1pDD A pointer to your pointer to an IDirectDraw?
interface. Must typecast to void*x*.

iid An object type identifier. Must be set to
IID_IDirectDraw/

pUnkOuter COM aggregation stuff. Use NULL.

These parameters are pretty Greek, so | think I have some explaining to do. A GUID (globally unique
identifier) is how Windows identifies everything. Your video card has one, as do most of the rest of the
pieces of hardware in your machine. A GUID allows you to identify any piece of hardware with one sim-
ple (well, not exactly simple) numbering mechanism. You won't be doing too much with GUIDs, and you
will be passing NULL when they are asked for.

The i1id parameter is similar in function to a GUID—it’ a class identifier. Each COM object
(1pirectbraw7 included) has a class identifier; to make use of them, you must have dxguid.lib linked to
your project under the Project, Settings tab.

Confused? | was when | first laid eyes on this COM stuff. Allow me to show you the code for creating
your 1DirectDraw7 Object:

//create the direct draw interface
HRESULT hr=DirectDrawCreateEx(NULL, (void**)&Ipdd,IID_IDirectDraw7,NULL);

Usually, the rule is as follows: if you don't know what the parameter is for or what its value should be, pass
aNULL.

UsiNnGg D ReEcCTDRAW E

AgoutT HRESLULT

I've mentioned HRESULTS twice up to this point—they're how DirectX NOTE

returns error or success. Usually, when a function call returns and is This type of error
successful, you get the value po_ox. If it fails, you get one of the many checking tends to clut-
DDERR_* constants, indicating both that it failed and why it failed. ter up source code. For

To test for this condition, Microsoft has provided a macro called
FATLED. To check for errors, you do something like the following:

this reason, I'll be leav-
ing most of it out,
using it only where
//error check absolutely necessary.
if(FAILEDChr)) [
{

//there was an error

}

SETTING THE COOPERATIVE LEVEL
After you have created your 1DirectDraw7 object, you need to specify the manner in which you want to
use it. Essentially, there are two choices—windowed and full-screen.

Select the manner in which you will use 1directbraw7 through 1DirectDraw7’s SetCooperativeleve]
member function:

HRESULT SetCooperativelevel(
HWND hWnd,
DWORD dwFTlags

)

Like all other DirectX functions, this returns error or success in an HRESULT. The parameters are explained
in Table 5.2.

Table 5.2 SetCooperativelLevel Parameters
SetCooperativelLevel Parameter Purpose

hind The top-level window that DirectDraw is to use

dwFlags Cooperation flags (see Table 5.3)

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

There are only about a handful of flags that you'll use with any frequency. They are listed in Table 5.3.
Most of the rest of the flags deal with multimon systems and Direct3D.

Table 5.3 SetCooperativelevel Flags

SetCooperativelLevel Flag Meaning
DDSCL_ALLOWREBOOT Allows an end user to use Ctrl+Alt+Delete during a full-
screen application. This is a must if you intend to make
:I Windows-friendly games.
DDSCL_EXCLUSIVE Specifies that you want exclusive control over the display
hardware.You must use DDSCL_FULLSCREEN also.

DDSCL_FULLSCREEN Specifies that you want a full-screen application. Must be
used with DDSCL_EXCLUSIVE.

DDSCL_NORMAL Specifies that you are making a windowed application
with DirectDraw. Useful for debugging.

For the most part, you'll want to do full-screen, exclusive applications that have the ability to use
Ctrl+Alt+Delete, so the code will look like this:

//set cooperative level-fullscreen-exclusive
hr=1pdd->SetCooperativelevel(hWndMain,DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN |
DDSCL_ALLOWREBOOT) ;

Now that you have grabbed full-screen access to your display, you might want to change the display mode.
You can do one of two things: one, you can start picking display modes from the commonly available ones
until one works, or until none of them work, in which case youd be up a creek. Or two, you can enumer-
ate the available display modes and then choose from that list. | prefer the latter method. Trial and error is
not my style.

ENUMERATING DhsPLAY NYIODES

Enumeration of any type is a bit confusing at first. I'm not going to do anything really weird here. I'm just
going to put the display modes into a nice list that you can examine later in the code.

First, let's go over the function you'll be calling to actually do the enumeration, EnumdisplayModes:

UsiNnGg D ReEcCTDRAW

HRESULT EnumDisplayModes(
DWORD dwFTags,
LPDDSURFACEDESC2 1pDDSurfaceDesc?,
LPVOID 1pContext,
LPDDENUMMODESCALLBACKZ TpEnumModesCallback

This returns an HRESULT containing success or failure. Table 5.4 explains the parameter list.

Table 5.4 EnumbDisplayModes Parameters

EnumDisplayModes Parameter Purpose

dwFlags Special flags telling DD what kind of enumeration
you want

1pDDSurfaceDesc? A description of the type of display mode you are
looking for

TpContext A user-defined context variable that gets passed

to the callback function

TpEnumModesCallback A pointer to the callback function

The dwFlags parameter has two special values: DDEDM_REFRESHRATES, which takes into account the
refresh rate for the display mode, and DDEDM_STANDARDVGAMODES, which enumerates the normal old VGA
320%x200x8 display mode. You won't use either of these flags; you will always pass O.

1pDDSurfaceDesc? is a pointer to a DDSURFACEDESC2 struct, which 1 will cover in more detail later in this
chapter and in Chapter 6. If you were to set some of the members of a bDSURFACEDESC2 and then call the
enumeration, you could filter your search. For now, you'll just list all of the display modes, and to heck
with limiting the search. (You can look through them later after you've listed them all.)

The final parameter, 1pEnumModesCallback, is a user-defined callback function, one that looks similar to
the following:

HRESULT WINAPI EnumModesCallback2(
LPDDSURFACEDESC2 1pDDSurfaceDesc,
LPVOID T1pContext

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

This function will return one of two values: DDENUMRET_0K will continue enumeration, and
DDENUMRET_CANCEL will stop it.

1pDDSurfaceDesc IS another pointer to DDSURFACEDESC2, which contains information about the display
mode being enumerated. 1pContext contains the value you originally passed in the call to
EnumDisplayModes.

There is a lot of information contained in a DDSURFACEDESC? structure. Here's the definition:
typedef struct _DDSURFACEDESC2 ({

DWORD dwSize;
J DWORD dwFlags;
DWORD dwHeight;
DWORD dwWidth;
union
{
LONG 1Pitch;
DWORD dwlLinearSize;
} DUMMYUNIONNAMEN(1);
DWORD dwBackBufferCount;
union
{
DWORD dwMipMapCount;
DWORD dwRefreshRate;
} DUMMYUNIONNAMEN(2) ;
DWORD dwAlphaBitDepth;
DWORD dwReserved;
LPVOID 1pSurface;
union

{
DDCOLORKEY ddckCKDestOverlay;
DWORD dwEmptyFaceColor;
} DUMMYUNIONNAMEN(3);
DDCOLORKEY ddckCKDestB1t;
DDCOLORKEY ddckCKSrcOverlay;
DDCOLORKEY ddckCKSrcB1t;
DDPIXELFORMAT ddpfPixelFormat;
DDSCAPS2 ddsCaps;
DWORD dwTextureStage;
} DDSURFACEDESC2, FAR* LPDDSURFACEDESCZ;

UsiNnGg D ReEcCTDRAW E

As you can see, there’s quite a bit here, and you will be using only a fraction of it. You'll be seeing bDSUR-
FACEDESC2 in more detail in Chapter 6.

The information you care about for a display mode consists of three things: the width, the height, and the
color depth. I explained a bit about color depth in Chapter 2, “The World of GDI and Windows
Graphics,” during the discussion on pixel plotting. Briefly, color depth specifies how many bits each pixel
contains. It usually has a value of 8, 16, 24, or 32. In depths higher than 8, the bits correspond to some
RGB (red, green, blue) value that describes a color.

In DDSURFACEDESC?, You can see the dwiidth and dwHeight members. These correspond to the size of
the display mode (the resolution). Common values are 640x480, 800x600, and 1024x768. Some video

cards can go even higher, and many video cards have more exotic display modes, like 400x300, 512x384, [
and so on.

The location of the bits per pixel is not quite as obvious in the DDSURFACEDESC?2 Structure, because it is
part of the ddpfPixelFormat member, which is itself a DDPIXELFORMAT structure.

typedef struct _DDPIXELFORMAT({

DWORD dwSize;

DWORD dwFlags;

DWORD dwFourCC;

union

{
DWORD dwRGBBitCount;
DWORD dwYUVBitCount;
DWORD dwZBufferBitDepth;
DWORD dwAlphaBitDepth;
DWORD dwlLuminanceBitCount;
DWORD dwBumpBitCount;

} DUMMYUNTONNAMEN(1) ;

union

{
DWORD dwRBitMask;
DWORD dwYBitMask;
DWORD dwStencilBitDepth;
DWORD dwlLuminanceBitMask;
DWORD dwBumpDuBitMask;

} DUMMYUNIONNAMEN(2) ;

union

{
DWORD dwGBitMask;
DWORD dwUBitMask;

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

DWORD dwZBitMask;
DWORD dwBumpDvBitMask;
} DUMMYUNIONNAMEN(3);
union
{
DWORD dwBBitMask;
DWORD dwVBitMask;
DWORD dwStencilBitMask;
DWORD dwBumpLuminanceBitMask;
} DUMMYUNIONNAMEN(4);
J union
{
DWORD dwRGBATphaBitMask;
DWORD dwYUVATphaBitMask;
DWORD dwlLuminanceAlphaBitMask;
DWORD dwRGBZBitMask;
DWORD dwYUVZBitMask;
} DUMMYUNIONNAMEN(5) ;
} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

This is another big structure with a lot of information (but most of it is in the form of unions). This is
your first look at ppP1xELFORMAT. It will be explored in more detail in Chapter 6, when we’ll take a look
at converting from one pixel format to another. The member of DDPIXELFORMAT that concerns you is
dwRGBB1 tCount, which contains the bit depth of the display mode. (Seems like a whole lot of structure
for just three little pworos, doesn't it?)

Let’s get enumerating, then. Enumerae twice: the first enumeration counts the display modes, and the sec-
ond enumeration puts them into a list.

First, define a structure that contains all the applicable information about a display mode (at least, as far as
you're concerned):

struct DisplayMode

{
DWORD dwWidth;
DWORD dwHeight;
DWORD dwBPP;

DIRECTDRAW

Short and sweet, the way things should be. Next, add two global variables:

//the number of display modes will be kept here
DWORD dwDisplayModeCount=0;

//this will point to the Tist of display modes
DisplayMode* DisplayModelist=NULL;

The first enumeration function is quite simple, since it just counts the display modes:

HRESULT WINAPI EnumModesCallbackCount(
LPDDSURFACEDESCZ2 1pDDSurfaceDesc,
LPVOID T1pContext [

//increment the count variable
dwDisplayModeCount++;
//continue the enumeration
return(DDENUMRET_OK) ;

The second enumeration isn't much more difficult;

HRESULT WINAPI EnumModesCallbackList(
LPDDSURFACEDESC2 1pDDSurfaceDesc,
LPVOID T1pContext

//copy applicable information to the list

DisplayModelList[dwDisplayModeCount].dwWidth=1pDDSurfaceDesc->dwWidth;

DisplayModelList[dwDisplayModeCount].dwHeight=1pDDSurfaceDesc->dwHeight;

DisplayModelList[dwDisplayModeCount].dwBPP=1pDDSurfaceDesc-
>ddpfPixelFormat.dwRGBBitCount;

//increment the count variable

dwDisplayModeCount++;

//continue the enumeration

return(DDENUMRET_OK) ;

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Finally, put it all together to make the enumeration happen:

//clear the display mode count
dwDisplayModeCount=0;
//count display modes
1pdd->EnumDisplayModes(0,NULL,NULL, EnumModesCallbackCount);
//allocate space for the 1list
DisplayModelList=new DisplayMode[dwCount];
//reset the count
dwDisplayModeCount=0;
J //1ist the display modes
1pdd->EnumDisplayModes(0,NULL, NULL,EnumModesCallbackList);

The new operator performs about the same function as ma17oc, only in a more typesafe way. The ma171oc
equivalent would be:

DisplayModelList=(DisplayMode*)malloc(sizeof(DisplayMode)*dwDisplayModeCount);
When you are done with the list, use the following code to deallocate it:

//delete the display mode 1ist
delete [] DisplayModelist;
DisplayModelist=NULL;

This is equivalent to using the free function that is normally used with ma11oc.

Now you have all the possible display modes in a list, and you can loop through that list and test to see
which mode you want. Also, you can look through to see if a given mode is supported. If it isn't, you can
settle for a less-ideal mode.

Let's do some code that checks for an 800x600x16 mode (almost universally available).

//set up the test mode

DisplayMode TestMode;

TestMode.dwWidth=800;

TestMode.dwHeight=600;

TestMode.dwBPP=16;

//our boolean test variable

bool found=false;

//our iterator

DWORD index;

//where we found it (all bits set means not found)
DWORD foundindex=0xFFFFFFFF;

for(index=0; (index<dwDisplayModeCount) && (!found);index++)
{

UsiNnGg D ReEcCTDRAW

if((DisplayModelistlindex].dwWidth==TestMode.dwWidth) &&
(DisplayModelistl[index].dwHeight==TestMode.dwHeight) &&
(DisplayModelist[index].dwBPP==TestMode.dwBPP))

foundindex=index;
found=true;

}

}

Simple enough, right? You could perform a wide variety of tests on the display mode list, from finding the
largest mode with a certain BPP to finding the greatest BPP for a given mode. Or, you might let the end [
user select what display mode he wants to run in, and save this value in a configuration file somewhere.

Now that you know what modes are available and what mode you want, you can use this information to
set the display mode. (It's hard to believe that this topic took several pages to cover—the code gets execut-
ed in a fraction of a second.)

SETTING THE DhhisPLAY IYIODE

After enumerating the display modes, setting the display mode is easy. You set the display mode with the
SetDisplayMode member function of 1DirectDraw7 (are you really surprised?).

HRESULT SetDisplayMode(
DWORD dwWidth,
DWORD dwHeight,
DWORD dwBPP,
DWORD dwRefreshRate,
DWORD dwFlags

)

This returns an HRESULT again (by now you should be spotting a pattern), and the parameters look suspi-
ciously like the members of DisplayMode, with the exception of dwRefreshRate (which you don't care
about, so pass 0) and dwF1ags (which you also don't care about, so pass 0).

Calling this function usually looks something like this:

//set the display mode
hr=1pdd->SetDisplayMode(800,600,16,0,0);

Of course, the 800, 600, and 16 are whatever display mode you want, or variables containing the values
you want.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

RETRIEVING THE CURRENT DI1sPLAY
MobDE

Of course, there may be times when you want to retrieve the current display mode. To do this, you use
GetDisplayMode.

HRESULT GetDisplayMode(
LPDDSURFACEDESC2 TpDDSurfaceDesc?
)3

J Look! It returns an HRESULT! (I'm not going to mention the return values for px functions anymore. They
are all HRESULTS and are all treated exactly the same way.)

The sole parameter of this function is 1pdDSurfaceDesc2, Which is a pointer to a DDSURFACEDESC2,
Declare a variable of bDSURFACEDESC2, clean it out, and call the function. When it returns, your bDSUR-
FACEDESC2 contains the information describing the current display mode (similar to how it did when you
enumerated display modes). But what do | mean by “cleaning out” a DDSURFACEDESC2? VeI, in most
cases, when you work with DDSURFACEDESC2S, or any other DirectX structure, you first have to initialize it
(set all members to 0), and you have to set the dwSize member. This is how to do so:

//declare the variable

DDSURFACEDESC2 ddsd;

//initialize to all zeros

memset (&ddsd,0,sizeof (DDSURFACEDESC2));
//set the size

ddsd.dwSize=sizeof (DDSURFACEDESC?2);

After it has been cleaned out, it is ready to use:

//retrieve the display mode
hr=1pdd->GetDisplayMode(&ddsd);

Just like within the enumeration function, the width and height of the display mode are stored in
ddsd.dwWidth and ddsd.dwHeight, and the bits per pixel are stored in
ddsd.ddpfPixelFormat.dwRGBBitCount

UsiNnGg D ReEcCTDRAW

H - INAL THINGE: RELEASING ORJECTS

There is a certain way in which you delete almost all DirectX objects once you are done with them. For
your 1pdd, this is what it looks like:

if(1pdd)
{
Tpdd->Release();
Tpdd=NULL;
| [
This exact same snippet, with just a different variable, will be used for most of your DirectX cleanup. Just
as it was important during GDI to get rid of your object and DCs, it is also important to get rid of your
DirectX object.

Check out IsoHex5_1.cpp (the only Chapter 5 example), and see in action what | have been talking about
here. Don't expect much; you'll just end up with a black screen. However, now that you are into DirectX,
that screen is yours!

SuUMMARY

This chapter has given you entry to the world of DirectDraw, but so far you've only got your foot in the
door. Here are some key points to remember:

= The IDirectDraw7 object controls display resources. It is the parent of all other DirectDraw objects. You
create one with DirectDrawCreateEx.

= Depending on what you want to use the 1DirectDraw7 object for, you must set an appropriate cooperative
level using SetCooperativelevel.

= Although there are display modes that are widely supported on most video cards, it’s still a good idea to enu-
merate the display modes before selecting the one you want to use.

| el NS B ‘ S e s
s e = e] L —

CHAPTER 6

SURFACES

m NHAT 15 A SURFACE™T
B CREATING A SURFACE

B LUSING SURFHACES

[

bl

.

MJ_X =

M?__ e

SuURFACES 147

ow we're getting into some cool stuff: DirectDraw surfaces (the 1DirectDrawSurface7 object).

Surfaces are DirectDraw’s stock in trade. They hold graphical images that you can display and
manipulate, similar in function to memory device contexts but without all the abstraction inherent to GDI.
Of course, you can still use GDI functions with your surfaces, as you'll see a little later. This is a big chap-
ter, and we've got a lot of ground to cover, so let’s get going.

WHAT 1I5s A SURFACET

Quite simply, a surface is a block of memory (either on your video card or in system memory) that is man-
aged by DirectDraw as though it were a rectangle, even though the memory itself is linear. Surfaces come
in many types. The difference between these types lies in what each surface is capable of. The three types of
surfaces that you will be concerned with at this point are primary surfaces, secondary surfaces (back
buffers), and off-screen surfaces.

= Primary Surface. In any application, you will have only one primary surface for each DirectDraw object. (In a
multiple-monitor system, with multiple DirectDraw interfaces, it is possible to have more than one.) The pri-
mary surface is the only surface in DirectDraw that is visible.

= Secondary Surfaces. A secondary surface, or back buffer, is not a surface all on its own. Not quite. Sure, you
can still do all the things with a secondary surface that you can do with any other type of surface, but the
existence of a secondary surface depends on other surfaces. It is attached to another surface and is part of
what is called a flipping chain. More about this a little later.

» Off-Screen Surfaces. An off-screen surface is what you will use to store your bitmaps and other graphical
data until it is needed. Quite often you'll have a large number of these, and many of them will be small in
size. They serve about the same function as do memory DCs.

Now that you've been introduced to surfaces, let’s start making them!

CREATING A SURFHACE

All surfaces (except secondary surfaces) start out their life with a call to 1DirectDraw7’s CreateSurface.

HRESULT CreateSurface(
LPDDSURFACEDESCZ 1pDDSurfaceDesc?,
LPDIRECTDRAWSURFACE7 FAR *1plpDDSurface,
IUnknown FAR *pUnkQuter

)s

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

On success, this returns op_ok. Table 6.1 explains the parameter list.

Table 6.1 IDirectDraw7::CreateSurface Parameters

CreateSurface Parameter Purpose

1pDDSurfaceDesc? Pointer to a DDSURFACEDESC2 containing a description of
:I the desired surface
1plpDDSurface Pointer to an LPDIRECTDRAWSURFACE7 pointer that will

be filled with a pointer to the new
IDirectDrawSurface7 object

pUnkOuter COM stuff. Use NULL.

DDSURFACEDESCE2

Now I'm going to go into a little more detail about bDSURFACEDESC2, which was introduced in Chapter 5,
“Using DirectDraw.”

Here’s the structure again, with the important fields highlighted in bold:
typedef struct _DDSURFACEDESC2 {

DWORD dwSize;
DWORD dwFlags;
DWORD dwHeight;
DWORD dwWidth;
union
{
LONG 1Pitch;
DWORD dwlLinearSize;
} DUMMYUNIONNAMEN(1);
DWORD dwBackBufferCount;
union
{
DWORD dwMipMapCount;
DWORD dwRefreshRate;
} DUMMYUNIONNAMEN(2);

DWORD dwAlphaBitDepth:

SuURFACES 145

DWORD dwReserved;
LPVOID 1pSurface;
union

{
DDCOLORKEY ddckCKDestOverlay;
DWORD dwEmptyFaceColor;
} DUMMYUNIONNAMEN(3);
DDCOLORKEY ddckCKDestB1t;
DDCOLORKEY ddckCKSrcOverlay;

DDCOLORKEY ddckCKSrcB1t;

DDPIXELFORMAT ddpfPixelFormat; [
DDSCAPS2 ddsCaps;

DWORD dwTextureStage;

} DDSURFACEDESCZ2, FAR* LPDDSURFACEDESCZ;

The highlighted fields are explained in Table 6.2.

Table 6.2 Meaningful Members of DDSUFACEDESC?2
DDSURFACEDESC2 Member Meaning

dwSize The size of the DDSURFACEDESC2. Always set to
sizeof (DDSURFACEDESC?2).

dwFlags Flags specifying which of the other members are
meaningful (see the next section)

dwHeight Height of a surface

dwWidth Width of a surface

1Pitch The pitch of a surface (discussed later, in the section
“The Nitty-Gritty: Lock and Unlock™)

dwBackBufferCount The number of back buffers that a surface has. Used
when creating complex surfaces.

TpSurface A pointer to the surface’s memory (discussed in the
section “The Nitty-Gritty: Lock and Unlock™)

ddpfPixelFormat The pixel format of the surface (discussed in more
detail later)

ddsCaps The capabilities of the surface (discussed in

a moment)

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Hopefully, this has made boSURFACEDESC? just a little less scary. Most of the rest of this stuff is for
advanced use, and much of it isn't even implemented yet.

DWFLAGS
The dwF1ags member specifies what other members are valid. Various flags are shown in Table 6.3.

Table 6.3 DDSURFACEDESC?2 Flags
] DDSURFACEDESC2 Flag Member Validated

DDSD_HEIGHT dwHeight

DDSD_WIDTH dwhidth

DDSD_PITCH 1Pitch

DDSD_BACKBUFFERCOUNT dwBackBufferCount

DDSD_PIXELFORMAT ddpfPixelFormat

DDSD_CAPS ddsCaps

DDsCARPS

When creating a surface, always use the ddscaps member to specify what kind of surface you want.
ddsCaps is In itself a structure, a DDSCAPS2.

typedef struct _DDSCAPS2 {
DWORD dwCaps;
DWORD dwCaps?;
DWORD dwCaps3;
DWORD dwCapsé4;
} DDSCAPS2, FAR* LPDDSCAPSZ;

All the members of this structure contain flags. Neither dwCaps3 nor dwCaps4 is currently used. The
dwCaps2 member is for advanced stuff dealing with D3D, so the only one you need to be concerned with
is dwCaps, which contains a number of flags that you will find useful. Some of these flags are listed in
Table 6.4.

SURFACES E

Table 6.4 Selected DDSCAPS2 Flags

dwCaps Flag Use

DDSCAPS_BACKBUFFER

DDSCAPS _COMPLEX
attached

DDSCAPS_FLIP
attached

DDSCAPS_OFFSCREENPLAIN
DDSCAPS_PRIMARYSURFACE
DDSCAPS_SYSTEMMEMORY
DDSCAPS_VIDEOMEMORY

Creates a secondary surface
Creates a primary surface that has a secondary surface

Creates a primary surface that has a secondary surface

Creates an off-screen surface
Creates a primary surface
Creates a surface in system memory

Creates a surface in video memory

There are quite a few more flags, but you won't be using them.

CREATING A
PRIMARY SURFACE

The first surface you create in a DirectDraw
application is the primary surface. Then you
fetch the back buffers (if any), and then you
start making the off-screen surfaces.

At some point, usually in the globals section,
you should declare a variable that will contain a
pointer to the primary surface:

//primary surface

LPDIRECTDRAWSURFACE7 T1pddsPrime=NULL;

\
NOTE

Your video card has only a limited amount of &

memory. The primary surface (and any back
buffers for the primary) must be in video
memory. Off-screen surfaces have greater
performance if they are in video memory;,
but they can be in system memory as well—

though you’ll feel a performance hit.

Always create your surfaces in decreasing
order of importance. If it is an oft-used sur-
face—like the bitmap containing the main
character—create it sooner than the sur-
faces that contain the graphics for the title
screen (the title screen doesn’t need to be as

fast as the game itself).
]

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

First, set up your surface description:

//clean out surface description
DDSURFACEDESC2 ddsd;

memset (&ddsd,0,sizeof (DDSURFACEDESC2));
ddsd.dwSize=sizeof (DDSURFACEDESC2);

//set up the caps for the primary
ddsd.dwF1ags=DDSD_CAPS;
ddsd.ddsCaps.dwCaps=DDSCAPS_PRIMARYSURFACE;
//finally, create the surface

J 1pdd->CreateSurface(&ddsd, &1pddsPrime,NULL) ;

And later, when you are closing the program and cleaning up, do a safe release of the primary surface
(which looks almost exactly like the safe release of the 1DirectDraw7 object):

if(lpddsPrime)
{

I1pddsPrime->Release();
TpddsPrime=NULL;

CREATING A SECONDARY SuRFAcCE/
BAcCK BuUuFFER

Create back buffers, if you will have them, at the same time you create your primary surface. When you
create your primary surface, specify that it is a complex surface that can be flipped, and specify how many
back buffers it will have. (I'll discuss flipping in @ moment.)

//surfaces

LPDIRECTDRAWSURFACE7 1pddsPrime=NULL;
LPDIRECTDRAWSURFACE7 1pddsBack=NULL;

//clean out surface description

DDSURFACEDESC2 ddsd;

memset (&ddsd,0,sizeof (DDSURFACEDESC2));
ddsd.dwSize=sizeof (DDSURFACEDESC?);

//set up the caps for the primary
ddsd.dwF1ags=DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
ddsd.dwBackBufferCount=1;

SURFACES E

ddsd.ddsCaps.dwCaps=DDSCAPS_PRIMARYSURFACE | DDSCAPS_COMPLEX | DDSCAPS_FLIP;
//finally, create the surface
Tpdd->CreateSurface(&ddsd, &lpddsPrime,NULL) ;

Now you've got the primary surface, which has the secondary surface attached to it. To retrieve this
attached surface, use GetAttachedSurface:

HRESULT GetAttachedSurface(
LPDDSCAPS2 1pDDSCaps,
LPDIRECTDRAWSURFACE7 FAR *1plpDDAttachedSurface

i

This function takes a pointer to a DbScAPS2 structure, specifying the capabilities of the attached surface,
and a pointer to an LPDIRECTDRAWSURFACE7, which will be filled with a pointer to the attached surface.

So, to retrieve the back buffer:

//clean out a DDSCAPS?

DDSCAPS?2 ddsCaps;

memset (&ddsCaps,0,sizeof (DDSCAPS2));

//specify that we want a back buffer
ddsCaps.dwCaps=DDSCAPS_BACKBUFFER;

//retrieve the back buffer
ITpddsPrime->GetAttachedSurface(&ddsCaps,&lpddsBack) ;

WHY UseE BEAcCK BuFFERST

You could just write to the primary surface. You really could. However, there would be detrimental effects.
The user would see items as they were being drawn to the screen, and if the drawing was not timed cor-
rectly, shearing would occur as the electron gun in the back of the monitor misses some of the informa-
tion you placed on the primary surface. This creates a flickering effect, and in general is not considered
good practice.

To make everything look as good as possible, it's a wise idea to make both a primary surface, which is
shown to the user at all times, and attach to it a back buffer/secondary surface. Doing so makes the sur-
faces similar to a flip book; in fact, switching which surface is the primary and which is the back buffer is
called flipping, and the two surfaces are called a flipping chain. You don't have to do anything special once
you've flipped the primary surface. DirectDraw is smart enough to know how to exchange the memory of
the two surfaces. You can do all your writing to a back buffer and then use F11p, which switches the
memory from the back to the primary. DirectDraw takes care of timing it correctly. And miraculously, you
will have no flicker.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

FLIPPING
The F1ip function looks like this:

HRESULT IDirectDrawSurface7::Flip(
LPDIRECTDRAWSURFACE7 1pDDSurfaceTargetOverride,
DWORD dwFTlags

1pDDSurfaceTargetOverride is for use with advanced flipping chains, and you'll just pass NULL. The
J dwFlags parameter, however, can be useful. You will be placing the constant DDFLIP_WAIT into this
parameter. This allows DirectDraw to time the transfer properly so that no flickering or shearing occurs.

One last thing about back buffers before we move on: you don't have to do a release of the back buffer—
that’s taken care of when the primary surface is released.

OFF-SCREEN SURFACES

The final type of surface that you'll be dealing with (at least, until you get into D3D later in this book) is
the off-screen surface. An off-screen surface can exist in either system memory or video memory. If you do
not specify either of these in the ddsCaps member of DDSURFACEDESC?2, DirectDraw will try to put it into
video memory, and if that fails, it will place the surface in system memory.

Remember what | said earlier about the location of surfaces; make your most commonly used off-screen
surfaces in video memory if you can, and resort to system memory if you have to.

Following is an example of creating an off-screen surface, trying first for video memory and then falling
back to surface memory. Note that you set the dwiidth, dwHeight, and ddsCaps part of the DDSUR-
FACEDESC? structure.

//declaration (global)

LPDIRECTDRAWSURFACE7 1pddsOffScrn=NULL;

//set up the DDSURFACEDESC?

DDSURFACEDESC2 ddsd;

memset (&ddsd,0,sizeof (DDSURFACEDESC2));
ddsd.dwSize=sizeof (DDSURFACEDESC?);

//set flags... width, height, caps
ddsd.dwF1ags=DDSD_WIDTH | DDSD_HEIGHT | DDSD_CAPS;
//attempt video memory
ddsd.ddsCaps.dwCaps=DDSCAPS_OFFSCREENPLAIN | DDSCAPS_VIDEOMEMORY;
//width and height=100x100

ddsd.dwWidth=100;

ddsd.dwHeight=100;

HRESULT hr=1pdd->CreateSurface(&ddsd,&1pddsOffScrn,NULL);

SURFACES E

if(FAILEDChr))

{
//not enough video memory, try system memory
ddsd.ddsCaps.dwCaps=DDSCAPS_OFFSCREENPLAIN | DDSCAPS_SYSTEMMEMORY;
//try again
hr=1pdd->CreateSurface(&ddsd, &1pddsOffScrn,NULL) ;
if(FAILEDChr))
{

//something still went wrong...

LISING SURFHACES

Now that you know how to make surfaces, you can get down to the very serious business of using them.
This section outlines the various ways in which you can write to and read from surfaces and copy them to
one another.

GeTDC/ReLeAseDC,y, oR Using GD1 oN
SURFACES

Just because you are in DirectX doesnt mean that you have to leave GDI behind. Admittedly, using GDI
in a time-critical section isn't the best idea, but for loading bitmaps and placing them on surfaces, GDI will
do just fine.

In order to perform GDI functions on a surface, you need an Hpc. Luckily, there is a function that does
just that; IDirectDrawSurface7: :GetDC

HRESULT IDirectDrawSurface7::GetDC(
HDC FAR *1phDC

To make use of this function, you send a pointer to an Hoc to it, like so:

//grab the dc from the surface
HDC hdcSurf;
TpddsPrime->GetDC(&hdcSurf);

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

If successful, hdcSurf will now contain a GDI-compatible device context. Pretty cool.
When you are done using the DC, be sure to release it with 1DirectDrawSurface7::ReleaseDC.

//release the dc
1pddsPrime->ReleaseDC(hdcSurf);

I | I |

CAUTION

If you don’t release the DC, your computer is very, very likely to lock
up (and there’s no Ctrl+Alt+Delete to save you). Also, between the

:| calls to GetDC and ReleaseDC, your computer’s display will be frozen, so

don’t keep the DC any longer than you have to. Just get in, get it done,

and get out.

Enough of this talk! Let’s do an example. Load up IsoHex6_1.cpp. You will also need your trusty
GDICanvas.h and GDICanvas.cpp files, and IsoHex6_1.bmp.

IsoHex6_1.cpp was built from IsoHex5_1.cpp, with some extra stuff that we've covered this chapter. If
you run it, you'll see a lazy ball that slowly meanders around the screen, bouncing off the walls, as shown
in Figure 6.1.

Figure 6.1

The bouncing ball demo

SuURFACES 157

You'll notice that the movement is slow, but smooth. This is partly because of GDI and partly because of
my clearing the back buffer each time Prog_Loop is called.

Notice, though, in Prog_Loop, how | don't mess around too much between the calls to Getdc and
ReleaseDC. | set up the filling RecT before | get there, and | take care of other stuff after I'm done.

void Prog_Loop()

{
//set up rectangle for filling
RECT rcFill;
SetRect(&rcFil1,0,0,dwDisplayWidth,dwDisplayHeight);
//grab dc from back buffer [
HDC hdcSurf;
1pddsBack->GetDC(&hdcSurf);
//fil1 rectangle with black
FiT1Rect(hdcSurf,&rcFill, (HBRUSH)GetStockObject (BLACK_BRUSH));
//show the ball

BitBl1t(hdcSurf,ptBallPosition.x,ptBallPosition.y,gdicBall.GetWidth(),gdicBall.Get
Height(),gdicBall,0,0,SRCCOPY);

//release dc

1pddsBack->ReleaseDC(hdcSurf);

//move the ball

ptBallPosition.x+=ptBallVelocity.x;

ptBallPosition.y+=ptBallVelocity.y;

//bounds checking

//Teft side

if(ptBallPosition.x<=0) ptBallVelocity.x=abs(ptBallVelocity.x);

//top side

if(ptBallPosition.y<=0) ptBallVelocity.y=abs(ptBallVelocity.y);

//right side

if(ptBallPosition.x>=(int)dwDisplayWidth-gdicBall.GetWidth())
ptBallVelocity.x=-abs(ptBallVelocity.x);

//bottom side

if(ptBallPosition.y>=(int)dwDisplayHeight-gdicBall.GetHeight())
ptBallVelocity.y=-abs(ptBallVelocity.y);

//flip surfaces

TpddsPrime->F1ip(NULL,DDFLIP_WAIT);

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

The code in bold is what is between Getdc and Releasenc, inclusive. | put absolutely nothing extraneous in
that section. In reality, I shouldn't even have the function call to GetStockobject in there (heck, I even
shouldn't be using GDI to do this, but this is an example).

So, we have now created a screen saver—a terribly slow screen saver. If you want to see why you should use
back buffers, comment out the line with F11ip in it, and then change Getdc and ReleaseDC to get and
release from the primary surface. Or, if you're too lazy to do that, replace IsoHex6_1.cpp with
IsoHex6_1A.cpp, where | did it for you. Running it again, you'll see how badly the ball flickers. Now
imagine this happening with six or eight characters on the screen. Blech! And the defense rests. You're
probably thinking that there has to be a better way, right? Of course there is.

LT

The 1DirectDrawSurface7: :B1t function is the DirectDraw ver-
sion of GDI's BitB1t, but it’s faster. The reason it’s faster is
because DirectDraw doesn't give you a safety net like GDI does. NOTE
In GDI, if one DC has a different pixel format than another,
GDI converts it for you. This, of course, takes time, especially
when the pixel formats are wildly different.

Technically, the statement
about all surfaces’ pixel for-
mats being the same from a

DirectDraw won't help you at all with pixel format conversion. It call to CreateSurface is not
expects that both the source and destination have the same pixel exactly true. However, for
format, and if they don't, you'll get garbage on the screen. our purposes it is true
Luckily, every surface created from a call to enough, since we aren't deal-
IDirectDraw7::CreateSurface has the same pixel format, so ing with any sort of special-

you only have to worry about pixel format conversion once, when e SUTEee BaEs,
you first load the bitmap onto a surface. In your case, this won't be
too much of a problem because you'll use GDI to load the bitmap for you.

B1t also allows you to fill a rectangular area with a solid color, much in the same way Fi11Rect does, but
faster. You can stretch an image using B1t, and if the hardware acceleration is available you can even rotate
it. You can also make use of a clipper when using B1t, but we'll get to clippers later.

For even less of a safety net, you can use B1t’ faster cousin, B1tFast. B1tFast is the fastest way that is
supported by DirectDraw (it is possible to get faster using Lock/Un1ock) to copy a rectangular image
from one surface to another. No stretching, no clipping, no nothing. Any computations you need to do to
make it work right are your problem.

SURFACES E

Here's the 1DirectDrawSurface7: :B81t function:

HRESULT IDirectDrawSurface7::B1t(
LPRECT T1pDestRect,
LPDIRECTDRAWSURFACE7 1pDDSrcSurface,
LPRECT 1pSrcRect,

DWORD dwFTags,
LPDDBLTFX 1pDDB1tFx

The parameters mirror somewhat the parameters of 8itB1t. This returns op_ok if successful. Table 6.5 [
explains the parameters.

Table 6.5 IDirectDrawSurface7::Blt Parameters
BlIt Parameter Purpose

TpDestRect The destination rectangle. NULL is the entire surface.
1pDDSrcSurface The source surface. NULL if not applicable.

TpSrcRect The source rectangle. NULL if not applicable or the entire surface.
dwFlags Flags specifying how you want the B1t to work
1pDDB1tFx A pointer to a DDBLTFX structure, with extra information about

how the B1t is supposed to work. Used in conjunction with the
dwFlags parameter.

Table 6.6 lists a handful of meaningful flags that can be passed in the dwF1ags parameter—uwell, the flags
that are meaningful to you, anyway.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Table 6.6 Selected BIt Flags

Blt Flag Meaning

DDBLT_COLORFILL This B1t is a color fill operation. This requries a non-null 1pDDB1tFx.

DDBLT_KEYSRC This B1t is a partially transparent B1t (we’ll check out color keys a
bit later)
J DDBLT_WAIT The blitter (the hardware that performs blitting on the video card)
must wait until the B1t is finished before returning
DDBLT_ROP This B1t makes use of a raster operation (like SRCAND, SRCPAINT, and
SO 0on)

THE DDELTFX STRUCTURE

The pDBLTFX structure is another one that’s like DDSURFACEDESC2, meaning it has a lot of useless mem-
bers that either haven't been implemented yet or are never going to be implemented. Here’s the structure,
with the important members in bold:

typedef struct _DDBLTFX{

DWORD dwSize;

DWORD dwDDFX;

DWORD dwROP;

DWORD dwDDROP;

DWORD dwRotationAngle;

DWORD dwZBufferOpCode;

DWORD dwZBufferlLow;

DWORD dwZBufferHigh;

DWORD dwZBufferBaseDest;

DWORD dwZDestConstBitDepth;

union

{
DWORD dwZDestConst;
LPDIRECTDRAWSURFACE 1pDDSZBufferDest;

} DUMMYUNIONNAMEN(1);

DWORD dwZSrcConstBitDepth;

union

{
DWORD dwZSrcConst;
LPDIRECTDRAWSURFACE 1pDDSZBufferSrc;

SURFACES E

} DUMMYUNIONNAMEN(2) ;
DWORD dwAlphaEdgeBlendBitDepth;
DWORD dwAlphaEdgeBlend;

DWORD dwReserved;

DWORD dwAlphaDestConstBitDepth;

union

{
DWORD dwAlphaDestConst;
LPDIRECTDRAWSURFACE 1pDDSAlphaDest;

} DUMMYUNIONNAMEN(3);

DWORD dwAlphaSrcConstBitDepth; [

union

{
DWORD dwAlphaSrcConst;
LPDIRECTDRAWSURFACE 1pDDSATphaSrc;

} DUMMYUNIONNAMEN(4) ;

union

{
DWORD dwFill1Color;
DWORD dwFil1Depth;
DWORD dwFil1Pixel;
LPDIRECTDRAWSURFACE 1pDDSPattern;

} DUMMYUNIONNAMEN(5) ;

DDCOLORKEY ddckDestColorkey;
DDCOLORKEY ddckSrcColorkey;
} DDBLTFX,FAR* LPDDBLTFX;

See what | mean? That's huge! And only three of the members have any meaning to you (not to say that
none of the others are meaningful).

MARKING UsE oF A DDELTFX

Much like a DDSURFACEDESC2, a DDBLTFX structure must first be cleared out, and the dwSi ze field has to
be set, like so:

//clear our DDBLTFX

DDBLTFX ddbltfx;

memset (&ddb1tfx,0,sizeof (DDBLTFX));
ddbTtfx.dwSize=sizeof (DDBLTFX);

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

And to do a color fill, you set the dwFi11color field:

//set fill color
ddb1tfx.dwFill1Color=0;//zero is black

Now all you need is a destination rectangle, or can just use NuLL if filling the entire surface.

RECT rcFill;
SetRect(0,0,dwDisplayWidth,dwDisplayHeight);
IpddsBack->B1t(&rcFil11,NULL,NULL,DDBLT_WAIT | DDBLT_FILLCOLOR, &ddbltfx);

J or
1pddsBack->BTt (NULL,NULL,NULL,DDBLT_WAIT | DDBLT_FILLCOLOR, &ddbltfx);

This solves your call to Fi11Rect. You'll no longer need it.

UsiING BLT To CoPYy FROM SURFHACE TO SURFHACE

Just doing a straight copy is no big deal. You don't need a bpBLTFx, and the only flag you need is
DDBLT_WAIT. Other than that, it’s just a matter of setting up the source and destination ReCTS, like so:

RECT rcDst;
RECT rcSrc;
SetRect(&rcDst,DstX,DstY, DstX+DstWidth, DstY+DstHeight);
SetRect(&rcSrc,SrcX,SrcY, SrcX+SrcWidth, SrcY+SrcHeight);

Keep in mind, however, that if the RECTS have differing widths, you will have stretching, and unless there is
hardware support for stretching, the software emulation won't be that great quality-wise.

Let’s revise our little bouncing ball demo. Load up IsoHex6_2.cpp. The first thing | want to point out is
that this example makes an additional surface, an off-screen surface called 1pddsBa11, onto which you
load the picture of the ball.

//create an offscreen surface to contain the ball
//clear out ddsd

memset (&ddsd,0,sizeof (DDSURFACEDESC2));
ddsd.dwSize=sizeof (DDSURFACEDESC?2);

//set ddsd flags

ddsd.dwF1ags=DDSD_WIDTH | DDSD_HEIGHT | DDSD_CAPS;
//set width and height
ddsd.dwWidth=gdicBall.GetWidth();
ddsd.dwHeight=gdicBall.GetHeight();

//set caps
ddsd.ddsCaps.dwCaps=DDSCAPS_OFFSCREENPLAIN;
//create surface

SURFACES E

Ipdd->CreateSurface(&ddsd, &lpddsBall,NULL) ;

//grab dc from offscreen surface

HDC hdcSurf;

TpddsBall->GetDC(&hdcSurf);

//b1it ball to surface
BitBTt(hdcSurf,0,0,gdicBall.GetWidth(),gdicBall.GetHeight(),gdicBall,0,0,SRC-
COPY);

//release dc

TpddsBall->ReleaseDC(hdcSurf);

Notice that you are still using cGbicanvas to load in your bitmap, and are using GetdC/ReleaseDC and [
BitB1t to get the image onto the surface.

Also, take note of the use of the ptLastPosition variable, an array of two PoINTS. When moving the
ball around in Prog_Loop, you clear out only the section of the screen that contained the ball two frames
ago. Why two frames? Because there are two calls to F11p between the time a ball is shown and the time it
Is erased.

Confused? Let me explain. Let’s say that the ball is moving 4 horizonal and 4 vertical pixels per frame. On
the first frame (when there is still nothing on the primary surface), the ball’s upper-left corner is at 0,0,
where it gets drawn to the back buffer, and then the surfaces get flipped, and the ball shows up at 0,0 on
the primary surface. Now the ball is at 4,4, gets drawn there, and gets flipped again. The ball image on the
primary surface is at (4,4), and on the back buffer you have an image of the ball at (0,0)—the image of
two frames ago. So, you erase the old image at (0,0) and draw a new one at (8,8) and flip it again. On the
primary you now have it at (8,8) and on the back buffer at (4,4). See?

In a more complicated program (with a more complicated background, like a terrain map or something),
you would probably be best served by copying the primary to the back buffer before restoring the old
images (this way youd have to keep track of only a single “last position”). For this example | wanted to
make the program do as little work as possible.

Now that you are using B1t, the example is even smoother than the version that used GDI—so much
smoother that | increased the speed by 4, and you don't even notice. If you look at the code, you'll see a
lot of ugly stuff—all the clearings of bpDSURFACEDESC2S and DDBLTFXS and the setting up of these struc-
tures. VWe're going to wrap these repetitive tasks into functions in just a bit.

CoLorR KEYING uWiTH ELT

One of the best parts of using B1t is the ability to make part of the image transparent by using a color
key. To examine why having transparent pixels is important, take a look at IsoHex6_3.cpp. This example is
an enhanced IsoHex6_2.cpp. The main difference is that there are now two balls instead of just one.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Watch closely as the program runs. When the balls are very close to one another, their rectangles overlap,
as shown in Figure 6.2.

Figure 6.2

Overlapping rectangles; one
ball erases part of another

This, as I'm sure you'll agree, is not good. In GDI you would use a bitmask, and you could do the same
thing in DirectDraw, using the dwrRop member of ppBLTFX. Support for dwRop is Spotty, So we won't use
it. However, DirectDraw gives us an easier solution.

There are two types of color keys—source and destination. With source color keying, you apply your key to
the source, and then a color (or range of colors) of one surface is ignored when blitting to another surface.
Destination color keying is different. It requires hardware support and is usually used only with video signals
and the like, so I'm not going to cover it here.

To set a color key, you need to fill out a bDCOLORKEY structure:

typedef struct _DDCOLORKEY {
DWORD dwColorSpacelowValue;
DWORD dwColorSpaceHighValue;

} DDCOLORKEY,FAR* LPDDCOLORKEY;

You may be pleasantly surprised to find DirectX has a structure that isn't as bloated as some others you've
seen (like DDSURFACEDESC2 and DDBLTFX).

There are two values in a DbCOLORKEY—a low and a high color value. This is in case you want to define a
color space (a range of colors) and thus have more than one transparent color. Doing so requires hardware
support, and the hardware support available for it is spotty, so try to get along with having only a single
transparent color.

SURFACES E

Setting up a DDCOLORKEY is pretty simple:

//set up a black color key
DDCOLORKEY ddck;
ddck.dwColorSpacelLowValue=0;
ddck.dwColorSpaceHighValue=0;

To set a surface’s color key, you use 1DirectDrawSurface7::SetColorKey:

HRESULT IDirectDrawSurface7::SetColorKey(
DWORD dwFTlags,
LPDDCOLORKEY 1pDDColorKey I:
)

The dwF1ags parameter contains the type of color key you are assigning, which in this case will always be
DDCKEY_SRCBLT. Other possible values include DDCKEY_DESTBLT, DDCKEY_SRCOVERLAY,
DDCKEY_DESTOVERLAY, and combining any of these with DockEY_COLORSPACE (most of these require
some sort of hardware support). So, setting the color key is pretty simple:

//assign color key
TpddsBall->SetColorKey(DDCKEY_SRCBLT,&ddck);

Finally, to make use of the color key, you add a bpBLT_KEYSRC to your B1t function:
TpddsBack->B1t(&rcDst, pddsBall,&rcSrc,DDBLT_WAIT | DDBLT_KEYSRC, NULL);

The IsoHex6_3A.cpp example demonstrates this. Four lines of code were added, and one line of code was
modified. The overlapping rectangle problem is gone, as you can see in Figure 6.3.

Figure 6.3

Source color keying

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

You could now have 100 balls on the screen bouncing around, and it would still be smooth and look right.

BELTFRAST

Let me introduce you to B1t's brother, B1tFast. B1tFast i in most cases a lot faster than B1t, because it
doesn't do any range checking if there’s a clipper involved. It also doesn't do stretching, color fills, or raster
operations. In general, it doesn't give you any of the neat things that 81+t can give you, except for trans-
parency.

HRESULT IDirectDrawSurface7::BltFast(
J DWORD dwX,
DWORD dwY,
LPDIRECTDRAWSURFACE7 1pDDSrcSurface,
LPRECT 1pSrcRect,
DWORD dwTrans
)

This returns oo_ox if successful. Table 6.7 explains the parameters.

Table 6.7 IDirectDrawSurface7::BltFast Parameters

BltFast Parameter Purpose

dwX Destination x-coordinate (upper-left)
dwY Destination y-coordinate (upper-left)
TpDDSrcSurface Source surface

TpSrcRect Source rectangle

dwTrans Type of transfer

Most of the parameters for 81t and B1tFast are the same. There is only a single RECT parameter, however,
because B1tFast does not support scaling. Also, you'll note a lack of a bpBLTFX pointer. None of the spe-
cial effects possible with bpBLTFX are available to you with B1tFast.

The dwTrans parameter is similar to B1t's dwF1ags parameter, but with fewer options:

SuURFACES 157

DDBLTFAST_DESTCOLORKEY Uses the destination surface’s destination color key
DDBLTFAST_NOCOLORKEY Uses no color key

DDBLTFAST_SRCCOLORKEY Uses the source surface’s source color key
DDBLTFAST_WAIT WAits until B1tFast has finished before returning

These four options are the total of what is available to you with 81tFast. It's not much, but speed comes
at the price of flexibility.

Most of the examples will continue to use 81t rather than B1tFast because of the capabilities it offers.
However, don't be hesitant to use B1tFast in a time-critical section of code. It can save you.

THE NITTY-GRI1TTY: LOCK AND ULINLOCK

So far, I've presented the high-level ways to access a surface. Now we're going to explore the low-level way:
using Lock and Un1ock. When the speed of even the mighty B1tFast just won't do, and you just know you
can perform the operation faster, you can lock the surface memory and do the work yourself— doing so is
the ultimate way of working without a net in DirectDraw.

UsiING TDNRECTDRAWSURFACE7:iLOCK
Following is the function that locks the surface memory and fetches it for you so that you can do your
own writing:

HRESULT IDirectDrawSurface7::Lock(
LPRECT 1pDestRect,
LPDDSURFACEDESCZ2 1pDDSurfaceDesc,
DWORD dwFlags,

HANDLE hEvent

)

This returns po_ok if successful. Table 6.8 explains the parameters.

Table 6.8 IDirectDrawSurface7::Lock Parameters
Lock Parameter Purpose

TpDestRect The rectangular area of the surface you want to lock

1pDDSurfaceDesc A pointer to a DDSURFACEDESC2, which will be filled with the
information you want

dwFlags Flags specifying how to lock the surface
hEvent Not supported. Use NULL.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

You can lock different parts of the same surface, as long as the rectangles don't overlap. Some of the flags
are shown in Table 6.9.

Table 6.9 Locking Flags

Flag Meaning
DDLOCK_NOSYSLOCK Tells DirectDraw not to do a WIN16 lock (which freezes
:I the computer, making it impossible to get out other than by
turning off the computer). Ignored if locking the primary
surface.
DDLOCK_SURFACEMEMORYPTR Tells DirectDraw that you want a pointer to the surface’s

memory.
DDLOCK_WAIT Tells DirectDraw to wait for the lock to happen before
returning. Useful if the surface is otherwise busy.
DDLOCK_WRITEONLY Specifies that you only intend to write, not read, the surface.
DDLOCK_READONLY Specifies that you only intend to read, not write, the surface.

Normally, the most useful combination is DDLOCK_SURFACEMEMORYPTR | DDLOCK_NOSYSLOCK |
DDLOCK_WATT, and to pass NULL as 1pDestRect, thus locking the entire surface.

The 1pDDSurfaceDesc parameter must simply be a clean DDSURFACEDESC2, with all Os, and the dwsi ze
parameter set.

Upon this function’s return (assuming that it is successful), the specified area of the surface will be locked.

So, how do you write to the surface? The 1pSurface and 1Pitch members of DDSURFACEDESC2 help you.
TpSurface IS the pointer to surface memory. Its original type is void*, so, depending on your bits per
pixel, you need to cast it to some other type of pointer. On an 8-bit surface, youd cast it to an unsigned
char*, On a 16-bit surface, youd use worD+*, and on a 32-bit surface, bworD*. Since you primarily deal
with 16-bit surfaces, your cast would look like this:

//cast the surface pointer
WORD* surfptr=(WORD*)ddsd.1pSurface;

SURFACES E

The 1pitch member contains a value indicating how many bytes make up a horizontal line on the surface.
This is bytes, not pixels. To get the number of pixels per

horizontal line, you have to divide 1pitch by the number ‘
NOTE

of bytes per pixel.

int pixelsperrow=ddsd.1Pitch/(bitsperpix- Logically, on an 800X600X16 surface,

e1/8): 1Pitch should be 1600 (800 pixels wide,
) 16 bits per pixel, and 8 bits per byte).

After you have done this, you can plot to any part of the This is not always so. Different video

locked area: cards align their memory differently,

surfptrix+y*pixelsperrow]=0;//write a black >0 1P1tch}Tﬂghth§eqd past the . [
pixel at x,y surface a I|tt|_e.Th|s is just something
to keep in mind. Don’t hardcode your
Now that we're down to the pixel-plotting level, it's time surface pitches, because even though
to talk about pixel formats in more detail. The only real this may work on your machine,
pixel format I've discussed so far is cOLORREF, which you the image will likely look garbled
use the RGB macro to make. Each of the components (red, [RRARAEREL IR CRTEIREIREREIES

green, and blue) has 8 bits, for a total of 24 bits. to sho hifn.
|

But what happens in a 16-bit surface like the ones you've

been using? The image in the ball demo loaded up fine because you used GDI, which did the conversion
for you. But now you're operating without any nets, using Lock to get the most direct access to your sur-
face. What do you do? Well, you examine the surface’s pixel format by using
IDirectDrawSurface7::GetPixelFormat

HRESULT GetPixelFormat(
LPDDPIXELFORMAT 1pDDPixelFormat

The 1pbDPixelFormat parameter is simply a pointer to a DDPIXELFORMAT structure. YouVve seen this
structure once before, when you were doing display mode enumeration.

typedef struct _DDPIXELFORMAT{

DWORD dwSize;

DWORD dwFlags;

DWORD dwFourCC;

union

{
DWORD dwRGBBitCount;
DWORD dwYUVBitCount;
DWORD dwZBufferBitDepth;
DWORD dwAlphaBitDepth;
DWORD dwlLuminanceBitCount;
DWORD dwBumpBitCount;

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

} DUMMYUNIONNAMEN(1);

union

{
DWORD dwRBitMask;
DWORD dwYBitMask;
DWORD dwStencilBitDepth;
DWORD dwlLuminanceBitMask;
DWORD dwBumpDuBitMask;

} DUMMYUNIONNAMEN(2);

union
] |
DWORD dwGBitMask;
DWORD dwUBitMask;
DWORD dwZBitMask;
DWORD dwBumpDvBitMask;
} DUMMYUNIONNAMEN(3);
union
{

DWORD dwBBitMask;
DWORD dwVBitMask;
DWORD dwStencilBitMask;
DWORD dwBumpLuminanceBitMask;

} DUMMYUNIONNAMEN(4);

union

{
DWORD dwRGBATphaBitMask;
DWORD dwYUVATphaBitMask;
DWORD dwlLuminanceAlphaBitMask;
DWORD dwRGBZBitMask;
DWORD dwYUVZBitMask;

} DUMMYUNIONNAMEN(5);

} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

I've bolded the most important fields. VWhen you retrieve the pixel format, you first have to clear out the
DDPIXELFORMAT structure, just as you do with DDSURFACEDESC2 and DDBLTFX.

//clear out pixel format

DDPIXELFORMAT ddpf;

memset (&ddpf,0,sizeof (DDPIXELFORMAT));
ddpf.dwSize=sizeof (DDPIXELFORMAT);
//retrieve pixel format of primary surface
IpddsPrime->GetPixelFormat(&ddpf);

SuURFACES 171

Once you have the surface’s pixel format, you can use the members of bDP1XELFORMAT to help with your
writing of pixels. The three members, dwRBitMask, dwGBitMask, and dwBBitMask, are binary representa-
tions of pure red, green, and blue for your surface. bDPIXELFORMAT also shows which bits are valid for each
of the components.

For 16-bit surfaces, there are two common pixel formats. These formats are called RGB555 and RGB565,
and they look something like the following:

RGB555

Red mask 0111110000000000
Green mask ~ 0000001111100000
Blue mask 0000000000011111
RGB565

Red mask 1111100000000000
Green mask 0000011111100000
Blue mask 0000000000011111

The only real difference is the extra green bit in RGB565. Our eyes are more sensitive to green than to red
or blue.

On certain odd video cards, you'll get a BGR instead of an RGB pixel format, meaning that the masks for
red and blue are switched. These video cards are pretty rare, but they do exist. For this reason, you cannot
make any assumptions about a pixel format, just as you can't make assumptions about a surface’s pitch.
Which raises the question, How can you plot pixels if you don't know the pixel format?

Since the pixel format of a surface is never guaranteed to be the same from one machine to the next, writ-
ing code to write pixels to a surface may seem impossible. Believe me, it's not. The trick is to use a known
and stable pixel format that never changes (COLORREF) and to convert the values into the pixel format of
the surface on which you are working, similar to what GDI does. If you have a limited number of colors
that you work with a great deal, you can convert them all at once, keep them in a lookup table, and use
them when you need them.

Ina COLORREF, each of red, green, and blue are values from 0 to 255. 0 indicates that none of the compo-
nent is present, and 255 indicates that 100% of the component is present. Logically, then, you could con-
vert R, G, and B into values from 0.0 to 1.0 by dividing by 255 and storing them as a float. You can take
this value and multiply it by the appropriate mask, such as ddpf . dwRBitMask for red, since the mask value
indicated 100% of the color component present. Since a fractional component (extra bits that aren't in the
mask) might be set by this multiplication, you can logically AND the mask on to the resulting value. Finally,
after you do this for all the components and logically or the three values together, you will achieve the
pixel format conversion from COLORREF to native format.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Following are two functions that will allow you to convert back and forth from COLORREF to native
DirectDraw pixel format. Keep in mind that they are not to be used in a time-critical section—there are
too many multiplications and divisions to make it really efficient.

//from dd pixel to colorref
COLORREF ConvertDDColor(DWORD dwColor, DDPIXELFORMAT* pddpf)
{

//extract color components

DWORD dwRed=dwColor & pddpf->dwRBitMask;

DWORD dwGreen=dwColor & pddpf->dwGBitMask;

J DWORD dwBlue=dwColor & pddpf->dwBBitMask;
//multiply color components by max colorref value (255)
dwRed*=255;

dwGreen*=255;

dwBlue*=255;

//divide by masks
dwRed/=pddpf->dwRBitMask;
dwGreen/=pddpf->dwGBitMask;
dwBlue/=pddpf->dwBBitMask;
//return converted color
return(RGB(dwRed,dwGreen,dwBTue));

//from colorref to dd pixel
DWORD ConvertColorRef(COLORREF crColor, DDPIXELFORMAT* pddpf)
{
//extract color components
DWORD dwRed=GetRValue(crColor);
DWORD dwGreen=GetGValue(crColor);
DWORD dwBlue=GetBValue(crColor);
//multiply color components by max ddpixel value (the mask)
dwRed*=pddpf->dwRBitMask;
dwGreen*=pddpf->dwGBitMask;
dwBTlue*=pddpf->dwBBitMask;
//divide by max colorref (255)
dwRed/=255;
dwGreen/=255;
dwBlue/=255;
//1ogical and with mask, to avoid fractions
dwRed&=pddpf->dwRBitMask;
dwGreen&=pddpf->dwGBitMask;

SuURFACES 17

dwBlue&=pddpf->dwBBitMask;
//merge together, and return the result
return(dwRed | dwGreen | dwBlue);

NOTE

Optimization nuts may be wondering why | divided by 255 instead
of 256. If | were dividing by 256 | could use a bit-shifting operator,
which would be much faster than doing the division myself. Point
taken. However, | have tested doing it both ways, and | have found I:

that dividing by 256 erroneously converts some of the values.
Naturally, the errors aren’t significant enough to make the image
look very different, but if you are using a color key other than black,
there can be problems when you use these functions to help set the
color key.

OK; enough about pixel formats! Let's wrap up this part about locking the surface.
Finally, after you've locked the surface and done whatever you need to do to it, you have to unlock it.

HRESULT IDirectDrawSurface7::Unlock(
LPRECT T1pRect

The 1pRrect parameter specifies what area you are unlocking. (1t's NuLL if you originally locked the entire
surface.) As when using Getbc/ReleaseDC on a surface, you should similarly not take too much time
between calls to Lock and Unlock. | won't show any examples of using Lock/UnTock on surfaces—this
will have to be one area you explore on your own. This type of low-level code tends to get convoluted and
confusing, and my goal here is not to confuse, but to bring about understanding.

A DIReECTDRAW WNRAPPER

Speaking of convoluted, have you noticed how much bulkier the DirectDraw examples have been com-
pared to the examples of earlier chapters? Sheesh! All the bDSURFACEDESC2S and DDBLTFXS and so
on...enough to really work your nerves, right?

| took the liberty of making a little group of functions to help you with these rather repetitive tasks. They
are contained in DDFuncs.h and DDFuncs.cpp. The following sections contain a brief summary.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

DDSURFACEDESCZ FuNCTIONS
This first batch deals with setting up DDSURFACEDESC2 structures.

= DDSD_Clear
void DDSD_Clear(DDSURFACEDESC2* pddsd);
This function clears out the structure and sets the size. Beats the hell out of using memset all the time.
= DDSD_PrimarySurface
void DDSD_PrimarySurface(DDSURFACEDESCZ2* pddsd);
This function sets up a surface description for a primary surface, with no back buffer. It cleans out the sur-
:| face description first, of course.
» DDSD_PrimarySurfaceVWWBackBuffer
void DDSD_PrimarySurfaceWBackBuffer(DDSURFACEDESCZ2* pddsd, DWORD
dwBackBufferCount);
This function sets up a surface description for a primary surface with a back buffer.
= DDSD_OffscreenSurface
void DDSD_OffscreenSurface(DDSURFACEDESC2* pddsd,DWORD dwWidth, DWORD
dwHeight);
This function sets up a surface description for an off-screen surface of a given width and height.

DD5S5CHPS2Z FuNCTIONS
This next group deals with DDSCAPS2 structures.

= DDSCAPS_Clear
void DDSCAPS_Clear(DDSCAPS2* pddscaps);
This function clears out a DDSCAPS2 structure. Yes, you could use memset, and youd have the same number
of lines. Shhh!
= DDSCAPS_BackBuffer
void DDSCAPS_BackBuffer(DDSCAPS2* pddscaps);
This function sets up a DDSCAPS2 structure for a back buffer.

DDELTFX FuNCTIONS

The pDBLTFX function group contains functions that manipulate DDBLTFX structures.

= DDBLTFX_Clear
void DDBLTFX_Clear(DDBLTFX* pddbltfx);
= DDBLTFX_ColorFill
void DDBLTFX_ColorFilT(DDBLTFX* pddbl1tfx,DWORD dwColor);

SuURFACES 175

PixXEL FORMAT FUNCTIONS
Now, pixel formats.

= DDPF_Clear
void DDPF_CTlear(DDPIXELFORMAT* pddpf);
This function clears out a DDPTXELFORMAT and sets the dwSize member.
= ConvertDDColor
COLORREF ConvertDDColor(DWORD dwColor, DDPIXELFORMAT* pddpf);
Converts from a native DirectDraw pixel to a COLORREF based on a pixel format.
= ConvertColorRef [
DWORD ConvertColorRef(COLORREF crColor, DDPIXELFORMAT* pddpf);
Converts a COLORREF to a DirectDraw native pixel based on a pixel format

LPDIRECTDRAIWN7 FuNCTIONS
Next are the functions for creating and releasing 1Directbraw7 interfaces.

= LPDD_Create
LPDIRECTDRAW7 LPDD_Create(HWND hWnd,DWORD dwCooplLevel);
Creates an IDirectDraw7 interface and sets a cooperative level.
= LPDD_Release
void LPDD_Release(LPDIRECTDRAW7* 1plpdd);
Performs a safe release of an 1DirectDraw7.

LPDIRECTDRAWSURFHACE7 FuNCcTiIONS

These are functions to replace the long and messy code required for surface creation.

= LPDDS_CreatePrimary
LPDIRECTDRAWSURFACE7 LPDDS_CreatePrimary(LPDIRECTDRAW7 1pdd,DWORD
dwBackBufferCount);
Creates an IDirectDrawSurface7 that will serve as the primary surface, with or without attached
back buffers.
= LPDDS_GetSecondary
LPDIRECTDRAWSURFACE7 LPDDS_GetSecondary (LPDIRECTDRAWSURFACE7 1pdds);
Retrieves an attached surface (such as a back buffer).
= LPDDS_CreateOffscreen
LPDIRECTDRAWSURFACE7 LPDDS_CreateOffscreen(LPDIRECTDRAW7 1pdd,DWORD
dwWidth,DWORD dwHeight);
Creates an off-screen surface with an arbitrary width and height.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

= LPDDS_LoadFromFile
LPDIRECTDRAWSURFACE7 LPDDS_LoadFromFile(LPDIRECTDRAW7 1pdd,LPCTSTR
IpszFileName) ;
Creates a new surface just large enough to load and hold the bitmap file.
= LPDDS_ReloadFromFile
void LPDDS_ReloadFromFile(LPDIRECTDRAWSURFACE7 1pdds, LPCTSTR
IpszFileName);
Use this if you ever need to reload a bitmap onto a surface.
= LPDDS_Release
:I void LPDDS_Release(LPDIRECTDRAWSURFACE7* 1plpdds);
Performs a safe release of an I1DirectDrawSurface?.
= LPDDS_SetSrcColorKey
void LPDDS_SetSrcColorKey(LPDIRECTDRAWSURFACE7 Tpdds,DWORD dwColor);
Sets a single source color key for a surface.

TASKS NOT INCLUDED 1IN THE WWRAPPER

Please note that I do not have any functions in this little wrapper to do B1t, B1tFast, GetDC/ReleaseDC,
or Lock/Un7ock. This is because making such functions would add unneeded overhead. Of course, you
can still use some of the bpBLTFX_* functions to assist in your color fills and other special effects.

A wrapper should serve two purposes. First, it should make development faster. This it will do—instead
of lines and lines of setting up your DDSURFACEDESC? Structures, you can take care of this in a single func-
tion call. Second, a wrapper should aid in debugging. This is where my wrapper falls short. If you look
through the code, there is absolutely no check of the return values from the DirectDraw calls. Naturally,
when it comes time to make your own wrapper or engine, you will want to include these facilities.

That pretty much covers the basics of 1DirectDrawSurface7, with the exception of one topic.

EMPOMNERING THE USER

You know that you can press Alt+Tab to switch between the calculator tool, paint program, sound
recorder, and the bazillion other Windows applications that you may have open (I tend to have at least six
open at a time). In a full-screen exclusive mode application, you have total control over video resources. In
windowed mode, these same video resources have to be shared by all applications. When you hit Alt+Tab
to switch from a full-screen exclusive mode application to a windowed application, you may lose some or
all of the video resources you have been using if Windows needs them, whether you like it or not.

You could respond to the wM_SYSCHAR event (it’s the window message that occurs when a system charac-
ter—anything with an Alt+?7—is pressed) and make sure that you can't switch out of the application. But
you don' really want to do this, for a number of reasons. First, by doing so you defeat some of the
Windows features that experienced users are used to. Second, if your application freezes, the user will be
left with no alternative but to turn the machine off and then back on.

SuURFACES 177

The other option is to let Windows seize the video resources when another application is activated and
then seize them back when the user switches back. This is the most Windows friendly way to go. To do so,
you need to respond to the wM_ACTIVATEAPP window message (see Chapter 1, “Introduction to WIN32
Programming,” for a refresher). When wparam is nonzero, your application is the one being activated.
When wraram is 0, it is being deactivated.

While deactivated, you don't want to do any rendering, so you should set some sort of “pause” state.
When you are reactivated, you want to make sure that any of the surfaces in video memory are restored
(since the video resources could have been preempted by Windows).

In older versions of DirectDraw, you had to check each surface to see if it was “lost” in this way, and then
restore it if so. In DirectX 7, though, you can do all that with a single call to
IDirectDraw7::RestoreAllSurfaces:

HRESULT IDirectDraw7::RestoreAllSurfaces();

RestoreAllSurfaces just reallocates the memory for a surface. It does not restore the contents. You have
to do that yourself by reloading the images from disk. (The wrapper function LPDDS_ReloadFromFile is
quite handy in this regard.)

IsoHex6_4.cpp is the final example in this chapter. It takes all that you have learned thus far and applies it
to make your little bouncy-ball demo a solid DirectDraw application. The main source file is a bit shorter
than IsoHex6_3A.cpp, although IsoHex6_4 is still over 400 lines long. (400 lines isn't very much, and for
most of it, only one in three lines is an actual piece of code.) Four hundred lines, not counting the lines in
GDICanvas.cpp or DDFuncs.cpp, and all you're doing is making a few balls bounce. No wonder a profes-
sional game usually has millions of lines of code!

SuUMMARY

In the end, it isn't the number of lines of code or the size of the executable that counts—it’s performance.
Hopefully I've given you enough to get started. VWeve gone over a lot of stuff in this chapter; here are a
few things to keep in mind.

= An application has one primary surface and may or may not have back buffers.

= Off-screen surfaces can be used to store bitmaps until they are needed.

= You can use GDI with DirectDraw, but you should limit how often you do so.

= B1t is good for performing color fills and moving blocks from one surface to another.
= Color keys are a way to achieve transparency.

= BltFast is a faster way to move blocks of color from one surface to another.

= To work without a net, you can use Lock/Unlock.

S g e e 2 W
LFJLKJ—'_‘E Lt 1 .~ Lan—l_mj—|—"—r|JJ P

CHAPTER 7

TDT"RECTDRAWCLIPPER
ORJECTS AND
UDJINDOWED

DI RECTDRAW

B UsING TDNRECTDRAWCLIPPER

]

-

TIhRECTDRAWCLIPPER ORJIECTS 179

AND WIiINDOweED DIReECTDRAW

Ve talked quite a bit about DirectDraw surfaces and the capabilities of functions like 81t. In that dis-

cussion | mentioned briefly the ability to clip the output of 81+t by use of a clipper. In this chapter
we'll be covering just that. I'll also cover the (sort of) amazing world of DirectDraw in a windowed appli-
cation. Oh, stop groaning! It'll be fun—I promise.]

UsiING TDIRECTDRAWCLIPPER [

A clipper in DirectDraw serves the same purpose as a region in GDI—it limits output to a certain area, as
Figure 7.1 illustrates.

Figure 7.1

. - Clipped versus
unclipped

Unclipped Output Clipped Output

This can be especially important when you're using the entire drawing area of a surface as the clipping
region and blitting images that do not entirely fit in the display. In DirectDraw, drawing out of bounds
usually doesn't draw anything unless you are making use of a clipper.

Here’s something you should always keep in mind: 81t works with a clipper, but B1tFast doesn't. Using a
clipper is somewnhat slower than not using one. However, when you're in a windowed environment (as
you'll be in the second half of this chapter), a clipper is not only important, it's essential.

CREATING CL1PPERS

There are two ways to create a clipper—DirectDrawCreateClipper and
IDirectDraw/::CreateClipper.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

HRESULT WINAPI DirectDrawCreateClipper(
DWORD dwFTlags,
LPDIRECTDRAWCLIPPER FAR *1plpDDClipper,
IUnknown FAR *pUnkQOuter

As with all other DirectDraw functions, this returns pp_ok if successful.

Of the three parameters for DirectbrawCreateClipper, Only one of them is functional: 1p1pDDC11ipper.
J The other two, dwF1ags and punkOuter, are not used, and they must be O and NULL, respectively. Hooray
for unused parameters!

HRESULT IDirectDraw7::CreateClipper(
DWORD dwFTags,
LPDIRECTDRAWCLIPPER FAR *1pl1pDDClipper,
IUnknown FAR *pUnkOQOuter

This returns bb_0K 0on success.

Hey, look! It got the exact same parameter list as DirectDrawCreateClipper, and the same rules
apply...ignore dwF1ags and punkoOuter by placing O and NULL.

So, what is the difference between these two methods of clipper creation? Not much, as it turns out.
DirectDrawCreateClipper Creates a clipper that isnt “owned” by a DirectDraw object, meaning that it
can be used by any surface, even those created with a different 1Directdraw7 object. Since you will never
have more than one 1DirectDraw7 object, it seems silly to use DirectDrawCreateClipper, SO let’s just go
with using 1DirectDraw7::CreateClipper

As you have seen, there isn't much to the actual creation of a clipper—just the following code:

//globals

LPDIRECTDRAWCLIPPER 1Tpddclip=NULL;

//create clipper (lpdd is our IDirectDraw/)
1pdd->CreateClipper(0,&lpddclip,NULL);

SETTING U A CL1PPING REGION

When you initially create a clipper, it contains nothing—a null clipping region, which is useless. In order
for a clipper to be useful, you first must fill it with information that describes the clipping region.

TIMRECTDRAWCLIPPER ORJIECTS E

AND WINDOwED DIReECTDRAW

You do this is by using 1DirectDrawClipper::SetClipList:

HRESULT IDirectDrawClipper::SetCliplList(
LPRGNDATA 1pClipList,
DWORD dwFlags

)s

This returns pb_ok if successful.

As with most of the clipper functions, dwF1ags is not used and must be 0. The important parameter here
IS 1pC1ipList, which is a pointer to a RGNDATA Structure. A RGNDATA structure is a variable length type
(which means you usually have to work with it through pointers, ma11oc, and memcpy). [

typedef struct _RGNDATA {
RGNDATAHEADER rdh;
char Buffer[1];
} RGNDATA, *PRGNDATA;

This contains two members—rdh (2 RGNDATAHEADER) and a buffer of chars. The char buffer is where
the variable length comes in. Starting at this location is RaNDATA' clip list. It can be as long or as short as
needed to describe the clipping area.

Here is the RGNDATAHEADER structure;

typedef struct _RGNDATAHEADER ({
DWORD dwSize;
DWORD iType;
DWORD nCount;
DWORD nRgnSize;
RECT rcBound;
} RGNDATAHEADER, *PRGNDATAHEADER;

The RGNDATAHEADER describes the clipping region overall—the type of clipping region (i Type), the num-
ber of rectangles (nCount), and the bounding rectangle for all the rectangles in the clip list (rcBound). Set
dwSize t0 sizeof (RGNDATAHEADER), and set nRgnSize to 0.

Does it sound like a real pain to work with these structures? It is. That's why you're not going to play with
RGNDATA and RGNDATAHEADER. Instead, you're going to make your clippers by creating and combining GDI
regions.

If you've spent any time working with RGNDATA, you know what kind of problems it has. After months of
research (OK...only a few hours), | found out that instead of working with the clumsy structure, you can
create HRGNS and extract the RGNDATA structure once you've let GDI make the clipping area you want.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Now for a brief review. Table 7.1 lists the functions most commonly used to create regions for GDI. For
the most part, you'll want to try and stick to CreateRectRgn as much as possible, because it is the least
slow of the regions as far as clipping is concerned. However, you can use any region you create with these
functions, extract the rectangle list, and use it to set a DirectDrawC1ipper’s clip list.

Table 7.1 Region Creation Functions

Function Type of Region Created
:I CreateElTipticRgn An elliptical region

CreatePolygonRgn A polygonal region

CreateRectRgn A rectangular region

CreateRoundRectRgn A rounded rectangular region

After you use one of these functions to create a clipping region, you have to get it out into a RGNDATA
structure, since that is what 1DirectDrawClipper::SetClipList takes. To do this, you use the
GetRegionData function:

DWORD GetRegionData(
HRGN hRgn, // handle to region
DWORD dwCount, // size of region data buffer
LPRGNDATA TpRgnData // region data buffer

)3

Table 7.2 explains the parameter list.

Table 7.2 GetRegionData Parameters

GetRegionData Parameter Purpose

hRgn The region for which you are extracting the RGNDATA
dwCount The size of the buffer that will receive the information

1pRgnData A pointer to the buffer

TIMRECTDRAWCLIPPER ORJIECTS E

AND WINDOwED DIReECTDRAW

This is one of Windows’ many functions that retrieve data into a buffer, and it also serves as a function to
retrieve the size required for the buffer by passing NULL as 1pRgnData. SO, your extraction is actually per-
formed in a number of steps:

//retrieve buffer size

DWORD dwBufSize=GetRegionData(hrgn,0,NULL);
//allocate Targe enough buffer

LPRGNDATA T1prd=(LPRGNDATA)malloc(dwBufSize);
//extract region data
GetRegionData(hrgn,dwBufSize,lprd);

//assign clip list to ddclip [
IpddcTip->SetClipList(lprd,0);

HsSS51GNING A CL1PPER TO A SURFACE

Just as an HRGN by itself isn't very useful, an 1DirectDrawC1ipper is Of no use in a void. It has to be
assigned to an 1DirectDrawSurface7 by using IDirectDrawSurface7::SetClipper:

HRESULT SetClipper(
LPDIRECTDRAWCLIPPER 1pDDClipper

This returns pp_ok if successful.

At last! A function involving clippers that doesn't have a useless parameter in it. 1pDDC11ipper IS a pointer
to the clipper that you are assigning to the surface. You can assign a clipper to more than one surface at the
same time (usually, you'll only assign a clipper to the back buffer, but there are exceptions).

To remove a clipper from a surface, you can pass NULL in the call to
IDirectDrawSurface7::SetClipper.

Let’s do a quick example. Load up IsoHex7_1.cpp. This is based on IsoHex6_4.cpp. Two functions
involving clippers have been added to DDFuncs.h and DDFuncs.cpp. Figure 7.2 shows the output.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 7.2
IsoHex7_1.cpp output

By far the most common use of a clipper is to encompass the entire screen. However, in many games, this
isn't always the best plan. You may have a playing area, a status bar on one side, a message bar on the top
or bottom, etc., etc. In cases like these, writing only to the appropriate area takes some careful planning on
your part. Clippers can help—you can make one clipper for the view area, one for the status bar, one

for the message bar, and so on, and use IDirectDrawSurface7::SetClipper to switch between them

as needed.

That's about all I have to say for now about clippers. They are a powerful tool when used correctly, but
they are not always the best solution. In a game where speed really counts, you will want to use your own
sort of clipping. We will visit clippers again briefly in a moment.

MWINDOWED DNReECTDRAW

You may be wondering why I'm covering windowed DirectDraw at all. DirectDraw games are all full-
screen, right? Well, true. .. mostly. However, it is always a good thing to give your user the ability to choose
whether to run full-screen or in a window. Empowering the user to do so is important, just like when giv-
ing the user the ability to switch display modes based on personal preferences.

DhFFERENCES REETWEEN FULL-SCREEN AND
DIINDOWED DNRECTDRAW

There aren't actually that many differences between a full-screen DirectDraw application and a windowed
one. However, the changes that do exist are important. They are summarized in Table 7.3.

TIMRECTDRAWCLIPPER ORJIECTS E

AND WINDOwED DIReECTDRAW

Table 7.3 Full-Screen versus Windowed DirectDraw

Item Full-Screen Windowed
Hagssentto IDirectDraw/:: DDSCL_FULLSCREEN | DDSCL_NORMAL
SetCooperativelevel DDSCL_EXCLUSIVE |

DDSCL_ALLOWREBOOT
Call IDirectDraw7::SetDisplayMode Yes No
Create back buffers Yes No [
Use a clipper Optional Strongly suggested

DhsPLAY YIOoDES

Since you can't call setDisplayMode, you are stuck with whatever the user has currently set up. If the user
Is in an 8-bit mode, so are you. Being stuck in 8-bit mode will probably mean that your game will not
look as good as it can, and it also means that if you want to support this mode, you'll have to make use of
an IDirectDrawPalette

First, you can't allow the program to run in an 8-bit mode. You can determine how many bits per pixel the
display has by calling 1DirectDraw7: :GetDisplayMode:

HRESULT GetDisplayMode(
LPDDSURFACEDESC2 1pDDSurfaceDesc?
)s

This returns pp_ok if successful. 1poDSurfacebesc? points to a DDSURFACEDESC2. Examine the pixel for-
mat to retrieve the bits per pixel. This way is not very empowering to your users, and it might completely
alienate them. And if they don't play your game, they don't tell their friends to buy it, and you make less
money (and you have to settle for a Neon instead of a Ferrari).

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Second, you can detect the bits per pixel. If the current display mode set by the user shows that it's in an
8-bit mode or less, pop up a message box warning him that the display might not look correct in that
mode and asking if he would like to continue (see Figure 7.3).

Figure 7.3
This game was designed to run in high-color mode. Continuing under your current display settings may A friendly way to warn
not look as good. Would you like to continue? . .
about 8-hit graphic
No | performance

Now the user has been warned, and he is less likely to e-mail you telling you that your game sucks. Little
touches like this will make your games seem more professional.

No BEAcK BufFfFeRrs

Another problem with windowed DirectDraw is that you can't make use of a back buffer, which means
you can't use F11p. You can solve this problem by making an off-screen surface that is the exact size (or the
maximum size) of the client area, and once per frame, blitting from this surface to the primary. In some
cases, it won't be as smooth as when using a back buffer, but that's the price of being in a window.

Which brings me to the problem of the primary surface’s coordinates. No matter whether you are full-
screen or windowed, the primary surface takes up the entire area of the visible surface. This is significant. It
means that (0,0) on the primary surface is (0,0) on the screen, and not (0,0) in your window’s client
area—unless your client area has (0,0) at screen (0,0). Luckily, Windows gives you the ability to convert
between client coordinates and screen coordinates, with the c1ientToScreen function:

BOOL ClientToScreen(
HWND hWnd, // handle to window
LPPOINT 1pPoint // screen coordinates
)

This returns nonzero on success or 0 on failure. Table 7.4 explains the parameter list.

TIRECTDRAWCLIPPER ORJIECTS 187

AND WINDOwED DIReECTDRAW

Table 7.4 ClientToScreen Parameters
ClientToScreen Parameter Purpose

hWnd Window from which you are converting client coordinates

TpPoint On entry, the client coordinate; on exit, the screen
coordinate (pointer)

When you want to blit to only the window, you just convert from the (0,0) client coordinate to whatever
the screen coordinate is, like so:

//(0,0) client coordinate

POINT pt;

pt.x=0;

pt.y=0;

//convert to screen coordinate
ClientToScreen(hWndMain,&pt);

//pt now contains the screen coordinates

Simple, no?

You could convert the client to screen coordinates every frame, but you don't necessarily have to. You can
just respond to the wM_movE window message, and keep the screen coordinates for the (0,0) client coordi-
nate in a global somewhere.

CLiPPERS 1IN WIINDOWED DNReECTDRAW

In full-screen DirectDraw, clippers are optional and often aren't used. In windowed DirectDraw they are
almost mandatory, because the viewable area of the primary screen through your window may change
based on other windows in the system and the placement of your window. Fortunately, you don't have to
do the clipping by yourself; you can have DirectDraw automatically do it by calling
IDirectDrawClipper:SetHWnd:

HRESULT IDirectDrawClipper::SetHWnd(
DWORD dwFlags,
HWND hWnd

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

This returns op_ox if successful. The dwrF1ags parameter must be 0. The hiwnd parameter is a window
handle from which the clipper obtains the clip list. Once you call this function and then call the primary
surface’s SetC1ipper function, that’s it—DirectDraw takes care of the rest.

IsoHex7_2.cpp puts all this stuff about windowed DirectDraw into practice. Figure 7.4 shows the output.

Figure 7.4

Balls bouncing in a window

The first thing you'll notice when running this program is that the balls seem to bounce around much
more quickly. However, you should also notice that the smoothness is gone and the balls leave an
afterimage.

The main differences between the full-screen bouncing ball demo and the windowed one are as follows:

= The IDirectDraw7 object has a cooperative mode of DDSCL_NORMAL.

= Modes are not enumerated.

= The primary surface has no back buffers.

= The “hack buffer” that is created is in actuality an off-screen surface.

= A variable called ptPrimeB1t keeps track of the (0,0) client position in screen coordinates. It is first calcu-
lated in Prog_Init and is recalculated in response to WM_MOVE.

= Instead of two previous positions for the ball, you keep track of only one (since the contents of the “back
buffer” and the primary do not get exchanged).

= Because your “back buffer” is not a true back buffer, you have to release it the same as any other surface.

= The demo checks to see that the bpp of the display mode is at least 16 and displays a warning message if
it is not.

TIMRECTDRAWCLIPPER ORJIECTS E

AND WINDOweED DIReECTDRAW

SuUMMARY

This finishes up all you really need to know about DirectDraw to get started. As you become more famil-

lar with DirectDraw you'll naturally want to explore more. I regret that I cannot cover it in more detail,
but | need to get on to the really fun stuff.

Here’s what you have learned:

= You can clip output with 1DirectDrawC1ipper.
= Empowering the user is important. [
= Windowed DirectDraw is a pain in the rear.

g il RS B ‘ e L e
LHLKJ—'_‘E Lt 1 .~ LEﬁ_WJ—‘—"—ElJ—F[L‘J P

CHAPTER 8

DTRECTSOUND

E THE WIWINXZ WAY TO
PLAY SOUNDS

B THE TDhReEcCT SouND ORJECT

B THE TIDIRECT S0OUND
RuFfFFeErR ORJECT

_Li B LUsING WAV FiLES

ﬁ}LJ—_ J—dm—_rA\?f ——

u—_I—L/_\Ih\L——ﬂ—‘HU]‘*‘—%__ o TR

DIRECTSOUND E

J ust as you used DirectDraw to seize control of your display, you will use DirectSound to grab the
resources of your sound card. DirectSound and DirectDraw have a lot in common as far as how
things are set up, but we’ll get to that in a moment.

First, a little history. Back in the Stone Age of about 5 years ago, using digital sound on the PC was a
Herculean task. There were hundreds of sound card manufacturers, and each one had its quirks. If you
wanted to write a game that used them, you had to choose which you were going to support and stay with
it. It was indeed a dark day for the rebellion. After Windows 95 came out, there was only limited support
for playing sounds, and there were problems with latency (the time between when you told a sound to play
and when it actually started playing), so using digital sound in Windows 95 was something of a joke.

That was before DirectX came out. With DirectSound, you no longer have to worry about who the manu-
facturer of your sound card is. Most sound cards now have drivers that make them compatible with
DirectSound, emulating features if needed. It's a beautiful thing.

Even though this book really isnt about sound programming, | felt a certain obligation to at least do the
basics of DirectSound. Nowadays, any game written is required to have sound, and usually music as well.

THE NATURE OF S0OUND

You may or may not have ever given thought to the nature or physics of sound. It's really a fascinating sub-
ject. Well, not as fascinating as game programming, of course, but it’s still pretty darn neat!

How Our EARs WoRK (THE REALLY
S1MPLIF1ED VERSION)

Our ears are truly magnificent instruments. They allow us to interpret subtle changes in air pressure to gain
clues about our environment. As | type this, I am listening to the blowing sound of my computer’s power
source fan and the clicks of my fingers on the keys. (I tend to work quite late at night, and | prefer quiet,
unlike many of my colleagues, who listen to music while working.)

When | press a key on my keyboard, | displace air, which sends a shock wave through the atmosphere
between my keyboard and my ears. These shock waves vibrate my eardrums, which moves tiny bones in my
inner ear, which causes compression of some fluid in my cochlea, which sends electrical signals to my
brain, which then realizes that it's hearing my keystrokes. It is a wondrous thing. The process is illustrated
in Figure 8.1.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 8.1

Something disrupts the air Rough sketch of how
| ears work

The air disruption travels in waves to the ear

The eardrum vibrates
] |

The inner ear bones are moved by the eardrum
I
The fluid within the cochlea is compressed and decompressed

The fluid pressure changes are changed into an electric
signal that is sent to the brain

How SPEAKERS WORK

If our ears do nothing more than detect variations in air pressure, speakers must do nothing more than
create variations in air pressure. In fact, a speaker is very much like the opposite of an ear (see Figure 8.2).

Figure 8.2

A wire carries an electrical current to the speaker How speakers work

A magnetic field shifts a magnet within the speaker

The magnet's movement causes a diaphram to move

The diaphram disrupts the air, causing a sound to be emitted

DIRECTSOUND E

A speaker makes noise by moving a cardboard or paper membrane (kind of like an eardrum) back and
forth, thus distorting air pressure. It does this by moving a little magnet back and forth (similar to but
opposite in function from the tiny bones in the inner ear). This magnet is moved around by applying dif-
ferent magnetic fields, which are themselves created by electrical charges in wires.

How SouND CARDS WORK

In the speaker-to-ear comparison, a sound card performs approximately the same function as the cochlea.
Much like the cochlea takes the vibration and converts it into a meaningful signal for the brain, the sound

card takes a meaningful signal and translates it into an analog electrical current that is then applied to the [
speaker’s magnet. This process is illustrated in Figure 8.3.
Figure 8.3
Sound card accepts a digital signal How sound cards work

Sound card's circuirty converts the digital
signal into an analog electrical current o

Electrical current is sent out to the speaker

On the flip side, the sound card can also convert the other way, through the microphone, where, instead of
taking a digital signal and converting it into an analog current, it takes analog current and converts it into
a digital signal.

THE WINXZ MAY 10 PLAY SOUNDS

Before we get into what DirectSound has to offer, let's take a moment to explore what WIN32 has to offer
(it aint much). By doing so, you may appreciate DirectSound more.

To make use of WIN32’s sound capabilities, you must include mmsystem.h in your program, and you
must link to the winmm.lib library. The sum total of the WIN32 support for playing digital sound files
(WAV files) rests in the hands of a single function, P1aySound:

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

BOOL PTaySound(
LPCSTR pszSound,
HMODULE hmod,
DWORD fdwSound

This returns nonzero on success. Table 8.1 explains the parameters.

] Table 8.1 PlaySound Parameters

PlaySound Parameter Purpose

pszSound File name for the WAV file

hmod Handle to the module containing the sound resource. Use
NULL, because you are loading from a file.

fdwSound Flags concerning how the sound is to be played or where it
is from

A typical call to P1aySound looks like this:

//play the bounce sound
PlaySound("bounce.wav" ,NULL,SND_FILENAME | SND_ASYNC);

= SND_FILENAME and SND_ASYNC are a couple of the flags that can be passed. Here are some others, as well
as their meanings:

= SND_ASYNC The sound will be played asynchronously (that is, the function returns immediately without

waiting for the sound to be played)

m SND_FILENAME pszSound is a file name

= SND_LOOP The sound played loops over and over

= SND_NOWAIT If the sound driver is busy, returns FALSE and doesn't play the sound

= SND_PURGE Stops any sounds that are playing for the calling process

= SND_SYNC WAits until the sound is finished playing before returning

Most of the time, you will want SND_ASYNC and SND_FILENAME, as shown in the preceding code.

DIRECTSOUND E

Load up IsoHex8_1.cpp. This is the same old bouncing ball demo that we've been working on for the last
few chapters, only this time a sound will play each time a ball strikes the edge of the screen.

//bounds checking

//Teft side
if(ptBallPosition[index].x<=0)
{
//change direction
ptBallVelocity[index].x=abs(ptBallVelocity[index].x);
//play sound
PlaySound("bounce.wav" ,NULL,SND_FILENAME | SND_ASYNC); [
}
//top side
if(ptBallPositionlindex].y<=0)
{

//change direction
ptBallVelocity[index].y=abs(ptBallVelocity[index].y);
//play sound
PlaySound("bounce.wav" ,NULL,SND_FILENAME | SND_ASYNC);
}
//right side
if(ptBallPosition[index].x>=(int)dwDisplayWidth-gdicBall.GetWidth())
{
//change direction
ptBallVelocity[index].x=-abs(ptBallVelocity[index].x);
//play sound
PlaySound("bounce.wav",NULL,SND_FILENAME | SND_ASYNC);
}
//bottom side
if(ptBallPosition[index].y>=(int)dwDisplayHeight-gdicBall.GetHeight())
{
//change direction
ptBallVelocityl[index].y=-abs(ptBallVelocitylindex]l.y);
//play sound
PlaySound("bounce.wav" ,NULL,SND_FILENAME | SND_ASYNC);

If you run this, you'll see the full-screen bouncing ball demo and hear bouncing sounds. Despite the sim-
plicity of the demo, you might actually begin to believe that, instead of little pictures of circles being
erased and redrawn and digital sounds playing, there are little balls bouncing around inside your computer.
That's what adding sound capabilities is all about...added realism.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

P1aySound is fine if you don't need accurate timing. A larger sound takes longer to load, so the lag would
be more noticeable than the lag with bounce.wav, which is such a small sound (3K) that you don't notice
the latency (unless, of course, you are an android with superhuman hearing).

THE TDhReECTS0OUND ORJECT

Just as DirectDraw has 1pirectdraw7, DirectSound has 1pirectSound, and for the exact same reason.
IDirectSound abstracts the capabilities of sound hardware, in the same way that 1DirectDraw7 abstracts
display hardware. (There is no 1DirectSound7, because there really hasn't been all that much revision in
J the way sound cards work; you just use the plain old 1DirectSound interface.)

CREATING THE DhReECTS0OUND ORJECT
To create an IDirectSound Object, Use DirectSoundCreate.

HRESULT WINAPI DirectSoundCreate(
LPCGUID TpcGuid,
LPDIRECTSOUND * ppDS,
LPUNKNOWN pUnkQuter

)3

This returns ps_ox if successful (it returns bo_ok for DirectDraw or ps_ok for DirectSound). Table 8.2
explains the parameters.

Table 8.2 DirectSoundCreate Parameters

DirectSoundCreate Parameter Purpose

TpcGuid The GUID of the sound drivers to use. (We will
use NULL.)
ppDS A pointer to an LPDIRECTSOUND variable that will be

filled with a pointer to a new DirectSound object.

pUnkOuter COM aggregation stuff. Use NULL.

DI RECTSOUND

This should look a little familiar, because it's a lot like the call to DirectDrawCreateEx.
The code required to create an 1DirectSound object looks like the following:

//variable declaration(global)
LPDIRECTSOUND Tpds=NULL;
//creating IDirectSound object (usually in Prog_Init)
DirectSoundCreate(NULL,&Ipds,NULL);
//cleaning up IDirectSound(Prog_Done)
if(1pds)
{
Ipds->Release();
Tpds=NULL;

See? It's so much like DirectDraw, it's scary.

SETTING THE COOPERATIVE LEVEL
Another similarity between DirectDraw and DirectSound is the use of a cooperative level.

HRESULT IDirectSound::SetCooperativelevel(
HWND hwnd,
DWORD dwlevel

This returns ps_ok if successful. Table 8.3 explains the parameter list.

Table 8.3 IDirectSound::SetCooperativelLevel
Parameters

SetCooperativelLevel Parameter Purpose

hwnd The main window of the application that is using
DirectSound

dwleve The cooperative level flags (discussed next)

197

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

The flags for DirectSound’s cooperative levels are as follows:

DSSCL_NORMAL The application plays well with others, but output is restricted
DSSCL_PRIORITY The application can change the format of the output

DSSCL_EXCLUSIVE DDSCL_PRIORITY, plus no other applications can play sounds
DSSCL_WRITEPRIMARY Total control over the sound hardware, probably more than you want

For your purposes, 0SscL_NorRMAL will suffice.

//set normal cooperative level
Ipds->SetCooperativelevel (hWndMain,DSSCL_NORMAL);

When in DSSCL_NORMAL, you are stuck with a 22KHz 8-bit stereo format. This isn't exactly the best sound
format in the world, but it will suffice for your purposes. Exploring the other sound formats is an exercise
| leave to you.

That's all you need to do to set up your 1DirectSound object. If you were using a cooperative level other
than bpscL_NORMAL, there would be extra steps.

THE TDhRECTSoOouUNDERUFFER ORJECT

Now that you've established contact with your sound card, you need to give it something to do. A sound
card does one thing and does it well: it plays sounds. You keep these sounds (or, at least, binary representa-
tions of them) in buffers.

CREATING S50uUND BUFFERS
Create sound buffers by using 1DirectSound: :CreateSoundBuffer:

HRESULT IDirectSound::CreateSoundBuffer(
LPCDSBUFFERDESC 1pcDSBufferDesc,
LPLPDIRECTSOUNDBUFFER 1plpDirectSoundBuffer,
I[Unknown FAR * pUnkOuter

DIRECTSOUND E

This returns ps_ok if successful. Table 8.4 explains the parameters.

Table 8.4 IDirectSound::CreateSoundBuffer
Parameters

CreateSoundBuffer Parameter Purpose

TpcDSBufferDesc Pointer to a DSBUFFERDESC (similar in purpose to a
DDSURFACEDESC) that describes the buffer [
1plpDirectSoundBuffer Pointer to an LPDIRECTSOUNDBUFFER pointer that

will be filled with a pointer to an
IDirectSoundBuffer interface.

pUnkOuter COM aggregate stuff. Use NULL.

The psBUFFERDESC structure tells how a buffer is to be created.
typedef struct {

DWORD dwSize;

DWORD dwFlags;

DWORD dwBufferBytes;
DWORD dwReserved;
LPWAVEFORMATEX TpwfxFormat;

GUID guid3DAlgorithm;

} DSBUFFERDESC, *LPDSBUFFERDESC;

Table 8.5 shows the meaning of the various DSBUFFERDESC members.

Table 8.5 DSBUFFERDESC Members

DSBUFFERDESC Member Meaning

dwSize Size of this structure

dwFlags Flags for how to create the buffer
dwBufferBytes Number of bytes to allocate for the buffer
dwReserved Reserved

TpwfxFormat Pointer to a WAVEFORMATEX structure

guid3DAlgorithm For 3D sound, which | will not cover

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

You must set the dwSize parameter t0 sizeof (DSBUFFERDESC).
Here are some possible flags for dwFlags:

= DSBCAPS_CTRLFREQUENCY Controls the frequency of the sound

= DSBCAPS_CTRLPAN Controls the panning (left-right position) of the sound

= DSBCAPS_CTRLVOLUME Controls the volume for this sound

= DSBCAPS_LOCHARDWARE The sound is stored in the sound card’s hardware memory, and you can make use
of hardware mixing (not necessarily available).

= DSBCAPS_LOCSOFTWARE The sound is stored in software (System memory).

:I = DSBCAPS_STATIC The buffer is intended to be loaded once and played many times, rather than used for
streaming.

Here are a few words of advice concerning these flags:

= Don't use more than are necessary. If you want to control the volume, that's fine, but if you don't need some-
thing like frequency control, don't ask for it.

= If you attempt to use the DSBCAPS_LOCHARDWARE flag, be sure to have a fallback plan (for example, respond
to a return code that is not DS_0K).

= Most of your sounds are likely to be static, so make good use of the DSBCAPS_STATIC flag.

I'll go into more detail on some of these flags later.

THE WAVEFORNMATEX STRUCTURE

Sounds come in many different formats—mono (single-channel), stereo (dual-channel), 8-bit, 16-bit,
11KHz, 22KHz, and 44KHz. As you can see, a sound file can have a number of properties, and these are
specified in @ WAVEFORMATEX structure:

typedef struct f
WORD wFormatTag;
WORD nChannels;
DWORD nSamplesPerSec;
DWORD nAvgBytesPerSec;
WORD nBlockATign;
WORD wBitsPerSample;
WORD cbSize;

} WAVEFORMATEX;

DIRECTSOUND @

Table 8.6 explains the members of WAVEFORMATEX.

Table 8.6 WAVEFORMATEX Members

WAVEFORMATEX Member Meaning

wFormatTag The waveform audio type (typically
WAVE_FORMAT_PCM, which is used by WAV files)

nChannels Either mono (1) or stereo (2) [

nSamplesPerSec The frequency of the sound, typically 11025, 22050,
or 44100

nAvgBytesPerSec The number of bytes per second

nBlockAlign The number of bytes in a block (depends on
wBitsPerSample and nChannels)

wBitsPerSample 8 or 16, specifying the size of a sample in bits

chSize Extra data; ignored when using WAVE_FORMAT_PCM

Is your head swimming with all of these audio terms? Don't worry about them too much. You don' actu-
ally care all that much about how sounds work; you just want to load them and play them.

The members of WAVEFORMATEX that you need to supply numbers for are wFormatTag, nChannels,
nSamplesPerSec, and wBitsPerSample. You should always make cbsize equal to 0. The rest can be cal-
culated:

nBlockAlign = nChannels * wBitsPerSample / 8;
nAvgBytesPerSec = nBlockAlign * nSamplesPerSec;

So, to create a sound buffer, do this:

//declare buffer (global)
LPDIRECTSOUNDBUFFER 1pdsb;

//set up a buffer description
DSBUFFERDESC dsbd;

//code to fill out dsbd

//create buffer (initialization)
Ipds->CreateBuffer(&dsbd,&Ipdsb,NULL);

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

//safe release (cleanup)
if(1pdsh)
{
Ipdsb->Release();
Tpdsb=NULL;

CoNTROL FLAGS

J There are a number of control flags that can be sent to DirectSound to specify how much and what sort
of control you want for individual sounds. All of these control flags start with DSBCAPS _. There are
more control flags than are described here; I'll just mention the commonly used ones.

FREQUENCY

The frequency of a sound corresponds to the nSamplesPerSec member of DSBUFFERDESC and is typically
11025, 22050, or 44100. The higher the frequency, the more bytes per second (hence, a larger WAV file),
and the better the sound quality.

You set the frequency of the sound when you create the buffer, but if you include a DSBCAPS_CTRLFRE-
QUENCY flag in your buffer description, you can change it later with 1DirectSoundBuffer::SetFrequency:

HRESULT IDirectSoundBuffer::SetFrequency(
DWORD dwFrequency
)3

This returns Ds_ok on success. dwFrequency IS the new frequency at which you want the sound to be
played. This number can be in the range of DSBFREQUENCY_MIN t0 DSBFREQUENCY_MAX. Another constant,
DSBFREQUENCY_ORIGINAL, reverts the sound to its original frequency.

When you change the frequency of a sound, both the length and the pitch change. If you put in a smaller
number, the sound will be longer, and it will be lower in tone. If you put in a larger number, the sound
will play more quickly, and it will sound higher (the chipmunk effect).

To retrieve the frequency of a sound, use 1DirectSoundBuffer:GetFrequency:

HRESULT IDirectSoundBuffer::GetFrequency(
LPDWORD TpdwFrequency
)3

DIRECTSOUND @

This returns ps_ok if successful. The 1pdwFrequency parameter is a pointer to a bWorbD that is filled with
the sound’s frequency.

VoOoLUME

If you use the psBcAaPS_CTRLVOLUME flag, you can make use of volume control for a sound. You might be
surprised at how the volume controls in DirectSound work, because volume control is actually attenuation
control. In other words, you don't actually set how loud a sound is; you set how muted it is. The second
thing that might give you trouble is that attenuation is a logarithmic scale, specified in hundredths of a
decibel (dB). Crazy, huh? [

So, what the heck is a decibel? A decibel is one-tenth of a bel. (Not too helpful, I know.) A sound that is
2 bels (20 decibels) is 10 times louder than a sound that is 1 bel (10 decibels). To flip this around, a
sound that is attenuated by 10 decibels is 10 times softer than a sound that is not attenuated at all. To
specify attenuation, you use a minus sign. Because the units are in hundredths of a decibel, attenuating by
10 dB has a value of —10000. The maximum attenuation value for DirectSound is DSBVOLUME_MIN, which
equals —100000, or —100 dB, which is 10 billion times softer than a nonattenuated sound—for all intents
and purposes, silence. On the other end of the scale is DSBVOLUME_MAX, which is O, meaning no attenua-
tion.

Set the attenuation with a call to 1DirectSoundBuffer:SetVolume;

HRESULT IDirectSoundBuffer::SetVolume(
LONG TVoTlume
)

This returns ps_ok on success. The 1volume parameter specifies the attenuation value for this sound.
To retrieve the attenuation value, use 1DirectSoundBuffer::GetVolume:

HRESULT IDirectSoundBuffer::GetVolume(
LPLONG TplVolume
)

This returns bs_ok on success. The 1p1volume parameter is a pointer to a LONG that is filled with the
attenuation value.

Most of the time, you won't want to work with a logarithmic scale for setting volumes, and your users def-
initely won't. Usually, you'll want some nice scalar measure for volumes, like a percentage; one way to do it

Is to calculate the logarithmic values for the percentages from O to 100 and store them in a lookup table or
just calculate them on-the-fly. To do this, just use the following equation.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

I T

CAUTION

Be careful not to put a 0 into the 1og function, or you will cause an infi-
nite feedback loop that will destroy all matter in the universe! Or you’ll
get a runtime error, which is much, much worse.

1 1

//the 1ogl0 function requires the use of math.h
attenuation=1ogl0(volume)*1000; //volume is a value between 0 and 1

PANNING

Pan is similar in function to volume and works in a similar way. Pan sets the relative volume between the
two speakers. The psBcAP_CTRLPAN flag is required to change the pan.

Panning is accomplished by attenuating either the left or right speaker’s output, similar to how volume
attenuates both. This attenuation is in addition to the attenuation because of volume control. The units
are the same—hundredths of a decibel. Positive values attenuate the left speaker, leaving the right speaker
alone, and negative values attenuate the right speaker, leaving the left speaker alone. A value of 0 means no
attenuation to either speaker.

To set the pan, use IDirectSoundBuffer::SetPan:

HRESULT IDirectSoundBuffer::SetPan(
LONG TPan

This returns ps_ox if successful. 1pan species how to pan the sound. (Noticing a pattern with these func-
tions?)

There are a few constants that you can use with SetPan. DSBPAN_LEFT (equal to —10000) silences the
right speaker, DSBPAN_RIGHT (equal to 10000) silences the left speaker, and DSBPAN_CENTER Sets no atten-
uation for either speaker.

To retrieve the current panning for a sound, use 1DirectSoundBuffer::GetPan:

HRESULT IDirectSoundBuffer::GetPan(
LPLONG TpTPan

DIRECTSOUND @

This returns ps_ok if successful. The 1p1pan parameter is a pointer to a LONG that is filled with the cur-
rent pan level.

LOCKING AND LINLOCKING S0uND BRuFfFFeERrRSsS

Before we actually get into locking and unlocking a sound buffer, we must first discuss the concept of a
sound buffer. A DirectSound sound buffer is conceptually circular, allowing you to loop a buffer indefi-
nitely, or even to have streaming content to a buffer (that is, writing to one section of the buffer while
another section is playing). Because of this, when you lock a buffer, instead of just getting a single pointer
to the memory contained in the buffer, you might get two pointers (because you might be playing the [
middle of the buffer while you are locking two of the ends). | won't cover streaming buffers, but I thought

that you should be aware of them.

To lock the buffer, you use the 1DirectSoundBuffer::Lock function:

HRESULT IDirectSoundBuffer::Lock(
DWORD dwWriteCursor,
DWORD dwWriteBytes,
LPVOID 1plpvAudioPtrl,
LPDWORD TpdwAudioBytesl,
LPVOID 1plpvAudioPtr2,
LPDWORD TpdwAudioBytes?,
DWORD dwFTags
)

This returns ps_ok if successful. Table 8.7 explains the parameters.

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Table 8.7 IDirectSoundBuffer::Lock Parameters

Lock Parameter Purpose

dwWriteCursor Offset from the start of the buffer (in bytes) where you want the
lock to start
dwWriteBytes Size, in bytes, of the portion you want to lock
:I TpTpvAudioPtrl Pointer to a pointer that will be filled with the memory location of

the start of the locked portion

1pdwAudioBytesl Number of bytes pointed to by what will be filled into
IplpvAudioPtrl

TplpvAudioPtr2 If the buffer had to wrap around (go from the end to the beginning
again), this is filled with the second pointer, so you can continue to
write. If NULL, Tp1pvAudioPtrl points to the entire locked area of
the buffer.

1pdwAudioBytes?2 The size in bytes of the area that starts at Tp1pvAudioPtr2

dwFlags Flags specifying how you want to lock the buffer

Since you will be working with static buffers only, you can ignore 1p1pvAudioPtr2 and pass NULL.
However, you still need to pass in a pointer to a DWORD for 1pdwAudioBytes2, even though it will be filled
with 0. Also, since you are dealing with static buffers, you pass bSBLOCK_ENTIREBUFFER, which means that
dwliriteBytes is ignored and you can pass O there as well.

To lock a buffer, do the following:

//pointer to buffer (it is UCHAR* to work with 8 bit audio, if using 16 bit, you
should use USHORT*)

UCHAR* pBuffer;

//buffer sizes

DWORD dwBufl;

DWORD dwBuf2;

//Tock the buffer

Tpdsb->Lock (0,0, (void**)&pBuffer,&dwBufl,NULL,&dwBuf2,DSBLOCK_ENTIREBUFFER);

DIRECTSOUND

After locking the buffer, you can fill it with whatever data you want (usually by using memcpy). When you
are all done, use 1DirectSoundBuffer::Unlock:

HRESULT IDirectSoundBuffer::Unlock(
LPVOID TpvAudioPtrl,
DWORD dwAudioBytesl,
LPVOID TpvAudioPtr2,
DWORD dwAudioBytes?

This returns ps_ok on success. The parameters for un1ock should look familiar, because they are most of [
the parameters for Lock.

Do the following to unlock the buffer:
ITpdsb->Unlock(pBuffer,dwBufl,NULL,0);

Now you're ready to start using the sound.

PLAYING SOUNDS

Once you have your sound buffer created and filled with the proper data, it’s time to put it to work by
playing it. To do so, use 1DirectSoundBuffer::Play:

HRESULT IDirectSoundBuffer::Play(
DWORD dwReservedl,
DWORD dwPriority,
DWORD dwFTags

This returns ps_ok if successful. Table 8.8 explains the parameters.

Table 8.8 IDirectSoundBuffer::Play Parameters

Play Parameter Purpose

dwReservedl No purpose. Pass a 0.
dwPriority Meaningless when using the DSSCL_NORMAL cooperative level. Pass a 0.
dwFlags Pass 0 to play the sound once. Pass DSBPLAY_LOOPING to loop the

sound repeatedly.

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

//play a sound once
1pdsb->Play(0,0,0);

//play a sound continuously
1pdsb->Play(0,0,DSBPLAY_LOOPING) ;
//stop a sound

Tpdsb->Stop();

DufrLicATING S0uND BuUuFfFFfFeERSs

J The problem with DirectSound buffers is that, at any given time, only one copy can be playing. To play
more than one copy of the same sound, you can do one of two things: you can load the sound into more
than one sound buffer, or you can duplicate the sound buffer. The first method is wasteful, especially if
you have a large number of sounds. Digital sounds can take up a lot of space—in some cases, more than
graphics can.

Duplication is a good alternative. WWhen you duplicate a sound buffer, you do not make an independent
copy. A duplicated buffer points to the exact same memory that the original does, so if you lock the dupli-
cate and modify the contents, you'll get the same change if the original is played. Right after duplication
the new buffer has the same parameters (volume, pan, frequency) as the original. These parameters can be
changed.

To duplicate a sound buffer, you use 1DirectSound: :DuplicateBuffer:

HRESULT IDirectSound::DuplicateSoundBuffer(
LPDIRECTSOUNDBUFFER 1pDsbOriginal,
LPLPDIRECTSOUNDBUFFER 1plpDsbDuplicate

)3

This returns ps_ok if successful. This method increases the original buffer’s reference count, so you can
safely release it and rest assured that the duplicate will still function properly.

//duplicate buffer
Ipds->DuplicateSoundBuffer(1pdsb,&lpdsbcopy);

You may wonder why in the world you would ever need more than a single copy of a sound. In many (or
even most) cases, you probably don't. However, as with oft-repeated sounds such as a gun firing, you may
want to have two copies or even more.

DIRECTSOUND @

UsiNnGg WAV FILES

I've been talking about sound and WAV files the whole chapter long, and at last, I'm going to show you
how to load them. WAV files are the final bridge between you and making your program come alive with
digital sound! Before I discuss WAV files let’s take a brief detour and explore how to open and read from
files the WIN32 way (I'm not a big fstream fan).

UsiNG HANDLEsS tTo Do +1L,E OPERATIONS

W\e've spoken at length about the various types of HANDLES prevalent in WIN32 programming. File access [
is also done using a HANDLE. In order to do any sort of sequential access of a file, you need to know only
four functions: CreateFile, WriteFile, ReadFile,and CloseHandle

For your purposes (loading from a WAV file), these four functions will get the job done. Let’s take a quick
look at them.

CREATEFILE
Use CreateFile to either create a new file or open an existing one.
HANDLE CreateFile(

LPCTSTR 1pFileName, // file name

DWORD dwDesiredAccess, // access mode

DWORD dwShareMode, // share mode
LPSECURITY_ATTRIBUTES 1pSecurityAttributes, // SD

DWORD dwCreationDisposition, // how to create

DWORD dwFlagsAndAttributes, // file attributes

HANDLE hTemplateFile // handle to template file

)

This returns a handle to the file. If the function fails, the return value is INVALID_HANDLE_VALUE. Table
8.9 explains the parameters.

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Table 8.9 CreateFile Parameters

CreateFile Parameter Purpose

TpFileName The name of the file
dwDesiredAccess Access mode desired (GENERIC_READ Or GENERIC_WRITE)
dwShareMode Share mode

] TpSecurityAttributes Pointer to security attributes

dwCreationDisposition How the file is to be created

dwFlagsAndAttributes File attributes
hTemplateFile Template file

CreateFile hasabunch of parameters, most of which you won't use:

= 1pFileName will contain a string with the name of the file and a relative path.

» dwDesiredAccess will be either GENERIC_READ or GENERIC_WRITE, depending on which you
want to do.

= dwShareMode will be 0. You are greedy, and you don't want to share your sound files with anybody.

= IpSecurityAttributes points to security junk, which you don't care about, so you'll pass NULL.

» dwCreationDistribution will either be CREATE_ALWAYS (when making a new file) or OPEN_EXISTING
(when opening an old one).

= dwFTlagsAndAttributes should always be FILE_ATTRIBUTE_NORMAL.

= hTemplateFile We arent discussing, so pass NULL.

INRITEFILE
This function is used to write data to the file.
BOOL WriteFile(

HANDLE hFile, // handle to file
LPCVOID 1pBuffer, // data buffer
DWORD nNumberOfBytesToWrite, // number of bytes to write

LPDWORD TpNumberOfBytesWritten, // number of bytes written
LPOVERLAPPED T1pOverlapped // overlapped buffer

DIRECTSOUND m

This returns nonzero on success. Table 8.10 explains the parameters.

Table 8.10 WriteFile Parameters

WriteFile Parameter Purpose

hFile Handle to the file to which you are writing

IpBuffer A buffer that contains the contents to be written
nNumberQfBytesToWrite The number of bytes in the buffer [

TpNumberOfBytesWritten A pointer to a DWORD that contains the number of bytes
actually written

TpOverlapped Ignore. Pass NULL.

It's important to check the value returned in 1pNumber0fBytesWritten against the number that you told
it to write in order to check for errors.

ReEeADFILE
ReadFile is used to read data from a file. It looks quite a bit like writeFile.

BOOL ReadFile(
HANDLE hFiTe, // handle to file
LPVOID 1pBuffer, // data buffer
DWORD nNumberOfBytesToRead, // number of bytes to read
LPDWORD 1pNumberOfBytesRead, // number of bytes read
LPOVERLAPPED T1pQverlapped // overlapped buffer

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

This returns nonzero on success. Table 8.11 explains the parameters.

Table 8.11 ReadFile Parameters

ReadFile Parameter Purpose
hFile Handle to the file from which you are reading
1pBuffer Buffer into which data from the file will be stored
:I nNumberOfBytesToRead Number of bytes in the buffer
TpNumberOfBytesRead A pointer to a DWORD that will be filled with the actual num-
ber of bytes read

TpOverlapped Ignore. Pass NULL.

As with writeFile, be sure to check the value returned in 1pNumber0fBytesRead.

CLosEHANDLE
The simplest of them all, closeHand1e closes the file.

BOOL CloseHandle(
HANDLE hObject // handle to object
)

This returns nonzero on success. hobject is the file handle.

THE STRUCTURE OF A WAV FILE

Now that you can read data from a file, it's almost time to do so. But first (you saw that one coming),
let’s talk a little bit about the structure of a WAV file. Then, I promise we'll get to the actual loading of
the file.

The WAV file format is based on the RIFF format, which was developed to allow many types of files to
use the same format—even files with radically different purposes. Not surprisingly, the first four bytes of
aWAV file contain the string "RIFF". The next four bytes contain the length of the rest of the file. These
eight bytes make up what is called the RIFF header. This is common to any file with the RIFF format.

Now we start getting into the particulars of the WAV file itself. The next four bytes contain the string
"WAVE. " This is what identifies the file as a WAV file. The remainder of the file consists of data “chunks.”
Figure 8.8 shows a graphical version of the contents of a chunk.

DIRECTSOUND m

You are concerned with exactly two types of chunk: the “fmt” chunk (there is a space after the t) and the
“data” chunk. The “fmt” chunk contains information about the format of the sound, and the fields corre-
spond, for the most part, to the members of wAVEFORMATEX. The “data” chunk contains the raw audio
data that you put into the buffer after you have locked it.

There are more than just these two chunks, but for the purpose of loading a WAV file, these are the only
two that are of any use. In all of the WAV files I've ever worked with, the “fmt” chunk always comes first,
and, in most cases, the “data” chunk comes immediately thereafter.

LoADING A WAV FiLE FROMm DhisK [
As with the bitmap loader back in Chapter 3, I've written a class to do the WAV file loading:

//wave Tloader class

class CWAVLoader

{

private:
//format
LPWAVEFORMATEX TpWfx;
//data chunk
UCHAR* wucData;
//Tength of the data chunk
DWORD dwDatalength;

pubTic:
//constructor
CWAVLoader();
//destructor
~CWAVLoader();
//get data length
DWORD GetLength();
//get data pointer
UCHAR* GetData();
//get pointer to format
LPWAVEFORMATEX GetFormat();
//1oad from a file
void Load(LPCTSTR TpszFilename);
//destroy buffer
void Destroy();

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

The constructor does very little—it simply makes sure that all of the data members are cleared out. The
destructor just calls bestroy, which performs any necessary cleanup. The Get members retrieve the data
stored in the class. The main job of the class is done by Load:

//1oad from a file
void CWAVLoader::Load(LPCTSTR 1pszFilename)

{

//destroy any old buffer
Destroy();

//four character buffer
char Buffer[5];
Buffer[4]1=0;

//read Tlength

DWORD dwNumRead;
//Tength variable

DWORD dwlLength;

//data buffer

UCHAR* ucTemp;

//open a handle to the file

HANDLE hfile=CreateFile(IpszFilename,GENERIC_READ,

FILE_SHARE_READ,NULL,OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL,NULL);
ReadFile(hfile,Buffer,4,&dwNumRead,NULL);//"RIFF"
ReadFile(hfile,&dwlLength,sizeof(dwlLength),&dwNumRead,NULL);//Tength of file
ReadFile(hfile,Buffer,4,&dwNumRead,NULL);//"WAVE"

//chunks

bool done=false;

while(!done)

{
ReadFile(hfile,Buffer,4,&dwNumRead,NULL);//chunk header
ReadFile(hfile,&dwLength,sizeof(dwlLength),&dwNumRead,NULL);//Tength

of chunk

ucTemp=new UCHAR[dwlLengthl];
ReadFile(hfile,ucTemp,dwlLength,&dwNumRead,NULL) ;
//depending on the chunk header, do something
if(stremp("fmt ",Buffer)==0)
{

//format chunk

//allocate format

TpWfx=new WAVEFORMATEX;

DIRECTSOUND m

//clear out format
memset (1pWfx,0,sizeof (WAVEFORMATEX)) ;
//copy from buffer
memcpy (TpWfx,ucTemp,dwLength);
}
if(strecmp("data",Buffer)==0)
{
//data chunk
//allocate data buffer
ucData=new UCHAR[dwlLength];
//copy Tlength [
dwDatalength=dwlength;
//copy buffer
memcpy (ucData,ucTemp,dwDatalength);

//we are done, and need no more chunks
done=true;
}
delete ucTemp;
}
//close the file
CloseHandle(hfile);

UsiNG CUUAVLOADER TO LOAD FROM A
F1LE TO A DTRECTSOUNDEUFFER

Load up IsoHex8_2.cpp. It’s our favorite bouncing ball demo again! This time, though, we are using
IDirectSoundBuffer and CWAVLoader.

//decTarations (global)

//sound manager

LPDIRECTSOUND T1pds;

//buffers

LPDIRECTSOUNDBUFFER 1pdsb[2];

//setup (Prog_Init)
//Toad wav file
CWAVLoader wav;
wav.lLoad("bounce.wav");
//set up sounds
DirectSoundCreate(NULL,&1pds,NULL);

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

//set coop Tevel

1pds->SetCooperativelevel (hWndMain,DSSCL_NORMAL) ;
//set up buffer description

DSBUFFERDESC dsbd;

memset (&dsbd,0,sizeof (DSBUFFERDESC));

//size

dsbd.dwSize=sizeof (DSBUFFERDESC);

//flags

dsbd.dwF1ags=DSBCAPS_LOCSOFTWARE;

J //length and sound format
dsbd.dwBufferBytes=wav.GetLength();
dsbhd.lpwfxFormat=wav.GetFormat();

//create buffer

ITpds->CreateSoundBuffer(&dsbd,&lpdsb[0],NULL);

DWORD buflen,buflen?;

void* bufptr;

//1ock entire buffer

Tpdsb[0]->Lock(0,0,&bufptr,&buflen,
NULL,&buflen?2,DSBLOCK_ENTIREBUFFER) ;

//copy from wave loader to sound buffer

memcpy (bufptr,wav.GetData(),wav.GetLength());

//unlock the buffer

Tpdsb[0]->UnTock(bufptr,buflen,NULL,buflen2);

//duplicate the sound

ITpds->DuplicateSoundBuffer(Tpdsb[0],&1pdsb[1]);
//clean up (Prog_Done)

//clean up sounds

if(1pdsb[1])

{

Tpdsb[1]->Release();
Tpdsb[1]=NULL;

}

if(1pdsb[01)

{
Tpdsb[0]->Release();
Tpdsb[0]=NULL;

}

//clean up sound manager

if(1pds)

{

DIRECTSOUND

Tpds->Release();
Tpds=NULL;
}
//The "bounce" (Prog_Loop)
//bounds checking
//Teft side
if(ptBallPosition[index].x<=0)
{
ptBallVelocity[index].x=abs(ptBallVelocity[index].x);
Tpdsb[index]->P1lay(0,0,0);
| [
//top side
if(ptBallPosition[index].y<=0)
{

ptBallVelocity[index].y=abs(ptBallVelocity[index].y);
Tpdsb[index]->P1lay(0,0,0);
}
//right side
if(ptBallPosition[index].x>=(int)dwDisplayWidth-gdicBall.GetWidth())
{
ptBallVelocity[index].x=-abs(ptBallVelocity[index].x);
Tpdsb[index]->P1ay(0,0,0);
}
//bottom side
if(ptBallPosition[index].y>=(int)dwDisplayHeight-gdicBall.GetHeight())
{
ptBallVelocity[index].y=-abs(ptBallVelocity[index].y);
Tpdsb[index]->P1ay(0,0,0);

As you can see, two sound buffers are created, one for each ball. One is loaded from the WAV file, and the
other is a duplicate. In reality, you would probably want to make more. Occasionally a ball will bounce off
one wall and then almost immediately bounce off another wall. With only one buffer per ball, this would
mean that only one bounce is heard if the time between bounces is shorter than the sound itself. Take into
consideration situations like this when deciding how many copies of a sound to make—if you don't make
the copies at design time, they will have to be added during development or even during beta.

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

THE DS5SFuNcs L1IERARY

Like the DDFuncs library I showed you in Chapter 6, the DSFuncs library is meant to help you avoid
repetitive tasks necessary during the creation of sound buffers. There isn't much to this library.

LPDSE__LoARApFRomFILE

LPDIRECTSOUNDBUFFER LPDSB_LoadFromFile(LPDIRECTSOUND 1pds,LPCTSTR TpszFileName);

This returns a new sound buffer. 1pds is a pointer to an IDirectSound object that is used to create the
J new buffer. 1pszFileName is the file name of the WAV file that you want loaded into this buffer.

LPDSE_RELEASE

void LPDSB_Release(LPDIRECTSOUNDBUFFER* Tplpdsb);

This returns nothing. It performs a safe release on an 10irectSoundBuffer. 1plpdsb IS a pointer to
LPDIRECTSOUNDBUFFER. Note that | didn't wrap up buplicateSoundBuffer Or the SetVolume, SetPan,
or SetFrequency functions. They are simple enough in their current form.

EMPOMNERING THE ULISER

It may not seem that there too many places where you can empower the user as far as sound is concerned.
The empowerment is not nearly as obvious as it is with DirectDraw. The most essential sound empower-
ment you can give your users is the ability to turn sound off. Yes, your sounds are spiffy and they really add
to the flavor of the game, but face it: at some point, they will get repetitive and begin to annoy even the
most insesitive user. So make at least a “sound off”” option. By doing so, your users can play at work and
get their coworkers addicted to your game.

The second user empowerment for sound is the ability to set the volume. Depending on the game, this
may be one, two, or three different volumes. Usually, sound effects (SFX), voice (VOX), and music
(MUS) have different volumes. If you have a sufficiently small number of sounds, you can get away with
having only one or two of these. This empowerment isn't nearly as important as “sound off” but it is
nonetheless important. It is a feature that your users will be expecting.

DIRECTSOUND m

SuUMMARY

DS’s capabilities far exceed what little we've covered here. Those capabilities include 3D sound, using noti-
fication, syncing sounds, and DirectMusic. I could never hope to do justice to all of these in a short intro-
ductory chapter.

Following are a few things to remember:

= To play sounds the WIN32 way, you use PlaySound.

= To use the capabilities of DirectSound, you create an IDirectSound object, much in the same way you cre-
ated an IDirectDraw object in DirectDraw. [

= Digital sounds are stored in DirectSoundBuffers and are created by using
IDirectSound::CreateSoundBuffer.

= Depending on how you set it up, you can control a sound’s volume, pan, or frequency to get various effects.

= If you need more than a single copy of a WAV file, it is best to use Dup1icateSoundBuffer rather than
loading the same sound multiple times.

[T il g R B

e L e

LHLKJ—'_‘E Lt 1 .~ LEﬁ_WJ—‘—"—ElJ—F[L‘J P

CHAPTER 9

GAME DESIGN
THEORY

B THE INTANGIELE NATURE
oF GAMES

m DESIGNING A GAME

T FROMmM THEORY TO PRACTICE

GAmE DESIGN THEORY @

his is the last chapter in Part I, but | think it is the most important. This chapter has nothing to do
with WIN32, graphics, or sound. It has to do with the design of the game itself. Game design the-
ory is one of my favorite topics; I could talk about it all day.]

H DEFINITION OF GAME

Let’s start with a definition of what makes a game. A game is a structured activity not generally related to
survival. This definition is a little vague, but it's the most concise I could come up with. Let’s take it apart:

= Structured. The meaning of “structure” here denotes a set of formalized rules that are essential for a game’s
existence.

= Activity. In order to play a game you must be doing something.

= Not generally related to survival. Granted, Russian Roulette is related to survival, but most other games

are not.

THE INTANGIELE NATURE OoF GAMES

Please note that | speak of rules and activities, but I make no mention of boards, tokens, play money, or
any other sort of marker whatsoever. These are not required to have a game. Some games, especially athlet-
ic ones, do indeed require the use of the equipment associated with them. Basketball needs a ball that

can be bounced and something to serve as a net. Baseball needs a stick and a ball and four bases, but any-
thing can serve as the bases (when | was a kid, we often used trees). Figure 9.1 shows some game-playing
paraphernalia.

Figure 9.1

A variety of game equipment

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

So, the game is not the stuff with which you play the game; you may have balls and bats and hoops and
chess pieces and a chesshoard, but these things are not the game. The game is contained totally within your
head. The pieces positioned on the board or the players positioned on the bases just keep track of the
game’s current state. WWhen playing the game, you attempt to manipulate the game’s state in your favor. The
manner in which you manipulate the game’ state is called a game mechanic.

The game mechanic is governed by the rules. The rules define the possible game states that are legal, as
well as what game mechanics are available to you to manipulate the game state. WWhen all of these possible
game states are taken together, they are the game state space (that is, all possible moves after a given game

J state).

At the start of the game, the game state space can be very large (enormous, when playing games such as
chess), or nearly impossible to determine in athletic games such as basketball or baseball. As play progress-
es, the game state space diminishes until the game reaches completion, at which time the game state space
is empty. This is called the final game state, or the end game.

In some games, it is impossible to determine the end game until the absolute end of the game has been
reached. Many games involving cards are this way, as are most games of chance. In most games, though, it
becomes more and more evident how the game will end as the end approaches. Chess is a good example of
this, as is backgammon. In no game is it ever certain from the beginning how the game will end up.

IMHY WME PLAY

Games are played in every culture on earth; and if we should ever encounter an alien species, | expect them
to bring some good games with them, or else they can just go home. The question of why we play games
remains. Both you and I, as game programmers, play a lot of games. WWe would not have been interested in
making them if we didn't like playing them. It sure isn't the game programming pay that motivates us!

| believe it's in our nature to be competitive with the other members of our species (but, paradoxically,
cooperative at the same time). Ever since the days of cavemen, weve been competing for good hunting
land, good shelter, and other natural resources.

In fact, it's easy to imagine the first game (or at least a candidate for the first game)—target practice.
Throwing spears at trees to improve accuracy would help the ability to hunt, and thus would help the
hunter and the clan survive. As technology improved, and people learned to raise crops and cultivate live-
stock, hunting for food became less important, so target practice with spears became non-survival-related.
Perhaps people came up with a scoring system, using something similar to the archer’s target. Target prac-
tice games survive to this day, in several forms. Darts, archery, lawn darts, and even horseshoes could date
back to this game.

GAmE DESIGN THEORY @

The target practice example doesn't explain our personal reasons for playing games, but it does illustrate
how games can come about. Our reasons for playing games change as the game develops. The cavemen
played a spear throwing game to hone their hunting skills. After hunting was no longer as important, the
game continued because it was fun. It allowed people to compare skill levels.

So, there are several reasons that we play games—we develop skills, solve problems, enjoy the thrill of the
unknown outcome, and test our mettle against another. Mainly, we play games because they are fun, and
different games are fun for different reasons.]

ComPuTErR GAMES

Computers have been used to play games almost since the moment of their inception. Now we have force-
feedback joysticks, as well as graphical capabilities that in the coming years may even mimic real life, and
sound capabilities that already do.

Computers are uniquely suited for playing games. With a computer to implement the rules and represent
the game state on-screen, we don't have to have a board or tokens. As computers have gotten faster, more
and more complex rules have been used; some or all of these rules can be cleverly hidden so that the player
needs only a dim awareness of them. (Yes, in computer role-playing games, you know that when you try to
hit a monster, there is some sort of randomized skill check. However, you don't actually care about the
roll, just whether or not you hit. This is what | mean by rule hiding.) This is called game mechanic encapsulation.
Most modern computer games would not be fun if they were played on a board with tokens and markers,
because of the sheer number of game mechanics.

GAME ANALYSIS

In order to be a good game designer, you should have a solid grasp of how other games are designed.
Good games are balanced, meaning that they are not unfair. Fairness in a game is hard to realize. In a com-
puter role-playing game, as the characters that the player controls become more powerful, they should be
met with more powerful foes. If the foes get too tough too quickly, the player will become frustrated and
give up. If the foes do not become tougher quickly enough, the player will become bored and again will
quit playing. Sustaining the challenge while still having a victory condition is important in these progres-
sive types of games. Other games, like most board games and most sports, are not progressive. The chal-
lenge is the same throughout the game, and incremental difficulty is not required.

As an exercise, take your favorite sport or board game, and write down its rules. Write down these rules as
though you were explaining them to someone who has never heard of this game and is from a totally dif-
ferent culture. Even in the most simplistic of games, a description like this can take up many pages. For
example, if you were describing baseball, you would have to define the meaning of bases, baseballs, bats,
and teams. Then youd have to talk about innings and outs and balls and strikes, defining each as you went.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

It would quickly become quite a large description, especially if you went into RBIs, batting averages,
and so on.

You should do this kind of analysis on computer games as well. Many of the game mechanics are encapsu-
lated, but you should be able to at least hazard a guess as to how they are accomplished.

DESIGNING A GAME

After you've analyzed a number of games (and you'll notice that when looking at a game analytically, it has
a different feel than when you're just playing for fun), you can get down to the serious business of design-
J iNg New ones.

A warning: there really aren't any “totally original” games any more. Most games these days are just varia-
tions on games of the past, or games from a different point of view, or an older game with a new twist.
Game design in the modern world pretty much consists of variation on a theme. But don't be dismayed.
You don't have to clone other games in order to be a game designer and game programmer.

During your game analysis, presumably you looked at several games from the same genre for which you
want to write. You should have good data concerning how these games are put together and what their
game mechanics are. You can now do a comparative analysis of what makes these games effective.

If you find an overwhelming commonality between the games you analyze, it probably means that the fea-
ture is expected for the genre. This doesn't mean you should automatically include it in your game. It does,
however, mean that you should take it under most serious consideration. Is doing it this way the absolute
way to do it, or is there another way, just as effective or even more effective? Be skeptical about everything,
and question everything. This is not to say that you should reject everything that came before, but just to
point out that institutions should always be scrutinized.

When you notice a feature that is included in some games you have analyzed but not in all of them, you
should question whether the feature is appropriate to your game. It might help the game, it might do noth-
ing for the game, or it might hurt the game. Trying to anticipate potential problems with a feature now, at
design time, is much more productive than having to rip out code later.

If it hurts the game, definitely leave it out, unless you feel you can come up with a modification that fixes
the problems. If a feature does nothing for your game either way, you have a few options. You can leave it
out completely, or you can make it optional. Not all features can be made optional (a good example in
strategy games is the ability to do tactical battle screens, or just let the computer auto-resolve them). You
should never just “throw it in” By doing so, it is evident that you don't care about your game, and the users
will see this.

If you find a feature that is in only a few or just one or two of the games you analyzed, you should seri-
ously question whether or not to include it. Most times, this means that the feature was haphazardly done
and probably isn't very good.

GAmE DESIGN THEORY @

My main point here is that when designing a game, it is very important to think about the features you
want. Beginning game developers tend to run into problems with their project getting too large, too fast,
because they just started writing the game and adding features as they went. Most of the time, this winds
up being a project that is never completed (as I well know. .. I've failed to complete hundreds of games).

At the end of analysis, you should have a good list of features that you want in your game, and a list that
you definitely don't. You should keep both of these lists, because they will help you as you develop your
initial concept and as you flesh out that concept.]

TNITIAL CONCEPT

You have an idea for a game. Great! Actually, I'm about to show you that you don't have an idea for a
game, you have a pre-idea.

Your idea can probably be stated in about one or two sentences, and maybe as much as a whole paragraph.
Write it down. If anywhere in your game idea you have the words “like X,” where X is the name of a game
currently on the market, scratch out the idea and rewrite it so that it doesn't compare itself to another
game. This is important. You are not a lemming! Your game will not be the other game, nor a clone of it.
It will be a work that stands on its own! Oh, and did | forget to mention have a good, positive attitude about your-
self, your skills, and your idea?

If applicable, you may want to develop a little bit of a back story. A back story is the reason that the game is
being played (at least, the reason in the alternate universe within the computer). In strategy games, it tends
to be an epic struggle between forces, or the fight of a small band of settlers to survive and grow. There is
a story in there somewhere—find it. However, don't go into too much detail on the back story right now.
Get the main ideas on paper, and flesh it out later. Sure, you could write a novel about the back story, but
you'd never get your game done!

FLESHING 1T OuT

Take your idea and apply the results of your comparative analysis to it. Pick which aspects will be included
and which won't. Find features that fit with your game idea and your back story. Feel free to add more fea-
tures that you think are needed, but remember to rigorously analyze their appropriateness later.

Once you have chosen which features you'll include, you should start drawing pictures (they don't have to
be works of art...simple sketches will do) that are sort of a “story board” of your game. Put in as much
descriptive detail about your game as possible. Explain how you will implement the various features that
you have picked for your game.

Break it down, flesh it out, and put in as much detail as you can. When you have finished, congratulations!
You have a design document.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

+FRom THEORY TO PRACTICE

OK...so far I've been talking about vague theoretical concepts and using ambiguous terms like “feature.”
The difficulty with discussing game design is that it encompasses so many aspects, and various genres have
different ways of dealing with them.

Let’s pick some genres and look at them.

THE ARcADE/AcTioN GENRE

J This genre includes such games as Pac-Man, Space Invaders, Asteroids, Centipede, Joust, Gauntlet, and many more
too numerous to mention. Mainly, these games are concerned with wave upon wave (with incremental dif-
ficulty) of “bad guys” or obstacles. Table 9.1 outlines the main point in each of the games listed.

Table 9.1 Some Arcade Games and Their
Underlying Ideas

Game Idea

Pac-Man Gobble all the dots and avoid ghosts

Space Invaders Shoot all invaders before they land

Asteroids Destroy all asteroids or ships before they destroy you

Centipede Destroy a number of centipedes and other enemies before they kill you
Joust Kill all enemies before they regenerate and before they kill you
Gauntlet Kill enemies and collect power-ups while trying to find the exit

All of these games have “hostiles”—whether they be asteroids or invaders or ghosts. These must be avoid-
ed or Killed, or they will kill you (whether consciously through an Al, or just by wandering around like the
asteroids). Most of these games have some sort of power-up system. At the very least, at various score lev-
els you gain an extra “life” In Pac-Man, the power pills turn the tables on the ghosts. In Gauntlet, keys and
potions make your job easier.

GAmE DESIGN THEORY

These games also all have a “wave” or “level” structure to them. When one level is finished, the next level
is loaded. Centipede is the only exception: the waves run right into one another without any sort of break
(the colors just change).

Now that you have a few topics to analyze, let’s take a closer look at them and ask the big questions.

ARE HOosTILES NECESSARY?T

Hostiles are the primary motivator in all of these games. They provide the ability for the player to fail.
Notice how most of these games cannot be “won™ This is so mainly to keep frantic teen-agers pumping
quarters into the machines, but it also demonstrates that you don't have to be able to “win” for the game
to be fun. Other rewards will suffice, such as getting to the next level, or getting a high score. If you want-
ed to replace hostiles in a game, you would have to provide a different way for the player to fail. Doing so
would take you out of the arcade/action genre, so having a hostile is definitely a fundamental aspect of
having a game of this genre.

T

ARE Power-UPrs NECESSARYT

All of these games (except Gauntlet) have at least one power-up—the extra life after so many waves or levels
or after a certain score. Other power-ups, like Pac-Man's power pellet, or the potions and keys in Gauntlet,
depend entirely on the specific game. Without the power pellets, Pac-Man would be a lot harder to

play... maybe too hard. Gauntlet keys are absolutely essential, because part of the challenge is to find enough
keys to get through all the doors. The potions in Gauntlet aren't absolutely necessary, but they relieve (for a
moment) the stress of being embroiled in a battle, so they are appropriate to the game.

ARE WAVES o0R LEVELS NECESSARY T

Levels or waves help break up the play a little bit, but they aren't absolutely required. You can achieve
incremental difficulty without having levels, but using levels makes implementing that incremental
difficulty easier.

As you can see, we've pretty much nailed down the action/arcade genre. Waves, power-ups, and hostiles are
key elements. If you were to design a game for this genre, you would want to carefully consider how you
wanted to implement these things, or if you wanted to find an alternative.

1IsomeETRIC GAMES

Isometric games usually fall into a few genres: computer role-playing games, turn-based strategy games,
real-time strategy games and simulations, and board/puzzle games.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Let’s take a look at the turn-based strategy game subgenre. (Turn-based strategy games still belong to the
strategy game genre, but the implementation is much different from a real-time game or simulation.) A few
of the games in this subgenre include Civilization I1, Civilization: Call to Power, Master of Orion 11, Imperialism 11,
and Alpha Centauri.

= In all of these games, you start out with a limited number of units (usually only one or two), and from this,
you have to build a grand empire. Some games, however, have a “scenario” mode, in which a situation is set
up for you, and you have certain objectives that you have to reach.

= In all of these games, the units available to you depend on what technologies you possess, and these games
have ways to assign the technologies you are researching.

:I » These games, for the most part, have resources that you have to discover and exploit, and you have to improve
the land or a city or colony to better make use of these resources.

= The goal of most of these games is to subdue all of your computerized opponents, either diplomatically,
through military action, or by completion of a task before they complete it.

There’s a lot more to turn-based strategy games, but this is a good sampling.

1s 5STARTING OuTt THE PLAYER wiTH ONLY A FEW
LUUNITS NECESSARYTD

It's not necessary to start out everybody as a weakling. However, except where the player has selected the
“impossible” option or has chosen to play a scenario, it is a good idea to start out all the players (human
and computer) as approximately even. This is one of the important aspects of turn-based games. The play-
er gets to take his single unit and create an empire with it.

HARE TECHNOLOGY AND RESEARCH NECESSARY T

Technology and research enhance the replay value. Without technology to research, all things are available
to the player at the beginning. This might be what you want. However, including technology and research
in the game promotes careful planning and forethought on the part of the player.

This is not to say that having technology and research in a game is essential to the genre. In fact, it seems
that every game maker just throws them in. I remember playing the old Avalon Hill strategy board games
(with the hex grids), and very few of them had technology and research.

WHAT S50KT oF WIN CoNnD1TMTONS ARE NECESSARY?T

In most types of games, an absolute “win” condition is not necessary. In strategy games, however, some
sort of win condition is necessary, whether it is the construction of some device before any of your oppo-
nents, the elimination of your opponents, or whatever. Commonly, strategy games have a scoring system
based on any number of things—Ilevel of technology, size of army, population, and so on. This scoring
system lets you rank players after they have quit the game, and you can then build a “hall of fame” list.

GAmE DESIGN THEORY @

As you can see, quite a bit of thought goes into designing a game. You have to ask yourself the big ques-
tions. That’s really what this chapter is about. . . thinking. Sure, you could just take a game you like and
make something that looks and plays like it (and many beginners want to do just that). That’s not neces-
sarily a bad idea, but too close of a copy won't do much for your game programming image.

EMPOMNERING THE ULISsERE G1VING
THOUGHT TO THE USER INTERFHACE]

Throughout the game design process, you should keep user empowerment in mind. When designing
screens with which the user will interact, you should strive to make the most intuitive interface you can. [
This means menus and buttons and other user interface components. It also means character selection,
object manipulation, and just about everything that the user can do in the game. Putting a good deal of
thought into this topic will be of great help later, when it comes time to actually make your game.

Also, you should determine which of your game’s features are optional. Customizing game play is a great
way to empower your users. | once played a game that had an option screen with exactly two options;
music on/off and sound on/off. That was the total of the options (and yes, it was a full-screen option
panel)! In my opinion, that is unacceptable.

If you plan to have your game sell in more than one language, you'll probably want to use icons on your
buttons instead of text. Doing so is fine, but be sure to put some sort of textual tool tips on the screen if
the mouse hovers over these icons for a few seconds.

This brings me to something else. . . your game’s learning curve. When | buy a game, | want to plop the
CD in the drive, close the door, install it, and play it. Note that I did not mention “read the manual” or
“read the help file” anywhere in this process. | want to play, and | want to play now! Most game players are
like this. .. many of them never read the manual. Not all games can accomplish the “just sit down and
play” intuitiveness, however. Imperialism [1 by SSI is one of these. It's a turn-based strategy game that at first
seems difficult to play, but playing the tutorials shows you that it’s actually not so hard and, in reality, is a
fun game. If you can avoid requiring tutorials or reading manuals or help files, though, do so.

On the other hand, I hate games without adequate documentation. You should have a good help system
for your game, even if your player never uses it. You should have strategy tips of some kind if applicable.
Dont give everything away, but do give a nudge in the right direction.

H £ NoTEsS ARouT CoONTROLS

If you use keyboard controls, use the arrow keys or the numeric keypad. If you use the keypad, try not to
use the 5 key for anything. The Esc key is for canceling something or exiting something. The spacebar is a
big key, and you can probably find a use for it. F1 is for help. If you have controls for a number of related
purposes, try to use a row of keys rather than scattering about the keyboard.

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

When using mouse controls, the left button is for the primary action, and the right button is for the sec-
ondary action. Most of the time, the primary and secondary actions can be determined by what the mouse
is currently pointing at. If it's pointing at a monster, attack. If it’s pointing at an item, pick it up. If it’s
pointing at a door, open it.

Also, when the mouse is over something, provide a visual clue—a highlight, a different cursor, or just
something that lets the user know that the mouse is over something that can be interacted with. It's also
not a bad idea to have a tool tip or some text in a status bar when the mouse hovers over an object.

Finally, in games that take up more than the screen, it is traditional to scroll through the map when the
mouse is on the edge of the screen. Also, there should probably be a mini-map of some sort, with a rec-
J tangle showing where the current view is.

MAKING A ReEAL GAME
I've included a sample game as IsoHex9_1.cpp. It incorporates most of what we have covered in this first
part of the book.

The game is Breakout, something I'm sure you've played before. The idea is to use a paddle to bounce a ball
and strike bricks. When all of the bricks from one level are destroyed, the game advances to the next level
(which looks just like the first level). Figure 9.2 shows what this game looks like.

Figure 9.2
The look of IsoHex9_1.cpp

GAmE DESIGN THEORY @

The graphics are less than dazzling, I know. (I spent about 15 minutes with Paint Shop Pro to make
them.) The main reason for including this demo is to show you some of the basic ways you can accom-
plish tasks in a game program.

The controls are pretty simple: you move the paddle with the mouse, and a left-click starts things. There
are no title screens or option screens. There is very little user empowerment (hey, it's just a sample). There
are plenty of sounds—a bouncing noise (borrowed from the boucing ball demo), a different brick hit
noise for each color of brick, a losing sound, a winning sound, and a few voice sounds for when you hit
more than 10 bricks between paddle hits. These sounds all come from either my voice or my Yamaha key-
board.

GAME STATE

IsoHex9_1.cpp has a number of global variables. The first of these is game state. While the game state is
kept track of by all the variables in the program (score, paddle and ball positions, number of bricks left),
there is a main game state—playing, waiting to play, game over, win, death, and so on.

| keep track of these using an enum and a variable.

//game states

enum GAMESTATE
{GS_START,GS_STARTWAIT,GS_PLAY,GS_DEAD,GS_RESET,GS_WINLEVEL,GS_LOSEGAME} ;
//main game state

GAMESTATE GameState=GS_START;

I also could have managed these with a number of consts or #defines, but in an enum, | know that I won't
duplicate a number accidentally and have to track down a bug for five hours. It's mainly a matter of per-
sonal preference.

The GameState variable is processed in Prog_Loop():

void Prog_Loop()
{
switch(GameState)
{
case GS_START:
{
dwScore=0;
dwlLives=3;
SetUpGame();
GameState=GS_STARTWAIT;
jbreak;

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

case GS_STARTWAIT:
{
ShowBoard();
Tpddsprime->F1ip(NULL,DDFLIP_WAIT);
Jbreak;
case GS_PLAY:
{
//Timit frame time
DWORD dwTimeStart=GetTickCount();
//move ball
J MoveBall();
//show board
ShowBoard();
//show frame
Tpddsprime->F1ip(NULL,DDFLIP_WAIT);

//wait for 10 ms to elapse
while(GetTickCount()-dwTimeStart<10);
Jbreak;
case GS_DEAD:
{
dwlLives—;
if(dwlLives)
{
GameState=GS_RESET;

GameState=GS_LOSEGAME;

Jbreak;
case GS_RESET:
{
ResetGame();
GameState=GS_STARTWAIT;
tbreak;
case GS_WINLEVEL:
{
SetUpGame();
GameState=GS_STARTWAIT;

GAmE DESIGN THEORY @

‘break;
case GS_LOSEGAME:
{
GameState=GS_START;
}break;

}

Prog_Loop doesnt really do much. It manipulates game state variables (mainly GameState), and calls func-
tions depending on the value of GameState. This use of a variable like GameState is pretty standard, but,

of course, there are other, more efficient ways to implement it. For example, I could have created an array [
of pointers to functions that get called during each Prog_Loop. This would certainly be more efficient
than the switch | currently have in there, but since the code is instructional in nature (and because the use
of function pointers would have been confusing to read), I used the switch.

If you take a look at the const/1define section of the code, you'll see that most of the stuff in there is
hardcoded (such as the widths and heights of various objects). I have told you not to do this, and then |
went and did it. Feel free to yell “hypocrite!” if you wish. Because of this choice | made, changing the code
would be more difficult and prone to errors. The reason I hardcoded is because it speeded up develop-
ment. (It is only an example, after all.)

| want you to take a closer look at the code within the GS_PLAY game state:

//1Timit frame time

DWORD dwTimeStart=GetTickCount();
//move ball

MoveBall();

//show board

ShowBoard();

//show frame
Tpddsprime->F1ip(NULL,DDFLIP_WAIT);
//wait for 10 ms to elapse
while(GetTickCount()-dwTimeStart<10);

You'll notice the use of GetTickCount at either end of this game state. GetTickCount retrieves the num-
ber of milliseconds that have passed since you started your computer. As you enter this code, it sets
dwTimeStart to the tick counter’s current value. Later, the code spins a while until GetTickCount-
dwTimeStart is no longer less than 10. This is called a frame rate lock. With this code, even on a super-
fast machine made at some future date, this game will not output more than 100 frames per second (1000
ms in a second, 10 seconds per frame).

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

IsoHex9 1 is done, but not finished. What is the difference? V\ell, when a game is “done,” it is playable.
You can play this game for hours and hours, but it doesn't include the amenities that come with other
games. Here's a short list of features that IsoHex9_1 needs in order to be “finished”:

= The ability to set volumes and mute sounds

= Title screen

= Top ten list

= Some sort of messages when you start, die, or lose the game
= Maybe some different types of levels

= The ability to play in a window

J As you can see, IsoHex9 1 is far from finished. A lot of beginning game developers work on things like
the title screen and other stuff before they work on the game itself. This is not a good practice. Often,
you'll end up with 10 title screens and no games. I've seen many a beginning game developer pour several
days into making a really good title screen and main menu, only to later abandon the project.

| left IsoHex9_1 unfinished on purpose. The reason? | want you to finish it. This game is by no means dif-
ficult to finish. It just takes time and commitment. Finishing a game is a true accomplishment. If you don't
want to finish this game, make a smallish game like it and finish that. Feel free to send me a copy.

H FEw WoRDs AROUT
FINISHING GAMES

The easiest thing in the world is to start a game project. The hardest thing is finishing it. Since we as game
developers are at heart game players, our attention span isn't as long as it could be. We start out working
on a game, and we work on it for three days straight, and then we get burned out and say “I'll get back to
it later”—but we never do. It just sits there, until eventually we reformat the hard drive, and then it’s

gone forever. | know | must have done this about a thousand times. With several hundred thousand game
programmers out there, that means that there are several hundred million unfinished games out there.
Several hundred million!

Needless to say, you should finish a game you start. This isn't as easy as it sounds. Boredom, burnout,
a new game you pick up at the store—these are all things that keep us from finishing our games. Don't
let them.

H £ TiPs FOR FINISHING GAMES

Following are just a few gems of wisdom I've acquired over the years. They make game development
more likely to wind up with an actual finished product, rather than a collection of abandoned partially fin-
ished games.

GAmE DESIGN THEORY @

TP #1l: PARACE YOURSELF

Don't work 24 hours a day on anything. Unless you have a publisher, you don't have any deadlines, and
you can take as long as you like making the game. Try not to work more than eight hours a day on it. If
you have other commitments (job, school, family), don't work more than three to six hours a day. As a
corollary, just a single hour, or even two hours, won't work. You have to get into “the zone,” which takes
about an hour to an hour and a half to achieve.

TP #2: PLANy PLANy PLAN]

Develop the game’s design before you start working on it. Draw everything, from main game play down to
the menus. The more you decide on during the design phase, the less you have to think about during
development—you just have to take the concepts from paper to code. Write down all your neat ideas.
Also, if you decide to redesign part of the game while in the middle of development, step away from the
computer to do the redesign. Avoid designing on-the-fly as much as possible.

Ty #X§ KNOW YOUuR LIMITATIONS

Aim low. Yes, the sky’s the limit, and you can do anything you put your mind to. Whatever. Aim low. By
this, I mean that you should pick projects you know you can do. Not think you can do. Not something you
might be able to do. Something you can do. Something you can do is more likely to be finished, as opposed
to something where you first have to learn something. If you want to learn something, make a demo pro-
gram that demonstrates how to use the new thing all by itself, not a game that uses it.

TiF #41 WMAX ONgy WAX OFF

Even when you think you're finished, you could probably add some more polish. On the other hand, there
comes a time to declare things done. Usually, before you are finished with a project, you will hate working
on it. This is the trial by fire of all programs, especially those where you aren't getting paid to make it.
Push through that time, and finish.

SuUMMARY

| can't possibly hope to imbue you with all the stuff about game design 1've absorbed over the years. Most
of it has become so ingrained in my programming style that | don't think about it—it just happens. It
takes time to develop game design skills. It can't happen overnight, or even over the course of a book.

This closes the chapter and this part of the book. Here are a few thoughts | want to leave you with before
moving on to the next chapter:

= Design your game as fully as possible, and really think about the design.

= Work incrementally. Make small games as you start out and large ones later.

= Finish your games. The feeling of stepping back and looking at a finished piece of work is one of
the best feelings in the world.

PART ||

1ISOMETRIC
FUNDAMENTHALS

S Wl g WS s e 1 ._.:__H_J]—H_ﬁ_l_'_,—r—“‘ﬁ_
b d B

R U N [Y [P I

CHAPTER 10

TILE-EASED
FUNDAMENTHALS

» WHAT Does "TiLe-BASEDM™ MEANT

= HN INTRODUCTION TO
RECTANGULAR TILES

B [YIANAGING TILE SETS

1= TiLe MAr BASICS

'_l_|_

o
TLJ—x J—JWA_HJ_ -
e e

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

w ith this chapter, we break away from the introductory matter that filled Part 1 and start to move
into the really cool stuff. Naturally, you aren't going to fly when you haven't walked yet. e will
explore tile-based fundamentals, from both the management and user interface sides of the coin.

MWMHAT Does "TiLe-BASEDM IYIEANT

You've seen floor tiles, right? Sometimes, especially in older buildings or in malls, different tiles are com-
bined into a pattern (sometimes very elaborate patterns). That's exactly what we'll be doing, but instead of
using linoleum or porcelain, we'll be using graphic images.

This is where the comparison ends between tile-based games and floor tiles. WWhen you make a tile-based
game, each graphic tile has a different meaning. One might be the floor, and the other solid rock (repre-
senting a wall). In a tile-based game, some sort of “characters” or “units” usually occupy tiles, and are
moved around by either the player or the computer’s Al. These are called agents in Al terminology.

The rules of the game determine what happens to the agents as they occupy the various tiles of the game,
and they also govern how the agents may move from one tile to another. In a strategy game, an agent may
be able to move three tiles per turn. However, different tiles (such as grassland and hills) may have differ-
ent “movement costs” associated with them. Grassland might only cost 1 to move, but a hill could easily

cost 2 or 3. Further addition of things like roads or rivers may reduce these costs. It can all get very com-
plicated very quickly.

Of course, the player isn't really thinking about all this. He just presses the up arrow to move to whatever
square is there, and the computer takes care of movement cost. (Even though the player isn't consciously

thinking about movement costs, he does know that it takes longer to traverse hills than it does to traverse
plains.)

MyYyTHS ARKOUT TILE-EASED GAMES

The first myth about tile-based games is that they are dead. This is wholly untrue. Yes, the days of pure
2D tile-based games are over. These days you have to have 3D rendering to make a really hot game.
However, even 3D games can be tile-based, and many are. This is where isometric games come in. | won't
go into how isometric tiles work until chapter 11, but suffice it to say that isometric is 3D, even if it's done
with just 2D rendering. Most real-time strategy games and turn-based strategy games are made using iso-
metric tiles (although the days of pure 2D isometric tile-based games are drawing to a close as well).

The second myth is that no one will buy a tile-based game. Also untrue. In your local computer game
store, see for yourself. The strategy genre is filled with tile-based games.

TiILE-BRASED FUNDAMENTHALS @

TiILE-EASED TERMINOLOGY

While reading this section, keep in mind that these are mainly the terms | use. You might have different
names for them. For the most part, these terms are standard.

= Tile. A graphic used to render a portion of the background. When using rectangular tiles, this usually means
that the entire rectangular area is taken up by the tile. This is not always so, however. You might have “fringe”
tiles to take care of coastlines or a transition from one type of terrain to another, in which case the tile may
cover only a portion of the rectangular area.

= Sprite. An arbitrarily-sized graphic that is usually used for either agents or foreground objects. Really, every-
thing that isn't a tile is a sprite. Sprite is just a generic term, like tile. You may decide to subclass them into [
units, buildings, and markers, depending on the type of game.

= Tileset. A set of tiles. It is inefficient to store each tile in a separate graphics file. It's easier to just take tiles
and group them into logical sets and then place them all into a single graphics file that gets parsed later. A
tileset might include sprites or might consist entirely of sprites.

= Space. Any arbitrarily-sized and shaped two-dimensional space. Usually a space is rectangular, but not in all
cases. You tend to work with nonrectangular spaces using a bounding rectangle as well as whatever other
structure describes them.

= Screen space. The space on the screen used for rendering the play area, not including any borders, status pan-
els, menu bars, message bars, or any other nonplay area structures. In some cases, the entire display is the
screen space. Often, it is not.

= View space. The same size as screen space, but the upper-left corner is always at (0,0) for view space. Many
times, view space and screen space are the same. View space, in most cases, is purely abstract and plays no
part in the rendering process.

= Tile space. The smallest space (usually rectangular) that is taken up by an individual tile. In rectangular tiles,
this is often the entire rectangle. Tile space can also refer to the space taken up by a sprite.

= World space. The space that allows the display of an entire map of tiles and their associated object/agent
sprites. In board games and puzzle games, world space may be equal to or smaller than screen space/view
space. In larger games, world space might be hundreds of times larger. Figure 10.1 shows the relationship
between the screen, view, and world spaces.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

. 0 Figure 10.1
0 0 Screen, view, and
e world spaces and
Space) .)
their relationship
Vi
0
0
Screen
Space
J Screen
World
Space
World

= Anchor. A correlation of one point of a space (usually (0,0)) to another space. An example of this is a cor-
relation of view space to screen space. If you had an 8-pixel border around the main viewing area, you would
keep a point that kept track of the relationship from view space to screen space—namely, (8,8). This lets you
know how to convert between screen space and view space. Another example would be an anchor that con-
verts from view space to world space. In a scrolling tile engine (with a world space larger than the view
space), this anchor helps determine which tiles have to be rendered by translating the tile’s world space coor-
dinates into view space coordinates. From there, you can translate them into screen space coordinates.

= Anchor space. A space that defines legal values for the view-to-world anchor. Clipping your anchor point with
anchor space lets you easily manage the view-to-world anchor and lets you keep the player from having an
illegal view.

= Extent. A rectangle relative to a point (usually an anchor), often with negative left and top values. We will get
into this more when | talk about using templates to manage files.

= Tilemap. An array containing information about how the world looks—that is, which tiles are in what loca-
tion. Tilemaps also contain information about objects and agents in the world, even though the structure that
contains agents or objects may be a different array, or not even an array at all.

= Agent. Any sprite (or sequence of sprites used for animation) that moves, either by Al or by player action.

= Object. An unmoving graphic, representing such things as trees, rocks, or other items.

Hope | didn't lose you. If you're fuzzy on the real application of these terms, don't worry. I'll explore the
meaning and uses of each as I go, and you will gain full understanding.

TiILE-BRASED FUNDAMENTHALS

AN INTRODUCTION TO
RECTANGULAR TILES

Rectangular tiles are the easiest of all to work with, because of their rectangular-ness. Most of the time,
when working in rectangle land, you use square tiles. You can use other sizes, of course, but square seems
to be a favorite. An example of a tile is shown in Figure 10.2.

Figure 10.2
A square tile I:

The point of view for games with square tiles is usually top N CSTE
down or overhead. This just means that all your graphics must be
drawn as though you are looking down on the object. Later, when we get to isomet-
Sometimes you can give your game a slightly angled view so I8 28 e ML ISR RV 21

that you are looking mostly down, but you can see some of the cellled “3/4,” in WHICHTYQU renc

front or back, depending on how the agent is facing. fﬁglj’gohu;;‘gz:fIigiiﬁgjea "

Another point of view for square tiles is the side scroller view, straight at them. It gives the
where you are looking at the world from its side. This was very illusion of 3D without per-
popular among older action games like Super Mario Bros spective correction. Luckily,
(Nintendo) and the original Duke Nukem. the human eye is easy to fool,
. . _ because it automatically cor-
With the advance of 3D display technology, both the top- e e e s e

down and side-scroller views have become nearly obsolete. projection.

Normally, you will want to group your tiles and sprites into \

graphical files where more than one tile or sprite is in the file.

Normally, you'll want one or two files with the graphics for the background, a file for objects, and then a
number of files for the agents (one file to an agent, unless you don't have too many animation sequences).

The examples shown in Figures 10.3, 10.4, and 10.5 are from Ari Feldman’s SpriteLib, which is a free
graphics package that has been around for a few years. If you aren't graphically inclined (don't be
ashamed...you're not alone), you may want to download it from http://www.arifeldman.com.

1someTRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 10.3

Sa|aalad| e e elcalizls | 5]8 | B
o R B A L e e

%Ei:iillllllllﬁllll Background tles
weupnien IR My fed
AR 1™
T |
fddes
ey WAy o oy
BB/ 5
® 57
| N]
Figure 10.4
Object tiles
o JJJ 1up 2Up 4
oy SE =2 (i) % i e
- = 3 2P Figure 10.5
EXX T XX Ll # ﬁ - X TS Character tiles

Pobatasedtdtsstrss
ﬁ!’xﬂifﬁyg%#‘m#??ﬂ
TR B RRR RN

1232383333223 80T
TEeESESSss TR

TiILE-BRASED FUNDAMENTHALS

MANAGING TILESETS

The tilesets and sprite sets you just saw are great, but they aren't exactly in a form that is easy to work with
for programmers like you and me. If you wanted to work with them, you'd have to store a bunch of rec-
tangles in a text file or other configuration file, or (gasp!) youd have to hardcode image rectangles. Later, if
you decided to change the art, this would be a maintenance horror show. Youd have to go back and change
around the rectangle lists. Of course youd forget one, and naturally you wouldn't find out until one of
your beta testers got really far into the game. . . well, I think you get the idea.

So, what's the solution to this dilemma? Templates. A template is used in the first example of a tileset—the
one with the white boxes around it (Figure 10.3). That’s one way to do a template. However, it's not the
best way, because you still have to either hardcode or put into a configuration file the width and height of
the template.

Load IsoHex10_1.bmp into your favorite graphics editing program. Figure 10.6 shows what it looks like.

Figure 10.6

A sample tileset

You can see the border around each of the images. Unlike the tileset shown in Figure 10.3, the border is
green instead of white. Or is it?

|

[

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Take a really close look at the top cell (zoom in as far as the program will let you), shown in Figure 10.7.

Figure 10.7

Zooming in on the caveman

There is more than just green. . . there is also white and cyan (you can't see it too well in the book, but you
can see it just fine in a graphics program). As you might have guessed, each of the different colors means
something. The green dots span the width and height of the image. White dots are part of the frame but
outside of the image. The black dot in the corner is what designates the corner of a tile cell, and also the
transparent color of the tileset. The cyan dot (or blue dot) designates a coordinate for the tile’s anchor. (I
use cyan when the anchor is within the bounds of the tile image itself. In other words, it would otherwise
be a green dot, and blue when the anchor point would otherwise be white.)

Why these colors? Why not a completely different set of colors? Quite frankly, you could use a different set
of colors, and this type of template supports just that. Take a look and zoom in on the upper-right corner
of the tileset (shown in Figure 10.8).

TiILE-BRASED FUNDAMENTHALS

Figure 10.8

The upper-right corner of the tileset,
demonstrating control colors

There are five pixels in the rightmost column, in the following order: black, white, blue, green, and cyan.
These specify corner, frame, anchor, inside, and inside anchor, respectively. If you wanted to, you could
change one of these colors to red (for example), and put it in the proper control color position, and use it
instead of the color used here.

Using an extended template like this gives you a great deal of freedom. You can make a template and later
change the width or height of the cells, and it will still load the same way. The green and blue and cyan
pixels let you calculate tile spaces, anchor points, and tile extents, which you can parse into arrays of rec-
tangles and points. You can move an image’s anchor point and have it show up in a different location. An
extended template takes pressure off programmers and removes stress from artists, who, when using it, are
less constrained by the normally tight restrictions for tile-based graphics.

Before you finish building your utopian society, though, you have to write code that will parse a graphics
file into arrays of rectangles and points. Let’s start by figuring out what information you need about each
tile. Presumably, these templated graphics will be on an 1DirectDrawSurface7 somewhere, and you want
to optimize your data structures for using 81t and B1tFast. Since both of these use source rectangles,
you'll definitely want to keep an array of RecTs for that. The coordinates held in these RecTs will be pixel
coordinates measured from (0,0) in the tileset’s image. Figure 10.9 shows what one of these RECTS might
look like.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 10.9
Source RECT

In Figure 10.9, the RecT has the coordinates (1,1)—(39,61). Remember that you have to add one to the
bottom and right because of how RecTs work. Doing so gives you a resulting RecT of (1,1)—(40,62).

Because you might or might not be referencing off the upper-left of these source RecTs (the blue and cyan
points might lie elsewhere), you need an array of POINTS to keep track of the tile anchors. Like the source
rectangles, these POINTS contain coordinates into the tileset image, meaning that a tile with a rectangle of
(100,100)—(200,200) has its anchor point within the x and y range of that RecT (rather than having the
anchor point in reference to the tile cell’s upper-left corner, which is another way you could have done this
that would have added unnecessary computations). Figure 10.10 shows the anchor point.

Figure 10.10

Anchor point

TiILE-BRASED FUNDAMENTHALS

In Figure 10.10, the anchor point is (7,1), which is within the range of your source RECT, as | said it
would be.

Finally, you add another array of RecTs to hold the tile extents. Extents can be calculated after the source
RECT and anchor POINT have been determined, like so:

//copy source rect
CopyRect(&rcExtent,&rcSrc);

//offset by anchor point
OffsetRect(&rcExtent, -ptAnchor.x,-ptAnchor.y);
In this case, the extent is (—6,0)—(32,60). The derivation of these values is as follows: [

Upper Left:

From source RECT (1,1)
Minus anchor point (7,1)
Combine coordinates (1-7,1-1)
Solve (-6,0)

Bottom Right:

From source RECT (40,62)
Minus anchor point (7,1)
Combine (40-7,62-1)
Solve (33,61)

Yes, there’s a negative left coordinate; this is quite common for this type of tileset, where you might want
to reference a tile from a point other than the upper left. It would not be a stretch to use the character’s
feet or center. Just use whatever works to give an animation continuity and smoothness. For this tileset, the
horizontal aspect of the anchor lines up with the back of the caveman’s hair.

The idea here is that you want to be able to simply specify a single (x,y) screen coordinate and tell it which
tile to blit, and have it come out right. When blitting, the (x,y) point corresponds to the tile’s anchor
point. This means that if you tell this tile to blit to screen coordinate (100,100), you want screen coordi-
nate (100,100) to correspond to the tileset image’s coordinate (7,1).

You want the extent so that you can simplify the process of determining the coordinates of the destination
RECT (or the destination (xy) for 81tFast). Taking the source RECT and subtracting the point gives you
the extent. This way, based on a single set of coordinates (dstx and dstY), you can determine the proper
destination rectangle. For example:

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

//for BIt
CopyRect(&rcDst,&rcExtent);
OffsetRect(&rcDst,dstX,dstY);
//perform the Blt

//for BltFast
dstX+=rcDst.left;
dstY+=rcDst.top;
//perform bltfast

J If you didn't precalculate the extents, you would have to calculate them from the source rectangle, anchor
point, and destination point each time you wanted to render the tile. Although doing so isn't too much
more work (about a dozen add or subtract operations), it is work, and in game programming, you want to
avoid any work that you can. Precalculating tile extents might give you just one extra frame per second or
even only half a frame per second, which doesnt’ sound like much, but if you have two optimizations that
each give you an extra half-frame per second, you've just earned yourself another frame per second. Game
programming is a game of inches.

A TLESET CLASS

So, now that you've decided what information you want, you just have to go in and get it. | made a class to
work with these sorts of templates. It's called cTi1eSet, and you can find the code for it in TileSet.h and
TileSet.cpp.

THE CLASsS DECLARATION

First, | designed a struct to contain important information about tiles, including source rectangle, anchor
point, and destination extent. | put this information into TILEINFO.

//tileset information structure

struct TILEINFO

{
RECT rcSrc;//source rectangle
POINT ptAnchor;//anchoring point
RECT rcDstExt;//destination extent

TiILE-BRASED FUNDAMENTHALS

The members of TILEINFO are explained in Table 10.1.

Table 10.1 TILEINFO Members

TILEINFO Member Meaning

rcSrc Source RECT for the tile
ptAnchor Anchor POINT for the tile
rcDstExt Destination extent RECT for the tile [

Next, here’s the class itself:

class CTileSet
{
private:
//number of tiles in tileset
DWORD dwTileCount;
//tile array
TILEINFO* ptiTilelist;
//filename from which to reload
LPSTR TpszReload;
//offscreen plain directdrawsurface7’
LPDIRECTDRAWSURFACE7 1pddsTileSet;
pubTic:
//constructor
CTileSet();
//destructor
~CTileSet();
//1oad (initializer)
void Load(LPDIRECTDRAW7 1pdd,LPSTR 1pszload);
//reload (restore)
void Reload();
//unload (uninitializer)
void Unload();
//get number of tiles
DWORD GetTileCount();
//get tile list

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

TILEINFO* GetTilelList();

//get surface

LPDIRECTDRAWSURFACE7 GetDDS();

//retrieve filename

LPSTR GetFileName();

//blit a tile

void PutTile(LPDIRECTDRAWSURFACE7 1pddsDst,int xDst,int yDst,int
iTileNum);
}s

J The private members contain all of the information needed to process the tileset. These are listed in
Table 10.2.

Table 10.2 CTileSet Private Members

CTileSet Private Member Meaning

dwTileCount The number of tiles contained in the tileset

ptiTilelist A pointer to an array of TILEINFO that describes each tile
IpszReload The file name from which this tileset was loaded
TpddsTileSet The IDirectDrawSurface7 pointer that is the off-screen

surface containing the tileset

The member functions in the public section perform all necessary operations on the tileset. Table 10.3
explains these member functions.

TiILE-BRASED FUNDAMENTHALS @

Table 10.3 CTileSet Public Member Functions

CTileSet Public Member Function Purpose

CTileSet Constructor that initializes all variables to 0
or NULL

~CTileSet Destructor that calls Unload

Load Loads and parses an image [

Reload Reloads the image (if for some reason the sur-
face has been freed, such as resulting from an
Alt+Tab)

UnToad Frees the resources associated with the tileset

GetTileCount Returns the number of tiles

GetTilelist Returns the tile info pointer

GetDDS Returns a pointer to the
IDirectDrawSurface7 containing the tileset

GetFileName Returns the name of the file from which the
tileset was loaded

PutTile Puts a tile on a surface, given a coordinate and
a tile number

The constructor and destructor don't do much and aren't very interesting, but the other functions are more
important, so I'll explain them in more detail.

CTiLeESET:ILORAD

This function loads a bitmap and places it onto a DirectDraw surface and also parses the image into its
component tiles.

void CTileSet::Load(LPDIRECTDRAW7 1pdd,LPSTR 1pszload);

The 1pdd parameter is a pointer to an 1DirectDraw oObject, which is used to initially create the tileset
surface. The 1pszLoad parameter is the name of the file to load that contains the image you want for
this tileset.

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

This function is quite long, because of the image parsing. It performs the following tasks:

1. Loads the image.

2. Grabs the control colors from the upper-right corner.

3. Counts and measures the horizontal and vertical cells.

4. Allocates the tile list.

5. Scans each tile’s left and top for anchor points and inside points (using default values if these
control points are not specified).

6. Calculates destination tile extents.

J All of the main work is done here, at load time, so that after a call to Load, you can immediately start
using PutTile, and you never really have to worry about it ever again.

CTiLeESETIERELOAD

CtileSet::Reload reloads an image if and when it is lost due to a display mode change or Alt+Tab
incident.

void CTileSet::Reload();

If, as a result of an Alt+Tab or other such misfortune, your tileset’s surface is lost, a call to
IDirectDraw7::RestoreAllSurfaces may be required. After that, you can call CTileSet::Reload, and
the image will be reloaded (but not reparsed).

CTiLeESETIEUNLOAD

This frees all the resources used by the tileset. It is called during the destructor and whenever Load is
called.

void CTileSet::Unload();

\ery likely, you will never call this function directly, since it is taken care of in the destructor. Even if you
wanted to load a different image into a tileset, you could just call Load. The only time you would ever
want to call unioad is if you were trying to conserve video memory for other images. It is here mainly for
completeness.

CTiLESETIEGETTILECOUNT
This one’s a no-brainer.

DWORD CTileSet::GetTileCount();

This function returns the number of tiles in the set.

TiILE-BRASED FUNDAMENTHALS @

CTiLeESETIEGETTILELIST

This function gives you access to the tile information, which is very important if you want to implement
clipping yourself rather than relying on a DirectDraw clipper and cTileSet::PutTile.

TILEINFO* CTileSet::GetTilelist();

This function returns the pointer to the tile array. You can use the result of this function just as you would
an array.

//make tileset

CTileSet tsExample;

tsExample.load(1pdd,”Sample.bmp”); [
//retrieve the info about tile zero
TILEINFO ti=txExample.GetTilelList()[0];

CTiLeseTiiGETDDS
This function allows access to the DirectDraw surface on which dwell the tiles.
LPDIRECTDRAWSURFACE7 CTileSet::GetDDS();

This function returns the 1DirectDrawSurface7 pointer that contains the image of the tileset. If for
some reason you wanted to modify or read from the surface, this would be the function youd start with.
Keep in mind that any changes you make to the surface will not survive a call to cTileSet: :Reload. Also,
If you want to keep a copy of the surface pointer for a long time, it might be best to use AddRef so that
the surface isn't inadvertently deleted in the interim.

CTiLESETI:GETFILENAME

This function is pretty self-explanatory.

LPSTR CTileSet::GetFileName();

This returns a pointer to the file name that is used to reload the tileset.

CTiLESETIEPUuTTIiLE
This function is the reason for the whole show. It's the workhorse of the cTi1eSet class.

void CTileSet::PutTile(LPDIRECTDRAWSURFACE7 T1pddsDst,int xDst,int yDst,int
iTileNum);

This takes care of putting a tile onto a destination surface (1pddsbst), with xDst,yDst corresponding to
the anchor point of the specified tile (i711eNum). Tiles are numbered starting with 0 and are ordered left
to right, top to bottom.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

AN ANIMATED SPRITE EXAMPLE

One of the many uses for a tileset is for an animated sprite sequence. Earlier in this chapter, | showed you
a tileset consisting of some caveman images from spritelib, which is a good example of one such animation
sequence. Load up IsoHex10_1.cpp, which makes use of cTileset (among other things; see the top of

IsoHex10_1.cpp). If you load and run it, you will see the caveman running in place, as shown in Figure
10.11.

Figure 10.11

Animation demo

This example is based on IsoHex1 _1.cpp, just like the rest of the examples. The main differences exist in
Prog_lnit,Prog_Loop,and Prog_Done

SETTING UP

The Prog_Init does the required DirectDraw setup (creating the DirectDraw interface, creating the pri-
mary surface and the back buffer). It also loads the tileset into tscaveMan (a global cTi1eSet variable).

bool Prog_Init()
{
//create IDirectDraw/
1pdd=LPDD_Create(hWndMain,DDSCL_FULLSCREEN | DDSCL_EXCLUSIVE |
DDSCL_ALLOWREBOQT) ;
//set display mode
1pdd->SetDisplayMode(800,600,16,0,0);

TiILE-BRASED FUNDAMENTHALS @

//create primary surface

ITpddsMain=LPDDS_CreatePrimary(lpdd,1);

//get back buffer

1pddsBack=LPDDS_GetSecondary(1pddsMain);

//clear out back buffer

DDBLTFX ddbltfx;

DDBLTFX_ColorFill(&ddb1tfx,0);
TpddsBack->BT1t(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//Toad in tileset

tsCaveMan.Load(1pdd,”IsoHex10_1.bmp”);

return(true);//return success [

THE IYIAIN Loofr

In Prog_Loop, three things happen. First, the back buffer is cleared out. Second, one of the cells of the
tileset is written to the approximate middle of the screen. Third, the application is locked to 15 frames per
second.

void Prog_Loop()

{
//start timer
DWORD dwTimeStart=GetTickCount();
//clear out back buffer
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
TpddsBack->BTt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbl1tfx);
//put the caveman
tsCaveMan.PutTile(TpddsBack,400,300,dwCaveManFrame);
//change the frame number
dwCaveManFrame++;
dwCaveManFrame%=8;
//flip
ITpddsMain->F1ip(NULL,DDFLIP_WAIT);
//Tock to 15 FPS
while(GetTickCount()-dwTimeStart<66);

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

You can see that using CTi1eSet is a great deal easier than setting up RecTs and going down that path.
The tileset makes sprite and tile management easy and doesn't add that much overhead.

CLEANING U¥FP

You don't have to call the un1oad function, because CTi1eSet’s destructor automatically does so, and you
can essentially ignore your tileset in Prog_bone. You can just destroy the primary surface and the
IDirectDraw and be done with it.

void Prog_Done()

]

//destroy primary surface
LPDDS_Release(&TpddsMain);
//destroy IDirectDraw?/
LPDD_ReTease(&lpdd);

TAKING CONTROL

Although just watching a caveman run in place is fun, you'd probably rather control him. For this, | wrote
IsoHex10_2.cpp. This example is mostly the same as IsoHex10 1, except that now you respond to the
arrow keys and use that information to move the caveman back and forth across the screen. The major
change happens in Prog_Loop.

void Prog_Loop()
{
//start timer
DWORD dwTimeStart=GetTickCount();
//clear out back buffer
DDBLTFX ddb1tfx;
DDBLTFX_ColorFill(&ddb1tfx,0);
TpddsBack->BTt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddb1tfx);
//put tile

tsCaveMan[dwCaveManFacel.PutTile(1pddsBack,dwCaveManPosition,300,dwCaveManFrame);
//move
if(MovelLeft~"MoveRight)
{
if(Moveleft)
{
//moving left

TiILE-BRASED FUNDAMENTHALS

dwCaveManFace=1;
//update position
dwCaveManPosition+=796;
dwCaveManPosition%=800;
//update animation frame
dwCaveManFrame+=1;
dwCaveManFrame%=7;

else

{
//moving right [
dwCaveManFace=0;
//update position
dwCaveManPosition+t=4;
dwCaveManPosition%=800;
//update animation frame
dwCaveManFrame+=1;
dwCaveManFrame%=7;

else

//standing

dwCaveManFrame=7;
}
//flip
TpddsMain->F1ip(NULL,DDFLIP_WAIT);
//Tock to 15 FPS
while(GetTickCount()-dwTimeStart<66);

The global variables named MovelLeft and MoveRight are bools, and you change their status in response to
WM_KEYUP and WM_KEYDOWN.

case WM_KEYDOWN:
{
//on escape, destroy main window
if(wParam==VK_ESCAPE)
{
DestroyWindow(hWndMain);

}

//movement keys

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

if(wParam==VK_LEFT)
{
Moveleft=true;
}
if(wParam==VK_RIGHT)
{
MoveRight=true;
}
return(0);//handled

case WM_KEYUP:
{

Jbreak;
]

//movement keys
if(wParam==VK_LEFT)
{

MovelLeft=false;
}
if(wParam==VK_RIGHT)
{

MoveRight=false;
t
return(0);//handled

Jbreak;

In Prog_Loop, you can see that, depending on which key is
being pressed, the facing (contained in dwCaveManFace), the
position (dwCaveManPosition), and the animation frame
(dwCaveManFrame) are updated. Nothing happens if both
keys are pressed at the same time.

This is about it for your crash course in tile and sprite man-
agement. Throughout the rest of the book, you will make
heavy use of cTi1eSet. | hope I've shown you that this stuff
isn't so hard after all, as long as you have the proper tools and
classes to help you.

NOTE

You may have noticed that no
subtraction is done—only addi-
tion. This is because all the vari-
ables are DWORDs, or unsigned

longs, which have no negative
values.You can see that all the

additions are shortly followed by
a modulus (%) operation.
Combining addition and modu-
lus, you get a net subtraction.

TiILE-BRASED FUNDAMENTHALS @

TILEMAFr EASICcs

A single tile, or even a sequence of tiles depicting an animated character, isn't in itself very useful. In order
to be useful, a variety of sprites and tiles must be used together. Now that you've seen how easy it is to
manipulate tilesets, the time has come to get into tilemaps. When creating a tile-based world, you must
have a way to represent it in your computer’s memory. Usually, you do so with some sort of array,
although there are other more complicated but more flexible solutions.

Since we are still in rectangle land, our tilemaps are more intuitive than they will be once we get into iso-
metric and hexagonal tilemaps. They are simply two-dimensional arrays, like so: [

int iTi1eMap[WIDTHI[HEIGHT];

WIDTH and HEIGHT can be any old value—whatever you need to make your tilemap the proper size. In a
chess or checkers game, w1DTH and HETGHT would both have a value of 8. A side-scroller might have a
HETGHT equal to the screen height divided by the tile height, but the width of the map times the width of
the tiles might be several times the width of the screen. The winTH and HETGHT values depend entirely on
what kind of game you are making.

The meaning of the numbers in this array remains in question. Intrinsically, they have none; the meaning
of the numbers is entirely up to you. You may not even have ints in the array, but instead a completely dif-
ferent custom structure. Again, this is entirely game-dependent.

For example, in a checkers game, the board squares are alternately black and red, as shown in Figure 10.12.
You might put this in the number as a bit flag (if bit O is set or not set, for example). On the other hand,

you might decide that a board whose x and y add up to be an even number is black, and an odd number is
red, like so:

if((tilex+tiley)&l)
{
//red square

//black square

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 10.12

A checkerboard

Figure 10.13 shows the calculations for (x+y) & 1 for the sample checkerboard.

Figure 10.13
0 1 0 1 0 1 0 1 Alternating
odd/even
1 0 1 0 1 0 1 0 checkerboard

TiILE-BRASED FUNDAMENTHALS @

You may want to only contain in your checkerboard’s tile array which piece is or is not there. There are a

total of five options: black piece, red piece, black king, red king, and empty; you might create an enum to
keep track of them.

enum{ EMPTY=0,BLACKPIECE=1,REDPIECE=-1,BLACKKING=2,REDKING=-21};

In this scheme, all black pieces are positive numbers, and all red pieces are negative. This provides an easy
way to differentiate them and conveniently leaves O for representing empty. The starting board configura-
tion tilemap values are shown in Figure 10.14.

X— 0 1 9 3 4 s 6 ; Figure 10.14 [

T 0 Starting board
configuration

3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 1 0 -1 0 1 0 1
6 1 0 1 0 1 0 1 0
7 0 1 0 -1 0 1 0 1

MoRE ComPLICATED TILEMAFPS

Checkers is a good example of a game for which to use a very simple map structure. There isn't much vari-
ety in the tiles this map can hold. This is true of most board and puzzle games, like chess, Reversi, and so
on. However, more complicated games like turn-based or real-time strategy games are more visually rich
and thus have a more complicated map structure. Also, these types of maps tend to be layered.

For example, you might decide that your turn-based strategy game will have several different types of ter-
rain: ocean, plains, forest, hills, and mountains. These would become your basic terrain types. In addition,
you might want to have rivers and roads connecting various map squares. Roads and rivers would be con-
tained in different layers. Also, you'll undoubtedly want to have cities and units on the map, and this can

add even more layers. To accomplish all this layering, you might have a struct like the following to describe
your tilemap areas:

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

struct TILEMAPSQUARE

{
char BasicTerrain;//0=ocean;l=plains;2=forest;3=hills;4=mountains;
unsigned char RoadFlags;//bit O=north; bit l=northeast; bit 2=east; etc.
unsigned char RiverFlags;//bit 0O=north;bit I=east;bit2=south;bit3=west
UNIT* Unit;//pointer to a unit

Vs

| think you get the idea. The more rich the world, the more complicated becomes the map structure. For
J now, we will stick with simplistic tilemaps. VWe'll get into more complicated structures in later chapters.

RENDERING A TILEMAF

Storing a tilemap somewhere in an array is important. Doing so allows you to persist a world without hav-
ing to hardcode it. With such a tilemap, you can save to and load from disk, and create an editor that
allows you to modify the map. Creating an editor is a great idea; you can distribute it with your game so
that your players can create their own levels if they wish, thus enhancing the replay value of your game.
Take, for example, the popularity of Civilization 11, which was written several years ago but is still played
heavily. Entire V\eb sites are dedicated to modified tilesets and scenarios that can be played within the
game.

Having said that, let’s talk about how to render a tilemap, and then we’ll make a simple map editor
that uses a tileset from spritelib. I'll bring up and talk about some of the terms | mentioned earlier in
this chapter.

SCREEN SPACE

First, we'll talk about screen space in more depth. Screen space is nothing more than a rectangle describing
the play area shown on-screen. This could be the entire screen, or it could be a smaller portion. Most
modern games have some sort of status bar on the side or bottom of the screen, so quite often screen
space is smaller than the entire screen.

For the editor that we will be making, let’s use 800x600x16 mode. VWe will use a 600x600 area for edit-
ing the map on the left side of the screen, leaving 200x600 on the right for tile selection. The tiles we will
be using are 32x32. The tileset is shown in Figure 10.15.

TiILE-BRASED FUNDAMENTHALS @

Figure 10.15

Tileset for the editor

Of course, neither 200 nor 600 is evenly divisible by 32. 200/32=6.25, and 600/32=18.75, leaving
extra pixels. For this reason, there will be borders around both the editing panel and the tile selection
panel, as shown in Figure 10.16. This makes the map panel 576x576 (or 18 tiles by 18 tiles), and the tile
selection panel 192x576 (or 6 tiles by 18 tiles).

Figure 10.16

Layout of the map
editor

Tile
Map Panel Panel

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

You want your map panel centered within the 600x600 rectangle, and you want the tile selection panel
centered within the 200x600 rectangle on the right. This will give your map panel RecT the value of
(12,12)—(588,588) and your tile selection ReCT the value of (12,604)—(796,588). This gives you not one,
but two screen spaces. In the map panel, draw the current representation of the map based on your map
array, which contains indices into the tileset (make the tilemap 18x18 so that it conveniently fits). In the
tile selection panel, draw all the tiles, in order, and outline the one that is currently selected.

But now you have more tiles in the set than will fit in the tile selection box. You can fit 6x18 tiles (108
tiles), but you have 192. In order for the editor to be any good, you must either reduce the number of tiles
in the set—something you don't want to do—or make it so that all the tiles can be selected by allowing

J some sort of scrolling mechanism. This is a better solution. You may, at some point, want to handle a vari-
ably-sized tileset, so not locking yourself into a fixed-size tileset is wise.

WoRLD SPACE AND VIEW SPACE

You have already decided to have an 18x18 tile grid, and this will be the total of your world space. Since
each tile is 32*32, this makes the pixel measurement of world space 576x576. Since you are making world
space 0-based, the world space RecT is (0,0)—(576,576).

Your view space is based on your screen space. Since screen space spans from (12,12)—(588,588), you
simply must subtract (12,12) from each coordinate pair to determine your view space. This makes view
space 0-based, which makes conversion from one space to another much easier. The point (12,12) is called
the screen-to-view anchor.

Upper Left:

Screen coordinate (12,12)

Minus anchor (12,12)

Combine (12-12,12-12)

Solve (0,0)

Lower Right:

Screen coordinate (588,588)
Minus anchor (12,12)
Combine (588-12,588-12)
Solve (576,576)

Conveniently, your view space ReCT works out to be (0,0)-(576,576), which is exactly the same as your
world space RECT, meaning that no conversion is necessary to go from world to view space. So, to convert
from world to screen space, simply add the coordinate (12,12). To do the reverse, subtract (12,12).

TiILE-BRASED FUNDAMENTHALS @

H SimPLE TiLEIAFP EDI1TOR

Load up IsoHex10_3.cpp. This example demonstrates what we've been talking about for the last several
pages. It sets up a map panel and a tile panel. The map panel is your screen space for the tilemap. The tile
panel shows the variety of tiles that you can place in the tilemap. Figure 10.17 shows sample output for
this example.

Figure 10.17

A simple T7leMap I:
editor

The controls for this example are rather simple, and the features rather slim. Clicking anywhere in the map
panel puts the selected tile there. Clicking in the tile panel selects a new tile. Clicking above or below the
tile panel scrolls the tile panel up or down. All in all, this example is pretty spartan. It doesn't save, it does-
n't load, it doesn't really do much except let you play with the tileset. Still, I think it's a pretty good exam-
ple of what a tilemap editor looks like at its very core. Let’s take a look at how it works.

CONSTANTS

First, I made a number of constants to keep track of the sizes in the editor. Quite a few of them are
dependent on other constants.

//map and tile constants
const int TILEWIDTH=32;
const int TILEHEIGHT=32;
const int MAPWIDTH=18;

TiILE-BRASED FUNDAMENTHALS @

H SimPLE TiLEIAFP EDI1TOR

Load up IsoHex10_3.cpp. This example demonstrates what we've been talking about for the last several
pages. It sets up a map panel and a tile panel. The map panel is your screen space for the tilemap. The tile
panel shows the variety of tiles that you can place in the tilemap. Figure 10.17 shows sample output for
this example.

Figure 10.17

A simple T7leMap I:
editor

The controls for this example are rather simple, and the features rather slim. Clicking anywhere in the map
panel puts the selected tile there. Clicking in the tile panel selects a new tile. Clicking above or below the
tile panel scrolls the tile panel up or down. All in all, this example is pretty spartan. It doesn't save, it does-
n't load, it doesn't really do much except let you play with the tileset. Still, I think it's a pretty good exam-
ple of what a tilemap editor looks like at its very core. Let’s take a look at how it works.

CONSTANTS

First, I made a number of constants to keep track of the sizes in the editor. Quite a few of them are
dependent on other constants.

//map and tile constants
const int TILEWIDTH=32;
const int TILEHEIGHT=32;
const int MAPWIDTH=18;

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

const int MAPHEIGHT=18;
//panels
const int MAPPANELX=12;
const int MAPPANELY=12;
const int MAPPANELWIDTH=MAPWIDTH*TILEWIDTH;
const int MAPPANELHEIGHT=MAPHEIGHT*TILEHEIGHT;
const int TILEPANELX=604;
const int TILEPANELY=12;
const int TILEPANELCOLUMNS=6;
const int TILEPANELROWS=18;
J const int TILEPANELWIDTH=TILEPANELCOLUMNS*TILEWIDTH;
const int TILEPANELHEIGHT=TILEPANELROWS*TILEHEIGHT;

GLOEALS

Besides our usual globals (window handle, our DirectDraw pointer, and our primary and back surfaces),
there are a few extras with which to keep track of the state of the editor.

//tileset

CTileSet tsTileSet;

//tilemap

int iTi1eMap[MAPWIDTH][MAPHEIGHT];
//tile selection

int iTileTop=0;

int iTileSelected=0;

The tsTileSet variable contains the tileset you'll be using. iT11eMap is the array in which you contain
your tilemap. The iTileTop and iTileSelected variables are for managing the tile selection panel.
iTileSelected keeps track of what tile is currently selected for drawing, and iTi1eTop tracks what tile is
shown at the top of the tile selection panel.

SET ufP AND CLEAN UF

The changes to Prog_Init are minor. You set up DirectDraw, load your tileset, and clear out your tilemap.
I won't list the function’s contents here. In Prog_bone, there are effectively no changes, since you neither
have to deallocate the tilemap nor destroy the tileset.

TiILE-BRASED FUNDAMENTHALS

THE IYIAIN Loofr

The main loop itself (Prog_Loop) does virtually nothing. It delegates to ShowMapPanel and
ShowTilePanel and then performs a flip.

SHouwMAPPANEL

This function has no parameters, returns no value, and carries out two tasks. The first task is clearing out
the entire map panel with black. The second is looping through all the tiles in the tilemap and putting
them onto the map panel. [

void ShowMapPanel ()
{
//clear out map panel
//set up fill rect
RECT rcFill;
SetRect(&rcFill,MAPPANELX,MAPPANELY ,MAPPANELX+MAPPANELWIDTH,MAPPANELY+MAP -
PANELHEIGHT) ;
//set up ddbltfx
DDBLTFX ddbTtfx;
DDBLTFX_ColorFill(&ddb1tfx,0);
TpddsBack->B1t(&rcFil1,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddb1tfx);
//Toop through map
for(int mapy=0;mapy<MAPHEIGHT ;mapy++)
{

for(int mapx=0;mapx<MAPWIDTH;mapx++)
{
//put the tile
tsTileSet.PutTile(1pddsBack,MAPPANELX+mapx*TILEWIDTH,
MAPPANELY+mapy*TILEHEIGHT,iTileMap[mapx]lmapyl);

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

SHoOWTILEPANEL

ShowTilePanel is responsible for displaying all of the tiles in the tile panel and for placing a white box
around the currently selected tile.

void ShowTilePanel()
{
//clear out map panel
//set up fill rect
RECT rcFill;
SetRect(&rcFill,TILEPANELX,
J TILEPANELY,TILEPANELX+
TILEPANELWIDTH, TILEPANELY+
TILEPANELHEIGHT);
//set up ddbltfx
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddb1tfx,0);
IpddsBack->BT1t(&rcFil1,NULL,NULL,
DDBLT_WAIT | DDBLT_COLORFILL,&ddbTtfx);
//set tile counter to first tile
int tilenum=iTileTop;
//1oop through columns and rows
for(int tiley=0;tiley<TILEPANELROWS;tiley++)
{

for(int tilex=0;ti1ex<TILEPANELCOLUMNS;tilex++)

{
//check for tilenum’s existence in tileset
if(tilenum<tsTileSet.GetTileCount())
{

tsTileSet.PutTile(IpddsBack, TILEPANELX+tilex*TILEWIDTH, TILEPANELY+tiley*TILE-
HEIGHT,tilenum);
//check for selected tile
if(tilenum==iTileSelected)
{
//grab the dc
HDC hdc;
ITpddsBack->GetDC(&hdc);
//calculate outline rect
RECT rcOutline;

TiILE-BRASED FUNDAMENTHALS E

SetRect(&rcOutline, TILEPANELX+
tilex*TILEWIDTH,
TILEPANELY+
tiley*TILEHEIGHT,
TILEPANELX+
tilex*TILEWIDTH+
TILEWIDTH,
TILEPANELY+
tiley*TILEHEIGHT+
TILEHEIGHT);
//select a white pen into dc [
SelectObject(hdc,
(HPEN)GetStockObject (WHITE_PEN));
//place selection rectangle

MoveToEx(hdc,rcOutline.left,

rcOutline.top,NULL);
LineTo(hdc,rcOutline.right-1,rcOutline.top);
LineTo(hdc,rcOutline.right-1,rcOutline.bottom-

LineTo(hdc,rcOutline.left,rcOutline.bottom-1);
LineTo(hdc,rcOutline.left,rcOutline.top);

//release the dc
TpddsBack->ReleaseDC(hdc);

}
//increase tile counter
tilenum++;

HcceEPTING ITNPUT

The only topic left to cover is accepting input and making things happen. I'm only going to show the
event handler for wM_LBUTTONDOWN, since the handler of wm_MouSEMOVE is almost identical, and because of
the sheer size of the handler.

In essence, the WM_LBUTTONDOWN handler takes the position of the mouse and places it ina POINT variable
called ptMouse. Then it sets up a series of REcTs—one for the map panel, one for the tile panel, one for
the area above the tile panel, and one for the area below the tile panel. It checks to see if the mouse is

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

within these RECTS, and if it is, it carries out the appropriate action: place a tile if within the map panel,
select a tile if within the tile panel, scroll the tile panel up if above or down if below.

WM_MOUSEMOVE does mostly the same thing, except for the scrolling of the tile panel if above or below.

case WM_LBUTTONDOWN:
{
//point to contain mouse coords
POINT ptMouse;
ptMouse.x=LOWORD(1Param);
ptMouse.y=HIWORD(1Param);
J //RECT used for zone checking
RECT rcZone;
//other variables
int mapx=0;
int mapy=0;
int tilex=0;
int tiley=0;
int tilenum=0;
//check the map panel
SetRect(&rcZone,MAPPANELX ,MAPPANELY,
MAPPANELX+MAPPANELWIDTH,
MAPPANELY+MAPPANELHEIGHT) ;
if(PtInRect(&rcZone,ptMouse))
{

//in map panel
//calculate what tile mouse is on
mapx=(ptMouse.x-MAPPANELX)/TILEWIDTH;
mapy=(ptMouse.y-MAPPANELY)/TILEHEIGHT;
//change map tile to currently selected tile
iTileMap[mapx][mapy]=iTileSelected;
return(0);//handled
}
//check the tile panel
SetRect(&rcZone, TILEPANELX, TILEPANELY,
TILEPANELX+TILEPANELWIDTH,
TILEPANELY+TILEPANELHEIGHT);
if(PtInRect(&rcZone,ptMouse))
{
//calculate which tile was selected
tilex=(ptMouse.x-TILEPANELX)/TILEWIDTH;
tiley=(ptMouse.y-TILEPANELY)/TILEHEIGHT;

TiLE-BEASED FUNDAMENTHALS

tilenum=iTileTop+tilex+tiley*TILEPANELCOLUMNS;
//check for valid tile

if(tilenum<tsTileSet.GetTileCount())
{
//assign current tile
iTileSelected=tilenum;
}
return(0);//handled
}
//scroll tileset up
SetRect(&rcZone, TILEPANELX,0, TILEPANELX+ [
TILEPANELWIDTH,TILEPANELY);

if(PtInRect(&rcZone,ptMouse))
{

//check if we can scroll up
if(iTileTop>0)
{
//scroll up
iTileTop-=TILEPANELCOLUMNS;

}
//scroll tileset down

SetRect(&rcZone, TILEPANELX, TILEPANELY+
TILEPANELHEIGHT, TILEPANELX+

TILEPANELWIDTH,600);

if(PtInRect(&rcZone,ptMouse))
{

//check if we can scroll down
if((iTi1eTop+TILEPANELCOLUMNS)<

tsTileSet.GetTileCount())
{

//scroll up
iTileTop+=TILEPANELCOLUMNS;

}

return(0);//handled
}break;

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

H £ WoRDS AROUT THE
TiLENMIArP ED1TOR

Even though the sample map editor doesn't do much, it does illustrate important points about all map edi-
tors. Just about every map editor I've made or used includes something similar to the map panel and some-
thing similar to the tile panel (although usually with a more obvious way of scrolling through the tileset).

A TLeE-EASED EXAMPLE: REVERS]

J Now that we've delved a bit into the tile-based world, let’s put this knowledge into practice. The first
example 1d like to show you is a game called Reversi. (It’s also called Othello, but Othello is trademarked
by Milton Bradley, so we'll call ours Reversi.)

The basic idea of Reversi is pretty simple. In case you aren't familiar with the game or the rules, here’s a
brief breakdown: the game pieces are a board, divided into an 8x8 grid of 64 squares, and at least 64 two-
sided pieces of contrasting color (usually black and white). At the beginning of the game, the center four
squares are filled with pieces, two black and two white, as shown in Figure 10.18.

Figure 10.18

The Reversi board at
the beginning of play

TiILE-BRASED FUNDAMENTHALS

Two players alternate taking turns placing a single piece on the board and capturing any opposing pieces
that they outflank. To outflank means to have one piece of your color on each end of a horizontal, verti-
cal, or diagonal row of your opponent’s pieces. You cannot outflank across your own pieces or across open
squares. If on a player’s turn there is no valid square on which he can play a piece and outflank his oppo-
nent, he forfeits that turn. Play progresses until no valid moves for either player are left (usually this hap-
pens when the board is full, although it can happen earlier).

Having said that, let's make the game.]

DESIGNING REVERSI1

I have Milton Bradley’s Othello sitting on my game shelf, so I looked to that to model this game. The
board is green with a black border separating the squares. Two cells in from the corners, there is a small
square on the junction of the black lines, apparently to separate the sides and corners from the middle of
the board. The pieces are double-sided and two-colored, with white on one side and black on the other.

| wanted to have some sort of method with which to highlight the possible squares to which the player can
move on his turn, so I also made yellow versions. | wanted an animated “flipping over” of the pieces, so |
made a sequence of ellipses to show that. Figure 10.19 shows the tileset I came up with for this game. You
can also find it in the source code for this chapter, under the name IsoHex10_4.bmp. I used magenta
instead of black as the transparent color. (Originally, I considered having a black piece instead of the dark
gray that | later settled on.)

Figure 10.19

Tileset for Reversi

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

The first row of tiles is the nonhighlighted version of a board background tile. The second row is the
highlighted version. Rows three through five are the animation sequence for the piece flip, with the actual
pieces for both sides on opposite ends of the sequence. The last row consists of extra graphics | needed to
finish up the UI. There is a red square to represent the last move made, and four icons to show the Al level
chosen for the players.

H1 LEVELS

const int
const int
const int
const int
const int

| decided on four levels of Al for this example (none of them are very difficult to beat). These levels are
J represented by constants defined in the source.

//ai levels

AI_HUMAN=0;
AI_RANDOM=1;
AI_GREEDY=2;
AI_MISER=3;
AI_COUNT=4;

Table 10.4 explains these Al levels.

Table 10.4 Al Levels and Their Tactics

Level Tactic

AT_HUMAN None. Waits for input from the mouse.

AT_RANDOM Picks a random valid move.

AT_GREEDY Picks the valid move that will give it the greatest score.
AT_MISER Picks the valid move that best limits the opponent’s movement.

NOTE

AI_COUNT is not an Al level, but rather a constant to keep

track of the number of levels that exist, in case you later want
to add more Al levels.

TiILE-BRASED FUNDAMENTHALS

GAME STARATES

As with all games, there are a number of major game states in which Reversi might dwell at any given time.
| was able to reduce it to only five states.

//game states

const int GS_NONE=-1;

const int GS_WAITFORINPUT=0;
const int GS_NEWGAME=1;
const int GS_NEXTPLAYER=2;
const int GS_FLIP=3; [

Table 10.5 explains these states.

Table 10.5 Reversi Game States

Game State Meaning

GS_NONE A neutral state. The board is drawn, but no other action takes place.

GS_WAITFORINPUT If the current player is computer-controlled, a move will be made.
Otherwise, it waits for mouse input.

GS_NEWGAME Sets up a new game

GS_NEXTPLAYER Checks for game over. If the game is not over, it selects the next
player.

GS_FLIP In this state, the pieces captured during this turn are taken through

the animation sequence.

TILE TNFORMATION STRUCTURE

Reversi may seem like a simple board game, but the struct that keeps track of the tile information is a little
more complicated than just a simple array of integers.

//tile information structure
struct REVERSITILE
{
int iTileNum;//base tile number for square
bool bHilite;//hilited, or not hilited
int iPiece;//piece occupying square
bool blLastMove;//Tast move made

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

1TILENUmM
This member keeps track of the background and specifies one of the first five tiles of the tileset. Most

squares contain tile zero, but a few contain the others. I could have easily just used tile zero for the entire
board, but that would have been boring.

RHILITE
When the current player can make a valid move on a given square, bHi11ite is true. If the square is not a

valid move for the player, hHi1ite is false. bHi11te, when used in conjunction with i Ti1eNum, provides
J the background tile. When bHiTite is true, 5 is added to iTi1eNum.

1P1ECE
This member has four meaningful values: PTECEEMPTY (-1), PTECEBLACK(0), PTECEWHITE(1), and

PIECETRANSIT(2). The empty, black, and white are self-explanatory. The transit piece is for use with the
GS_FLIP state. It specifies which pieces undergo the animation sequence.

RLASTIYIOVE

Only one square at a time will ever have bLastMove Set to TRUE. bLastMove Specifies that the red rectangle
(tile 25 of the tileset) is to be shown over the background, thus indicating that the square was the most
recent move. Keeping track of this is not absolutely necessary, but I find it helpful when playing the game.

S coRE TNDICATION

| wanted to have a score indication that did not require a font to implement. I could have used some extra
tiles for the numerals 0 through 9 in the tileset, but I just didn't like that idea. Instead, | decided to use
vertical stacks of the pieces alongside the board. Both stacks are on the left side of the board, so they can
easily be compared to see who is winning.

H1 LeEvEL CoONTROL

| didn't want to make a configuration screen, so | had to work in some sort of Al level control right on the
screen itself. What | came up with was to put two of the colored pieces in the bottom-left corner (aligned

with the score stacks), and | would blit icons representing what Al levels controlled which color. The icons
are from the wingdings font, but I colored them in to make them look better.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

1TILENUmM
This member keeps track of the background and specifies one of the first five tiles of the tileset. Most

squares contain tile zero, but a few contain the others. I could have easily just used tile zero for the entire
board, but that would have been boring.

RHILITE
When the current player can make a valid move on a given square, bHi11ite is true. If the square is not a

valid move for the player, hHi1ite is false. bHi11te, when used in conjunction with i Ti1eNum, provides
J the background tile. When bHiTite is true, 5 is added to iTi1eNum.

1P1ECE
This member has four meaningful values: PTECEEMPTY (-1), PTECEBLACK(0), PTECEWHITE(1), and

PIECETRANSIT(2). The empty, black, and white are self-explanatory. The transit piece is for use with the
GS_FLIP state. It specifies which pieces undergo the animation sequence.

RLASTIYIOVE

Only one square at a time will ever have bLastMove Set to TRUE. bLastMove Specifies that the red rectangle
(tile 25 of the tileset) is to be shown over the background, thus indicating that the square was the most
recent move. Keeping track of this is not absolutely necessary, but I find it helpful when playing the game.

S coRE TNDICATION

| wanted to have a score indication that did not require a font to implement. I could have used some extra
tiles for the numerals 0 through 9 in the tileset, but I just didn't like that idea. Instead, | decided to use
vertical stacks of the pieces alongside the board. Both stacks are on the left side of the board, so they can
easily be compared to see who is winning.

H1 LeEvEL CoONTROL

| didn't want to make a configuration screen, so | had to work in some sort of Al level control right on the
screen itself. What | came up with was to put two of the colored pieces in the bottom-left corner (aligned

with the score stacks), and | would blit icons representing what Al levels controlled which color. The icons
are from the wingdings font, but I colored them in to make them look better.

TiILE-BRASED FUNDAMENTHALS

TMPLEMENTATION OF REVERSI

With the design in mind, here’s some of the implementation detail for Reversi. Because of space concerns,
| can't get into every minute detail, but the full source code can be found in IsoHex10_4.cpp. I'm going to
concentrate on the main game loop (Prog_Loop) and break it down by game state.

MAJOR GLOERAL VARIARLES

Reversi uses full-screen DirectDraw, set to an 800x600x16 resolution. The major global variables are
shown next. [

Your basic run-of-the-mill 10irectdraw7 pointer:

//IDirectDraw/ Pointer
LPDIRECTDRAW7 Tpdd=NULL;

A primary surface and the attached back buffer:

//surfaces
LPDIRECTDRAWSURFACE7 TpddsMain=NULL;
LPDIRECTDRAWSURFACE7 T1pddsBack=NULL;

The main tileset to contain all of the graphics used:

//tileset
CTileSet tsReversi;

The main board and a temporary storage area:

//the board

REVERSITILE Board[8][817;
//backup board

REVERSITILE BackUpBoard[81[8];

A variable to keep track of the current player:

//current player
int iPlayer=0;

An animation counter for use during GS_FLIP:

//counter for animated “flipping” of pieces
int iAnimation=0;

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

An array to keep track of what Al controls each color:

//ai level for the players
int iAllevell[2];

The main game state:

//gamestate
int iGameState=GS_NONE;

J ALL GAME STATES

Regardless of game state, a certain amount of code runs each loop. This code prepares a new frame for the
game and then displays it.

//clear out back buffer

DDBLTFX ddbltfx;
DDBLTFX_CoTlorFill(&ddbltfx,0);
TpddsBack->B1t(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//***QMITTED CODE***

//show the board

ShowBoard();

//show the scores

ShowScores();

//show players

ShowPlayers();

//flip
TpddsMain->F1ip(NULL,DDFLIP_WAIT);

This bit is pretty simple. First, you clear out the back buffer, and then you draw the board, draw the
scores, draw the Al levels, and finally flip the page. It's a pretty to-the-point snippet. You can take a look at
the constituent functions in the source code if you're interested. The following sections offer a brief run-
down of the major function calls.

TiILE-BRASED FUNDAMENTHALS

SHowRoOARD
This function loops through all of the board squares and follows approximately these steps:

1. Based on iTileNumand bHi11te for this board square, determine which tile to use as the
background tile.

2. Determine what piece, if any, is resting on this square. If it is PIECEBLACK or PIECEWHITE,
show the appropriate tiles. If it is PTECETRANSIT, determine what tile to show based on the
global variable iAnimation

3. If this square has bLastMove set, put the red square on top.

SHOWSCORES

This function shows the scores for each color, representing the score with a vertical stack of pieces. For
each piece on the board, ShowScores renders one piece. The first piece is rendered with the top of the
piece at y=0, and y increases by 4 for each additional piece on the board. This allows a nice, easy way to
tell who is winning while avoiding numerals.

SHOWFPLAYERS

This function shows the Al levels of both colors in the bottom-left corner of the screen. A black piece sits
next to a white piece. On top of these pieces the function renders an icon that represents the Al level for
that color. A mouse represents a human player, and computers with the numerals 1, 2, and 3 represent the
three levels of computer Al.

GS_NONE

This game state does almost nothing. In fact, there is no case for it in the iGameState switch in
Prog_Loop. Only in the wM_LBUTTONUP event handler does GS_NONE get a mention. If the board is clicked
on while in GS_NONE, the game moves t0 GS_NEWGAME.

case WM_LBUTTONUP:
{
//grab mouse position
POINT ptMouse;
ptMouse.x=LOWORD(1Param);
ptMouse.y=HIWORD(1Param);
//test rectangle
RECT rcTest;
//get tile width and height
int iTileWidth=tsReversi.GetTileList()[0].rcSrc.right-
tsReversi.GetTilelList()[0].rcSrc.left;

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

int iTileHeight=tsReversi.GetTilelList()[0].rcSrc.bottom-
tsReversi.GetTilelList()[0].rcSrc.top;

//calc board rect

SetRect(&rcTest, (400-iTileWidth*4),
(300-iTileHeight*4),(400+iTileWidth*4),
(300+iTileHeight*4));
//point on board?

if(PtInRect(&rcTest,ptMouse))

{
//***CODE OMITTED
J //if a game is over, start a new game by clicking on the
board
if(iGameState==GS_NONE)
{

iGameState=GS_NEWGAME;

}
//***CODE OMITTED***

tbreak;

G5_NEWGHME

GS_NEWGAME starts a new game, and is actually one of the simpler game states. First, it makes a call
to SetUpBoard, which does all of the reinitialization necessary to start out with a clean board. Then it sets
the player to PLAYERTWO and sends the game into GS_NEXTPLAYER. | could have done this another way, by
setting iP1ayer to PLAYERONE and sending it into GS_WATITFORINPUT.

case GS_NEWGAME:

{
//clear the board
SetUpBoard();
//set player
iPlayer=PLAYERTWO;
//change game state
iGameState=GS_NEXTPLAYER;

Jbreak;

TiILE-BRASED FUNDAMENTHALS @

G5_WAHITFORINPUT

This game state is the central game state. All Al moves are done here. When the game first enters
GS_WAITFORINPUT, it checks the current player's Al level. If AT_HumAN is indicated, the game does nothing.
If it is a computer Al (AI_RANDOM, AT_GREEDY, Or AI_MISER), it calls the appropriate Al function.

case GS_WAITFORINPUT:
{
//make move appropriate to the Al
switch(iAILevel[iPlayer])

{
case AI_RANDOM: [
{
MakeRandomMove(iPlayer);
}break;
case AI_GREEDY:
{

MakeGreedyMove(iPlayer);
Jbreak;
case AI_MISER:
{
MakeMiserMove(iPlayer);
Jbreak;
}
}break;

Note that the Al level of A1_HUMAN isn't even represented in this snippet. That is because all of the
AT_HUMAN stuff for Gs_WATTFORINPUT is handled in the wM_LBUTTONUP event handler. (Al and GS and
WM. .. oh my!)

//***CODE OMITTED***

//point on board?
if(PtInRect(&rcTest,ptMouse))
{

s

//if we are waiting for input and the ai is “human,” check for inside the
board
if((iGameState==GS_WAITFORINPUT) &&

(iAILevel[iPlayer]==AI_HUMAN))

//find board position
int BoardX=(ptMouse.x-rcTest.left)/iTileWidth;
int BoardY=(ptMouse.y-rcTest.top)/iTileHeight;

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

//check for a valid square

if(ValidMove(iPlayer,BoardX,BoardY))

{

//make the move
MakeMove(iPlayer,BoardX,BoardY);
SetlLastMove(BoardX,BoardY);
iGameState=GS_FLIP;

}
//***CODE OMITTED*** (the GS_NONE check)

1

//***CODE OMITTED***

GS_fFLIP

After a move has been made, the newly captured pieces are not set to the color of the player who captured
them. Instead, they are changed to PIECETRANSIT, and GS_FLIP is the game state responsible for making
sure that the animation sequence for capturing these pieces is shown.

case GS_FLIP:
{
switch(iPlayer)
{
case PLAYERTWO:
{
if(iAnimation==0)
{
FinishMove(iPlayer);
iGameState=GS_NEXTPLAYER;

iAnimation—;
1
Jbreak;
case PLAYERONE:
{
if(iAnimation==14)
{
FinishMove(iPlayer);
iGameState=GS_NEXTPLAYER;

TiILE-BRASED FUNDAMENTHALS @

iAnimation++;

tbreak;
}
fbreak;

The main purpose of GS_rLIP is to modify iAnimation, which controls what part of the animation

sequence you are on. When it is PLAYERONE'S turn, iAnimation Starts at 0 and is incremented until it hits [
14, at which point the move finishes (by a call to FinishMove, which changes all PTECETRANSITS t0 @
color’s piece). Similarly, on PLAYERTWO'S turn, iAnimation starts at 14 and moves backwards until it hits
0. In either case, after GS_rLIP is finished, the game moves into GS_NEXTPLAYER.

G5_NEXTPLAYER

After a move has been completed, this game state checks to see if the game is over or sets the next active
player. If the game is over (there are no valid moves for either player), it sends the game into GS_NonE. If
the game is not over, it checks to see if the opposing player has a valid move. If the opposing player does
not have a valid move, it goes to GS_WAITFORINPUT without changing the player. If the opposing player
does have a valid move, it sets the current player to the opposing player and moves into GS_WATTFORINPUT.

case GS_NEXTPLAYER:
{
//scan for moves
ScanForMoves(iPlayer);
//if no more valid moves, game over
if((!AnyValidMoves(PLAYERTWO)) && (!AnyValidMoves(PLAYERONE)))
{
iGameState=GS_NONE;

else

//find if opponent has any moves
if(AnyValidMoves(1-iPlayer))
{

iPlayer=1-iPlayer;

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

//scan for moves by current player
ScanForMoves(iPlayer);

//get next move
iGameState=GS_WAITFORINPUT;

tbreak;

:| MisceELLANEOUS ACTIONS
Before we complete our treatment of Reversi, | have a few last things left that | want to point out.

= Changing Al Levels. During every loop, the current Al levels are shown at the bottom left of the screen. You
can change the level by clicking on the indicators. Each time you click, you increase the Al level by 1. Clicking
on the highest level brings you back to the lowest level (AT_HUMAN).

= Keyboard Controls. Esc exits the program, no matter what game state you are in. F2 starts a new game, no
matter what game state you are in.

INAL WoOoRDsS oON REVERS]

This simple little game of Reversi is far from complete. Yes, it is fully functional and playable, but it lacks
any extras. Just like the Breakout game in the preceding chapter, I'm leaving it for you to finish. Here’s a
brief list of features I think it needs:

= A title screen
= Some sort of “bells and whistles” when you win
= Sound/music

And I'm sure you'll come up with 50 ways to improve the program. Have fun with it.

SuUMMARY

In this chapter, you took a step into a larger world. You explored the power that graphical tiles can give
you. | went into great detail on the topic of tileset management, and for good reason. From here on out,
just about everything you do will be done using the cTi1eSet class, in some fashion or another.

T iy IR E—— ==

] M

TR e =L A,

CHAPTER 11

1someTRIC/
HEXAGONAL
TIiILE OVERVIEW

B INTRODUCTION TO 1s5s0HEX

B 1sO0HEX TILES VERSUS
N RECTANGULAR TILES

bl

B IsO0OHEX ENGINES VERSUS
RECTANGUALR ENGINES

'_l_|_

T L/_\ELL—LT'F—J:MJ—\; —T T e

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

his chapter marks a new beginning. All of the preparatory information and discussion is over, and

It is at last time to sally forth into the wonderful world of isometric and hexagonal graphics. This
is not to say that what we have discussed so far has been meaningless. To the contrary! All of the previous
topics have been building up to this chapter and to the rest of this book.

This chapter takes you on a ride through isometric land. Mainly, I will talk about the special considera-
J tions you have to keep in mind when creating isometric or hexagonal tiles, rendering these tiles, and inter-
acting with them on-screen.

INTRODUCTION TO 15s0HEX

So, what is “IsoHex™? Simply, it’s a word | made up. A couple of years ago, | was sitting around playing
Sid Meier’s Civilization 11 and generally being a nonfunctional human being. Of course, I'd been a game pro-
grammer for many years, but most of my stuff dealt with the normal top-down rectangular tiled method-
ology that was common in the waning days of DOS.

| was quite impressed with the look of Civilization I1. It looked a heck of a lot better than the original. The
isometric view gave it a semi-3D look. Naturally, I just had to know how it was done. So | looked through
the directory in which Civilization 11 was installed, and 1 viewed the several GIF files that stored the images.
Then | started playing around with similar tiles in my own experiments.

A friend of mine, Isaac Vanier, posted a question on a message board about how to take mouse input and
determine what tile it was on in an isometric map. Having toyed with the idea of isometric tiles, I sent
him an e-mail answering his question. Apparently, my little e-mail helped him out quite a bit, because he e-
mailed me back, telling me that I should write an article about it.

| thought surely there must be resources on how to do this stuff, and that writing another article about it
would be unnecessary. So | scoured the Internet for a trace of isometric tutorials, or at least something about
them. Needless to say, there wasn't much out there. | saw bizarre linear algebra computations, and some
pretty crazy and not-very-optimized ways to do isometric tiles. There was one exception—an article by Jim
Adams called “Isometric Views,” written in 1996 (keep in mind, | was doing this search in 1998). This
article was originally a newsgroup post by Mr. Adams and had been “translated” into article form. It was
just about the only isometric article you could find on the Net. The article had a bunch of god-awful
ASCII art, and it didn't talk about mapping screen coordinates to tile coordinates. | decided to write my
article after all.

Originally, I put my article on my Web page (you know. . . the WWeb space that your ISP gives you) and gave
links to it from message boards. Eventually, a few people linked to it. Finally Matt Reiferson, the
Webmaster of GPMega (the most popular amateur game programming site at that time) contacted me

IsomeTRIC/HEXAGONAL TiLE OVERVIEW

and asked if he could put the article on his site. | agreed. My little article (and a sequel that | wrote a
while later) became quite popular. Eventually, some of the other guys who hung out in the GPMega chat
room and | formed our own site, Sweet.Oblivion. Eventually Sweet.Oblivion joined with other sites to
form GameDev.net. Throughout these events, this little article has followed me. Currently, it is the 27th
most frequently accessed article on GameDev.net.

What does this have to do with the word “IsoHex™? WelI, that little article first coined the term. That arti-
cle is also the primary reason you are reading this book. Without that article, 1 would never have been
asked to write this book. (I admit, it's more complicated than that, but it was a key component.)

So, the original question remains: what is 1soHex? IsoHex is, quite naturally, a combination of the words
isometric and hexagonal. An isometric projection is a 3D projection that does not correct for distance (in [
other words, something 30 tiles away is just as big as something 10 tiles away). The isometric projection is
one of a family of axonometric projections. (The meaning of axonometric isn't terribly important. It's an
engineering term.) Rhombuses, or diamond shapes, are usually used to represent an isometric tiled world.
Figure 11.1 shows a field of isometric tiles.

Figure 11.1

An isometric tile field

e

Hexagonal means six-sided. As far as tiled graphics go, there is almost no difference between an iso-tiled
world and a hex-tiled world. The difference is all in connotation and convention (meaning that on a hex
map, you can move in six directions instead of eight, as with iso). Hex maps are commonly used by
paper-and-pencil RPGers and by strategy gamers, such as those who play Battletech. Figure 11.2 shows

a hexagonal field.

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 11.2

A hexagonal tile field

The main difference between an iso tile and a hex tile is that the two halves of an iso tile are split apart,
and a rectangular area is inserted between them, as shown in Figure 11.3.

Figure 11.3

Iso to hex

1someTRIC/HEXAGONAL TiILE OVERVIEW E

There really is not much of a difference between iso and hex as far as programming goes. It is mainly a
user interface issue. At this point, I think you've probably had more than you want to hear about IsoHex,

and you would rather start doing stuff. I don't blame you, so let’s get to it!

1sO0HEX TILES VERSUS
RECTANGULAR TILES

So far, the tile-based examples have always used rectangular areas that contain the tiles; this is not going to
change. What will change is how you will render them in relation to one another.

Take, for example, a 64x64 rectangular tile, like the ones used in the Reversi example in the preceding
chapter. In order to blit these tiles onto a grid, you simply use multiples of 64, as shown in Figure 11.4.

Figure 11.4

Making rectangular
tiles flush

IsoHex tiles can't do this (or, at least, most of them can't). Since only a portion of the rectangle is filled
with the actual tile, the rectangles containing the tile have to overlap, both vertically and horizontally, as

shown in Figure 11.5.

|

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 11.5
Making IsoHex tiles flush

I N o S

As you can see, the IsoHex tiles have to be shifted over by half a tile on alternating rows, whereas no
adjustment is necessary for rectangular tiles. This brings up another important point: blitting order. With
rectangular tiles, you can blit in any order you want—Ieft to right, right to left, top to bottom, bottom to
top—and the map will look right no matter what, because none of the tiles overlap. IsoHex tiles, however,
often have something “sticking up out of them,” like a tree or a building or a unit. There are some impor-
tant ramifications of this.

= Rule 1. IsoHex tiles must be blitted in a manner so that no tile is blitted after a tile that is “in front” of it.
The methods of doing this are based on the type of tilemap used. I'll get into this later.

= Rule 2. If only a small portion of the screen has to be updated, you cannot just blit the tile that changed.
You have to blit neighboring tiles as well, and you have to make certain that you follow Rule 1 while doing
so. Clippers come in quite handy to help with this.

= Rule 3. Except for the diamond tilemap, you must avoid as much as possible showing the jagged edges of the
tilemap (they are the most severe on staggered maps). This isn't really a rule; it's more a matter of aesthetics.

1sO0HEX TILEMAPS VERSUS
RECTANGULAR TILEMAFPS

Rectangular maps are maintained by a two-dimensional array in most cases. The same is true of I1soHex
maps. However, the meaning of the x- and y-coordinates changes somewhat. In a rectangular map, increas-
ing x moves east, and increasing y moves south. In an iso tilemap, depending on type, increasing x might
mean moving southeast, and increasing y might mean moving southwest.

IsomeTRIC/HEXAGONAL TiLE OVERVIEW @

Why? Because of the overlap. Every other row or column has to be shifted half a tile—either right, left,
up, or down—in order to make the tiles flush with one another. I showed you this in the preceding sec-
tion. For this reason, increasing y by 1 almost never means to move south. However, in most cases, increas-
ing x by 1 does mean to move east.

This makes navigating an IsoHex tilemap a bit more involved than navigating a simple rectangular map.
You have to use a lookup table (and sometimes two) to get it right. Don't worry. | won't leave you hanging;
I'll show you everything you need to know, when you need to know it.]

1ISOMETRIC ENGINES VERSUS [
RECTANGULAR ENGINES

There are several components to any good tile engine. If you want to make tile-based games, it’s smart to
have a good set of functions or classes to wrap up the tricky stuff for you. This is especially important in
IsoHex, since the tilemaps are trickier than in normal rectangular tiles.

TILEFPLOTTER

ATilePlotter is used to convert map coordinates (indices into the tilemap array) into world space coordi-
nates. In a rectangular engine, you simply multiply by the width and height of the tile, since x always goes
east-west and y always goes north-south. In isometric engines, the meanings of x and y change, and at least
one of them moves in a diagonal direction, which changes the equation. Once a TilePlotter has converted a
map coordinate into a world coordinate, it can be from there translated into view and screen coordinates.

MousENAFr

A MouseMap goes the opposite way of a TilePlotter. It takes a world coordinate and converts it into a
map coordinate. A MouseMap is necessary because of the irregular (nonrectangular) shape of the isomet-
ric and hexagonal tiles. In a rectangular tile engine, a MouseMap is unnecessary, because all of the rectan-
gles are alreadly. . . well, rectangular.

In an iso or hex engine, you still need to check to see if the mouse is in rectangular areas, because of the
fact that it is computationally inexpensive to do so. You could instead use equations or some other method
to check for being within tiles, but the math is just too weird and too complicated, and MouseMaps make
them unnecessary. The MouseMap itself is a second step in the world-to-map conversion. First, the x and
y coordinates are divided by the MouseMap width and height, and then the remainders are fed into the
MouseMap to determine which tile corresponds to the pixel coordinate.

So, why is this important component called a “MouseMap™? Although it has many uses as the reciprocal
of the TilePlotter (which has a name befitting its function), the most important use for the MouseMap is
taking a mouse’s (or other pointing device’s) screen coordinate and finding the corresponding

map coordinate.

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

TILEUMNMNALKER

The TileWalker is absolutely necessary, although most iso folks wouldn't list it as a major component. In
my opinion, it is just too darned important not to be all on its own. A TileWalker does just one thing:
move from map coordinate to map coordinate. This might seem a pretty tame feature, but it is essential for
using a MouseMap, moving units, and pathfinding.

Minimally, a TileWalker can consist of a single function that returns a PoINT with the following parame-

ters: a POINT specifying a map coordinate, an int specifying direction of movement, and another int stating
how many map coordinates to move.

THE THREE TYPES OF
1sO0HEX TILEMAPS

There are three types of IsoHex tilemaps: slide, staggered, and diamond. Each has its own set of quirks, its
own methods of rendering, its own way of representing a tilemap, and its own method of navigating them.
I will briefly introduce them here and then explore them more fully in the next three chapters.

As far as an iso tilemap is concerned, any of these types of map is usable, depending on what game you
are making. For hex, however, staggered is the most commonly used map type, although | have seen a dia-
mond map using hex tiles.

The explanation of each type of map briefly covers some of the problems you face in designing each of
the core engine components.

SLIDE NYIAPS

The slide tilemap is probably the easiest to render, navigate, and interact with. Unfortunately, it has limited
uses. It's mainly used to scroll action games.

Usually, a slide map has a horizontal x axis and a diagonal y axis, although it is possible to have a vertical y
axis and a diagonal x axis. Figure 11.6 shows a few samples of what slide maps can look like.

1someTRIC/HEXAGONAL TiILE OVERVIEW @

Figure 11.6

Slide maps

L & o d

L & & o d
L & & o d
oo

TilePlotting, MouseMapping, and TileWalking in a slide map are all very regular and consistent. The tiles
are blitted in horizontal rows top to bottom.

STAGGERED NIAPS

For most serious isometric/hexagonal turn-based strategy games, the staggered map is king. Each new row
is alternately shifted one-half of a tile left or right (certain hex maps turned on their sides shift up or
down). This results in a zigzag pattern of tiles, as shown in Figure 11.7. The x-axis usually is horizontal
(increasing to the east), and the y-coordinate is alternately southeast and southwest. Staggered maps are
best suited for maps that wrap around (move from one edge to the other) and for times when you want to
completely fill a rectangular area. This is also the most common type of hex map.

Figure 11.7

Staggered maps

i

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Staggered maps are the most irregular of the three. TilePlotting, MouseMapping, and TileWalking are
all slightly complicated due to the offset of every other row. The tiles are blitted in horizontal rows, top
to bottom.

DiAamoND IYIAPSs

The diamond map is by far the most popular for real-time strategy games and “sims.” The edges of this
type of map are the least offensive. (Staggered maps have “tattered” edges, slide maps have “tattered” tops
and bottoms, and diamond maps are smooth.)

J Usually, the x-axis increases in the southeast direction, and the y-axis increases in the southwest direction,
although this isn't absolutely necessary to follow my configuration exactly. In diamond maps, the only
requirement is that both the x- and y-axis are diagonal. Figure 11.8 shows an example of a diamond map.

Figure 11.8

Diamond map

> & &
D
L 2 & &

v

Based on the “turned on its side” nature of diamond maps, you would think that they were the most com-
plicated to make. In reality, they are not, but the equations are a little weird for the TilePlotter (both the x
and y of the map coordinate are used to calculate the tile’s world coordinate). The TileWalker is complete-
ly regular, and the MouseMap is similarly quite normal. The only odd thing about the MouseMap is that
often the world coordinates can be negative, and the divisions and remainders have to be adjusted for that.

1sOHEX TILESETS AND THE TMPORTHANCE
oF ANCHORS

When making isometric games, you use tilesets just like when you make rectangular games. However, the
tile anchors become much more important. In the rectangular example from the preceding chapter, you
simply put the tile anchor at the upper-left corner of the tile, and you didn't have to worry about it.

1someTRIC/HEXAGONAL TiILE OVERVIEW @

Iso and hex games don't provide that luxury. You have to deal with countless objects, all of which are an
odd shape. You have to ensure that when you have everything rendered, the images line up.

For the most part, I handle this by putting the anchor in the center of an iso or hex tile. Figure 11.9
shows what | mean. Using a centered tile anchor like this makes selecting anchors for nonbackground
images (like trees or units) a lot easier, because you then have to put the x anchor at the horizontal center
of the image and the y anchor somewhere near the base of the image. Figure 11.10 shows a suitable
anchor for a unit tile, and Figure 11.11 shows what these two tiles look like when used together.

Figure 11.9 [

An isometric tile, with
center anchor

Figure 11.10

Foreground iso image

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 11.11

Background iso tile with
foreground image added

Just keep in mind that you want a tile anchor scheme that is easy to manage and that doesn't complicate
the core engine. The easier you make it on your artists, the less they will revolt. Oh, and be sure to throw
them a Dr. Pepper once in a while, even if they don't really deserve it.

SuUuMMARY

You are now ready for what lies ahead. The next few chapters explore the different types of iso tilemaps,
and you'll make a few games along the way, too. Mainly, you will put down the foundations of an honest-
to-goodness 2D iso tile engine. The tools to make awesome isometric games are just a few pages away!

e N L e = e d i

CHAPTER 12

SLIDE
1SOMETRIC
TILEMAPS

B INTERLOCKING 150HEX TILES

 COORDINATE SYSTEM

__'I_|

“~ m TiLeE PLOTTING

&

iE

e MW“—““ i lj_ll—tmﬁ_

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

his chapter begins the first of three chapters that cover the various types of IsoHex tilemaps. This

chapter covers the simplest (and least commonly used) type: slide maps. Even if you don't like slide
maps, you should probably read this chapter because it covers some of the explanations common to all
types of IsoHex mapping techniques, including the basis for the three major components of an IsoHex tile
engine, which I mentioned briefly in the preceding chapter.

J The first question that might come to mind is why I'm calling this particular type of IsoHex tilemap a
“slide map.”When | was originally going through and classifying IsoHex items, | had to come up with
terms for these maps. With slide maps, I noticed that while the x-axis was normal, the y-axis “slides” off
to the side. Hence, | named them “slide maps.” There really is no official term for them, so | made one up.
Simple enough?

INTERLOCKING 150HEX TILES

You haven't really learned about interlocking IsoHex tiles yet. | told you that the rectangles containing

IsoHex tiles overlapped, but not much more than that. Before you can proceed, you've got to be able to
interlock the tiles—that is, make the diagonal edges match up with no missing pixels. To learn how to

interlock the tiles, you first have to take a look back at how rectangular tiles work.

As you can see in Figure 12.1, the interlocking of rectangular tiles is quite simple. The colored pixels are in
the upper-left corners to represent the anchors, which makes visualizing the interlocking easier. To move
east (to the right of the screen), you simply add the width of the tile to the x-coordinate. To move south
(down), you add the height of the tile to the y-coordinate. From these two calculations, you can infer that
to move west (left), you simply subtract the width from x (moving west is the opposite of moving east). To
move north, you simply subtract the height from y. As soon as you have the four cardinal directions
(north, east, south, and west), you can construct the other four directions (northeast, southeast, southwest,
and northwest) by combining the other directions. Table 12.1 shows the x and y modifications necessary
for a rectangular tile system using TileWidth*TileHeight tiles.

SL1DE 1sOMETRIC TILEMAPS @

Figure 12.1

Rectangular tiles interlocking

Table 12.1 Rectangular Tile Plotting

Direction

North
Northeast
East
Southeast
South
Southwest
West

Northwest

Change x

0

+TileWidth
+TileWidth
+TileWidth
0

-TileWidth
-TileWidth
-TileWidth

Change y

-TileHeight
-TileHeight
0

+TileHeight
+TileHeight
+TileHeight
0

-TileHeight

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

NOTE

| use compass directions (north, south,
east, and west) rather than up, down,

right, and left, not to confuse you, but
rather to clearly indicate the absolute

direction. The compass directions have
absolute meanings, whereas left and
right do not, since a character that is fac-
:| ing toward you has a different left and
right than one facing away from you.

_ —

Figure 12.2 is a more graphical representation of
Table 12.1. | feel that a visual is much better at con-
veying this than just a simple table. It's the whole “a
picture is worth a thousand words” idea. Based on this
table, and based on the direction of the x- and y-axis
(x increases to the east, and y increases to the south),
you can come up with an equation to determine
where to blit your rectangular tiles:

//TileX/TileY are the pixel positions (in
world space) for the tile being blitted
//MapX/MapY are the map coordinates of
the tile

TileX=MapX*TileWidth
TileY=MapY*TileHeight

Tile Width Figure 12.2
=] =
I z A graphical representation
= 7 of Table 12.1
North Northeas
3
I
Tile Widgh & [Tite width
East Northwest
rile Width .
Southeast South
4 Tile Widt
5
z
Tile Width) &

Southwest West

SL1DE 1sOMETRIC TILEMAPS @

You have been using these calculations all along. You just haven't really done any sort of analysis as to why
they work.

Now take a look at some standard iso and hex tiles and do some similar figuring for plotting adjacent tiles.
Figure 12.3 shows some standard iso and hex tiles (standard meaning similar to what we will use in this
book). The anchors are marked.

Figure 12.3

Standard iso and

:'- : hex tiles I:

Figure 12.4 shows the iso and hex tiles grouped with others of the same kind. I will use these to show
positional calculations between tiles, just like I did with rectangular tiles.

Figure 12.4

Iso and hex tiles

E 3 together

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

In iso, moving east moves by the width of the tile. Similarly, moving south moves by the height of the tile
(not exactly, but close enough). Thus, moving north or west is the opposite of these directions. However, if
you look at moving in a diagonal direction, you can see that a tile is half of the width to one side horizon-
tally and half of the height vertically offset. Table 12.2 shows the changes in x and y based on the direc-
tion traveled.

Table 12.2 IsoTile Plotting
:I Direction Change x Change y

North 0 -TileHeight
Northeast +TileWidth/2 -TileHeight/2
East +TileWidth 0

Southeast +TileWidth/2 +TileHeight/2
South 0 +TileHeight
Southwest -TileWidth/2 +TileHeight/2
West -TileWidth 0

Northwest -TileWidth/2 -TileHeight/2

Figure 12.5 shows graphically what is contained in Table 12.2. Based on these calculations, it is obvious
that at least one axis of the tilemap has to be on a diagonal. If not, the tiles positioned based on
TileWidth/2 and TileHeight/2 would be skipped completely, leaving the map full of holes, as shown in
Figure 12.6.

SL1DE 1sOMETRIC TILEMAPS E

North

Tile Width
—_

A

East

1/2Tile
Width

1/2Tile

Height -

‘/ . e
~
@v&/

Northeast

1/2Title
Width

1/2Tile
/7" > Height %
. e
<@5/ S

Northwest

1/2Tile
Width

1/2Tile :
Height @/
~
<

Southeast

1/2Tile
Width

\4

~_—

Southwest

e
Tile
Height s e
~_—
South
Tile Width
1
1/2Tile
Height
West

Figure 12.5

A graphical represen-
tation of Table 12.2

Figure 12.6

Holey map,
Batman!

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Hex tiles are very similar to iso tiles, with one major difference: Two directions of movement are disal-
lowed—in this case, north and south. While reading this discussion on hex tiles, keep in mind that the
tiles could easily be turned on their sides, and east-west movement disallowed instead.

The movement to the east is dependent on Ti1elidth, but the southeast movement is based on
TileWidth/2 for x and a y value that depends on the shape of the tile (mainly, the height of the vertical
lines). For the time being, I will name this value HexRowHeight, since it has no particular relationship to
the tile’s height.

Table 12.3 is similar to Table 12.2, with the word HexRowHe1ight substituted for the word Ti1eHeight.
J Also, north and south are missing. Table 12.3 shows plotting from tile to adjacent tile in a hex map.

Table 12.3 HexTile Plotting

Direction Change x Change y
Northeast +TileWidth/2 -HexRowHeight
East +TileWidth 0

Southeast +TileWidth/2 +HexRowHeight
Southwest -TileWidth/2 +HexRowHeight
West -TileWidth 0

Northwest -TileWidth/2 -HexRowHeight

Figure 12.7 shows the calculations in Table 12.3 in a more graphical and easy-to-understand manner.
Turning the hex on its side is something | won't show here, since it is much the same as the hexes I've
already shown, with some of the x and y changes flipped.

SL1DE 1sOMETRIC TILEMAPS E

Figure 12.7
H .
T | Row Graphical ver-
Hat sion of Table
123
T | ~_F
1/2Tile 1/2Tile Northeast Tile East
width ~ Northwest Width orfheas Width
Tile |:
Width
|

_Hex
Row

Hgt
-
12 Tile Southeast 12 Tile Southwest West
Width Width

All of the tables and figures I've shown in the last couple of pages are the most important calculations in
IsoHex. They are the basis for all of the main engine parts.

COORDINATE SYSTEM

In the preceding chapter, | briefly touched on how slide maps are structured. Now you will take that infor-
mation, add the calculations you did just a few pages ago, and move on to building a primitive version of
an isometric engine.

A slide map—just like a rectangular map—consists of a two-dimensional array, usually of some sort of
structure, but it can be as simple as just an int or a char. However, since you earlier determined that one
Isometric or hexagonal axis has to be diagonal, you have to take that into account for your slide map.

Theoretically, 32 variations of a slide map are possible. However, many of them look quite similar, so only
four variations have any sort of distinction. These four variations are just reflections of the one variation
that you will use, which is x increasing to the east and y increasing to the southeast, as shown in

Figure 12.8.

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 12.8

X
/ \ X increases to the
0 1 2 3 east, and y increas-
0 ©0) @0 @0) G0 es to the southeast
1 ©0,1) @1 2.1) (3.1)

Y 2 ©2) @) @2 @2

\ 3 (0,3) 1,3 (2,3) (3.3)

4 (0,4) (1.4) 24) (3.4)

Now that you've covered most of the bases for slide maps, it's time to start using your knowledge to make
some practical applications. You will do this by making the main components of an IsoHex engine: the
TilePlotter, the TileWalker, and the MouseMap.

TiLE FPLOTTING

Although all three components are essential for a proper IsoHex engine, the first component you will make
is a TilePlotter, because you can immediately see the results of your labor with a quick example.

I've already discussed the axes of a slide map. x increases to the east, and y increases to the southeast.
Assuming that you plot tile (0,0) at pixel position (0,0), you need to be able to calculate the pixel posi-
tions of other tiles based on their map coordinates.

The first part of the calculation affects the pixel coordinate based on the map’s x value. Since x increases
to the east, you can just look at Table 12.2 to see that the map’s x increases the pixel’s x by +Ti1eWidth,
and the map’s x does not affect the pixel’s y at all. However, the map’s y affects both the pixel's x and y val-
ues, by +TileWidth/2 and +TileHeight/2, respectively. Table 12.4 shows this, and derives the tile plot-
ting equations.

Table 12.4 Slide Map Tile Plotting

Pixel Value Increase in MapX Increase in MapY Equation

PixelX +TileWidth +TileWidth/2 MapX*TileWidth+MapY*
TileWidth/2

PixelY 0 +TileHeight/2 MapY*TileHeight/2a

SL1DE 1sOMETRIC TILEMAPS

So, the tile plotting equation, in code form, looks like this:

//MapX,MapY are map coordinates
//TileX,TileY are world coordinates
TileX=MapX*TileWidth+MapY*TileWidth/2;
TileY=MapY*TileHeight/2;

And, believe it or not, you have a TilePlotter. Of course, youd prefer to have a function that plots the tiles
rather than having to do the equations yourself. The following is an example of such a function:

POINT SlideMap_TilePlotter(POINT ptMap,int iTileWidth,int iTileHeight)

{ [
POINT ptReturn;
ptReturn.x=ptMap.x*iTileWidth+ptMap.y*iTileWidth/2;
ptReturn.y=ptMap.y*iTileHeight/2;
return(ptReturn);

So you're sitting there screaming, “That’s it?” at the top of your lungs. Calm down. A great deal of the
functionality of an IsoHex engine rests on just such a function.

For hex, there is just a slight modification to the function:

POINT SlideMap_TilePlotter(POINT ptMap,int iTileWidth,int iHexRowHgt)
{
POINT ptReturn;
ptReturn.x=ptMap.x*iTileWidth+ptMap.y*iTileWidth/2;
ptReturn.y=ptMap.y*iHexRowHgt;
return(ptReturn);

Now that you actually have some codg, try an example. Load up IsoHex12_1.cpp; it uses the same plot-
ting function that 1 showed you earlier. As currently written, it plots an eight-column by 20-row slide map,
as shown in Figure 12.9. The main work is done by two functions: setUpMap and drawMap. The rest of
the program is just your basic “set up DirectDraw” type of stuff.

@ 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 12.9

The output of example
IsoHex12_1.cpp

The setUpMap function (shown next) loops though all the map squares, assigning each square to a random
tile. (I have just a handful of tiles, all the same shape.) Notice that I base the random number on the num-
ber of tiles in the set. | could add as many tiles as | want and not have to recompile this code.

void SetUpMap()
{
//randomly set up the map
for(int x=0;x<MAPWIDTH;x++)
{
for(int y=0;y<MAPHEIGHT;y++)
{
iTileMap[x]lyl=rand()%(tsIso.GetTileCount());

The brawMap function loops through all the map squares and uses the plotter to plot them:

void DrawMap()

{
POINT ptTile;//tile pixel coordinate
POINT ptMap;//map coordinate
//get tile width and height

SL1DE 1sOMETRIC TILEMAPS @

int iTileWidth=tsIso.GetTileList()[0].rcSrc.right-
tslso.GetTileList()[0].rcSrc.left;
int iTileHeight=tsIso.GetTileList()[0].rcSrc.bottom-
tsIso.GetTileList()[0].rcSrc.top;
//the y Tloop is outside, because we must blit in horizontal rows
for(int y=0;y<MAPHEIGHT;y++)
{
for(int x=0;x<MAPWIDTH;x++)
{
//get pixel coordinate for map position
ptMap.x=x; [
ptMap.y=y;
ptTile=SlideMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
//plot the tile
tslso.PutTile(1pddsBack,ptTile.x,ptTile.y,iTileMap[x]ly]);

Now you can see one of the major downfalls of the slide map. I'm sure you noticed that most of the
screen is blank, and only a portion of the corner is filled in with tiles. This is the biggest limitation of
slide maps. You just can't make a map that fills up the entire screen unless you waste a considerable number
of tiles doing so. For this reason, slide maps are unsuitable for many types of games.

However, in games that scroll, you can use slide maps to make the scrolling direction diagonal and give a
nice illusion of 3D.

S CROLLING

I covered the term scrolling in Chapter 10, “Tile-Based Fundamentals,” and mentioned it several times since,
but I haven't yet gone into what is involved. Your next task is to make a larger slide map (still with random
tiles on it). You will scroll though it using the arrow keys. This will by no means be an optimized scroll; all
tiles from the tilemap will be blitted each frame, and you will rely on the clipper to keep them out.

You will use the entire screen, so the screen space and view space are both (0,0)—(640,480). This will be
the window into your little tile world, as shown in Figure 12.10.

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 12.10
Screenspace.left Screenspace.right

Screen space/view
space

0 ScreenWidth

0
Screenspace.top

Viewspace (0,0)

Viewspace (WIDTH,HEIGHT)
Screenspace.bottom ~

ScreenHeight.

Calculating world space is quite simple. Simply take the world rectangles (which can be retrieved with the
help of the TilePlotter) and use UnionRect to combine them all into one big rectangle, as shown in Figure
12.11. (In your case, you can cheat and just use the upper-right and bottom-left extent to make the world
space rectangle.)

Figure 12.11
World space RECT

You'll use another type of anchor. This time, the anchor matches the screen space/view space coordinate
(0,0) with a coordinate in the world space (that coordinate being the contents of the anchor). This anchor,
when used with the output of the plotter, gives you the proper screen coordinate for the tile. Figure 12.12
shows such an anchor in action.

SL1DE 1sOMETRIC TILEMAPS m

Figure 12.12

Screen anchor in
the world space

Finally, you want to keep the anchor in values that are valid. That is, you don't want to allow scrolling too]
far away from the tilemap. So you need to create anchor space, the boundaries that clip the anchor. To do [
s0, simply make a rectangle that starts at the upper left of the world space and has a width and height

equal to the difference of world space width and screen space width. Figure 12.13 shows this idea
graphically.

—] Figure 12.13

S S Width
creenspace ™ Anchor space

So, with all of this in mind, go back to the task of scrolling. Load up IsoHex12_2.cpp—your first little
scrolling demo. For illustration purposes, | made a number of global variables to keep track of the various
Spaces.

//spaces

RECT rcWorldSpace;//world space

RECT rcScreenSpace;//screen space (also, view space)
RECT rcAnchorSpace;//anchor space

POINT ptScreenAnchor;//screen anchor

These spaces are set up or calculated within a function called SetUpSpaces. (I'm not one who gives my
functions incredibly clever names, as you might have noticed!)

void SetUpSpaces()

{
//set up screen space
SetRect(&rcScreenSpace,0,0,640,480);
//get a few metrics from the tileset

E 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

int iTileWidth=tsIso.GetTileList()[0].rcDstExt.right-
tslso.GetTileList()[0].rcDstExt.left;

int iTileHeight=tsIso.GetTileList()[0].rcDstExt.bottom-
tslso.GetTileList()[0].rcDstExt.top;

//grab tile rectangle from tileset

RECT rcTilel;

RECT rcTile?;

POINT ptPlot;

POINT ptMap;

//grab tiles from extents

J CopyRect(&rcTilel,&tsIso.GetTileList()[0].rcDstExt);

CopyRect(&rcTile2,&tslso.GetTilelList()[0].rcDstExt);

//move first tile to upper-left position

ptMap.x=0;

ptMap.y=0;

ptPlot=SlideMap_TilePlotter(ptMap,iTileWidth,iTileHeight);

OffsetRect(&rcTilel,ptPlot.x,ptPlot.y);

//move first tile to lower-right position

ptMap.x=MAPWIDTH-1;

ptMap.y=MAPHEIGHT-1;

ptPlot=S1ideMap_TilePlotter(ptMap,iTileWidth,iTileHeight);

OffsetRect(&rcTile2,ptPlot.x,ptPlot.y);

//combine these two tiles into world space

UnionRect(&rcWorldSpace,&rcTilel,&rcTile?);

//copy world space to anchor space

CopyRect(&rcAnchorSpace,&rcWorldSpace);

//subtract screen space

//adjust right edge

rcAnchorSpace.right-=(rcScreenSpace.right-rcScreenSpace.left);

//make sure right not Tess than left

if(rcAnchorSpace.right<rcAnchorSpace.left)
rcAnchorSpace.right=rcAnchorSpace.left;

//adjust bottom edge

rcAnchorSpace.bottom-=(rcScreenSpace.bottom-rcScreenSpace.top);

//make sure bottom not Tless than top

if(rcAnchorSpace.bottom<rcAnchorSpace.top)
rcAnchorSpace.bottom=rcAnchorSpace.top;

//initialize screen anchor

ptScreenAnchor.x=0;

ptScreenAnchor.y=0;

SL1DE 1sOMETRIC TILEMAPS m

This is the longest function in the program, as it should be. All scrolling is based on the calculations here.
After you have your variables set up, implementing scrolling becomes a simple matter. The drawMap func-
tion is mostly the same as the one you saw in IsoHex12_1.cpp, with a minor change (which I have high-
lighted in bold) to include the use of the anchor.

void DrawMap()
{
POINT ptTile;//tile pixel coordinate
POINT ptMap;//map coordinate
//get tile width and height
int iTileWidth=tsIso.GetTilelList()[0].rcSrc.right- [
tslso.GetTilelList()[0].rcSrc.left;
int iTileHeight=tsIso.GetTilelList()[0].rcSrc.bottom-
tsIso.GetTilelList()[0].rcSrc.top;
//the y Tloop is outside, because we must blit in horizontal rows
for(int y=0;y<MAPHEIGHT;y++)
{

for(int x=0;x<MAPWIDTH;x++)

{
//get pixel coordinate for map position
ptMap.x=x;
ptMap.y=y;
ptTile=SlideMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
//plot the tile (adjust for anchor)
tsIso.PutTile(1pddsBack,ptTile.x-ptScreenAnchor.x,

ptTile.y-ptScreenAnchor.y,iTileMap[x1lyl);

Finally, to make scrolling work with the arrow keys, I modified Prog_Loop to respond to the four arrows:

//check for keys, and adjust screen anchor
//up
if(GetAsyncKeyState(VK_UP)<0)
{
if(ptScreenAnchor.y>rcAnchorSpace.top) ptScreenAnchor.y—;
}
//down
if(GetAsyncKeyState(VK_DOWN)<O0)
{

1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

if(ptScreenAnchor.y<rcAnchorSpace.bottom) ptScreenAnchor.y++;
}
//right
if(GetAsyncKeyState(VK_RIGHT)<0)
{
if(ptScreenAnchor.x<rcAnchorSpace.right) ptScreenAnchor.x++;
}
//left
if(GetAsyncKeyState(VK_LEFT)<0)
{
J if(ptScreenAnchor.x>rcAnchorSpace.left) ptScreenAnchor.x—;
}

With all of these working together, you can run the program and move the view around the map with the
arrow keys. I've talked to a lot of folks about scrolling, and I've seen some pretty complicated methods of
doing it—maost of them either didn't work or worked very poorly. The method | presented here will work
in all cases. If you want to make a rectangular map that works with a TilePlotter, it will work. 1t will also

work with any of the other types of IsoHex tilemaps.

Naturally, you aren't totally finished with your treatment of scrolling, but you are finished for now. The
method here works, even if it’s not the most efficient. Depending on the size of your tilemap, many tiles
can be blitted but completely clipped out by the clipper. As maps get bigger, it results in more of a per-
formance hit. You'll return to scrolling and improve on this method in a later chapter.

TiLE WALKING

The next fundamental piece of an isometric engine is the TileWalker. A TileWalker does nothing more
than move from one map location to an adjacent map location based on a direction traveled. Much like
the TilePlotter, the TileWalker is a very easy-to-implement component.

Figure 12.14 shows the allowable directions of movement for iso and hex tiles. As you can see, iso allows
eight directions and hex allows six. In a normal rectangular tilemap, tile walking is very easy because of
how the tiles line up next to one another. Table 12.5 shows how the x and y coordinates change in a rec-
tangular map.

NwW NE
NwW NE
w P c w ¢ pc
SwW SE
SW SE
Table 12.5 Rectangular Tile Walking
Direction Change x Change y
North 0 -1
Northeast +1 -1
East +1 0
Southeast +1 +1
South 0 +1
Southwest -1 +1
West -1 0
Northwest -1 -1

Figure 12.14

Directions of
movement for iso
and hex

Figure 12.15 shows a graphical representation of Table 12.5. e used something of a TileWalker in the
Reversi example in Chapter 10, “Tile-Based Fundamentals,” in the form of the pbe1tax and DeltaY func-
tions. (Take a look back at IsoHex10_4.cpp if you want a refresher.) That is all a TileWalker is.

m 1someETRIC GAME PROGRANMMING WITH DIRECTX 7.0

Figure 12.15

A graphical representa-
(-1-1) (0,-1) (1.-1) tion of Table 12.5
(-1,0) (0,0) (1,0)
(-1,1) (0,1) (1,1)

“Big deal,” you say. Perhaps it’s not a big deal, but it is fundamental for making any sort of tile-based
engine work. In an isometric or hexagonal engine, the numbers become a little weird, so having the
TileWalker in a nicely wrapped-up function is more important.

So, with the purpose of a TileWalker in mind, consider the slide map. From the get-go, you know tha