
TeamLRN

TeamLRN

ISOMETRIC
GAME

PROGRAMMING
WITH

DIRECTX 7.0

Check the Web for Updates:
To check for updates or corrections relevant to this book and/or CD-ROM visit our updates page on the
Web at http://www.prima-tech.com/updates.

Send Us Your Comments:
To comment on this book or any other PRIMA TECH title, visit our reader response page on the Web at
http://www.prima-tech.com/comments.

How to Order:
For information on quantity discounts, contact the publisher: Prima Publishing, P.O. Box 1260BK, Rocklin,
CA 95677-1260; (916) 787-7000. On your letterhead, include information concerning the intended use
of the books and the number of books you want to purchase.

TeamLRN

ISOMETRIC
GAME

PROGRAMMING
WITH

DIRECTX 7.0

©2001 by Prima Publishing. All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval sys-
tem without written permission from Prima Publishing, except for the inclusion of brief quotations in a review.

A Division of Prima Publishing

Prima Publishing and colophon are registered trademarks of Prima Communications, Inc. PRIMA TECH is a
trademark of Prima Communications, Inc., Roseville, California 95661.

Publisher: Stacy L. Hiquet

Associate Marketing Manager: Jennifer Breece

Managing Editor: Sandy Doell

Acquisitions Editor: Jody Kennen

Project Editor: Estelle Manticas

Technical Reviewer: Mason McCuskey

Copy Editor: Gayle Johnson

Interior Layout: LJ Graphics: Susan Honeywell, Julia Grosch, Patrick Cunningham

Cover Design: Prima Design Team

Indexer: Sharon Hilgenberg

Microsoft and Microsoft DirectX are registered trademarks of Microsoft Corporation in the United States and/or other
countries.

Important: Prima Publishing cannot provide software support. Please contact the appropriate software manufacturer’s techni-
cal support line or Web site for assistance.

Prima Publishing and the author have attempted throughout this book to distinguish proprietary trademarks from descrip-
tive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Prima Publishing from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources, Prima Publishing, or others, the Publisher does
not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omis-
sions or the results obtained from use of such information. Readers should be particularly aware of the fact that the
Internet is an ever-changing entity. Some facts may have changed since this book went to press.

ISBN: 0-7615-3089-4

Library of Congress Catalog Card Number: 00-107339

Printed in the United States of America

00 01 02 03 04 BB 10 9 8 7 6 5 4 3 2 1

TeamLRN

For my mother

vi Isometric Game Programming with DirectX 7.0

Acknowledgments
First and foremost, I’d like to thank Andre LaMothe for giving me a shot. I would also like to thank all
the people at Prima who were on my project, including Kim Spilker, Jody Kennen, and Estelle Manticas.

Furthermore, I want to thank the following people for various things: Dave Astle and Kevin Hawkins (for
testing my example programs), Mason McCuskey (my technical editor), Chris Ravens (my life mate),
Diana Gruber (for the nice review on amazon and dirty jokes), Mary Jo Beall (my mom), and my sippy-
bottle (filled with Pepsi—it helped me through).

Thanks also to the iso-people, as I’ve come to think of them: Jim Adams, Dino Gambone, Yanni
Deliyannis, and the rest.

Also, all of the guys who submitted something for the CD: Joseph Farrell, Everett Bell, Andy Pullis, Octav,
and others. Thanks.

And anyone else I’ve forgotten: just write your name into the space below, and thank you, too.

TeamLRN

viiAbout the Author

About the Author
Ernest S. Pazera started programming on a TRS-80 Color Computer 2 in 1986; he switched to PC per-
manently in 1990. He doesn’t have a computer science degree, just a high school diploma. Ernest served in
the United States Navy from 1993 until 1996 but never forgot his first love, which was game program-
ming.

In 1995, Ernest picked up a copy of Sid Meier’s Civilization II, which, in his estimation, is one of the great-
est games of all times. By studying this game he discovered how isometric views worked, and he subse-
quently wrote a few articles on the subject. His interest in isometric game programming lead him to
become part of a group that would eventually create GameDev.net, LLC (http://www.gamedev.net), and
his involvement with that group lead him to become the author of this book.

In addition to book authorship and his involvement in GameDev.net, Ernest owns two companies: DTM
Software, which has done contract work on two commercial games, and C&M Tax, where he prepares
personal income tax returns (thus keeping him from starving while writing games as an independent
operator).

Ernest goes by the name TANSTAAFL in #gamedev on afternet in IRC, and can be reached at
tanstaafl@gamedev.net

viii Isometric Game Programming with DirectX 7.0

Introduction ...xvii

Part I: The Basics1

Chapter 1: Introduction to
WIN32 Programming..............................3

Chapter 2: The World of GDI
and Windows Graphics........................43

Chapter 3: Fonts, Bitmaps,
and Regions ...81

Chapter 4: DirectX at a Glance...........124

Chapter 5: Using DirectDraw..............132

Chapter 6: Surfaces146

Chapter 7: IDirectDrawClipper Objects
and Windowed DirectDraw178

Chapter 8: DirectSound.........................190

Chapter 9: Game Design Theory220

Part II: Isometric Fundamentals ...236

Chapter 10: Tile-Based Fundamentals......
237

Chapter 11: Isometric/Hexagonal
Tile Overview.......................................285

Chapter 12: Slide Isometric Tilemaps 297

Chapter 13: Staggered Tilemaps............338

Chapter 14: Diamond Maps359

Chapter 15: The IsoHexCore371

Part III: Isometric Methodology ..410

Chapter 16: Layered Maps and
Optimized Rendering..........................411

Chapter 17: Further Rendering
Optimizations......................................434

Chapter 18: Object Placement
and Movement458

Chapter 19: Object Selection................510

Chapter 20: Isometric Art.....................555

Chapter 21: Fringes and Interconnecting
Structure s ..578

Part IV: Advanced Topics...........600

Chapter 22: World Generation.............601

Chapter 23: Pathfinding and AI615

Chapter 24: Introduction to Direct3D633

Chapter 25: The Much-Anticipated
ISO3D ..660

Chapter 26 The Road Ahead689

Part V: Appendices.....................694

Appendix A: Loading Sample Projects
Into the IDE..695

Appendix B: Hexagonal
Tile-Based Games702

Appendix C: IsoHex Resources705

Contents at a Glance

TeamLRN

ixTable of Contents

Introduction ...xvii

Part I: The Basics1
Chapter 1: Introduction to
WIN32 Programming3

Conceptual Overview of
Windows Programs4

Of HWNDs and HINSTANCEs....................6
Life in an Event-Driven

Operating System.......................................7
Window Procedures8
The WinMain Function.................................9

hInstance ..16
Window Class..16

The Message Pump20
Creating a Window21

dwExStyle..21
lpClassName ...22
lpWindowName ...22
dwStyle ..22
x, y ...23
nWidth, nHeight..23
nHwndParent ...23
hMenu...23
hInstance ..23
lpParam...23

Other Initialization23
Checking for Messages24
Processing Messages ..25
Running a Single Frame of the Game...........26
Cleanup and Exit ...26

The Window Procedure..............................26
Sending Messages to a Window......................28
Using Window Messages to Process Input29

Mouse Messages ...32
Other Window Messages34

WM_ACTIVATEAPP..34

Managing Your Windows35
SetWindowPos ..35
MoveWindow..37
GetWindowInfo..38
GetWindowText and
GetWindowTextLength.................................39

SetWindowText ..40
System Metrics..40
Summary ..41

Chapter 2: The World of GDI
and Windows Graphics43

RECT and POINT......................................44
The POINT Structure44
The RECT Structure..44
RECT and POINT Functions..........................45

Anatomy of a Window51
GetClientRect ...52
GetWindowRect ...52
AdjustWindowRect and Adjust
WindowRectEx...53

Device Contexts..56
Obtaining Device Contexts56
Memory DCs...58

GDI Objects ...59
SelectObject..59

Pixel Plotting with GDI60
The RGB Macro ...61
Pixel Manipulation Functions61
A Pixel Plotting Example62

Using Pens..64
CreatePen ...64
Drawing Functions...65
A Line Drawing Example................................66

Brushes...69
Brush Creation...69
ExtFloodFill ..70
A Brush Example ...71

Contents

x Isometric Game Programming with DirectX 7.0

Filling in Rectangular Areas72
Pens and Brushes Together:

Shape Functions.......................................73
Ellipse..73
Rectangle ..74
RoundRect..75
Polygon ...76

Summary ..79

Chapter 3: Fonts, Bitmaps,
and Regions81

Working with Fonts82
AddFontResource ..82
RemoveFontResource......................................83
CreateFont ..83
Outputting with Fonts85

Creating and Using Regions92
Creating Regions..92
Using Regions ..95
Other Uses for Regions.................................101

Creating and Using Bitmaps102
Creating a Blank Bitmap...............................102
Loading a Bitmap from Disk103
Using a Bitmap...104
Raster Operation Example111
An Application of Raster Operations:
Bitmasking ..113
A Bitmap Management Class........................115
A CGDICanvas Example118
Double Buffering with GDI119

Summary ..123

Chapter 4: DirectX at a Glace
124

DirectX Components125
DirectX Configuration125
Tradition and COM130

Version Control ..131
Reference Counting131

Summary ..131

Chapter 5: Using DirectDraw132
Creating the IDirectDraw7 Object133

About HRESULT ...135

Setting the Cooperative Level...................135
Enumerating Display Modes.....................136
Setting the Display Mode..........................143
Retrieving the Current Display Mode.......144
A Final Thing: Releasing Objects..............145
Summary ..145

Chapter 6: Surfaces146
What Is a Surface?147
Creating a Surface147

DDSURFACEDESC2......................................148
Creating a Primary Surface...........................151
Creating a Secondary Surface/
Back Buffer...152

Flipping...154
Off-Screen Surfaces154

Using Surfaces..155
GetDC/ReleaseDC, or Using
GDI on Surfaces...155

Blt ..158
BltFast..166
The Nitty-Gritty: Lock and Unlock167

A DirectDraw Wrapper173
DDSURFACEDESC2 Functions....................174
DDSCAPS2 Functions....................................174
DDBLTFX Functions174
Pixel Format Functions175
LPDIRECTDRAW7 Functions175
LPDIRECTDRAWSURFACE7 Functions175
Tasks Not Included in the Wrapper.............176

Empowering the User176
Summary ..177

TeamLRN

xiTable of Contents

Chapter 7: IDirectDrawClipper
Objects and Windowed
DirectDraw178

Using IDirectDrawClipper........................179
Creating Clippers...179
Setting up a Clipping Region180
Assigning a Clipper to a Surface183

Windowed DirectDraw..............................184
Differences between Full-Screen and
Windowed DirectDraw184
Display Modes ..185
No Back Buffers ...186
Clippers in Windowed DirectDraw187

Summary ..189

Chapter 8: DirectSound...........190
The Nature of Sound191

How Our Ears Work (the Really
Simplified Version)......................................191

How Speakers Work.......................................192
How Sound Cards Work................................193

The WIN32 Way to Play Sounds193
The IDirectSound Object196

Creating the DirectSound Object196
Setting the Cooperative Level197

The IDirectSoundBuffer Object...............198
Creating Sound Buffers.................................198
The WAVEFORMATEX Structure200
Control Flags ..202
Locking and Unlocking Sound Buffers.......205
Playing Sounds ...207
Duplicating Sound Buffers208

Using WAV Files..209
Using HANDLEs to Do File Operations......209
The Structure of a WAV file..........................212
Loading a WAV File from Disk213
Using CWAVLoader to Load from a
File to a DirectSoundBuffer........................215

The DSFuncs Library................................218
LPDSB_LoadFromFile...................................218
LPDSB_Release ..218

Empowering the User218
Summary ..219

Chapter 9: Game
Design Theory220

A Definition of Game221
The Intangible Nature of Games..............221
Why We Play ...222
Computer Games223
Game Analysis ..223
Designing a Game.....................................224

Initial Concept ...225
Fleshing It Out ...225

From Theory to Practice226
The Arcade/Action Genre............................226
Isometric Games ..227

Empowering the User: Giving Thought
to the User Interface..............................229

A Few Notes About Controls229

Making a Real Game230
Game State..231

A Few Words about Finishing Games........234
A Few Tips for Finishing Games...................234

Summary ..235

Part II: Isometric
Fundamentals236
Chapter 10: Tile-Based
Fundamentals237

What Does “Tile-Based” Mean?................238
Myths about Tile-Based Games238

xii Isometric Game Programming with DirectX 7.0

Tile-Based Terminology............................239
An Introduction to Rectangular Tiles241
Managing Tilesets243
A TileSet Class..248

The Class Declaration....................................248

An Animated Sprite Example254
Setting up..254
The Main Loop ..255
Cleaning up..256

Taking Control..256
Tilemap Basics..289

More Complicated Tilemaps261

Rendering a Tilemap................................262
Screen Space ..262
World Space and View Space........................264

A Simple TileMap Editor..........................265
Constants ..265
Globals ..266
Set up and Clean up......................................266
The Main Loop ..267
Accepting Input ...269
A Few Words about the TileMap Editor272

A Tile-Based Example: Reversi.................272
Designing Reversi...273
Implementation of Reversi277
Final Words on Reversi..................................284

Summary ..28

Chapter 11: Isometric/Hexagonal
Tile Overview285

Introduction to IsoHex.............................286
IsoHex Tiles versus Rectangular Tiles289
IsoHex Tilemaps versus Rectangular

Tilemaps ..290
Isometric Engines versus Rectangular

Engines...291
TilePlotter...291

MouseMap ..291
TileWalker...292

The Three Types of IsoHex Tilemaps292
Slide Maps...292
Staggered Maps ..293
Diamond Maps...294

IsoHex Tilesets and the Importance
of Anchors...294

Summary ..296

Chapter 12: Slide Isometric
Tilemaps...................................297

Interlocking IsoHex Tiles.........................298
Coordinate System....................................305
Tile Plotting..306
Scrolling..309
Tile Walking..314

North...317
Northeast ..317
South ...318
Southwest..318
The Code for IsoHex12_3322

Mousemapping ...325
Step-By-Step Mousemapping327
A Mousemapping Example...........................334

Summary ..337

Chapter 13: Staggered Tilemaps
338

Coordinate System....................................339
Tileplotting ...340
Tilewalking ...342

Even Y Tilewalking...346
Odd Y Tilewalking ...347
Mousemapping in Staggered Maps..............351

Unique Properties of Staggered Maps352
No Jaggies ...352

TeamLRN

xiiiTable of Contents

Cylindrical Maps ..354

Summary ..358

Chapter 14: Diamond Maps ...359
Coordinate System....................................360
Tileplotting ...361

The Tileplotting Function362
A Diamond Map Tileplotting Demo............362
Blitting Order...363

Scrolling Revisited363
A Diamond Map Scrolling Demo.................364
Tilewalking ...365

Mousemapping ...369
Summary ..370

Chapter 15: The IsoHexCore
Engine.......................................371

Overview of IsoHexCore372
IsoHexDefs.h ...373

ISODIRECTION ..374
ISODIRECTION Macros...............................375
ISOMAPTYPE...375

IsoTilePlotter.h/IsoTilePlotter.cpp376
ISOHEXTILEPLOTTERFN..........................377
CTilePlotter ..379
Using CTilePlotter ...382

IsoTileWalker.h/IsoTileWalker.cpp383
ISOHEXTILEWALKERFN............................383
CTileWalker..384
Using CTileWalker...386

IsoScroller.h/IsoScroller.cpp....................387
SCROLLERWRAPMODE..............................389
CScroller ...389
Using CScroller ..395

IsoMouseMap.h/IsoMouseMap.cpp.........395
MOUSEMAPDIRECTION397
CMouseMap ...397

Using CMouseMap ..400

IsoHexCore.h ...401
An IsoHexCore Example..........................401

Globals ..402
Initialization and Cleanup403
Main Loop ..406
Event Handling ..408

Summary ..409

Part III: Isometric
Methodology.....................410
Chapter 16: Layered Maps and
Optimized Rendering411

Layered Map Basics412
Layered Map Methods..............................413

Tile Scale Layering...413
Map Scale Layering..417
What’s the Big Deal?......................................420

A More Efficient Tile Blitting Algorithm ..420
Code Example: Reducing the Number
of Blits per Frame ..425

Summary ..433

Chapter 17: Further Rendering
Optimizations434

Get Rid of Blt ...435
Moving to BltFast ...437
A BltFast Example..439

Whittling down the Blits per Frame..........441
Frame Buffer Scrolling..................................442
Update Rectangles ...443
An Isometric Rendering Class445
Building CRenderer446
A CRenderer Example453

Summary ..457

xiv Isometric Game Programming with DirectX 7.0

Chapter 18: Object Placement
and Movement........................458

Object Placement (COP versus FOP)459
Coarse Object Placement460

Moving Objects Around................................460
Multiple Objects...480
Multiple Units ..492

Summary ..509

Chapter 19: Object Selection..510
Simple Object Selection511

Simple Object Selection Design...................511
Simple Object Selection Implementation...514

Pixel-Perfect Object Selection..................537
Making It Happen ...538

Minimap, Zones of Control, and the Fog
of War ..543

Minimaps ..543
Minimap Example ...544
Zones of Control..551
Fog of War ..553
Implementing a Fog of War..........................553

Summary ..554

Chapter 20: Isometric Art.......555
Tile Ripping and Slanting.........................556

Tile Slanting ...556
Tile Ripping..563

Extra Graphical Operations574
Grayscaling ...574
Modulation ...575

Summary ..577

Chapter 21: Fringes and
Interconnecting Structure s ...578

Fringes ..579
Art Requirements for Fringes.......................581

Making a Lookup Table584
A Fringing Example.......................................586
A Final Note about Fringes...........................593

Interconnecting Structures593
Four-Direction Structures593
Eight-Direction Structures599

Summary ..599

Part IV: Advanced Topics ..600
Chapter 22: World Generation
601

What Is World Generation?.......................602
Using Mazes..603

What Is a Maze?..604
Creating a Maze ...604
Using a Maze ..610
A Few Words about Isometric Mazes611

Growing Continents..................................611
Summary ..613

Chapter 23: Pathfinding and AI
615

What Is AI? ...616
Really Simple AI Stuff616
More Advanced Pathfinding Algorithm621

Step 1: Scan Array for Cells Adjacent to Cells
with Known Distances622

Step 2: Give Adjacent Squares a Known
Distance Value..623

When It’s All Done ..623

Making Pathfinding Useful.......................631
Summary ..632

TeamLRN

xvTable of Contents

Chapter 24: Introduction to
Direct3D...................................633

Direct3D as a 2D Renderer.......................635
3D Games (and 3D APIs) Are Still
Only 2D...635

How Direct3D Works.....................................635

Direct3D Basics ..636
Icky COM Stuff ..636
Surface Creation ..637
Creating a Device...638
Making a Viewport...640
Rendering...642
A Simple Direct3D Example.........................649

Textures..655
What Is a Texture? ...655
Texture Mapping and Texture
Coordinates ..656

Texture Mapping Example658

Summary ..659

Chapter 25: The Much-
Anticipated ISO3D660

D3DFuncs.h/D3DFuncs.cpp.....................661
LPD3D Functions...663
LPD3DDEV Functions...................................663
LPDDS Functions...664
Texture Functions..665
Vector Function..665
The D3D Shell Application...........................665

Plotting Tiles in ISO3D665
2D Sprites Using Direct3D............................670
Enumerating Texture Formats670
Texture Format Callback671
Creating the Texture Surface672
Lock and Unlock Review672
Loading Pixel Data ..674
Render States..675

Setting Up Vertices ..676
3D Transparency Example............................678

Dynamic Lighting......................................679
Height Mapping..682
Tile Selection/Mousemapping685
Summary ..688

Chapter 26 The Road Ahead ..689
Current Trends ...691
What Lies Ahead.......................................691

Part V: Appendices694
Appendix A: Loading Sample
Projects Into the IDE695

Coding Conventions700

Appendix B: Hexagonal
Tile-Based Games...................702

Iso versus Hex ..703
What’s the Difference?..............................703
Summary ..704

Appendix C: IsoHex Resources.....
705

See the Sites..706
Hit the Books..707
Drop Me a Line ..707

xvi Isometric Game Programming with DirectX 7.0

Letter from the Series Editor

Dear Reader,

First off I would like to thank the author of this book, Mr. Ernest Pazera, for writing it. Now the
pressure is off me to cover ISO Game Programming once and for all - thanks Ernest!

If you’ve picked up this book then you must have an interest in creating Isometric games. You have come
to the right place. Isometric game programming is not the trivial task many 3D programmers think it is—
in fact, Isometric rendering methods are not trivial, nor are they obvious. Moreover, the optimizations are
very subtle. To date, no author has ever tried to write a book on the subject, since not only is the material
complex, but it is in many cases a bit secret.

Luckily for us, Mr. Pazera has put down in these pages an unbelievable amount of information on every
single topic of Isometric graphics and game programming. As I read the text I caught myself thinking,
“So that’s how they do it!” more than once.

The bottom line is, if you want to learn Isometric game programming then you need this book—it’s
the only book that will fill the order. I happen to know that Ernest is obsessed with ISO game program-
ming, and that both his attention to detail and his high standards of perfection are illustrated in this work.

Andre’ LaMothe

March 2001

TeamLRN

xvii

Introduction
Thank you for buying my book. I really appreciate it.

Isometric games have been with us since the golden age of arcade machines, with games like Zaxxon and
Q-Bert. They are still with us today—witness games like Nox and Age of Kings—and they are as popular as
ever. Yet there has never been a book on making isometric games. That is the void I am seeking to fill with
Isometric Game Programming with DirectX.

This Introduction will give you an overview of both the book itself and an introduction to the chapter
structure contained herein. Over the course of this book you will go from isometric programming novice
to expert. Okay, maybe novice to intermediate. You can’t quite get to expert in just a single book!

What’s in This Book?
This book, as you are no doubt aware, is a book about programming games—how to do so, specifically—
and it emphasizes use of the isometric view. This means that the program examples are mainly concerned
with the graphical aspect of game programming.

Contained herein is also quite a bit of information on the algorithms behind tile-based games. Isometric
games tend to be tile-based. If you wanted to make overhead view tile-based games, the same algorithms
apply.

Why did I write this book, you ask? Because isometric game programming, and isometric algorithms, have
been largely ignored by other game programming books. Sure, you can find plenty of books on how to
program 3D games, and there are plenty of books on 2D games, but none of the in-between stuff, like
isometric games.

You will find the program examples (and there are a ton of them) that go along with the text on the CD
in the back of the book; you will find instructions on how to load and run those examples in Appendix A.
It is a good idea to turn to that appendix first, even before you start reading. That way, when the first men-
tion of an example is made, you’ll be ready to go.

Who Should Read This Book?
You are a programmer who has a reasonable amount of skill in C/C++ (you don’t have to be an expert—
I made my code as easy to follow as possible). You must also be interested in making isometric games. You
very likely play strategy games (either real time or turn-based), computer role playing games, or puzzle
games (all of these genres make use of the isometric view quite heavily).

Naturally, your goal is to make the greatest game of all time, and become filthy rich and buy a Corvette.
Yeah, that’s my goal too—it hasn’t happened quite yet, but I’m patient. As with all things in life, we must
walk before we can run, and before we can walk, we must crawl.

Introduction

xviii

I won’t tell you that immediately after reading this book you’ll be able to go and make a wonderful game
with the isometric view that will sell millions of copies. I will tell you, however, that this book will help
you build a foundation of knowledge and algorithms that will make you a more valuable programmer.

How This Book is Organized
The four parts contained in this book—and the topics they cover—are as follows:

• Part I: The Basics. Introduces the world of tile-based isometric game programming and discusses topics
common to all isometric games.

• Part II: Isometric Fundamentals. Delves into different ways of adding realism to isometric tile-based games.
• Part III: Isometric Methodology. Explores user interaction with isometric games and sheds light on more

rendering topics.
• Part IV: Advanced Topics. Introduces a final ingredient, artificial intelligence, and fits it together with what

you’ve learned previously.
• Part V: Appendices. Shows you how to load the example files into your compiler, and offers resaources for

learning more about isometric game programming.

Chapter Structure
The chapters are similar in structure, though the topics vary widely. Each chapter contains all or most of
the following elements:

• Overview. Each chapter starts with a brief overview, in which I give a brief rundown of the topics that will
be discussed in that chapter, as well as a breakdown the chapter’s topic headings.

• Terminology. When a new concept is introduced and a lot of new terms are thrown at you, there is a termi-
nology section early in the chapter. This does not apply to all the chapters, and many of the chapters in Part
0 do not have them.

• How-to Information. Most of the content of each chapter contains information on how to accomplish the
tasks that are covered in that chapter. Usually, a lot of code accompanies the text, and most of the time one
or more sample programs are supplied for you to load, run, and modify to more fully explore the concepts
put forth.

• Libraries and Classes. Some chapters have code libraries that I have written to help you with the tasks you
perform in that chapter. These libraries or classes simplify some otherwise complicated coding topics. After a
library is used in one chapter, most of the rest of the chapters will use it also.

• Empowering the User. Some chapters have a small section called “Empowering the User.”This little section
has some tips on how to not alienate your users and keep them playing your games. Most of the information
is common sense, but many games and game developers have failed for the simple reason that they don’t give
the player enough control over his or her game experience. Perhaps an alternative name for the “Empowering
the User” section would be “How to Not Tick off the User.”

• Summary. The final part of the chapter consists of the summary. I review the topics we’ve discussed, and I
often list things you should remember. The summary brings a sense of closure to the chapter.

Isometric Game Programming with DirectX 7.0

TeamLRN

xix

Conventions Used in This Book

What’s on The CD?
The CD that accompanies this book doesn’t autorun and doesn’t have a setup program. It just has a num-
ber of folders for you to browse through.

• DirectX. In this folder, you’ll find everything you need to install the DirectX 8.0 SDK.
• Source. The Source directory contains a folder for each chapter that has a programming example. Each folder

is named ChapterX, where X is the chapter in question.
Within each ChapterX folder are subfolders for each of the sample programs in the book. These contain the
source code, the resources (such as bitmaps), and a precompiled executable.
Keep in mind that when you copy files from a CD to a hard drive, they are often marked as read-only, so you
need to right-click on them and unset that flag before modifying them.

• Extras. This folder contains, well, extras. Most of them are in zip files, so you’ll need WinZip (which you can
download for free at www.winzip.com) to extract them. Some of the extras are written by me, but most are
contributions from others.

Introduction

NOTE
Notes provide additional information about a
feature, or extend an idea about how to do
something.

CAUTION
Cautions warn you about potential
problems and tell you what not to do.

xx

And We’re off...
(Psst... This is the summary.)

All right. You’ve turned to Appendix A and learned how to load a project, right? No? Well go ahead and
do so. That’s about all you’ll need to get started. This first part of the book goes a little fast, from zero to
DirectX in less than 200 pages. I hope you’re ready!

Engage, Mr. Paris!

Isometric Game Programming with DirectX 7.0

TeamLRN

Part I

The Basics

This page intentionally left blank

TeamLRN

Introduction
to WIN32

Programming

• Conceptual Overview of
Windows Programs

• of HWNDS and HINSTANCES

• The WinMain Function

• Creating a Window

CHAPTER 1

4

The Windows platform, no matter what you think of it, is the most viable platform on which
to program for the home computer market. It has its weaknesses, yes, but you gotta love the

market share! Think of it: you can write programs that will run on Windows 95, 98, NT, 2000,
Millennium, CE, and the XBox, and it only takes a modest amount of work to convert them.

This chapter is a bare-bones introduction to WIN32 programming. If you’ve already got a solid footing
feel free to skip it, but be sure to look at IsoHex1_1.cpp, located on the CD-ROM. IsoHex1_1.cpp is my
basic WIN32 shell program; all future programs will be based on this foundation.

If you’re still here, I’ll try to be as brief while remaining complete and understandable. I’m not one for
spouting a bunch of theory—I prefer practical applications. I will assume that you have a solid base in C
and at least a familiarity with C++. I will make use of classes a bit later (but I swear unto you by all that
is holy that there will be no MFC). Before you start pulling at your hair and shouting incoherently, I assure
you I won’t get too wacky. I won’t force class hierarchies and virtual functions on you—just a few little
utility classes to make our jobs a bit easier.

No matter what your personal feelings about the Windows OS, the fact that it is truly easy to use—its
main selling point—is undeniable. This is a double-edged sword, of course. Because so much work went
into making the OS easy to use, it is proportionally more difficult to program for. DOS, which was very
hard to use, was easy to program for. So it goes.

Luckily, there is only a small amount of Windows-specific stuff that you absolutely have to know in order
to program for Windows (and there was much rejoicing). This chapter is here to get you up to speed on those
things. The programs we’ll be doing won’t be very complicated or functional, but they will provide a good
base on which to get flying!

Conceptual Overview of
Windows Programs
Windows (including 95, 98, NT, and 2000) is a multitasking, multithreaded operating system. You’ve
heard that line before, I’m sure. Multitasking means that the computer can run more than one program at a
time. The multithreaded part means that more than one thread (short for “thread of execution”) can exist
within a program. Each program has at least one thread in it.

But, if you have just a single processor, doing more than one thing at a time is impossible, right?
Technically that’s correct, but you can make it seem like two or more things are happening simultaneously
by dividing time between the different programs and threads within programs.

Isometric Game Programming with DirectX 7.0

TeamLRN

5

With a a fast-enough processor, the computer can do some of one thing and some of another thing,
switching back and forth between the two, and you, as a human being, cannot tell whether the tasks are
being done simultaneously or not. Neat, huh?

For instance, say you had two applications, Walk.exe and ChewGum.exe. If you ran both of these, Walk.exe
would operate for a millisecond or so, and then the computer would switch to ChewGum.exe for a mil-
lisecond, and then it would switch again, repeating until the applications end, as illustrated in Figure 1.1.

We human beings aren’t set up with the proper hardware
to perceive the passing of milliseconds, so to us, it
appears that the computer is indeed walking and
chewing gum at the same time.

You could also have a program called
WalkAndChewGum.exe, and it would create one
thread that walks and another that chews gum. The
computer again would switch between the two
threads, and the same effect is achieved within a sin-
gle program.

The apparently simultaneous effect is based on idle
time in the computer. As you add more and more
applications and threads within those applications,
more of the computer’s time is taken up. At some

Introduction to WIN32 Programming

Switch to another application

Executes for a time slice Executes for a time slice

Switch to another application

WALK.EXE CHEW
GUM.EXE

Figure 1.1

The computer walking

and chewing gum at

the same time

NOTE
I use the term milliseconds in this
example. In reality, the amount of time
an application executes a given applica-
tion before switching to another one
depends on a number of things and is
most likely a unit of time other than
a millisecond. My use of millisecond is
my attempt to make the example
seem more concrete.A more accurate
term is time slice.

6

point, depending on your processor (how many you have, how fast they are), you reach a threshold where
the simultaneous appearance is gone, and you start to notice some lag in the applications. So how does this
concern us as game programmers?

Game programs are more demanding on the operating system and the hardware then any other type of
program. Sloppy design and/or sloppy programming cause the game program to reach the nonsimultane-
ous threshold all on its own, without any other applications running. This is a bad thing.

None of the programs that you will write in this book will be multithreaded (it becomes confusing and
gives me a headache). Also, none of them will be as optimized as they could be (the code is instruction-
al—optimized code is by its nature rather cryptic, so it would defeat our purpose).

That’s quite enough about multithreading and multitasking. Let’s dive in, shall we?

Of HWNDs and HINSTANCEs
Much of what we do in Windows involves handles—most notably, window handles (HWND). So what are
these handles all about, anyway?

Handles are pointers to pointers—sort of. They are a pre-OOP (object-oriented programming) method of
keeping track of data in a completely dynamic operating system (namely, Windows). At any moment, an
application’s code can be moved from regular memory into virtual memory (that is, saved to disk in a tem-
porary swap file). A handle ensures that no matter where something is, you can still talk to it by passing
the handle into a function. Keeping track otherwise would be a nightmare!

Just treat handles as ordinary variables; you don’t really care all that much about their implementation.
Trust the operating system to keep track of windows and other things that use handles.

The three main types of handles that you will be using are HINSTANCE, HWND, and plain old vanilla-flavored
HANDLE, which you will use to access disk files.

• HINSTANCE is a handle to the current instance of an application. (Yes, I know it’s a circular defini-
tion, but I got it right out of MSDN.) Windows internally manages all running applications, and
HINSTANCE is just a way to keep track of which application owns which windows and which
resources.

• HWND is a handle to a window. It allows us to set the size, shape, and a variety of other aspects
about a window. The operating system manages these windows and determines which are visible, the
order in which to draw them, and the manner in which input (such as keystrokes and mouse move-
ments) is directed.

• HANDLE is what you will use to access files; I’ll get to it in Chapter 8. A normal old HANDLE is
pretty generic.

There will be more handle types in the next chapter, so consider yourself warned. They are used quite a bit
with graphical objects in Windows.

Isometric Game Programming with DirectX 7.0

TeamLRN

7

Life in an Event-Driven
Operating System
Windows is actually a very simple mechanism. Whenever something happens—a mouse moves, a key is
pressed, a certain amount of time elapses—Windows records it. It records what happened, when it hap-
pened, and which window (and thus which application) it happened to, packs the information into a little
bundle, and sends it to that application’s message queue. A message queue is nothing more than a list of
messages that have been received by Windows but have not yet been processed by the application (much
like huge lines to get on roller coasters). Figure 1.2 shows how the event-driven Windows operating system
works internally. Keep in mind that this diagram is rather simplified.

The following messages are stored in the MSG structure:

typedef struct tagMSG {
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG, *PMSG;

Introduction to WIN32 Programming

The User

Interacts with

Input Device
(usually Keyboard

or mouse)

Sends message to

The Operating
System

(Windows) Dispatches
message

to

Application
Message
Queue

Awaits being read by

Application
Message
Pump

Sends
Message

to

Message
Handler

For Application
(WNDPROC)

�

Figure 1.2

Simplified schematic of the

inner workings of Windows

8

The members of the MSG structure are explained in Table 1.1.

Window Procedures
Each Windows application is responsible for checking its message queue for waiting messages. If there are
any, it must either process them or pass them along to the default processing function. If this is not done,
the messages will just pile up, your application will stop responding, and you might lock up the system.

Handle messages by using a window procedure. Here’s what one looks like:

LRESULT CALLBACK WindowProc(
HWND hwnd, // handle to window
UINT uMsg, // message identifier
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);

Isometric Game Programming with DirectX 7.0

Table 1.1 MSG Members
Member Purpose

hwnd The window handle corresponding to the window that is to
receive the message

message The type of message received (WM_*)

wParam One of the parameters for the message. It is context-sensitive.
Each WM_ message has a different meaning for wParam.

lParam One of the parameters for the message. It is context-sensitive.
Each WM_ message has a different meaning for lParam.

time Time when this message occurred

pt Cursor coordinate at time of the message, specified in
screen coordinates

TeamLRN

9

This returns a value dependent on the message received (usually 0). Table 1.2 explains the purpose of
the parameters.

Got all that? It’s time to start coding!

The WinMain Function
To explain the basic Windows stuff, we’ll be using
IsoHex1_1.cpp. Start a WIN32 application work-
space, and add IsoHex1_1.cpp into it. It is the only
file required for this example. Take a few moments
to peruse the code. There isn’t much, so it shouldn’t
take long.

Introduction to WIN32 Programming

Table 1.2 WindowProc Parameters
WindowProc Parameter Purpose

hwnd The window for which the message is bound
(msg.hwnd)

uMsg The type of message (msg.message)

wParam A parameter of the message (msg.wParam)

lParam A parameter of the message (msg.lParam)

NOTE
Your window procedure will not be
named WindowProc.You can name it
anything you wish, as long as it has the
same parameter list and returns an
LRESULT and is a CALLBACK function.
Later, you will see that I have given my
window procedure the cunning name
TheWindowProc, so named because I
only ever deal with a single window.

NOTE
As much as I don’t want this book to be
nothing more than a code dump, I’m
including the full listing for
IsoHex1_1.cpp here.This will be one of
the only dumps—I promise.

10

/***
IsoHex1_1.cpp
Ernest S. Pazera
08APR2000
Start a WIN32 Application Workspace, add in this file
No other libs are required
***/

//
//INCLUDES
//
#define WIN32_LEAN_AND_MEAN

#include <windows.h>

//
//DEFINES
//
//name for our window class
#define WINDOWCLASS "ISOHEX1"
//title of the application
#define WINDOWTITLE "IsoHex 1-1"

//
//PROTOTYPES
//
bool Prog_Init();//game data initializer
void Prog_Loop();//main game loop
void Prog_Done();//game cleanup

//
//GLOBALS
//
HINSTANCE hInstMain=NULL;//main application handle
HWND hWndMain=NULL;//handle to our main window

//
//WINDOWPROC
//
LRESULT CALLBACK TheWindowProc(HWND hwnd,UINT uMsg,WPARAM wParam,LPARAM lParam)
{

//which message did we get?

Isometric Game Programming with DirectX 7.0

TeamLRN

11

switch(uMsg)
{
case WM_DESTROY://the window is being destroyed

{

//tell the application we are quitting
PostQuitMessage(0);

//handled message, so return 0
return(0);

}break;
case WM_PAINT://the window needs repainting

{
//a variable needed for painting information
PAINTSTRUCT ps;

//start painting
HDC hdc=BeginPaint(hwnd,&ps);

/////////////////////////////
//painting code would go here
/////////////////////////////

//end painting
EndPaint(hwnd,&ps);

//handled message, so return 0
return(0);

}break;
}

//pass along any other message to default message handler
return(DefWindowProc(hwnd,uMsg,wParam,lParam));

}

//
//WINMAIN
//
int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR
lpCmdLine,int nShowCmd)
{

Introduction to WIN32 Programming

12

//assign instance to global variable
hInstMain=hInstance;

//create window class
WNDCLASSEX wcx;

//set the size of the structure
wcx.cbSize=sizeof(WNDCLASSEX);

//class style
wcx.style=CS_OWNDC | CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;

//window procedure
wcx.lpfnWndProc=TheWindowProc;

//class extra
wcx.cbClsExtra=0;

//window extra
wcx.cbWndExtra=0;

//application handle
wcx.hInstance=hInstMain;

//icon
wcx.hIcon=LoadIcon(NULL,IDI_APPLICATION);

//cursor
wcx.hCursor=LoadCursor(NULL,IDC_ARROW);

//background color
wcx.hbrBackground=(HBRUSH)GetStockObject(BLACK_BRUSH);

//menu
wcx.lpszMenuName=NULL;

//class name
wcx.lpszClassName=WINDOWCLASS;

//small icon
wcx.hIconSm=NULL;

Isometric Game Programming with DirectX 7.0

TeamLRN

13

//register the window class, return 0 if not successful
if(!RegisterClassEx(&wcx)) return(0);

//create main window
hWndMain=CreateWindowEx(0,WINDOWCLASS,WINDOWTITLE, WS_BORDER | WS_SYSMENU

| WS_VISIBLE,0,0,320,240,NULL,NULL,hInstMain,NULL);

//error check
if(!hWndMain) return(0);

//if program initialization failed, return with 0
if(!Prog_Init()) return(0);

//message structure
MSG msg;

//message pump
for(;;)
{

//look for a message
if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{

//there is a message

//check that we aren’t quitting
if(msg.message==WM_QUIT) break;

//translate message
TranslateMessage(&msg);

//dispatch message
DispatchMessage(&msg);

}

//run main game loop
Prog_Loop();

}

//clean up program data
Prog_Done();

Introduction to WIN32 Programming

14

//return the wparam from the WM_QUIT message
return(msg.wParam);

}

//
//INITIALIZATION
//
bool Prog_Init()
{

////////////////////////////////////
//your initialization code goes here
////////////////////////////////////

return(true);//return success
}

//
//CLEANUP
//
void Prog_Done()
{

//////////////////////////
//cleanup code goes here
//////////////////////////

}

//
//MAIN GAME LOOP
//
void Prog_Loop()
{

///////////////////////////
//main game logic goes here
///////////////////////////

}

Isometric Game Programming with DirectX 7.0

TeamLRN

15

Figure 1.3 shows what IsoHex1_1 looks like when it is running.

When talking about Windows programming, we always start with WinMain. On other platforms, the entry
point for a program is the main() function. Not so in WIN32. Instead, we have a WinMain function, and
the declaration looks like this:

int WINAPI WinMain(
HINSTANCE hInstance, // handle to current instance
HINSTANCE hPrevInstance, // handle to previous instance
LPSTR lpCmdLine, // command line
int nCmdShow // show state

);

This returns an exit code for the application (0 is the normal termination). Table 1.3 explains the parame-
ter list.

Introduction to WIN32 Programming

Figure 1.3

IsoHex1_1’s output.

Not much to look at,

is it?

Table 1.3 WinMain Parameters
WinMain Parameter Purpose

hInstance Handle to the current instance

hPrevInstance Obsolete

lpCmdLine String containing parameters passed on the
command line.We will not be using this.

nCmdShow Integer stating how the main window should
be shown.We will be ignoring this also.

NOTE
Unlike window
procedures, our
WinMain func-
tion will always
be named
WinMain.

16

hInstance
For our purposes, the only parameter of any significance is hInstance. In IsoHex1_1.cpp, you will see
that I took the value of hInstance and assigned it to a global variable called hInstMain:

//copy instance handle into global variable
hInstMain=hInstance;

We can write programs so that doing this is unnecessary, where WinMain passes the value of hInstance to
whatever function needs it (many times, hInstance is never used for anything). However, most game
code that I’ve written or seen written has placed hInstance's value into a global variable, whether it is
used or not.

Window Class
Creating a window class is the next task that the program undertakes. A window class is nothing more
than a structure that describes a type of window. You need one if you want to make your own types
of windows.

typedef struct _WNDCLASSEX {
UINT cbSize;
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR lpszClassName;
HICON hIconSm;

} WNDCLASSEX, *PWNDCLASSEX;

Isometric Game Programming with DirectX 7.0

TeamLRN

17

Okay...there’s a lot of stuff in this structure, and not much of it is very intuitive. A breakdown of
WNDCLASSEX's members can be found in Table 1.4.

Following is the code you will use to set up your window class:

//create window class
WNDCLASSEX wcx;
//set the size of the structure
wcx.cbSize=sizeof(WNDCLASSEX);
//class style
wcx.style=CS_OWNDC | CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;
//window procedure
wcx.lpfnWndProc=TheWindowProc;
//class extra
wcx.cbClsExtra=0;
//window extra

Introduction to WIN32 Programming

Table 1.4 WNDCLASSEX Members
WNDCLASSEX Member Purpose

cbSize The size of the WNDCLASSEX structure

style Class styles (described in text below)

lpfnWndProc Pointer to a windowproc, the function that we
use to process window messages

cbClsExtra Extra bytes to allocate for the class structure

cbWndExtra Extra bytes to allocate for the window

hInstance Application handle

hIcon Icon to show in the upper-left corner

hCursor Mouse cursor to use

hbrBackground Brush to use for background color

lpszMenuName The menu to use for this window class

lpszClassName Name of the class

hIconSm Small icon to associate with the class

18

wcx.cbWndExtra=0;
//application handle
wcx.hInstance=hInstMain;
//application icon
wcx.hIcon=LoadIcon(NULL,IDI_APPLICATION);
//cursor
wcx.hCursor=LoadCursor(NULL,IDC_ARROW);
//background brush
wcx.hbrBackground=(HBRUSH)GetStockObject(BLACK_BRUSH);
//menu
wcx.lpszMenuName=NULL;
//class name
wcx.lpszClassName=WINDOWCLASS;
//small icon
wcx.hIconSm=NULL;

Several of the values, like cbSize, hInstance, and so on, are self-explanatory. I’ll explain those that are
less so.

wcx.style
This is the window class style. It’s a series of flags that start with CS_ values, combined using the bitwise
OR operator (|).

• CS_OWNDC tells Windows that windows of this class will each have their own device context (DC).
DCs will be explained in more detail in the next chapter.

• CS_HREDRAW and CS_VREDRAW tells Windows that if the windows created with this class are resized
vertically or horizontally, the window must be repainted.

• CS_DBLCLKS tells Windows that you want the window to respond to double-clicks.

wcx.lpfnWndProc
This value is a pointer to a window procedure (which I mentioned briefly a little earlier). This member has
been assigned to TheWindowProc, which is a function that you write to handle all the messages your win-
dow will receive.

wcx.hIcon
I promised I wouldn’t add any new handle types until the next chapter. I lied. This is a handle to an icon,
which I’m sure you’re familiar with. If you have a normal-looking window, with a border and a system
menu and so on, this is shown in the upper-left corner and on the Taskbar. We use LoadIcon to load
IDI_APPLICATION, which is a system icon.

Isometric Game Programming with DirectX 7.0

TeamLRN

18

wcx.cbWndExtra=0;
//application handle
wcx.hInstance=hInstMain;
//application icon
wcx.hIcon=LoadIcon(NULL,IDI_APPLICATION);
//cursor
wcx.hCursor=LoadCursor(NULL,IDC_ARROW);
//background brush
wcx.hbrBackground=(HBRUSH)GetStockObject(BLACK_BRUSH);
//menu
wcx.lpszMenuName=NULL;
//class name
wcx.lpszClassName=WINDOWCLASS;
//small icon
wcx.hIconSm=NULL;

Several of the values, like cbSize, hInstance, and so on, are self-explanatory. I’ll explain those that are
less so.

wcx.style
This is the window class style. It’s a series of flags that start with CS_ values, combined using the bitwise
OR operator (|).

• CS_OWNDC tells Windows that windows of this class will each have their own device context (DC).
DCs will be explained in more detail in the next chapter.

• CS_HREDRAW and CS_VREDRAW tells Windows that if the windows created with this class are resized
vertically or horizontally, the window must be repainted.

• CS_DBLCLKS tells Windows that you want the window to respond to double-clicks.

wcx.lpfnWndProc
This value is a pointer to a window procedure (which I mentioned briefly a little earlier). This member has
been assigned to TheWindowProc, which is a function that you write to handle all the messages your win-
dow will receive.

wcx.hIcon
I promised I wouldn’t add any new handle types until the next chapter. I lied. This is a handle to an icon,
which I’m sure you’re familiar with. If you have a normal-looking window, with a border and a system
menu and so on, this is shown in the upper-left corner and on the Taskbar. We use LoadIcon to load
IDI_APPLICATION, which is a system icon.

Isometric Game Programming with DirectX 7.0

19

wcx.hCursor
This is another handle type—this time, to a mouse cursor. In this case, LoadCursor is used to load
IDC_ARROW, which is the customary arrow that you find every day.

wcx.hBackGround
This is yet another handle type—this time, a brush. Briefly, a brush is used to fill in areas with solid colors
or patterns. GetStockObject is used to specify a black brush. The (HBRUSH) typecast is necessary because
GetStockObject returns void*.

wcx.lpszClassName
This is the name of the window class. If you take a peek up near the top of IsoHex1_1.cpp, you will see
the following lines:

#define WINDOWCLASS "IsoHex1"
#define WINDOWTITLE "IsoHex Example 1-1"

I don’t usually use #define much (I prefer const). Since WINDOWCLASS is used in only two places, I didn’t
really see a need to use const. WINDOWTITLE is used only once (when we create our window later), so I felt
that #define was adequate for our needs.

After you have filled out the window class struct, you use the RegisterClassEx function to register it
with Windows. There is a small amount of error checking with the code. If the function returns NULL, you
were unable to register the class, and you return 0 from WinMain, terminating the application.

Notice that wcx is not a global variable. You don’t really need to worry about it after you have set it up and
registered it, because you can just use the class’s name.

Once you have registered a window class, you are ready to make a window and start processing messages.

Introduction to WIN32 Programming

TeamLRN

20

The Message Pump
I’ll show you the remainder of WinMain all at once, and then I’ll take apart the pieces. Figure 1.4 is a flow-
chart of the process.

//create main window
hWndMain=CreateWindowEx(0,WINDOWCLASS,WINDOWTITLE,

WS_SYSMENU| WS_CAPTION | WS_VISIBLE,0,0,320,240,
NULL,NULL,hInstMain,NULL);

if(!hWndMain) return(0);//error check
if(!Prog_Init()) return(0);//if program initialization failed, then return with 0
MSG msg;//message structure
for(;;) //message pump
{

if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{

Isometric Game Programming with DirectX 7.0

Is there a message?

Translate message
(for key conversion

to characters)

Dispatch message
to proper WNDPROC

Run a
single frame of the game

Figure 1.4

Flowchart of the

message pump

21

if(msg.message==WM_QUIT) break;
TranslateMessage(&msg);
DispatchMessage(&msg);

}
else
{

Prog_Loop();
}

}
Prog_Done();
return(msg.wParam);

Creating a Window
The first line of this segment of code creates your main window by calling CreateWindowEx:

HWND CreateWindowEx(
DWORD dwExStyle, // extended window style
LPCTSTR lpClassName, // registered class name
LPCTSTR lpWindowName, // window name
DWORD dwStyle, // window style
int x, // horizontal position of win-

dow
int y, // vertical position of window
int nWidth, // window width
int nHeight, // window height
HWND hWndParent, // handle to parent or owner

window
HMENU hMenu, // menu handle or child identifi-

er
HINSTANCE hInstance, // handle to application instance
LPVOID lpParam // window-creation data

);

This returns a handle to the newly created window.

dwExStyle
This parameter specifies the extended window style. I have placed 0 here because extended styles aren’t
needed for such a simple application. The help files have a comprehensive list of these flags under the entry
for CreateWindowEx.

Introduction to WIN32 Programming

NOTE
Some of the lines are broken into two.
This is because the book format isn’t
wide enough to contain them. Just
keep in mind that these lines actually
exist as only one line in the real code.

NOTE
Other books tend to
use the CreateWindow
function rather than
CreateWindowEx.The
only difference between
CreateWindow and
CreateWindowEx is that
CreateWindow lacks a
dwExStyle function.

TeamLRN

22

lpClassName
This parameter specifies the name of the window class to which this window belongs. In our case, this is
WINDOWCLASS.

lpWindowName
This parameter specifies the text that will be displayed in the title of the window (if it has one) and also
in the Taskbar. We are using WINDOWTITLE.

dwStyle
This parameter contains one or more WS_* flags, which are listed next. These flags (or combinations there-
of) change the appearance of your window. Some flags also change the way a window behaves.

• WS_BORDER Creates a window with a thin line border.
• WS_CAPTION Creates a window with a title bar and a thin line border.
• WS_CHILD Creates a child window. Cannot be a pop-up. Cannot have a menu bar.
• WS_CHILDWINDOW See WS_CHILD.
• WS_HSCROLL Creates a window with a horizontal scroll bar.
• WS_ICONIC Creates a window that is initially minimized.
• WS_MAXIMIZE Creates a window that is initially maximized.
• WS_MAXIMIZEBOX Creates a window with a maximize button.
• WS_MINIMIZE See WS_ICONIC.
• WS_MINIMIZEBOX Creates a window that is initially minimized.
• WS_OVERLAPPED Creates a window that has a border and title bar.
• WS_OVERLAPPEDWINDOW Combines WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX.

• WS_POPUP Creates a pop-up window.
• WS_POPUPWINDOW Combines WS_BORDER, WS_POPUP, and WS_SYSMENU.
• WS_SIZEBOX Creates a window that has a sizing border.
• WS_SYSMENU Creates a window with a window menu on its title bar.
• WS_THICKFRAME See WS_SIZEBOX.
• WS_TILED See WS_OVERLAPPED.
• WS_TILEDWINDOW See WS_OVERLAPPEDWINDOW.
• WS_VISIBLE Creates an initially visible window.
• WS_VSCROLL Creates a window with a vertical scrollbar.

IsoHex1_1.cpp uses WS_CAPTION, WS_SYSMENU, and WS_VISIBLE. In the future, WS_POPUP and WS_VISI-
BLE will be used.

Isometric Game Programming with DirectX 7.0

23

x, y
These parameters contain the upper-left corner of the window. You are using 0,0.

nWidth, nHeight
These parameters contain the width and height of the window. You are using 320,240.

nHwndParent
Windows can be children of other windows (using the WS_CHILD window style), or they can be “owned”
by other windows. The owner of either of these types of windows is called a parent. You are using NULL
because this window has no parent.

hMenu
Most types of windows can make use of menus. In your case, you aren’t using a menu, so pass NULL.

hInstance
The application instance that owns the window (such as hInstMain).

lpParam
Extra creation data. You don’t have any, so pass NULL.

After we call CreateWindowEx, check to make sure that you window actually exists by checking that it is
not NULL. If it is NULL, the program exits immediately, without even whimpering. (Theoretically speaking,
if it does fail, you want to give the users of the application a nice message box containing the
reason why the program halted so abruptly. Traditionally, these error messages are as cryptic as you can
make them.)

Other Initialization
Next, call Prog_Init(), which is your user-supplied bit of initialization code. Later, you’ll be initializing
DirectDraw, Loading Bitmaps, and a number of other things, all in this function. For now, the function
simply returns true, which is good, because if it returned false, the program would terminate.

On the next line is the declaration of a variable named msg, which is of type MSG. This variable will be
what you use to look for, grab, translate, and dispatch Windows messages. I’ll cover Windows messages
later in this chapter. You’ve already seen the MSG struct, but here it is again:

Introduction to WIN32 Programming

TeamLRN

24

typedef struct tagMSG {
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG, *PMSG;

If you skip down to later in the code, you’ll see that it checks the message member against WM_QUIT to
determine whether or not to exit, but other than that, you just send a pointer to msg to functions.
Windows handles the rest, and thank goodness! (I once developed a messages-based event queue for DOS
by trapping interrupts, and it was a nightmare.)

Now comes the message pump itself—the most important but least interesting part of WinMain. It’s the
part that does the repetitive task of talking to Windows. It is contained in a for loop that never ends
(well, theoretically never ends).

The message pump does the following (refer to Figure 1.4 for a graphical view):

1. Checks for a message.
2. If there is a message, processes that message.
3. If there is no message, runs a single frame of the game.

Checking for Messages
To check for a message, use PeekMessage. This is a departure from normal Windows programming. Most
applications use GetMessage, because nongame applications do very little except in response to user input.
A game, on the other hand, even if it is turn-based, still has tasks to perform when there are no messages.

BOOL PeekMessage(
LPMSG lpMsg, // message information
HWND hWnd, // handle to window
UINT wMsgFilterMin, // first message
UINT wMsgFilterMax, // last message
UINT wRemoveMsg // removal options

);

Isometric Game Programming with DirectX 7.0

25

This returns 0 if there is no message and nonzero if a message is found. Table 1.5 explains the
parameter list.

Processing Messages
You must do three things in order to process a message. First, check to see if the msg.message is a
WM_QUIT. If it is, break out of the infinite for loop.

Next, call TranslateMessage:

BOOL TranslateMessage(
CONST MSG *lpMsg // message information

);

This function takes WM_KEYDOWN and WM_KEYUP messages and translates them into WM_CHAR messages. (It
also translates WM_SYSKEYDOWN and WM_SYSKEYUP into WM_SYSCHAR.) The only parameter is an LPMSG. It
returns 0 if the message is not translated and nonzero if it is. Either way, you don’t really care. If there is
translation to be done, you just want it done.

Introduction to WIN32 Programming

Table 1.5 PeekMessage Parameters
PeekMessage Parameter Purpose

lpMsg Pointer to a MSG structure that will be filled
with message information if there is one
available

hWnd Specifies the handle of the window for which
we are looking for messages. Passing NULL
will get messages from any window in the
application.

wMsgFilterMin Lowest value of messages we are looking for

wMsgFilterMax Highest value of messages we are looking for.
Specifying 0 in both wMsgFilterMin and
wMsgFilterMax will look for any message.

wRemoveMsg Either the value PM_REMOVE or PM_NOREMOVE.
Tells the function to remove or not remove
the message from the message queue.

TeamLRN

26

Finally, call DispatchMessage:

LRESULT DispatchMessage(
CONST MSG *lpmsg // message information

);

This function takes an LPMSG, just like TranslateMessage does, and it calls the appropriate message han-
dler (usually a window procedure). The return value of DispatchMessage depends on what value is
returned by the message handler it calls.

Running a Single Frame of the Game
If there is no message, call Prog_Loop(), which runs a single frame of your game. Currently, there is noth-
ing in Prog_Loop.

Cleanup and Exit
After the infinite for loop has been exited, there are just two more lines, and my explanation of WinMain
is done.

The next-to-last thing is calling Prog_Done(), which is the user-defined function that contains any
cleanup code that you need.

And finally, you return the value of msg’s wparam. This specifies your application’s exit code. If the pro-
gram ends as a result of PostQuitMessage, the value passed to that function will be in msg.wparam. Zero
indicates normal termination.

I know I’ve gone rather quickly through this introductory stuff, and maybe, if you’re new to the concept of
WIN32 programming, I left you hanging just a little. I ask you to bear with me, because my goal is to get
to the good stuff as quickly as possible. For more information on any of the functions I’ve listed here, take
a look at the MSDN documentation (the help files). It has more information than you really want or
need on how everything works. The WinMain function is rather dull; it’s almost always written exactly the
same way.

The Window Procedure
Here’s the minimal windowproc that is used in IsoHex1_1:

LRESULT CALLBACK TheWindowProc(HWND hwnd,UINT uMsg,WPARAM wParam,LPARAM lParam)
{

switch(uMsg)
{
case WM_DESTROY://the window is being destroyed

{

Isometric Game Programming with DirectX 7.0

27

PostQuitMessage(0);//tell the application we are quitting
return(0);//handled message, so return 0

}break;
case WM_PAINT://the window needs repainting

{
PAINTSTRUCT ps;
HDC hdc=BeginPaint(hwnd,&ps);//start painting
//painting code would go here
EndPaint(hwnd,&ps);//end painting
return(0);//handled message, so return 0

}break;
}
return(DefWindowProc(hwnd,uMsg,wParam,lParam));

}

The skinny of the whole thing is this: depending on what message you are handling (such as the contents
of the uMsg parameter), you execute different code; thus you have the switch. If you handle a message, you
have to return 0. If you don’t handle the message, you pass the parameters on to the default message pro-
cedure (DefWindowProc), which handles the rest of our messages.

The two messages that need to be taken care of are WM_DESTROY and WM_PAINT. There are a number of
WM_* messages, everything from key presses and key releases to mouse movement and mouse button state
changes to timers and so on. Some of them are cryptic, and you won’t be using very many.

WM_DESTROY is sent when the window is being destroyed. It’s there to allow you to clean up anything you
might be doing specific to the window. All your data is elsewhere, so you don’t have to do much. You just
have to tell the application that you are quitting, with PostQuitMessage(0). The parameter for
PostQuitMessage is an error code, and 0 specifies normal termination.

VOID PostQuitMessage(
int nExitCode // exit code

);

This function returns no value, and it takes as a parameter the exit code for the application.

WM_PAINT is sent whenever a window needs to be repainted. Usually this is when a minimized window is
restored or a background application is brought to the front, if there were overlapping areas.

In order to repaint as little as possible, Windows uses a struct called PAINTSTRUCT, which contains infor-
mation about what part of the window is to be redrawn:

typedef struct tagPAINTSTRUCT {
HDC hdc;
BOOL fErase;
RECT rcPaint;

Introduction to WIN32 Programming

TeamLRN

28

BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[32];

} PAINTSTRUCT, *PPAINTSTRUCT;

I’m not going to go too much into this, because you don’t use PAINTSTRUCT outside of your handling of a
WM_PAINT message, and even in that, you’ll never have much more code than what you’ve already got.

So, in the WM_PAINT handler, you declare a PAINTSTRUCT variable and then call BeginPaint, passing the
parameters of the window handle (hwnd) and a pointer to your PAINTSTRUCT. The return value you assign
to a new HDC variable called hdc. Don’t worry about what an HDC is right now. All will be explained in
Chapter 2.

HDC BeginPaint(
HWND hwnd, // handle to window
LPPAINTSTRUCT lpPaint // paint information

);

Now you’d presumably do something with the hdc. Right now, there isn’t anything that needs doing (hey,
how hard can it be to manage a black rectangle?)

Finally, you call EndPaint, passing hwnd and a pointer to your PAINTSTRUCT again. This lets Windows
know that you’ve done your job of repainting. Then 0 is returned.

BOOL EndPaint(
HWND hWnd, // handle to window
CONST PAINTSTRUCT *lpPaint // paint data

);

Why must you do all this? Well, if you don’t, Windows will whine, “PAINT YOUR WINDOW! PAINT
YOUR WINDOW!”This BeginPaint/EndPaint stuff is there for no other reason than to shut
Windows up and have it leave you in peace—a noble goal.

Sending Messages to a Window
To send a window message, you just need to use the function SendMessage:

LRESULT SendMessage(
HWND hWnd, // handle to destination window
UINT Msg, // message
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);

Isometric Game Programming with DirectX 7.0

29

The return value depends on what is returned from the windowproc that is called. Table 1.6 explains the
parameters.

There is also a function called PostMessage. It does the same thing, sort of. SendMessage sends the mes-
sage immediately to the window, where it will be processed and then returned, whereas Postmessage just
adds the message to the list of events that the window has yet to handle. PostMessage has the same
parameter list as SendMessage, but its return type is BOOL, and it is nonzero on success and 0 on failure.

Using Window Messages to
Process Input
You’ll use messages to process any input your window receives. If you’re about to ask why I’m not using
DirectInput, I ask you to check how thick this book is already and then factor in a chapter on DI. Also,
for our purposes, window messages will suffice.

Keyboard Messages
You’ll use three
messages for the
keyboard. There are
many more than
this, but you won’t
need them. Table
1.7 shows the
meaning of wParam
and lParam for
these messages.

Introduction to WIN32 Programming

Table 1.6 SendMessage Parameters
SendMessage Parameter Purpose

hWnd Window handle to which that you are sending the
message

Msg The message you are sending (WM_*)

wParam First parameter of the message

lParam Second parameter of the message

Table 1.7 WM_KEY* Messages
Keyboard Message Meaning of wParam Meaning of lParam

WM_KEYDOWN Virtual key code (VK_*) Shifts state/repeat
count/flags

WM_KEYUP Virtual key code (VK_*) Shifts state/repeat
count/flags

WM_CHAR Character code (ASCII) Shifts state/repeat
count/flags

TeamLRN

30

WM_KEYUP/WM_KEYDOWN

WM_KEYDOWN and WM_KEYUP are very similar in their
use but are called at separate times. WM_KEYDOWN is
called when a key is pressed, and WM_KEYUP is called
when a key is released. (This ain’t rocket science,
I know.)

Table 1.8 lists some VK constants and their values.

Isometric Game Programming with DirectX 7.0

NOTE
Not all keys have a VK_* constant asso-
ciated with them.The most noticeable
lack is the alphabetic and non-numpad
number keys.The constants VK_0
through VK_9 have the same values as
0 through 9, and VK_A through VK_Z
have the values A through Z. None of
the VK_* constants for numbers or
letters actually exist.

Table 1.8 VK_* Constants and Their Values

VK_BACK 0x08 VK_RWIN 0x5C VK_F5 0x74

VK_TAB 0x09 VK_APPS 0x5D VK_F6 0x75

VK_RETURN 0x0D VK_NUMPAD0 0x60 VK_F7 0x76

VK_SHIFT 0x10 VK_NUMPAD1 0x61 VK_F8 0x77

VK_CONTROL 0x11 VK_NUMPAD2 0x62 VK_F9 0x78

VK_MENU 0x12 VK_NUMPAD3 0x63 VK_F10 0x79

VK_PAUSE 0x13 VK_NUMPAD4 0x64 VK_F11 0x7A

VK_ESCAPE 0x1B VK_NUMPAD5 0x65 VK_F12 0x7B

VK_SPACE 0x20 VK_NUMPAD6 0x66 VK_F13 0x7C

VK_PRIOR 0x21 VK_NUMPAD7 0x67 VK_F14 0x7D

VK_NEXT 0x22 VK_NUMPAD8 0x68 VK_F15 0x7E

VK_END 0x23 VK_NUMPAD9 0x69 VK_F16 0x7F

VK_HOME 0x24 VK_MULTIPLY 0x6A VK_F17 0x80

VK_LEFT 0x25 VK_ADD 0x6B VK_F18 0x81

VK_UP 0x26 VK_SEPARATOR 0x6C VK_F19 0x82

VK_RIGHT 0x27 VK_SUBTRACT 0x6D VK_F20 0x83

VK_DOWN 0x28 VK_DECIMAL 0x6E VK_F21 0x84

VK_SELECT 0x29 VK_DIVIDE 0x6F VK_F22 0x85

VK_PRINT 0x2A VK_F1 0x70 VK_F23 0x86

VK_INSERT 0x2D VK_F2 0x71 VK_F24 0x87

VK_DELETE 0x2E VK_F3 0x72 VK_NUMLOCK 0x90

VK_LWIN 0x5B VK_F4 0x73 VK_SCROLL 0x91

31

For example, if you wanted to write a handler that closed the main window in response to the user’s press-
ing the Esc key, you would write the message handler like so:

case WM_KEYDOWN:
{

if(wParam==VK_ESCAPE)
{

DestroyWindow(hWndMain);//destroy main window
}
return(0);//we handled the message

}break;

WM_CHAR

WM_CHAR, on the other hand, responds to characters that the keyboard driver has translated into actual
characters. The contents of wParam are the ASCII values, such as a, b, c, and so forth. In many cases, you
don’t care about what the key’s ASCII code is (you only care if a key is down or not), so you’ll use this
message only when you are inputting strings.

The last word on keyboard input has nothing to do with messages. Responding to WM_KEYDOWN and
WM_KEYUP usually gets you where you want to go, but not always. It’s absolutely awful for just seeing if a
key is down or not, especially if the user switches applications between the calls of WM_KEYDOWN and
WM_KEYUP. To fix this, in those cases where you only care whether a key is up or not (to move a unit or
character or something), you use GetAsyncKeyState:

SHORT GetAsyncKeyState(
int vKey // virtual-key code

);

vKey represents the virtual key for which you are trying to read the state. In the return value, the most sig-
nificant bit will be 1 if the key is down or 0 if the key is up. Because the return value is a SHORT (a signed
type), you can check to see if a key is down by checking to see if the return value is negative:

if(GetAsyncKeyState(VK_ESCAPE)<0)
{

//stuff to do if the escape key is down
}

Introduction to WIN32 Programming

TeamLRN

32

There are a few extra VK_* constants that only GetAsyncKeyState recognizes. These are listed in
Table 1.9.

Mouse Messages
There are a bunch of these, but you need only about a handful. Luckily, they are all formatted the same as
far as the information passed in wParam and lParam. Table 1.10 lists the WM_* messages you will be con-
cerned with.

Isometric Game Programming with DirectX 7.0

Table 1.9 VK_* Constants that
Work Only with
GetAsyncKeyState

VK_* Code Hex Value

VK_LSHIFT 0xA0

VK_RSHIFT 0xA1

VK_LCONTROL 0xA2

VK_RCONTROL 0xA3

VK_LMENU 0xA4

VK_RMENU 0xA5

NOTE
You cannot use the val-
ues listed in Table 1.9
with any of the WM_KEY*
messages.They just
won’t work.

Table 1.10 Mouse Messages
Message When It Happens

WM_MOUSEMOVE The mouse has been moved.

WM_LBUTTONDOWN The left mouse button has been pressed.

WM_LBUTTONUP The left mouse button has been released.

WM_RBUTTONDOWN The right mouse button has been pressed.

WM_RBUTTONUP The right mouse button has been released.

33

Its important to note here that “left” and “right” have some subjective meanings. For example, if you
reverse your mouse buttons under your Windows settings, the buttons will be swapped as far as which mes-
sages they generate (as shown in Figure 1.5). In my opinion, this is one of the good features of Windows.
We don’t want to alienate the lefties!

The contents of wParam for a mouse message consist of a number of flags, covering stuff like the state of
the Shift and Ctrl keys to the state of the mouse buttons. Table 1.11 is a breakdown of these flags.

Introduction to WIN32 Programming

Generates
WM_RBUTTONDOWN

Generates
WM_LBUTTONDOWN

Left-Handed Mouse

Generates
WM_LBUTTONDOWN

Generates
WM_RBUTTONDOWN

Right-Handed Mouse

Figure 1.5

Reversed mouse buttons

Table 1.11 wParam Flags for Mouse Buttons
and Shift States

Mouse Flag Meaning

MK_CONTROL The Ctrl key is down.

MK_LBUTTON The left mouse button is down.

MK_MBUTTON The middle mouse button is down.

MK_RBUTTON The right mouse button is down.

MK_SHIFT The Shift key is down.

TeamLRN

34

If you want to check to see if the left mouse button
is down in your message handler (for example, dur-
ing a WM_MOUSEMOVE), do this:

//check for left button down
if(wParam&MK_LBUTTON)
{

//do something
}

lParam contains the x and y position of the mouse cursor. To retrieve these values, use something similar
to the following code:

int x=LOWORD(lParam);//x is contained in the lower 16 bits
int y=HIWORD(lParam);//y is contained in the upper 16 bits

The documentation states that you should use the GET_X_LPARAM and GET_Y_LPARAM macros rather than
the LOWORD and HIWORD macros. Personally, I’ve not seen a difference.

Other Window Messages
There seem to be thousands of window messages you could respond to. If you want to look at the list,
load up MSDN (the help files should have come with your VC++ compiler). Go to the index tab, type in
WM_, and look aghast at the long, long list of messages. Many or most of them are of limited use. On
the MSDN CDs, the messages are pretty well documented, and the meanings of wParam and lParam are

made pretty clear.

It seems kind of bizarre that out of hundreds of window messages, we’ll only be using about a dozen, but
that’s just Windows.

There is just one miscellaneous message that I should cover WM_ACTIVATEAPP. We’ll be using it later.

WM_ACTIVATEAPP
WM_ACTIVATEAPP is sent to an application when it is activated (if another application was the currently
active one) and when it is deactivated (when the user switches to another application). wParam contains a
boolean variable that specifies whether or not the current application is the one being activated (a nonzero
value) or deactivated (a value of 0).

When your application is deactivated, especially when you are using DirectX in full-screen mode, you will
want to put the application into some sort of “paused” state. It’s not a bad idea to do so even when you’re
not in full screen, because if the application isn’t active, you don’t want to continue executing the game
until the user reactivates it.

Isometric Game Programming with DirectX 7.0

NOTE
You can also check the state of the mouse
buttons using GetAsyncKeyState.
However, this will not be correct for users
who reverse the mouse buttons.

35

We’ll handle activation with a global variable called bActive:

bool bActive=false;//start as non-active
Somewhere in the Prog_Init() function, you’ll set bActive to true.

During Prog_Loop(), you check bActive. If it’s false, you just return from the function without doing
anything.

if(!bActive) return;

Finally, you respond to the WM_ACTIVATEAPP message:

case WM_ACTIVATEAPP:
{

bActive=(bool)wParam;
if(bActive)
{

//activation code
}
else
{

//deactivation code
}

}break;

Managing Your Windows
There are a number of functions for managing windows that you’ll probably at least want to be
familiar with. Some of these functions—SetWindowPos, MoveWindow, and GetWindowInfo—concern
themselves with a window’s size and position. The rest of them—SetWindowText, GetWindowText, and
GetWindowTextLength—concern themselves with the text displayed in the title bar and on the Taskbar.

SetWindowPos
BOOL SetWindowPos(

HWND hWnd, // handle to window
HWND hWndInsertAfter, // placement-order handle
int X, // horizontal position
int Y, // vertical position
int cx, // width
int cy, // height
UINT uFlags // window-positioning options

);

Introduction to WIN32 Programming

TeamLRN

36

SetWindowPos returns nonzero on success and 0 on failure. Table 1.12 lists the parameters and their
purposes.

SetWindowPos can optionally change the z-order, position, and size of a window, depending on the
parameters you give it.

Z-Order
If you had more than one window, you could set which one was on top of the others by calling
SetWindowPos and specifying this. Besides window handles, SetWindowPos also takes a number of con-
stants in this parameter:

• HWND_BOTTOM Places the window at the bottom of the z-order.
• HWND_NOTOPMOST Makes the window a non-topmost window and places it above all other non-topmost

windows.
• HWND_TOP Places the window at the top of the z-order.
• HWND_TOPMOST Makes the window a topmost window and places it at the top of the topmost z-order.

Some of those explanations sound like gibberish, I know, especially when I’m talking about topmost.
Topmost windows are windows that are always on top. They sort of have their own z-order. The Taskbar is
one of these.

Isometric Game Programming with DirectX 7.0

Table 1.12 SetWindowPos Parameters
SetWindowPos Parameter Purpose

hWnd Handle to the window you want to reposition

hWndInsertAfter This is a z-order thing. It’s the handle to another window
in your application that you want your window to be
behind. Can also take some constants.

int X The desired horizontal position of the left edge of
the window

int Y The desired vertical position of the top edge of
the window

int cx The desired width of the window

int cy The desired height of the window

uFlags Flags (see below under “Flags”)

36

SetWindowPos returns nonzero on success and 0 on failure. Table 1.12 lists the parameters and their
purposes.

SetWindowPos can optionally change the z-order, position, and size of a window, depending on the
parameters you give it.

Z-Order
If you had more than one window, you could set which one was on top of the others by calling
SetWindowPos and specifying this. Besides window handles, SetWindowPos also takes a number of con-
stants in this parameter:

• HWND_BOTTOM Places the window at the bottom of the z-order.
• HWND_NOTOPMOST Makes the window a non-topmost window and places it above all other non-topmost

windows.
• HWND_TOP Places the window at the top of the z-order.
• HWND_TOPMOST Makes the window a topmost window and places it at the top of the topmost z-order.

Some of those explanations sound like gibberish, I know, especially when I’m talking about topmost.
Topmost windows are windows that are always on top. They sort of have their own z-order. The Taskbar is
one of these.

Isometric Game Programming with DirectX 7.0

Table 1.12 SetWindowPos Parameters
SetWindowPos Parameter Purpose

hWnd Handle to the window you want to reposition

hWndInsertAfter This is a z-order thing. It’s the handle to another window
in your application that you want your window to be
behind. Can also take some constants.

int X The desired horizontal position of the left edge of
the window

int Y The desired vertical position of the top edge of
the window

int cx The desired width of the window

int cy The desired height of the window

uFlags Flags (see below under “Flags”)

TeamLRN

37

Flags
SetWindowPos responds to a number of flags, which can optionally turn the various other parameters on
and off:

• SWP_NOACTIVATE Tells SetWindowPos not to activate this window when changing it.
• SWP_NOCOPYBITS Tells SetWindowPos not to copy the contents of the client area.
• SWP_NOMOVE Tells SetWindowPos to ignore X and Y.
• SWP_NOSIZE Tells SetWindowPos to ignore cx and cy.
• SWP_NOZORDER Tells SetWindowPos to ignore hWndInsertAfter.

MoveWindow
BOOL MoveWindow(

HWND hWnd, // handle to window

int X, // horizontal position

int Y, // vertical position

int nWidth, // width

int nHeight, // height

BOOL bRepaint // repaint option

);

Returns nonzero on success or 0 on failure. Table 1.13 explains the parameter usage.

Introduction to WIN32 Programming

Table 1.13 MoveWindow Parameters
MoveWindow Parameter Purpose

hWnd Handle to the window you are moving

X The desired horizontal coordinate for the left edge of
the window

Y The desired vertical coordinate for the top edge of
the window

nWidth The desired width of the window

nHeight The desired height of the window

bRepaint Specifies whether or not you want the window to
be repainted.

38

MoveWindow does much the same thing that SetWindowPos does, minus the window position in the
z-order.

//resize the window to be 640x480
MoveWindow(hWndMain,0,0,640,480);

GetWindowInfo
BOOL GetWindowInfo(

HWND hwnd, // handle to window
PWINDOWINFO pwi // window information

);

This function fetches information about a given window (hwnd) in a WINDOWINFO structure. It returns
nonzero on success and 0 on failure.

The WINDOWINFO structure looks like this:

typedef struct tagWINDOWINFO {
DWORD cbSize;
RECT rcWindow;
RECT rcClient;
DWORD dwStyle;
DWORD dwExStyle;
DWORD dwWindowStatus;
UINT cxWindowBorders;
UINT cyWindowBorders;
ATOM atomWindowType;
WORD wCreatorVersion;

} WINDOWINFO, *PWINDOWINFO, *LPWINDOWINFO;

Isometric Game Programming with DirectX 7.0

TeamLRN

39

Table 1.14 explains the members of WINDOWINFO.

GetWindowText and
GetWindowTextLength
int GetWindowText(

HWND hWnd, // handle to window or control
LPTSTR lpString, // text buffer
int nMaxCount // maximum number of characters to copy

);

Retrieves a copy of the window’s title in lpString. nMaxCount is the string length to retrieve. Returns
the number of characters actually read.

int GetWindowTextLength(
HWND hWnd // handle to window or control

);

Introduction to WIN32 Programming

Table 1.14 Members of WINDOWINFO
WINDOWINFO Member Purpose

cbSize The size of this structure

rcWindow A RECT (more on these in Chapter 2) describing
the area taken up by the window

rcClient A RECT describing the area taken up by the
client area of the window

dwStyle The window’s styles (WS_*)

dwExStyle The window’s extended styles (WS_EX_*)

dwWindowStatus Whether or not the window is active. 0 means
not active.

cxWindowBorders Width of the window’s border

cyWindowBorders Height of the window’s border

atomWindowType Atom corresponding to the window class to
which this window belongs

wCreatorVersion Version that created this window

40

Returns the length of the window’s (hWnd’s) title.

These two functions are best used together, like so:

//retrieve the length of the window title
int nTitleLength=GetWindowTextLength(hWndMain);
//allocate a buffer to the proper size
char* buffer=new char[nTitleLength];
GetWindowText(hWndMain,buffer,nTitleLength);

SetWindowText
BOOL SetWindowText(

HWND hWnd, // handle to window or control
LPCTSTR lpString // title or text

);

Sets the title of the specified window (hWnd) to the string supplied (lpString).

System Metrics
A system metric is a system-wide measurement usually concerning the height or width of something on
the desktop. It also contains the existence of certain devices on the machine.

The function needed to retrieve one of these metrics is GetSystemMetrics.

int GetSystemMetrics(
int nIndex // system metric or configuration setting

);

Isometric Game Programming with DirectX 7.0

TeamLRN

41

Table 1.15 lists some of the possible nIndex values. There are more than just this, of course, but these are
the ones you are most likely to use with any sort of frequency.

Summary
We’ve gone through quite a bit in this first chapter, yet we still have only scratched the surface as far
as WIN32 programming is concerned. I can’t show you everything in just a few pages, even though I’d
like to.

We’ve gone through basic window management, window messages, and the fundamental way Windows
works. That’s a lot to absorb in a single chapter. Even if you’re one of those “I’ll only be making full-
screen games, anyway” folks, I ask that you consider the following: yes, most modern games are made full-
screen—at least, the big titles are. However, that doesn’t render this basic WIN32 stuff useless. For exam-
ple, you’ll need a regular window for some sort of configuration, or for the splash screen that commonly
comes up whenever the CD autoruns (you know—the window with the Install, Play, Configure, and Quit
buttons on it?).

Introduction to WIN32 Programming

Table 1.15 Values for nIndex
Index Return Value

SM_CMOUSEBUTTONS The number of mouse buttons present

SM_CXBORDER, SM_CYBORDER The width and height of a window border

SM_CXCURSOR, SM_CYCURSOR The width and height of a cursor

SM_CXEDGE, SM_CYEDGE The width and height of a 3D window edge

SM_CXSCREEN, SM_CYSCREEN The width and height of the screen

SM_MOUSEPRESENT TRUE if the mouse is connected, or FALSE if not

SM_SLOWMACHINE TRUE if the machine is slow, or FALSE if not

SM_SWAPBUTTON TRUE if the user setting swaps mouse buttons,
or FALSE if not

This page intentionally left blank

TeamLRN

The World of
GDI and
Windows

Graphics
• RECT and POINT

• Anatomy of a Window

• Device Contexts

• Pixel Plotting with GDI

CHAPTER 2

44

Windows is a graphical operating system, with the emphasis on graphical. Windows achieves graph-
ics through a subsystem called the Graphical Device Interface (GDI). With GDI, it doesn’t mat-

ter what you are drawing on—the screen, system memory, a printer, a plotter, or any other graphical
device—because GDI does most of the work for you.

Unfortunately, in many cases the performance of GDI isn’t as good as you might want. Games are graphics
hogs, and they cannot sacrifice speed. That’s why DirectX was created; I’ll cover it in Chapter 4, “DirectX
at a Glance.” But first I want to delve into GDI, because even when you get into using DirectX, some GDI
will still be used, especially in the loading of bitmaps.

RECT and POINT
Before getting into the objects used by GDI, we first have to explore the use of two very useful struc-
tures—POINT and RECT—and the functions that manipulate them. RECT is also used quite a bit in
DirectDraw (discussed in Chapter 5), so this won’t be the only time you’ll see them.

Before exploring the functions that deal with them, we first have to explore what POINT and RECT
look like.

The POINT Structure
typedef struct tagPOINT {

LONG x;
LONG y;

} POINT, *PPOINT;

The POINT structure isn’t all that complicated. It just contains an x,y pair of integers.

The RECT Structure
typedef struct _RECT {

LONG left;
LONG top;
LONG right;
LONG bottom;

} RECT, *PRECT;

Isometric Game Programming with DirectX 7.0

TeamLRN

45

RECT describes four points—(left,top), (right,top), (left,bottom) and (right,bottom). These four points
represent a rectangular area.

RECT and
POINT
Functions
I have these classified into three
groups of related functions.
Assignment functions deal with
setting up the values of a RECT.
Operation functions deal with
manipulating RECTs. Testing func-
tions deal with getting information
about a RECT and how something
interacts with it. Table 2.1 lists the
various functions I cover and the
classification into which I’ve
put them.

The World of GDI and Windows Graphics

NOTE
Something threw me for a while when I was first learning
this stuff.The inside of a RECT is where x>=left and x<right
and y>=top and y<bottom. In other words, the right and
bottom edges of the RECT are not a part of the rectangle’s
interior.

Why? I’ve got a few guesses. My first guess is that
Microsoft, when it decided how RECTs worked, said that a
pixel is between two coordinate points (for example, pixel
(100,100) is between x=100 and x=101 and y=100 and
y=101). My second guess is that Microsoft did this so that
the width of a rectangle is right-left and the height is bot-
tom-top, thus minimizing the infamous “off by one” errors.

In either case, just keep in mind that the right and bottom
are not in the RECT.

Table 2.1 RECT and POINT Functions
Function Category Use

SetRect Assignment Sets a RECT’s members to arbitrary values

SetRectEmpty Assignment Sets a RECT’s members to all 0s

CopyRect Assignment Copies one RECT’s members to another

IntersectRect Operations Finds the common area of two RECTs

UnionRect Operations Finds a RECT that contains both source RECTs

OffsetRect Operations Moves a RECT by an x and y offset

EqualRect Testing Finds if two RECTs have equal members

IsRectEmpty Testing Checks a RECT’s members for all 0s

PtInRect Testing Checks whether a POINT is within the area of a RECT

46

Assignment RECT Functions
These functions either assign a RECT’s values or copy one RECT into another.

SetRect

BOOL SetRect(
LPRECT lprc, // rectangle
int xLeft, // left side
int yTop, // top side
int xRight, // right side
int yBottom // bottom side

);

This returns nonzero on success or 0 on failure. Table 2.2 explains the parameter list.

SetRect is equivalent to the following code:

//rc is a RECT
rc.left=xLeft;
rc.top=xTop;
rc.right=xRight;
rc.bottom=yBottom;

In my opinion, doing this in a single function call is much easier to read, and I think you’ll agree.

Isometric Game Programming with DirectX 7.0

Table 2.2 SetRect Parameter List
SetRect Parameter Purpose

lprc Pointer to a RECT that will be filled with the values
supplied in the other parameters

xLeft Value to put in the RECT’s left member

yTop Value to put in the RECT’s top member

xRight Value to put in the RECT’s right member

yBottom Value to put in the RECT’s bottom member

TeamLRN

47

SetRectEmpty

BOOL SetRectEmpty(
LPRECT lprc // rectangle

);

This returns nonzero on success or 0 on failure. The parameter lprc is a pointer to the RECT that you
want to set to empty. An empty RECT has all members equal to 0.

SetRectEmpty is equivalent to this:

//rc is a RECT
SetRect(&rc,0,0,0,0);

It’s a good idea to set any temporary RECT variable you aren’t going to use for a while to empty. Following
this practice will help minimize strange glitches.

CopyRect

BOOL CopyRect(
LPRECT lprcDst, // destination rectangle
CONST RECT *lprcSrc // source rectangle

);

This returns nonzero on success or 0 on failure. Copies the members pointed to by lprcSrc into the
members pointed to by lprcDst.

It isn’t absolutely necessary to use CopyRect to set one RECT equal to another. Indeed, you could just do
the following:

//rc1 and rc2 are RECTs
rc2=rc1;

Doing this does the exact same thing as CopyRect. So why don’t I suggest its use? Using CopyRect more
accurately indicates the intended operation, and the equal sign does not.

Operation RECT Functions
These functions either combine or modify RECTs in some way.

The World of GDI and Windows Graphics

48

OffsetRect

BOOL OffsetRect(
LPRECT lprc, // rectangle
int dx, // horizontal offset
int dy // vertical offset

);

This returns nonzero on success or 0 on failure. The left and right members pointed to by lprc are
increased by dx, and the top and bottom members are increased by dy.

OffsetRect is equivalent to the following code:

//lprc is pointer to RECT
lprc->left+=dx;
lprc->top+=dy;
lprc->right+=dx;
lprc->bottom+=dy;

OffsetRect is quite handy when you want to have the same-sized RECT in a different location.

IntersectRect

BOOL IntersectRect(
LPRECT lprcDst, // intersection buffer
CONST RECT *lprcSrc1, // first rectangle
CONST RECT *lprcSrc2 // second rectangle

);

If the RECTs pointed to by lprcSrc1 and lprcSrc2 intersect, this function returns nonzero. If they do
not, it returns 0. lprcDst is filled with the intersecting RECT. Figure 2.1 illustrates the output of
IntersectRect.

Isometric Game Programming with DirectX 7.0

TeamLRN

49

UnionRect

BOOL UnionRect(
LPRECT lprcDst, // destination rectangle
CONST RECT *lprcSrc1, // first rectangle
CONST RECT *lprcSrc2 // second rectangle

);

This returns 0 if the resulting union (pointed to by lprcDst) is an empty RECT. It returns nonzero other-
wise. The RECTs pointed to by lprcSrc1 and lprcSrc2 are combined to make the smallest RECT that
could contain both, (see Figure 2.2).

The World of GDI and Windows Graphics

First Source RECT

Second Source RECT

Intersection

Figure 2.1

IntersectRect

(the shaded area

marks the intersection)

First Source RECT

Second Source RECT

Figure 2.2

The shaded area shows

the result of a call to

UnionRect

50

Testing RECT Functions
The testing functions check the status of a RECT in relation to another RECT, in relation to itself, or in
relation to a POINT.

EqualRect

BOOL EqualRect(
CONST RECT *lprc1, // first rectangle
CONST RECT *lprc2 // second rectangle

);

This returns 0 if the two rectangles (pointed to by lprc1 and lprc2) are not equal, and nonzero if
they are.

IsRectEmpty

BOOL IsRectEmpty(
CONST RECT *lprc // rectangle

);

This returns 0 if the rectangle pointed to by lprc is not empty, and nonzero if it is empty.

PtInRect

BOOL PtInRect(
CONST RECT *lprc, // rectangle
POINT pt // point

);

Checks to see if the POINT pt is within the RECT pointed to by lprc. This returns nonzero if it is, and 0
if it is not.

PtInRect is equivalent to the following code:

//lprc is pointer to RECT
BOOL ptinrect=((pt.x>=lprc->left) && (pt.x<lprc->right) && (pt.y>=lprc->top) &&
(pt.y<lprc->bottom));

There are a few more RECT functions, but they aren’t very useful and so I didn’t cover them. If you’re curi-
ous, they are called InflateRect and SubtractRect, and they can be found in MSDN.

Isometric Game Programming with DirectX 7.0

TeamLRN

51

Anatomy of a Window
As you are well aware, a window consists of more than just an area on which you can draw. Depending on
its use, a window contains minimize and maximize buttons, a title bar, a close button, a system menu, a
sizable or nonsizeable border, scroll bars, and so on. The inclusion of these in your window depends on
the style with which you create it. Windows takes care of making these look correct, so you can just con-
cern yourself with drawing on the inside of the window.

The section upon which you can draw is called the client area. The rest of the window is the nonclient area.
Figure 2.3 shows these two areas. When the client area needs repainting, you get WM_PAINT messages from
Windows.

The World of GDI and Windows Graphics

Figure 2.3

Client and nonclient

areas of a window

NOTE
If you want to, you can override the way Windows draws the non-
client area by responding to the WM_NCPAINT message.

Non-Client Area

52

GetClientRect
The area contained in the client area can be retrieved with the function GetClientRect:

BOOL GetClientRect(

HWND hWnd, // handle to window

LPRECT lpRect // client coordinates

);

This returns nonzero on success or 0 on failure. Table 2.3 explains the parameter list.

The left and top members of the RECT are 0. The right and bottom contain the width and height.

GetWindowRect
The area that contains the entire window can be retrieved with the function GetWindowRect.

BOOL GetWindowRect(
HWND hWnd, // handle to window
LPRECT lpRect // window coordinates

);

This returns nonzero on success or 0 on failure. Table 2.4 explains the parameter list.

Isometric Game Programming with DirectX 7.0

Table 2.3 GetClientRect Parameter List
GetClientRect Parameter Purpose

hWnd Window for which you would like to retrieve the
client area

lpRect Pointer to a RECT into which the client area informa-
tion is retrieved

Table 2.4 GetWindowRect Parameter List
GetWindowRect Parameter Purpose

hWnd Window for which you would like to retrieve the
client area

lpRect Pointer to a RECT into which the client area infor-
mation is retrieved

TeamLRN

53

The coordinates returned in the RECT are screen coordinates, so this function yields different results when
the window has been moved around.

Let’s say that you are making a game that needs to have a play area that has certain dimensions (640✕480,
for example). You may want this application to be windowed, but it is nearly impossible to determine how
big of a window you have to make, because user settings modify how large some types of windows are.

So, what to do?

AdjustWindowRect and
AdjustWindowRectEx
Luckily, Win32 does have a couple of functions that help you in this area. They are AdjustWindowRect
and AdjustWindowRectEx.

AdjustWindowRect
If you used CreateWindow to create your main window (or any window you might be adjusting), you
would use AdjustWindowRect to modify the size of your client area.

BOOL AdjustWindowRect(
LPRECT lpRect, // client-rectangle structure
DWORD dwStyle, // window styles
BOOL bMenu // menu-present option

);

This returns nonzero on success or 0 on failure. Table 2.5 explains the parameter list.

The World of GDI and Windows Graphics

Table 2.5 AdjustWindowRect Parameters
AdjustWindowRect Parameter Purpose

lpRect Pointer to a RECT that contains the desired client
area on entry and the desired window RECT on exit

dwStyle Style of the window (as sent to CreateWindow)

bMenu TRUE or FALSE, depending on whether or not the
window has a menu

54

AdjustWindowRectEx
If you used CreateWindowEx to create your window, use AdjustWindowRectEx to modify the size of
your client area.

BOOL AdjustWindowRectEx(
LPRECT lpRect, // client-rectangle structure
DWORD dwStyle, // window styles
BOOL bMenu, // menu-present option
DWORD dwExStyle // extended window style

);

This returns nonzero on success or 0 on failure. Table 2.6 explains the parameter list.

The choice of AdjustWindowRect versus AdjustWindowRectEx depends solely on whether or not
CreateWindow or CreateWindowEx was used to create your window.

Isometric Game Programming with DirectX 7.0

Table 2.6 AdjustWindowRectEx Parameters
AdjustWindowRectEx Parameter Purpose

lpRect Pointer to a RECT that contains the desired client
area on entry and the desired window RECT on
exit

dwStyle Style of the window (as sent to CreateWindowEx)

bMenu TRUE or FALSE, depending on whether or not the
window has a menu

dwExStyle Extended style of the window (as sent to
CreateWindowEx)

TeamLRN

55

Using AdjustWindowRectEx

Load IsoHex2_1.cpp into your compiler, and take a look at the Prog_Init function:

bool Prog_Init()
{

//rectangle into which we will place the desired client RECT
RECT rc;
SetRect(&rc,0,0,640,480);
//get the window rect based on our style and extended style
AdjustWindowRectEx(&rc,WS_BORDER | WS_SYSMENU | WS_VISIBLE,FALSE,0);
//use movewindow to resize the window
MoveWindow(hWndMain,0,0,rc.right-rc.left,rc.bottom-rc.top,TRUE);
return(true);//return success

}

In this function, you resize the window using MoveWindow so that you have a 640✕480 client area.

Through my experience with using AdjustWindowRectEx, I have found that sometimes it just doesn’t
work, depending on the combination of style and extended style flags for the window. If you want to try
using AdjustWindowRectEx, make sure you get the client RECT size you want. If you don’t, all is not lost.
You can manually get the proper window size by using GetClientRect, GetWindowRect, and
MoveWindow, as shown in the following snippet of code:

//get the client rect
RECT rcClient;
GetClientRect(hWndMain,&rcClient);
//get the window rect
RECT rcWnd;
GetWindowRect(hWndMain,&rcWnd);
//make the window rect left and top be zero

The World of GDI and Windows Graphics

NOTE
Under WIN32, there is absolutely no functional difference
between CreateWindow and CreateWindowEx, nor is there a dif-
ference between AdjustWindowRect and AdjustWindowRectEx.
The CreateWindow function is not actually a function at all. It is a
macro that calls CreateWindowEx and supplies the dwExStyle
parameter with a 0.The same goes for AdjustWindowRect. It is
always best to use the Ex version of the function.

56

OffsetRect(&rcWnd,-rcWnd.left,-rcWnd.top);
//get the difference in the width
int iWidthDelta=rcWnd.right-rcClient.right;
int iHeightDelta=rcWnd.bottom-rcClient.bottom;
//set up desired client rect
SetRect(&rcClient,0,0,640,480);//640 and 480 can be replaced with desired meas-
urements
//adjust the width of the desired client rect
rcClient.right+=iWidthDelta;
rcClient.botom+=iHeightDelta;
//use movewindow to set desired height and width
MoveWindow(hWnd,0,0,rcClient.right,rcClient.bottom,TRUE);

Up until now this chapter has been little more than a list of functions and parameters. Unfortunately, it
has been necessary to make it so—there are a lot of things you have to know in order to use GDI effec-
tively. Now that you’ve got the goods on RECT, POINT, and the client area, you can actually start doing
something.

Device Contexts
Windows can draw to several different types of devices—monitors, printers, plotters, and system memory.
Drawing to any of these devices is handled by the exact same mechanism—device contexts (DCs). A DC
is an abstraction of something that can be drawn upon. Some devices have varying coordinate systems. For
example, a printer might print at 600dpi, and your screen has 72dpi. DCs ensure that the proper transfor-
mations (scaling, stretching) can be performed, regardless of the coordinate system used internally by the
device. This is a good thing, because it achieves device independence, and you have to deal with only a sin-
gle set of functions instead of a billion different APIs, each for a different device.

Of course, device independence has its cost. Using device contexts is significantly slower than working
directly with the hardware, since commands have to be filtered through several layers of abstraction before
the operation is actually performed. You’ll reduce this problem when you make the move to DirectX,
which has a lower level of abstraction. (DirectX talks to hardware drivers, which is as close as you can get
to bare metal in Windows.)

You had slight exposure to DCs in the preceding chapter, when you responded to the WM_PAINT message
and used BeginPaint and EndPaint.

Obtaining Device Contexts
In WM_PAINT, you use BeginPaint and EndPaint to retrieve a DC, and you can then use that DC for
drawing operations. This is one way to go about it. However, using BeginPaint and EndPaint is limited

Isometric Game Programming with DirectX 7.0

TeamLRN

57

to times when areas of the client area have been invalidated (for example covered up by something else, like
another window).

InvalidateRect
You can invalidate portions of the client area by using InvalidateRect.

BOOL InvalidateRect(
HWND hWnd, // handle to window
CONST RECT *lpRect, // rectangle coordinates
BOOL bErase // erase state

);

This returns nonzero on success or 0 on failure. The hWnd and lpRect parameters should be self-explana-
tory by now. bErase tells the application whether or not to erase the background during the next call to
BeginPaint.

If you really want to, you can use this method. Call InvalidateRect, and wait for the WM_PAINT message
to be processed. That would be very Windows-friendly of you. However, you are a game programmer, and
games are rarely Windows-friendly.

GetDC
Most of the time, you’ll grab a window’s DC using GetDC.

HDC GetDC(
HWND hWnd // handle to window

);

This takes as a parameter the window for which you want the DC, and then it returns that DC. Keep in
mind that Windows is letting you “borrow” this DC. You have to put it back later or suffer the conse-
quences.

ReleaseDC
When you are done with the DC and it’s time to give it back, you use ReleaseDC.

int ReleaseDC(
HWND hWnd, // handle to window
HDC hDC // handle to DC

);

The World of GDI and Windows Graphics

58

So, if you want to perform some drawing operations on your main window, you do this:

//borrow the dc from the main window
HDC hdc=GetDC(hWndMain);
//draw stuff
//return the dc to the system
ReleaseDC(hWndMain,hdc);

Memory DCs
Not all the DCs you’ll be working with will be borrowed from a window. For example, later you’ll load
images and place them into memory DCs. A memory DC is nothing more than a bit of your computer’s
memory that behaves as though it is a device upon which you can draw.

CreateCompatibleDC
The mechanism by which you will do this is CreateCompatibleDC.

HDC CreateCompatibleDC(
HDC hdc // handle to DC

);

This function creates a memory DC compatible with a supplied hdc and returns the created DC. If you
pass NULL, the DC that is created is compatible with the screen.

DeleteDC
When you are done with a memory DC, you use DeleteDC.

BOOL DeleteDC(
HDC hdc // handle to DC

);

Isometric Game Programming with DirectX 7.0

CAUTION
If you do not call ReleaseDC for every call to GetDC, very bad things will
happen.You’ve been warned.

TeamLRN

59

So, what is in these memory DCs after you create them? Not much, as it turns out. A memory DC con-
tains a 1✕1 monochrome bitmap. What good is that? Well, the 1✕1 bitmap isn’t really good for anything.
However, there has to be something in a DC. Otherwise, it can’t exist, and using the DCs in the functions
that need them would cause errors.

GDI Objects
All this stuff about DCs is great, but we haven’t actually covered what to do with them. That’s where GDI
objects come in. They aren’t exactly objects in the object-oriented programming sense of the word. They
are Windows objects, and you reference them by way of HANDLEs (I told you we’d be having more of
them).

There are five types of GDI objects that you need to be concerned with: HBITMAP, HBRUSH, HPEN, HFONT,
and HRGN:

• An HBITMAP consists of a two-dimensional graphic. In Windows, this usually comes from a .bmp file or is
created to given dimensions on-the-fly.

• An HBRUSH consists of a colored fill pattern. It is used to fill in areas of a DC.
• An HPEN consists of a colored line style and width. It is used to draw primitives (lines, rectangles, ellipses)

on a DC.
• An HFONT consists of a set of characters. It is used to print text on a DC.
• An HRGN represents a shape that can be used for clipping, drawing, framing, or filling. These regions can be

rectangles, ellipses, polygons, or just about anything else you might imagine.

A DC can contain exactly one of each of these at any given time. This may seem a little backwards, but it’s
not. Consider a DC a mechanical device that draws. This machine can select a piece of paper (an
HBITMAP) on which to draw, and it can pick a pen (HPEN) with which to draw, a brush (HBRUSH) with
which to fill areas, a typeface (HFONT) with which to stamp letters, and an artist’s template (HRGN) with
which to draw shapes or draw on only a particular area.

SelectObject
In order to place a given object into a DC, you use SelectObject.

HGDIOBJ SelectObject(
HDC hdc, // handle to DC
HGDIOBJ hgdiobj // handle to object

);

This function places the desired GDI Object (HBITMAP, HRGN, HFONT, HPEN, or HBRUSH) into the DC, and
it returns the GDI object that the new object has replaced (except in the case of HRGN—see Chapter 3,
“Fonts, Bitmaps, and Regions”).

The World of GDI and Windows Graphics

60

So, if you wanted to bring a white brush into a DC and clean it up later, you’d do something like the
following:

//create solid white brush
HBRUSH hbrNew=CreateSolidBrush(RGB(255,255,255));
//select the new brush into a dc and save the old one (note the typecast of the
return value)
HBRUSH hbrOld=(HBRUSH)SelectObject(hdc,hbrNew);
//use drawing functions that use the new brush
//return the old brush to the dc
SelectObject(hdc,hbrOld);
//delete the brush we no longer need
DeleteObject(hbrNew);

This is something of a pain, I know (believe me—I know).

Pixel Plotting with GDI
A pixel is a pictorial element. It is the smallest piece of graphics that you can manipulate. The number of
pixels on the screen depends on your display settings. I run my machine at 1024✕768 most of the time,
so I have over 750,000 pixels on my screen.

Besides width and height, your screen also has color depth. Common color depths (measured in bits per
pixel—bpp) range from 1 (which is monochrome) to 32 (true color with an extra byte). The most com-
mon color depths are 8, 16, 24, and 32. An 8-bit color depth requires a method of color abstraction
known as color indirection and is handled by means of a palette. I won’t be covering palettes.

Isometric Game Programming with DirectX 7.0

CAUTION
We’re about to have another “put your toys away” moment here.When
you create a GDI object, no matter what kind, you have to later destroy
it.Technically, in WIN32, you don’t have to.WIN32 maintains a separate
memory space for each application, and when the application terminates,
all of that application’s resources are released. Still, it’s good program-
ming practice to delete GDI objects when you’re done with them.

TeamLRN

61

For 16, 24, and 32 bits per pixel, there is an RGB representation for your pixels. This means that certain
bits represent one of the three primary colors of light—red, green, or blue.

Pixel format will become more of a concern when you get to DirectDraw. In GDI, you get to pretend that
everything is 24bpp, and Windows does all the conversions for you.

In GDI, all colors are represented by COLORREFs. A COLORREF is merely an int. It has 8 bits for each of
red, green, and blue. Because each is 8 bits, you can have red, green, and blue values from 0 to 255. Since a
COLORREF is 24 bits, it can be scaled down to 16 bits, and in 32-bit modes, the number of bits used per
pixel for the color is still only 24.

The RGB Macro
To assign a color to a COLORREF, use the RGB macro:

#define RGB(r,g,b)
((COLORREF)(((BYTE)(r)|((WORD)((BYTE)(g))<<8))|(((DWORD)(BYTE)(b))<<16)))

Pixel Manipulation Functions
Essentially, there are three of these: SetPixel, SetPixelV, and GetPixel.

SetPixel
COLORREF SetPixel(

HDC hdc, // handle to DC
int X, // x-coordinate of pixel
int Y, // y-coordinate of pixel
COLORREF crColor // pixel color

);

SetPixel needs an HDC, an X,Y position, and a COLORREF. It does its best to plot the pixel to the given
HDC. The return value contains the actual color that was plotted.

SetPixelV
BOOL SetPixelV(

HDC hdc, // handle to device context
int X, // x-coordinate of pixel
int Y, // y-coordinate of pixel
COLORREF crColor // new pixel color

);

The World of GDI and Windows Graphics

62

Like SetPixel, SetPixelV needs an HDC, an X,Y position, and a COLORREF. Unlike SetPixel, this func-
tion does not return the color plotted. It returns 0 on failure or nonzero on success.

GetPixel
COLORREF GetPixel(

HDC hdc, // handle to DC
int nXPos, // x-coordinate of pixel
int nYPos // y-coordinate of pixel

);

GetPixel needs an HDC and an X,Y position. It returns the color of that position on the specified HDC.

A Pixel Plotting Example
Now that you can finally draw something (it’s about time, I know), let’s do so. Load up IsoHex2_2.cpp.

The only difference between this program and IsoHex1_1.cpp is an added case in the window procedure:

//the mouse moved
case WM_MOUSEMOVE:

{
//if the left button is down
if(wParam & MK_LBUTTON)
{

//extract x and y from lparam
int x=LOWORD(lParam);
int y=HIWORD(lParam);

//borrow the dc from the main window
HDC hdc=GetDC(hWndMain);

//plot the pixel
SetPixelV(hdc,x,y,RGB(255,255,255));

//return the dc to the system
ReleaseDC(hWndMain,hdc);

}

//handled, so return 0
return(0);

}break;

Isometric Game Programming with DirectX 7.0

TeamLRN

63

In this little stretch of code, you respond to the WM_MOUSEMOVE message. First, you check to see if the left
button is down. If it is, you borrow the DC from the main window, plot the pixel, and release the DC
back to the system. With this relatively small change, you can now draw. Figure 2.4 demonstrates my lack
of artistic ability.

OK, so it isn’t Paint Shop Pro. Heck, it isn’t even Microsoft Paint. But it is a step in the right direction,
and that’s all that counts.

The World of GDI and Windows Graphics

Figure 2.4

Pixel-plotting demo

NOTE
I’d like to point out something about this particular application,
because it applies to most of the applications in the early part of this
book. If you bring another application’s window in front of it, and then
bring it back in front, the part of the overlap will be erased.You’ll read
more about fixing this later.

64

Using Pens
Pixels are great, but dealing with just pixels for everything would become a nightmare, and game program-
ming would stop being fun.

So, to draw lines and shapes and so on, you’ll use HPENs and functions that use the pens in a DC.

CreatePen
Creating a pen is simple. The function that does so is named, of all things, CreatePen.

HPEN CreatePen(
int fnPenStyle, // pen style
int nWidth, // pen width
COLORREF crColor // pen color

);

This function returns a handle to a pen with the desired style, width, and color. Table 2.7 explains the
parameter list.

The fnPenStyle parameter can have a number of values:

• PS_SOLID A solid pen. May have any width.
• PS_DASH A dashed pen. Must have a width of 0 or 1.
• PS_DOT A dotted pen. Must have a width of 0 or 1.
• PS_DASHDOT A dash dot pen. Must have a width of 0 or 1.
• PS_DASHDOTDOT A dash dot dot pen. Must have a width of 0 or 1.
• PS_NULL An invisible pen

To use a pen, you simply select it into a device context using SelectObject, and you’re ready to go.

Isometric Game Programming with DirectX 7.0

Table 2.7 CreatePen Parameters
CreatePen Parameter Purpose

fnPenStyle The style of the pen (see the paragraph after this table)

nWidth Desired width of the pen

crColor Desired color of the pen

TeamLRN

65

Drawing Functions
Before we get to drawing functions themselves, let’s take a moment to talk about the current position with-
in a DC.

Internally, a DC maintains a current position. The current position is
similar to a cursor in a way. It keeps track of where you left off when
drawing. (In this way, you can draw continuous shapes without modify-
ing more than one line of code.)

You can set or get the current position (CP) with the following two
functions.

MoveToEx
BOOL MoveToEx(

HDC hdc, // handle to device context
int X, // x-coordinate of new current position
int Y, // y-coordinate of new current position
LPPOINT lpPoint // old current position

);

This returns nonzero on success and 0 on failure. Table 2.8 explains the parameter list.

GetCurrentPositionEx
BOOL GetCurrentPositionEx(

HDC hdc, // handle to device context
LPPOINT lpPoint // current position

);

This returns nonzero on success or 0 on failure. Table 2.9 explains the parameter list.

The World of GDI and Windows Graphics

Table 2.8 MoveToEx Parameters
MoveToEx Parameter Purpose

hdc Handle to the device context for which you are setting the CP

X, Y The desired position of the CP

lpPoint A pointer to a POINT.The former CP is placed here.

NOTE
Some drawing func-
tions modify the
current position,
and others do not.

66

OK, so you can get and set the CP. So what? Seems sort of useless.

LineTo
Introducing the LineTo function. LineTo draws a line in the current pen from the CP to a specified point.

BOOL LineTo(
HDC hdc, // device context handle
int nXEnd, // x-coordinate of ending point
int nYEnd // y-coordinate of ending point

);

This returns nonzero on success or 0 on failure. It moves the CP to nXEnd, nYEnd in the given hdc. It
draws a line as it does so.

A Line Drawing Example
Since we have a new toy (LineTo), let’s play. Load up IsoHex2_3.cpp.

This program is similar to IsoHex2_2.cpp, but it gets a little more involved. First, you have to create a pen
and select it into your window’s DC, so you declare two global variables, hpenNew and hpenOld.

Here’s the Prog_Init function:

bool Prog_Init()
{

//create the new pen
hpenNew=CreatePen(PS_SOLID,0,RGB(255,255,255));
//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//select new pen into dc
hpenOld=(HPEN)SelectObject(hdc,hpenNew);

Isometric Game Programming with DirectX 7.0

Table 2.9 GetCurrentPositionEx Parameters
GetCurrentPositionEx Parameter Purpose

hdc Handle to the device context for which you are
getting the CP

lpPoint Pointer to a POINT structure that will be filled with
the CP

TeamLRN

67

//release dc to system
ReleaseDC(hWndMain,hdc);
return(true);//return success

}

Here you take care of creating the new pen (it’s white) and putting it into the DC.

Now, here’s Prog_Done, on the other end of the program:

void Prog_Done()
{

//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//restore old pen to dc
SelectObject(hdc,hpenOld);
//release dc to system
ReleaseDC(hWndMain,hdc);
//delete new pen
DeleteObject(hpenNew);

}

Here you restore the old pen to the DC and delete the pen you created—you put your toys away after you
are done playing with them.

Now that the pen is set up, you can take care of doing the real work. The main work in this case is done
in two window message handlers, WM_MOUSEMOVE and WM_LBUTTONDOWN.

case WM_LBUTTONDOWN:
{

//extract x and y from lparam
int x=LOWORD(lParam);
int y=HIWORD(lParam);
//borrow the main window’s DC
HDC hdc=GetDC(hWndMain);
//update the CP
MoveToEx(hdc,x,y,NULL);
//return the dc to the system
ReleaseDC(hWndMain,hdc);
//handled, return 0
return(0);

}break;

The World of GDI and Windows Graphics

68

In this handler, you must update the CP of the window’s DC because if you just responded to movements
of the mouse, you would get errors. (Try commenting out the MoveToEx line, and see what I mean.)

case WM_MOUSEMOVE:
{

//if left button is down
if(wParam & MK_LBUTTON)
{

//extract x and y from lparam
int x=LOWORD(lParam);
int y=HIWORD(lParam);

//borrow the main window’s DC
HDC hdc=GetDC(hWndMain);

//line to the x,y position
LineTo(hdc,x,y);

//return the dc to the system
ReleaseDC(hWndMain,hdc);

}

//handled, return 0
return(0);

}break;

When the mouse is moved, and the left button is down, you draw a line to the mouse’s position. Doing so
updates the CP.

The resulting program doesn’t do too much more than what IsoHex2_2 did, except that it isn’t so...well,
pixelated. Figure 2.5 shows the application’s output.

Isometric Game Programming with DirectX 7.0

TeamLRN

69

Play around with IsoHex2_3 a bit, changing the pen style and line
width and color so that you can see the various effects that can be
created. After you’re done, we’ll move on to brushes.

Brushes
In GDI, you use pens to draw, and you use brushes to fill. You can create brushes using a number of func-
tions. The functions I’m going to cover here are the most commonly used: CreateSolidBrush and
CreateHatchBrush.

Brush Creation
HBRUSH CreateSolidBrush(

COLORREF crColor // brush color value
);

The World of GDI and Windows Graphics

Figure 2.5

Once again, an artist I

am not

NOTE
This program suffers
from the same erasure
problem that 2_2 did.

70

CreateSolidBrush takes a color and returns a brush in that color.

HBRUSH CreateHatchBrush(
int fnStyle, // hatch style
COLORREF clrref // foreground color

);

CreateHatchBrush takes a style and a color and returns a brush with that color and style. Hatch brush
styles are represented by HS_* constants like the following:

• HS_BDIAGONAL A 45-degree stripe that runs downward from left to right
• HS_CROSS A combination of horizontal and vertical stripes
• HS_DIACROSS A combination of the two diagonal stripes
• HS_FDIAGONAL A 45-degree stripe that runs upward from left to right
• HS_HORIZONTAL Horizontal stripes
• HS_VERTICAL Vertical stripes

To bring a brush into a device context, use SelectObject just like you do with pens. Always be sure to
restore the old brush when you are done. Use DeleteObject to destroy brushes.

ExtFloodFill
To fill in a given area, use ExtFloodFill.

BOOL ExtFloodFill(
HDC hdc, // handle to DC
int nXStart, // starting x-coordinate
int nYStart, // starting y-coordinate
COLORREF crColor, // fill color
UINT fuFillType // fill type

);

This returns nonzero on success or 0 on failure. Table 2.10 explains the parameter list.

Isometric Game Programming with DirectX 7.0

TeamLRN

71

A Brush Example
So, another example. Load up IsoHex2_4.cpp. IsoHex2_4.cpp is mostly just IsoHex2_3.cpp with an extra
message handler, WM_RBUTTONDOWN.

case WM_RBUTTONDOWN:
{

//extract x and y from lparam
int x=LOWORD(lParam);
int y=HIWORD(lParam);
//borrow the main window’s DC
HDC hdc=GetDC(hWndMain);
//line to the x,y position
ExtFloodFill(hdc,x,y,RGB(255,255,255),FLOODFILLBORDER);

//return the dc to the system
ReleaseDC(hWndMain,hdc);

}break;

Figure 2.6 shows the output of this sample program.

The World of GDI and Windows Graphics

Table 2.10 ExtFloodFill Parameters
ExtFloodFill Parameter Purpose

hdc Handle to a device context in which you would like the
fill to occur

nXStart, nYStart The coordinate at which to begin the fill

crColor Depending on fuFillType, either the color at which to
stop filling, or the color to fill over

fuFillStyle Either the value FLOODFILLBORDER or FLOODFILLSUR-
FACE. FLOODFILLBORDER fills until crColor is reached,
and FLOODFILLSURFACE fills over any adjacent areas that
are the same color as crColor.

72

In this app, you still draw lines with the left mouse button, and fill areas with the right.

Filling in Rectangular Areas
Possibly the most common brush operation you are likely to do is filling a rectangular area. This operation
is done with the FillRect function.

int FillRect(
HDC hDC, // handle to DC
CONST RECT *lprc, // rectangle
HBRUSH hbr // handle to brush

);

On failure, this returns 0. On success, it returns nonzero. Table 2.11 explains the parameter list.

Isometric Game Programming with DirectX 7.0

Figure 2.6

These are clouds.

No, really.

Table 2.11 FillRect Parameters
FillRect Parameter Purpose

hDC Handle to the device context for which you would like a rectangu-
lar area filled

lprc A pointer to a rectangle describing the area you would like filled

hbr The brush with which you would like the rectangular area of the
DC filled

TeamLRN

73

If you wanted, for example, to clear out the entire client area, this is what you would do:

//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//set up rect to contain entire client area
RECT rc;
GetClientRect(&rc);
//fill in given rectangle with black brush
FillRect(hdc,&rc,(HBRUSH)GetStockObject(BLACK_BRUSH));
//return dc to system
ReleaseDC(hWndMain,hdc);

Pens and Brushes Together:
Shape Functions
Now, being able to draw lines is great, and filling in bordered areas and rectangles is cool, too. However, in
order to be a fully functional API, you have to have other primitives—circles, rectangles, polygons. GDI
has these and more. I’m only going to cover Ellipse, Rectangle, RoundRect, and Polygon.

With all of these shapes, GDI outlines the shape with the current pen and fills it with the current brush.

Ellipse
BOOL Ellipse(

HDC hdc, // handle to DC
int nLeftRect, // x-coord of upper-left corner of rectangle
int nTopRect, // y-coord of upper-left corner of rectangle
int nRightRect, // x-coord of lower-right corner of rectangle
int nBottomRect // y-coord of lower-right corner of rectangle

);

The World of GDI and Windows Graphics

74

This returns nonzero on success or 0 on failure. Table 2.12 explains the parameter list.

With other graphical APIs, drawing an ellipse is done by specifying the center and then the x and y radii.
In GDI, however, it is done by supplying the rectangle that bounds the ellipse.

Rectangle
BOOL Rectangle(

HDC hdc, // handle to DC
int nLeftRect, // x-coord of upper-left corner of rectangle
int nTopRect, // y-coord of upper-left corner of rectangle
int nRightRect, // x-coord of lower-right corner of rectangle
int nBottomRect // y-coord of lower-right corner of rectangle

);

Isometric Game Programming with DirectX 7.0

Table 2.12 Ellipse Parameters
Ellipse Parameter Purpose

hdc The hdc on which you want the ellipse to be drawn

nLeftRect The left of the rectangle that bounds this ellipse

nTopRect The top of the rectangle that bounds this ellipse

nRightRect The right of the rectangle that bounds this ellipse

nBottonRect The bottom of the rectangle that bounds this ellipse

NOTE
The center of the ellipse is at x=(nLeftRect+nRightRect)/2 and
y=(nTopRect+nBottomRect)/2.The horizontal (x) radius is
abs(nRightRect-nLeftRect)/2, and the vertical (y) radius is
abs(nBottomRect-nTopRect)/2.The abs is in there because as
far as Ellipse is concerned, nLeftRect does not have to be less
than nRightRect, and nTopRect does not have to be less than
nBottomRect.

TeamLRN

75

This returns nonzero on success or 0 on failure. Table 2.13 explains the parameter list.

Rectangle has the exact same parameters as Ellipse, only instead of drawing the ellipse bound by a rec-
tangle, it draws and fills the rectangle.

RoundRect
BOOL RoundRect(

HDC hdc, // handle to DC
int nLeftRect, // x-coord of upper-left corner of rectangle
int nTopRect, // y-coord of upper-left corner of rectangle
int nRightRect, // x-coord of lower-right corner of rectangle
int nBottomRect, // y-coord of lower-right corner of rectangle
int nWidth, // width of ellipse
int nHeight // height of ellipse

);

The World of GDI and Windows Graphics

Table 2.13 Rectangle Parameters
Rectangle Parameter Purpose

hdc The hdc on which you would like this rectangle drawn

nLeftRect The left of the rectangle

nTopRect The top of the rectangle

nRightRect The right of the rectangle

nBottomRect The bottom of the rectangle

76

This returns nonzero on success or 0 on failure. Table 2.14 explains the parameter list.

I think that the RoundRect function is kind of cool. It can be used not only to draw rounded rectangles,
but also plain rectangles (when nWidth and nHeight are both 0) or ellipses (when nWidth and nHeight
equal the width and height of the rectangle itself).

Polygon
BOOL Polygon(

HDC hdc, // handle to DC
CONST POINT *lpPoints, // polygon vertices
int nCount // count of polygon vertices

);

This returns nonzero on success or 0 on failure. Table 2.15 explains the parameter list.

Isometric Game Programming with DirectX 7.0

Table 2.14 RoundRect Parameters
RoundRect Parameter Purpose

hdc The hdc on which you would like this rounded rectangle drawn

nLeftRect The left of the rounded rectangle

nTopRect The top of the rounded rectangle

nRightRect The right of the rounded rectangle

nBottomRect The bottom of the rounded rectangle

nWidth The width of the ellipse used for rounding the corners

nHeight The height of the ellipse used for rounding the corners

Table 2.15 Polygon Parameters
Polygon Parameter Purpose

Hdc The hdc on which you want the polygon drawn

LpPoints A pointer to an array of POINTs, containing the vertices
of the polygon

nCount The number of points pointed to by lpPoints

TeamLRN

77

For the rest of your shape-drawing needs, you have Polygon. lpPoints must point to at least two vertices.
The polygon drawn will automatically be closed (a line is drawn from the last point to the first point).

The manner in which your polygon is filled depends on two things. The first is whether you have any of
the line segments of the polygon crossing, and the second is the polygon fill mode that you set for the hdc
in question.

Polygon Fill Modes
You can manipulate the polygon fill mode with SetPolyFillMode and retrieve it with GetPolyFillMode.

SetPolyFillMode

int SetPolyFillMode(
HDC hdc, // handle to device context
int iPolyFillMode // polygon fill mode

);

This returns the previous fill mode for the given hdc and sets the new fill mode to iPolyFillMode.

GetPolyFillMode

int GetPolyFillMode(
HDC hdc // handle to device context

);

This returns the current fill mode for the given hdc.

There are two polygon fill modes—ALTERNATE and WINDING. Instead of explaining what they each mean
(it’s a confusing explanation), I’ll just show you. Figure 2.7 illustrates the ALTERNATE polygon fill mode.

The World of GDI and Windows Graphics

78

In the ALTERNATE fill mode, a given pixel is filled if a horizontal line is sent in the positive x direction (to
the right, that is) and if the number of line crossings is odd (1, 3, 5, and so on). If the number of cross-
ings is even (0, 2, 4, and so on), no filling is done. I told you it was confusing. Figure 2.8 illustrates the
WINDING fill mode.

In the WINDING fill mode, a region is filled if it has a nonzero winding value. What the heck is a winding
value, you ask? Let’s see what MSDN Online (January 2000 edition) has to say about it: “This value is
defined as the number of times a pen used to draw the polygon would go around the region. The direction
of each edge of the polygon is important.”

Isometric Game Programming with DirectX 7.0

ALTERNATE

�

Figure 2.7

ALTERNATE

PolyFillMode

WINDING

Figure 2.8

WINDING

PolyFillMode

TeamLRN

79

Confused? Me too. Using the WINDING polygon fill mode seems to fill in all of the nooks and crannies of
a polygon, so let’s just leave it at that.

Summary
This chapter inundated you with basic GDI; no, I won’t pay for any therapy you may now need. We’ve
gone through everything from Windows anatomy to graphical primitives. Much of this you won’t be using
too much, but it’s good to know. The information you will be using from this chapter mainly consists of
the RECT and POINT stuff, some of the brush stuff, and the device context stuff.
Most of what I’ve talked about so far has been listing functions and parameters. This will continue
through at least the rest of this part of the book. Unfortunately, what I’m talking about requires a lot of
knowledge, and I’m trying to get you just the important bits so that you can move on to the good stuff.

The World of GDI and Windows Graphics

This page intentionally left blank

TeamLRN

Fonts,

Bitmaps, and
Regions

• Working with Fonts

• Creating and Using Regions

• Creating and Using Bitmaps

CHAPTER 3

82

In the preceding chapter, we explored the basic use of GDI—namely, device contexts, pens, and brush-
es. This chapter builds on your knowledge of DCs, exploring the topics of fonts, bitmaps (including

icons and cursors), and regions.

Working with Fonts
You know what a font is (at least, I hope you do). A font is a typeface, usually containing the alphabet, the
numbers, and punctuation, but sometimes containing graphical characters (like the various wingding
fonts). Various fonts are shown in Figure 3.1.

As a Windows programmer, you have the power to make use of any font installed on the system. There are
even tools that allow you to create your own fonts. The key phrase is “any font installed on the system.” If
you develop your game to use some strange font that exists on only a few machines, you have to make sure
you install the font as part of the installation for your game.

However, you may not want to require that a font be added to a user’s machine—doing so makes the font
available for use with other applications, but it also burdens your user’s computer unnecessarily. If you were
writing a word processing utility it would be appropriate, but you’re writing games! So, when you want a
font, you’ll load it temporarily and unload it later.

AddFontResource
Loading a font temporarily into the system font table is pretty easy. You use AddFontResource:

int AddFontResource(
LPCTSTR lpszFilename, // font file name

);

Isometric Game Programming with DirectX 7.0

TeamLRN

83

On failure, this function returns 0. On success, it returns the number of fonts added. Its parameter is
described in Table 3.1.

When you are done with that font, you remove it from the system by using RemoveFontResource.

RemoveFontResource
BOOL RemoveFontResource(

LPCTSTR lpFileName, // name of font file
);

This returns nonzero on success or 0 on failure. This function has the exact same parameter list as
AddFontResource.

CreateFont
Once you have a font resource loaded, you can create a font (HFONT) by using CreateFont.

HFONT CreateFont(
int nHeight, // height of font
int nWidth, // average character width
int nEscapement, // angle of escapement
int nOrientation, // baseline orientation angle
int fnWeight, // font weight
DWORD fdwItalic, // italic attribute option

Fonts, Bitmaps, and Regions

Table 3.1 AddFontResource Parameter
AddFontResource Parameter Purpose

lpszFilename A string containing the file name from which to load
the font into the system font table

84

DWORD fdwUnderline, // underline attribute option
DWORD fdwStrikeOut, // strikeout attribute option
DWORD fdwCharSet, // character set identifier
DWORD fdwOutputPrecision, // output precision
DWORD fdwClipPrecision, // clipping precision
DWORD fdwQuality, // output quality
DWORD fdwPitchAndFamily, // pitch and family
LPCTSTR lpszFace // typeface name

);

Scared yet? Yes, this function is a long one. Luckily, you usually won’t need to worry about many of the
parameters. Most of them are concerned with localization, and in those fields, you’ll just pick whatever the
default value is.

CreateFont returns an HFONT that is the closest match to what is described by all of the parameters. For
the most part, the default value for these parameters is 0. Table 3.2 explains the parameter list.

Isometric Game Programming with DirectX 7.0

Table 3.2 CreateFont Parameters
CreateFont Parameter Purpose

nHeight The desired average height of the font, in logical units

nWidth The desired average width of the font, in logical units

nEscapement The angle at which the font is to be drawn, in tenths
of a degree

nOrientation The angle at which the font’s characters are to be drawn,
in tenths of a degree

fnWeight The boldness of the font

fdwItalic TRUE for italic, FALSE for nonitalic

fdwUnderline TRUE for underline, FALSE for nonunderline

fdwStrikeOut TRUE for strikeout, FALSE for nonstrikeout

fdwCharSet The type of character set you want

fdwOutputPrecision The desired precision

fdwQuality The desired quality

fdwPitchAndFamily The family of the font and the pitch of the font

lpszFace The typeface to use

TeamLRN

85

CreateFont has lots of parameters, and most of them are used only when localization is an issue.
(Localization is a vast topic, and I’m not going to explore it here. Just be aware that making your games
easy to localize is a good idea, because people from many countries may want to play, and you can’t always
assume that they speak your language.)

With the exception of nHeight and lpszFace, you can get away with using all 0s in your calls to
CreateFont. 0 loads the default font.

You can specify any value for nHeight. Inside
GDI is a font mapper, and it will try its hardest
to find a font that matches the height you
ask for. Putting 0 in nHeight loads the
default height.

lpszFace is the name of the font. If, for exam-
ple, you wanted to use Tahoma, it would
contain Tahoma.

Outputting with Fonts
In order to use a font in a given DC, you first have to bring it into the DC using SelectObject, which
should be nothing new to you. Again, be sure to save the old font to restore it later. Also, when you are
finished with a font (usually at the termination of a program), be sure to destroy it with a call to
DeleteObject.

Next, you have to select a background mode and a text color. You do this with the SetBkMode and
SetTextColor functions.

SetBkMode
int SetBkMode(

HDC hdc, // handle to DC
int iBkMode // background mode

);

On failure, this function returns 0. On success, it returns the previous background mode.

Fonts, Bitmaps, and Regions

NOTE
You may have noticed that many of the
CreateFont parameters speak of “logical
units.” In all of your cases, a logical unit is
one pixel, because you use a mapping mode
called MM_TEXT.There is more than just this
one mapping mode.This is yet another part
of GDI’s device independence.You can specify
arbitrary mapping modes for different
devices.This is just an FYI. If you’re curious
about mapping modes, read about the
SetMapMode function in the help files.

86

The hdc parameter is (of course) a handle to a device context for which you are setting the background
mode. iBkMode is the new background mode, and it is either TRANSPARENT or OPAQUE. This is almost
unnecessary to say, but TRANSPARENT will not write in the background color, and OPAQUE will.

SetTextColor
COLORREF SetTextColor(

HDC hdc, // handle to DC
COLORREF crColor // text color

);

This returns the previous text color or CLR_INVALID on failure. (In this case, returning 0 would be a valid
color.)

The hdc parameter is the handle to the device context for which you are setting the text color, and
crColor is the color itself.

TextOut
Finally, to actually get text on the screen, you use the TextOut function.

BOOL TextOut(
HDC hdc, // handle to DC
int nXStart, // x-coordinate of starting position
int nYStart, // y-coordinate of starting position
LPCTSTR lpString, // character string
int cbString // number of characters

);

This returns 0 on failure or nonzero on success. Table 3.3 explains the parameter list.

Isometric Game Programming with DirectX 7.0

Table 3.3 TextOut Parameters
TextOut Parameter Purpose

hdc The handle to the device context on which you want to
write characters

nXStart, nYStart The x,y location for the start of the string

lpString The text string to write

cbString The number of characters to write

TeamLRN

87

A TextOut Example

Let’s do a little example. Load up IsoHex3_1.cpp, and be sure that Paganini.ttf is in the same folder as the
project’s workspace.

IsoHex3_1.cpp is a modification of IsoHex1_1.cpp. The main differences are two extra global variables
and a modified Prog_Init and Prog_Done.

.

.

.
HFONT hfntNew=NULL;//paganini font
HFONT hfntOld=NULL;//store old font
.
.
.
bool Prog_Init()
{

//add the paganini font to the system table
AddFontResource("Paganini.ttf");

//create a font that uses paganini
hfntNew=CreateFont(-40,0,0,0,0,0,0,0,0,0,0,0,0,"Paganini");

//borrow dc from main window
HDC hdc=GetDC(hWndMain);

//select new font into dc
hfntOld=(HFONT)SelectObject(hdc,hfntNew);

//set background mode to transparent
SetBkMode(hdc,TRANSPARENT);

//set text color to blue
SetTextColor(hdc,RGB(0,0,255));

//write text to dc
TextOut(hdc,0,0,"Paganini",strlen("Paganini"));

//release dc to system
ReleaseDC(hWndMain,hdc);

Fonts, Bitmaps, and Regions

88

return(true);//return success
}
.
.
.
void Prog_Done()
{

//borrow main window dc
HDC hdc=GetDC(hWndMain);

//restore original font
SelectObject(hdc,hfntOld);

//delete the new font
DeleteObject(hfntNew);

//return dc to system
ReleaseDC(hWndMain,hdc);

//remove the paganini font
RemoveFontResource("Paganini.ttf");

}

The output looks like Figure 3.1.

Isometric Game Programming with DirectX 7.0

Figure 3.1

TextOut

TeamLRN

89

As you can see, the modifications are relatively minor. You just
added some font-loading stuff and output the text to the
window’s DC.

Take a few moments with IsoHex3_1.cpp, and play with
SetBkMode, SetTextColor, and the parameters for CreateFont.
You might even go find a font somewhere and plug it into the pro-
gram to see how it looks.

And that’s the shortest way to get a font on the screen.

DrawText
To do any real sort of application of fonts, you’ll want to use DrawText.

int DrawText(
HDC hDC, // handle to DC
LPCTSTR lpString, // text to draw
int nCount, // text length
LPRECT lpRect, // formatting dimensions
UINT uFormat // text-drawing options

);

This usually returns the height of the text outputted, but it might differ depending on the uFormat
parameter (see Table 3.5). Table 3.4 explains the parameter list.

Fonts, Bitmaps, and Regions

NOTE
TextOut, while useful, isn’t
very good at formatting
text. I usually use it to dis-
play diagnostic information
on-screen, like the mouse
position or the frame rate.

Table 3.4 DrawText Parameters
DrawText Parameter Purpose

hDC The destination device context

lpString The string of characters that you want to display

nCount The number of characters to display. Can be -1 to detect the
size of the string. In this case, lpString must be a null-termi-
nated string.

lpRect A pointer to the bounding RECT

uFormat The format in which to show the text (see Table 3.5)

90

Most of these parameters match those of TextOut, except that positioning information is in lpRect and
formatting options are in uFormat, as shown in Table 3.5.

This list is by no means exhaustive. These are just the most commonly used formatting options.

A DrawText Example

Another sample program? Sure, why not! IsoHex3_2.cpp (which is just a slightly modified
IsoHex3_1.cpp) makes use of DrawText. The differences lie totally in Prog_Init.

{
//retrieve the client rectangle
RECT rcClient;
GetClientRect(hWndMain,&rcClient);
//add the paganini font to the system table
AddFontResource("Paganini.ttf");
//create a font that uses paganini
hfntNew=CreateFont(-40,0,0,0,0,0,0,0,0,0,0,0,0,"Paganini");
//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//select new font into dc
hfntOld=(HFONT)SelectObject(hdc,hfntNew);

Isometric Game Programming with DirectX 7.0

Table 3.5 uFormat Values
uFormat Value Meaning

DT_BOTTOM Justifies text to the bottom of the rectangle. Must be used with
DT_SINGLELINE.

DT_CENTER Centers the text horizontally

DT_LEFT Aligns text to the left

DT_NOCLIP Does not perform clipping

DT_RIGHT Aligns text to the right

DT_SINGLELINE Displays the text on a single line only

DT_TOP Justifies text to the top of the rectangle

DT_VCENTER Centers text vertically. Use with DT_SINGLELINE.

TeamLRN

91

//set background mode to transparent
SetBkMode(hdc,TRANSPARENT);
//set text color to blue
SetTextColor(hdc,RGB(0,0,255));
//write text to dc
DrawText(hdc,"Paganini",-1,&rcClient,DT_CENTER | DT_VCENTER | DT_SINGLE-

LINE);
//release dc to system
ReleaseDC(hWndMain,hdc);
return(true);//return success

}

Figure 3.2 shows what it looks like.

Again, play with IsoHex3_2.cpp using different combinations of the various DT_* constants and different
RECTs. There is a lot of power in the GDI font system, and you’ll be making use of it later in
DirectDraw. Unfortunately, it’s slower than a custom system you could design specifically for a game. If
you want to further explore fonts, there’s plenty of information about them in MSDN Online.

Fonts, Bitmaps, and Regions

Figure 3.2

DrawText demo

92

Creating and Using Regions
A region is a GDI object, just like a pen, brush, or font. Regions are very powerful and flexible tools with
which to accomplish things that would otherwise be very difficult. However, because they are slow, they are
practically ignored.

A region is nothing more than a shape—a rectangle, rounded rectangle, ellipse, polygon, or multiple poly-
gons. You can do a number of things with a region. You can fill it (FillRgn), frame it (FrameRgn), or clip
with it (by selecting it into a device context). You can use it to test whether or not a point is within a given
nonrectangular shape.

Creating Regions
Regions, like any other GDI objects, are manipulated through the use of handles. In this case, the handle is
HRGN. Table 3.6 lists several different types of regions and several different functions that create them.

Most of these region creation functions mirror similar shape functions that use pens and brushes (minus
the HDC parameter, of course).

CreateEllipticRgn
HRGN CreateEllipticRgn(

int nLeftRect, // x-coord of upper-left corner of rectangle
int nTopRect, // y-coord of upper-left corner of rectangle
int nRightRect, // x-coord of lower-right corner of rectangle
int nBottomRect // y-coord of lower-right corner of rectangle

);

Isometric Game Programming with DirectX 7.0

Table 3.6 Region Creation Functions
Function Type of Region Created

CreateEllipticRgn An elliptical region

CreatePolygonRgn A polygonal region

CreateRectRgn A rectangular region

CreateRoundRectRgn A rounded rectangular region

TeamLRN

93

CreateEllipticRgn returns a handle to an elliptical region. Table 3.7 explains the parameter list.

CreatePolygonRgn
HRGN CreatePolygonRgn(

CONST POINT *lppt, // array of points
int cPoints, // number of points in array
int fnPolyFillMode // polygon-filling mode

);

CreatePolygonRgn returns a handle to a polygon region. Table 3.8 explains the parameter list.

Fonts, Bitmaps, and Regions

Table 3.7 CreateEllipticRgn Parameters
CreateEllipticRgn Parameter Purpose

nLeftRect The left x-coordinate of the bounding rectangle for
the elliptical region

nTopRect The top y-coordinate of the bounding rectangle for
the elliptical region

nRightRect The right x-coordinate of the bounding rectangle for
the elliptical region

nBottomRect The bottom y-coordinate of the bounding rectangle
for the elliptical region

Table 3.8 CreatePolygonRgn Parameters
CreatePolygonRgn Parameter Purpose

lppt A pointer to an array of POINTs that contains the
vertices of the polygon

cPoints The number of points that are pointed to by lppt

fnPolyFillMode Either ALTERNATE or WINDING. Specifies the desired
fill mode.

94

CreateRectRgn
HRGN CreateRectRgn(

int nLeftRect, // x-coordinate of upper-left corner
int nTopRect, // y-coordinate of upper-left corner
int nRightRect, // x-coordinate of lower-right corner
int nBottomRect // y-coordinate of lower-right corner

);

This returns a handle to a rectangular region. Table 3.9 explains the parameter list.

CreateRoundRectRgn
HRGN CreateRoundRectRgn(

int nLeftRect, // x-coordinate of upper-left corner
int nTopRect, // y-coordinate of upper-left corner
int nRightRect, // x-coordinate of lower-right corner
int nBottomRect, // y-coordinate of lower-right corner
int nWidthEllipse, // height of ellipse
int nHeightEllipse // width of ellipse

);

Isometric Game Programming with DirectX 7.0

Table 3.9 CreateRectRgn Parameters
CreateRectRgn Parameter Purpose

nLeftRect The left x-coordinate of the rectangle

nTopRect The top y-coordinate of the rectangle

nRightRect The right x-coordinate of the rectangle

nBottomRect The bottom y-coordinate of the rectangle

TeamLRN

95

This returns a handle to a rounded rectangular region. Table 3.10 explains the parameters.

Deleting a region is accomplished using DeleteObject, just like any other GDI object.

Using Regions
The most common use of a region is for clipping. Clipping is a method by which you draw on only a cer-
tain portion of your drawing area, similar to an artist’s use of a graphical template (you know. . . the little
plastic thingamajig with circles cut into it).

To use a region for clipping, you simply bring it into a device context using
SelectObject. Unlike other types of GDI objects, SelectObject does-
n’t return the previously selected region for that device context. Instead, it
returns one of the following values:

• SIMPLEREGION The region consists of a single rectangle
• COMPLEXREGION The region consists of more than one rectangle
• NULLREGION The region is empty

Let’s do a quick example to show you how to use regions for clipping.
Load up IsoHex3_3.cpp.

Fonts, Bitmaps, and Regions

Table 3.10 CreateRoundRectRgn Parameters
CreateRoundRectRgn Parameter Purpose

nLeftRect The left x-coordinate of the bounding rectangle

nTopRect The top y-coordinate of the bounding rectangle

nRightRect The right x-coordinate of the bounding
rectangle

nBottomRect The bottom y-coordinate of the bounding
rectangle

nWidthEllipse The width of the ellipse used to round the
corners

nHeightEllipse The height of the ellipse used to round the
corners

NOTE
Regions are the only
GDI objects for
which this strange
behavior occurs.

96

This example has a few extra global variables:

//pens, old and new
HPEN hpenNew=NULL;
HPEN hpenOld=NULL;
//region
HRGN hrgnClip=NULL;

Also, Prog_Init and Prog_Done have been modified:

bool Prog_Init()
{

//create a solid red pen
hpenNew=CreatePen(PS_SOLID,0,RGB(255,0,0));

//retrieve the client rectangle for the window
RECT rcClient;
GetClientRect(hWndMain,&rcClient);

//create an elliptical region
hrgnClip=CreateEllipticRgn(0,0,rcClient.right,rcClient.bottom);

//borrow the dc from the main window
HDC hdc=GetDC(hWndMain);

//select the new pen into the dc, and keep the old one
hpenOld=(HPEN)SelectObject(hdc,hpenNew);

//select the clipping region into the dc
SelectObject(hdc,hrgnClip);

//make vertical stripes
int nStripeX=rcClient.right/10;
int nCount;

//loop through and draw the stripes
for(nCount=0;nCount<10;nCount++)
{

//move to the top of the client area
MoveToEx(hdc,nStripeX*nCount,0,NULL);

//line to the bottom of the client area

Isometric Game Programming with DirectX 7.0

TeamLRN

97

LineTo(hdc,nStripeX*nCount,rcClient.bottom);
}

//make the horizontal stripes
int nStripeY=rcClient.bottom/10;

//loop through and draw the stripes
for(nCount=0;nCount<10;nCount++)
{

//move to the left of the client area
MoveToEx(hdc,0,nStripeY*nCount,NULL);

//line to the right of the client area
LineTo(hdc,rcClient.right,nStripeY*nCount);

}

//return the borrowed dc to the system
ReleaseDC(hWndMain,hdc);

return(true);//return success
}
.
.
.
void Prog_Done()
{

//borrow the dc from the main window
HDC hdc=GetDC(hWndMain);

//restore the old pen
SelectObject(hdc,hpenOld);

//return the dc to the system
ReleaseDC(hWndMain,hdc);

//delete our gdi objects
DeleteObject(hrgnClip);
DeleteObject(hpenNew);

}

Fonts, Bitmaps, and Regions

98

Without the region stuff, you’d get horizontal and vertical stripes (10 of each) running the length and
width of your window’s client area. With this example, you get the same effect, but the lines only get writ-
ten to the elliptical area you have selected as the clipping region, as shown in Figure 3.3.

For the moment, click on another window, obscuring this window, and then switch back to the first win-
dow. You might see something like Figure 3.4.

Isometric Game Programming with DirectX 7.0

Figure 3.3

Elliptical region

Figure 3.4

The dangers of using

clipping regions

TeamLRN

99

As you can see, Windows doesn’t erase the part that lies outside of the clipping area. This is an important
thing to think about when using regions. It’s always best to keep a region that encompasses the entire client
area that you select into the DC after you no longer need a DC that covers only a portion.

To see the differences between the various clipping areas you can have, let’s modify IsoHex3_3.cpp slightly.
Replace the line with CreateEllipticRgn in it with the following line:

hrgnClip=CreateRoundRectRgn(0,0,rcClient.right,rcClient.bottom,rcClient.right/2,r
cClient.bottom/2);
If you run this again, you’ll see the same stripes, only now they are bounded by a rounded rectangle, as
shown in Figure 3.5.

Here’s something you may have
noticed: when you use these
rounded regions, the program
loads rather slowly; this is the
main downfall of regions.
Rectangular regions are much
faster than curved ones.

Fonts, Bitmaps, and Regions

Figure 3.5

Rounded rectangle

clipping region

NOTE
Why are nonrectangular regions slower than rectangular
ones? The answer is that even a circular or elliptical region
still consists of rectangles. Most of these rectangles are
just a single pixel high.When you then take that region,
select it in a device context, and use it to clip your output,
each pixel drawn has to be compared to this gigantic list
of rectangles to check whether or not the pixel is within
the clipping area.As you might imagine, this can take
quite a bit of time if the clipping region is oddly shaped.
For this reason, when performance counts, use only
rectangular regions, and use regions only if you absolute-

ly must.

100

Change that line again to read as follows:

hrgnClip=CreateRectRgn(0,0,rcClient.right,rcClient.bottom);

When you compile and run this, it should come up a bit faster than the others did, because it’s much easi-
er to clip to a rectangle than an ellipse or a rounded rectangle (computers don’t like doing curves).

We’re going to do one more little modification, using a polygon region. Replace the region creation func-
tion with the following code:

POINT ptVertice[4];
ptVertice[0].x=rcClient.right/2;
ptVertice[0].y=0;
ptVertice[1].x=rcClient.right;
ptVertice[1].y=rcClient.bottom/2;
ptVertice[2].x=rcClient.right/2;
ptVertice[2].y=rcClient.bottom;
ptVertice[3].x=0;
ptVertice[3].y=rcClient.bottom/2;
hrngClip=CreatePolygonRgn(ptVertice,4,ALTERNATE);

This sets up a small array of points and creates a polygonal region based on them, using the ALTERNATE
fill mode. (Refer to Chapter 2, “The World of GDI and Windows Graphics,” for the different polygon fill
modes.) Figure 3.6 shows what this region looks like.

Isometric Game Programming with DirectX 7.0

Figure 3.6

A polygon clipping

region

TeamLRN

101

You’ll notice that this polygon region takes longer to run than a rectangular region but is not quite as slow
as one of the curved regions. Clipping to arbitrary lines is still more difficult than a rectangle, but it’s easi-
er than clipping to curves.

Other Uses for Regions
While clipping is the most prevalent use for regions, it is not the only use. You can also use regions to fill
in arbitrary shapes, as you would a rubber stamp on paper.

I won’t spend too much time on this subject; I’ll just list a few functions and leave you to experiment with
them. You won’t be seeing these functions again, but I didn’t feel right leaving the topic of regions without
at least showing them to you.

FillRgn
BOOL FillRgn(

HDC hdc, // handle to device context
HRGN hrgn, // handle to region to be filled
HBRUSH hbr // handle to brush used to fill the region

);

This returns nonzero on success or 0 on failure. Fills a shape (specified by hrgn) on hdc using a
brush (hbr).

PaintRgn
BOOL PaintRgn(

HDC hdc, // handle to device context
HRGN hrgn // handle to region to be painted

);

This is similar to the FillRgn function, except that the brush used to fill the region is the one that is cur-
rently selected into the hdc.

FrameRgn
BOOL FrameRgn(

HDC hdc, // handle to device context
HRGN hrgn, // handle to region to be framed
HBRUSH hbr, // handle to brush used to draw border
int nWidth, // width of region frame
int nHeight // height of region frame

);

Fonts, Bitmaps, and Regions

102

This returns nonzero on success or 0 on failure. It outlines the region with a brush. nWidth and nHeight
are the width and height of the frame used to surround the region.

Take a breath. We’re done with regions. That leaves only one GDI object to cover, easily the most impor-
tant of all.

Creting and Using Bitmaps
And, at long last, bitmaps! In your games, bitmaps (in whatever form) will be your stock in trade. Your ter-
rain, your units, and just about everything else will exist in the form of bitmaps that you will load into
your program and use on-screen.

You’ll be primarily concerned with two types of bitmaps: those that are blank, and those that you load
from disk.

Creating a Blank Bitmap
To create a blank bitmap, use CreateCompatibleBitmap. A compatible bitmap has the same color format
of a device context (you usually borrow the DC from the main window and make your blank bitmaps
compatible with it).

HBITMAP CreateCompatibleBitmap(
HDC hdc, // handle to DC
int nWidth, // width of bitmap, in pixels
int nHeight // height of bitmap, in pixels

);

This returns a handle to the created bitmap. Table 3.11 explains the parameters.

Isometric Game Programming with DirectX 7.0

Table 3.11 CreateCompatibleBitmap Parameters
CreateCompatibleBitmap Parameter Purpose

hdc The device context with which this bitmap
is to be compatible

nWidth The width of the bitmap

nHeight The height of the bitmap

TeamLRN

103

Loading a Bitmap from Disk
To load a bitmap from disk, use LoadImage. LoadImage is used not only for bitmaps, but also for icons
and cursors. As a result, the return type has to be typecast.

HANDLE LoadImage(
HINSTANCE hinst, // handle to instance
LPCTSTR lpszName, // name or identifier of the image
UINT uType, // image type
int cxDesired, // desired width
int cyDesired, // desired height
UINT fuLoad // load options

);

This returns a generic handle, which must be typecast into the proper handle type. Table 3.12 explains the
parameter list.

Fonts, Bitmaps, and Regions

CAUTION
A bitmap created by a call to CreateCompatibleBitmap will contain
garbage (whatever information was in that memory before the bitmap
was created). In order to fix this, it must be selected into the DC and
cleared out using FillRect or the like.

Table 3.12 LoadImage Parameters
LoadImage Parameter Purpose

hinst If this bitmap were a resource within the executable, this
would be the application’s handle. Since you are loading
from disk, this can be NULL.

lpszName The file name of the bitmap you want to load

uType The type of image to load (one of IMAGE_BITMAP,
IMAGE_CURSOR, or IMAGE_ICON)

cxDesired The desired width of the bitmap (0 for the default width)

cyDesired The desired height of the bitmap (0 for the default height)

fuLoad Flags.When loading a bitmap, this should be LR_LOADFROM-
FILE.

104

Using a Bitmap
In order to be of any use, a bitmap must be selected into a device context. Since you usually don’t want
bitmaps selected into your window’s DC, you will create memory DCs.

Here are three code snippets. When you load bitmaps, create blank bitmaps, or get rid of a bitmap, these
three code snippets are rather close to the actual code you will need.

Snippet 1: Creating a Blank Bitmap
In this first code snippet, you do all the work necessary to create a blank bitmap except for clearing it out
with FillRect. By the end of this snippet, hdcMem is a memory DC, hbmNew contains a newly created
bitmap, hbmOld contains the bitmap originally in hdcMem, and the new bitmap is selected into the new
DC.

//////////////////////////////////////
//Creating a blank bitmap
//////////////////////////////////////
//borrow window’s dc
HDC hdcCompatible=GetDC(hWndMain);
//hdcMem is an HDC global
hdcMem=CreateCompatibleDC(hdcCompatible);
//hbmNew is an HBITMAP global
hbmNew=CreateCompatibleBitmap(hdcCompatible,WIDTH,HEIGHT);
//return the borrowed dc to the system
ReleaseDC(hWndMain,hdcCompatible);
//hbmOld is an HBITMAP global
//select new bitmap into dc
hbmOld=(HBITMAP)SelectObject(hdcMem,hbmNew);

Snippet 2: Loading a Bitmap from Disk
You may notice that there is very little difference between the first snippet and the second. That’s because
the only difference is where you obtain the bitmap. In other words, you use LoadImage instead of
CreateCompatibleBitmap.

///////////////////////////
//Loading a bitmap
///////////////////////////
//borrow window’s dc
HDC hdcCompatible=GetDC(hWndMain);
//hdcMem is an HDC global

Isometric Game Programming with DirectX 7.0

TeamLRN

105

hdcMem=CreateCompatibleDC(hdcCompatible);
//return the borrowed dc to the system
ReleaseDC(hWndMain,hdcCompatible);
//hbmNew is an HBITMAP global
hbmNew=(HBITMAP)LoadImage(NULL,”FileName.bmp”,IMAGE_BITMAP,0,0,LR_LOADFROMFILE);
//hbmOld is an HBITMAP global
//select new bitmap into dc
hbmOld=(HBITMAP)SelectObject(hdcMem,hbmNew);

Snippet 3: Cleaning Up
This final snippet returns the original bitmap into the memory device context and deletes the bitmap and
the device context.

//////////////////////////
//Getting rid of a bitmap
//////////////////////////
//restore old bitmap to dc
SelectObject(hdcMem,hbmOld);
//delete bitmap
DeleteObject(hbmNew);
//delete dc
DeleteDC(hdcMem);

There: short, sweet, and for general use.

Consider the lengths of these code snippets. They aren’t long, but if you had 100 bitmaps, they would add
up quickly. Don’t worry—later we’ll develop a class to help wrap this up into a neat package. (Oh, don’t
groan like that. It’ll be easy.)

BitBlt
Now comes the fun part—moving information from one device context to another. This is called blitting,
and the primary function in GDI to do this task is called BitBlt. (BitBlt stands for “bit block transfer.”)

BOOL BitBlt(
HDC hdcDest, // handle to destination DC
int nXDest, // x-coord of destination upper-left corner
int nYDest, // y-coord of destination upper-left corner
int nWidth, // width of destination rectangle
int nHeight, // height of destination rectangle
HDC hdcSrc, // handle to source DC

Fonts, Bitmaps, and Regions

106

int nXSrc, // x-coordinate of source upper-left corner
int nYSrc, // y-coordinate of source upper-left corner
DWORD dwRop // raster operation code

);

This returns nonzero on success or 0 on failure. Table 3.13 explains the parameter list.

BitBlt copies the contents of the source device context (hdcSrc), starting at nXSrc,nYSrc and copying a
width of nWidth and a height of nHeight to the destination device context (hdcDest) at nXDest,nYDest.
It combines the source with the destination, depending on the value of dwRop.

A Word About Raster Operations
Most of the parameters of BitBlt are self-explanatory; however, dwRop is not among them. A raster oper-
ation is just a manner in which the source and destination pixels in a blit are combined.

Isometric Game Programming with DirectX 7.0

Table 3.13 BitBlt Parameters
BitBlt Parameter Purpose

hdcDest The destination device context

nXDest The destination x-coordinate

nYDest The destination y-coordinate

nWidth The destination width

nHeight The destination height

hdcSrc The source device context

nXSrc The source x-coordinate

nYSrc The source y-coordinate

dwRop The desired raster operation

TeamLRN

107

Table 3.14 lists some of the more commonly used raster ops.

Example time. Load up IsoHex3_4.cpp, and be sure to have IsoHex3_4.bmp in the same folder as
the project.

In this example, clicking the mouse button blits a bitmap onto the window. In Prog_Init and Prog_Done,
I simply modified the code snippets we covered a little earlier (so I won’t repeat them here). The work is
done by the WM_LBUTTONDOWN handler in TheWindowProc.

case WM_LBUTTONDOWN:
{

//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//blit from the memory dc to the window’s dc
BitBlt(hdc,LOWORD(lParam)-BITMAPWIDTH/2,HIWORD(lParam)-

BITMAPHEIGHT/2,BITMAPWIDTH,BITMAPHEIGHT,hdcMem,0,0,SRCCOPY);
//return the borrowed dc to the system
ReleaseDC(hWndMain,hdc);
//handled, so return 0
return(0);

}break;

Fonts, Bitmaps, and Regions

Table 3.14 Raster Ops
Raster Operation Constant Meaning

SRCCOPY The source is copied to the destination with no regard
for the contents of the destination.

SRCAND The source and destination are combined using the
AND operation. Useful for bitmasking.

SRCPAINT The source and destination are combined using the OR
operation. Useful for adding images while being nonde-
structive.

SRCINVERT The source and destination are combined using the
XOR operation. Blitting the same image to the same
location twice using SRCINVERT restores the original
contents of the destination. Useful for custom cursors.

108

BITMAPWIDTH and BITMAPHEIGHT are just constants that I added earlier in the application.

Figure 3.7 shows what this application looks like.

You may notice that one image may overwrite part of another if they are too close together. This is
because you are using SRCCOPY, which has no regard for the destination image.

Modify IsoHex3_4.cpp to use SRCPAINT instead, as shown in Figure 3.8.

Isometric Game Programming with DirectX 7.0

Figure 3.7

Blitting bits

Figure 3.8

Demonstrating the

SRCPAINT raster

operation

TeamLRN

109

Well, now you don’t have the problem of the black corners obscuring the image below, but the images start
to sort of merge, and it’s hard to tell where each one is. The reason for this is that the image uses only
three colors—black (RGB(0,0,0)), dark green (RGB(0,128,0)), and bright green (RGB(0,255,0)).

Table 3.15 specifies how each of these combine when using SRCPAINT.

Table 3.15 Color Combination Using SRCPAINT

Bitwise Operator Review
If you’re confused, I’m about to help. Let’s review for a moment some of the bitwise operators—namely,
AND, OR, and XOR. For a given combination of bits, you combine them in different ways. AND yields a TRUE
(1) only if both source bits are true. OR yields a TRUE as long as at least one of the source bits is true. XOR
yields TRUE only if one but not both of the source bits are true. Table 3.16 is a combined truth table for
these operators.

Fonts, Bitmaps, and Regions

Table 3.16 Truth Tables for AND, OR, and XOR
First Bit Second Bit First AND Second First OR Second First XOR Second

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

110

How Bitwise Operators Combine Colors
Now, let’s examine two colors, bright red (RGB(255,0,0)) and bright blue (RGB(0,0,255)). First, you
must convert these colors into their binary equivalents.

Next, combine the individual bits using the appropriate bitwise operator.

AND
00000000 00000000 11111111 (red)
11111111 00000000 00000000 (blue)

00000000 00000000 00000000 (black)

The result is black (RGB(0,0,0)). When you AND red and blue, you get black, because red and blue have no
bits in common.

OR
00000000 00000000 11111111 (red)
11111111 00000000 00000000 (blue)

11111111 00000000 11111111 (magenta)

The result is magenta (RGB(255,0,255)). Since either or both bits can be set to yield a 1, you thus have a
1 for any column in which there is at least a single 1.

Isometric Game Programming with DirectX 7.0

NOTE
If you look back at the RGB macro in Chapter 2, you see that the
green component gets shifted left by 8 bits and the blue compo-
nent gets shifted by 16 bits, so the binary formats look some-
thing like this:

Bright Red = 00000000 00000000 11111111
Bright Blue = 11111111 00000000 00000000

TeamLRN

111

XOR
00000000 00000000 11111111 (red)
11111111 00000000 00000000 (blue)

11111111 00000000 11111111 (magenta)

The result is magenta (RGB(255,0,255)), which is the same as the result from OR. Since the two colors
have no bits in common, XOR combines to make the same result as an OR.

XOR, Take Two

Let’s take the resulting value and XOR it with blue again.
11111111 00000000 11111111 (magenta)
11111111 00000000 00000000 (blue)

00000000 00000000 11111111 (red)

You are left with red again, because both sets of bits have all blue bits set. This shows you that XORing the
same thing twice leaves you with what you started out with.

Are you wondering what I’m up to, or have you figured it out already?

Raster Operation Example
Let’s do another example. Load up IsoHex3_5.cpp.

This example looks a lot like IsoHex3_4.cpp. The main differences are the lack of a WM_LBUTTONDOWN
message handler, the addition of a global variable and a function, and a modification of Prog_Init.

.

.

.
//cursor location
POINT ptCursor;
.
.
.

case WM_MOUSEMOVE:
{

//extract x and y from lParam
int x=LOWORD(lParam);
int y=HIWORD(lParam);
//borrow window’s dc

Fonts, Bitmaps, and Regions

112

HDC hdc=GetDC(hWndMain);
//write the cursor
ShowTheCursor(hdc);
//update the cursor position
ptCursor.x=x;
ptCursor.y=y;
//write the cursor
ShowTheCursor(hdc);

//return dc to system
ReleaseDC(hWndMain,hdc);
//handled, so return 0
return(0);

}break;
.
.
.
bool Prog_Init()
{

//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//create a memory dc
hdcMem=CreateCompatibleDC(hdc);
//load in the bitmap
hbmNew=(HBITMAP)LoadImage(NULL,"IsoHex3_5.bmp",IMAGE_BITMAP,0,0,LR_LOAD-

FROMFILE);
//select bitmap into memory dc
hbmOld=(HBITMAP)SelectObject(hdcMem,hbmNew);
//set original cursor position
ptCursor.x=0;
ptCursor.y=0;
//return dc to system
ReleaseDC(hWndMain,hdc);
return(true);//return success

}
.
.
.
//show the cursor
void ShowTheCursor(HDC hdc)
{

Isometric Game Programming with DirectX 7.0

TeamLRN

113

BitBlt(hdc,ptCursor.x-BITMAPWIDTH/2,ptCursor.y-
BITMAPHEIGHT/2,BITMAPWIDTH,BITMAPHEIGHT,hdcMem,0,0,SRCINVERT);
}

The ptCursor variable is a POINT, and it keeps track of your “cursor” position. You load IsoHex3_5.bmp
(it’s a white diamond shape) and select it into hdcMem. In Prog_Init, you give this position an initial value
of (0,0). It gets shown in the initial call to WM_PAINT.

During the WM_MOUSEMOVE, you call ShowTheCursor again. Since ShowTheCursor uses SRCINVERT to show
the cursor (using the XOR operator), it erases the cursor currently showing. Then, you update the cursor
position and show the cursor again. You have just a black background currently, so this doesn’t look like a
big deal. Later, when we get to double buffering, the uses of ShowTheCursor will become much more
apparent. Figure 3.9 shows the output.

An Application of Raster Operations:
Bitmasking
Now that you’ve seen at least one application of raster operations, let’s look at another—bitmasking.
Bitmasking is a method of writing oddly-shaped graphics when you can only blit rectangles. It is one of sev-
eral methods by which you can achieve transparency. For bitmasking to work you must rely on a few rules
of bitwise operators.

Fonts, Bitmaps, and Regions

Figure 3.9

Cursor demo

114

First Rule of Bitwise Operators
Any bit, when you AND it with a 1, yields the bit’s value.

0 AND 1=0
1 AND 1=1

Therefore, any color ANDed with white (11111111 11111111 11111111) gives you the original color.

Second Rule of Bitwise Operators
Any bit, when you AND it with 0, yields 0.

0 AND 0=0
1 AND 0=0

Therefore, any color ANDed with black (00000000 00000000 00000000) gives you black.

Third Rule of Bitwise Operators
Any bit ORed with 0 yields the bit’s value.

0 OR 0=0
1 OR 0=1

So, using the preceding three rules, you can write any oddly-shaped graphic using BitBlt and the raster
operations SRCAND and SRCPAINT.

Load up IsoHex3_6.cpp, and be sure to have IsoHex3_6-1.bmp and IsoHex3_6-2.bmp in the project
folder. This example is pretty much just an enhanced IsoHex3_4.cpp. An extra bitmap is loaded, and dur-
ing the WM_LBUTTONDOWN, there are two BitBlt calls instead of just one. I won’t put the code here; you can
take a look yourself. Figure 3.10 shows the output.

Isometric Game Programming with DirectX 7.0

Figure 3.10

Bitmasks in action

TeamLRN

115

Bitmasking is really important if you’re going to use GDI to make isometric or hexagonal games (since iso-
hex games tend not to use rectangular areas). Once you get into DirectDraw, you’ll use transparency
instead of bitmasking, but it’s good to know about bitmasking, since you may still make your level editors
and tools using GDI.

A Bitmap Management Class
As you’ve seen, the creation or loading of each bitmap, the selection of them into a device context, and the
later destruction of them requires several lines of code, and with the more bitmaps and device contexts
you add, the more code you get. Logically, you would wrap this activity, either in function form or class
form. I’m something of an object-oriented nut, so I’m going to make a class. If you’re a C person, I’ll try
to go easy on you.

First, our class (which I call CGDICanvas) has two purposes. One is to load a bitmap, and the other is to
make a blank bitmap of an arbitrary size. You will make a member function for each of these. Also, our
class must take care of deleting all the associated bitmaps and DCs, so there will be a member function for
that as well.

The data logically contained in CGDICanvas consists of two handles to bitmaps and a handle to a DC.
One last thing: I don’t want to have to pull out a member each time in order to do a BitBlt using
CGDICanvas, so I’m going to add a conversion operator.

Here’s the declaration of CGDICanvas (which you can find in GDICanvas.h):

class CGDICanvas
{
private:

//memory dc
HDC hdcMem;
//new bitmap
HBITMAP hbmNew;
//old bitmap
HBITMAP hbmOld;
//width and height
int nWidth;
int nHeight;

public:
//constructor
CGDICanvas();
//loads bitmap from a file
void Load(HDC hdcCompatible,LPCTSTR lpszFilename);
//creates a blank bitmap
void CreateBlank(HDC hdcCompatible, int width, int height);

Fonts, Bitmaps, and Regions

116

//destroys bitmap and dc
void Destroy();
//converts to HDC
operator HDC();
//return width
int GetWidth();
//return height
int GetHeight();
//destructor
~CGDICanvas();

};

Private means that you can’t touch those members from outside of the class, and public means you can. It’s a
security thing. Allowing the user to play with hdcMem or hbmNew could be disastrous, so I made them pri-
vate.

Something else that might be throwing you is the functions in the public section—especially the operator.
The power of C++ classes is such that you can take what would normally be a struct (which is what the
private part of the class looks like) and add functions that operate on that data.

Here are the equivalent C declarations to do the same thing:

struct GDICanvas
{

//memory dc
HDC hdcMem;
//new bitmap
HBITMAP hbmNew;
//old bitmap
HBITMAP hbmOld;
//width and height
int nWidth;
int nHeight;

};
//loads bitmap from a file
void GDICanvas_Load(struct GDICanvas* pgdic,HDC hdcCompatible,LPCTSTR
lpszFilename);
//creates a blank bitmap
void GDICanvas_CreateBlank(struct GDICanvas* pgdic,HDC hdcCompatible, int width,
int height);
//destroys bitmap and dc
void GDICanvas_Destroy(struct GDICanvas* pgdic,);

Isometric Game Programming with DirectX 7.0

TeamLRN

117

And there would be nothing wrong with having these declarations. However, since the functions and the
struct are tightly coupled (the functions are of no use except with the struct), it makes sense to make it a
class.

You may have noticed that some of the functions were missing in the declarations for C. Getting the
width, height, or hdc would just be done through the struct, so the extra functions were unnecessary. Also,
the CGDICanvas and ~CGDICanvas were missing (these are the constructor and destructor). In C++, the
constructor is used to initialize the values of a class, and a destructor makes sure that the class cleans up
after itself. You never call either of these functions.

You can take a look at the implementation of CGDICanvas on your own (it’s in GDICanvas.cpp). There’s
not much to it, really. It just has the various code snippets for loading, making, and destroying bitmaps
and DCs.

Loading Images with CGDICanvas
With CGDICanvas, loading images is much easier.

//declare a CGDICanvas variable
CGDICanvas gdicImage;
//borrow the window’s dc
HDC hdc=GetDC(hWndMain);
//load the image
gdicImage.Load(hdc,"filename.bmp");
//release the window’s dc
ReleaseDC(hWndMain,hdc);

Creating a Blank Bitmap with CGDICanvas
To create a blank bitmap instead, you can replace gdicImage.Load with this:

//create blank image
gdicImage.CreateBlank(hdc,100,100);

Do this to destroy it later:

gdicImage.Destroy();

You can see that this is a much more simplified process. CGDICanvas has a few other features of which you
should be aware.

Fonts, Bitmaps, and Regions

118

CGDICanvas Information Retrieval Functions
To retrieve the width or height of the image, you can use GetWidth or GetHeight.

//get width and height
int w=gdicImage.GetWidth();
int h=gdicImage.GetHeight();

Conversion to HDC
Also, because of the operator HDC(), you can use a CGDICanvas anywhere that an HDC is needed.

//blit from the image
BitBlt(hdcDst,0,0,gdicImage.GetWidth(),gdicImage.GetHeight(),gdicImage,0,0,SRC-
COPY);

You have now drastically simplified your life (at least in the loading and creating bitmaps area) with
CGDICanvas.

A CGDICanvas Example
Load up IsoHex3_7.cpp. It requires the use of GDICanvas.h and GDICanvas.cpp, so be sure to have them
in there. Also, be sure to have the IsoHex3_7 bitmaps in the project directory.

Compile and run IsoHex3_7.cpp. It does the exact same thing as IsoHex3_6.cpp, except that it uses
CGDICanvas, which makes much of the initialization and cleanup code shorter. As you can see, Prog_Init
is quite a bit shorter.

bool Prog_Init()
{

//borrow dc from main window
HDC hdc=GetDC(hWndMain);
//load the images
gdicTile.Load(hdc,"IsoHex3_7-1.bmp");
gdicMask.Load(hdc,"IsoHex3_7-2.bmp");
//return dc to system
ReleaseDC(hWndMain,hdc);
return(true);//return success

}

Isometric Game Programming with DirectX 7.0

TeamLRN

119

See how much easier it is?

You’ll use GDICanvas quite a bit (which is why it doesn’t have a normal IsoHexX_Y name). Even when
you get into DirectDraw, you will still use GDICanvas to load your graphics.

Double Buffering with GDI
One thing that may be vexing you is that when you switch from one of the IsoHex examples and then
switch back, most if not all of the content is erased
by the windows that were in front. This is annoy-
ing in little sample cases like the ones we have
been doing here, but it would be disastrous in any
sort of real application (like a game). This con-
tent-erasure happens because Windows doesn’t
keep a copy of your client area, except on the
screen, so if something draws over it you’re out
of luck.

Not to worry, though: you can protect yourself
against losing content by double buffering. A
Double buffer is nothing more than an image
stored elsewhere (that is, not on the screen) that
is copied to the screen as it is needed. To double
buffer, you need a blank bitmap selected into a
DC, two Styrofoam cups, and a string. (Just kid-
ding about the Styrofoam cups and string.)

And what you do with this blank bitmap is write to it instead of to the main window’s DC. Doing so cre-
ates a problem, however: updating the window’s client area. If you draw to your double buffer, you cannot
see the double buffer unless you copy it onto your window; there are a few ways in which you can do so.
One, you could blit the contents of the double buffer to the window every frame (in Prog_Loop). That’s
one solution, but not the one you want. Two, you could update only the regions that change. As a game
programmer, you never want to draw anything you don’t have to, and you especially never want to redraw
anything you don’t have to. So solution one is out, and two is in.

How to implement this fine idea? Use an update rectangle. Here’s how it will work: if the update rectangle
is an empty rectangle, you will do no drawing; if the update rectangle is not empty, you will copy the con-
tents of the double buffer to the screen, but only from that rectangle. Now that you know how you’ll be
drawing with it, you also need to know how you’ll determine the update rectangle.

Fonts, Bitmaps, and Regions

NOTE
This blank bitmap has to be large enough to
contain the entire client area of your applica-
tion.With the examples we’ve been doing,
this isn’t a difficult feat. Just make the blank
bitmap the size of the client area after you
have adjusted it. However, if you were making
an application where the user can resize the
border, you’d have to make the blank bitmap
larger—say, the size of the entire screen
(which you would retrieve by using
GetSystemMetrics). Just something to think
about.

120

When the update rectangle is empty, any rectangle added to it becomes the new update rectangle. When
the update rectangle is not empty, any rectangle added to it is combined with the new rectangle using
UnionRect. When WM_PAINT is called, you add a rectangle the size of the client area to the update
rectangle.

Double Buffer Example
Load up IsoHex3_8.cpp. You’ll need the IsoHex3_8 bitmaps, GDICanvas.h, and GDICanvas.cpp.

Again, this example looks exactly like IsoHex3_6 and IsoHex3_7. However, if you switch to another
application and obscure some or all of the example, when you return, the contents of the client area
remain because of the double buffer (gdicBackbuffer in the code).

Creating the Double Buffer

Creation of the double buffer consists of simply a few function calls:

//get the client rectangle
RECT rcClient;
GetClientRect(hWndMain,&rcClient);
//create a blank bitmap with the client area’s dimensions
gdicBackbuffer.CreateBlank(hdc,rcClient.right,rcClient.bottom);
//clear out the blank bitmap
FillRect(gdicBackbuffer,&rcClient,(HBRUSH)GetStockObject(BLACK_BRUSH));
//clear the update region
ClearUpdate();

First, you get the client area so that you can create a double buffer of adequate size. Next, you clear out
the double buffer with a black brush (a stock object). Finally, you clear out the update area (making sure
that you initialize it properly).

The update rectangle itself is contained in a global variable called rcUpdate, declared near the top of the
source file.

Isometric Game Programming with DirectX 7.0

TeamLRN

121

Update Rectangle Management

Management of the update rectangle is done by use of three functions: ClearUpdate, AddUpdate, and
RenderUpdate.

ClearUpdate is rather simple. It just sets the update rectangle to empty.

//clears the update rectangle
void ClearUpdate()
{

//set the update rect to empty
SetRectEmpty(&rcUpdate);

}

AddUpdate does one of three things, depending on the current update rectangle and the rectangle
being added.

• If you are attempting to add an empty rectangle, it returns immediately, because no real work needs to
be done.

• If the current update rectangle is empty, it copies the added rectangle to the update rectangle.
• If the current update rectangle is not empty, AddUpdate uses UnionRect to combine the two rectangles

and places that union into rcUpdate.

//adds the update rectangle
void AddUpdate(RECT* prcAdd)
{

//if the new rectangle is empty, return without doing anything
if(IsRectEmpty(prcAdd)) return;
if(IsRectEmpty(&rcUpdate))
{

//if the rectangle is empty
//copy the new rectangle to the update rectangle
CopyRect(&rcUpdate,prcAdd);

}
else
{

Fonts, Bitmaps, and Regions

122

//if the rectangle is not empty
//create a temporary rectangle
RECT rcTemp;
//combine the new rectangle with the old rectangle in the temporary rect
UnionRect(&rcTemp,&rcUpdate,prcAdd);
//copy the temporary rectangle to the update rect
CopyRect(&rcUpdate,&rcTemp);

}
}

RenderUpdate does one of two things.

• If the update rectangle is empty, there is no need to render anything, so it returns immediately.
• If the update rectangle is not empty, it grabs the DC from the window supplied in hwndDst, copies over the

part of hdcSrc corresponding to rcUpdate, and finally clears out the update rectangle.

//renders the update
void RenderUpdate(HWND hwndDst, HDC hdcSrc)
{

//if the update rectangle is empty, return without doing anything
if(IsRectEmpty(&rcUpdate)) return;
//borrow the dc from the destination window
HDC hdcDst=GetDC(hwndDst);
//blit the update area
BitBlt(hdcDst,rcUpdate.left,rcUpdate.top,rcUpdate.right-

rcUpdate.left,rcUpdate.bottom-rcUpdate.top,hdcSrc,rcUpdate.left,rcUpdate.top,SRC-
COPY);

//return the destination dc to the system
ReleaseDC(hwndDst,hdcDst);
//clear the update area
ClearUpdate();

}

Double buffering is a good tool for any application that has to live in a window. Redrawing all content
each frame is a hassle, and it can kill performance. Using a double buffer and an update rectangle can
streamline the process somewhat.

Isometric Game Programming with DirectX 7.0

TeamLRN

123

Summary
You thought I was going to go on forever about bitmaps, didn’t you? Well, it was necessary. It’s an impor-
tant topic, and I’m still not entirely sure I gave it all the attention it deserves. In any case, I certainly hope
I’ve given you enough GDI stuff to work with.

Fonts, Bitmaps, and Regions

DirectX at a
Glance

• DirectX Components

• DirectX Configuration

CHAPTER 4

TeamLRN

125

Welcome to the wonderful world of DirectX! With it, you can grab control of your machine’s
capabilities and do a lot more a lot faster than with Windows. In the dark days before DirectX,

taking full advantage of the enhanced capabilities of hardware was the domain of DOS applications. The
first fledgling version of DirectX did little better. Now things are pretty darn good, and DirectX has
become the norm for game programming for the Windows platform.

DirectX Components
DirectX 7 (which, because of backward compatability, is included with DirectX 8) has a number of com-
ponents, of which you’ll use only a scant few. The main components and their uses are as follows:

• DirectDraw (DD). The visible component of DirectX, DirectDraw encapsulates your video driver(s). With
DirectDraw, you control the resolution of the screen, the system’s cooperation with the windowed environ-
ment (either full-screen or windowed). You also control the use of display memory. DirectDraw allows you to
program the machine independently for a variety of video cards.

• Direct3D (D3D). Direct3D is a cousin of DirectDraw. (In DirectX 8, DirectDraw and Direct3D will be
combined.) It encapsulates a 3D hardware driver if one is present or emulates one if needed. Like
DirectDraw, D3D achieves device independence. Hardware support in the driver allows the use of more of
D3D’s advanced features.

• DirectSound (DS). The audible component of DirectX, DirectSound encapsulates a computer’s sound driv-
ers. It is used to play digital sounds in a machine-independent manner.

• DirectMusic (DM). This is DirectSound’s cousin. It allows an easy (well, not easy) way to play music on a
variety of machines while still having it sound the same.

• DirectInput (DI). DirectInput encapsulates the drivers for various input devices, like keyboards, mice, joy-
sticks, gamepads, flight-yokes, and a variety of specialized controllers.

• DirectPlay (DP). DP encapsulates network drivers, allowing an independent way to get information from
one computer to another, making multiplayer games easier to create.

• DirectSetup. A minor component of DirectX, DirectSetup allows you to install the latest release of DirectX
on a user’s machine with a few simple function calls. In addition, it allows customization of the interface you
present to the user during the setup process.

DirectX Configuration
Before you get flying, you need to get DirectX set up on your machine. The first step in doing so is
installing the Software Developer’s Kit (Installing the SDK is covered in Appendix A). Once you have the
SDK installed, select Tools, Options, as shown in Figure 4.1.

DirectX at a Glance

126

You will see the Options dialog box, as shown in Figure 4.2. Click on the Directories tab, and make sure
that the top two combo boxes read WIN32 and Include files.

Isometric Game Programming with DirectX 7.0

Figure 4.1

Selecting Tools,

Options

Figure 4.2

The Options dialog box

TeamLRN

127

Click on the first empty line in the list box, and enter the path to the SDK’s Include folder, or use the
ellipsis button (...) to browse for it, as shown in Figure 4.3.

Now, click on one of the other items to unselect that line, and use the up arrow button to move your new
entry to the top of the list box. (See Figure 4.4.)

DirectX at a Glance

Figure 4.3

Adding a folder

Figure 4.4

Bringing the new

folder to the top of

the list

128

Finally, do the same thing for the library files. The result is shown in Figure 4.5.

Thankfully, you have to do this only once, and all the applications you write will have DirectX available
to them.

Well, almost. There is one last thing you have to do for each application. When you are working on your
application (and it’s best to set this up somewhat early in the development so you won’t forget and get a
bazillion errors), select Project, Settings, as shown in Figure 4.6.

Isometric Game Programming with DirectX 7.0

Figure 4.5

Library directories

TeamLRN

129

Alternatively, you can press Alt+F7 to get to the same place.

After you have done either of these, you will be met with the dialog box shown in Figure 4.7.

DirectX at a Glance

Figure 4.6

Project, Settings

Figure 4.7

The Project

Settings dialog box

130

Click on the Link tab, shown in Figure 4.8. In the Object/library modules text box, add any extra libs to
which you want to link. In the case of DirectDraw, you’ll want to put in ddraw.lib and dxguid.lib.

When you get to DirectSound a little later, you’ll add
dsound.lib and winmm.lib to this list as well.

That’s all you need to do to set up your compiler to use
DirectX.

Tradition and COM
In every book ever written about DirectX, the tradition is to
spend some time talking about how DirectX works and how
COM works. Who am I to break with tradition?

COM stands for Component Object Model. Hmm. You
don’t seem particularly impressed. OK. The why and wherefore
of COM is pretty boring stuff anyway. Instead, let me tell you what COM can do for you, as far as
DirectX programming is concerned. Number one: no matter what version of DirectX you
use to write your game, it will run on any machine that has that version or later of the DirectX runtime
installed on it. Number two: when you use DirectX objects, most of the housekeeping is done for you.
You create your objects with the various Create functions and member functions, and you release them
when you no longer need them. Each Create is paired with a Release, and that’s all you have to do.
COM and DirectX take care of the rest.

Isometric Game Programming with DirectX 7.0

Figure 4.8

The Link tab

NOTE
When you’re developing, you nor-
mally are in the Debug configura-
tion.When it comes time to dis-
tribute your code, you’ll switch to
the Release configuration.When
you do so, you’ll have to select
Projects, Settings because the
libraries you link depend on what
configuration you are in.

TeamLRN

131

Version Control
First, let’s address DirectX benefit number one, version control. You’ll be using DirectX version 7. This
version has a number of interfaces (an interface is just a set of functions used to access an object). These
interfaces are IDirectDraw7, IDirectDrawSurface7, and IDirectDrawClipper. There are a few others
that you won’t be using.

In order for users to run your program, they must have DirectX 7 or later installed on their systems.
However, what happens when later versions come out, and what happens if they drastically change the way
things are done? Not a problem. IDirectDraw7 and the rest will still be there, and new interfaces will have
been made available to access the latest features.

Pretty cool. This means you can get a copy of some of the stuff I did using DirectX 5, and it’ll still work.
Backward compatibility is good.

Reference Counting
Now, DirectX benefit number two. As I said before, you’ll be using a number of interfaces. I also
explained that an interface is just a set of functions that allow you to talk to an object. In most cases in
DirectX, the existence of one object depends on the existence of another object. Namely, an
IDirectDrawSurface7 object depends on an IDirectDraw7 object to work properly. This could be disas-
trous if you deleted the IDirectDraw7 object (by calling its Release function) before you were done
using the IDirectDrawSurface7 object.

That’s where COM’s reference counting comes in. When you create your IDirectDraw7 object, its refer-
ence count becomes 1. When you use that object to create an IDirectDrawSurface7 object, it is increased
to 2. When the IDirectDraw7 object is released, it drops to 1 again, but it is not deleted, because
IDirectDrawSurface7 still needs it. Only when IDirectDrawSurface7’s Release is called is the
IDirectDraw7 object deleted.

If you design a class or module that depends on one or more of DirectX’s objects, you can also make use
of reference counting. That is, if you design a class or module that needs an object, you can call AddRef to
increment the reference count, and Release when you no longer need the object.

If you didn’t get all of that in a single pass, don’t worry. Suffice it to say that COM and DirectX protect
you from yourself somewhat, but, of course, this doesn’t give you a license to be sloppy.

Summary
This short chapter just showed you how to get DirectX up and running on your machine. We'll be getting
into DirectDraw next, so be prepared.

DirectX at a Glance

Using
DirectDraw

• Creating the IDirectDraw7
Object

• Setting the Cooperateive Level

• Enumerating Display Modes

CHAPTER 5

TeamLRN

133

DirectDraw (DD), along with its cousin, Direct3D (D3D), is the visible component of DirectX,
and traditionally, it is always the first component a person new to DirectX learns. DD has one

primary task, and that is granting you control over your video hardware—something that you wouldn’t
otherwise have under Windows. Or, at least, you couldn’t control it very well or with any sort of good per-
formance.

This chapter will get you up to speed on the component of DD that exerts your control over display
resources, the IDirectDraw7 interface. Chapter 6, “Surfaces,” covers DD’s stock in trade,
IDirectDrawSurface7 and IDirectDrawClipper.

Creating the IDirectDraw7 Object
All of the DirectX interfaces are used through the use of pointers, and each object has a special typed
pointer that you use to talk to its interface. In the case of IDirectDraw7, this pointer type is LPDIRECT-
DRAW7. In a game or application, you need only one of these (unless you have a multiple-monitor system,
in which case you could use two or more, but multimon systems are beyond the scope of what I’m show-
ing you here).

So, when using DD, always declare a global variable that points to an IDirectDraw7 interface:

//IDirectDraw7 pointer
LPDIRECTDRAW7 lpdd=NULL;

And somewhere early in your initialization (Prog_Init), create your object using DirectDrawCreateEx:

HRESULT WINAPI DirectDrawCreateEx(
GUID FAR *lpGUID,
LPVOID *lplpDD,
REFIID iid,
IUnknown FAR *pUnkOuter

);

Using DirectDraw

134

This returns an HRESULT, which is DD_OK or some DDERR_* constant. The parameters are explained in
Table 5.1.

These parameters are pretty Greek, so I think I have some explaining to do. A GUID (globally unique
identifier) is how Windows identifies everything. Your video card has one, as do most of the rest of the
pieces of hardware in your machine. A GUID allows you to identify any piece of hardware with one sim-
ple (well, not exactly simple) numbering mechanism. You won’t be doing too much with GUIDs, and you
will be passing NULL when they are asked for.

The iid parameter is similar in function to a GUID—it’s a class identifier. Each COM object
(IDirectDraw7 included) has a class identifier; to make use of them, you must have dxguid.lib linked to
your project under the Project, Settings tab.

Confused? I was when I first laid eyes on this COM stuff. Allow me to show you the code for creating
your IDirectDraw7 object:

//create the direct draw interface
HRESULT hr=DirectDrawCreateEx(NULL,(void**)&lpdd,IID_IDirectDraw7,NULL);

Usually, the rule is as follows: if you don’t know what the parameter is for or what its value should be, pass
a NULL.

Isometric Game Programming with DirectX 7.0

Table 5.1 DirectDrawCreateEx Parameters
DirectDrawCreateEx Parameter Purpose

lpGUID A pointer to a GUID (globally unique identifier)
that identifies the display drivers to use with the
IDirectDraw7 object.

lplpDD A pointer to your pointer to an IDirectDraw7
interface. Must typecast to void**.

iid An object type identifier. Must be set to
IID_IDirectDraw7.

pUnkOuter COM aggregation stuff. Use NULL.

TeamLRN

135

About HRESULT
I’ve mentioned HRESULTs twice up to this point—they’re how DirectX
returns error or success. Usually, when a function call returns and is
successful, you get the value DD_OK. If it fails, you get one of the many
DDERR_* constants, indicating both that it failed and why it failed.

To test for this condition, Microsoft has provided a macro called
FAILED. To check for errors, you do something like the following:

//error check
if(FAILED(hr))
{

//there was an error
}

Setting the Cooperative Level
After you have created your IDirectDraw7 object, you need to specify the manner in which you want to
use it. Essentially, there are two choices—windowed and full-screen.

Select the manner in which you will use IdirectDraw7 through IDirectDraw7’s SetCooperativeLevel
member function:

HRESULT SetCooperativeLevel(
HWND hWnd,
DWORD dwFlags

);

Like all other DirectX functions, this returns error or success in an HRESULT. The parameters are explained
in Table 5.2.

Using DirectDraw

NOTE
This type of error
checking tends to clut-
ter up source code. For
this reason, I’ll be leav-
ing most of it out,
using it only where
absolutely necessary.

Table 5.2 SetCooperativeLevel Parameters
SetCooperativeLevel Parameter Purpose

hWnd The top-level window that DirectDraw is to use

dwFlags Cooperation flags (see Table 5.3)

136

There are only about a handful of flags that you’ll use with any frequency. They are listed in Table 5.3.
Most of the rest of the flags deal with multimon systems and Direct3D.

For the most part, you’ll want to do full-screen, exclusive applications that have the ability to use
Ctrl+Alt+Delete, so the code will look like this:

//set cooperative level-fullscreen-exclusive
hr=lpdd->SetCooperativeLevel(hWndMain,DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN |
DDSCL_ALLOWREBOOT);

Now that you have grabbed full-screen access to your display, you might want to change the display mode.
You can do one of two things: one, you can start picking display modes from the commonly available ones
until one works, or until none of them work, in which case you’d be up a creek. Or two, you can enumer-
ate the available display modes and then choose from that list. I prefer the latter method. Trial and error is
not my style.

Enumerating Display Modes
Enumeration of any type is a bit confusing at first. I’m not going to do anything really weird here. I’m just
going to put the display modes into a nice list that you can examine later in the code.

First, let’s go over the function you’ll be calling to actually do the enumeration, EnumDisplayModes:

Isometric Game Programming with DirectX 7.0

Table 5.3 SetCooperativeLevel Flags
SetCooperativeLevel Flag Meaning

DDSCL_ALLOWREBOOT Allows an end user to use Ctrl+Alt+Delete during a full-
screen application.This is a must if you intend to make
Windows-friendly games.

DDSCL_EXCLUSIVE Specifies that you want exclusive control over the display
hardware.You must use DDSCL_FULLSCREEN also.

DDSCL_FULLSCREEN Specifies that you want a full-screen application. Must be
used with DDSCL_EXCLUSIVE.

DDSCL_NORMAL Specifies that you are making a windowed application
with DirectDraw. Useful for debugging.

TeamLRN

137

HRESULT EnumDisplayModes(
DWORD dwFlags,
LPDDSURFACEDESC2 lpDDSurfaceDesc2,
LPVOID lpContext,
LPDDENUMMODESCALLBACK2 lpEnumModesCallback

);

This returns an HRESULT containing success or failure. Table 5.4 explains the parameter list.

The dwFlags parameter has two special values: DDEDM_REFRESHRATES, which takes into account the
refresh rate for the display mode, and DDEDM_STANDARDVGAMODES, which enumerates the normal old VGA
320✕200✕8 display mode. You won’t use either of these flags; you will always pass 0.

lpDDSurfaceDesc2 is a pointer to a DDSURFACEDESC2 struct, which I will cover in more detail later in this
chapter and in Chapter 6. If you were to set some of the members of a DDSURFACEDESC2 and then call the
enumeration, you could filter your search. For now, you’ll just list all of the display modes, and to heck
with limiting the search. (You can look through them later after you’ve listed them all.)

The final parameter, lpEnumModesCallback, is a user-defined callback function, one that looks similar to
the following:

HRESULT WINAPI EnumModesCallback2(
LPDDSURFACEDESC2 lpDDSurfaceDesc,
LPVOID lpContext

);

Using DirectDraw

Table 5.4 EnumDisplayModes Parameters
EnumDisplayModes Parameter Purpose

dwFlags Special flags telling DD what kind of enumeration
you want

lpDDSurfaceDesc2 A description of the type of display mode you are
looking for

lpContext A user-defined context variable that gets passed
to the callback function

lpEnumModesCallback A pointer to the callback function

138

This function will return one of two values: DDENUMRET_OK will continue enumeration, and
DDENUMRET_CANCEL will stop it.

lpDDSurfaceDesc is another pointer to DDSURFACEDESC2, which contains information about the display
mode being enumerated. lpContext contains the value you originally passed in the call to
EnumDisplayModes.

There is a lot of information contained in a DDSURFACEDESC2 structure. Here’s the definition:

typedef struct _DDSURFACEDESC2 {
DWORD dwSize;
DWORD dwFlags;
DWORD dwHeight;
DWORD dwWidth;
union
{

LONG lPitch;
DWORD dwLinearSize;

} DUMMYUNIONNAMEN(1);
DWORD dwBackBufferCount;
union
{

DWORD dwMipMapCount;
DWORD dwRefreshRate;

} DUMMYUNIONNAMEN(2);
DWORD dwAlphaBitDepth;
DWORD dwReserved;
LPVOID lpSurface;
union
{

DDCOLORKEY ddckCKDestOverlay;
DWORD dwEmptyFaceColor;

} DUMMYUNIONNAMEN(3);
DDCOLORKEY ddckCKDestBlt;
DDCOLORKEY ddckCKSrcOverlay;
DDCOLORKEY ddckCKSrcBlt;
DDPIXELFORMAT ddpfPixelFormat;
DDSCAPS2 ddsCaps;
DWORD dwTextureStage;

} DDSURFACEDESC2, FAR* LPDDSURFACEDESC2;

Isometric Game Programming with DirectX 7.0

TeamLRN

139

As you can see, there’s quite a bit here, and you will be using only a fraction of it. You’ll be seeing DDSUR-
FACEDESC2 in more detail in Chapter 6.

The information you care about for a display mode consists of three things: the width, the height, and the
color depth. I explained a bit about color depth in Chapter 2, “The World of GDI and Windows
Graphics,” during the discussion on pixel plotting. Briefly, color depth specifies how many bits each pixel
contains. It usually has a value of 8, 16, 24, or 32. In depths higher than 8, the bits correspond to some
RGB (red, green, blue) value that describes a color.

In DDSURFACEDESC2, you can see the dwWidth and dwHeight members. These correspond to the size of
the display mode (the resolution). Common values are 640✕480, 800✕600, and 1024✕768. Some video
cards can go even higher, and many video cards have more exotic display modes, like 400✕300, 512✕384,
and so on.

The location of the bits per pixel is not quite as obvious in the DDSURFACEDESC2 structure, because it is
part of the ddpfPixelFormat member, which is itself a DDPIXELFORMAT structure.

typedef struct _DDPIXELFORMAT{
DWORD dwSize;
DWORD dwFlags;
DWORD dwFourCC;
union
{

DWORD dwRGBBitCount;
DWORD dwYUVBitCount;
DWORD dwZBufferBitDepth;
DWORD dwAlphaBitDepth;
DWORD dwLuminanceBitCount;
DWORD dwBumpBitCount;

} DUMMYUNIONNAMEN(1);
union
{

DWORD dwRBitMask;
DWORD dwYBitMask;
DWORD dwStencilBitDepth;
DWORD dwLuminanceBitMask;
DWORD dwBumpDuBitMask;

} DUMMYUNIONNAMEN(2);
union
{

DWORD dwGBitMask;
DWORD dwUBitMask;

Using DirectDraw

140

DWORD dwZBitMask;
DWORD dwBumpDvBitMask;

} DUMMYUNIONNAMEN(3);
union
{

DWORD dwBBitMask;
DWORD dwVBitMask;
DWORD dwStencilBitMask;
DWORD dwBumpLuminanceBitMask;

} DUMMYUNIONNAMEN(4);
union
{

DWORD dwRGBAlphaBitMask;
DWORD dwYUVAlphaBitMask;
DWORD dwLuminanceAlphaBitMask;
DWORD dwRGBZBitMask;
DWORD dwYUVZBitMask;

} DUMMYUNIONNAMEN(5);
} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

This is another big structure with a lot of information (but most of it is in the form of unions). This is
your first look at DDPIXELFORMAT. It will be explored in more detail in Chapter 6, when we’ll take a look
at converting from one pixel format to another. The member of DDPIXELFORMAT that concerns you is
dwRGBBitCount, which contains the bit depth of the display mode. (Seems like a whole lot of structure
for just three little DWORDs, doesn’t it?)

Let’s get enumerating, then. Enumerae twice: the first enumeration counts the display modes, and the sec-
ond enumeration puts them into a list.

First, define a structure that contains all the applicable information about a display mode (at least, as far as
you’re concerned):

struct DisplayMode
{

DWORD dwWidth;
DWORD dwHeight;
DWORD dwBPP;

};

Isometric Game Programming with DirectX 7.0

TeamLRN

141

Short and sweet, the way things should be. Next, add two global variables:

//the number of display modes will be kept here
DWORD dwDisplayModeCount=0;
//this will point to the list of display modes
DisplayMode* DisplayModeList=NULL;

The first enumeration function is quite simple, since it just counts the display modes:

HRESULT WINAPI EnumModesCallbackCount(
LPDDSURFACEDESC2 lpDDSurfaceDesc,
LPVOID lpContext

)
{

//increment the count variable
dwDisplayModeCount++;
//continue the enumeration
return(DDENUMRET_OK);

}

The second enumeration isn’t much more difficult:

HRESULT WINAPI EnumModesCallbackList(
LPDDSURFACEDESC2 lpDDSurfaceDesc,
LPVOID lpContext

)
{

//copy applicable information to the list
DisplayModeList[dwDisplayModeCount].dwWidth=lpDDSurfaceDesc->dwWidth;
DisplayModeList[dwDisplayModeCount].dwHeight=lpDDSurfaceDesc->dwHeight;
DisplayModeList[dwDisplayModeCount].dwBPP=lpDDSurfaceDesc-

>ddpfPixelFormat.dwRGBBitCount;
//increment the count variable
dwDisplayModeCount++;
//continue the enumeration
return(DDENUMRET_OK);

}

Using DirectDraw

142

Finally, put it all together to make the enumeration happen:

//clear the display mode count
dwDisplayModeCount=0;
//count display modes
lpdd->EnumDisplayModes(0,NULL,NULL,EnumModesCallbackCount);
//allocate space for the list
DisplayModeList=new DisplayMode[dwCount];
//reset the count
dwDisplayModeCount=0;
//list the display modes
lpdd->EnumDisplayModes(0,NULL, NULL,EnumModesCallbackList);

The new operator performs about the same function as malloc, only in a more typesafe way. The malloc
equivalent would be:

DisplayModeList=(DisplayMode*)malloc(sizeof(DisplayMode)*dwDisplayModeCount);
When you are done with the list, use the following code to deallocate it:

//delete the display mode list
delete [] DisplayModeList;
DisplayModeList=NULL;

This is equivalent to using the free function that is normally used with malloc.

Now you have all the possible display modes in a list, and you can loop through that list and test to see
which mode you want. Also, you can look through to see if a given mode is supported. If it isn’t, you can
settle for a less-ideal mode.

Let’s do some code that checks for an 800✕600✕16 mode (almost universally available).

//set up the test mode
DisplayMode TestMode;
TestMode.dwWidth=800;
TestMode.dwHeight=600;
TestMode.dwBPP=16;
//our boolean test variable
bool found=false;
//our iterator
DWORD index;
//where we found it (all bits set means not found)
DWORD foundindex=0xFFFFFFFF;
for(index=0;(index<dwDisplayModeCount) && (!found);index++)
{

Isometric Game Programming with DirectX 7.0

TeamLRN

143

if((DisplayModeList[index].dwWidth==TestMode.dwWidth) &&
(DisplayModeList[index].dwHeight==TestMode.dwHeight) &&
(DisplayModeList[index].dwBPP==TestMode.dwBPP))

{
foundindex=index;
found=true;

}
}

Simple enough, right? You could perform a wide variety of tests on the display mode list, from finding the
largest mode with a certain BPP to finding the greatest BPP for a given mode. Or, you might let the end
user select what display mode he wants to run in, and save this value in a configuration file somewhere.

Now that you know what modes are available and what mode you want, you can use this information to
set the display mode. (It’s hard to believe that this topic took several pages to cover—the code gets execut-
ed in a fraction of a second.)

Setting the Display Mode
After enumerating the display modes, setting the display mode is easy. You set the display mode with the
SetDisplayMode member function of IDirectDraw7 (are you really surprised?).

HRESULT SetDisplayMode(
DWORD dwWidth,
DWORD dwHeight,
DWORD dwBPP,
DWORD dwRefreshRate,
DWORD dwFlags

);

This returns an HRESULT again (by now you should be spotting a pattern), and the parameters look suspi-
ciously like the members of DisplayMode, with the exception of dwRefreshRate (which you don’t care
about, so pass 0) and dwFlags (which you also don’t care about, so pass 0).

Calling this function usually looks something like this:

//set the display mode
hr=lpdd->SetDisplayMode(800,600,16,0,0);

Of course, the 800, 600, and 16 are whatever display mode you want, or variables containing the values
you want.

Using DirectDraw

144

Retrieving the Current Display
Mode
Of course, there may be times when you want to retrieve the current display mode. To do this, you use
GetDisplayMode.

HRESULT GetDisplayMode(
LPDDSURFACEDESC2 lpDDSurfaceDesc2

);

Look! It returns an HRESULT! (I’m not going to mention the return values for DX functions anymore. They
are all HRESULTs and are all treated exactly the same way.)

The sole parameter of this function is lpDDSurfaceDesc2, which is a pointer to a DDSURFACEDESC2.
Declare a variable of DDSURFACEDESC2, clean it out, and call the function. When it returns, your DDSUR-
FACEDESC2 contains the information describing the current display mode (similar to how it did when you
enumerated display modes). But what do I mean by “cleaning out” a DDSURFACEDESC2? Well, in most
cases, when you work with DDSURFACEDESC2s, or any other DirectX structure, you first have to initialize it
(set all members to 0), and you have to set the dwSize member. This is how to do so:

//declare the variable
DDSURFACEDESC2 ddsd;
//initialize to all zeros
memset(&ddsd,0,sizeof(DDSURFACEDESC2));
//set the size
ddsd.dwSize=sizeof(DDSURFACEDESC2);

After it has been cleaned out, it is ready to use:

//retrieve the display mode
hr=lpdd->GetDisplayMode(&ddsd);

Just like within the enumeration function, the width and height of the display mode are stored in
ddsd.dwWidth and ddsd.dwHeight, and the bits per pixel are stored in
ddsd.ddpfPixelFormat.dwRGBBitCount.

Isometric Game Programming with DirectX 7.0

TeamLRN

145

A Final Thing: Releasing Objects
There is a certain way in which you delete almost all DirectX objects once you are done with them. For
your lpdd, this is what it looks like:

if(lpdd)
{

lpdd->Release();
lpdd=NULL;

}

This exact same snippet, with just a different variable, will be used for most of your DirectX cleanup. Just
as it was important during GDI to get rid of your object and DCs, it is also important to get rid of your
DirectX object.

Check out IsoHex5_1.cpp (the only Chapter 5 example), and see in action what I have been talking about
here. Don’t expect much; you’ll just end up with a black screen. However, now that you are into DirectX,
that screen is yours!

Summary
This chapter has given you entry to the world of DirectDraw, but so far you’ve only got your foot in the
door. Here are some key points to remember:

• The IDirectDraw7 object controls display resources. It is the parent of all other DirectDraw objects. You
create one with DirectDrawCreateEx.

• Depending on what you want to use the IDirectDraw7 object for, you must set an appropriate cooperative
level using SetCooperativeLevel.

• Although there are display modes that are widely supported on most video cards, it’s still a good idea to enu-
merate the display modes before selecting the one you want to use.

Using DirectDraw

Surfaces

• What is a Surface?

• Creating a Surface

• Using Surfaces

CHAPTER 6

TeamLRN

147

Now we’re getting into some cool stuff: DirectDraw surfaces (the IDirectDrawSurface7 object).
Surfaces are DirectDraw’s stock in trade. They hold graphical images that you can display and

manipulate, similar in function to memory device contexts but without all the abstraction inherent to GDI.
Of course, you can still use GDI functions with your surfaces, as you’ll see a little later. This is a big chap-
ter, and we’ve got a lot of ground to cover, so let’s get going.

What Is a Surface?
Quite simply, a surface is a block of memory (either on your video card or in system memory) that is man-
aged by DirectDraw as though it were a rectangle, even though the memory itself is linear. Surfaces come
in many types. The difference between these types lies in what each surface is capable of. The three types of
surfaces that you will be concerned with at this point are primary surfaces, secondary surfaces (back
buffers), and off-screen surfaces.

• Primary Surface. In any application, you will have only one primary surface for each DirectDraw object. (In a
multiple-monitor system, with multiple DirectDraw interfaces, it is possible to have more than one.) The pri-
mary surface is the only surface in DirectDraw that is visible.

• Secondary Surfaces. A secondary surface, or back buffer, is not a surface all on its own. Not quite. Sure, you
can still do all the things with a secondary surface that you can do with any other type of surface, but the
existence of a secondary surface depends on other surfaces. It is attached to another surface and is part of
what is called a flipping chain. More about this a little later.

• Off-Screen Surfaces. An off-screen surface is what you will use to store your bitmaps and other graphical
data until it is needed. Quite often you’ll have a large number of these, and many of them will be small in
size. They serve about the same function as do memory DCs.

Now that you’ve been introduced to surfaces, let’s start making them!

Creating a Surface
All surfaces (except secondary surfaces) start out their life with a call to IDirectDraw7’s CreateSurface.

HRESULT CreateSurface(
LPDDSURFACEDESC2 lpDDSurfaceDesc2,
LPDIRECTDRAWSURFACE7 FAR *lplpDDSurface,
IUnknown FAR *pUnkOuter

);

Surfaces

148

On success, this returns DD_OK. Table 6.1 explains the parameter list.

DDSURFACEDESC2
Now I’m going to go into a little more detail about DDSURFACEDESC2, which was introduced in Chapter 5,
“Using DirectDraw.”

Here’s the structure again, with the important fields highlighted in bold:

typedef struct _DDSURFACEDESC2 {
DWORD dwSize;
DWORD dwFlags;
DWORD dwHeight;
DWORD dwWidth;
union
{

LONG lPitch;
DWORD dwLinearSize;

} DUMMYUNIONNAMEN(1);
DWORD dwBackBufferCount;
union
{

DWORD dwMipMapCount;
DWORD dwRefreshRate;

} DUMMYUNIONNAMEN(2);
DWORD dwAlphaBitDepth;

Isometric Game Programming with DirectX 7.0

Table 6.1 IDirectDraw7::CreateSurface Parameters
CreateSurface Parameter Purpose

lpDDSurfaceDesc2 Pointer to a DDSURFACEDESC2 containing a description of
the desired surface

lplpDDSurface Pointer to an LPDIRECTDRAWSURFACE7 pointer that will
be filled with a pointer to the new
IDirectDrawSurface7 object

pUnkOuter COM stuff. Use NULL.

TeamLRN

149

DWORD dwReserved;
LPVOID lpSurface;
union
{

DDCOLORKEY ddckCKDestOverlay;
DWORD dwEmptyFaceColor;

} DUMMYUNIONNAMEN(3);
DDCOLORKEY ddckCKDestBlt;
DDCOLORKEY ddckCKSrcOverlay;
DDCOLORKEY ddckCKSrcBlt;
DDPIXELFORMAT ddpfPixelFormat;
DDSCAPS2 ddsCaps;
DWORD dwTextureStage;

} DDSURFACEDESC2, FAR* LPDDSURFACEDESC2;

The highlighted fields are explained in Table 6.2.

Surfaces

Table 6.2 Meaningful Members of DDSUFACEDESC2
DDSURFACEDESC2 Member Meaning

dwSize The size of the DDSURFACEDESC2.Always set to
sizeof(DDSURFACEDESC2).

dwFlags Flags specifying which of the other members are
meaningful (see the next section)

dwHeight Height of a surface

dwWidth Width of a surface

lPitch The pitch of a surface (discussed later, in the section
“The Nitty-Gritty: Lock and Unlock”)

dwBackBufferCount The number of back buffers that a surface has. Used
when creating complex surfaces.

lpSurface A pointer to the surface’s memory (discussed in the
section “The Nitty-Gritty: Lock and Unlock”)

ddpfPixelFormat The pixel format of the surface (discussed in more
detail later)

ddsCaps The capabilities of the surface (discussed in
a moment)

150

Hopefully, this has made DDSURFACEDESC2 just a little less scary. Most of the rest of this stuff is for
advanced use, and much of it isn’t even implemented yet.

dwFlags
The dwFlags member specifies what other members are valid. Various flags are shown in Table 6.3.

ddsCaps
When creating a surface, always use the ddsCaps member to specify what kind of surface you want.
ddsCaps is in itself a structure, a DDSCAPS2.

typedef struct _DDSCAPS2 {
DWORD dwCaps;
DWORD dwCaps2;
DWORD dwCaps3;
DWORD dwCaps4;

} DDSCAPS2, FAR* LPDDSCAPS2;

All the members of this structure contain flags. Neither dwCaps3 nor dwCaps4 is currently used. The
dwCaps2 member is for advanced stuff dealing with D3D, so the only one you need to be concerned with
is dwCaps, which contains a number of flags that you will find useful. Some of these flags are listed in
Table 6.4.

Isometric Game Programming with DirectX 7.0

Table 6.3 DDSURFACEDESC2 Flags
DDSURFACEDESC2 Flag Member Validated

DDSD_HEIGHT dwHeight

DDSD_WIDTH dwWidth

DDSD_PITCH lPitch

DDSD_BACKBUFFERCOUNT dwBackBufferCount

DDSD_PIXELFORMAT ddpfPixelFormat

DDSD_CAPS ddsCaps

TeamLRN

151

There are quite a few more flags, but you won’t be using them.

Creating a
Primary Surface
The first surface you create in a DirectDraw
application is the primary surface. Then you
fetch the back buffers (if any), and then you
start making the off-screen surfaces.

At some point, usually in the globals section,
you should declare a variable that will contain a
pointer to the primary surface:

//primary surface
LPDIRECTDRAWSURFACE7 lpddsPrime=NULL;

Surfaces

Table 6.4 Selected DDSCAPS2 Flags
dwCaps Flag Use

DDSCAPS_BACKBUFFER Creates a secondary surface

DDSCAPS_COMPLEX Creates a primary surface that has a secondary surface
attached

DDSCAPS_FLIP Creates a primary surface that has a secondary surface
attached

DDSCAPS_OFFSCREENPLAIN Creates an off-screen surface

DDSCAPS_PRIMARYSURFACE Creates a primary surface

DDSCAPS_SYSTEMMEMORY Creates a surface in system memory

DDSCAPS_VIDEOMEMORY Creates a surface in video memory

NOTE
Your video card has only a limited amount of
memory.The primary surface (and any back
buffers for the primary) must be in video
memory. Off-screen surfaces have greater
performance if they are in video memory,
but they can be in system memory as well—
though you’ll feel a performance hit.

Always create your surfaces in decreasing
order of importance. If it is an oft-used sur-
face—like the bitmap containing the main
character—create it sooner than the sur-
faces that contain the graphics for the title
screen (the title screen doesn’t need to be as
fast as the game itself).

152

First, set up your surface description:

//clean out surface description
DDSURFACEDESC2 ddsd;
memset(&ddsd,0,sizeof(DDSURFACEDESC2));
ddsd.dwSize=sizeof(DDSURFACEDESC2);
//set up the caps for the primary
ddsd.dwFlags=DDSD_CAPS;
ddsd.ddsCaps.dwCaps=DDSCAPS_PRIMARYSURFACE;
//finally, create the surface
lpdd->CreateSurface(&ddsd,&lpddsPrime,NULL);

And later, when you are closing the program and cleaning up, do a safe release of the primary surface
(which looks almost exactly like the safe release of the IDirectDraw7 object):

if(lpddsPrime)
{

lpddsPrime->Release();
lpddsPrime=NULL;

}

Creating a Secondary Surface/
Back Buffer
Create back buffers, if you will have them, at the same time you create your primary surface. When you
create your primary surface, specify that it is a complex surface that can be flipped, and specify how many
back buffers it will have. (I’ll discuss flipping in a moment.)

//surfaces
LPDIRECTDRAWSURFACE7 lpddsPrime=NULL;
LPDIRECTDRAWSURFACE7 lpddsBack=NULL;
//clean out surface description
DDSURFACEDESC2 ddsd;
memset(&ddsd,0,sizeof(DDSURFACEDESC2));
ddsd.dwSize=sizeof(DDSURFACEDESC2);
//set up the caps for the primary
ddsd.dwFlags=DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
ddsd.dwBackBufferCount=1;

Isometric Game Programming with DirectX 7.0

TeamLRN

153

ddsd.ddsCaps.dwCaps=DDSCAPS_PRIMARYSURFACE | DDSCAPS_COMPLEX | DDSCAPS_FLIP;
//finally, create the surface
lpdd->CreateSurface(&ddsd,&lpddsPrime,NULL);

Now you’ve got the primary surface, which has the secondary surface attached to it. To retrieve this
attached surface, use GetAttachedSurface:

HRESULT GetAttachedSurface(
LPDDSCAPS2 lpDDSCaps,
LPDIRECTDRAWSURFACE7 FAR *lplpDDAttachedSurface

);

This function takes a pointer to a DDSCAPS2 structure, specifying the capabilities of the attached surface,
and a pointer to an LPDIRECTDRAWSURFACE7, which will be filled with a pointer to the attached surface.

So, to retrieve the back buffer:

//clean out a DDSCAPS2
DDSCAPS2 ddsCaps;
memset(&ddsCaps,0,sizeof(DDSCAPS2));
//specify that we want a back buffer
ddsCaps.dwCaps=DDSCAPS_BACKBUFFER;
//retrieve the back buffer
lpddsPrime->GetAttachedSurface(&ddsCaps,&lpddsBack);

Why Use Back Buffers?
You could just write to the primary surface. You really could. However, there would be detrimental effects.
The user would see items as they were being drawn to the screen, and if the drawing was not timed cor-
rectly, shearing would occur as the electron gun in the back of the monitor misses some of the informa-
tion you placed on the primary surface. This creates a flickering effect, and in general is not considered
good practice.

To make everything look as good as possible, it’s a wise idea to make both a primary surface, which is
shown to the user at all times, and attach to it a back buffer/secondary surface. Doing so makes the sur-
faces similar to a flip book; in fact, switching which surface is the primary and which is the back buffer is
called flipping, and the two surfaces are called a flipping chain. You don’t have to do anything special once
you’ve flipped the primary surface. DirectDraw is smart enough to know how to exchange the memory of
the two surfaces. You can do all your writing to a back buffer and then use Flip, which switches the
memory from the back to the primary. DirectDraw takes care of timing it correctly. And miraculously, you
will have no flicker.

Surfaces

154

Flipping
The Flip function looks like this:

HRESULT IDirectDrawSurface7::Flip(
LPDIRECTDRAWSURFACE7 lpDDSurfaceTargetOverride,
DWORD dwFlags

);

lpDDSurfaceTargetOverride is for use with advanced flipping chains, and you’ll just pass NULL. The
dwFlags parameter, however, can be useful. You will be placing the constant DDFLIP_WAIT into this
parameter. This allows DirectDraw to time the transfer properly so that no flickering or shearing occurs.

One last thing about back buffers before we move on: you don’t have to do a release of the back buffer—
that’s taken care of when the primary surface is released.

Off-Screen Surfaces
The final type of surface that you’ll be dealing with (at least, until you get into D3D later in this book) is
the off-screen surface. An off-screen surface can exist in either system memory or video memory. If you do
not specify either of these in the ddsCaps member of DDSURFACEDESC2, DirectDraw will try to put it into
video memory, and if that fails, it will place the surface in system memory.

Remember what I said earlier about the location of surfaces; make your most commonly used off-screen
surfaces in video memory if you can, and resort to system memory if you have to.

Following is an example of creating an off-screen surface, trying first for video memory and then falling
back to surface memory. Note that you set the dwWidth, dwHeight, and ddsCaps part of the DDSUR-
FACEDESC2 structure.

//declaration (global)
LPDIRECTDRAWSURFACE7 lpddsOffScrn=NULL;
//set up the DDSURFACEDESC2
DDSURFACEDESC2 ddsd;
memset(&ddsd,0,sizeof(DDSURFACEDESC2));
ddsd.dwSize=sizeof(DDSURFACEDESC2);
//set flags... width, height, caps
ddsd.dwFlags=DDSD_WIDTH | DDSD_HEIGHT | DDSD_CAPS;
//attempt video memory
ddsd.ddsCaps.dwCaps=DDSCAPS_OFFSCREENPLAIN | DDSCAPS_VIDEOMEMORY;
//width and height=100x100
ddsd.dwWidth=100;
ddsd.dwHeight=100;
HRESULT hr=lpdd->CreateSurface(&ddsd,&lpddsOffScrn,NULL);

Isometric Game Programming with DirectX 7.0

TeamLRN

155

if(FAILED(hr))
{

//not enough video memory, try system memory
ddsd.ddsCaps.dwCaps=DDSCAPS_OFFSCREENPLAIN | DDSCAPS_SYSTEMMEMORY;
//try again
hr=lpdd->CreateSurface(&ddsd,&lpddsOffScrn,NULL);
if(FAILED(hr))
{

//something still went wrong...
}

}

Using Surfaces
Now that you know how to make surfaces, you can get down to the very serious business of using them.
This section outlines the various ways in which you can write to and read from surfaces and copy them to
one another.

GetDC/ReleaseDC, or Using GDI on
Surfaces
Just because you are in DirectX doesn’t mean that you have to leave GDI behind. Admittedly, using GDI
in a time-critical section isn’t the best idea, but for loading bitmaps and placing them on surfaces, GDI will
do just fine.

In order to perform GDI functions on a surface, you need an HDC. Luckily, there is a function that does
just that: IDirectDrawSurface7::GetDC.

HRESULT IDirectDrawSurface7::GetDC(
HDC FAR *lphDC

);

To make use of this function, you send a pointer to an HDC to it, like so:

//grab the dc from the surface
HDC hdcSurf;
lpddsPrime->GetDC(&hdcSurf);

Surfaces

156

If successful, hdcSurf will now contain a GDI-compatible device context. Pretty cool.

When you are done using the DC, be sure to release it with IDirectDrawSurface7::ReleaseDC.

//release the dc
lpddsPrime->ReleaseDC(hdcSurf);

Enough of this talk! Let’s do an example. Load up IsoHex6_1.cpp. You will also need your trusty
GDICanvas.h and GDICanvas.cpp files, and IsoHex6_1.bmp.

IsoHex6_1.cpp was built from IsoHex5_1.cpp, with some extra stuff that we’ve covered this chapter. If
you run it, you’ll see a lazy ball that slowly meanders around the screen, bouncing off the walls, as shown
in Figure 6.1.

Isometric Game Programming with DirectX 7.0

CAUTION
If you don’t release the DC, your computer is very, very likely to lock
up (and there’s no Ctrl+Alt+Delete to save you). Also, between the
calls to GetDC and ReleaseDC, your computer’s display will be frozen, so
don’t keep the DC any longer than you have to. Just get in, get it done,
and get out.

Figure 6.1

The bouncing ball demo

TeamLRN

157

You’ll notice that the movement is slow, but smooth. This is partly because of GDI and partly because of
my clearing the back buffer each time Prog_Loop is called.

Notice, though, in Prog_Loop, how I don’t mess around too much between the calls to GetDC and
ReleaseDC. I set up the filling RECT before I get there, and I take care of other stuff after I’m done.

void Prog_Loop()
{

//set up rectangle for filling
RECT rcFill;
SetRect(&rcFill,0,0,dwDisplayWidth,dwDisplayHeight);
//grab dc from back buffer
HDC hdcSurf;
lpddsBack->GetDC(&hdcSurf);
//fill rectangle with black
FillRect(hdcSurf,&rcFill,(HBRUSH)GetStockObject(BLACK_BRUSH));
//show the ball

BitBlt(hdcSurf,ptBallPosition.x,ptBallPosition.y,gdicBall.GetWidth(),gdicBall.Get
Height(),gdicBall,0,0,SRCCOPY);

//release dc
lpddsBack->ReleaseDC(hdcSurf);
//move the ball
ptBallPosition.x+=ptBallVelocity.x;
ptBallPosition.y+=ptBallVelocity.y;
//bounds checking
//left side
if(ptBallPosition.x<=0) ptBallVelocity.x=abs(ptBallVelocity.x);
//top side
if(ptBallPosition.y<=0) ptBallVelocity.y=abs(ptBallVelocity.y);
//right side
if(ptBallPosition.x>=(int)dwDisplayWidth-gdicBall.GetWidth())

ptBallVelocity.x=-abs(ptBallVelocity.x);
//bottom side
if(ptBallPosition.y>=(int)dwDisplayHeight-gdicBall.GetHeight())

ptBallVelocity.y=-abs(ptBallVelocity.y);
//flip surfaces
lpddsPrime->Flip(NULL,DDFLIP_WAIT);

}

Surfaces

158

The code in bold is what is between GetDC and ReleaseDC, inclusive. I put absolutely nothing extraneous in
that section. In reality, I shouldn’t even have the function call to GetStockObject in there (heck, I even
shouldn’t be using GDI to do this, but this is an example).

So, we have now created a screen saver—a terribly slow screen saver. If you want to see why you should use
back buffers, comment out the line with Flip in it, and then change GetDC and ReleaseDC to get and
release from the primary surface. Or, if you’re too lazy to do that, replace IsoHex6_1.cpp with
IsoHex6_1A.cpp, where I did it for you. Running it again, you’ll see how badly the ball flickers. Now
imagine this happening with six or eight characters on the screen. Blech! And the defense rests. You’re
probably thinking that there has to be a better way, right? Of course there is.

Blt
The IDirectDrawSurface7::Blt function is the DirectDraw ver-
sion of GDI’s BitBlt, but it’s faster. The reason it’s faster is
because DirectDraw doesn’t give you a safety net like GDI does.
In GDI, if one DC has a different pixel format than another,
GDI converts it for you. This, of course, takes time, especially
when the pixel formats are wildly different.

DirectDraw won’t help you at all with pixel format conversion. It
expects that both the source and destination have the same pixel
format, and if they don’t, you’ll get garbage on the screen.
Luckily, every surface created from a call to
IDirectDraw7::CreateSurface has the same pixel format, so
you only have to worry about pixel format conversion once, when
you first load the bitmap onto a surface. In your case, this won’t be
too much of a problem because you’ll use GDI to load the bitmap for you.

Blt also allows you to fill a rectangular area with a solid color, much in the same way FillRect does, but
faster. You can stretch an image using Blt, and if the hardware acceleration is available you can even rotate
it. You can also make use of a clipper when using Blt, but we’ll get to clippers later.

For even less of a safety net, you can use Blt’s faster cousin, BltFast. BltFast is the fastest way that is
supported by DirectDraw (it is possible to get faster using Lock/Unlock) to copy a rectangular image
from one surface to another. No stretching, no clipping, no nothing. Any computations you need to do to
make it work right are your problem.

Isometric Game Programming with DirectX 7.0

NOTE
Technically, the statement
about all surfaces’ pixel for-
mats being the same from a
call to CreateSurface is not
exactly true. However, for
our purposes it is true
enough, since we aren’t deal-
ing with any sort of special-
ized surface types.

TeamLRN

159

Here’s the IDirectDrawSurface7::Blt function:

HRESULT IDirectDrawSurface7::Blt(
LPRECT lpDestRect,
LPDIRECTDRAWSURFACE7 lpDDSrcSurface,
LPRECT lpSrcRect,
DWORD dwFlags,
LPDDBLTFX lpDDBltFx

);

The parameters mirror somewhat the parameters of BitBlt. This returns DD_OK if successful. Table 6.5
explains the parameters.

Table 6.6 lists a handful of meaningful flags that can be passed in the dwFlags parameter—well, the flags
that are meaningful to you, anyway.

Surfaces

Table 6.5 IDirectDrawSurface7::Blt Parameters
Blt Parameter Purpose

lpDestRect The destination rectangle. NULL is the entire surface.

lpDDSrcSurface The source surface. NULL if not applicable.

lpSrcRect The source rectangle. NULL if not applicable or the entire surface.

dwFlags Flags specifying how you want the Blt to work

lpDDBltFx A pointer to a DDBLTFX structure, with extra information about
how the Blt is supposed to work. Used in conjunction with the
dwFlags parameter.

160

The DDBLTFX Structure
The DDBLTFX structure is another one that’s like DDSURFACEDESC2, meaning it has a lot of useless mem-
bers that either haven’t been implemented yet or are never going to be implemented. Here’s the structure,
with the important members in bold:

typedef struct _DDBLTFX{
DWORD dwSize;
DWORD dwDDFX;
DWORD dwROP;
DWORD dwDDROP;
DWORD dwRotationAngle;
DWORD dwZBufferOpCode;
DWORD dwZBufferLow;
DWORD dwZBufferHigh;
DWORD dwZBufferBaseDest;
DWORD dwZDestConstBitDepth;
union
{

DWORD dwZDestConst;
LPDIRECTDRAWSURFACE lpDDSZBufferDest;

} DUMMYUNIONNAMEN(1);
DWORD dwZSrcConstBitDepth;
union
{

DWORD dwZSrcConst;
LPDIRECTDRAWSURFACE lpDDSZBufferSrc;

Isometric Game Programming with DirectX 7.0

Table 6.6 Selected Blt Flags
Blt Flag Meaning

DDBLT_COLORFILL This Blt is a color fill operation.This requries a non-null lpDDBltFx.

DDBLT_KEYSRC This Blt is a partially transparent Blt (we’ll check out color keys a
bit later)

DDBLT_WAIT The blitter (the hardware that performs blitting on the video card)
must wait until the Blt is finished before returning

DDBLT_ROP This Blt makes use of a raster operation (like SRCAND, SRCPAINT, and
so on)

TeamLRN

161

} DUMMYUNIONNAMEN(2);
DWORD dwAlphaEdgeBlendBitDepth;
DWORD dwAlphaEdgeBlend;
DWORD dwReserved;
DWORD dwAlphaDestConstBitDepth;
union
{

DWORD dwAlphaDestConst;
LPDIRECTDRAWSURFACE lpDDSAlphaDest;

} DUMMYUNIONNAMEN(3);
DWORD dwAlphaSrcConstBitDepth;
union
{

DWORD dwAlphaSrcConst;
LPDIRECTDRAWSURFACE lpDDSAlphaSrc;

} DUMMYUNIONNAMEN(4);
union
{

DWORD dwFillColor;
DWORD dwFillDepth;
DWORD dwFillPixel;
LPDIRECTDRAWSURFACE lpDDSPattern;

} DUMMYUNIONNAMEN(5);
DDCOLORKEY ddckDestColorkey;
DDCOLORKEY ddckSrcColorkey;

} DDBLTFX,FAR* LPDDBLTFX;

See what I mean? That’s huge! And only three of the members have any meaning to you (not to say that
none of the others are meaningful).

Making Use of a DDBLTFX
Much like a DDSURFACEDESC2, a DDBLTFX structure must first be cleared out, and the dwSize field has to
be set, like so:

//clear our DDBLTFX
DDBLTFX ddbltfx;
memset(&ddbltfx,0,sizeof(DDBLTFX));
ddbltfx.dwSize=sizeof(DDBLTFX);

Surfaces

162

And to do a color fill, you set the dwFillColor field:

//set fill color
ddbltfx.dwFillColor=0;//zero is black

Now all you need is a destination rectangle, or can just use NULL if filling the entire surface.

RECT rcFill;
SetRect(0,0,dwDisplayWidth,dwDisplayHeight);
lpddsBack->Blt(&rcFill,NULL,NULL,DDBLT_WAIT | DDBLT_FILLCOLOR, &ddbltfx);

or

lpddsBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_FILLCOLOR, &ddbltfx);

This solves your call to FillRect. You’ll no longer need it.

Using Blt to Copy from Surface to Surface
Just doing a straight copy is no big deal. You don’t need a DDBLTFX, and the only flag you need is
DDBLT_WAIT. Other than that, it’s just a matter of setting up the source and destination RECTs, like so:

RECT rcDst;
RECT rcSrc;
SetRect(&rcDst,DstX,DstY, DstX+DstWidth, DstY+DstHeight);
SetRect(&rcSrc,SrcX,SrcY, SrcX+SrcWidth, SrcY+SrcHeight);

Keep in mind, however, that if the RECTs have differing widths, you will have stretching, and unless there is
hardware support for stretching, the software emulation won’t be that great quality-wise.

Let’s revise our little bouncing ball demo. Load up IsoHex6_2.cpp. The first thing I want to point out is
that this example makes an additional surface, an off-screen surface called lpddsBall, onto which you
load the picture of the ball.

//create an offscreen surface to contain the ball
//clear out ddsd
memset(&ddsd,0,sizeof(DDSURFACEDESC2));
ddsd.dwSize=sizeof(DDSURFACEDESC2);
//set ddsd flags
ddsd.dwFlags=DDSD_WIDTH | DDSD_HEIGHT | DDSD_CAPS;
//set width and height
ddsd.dwWidth=gdicBall.GetWidth();
ddsd.dwHeight=gdicBall.GetHeight();
//set caps
ddsd.ddsCaps.dwCaps=DDSCAPS_OFFSCREENPLAIN;
//create surface

Isometric Game Programming with DirectX 7.0

TeamLRN

163

lpdd->CreateSurface(&ddsd,&lpddsBall,NULL);
//grab dc from offscreen surface
HDC hdcSurf;
lpddsBall->GetDC(&hdcSurf);
//blit ball to surface
BitBlt(hdcSurf,0,0,gdicBall.GetWidth(),gdicBall.GetHeight(),gdicBall,0,0,SRC-
COPY);
//release dc
lpddsBall->ReleaseDC(hdcSurf);

Notice that you are still using CGDICanvas to load in your bitmap, and are using GetDC/ReleaseDC and
BitBlt to get the image onto the surface.

Also, take note of the use of the ptLastPosition variable, an array of two POINTs. When moving the
ball around in Prog_Loop, you clear out only the section of the screen that contained the ball two frames
ago. Why two frames? Because there are two calls to Flip between the time a ball is shown and the time it
is erased.

Confused? Let me explain. Let’s say that the ball is moving 4 horizonal and 4 vertical pixels per frame. On
the first frame (when there is still nothing on the primary surface), the ball’s upper-left corner is at 0,0,
where it gets drawn to the back buffer, and then the surfaces get flipped, and the ball shows up at 0,0 on
the primary surface. Now the ball is at 4,4, gets drawn there, and gets flipped again. The ball image on the
primary surface is at (4,4), and on the back buffer you have an image of the ball at (0,0)—the image of
two frames ago. So, you erase the old image at (0,0) and draw a new one at (8,8) and flip it again. On the
primary you now have it at (8,8) and on the back buffer at (4,4). See?

In a more complicated program (with a more complicated background, like a terrain map or something),
you would probably be best served by copying the primary to the back buffer before restoring the old
images (this way you’d have to keep track of only a single “last position”). For this example I wanted to
make the program do as little work as possible.

Now that you are using Blt, the example is even smoother than the version that used GDI—so much
smoother that I increased the speed by 4, and you don’t even notice. If you look at the code, you’ll see a
lot of ugly stuff—all the clearings of DDSURFACEDESC2s and DDBLTFXs and the setting up of these struc-
tures. We’re going to wrap these repetitive tasks into functions in just a bit.

Color Keying with Blt
One of the best parts of using Blt is the ability to make part of the image transparent by using a color
key. To examine why having transparent pixels is important, take a look at IsoHex6_3.cpp. This example is
an enhanced IsoHex6_2.cpp. The main difference is that there are now two balls instead of just one.

Surfaces

164

Watch closely as the program runs. When the balls are very close to one another, their rectangles overlap,
as shown in Figure 6.2.

This, as I’m sure you’ll agree, is not good. In GDI you would use a bitmask, and you could do the same
thing in DirectDraw, using the dwRop member of DDBLTFX. Support for dwRop is spotty, so we won’t use
it. However, DirectDraw gives us an easier solution.

There are two types of color keys—source and destination. With source color keying, you apply your key to
the source, and then a color (or range of colors) of one surface is ignored when blitting to another surface.
Destination color keying is different. It requires hardware support and is usually used only with video signals
and the like, so I’m not going to cover it here.

To set a color key, you need to fill out a DDCOLORKEY structure:

typedef struct _DDCOLORKEY{
DWORD dwColorSpaceLowValue;
DWORD dwColorSpaceHighValue;

} DDCOLORKEY,FAR* LPDDCOLORKEY;

You may be pleasantly surprised to find DirectX has a structure that isn’t as bloated as some others you’ve
seen (like DDSURFACEDESC2 and DDBLTFX).

There are two values in a DDCOLORKEY—a low and a high color value. This is in case you want to define a
color space (a range of colors) and thus have more than one transparent color. Doing so requires hardware
support, and the hardware support available for it is spotty, so try to get along with having only a single
transparent color.

Isometric Game Programming with DirectX 7.0

Figure 6.2

Overlapping rectangles; one

ball erases part of another

TeamLRN

165

Setting up a DDCOLORKEY is pretty simple:

//set up a black color key
DDCOLORKEY ddck;
ddck.dwColorSpaceLowValue=0;
ddck.dwColorSpaceHighValue=0;

To set a surface’s color key, you use IDirectDrawSurface7::SetColorKey:

HRESULT IDirectDrawSurface7::SetColorKey(
DWORD dwFlags,
LPDDCOLORKEY lpDDColorKey

);

The dwFlags parameter contains the type of color key you are assigning, which in this case will always be
DDCKEY_SRCBLT. Other possible values include DDCKEY_DESTBLT, DDCKEY_SRCOVERLAY,
DDCKEY_DESTOVERLAY, and combining any of these with DDCKEY_COLORSPACE (most of these require
some sort of hardware support). So, setting the color key is pretty simple:

//assign color key
lpddsBall->SetColorKey(DDCKEY_SRCBLT,&ddck);

Finally, to make use of the color key, you add a DDBLT_KEYSRC to your Blt function:

lpddsBack->Blt(&rcDst,lpddsBall,&rcSrc,DDBLT_WAIT | DDBLT_KEYSRC, NULL);

The IsoHex6_3A.cpp example demonstrates this. Four lines of code were added, and one line of code was
modified. The overlapping rectangle problem is gone, as you can see in Figure 6.3.

Surfaces

Figure 6.3

Source color keying

166

You could now have 100 balls on the screen bouncing around, and it would still be smooth and look right.

BltFast
Let me introduce you to Blt’s brother, BltFast. BltFast is in most cases a lot faster than Blt, because it
doesn’t do any range checking if there’s a clipper involved. It also doesn’t do stretching, color fills, or raster
operations. In general, it doesn’t give you any of the neat things that Blt can give you, except for trans-
parency.

HRESULT IDirectDrawSurface7::BltFast(
DWORD dwX,
DWORD dwY,
LPDIRECTDRAWSURFACE7 lpDDSrcSurface,
LPRECT lpSrcRect,
DWORD dwTrans

);

This returns DD_OK if successful. Table 6.7 explains the parameters.

Most of the parameters for Blt and BltFast are the same. There is only a single RECT parameter, however,
because BltFast does not support scaling. Also, you’ll note a lack of a DDBLTFX pointer. None of the spe-
cial effects possible with DDBLTFX are available to you with BltFast.

The dwTrans parameter is similar to Blt’s dwFlags parameter, but with fewer options:

Isometric Game Programming with DirectX 7.0

Table 6.7 IDirectDrawSurface7::BltFast Parameters
BltFast Parameter Purpose

dwX Destination x-coordinate (upper-left)

dwY Destination y-coordinate (upper-left)

lpDDSrcSurface Source surface

lpSrcRect Source rectangle

dwTrans Type of transfer

TeamLRN

167

• DDBLTFAST_DESTCOLORKEY Uses the destination surface’s destination color key
• DDBLTFAST_NOCOLORKEY Uses no color key
• DDBLTFAST_SRCCOLORKEY Uses the source surface’s source color key
• DDBLTFAST_WAIT Waits until BltFast has finished before returning

These four options are the total of what is available to you with BltFast. It’s not much, but speed comes
at the price of flexibility.

Most of the examples will continue to use Blt rather than BltFast because of the capabilities it offers.
However, don’t be hesitant to use BltFast in a time-critical section of code. It can save you.

The Nitty-Gritty: Lock and Unlock
So far, I’ve presented the high-level ways to access a surface. Now we’re going to explore the low-level way:
using Lock and Unlock. When the speed of even the mighty BltFast just won’t do, and you just know you
can perform the operation faster, you can lock the surface memory and do the work yourself— doing so is
the ultimate way of working without a net in DirectDraw.

Using IDirectDrawSurface7::Lock
Following is the function that locks the surface memory and fetches it for you so that you can do your
own writing:

HRESULT IDirectDrawSurface7::Lock(
LPRECT lpDestRect,
LPDDSURFACEDESC2 lpDDSurfaceDesc,
DWORD dwFlags,
HANDLE hEvent

);

This returns DD_OK if successful. Table 6.8 explains the parameters.

Surfaces

Table 6.8 IDirectDrawSurface7::Lock Parameters
Lock Parameter Purpose

lpDestRect The rectangular area of the surface you want to lock

lpDDSurfaceDesc A pointer to a DDSURFACEDESC2, which will be filled with the
information you want

dwFlags Flags specifying how to lock the surface

hEvent Not supported. Use NULL.

168

You can lock different parts of the same surface, as long as the rectangles don’t overlap. Some of the flags
are shown in Table 6.9.

Normally, the most useful combination is DDLOCK_SURFACEMEMORYPTR | DDLOCK_NOSYSLOCK |
DDLOCK_WAIT, and to pass NULL as lpDestRect, thus locking the entire surface.

The lpDDSurfaceDesc parameter must simply be a clean DDSURFACEDESC2, with all 0s, and the dwSize
parameter set.

Upon this function’s return (assuming that it is successful), the specified area of the surface will be locked.

So, how do you write to the surface? The lpSurface and lPitch members of DDSURFACEDESC2 help you.
lpSurface is the pointer to surface memory. Its original type is void*, so, depending on your bits per
pixel, you need to cast it to some other type of pointer. On an 8-bit surface, you’d cast it to an unsigned
char*. On a 16-bit surface, you’d use WORD*, and on a 32-bit surface, DWORD*. Since you primarily deal
with 16-bit surfaces, your cast would look like this:

//cast the surface pointer
WORD* surfptr=(WORD*)ddsd.lpSurface;

Isometric Game Programming with DirectX 7.0

Table 6.9 Locking Flags
Flag Meaning

DDLOCK_NOSYSLOCK Tells DirectDraw not to do a WIN16 lock (which freezes
the computer, making it impossible to get out other than by
turning off the computer). Ignored if locking the primary
surface.

DDLOCK_SURFACEMEMORYPTR Tells DirectDraw that you want a pointer to the surface’s
memory.

DDLOCK_WAIT Tells DirectDraw to wait for the lock to happen before
returning. Useful if the surface is otherwise busy.

DDLOCK_WRITEONLY Specifies that you only intend to write, not read, the surface.

DDLOCK_READONLY Specifies that you only intend to read, not write, the surface.

TeamLRN

169

The lPitch member contains a value indicating how many bytes make up a horizontal line on the surface.
This is bytes, not pixels. To get the number of pixels per
horizontal line, you have to divide lPitch by the number
of bytes per pixel.

int pixelsperrow=ddsd.lPitch/(bitsperpix-
el/8);

After you have done this, you can plot to any part of the
locked area:

surfptr[x+y*pixelsperrow]=0;//write a black
pixel at x,y

Now that we’re down to the pixel-plotting level, it’s time
to talk about pixel formats in more detail. The only real
pixel format I’ve discussed so far is COLORREF, which you
use the RGB macro to make. Each of the components (red,
green, and blue) has 8 bits, for a total of 24 bits.

But what happens in a 16-bit surface like the ones you’ve
been using? The image in the ball demo loaded up fine because you used GDI, which did the conversion
for you. But now you’re operating without any nets, using Lock to get the most direct access to your sur-
face. What do you do? Well, you examine the surface’s pixel format by using
IDirectDrawSurface7::GetPixelFormat.

HRESULT GetPixelFormat(
LPDDPIXELFORMAT lpDDPixelFormat

);

The lpDDPixelFormat parameter is simply a pointer to a DDPIXELFORMAT structure. You’ve seen this
structure once before, when you were doing display mode enumeration.

typedef struct _DDPIXELFORMAT{
DWORD dwSize;
DWORD dwFlags;
DWORD dwFourCC;
union
{

DWORD dwRGBBitCount;
DWORD dwYUVBitCount;
DWORD dwZBufferBitDepth;
DWORD dwAlphaBitDepth;
DWORD dwLuminanceBitCount;
DWORD dwBumpBitCount;

Surfaces

NOTE
Logically, on an 800✕600✕16 surface,
lPitch should be 1600 (800 pixels wide,
16 bits per pixel, and 8 bits per byte).
This is not always so. Different video
cards align their memory differently,
so lPitch might extend past the
surface a little.This is just something
to keep in mind. Don’t hardcode your
surface pitches, because even though
this may work on your machine,
the image will likely look garbled
if you take it to your friend’s house
to show him.

170

} DUMMYUNIONNAMEN(1);
union
{

DWORD dwRBitMask;
DWORD dwYBitMask;
DWORD dwStencilBitDepth;
DWORD dwLuminanceBitMask;
DWORD dwBumpDuBitMask;

} DUMMYUNIONNAMEN(2);
union
{

DWORD dwGBitMask;
DWORD dwUBitMask;
DWORD dwZBitMask;
DWORD dwBumpDvBitMask;

} DUMMYUNIONNAMEN(3);
union
{

DWORD dwBBitMask;
DWORD dwVBitMask;
DWORD dwStencilBitMask;
DWORD dwBumpLuminanceBitMask;

} DUMMYUNIONNAMEN(4);
union
{

DWORD dwRGBAlphaBitMask;
DWORD dwYUVAlphaBitMask;
DWORD dwLuminanceAlphaBitMask;
DWORD dwRGBZBitMask;
DWORD dwYUVZBitMask;

} DUMMYUNIONNAMEN(5);
} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

I’ve bolded the most important fields. When you retrieve the pixel format, you first have to clear out the
DDPIXELFORMAT structure, just as you do with DDSURFACEDESC2 and DDBLTFX.

//clear out pixel format
DDPIXELFORMAT ddpf;
memset(&ddpf,0,sizeof(DDPIXELFORMAT));
ddpf.dwSize=sizeof(DDPIXELFORMAT);
//retrieve pixel format of primary surface
lpddsPrime->GetPixelFormat(&ddpf);

Isometric Game Programming with DirectX 7.0

TeamLRN

171

Once you have the surface’s pixel format, you can use the members of DDPIXELFORMAT to help with your
writing of pixels. The three members, dwRBitMask, dwGBitMask, and dwBBitMask, are binary representa-
tions of pure red, green, and blue for your surface. DDPIXELFORMAT also shows which bits are valid for each
of the components.

For 16-bit surfaces, there are two common pixel formats. These formats are called RGB555 and RGB565,
and they look something like the following:

RGB555

Red mask 0111110000000000

Green mask 0000001111100000

Blue mask 0000000000011111

RGB565

Red mask 1111100000000000

Green mask 0000011111100000

Blue mask 0000000000011111

The only real difference is the extra green bit in RGB565. Our eyes are more sensitive to green than to red
or blue.

On certain odd video cards, you’ll get a BGR instead of an RGB pixel format, meaning that the masks for
red and blue are switched. These video cards are pretty rare, but they do exist. For this reason, you cannot
make any assumptions about a pixel format, just as you can’t make assumptions about a surface’s pitch.
Which raises the question, How can you plot pixels if you don’t know the pixel format?

Since the pixel format of a surface is never guaranteed to be the same from one machine to the next, writ-
ing code to write pixels to a surface may seem impossible. Believe me, it’s not. The trick is to use a known
and stable pixel format that never changes (COLORREF) and to convert the values into the pixel format of
the surface on which you are working, similar to what GDI does. If you have a limited number of colors
that you work with a great deal, you can convert them all at once, keep them in a lookup table, and use
them when you need them.

In a COLORREF, each of red, green, and blue are values from 0 to 255. 0 indicates that none of the compo-
nent is present, and 255 indicates that 100% of the component is present. Logically, then, you could con-
vert R, G, and B into values from 0.0 to 1.0 by dividing by 255 and storing them as a float. You can take
this value and multiply it by the appropriate mask, such as ddpf.dwRBitMask for red, since the mask value
indicated 100% of the color component present. Since a fractional component (extra bits that aren’t in the
mask) might be set by this multiplication, you can logically AND the mask on to the resulting value. Finally,
after you do this for all the components and logically OR the three values together, you will achieve the
pixel format conversion from COLORREF to native format.

Surfaces

172

Following are two functions that will allow you to convert back and forth from COLORREF to native
DirectDraw pixel format. Keep in mind that they are not to be used in a time-critical section—there are
too many multiplications and divisions to make it really efficient.

//from dd pixel to colorref
COLORREF ConvertDDColor(DWORD dwColor, DDPIXELFORMAT* pddpf)
{

//extract color components
DWORD dwRed=dwColor & pddpf->dwRBitMask;
DWORD dwGreen=dwColor & pddpf->dwGBitMask;
DWORD dwBlue=dwColor & pddpf->dwBBitMask;
//multiply color components by max colorref value (255)
dwRed*=255;
dwGreen*=255;
dwBlue*=255;
//divide by masks
dwRed/=pddpf->dwRBitMask;
dwGreen/=pddpf->dwGBitMask;
dwBlue/=pddpf->dwBBitMask;
//return converted color
return(RGB(dwRed,dwGreen,dwBlue));

}

//from colorref to dd pixel
DWORD ConvertColorRef(COLORREF crColor, DDPIXELFORMAT* pddpf)
{

//extract color components
DWORD dwRed=GetRValue(crColor);
DWORD dwGreen=GetGValue(crColor);
DWORD dwBlue=GetBValue(crColor);
//multiply color components by max ddpixel value (the mask)
dwRed*=pddpf->dwRBitMask;
dwGreen*=pddpf->dwGBitMask;
dwBlue*=pddpf->dwBBitMask;
//divide by max colorref (255)
dwRed/=255;
dwGreen/=255;
dwBlue/=255;
//logical and with mask, to avoid fractions
dwRed&=pddpf->dwRBitMask;
dwGreen&=pddpf->dwGBitMask;

Isometric Game Programming with DirectX 7.0

TeamLRN

173

dwBlue&=pddpf->dwBBitMask;
//merge together, and return the result
return(dwRed | dwGreen | dwBlue);

}

OK, enough about pixel formats! Let’s wrap up this part about locking the surface.

Finally, after you’ve locked the surface and done whatever you need to do to it, you have to unlock it.

HRESULT IDirectDrawSurface7::Unlock(
LPRECT lpRect

);

The lpRect parameter specifies what area you are unlocking. (It’s NULL if you originally locked the entire
surface.) As when using GetDC/ReleaseDC on a surface, you should similarly not take too much time
between calls to Lock and Unlock. I won’t show any examples of using Lock/Unlock on surfaces—this
will have to be one area you explore on your own. This type of low-level code tends to get convoluted and
confusing, and my goal here is not to confuse, but to bring about understanding.

A DirectDraw Wrapper
Speaking of convoluted, have you noticed how much bulkier the DirectDraw examples have been com-
pared to the examples of earlier chapters? Sheesh! All the DDSURFACEDESC2s and DDBLTFXs and so
on. . . enough to really work your nerves, right?

I took the liberty of making a little group of functions to help you with these rather repetitive tasks. They
are contained in DDFuncs.h and DDFuncs.cpp. The following sections contain a brief summary.

Surfaces

NOTE
Optimization nuts may be wondering why I divided by 255 instead
of 256. If I were dividing by 256 I could use a bit-shifting operator,
which would be much faster than doing the division myself. Point
taken. However, I have tested doing it both ways, and I have found
that dividing by 256 erroneously converts some of the values.
Naturally, the errors aren’t significant enough to make the image
look very different, but if you are using a color key other than black,
there can be problems when you use these functions to help set the
color key.

174

DDSURFACEDESC2 Functions
This first batch deals with setting up DDSURFACEDESC2 structures.

• DDSD_Clear
void DDSD_Clear(DDSURFACEDESC2* pddsd);

This function clears out the structure and sets the size. Beats the hell out of using memset all the time.
• DDSD_PrimarySurface

void DDSD_PrimarySurface(DDSURFACEDESC2* pddsd);
This function sets up a surface description for a primary surface, with no back buffer. It cleans out the sur-
face description first, of course.

• DDSD_PrimarySurfaceWBackBuffer
void DDSD_PrimarySurfaceWBackBuffer(DDSURFACEDESC2* pddsd, DWORD
dwBackBufferCount);

This function sets up a surface description for a primary surface with a back buffer.
• DDSD_OffscreenSurface

void DDSD_OffscreenSurface(DDSURFACEDESC2* pddsd,DWORD dwWidth, DWORD
dwHeight);

This function sets up a surface description for an off-screen surface of a given width and height.

DDSCAPS2 Functions
This next group deals with DDSCAPS2 structures.

• DDSCAPS_Clear
void DDSCAPS_Clear(DDSCAPS2* pddscaps);

This function clears out a DDSCAPS2 structure. Yes, you could use memset, and you’d have the same number
of lines. Shhh!

• DDSCAPS_BackBuffer
void DDSCAPS_BackBuffer(DDSCAPS2* pddscaps);

This function sets up a DDSCAPS2 structure for a back buffer.

DDBLTFX Functions
The DDBLTFX function group contains functions that manipulate DDBLTFX structures.

• DDBLTFX_Clear
void DDBLTFX_Clear(DDBLTFX* pddbltfx);

• DDBLTFX_ColorFill
void DDBLTFX_ColorFill(DDBLTFX* pddbltfx,DWORD dwColor);

Isometric Game Programming with DirectX 7.0

TeamLRN

175

Pixel Format Functions
Now, pixel formats.

• DDPF_Clear
void DDPF_Clear(DDPIXELFORMAT* pddpf);

This function clears out a DDPIXELFORMAT and sets the dwSize member.
• ConvertDDColor

COLORREF ConvertDDColor(DWORD dwColor, DDPIXELFORMAT* pddpf);
Converts from a native DirectDraw pixel to a COLORREF based on a pixel format.

• ConvertColorRef
DWORD ConvertColorRef(COLORREF crColor, DDPIXELFORMAT* pddpf);

Converts a COLORREF to a DirectDraw native pixel based on a pixel format

LPDIRECTDRAW7 Functions
Next are the functions for creating and releasing IDirectDraw7 interfaces.

• LPDD_Create
LPDIRECTDRAW7 LPDD_Create(HWND hWnd,DWORD dwCoopLevel);

Creates an IDirectDraw7 interface and sets a cooperative level.
• LPDD_Release

void LPDD_Release(LPDIRECTDRAW7* lplpdd);
Performs a safe release of an IDirectDraw7.

LPDIRECTDRAWSURFACE7 Functions
These are functions to replace the long and messy code required for surface creation.

• LPDDS_CreatePrimary
LPDIRECTDRAWSURFACE7 LPDDS_CreatePrimary(LPDIRECTDRAW7 lpdd,DWORD
dwBackBufferCount);

Creates an IDirectDrawSurface7 that will serve as the primary surface, with or without attached
back buffers.

• LPDDS_GetSecondary
LPDIRECTDRAWSURFACE7 LPDDS_GetSecondary(LPDIRECTDRAWSURFACE7 lpdds);

Retrieves an attached surface (such as a back buffer).
• LPDDS_CreateOffscreen

LPDIRECTDRAWSURFACE7 LPDDS_CreateOffscreen(LPDIRECTDRAW7 lpdd,DWORD
dwWidth,DWORD dwHeight);

Creates an off-screen surface with an arbitrary width and height.

Surfaces

176

• LPDDS_LoadFromFile
LPDIRECTDRAWSURFACE7 LPDDS_LoadFromFile(LPDIRECTDRAW7 lpdd,LPCTSTR
lpszFileName);

Creates a new surface just large enough to load and hold the bitmap file.
• LPDDS_ReloadFromFile

void LPDDS_ReloadFromFile(LPDIRECTDRAWSURFACE7 lpdds, LPCTSTR
lpszFileName);

Use this if you ever need to reload a bitmap onto a surface.
• LPDDS_Release

void LPDDS_Release(LPDIRECTDRAWSURFACE7* lplpdds);
Performs a safe release of an IDirectDrawSurface7.

• LPDDS_SetSrcColorKey
void LPDDS_SetSrcColorKey(LPDIRECTDRAWSURFACE7 lpdds,DWORD dwColor);

Sets a single source color key for a surface.

Tasks Not Included in the Wrapper
Please note that I do not have any functions in this little wrapper to do Blt, BltFast, GetDC/ReleaseDC,
or Lock/Unlock. This is because making such functions would add unneeded overhead. Of course, you
can still use some of the DDBLTFX_* functions to assist in your color fills and other special effects.

A wrapper should serve two purposes. First, it should make development faster. This it will do—instead
of lines and lines of setting up your DDSURFACEDESC2 structures, you can take care of this in a single func-
tion call. Second, a wrapper should aid in debugging. This is where my wrapper falls short. If you look
through the code, there is absolutely no check of the return values from the DirectDraw calls. Naturally,
when it comes time to make your own wrapper or engine, you will want to include these facilities.

That pretty much covers the basics of IDirectDrawSurface7, with the exception of one topic.

Empowering the User
You know that you can press Alt+Tab to switch between the calculator tool, paint program, sound
recorder, and the bazillion other Windows applications that you may have open (I tend to have at least six
open at a time). In a full-screen exclusive mode application, you have total control over video resources. In
windowed mode, these same video resources have to be shared by all applications. When you hit Alt+Tab
to switch from a full-screen exclusive mode application to a windowed application, you may lose some or
all of the video resources you have been using if Windows needs them, whether you like it or not.

You could respond to the WM_SYSCHAR event (it’s the window message that occurs when a system charac-
ter—anything with an Alt+???—is pressed) and make sure that you can’t switch out of the application. But
you don’t really want to do this, for a number of reasons. First, by doing so you defeat some of the
Windows features that experienced users are used to. Second, if your application freezes, the user will be
left with no alternative but to turn the machine off and then back on.

Isometric Game Programming with DirectX 7.0

TeamLRN

177

The other option is to let Windows seize the video resources when another application is activated and
then seize them back when the user switches back. This is the most Windows friendly way to go. To do so,
you need to respond to the WM_ACTIVATEAPP window message (see Chapter 1, “Introduction to WIN32
Programming,” for a refresher). When wParam is nonzero, your application is the one being activated.
When wParam is 0, it is being deactivated.

While deactivated, you don’t want to do any rendering, so you should set some sort of “pause” state.
When you are reactivated, you want to make sure that any of the surfaces in video memory are restored
(since the video resources could have been preempted by Windows).

In older versions of DirectDraw, you had to check each surface to see if it was “lost” in this way, and then
restore it if so. In DirectX 7, though, you can do all that with a single call to
IDirectDraw7::RestoreAllSurfaces:

HRESULT IDirectDraw7::RestoreAllSurfaces();

RestoreAllSurfaces just reallocates the memory for a surface. It does not restore the contents. You have
to do that yourself by reloading the images from disk. (The wrapper function LPDDS_ReloadFromFile is
quite handy in this regard.)

IsoHex6_4.cpp is the final example in this chapter. It takes all that you have learned thus far and applies it
to make your little bouncy-ball demo a solid DirectDraw application. The main source file is a bit shorter
than IsoHex6_3A.cpp, although IsoHex6_4 is still over 400 lines long. (400 lines isn’t very much, and for
most of it, only one in three lines is an actual piece of code.) Four hundred lines, not counting the lines in
GDICanvas.cpp or DDFuncs.cpp, and all you’re doing is making a few balls bounce. No wonder a profes-
sional game usually has millions of lines of code!

Summary
In the end, it isn’t the number of lines of code or the size of the executable that counts—it’s performance.
Hopefully I’ve given you enough to get started. We’ve gone over a lot of stuff in this chapter; here are a
few things to keep in mind.

• An application has one primary surface and may or may not have back buffers.
• Off-screen surfaces can be used to store bitmaps until they are needed.
• You can use GDI with DirectDraw, but you should limit how often you do so.
• Blt is good for performing color fills and moving blocks from one surface to another.
• Color keys are a way to achieve transparency.
• BltFast is a faster way to move blocks of color from one surface to another.
• To work without a net, you can use Lock/Unlock.

Surfaces

IDirectDrawClipper

Objects and

Windowed

DirectDraw

• Using IDirectDrawClipper

CHAPTER 7

TeamLRN

179

I’ve talked quite a bit about DirectDraw surfaces and the capabilities of functions like Blt. In that dis-
cussion I mentioned briefly the ability to clip the output of Blt by use of a clipper. In this chapter

we’ll be covering just that. I’ll also cover the (sort of) amazing world of DirectDraw in a windowed appli-
cation. Oh, stop groaning! It’ll be fun—I promise.

Using IDirectDrawClipper
A clipper in DirectDraw serves the same purpose as a region in GDI—it limits output to a certain area, as
Figure 7.1 illustrates.

This can be especially important when you’re using the entire drawing area of a surface as the clipping
region and blitting images that do not entirely fit in the display. In DirectDraw, drawing out of bounds
usually doesn’t draw anything unless you are making use of a clipper.

Here’s something you should always keep in mind: Blt works with a clipper, but BltFast doesn’t. Using a
clipper is somewhat slower than not using one. However, when you’re in a windowed environment (as
you’ll be in the second half of this chapter), a clipper is not only important, it’s essential.

Creating Clippers
There are two ways to create a clipper—DirectDrawCreateClipper and
IDirectDraw7::CreateClipper.

IDirectDrawClipper Objects
and Windowed DirectDraw

Unclipped Output Clipped Output

Figure 7.1

Clipped versus

unclipped

180

HRESULT WINAPI DirectDrawCreateClipper(
DWORD dwFlags,
LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,
IUnknown FAR *pUnkOuter

);

As with all other DirectDraw functions, this returns DD_OK if successful.

Of the three parameters for DirectDrawCreateClipper, only one of them is functional: lplpDDClipper.
The other two, dwFlags and pUnkOuter, are not used, and they must be 0 and NULL, respectively. Hooray
for unused parameters!

HRESULT IDirectDraw7::CreateClipper(
DWORD dwFlags,
LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,
IUnknown FAR *pUnkOuter

);

This returns DD_OK on success.

Hey, look! It got the exact same parameter list as DirectDrawCreateClipper, and the same rules
apply. . . ignore dwFlags and pUnkOuter by placing 0 and NULL.

So, what is the difference between these two methods of clipper creation? Not much, as it turns out.
DirectDrawCreateClipper creates a clipper that isn’t “owned” by a DirectDraw object, meaning that it
can be used by any surface, even those created with a different IDirectDraw7 object. Since you will never
have more than one IDirectDraw7 object, it seems silly to use DirectDrawCreateClipper, so let’s just go
with using IDirectDraw7::CreateClipper.

As you have seen, there isn’t much to the actual creation of a clipper—just the following code:

//globals
LPDIRECTDRAWCLIPPER lpddclip=NULL;
//create clipper (lpdd is our IDirectDraw7)
lpdd->CreateClipper(0,&lpddclip,NULL);

Setting up a Clipping Region
When you initially create a clipper, it contains nothing—a null clipping region, which is useless. In order
for a clipper to be useful, you first must fill it with information that describes the clipping region.

Isometric Game Programming with DirectX 7.0

TeamLRN

181

You do this is by using IDirectDrawClipper::SetClipList:

HRESULT IDirectDrawClipper::SetClipList(
LPRGNDATA lpClipList,
DWORD dwFlags

);

This returns DD_OK if successful.

As with most of the clipper functions, dwFlags is not used and must be 0. The important parameter here
is lpClipList, which is a pointer to a RGNDATA structure. A RGNDATA structure is a variable length type
(which means you usually have to work with it through pointers, malloc, and memcpy).

typedef struct _RGNDATA {
RGNDATAHEADER rdh;
char Buffer[1];

} RGNDATA, *PRGNDATA;

This contains two members—rdh (a RGNDATAHEADER) and a buffer of chars. The char buffer is where
the variable length comes in. Starting at this location is RGNDATA’s clip list. It can be as long or as short as
needed to describe the clipping area.

Here is the RGNDATAHEADER structure:

typedef struct _RGNDATAHEADER {
DWORD dwSize;
DWORD iType;
DWORD nCount;
DWORD nRgnSize;
RECT rcBound;

} RGNDATAHEADER, *PRGNDATAHEADER;

The RGNDATAHEADER describes the clipping region overall—the type of clipping region (iType), the num-
ber of rectangles (nCount), and the bounding rectangle for all the rectangles in the clip list (rcBound). Set
dwSize to sizeof(RGNDATAHEADER), and set nRgnSize to 0.

Does it sound like a real pain to work with these structures? It is. That’s why you’re not going to play with
RGNDATA and RGNDATAHEADER. Instead, you’re going to make your clippers by creating and combining GDI
regions.

If you’ve spent any time working with RGNDATA, you know what kind of problems it has. After months of
research (OK. . .only a few hours), I found out that instead of working with the clumsy structure, you can
create HRGNs and extract the RGNDATA structure once you’ve let GDI make the clipping area you want.

IDirectDrawClipper Objects
and Windowed DirectDraw

182

Now for a brief review. Table 7.1 lists the functions most commonly used to create regions for GDI. For
the most part, you’ll want to try and stick to CreateRectRgn as much as possible, because it is the least
slow of the regions as far as clipping is concerned. However, you can use any region you create with these
functions, extract the rectangle list, and use it to set a DirectDrawClipper’s clip list.

After you use one of these functions to create a clipping region, you have to get it out into a RGNDATA
structure, since that is what IDirectDrawClipper::SetClipList takes. To do this, you use the
GetRegionData function:

DWORD GetRegionData(
HRGN hRgn, // handle to region
DWORD dwCount, // size of region data buffer
LPRGNDATA lpRgnData // region data buffer

);

Table 7.2 explains the parameter list.

Isometric Game Programming with DirectX 7.0

Table 7.1 Region Creation Functions
Function Type of Region Created

CreateEllipticRgn An elliptical region

CreatePolygonRgn A polygonal region

CreateRectRgn A rectangular region

CreateRoundRectRgn A rounded rectangular region

Table 7.2 GetRegionData Parameters
GetRegionData Parameter Purpose

hRgn The region for which you are extracting the RGNDATA

dwCount The size of the buffer that will receive the information

lpRgnData A pointer to the buffer

TeamLRN

183

This is one of Windows’ many functions that retrieve data into a buffer, and it also serves as a function to
retrieve the size required for the buffer by passing NULL as lpRgnData. So, your extraction is actually per-
formed in a number of steps:

//retrieve buffer size
DWORD dwBufSize=GetRegionData(hrgn,0,NULL);
//allocate large enough buffer
LPRGNDATA lprd=(LPRGNDATA)malloc(dwBufSize);
//extract region data
GetRegionData(hrgn,dwBufSize,lprd);
//assign clip list to ddclip
lpddclip->SetClipList(lprd,0);

Assigning a Clipper to a Surface
Just as an HRGN by itself isn’t very useful, an IDirectDrawClipper is of no use in a void. It has to be
assigned to an IDirectDrawSurface7 by using IDirectDrawSurface7::SetClipper:

HRESULT SetClipper(
LPDIRECTDRAWCLIPPER lpDDClipper

);

This returns DD_OK if successful.

At last! A function involving clippers that doesn’t have a useless parameter in it. lpDDClipper is a pointer
to the clipper that you are assigning to the surface. You can assign a clipper to more than one surface at the
same time (usually, you’ll only assign a clipper to the back buffer, but there are exceptions).

To remove a clipper from a surface, you can pass NULL in the call to
IDirectDrawSurface7::SetClipper.

Let’s do a quick example. Load up IsoHex7_1.cpp. This is based on IsoHex6_4.cpp. Two functions
involving clippers have been added to DDFuncs.h and DDFuncs.cpp. Figure 7.2 shows the output.

IDirectDrawClipper Objects
and Windowed DirectDraw

184

By far the most common use of a clipper is to encompass the entire screen. However, in many games, this
isn’t always the best plan. You may have a playing area, a status bar on one side, a message bar on the top
or bottom, etc., etc. In cases like these, writing only to the appropriate area takes some careful planning on
your part. Clippers can help—you can make one clipper for the view area, one for the status bar, one
for the message bar, and so on, and use IDirectDrawSurface7::SetClipper to switch between them
as needed.

That’s about all I have to say for now about clippers. They are a powerful tool when used correctly, but
they are not always the best solution. In a game where speed really counts, you will want to use your own
sort of clipping. We will visit clippers again briefly in a moment.

Windowed DirectDraw
You may be wondering why I’m covering windowed DirectDraw at all. DirectDraw games are all full-
screen, right? Well, true. . . mostly. However, it is always a good thing to give your user the ability to choose
whether to run full-screen or in a window. Empowering the user to do so is important, just like when giv-
ing the user the ability to switch display modes based on personal preferences.

Differences between Full-Screen and
Windowed DirectDraw
There aren’t actually that many differences between a full-screen DirectDraw application and a windowed
one. However, the changes that do exist are important. They are summarized in Table 7.3.

Isometric Game Programming with DirectX 7.0

Figure 7.2

IsoHex7_1.cpp output

TeamLRN

185

Display Modes
Since you can’t call SetDisplayMode, you are stuck with whatever the user has currently set up. If the user
is in an 8-bit mode, so are you. Being stuck in 8-bit mode will probably mean that your game will not
look as good as it can, and it also means that if you want to support this mode, you’ll have to make use of
an IDirectDrawPalette.

First, you can’t allow the program to run in an 8-bit mode. You can determine how many bits per pixel the
display has by calling IDirectDraw7::GetDisplayMode:

HRESULT GetDisplayMode(
LPDDSURFACEDESC2 lpDDSurfaceDesc2

);

This returns DD_OK if successful. lpDDSurfaceDesc2 points to a DDSURFACEDESC2. Examine the pixel for-
mat to retrieve the bits per pixel. This way is not very empowering to your users, and it might completely
alienate them. And if they don’t play your game, they don’t tell their friends to buy it, and you make less
money (and you have to settle for a Neon instead of a Ferrari).

IDirectDrawClipper Objects
and Windowed DirectDraw

Table 7.3 Full-Screen versus Windowed DirectDraw
Item Full-Screen Windowed

Flags sent to IDirectDraw7:: DDSCL_FULLSCREEN | DDSCL_NORMAL
SetCooperativeLevel DDSCL_EXCLUSIVE |

DDSCL_ALLOWREBOOT
Call IDirectDraw7::SetDisplayMode Yes No

Create back buffers Yes No

Use a clipper Optional Strongly suggested

186

Second, you can detect the bits per pixel. If the current display mode set by the user shows that it’s in an
8-bit mode or less, pop up a message box warning him that the display might not look correct in that
mode and asking if he would like to continue (see Figure 7.3).

Now the user has been warned, and he is less likely to e-mail you telling you that your game sucks. Little
touches like this will make your games seem more professional.

No Back Buffers
Another problem with windowed DirectDraw is that you can’t make use of a back buffer, which means
you can’t use Flip. You can solve this problem by making an off-screen surface that is the exact size (or the
maximum size) of the client area, and once per frame, blitting from this surface to the primary. In some
cases, it won’t be as smooth as when using a back buffer, but that’s the price of being in a window.

Which brings me to the problem of the primary surface’s coordinates. No matter whether you are full-
screen or windowed, the primary surface takes up the entire area of the visible surface. This is significant. It
means that (0,0) on the primary surface is (0,0) on the screen, and not (0,0) in your window’s client
area—unless your client area has (0,0) at screen (0,0). Luckily, Windows gives you the ability to convert
between client coordinates and screen coordinates, with the ClientToScreen function:

BOOL ClientToScreen(
HWND hWnd, // handle to window
LPPOINT lpPoint // screen coordinates

);

This returns nonzero on success or 0 on failure. Table 7.4 explains the parameter list.

Isometric Game Programming with DirectX 7.0

Figure 7.3

A friendly way to warn

about 8-bit graphic

performance

Continue

Yes No

This game was designed to run in high-color mode. Continuing under your current display settings may
not look as good. Would you like to continue?

TeamLRN

187

When you want to blit to only the window, you just convert from the (0,0) client coordinate to whatever
the screen coordinate is, like so:

//(0,0) client coordinate
POINT pt;
pt.x=0;
pt.y=0;
//convert to screen coordinate
ClientToScreen(hWndMain,&pt);
//pt now contains the screen coordinates

Simple, no?

You could convert the client to screen coordinates every frame, but you don’t necessarily have to. You can
just respond to the WM_MOVE window message, and keep the screen coordinates for the (0,0) client coordi-
nate in a global somewhere.

Clippers in Windowed DirectDraw
In full-screen DirectDraw, clippers are optional and often aren’t used. In windowed DirectDraw they are
almost mandatory, because the viewable area of the primary screen through your window may change
based on other windows in the system and the placement of your window. Fortunately, you don’t have to
do the clipping by yourself; you can have DirectDraw automatically do it by calling
IDirectDrawClipper:SetHWnd:

HRESULT IDirectDrawClipper::SetHWnd(
DWORD dwFlags,
HWND hWnd

);

IDirectDrawClipper Objects
and Windowed DirectDraw

Table 7.4 ClientToScreen Parameters
ClientToScreen Parameter Purpose

hWnd Window from which you are converting client coordinates

lpPoint On entry, the client coordinate; on exit, the screen
coordinate (pointer)

188

This returns DD_OK if successful. The dwFlags parameter must be 0. The hWnd parameter is a window
handle from which the clipper obtains the clip list. Once you call this function and then call the primary
surface’s SetClipper function, that’s it—DirectDraw takes care of the rest.

IsoHex7_2.cpp puts all this stuff about windowed DirectDraw into practice. Figure 7.4 shows the output.

The first thing you’ll notice when running this program is that the balls seem to bounce around much
more quickly. However, you should also notice that the smoothness is gone and the balls leave an
afterimage.

The main differences between the full-screen bouncing ball demo and the windowed one are as follows:

• The IDirectDraw7 object has a cooperative mode of DDSCL_NORMAL.
• Modes are not enumerated.
• The primary surface has no back buffers.
• The “back buffer” that is created is in actuality an off-screen surface.
• A variable called ptPrimeBlt keeps track of the (0,0) client position in screen coordinates. It is first calcu-

lated in Prog_Init and is recalculated in response to WM_MOVE.
• Instead of two previous positions for the ball, you keep track of only one (since the contents of the “back

buffer” and the primary do not get exchanged).
• Because your “back buffer” is not a true back buffer, you have to release it the same as any other surface.
• The demo checks to see that the bpp of the display mode is at least 16 and displays a warning message if

it is not.

Isometric Game Programming with DirectX 7.0

Figure 7.4

Balls bouncing in a window

TeamLRN

189IDirectDrawClipper Objects
and Windowed DirectDraw

Summary
This finishes up all you really need to know about DirectDraw to get started. As you become more famil-
iar with DirectDraw you’ll naturally want to explore more. I regret that I cannot cover it in more detail,
but I need to get on to the really fun stuff.

Here’s what you have learned:

• You can clip output with IDirectDrawClipper.
• Empowering the user is important.
• Windowed DirectDraw is a pain in the rear.

DirectSound

• The WIN32 Way to
PLay Sounds

• The IDirect Sound Object

• The IDirect Sound
Buffer Object

• Using WAV Files

CHAPTER 8

TeamLRN

191

Just as you used DirectDraw to seize control of your display, you will use DirectSound to grab the
resources of your sound card. DirectSound and DirectDraw have a lot in common as far as how

things are set up, but we’ll get to that in a moment.

First, a little history. Back in the Stone Age of about 5 years ago, using digital sound on the PC was a
Herculean task. There were hundreds of sound card manufacturers, and each one had its quirks. If you
wanted to write a game that used them, you had to choose which you were going to support and stay with
it. It was indeed a dark day for the rebellion. After Windows 95 came out, there was only limited support
for playing sounds, and there were problems with latency (the time between when you told a sound to play
and when it actually started playing), so using digital sound in Windows 95 was something of a joke.

That was before DirectX came out. With DirectSound, you no longer have to worry about who the manu-
facturer of your sound card is. Most sound cards now have drivers that make them compatible with
DirectSound, emulating features if needed. It’s a beautiful thing.

Even though this book really isn’t about sound programming, I felt a certain obligation to at least do the
basics of DirectSound. Nowadays, any game written is required to have sound, and usually music as well.

The Nature of Sound
You may or may not have ever given thought to the nature or physics of sound. It’s really a fascinating sub-
ject. Well, not as fascinating as game programming, of course, but it’s still pretty darn neat!

How Our Ears Work (the Really
Simplified Version)
Our ears are truly magnificent instruments. They allow us to interpret subtle changes in air pressure to gain
clues about our environment. As I type this, I am listening to the blowing sound of my computer’s power
source fan and the clicks of my fingers on the keys. (I tend to work quite late at night, and I prefer quiet,
unlike many of my colleagues, who listen to music while working.)

When I press a key on my keyboard, I displace air, which sends a shock wave through the atmosphere
between my keyboard and my ears. These shock waves vibrate my eardrums, which moves tiny bones in my
inner ear, which causes compression of some fluid in my cochlea, which sends electrical signals to my
brain, which then realizes that it’s hearing my keystrokes. It is a wondrous thing. The process is illustrated
in Figure 8.1.

DirectSound

192

How Speakers Work
If our ears do nothing more than detect variations in air pressure, speakers must do nothing more than
create variations in air pressure. In fact, a speaker is very much like the opposite of an ear (see Figure 8.2).

Isometric Game Programming with DirectX 7.0

Something disrupts the air

The air disruption travels in waves to the ear

The eardrum vibrates

The inner ear bones are moved by the eardrum

The fluid within the cochlea is compressed and decompressed

The fluid pressure changes are changed into an electric
signal that is sent to the brain

Figure 8.1

Rough sketch of how

ears work

A wire carries an electrical current to the speaker

A magnetic field shifts a magnet within the speaker

The magnet's movement causes a diaphram to move

The diaphram disrupts the air, causing a sound to be emitted

Figure 8.2

How speakers work

TeamLRN

193

A speaker makes noise by moving a cardboard or paper membrane (kind of like an eardrum) back and
forth, thus distorting air pressure. It does this by moving a little magnet back and forth (similar to but
opposite in function from the tiny bones in the inner ear). This magnet is moved around by applying dif-
ferent magnetic fields, which are themselves created by electrical charges in wires.

How Sound Cards Work
In the speaker-to-ear comparison, a sound card performs approximately the same function as the cochlea.
Much like the cochlea takes the vibration and converts it into a meaningful signal for the brain, the sound
card takes a meaningful signal and translates it into an analog electrical current that is then applied to the
speaker’s magnet. This process is illustrated in Figure 8.3.

On the flip side, the sound card can also convert the other way, through the microphone, where, instead of
taking a digital signal and converting it into an analog current, it takes analog current and converts it into
a digital signal.

The WIN32 Way to Play Sounds
Before we get into what DirectSound has to offer, let’s take a moment to explore what WIN32 has to offer
(it ain’t much). By doing so, you may appreciate DirectSound more.

To make use of WIN32’s sound capabilities, you must include mmsystem.h in your program, and you
must link to the winmm.lib library. The sum total of the WIN32 support for playing digital sound files
(WAV files) rests in the hands of a single function, PlaySound:

DirectSound

Sound card accepts a digital signal

Sound card's circuirty converts the digital
signal into an analog electrical current

Electrical current is sent out to the speaker

�

Figure 8.3

How sound cards work

194

BOOL PlaySound(
LPCSTR pszSound,
HMODULE hmod,
DWORD fdwSound

);

This returns nonzero on success. Table 8.1 explains the parameters.

A typical call to PlaySound looks like this:

//play the bounce sound
PlaySound("bounce.wav",NULL,SND_FILENAME | SND_ASYNC);

• SND_FILENAME and SND_ASYNC are a couple of the flags that can be passed. Here are some others, as well
as their meanings:

• SND_ASYNC The sound will be played asynchronously (that is, the function returns immediately without
waiting for the sound to be played)

• SND_FILENAME pszSound is a file name
• SND_LOOP The sound played loops over and over
• SND_NOWAIT If the sound driver is busy, returns FALSE and doesn’t play the sound
• SND_PURGE Stops any sounds that are playing for the calling process
• SND_SYNC Waits until the sound is finished playing before returning

Most of the time, you will want SND_ASYNC and SND_FILENAME, as shown in the preceding code.

Isometric Game Programming with DirectX 7.0

Table 8.1 PlaySound Parameters
PlaySound Parameter Purpose

pszSound File name for the WAV file

hmod Handle to the module containing the sound resource. Use
NULL, because you are loading from a file.

fdwSound Flags concerning how the sound is to be played or where it
is from

TeamLRN

195

Load up IsoHex8_1.cpp. This is the same old bouncing ball demo that we’ve been working on for the last
few chapters, only this time a sound will play each time a ball strikes the edge of the screen.

//bounds checking

//left side
if(ptBallPosition[index].x<=0)
{

//change direction
ptBallVelocity[index].x=abs(ptBallVelocity[index].x);
//play sound
PlaySound("bounce.wav",NULL,SND_FILENAME | SND_ASYNC);

}
//top side
if(ptBallPosition[index].y<=0)
{

//change direction
ptBallVelocity[index].y=abs(ptBallVelocity[index].y);
//play sound
PlaySound("bounce.wav",NULL,SND_FILENAME | SND_ASYNC);

}
//right side
if(ptBallPosition[index].x>=(int)dwDisplayWidth-gdicBall.GetWidth())
{

//change direction
ptBallVelocity[index].x=-abs(ptBallVelocity[index].x);
//play sound
PlaySound("bounce.wav",NULL,SND_FILENAME | SND_ASYNC);

}
//bottom side
if(ptBallPosition[index].y>=(int)dwDisplayHeight-gdicBall.GetHeight())
{

//change direction
ptBallVelocity[index].y=-abs(ptBallVelocity[index].y);
//play sound
PlaySound("bounce.wav",NULL,SND_FILENAME | SND_ASYNC);

}

If you run this, you’ll see the full-screen bouncing ball demo and hear bouncing sounds. Despite the sim-
plicity of the demo, you might actually begin to believe that, instead of little pictures of circles being
erased and redrawn and digital sounds playing, there are little balls bouncing around inside your computer.
That’s what adding sound capabilities is all about. . . added realism.

DirectSound

196

PlaySound is fine if you don’t need accurate timing. A larger sound takes longer to load, so the lag would
be more noticeable than the lag with bounce.wav, which is such a small sound (3K) that you don’t notice
the latency (unless, of course, you are an android with superhuman hearing).

The IDirectSound Object
Just as DirectDraw has IDirectDraw7, DirectSound has IDirectSound, and for the exact same reason.
IDirectSound abstracts the capabilities of sound hardware, in the same way that IDirectDraw7 abstracts
display hardware. (There is no IDirectSound7, because there really hasn’t been all that much revision in
the way sound cards work; you just use the plain old IDirectSound interface.)

Creating the DirectSound Object
To create an IDirectSound object, use DirectSoundCreate.

HRESULT WINAPI DirectSoundCreate(
LPCGUID lpcGuid,
LPDIRECTSOUND * ppDS,
LPUNKNOWN pUnkOuter

);

This returns DS_OK if successful (it returns DD_OK for DirectDraw or DS_OK for DirectSound). Table 8.2
explains the parameters.

Isometric Game Programming with DirectX 7.0

Table 8.2 DirectSoundCreate Parameters
DirectSoundCreate Parameter Purpose

lpcGuid The GUID of the sound drivers to use. (We will
use NULL.)

ppDS A pointer to an LPDIRECTSOUND variable that will be
filled with a pointer to a new DirectSound object.

pUnkOuter COM aggregation stuff. Use NULL.

TeamLRN

197

This should look a little familiar, because it’s a lot like the call to DirectDrawCreateEx.

The code required to create an IDirectSound object looks like the following:

//variable declaration(global)
LPDIRECTSOUND lpds=NULL;
//creating IDirectSound object (usually in Prog_Init)
DirectSoundCreate(NULL,&lpds,NULL);
//cleaning up IDirectSound(Prog_Done)
if(lpds)
{

lpds->Release();
lpds=NULL;

}

See? It’s so much like DirectDraw, it’s scary.

Setting the Cooperative Level
Another similarity between DirectDraw and DirectSound is the use of a cooperative level.

HRESULT IDirectSound::SetCooperativeLevel(
HWND hwnd,
DWORD dwLevel

);

This returns DS_OK if successful. Table 8.3 explains the parameter list.

DirectSound

Table 8.3 IDirectSound::SetCooperativeLevel
Parameters

SetCooperativeLevel Parameter Purpose

hwnd The main window of the application that is using
DirectSound

dwLevel The cooperative level flags (discussed next)

198

The flags for DirectSound’s cooperative levels are as follows:

• DSSCL_NORMAL The application plays well with others, but output is restricted
• DSSCL_PRIORITY The application can change the format of the output
• DSSCL_EXCLUSIVE DDSCL_PRIORITY, plus no other applications can play sounds
• DSSCL_WRITEPRIMARY Total control over the sound hardware, probably more than you want

For your purposes, DSSCL_NORMAL will suffice.

//set normal cooperative level
lpds->SetCooperativeLevel(hWndMain,DSSCL_NORMAL);

When in DSSCL_NORMAL, you are stuck with a 22KHz 8-bit stereo format. This isn’t exactly the best sound
format in the world, but it will suffice for your purposes. Exploring the other sound formats is an exercise
I leave to you.

That’s all you need to do to set up your IDirectSound object. If you were using a cooperative level other
than DDSCL_NORMAL, there would be extra steps.

The IDirectSoundBuffer Object
Now that you’ve established contact with your sound card, you need to give it something to do. A sound
card does one thing and does it well: it plays sounds. You keep these sounds (or, at least, binary representa-
tions of them) in buffers.

Creating Sound Buffers
Create sound buffers by using IDirectSound::CreateSoundBuffer:

HRESULT IDirectSound::CreateSoundBuffer(
LPCDSBUFFERDESC lpcDSBufferDesc,
LPLPDIRECTSOUNDBUFFER lplpDirectSoundBuffer,
IUnknown FAR * pUnkOuter

);

Isometric Game Programming with DirectX 7.0

TeamLRN

199

This returns DS_OK if successful. Table 8.4 explains the parameters.

The DSBUFFERDESC structure tells how a buffer is to be created.

typedef struct {
DWORD dwSize;
DWORD dwFlags;
DWORD dwBufferBytes;
DWORD dwReserved;
LPWAVEFORMATEX lpwfxFormat;
GUID guid3DAlgorithm;

} DSBUFFERDESC, *LPDSBUFFERDESC;

Table 8.5 shows the meaning of the various DSBUFFERDESC members.

DirectSound

Table 8.4 IDirectSound::CreateSoundBuffer
Parameters

CreateSoundBuffer Parameter Purpose

lpcDSBufferDesc Pointer to a DSBUFFERDESC (similar in purpose to a
DDSURFACEDESC) that describes the buffer

lplpDirectSoundBuffer Pointer to an LPDIRECTSOUNDBUFFER pointer that
will be filled with a pointer to an
IDirectSoundBuffer interface.

pUnkOuter COM aggregate stuff. Use NULL.

Table 8.5 DSBUFFERDESC Members
DSBUFFERDESC Member Meaning

dwSize Size of this structure

dwFlags Flags for how to create the buffer

dwBufferBytes Number of bytes to allocate for the buffer

dwReserved Reserved

lpwfxFormat Pointer to a WAVEFORMATEX structure

guid3DAlgorithm For 3D sound, which I will not cover

200

You must set the dwSize parameter to sizeof(DSBUFFERDESC).

Here are some possible flags for dwFlags:

• DSBCAPS_CTRLFREQUENCY Controls the frequency of the sound
• DSBCAPS_CTRLPAN Controls the panning (left-right position) of the sound
• DSBCAPS_CTRLVOLUME Controls the volume for this sound
• DSBCAPS_LOCHARDWARE The sound is stored in the sound card’s hardware memory, and you can make use

of hardware mixing (not necessarily available).
• DSBCAPS_LOCSOFTWARE The sound is stored in software (system memory).
• DSBCAPS_STATIC The buffer is intended to be loaded once and played many times, rather than used for

streaming.

Here are a few words of advice concerning these flags:

• Don’t use more than are necessary. If you want to control the volume, that’s fine, but if you don’t need some-
thing like frequency control, don’t ask for it.

• If you attempt to use the DSBCAPS_LOCHARDWARE flag, be sure to have a fallback plan (for example, respond
to a return code that is not DS_OK).

• Most of your sounds are likely to be static, so make good use of the DSBCAPS_STATIC flag.

I’ll go into more detail on some of these flags later.

The WAVEFORMATEX Structure
Sounds come in many different formats—mono (single-channel), stereo (dual-channel), 8-bit, 16-bit,
11KHz, 22KHz, and 44KHz. As you can see, a sound file can have a number of properties, and these are
specified in a WAVEFORMATEX structure:

typedef struct {
WORD wFormatTag;
WORD nChannels;
DWORD nSamplesPerSec;
DWORD nAvgBytesPerSec;
WORD nBlockAlign;
WORD wBitsPerSample;
WORD cbSize;

} WAVEFORMATEX;

Isometric Game Programming with DirectX 7.0

TeamLRN

201

Table 8.6 explains the members of WAVEFORMATEX.

Is your head swimming with all of these audio terms? Don’t worry about them too much. You don’t actu-
ally care all that much about how sounds work; you just want to load them and play them.

The members of WAVEFORMATEX that you need to supply numbers for are wFormatTag, nChannels,
nSamplesPerSec, and wBitsPerSample. You should always make cbSize equal to 0. The rest can be cal-
culated:

nBlockAlign = nChannels * wBitsPerSample / 8;
nAvgBytesPerSec = nBlockAlign * nSamplesPerSec;

So, to create a sound buffer, do this:

//declare buffer (global)
LPDIRECTSOUNDBUFFER lpdsb;
//set up a buffer description
DSBUFFERDESC dsbd;
//code to fill out dsbd
//create buffer (initialization)
lpds->CreateBuffer(&dsbd,&lpdsb,NULL);

DirectSound

Table 8.6 WAVEFORMATEX Members
WAVEFORMATEX Member Meaning

wFormatTag The waveform audio type (typically
WAVE_FORMAT_PCM, which is used by WAV files)

nChannels Either mono (1) or stereo (2)

nSamplesPerSec The frequency of the sound, typically 11025, 22050,
or 44100

nAvgBytesPerSec The number of bytes per second

nBlockAlign The number of bytes in a block (depends on
wBitsPerSample and nChannels)

wBitsPerSample 8 or 16, specifying the size of a sample in bits

cbSize Extra data; ignored when using WAVE_FORMAT_PCM

202

//safe release (cleanup)
if(lpdsb)
{

lpdsb->Release();
lpdsb=NULL;

}

Control Flags
There are a number of control flags that can be sent to DirectSound to specify how much and what sort
of control you want for individual sounds. All of these control flags start with DSBCAPS_. There are
more control flags than are described here; I’ll just mention the commonly used ones.

Frequency
The frequency of a sound corresponds to the nSamplesPerSec member of DSBUFFERDESC and is typically
11025, 22050, or 44100. The higher the frequency, the more bytes per second (hence, a larger WAV file),
and the better the sound quality.

You set the frequency of the sound when you create the buffer, but if you include a DSBCAPS_CTRLFRE-
QUENCY flag in your buffer description, you can change it later with IDirectSoundBuffer::SetFrequency:

HRESULT IDirectSoundBuffer::SetFrequency(
DWORD dwFrequency

);

This returns DS_OK on success. dwFrequency is the new frequency at which you want the sound to be
played. This number can be in the range of DSBFREQUENCY_MIN to DSBFREQUENCY_MAX. Another constant,
DSBFREQUENCY_ORIGINAL, reverts the sound to its original frequency.

When you change the frequency of a sound, both the length and the pitch change. If you put in a smaller
number, the sound will be longer, and it will be lower in tone. If you put in a larger number, the sound
will play more quickly, and it will sound higher (the chipmunk effect).

To retrieve the frequency of a sound, use IDirectSoundBuffer:GetFrequency:

HRESULT IDirectSoundBuffer::GetFrequency(
LPDWORD lpdwFrequency

);

Isometric Game Programming with DirectX 7.0

TeamLRN

203

This returns DS_OK if successful. The lpdwFrequency parameter is a pointer to a DWORD that is filled with
the sound’s frequency.

Volume
If you use the DSBCAPS_CTRLVOLUME flag, you can make use of volume control for a sound. You might be
surprised at how the volume controls in DirectSound work, because volume control is actually attenuation
control. In other words, you don’t actually set how loud a sound is; you set how muted it is. The second
thing that might give you trouble is that attenuation is a logarithmic scale, specified in hundredths of a
decibel (dB). Crazy, huh?

So, what the heck is a decibel? A decibel is one-tenth of a bel. (Not too helpful, I know.) A sound that is
2 bels (20 decibels) is 10 times louder than a sound that is 1 bel (10 decibels). To flip this around, a
sound that is attenuated by 10 decibels is 10 times softer than a sound that is not attenuated at all. To
specify attenuation, you use a minus sign. Because the units are in hundredths of a decibel, attenuating by
10 dB has a value of –10000. The maximum attenuation value for DirectSound is DSBVOLUME_MIN, which
equals –100000, or –100 dB, which is 10 billion times softer than a nonattenuated sound—for all intents
and purposes, silence. On the other end of the scale is DSBVOLUME_MAX, which is 0, meaning no attenua-
tion.

Set the attenuation with a call to IDirectSoundBuffer:SetVolume:

HRESULT IDirectSoundBuffer::SetVolume(
LONG lVolume

);

This returns DS_OK on success. The lVolume parameter specifies the attenuation value for this sound.

To retrieve the attenuation value, use IDirectSoundBuffer::GetVolume:

HRESULT IDirectSoundBuffer::GetVolume(
LPLONG lplVolume

);

This returns DS_OK on success. The lplVolume parameter is a pointer to a LONG that is filled with the
attenuation value.

Most of the time, you won’t want to work with a logarithmic scale for setting volumes, and your users def-
initely won’t. Usually, you’ll want some nice scalar measure for volumes, like a percentage; one way to do it
is to calculate the logarithmic values for the percentages from 0 to 100 and store them in a lookup table or
just calculate them on-the-fly. To do this, just use the following equation.

DirectSound

204

//the log10 function requires the use of math.h
attenuation=log10(volume)*1000; //volume is a value between 0 and 1

Panning
Pan is similar in function to volume and works in a similar way. Pan sets the relative volume between the
two speakers. The DSBCAP_CTRLPAN flag is required to change the pan.

Panning is accomplished by attenuating either the left or right speaker’s output, similar to how volume
attenuates both. This attenuation is in addition to the attenuation because of volume control. The units
are the same—hundredths of a decibel. Positive values attenuate the left speaker, leaving the right speaker
alone, and negative values attenuate the right speaker, leaving the left speaker alone. A value of 0 means no
attenuation to either speaker.

To set the pan, use IDirectSoundBuffer::SetPan:

HRESULT IDirectSoundBuffer::SetPan(
LONG lPan

);

This returns DS_OK if successful. lPan species how to pan the sound. (Noticing a pattern with these func-
tions?)

There are a few constants that you can use with SetPan. DSBPAN_LEFT (equal to –10000) silences the
right speaker, DSBPAN_RIGHT (equal to 10000) silences the left speaker, and DSBPAN_CENTER sets no atten-
uation for either speaker.

To retrieve the current panning for a sound, use IDirectSoundBuffer::GetPan:

HRESULT IDirectSoundBuffer::GetPan(
LPLONG lplPan

);

Isometric Game Programming with DirectX 7.0

CAUTION
Be careful not to put a 0 into the log function, or you will cause an infi-
nite feedback loop that will destroy all matter in the universe! Or you’ll
get a runtime error, which is much, much worse.

TeamLRN

205

This returns DS_OK if successful. The lplPan parameter is a pointer to a LONG that is filled with the cur-
rent pan level.

Locking and Unlocking Sound Buffers
Before we actually get into locking and unlocking a sound buffer, we must first discuss the concept of a
sound buffer. A DirectSound sound buffer is conceptually circular, allowing you to loop a buffer indefi-
nitely, or even to have streaming content to a buffer (that is, writing to one section of the buffer while
another section is playing). Because of this, when you lock a buffer, instead of just getting a single pointer
to the memory contained in the buffer, you might get two pointers (because you might be playing the
middle of the buffer while you are locking two of the ends). I won’t cover streaming buffers, but I thought
that you should be aware of them.

To lock the buffer, you use the IDirectSoundBuffer::Lock function:

HRESULT IDirectSoundBuffer::Lock(
DWORD dwWriteCursor,
DWORD dwWriteBytes,
LPVOID lplpvAudioPtr1,
LPDWORD lpdwAudioBytes1,
LPVOID lplpvAudioPtr2,
LPDWORD lpdwAudioBytes2,
DWORD dwFlags

);

This returns DS_OK if successful. Table 8.7 explains the parameters.

DirectSound

206

Since you will be working with static buffers only, you can ignore lplpvAudioPtr2 and pass NULL.
However, you still need to pass in a pointer to a DWORD for lpdwAudioBytes2, even though it will be filled
with 0. Also, since you are dealing with static buffers, you pass DSBLOCK_ENTIREBUFFER, which means that
dwWriteBytes is ignored and you can pass 0 there as well.

To lock a buffer, do the following:

//pointer to buffer (it is UCHAR* to work with 8 bit audio, if using 16 bit, you
should use USHORT*)
UCHAR* pBuffer;
//buffer sizes
DWORD dwBuf1;
DWORD dwBuf2;
//lock the buffer
lpdsb->Lock(0,0,(void**)&pBuffer,&dwBuf1,NULL,&dwBuf2,DSBLOCK_ENTIREBUFFER);

Isometric Game Programming with DirectX 7.0

Table 8.7 IDirectSoundBuffer::Lock Parameters
Lock Parameter Purpose

dwWriteCursor Offset from the start of the buffer (in bytes) where you want the
lock to start

dwWriteBytes Size, in bytes, of the portion you want to lock

lplpvAudioPtr1 Pointer to a pointer that will be filled with the memory location of
the start of the locked portion

lpdwAudioBytes1 Number of bytes pointed to by what will be filled into
lplpvAudioPtr1

lplpvAudioPtr2 If the buffer had to wrap around (go from the end to the beginning
again), this is filled with the second pointer, so you can continue to
write. If NULL, lplpvAudioPtr1 points to the entire locked area of
the buffer.

lpdwAudioBytes2 The size in bytes of the area that starts at lplpvAudioPtr2

dwFlags Flags specifying how you want to lock the buffer

TeamLRN

207

After locking the buffer, you can fill it with whatever data you want (usually by using memcpy). When you
are all done, use IDirectSoundBuffer::Unlock:

HRESULT IDirectSoundBuffer::Unlock(
LPVOID lpvAudioPtr1,
DWORD dwAudioBytes1,
LPVOID lpvAudioPtr2,
DWORD dwAudioBytes2

);

This returns DS_OK on success. The parameters for Unlock should look familiar, because they are most of
the parameters for Lock.

Do the following to unlock the buffer:

lpdsb->Unlock(pBuffer,dwBuf1,NULL,0);

Now you’re ready to start using the sound.

Playing Sounds
Once you have your sound buffer created and filled with the proper data, it’s time to put it to work by
playing it. To do so, use IDirectSoundBuffer::Play:

HRESULT IDirectSoundBuffer::Play(
DWORD dwReserved1,
DWORD dwPriority,
DWORD dwFlags

);

This returns DS_OK if successful. Table 8.8 explains the parameters.

DirectSound

Table 8.8 IDirectSoundBuffer::Play Parameters
Play Parameter Purpose

dwReserved1 No purpose. Pass a 0.

dwPriority Meaningless when using the DSSCL_NORMAL cooperative level. Pass a 0.

dwFlags Pass 0 to play the sound once. Pass DSBPLAY_LOOPING to loop the
sound repeatedly.

208

//play a sound once
lpdsb->Play(0,0,0);
//play a sound continuously
lpdsb->Play(0,0,DSBPLAY_LOOPING);
//stop a sound
lpdsb->Stop();

Duplicating Sound Buffers
The problem with DirectSound buffers is that, at any given time, only one copy can be playing. To play
more than one copy of the same sound, you can do one of two things: you can load the sound into more
than one sound buffer, or you can duplicate the sound buffer. The first method is wasteful, especially if
you have a large number of sounds. Digital sounds can take up a lot of space—in some cases, more than
graphics can.

Duplication is a good alternative. When you duplicate a sound buffer, you do not make an independent
copy. A duplicated buffer points to the exact same memory that the original does, so if you lock the dupli-
cate and modify the contents, you’ll get the same change if the original is played. Right after duplication
the new buffer has the same parameters (volume, pan, frequency) as the original. These parameters can be
changed.

To duplicate a sound buffer, you use IDirectSound::DuplicateBuffer:

HRESULT IDirectSound::DuplicateSoundBuffer(
LPDIRECTSOUNDBUFFER lpDsbOriginal,
LPLPDIRECTSOUNDBUFFER lplpDsbDuplicate

);

This returns DS_OK if successful. This method increases the original buffer’s reference count, so you can
safely release it and rest assured that the duplicate will still function properly.

//duplicate buffer
lpds->DuplicateSoundBuffer(lpdsb,&lpdsbcopy);

You may wonder why in the world you would ever need more than a single copy of a sound. In many (or
even most) cases, you probably don’t. However, as with oft-repeated sounds such as a gun firing, you may
want to have two copies or even more.

Isometric Game Programming with DirectX 7.0

TeamLRN

209

Using WAV Files
I’ve been talking about sound and WAV files the whole chapter long, and at last, I’m going to show you
how to load them. WAV files are the final bridge between you and making your program come alive with
digital sound! Before I discuss WAV files let’s take a brief detour and explore how to open and read from
files the WIN32 way (I’m not a big fstream fan).

Using HANDLEs to Do File Operations
We’ve spoken at length about the various types of HANDLEs prevalent in WIN32 programming. File access
is also done using a HANDLE. In order to do any sort of sequential access of a file, you need to know only
four functions: CreateFile, WriteFile, ReadFile, and CloseHandle

For your purposes (loading from a WAV file), these four functions will get the job done. Let’s take a quick
look at them.

CreateFile
Use CreateFile to either create a new file or open an existing one.

HANDLE CreateFile(
LPCTSTR lpFileName, // file name
DWORD dwDesiredAccess, // access mode
DWORD dwShareMode, // share mode
LPSECURITY_ATTRIBUTES lpSecurityAttributes, // SD
DWORD dwCreationDisposition, // how to create
DWORD dwFlagsAndAttributes, // file attributes
HANDLE hTemplateFile // handle to template file

);

This returns a handle to the file. If the function fails, the return value is INVALID_HANDLE_VALUE. Table
8.9 explains the parameters.

DirectSound

210

CreateFile has a bunch of parameters, most of which you won’t use:

• lpFileName will contain a string with the name of the file and a relative path.
• dwDesiredAccess will be either GENERIC_READ or GENERIC_WRITE, depending on which you

want to do.
• dwShareMode will be 0. You are greedy, and you don’t want to share your sound files with anybody.
• lpSecurityAttributes points to security junk, which you don’t care about, so you’ll pass NULL.
• dwCreationDistribution will either be CREATE_ALWAYS (when making a new file) or OPEN_EXISTING

(when opening an old one).
• dwFlagsAndAttributes should always be FILE_ATTRIBUTE_NORMAL.
• hTemplateFile we aren’t discussing, so pass NULL.

WriteFile
This function is used to write data to the file.

BOOL WriteFile(
HANDLE hFile, // handle to file
LPCVOID lpBuffer, // data buffer
DWORD nNumberOfBytesToWrite, // number of bytes to write
LPDWORD lpNumberOfBytesWritten, // number of bytes written
LPOVERLAPPED lpOverlapped // overlapped buffer

);

Isometric Game Programming with DirectX 7.0

Table 8.9 CreateFile Parameters
CreateFile Parameter Purpose

lpFileName The name of the file

dwDesiredAccess Access mode desired (GENERIC_READ or GENERIC_WRITE)

dwShareMode Share mode

lpSecurityAttributes Pointer to security attributes

dwCreationDisposition How the file is to be created

dwFlagsAndAttributes File attributes

hTemplateFile Template file

TeamLRN

211

This returns nonzero on success. Table 8.10 explains the parameters.

It’s important to check the value returned in lpNumberOfBytesWritten against the number that you told
it to write in order to check for errors.

ReadFile
ReadFile is used to read data from a file. It looks quite a bit like WriteFile.

BOOL ReadFile(
HANDLE hFile, // handle to file
LPVOID lpBuffer, // data buffer
DWORD nNumberOfBytesToRead, // number of bytes to read
LPDWORD lpNumberOfBytesRead, // number of bytes read
LPOVERLAPPED lpOverlapped // overlapped buffer

);

DirectSound

Table 8.10 WriteFile Parameters
WriteFile Parameter Purpose

hFile Handle to the file to which you are writing

lpBuffer A buffer that contains the contents to be written

nNumberOfBytesToWrite The number of bytes in the buffer

lpNumberOfBytesWritten A pointer to a DWORD that contains the number of bytes
actually written

lpOverlapped Ignore. Pass NULL.

212

This returns nonzero on success. Table 8.11 explains the parameters.

As with WriteFile, be sure to check the value returned in lpNumberOfBytesRead.

CloseHandle
The simplest of them all, CloseHandle closes the file.

BOOL CloseHandle(
HANDLE hObject // handle to object

);

This returns nonzero on success. hObject is the file handle.

The Structure of a WAV file
Now that you can read data from a file, it’s almost time to do so. But first (you saw that one coming),
let’s talk a little bit about the structure of a WAV file. Then, I promise we’ll get to the actual loading of
the file.

The WAV file format is based on the RIFF format, which was developed to allow many types of files to
use the same format—even files with radically different purposes. Not surprisingly, the first four bytes of
a WAV file contain the string "RIFF". The next four bytes contain the length of the rest of the file. These
eight bytes make up what is called the RIFF header. This is common to any file with the RIFF format.

Now we start getting into the particulars of the WAV file itself. The next four bytes contain the string
"WAVE."This is what identifies the file as a WAV file. The remainder of the file consists of data “chunks.”
Figure 8.8 shows a graphical version of the contents of a chunk.

Isometric Game Programming with DirectX 7.0

Table 8.11 ReadFile Parameters
ReadFile Parameter Purpose

hFile Handle to the file from which you are reading

lpBuffer Buffer into which data from the file will be stored

nNumberOfBytesToRead Number of bytes in the buffer

lpNumberOfBytesRead A pointer to a DWORD that will be filled with the actual num-
ber of bytes read

lpOverlapped Ignore. Pass NULL.

TeamLRN

213

You are concerned with exactly two types of chunk: the “fmt” chunk (there is a space after the t) and the
“data” chunk. The “fmt” chunk contains information about the format of the sound, and the fields corre-
spond, for the most part, to the members of WAVEFORMATEX. The “data” chunk contains the raw audio
data that you put into the buffer after you have locked it.

There are more than just these two chunks, but for the purpose of loading a WAV file, these are the only
two that are of any use. In all of the WAV files I’ve ever worked with, the “fmt” chunk always comes first,
and, in most cases, the “data” chunk comes immediately thereafter.

Loading a WAV File from Disk
As with the bitmap loader back in Chapter 3, I’ve written a class to do the WAV file loading:

//wave loader class
class CWAVLoader
{
private:

//format
LPWAVEFORMATEX lpWfx;
//data chunk
UCHAR* ucData;
//length of the data chunk
DWORD dwDataLength;

public:
//constructor
CWAVLoader();
//destructor
~CWAVLoader();
//get data length
DWORD GetLength();
//get data pointer
UCHAR* GetData();
//get pointer to format
LPWAVEFORMATEX GetFormat();
//load from a file
void Load(LPCTSTR lpszFilename);
//destroy buffer
void Destroy();

};

DirectSound

214

The constructor does very little—it simply makes sure that all of the data members are cleared out. The
destructor just calls Destroy, which performs any necessary cleanup. The Get members retrieve the data
stored in the class. The main job of the class is done by Load:

//load from a file
void CWAVLoader::Load(LPCTSTR lpszFilename)
{

//destroy any old buffer
Destroy();
//four character buffer
char Buffer[5];
Buffer[4]=0;
//read length
DWORD dwNumRead;
//length variable
DWORD dwLength;

//data buffer
UCHAR* ucTemp;
//open a handle to the file
HANDLE hfile=CreateFile(lpszFilename,GENERIC_READ,

FILE_SHARE_READ,NULL,OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,NULL);

ReadFile(hfile,Buffer,4,&dwNumRead,NULL);//"RIFF"
ReadFile(hfile,&dwLength,sizeof(dwLength),&dwNumRead,NULL);//length of file
ReadFile(hfile,Buffer,4,&dwNumRead,NULL);//"WAVE"
//chunks
bool done=false;
while(!done)
{

ReadFile(hfile,Buffer,4,&dwNumRead,NULL);//chunk header
ReadFile(hfile,&dwLength,sizeof(dwLength),&dwNumRead,NULL);//length

of chunk
ucTemp=new UCHAR[dwLength];
ReadFile(hfile,ucTemp,dwLength,&dwNumRead,NULL);
//depending on the chunk header, do something
if(strcmp("fmt ",Buffer)==0)
{

//format chunk
//allocate format
lpWfx=new WAVEFORMATEX;

Isometric Game Programming with DirectX 7.0

TeamLRN

215

//clear out format
memset(lpWfx,0,sizeof(WAVEFORMATEX));
//copy from buffer
memcpy(lpWfx,ucTemp,dwLength);

}
if(strcmp("data",Buffer)==0)
{

//data chunk
//allocate data buffer
ucData=new UCHAR[dwLength];
//copy length
dwDataLength=dwLength;
//copy buffer
memcpy(ucData,ucTemp,dwDataLength);

//we are done, and need no more chunks
done=true;

}
delete ucTemp;

}
//close the file
CloseHandle(hfile);

}

Using CWAVLoader to Load from a
File to a DirectSoundBuffer
Load up IsoHex8_2.cpp. It’s our favorite bouncing ball demo again! This time, though, we are using
IDirectSoundBuffer and CWAVLoader.

//declarations (global)
//sound manager
LPDIRECTSOUND lpds;
//buffers
LPDIRECTSOUNDBUFFER lpdsb[2];
//setup (Prog_Init)

//load wav file
CWAVLoader wav;
wav.Load("bounce.wav");
//set up sounds
DirectSoundCreate(NULL,&lpds,NULL);

DirectSound

216

//set coop level
lpds->SetCooperativeLevel(hWndMain,DSSCL_NORMAL);
//set up buffer description
DSBUFFERDESC dsbd;
memset(&dsbd,0,sizeof(DSBUFFERDESC));
//size
dsbd.dwSize=sizeof(DSBUFFERDESC);

//flags
dsbd.dwFlags=DSBCAPS_LOCSOFTWARE;
//length and sound format
dsbd.dwBufferBytes=wav.GetLength();
dsbd.lpwfxFormat=wav.GetFormat();
//create buffer
lpds->CreateSoundBuffer(&dsbd,&lpdsb[0],NULL);
DWORD buflen,buflen2;
void* bufptr;
//lock entire buffer
lpdsb[0]->Lock(0,0,&bufptr,&buflen,

NULL,&buflen2,DSBLOCK_ENTIREBUFFER);
//copy from wave loader to sound buffer
memcpy(bufptr,wav.GetData(),wav.GetLength());
//unlock the buffer
lpdsb[0]->Unlock(bufptr,buflen,NULL,buflen2);
//duplicate the sound
lpds->DuplicateSoundBuffer(lpdsb[0],&lpdsb[1]);

//clean up (Prog_Done)
//clean up sounds
if(lpdsb[1])
{

lpdsb[1]->Release();
lpdsb[1]=NULL;

}
if(lpdsb[0])
{

lpdsb[0]->Release();
lpdsb[0]=NULL;

}
//clean up sound manager
if(lpds)
{

Isometric Game Programming with DirectX 7.0

TeamLRN

217

lpds->Release();
lpds=NULL;

}
//The "bounce" (Prog_Loop)

//bounds checking
//left side
if(ptBallPosition[index].x<=0)
{

ptBallVelocity[index].x=abs(ptBallVelocity[index].x);
lpdsb[index]->Play(0,0,0);

}
//top side
if(ptBallPosition[index].y<=0)
{

ptBallVelocity[index].y=abs(ptBallVelocity[index].y);
lpdsb[index]->Play(0,0,0);

}
//right side
if(ptBallPosition[index].x>=(int)dwDisplayWidth-gdicBall.GetWidth())
{

ptBallVelocity[index].x=-abs(ptBallVelocity[index].x);
lpdsb[index]->Play(0,0,0);

}
//bottom side
if(ptBallPosition[index].y>=(int)dwDisplayHeight-gdicBall.GetHeight())
{

ptBallVelocity[index].y=-abs(ptBallVelocity[index].y);
lpdsb[index]->Play(0,0,0);

}

As you can see, two sound buffers are created, one for each ball. One is loaded from the WAV file, and the
other is a duplicate. In reality, you would probably want to make more. Occasionally a ball will bounce off
one wall and then almost immediately bounce off another wall. With only one buffer per ball, this would
mean that only one bounce is heard if the time between bounces is shorter than the sound itself. Take into
consideration situations like this when deciding how many copies of a sound to make—if you don’t make
the copies at design time, they will have to be added during development or even during beta.

DirectSound

218

The DSFuncs Library
Like the DDFuncs library I showed you in Chapter 6, the DSFuncs library is meant to help you avoid
repetitive tasks necessary during the creation of sound buffers. There isn’t much to this library.

LPDSB_LoadFromFile
LPDIRECTSOUNDBUFFER LPDSB_LoadFromFile(LPDIRECTSOUND lpds,LPCTSTR lpszFileName);

This returns a new sound buffer. lpds is a pointer to an IDirectSound object that is used to create the
new buffer. lpszFileName is the file name of the WAV file that you want loaded into this buffer.

LPDSB_Release
void LPDSB_Release(LPDIRECTSOUNDBUFFER* lplpdsb);

This returns nothing. It performs a safe release on an IDirectSoundBuffer. lplpdsb is a pointer to
LPDIRECTSOUNDBUFFER. Note that I didn’t wrap up DuplicateSoundBuffer or the SetVolume, SetPan,
or SetFrequency functions. They are simple enough in their current form.

Empowering the User
It may not seem that there too many places where you can empower the user as far as sound is concerned.
The empowerment is not nearly as obvious as it is with DirectDraw. The most essential sound empower-
ment you can give your users is the ability to turn sound off. Yes, your sounds are spiffy and they really add
to the flavor of the game, but face it: at some point, they will get repetitive and begin to annoy even the
most insesitive user. So make at least a “sound off ” option. By doing so, your users can play at work and
get their coworkers addicted to your game.

The second user empowerment for sound is the ability to set the volume. Depending on the game, this
may be one, two, or three different volumes. Usually, sound effects (SFX), voice (VOX), and music
(MUS) have different volumes. If you have a sufficiently small number of sounds, you can get away with
having only one or two of these. This empowerment isn’t nearly as important as “sound off,” but it is
nonetheless important. It is a feature that your users will be expecting.

Isometric Game Programming with DirectX 7.0

TeamLRN

219

Summary
DS’s capabilities far exceed what little we’ve covered here. Those capabilities include 3D sound, using noti-
fication, syncing sounds, and DirectMusic. I could never hope to do justice to all of these in a short intro-
ductory chapter.

Following are a few things to remember:

• To play sounds the WIN32 way, you use PlaySound.
• To use the capabilities of DirectSound, you create an IDirectSound object, much in the same way you cre-

ated an IDirectDraw object in DirectDraw.
• Digital sounds are stored in DirectSoundBuffers and are created by using
IDirectSound::CreateSoundBuffer.

• Depending on how you set it up, you can control a sound’s volume, pan, or frequency to get various effects.
• If you need more than a single copy of a WAV file, it is best to use DuplicateSoundBuffer rather than

loading the same sound multiple times.

DirectSound

Game Design
Theory

• The Intangible Nature
of Games

• Designing a Game

• From Theory to Practice

CHAPTER 9

TeamLRN

221

This is the last chapter in Part I, but I think it is the most important. This chapter has nothing to do
with WIN32, graphics, or sound. It has to do with the design of the game itself. Game design the-

ory is one of my favorite topics; I could talk about it all day.

A Definition of Game
Let’s start with a definition of what makes a game. A game is a structured activity not generally related to
survival. This definition is a little vague, but it’s the most concise I could come up with. Let’s take it apart:

• Structured. The meaning of “structure” here denotes a set of formalized rules that are essential for a game’s
existence.

• Activity. In order to play a game you must be doing something.
• Not generally related to survival. Granted, Russian Roulette is related to survival, but most other games

are not.

The Intangible Nature of Games
Please note that I speak of rules and activities, but I make no mention of boards, tokens, play money, or
any other sort of marker whatsoever. These are not required to have a game. Some games, especially athlet-
ic ones, do indeed require the use of the equipment associated with them. Basketball needs a ball that
can be bounced and something to serve as a net. Baseball needs a stick and a ball and four bases, but any-
thing can serve as the bases (when I was a kid, we often used trees). Figure 9.1 shows some game-playing
paraphernalia.

Game Design Theory

Figure 9.1

A variety of game equipment

222

So, the game is not the stuff with which you play the game; you may have balls and bats and hoops and
chess pieces and a chessboard, but these things are not the game. The game is contained totally within your
head. The pieces positioned on the board or the players positioned on the bases just keep track of the
game’s current state. When playing the game, you attempt to manipulate the game’s state in your favor. The
manner in which you manipulate the game’s state is called a game mechanic.

The game mechanic is governed by the rules. The rules define the possible game states that are legal, as
well as what game mechanics are available to you to manipulate the game state. When all of these possible
game states are taken together, they are the game state space (that is, all possible moves after a given game
state).

At the start of the game, the game state space can be very large (enormous, when playing games such as
chess), or nearly impossible to determine in athletic games such as basketball or baseball. As play progress-
es, the game state space diminishes until the game reaches completion, at which time the game state space
is empty. This is called the final game state, or the end game.

In some games, it is impossible to determine the end game until the absolute end of the game has been
reached. Many games involving cards are this way, as are most games of chance. In most games, though, it
becomes more and more evident how the game will end as the end approaches. Chess is a good example of
this, as is backgammon. In no game is it ever certain from the beginning how the game will end up.

Why We Play
Games are played in every culture on earth; and if we should ever encounter an alien species, I expect them
to bring some good games with them, or else they can just go home. The question of why we play games
remains. Both you and I, as game programmers, play a lot of games. We would not have been interested in
making them if we didn’t like playing them. It sure isn’t the game programming pay that motivates us!

I believe it’s in our nature to be competitive with the other members of our species (but, paradoxically,
cooperative at the same time). Ever since the days of cavemen, we’ve been competing for good hunting
land, good shelter, and other natural resources.

In fact, it’s easy to imagine the first game (or at least a candidate for the first game)—target practice.
Throwing spears at trees to improve accuracy would help the ability to hunt, and thus would help the
hunter and the clan survive. As technology improved, and people learned to raise crops and cultivate live-
stock, hunting for food became less important, so target practice with spears became non-survival-related.
Perhaps people came up with a scoring system, using something similar to the archer’s target. Target prac-
tice games survive to this day, in several forms. Darts, archery, lawn darts, and even horseshoes could date
back to this game.

Isometric Game Programming with DirectX 7.0

TeamLRN

223

The target practice example doesn’t explain our personal reasons for playing games, but it does illustrate
how games can come about. Our reasons for playing games change as the game develops. The cavemen
played a spear throwing game to hone their hunting skills. After hunting was no longer as important, the
game continued because it was fun. It allowed people to compare skill levels.

So, there are several reasons that we play games—we develop skills, solve problems, enjoy the thrill of the
unknown outcome, and test our mettle against another. Mainly, we play games because they are fun, and
different games are fun for different reasons.

Computer Games
Computers have been used to play games almost since the moment of their inception. Now we have force-
feedback joysticks, as well as graphical capabilities that in the coming years may even mimic real life, and
sound capabilities that already do.

Computers are uniquely suited for playing games. With a computer to implement the rules and represent
the game state on-screen, we don’t have to have a board or tokens. As computers have gotten faster, more
and more complex rules have been used; some or all of these rules can be cleverly hidden so that the player
needs only a dim awareness of them. (Yes, in computer role-playing games, you know that when you try to
hit a monster, there is some sort of randomized skill check. However, you don’t actually care about the
roll, just whether or not you hit. This is what I mean by rule hiding.) This is called game mechanic encapsulation.
Most modern computer games would not be fun if they were played on a board with tokens and markers,
because of the sheer number of game mechanics.

Game Analysis
In order to be a good game designer, you should have a solid grasp of how other games are designed.
Good games are balanced, meaning that they are not unfair. Fairness in a game is hard to realize. In a com-
puter role-playing game, as the characters that the player controls become more powerful, they should be
met with more powerful foes. If the foes get too tough too quickly, the player will become frustrated and
give up. If the foes do not become tougher quickly enough, the player will become bored and again will
quit playing. Sustaining the challenge while still having a victory condition is important in these progres-
sive types of games. Other games, like most board games and most sports, are not progressive. The chal-
lenge is the same throughout the game, and incremental difficulty is not required.

As an exercise, take your favorite sport or board game, and write down its rules. Write down these rules as
though you were explaining them to someone who has never heard of this game and is from a totally dif-
ferent culture. Even in the most simplistic of games, a description like this can take up many pages. For
example, if you were describing baseball, you would have to define the meaning of bases, baseballs, bats,
and teams. Then you’d have to talk about innings and outs and balls and strikes, defining each as you went.

Game Design Theory

224

It would quickly become quite a large description, especially if you went into RBIs, batting averages,
and so on.

You should do this kind of analysis on computer games as well. Many of the game mechanics are encapsu-
lated, but you should be able to at least hazard a guess as to how they are accomplished.

Designing a Game
After you’ve analyzed a number of games (and you’ll notice that when looking at a game analytically, it has
a different feel than when you’re just playing for fun), you can get down to the serious business of design-
ing new ones.

A warning: there really aren’t any “totally original” games any more. Most games these days are just varia-
tions on games of the past, or games from a different point of view, or an older game with a new twist.
Game design in the modern world pretty much consists of variation on a theme. But don’t be dismayed.
You don’t have to clone other games in order to be a game designer and game programmer.

During your game analysis, presumably you looked at several games from the same genre for which you
want to write. You should have good data concerning how these games are put together and what their
game mechanics are. You can now do a comparative analysis of what makes these games effective.

If you find an overwhelming commonality between the games you analyze, it probably means that the fea-
ture is expected for the genre. This doesn’t mean you should automatically include it in your game. It does,
however, mean that you should take it under most serious consideration. Is doing it this way the absolute
way to do it, or is there another way, just as effective or even more effective? Be skeptical about everything,
and question everything. This is not to say that you should reject everything that came before, but just to
point out that institutions should always be scrutinized.

When you notice a feature that is included in some games you have analyzed but not in all of them, you
should question whether the feature is appropriate to your game. It might help the game, it might do noth-
ing for the game, or it might hurt the game. Trying to anticipate potential problems with a feature now, at
design time, is much more productive than having to rip out code later.

If it hurts the game, definitely leave it out, unless you feel you can come up with a modification that fixes
the problems. If a feature does nothing for your game either way, you have a few options. You can leave it
out completely, or you can make it optional. Not all features can be made optional (a good example in
strategy games is the ability to do tactical battle screens, or just let the computer auto-resolve them). You
should never just “throw it in.” By doing so, it is evident that you don’t care about your game, and the users
will see this.

If you find a feature that is in only a few or just one or two of the games you analyzed, you should seri-
ously question whether or not to include it. Most times, this means that the feature was haphazardly done
and probably isn’t very good.

Isometric Game Programming with DirectX 7.0

TeamLRN

225

My main point here is that when designing a game, it is very important to think about the features you
want. Beginning game developers tend to run into problems with their project getting too large, too fast,
because they just started writing the game and adding features as they went. Most of the time, this winds
up being a project that is never completed (as I well know. . . I’ve failed to complete hundreds of games).

At the end of analysis, you should have a good list of features that you want in your game, and a list that
you definitely don’t. You should keep both of these lists, because they will help you as you develop your
initial concept and as you flesh out that concept.

Initial Concept
You have an idea for a game. Great! Actually, I’m about to show you that you don’t have an idea for a
game, you have a pre-idea.

Your idea can probably be stated in about one or two sentences, and maybe as much as a whole paragraph.
Write it down. If anywhere in your game idea you have the words “like X,” where X is the name of a game
currently on the market, scratch out the idea and rewrite it so that it doesn’t compare itself to another
game. This is important. You are not a lemming! Your game will not be the other game, nor a clone of it.
It will be a work that stands on its own! Oh, and did I forget to mention have a good, positive attitude about your-
self, your skills, and your idea ?

If applicable, you may want to develop a little bit of a back story. A back story is the reason that the game is
being played (at least, the reason in the alternate universe within the computer). In strategy games, it tends
to be an epic struggle between forces, or the fight of a small band of settlers to survive and grow. There is
a story in there somewhere—find it. However, don’t go into too much detail on the back story right now.
Get the main ideas on paper, and flesh it out later. Sure, you could write a novel about the back story, but
you’d never get your game done!

Fleshing It Out
Take your idea and apply the results of your comparative analysis to it. Pick which aspects will be included
and which won’t. Find features that fit with your game idea and your back story. Feel free to add more fea-
tures that you think are needed, but remember to rigorously analyze their appropriateness later.

Once you have chosen which features you’ll include, you should start drawing pictures (they don’t have to
be works of art. . . simple sketches will do) that are sort of a “story board” of your game. Put in as much
descriptive detail about your game as possible. Explain how you will implement the various features that
you have picked for your game.

Break it down, flesh it out, and put in as much detail as you can. When you have finished, congratulations!
You have a design document.

Game Design Theory

226

From Theory to Practice
OK. . . so far I’ve been talking about vague theoretical concepts and using ambiguous terms like “feature.”
The difficulty with discussing game design is that it encompasses so many aspects, and various genres have
different ways of dealing with them.

Let’s pick some genres and look at them.

The Arcade/Action Genre
This genre includes such games as Pac-Man, Space Invaders, Asteroids, Centipede, Joust, Gauntlet, and many more
too numerous to mention. Mainly, these games are concerned with wave upon wave (with incremental dif-
ficulty) of “bad guys” or obstacles. Table 9.1 outlines the main point in each of the games listed.

All of these games have “hostiles”—whether they be asteroids or invaders or ghosts. These must be avoid-
ed or killed, or they will kill you (whether consciously through an AI, or just by wandering around like the
asteroids). Most of these games have some sort of power-up system. At the very least, at various score lev-
els you gain an extra “life.” In Pac-Man, the power pills turn the tables on the ghosts. In Gauntlet, keys and
potions make your job easier.

Isometric Game Programming with DirectX 7.0

Table 9.1 Some Arcade Games and Their
Underlying Ideas

Game Idea

Pac-Man Gobble all the dots and avoid ghosts

Space Invaders Shoot all invaders before they land

Asteroids Destroy all asteroids or ships before they destroy you

Centipede Destroy a number of centipedes and other enemies before they kill you

Joust Kill all enemies before they regenerate and before they kill you

Gauntlet Kill enemies and collect power-ups while trying to find the exit

TeamLRN

227

These games also all have a “wave” or “level” structure to them. When one level is finished, the next level
is loaded. Centipede is the only exception: the waves run right into one another without any sort of break
(the colors just change).

Now that you have a few topics to analyze, let’s take a closer look at them and ask the big questions.

Are Hostiles Necessary?
Hostiles are the primary motivator in all of these games. They provide the ability for the player to fail.
Notice how most of these games cannot be “won”? This is so mainly to keep frantic teen-agers pumping
quarters into the machines, but it also demonstrates that you don’t have to be able to “win” for the game
to be fun. Other rewards will suffice, such as getting to the next level, or getting a high score. If you want-
ed to replace hostiles in a game, you would have to provide a different way for the player to fail. Doing so
would take you out of the arcade/action genre, so having a hostile is definitely a fundamental aspect of
having a game of this genre.

Are Power-Ups Necessary?
All of these games (except Gauntlet) have at least one power-up—the extra life after so many waves or levels
or after a certain score. Other power-ups, like Pac-Man’s power pellet, or the potions and keys in Gauntlet,
depend entirely on the specific game. Without the power pellets, Pac-Man would be a lot harder to
play. . . maybe too hard. Gauntlet keys are absolutely essential, because part of the challenge is to find enough
keys to get through all the doors. The potions in Gauntlet aren’t absolutely necessary, but they relieve (for a
moment) the stress of being embroiled in a battle, so they are appropriate to the game.

Are Waves or Levels Necessary?
Levels or waves help break up the play a little bit, but they aren’t absolutely required. You can achieve
incremental difficulty without having levels, but using levels makes implementing that incremental
difficulty easier.

As you can see, we’ve pretty much nailed down the action/arcade genre. Waves, power-ups, and hostiles are
key elements. If you were to design a game for this genre, you would want to carefully consider how you
wanted to implement these things, or if you wanted to find an alternative.

Isometric Games
Isometric games usually fall into a few genres: computer role-playing games, turn-based strategy games,
real-time strategy games and simulations, and board/puzzle games.

Game Design Theory

228

Let’s take a look at the turn-based strategy game subgenre. (Turn-based strategy games still belong to the
strategy game genre, but the implementation is much different from a real-time game or simulation.) A few
of the games in this subgenre include Civilization II, Civilization: Call to Power, Master of Orion II, Imperialism II,
and Alpha Centauri.

• In all of these games, you start out with a limited number of units (usually only one or two), and from this,
you have to build a grand empire. Some games, however, have a “scenario” mode, in which a situation is set
up for you, and you have certain objectives that you have to reach.

• In all of these games, the units available to you depend on what technologies you possess, and these games
have ways to assign the technologies you are researching.

• These games, for the most part, have resources that you have to discover and exploit, and you have to improve
the land or a city or colony to better make use of these resources.

• The goal of most of these games is to subdue all of your computerized opponents, either diplomatically,
through military action, or by completion of a task before they complete it.

There’s a lot more to turn-based strategy games, but this is a good sampling.

Is Starting Out the Player with Only a Few
Units Necessary?
It’s not necessary to start out everybody as a weakling. However, except where the player has selected the
“impossible” option or has chosen to play a scenario, it is a good idea to start out all the players (human
and computer) as approximately even. This is one of the important aspects of turn-based games. The play-
er gets to take his single unit and create an empire with it.

Are Technology and Research Necessary?
Technology and research enhance the replay value. Without technology to research, all things are available
to the player at the beginning. This might be what you want. However, including technology and research
in the game promotes careful planning and forethought on the part of the player.

This is not to say that having technology and research in a game is essential to the genre. In fact, it seems
that every game maker just throws them in. I remember playing the old Avalon Hill strategy board games
(with the hex grids), and very few of them had technology and research.

What Sort of Win Conditions Are Necessary?
In most types of games, an absolute “win” condition is not necessary. In strategy games, however, some
sort of win condition is necessary, whether it is the construction of some device before any of your oppo-
nents, the elimination of your opponents, or whatever. Commonly, strategy games have a scoring system
based on any number of things—level of technology, size of army, population, and so on. This scoring
system lets you rank players after they have quit the game, and you can then build a “hall of fame” list.

Isometric Game Programming with DirectX 7.0

TeamLRN

229

As you can see, quite a bit of thought goes into designing a game. You have to ask yourself the big ques-
tions. That’s really what this chapter is about. . . thinking. Sure, you could just take a game you like and
make something that looks and plays like it (and many beginners want to do just that). That’s not neces-
sarily a bad idea, but too close of a copy won’t do much for your game programming image.

Empowering the User: Giving
Thought to the User Interface
Throughout the game design process, you should keep user empowerment in mind. When designing
screens with which the user will interact, you should strive to make the most intuitive interface you can.
This means menus and buttons and other user interface components. It also means character selection,
object manipulation, and just about everything that the user can do in the game. Putting a good deal of
thought into this topic will be of great help later, when it comes time to actually make your game.

Also, you should determine which of your game’s features are optional. Customizing game play is a great
way to empower your users. I once played a game that had an option screen with exactly two options:
music on/off and sound on/off. That was the total of the options (and yes, it was a full-screen option
panel)! In my opinion, that is unacceptable.

If you plan to have your game sell in more than one language, you’ll probably want to use icons on your
buttons instead of text. Doing so is fine, but be sure to put some sort of textual tool tips on the screen if
the mouse hovers over these icons for a few seconds.

This brings me to something else. . . your game’s learning curve. When I buy a game, I want to plop the
CD in the drive, close the door, install it, and play it. Note that I did not mention “read the manual” or
“read the help file” anywhere in this process. I want to play, and I want to play now! Most game players are
like this. . . many of them never read the manual. Not all games can accomplish the “just sit down and
play” intuitiveness, however. Imperialism II by SSI is one of these. It’s a turn-based strategy game that at first
seems difficult to play, but playing the tutorials shows you that it’s actually not so hard and, in reality, is a
fun game. If you can avoid requiring tutorials or reading manuals or help files, though, do so.

On the other hand, I hate games without adequate documentation. You should have a good help system
for your game, even if your player never uses it. You should have strategy tips of some kind if applicable.
Don’t give everything away, but do give a nudge in the right direction.

A Few Notes About Controls
If you use keyboard controls, use the arrow keys or the numeric keypad. If you use the keypad, try not to
use the 5 key for anything. The Esc key is for canceling something or exiting something. The spacebar is a
big key, and you can probably find a use for it. F1 is for help. If you have controls for a number of related
purposes, try to use a row of keys rather than scattering about the keyboard.

Game Design Theory

230

When using mouse controls, the left button is for the primary action, and the right button is for the sec-
ondary action. Most of the time, the primary and secondary actions can be determined by what the mouse
is currently pointing at. If it’s pointing at a monster, attack. If it’s pointing at an item, pick it up. If it’s
pointing at a door, open it.

Also, when the mouse is over something, provide a visual clue—a highlight, a different cursor, or just
something that lets the user know that the mouse is over something that can be interacted with. It’s also
not a bad idea to have a tool tip or some text in a status bar when the mouse hovers over an object.

Finally, in games that take up more than the screen, it is traditional to scroll through the map when the
mouse is on the edge of the screen. Also, there should probably be a mini-map of some sort, with a rec-
tangle showing where the current view is.

Making a Real Game
I’ve included a sample game as IsoHex9_1.cpp. It incorporates most of what we have covered in this first
part of the book.

The game is Breakout, something I’m sure you’ve played before. The idea is to use a paddle to bounce a ball
and strike bricks. When all of the bricks from one level are destroyed, the game advances to the next level
(which looks just like the first level). Figure 9.2 shows what this game looks like.

Isometric Game Programming with DirectX 7.0

Figure 9.2

The look of IsoHex9_1.cpp

TeamLRN

231

The graphics are less than dazzling, I know. (I spent about 15 minutes with Paint Shop Pro to make
them.) The main reason for including this demo is to show you some of the basic ways you can accom-
plish tasks in a game program.

The controls are pretty simple: you move the paddle with the mouse, and a left-click starts things. There
are no title screens or option screens. There is very little user empowerment (hey, it’s just a sample). There
are plenty of sounds—a bouncing noise (borrowed from the boucing ball demo), a different brick hit
noise for each color of brick, a losing sound, a winning sound, and a few voice sounds for when you hit
more than 10 bricks between paddle hits. These sounds all come from either my voice or my Yamaha key-
board.

Game State
IsoHex9_1.cpp has a number of global variables. The first of these is game state. While the game state is
kept track of by all the variables in the program (score, paddle and ball positions, number of bricks left),
there is a main game state—playing, waiting to play, game over, win, death, and so on.

I keep track of these using an enum and a variable.

//game states
enum GAMESTATE
{GS_START,GS_STARTWAIT,GS_PLAY,GS_DEAD,GS_RESET,GS_WINLEVEL,GS_LOSEGAME};
//main game state
GAMESTATE GameState=GS_START;

I also could have managed these with a number of consts or #defines, but in an enum, I know that I won’t
duplicate a number accidentally and have to track down a bug for five hours. It’s mainly a matter of per-
sonal preference.

The GameState variable is processed in Prog_Loop():

void Prog_Loop()
{

switch(GameState)
{
case GS_START:

{
dwScore=0;
dwLives=3;
SetUpGame();
GameState=GS_STARTWAIT;

}break;

Game Design Theory

232

case GS_STARTWAIT:
{

ShowBoard();
lpddsprime->Flip(NULL,DDFLIP_WAIT);

}break;
case GS_PLAY:

{
//limit frame time
DWORD dwTimeStart=GetTickCount();
//move ball
MoveBall();
//show board
ShowBoard();
//show frame
lpddsprime->Flip(NULL,DDFLIP_WAIT);

//wait for 10 ms to elapse
while(GetTickCount()-dwTimeStart<10);

}break;
case GS_DEAD:

{
dwLives—;
if(dwLives)
{

GameState=GS_RESET;
}
else
{

GameState=GS_LOSEGAME;
}

}break;
case GS_RESET:

{
ResetGame();
GameState=GS_STARTWAIT;

}break;
case GS_WINLEVEL:

{
SetUpGame();
GameState=GS_STARTWAIT;

Isometric Game Programming with DirectX 7.0

TeamLRN

233

}break;
case GS_LOSEGAME:

{
GameState=GS_START;

}break;
}

}

Prog_Loop doesn’t really do much. It manipulates game state variables (mainly GameState), and calls func-
tions depending on the value of GameState. This use of a variable like GameState is pretty standard, but,
of course, there are other, more efficient ways to implement it. For example, I could have created an array
of pointers to functions that get called during each Prog_Loop. This would certainly be more efficient
than the switch I currently have in there, but since the code is instructional in nature (and because the use
of function pointers would have been confusing to read), I used the switch.

If you take a look at the const/#define section of the code, you’ll see that most of the stuff in there is
hardcoded (such as the widths and heights of various objects). I have told you not to do this, and then I
went and did it. Feel free to yell “hypocrite!” if you wish. Because of this choice I made, changing the code
would be more difficult and prone to errors. The reason I hardcoded is because it speeded up develop-
ment. (It is only an example, after all.)

I want you to take a closer look at the code within the GS_PLAY game state:

//limit frame time
DWORD dwTimeStart=GetTickCount();
//move ball
MoveBall();
//show board
ShowBoard();
//show frame
lpddsprime->Flip(NULL,DDFLIP_WAIT);
//wait for 10 ms to elapse
while(GetTickCount()-dwTimeStart<10);

You’ll notice the use of GetTickCount at either end of this game state. GetTickCount retrieves the num-
ber of milliseconds that have passed since you started your computer. As you enter this code, it sets
dwTimeStart to the tick counter’s current value. Later, the code spins a while until GetTickCount-
dwTimeStart is no longer less than 10. This is called a frame rate lock. With this code, even on a super-
fast machine made at some future date, this game will not output more than 100 frames per second (1000
ms in a second, 10 seconds per frame).

Game Design Theory

234

IsoHex9_1 is done, but not finished. What is the difference? Well, when a game is “done,” it is playable.
You can play this game for hours and hours, but it doesn’t include the amenities that come with other
games. Here’s a short list of features that IsoHex9_1 needs in order to be “finished”:

• The ability to set volumes and mute sounds
• Title screen
• Top ten list
• Some sort of messages when you start, die, or lose the game
• Maybe some different types of levels
• The ability to play in a window

As you can see, IsoHex9_1 is far from finished. A lot of beginning game developers work on things like
the title screen and other stuff before they work on the game itself. This is not a good practice. Often,
you’ll end up with 10 title screens and no games. I’ve seen many a beginning game developer pour several
days into making a really good title screen and main menu, only to later abandon the project.

I left IsoHex9_1 unfinished on purpose. The reason? I want you to finish it. This game is by no means dif-
ficult to finish. It just takes time and commitment. Finishing a game is a true accomplishment. If you don’t
want to finish this game, make a smallish game like it and finish that. Feel free to send me a copy.

A Few Words about
Finishing Games
The easiest thing in the world is to start a game project. The hardest thing is finishing it. Since we as game
developers are at heart game players, our attention span isn’t as long as it could be. We start out working
on a game, and we work on it for three days straight, and then we get burned out and say “I’ll get back to
it later”—but we never do. It just sits there, until eventually we reformat the hard drive, and then it’s
gone forever. I know I must have done this about a thousand times. With several hundred thousand game
programmers out there, that means that there are several hundred million unfinished games out there.
Several hundred million!

Needless to say, you should finish a game you start. This isn’t as easy as it sounds. Boredom, burnout,
a new game you pick up at the store—these are all things that keep us from finishing our games. Don’t
let them.

A Few Tips for Finishing Games
Following are just a few gems of wisdom I’ve acquired over the years. They make game development
more likely to wind up with an actual finished product, rather than a collection of abandoned partially fin-
ished games.

Isometric Game Programming with DirectX 7.0

TeamLRN

235

Tip #1: Pace Yourself
Don’t work 24 hours a day on anything. Unless you have a publisher, you don’t have any deadlines, and
you can take as long as you like making the game. Try not to work more than eight hours a day on it. If
you have other commitments (job, school, family), don’t work more than three to six hours a day. As a
corollary, just a single hour, or even two hours, won’t work. You have to get into “the zone,” which takes
about an hour to an hour and a half to achieve.

Tip #2: Plan, Plan, Plan
Develop the game’s design before you start working on it. Draw everything, from main game play down to
the menus. The more you decide on during the design phase, the less you have to think about during
development—you just have to take the concepts from paper to code. Write down all your neat ideas.
Also, if you decide to redesign part of the game while in the middle of development, step away from the
computer to do the redesign. Avoid designing on-the-fly as much as possible.

Tip #3: Know Your Limitations
Aim low. Yes, the sky’s the limit, and you can do anything you put your mind to. Whatever. Aim low. By
this, I mean that you should pick projects you know you can do. Not think you can do. Not something you
might be able to do. Something you can do. Something you can do is more likely to be finished, as opposed
to something where you first have to learn something. If you want to learn something, make a demo pro-
gram that demonstrates how to use the new thing all by itself, not a game that uses it.

Tip #4: Wax On, Wax Off
Even when you think you’re finished, you could probably add some more polish. On the other hand, there
comes a time to declare things done. Usually, before you are finished with a project, you will hate working
on it. This is the trial by fire of all programs, especially those where you aren’t getting paid to make it.
Push through that time, and finish.

Summary
I can’t possibly hope to imbue you with all the stuff about game design I’ve absorbed over the years. Most
of it has become so ingrained in my programming style that I don’t think about it—it just happens. It
takes time to develop game design skills. It can’t happen overnight, or even over the course of a book.

This closes the chapter and this part of the book. Here are a few thoughts I want to leave you with before
moving on to the next chapter:

• Design your game as fully as possible, and really think about the design.
• Work incrementally. Make small games as you start out and large ones later.
• Finish your games. The feeling of stepping back and looking at a finished piece of work is one of

the best feelings in the world.

Game Design Theory

Part I I

Isometric

Fundamentals

TeamLRN

Tile-Based
Fundamentals

• What Does “Tile-Based” mean?

• An Introduction to
Rectangular tiles

• Managing Tile Sets

• Tile Map Basics

CHAPTER 10

238

With this chapter, we break away from the introductory matter that filled Part 1 and start to move
into the really cool stuff. Naturally, you aren’t going to fly when you haven’t walked yet. We will

explore tile-based fundamentals, from both the management and user interface sides of the coin.

What Does “Tile-Based” Mean?
You’ve seen floor tiles, right? Sometimes, especially in older buildings or in malls, different tiles are com-
bined into a pattern (sometimes very elaborate patterns). That’s exactly what we’ll be doing, but instead of
using linoleum or porcelain, we’ll be using graphic images.

This is where the comparison ends between tile-based games and floor tiles. When you make a tile-based
game, each graphic tile has a different meaning. One might be the floor, and the other solid rock (repre-
senting a wall). In a tile-based game, some sort of “characters” or “units” usually occupy tiles, and are
moved around by either the player or the computer’s AI. These are called agents in AI terminology.

The rules of the game determine what happens to the agents as they occupy the various tiles of the game,
and they also govern how the agents may move from one tile to another. In a strategy game, an agent may
be able to move three tiles per turn. However, different tiles (such as grassland and hills) may have differ-
ent “movement costs” associated with them. Grassland might only cost 1 to move, but a hill could easily
cost 2 or 3. Further addition of things like roads or rivers may reduce these costs. It can all get very com-
plicated very quickly.

Of course, the player isn’t really thinking about all this. He just presses the up arrow to move to whatever
square is there, and the computer takes care of movement cost. (Even though the player isn’t consciously
thinking about movement costs, he does know that it takes longer to traverse hills than it does to traverse
plains.)

Myths about Tile-Based Games
The first myth about tile-based games is that they are dead. This is wholly untrue. Yes, the days of pure
2D tile-based games are over. These days you have to have 3D rendering to make a really hot game.
However, even 3D games can be tile-based, and many are. This is where isometric games come in. I won’t
go into how isometric tiles work until chapter 11, but suffice it to say that isometric is 3D, even if it’s done
with just 2D rendering. Most real-time strategy games and turn-based strategy games are made using iso-
metric tiles (although the days of pure 2D isometric tile-based games are drawing to a close as well).

The second myth is that no one will buy a tile-based game. Also untrue. In your local computer game
store, see for yourself. The strategy genre is filled with tile-based games.

Isometric Game Programming with DirectX 7.0

TeamLRN

239

Tile-Based Terminology
While reading this section, keep in mind that these are mainly the terms I use. You might have different
names for them. For the most part, these terms are standard.

• Tile. A graphic used to render a portion of the background. When using rectangular tiles, this usually means
that the entire rectangular area is taken up by the tile. This is not always so, however. You might have “fringe”
tiles to take care of coastlines or a transition from one type of terrain to another, in which case the tile may
cover only a portion of the rectangular area.

• Sprite. An arbitrarily-sized graphic that is usually used for either agents or foreground objects. Really, every-
thing that isn’t a tile is a sprite. Sprite is just a generic term, like tile. You may decide to subclass them into
units, buildings, and markers, depending on the type of game.

• Tileset. A set of tiles. It is inefficient to store each tile in a separate graphics file. It’s easier to just take tiles
and group them into logical sets and then place them all into a single graphics file that gets parsed later. A
tileset might include sprites or might consist entirely of sprites.

• Space. Any arbitrarily-sized and shaped two-dimensional space. Usually a space is rectangular, but not in all
cases. You tend to work with nonrectangular spaces using a bounding rectangle as well as whatever other
structure describes them.

• Screen space. The space on the screen used for rendering the play area, not including any borders, status pan-
els, menu bars, message bars, or any other nonplay area structures. In some cases, the entire display is the
screen space. Often, it is not.

• View space. The same size as screen space, but the upper-left corner is always at (0,0) for view space. Many
times, view space and screen space are the same. View space, in most cases, is purely abstract and plays no
part in the rendering process.

• Tile space. The smallest space (usually rectangular) that is taken up by an individual tile. In rectangular tiles,
this is often the entire rectangle. Tile space can also refer to the space taken up by a sprite.

• World space. The space that allows the display of an entire map of tiles and their associated object/agent
sprites. In board games and puzzle games, world space may be equal to or smaller than screen space/view
space. In larger games, world space might be hundreds of times larger. Figure 10.1 shows the relationship
between the screen, view, and world spaces.

Tile-Based Fundamentals

240

• Anchor. A correlation of one point of a space (usually (0,0)) to another space. An example of this is a cor-
relation of view space to screen space. If you had an 8-pixel border around the main viewing area, you would
keep a point that kept track of the relationship from view space to screen space—namely, (8,8). This lets you
know how to convert between screen space and view space. Another example would be an anchor that con-
verts from view space to world space. In a scrolling tile engine (with a world space larger than the view
space), this anchor helps determine which tiles have to be rendered by translating the tile’s world space coor-
dinates into view space coordinates. From there, you can translate them into screen space coordinates.

• Anchor space. A space that defines legal values for the view-to-world anchor. Clipping your anchor point with
anchor space lets you easily manage the view-to-world anchor and lets you keep the player from having an
illegal view.

• Extent. A rectangle relative to a point (usually an anchor), often with negative left and top values. We will get
into this more when I talk about using templates to manage files.

• Tilemap. An array containing information about how the world looks—that is, which tiles are in what loca-
tion. Tilemaps also contain information about objects and agents in the world, even though the structure that
contains agents or objects may be a different array, or not even an array at all.

• Agent. Any sprite (or sequence of sprites used for animation) that moves, either by AI or by player action.
• Object. An unmoving graphic, representing such things as trees, rocks, or other items.

Hope I didn’t lose you. If you’re fuzzy on the real application of these terms, don’t worry. I’ll explore the
meaning and uses of each as I go, and you will gain full understanding.

Isometric Game Programming with DirectX 7.0

World

World
Space

View

Screen
Space

Screen

View
Space

0
0

0

0

0

0

Figure 10.1

Screen, view, and

world spaces and

their relationship

TeamLRN

241

An Introduction to
Rectangular Tiles
Rectangular tiles are the easiest of all to work with, because of their rectangular-ness. Most of the time,
when working in rectangle land, you use square tiles. You can use other sizes, of course, but square seems
to be a favorite. An example of a tile is shown in Figure 10.2.

The point of view for games with square tiles is usually top
down or overhead. This just means that all your graphics must be
drawn as though you are looking down on the object.
Sometimes you can give your game a slightly angled view so
that you are looking mostly down, but you can see some of the
front or back, depending on how the agent is facing.

Another point of view for square tiles is the side scroller view,
where you are looking at the world from its side. This was very
popular among older action games like Super Mario Bros
(Nintendo) and the original Duke Nukem.

With the advance of 3D display technology, both the top-
down and side-scroller views have become nearly obsolete.

Normally, you will want to group your tiles and sprites into
graphical files where more than one tile or sprite is in the file.
Normally, you’ll want one or two files with the graphics for the background, a file for objects, and then a
number of files for the agents (one file to an agent, unless you don’t have too many animation sequences).

The examples shown in Figures 10.3, 10.4, and 10.5 are from Ari Feldman’s SpriteLib, which is a free
graphics package that has been around for a few years. If you aren’t graphically inclined (don’t be
ashamed. . . you’re not alone), you may want to download it from http://www.arifeldman.com.

Tile-Based Fundamentals

Figure 10.2

A square tile

NOTE
Later, when we get to isomet-
ric tiles, you will use a view
called “3/4,” in which you ren-
der your agents and object as
though you are looking
straight at them. It gives the
illusion of 3D without per-
spective correction. Luckily,
the human eye is easy to fool,
because it automatically cor-
rects for the errors in the
projection.

242 Isometric Game Programming with DirectX 7.0

Figure 10.3

Background tiles

Figure 10.4

Object tiles

Figure 10.5

Character tiles

TeamLRN

243

Managing Tilesets
The tilesets and sprite sets you just saw are great, but they aren’t exactly in a form that is easy to work with
for programmers like you and me. If you wanted to work with them, you’d have to store a bunch of rec-
tangles in a text file or other configuration file, or (gasp!) you’d have to hardcode image rectangles. Later, if
you decided to change the art, this would be a maintenance horror show. You’d have to go back and change
around the rectangle lists. Of course you’d forget one, and naturally you wouldn’t find out until one of
your beta testers got really far into the game. . . well, I think you get the idea.

So, what’s the solution to this dilemma? Templates. A template is used in the first example of a tileset—the
one with the white boxes around it (Figure 10.3). That’s one way to do a template. However, it’s not the
best way, because you still have to either hardcode or put into a configuration file the width and height of
the template.

Load IsoHex10_1.bmp into your favorite graphics editing program. Figure 10.6 shows what it looks like.

You can see the border around each of the images. Unlike the tileset shown in Figure 10.3, the border is
green instead of white. Or is it?

Tile-Based Fundamentals

Figure 10.6

A sample tileset

244

Take a really close look at the top cell (zoom in as far as the program will let you), shown in Figure 10.7.

There is more than just green. . . there is also white and cyan (you can’t see it too well in the book, but you
can see it just fine in a graphics program). As you might have guessed, each of the different colors means
something. The green dots span the width and height of the image. White dots are part of the frame but
outside of the image. The black dot in the corner is what designates the corner of a tile cell, and also the
transparent color of the tileset. The cyan dot (or blue dot) designates a coordinate for the tile’s anchor. (I
use cyan when the anchor is within the bounds of the tile image itself. In other words, it would otherwise
be a green dot, and blue when the anchor point would otherwise be white.)

Why these colors? Why not a completely different set of colors? Quite frankly, you could use a different set
of colors, and this type of template supports just that. Take a look and zoom in on the upper-right corner
of the tileset (shown in Figure 10.8).

Isometric Game Programming with DirectX 7.0

Figure 10.7

Zooming in on the caveman

TeamLRN

245

There are five pixels in the rightmost column, in the following order: black, white, blue, green, and cyan.
These specify corner, frame, anchor, inside, and inside anchor, respectively. If you wanted to, you could
change one of these colors to red (for example), and put it in the proper control color position, and use it
instead of the color used here.

Using an extended template like this gives you a great deal of freedom. You can make a template and later
change the width or height of the cells, and it will still load the same way. The green and blue and cyan
pixels let you calculate tile spaces, anchor points, and tile extents, which you can parse into arrays of rec-
tangles and points. You can move an image’s anchor point and have it show up in a different location. An
extended template takes pressure off programmers and removes stress from artists, who, when using it, are
less constrained by the normally tight restrictions for tile-based graphics.

Before you finish building your utopian society, though, you have to write code that will parse a graphics
file into arrays of rectangles and points. Let’s start by figuring out what information you need about each
tile. Presumably, these templated graphics will be on an IDirectDrawSurface7 somewhere, and you want
to optimize your data structures for using Blt and BltFast. Since both of these use source rectangles,
you’ll definitely want to keep an array of RECTs for that. The coordinates held in these RECTs will be pixel
coordinates measured from (0,0) in the tileset’s image. Figure 10.9 shows what one of these RECTs might
look like.

Tile-Based Fundamentals

Figure 10.8

The upper-right corner of the tileset,

demonstrating control colors

246

In Figure 10.9, the RECT has the coordinates (1,1)–(39,61). Remember that you have to add one to the
bottom and right because of how RECTs work. Doing so gives you a resulting RECT of (1,1)–(40,62).

Because you might or might not be referencing off the upper-left of these source RECTs (the blue and cyan
points might lie elsewhere), you need an array of POINTs to keep track of the tile anchors. Like the source
rectangles, these POINTs contain coordinates into the tileset image, meaning that a tile with a rectangle of
(100,100)–(200,200) has its anchor point within the x and y range of that RECT (rather than having the
anchor point in reference to the tile cell’s upper-left corner, which is another way you could have done this
that would have added unnecessary computations). Figure 10.10 shows the anchor point.

Isometric Game Programming with DirectX 7.0

Figure 10.9

Source RECT

Figure 10.10

Anchor point

TeamLRN

247

In Figure 10.10, the anchor point is (7,1), which is within the range of your source RECT, as I said it
would be.

Finally, you add another array of RECTs to hold the tile extents. Extents can be calculated after the source
RECT and anchor POINT have been determined, like so:

//copy source rect
CopyRect(&rcExtent,&rcSrc);
//offset by anchor point
OffsetRect(&rcExtent,-ptAnchor.x,-ptAnchor.y);

In this case, the extent is (–6,0)–(32,60). The derivation of these values is as follows:
Upper Left:
From source RECT (1,1)
Minus anchor point (7,1)
Combine coordinates (1–7,1–1)
Solve (–6,0)

Bottom Right:
From source RECT (40,62)
Minus anchor point (7,1)
Combine (40–7,62–1)
Solve (33,61)

Yes, there’s a negative left coordinate; this is quite common for this type of tileset, where you might want
to reference a tile from a point other than the upper left. It would not be a stretch to use the character’s
feet or center. Just use whatever works to give an animation continuity and smoothness. For this tileset, the
horizontal aspect of the anchor lines up with the back of the caveman’s hair.

The idea here is that you want to be able to simply specify a single (x,y) screen coordinate and tell it which
tile to blit, and have it come out right. When blitting, the (x,y) point corresponds to the tile’s anchor
point. This means that if you tell this tile to blit to screen coordinate (100,100), you want screen coordi-
nate (100,100) to correspond to the tileset image’s coordinate (7,1).

You want the extent so that you can simplify the process of determining the coordinates of the destination
RECT (or the destination (x,y) for BltFast). Taking the source RECT and subtracting the point gives you
the extent. This way, based on a single set of coordinates (dstX and dstY), you can determine the proper
destination rectangle. For example:

Tile-Based Fundamentals

248

//for Blt
CopyRect(&rcDst,&rcExtent);
OffsetRect(&rcDst,dstX,dstY);
//perform the Blt

//for BltFast
dstX+=rcDst.left;
dstY+=rcDst.top;
//perform bltfast

If you didn’t precalculate the extents, you would have to calculate them from the source rectangle, anchor
point, and destination point each time you wanted to render the tile. Although doing so isn’t too much
more work (about a dozen add or subtract operations), it is work, and in game programming, you want to
avoid any work that you can. Precalculating tile extents might give you just one extra frame per second or
even only half a frame per second, which doesnt’ sound like much, but if you have two optimizations that
each give you an extra half-frame per second, you’ve just earned yourself another frame per second. Game
programming is a game of inches.

A TileSet Class
So, now that you’ve decided what information you want, you just have to go in and get it. I made a class to
work with these sorts of templates. It’s called CTileSet, and you can find the code for it in TileSet.h and
TileSet.cpp.

The Class Declaration
First, I designed a struct to contain important information about tiles, including source rectangle, anchor
point, and destination extent. I put this information into TILEINFO.

//tileset information structure
struct TILEINFO
{

RECT rcSrc;//source rectangle
POINT ptAnchor;//anchoring point
RECT rcDstExt;//destination extent

};

Isometric Game Programming with DirectX 7.0

TeamLRN

249

The members of TILEINFO are explained in Table 10.1.

Next, here’s the class itself:

class CTileSet
{
private:

//number of tiles in tileset
DWORD dwTileCount;
//tile array
TILEINFO* ptiTileList;
//filename from which to reload
LPSTR lpszReload;
//offscreen plain directdrawsurface7
LPDIRECTDRAWSURFACE7 lpddsTileSet;

public:
//constructor
CTileSet();
//destructor
~CTileSet();
//load (initializer)
void Load(LPDIRECTDRAW7 lpdd,LPSTR lpszLoad);
//reload (restore)
void Reload();
//unload (uninitializer)
void Unload();
//get number of tiles
DWORD GetTileCount();
//get tile list

Tile-Based Fundamentals

Table 10.1 TILEINFO Members
TILEINFO Member Meaning

rcSrc Source RECT for the tile

ptAnchor Anchor POINT for the tile

rcDstExt Destination extent RECT for the tile

250

TILEINFO* GetTileList();
//get surface
LPDIRECTDRAWSURFACE7 GetDDS();
//retrieve filename
LPSTR GetFileName();
//blit a tile
void PutTile(LPDIRECTDRAWSURFACE7 lpddsDst,int xDst,int yDst,int

iTileNum);
};

The private members contain all of the information needed to process the tileset. These are listed in
Table 10.2.

The member functions in the public section perform all necessary operations on the tileset. Table 10.3
explains these member functions.

Isometric Game Programming with DirectX 7.0

Table 10.2 CTileSet Private Members
CTileSet Private Member Meaning

dwTileCount The number of tiles contained in the tileset

ptiTileList A pointer to an array of TILEINFO that describes each tile

lpszReload The file name from which this tileset was loaded

lpddsTileSet The IDirectDrawSurface7 pointer that is the off-screen
surface containing the tileset

TeamLRN

251

The constructor and destructor don’t do much and aren’t very interesting, but the other functions are more
important, so I’ll explain them in more detail.

CTileSet::Load
This function loads a bitmap and places it onto a DirectDraw surface and also parses the image into its
component tiles.

void CTileSet::Load(LPDIRECTDRAW7 lpdd,LPSTR lpszLoad);

The lpdd parameter is a pointer to an IDirectDraw object, which is used to initially create the tileset
surface. The lpszLoad parameter is the name of the file to load that contains the image you want for
this tileset.

Tile-Based Fundamentals

Table 10.3 CTileSet Public Member Functions
CTileSet Public Member Function Purpose

CTileSet Constructor that initializes all variables to 0
or NULL

~CTileSet Destructor that calls Unload

Load Loads and parses an image

Reload Reloads the image (if for some reason the sur-
face has been freed, such as resulting from an
Alt+Tab)

Unload Frees the resources associated with the tileset

GetTileCount Returns the number of tiles

GetTileList Returns the tile info pointer

GetDDS Returns a pointer to the
IDirectDrawSurface7 containing the tileset

GetFileName Returns the name of the file from which the
tileset was loaded

PutTile Puts a tile on a surface, given a coordinate and
a tile number

252

This function is quite long, because of the image parsing. It performs the following tasks:

1. Loads the image.
2. Grabs the control colors from the upper-right corner.
3. Counts and measures the horizontal and vertical cells.
4. Allocates the tile list.
5. Scans each tile’s left and top for anchor points and inside points (using default values if these

control points are not specified).
6. Calculates destination tile extents.

All of the main work is done here, at load time, so that after a call to Load, you can immediately start
using PutTile, and you never really have to worry about it ever again.

CTileSet::Reload
CtileSet::Reload reloads an image if and when it is lost due to a display mode change or Alt+Tab
incident.

void CTileSet::Reload();

If, as a result of an Alt+Tab or other such misfortune, your tileset’s surface is lost, a call to
IDirectDraw7::RestoreAllSurfaces may be required. After that, you can call CTileSet::Reload, and
the image will be reloaded (but not reparsed).

CTileSet::Unload
This frees all the resources used by the tileset. It is called during the destructor and whenever Load is
called.

void CTileSet::Unload();

Very likely, you will never call this function directly, since it is taken care of in the destructor. Even if you
wanted to load a different image into a tileset, you could just call Load. The only time you would ever
want to call Unload is if you were trying to conserve video memory for other images. It is here mainly for
completeness.

CTileSet::GetTileCount
This one’s a no-brainer.

DWORD CTileSet::GetTileCount();

This function returns the number of tiles in the set.

Isometric Game Programming with DirectX 7.0

TeamLRN

253

CTileSet::GetTileList
This function gives you access to the tile information, which is very important if you want to implement
clipping yourself rather than relying on a DirectDraw clipper and CTileSet::PutTile.

TILEINFO* CTileSet::GetTileList();

This function returns the pointer to the tile array. You can use the result of this function just as you would
an array.

//make tileset
CTileSet tsExample;
tsExample.Load(lpdd,”Sample.bmp”);
//retrieve the info about tile zero
TILEINFO ti=txExample.GetTileList()[0];

CTileSet::GetDDS
This function allows access to the DirectDraw surface on which dwell the tiles.

LPDIRECTDRAWSURFACE7 CTileSet::GetDDS();

This function returns the IDirectDrawSurface7 pointer that contains the image of the tileset. If for
some reason you wanted to modify or read from the surface, this would be the function you’d start with.
Keep in mind that any changes you make to the surface will not survive a call to CTileSet::Reload. Also,
if you want to keep a copy of the surface pointer for a long time, it might be best to use AddRef so that
the surface isn’t inadvertently deleted in the interim.

CTileSet::GetFileName
This function is pretty self-explanatory.

LPSTR CTileSet::GetFileName();

This returns a pointer to the file name that is used to reload the tileset.

CTileSet::PutTile
This function is the reason for the whole show. It’s the workhorse of the CTileSet class.

void CTileSet::PutTile(LPDIRECTDRAWSURFACE7 lpddsDst,int xDst,int yDst,int
iTileNum);

This takes care of putting a tile onto a destination surface (lpddsDst), with xDst,yDst corresponding to
the anchor point of the specified tile (iTileNum). Tiles are numbered starting with 0 and are ordered left
to right, top to bottom.

Tile-Based Fundamentals

254

An Animated Sprite Example
One of the many uses for a tileset is for an animated sprite sequence. Earlier in this chapter, I showed you
a tileset consisting of some caveman images from spritelib, which is a good example of one such animation
sequence. Load up IsoHex10_1.cpp, which makes use of CTileset (among other things; see the top of
IsoHex10_1.cpp). If you load and run it, you will see the caveman running in place, as shown in Figure
10.11.

This example is based on IsoHex1_1.cpp, just like the rest of the examples. The main differences exist in
Prog_Init, Prog_Loop, and Prog_Done.

Setting up
The Prog_Init does the required DirectDraw setup (creating the DirectDraw interface, creating the pri-
mary surface and the back buffer). It also loads the tileset into tsCaveMan (a global CTileSet variable).

bool Prog_Init()
{

//create IDirectDraw7
lpdd=LPDD_Create(hWndMain,DDSCL_FULLSCREEN | DDSCL_EXCLUSIVE |

DDSCL_ALLOWREBOOT);
//set display mode
lpdd->SetDisplayMode(800,600,16,0,0);

Isometric Game Programming with DirectX 7.0

Figure 10.11

Animation demo

TeamLRN

255

//create primary surface
lpddsMain=LPDDS_CreatePrimary(lpdd,1);
//get back buffer
lpddsBack=LPDDS_GetSecondary(lpddsMain);
//clear out back buffer
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//load in tileset
tsCaveMan.Load(lpdd,”IsoHex10_1.bmp”);
return(true);//return success

}

The Main Loop
In Prog_Loop, three things happen. First, the back buffer is cleared out. Second, one of the cells of the
tileset is written to the approximate middle of the screen. Third, the application is locked to 15 frames per
second.

void Prog_Loop()
{

//start timer
DWORD dwTimeStart=GetTickCount();
//clear out back buffer
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//put the caveman
tsCaveMan.PutTile(lpddsBack,400,300,dwCaveManFrame);
//change the frame number
dwCaveManFrame++;
dwCaveManFrame%=8;
//flip
lpddsMain->Flip(NULL,DDFLIP_WAIT);
//lock to 15 FPS
while(GetTickCount()-dwTimeStart<66);

}

Tile-Based Fundamentals

256

You can see that using CTileSet is a great deal easier than setting up RECTs and going down that path.
The tileset makes sprite and tile management easy and doesn’t add that much overhead.

Cleaning up
You don’t have to call the Unload function, because CTileSet’s destructor automatically does so, and you
can essentially ignore your tileset in Prog_Done. You can just destroy the primary surface and the
IDirectDraw and be done with it.

void Prog_Done()
{

//destroy primary surface
LPDDS_Release(&lpddsMain);
//destroy IDirectDraw7
LPDD_Release(&lpdd);

}

Taking Control
Although just watching a caveman run in place is fun, you’d probably rather control him. For this, I wrote
IsoHex10_2.cpp. This example is mostly the same as IsoHex10_1, except that now you respond to the
arrow keys and use that information to move the caveman back and forth across the screen. The major
change happens in Prog_Loop.

void Prog_Loop()
{

//start timer
DWORD dwTimeStart=GetTickCount();
//clear out back buffer
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//put tile

tsCaveMan[dwCaveManFace].PutTile(lpddsBack,dwCaveManPosition,300,dwCaveManFrame);
//move
if(MoveLeft^MoveRight)
{

if(MoveLeft)
{

//moving left

Isometric Game Programming with DirectX 7.0

TeamLRN

257

dwCaveManFace=1;
//update position
dwCaveManPosition+=796;
dwCaveManPosition%=800;
//update animation frame
dwCaveManFrame+=1;
dwCaveManFrame%=7;

}
else
{

//moving right
dwCaveManFace=0;
//update position
dwCaveManPosition+=4;
dwCaveManPosition%=800;
//update animation frame
dwCaveManFrame+=1;
dwCaveManFrame%=7;

}
}
else
{

//standing
dwCaveManFrame=7;

}
//flip
lpddsMain->Flip(NULL,DDFLIP_WAIT);
//lock to 15 FPS
while(GetTickCount()-dwTimeStart<66);

}

The global variables named MoveLeft and MoveRight are bools, and you change their status in response to
WM_KEYUP and WM_KEYDOWN.

case WM_KEYDOWN:
{

//on escape, destroy main window
if(wParam==VK_ESCAPE)
{

DestroyWindow(hWndMain);
}
//movement keys

Tile-Based Fundamentals

258

if(wParam==VK_LEFT)
{

MoveLeft=true;
}
if(wParam==VK_RIGHT)
{

MoveRight=true;
}
return(0);//handled

}break;
case WM_KEYUP:

{
//movement keys
if(wParam==VK_LEFT)
{

MoveLeft=false;
}
if(wParam==VK_RIGHT)
{

MoveRight=false;
}
return(0);//handled

}break;

In Prog_Loop, you can see that, depending on which key is
being pressed, the facing (contained in dwCaveManFace), the
position (dwCaveManPosition), and the animation frame
(dwCaveManFrame) are updated. Nothing happens if both
keys are pressed at the same time.

This is about it for your crash course in tile and sprite man-
agement. Throughout the rest of the book, you will make
heavy use of CTileSet. I hope I’ve shown you that this stuff
isn’t so hard after all, as long as you have the proper tools and
classes to help you.

Isometric Game Programming with DirectX 7.0

NOTE
You may have noticed that no
subtraction is done—only addi-
tion.This is because all the vari-
ables are DWORDs, or unsigned
longs, which have no negative
values.You can see that all the
additions are shortly followed by
a modulus (%) operation.
Combining addition and modu-
lus, you get a net subtraction.

TeamLRN

259

Tilemap Basics
A single tile, or even a sequence of tiles depicting an animated character, isn’t in itself very useful. In order
to be useful, a variety of sprites and tiles must be used together. Now that you’ve seen how easy it is to
manipulate tilesets, the time has come to get into tilemaps. When creating a tile-based world, you must
have a way to represent it in your computer’s memory. Usually, you do so with some sort of array,
although there are other more complicated but more flexible solutions.

Since we are still in rectangle land, our tilemaps are more intuitive than they will be once we get into iso-
metric and hexagonal tilemaps. They are simply two-dimensional arrays, like so:

int iTileMap[WIDTH][HEIGHT];

WIDTH and HEIGHT can be any old value—whatever you need to make your tilemap the proper size. In a
chess or checkers game, WIDTH and HEIGHT would both have a value of 8. A side-scroller might have a
HEIGHT equal to the screen height divided by the tile height, but the width of the map times the width of
the tiles might be several times the width of the screen. The WIDTH and HEIGHT values depend entirely on
what kind of game you are making.

The meaning of the numbers in this array remains in question. Intrinsically, they have none; the meaning
of the numbers is entirely up to you. You may not even have ints in the array, but instead a completely dif-
ferent custom structure. Again, this is entirely game-dependent.

For example, in a checkers game, the board squares are alternately black and red, as shown in Figure 10.12.
You might put this in the number as a bit flag (if bit 0 is set or not set, for example). On the other hand,
you might decide that a board whose x and y add up to be an even number is black, and an odd number is
red, like so:

if((tilex+tiley)&1)
{

//red square
}
else
{

//black square
}

Tile-Based Fundamentals

260

Figure 10.13 shows the calculations for (x+y) & 1 for the sample checkerboard.

Isometric Game Programming with DirectX 7.0

Figure 10.12

A checkerboard

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

Figure 10.13

Alternating

odd/even

checkerboard

TeamLRN

261

You may want to only contain in your checkerboard’s tile array which piece is or is not there. There are a
total of five options: black piece, red piece, black king, red king, and empty; you might create an enum to
keep track of them.

enum{EMPTY=0,BLACKPIECE=1,REDPIECE=-1,BLACKKING=2,REDKING=-2};

In this scheme, all black pieces are positive numbers, and all red pieces are negative. This provides an easy
way to differentiate them and conveniently leaves 0 for representing empty. The starting board configura-
tion tilemap values are shown in Figure 10.14.

More Complicated Tilemaps
Checkers is a good example of a game for which to use a very simple map structure. There isn’t much vari-
ety in the tiles this map can hold. This is true of most board and puzzle games, like chess, Reversi, and so
on. However, more complicated games like turn-based or real-time strategy games are more visually rich
and thus have a more complicated map structure. Also, these types of maps tend to be layered.

For example, you might decide that your turn-based strategy game will have several different types of ter-
rain: ocean, plains, forest, hills, and mountains. These would become your basic terrain types. In addition,
you might want to have rivers and roads connecting various map squares. Roads and rivers would be con-
tained in different layers. Also, you’ll undoubtedly want to have cities and units on the map, and this can
add even more layers. To accomplish all this layering, you might have a struct like the following to describe
your tilemap areas:

Tile-Based Fundamentals

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7X

Y
1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 -1 0 -1 0 -1 0 -1

-1 0 -1 0 -1 0 -1 0

0 -1 0 -1 0 -1 0 -1

Figure 10.14

Starting board

configuration

262

struct TILEMAPSQUARE
{

char BasicTerrain;//0=ocean;1=plains;2=forest;3=hills;4=mountains;
unsigned char RoadFlags;//bit 0=north; bit 1=northeast; bit 2=east; etc.
unsigned char RiverFlags;//bit 0=north;bit 1=east;bit2=south;bit3=west
UNIT* Unit;//pointer to a unit

};

I think you get the idea. The more rich the world, the more complicated becomes the map structure. For
now, we will stick with simplistic tilemaps. We’ll get into more complicated structures in later chapters.

Rendering a Tilemap
Storing a tilemap somewhere in an array is important. Doing so allows you to persist a world without hav-
ing to hardcode it. With such a tilemap, you can save to and load from disk, and create an editor that
allows you to modify the map. Creating an editor is a great idea; you can distribute it with your game so
that your players can create their own levels if they wish, thus enhancing the replay value of your game.
Take, for example, the popularity of Civilization II, which was written several years ago but is still played
heavily. Entire Web sites are dedicated to modified tilesets and scenarios that can be played within the
game.

Having said that, let’s talk about how to render a tilemap, and then we’ll make a simple map editor
that uses a tileset from spritelib. I’ll bring up and talk about some of the terms I mentioned earlier in
this chapter.

Screen Space
First, we’ll talk about screen space in more depth. Screen space is nothing more than a rectangle describing
the play area shown on-screen. This could be the entire screen, or it could be a smaller portion. Most
modern games have some sort of status bar on the side or bottom of the screen, so quite often screen
space is smaller than the entire screen.

For the editor that we will be making, let’s use 800✕600✕16 mode. We will use a 600✕600 area for edit-
ing the map on the left side of the screen, leaving 200✕600 on the right for tile selection. The tiles we will
be using are 32✕32. The tileset is shown in Figure 10.15.

Isometric Game Programming with DirectX 7.0

TeamLRN

263

Of course, neither 200 nor 600 is evenly divisible by 32. 200/32=6.25, and 600/32=18.75, leaving
extra pixels. For this reason, there will be borders around both the editing panel and the tile selection
panel, as shown in Figure 10.16. This makes the map panel 576✕576 (or 18 tiles by 18 tiles), and the tile
selection panel 192✕576 (or 6 tiles by 18 tiles).

Tile-Based Fundamentals

Figure 10.15

Tileset for the editor

Map Panel
Tile

Panel

Figure 10.16

Layout of the map

editor

264

You want your map panel centered within the 600✕600 rectangle, and you want the tile selection panel
centered within the 200✕600 rectangle on the right. This will give your map panel RECT the value of
(12,12)–(588,588) and your tile selection RECT the value of (12,604)–(796,588). This gives you not one,
but two screen spaces. In the map panel, draw the current representation of the map based on your map
array, which contains indices into the tileset (make the tilemap 18✕18 so that it conveniently fits). In the
tile selection panel, draw all the tiles, in order, and outline the one that is currently selected.

But now you have more tiles in the set than will fit in the tile selection box. You can fit 6✕18 tiles (108
tiles), but you have 192. In order for the editor to be any good, you must either reduce the number of tiles
in the set—something you don’t want to do—or make it so that all the tiles can be selected by allowing
some sort of scrolling mechanism. This is a better solution. You may, at some point, want to handle a vari-
ably-sized tileset, so not locking yourself into a fixed-size tileset is wise.

World Space and View Space
You have already decided to have an 18✕18 tile grid, and this will be the total of your world space. Since
each tile is 32*32, this makes the pixel measurement of world space 576✕576. Since you are making world
space 0-based, the world space RECT is (0,0)–(576,576).

Your view space is based on your screen space. Since screen space spans from (12,12)–(588,588), you
simply must subtract (12,12) from each coordinate pair to determine your view space. This makes view
space 0-based, which makes conversion from one space to another much easier. The point (12,12) is called
the screen-to-view anchor.

Upper Left:
Screen coordinate (12,12)
Minus anchor (12,12)
Combine (12–12,12–12)
Solve (0,0)

Lower Right:
Screen coordinate (588,588)
Minus anchor (12,12)
Combine (588–12,588–12)
Solve (576,576)

Conveniently, your view space RECT works out to be (0,0)–(576,576), which is exactly the same as your
world space RECT, meaning that no conversion is necessary to go from world to view space. So, to convert
from world to screen space, simply add the coordinate (12,12). To do the reverse, subtract (12,12).

Isometric Game Programming with DirectX 7.0

TeamLRN

265

A Simple TileMap Editor
Load up IsoHex10_3.cpp. This example demonstrates what we’ve been talking about for the last several
pages. It sets up a map panel and a tile panel. The map panel is your screen space for the tilemap. The tile
panel shows the variety of tiles that you can place in the tilemap. Figure 10.17 shows sample output for
this example.

The controls for this example are rather simple, and the features rather slim. Clicking anywhere in the map
panel puts the selected tile there. Clicking in the tile panel selects a new tile. Clicking above or below the
tile panel scrolls the tile panel up or down. All in all, this example is pretty spartan. It doesn’t save, it does-
n’t load, it doesn’t really do much except let you play with the tileset. Still, I think it’s a pretty good exam-
ple of what a tilemap editor looks like at its very core. Let’s take a look at how it works.

Constants
First, I made a number of constants to keep track of the sizes in the editor. Quite a few of them are
dependent on other constants.

//map and tile constants
const int TILEWIDTH=32;
const int TILEHEIGHT=32;
const int MAPWIDTH=18;

Tile-Based Fundamentals

Figure 10.17

A simple TileMap

editor

265

A Simple TileMap Editor
Load up IsoHex10_3.cpp. This example demonstrates what we’ve been talking about for the last several
pages. It sets up a map panel and a tile panel. The map panel is your screen space for the tilemap. The tile
panel shows the variety of tiles that you can place in the tilemap. Figure 10.17 shows sample output for
this example.

The controls for this example are rather simple, and the features rather slim. Clicking anywhere in the map
panel puts the selected tile there. Clicking in the tile panel selects a new tile. Clicking above or below the
tile panel scrolls the tile panel up or down. All in all, this example is pretty spartan. It doesn’t save, it does-
n’t load, it doesn’t really do much except let you play with the tileset. Still, I think it’s a pretty good exam-
ple of what a tilemap editor looks like at its very core. Let’s take a look at how it works.

Constants
First, I made a number of constants to keep track of the sizes in the editor. Quite a few of them are
dependent on other constants.

//map and tile constants
const int TILEWIDTH=32;
const int TILEHEIGHT=32;
const int MAPWIDTH=18;

Tile-Based Fundamentals

Figure 10.17

A simple TileMap

editor

TeamLRN

266

const int MAPHEIGHT=18;
//panels
const int MAPPANELX=12;
const int MAPPANELY=12;
const int MAPPANELWIDTH=MAPWIDTH*TILEWIDTH;
const int MAPPANELHEIGHT=MAPHEIGHT*TILEHEIGHT;
const int TILEPANELX=604;
const int TILEPANELY=12;
const int TILEPANELCOLUMNS=6;
const int TILEPANELROWS=18;
const int TILEPANELWIDTH=TILEPANELCOLUMNS*TILEWIDTH;
const int TILEPANELHEIGHT=TILEPANELROWS*TILEHEIGHT;

Globals
Besides our usual globals (window handle, our DirectDraw pointer, and our primary and back surfaces),
there are a few extras with which to keep track of the state of the editor.

//tileset
CTileSet tsTileSet;
//tilemap
int iTileMap[MAPWIDTH][MAPHEIGHT];
//tile selection
int iTileTop=0;
int iTileSelected=0;

The tsTileSet variable contains the tileset you’ll be using. iTileMap is the array in which you contain
your tilemap. The iTileTop and iTileSelected variables are for managing the tile selection panel.
iTileSelected keeps track of what tile is currently selected for drawing, and iTileTop tracks what tile is
shown at the top of the tile selection panel.

Set up and Clean up
The changes to Prog_Init are minor. You set up DirectDraw, load your tileset, and clear out your tilemap.
I won’t list the function’s contents here. In Prog_Done, there are effectively no changes, since you neither
have to deallocate the tilemap nor destroy the tileset.

Isometric Game Programming with DirectX 7.0

267

The Main Loop
The main loop itself (Prog_Loop) does virtually nothing. It delegates to ShowMapPanel and
ShowTilePanel and then performs a flip.

ShowMapPanel
This function has no parameters, returns no value, and carries out two tasks. The first task is clearing out
the entire map panel with black. The second is looping through all the tiles in the tilemap and putting
them onto the map panel.

void ShowMapPanel()
{

//clear out map panel
//set up fill rect
RECT rcFill;
SetRect(&rcFill,MAPPANELX,MAPPANELY,MAPPANELX+MAPPANELWIDTH,MAPPANELY+MAP-

PANELHEIGHT);
//set up ddbltfx
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(&rcFill,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//loop through map
for(int mapy=0;mapy<MAPHEIGHT;mapy++)
{

for(int mapx=0;mapx<MAPWIDTH;mapx++)
{

//put the tile
tsTileSet.PutTile(lpddsBack,MAPPANELX+mapx*TILEWIDTH,

MAPPANELY+mapy*TILEHEIGHT,iTileMap[mapx][mapy]);
}

}
}

Tile-Based Fundamentals

TeamLRN

268

ShowTilePanel
ShowTilePanel is responsible for displaying all of the tiles in the tile panel and for placing a white box
around the currently selected tile.

void ShowTilePanel()
{

//clear out map panel
//set up fill rect
RECT rcFill;
SetRect(&rcFill,TILEPANELX,

TILEPANELY,TILEPANELX+
TILEPANELWIDTH,TILEPANELY+
TILEPANELHEIGHT);

//set up ddbltfx
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(&rcFill,NULL,NULL,

DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//set tile counter to first tile
int tilenum=iTileTop;
//loop through columns and rows
for(int tiley=0;tiley<TILEPANELROWS;tiley++)
{

for(int tilex=0;tilex<TILEPANELCOLUMNS;tilex++)
{

//check for tilenum’s existence in tileset
if(tilenum<tsTileSet.GetTileCount())
{

tsTileSet.PutTile(lpddsBack,TILEPANELX+tilex*TILEWIDTH,TILEPANELY+tiley*TILE-
HEIGHT,tilenum);

//check for selected tile
if(tilenum==iTileSelected)
{

//grab the dc
HDC hdc;
lpddsBack->GetDC(&hdc);
//calculate outline rect
RECT rcOutline;

Isometric Game Programming with DirectX 7.0

269

SetRect(&rcOutline,TILEPANELX+
tilex*TILEWIDTH,
TILEPANELY+
tiley*TILEHEIGHT,
TILEPANELX+
tilex*TILEWIDTH+
TILEWIDTH,
TILEPANELY+
tiley*TILEHEIGHT+
TILEHEIGHT);

//select a white pen into dc
SelectObject(hdc,

(HPEN)GetStockObject(WHITE_PEN));
//place selection rectangle

MoveToEx(hdc,rcOutline.left,
rcOutline.top,NULL);

LineTo(hdc,rcOutline.right-1,rcOutline.top);
LineTo(hdc,rcOutline.right-1,rcOutline.bottom-

1);
LineTo(hdc,rcOutline.left,rcOutline.bottom-1);
LineTo(hdc,rcOutline.left,rcOutline.top);

//release the dc
lpddsBack->ReleaseDC(hdc);

}
}
//increase tile counter
tilenum++;

}
}

}

Accepting Input
The only topic left to cover is accepting input and making things happen. I’m only going to show the
event handler for WM_LBUTTONDOWN, since the handler of WM_MOUSEMOVE is almost identical, and because of
the sheer size of the handler.

In essence, the WM_LBUTTONDOWN handler takes the position of the mouse and places it in a POINT variable
called ptMouse. Then it sets up a series of RECTs—one for the map panel, one for the tile panel, one for
the area above the tile panel, and one for the area below the tile panel. It checks to see if the mouse is

Tile-Based Fundamentals

TeamLRN

270

within these RECTs, and if it is, it carries out the appropriate action: place a tile if within the map panel,
select a tile if within the tile panel, scroll the tile panel up if above or down if below.

WM_MOUSEMOVE does mostly the same thing, except for the scrolling of the tile panel if above or below.

case WM_LBUTTONDOWN:
{

//point to contain mouse coords
POINT ptMouse;
ptMouse.x=LOWORD(lParam);
ptMouse.y=HIWORD(lParam);
//RECT used for zone checking
RECT rcZone;
//other variables
int mapx=0;
int mapy=0;
int tilex=0;
int tiley=0;
int tilenum=0;
//check the map panel

SetRect(&rcZone,MAPPANELX,MAPPANELY,
MAPPANELX+MAPPANELWIDTH,
MAPPANELY+MAPPANELHEIGHT);

if(PtInRect(&rcZone,ptMouse))
{

//in map panel
//calculate what tile mouse is on
mapx=(ptMouse.x-MAPPANELX)/TILEWIDTH;
mapy=(ptMouse.y-MAPPANELY)/TILEHEIGHT;
//change map tile to currently selected tile
iTileMap[mapx][mapy]=iTileSelected;
return(0);//handled

}
//check the tile panel
SetRect(&rcZone,TILEPANELX,TILEPANELY,

TILEPANELX+TILEPANELWIDTH,
TILEPANELY+TILEPANELHEIGHT);

if(PtInRect(&rcZone,ptMouse))
{

//calculate which tile was selected
tilex=(ptMouse.x-TILEPANELX)/TILEWIDTH;
tiley=(ptMouse.y-TILEPANELY)/TILEHEIGHT;

Isometric Game Programming with DirectX 7.0

271

tilenum=iTileTop+tilex+tiley*TILEPANELCOLUMNS;
//check for valid tile
if(tilenum<tsTileSet.GetTileCount())
{

//assign current tile
iTileSelected=tilenum;

}
return(0);//handled

}
//scroll tileset up

SetRect(&rcZone,TILEPANELX,0,TILEPANELX+
TILEPANELWIDTH,TILEPANELY);

if(PtInRect(&rcZone,ptMouse))
{

//check if we can scroll up
if(iTileTop>0)
{

//scroll up
iTileTop-=TILEPANELCOLUMNS;

}
}
//scroll tileset down
SetRect(&rcZone,TILEPANELX,TILEPANELY+

TILEPANELHEIGHT,TILEPANELX+
TILEPANELWIDTH,600);

if(PtInRect(&rcZone,ptMouse))
{

//check if we can scroll down
if((iTileTop+TILEPANELCOLUMNS)<

tsTileSet.GetTileCount())
{

//scroll up
iTileTop+=TILEPANELCOLUMNS;

}
}
return(0);//handled

}break;

Tile-Based Fundamentals

TeamLRN

272

A Few Words about the
TileMap Editor
Even though the sample map editor doesn’t do much, it does illustrate important points about all map edi-
tors. Just about every map editor I’ve made or used includes something similar to the map panel and some-
thing similar to the tile panel (although usually with a more obvious way of scrolling through the tileset).

A Tile-Based Example: Reversi
Now that we’ve delved a bit into the tile-based world, let’s put this knowledge into practice. The first
example I’d like to show you is a game called Reversi. (It’s also called Othello, but Othello is trademarked
by Milton Bradley, so we’ll call ours Reversi.)

The basic idea of Reversi is pretty simple. In case you aren’t familiar with the game or the rules, here’s a
brief breakdown: the game pieces are a board, divided into an 8✕8 grid of 64 squares, and at least 64 two-
sided pieces of contrasting color (usually black and white). At the beginning of the game, the center four
squares are filled with pieces, two black and two white, as shown in Figure 10.18.

Isometric Game Programming with DirectX 7.0

Figure 10.18

The Reversi board at

the beginning of play

273

Two players alternate taking turns placing a single piece on the board and capturing any opposing pieces
that they outflank. To outflank means to have one piece of your color on each end of a horizontal, verti-
cal, or diagonal row of your opponent’s pieces. You cannot outflank across your own pieces or across open
squares. If on a player’s turn there is no valid square on which he can play a piece and outflank his oppo-
nent, he forfeits that turn. Play progresses until no valid moves for either player are left (usually this hap-
pens when the board is full, although it can happen earlier).

Having said that, let’s make the game.

Designing Reversi
I have Milton Bradley’s Othello sitting on my game shelf, so I looked to that to model this game. The
board is green with a black border separating the squares. Two cells in from the corners, there is a small
square on the junction of the black lines, apparently to separate the sides and corners from the middle of
the board. The pieces are double-sided and two-colored, with white on one side and black on the other.

I wanted to have some sort of method with which to highlight the possible squares to which the player can
move on his turn, so I also made yellow versions. I wanted an animated “flipping over” of the pieces, so I
made a sequence of ellipses to show that. Figure 10.19 shows the tileset I came up with for this game. You
can also find it in the source code for this chapter, under the name IsoHex10_4.bmp. I used magenta
instead of black as the transparent color. (Originally, I considered having a black piece instead of the dark
gray that I later settled on.)

Tile-Based Fundamentals

Figure 10.19

Tileset for Reversi

TeamLRN

274

The first row of tiles is the nonhighlighted version of a board background tile. The second row is the
highlighted version. Rows three through five are the animation sequence for the piece flip, with the actual
pieces for both sides on opposite ends of the sequence. The last row consists of extra graphics I needed to
finish up the UI. There is a red square to represent the last move made, and four icons to show the AI level
chosen for the players.

AI Levels
I decided on four levels of AI for this example (none of them are very difficult to beat). These levels are
represented by constants defined in the source.

//ai levels
const int AI_HUMAN=0;
const int AI_RANDOM=1;
const int AI_GREEDY=2;
const int AI_MISER=3;
const int AI_COUNT=4;

Table 10.4 explains these AI levels.

Isometric Game Programming with DirectX 7.0

Table 10.4 AI Levels and Their Tactics
Level Tactic

AI_HUMAN None.Waits for input from the mouse.

AI_RANDOM Picks a random valid move.

AI_GREEDY Picks the valid move that will give it the greatest score.

AI_MISER Picks the valid move that best limits the opponent’s movement.

NOTE
AI_COUNT is not an AI level, but rather a constant to keep
track of the number of levels that exist, in case you later want
to add more AI levels.

275

Game States
As with all games, there are a number of major game states in which Reversi might dwell at any given time.
I was able to reduce it to only five states.

//game states
const int GS_NONE=-1;
const int GS_WAITFORINPUT=0;
const int GS_NEWGAME=1;
const int GS_NEXTPLAYER=2;
const int GS_FLIP=3;

Table 10.5 explains these states.

Tile Information Structure
Reversi may seem like a simple board game, but the struct that keeps track of the tile information is a little
more complicated than just a simple array of integers.

//tile information structure
struct REVERSITILE
{

int iTileNum;//base tile number for square
bool bHilite;//hilited, or not hilited
int iPiece;//piece occupying square
bool bLastMove;//last move made

};

Tile-Based Fundamentals

Table 10.5 Reversi Game States
Game State Meaning

GS_NONE A neutral state.The board is drawn, but no other action takes place.

GS_WAITFORINPUT If the current player is computer-controlled, a move will be made.
Otherwise, it waits for mouse input.

GS_NEWGAME Sets up a new game

GS_NEXTPLAYER Checks for game over. If the game is not over, it selects the next
player.

GS_FLIP In this state, the pieces captured during this turn are taken through
the animation sequence.

TeamLRN

276

iTileNum

This member keeps track of the background and specifies one of the first five tiles of the tileset. Most
squares contain tile zero, but a few contain the others. I could have easily just used tile zero for the entire
board, but that would have been boring.

bHilite

When the current player can make a valid move on a given square, bHilite is true. If the square is not a
valid move for the player, hHilite is false. bHilite, when used in conjunction with iTileNum, provides
the background tile. When bHilite is true, 5 is added to iTileNum.

iPiece

This member has four meaningful values: PIECEEMPTY(-1), PIECEBLACK(0), PIECEWHITE(1), and
PIECETRANSIT(2). The empty, black, and white are self-explanatory. The transit piece is for use with the
GS_FLIP state. It specifies which pieces undergo the animation sequence.

bLastMove

Only one square at a time will ever have bLastMove set to TRUE. bLastMove specifies that the red rectangle
(tile 25 of the tileset) is to be shown over the background, thus indicating that the square was the most
recent move. Keeping track of this is not absolutely necessary, but I find it helpful when playing the game.

Score Indication
I wanted to have a score indication that did not require a font to implement. I could have used some extra
tiles for the numerals 0 through 9 in the tileset, but I just didn’t like that idea. Instead, I decided to use
vertical stacks of the pieces alongside the board. Both stacks are on the left side of the board, so they can
easily be compared to see who is winning.

AI Level Control
I didn’t want to make a configuration screen, so I had to work in some sort of AI level control right on the
screen itself. What I came up with was to put two of the colored pieces in the bottom-left corner (aligned
with the score stacks), and I would blit icons representing what AI levels controlled which color. The icons
are from the wingdings font, but I colored them in to make them look better.

Isometric Game Programming with DirectX 7.0

276

iTileNum

This member keeps track of the background and specifies one of the first five tiles of the tileset. Most
squares contain tile zero, but a few contain the others. I could have easily just used tile zero for the entire
board, but that would have been boring.

bHilite

When the current player can make a valid move on a given square, bHilite is true. If the square is not a
valid move for the player, hHilite is false. bHilite, when used in conjunction with iTileNum, provides
the background tile. When bHilite is true, 5 is added to iTileNum.

iPiece

This member has four meaningful values: PIECEEMPTY(-1), PIECEBLACK(0), PIECEWHITE(1), and
PIECETRANSIT(2). The empty, black, and white are self-explanatory. The transit piece is for use with the
GS_FLIP state. It specifies which pieces undergo the animation sequence.

bLastMove

Only one square at a time will ever have bLastMove set to TRUE. bLastMove specifies that the red rectangle
(tile 25 of the tileset) is to be shown over the background, thus indicating that the square was the most
recent move. Keeping track of this is not absolutely necessary, but I find it helpful when playing the game.

Score Indication
I wanted to have a score indication that did not require a font to implement. I could have used some extra
tiles for the numerals 0 through 9 in the tileset, but I just didn’t like that idea. Instead, I decided to use
vertical stacks of the pieces alongside the board. Both stacks are on the left side of the board, so they can
easily be compared to see who is winning.

AI Level Control
I didn’t want to make a configuration screen, so I had to work in some sort of AI level control right on the
screen itself. What I came up with was to put two of the colored pieces in the bottom-left corner (aligned
with the score stacks), and I would blit icons representing what AI levels controlled which color. The icons
are from the wingdings font, but I colored them in to make them look better.

Isometric Game Programming with DirectX 7.0

TeamLRN

277

Implementation of Reversi
With the design in mind, here’s some of the implementation detail for Reversi. Because of space concerns,
I can’t get into every minute detail, but the full source code can be found in IsoHex10_4.cpp. I’m going to
concentrate on the main game loop (Prog_Loop) and break it down by game state.

Major Global Variables
Reversi uses full-screen DirectDraw, set to an 800✕600✕16 resolution. The major global variables are
shown next.

Your basic run-of-the-mill IDirectDraw7 pointer:

//IDirectDraw7 Pointer
LPDIRECTDRAW7 lpdd=NULL;

A primary surface and the attached back buffer:

//surfaces
LPDIRECTDRAWSURFACE7 lpddsMain=NULL;
LPDIRECTDRAWSURFACE7 lpddsBack=NULL;

The main tileset to contain all of the graphics used:

//tileset
CTileSet tsReversi;

The main board and a temporary storage area:

//the board
REVERSITILE Board[8][8];
//backup board
REVERSITILE BackUpBoard[8][8];

A variable to keep track of the current player:

//current player
int iPlayer=0;

An animation counter for use during GS_FLIP:

//counter for animated “flipping” of pieces
int iAnimation=0;

Tile-Based Fundamentals

278

An array to keep track of what AI controls each color:

//ai level for the players
int iAILevel[2];

The main game state:

//gamestate
int iGameState=GS_NONE;

All Game States
Regardless of game state, a certain amount of code runs each loop. This code prepares a new frame for the
game and then displays it.

//clear out back buffer
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//***OMITTED CODE***
//show the board
ShowBoard();
//show the scores
ShowScores();
//show players
ShowPlayers();
//flip
lpddsMain->Flip(NULL,DDFLIP_WAIT);

This bit is pretty simple. First, you clear out the back buffer, and then you draw the board, draw the
scores, draw the AI levels, and finally flip the page. It’s a pretty to-the-point snippet. You can take a look at
the constituent functions in the source code if you’re interested. The following sections offer a brief run-
down of the major function calls.

Isometric Game Programming with DirectX 7.0

TeamLRN

279

ShowBoard

This function loops through all of the board squares and follows approximately these steps:

1. Based on iTileNum and bHilite for this board square, determine which tile to use as the
background tile.

2. Determine what piece, if any, is resting on this square. If it is PIECEBLACK or PIECEWHITE,
show the appropriate tiles. If it is PIECETRANSIT, determine what tile to show based on the
global variable iAnimation.

3. If this square has bLastMove set, put the red square on top.

ShowScores

This function shows the scores for each color, representing the score with a vertical stack of pieces. For
each piece on the board, ShowScores renders one piece. The first piece is rendered with the top of the
piece at y=0, and y increases by 4 for each additional piece on the board. This allows a nice, easy way to
tell who is winning while avoiding numerals.

ShowPlayers

This function shows the AI levels of both colors in the bottom-left corner of the screen. A black piece sits
next to a white piece. On top of these pieces the function renders an icon that represents the AI level for
that color. A mouse represents a human player, and computers with the numerals 1, 2, and 3 represent the
three levels of computer AI.

GS_NONE
This game state does almost nothing. In fact, there is no case for it in the iGameState switch in
Prog_Loop. Only in the WM_LBUTTONUP event handler does GS_NONE get a mention. If the board is clicked
on while in GS_NONE, the game moves to GS_NEWGAME.

case WM_LBUTTONUP:
{

//grab mouse position
POINT ptMouse;
ptMouse.x=LOWORD(lParam);
ptMouse.y=HIWORD(lParam);
//test rectangle
RECT rcTest;
//get tile width and height
int iTileWidth=tsReversi.GetTileList()[0].rcSrc.right-

tsReversi.GetTileList()[0].rcSrc.left;

Tile-Based Fundamentals

280

int iTileHeight=tsReversi.GetTileList()[0].rcSrc.bottom-
tsReversi.GetTileList()[0].rcSrc.top;

//calc board rect
SetRect(&rcTest,(400-iTileWidth*4),

(300-iTileHeight*4),(400+iTileWidth*4),
(300+iTileHeight*4));
//point on board?

if(PtInRect(&rcTest,ptMouse))
{
//***CODE OMITTED

//if a game is over, start a new game by clicking on the
board
if(iGameState==GS_NONE)
{

iGameState=GS_NEWGAME;
}

}
//***CODE OMITTED***

}break;

GS_NEWGAME
GS_NEWGAME starts a new game, and is actually one of the simpler game states. First, it makes a call
to SetUpBoard, which does all of the reinitialization necessary to start out with a clean board. Then it sets
the player to PLAYERTWO and sends the game into GS_NEXTPLAYER. I could have done this another way, by
setting iPlayer to PLAYERONE and sending it into GS_WAITFORINPUT.

case GS_NEWGAME:
{

//clear the board
SetUpBoard();
//set player
iPlayer=PLAYERTWO;
//change game state
iGameState=GS_NEXTPLAYER;

}break;

Isometric Game Programming with DirectX 7.0

TeamLRN

281

GS_WAITFORINPUT
This game state is the central game state. All AI moves are done here. When the game first enters
GS_WAITFORINPUT, it checks the current player’s AI level. If AI_HUMAN is indicated, the game does nothing.
If it is a computer AI (AI_RANDOM, AI_GREEDY, or AI_MISER), it calls the appropriate AI function.

case GS_WAITFORINPUT:
{

//make move appropriate to the AI
switch(iAILevel[iPlayer])
{
case AI_RANDOM:

{
MakeRandomMove(iPlayer);

}break;
case AI_GREEDY:

{
MakeGreedyMove(iPlayer);

}break;
case AI_MISER:

{
MakeMiserMove(iPlayer);

}break;
}

}break;

Note that the AI level of AI_HUMAN isn’t even represented in this snippet. That is because all of the
AI_HUMAN stuff for GS_WAITFORINPUT is handled in the WM_LBUTTONUP event handler. (AI and GS and
WM. . . oh my!)

//***CODE OMITTED***
//point on board?
if(PtInRect(&rcTest,ptMouse))
{

//if we are waiting for input and the ai is “human,” check for inside the
board

if((iGameState==GS_WAITFORINPUT) &&
(iAILevel[iPlayer]==AI_HUMAN))

{
//find board position
int BoardX=(ptMouse.x-rcTest.left)/iTileWidth;
int BoardY=(ptMouse.y-rcTest.top)/iTileHeight;

Tile-Based Fundamentals

282

//check for a valid square
if(ValidMove(iPlayer,BoardX,BoardY))
{
//make the move

MakeMove(iPlayer,BoardX,BoardY);
SetLastMove(BoardX,BoardY);
iGameState=GS_FLIP;

}
}
//***CODE OMITTED*** (the GS_NONE check)

}
//***CODE OMITTED***

GS_FLIP
After a move has been made, the newly captured pieces are not set to the color of the player who captured
them. Instead, they are changed to PIECETRANSIT, and GS_FLIP is the game state responsible for making
sure that the animation sequence for capturing these pieces is shown.

case GS_FLIP:
{

switch(iPlayer)
{
case PLAYERTWO:

{
if(iAnimation==0)
{

FinishMove(iPlayer);
iGameState=GS_NEXTPLAYER;

}
else
{

iAnimation—;
}

}break;
case PLAYERONE:

{
if(iAnimation==14)
{

FinishMove(iPlayer);
iGameState=GS_NEXTPLAYER;

Isometric Game Programming with DirectX 7.0

TeamLRN

283

}
else
{

iAnimation++;
}

}break;
}

}break;

The main purpose of GS_FLIP is to modify iAnimation, which controls what part of the animation
sequence you are on. When it is PLAYERONE’s turn, iAnimation starts at 0 and is incremented until it hits
14, at which point the move finishes (by a call to FinishMove, which changes all PIECETRANSITs to a
color’s piece). Similarly, on PLAYERTWO’s turn, iAnimation starts at 14 and moves backwards until it hits
0. In either case, after GS_FLIP is finished, the game moves into GS_NEXTPLAYER.

GS_NEXTPLAYER
After a move has been completed, this game state checks to see if the game is over or sets the next active
player. If the game is over (there are no valid moves for either player), it sends the game into GS_NONE. If
the game is not over, it checks to see if the opposing player has a valid move. If the opposing player does
not have a valid move, it goes to GS_WAITFORINPUT without changing the player. If the opposing player
does have a valid move, it sets the current player to the opposing player and moves into GS_WAITFORINPUT.

case GS_NEXTPLAYER:
{

//scan for moves
ScanForMoves(iPlayer);
//if no more valid moves, game over
if((!AnyValidMoves(PLAYERTWO)) && (!AnyValidMoves(PLAYERONE)))
{

iGameState=GS_NONE;
}
else
{

//find if opponent has any moves
if(AnyValidMoves(1-iPlayer))
{

iPlayer=1-iPlayer;
}

Tile-Based Fundamentals

284

//scan for moves by current player
ScanForMoves(iPlayer);

//get next move
iGameState=GS_WAITFORINPUT;

}
}break;

Miscellaneous Actions
Before we complete our treatment of Reversi, I have a few last things left that I want to point out.

• Changing AI Levels. During every loop, the current AI levels are shown at the bottom left of the screen. You
can change the level by clicking on the indicators. Each time you click, you increase the AI level by 1. Clicking
on the highest level brings you back to the lowest level (AI_HUMAN).

• Keyboard Controls. Esc exits the program, no matter what game state you are in. F2 starts a new game, no
matter what game state you are in.

Final Words on Reversi
This simple little game of Reversi is far from complete. Yes, it is fully functional and playable, but it lacks
any extras. Just like the Breakout game in the preceding chapter, I’m leaving it for you to finish. Here’s a
brief list of features I think it needs:

• A title screen
• Some sort of “bells and whistles” when you win
• Sound/music

And I’m sure you’ll come up with 50 ways to improve the program. Have fun with it.

Summary
In this chapter, you took a step into a larger world. You explored the power that graphical tiles can give
you. I went into great detail on the topic of tileset management, and for good reason. From here on out,
just about everything you do will be done using the CTileSet class, in some fashion or another.

Isometric Game Programming with DirectX 7.0

TeamLRN

Isometric/
Hexagonal

Tile Overview

• Introduction to IsoHex

• IsoHex Tiles versus
Rectangular Tiles

• IsoHex Engines versus
Rectangualr Engines

CHAPTER 11

286

This chapter marks a new beginning. All of the preparatory information and discussion is over, and
it is at last time to sally forth into the wonderful world of isometric and hexagonal graphics. This

is not to say that what we have discussed so far has been meaningless. To the contrary! All of the previous
topics have been building up to this chapter and to the rest of this book.

This chapter takes you on a ride through isometric land. Mainly, I will talk about the special considera-
tions you have to keep in mind when creating isometric or hexagonal tiles, rendering these tiles, and inter-
acting with them on-screen.

Introduction to IsoHex
So, what is “IsoHex”? Simply, it’s a word I made up. A couple of years ago, I was sitting around playing
Sid Meier’s Civilization II and generally being a nonfunctional human being. Of course, I’d been a game pro-
grammer for many years, but most of my stuff dealt with the normal top-down rectangular tiled method-
ology that was common in the waning days of DOS.

I was quite impressed with the look of Civilization II. It looked a heck of a lot better than the original. The
isometric view gave it a semi-3D look. Naturally, I just had to know how it was done. So I looked through
the directory in which Civilization II was installed, and I viewed the several GIF files that stored the images.
Then I started playing around with similar tiles in my own experiments.

A friend of mine, Isaac Vanier, posted a question on a message board about how to take mouse input and
determine what tile it was on in an isometric map. Having toyed with the idea of isometric tiles, I sent
him an e-mail answering his question. Apparently, my little e-mail helped him out quite a bit, because he e-
mailed me back, telling me that I should write an article about it.

I thought surely there must be resources on how to do this stuff, and that writing another article about it
would be unnecessary. So I scoured the Internet for a trace of isometric tutorials, or at least something about
them. Needless to say, there wasn’t much out there. I saw bizarre linear algebra computations, and some
pretty crazy and not-very-optimized ways to do isometric tiles. There was one exception—an article by Jim
Adams called “Isometric Views,” written in 1996 (keep in mind, I was doing this search in 1998). This
article was originally a newsgroup post by Mr. Adams and had been “translated” into article form. It was
just about the only isometric article you could find on the Net. The article had a bunch of god-awful
ASCII art, and it didn’t talk about mapping screen coordinates to tile coordinates. I decided to write my
article after all.

Originally, I put my article on my Web page (you know. . . the Web space that your ISP gives you) and gave
links to it from message boards. Eventually, a few people linked to it. Finally Matt Reiferson, the
Webmaster of GPMega (the most popular amateur game programming site at that time) contacted me

Isometric Game Programming with DirectX 7.0

TeamLRN

287

and asked if he could put the article on his site. I agreed. My little article (and a sequel that I wrote a
while later) became quite popular. Eventually, some of the other guys who hung out in the GPMega chat
room and I formed our own site, Sweet.Oblivion. Eventually Sweet.Oblivion joined with other sites to
form GameDev.net. Throughout these events, this little article has followed me. Currently, it is the 27th
most frequently accessed article on GameDev.net.

What does this have to do with the word “IsoHex”? Well, that little article first coined the term. That arti-
cle is also the primary reason you are reading this book. Without that article, I would never have been
asked to write this book. (I admit, it’s more complicated than that, but it was a key component.)

So, the original question remains: what is IsoHex? IsoHex is, quite naturally, a combination of the words
isometric and hexagonal. An isometric projection is a 3D projection that does not correct for distance (in
other words, something 30 tiles away is just as big as something 10 tiles away). The isometric projection is
one of a family of axonometric projections. (The meaning of axonometric isn’t terribly important. It’s an
engineering term.) Rhombuses, or diamond shapes, are usually used to represent an isometric tiled world.
Figure 11.1 shows a field of isometric tiles.

Hexagonal means six-sided. As far as tiled graphics go, there is almost no difference between an iso-tiled
world and a hex-tiled world. The difference is all in connotation and convention (meaning that on a hex
map, you can move in six directions instead of eight, as with iso). Hex maps are commonly used by
paper-and-pencil RPGers and by strategy gamers, such as those who play Battletech. Figure 11.2 shows
a hexagonal field.

Isometric/Hexagonal Tile Overview

Figure 11.1

An isometric tile field

288

The main difference between an iso tile and a hex tile is that the two halves of an iso tile are split apart,
and a rectangular area is inserted between them, as shown in Figure 11.3.

Isometric Game Programming with DirectX 7.0

Figure 11.2

A hexagonal tile field

Figure 11.3

Iso to hex

TeamLRN

289

There really is not much of a difference between iso and hex as far as programming goes. It is mainly a
user interface issue. At this point, I think you’ve probably had more than you want to hear about IsoHex,
and you would rather start doing stuff. I don’t blame you, so let’s get to it!

IsoHex Tiles versus
Rectangular Tiles
So far, the tile-based examples have always used rectangular areas that contain the tiles; this is not going to
change. What will change is how you will render them in relation to one another.

Take, for example, a 64✕64 rectangular tile, like the ones used in the Reversi example in the preceding
chapter. In order to blit these tiles onto a grid, you simply use multiples of 64, as shown in Figure 11.4.

IsoHex tiles can’t do this (or, at least, most of them can’t). Since only a portion of the rectangle is filled
with the actual tile, the rectangles containing the tile have to overlap, both vertically and horizontally, as
shown in Figure 11.5.

Isometric/Hexagonal Tile Overview

Figure 11.4

Making rectangular

tiles flush

290

As you can see, the IsoHex tiles have to be shifted over by half a tile on alternating rows, whereas no
adjustment is necessary for rectangular tiles. This brings up another important point: blitting order. With
rectangular tiles, you can blit in any order you want—left to right, right to left, top to bottom, bottom to
top—and the map will look right no matter what, because none of the tiles overlap. IsoHex tiles, however,
often have something “sticking up out of them,” like a tree or a building or a unit. There are some impor-
tant ramifications of this.

• Rule 1. IsoHex tiles must be blitted in a manner so that no tile is blitted after a tile that is “in front” of it.
The methods of doing this are based on the type of tilemap used. I’ll get into this later.

• Rule 2. If only a small portion of the screen has to be updated, you cannot just blit the tile that changed.
You have to blit neighboring tiles as well, and you have to make certain that you follow Rule 1 while doing
so. Clippers come in quite handy to help with this.

• Rule 3. Except for the diamond tilemap, you must avoid as much as possible showing the jagged edges of the
tilemap (they are the most severe on staggered maps). This isn’t really a rule; it’s more a matter of aesthetics.

IsoHex Tilemaps versus
Rectangular Tilemaps
Rectangular maps are maintained by a two-dimensional array in most cases. The same is true of IsoHex
maps. However, the meaning of the x- and y-coordinates changes somewhat. In a rectangular map, increas-
ing x moves east, and increasing y moves south. In an iso tilemap, depending on type, increasing x might
mean moving southeast, and increasing y might mean moving southwest.

Isometric Game Programming with DirectX 7.0

Figure 11.5

Making IsoHex tiles flush

TeamLRN

291

Why? Because of the overlap. Every other row or column has to be shifted half a tile—either right, left,
up, or down—in order to make the tiles flush with one another. I showed you this in the preceding sec-
tion. For this reason, increasing y by 1 almost never means to move south. However, in most cases, increas-
ing x by 1 does mean to move east.

This makes navigating an IsoHex tilemap a bit more involved than navigating a simple rectangular map.
You have to use a lookup table (and sometimes two) to get it right. Don’t worry. I won’t leave you hanging;
I’ll show you everything you need to know, when you need to know it.

Isometric Engines versus
Rectangular Engines
There are several components to any good tile engine. If you want to make tile-based games, it’s smart to
have a good set of functions or classes to wrap up the tricky stuff for you. This is especially important in
IsoHex, since the tilemaps are trickier than in normal rectangular tiles.

TilePlotter
A TilePlotter is used to convert map coordinates (indices into the tilemap array) into world space coordi-
nates. In a rectangular engine, you simply multiply by the width and height of the tile, since x always goes
east-west and y always goes north-south. In isometric engines, the meanings of x and y change, and at least
one of them moves in a diagonal direction, which changes the equation. Once a TilePlotter has converted a
map coordinate into a world coordinate, it can be from there translated into view and screen coordinates.

MouseMap
A MouseMap goes the opposite way of a TilePlotter. It takes a world coordinate and converts it into a
map coordinate. A MouseMap is necessary because of the irregular (nonrectangular) shape of the isomet-
ric and hexagonal tiles. In a rectangular tile engine, a MouseMap is unnecessary, because all of the rectan-
gles are already. . . well, rectangular.

In an iso or hex engine, you still need to check to see if the mouse is in rectangular areas, because of the
fact that it is computationally inexpensive to do so. You could instead use equations or some other method
to check for being within tiles, but the math is just too weird and too complicated, and MouseMaps make
them unnecessary. The MouseMap itself is a second step in the world-to-map conversion. First, the x and
y coordinates are divided by the MouseMap width and height, and then the remainders are fed into the
MouseMap to determine which tile corresponds to the pixel coordinate.

So, why is this important component called a “MouseMap”? Although it has many uses as the reciprocal
of the TilePlotter (which has a name befitting its function), the most important use for the MouseMap is
taking a mouse’s (or other pointing device’s) screen coordinate and finding the corresponding
map coordinate.

Isometric/Hexagonal Tile Overview

292

TileWalker
The TileWalker is absolutely necessary, although most iso folks wouldn’t list it as a major component. In
my opinion, it is just too darned important not to be all on its own. A TileWalker does just one thing:
move from map coordinate to map coordinate. This might seem a pretty tame feature, but it is essential for
using a MouseMap, moving units, and pathfinding.

Minimally, a TileWalker can consist of a single function that returns a POINT with the following parame-
ters: a POINT specifying a map coordinate, an int specifying direction of movement, and another int stating
how many map coordinates to move.

The Three Types of
IsoHex Tilemaps
There are three types of IsoHex tilemaps: slide, staggered, and diamond. Each has its own set of quirks, its
own methods of rendering, its own way of representing a tilemap, and its own method of navigating them.
I will briefly introduce them here and then explore them more fully in the next three chapters.

As far as an iso tilemap is concerned, any of these types of map is usable, depending on what game you
are making. For hex, however, staggered is the most commonly used map type, although I have seen a dia-
mond map using hex tiles.

The explanation of each type of map briefly covers some of the problems you face in designing each of
the core engine components.

Slide Maps
The slide tilemap is probably the easiest to render, navigate, and interact with. Unfortunately, it has limited
uses. It’s mainly used to scroll action games.

Usually, a slide map has a horizontal x axis and a diagonal y axis, although it is possible to have a vertical y
axis and a diagonal x axis. Figure 11.6 shows a few samples of what slide maps can look like.

Isometric Game Programming with DirectX 7.0

TeamLRN

293

TilePlotting, MouseMapping, and TileWalking in a slide map are all very regular and consistent. The tiles
are blitted in horizontal rows top to bottom.

Staggered Maps
For most serious isometric/hexagonal turn-based strategy games, the staggered map is king. Each new row
is alternately shifted one-half of a tile left or right (certain hex maps turned on their sides shift up or
down). This results in a zigzag pattern of tiles, as shown in Figure 11.7. The x-axis usually is horizontal
(increasing to the east), and the y-coordinate is alternately southeast and southwest. Staggered maps are
best suited for maps that wrap around (move from one edge to the other) and for times when you want to
completely fill a rectangular area. This is also the most common type of hex map.

Isometric/Hexagonal Tile Overview

Figure 11.6

Slide maps

Figure 11.7

Staggered maps

294

Staggered maps are the most irregular of the three. TilePlotting, MouseMapping, and TileWalking are
all slightly complicated due to the offset of every other row. The tiles are blitted in horizontal rows, top
to bottom.

Diamond Maps
The diamond map is by far the most popular for real-time strategy games and “sims.”The edges of this
type of map are the least offensive. (Staggered maps have “tattered” edges, slide maps have “tattered” tops
and bottoms, and diamond maps are smooth.)

Usually, the x-axis increases in the southeast direction, and the y-axis increases in the southwest direction,
although this isn’t absolutely necessary to follow my configuration exactly. In diamond maps, the only
requirement is that both the x- and y-axis are diagonal. Figure 11.8 shows an example of a diamond map.

Based on the “turned on its side” nature of diamond maps, you would think that they were the most com-
plicated to make. In reality, they are not, but the equations are a little weird for the TilePlotter (both the x
and y of the map coordinate are used to calculate the tile’s world coordinate). The TileWalker is complete-
ly regular, and the MouseMap is similarly quite normal. The only odd thing about the MouseMap is that
often the world coordinates can be negative, and the divisions and remainders have to be adjusted for that.

IsoHex Tilesets and the Importance
of Anchors
When making isometric games, you use tilesets just like when you make rectangular games. However, the
tile anchors become much more important. In the rectangular example from the preceding chapter, you
simply put the tile anchor at the upper-left corner of the tile, and you didn’t have to worry about it.

Isometric Game Programming with DirectX 7.0

Figure 11.8

Diamond map

TeamLRN

295

Iso and hex games don’t provide that luxury. You have to deal with countless objects, all of which are an
odd shape. You have to ensure that when you have everything rendered, the images line up.

For the most part, I handle this by putting the anchor in the center of an iso or hex tile. Figure 11.9
shows what I mean. Using a centered tile anchor like this makes selecting anchors for nonbackground
images (like trees or units) a lot easier, because you then have to put the x anchor at the horizontal center
of the image and the y anchor somewhere near the base of the image. Figure 11.10 shows a suitable
anchor for a unit tile, and Figure 11.11 shows what these two tiles look like when used together.

Isometric/Hexagonal Tile Overview

Figure 11.9

An isometric tile, with

center anchor

Figure 11.10

Foreground iso image

296

Just keep in mind that you want a tile anchor scheme that is easy to manage and that doesn’t complicate
the core engine. The easier you make it on your artists, the less they will revolt. Oh, and be sure to throw
them a Dr. Pepper once in a while, even if they don’t really deserve it.

Summary
You are now ready for what lies ahead. The next few chapters explore the different types of iso tilemaps,
and you’ll make a few games along the way, too. Mainly, you will put down the foundations of an honest-
to-goodness 2D iso tile engine. The tools to make awesome isometric games are just a few pages away!

Isometric Game Programming with DirectX 7.0

Figure 11.11

Background iso tile with

foreground image added

TeamLRN

Slide
Isometric
Tilemaps

• Interlocking IsoHex Tiles

• Coordinate System

• Tile Plotting

CHAPTER 12

298

This chapter begins the first of three chapters that cover the various types of IsoHex tilemaps. This
chapter covers the simplest (and least commonly used) type: slide maps. Even if you don’t like slide

maps, you should probably read this chapter because it covers some of the explanations common to all
types of IsoHex mapping techniques, including the basis for the three major components of an IsoHex tile
engine, which I mentioned briefly in the preceding chapter.

The first question that might come to mind is why I’m calling this particular type of IsoHex tilemap a
“slide map.”When I was originally going through and classifying IsoHex items, I had to come up with
terms for these maps. With slide maps, I noticed that while the x-axis was normal, the y-axis “slides” off
to the side. Hence, I named them “slide maps.”There really is no official term for them, so I made one up.
Simple enough?

Interlocking IsoHex Tiles
You haven’t really learned about interlocking IsoHex tiles yet. I told you that the rectangles containing
IsoHex tiles overlapped, but not much more than that. Before you can proceed, you’ve got to be able to
interlock the tiles—that is, make the diagonal edges match up with no missing pixels. To learn how to
interlock the tiles, you first have to take a look back at how rectangular tiles work.

As you can see in Figure 12.1, the interlocking of rectangular tiles is quite simple. The colored pixels are in
the upper-left corners to represent the anchors, which makes visualizing the interlocking easier. To move
east (to the right of the screen), you simply add the width of the tile to the x-coordinate. To move south
(down), you add the height of the tile to the y-coordinate. From these two calculations, you can infer that
to move west (left), you simply subtract the width from x (moving west is the opposite of moving east). To
move north, you simply subtract the height from y. As soon as you have the four cardinal directions
(north, east, south, and west), you can construct the other four directions (northeast, southeast, southwest,
and northwest) by combining the other directions. Table 12.1 shows the x and y modifications necessary
for a rectangular tile system using TileWidth*TileHeight tiles.

Isometric Game Programming with DirectX 7.0

TeamLRN

299Slide Isometric Tilemaps

Figure 12.1

Rectangular tiles interlocking

Table 12.1 Rectangular Tile Plotting
Direction Change x Change y

North 0 -TileHeight

Northeast +TileWidth -TileHeight

East +TileWidth 0

Southeast +TileWidth +TileHeight

South 0 +TileHeight

Southwest -TileWidth +TileHeight

West -TileWidth 0

Northwest -TileWidth -TileHeight

300

Figure 12.2 is a more graphical representation of
Table 12.1. I feel that a visual is much better at con-
veying this than just a simple table. It’s the whole “a
picture is worth a thousand words” idea. Based on this
table, and based on the direction of the x- and y-axis
(x increases to the east, and y increases to the south),
you can come up with an equation to determine
where to blit your rectangular tiles:

//TileX/TileY are the pixel positions (in
world space) for the tile being blitted
//MapX/MapY are the map coordinates of
the tile
TileX=MapX*TileWidth
TileY=MapY*TileHeight

Isometric Game Programming with DirectX 7.0

NOTE
I use compass directions (north, south,
east, and west) rather than up, down,
right, and left, not to confuse you, but
rather to clearly indicate the absolute
direction.The compass directions have
absolute meanings, whereas left and
right do not, since a character that is fac-
ing toward you has a different left and
right than one facing away from you.

Tile Width

Tile Width

Tile WidthTile Width

Tile Width

T
ile H

eight

T
ile H

eight

T
ile H

eight

T
ile H

eight

T
ile H

eightTile Width

T
ile H

eight

North Northeast

East Northwest

South

West

Southeast

Southwest

Figure 12.2

A graphical representation

of Table 12.1

TeamLRN

301

You have been using these calculations all along. You just haven’t really done any sort of analysis as to why
they work.

Now take a look at some standard iso and hex tiles and do some similar figuring for plotting adjacent tiles.
Figure 12.3 shows some standard iso and hex tiles (standard meaning similar to what we will use in this
book). The anchors are marked.

Figure 12.4 shows the iso and hex tiles grouped with others of the same kind. I will use these to show
positional calculations between tiles, just like I did with rectangular tiles.

Slide Isometric Tilemaps

Figure 12.3

Standard iso and

hex tiles

Figure 12.4

Iso and hex tiles

together

302

In iso, moving east moves by the width of the tile. Similarly, moving south moves by the height of the tile
(not exactly, but close enough). Thus, moving north or west is the opposite of these directions. However, if
you look at moving in a diagonal direction, you can see that a tile is half of the width to one side horizon-
tally and half of the height vertically offset. Table 12.2 shows the changes in x and y based on the direc-
tion traveled.

Figure 12.5 shows graphically what is contained in Table 12.2. Based on these calculations, it is obvious
that at least one axis of the tilemap has to be on a diagonal. If not, the tiles positioned based on
TileWidth/2 and TileHeight/2 would be skipped completely, leaving the map full of holes, as shown in
Figure 12.6.

Isometric Game Programming with DirectX 7.0

Table 12.2 Iso Tile Plotting
Direction Change x Change y

North 0 -TileHeight

Northeast +TileWidth/2 -TileHeight/2

East +TileWidth 0

Southeast +TileWidth/2 +TileHeight/2

South 0 +TileHeight

Southwest -TileWidth/2 +TileHeight/2

West -TileWidth 0

Northwest -TileWidth/2 -TileHeight/2

TeamLRN

303Slide Isometric Tilemaps

Tile
Height

South

1/2 Tile
Width

1/2 Tile
Height

Southwest West

Tile
Height

1/2 Tile
Height

1/2 Tile
Width

Tile Width

East

NortheastNorth

1/2 Title
Width

1/2 Tile
Height

Northwest

1/2 Tile
Width

1/2 Tile
Height

Southeast

Tile Width

Figure 12.5

A graphical represen-

tation of Table 12.2

Figure 12.6

Holey map,

Batman!

304

Hex tiles are very similar to iso tiles, with one major difference: Two directions of movement are disal-
lowed—in this case, north and south. While reading this discussion on hex tiles, keep in mind that the
tiles could easily be turned on their sides, and east-west movement disallowed instead.

The movement to the east is dependent on TileWidth, but the southeast movement is based on
TileWidth/2 for x and a y value that depends on the shape of the tile (mainly, the height of the vertical
lines). For the time being, I will name this value HexRowHeight, since it has no particular relationship to
the tile’s height.

Table 12.3 is similar to Table 12.2, with the word HexRowHeight substituted for the word TileHeight.
Also, north and south are missing. Table 12.3 shows plotting from tile to adjacent tile in a hex map.

Figure 12.7 shows the calculations in Table 12.3 in a more graphical and easy-to-understand manner.
Turning the hex on its side is something I won’t show here, since it is much the same as the hexes I’ve
already shown, with some of the x and y changes flipped.

Isometric Game Programming with DirectX 7.0

Table 12.3 Hex Tile Plotting
Direction Change x Change y

Northeast +TileWidth/2 -HexRowHeight

East +TileWidth 0

Southeast +TileWidth/2 +HexRowHeight

Southwest -TileWidth/2 +HexRowHeight

West -TileWidth 0

Northwest -TileWidth/2 -HexRowHeight

TeamLRN

305

All of the tables and figures I’ve shown in the last couple of pages are the most important calculations in
IsoHex. They are the basis for all of the main engine parts.

Coordinate System
In the preceding chapter, I briefly touched on how slide maps are structured. Now you will take that infor-
mation, add the calculations you did just a few pages ago, and move on to building a primitive version of
an isometric engine.

A slide map—just like a rectangular map—consists of a two-dimensional array, usually of some sort of
structure, but it can be as simple as just an int or a char. However, since you earlier determined that one
isometric or hexagonal axis has to be diagonal, you have to take that into account for your slide map.

Theoretically, 32 variations of a slide map are possible. However, many of them look quite similar, so only
four variations have any sort of distinction. These four variations are just reflections of the one variation
that you will use, which is x increasing to the east and y increasing to the southeast, as shown in
Figure 12.8.

Slide Isometric Tilemaps

1/2 Tile
Width

1/2 Tile
Width

Tile
Width

Hex
Row
Hgt

Northwest Northeast East

Tile
Width

Hex
Row
Hgt

1/2 Tile
Width

1/2 Tile
Width

Southeast Southwest West

Figure 12.7

Graphical ver-

sion of Table

12.3

306

Now that you’ve covered most of the bases for slide maps, it’s time to start using your knowledge to make
some practical applications. You will do this by making the main components of an IsoHex engine: the
TilePlotter, the TileWalker, and the MouseMap.

Tile Plotting
Although all three components are essential for a proper IsoHex engine, the first component you will make
is a TilePlotter, because you can immediately see the results of your labor with a quick example.

I’ve already discussed the axes of a slide map. x increases to the east, and y increases to the southeast.
Assuming that you plot tile (0,0) at pixel position (0,0), you need to be able to calculate the pixel posi-
tions of other tiles based on their map coordinates.

The first part of the calculation affects the pixel coordinate based on the map’s x value. Since x increases
to the east, you can just look at Table 12.2 to see that the map’s x increases the pixel’s x by +TileWidth,
and the map’s x does not affect the pixel’s y at all. However, the map’s y affects both the pixel’s x and y val-
ues, by +TileWidth/2 and +TileHeight/2, respectively. Table 12.4 shows this, and derives the tile plot-
ting equations.

Isometric Game Programming with DirectX 7.0

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(2,0)

(1,2)

(0,3)

(0,4)

(1,3)

(1,4)

(2,2)

(2,1)

(3,0)

(3,1)

(3,2)

(2,3) (3,3)

(2,4) (3,4)

32

X

10

0

1

2

3

4

Y

Figure 12.8

x increases to the

east, and y increas-

es to the southeast

Table 12.4 Slide Map Tile Plotting
Pixel Value Increase in MapX Increase in MapY Equation

PixelX +TileWidth +TileWidth/2 MapX*TileWidth+MapY*
TileWidth/2

PixelY 0 +TileHeight/2 MapY*TileHeight/2a

TeamLRN

307

So, the tile plotting equation, in code form, looks like this:

//MapX,MapY are map coordinates
//TileX,TileY are world coordinates
TileX=MapX*TileWidth+MapY*TileWidth/2;
TileY=MapY*TileHeight/2;

And, believe it or not, you have a TilePlotter. Of course, you’d prefer to have a function that plots the tiles
rather than having to do the equations yourself. The following is an example of such a function:

POINT SlideMap_TilePlotter(POINT ptMap,int iTileWidth,int iTileHeight)
{

POINT ptReturn;
ptReturn.x=ptMap.x*iTileWidth+ptMap.y*iTileWidth/2;
ptReturn.y=ptMap.y*iTileHeight/2;
return(ptReturn);

}

So you’re sitting there screaming, “That’s it?!” at the top of your lungs. Calm down. A great deal of the
functionality of an IsoHex engine rests on just such a function.

For hex, there is just a slight modification to the function:

POINT SlideMap_TilePlotter(POINT ptMap,int iTileWidth,int iHexRowHgt)
{

POINT ptReturn;
ptReturn.x=ptMap.x*iTileWidth+ptMap.y*iTileWidth/2;
ptReturn.y=ptMap.y*iHexRowHgt;
return(ptReturn);

}

Now that you actually have some code, try an example. Load up IsoHex12_1.cpp; it uses the same plot-
ting function that I showed you earlier. As currently written, it plots an eight-column by 20-row slide map,
as shown in Figure 12.9. The main work is done by two functions: SetUpMap and DrawMap. The rest of
the program is just your basic “set up DirectDraw” type of stuff.

Slide Isometric Tilemaps

308

The SetUpMap function (shown next) loops though all the map squares, assigning each square to a random
tile. (I have just a handful of tiles, all the same shape.) Notice that I base the random number on the num-
ber of tiles in the set. I could add as many tiles as I want and not have to recompile this code.

void SetUpMap()
{

//randomly set up the map
for(int x=0;x<MAPWIDTH;x++)
{

for(int y=0;y<MAPHEIGHT;y++)
{

iTileMap[x][y]=rand()%(tsIso.GetTileCount());
}

}
}

The DrawMap function loops through all the map squares and uses the plotter to plot them:

void DrawMap()
{

POINT ptTile;//tile pixel coordinate
POINT ptMap;//map coordinate
//get tile width and height

Isometric Game Programming with DirectX 7.0

Figure 12.9

The output of example

IsoHex12_1.cpp

TeamLRN

309

int iTileWidth=tsIso.GetTileList()[0].rcSrc.right-
tsIso.GetTileList()[0].rcSrc.left;

int iTileHeight=tsIso.GetTileList()[0].rcSrc.bottom-
tsIso.GetTileList()[0].rcSrc.top;

//the y loop is outside, because we must blit in horizontal rows
for(int y=0;y<MAPHEIGHT;y++)
{

for(int x=0;x<MAPWIDTH;x++)
{

//get pixel coordinate for map position
ptMap.x=x;
ptMap.y=y;
ptTile=SlideMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
//plot the tile
tsIso.PutTile(lpddsBack,ptTile.x,ptTile.y,iTileMap[x][y]);

}
}

}

Now you can see one of the major downfalls of the slide map. I’m sure you noticed that most of the
screen is blank, and only a portion of the corner is filled in with tiles. This is the biggest limitation of
slide maps. You just can’t make a map that fills up the entire screen unless you waste a considerable number
of tiles doing so. For this reason, slide maps are unsuitable for many types of games.

However, in games that scroll, you can use slide maps to make the scrolling direction diagonal and give a
nice illusion of 3D.

Scrolling
I covered the term scrolling in Chapter 10, “Tile-Based Fundamentals,” and mentioned it several times since,
but I haven’t yet gone into what is involved. Your next task is to make a larger slide map (still with random
tiles on it). You will scroll though it using the arrow keys. This will by no means be an optimized scroll; all
tiles from the tilemap will be blitted each frame, and you will rely on the clipper to keep them out.

You will use the entire screen, so the screen space and view space are both (0,0)–(640,480). This will be
the window into your little tile world, as shown in Figure 12.10.

Slide Isometric Tilemaps

310

Calculating world space is quite simple. Simply take the world rectangles (which can be retrieved with the
help of the TilePlotter) and use UnionRect to combine them all into one big rectangle, as shown in Figure
12.11. (In your case, you can cheat and just use the upper-right and bottom-left extent to make the world
space rectangle.)

You’ll use another type of anchor. This time, the anchor matches the screen space/view space coordinate
(0,0) with a coordinate in the world space (that coordinate being the contents of the anchor). This anchor,
when used with the output of the plotter, gives you the proper screen coordinate for the tile. Figure 12.12
shows such an anchor in action.

Isometric Game Programming with DirectX 7.0

0

0

Screenspace.left

Screenspace.top

Viewspace (0,0)

Screenspace.right

ScreenWidth

Viewspace (WIDTH,HEIGHT)

Screenspace.bottom

ScreenHeight

Figure 12.10

Screen space/view

space

Figure 12.11

World space RECT

TeamLRN

311

Finally, you want to keep the anchor in values that are valid. That is, you don’t want to allow scrolling too
far away from the tilemap. So you need to create anchor space, the boundaries that clip the anchor. To do
so, simply make a rectangle that starts at the upper left of the world space and has a width and height
equal to the difference of world space width and screen space width. Figure 12.13 shows this idea
graphically.

So, with all of this in mind, go back to the task of scrolling. Load up IsoHex12_2.cpp—your first little
scrolling demo. For illustration purposes, I made a number of global variables to keep track of the various
spaces.

//spaces
RECT rcWorldSpace;//world space
RECT rcScreenSpace;//screen space (also, view space)
RECT rcAnchorSpace;//anchor space
POINT ptScreenAnchor;//screen anchor

These spaces are set up or calculated within a function called SetUpSpaces. (I’m not one who gives my
functions incredibly clever names, as you might have noticed!)

void SetUpSpaces()
{

//set up screen space
SetRect(&rcScreenSpace,0,0,640,480);
//get a few metrics from the tileset

Slide Isometric Tilemaps

Worldspace

Anchor

ScreenView Space

Figure 12.12

Screen anchor in

the world space

Worldspace

Anchorspace
ScreenSpace Width

ScreenSpace Height

Figure 12.13

Anchor space

312

int iTileWidth=tsIso.GetTileList()[0].rcDstExt.right-
tsIso.GetTileList()[0].rcDstExt.left;

int iTileHeight=tsIso.GetTileList()[0].rcDstExt.bottom-
tsIso.GetTileList()[0].rcDstExt.top;

//grab tile rectangle from tileset
RECT rcTile1;
RECT rcTile2;
POINT ptPlot;
POINT ptMap;
//grab tiles from extents
CopyRect(&rcTile1,&tsIso.GetTileList()[0].rcDstExt);
CopyRect(&rcTile2,&tsIso.GetTileList()[0].rcDstExt);
//move first tile to upper-left position
ptMap.x=0;
ptMap.y=0;
ptPlot=SlideMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
OffsetRect(&rcTile1,ptPlot.x,ptPlot.y);
//move first tile to lower-right position
ptMap.x=MAPWIDTH-1;
ptMap.y=MAPHEIGHT-1;
ptPlot=SlideMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
OffsetRect(&rcTile2,ptPlot.x,ptPlot.y);
//combine these two tiles into world space
UnionRect(&rcWorldSpace,&rcTile1,&rcTile2);
//copy world space to anchor space
CopyRect(&rcAnchorSpace,&rcWorldSpace);
//subtract screen space
//adjust right edge
rcAnchorSpace.right-=(rcScreenSpace.right-rcScreenSpace.left);
//make sure right not less than left
if(rcAnchorSpace.right<rcAnchorSpace.left)

rcAnchorSpace.right=rcAnchorSpace.left;
//adjust bottom edge
rcAnchorSpace.bottom-=(rcScreenSpace.bottom-rcScreenSpace.top);
//make sure bottom not less than top
if(rcAnchorSpace.bottom<rcAnchorSpace.top)

rcAnchorSpace.bottom=rcAnchorSpace.top;
//initialize screen anchor
ptScreenAnchor.x=0;
ptScreenAnchor.y=0;

}

Isometric Game Programming with DirectX 7.0

TeamLRN

313

This is the longest function in the program, as it should be. All scrolling is based on the calculations here.
After you have your variables set up, implementing scrolling becomes a simple matter. The DrawMap func-
tion is mostly the same as the one you saw in IsoHex12_1.cpp, with a minor change (which I have high-
lighted in bold) to include the use of the anchor.

void DrawMap()
{

POINT ptTile;//tile pixel coordinate
POINT ptMap;//map coordinate
//get tile width and height
int iTileWidth=tsIso.GetTileList()[0].rcSrc.right-

tsIso.GetTileList()[0].rcSrc.left;
int iTileHeight=tsIso.GetTileList()[0].rcSrc.bottom-

tsIso.GetTileList()[0].rcSrc.top;
//the y loop is outside, because we must blit in horizontal rows
for(int y=0;y<MAPHEIGHT;y++)
{

for(int x=0;x<MAPWIDTH;x++)
{

//get pixel coordinate for map position
ptMap.x=x;
ptMap.y=y;
ptTile=SlideMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
//plot the tile (adjust for anchor)
tsIso.PutTile(lpddsBack,ptTile.x-ptScreenAnchor.x,

ptTile.y-ptScreenAnchor.y,iTileMap[x][y]);
}

}
}

Finally, to make scrolling work with the arrow keys, I modified Prog_Loop to respond to the four arrows:

//check for keys, and adjust screen anchor
//up
if(GetAsyncKeyState(VK_UP)<0)
{

if(ptScreenAnchor.y>rcAnchorSpace.top) ptScreenAnchor.y—;
}
//down
if(GetAsyncKeyState(VK_DOWN)<0)
{

Slide Isometric Tilemaps

314

if(ptScreenAnchor.y<rcAnchorSpace.bottom) ptScreenAnchor.y++;
}
//right
if(GetAsyncKeyState(VK_RIGHT)<0)
{

if(ptScreenAnchor.x<rcAnchorSpace.right) ptScreenAnchor.x++;
}
//left
if(GetAsyncKeyState(VK_LEFT)<0)
{

if(ptScreenAnchor.x>rcAnchorSpace.left) ptScreenAnchor.x—;
}

With all of these working together, you can run the program and move the view around the map with the
arrow keys. I’ve talked to a lot of folks about scrolling, and I’ve seen some pretty complicated methods of
doing it—most of them either didn’t work or worked very poorly. The method I presented here will work
in all cases. If you want to make a rectangular map that works with a TilePlotter, it will work. It will also
work with any of the other types of IsoHex tilemaps.

Naturally, you aren’t totally finished with your treatment of scrolling, but you are finished for now. The
method here works, even if it’s not the most efficient. Depending on the size of your tilemap, many tiles
can be blitted but completely clipped out by the clipper. As maps get bigger, it results in more of a per-
formance hit. You’ll return to scrolling and improve on this method in a later chapter.

Tile Walking
The next fundamental piece of an isometric engine is the TileWalker. A TileWalker does nothing more
than move from one map location to an adjacent map location based on a direction traveled. Much like
the TilePlotter, the TileWalker is a very easy-to-implement component.

Figure 12.14 shows the allowable directions of movement for iso and hex tiles. As you can see, iso allows
eight directions and hex allows six. In a normal rectangular tilemap, tile walking is very easy because of
how the tiles line up next to one another. Table 12.5 shows how the x and y coordinates change in a rec-
tangular map.

Isometric Game Programming with DirectX 7.0

TeamLRN

Figure 12.15 shows a graphical representation of Table 12.5. We used something of a TileWalker in the
Reversi example in Chapter 10, “Tile-Based Fundamentals,” in the form of the DeltaX and DeltaY func-
tions. (Take a look back at IsoHex10_4.cpp if you want a refresher.) That is all a TileWalker is.

NW

N

NE

E

SE
S

SW

W

NW

W

SW SE

E

NE Figure 12.14

Directions of

movement for iso

and hex

Table 12.5 Rectangular Tile Walking
Direction Change x Change y

North 0 –1

Northeast +1 –1

East +1 0

Southeast +1 +1

South 0 +1

Southwest –1 +1

West –1 0

Northwest –1 –1

316

“Big deal,” you say. Perhaps it’s not a big deal, but it is fundamental for making any sort of tile-based
engine work. In an isometric or hexagonal engine, the numbers become a little weird, so having the
TileWalker in a nicely wrapped-up function is more important.

So, with the purpose of a TileWalker in mind, consider the slide map. From the get-go, you know that x
increases in the east direction, so for eastward movement, you add 1 to x and leave y alone. Conversely,
moving west has the opposite effect (subtract 1 from x and leave y alone). Also, you know that moving
southeast increases y by 1 and leaves x alone, and conversely, moving to the northwest subtracts 1 from y
and leaves x alone. So far, you have the information shown in Table 12.6.

Isometric Game Programming with DirectX 7.0

(-1,-1) (0,-1) (1,-1)

(-1,0)

(-1,1)

(0,0) (1,0)

(0,1) (1,1)

Figure 12.15

A graphical representa-

tion of Table 12.5

Table 12.6 Slide Map TileWalker (So Far)
Direction Change x Change y

East +1 0

Southeast 0 +1

West –1 0

Northwest 0 –1

TeamLRN

317

You have four of the eight directions, and you just have to derive the other directions based on what you
already have. To do this, you simply make movements you know how to make in order to get to squares to
which you have not yet gone. Take a look at the directions one by one.

North
To move north, you can move one square to the east, two squares to the northwest. The net change for x is
+1(east) +0(northwest)+0(northwest)= +1. The net change for y is +0(east)–1(northwest) –1(north-
west)= –2. A graphical representation of this derivation is shown in Figure 12.16.

Northeast
To move northeast, you can move one square to the east and one square to the northwest. The net change
for x is +1(east)+0(northwest)= +1. The net change for y is +0(east) –1(northwest)= –1. A graphical
representation of this derivation is shown in Figure 12.17.

Slide Isometric Tilemaps

Figure 12.16

Moving north on a

slide map

Figure 12.17

Moving northeast on

a slide map

318

South
To move south, move one step west, two steps southeast. The net change for x is –1(west) +0(south-
east)+0(southeast)= –1. The net change for y is +0(west)+1(southeast)+1(southeast)= +2. Figure 12.18
shows this derivation graphically.

Southwest
To move southwest, move one step west, one step southeast. The net change for x is –1(west)+0(south-
east)= –1. The net change for y is +0(west)+1(southeast)= +1. Figure 12.19 shows this graphically.

Isometric Game Programming with DirectX 7.0

Figure 12.18

Moving south on a

slide map

Figure 12.19

Moving southwest on

a slide map

TeamLRN

319

Finally, you have enough information to complete your tilewalking table for slide maps. Table 12.7 shows
the information for moving all directions. For hex maps, eliminate two opposing directions, depending on
the hexagon’s orientation.

Now that you can walk from tile to tile, it is time to construct a suitable function to do so. In order to
make it all work, you need to set up a few things. The first is some sort of enumeration for direction con-
stants:

enum IsoDirection{
ISO_NORTH=0,
ISO_NORTHEAST=1,
ISO_EAST=2,
ISO_SOUTHEAST=3,
ISO_SOUTH=4,
ISO_SOUTHWEST=5,
ISO_WEST=6,
ISO_NORTHWEST=7
};

Slide Isometric Tilemaps

Table 12.7 Slide Map Tilewalking (Complete)
Direction Change x Change y

North +1 –2

Northeast +1 –1

East +1 0

Southeast 0 +1

South –1 +2

Southwest –1 +1

West –1 0

Northwest 0 –1

NOTE
If you’re interested in
hexagonal (I know
you’re out there—I can
hear you breathing), you
simply leave out two
directions from this
enumeration and
replace ISO_ with HEX_.

320

After you have the enumeration, you just have to build the function itself. As with the TilePlotter, you will
have the TileWalker use POINTs:

POINT SlideMap_TileWalker(POINT ptStart, IsoDirection Dir)
{

switch(Dir)
{
case ISO_NORTH:

{
ptStart.x++;
ptStart.y-=2;

}break;
case ISO_NORTHEAST:

{
ptStart.x++;
ptStart.y—;

}break;
case ISO_EAST:

{
ptStart.x++;

}break;
case ISO_SOUTHEAST:

{
ptStart.y++;

}break;
case ISO_SOUTH:

{
ptStart.x—;
ptStart.y+=2;

}break;
case ISO_SOUTHWEST:

{
ptStart.x—;
ptStart.y++;

}break;
case ISO_WEST:

{
ptStart.x—;

}break;
case ISO_NORTHWEST:

{

Isometric Game Programming with DirectX 7.0

TeamLRN

321

ptStart.y—;
}break;

}
return(ptStart);

}

And you’ve got your TileWalker, which brings us to example time. Load up IsoHex12_3.cpp. Make sure
you get both of the bitmaps and other necessary files. This example takes the previous scrolling example
(IsoHex12_2.cpp) and puts in the TileWalker.

My basic goals for this example were to move the cursor around the tilemap using the numeric keypad and
to keep the view centered on the cursor, or as centered as possible. The phrase “as centered as possible”
might be a little confusing. What I mean by this is that when the current position is within the central part
of the map, the cursor appears at the center of the screen. When the cursor is near the edges, it won’t
appear at the center of the screen (the anchor will remain bound by anchor space).

Figure 12.20 shows a centered cursor (it’s somewhere in the middle of the tilemap). Figure 12.21 shows it
on an edge (the cursor isn’t centered). These figures demonstrate just how useful an anchor space can be.
There are no special cases involved, just the adjustment of ptScreenAnchor to lie within the bounds of
rcAnchorSpace.

Slide Isometric Tilemaps

Figure 12.20

IsoHex12_3 in the mid-

dle of the tilemap

The cursor is in the

center of the screen.

322

The Code for IsoHex12_3
You’ve already seen the TileWalker, and the enum for directions, so I won’t repeat those here. The main
changes from IsoHex12_2 to IsoHex12_3 are the addition of the cursor and the response of numeric
keypad keys.

Showing the Cursor
The cursor is shown by calling ShowIsoCursor.The cursor itself is contained in a tileset (separate from
the tiles that comprise the map) called tsCursor. The map position of the cursor is contained in the
global variable ptCursor.

void ShowIsoCursor()
{

//copy cursor position
POINT ptMap=ptCursor;
//get a few metrics from the tileset
int iTileWidth=tsIso.GetTileList()[0].rcDstExt.right-

tsIso.GetTileList()[0].rcDstExt.left;
int iTileHeight=tsIso.GetTileList()[0].rcDstExt.bottom-

tsIso.GetTileList()[0].rcDstExt.top;
//plot cursor position
POINT ptPlot=SlideMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
//put the cursor image

Isometric Game Programming with DirectX 7.0

Figure 12.21

IsoHex12_3 near the

upper-left corner of

the map

The cursor is not

centered.

TeamLRN

323

tsCursor.PutTile(lpddsBack,ptPlot.x-ptScreenAnchor.x,ptPlot.y-
ptScreenAnchor.y,0);
}

ShowIsoCursor performs two major tasks. First, it finds where the cursor is supposed to go using the
TilePlotter, and then it puts in the tile, adjusting for the screen anchor.

Moving the Cursor
This is where the TileWalker comes into play. During the program’s response to WM_KEYDOWN events, the
following has been added:

//move cursor
if(wParam==VK_NUMPAD8)

MoveCursor(ISO_NORTH);
if(wParam==VK_NUMPAD9)

MoveCursor(ISO_NORTHEAST);
if(wParam==VK_NUMPAD6)

MoveCursor(ISO_EAST);
if(wParam==VK_NUMPAD3)

MoveCursor(ISO_SOUTHEAST);
if(wParam==VK_NUMPAD2)

MoveCursor(ISO_SOUTH);
if(wParam==VK_NUMPAD1)

MoveCursor(ISO_SOUTHWEST);
if(wParam==VK_NUMPAD4)

MoveCursor(ISO_WEST);
if(wParam==VK_NUMPAD7)

MoveCursor(ISO_NORTHWEST);

Each key on the numeric keypad sends a command to the MoveCursor function, shown next. The
MoveCursor function works in two phases. First, it tilewalks the cursor to a new position (it first checks to
see that the move is valid). Second, it adjusts the anchor and clips the anchor to anchor space.

void MoveCursor(IsoDirection Dir)
{

//move the cursor using the tilewalker
POINT ptTemp=SlideMap_TileWalker(ptCursor,Dir);
//get a few metrics from the tileset
int iTileWidth=tsIso.GetTileList()[0].rcDstExt.right-

tsIso.GetTileList()[0].rcDstExt.left;

Slide Isometric Tilemaps

324

int iTileHeight=tsIso.GetTileList()[0].rcDstExt.bottom-
tsIso.GetTileList()[0].rcDstExt.top;

//bounds checking
//x<0
if(ptTemp.x<0) ptTemp=ptCursor;
//y<0
if(ptTemp.y<0) ptTemp=ptCursor;
//x>MAPWIDTH-1
if(ptTemp.x>(MAPWIDTH-1)) ptTemp=ptCursor;
//y>MAPHEIGHT-1
if(ptTemp.y>(MAPHEIGHT-1)) ptTemp=ptCursor;
//assign new cursor position
ptCursor=ptTemp;
//do a test plot of the cursor (for centering)
POINT ptPlot=SlideMap_TilePlotter(ptCursor,iTileWidth,iTileHeight);
//center
ptScreenAnchor.x=ptPlot.x-320+iTileWidth/2;
ptScreenAnchor.y=ptPlot.y-240+iTileHeight/2;
//bounds checking for anchor
if(ptScreenAnchor.x<rcAnchorSpace.left)

ptScreenAnchor.x=rcAnchorSpace.left;
if(ptScreenAnchor.y<rcAnchorSpace.top) ptScreenAnchor.y=rcAnchorSpace.top;
if(ptScreenAnchor.x>rcAnchorSpace.right)

ptScreenAnchor.x=rcAnchorSpace.right;
if(ptScreenAnchor.y>rcAnchorSpace.bottom)

ptScreenAnchor.y=rcAnchorSpace.bottom;
}

You may have a question about the centering segment, where I subtract 320 from the anchor’s x and 240
from anchor’s y, while adding half of the tile’s width and height to x and y, respectively. The 320 and 240
are easy to explain away—they are half of the width and height of the screen. The tile’s width and height
modifications are because your tile anchors exist in the upper-left corner of the tile, and you must further
adjust so that the cursor appears in the center of the screen. Later, a ClipScreenAnchor function will do
this for you.

That’s about all there is to the TileWalker. Just like the TilePlotter, it’s a pretty simple concept. The
TileWalker winds up an important part of the MouseMap, which you will get to next.

Isometric Game Programming with DirectX 7.0

TeamLRN

325

Mousemapping
The final core component of any isometric engine is the MouseMap. A MouseMap is used to convert
world coordinates into map coordinates. Since the screen anchor lets you easily convert screen coordinates
into world coordinates, the MouseMap is essential for finding out what tile the mouse or other pointing
device is on (hence the name “MouseMap”). It has other uses as well, like streamlining which tiles must be
blitted to fill up screen space without wasting too many trivially clipped tiles.

Determining on which tile the mouse rests is the most common dilemma for a lot of folks just beginning
in IsoHex. The overlap makes it confusing, and I’ve seen plenty of ways to do it, including some requiring
hard-to-understand equations. MouseMaps, once you have the basic idea down, are quite easy, and very
effective. As you know, determining whether a POINT is within a RECT is quite easy—just use the
PtInRect function! You could come up with many schemes for detecting whether a point is within a dia-
mond or a hexagon. You might make polygon RGNs and use PtInRgn; this is a valid way to do it, and it
would work. The problem is that this method would be slow, since when a region is created, it rips it into
little rectangles and compares the POINT to all those rectangles to see if it is within the RGN.

Alternately, you can use the fact that determining whether a POINT is within a RECT is fast. You can divide
your IsoHex maps into rectangular areas (as shown in Figures 12.22 and 12.23) and work from there.
These rectangular areas reach from the top of one tile down to the top of the tile to the south, and from
the left of the tile to the left of the tile to the east.

Slide Isometric Tilemaps

Figure 12.22

An iso map divided into

rectangular zones

326

If you take just one of these rectangular areas and color each tile that has a portion within this area with a
different color (as shown in Figures 12.24 and 12.25), you will have a MouseMap. Now you can do some
serious work. Ready for the mental leap?

Isometric Game Programming with DirectX 7.0

Figure 12.23

A hex map divided into rec-

tangular zones

Figure 12.24

Iso MouseMap

TeamLRN

327

Because you have divided your tilemap into rectangular areas, you
can easily determine which rectangle you are in. After you know
which rectangle you are in, you can calculate where you are with-
in that rectangle. If you check the color at that position, you
know which tile you are on.

Step-By-Step
Mousemapping
This section goes through the entire process of mousemapping
as it is usually performed—to take the position of the mouse
and convert it into map coordinates. You start with a POINT called
ptMouse, which contains the screen coordinates of the mouse.

Slide Isometric Tilemaps

Figure 12.25

Hex MouseMap

NOTE
In reality, you don’t want to
leave your MouseMap as a
bitmap, because you would
then have to use GDI to get
the pixel color. Later, you will
create an array, scan the
bitmap for the different col-
ors, and just have numbers in
a lookup table, but the bitmap
example is much better for
visualization.

328

Step #1: Convert Screen Coordinates to
World Coordinates
This is a simple-enough step. Add the screen anchor to ptMouse.

//screen to world translation
ptMouse.x+=ptScreenAnchor.x;
ptMouse.y+=ptScreenAnchor.y

Step #2: Subtract World Coordinates for the
Upper Left of the Map Position (0,0)
For this, you use the TilePlotter and make use of the tile extent for tile (0,0). In this case, the coordinate
winds up being (0,0), but in cases where world space extends beyond the tilemap, or when tile anchors are
not at the upper left of the tile, this becomes important.

//retrieve some tile metrics
int iTileWidth=tsIso.GetTileList()[0].rcDstExt.right-
tsIso.GetTileList()[0].rcDstExt.left;
int iTileHeight=tsIso.GetTileList()[0].rcDstExt.bottom-
tsIso.GetTileList()[0].rcDstExt.top;
//get map position 0,0
POINT ptMap;
ptMap.x=0;
ptMap.y=0;
//determine plot position
POINT ptPlot=SlideMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
//adjust the plotted point for the tile’s extent
ptPlot.x+=tsIso. GetTileList()[0].rcDstExt.left;
ptPlot.y+=tsIso. GetTileList()[0].rcDstExt.top;
//subtract ptPlot from ptMouse
ptMouse.x-=ptPlot.x;
ptMouse.y-=ptPlot.y;

Now ptMouse contains a coordinate relative to the upper left of the tile at map position (0,0). This is
important, because the MouseMap is designed to be aligned with that tile.

Isometric Game Programming with DirectX 7.0

TeamLRN

329

Step #3: Determine MouseMap Coordinates
Now determine which rectangular area (which is the same size as the MouseMap) you’re in by dividing
ptMouse by the width and height of the MouseMap (which would be stored in global variables prior to
using the MouseMap). These are the “coarse” MouseMap coordinates.

At the same time, you want to know where within the rectangular area ptMouse points. You will use the
modulus operator (%) to get the remainder of the division. These are the “fine” MouseMap coordinates.

//find coarse coordinates
POINT ptMouseMapCoarse;
ptMouseMapCoarse.x=ptMouse.x/MouseMapWidth;
ptMouseMapCoarse.y=ptMouse.y/MouseMapHeight;
//find fine coordinates
POINT ptMouseMapFine;
ptMouseMapFine.x=ptMouse.x%MouseMapWidth;
ptMouseMapFine.y=ptMouse.y%MouseMapHeight;
//adjust for negative fine coordinates
if(ptMouseMapFine.x<0)
{

ptMouseMapFine.x+=MouseMapWidth;
ptMouseMapCoarse.x—;

}
if(ptMouseMapFine.y<0)
{

ptMouseMapFine.y+=MouseMapHeight;
ptMouseMapCoarse.y—;

}

Some explanation might be necessary for the segment on adjusting for negative fine coordinates. In slide
maps, this adjustment is unnecessary, because all plotted tiles have a nonnegative coordinate for their
upper-left corner. Later, when we get into diamond maps, this adjustment becomes necessary. I just wanted
to bring it up here so that all the parts of mousemapping are explained in one spot.

Because of the way computers do integer arithmetic, using division on a negative number works differently
than it does in mathematics. In mathematics, –32/64 would be –1 (the nearest integer below the actual
answer). In a computer, however, –32/64 is 0 (the nearest integer closest to 0).

The modulus operator (%) is based on division. The calculation looks something like this:

Remainder=Dividend - [Dividend/Divisor] * Divisor

The [] means integer result.

In mathematics, the modulus always gives you a positive value. Take, for example, (–32)%64 and 32%64.
(The first number is the dividend, and the second is the divisor.)

Slide Isometric Tilemaps

330

Computer
Remainder = –32–[–32/64]*64=–32–0*64=–32–0=–32
Remainder = 32–[32/64]*64=32–0*64=32–0=32

Mathematics
Remainder = –32–[–32/64]*64=–32–(–1)*64=–32+64=32
Remainder = 32–[32/64]*64=32+(0)*64=32+0=32

As you can see, mathematics always gives a nonnegative result, but with a computer, it depends. Luckily,
computers do have the nice even steps, as long as the dividend and divisor are both positive.

So, when you come to a negative remainder on a computer, you simply add the divisor to it, subtract 1
from the calculated answer, and you’re good to go. Pesky integer arithmetic will bother you no more.

Step #4: Perform a Coarse Tile Walk
Now you get to incorporate the TileWalker; both steps 4 and
5 make use of it. The first task is a coarse tile walk based on
the ptMouseMapCoarse x and y. If ptMouseMap.x is greater
than 0, take that many steps to the east. If x is negative, take
that many steps to the west. Make similar north or south
steps for negative or positive y values.

A coarse tile walk looks something like this:

//set up map coordinate
ptMap.x=0;
ptMap.y=0;
//north movement
while(ptMouseMapCoarse.y<0)
{
ptMap=SlideMap_TileWalker(ptMap,ISO_NORTH);

ptMouseMapCoarse.y++;
}
//south movement
while(ptMouseMapCoarse.y>0)
{
ptMap=SlideMap_TileWalker(ptMap,ISO_SOUTH);

ptMouseMapCoarse.y—;
}
//east movement
while(ptMouseMapCoarse.x<0)
{

Isometric Game Programming with DirectX 7.0

NOTE
Hey, hex folks. No, I haven’t for-
gotten you.You might be
scratching your head at the
coarse tile walk, because two of
your directions don’t exist.They
are usually north and south or
east and west.As applicable, you
have to make double steps, like a
northeast step plus a southeast
step to make one eastward step
if you can’t go east.

TeamLRN

331

ptMap=SlideMap_TileWalker(ptMap,ISO_WEST);
ptMouseMapCoarse.x++;

}
//west movement
while(ptMouseMapCoarse.x>0)
{

ptMap=SlideMap_TileWalker(ptMap,ISO_EAST);
ptMouseMapCoarse.x—;

}

Now you are pretty close to your real map coordinate—no more than a single tile away.

Step #5: Use the MouseMap Lookup Table
This is where the MouseMap comes in. Check the color of the map (or the value in the lookup table)
corresponding to the coordinate within ptMouseMapFine. This will contain one of five values: MM_CENTER,
MM_NW, MM_NE, MM_SE, or MM_SW. Each value tells you how to make your final tile walk onto the proper map
position (MM_CENTER simply means no tile walk is necessary). For the purpose of illustration, you will
make your MouseMap a 2D array of values.

//use mousemap lookup table
switch(MouseMapLookUp[ptMouseMapFine.x][ptMouseMapFine.y])
{
case MM_CENTER:

{
//no movement

}break;
case MM_NE:

{
//move one to the northeast
ptMap=SlideMap_TileWalker(ptMap,ISO_NORTHEAST);

}break;
case MM_SE:

{
//move one to the southeast
ptMap=SlideMap_TileWalker(ptMap,ISO_SOUTHEAST);

}break;
case MM_SW:

{
//move one to the southwest
ptMap=SlideMap_TileWalker(ptMap,ISO_SOUTHWEST);

Slide Isometric Tilemaps

332

}break;
case MM_NW:

{
//move one to the northwest
ptMap=SlideMap_TileWalker(ptMap,ISO_NORTHWEST);

}break;
}

And you’re done! The coordinate in ptMap is the map coordinate the mouse points to. Easy, right? I know
it seems like a lot of code, but it’s quite fast.

Now that you’ve got the basic algorithm down, you just need to wrap it. The first thing you need is a nice
little structure to hold the lookup table and MouseMap dimensions (width and height). I suggest some-
thing like the following:

//enumeration type for mousemap directions
enum MouseMapDirection {MM_CENTER,MM_NE,MM_SE,MM_SW,MM_NW};
struct CMouseMap
{

//x and y size of the mousemap
POINT ptSize;
//reference point for overlaying the mousemap on tile 0,0
POINT ptRef;
//lookup array
MouseMapDirection* mmdLookUp;

};

The ptMouseMapSize member contains the width in x and the height in y. The world coordinate for tile
(0,0) is stored in ptMouseMapRef. (This means you only have to calculate it once and can thereafter use it
many times.) chMouseMapLookUp is a pointer that you allocate to store enough information for the entire
map. It is a one-dimensional array that acts like a two-dimensional array.

Next, you need a function that loads in a MouseMap from a bitmap. To make it happen, use CGDICanvas:

void MouseMapLoad(CMouseMap* pmm,LPCTSTR lpszfilename)
{

//create canvas
CGDICanvas gdic;
//load file
gdic.Load(NULL,lpszfilename);
//assign width/height

Isometric Game Programming with DirectX 7.0

TeamLRN

333

pmm->ptSize.x=gdic.GetWidth();
pmm->ptSize.y=gdic.GetHeight();
//allocate space for the lookup table
pmm->mmdLookUp= new

MouseMapDirection[gdic.GetWidth()*gdic.GetHeight()];
//colorref values for filling lookup
COLORREF crNW=GetPixel(gdic,0,0);
COLORREF crNE=GetPixel(gdic,gdic.GetWidth()-1,0);
COLORREF crSW=GetPixel(gdic,0,gdic.GetHeight()-1);
COLORREF crSE=GetPixel(gdic,gdic.GetWidth()-1, gdic.GetHeight()-1);
//test pixel color
COLORREF crTest;
//scan convert bitmap into lookup values
for(int y=0;y<gdic.GetHeight();y++)
{

for(int x=0;x<gdic.GetWidth();x++)
{

//grab test pixel
crTest=GetPixel(gdic,x,y);
//set lookup to default
pmm->mmdLookUp[x+y*pmm->ptSize.x]=MM_CENTER;
//check colors
if(crTest==crNW)
pmm->mmdLookUp[x+y*pmm->ptSize.x]=MM_NW;
if(crTest==crNE)
pmm->mmdLookUp[x+y*pmm->ptSize.x]=MM_NE;
if(crTest==crSW)
pmm->mmdLookUp[x+y*pmm->ptSize.x]=MM_SW;
if(crTest==crSE)
pmm->mmdLookUp[x+y*pmm->ptSize.x]=MM_SE;

}
}

}

Slide Isometric Tilemaps

334

This function does all the work to get a bitmap converted to a lookup table. However, it doesn’t put in the
reference point for tile (0,0). Also, the lookup table was dynamically allocated, so to avoid memory leakage
it will have to be deallocated later with the following line:

//mm is a CMouseMap variable
delete [] mm->mmdLookUp;

A Mousemapping Example
Now you have all you need to implement a MouseMap in an IsoHex application. Load IsoHex12_4.cpp.
This example is based on IsoHex12_3.cpp, but instead of keyboard control, you now have mouse control.
The MouseMap setup and MouseMap functions are essentially the same as the code I showed you earlier,
with the exception that now the tile (0,0) reference point is stored in the MouseMap structure and does
not have to be calculated each time. Another difference (albeit a small one) is that all
of the lines where iTileWidth and iTileHeight were calculated are gone; I’ll talk more about that a
little later.

One more enhancement I put into this example is scrolling by moving the mouse pointer near the edge of
a screen. The closer it gets, the faster the scroll. The amount of scrolling is stored in a variable called
ptScreenAnchorScroll (a POINT). The following is the snippet that does the scrolling itself:

//scroll the map
ptScreenAnchor.x+=ptScreenAnchorScroll.x;
ptScreenAnchor.y+=ptScreenAnchorScroll.y;
ClipScreenAnchor();

The ClipScreenAnchor function (shown next) simply ensures that the screen anchor doesn’t wander out
of anchor space; it’s similar to what you did when you centered the cursor in IsoHex12_3.cpp.

void ClipScreenAnchor()
{

//clip to left
if(ptScreenAnchor.x<rcAnchorSpace.left)

ptScreenAnchor.x=rcAnchorSpace.left;
//clip to top
if(ptScreenAnchor.y<rcAnchorSpace.top) ptScreenAnchor.y=rcAnchorSpace.top;
//clip to right
if(ptScreenAnchor.x>rcAnchorSpace.right)

ptScreenAnchor.x=rcAnchorSpace.right;
//clip to bottom
if(ptScreenAnchor.y>rcAnchorSpace.bottom)

ptScreenAnchor.y=rcAnchorSpace.bottom;
}

Isometric Game Programming with DirectX 7.0

TeamLRN

335

This is a very simple but very effective scrolling scheme. It would not be possible without a screen anchor
and anchor space rectangle. As you might have guessed, you can use this exact scrolling algorithm in any of
your IsoHex games and demos. It just goes to show that you don’t need especially complicated code to
allow scrolling.

The main work of this example is done in the WM_MOUSEMOVE handler. The tasks are divided into three
parts: mousemapping the cursor, clipping the cursor to a valid tile (that is, not allowing cursor locations
outside the tilemap), and assigning the values of ptScreenAnchorScroll if the mouse is near one or
more of the screen’s edges.

case WM_MOUSEMOVE:
{

//grab mouse coordinate
POINT ptMouse;
ptMouse.x=LOWORD(lParam);
ptMouse.y=HIWORD(lParam);
//mousemap the mouse coordinates
ptCursor=SlideMap_MouseMapper(ptMouse,&mmMouseMap);
//clip cursor to tilemap
if(ptCursor.x<0) ptCursor.x=0;
if(ptCursor.y<0) ptCursor.y=0;
if(ptCursor.x>MAPWIDTH-1) ptCursor.x=MAPWIDTH-1;
if(ptCursor.y>MAPHEIGHT-1) ptCursor.y=MAPHEIGHT-1;
//check for scrolling zones
ptScreenAnchorScroll.x=0;
ptScreenAnchorScroll.y=0;
//top
if(ptMouse.y<8)

ptScreenAnchorScroll.y=-(8-ptMouse.y);
//bottom
if(ptMouse.y>472)

ptScreenAnchorScroll.y=(ptMouse.y-472);
//left
if(ptMouse.x<8)

ptScreenAnchorScroll.x=-(8-ptMouse.x);
//right
if(ptMouse.x>632)

ptScreenAnchorScroll.x=(ptMouse.x-632);
return(0);

}break;

Slide Isometric Tilemaps

336

Figure 12.26 shows the output of IsoHex12_4.cpp. It looks quite a bit like the other examples in this
chapter, except that the highlighted tile contains the mouse.

As you’ve been going along here, you’ve probably noticed that you’re are getting further and further away
from code that actually manipulates the tilemap and the coordinates of the various tiles. Mostly, you rely
on the three major iso components—the TilePlotter, the TileWalker, and the MouseMap. This is a good
thing, because it frees you from special case code and from having to always think about the coordinate
system while trying to add other features to your games.

That’s it for mousemapping for now. You’ll learn more about it later, when I will show you some extra and
surprising uses of the MouseMap. Your fundamental slide map iso engine is complete, and the possibilities
are now endless.

Isometric Game Programming with DirectX 7.0

Figure 12.26

Output of IsoHex12_4.cpp

The mouse is contained in

this tile.

TeamLRN

337

Summary
You’ve come quite a way from the rectangular tiles and tilemaps discussed in Chapter 10. I showed you
that isometric tile-based algorithms are not nearly as complex as you might have thought. In fact, with the
steps you’ve taken in this chapter, you might now think they’re downright simple. You’d be right!

Also, the topic of scrolling, which befuddles and confuses most IsoHex beginners, has been demystified
with the use of anchors and anchor space. You aren’t done yet with scrolling. Later, you will make it more
efficient, but the basic foundation is there.

You’ve got the goods on slide maps, which are great to bring out first because of their simpler structure,
but we still have two more map types to discuss. However, don’t discount the usefulness of slide maps.
The very first isometric game that I know of (Zaxxon, Sega 1982) used something very similar to an iso
slide map.

Also, you took a brief look at hex in this chapter, mainly to show you how similar iso and hex are. From
here on out, however, you’ll concentrate on iso. For the topics and specific concerns of hexagonal tile map-
ping, check out Appendix B, “Hexagonal Tile-Based Games.”

Staggered maps, here we come!

Slide Isometric Tilemaps

Staggered
Tilemaps

• Coordinate System

• Tileplotting

• Tilewalking

• Mousemapping in
Staggered Maps

CHAPTER 13

TeamLRN

339

The preceding chapter covered the basic groundwork for
isometric engines while exploring the simplest of the iso

tilemap types, the slide map. There’s not much call for slide
maps in computer games, but if you’re creative enough, you can
find a use for them.

This chapter focuses on one of the more commonly used map
types—the staggered map. Many strategy games, past and pres-
ent, use this type of map, games such as Civilization II,
Civilization: Call to Power, Imperialism II, and Alpha Centauri, These
are (or were) popular titles. (Civ II, several years old, does not
show its age; its popularity continues. It is possibly one of the
most heavily played strategy computer games ever.)

Coordinate System
Figure 13.1 is a graphical representation of a staggered tilemap. The x-axis increases to the east, just as it
does in slide maps. The unusual part is the y-axis, which alternately moves southeast and southwest,
depending on what tile row you are on, giving a somewhat zigzagging southern direction to the y-axis. The
advantage of this is that you can more easily fill rectangular areas without encountering some of the diffi-
culties you had with slide maps.

Staggered Tilemaps

(3,0)

(3,1)

(3,2)

(3,3)(2,3)

(2,1)

(2,2)

(2,0)

(1,1)

(1,3)

(1,2)

(1,0)

(0,1)

(0,3)

(0,2)

(0,0)0

1

2

3

0 1 2 3

X

Y

Figure 13.1

Staggered tilemap

coordinate system

NOTE
Be aware: Most of the funda-
mentals for IsoHex maps were
covered in Chapter 12,“Slide
Isometric Tilemaps.” You might
want to turn back at times for a
quick refresher.This chapter is
considerably shorter than
Chapter 12, since in it I cover
just algorithms specific to the
staggered tilemaps.

340

The best way to describe the coordinate system for staggered maps is not to speak of the strange behavior
of the y-axis, but instead to say that even rows (y=0, 2, 4, and so on) are in a straight column, and odd
rows (y=1, 3, 5, and so on) are shifted to the east by half a tile. Of course, you can shift to the west if
you like, or you can even turn the map on its side and offset vertically instead of horizontally, but the
examples in this chapter use the even/odd row scheme to plot your tiles.

Because of this different coordinate system, you will find some differences in the TilePlotter and
TileWalker (especially the TileWalker). However, as you will see, the MouseMap is completely unaffected,
because it relies on the other two components to work properly.

Tileplotting
Naturally, you will want to plot your staggered maps in horizontal rows, just as you did with your slide
maps. This is easy to do because of the eastward direction of the x-axis. The y-axis may trip you up, but
only a little.

At first glance, you might consider special cases for your TilePlotter, including a simple check to see if y is
odd or even, as shown here:

//check for even y
if(y%2==0)
{

//even
//special case for even tiles here

}
else
{

//odd
//special case for odd tiles

}

This is a valid way to go about solving the problem, but I’m not particularly thrilled with it. The problem
I have is that it includes special-case code, and experience has shown me that special-case code tends to
break easier. Ideally, I would have a nice equation that works for all cases. Fortunately, I have one.

Besides checking y%2 for an odd/even test, you can alternately use y&1. For all even numbers, y&1 will
yield 0, and for all odd numbers, y&1 will yield 1. So, problem solved.

Now consider the coordinate system and we’ll come up with some nice equations to use in your
TilePlotter. The x-axis moves in the east direction, so here’s a portion of your equation for plotting x:

//MapX is map coordinate, PlotX is world coordinate
PlotX=MapX*TileWidth;

Isometric Game Programming with DirectX 7.0

TeamLRN

341

That’s not the end of the story, however. The odd rows (where y&1 yields 1) are shifted east by half a tile
(+TileWidth/2), so you modify the equation slightly:

//mapx, mapy are map coordinates, plotx is world coordinate
PlotX=MapX*TileWidth+(MapY&1)*(TileWidth/2);

The y-coordinate calculation is much simpler. The y-axis alternately moves southeast and southwest. Both
of these directions affect the world y-coordinates by moving half of a TileHeight downward. So, the cal-
culation for y is as follows:

//mapy is a map coordinate, ploty is a world coordinate
PlotY=MapY*(TileHeight/2);

And that’s all there is to it! You just take these two calculations, slap them into a function, and you’re off:

POINT StagMap_TilePlotter(POINT ptMap,int iTileWidth,int iTileHeight)
{

POINT ptPlot;
ptPlot.x=ptMap.x*iTileWidth+(ptMap.y & 1) * (iTileWidth/2);
ptPlot.y=ptMap.y*(iTileHeight/2);
return(ptPlot);

}

I bet you’d like an example, wouldn’t you? Very well. Load up IsoHex13_1.cpp. The code suspiciously
resembles that of IsoHex12_1.cpp, as well it should, since I copied the code into a new workspace, made
about five minor changes, and recompiled it. Talk about a short development cycle!

Figure 13.2 shows the result of running IsoHex13_1.cpp. It is essentially the same code as in the preced-
ing chapter, but with a drastically different look. The staggered map takes up more of a rectangular area,
and if you can clip out the jagged edges, it fills up a rectangular viewport very nicely. This is a lot better
result than you can achieve with a slide map, which tends to have large, ugly black areas.

Staggered Tilemaps

342

It’s astounding, really, that after exploring the basics so much in the last chapter, staggered maps are a
breeze to learn. The TilePlotter is built, and you are one-third of the way to mastering the subtleties of
staggered maps.

Tilewalking
The staggered map TileWalker will put to rest a few questions you might have had in Chapter 12. If you
didn’t immediately pick up on something a little strange with the slide map TileWalker, let me point it out.

As you recall, the slide map TileWalker looks like the following:

POINT SlideMap_TileWalker(POINT ptStart, IsoDirection Dir)
{

//depending on direction, move the point
switch(Dir)
{
case ISO_NORTH:

{
ptStart.x++;
ptStart.y-=2;

}break;
case ISO_NORTHEAST:

{
ptStart.x++;

Isometric Game Programming with DirectX 7.0

Figure 13.2

Output of IsoHex13_1.cpp

TeamLRN

343

ptStart.y—;
}break;

case ISO_EAST:
{

ptStart.x++;
}break;

case ISO_SOUTHEAST:
{

ptStart.y++;
}break;

case ISO_SOUTH:
{

ptStart.x—;
ptStart.y+=2;

}break;
case ISO_SOUTHWEST:

{
ptStart.x—;
ptStart.y++;

}break;
case ISO_WEST:

{
ptStart.x—;

}break;
case ISO_NORTHWEST:

{
ptStart.y—;

}break;
}
//return the point
return(ptStart);

}

Still can’t see it? Time’s up! The problem with the slide map TileWalker is that it can take only a single step
at a time. This seems silly, considering the regularity of the slide map, and it reduces the efficiency of the
MouseMap, which uses the TileWalker to convert from MouseMap coordinates to map coordinates.

Why would I intentionally write inefficient code? Well it’s not terribly inefficient. Incrementing and decre-
menting variables and passing eight bytes back from a function hardly affects anything, especially in simple
examples like the ones you’ve been doing (rest assured that you’ll have much better TileWalkers later).

Staggered Tilemaps

344

So, I should have designed the slide map TileWalker according to how many steps you need to go in the
given direction. The prototype would look something like this.

POINT SlideMap_TileWalker(POINT ptStart, IsoDirection Dir, int iSteps);

There are two reasons I didn’t do this from the start. One, these examples are meant to educate, and being
as efficient as possible isn’t necessarily the best way to go about explaining something. Two, I wanted to
have uniformity while explaining the three map types, and in staggered maps, tilewalking in multiple steps
is more difficult.

What do I mean? Well, consider Figure 13.3, which illustrates two steps, both in the southeast direction,
starting from map position (0,0). The first step moves from (0,0) to (0,1). The second step moves from
(0,1) to (1,2). Take a closer look at these steps.

Step 1:
Start x=0 y=0
End x=0 y=1
Difference dx=0 dy=1

Step 2:
Start x=0 y=1
End x=1 y=2
Difference dx=1 dy=1

As you can plainly see, the differences in these two steps change from one step to another. Both steps have
a y difference of 1, but the x differences change between steps. This shows that multi-step tilewalking can
be solved, with some difficulty. I’m not saying it’s impossible, but the code is a bit confusing until you’ve
got a solid grasp of what’s going on. So, for now, at least, stick with single-step tilewalking.

For your staggered map TileWalker, you’ll treat map coordinates as two special cases—one for an even y-
coordinate, and one for an odd y-coordinate. You will later put them together in a single function.

Isometric Game Programming with DirectX 7.0

(3,0)

(3,1)

(3,2)

(3,3)(2,3)

(2,1)

(2,2)

(2,0)

(1,1)

(1,3)

(1,2)

(1,0)

(0,1)

(0,3)

(0,2)

(0,0) Step 1

Step 2

Figure 13.3

The TileWalker

problem with

staggered maps

TeamLRN

345

Moving east or west is the same, no matter if y is odd or even. Moving east causes x to increase by 1, and
moving west causes x to decrease by 1. The y is unaffected in either case.

Direction Change x Change y

East 1 0

West -1 0

From an even y-coordinate, y increases to the southeast. From an odd y-coordinate, y increases to the
southwest.

Direction y Even/Odd Change x Change y

Southeast Even 0 1

Southwest Odd 0 1

Believe it or not, you now have enough information to derive the rest of the values for your TileWalker. I’ll
go over all of it, step by step, so that you can have a full understanding of how it works (it can seem really
strange at first).

First, since you move x by 0 and y by 1 to move southeast from an even y position (which then leaves you
at an odd y position), the opposite move (moving northwest from an odd y position) should change x by
0 and y by –1. Similarly, since moving from an odd y increases y to the southwest, moving northeast from
an even y should change y by –1. Figure 13.4 demonstrates what I’m trying to say—in this case, words
don’t convey the idea nearly as well as a figure does. The directions you have so far are listed in Table 13.1.

Staggered Tilemaps

?
?

?
?

?
?

?
?

(0,-1)
(1,0)

(0,1)
(0,0)(-1,0) (-1,-1)

(0,2)
(0,1) (1,1)

(0,0)

Even Odd

Figure 13.4

Deriving the staggered

TileWalker

346

From this, you can easily derive the rest. Do them one at a time, starting with the even y directions.

Even Y Tilewalking
You are missing four directions: north, south, southwest, and northwest.

To move northwest, you can first move northeast and then move west. Moving northeast subtracts 1 from
y (leaving you at an odd y position). Moving west subtracts 1 from x whether y is odd or even. So, moving
northwest moves you to (x–1,y–1) if you start on an even y-coordinate.

To move southwest, you first move southeast to (x,y+1), an odd y-coordinate. From there, you move west
by subtracting 1 from x, leaving you at (x–1,y+1).

To move north, you first move northeast to (x,y–1), an odd y-coordinate. Next, you move northwest,
which subtracts 1 from y since you are on an odd y, giving you (x,y–2). To move south, you move south-
east to (x,y+1) (odd), and then southwest to (x,y+2). Your even y TileWalker is complete, as shown in
Table 13.2.

Isometric Game Programming with DirectX 7.0

Table 13.1 Staggered TileWalker (Initial)
Direction +/–x (Even y) +/–y (Even y) +/–x (Odd y) +/–y (Odd y)

North ??? ??? ??? ???

Northeast 0 –1 ??? ???

East 1 0 1 0

Southeast 0 1 ??? ???

South ??? ??? ??? ???

Southwest ??? ??? 0 1

West 1 0 1 0

Northwest ??? ??? 0 –1

TeamLRN

347

Odd Y Tilewalking
Again, you have four directions yet to figure out—north, northeast, southeast, and south. To move north
and south, you can follow the crooked y-axis two steps, just as you did with the even y-coordinates. You
will wind up with the same values—(0,–2) for north and (0,2) for south.

To move northeast, you first move northwest to (x,y–1) (even) and then move east to (x+1,y–1) (even).
To move southeast, you first move southwest to (x,y+1) (even) and then move east to (x+1,y+1) (even).

Staggered Tilemaps

Table 13.2 Staggered TileWalker (Completed Even)
Direction +/–x (Even y) +/–y (Even y) +/–x (Odd y) +/–y (Odd y)

North 0 –2 ??? ???

Northeast 0 –1 ??? ???

East 1 0 1 0

Southeast 0 1 ??? ???

South 0 2 ??? ???

Southwest –1 1 0 1

West 1 0 1 0

Northwest –1 –1 0 –1

348

Finally, your staggered TileWalker is complete, as shown in Table 13.3.

You could make a TileWalker for staggered maps from this table, but you aren’t done just yet. You can
streamline a few things about this table so that your TileWalker will be more concise (and you won’t have
to have a bunch of if statements to check for an even/odd y-coordinate).

The first thing you’ll notice is that the cardinal directions (north, south, east, west) are the same for both
even and odd y values, so you don’t need to have a special case for them.

Also, the y changes for all the directions are the same for both even and odd y values, so you don’t have to
special-case those either. Once you take the cardinal directions and the +/–y columns out of the table,
you are left with Table 13.4.

Isometric Game Programming with DirectX 7.0

Table 13.3 Staggered TileWalker (Complete)
Direction +/–x (Even y) +/–y (Even y) +/–x (Odd y) +/–y (Odd y)

North 0 –2 0 –2

Northeast 0 –1 1 –1

East 1 0 1 0

Southeast 0 1 1 1

South 0 2 0 2

Southwest –1 1 0 1

West 1 0 1 0

Northwest –1 –1 0 –1

Table 13.4 Staggered TileWalker (Cardinal Direction
and +/-Y Removed)

Direction +/–x (Even y) +/–x (Odd y)

Northeast 0 1

Southeast 0 1

Southwest –1 0

Northwest –1 0

TeamLRN

349

Now you can observe the painfully obvious truth that was hidden when this data was strewn about the
larger table. When y is odd, you add 1 to the +/–x value. This means you can use y&1 to modify this
value and create a TileWalker that will work in both cases, without any special-case code!

POINT StagMap_TileWalker(POINT ptStart,IsoDirection Dir)
{

POINT ptDest=ptStart;
switch(dir)
{
case ISO_NORTH:
{

ptDest.y-=2;
}break;
case ISO_NORTHEAST:
{

ptDest.y—;
ptDest.x+=(ptStart.y&1);

}break;
case ISO_EAST:
{

ptDest.x++;
}break;
case ISO_SOUTHEAST:
{

ptDest.y++;
ptDest.x+=(ptStart.y&1);

}break;
case ISO_SOUTH:
{

ptDest.y+=2;
}break;
case ISO_SOUTHWEST:
{

ptDest.y++;
ptDest.x+=(ptStart.y&1-1);

}break;
case ISO_WEST:
{

ptDest.x++;

Staggered Tilemaps

350

}break;
case ISO_NORTHWEST:
{

ptDest.y—;
ptDest.x+=(ptStart.y&1-1);

}break;
}
return(ptDest);

}

And there you have it—a reasonably concise staggered TileWalker, only one case for each direction, just
like you had for the slide map TileWalker. And that means it’s time for an example.

Load up IsoHex13_2.cpp. Other than a difference in the TilePlotter and TileWalker, this example uses the
exact same code as IsoHex12_3.cpp, which illustrates just how similar staggered and slide maps really are,
as far as plotting and walking. You’ll see this code again in the next chapter.

Figure 13.5 shows the output of IsoHex13_2.cpp. The cursor is centered on the screen (except near the
edges), and the numeric keypad is used to move around the tilemap. You use the exact same scroller that
you used in Chapter 12, which I think is a very cool thing.

Isometric Game Programming with DirectX 7.0

Figure 13.5

Output of IsoHex13_2.cpp

TeamLRN

351

Mousemapping in Staggered Maps
I talked at great length about the MouseMap in the preceding chapter, but I won’t have to here because the
MouseMap is primarily based on the TilePlotter and the TileWalker. Because you’ve already changed these
two components to accommodate your staggered map, you don’t have to do anything to your
MouseMap—it will still work just fine.

Load up IsoHex13_3.cpp. This example is based on IsoHex12_4.cpp. The only differences exist in the
TilePlotter and TileWalker. The MouseMap code has not been touched. Figure 13.6 shows the output of
IsoHex13_3.cpp.

Okay, I lied. I did change one other thing. I changed the ClipScreenAnchor function to a more accurate
version. In the older one, the screen anchor could have an x value equal to the right of the anchor space,
and as we discussed in Chapter 2, “The World of GDI and Windows Graphics,” the right edge of the
RECT is not inside the RECT.

void ClipScreenAnchor()
{

//clip to left
if(ptScreenAnchor.x<rcAnchorSpace.left)

ptScreenAnchor.x=rcAnchorSpace.left;
//clip to top
if(ptScreenAnchor.y<rcAnchorSpace.top) ptScreenAnchor.y=rcAnchorSpace.top;
//clip to right

Staggered Tilemaps

Figure 13.6

Output of IsoHex13_3.cpp

352

if(ptScreenAnchor.x>=rcAnchorSpace.right)
ptScreenAnchor.x=rcAnchorSpace.right-1;

//clip to bottom
if(ptScreenAnchor.y>=rcAnchorSpace.bottom)

ptScreenAnchor.y=rcAnchorSpace.bottom-1;
}

This might seem like a minor change, but it is necessary, especially for what I’m about to show you.

Unique Properties of
Staggered Maps
Unlike the slide map, which always has the problem of the big, ugly black areas no matter what you do,
staggered maps are more “rectangular” and so are ideally suited for certain tasks. The first of these tasks is
“no jaggies,” or the elimination of the ugly black triangles on the edges, and the other task is “wrapping
around,” which is good for making cylindrical worlds. Both of these things can strongly enhance the look
of your staggered map-based game.

No Jaggies
First, I want to show you how to eliminate the jaggies. Surprisingly, this has nothing to do with the tile’s
image or any of the iso engine components. It just has to do with the scroller. In IsoHex 13_4.cpp, the
code is almost identical to IsoHex13_3.cpp, with the exception that I added and changed a few lines in
SetUpSpaces.

void SetUpSpaces()
{

//set up screen space
SetRect(&rcScreenSpace,0,0,640,480);
//grab tile rectangle from tileset
RECT rcTile1;
RECT rcTile2;
POINT ptPlot;
POINT ptMap;
//grab tiles from extents
CopyRect(&rcTile1,&tsIso.GetTileList()[0].rcDstExt);
CopyRect(&rcTile2,&tsIso.GetTileList()[0].rcDstExt);
//move first tile to upper-left position
ptMap.x=0;
ptMap.y=0;
ptPlot=StagMap_TilePlotter(ptMap,mmMouseMap.ptSize.x,mmMouseMap.ptSize.y);

Isometric Game Programming with DirectX 7.0

TeamLRN

353

OffsetRect(&rcTile1,ptPlot.x,ptPlot.y);
//move first tile to lower-right position
ptMap.x=MAPWIDTH-1;
ptMap.y=MAPHEIGHT-1;
ptPlot=StagMap_TilePlotter(ptMap,mmMouseMap.ptSize.x,mmMouseMap.ptSize.y);
OffsetRect(&rcTile2,ptPlot.x,ptPlot.y);
//combine these two tiles into world space
UnionRect(&rcWorldSpace,&rcTile1,&rcTile2);
//copy world space to anchor space
CopyRect(&rcAnchorSpace,&rcWorldSpace);
//subtract screenspace
//adjust right edge
rcAnchorSpace.right-=(rcScreenSpace.right-rcScreenSpace.left);
//make sure right not less than left
if(rcAnchorSpace.right<rcAnchorSpace.left)

rcAnchorSpace.right=rcAnchorSpace.left;
//adjust bottom edge
rcAnchorSpace.bottom-=(rcScreenSpace.bottom-rcScreenSpace.top);
//make sure bottom not less than top
if(rcAnchorSpace.bottom<rcAnchorSpace.top)

rcAnchorSpace.bottom=rcAnchorSpace.top;
//adjust edges of anchorspace for "no jaggies"
//add 1/2 height to top
rcAnchorSpace.top+=(mmMouseMap.ptSize.y/2);
//subtract 1/2 height from bottom
rcAnchorSpace.bottom-=(mmMouseMap.ptSize.y/2);
//add 1/2 width to left
rcAnchorSpace.left+=(mmMouseMap.ptSize.x/2);
//subtract 1/2 width from right
rcAnchorSpace.right-=(mmMouseMap.ptSize.x/2);
//initialize screen anchor
ptScreenAnchor.x=rcAnchorSpace.left;
ptScreenAnchor.y=rcAnchorSpace.top;
//initialize cursor
ptCursor.x=0;
ptCursor.y=0;

}

As you can see, the changes are pretty minor. You simply reduce your anchor space by half a tile on each
edge and initialize the screen anchor to the top left of the screen space, where before you initialized it to
(0,0).

Staggered Tilemaps

354

Figure 13.7 shows the output of this program. You’ll notice that it’s similar to most of the rest of the
examples in the chapter, except it has no jaggies. Now that you have eliminated the jagged edges, you can
certainly see how much more immersive the environment is. Those jagged edges weren’t serving any useful
purpose. . . they just distracted you.

So, was that easy enough for you? Good. Now move on to cylindrical staggered maps.

Cylindrical Maps
When I say cylindrical maps, what I mean is that you can move from the left edge to the right edge, and vice
versa. In cases like these, the map is called cylindrical because if you were to print the map and put the left
and right edges together, you would make a cylindrical tube.

You can also make another type of map, one that not only moves continuously east and west, but also
moves continuously moves north and south. These are called torus maps. If put into the real world, they
would be doughnut-shaped. We won’t be dealing with torus maps today, but after you’ve learned how to
make maps cylindrical, it’s just a matter of doing the same thing in another direction.

If you’re sitting there clutching your heart, hyperventilating, and screaming, “But I’m not ready for this!”,
calm down. Relax, breathe deeply, and have some herbal tea. Like most of the topics we’ve covered in our
isometric discussions, it’s a lot easier than it sounds. In fact, it’s really easy. . . forehead-slapping easy, even.

Isometric Game Programming with DirectX 7.0

Figure 13.7

Output of IsoHex13_4.cpp.

No jaggies!

TeamLRN

355

Since you aren’t yet detecting which tiles absolutely must be blitted for each screen (which you will be
doing later) you have to render each tile twice. The basic rendering loop will look something like this (this
is psuedocode, y’all):

void RenderTiles()
{

for(y=0;y<MAPHEIGHT;y++)
{

for(x=0;x<MAPWIDTH*2;x++)//the doubling takes place here
{

MapX=x%MAPWIDTH;//grab the tile that is supposed to go here
PlotTile(x,y,TileMap[MapX][y]);

}
}

}

Why do you render twice? Well, in order to give the illusion of a continuous east-west edge, you have to
write tiles “beyond the horizon,” or past the right edge. You do not have to do this for the left edge. You
don’t actually have to write all the tiles twice. You could just do an extra screen width’s worth, but since
you currently have no particular relationship between screen and map, you must write all tiles twice. You
might be saying, “But won’t that decrease performance?”Yes, it certainly will. Right now, though, you’re
working on getting stuff done. Performance comes later.

Load up IsoHex13_5.cpp. Essentially, it is a modified IsoHex13_4, but now you can smoothly scroll left
or right forever. Only a few tweaks are necessary to make this happen. First, you need to modify DrawMap
in order to write each tile twice (as I demonstrated earlier). I have underlined the lines I had to change
from the IsoHex13_4 version.

void DrawMap()
{

POINT ptTile;//tile pixel coordinate
POINT ptMap;//map coordinate
//the y loop is outside, because we must blit in horizontal rows
for(int y=0;y<MAPHEIGHT;y++)
{

for(int x=0;x<MAPWIDTH*2;x++)
{

//get pixel coordinate for map position
ptMap.x=x;
ptMap.y=y;

Staggered Tilemaps

356

ptTile=StagMap_TilePlotter(ptMap,mmMouseMap.ptSize.x,mmMouseMap.ptSize.y);
//plot the tile (adjust for anchor)
tsIso.PutTile(lpddsBack,ptTile.x-ptScreenAnchor.x,ptTile.y-

ptScreenAnchor.y,iTileMap[x%MAPWIDTH][y]);
}

}
}

Next, you have to modify the anchor space (in the SetUpSpaces function) to add a screen width to it.
Since you are already subtracting a screen width from anchor space, you’ll just remove that part. Also, you
have to eliminate the right edge adjustment that you used in the “no jaggies” example. Here is the modi-
fied code, with underlined changes:

void SetUpSpaces()
{

//set up screen space
SetRect(&rcScreenSpace,0,0,640,480);
//grab tile rectangle from tileset
RECT rcTile1;
RECT rcTile2;
POINT ptPlot;
POINT ptMap;
//grab tiles from extents
CopyRect(&rcTile1,&tsIso.GetTileList()[0].rcDstExt);
CopyRect(&rcTile2,&tsIso.GetTileList()[0].rcDstExt);
//move first tile to upper-left position
ptMap.x=0;
ptMap.y=0;
ptPlot=StagMap_TilePlotter(ptMap,mmMouseMap.ptSize.x,mmMouseMap.ptSize.y);
OffsetRect(&rcTile1,ptPlot.x,ptPlot.y);
//move first tile to lower-right position
ptMap.x=MAPWIDTH-1;
ptMap.y=MAPHEIGHT-1;
ptPlot=StagMap_TilePlotter(ptMap,mmMouseMap.ptSize.x,mmMouseMap.ptSize.y);
OffsetRect(&rcTile2,ptPlot.x,ptPlot.y);
//combine these two tiles into world space
UnionRect(&rcWorldSpace,&rcTile1,&rcTile2);
//copy world space to anchor space
CopyRect(&rcAnchorSpace,&rcWorldSpace);
//subtract screen space
//adjust right edge (removed)
//make sure right not less than left

Isometric Game Programming with DirectX 7.0

TeamLRN

357

if(rcAnchorSpace.right<rcAnchorSpace.left)
rcAnchorSpace.right=rcAnchorSpace.left;

//adjust bottom edge
rcAnchorSpace.bottom-=(rcScreenSpace.bottom-rcScreenSpace.top);
//make sure bottom not less than top
if(rcAnchorSpace.bottom<rcAnchorSpace.top)

rcAnchorSpace.bottom=rcAnchorSpace.top;
//adjust edges of anchorspace for "no jaggies"
//add 1/2 height to top
rcAnchorSpace.top+=(mmMouseMap.ptSize.y/2);
//subtract 1/2 height from bottom
rcAnchorSpace.bottom-=(mmMouseMap.ptSize.y/2);
//add 1/2 width to left
rcAnchorSpace.left+=(mmMouseMap.ptSize.x/2);
//eliminate right edge adjustment
//initialize screen anchor
ptScreenAnchor.x=rcAnchorSpace.left;
ptScreenAnchor.y=rcAnchorSpace.top;
//initialize cursor
ptCursor.x=0;
ptCursor.y=0;

}

So, what’s all this about? Well, in order to give the illusion of wrapping forever, you have to allow the
screen to sweep past the right edge by an entire screen width. This is what you did by eliminating the sub-
traction of the screen width from the anchor space. Now, since the left edge has been adjusted by half a
tile, you must do the same to the right edge (which you did before by subtracting half of the tile width,
leaving you with a net zero change to the right edge), so that when you scroll from one edge to the other,
there isn’t a “skip” of anything, and the scrolling is nice and smooth.

Penultimately, you have to modify your ClipScreenAnchor function so that it moves cleanly from one
horizontal edge to the other. This is done simply by checking to see whether the anchor has passed one of
the edges, and adding or subtracting the width of the anchor space to bring it back into the proper range:

void ClipScreenAnchor()
{

//wrap to left
if(ptScreenAnchor.x<rcAnchorSpace.left)

ptScreenAnchor.x+=(rcAnchorSpace.right-rcAnchorSpace.left);
//clip to top
if(ptScreenAnchor.y<rcAnchorSpace.top) ptScreenAnchor.y=rcAnchorSpace.top;
//wrap to right

Staggered Tilemaps

358

if(ptScreenAnchor.x>=rcAnchorSpace.right) ptScreenAnchor.x-
=(rcAnchorSpace.right-rcAnchorSpace.left);;

//clip to bottom
if(ptScreenAnchor.y>=rcAnchorSpace.bottom)

ptScreenAnchor.y=rcAnchorSpace.bottom-1;
}

Finally, you have to remove the restriction that the cursor cannot go beyond the right edge of the map, by
eliminating a single line in your WM_MOUSEMOVE handler:

case WM_MOUSEMOVE:
{

//grab mouse coordinate
POINT ptMouse;
ptMouse.x=LOWORD(lParam);
ptMouse.y=HIWORD(lParam);
//mousemap the mouse coordinates
ptCursor=StagMap_MouseMapper(ptMouse,&mmMouseMap);
//clip cursor to tilemap
if(ptCursor.x<0) ptCursor.x=0;
if(ptCursor.y<0) ptCursor.y=0;
//if(ptCursor.x>MAPWIDTH-1) ptCursor.x=MAPWIDTH-1;(eliminated)
if(ptCursor.y>MAPHEIGHT-1) ptCursor.y=MAPHEIGHT-1;

/*REST OF CODE OMITTED FOR BREVITY*/

And that’s it! You’ve got an east-west “scroll forever” staggered map. See how easy it was? Plus, now the
world looks endless, even though you know it is of finite size.

Summary
In this chapter, you got into some pretty cool stuff. Granted, these examples are still rather elementary, but
hopefully you’re starting to feel comfortable with isometric graphics. As I’ve said several times, they really
aren’t as complicated as everyone seems to think.

Isometric Game Programming with DirectX 7.0

TeamLRN

Diamond Maps

• Coordinate System

• Tileplotting

• Blitting Order

• Scrolling Revisited

CHAPTER 14

360

This chapter presents the final type of isometric map—the diamond map. In the past, I’ve been
known to call these “diagonal” maps because of the direction of both axes. This type of map is

probably the most familiar and the most commonly used, mainly in the area of real-time strategy games
like Age of Empires/Age of Kingdoms, Sim City 2000/3000, Roller Coaster Tycoon, and a wide variety of simula-
tions. Diamond maps, it seems, are the perfect choice for real-time isometric games. Those are not the only
uses, of course. The world of board games—chess, checkers, Reversi, and so on—can really benefit from
these types of maps, since they look far superior to the boring top-down views of ages old.

Coordinate System
While there are several ways to go about using a diamond map, the simplest that I have found makes the
top corner into map position (0,0). You could pick any corner you wanted, and do the TilePlotter and
TileWalker figuring, and it would work just fine. In fact, I have in the past used the leftmost corner as
(0,0), so it really doesn’t matter.

The following basically describes the coordinate system of the diamond maps I present here:

• The origin is at the top corner of the map.
• The x-axis increases to the southeast.
• The y-axis increases to the southwest.

The coordinate system is shown in Figure 14.1.

Isometric Game Programming with DirectX 7.0

Y X

7
6

5
4

3
2

1
0 0

1
2

3
4

5
6

7

Figure 14.1

Coordinate system of

diamond maps

TeamLRN

361

The diamond map isn’t by any means as tricky as staggered maps, but it is a bit more complex than the
slide map. Its little quirks will become apparent as we move on.

Tileplotting
As usual, your first task in a new style of map is to be able to plot the tiles. In this area, the diamond map
shows the first of its little quirks. Unlike both slide and staggered maps, which have the x-axis moving
east-west, the diamond map has a diagonal axis. While this is odd, it doesn’t hold you up for long, because
you’ve already dealt with diagonal axes, mainly in the arena of the y-axis for the other types of map.

The x-axis increases to the southwest, just as the y-axis does in slide maps. In slide maps, you determined
that to move southeast, you must move east half a tile and south half a tile. You will do the same
thing here.

//MapX is a map coordinate, PlotX and PlotY are world coordinates
PlotX=MapX*TileWidth/2;
PlotY=MapX*TileHeight/2;

Of course, you still have the map’s y-coordinate to take into account. Since y moves to the southwest, you
must move half a tile to the west (multiply by -TileWidth/2) and half a tile to the south (multiply by
TileHeight/2). From this value, modify PlotX and PlotY.

//MapY is a map coordinate, PlotX and PlotY are world coordinates
//from the last code snippet
PlotX+=(MapY*(-TileWidth/2));
PlotY+=(MapY*(TileHeight/2));

You would like to have the two parts of this tileplotting placed into fewer lines than this, so let’s rewrite it:

//MapX,MapY=map coord; PlotX, PlotY=world coord
PlotX=MapX*TileWidth/2-MapY*TileWidth/2;
PlotY=MapX*TileHeight/2+MapY*TileHeight/2;

Or, you might like to have only one multiplication per line:

PlotX=(MapX-MapY)*TileWidth/2;
//you could further eliminate the /2 by using >>1 instead
PlotY=(MapX+MapY)*TileHeight/2;

Both map axes affect both world axes as far as tileplotting goes, which is something you haven’t seen in the
other map types. This seems like one of the more difficult parts of using diamond maps, but as you can
see, it’s not really hard at all.

Diamond Maps

362

The Tileplotting Function
You will base your TilePlotter on the TilePlotters of previous chapters, for consistency.

POINT DiamondMap_TilePlotter(POINT ptMap,int iTileWidth,int iTileHeight)
{

POINT ptReturn;
ptReturn.x=(ptMap.x-ptMap.y)*iTileWidth/2;
ptReturn.y=(ptMap.x+ptMap.y)*iTileHeight/2;
return(ptReturn);

}

Simple enough? Good. Time for an example? You betcha!

A Diamond Map Tileplotting Demo
Load up IsoHex14_1.cpp. It’s the diamond map plotting demo, based mainly on code from IsoHex12_1,
which was the slide map plotting demo. The main difference is the replacement of the TilePlotter.

You can see what this example looks like in Figure 14.2. IsoHex14_1.cpp reveals yet another quirk of the
diamond map. Some of the map extends off the left side of the screen. Since you are not currently scroll-
ing and are not using an anchor to correct your coordinates, this means that a diamond map extends into a
negative-valued world coordinate—not really a big deal, because you already have compensation for this in
your MouseMap (remember the “negative numbers” chat we had two chapters ago?)

Isometric Game Programming with DirectX 7.0

Figure 14.2

Output of IsoHex14_1.cpp

TeamLRN

363

Blitting Order
One last topic I want to discuss, as far as diamond maps are concerned, is blitting order. I told you in the
last two chapters that blitting should be done in horizontal rows if possible. There was no problem doing
this with slide maps and staggered maps, because with both, the x-axis travels east-west.

However, diamond maps are a different story. Currently, without a TileWalker, you can’t move east or west,
and your axes travel in diagonal lines. This is one of the reasons I picked the topmost corner for tile (0,0):
so that the rendering order is acceptable enough that you won’t have to change the DrawMap function. You
can simply iterate through map y values, and inside that loop have another loop that iterates through the
map x values, and plot accordingly. In a later chapter, I will show you how to blit in horizontal rows, no
matter what the map looks like.

Scrolling Revisited
Because of the strange orientation of diamond maps, I need to discuss scrolling, at least for a moment.
Yet another quirk.

In slide and staggered maps, construction of the world space rectangle is rather straightforward. Simply
take the extents from the upper-left and lower-right corner tiles and use UnionRect to combine them into
a larger RECT.

If you did the same thing with a diamond map, where (0,0) is the topmost corner and (MAPWIDTH-
1,MAPHEIGHT-1) is the bottommost corner, you would have a rather narrow strip for world space. Instead,
you have to also bring the left and right corners into the union, like so:

//grab tile rectangle from tileset
RECT rcTile1;
RECT rcTile2;
RECT rcTile3;
RECT rcTile4;
POINT ptPlot;
POINT ptMap;
//grab tiles from extents
CopyRect(&rcTile1,&tsIso.GetTileList()[0].rcDstExt);
CopyRect(&rcTile2,&tsIso.GetTileList()[0].rcDstExt);
CopyRect(&rcTile3,&tsIso.GetTileList()[0].rcDstExt);
CopyRect(&rcTile4,&tsIso.GetTileList()[0].rcDstExt);
//move first tile to top corner
ptMap.x=0;
ptMap.y=0;
ptPlot=DiamondMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
OffsetRect(&rcTile1,ptPlot.x,ptPlot.y);

Diamond Maps

364

//move to bottom corner
ptMap.x=MAPWIDTH-1;
ptMap.y=MAPHEIGHT-1;
ptPlot=DiamondMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
OffsetRect(&rcTile2,ptPlot.x,ptPlot.y);
//move to left corner
ptMap.x=0;
ptMap.y=MAPHEIGHT-1;
ptPlot=DiamondMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
OffsetRect(&rcTile3,ptPlot.x,ptPlot.y);
//move to right corner
ptMap.x=MAPWIDTH-1;
ptMap.y=0;
ptPlot=DiamondMap_TilePlotter(ptMap,iTileWidth,iTileHeight);
OffsetRect(&rcTile4,ptPlot.x,ptPlot.y);
//combine these four tiles into world space
UnionRect(&rcWorldSpace,&rcTile1,&rcTile2);
UnionRect(&rcWorldSpace,&rcWorldSpace,&rcTile3);
UnionRect(&rcWorldSpace,&rcWorldSpace,&rcTile4);

The rest of the spaces (screen space and anchor space) remain unaffected. Only the world space
is changed.

A Diamond Map Scrolling Demo
It’s time for me to show instead of tell. IsoHex14_2.cpp is the next example. It is patterned quite closely
after IsoHex12_2.cpp. The differences are that this example uses the diamond map TilePlotter and imple-
ments the changes to the world space calculation. The actual code was changed slightly, since I didn’t want
to use a UnionRect call with the destination pointer also serving as a source pointer. (Doing stuff like that
always makes me nervous.) You can see what this example looks like in Figure 14.3.

Use the arrow keys to scroll through the map. Pretty neat, huh? And to think that almost half of the
world space has a negative x value, but our little plotter/scroller combination doesn’t really care. That’s part
of the beauty of these engine components—they’re like little black boxes that take your input and spew
the proper output.

Isometric Game Programming with DirectX 7.0

TeamLRN

Tilewalking
With the many other diamond map quirks, it would be reasonable to assume that tilewalking is quirky.
This reasonable assumption would be wrong. Tilewalking in a diamond map is totally regular (unlike the
staggered map), as you will see during its derivation.

You start with the knowledge of two things: x increases to the southeast, and y increases to the southwest.
Let’s start with Table 14.1.

365Diamond Maps

Figure 14.3

Output of IsoHex14_2.cpp

Table 14.1 Diamond Tilewalking (Initial)
Direction Change x Change y

North ??? ???

Northeast ??? ???

East ??? ???

Southeast 1 0

South ??? ???

Southwest 0 1

West ??? ???

Northwest ??? ???

366

From this point, you can easily figure out the northeast and northwest directions. Because they are the
opposites of southeast and southwest, they are located opposite them. Table 14.2 reflects this.

Hey! You’re halfway done already. You’ve got all your diagonals, and deriving the cardinal directions will be
easy. You’ll just use the two-step method to figure them out.

To move north, you move one step northeast (0,-1) and one step northwest (–1,0), which gives you
(–1,–1).

Step Change x Change y

Northeast 0 –1

Northwest –1 0

Total –1 –1

To move south, you move one step southeast (1,0) and one step southwest (0,1), which gives you (1,1).

Step Change x Change y

Southeast 1 0

Southwest 0 1

Total 1 1

Isometric Game Programming with DirectX 7.0

Table 14.2 Diamond Tilewalking (All Diagonals)
Direction Change x Change y

North ??? ???

Northeast 0 –1

East ??? ???

Southeast 1 0

South ??? ???

Southwest 0 1

West ??? ???

Northwest –1 0

TeamLRN

367

To move east, you move one step southeast (1,0) and one step northeast (0,-1), which gives you (1,–1).

Step Change x Change y

Southeast 1 0

Northeast 0 –1

Total 1 –1

To move west, you move one step southwest (0,1) and one step northwest (–1,0), which gives you (–1,1).

Step Change x Change y

Southwest 0 1

Northwest –1 0

Total –1 1

Now you’re done, and you can complete your table (see Table 14.3).

Diamond Maps

Table 14.3 Diamond Tilewalking (All Diagonals)
Direction Change x Change y

North –1 –1

Northeast 0 –1

East 1 –1

Southeast 1 0

South 1 1

Southwest 0 1

West –1 1

Northwest –1 0

368

You finally have all the information you need to construct your TileWalker function. See how easy that
was? Once you know one type of map, you know them all.

POINT DiamondMap_TileWalker(POINT ptStart,IsoDirection Dir)
{

switch(dir)
{
case ISO_NORTH:

{
ptStart.x—;
ptStart.y—;

}break;
case ISO_NORTHEAST:

{
ptStart.y—;

}break;
case ISO_EAST:

{
ptStart.x++;
ptStart.y—;

}break;
case ISO_SOUTHEAST:

{
ptStart.x++;

}break;
case ISO_SOUTH:

{
ptStart.x++;
ptStart.y++;

}break;
case ISO_SOUTHWEST:

{
ptStart.y++;

}break;
case ISO_WEST:

{
ptStart.x—;
ptStart.y++;

}break;
case ISO_NORTHWEST:

{
ptStart.x—;

Isometric Game Programming with DirectX 7.0

TeamLRN

369

}break;
}
return(ptStart);

}

The output of IsoHex14_3.cpp is shown in Figure 14.4.

It’s time to put your new TileWalker into service. Load up IsoHex14_3.cpp, which looks suspiciously like
IsoHex12_3.cpp, except for the change from slide to diamond. In this example, you can use the keyboard
to move around the map, and the current cursor location will be centered as much as possible based on the
anchor’s position in anchor space. Near the corners, at least one direction will not be centered.

Mousemapping
Ah, the final component—the MouseMap. Like the TileWalker, the MouseMap ends up being not quirky
at all, since you already learned how to handle a negative world coordinate back in Chapter 12, “Slide
Isometric Tilemaps.” Mouse mapping has been covered so well, in fact, that there is little to do now except
plug it into the program. The exact same MouseMap that we used in Chapters 12 and 13 will work
just fine.

Diamond Maps

Figure 14.4

Output of IsoHex14_3.cpp

370

So, without further ado, load up IsoHex14_4.cpp (again, it’s based on IsoHex12_4.cpp). Like its prede-
cessor, you can scroll about the map by putting the mouse pointer at one of the edges, and the cursor will
be shown on the proper tile. Figure 14.5 shows what it looks like.

I’d like to point out here that, for the examples in these chapters, it took me about 5 minutes to convert
them from their Chapter 12 equivalents. I just had to replace the code in the various isometric engine
components, and whammo, I was done. This goes a long way toward showing how universal these
elements are.

Summary
This chapter might seem a little light compared to how much time we spent on the other two types of
tilemaps. On the contrary. All of the discussion for the other types of maps made diamond maps need
almost no explanation.

Now that I’ve introduced the three types of isometric maps, I hope you’re starting to get some ideas as to
how you want to use them to make games. And you’re probably wondering about various issues, like how
to put objects in an isometric map. Rest assured that all of your questions shall be answered.
You are now equipped with the basic idea of how IsoHex engines work fundamentally. You have been
introduced to the TilePlotter, TileWalker, and MouseMap (as well as the Scroller, which is not in itself an
IsoHex component). We will build on this foundation

Isometric Game Programming with DirectX 7.0

Figure 14.5

IsoHex14_4.cpp in action

TeamLRN

The
IsoHexCore

Engine
• Overview of IsoHexCore

• Isodirection

• Using CTilePlotter

• Using CMouseMap

CHAPTER 15

372

Good news: I have finally finished the introductory subject matter. . . well, almost. This chapter is
the last bit. It introduces the IsoHexCore engine, which is essentially a small library of classes

that wrap up everything I’ve talked about for the past three chapters.

Overview of IsoHexCore
A number of files are contained in the IsoHexCore engine: a main header file that includes all the compo-
nents, a header file/source file pair for each of the four components, and finally a header file for the uni-
versal definitions required for an isometric engine.

Table 15.1 lists the files contained in IsoHexCore and briefly describes their contents.

Isometric Game Programming with DirectX 7.0

Table 15.1 IsoHexCore Files
File What It Contains

IsoHexDefs.h Fundamental enumerations for other components

IsoTilePlotter.h Declarations for the CTilePlotter class

IsoTilePlotter.cpp Implementation for the CTilePlotter class

IsoTileWalker.h Declarations for the CTileWalker class

IsoTileWalker.cpp Implementation for the CTileWalker class

IsoScroller.h Declarations for the CScroller class

IsoScroller.cpp Implementation for the CScroller class

IsoMouseMap.h Declarations for the CMouseMap class

IsoMouseMap.cpp Implementation for the CMouseMap class

IsoHexCore.h All other components in a single header

TeamLRN

373

As you can see, the files mirror the fundamental compo-
nents of any isometric engine: TilePlotter, TileWalker,
MouseMap, and scroller. They are split into different
files to make the engine a bit more manageable. The file
listed last, IsoHexCore.h, brings all the headers together.
It’s the only file you need to include in your project.

One by one, in the same order as the table, I’ll show you
each of these components, explain how they were put
together, and show how they are intended to be used.

IsoHexDefs.h
This file, the full contents of which are shown next, con-
tains exactly two enumerations: one for the isometric
directions (ISODIRECTION), and one for the different
isometric map types (ISOMAPTYPE).

//the isometric directions
typedef enum
{

ISO_NORTH=0,
ISO_NORTHEAST=1,
ISO_EAST=2,
ISO_SOUTHEAST=3,
ISO_SOUTH=4,
ISO_SOUTHWEST=5,
ISO_WEST=6,
ISO_NORTHWEST=7

} ISODIRECTION;
//directional turning macros
#define ISO_TURNRIGHT(dir,turn) (ISODIRECTION)(((int)(dir)+(turn))&7)
#define ISO_TURNLEFT(dir,turn) (ISODIRECTION)(((int)(dir)+(turn)*7)&7)//iso
map types
typedef enum
{

ISOMAP_SLIDE,
ISOMAP_STAGGERED,
ISOMAP_DIAMOND,
ISOMAP_RECTANGULAR

} ISOMAPTYPE;

The IsoHexCore Engine

NOTE
None of these components are what
you’d call “game-worthy.” That is, the
code I present here is nowhere close
to the performance you could get
from a highly optimized isometric
engine.The code is meant to be easi-
ly read and understood, not neces-
sarily the fastest in the world.When
it comes time to write real code for
your own isometric engine, I expect
you to write stuff that leaves this lit-
tle engine in the dust!

374

I’ll spend some time explaining each of these enumerations and how they are used. They have widespread
effects on the rest of IsoHexCore.

ISODIRECTION
ISODIRECTION was used before, in the TileWalkers and MouseMaps, and that is essentially what they are
for now. However, those aren’t the only use for this enumeration. You can also keep track of which way
something is facing during your game and use the macros provided that allow turning. The enumeration
constants and directions are shown in figure 15.1.

Each direction has an assigned number, which is unusual for any sort of enumeration. Most either don’t
specify values at all or just specify the value of the first identifier and let the compiler figure out the rest. I
could have done either of these and come out with the same values I’m currently assigning. My reasons for
assigning these numbers, and for employing the order that I do, is so that 0 means north and the rest of
the directions are determined by slowly turning clockwise. This is what makes the turning macros
(explained next) work.

Isometric Game Programming with DirectX 7.0

ISO_NORTHWEST

ISO_NORTH

ISO_NORTHEAST

ISO_EAST

ISO_SOUTHEAST
ISO_SOUTH

ISO_SOUTHWEST

ISO_WEST

Figure 15.1

ISODIRECTION values

TeamLRN

375

ISODIRECTION Macros
ISODIRECTION macros allow you to turn from one heading to another.

//directional turning macros
#define ISO_TURNRIGHT(dir,turn) (ISODIRECTION)(((int)(dir)+(turn))&7)
#define ISO_TURNLEFT(dir,turn) (ISODIRECTION)(((int)(dir)+(turn)*7)&7)

In each case, dir represents an initial direction, and turn represents the number of 45-degree turns to
make. Hence, to turn 90 degrees left from north, you would use this:

ISODIRECTION Dir=ISO_TURNLEFT(ISO_NORTH,2);//assigns ISO_WEST to Dir

This expands to

ISODIRECTION Dir=(ISODIRECTION)(((int)(ISO_NORTH)+(2)*7)&7);

and is reduced to

ISODIRECTION Dir=(ISODIRECTION)((0+14)&7);

It is further reduced to

ISODIRECTION Dir=(ISODIRECTION)(14&7);

And again:

ISODIRECTION Dir=(ISODIRECTION)(6);

And 6 is the value of ISO_WEST, which is the correct answer. I am not a big fan of macros, but in simple
cases like these, the extra overhead of a function is really unnecessary. I still don’t advocate the heavy use of
macros and #defines. They make debugging more difficult than it has to be.

ISOMAPTYPE
ISOMAPTYPE contains identifiers for the various styles of isometric maps. In its current state, IsoHexCore
supports four map types: slide, staggered, diamond, and rectangular. Yes, it supports rectangular, mainly to
show how similar rectangular tile-based games are to isometric tile-based games.

You don’t really do much with the ISOMAPTYPE enumeration other than supply its values to your
TilePlotter and TileWalker. Figure 15.2 shows the differences between the values of ISOMAPTYPE.

The IsoHexCore Engine

376

IsoTilePlotter.h/
IsoTilePlotter.cpp
Now that you’ve got the isometric fundamentals down, you can start to get serious. The IsoTilePlotter.h
and IsoTilePlotter.cpp files contain the code necessary for the CTilePlotter class, the declaration of
which is shown here:

//
//typedef for tile plotter function pointer type
//
typedef POINT (*ISOHEXTILEPLOTTERFN)(POINT ptMap,int iTileWidth,int iTileHeight);
//
//tile plotter class
//
class CTilePlotter
{
private:

//type of map
ISOMAPTYPE IsoMapType;
//width and height of tiles
int iTileWidth;
int iTileHeight;
//function called to calculate plotted tiles
ISOHEXTILEPLOTTERFN IsoHexTilePlotterFn;

Isometric Game Programming with DirectX 7.0

ISOMAP_SLIDE ISOMAP_STAGGERED

ISOMAP_DIAMOND

Figure 15.2

ISOMAPTYPE values

and their meanings

TeamLRN

377

public:
//constructor/destructor
CTilePlotter();
~CTilePlotter();
//map type
void SetMapType(ISOMAPTYPE IsoMapType);
ISOMAPTYPE GetMapType();
//tile size
void SetTileSize(int iTileWidth,int iTileHeight);
int GetTileWidth();
int GetTileHeight();
//plot a tile
POINT PlotTile(POINT ptMap);

};

This component has two main parts: the ISOHEXTILEPLOTTERFN type and CTilePlotter itself.

ISOHEXTILEPLOTTERFN
The following ugly little declaration is the main reason that you can make a single TilePlotter class
without having to incorporate any sort of inheritance or other object-oriented mechanism:

typedef POINT (*ISOHEXTILEPLOTTERFN)(POINT ptMap,int iTileWidth,int iTileHeight);

If you’re confused, don’t worry too much. This is how you declare a function pointer type. In C/C++, a
function is really no different from a variable, except that it has parentheses afterwards. Take, for instance,
the following two lines of code:

int x;//variable
int x();//function

See? The only difference is the () at the end of the second line. In all other ways, the declarations look identi-
cal. But if you wanted x to be a pointer to a function that takes no parameters, you would have to do this:

int (*x)();//ugly, ain’t it?

“But wait!” you say. “Couldn’t I just do this. . . ”

int *x();

“. . . and accomplish the same thing?”

Sorry, but no. int *x(); is a function that returns a pointer to an integer, not a variable that contains a
pointer to a function that takes no parameters and returns an int. See the difference? That’s why you have
to put parentheses around the * and the variable name, because the makers/extenders of C/C++ haven’t
come up with a better way to swrite function pointer variables. Other languages, such as Pascal, have much
better mechanisms.

The IsoHexCore Engine

378

So, back to the declaration. You already know how to declare pointers to function variables. The next task
is to figure out what the type of the function pointer is. In the declaration int x; x is of type int, so you
can conclude that taking the variable name and the semicolon out of the declaration will give you the type.
Let’s try it. If you remove x and ; from int (*x)();, you are left with int (*)() as the type. Boy, this is
getting uglier by the second. Luckily, you’re almost done. Having icky definitions like int (*)() makes
your code unsightly, so you want to avoid this as much as possible by using a typedef.

Normally, you do a typedef as follows:

typedef OriginalType TYPEALIAS;

Alas, function pointer types screw you up again, because of the backward way you have to declare them.
You have to put the name of the type after the *, so if you want to have a type of function pointer that
takes no parameters and returns an int called INTFUNCPTR, you have to have the following typedef:

typedef int (*INTFUNCPTR)();

Now the nightmare is over, and thank goodness! Now you can have some declarations like these:

int func();//function
INTFUNCPTR x;//variable that points to a function that takes no parameters and
returns an int
x=func;//no () when assigning a function pointer to an existing function
int y=x();//call the function that x points to

Is your head swimming yet? Function pointers are about the most confusing aspect of the C/C++ lan-
guage. The declarations are messy, but they can gain you a lot of power if used correctly.

Back to the ISOHEXTILEPLOTTERFN type. The way that this type is declared, a variable of this type can be
assigned to any function that looks like the following:

POINT func(POINT pt,int i1,int i2);//the actual names of the parameters
//are unimportant.

Only the type matters.
ISOHEXTILEPLOTTERFN x=func;//assigns function’s pointer to variable
POINT pt1=x(pt,i1,i2);//calls the function

Here’s what makes this cool: IsoTilePlotter.cpp has four functions, which I’ve listed here:

//plotting function prototypes
POINT IsoHex_SlidePlotTile(POINT ptMap,int iTileWidth,int iTileHeight);
POINT IsoHex_StagPlotTile(POINT ptMap,int iTileWidth,int iTileHeight);
POINT IsoHex_DiamondPlotTile(POINT ptMap,int iTileWidth,int iTileHeight);
POINT IsoHex_RectPlotTile(POINT ptMap,int iTileWidth,int iTileHeight);

Isometric Game Programming with DirectX 7.0

TeamLRN

379

In case you didn’t notice, all of these functions can have their pointers held by any variable of type ISO-
HEXTILEPLOTTERFN. This means that you can just keep one of these function pointers somewhere and use
it to call whatever function you need to in order to plot your tiles correctly. Also, you could add more
functions and allow expansion into other types of tile-based games (there are more than just isometric,
hexagonal, and rectangular, you know).

ISOHEXTILEPLOTTERFN is important to CTilePlotter, and a similar mechanism comes into play with
CTileWalker to switch tilewalking functions.

CTilePlotter
After that too-long treatise on the why and wherefore of function pointers, I’m sure you want to take a
break with something simpler, like how quantum mechanics affect the speed of light in a total vacuum.
Well, that is a fascinating subject, and I’d love to pursue it with you sometime, but right now I’d rather talk
about CTilePlotter. Hope you don’t mind. Like all of my classes, CTilePlotter is divided into two
parts: the private area that stores the data for the class, and the public area that has all of the functions
that operate on the data.

Data Members
CTilePlotter has a modest number of data members—four in total. Table 15.2 lists them and explains
their purposes.

Each of the following data members is pretty self-explanatory, but let’s go over them briefly anyway.

• IsoMapType. IsoMapType stores the map type you are using (ISOMAP_SLIDE, ISOMAP_STAGGERED,
ISOMAP_DIAMOND, or ISOMAP_RECTANGULAR). It is set by CTilePlotter::SetMapType and retrieved
by CTilePlotter::GetMapType. This member is directly related to the value in the
IsoHexTilePlotterFn member.

The IsoHexCore Engine

Table 15.2 CTilePlotter Data Members
Member Purpose

IsoMapType Type of map with which this plotter is to be used

iTileWidth Width of a tile. Used to calculate plotted tiles.

iTileHeight Height of a tile. Used to calculate plotted tiles.

IsoHexTilePlotterFn Pointer to a function that does the actual tile plotting

380

• iTileWidth/iTileHeight. These two members are used in the actual calculation of a tile plot. They are
sent to the tileplotting function (stored in IsoHexTilePlotterFn), along with the map position that is
being plotted. These members can be retrieved using CTilePlotter::GetWidth and
CTilePlotter::GetHeight.

• IsoHexTilePlotterFn. It is strange to think that the real work done by CTilePlotter isn’t even done
by the class itself, but rather is sent to a function that is outside of it. IsoHexTilePlotterFn points to
that function. No member functions directly access this member. It is set when a call to SetMapType occurs.

Member Functions
Like data members, CTilePlotter has a small number of member functions—eight in total. Table 15.3
lists them and briefly explains their purpose.

I further subdivide these member functions into four groups: Construction/Destruction, MapType,
TileSize, and Plotting.

Construction/Destruction Functions

The constructor (CTilePlotter()) and the destructor (~CTilePlotter()) don’t do much and aren’t
really very interesting. In fact, the destructor is completely empty. (I make a habit of making classes with a

Isometric Game Programming with DirectX 7.0

Table 15.3 CTilePlotter Member Functions
Member Function Purpose

CTilePlotter() Constructs the object, sets defaults

~CTilePlotter() Destroys the object

void SetMapType Sets the type of map used by the plotter
(ISOMAPTYPE IsoMapType)

ISOMAPTYPE Retrieves the type of map used by the plotter
GetMapType()

void SetTileSize Sets the size of the tile used in tile plot calculations
(int iTileWidth,
int iTileHeight)

int GetTileWidth() Retrieves the width of the tile used to calculate tile plots

int GetTileHeight() Retrieves the height of the tile used to calculate tile plots

POINT PlotTile Plots the world space coordinate from a map coordinate
(POINT ptMap)

TeamLRN

381

destructor, just in case I need it later.) The constructor simply sets the map type to ISOMAP_RECTANGULAR
and sets the tile size to a width and height of 1. This means that the default behavior of an instance of
CTilePlotter plots a point to the exact same coordinate.

CTilePlotter::CTilePlotter();

This assigns default values to map type and tile size.

CTilePlotter::~CTilePlotter();

This does nothing.

MapType Functions

Two CTilePlotter functions have to do with the IsoMapType and IsoHexTilePlotterFn data members
(indirectly). SetMapType assigns a new map type to the plotter (and selects the proper plotting function
for IsoHexTilePlotterFn), and GetMapType returns the plotter’s currently assigned map type.

void CTilePlotter::SetMapType(ISOMAPTYPE IsoMapType);

This sets a new map type for the plotter. It does not return a value.

ISOMAPTYPE CTilePlotter::GetMapType();

This returns the currently set map type for the potter.

TileSize Functions

There are three of these: one “setter” and two “getters.”These functions work with the iTileWidth and
iTileHeight data members.

void CTilePlotter::SetTileSize(int iTileWidth,int iTileHeight);

This sets a new tile width and tile height. It returns no value.

int CTilePlotter::GetTileWidth();

This returns the currently assigned tile width.

int CTilePlotter::GetTileHeight();

This returns the currently assigned tile height.

Plotting Function

There is only one of these. The plotting function is the main purpose of the plotter. It uses the data
members assigned to the plotter by the various set functions.

POINT PlotTile(POINT ptMap);

This converts the position in ptMap into an appropriate world space coordinate. It returns the world space
coordinate as a POINT.

The IsoHexCore Engine

382

Using CTilePlotter
There’s really not much to this: you declare the plotter, set it up, and you’re ready to use it. CTilePlotter
was intended to be used without dynamic allocation (that is, without the use of new), but nothing prevents
you from using dynamic allocation to set up your plotter. I certainly don’t mind.

The following code shows various snippets that you could use exactly as written (except for adjusting
the width and height for your own particular tile size). It shows the setup for all four types of
supported maps.

//
//declaration (all map types)
CTilePlotter TilePlotter;
//
//setup (slide)
//
TilePlotter.SetMapType(ISOMAP_SLIDE);
TilePlotter.SetTileSize(64,32);//replace numbers with your actual tile sizes
//
//setup (staggered)
TilePlotter.SetMapType(ISOMAP_STAGGERED);
TilePlotter.SetTileSize(64,32);//replace numbers with your actual tile sizes
//
//setup (diamond)
TilePlotter.SetMapType(ISOMAP_DIAMOND);
TilePlotter.SetTileSize(64,32);//replace numbers with your actual tile sizes
//
//setup (rectangular)
TilePlotter.SetMapType(ISOMAP_RECTANGULAR);
TilePlotter.SetTileSize(64,32);//replace numbers with your actual tile sizes
//
//use (all map types)
POINT ptMap;
POINT ptPlot;
//MAPWIDTH/MAPHEIGHT are whatever numbers you are using for the size of your map
for(ptMap.y=0;ptMap.y<MAPHEIGHT;ptMap.y++)
{

for(ptMap.x=0;ptMap.x<MAPWIDTH;ptMap.x++)
{

//plot the tile
ptPlot=TilePlotter.PlotTile(ptMap);

Isometric Game Programming with DirectX 7.0

TeamLRN

383

//tile rendering code goes here
}

}

Pretty simple, right? Perhaps it’s a little more involved than the little tileplotting functions used in earlier
chapters, but the price of flexibility is a bit of complexity.

IsoTileWalker.h/IsoTileWalker.cpp
The files IsoTileWalker.h and IsoTileWalker.cpp contain the declarations and implementation required for
the CTileWalker class, the declaration of which appears next.

//typedef for a function pointer to a tilewalker function
typedef POINT (*ISOHEXTILEWALKERFN)(POINT ptStart,ISODIRECTION IsoDirection);
//tilewalker class
class CTileWalker
{
private:

//tile walker function pointer
ISOHEXTILEWALKERFN IsoHexTileWalkerFn;
//iso map type
ISOMAPTYPE IsoMapType;

public:
//constructor
CTileWalker();
//destructor
~CTileWalker();
//map type
void SetMapType(ISOMAPTYPE IsoMapType);
ISOMAPTYPE GetMapType();
//tile walking
POINT TileWalk(POINT ptStart,ISODIRECTION IsoDirection);

};

Just like with the TilePlotter earlier, the TileWalker component consists of two parts: a function pointer
called ISOHEXTILEWALKERFN, and the CTileWalker class itself.

ISOHEXTILEWALKERFN
I gave you the big talk about pointer functions during the discussion of the TilePlotter, so I’ll spare you
the pain of rehashing. All TileWalker functions are required to look very similar to the function declara-
tion shown next. A variable of the type ISOHEXTILEWALKERFN points to a function like this:

The IsoHexCore Engine

384

POINT TileWalkerFunction(POINT ptStart,ISODIRECTION IsoDirection);

This function works just like the tilewalking functions seen in earlier chapters. Take a starting position
(ptStart) and a direction (IsoDirection, one of the ISODIRECTION values defined in IsoHexDefs.h),
send them to this function, and it spits out whatever tile lies in that direction. This TileWalker function
works only for single steps, just as it did in earlier chapters, mainly because staggered maps make multistep
tilewalking more difficult.

IsoTileWalker.cpp declares and implements four tilewalking functions—one for each of the supported
map types. It would be a relatively small matter to make a new function that walked through another type
of map if you needed one.

POINT IsoHex_SlideTileWalk(POINT ptStart,ISODIRECTION IsoDirection);//slide walk-
er
POINT IsoHex_StagTileWalk(POINT ptStart,ISODIRECTION IsoDirection);//staggered
walker
POINT IsoHex_DiamondTileWalk(POINT ptStart,ISODIRECTION IsoDirection);//diamond
walker
POINT IsoHex_RectTileWalk(POINT ptStart,ISODIRECTION IsoDirection);//rectangular
walker

The names of the functions state their purposes pretty clearly, so I won’t bother with a detailed
explanation.

CTileWalker
The other part of IsoTileWalker.h/IsoTileWalker.cpp is the CTileWalker class itself. It is by far the
simplest class in this engine, with only two data members and five member functions.

Data Members
Table 15.4 lists CTileWalker’s data members and briefly describes their purpose. CTileWalker has only
two data members.

Isometric Game Programming with DirectX 7.0

Table 15.4 CTileWalker Data Members
Member Purpose

IsoMapType Keeps track of the map type currently being used with this
TileWalker

IsoHexTileWalkerFn Contains a pointer to the function currently being used by the
TileWalker to do its walking

TeamLRN

385

The IsoMapType member is set with a call to CTileWalker::SetMapType and is retrieved with
CTileWalker::GetMapType. IsoHexTileWalkerFn is not a directly accessed data member. It is set from
within the CTileWalker::SetMapType function and is used by the CTileWalker::TileWalk function.

Member Functions
There are five member functions in CTileWalker’s public section. They are listed in Table 15.5, along with
a brief statement of their purpose. Each member function is explained further after the table.

Each of these member functions deserves a sentence or two explaining how they work and what they do.

CTileWalker::CTileWalker();

This is CTileWalker’s constructor. It takes no parameters and returns no value. Since it is a construction,
you never really call it directly anyway. It does only one thing—set the map type to ISOMAP_RECTANGULAR.

CTileWalker::~CTileWalker();

This is CTileWalker’s destructor. It does even less than the constructor. In fact, this function is complete-
ly empty.

void CTileWalker::SetMapType(ISOMAPTYPE IsoMapType);

This function sets up a TileWalker to use a given map type. It also indirectly sets the function used by the
TileWalker to tile walk. This takes a parameter of the ISOMAPTYPE and returns no value.

ISOMAPTYPE CTileWalker::GetMapType();

This returns an ISOMAPTYPE and takes no parameters. The return value contains the ISOMAP_* value
assigned in the last call to SetMapType.

The IsoHexCore Engine

Table 15.5 CTileWalker Member Functions
Member Function Purpose

CTileWalker() Constructor. Sets defaults.

~CTileWalker() Destructor

void SetMapType Assigns a new map type for the walker to work with
(ISOMAPTYPE IsoMapType)

ISOMAPTYPE GetMapType() Retrieves the currently assigned map type for the walker

POINT TileWalker Performs a tile walk by taking a single step
(POINT ptStart,
ISODIRECTION IsoDirect)

386

POINT CTileWalker::TileWalk(POINT ptStart,ISODIRECTION IsoDirection);

This function is the main purpose of CTileWalker. It takes a POINT parameter and an ISODIRECTION
parameter, calls the function contained in IsoHexTileWalkFn, and returns the result of that function
call (a POINT).

Using CTileWalker
Using CTileWalker is sublimely easy. You declare it, set it up, and go. The following code shows you how
to perform each of these tasks. You could copy these verbatim into a program that includes
IsoTileWalker.h/IsoTileWalker.cpp.

//
//Declaration
CTileWalker TileWalker;
//
//Setting Up (Slide)
TileWalker.SetMapType(ISOMAP_SLIDE);
//
//Setting Up (Staggered)
TileWalker.SetMapType(ISOMAP_STAGGERED);
//
//Setting Up (Diamond)
TileWalker.SetMapType(ISOMAP_DIAMOND);
//
//Setting Up (Rectangular)
TileWalker.SetMapType(ISOMAP_RECTANGULAR);
//
//Use
POINT ptStart;//starting point of the tile walker
POINT ptNext;//destination of the tile walker
ISODIRECTION idIsoDir;//direction of movement
ptStart.x=STARTX;//replace STARTX with whatever x starts at
ptStart.y=STARTY;//replace STARTY with whatever y starts at
idIsoDir=ISODIR;//replace ISODIR with a suitable direction of movement
ptNext=TileWalker.TileWalker(ptStart,idIsoDir);//plot the tile

And that’s about all there is to the CTileWalker class. It is used later to help the CMouseMap class do
its job. This class is the simplest of the bunch, as you probably can tell by the shortness of the section
devoted to it.

Isometric Game Programming with DirectX 7.0

TeamLRN

387

IsoScroller.h/IsoScroller.cpp
These files contain the declaration and implementation of the CScroller class, which is by far our
largest class if you count by the number of member functions. Here are the declarations that appear in
the header:

//wrapping modes for anchors
typedef enum
{

WRAPMODE_NONE,//no clipping of any kind is done to the anchor
WRAPMODE_CLIP,
WRAPMODE_WRAP

} SCROLLERWRAPMODE;
//world space/screen space management class
class CScroller
{
private:

//screen space
RECT rcScreenSpace;
//world space
RECT rcWorldSpace;
//anchor space
RECT rcAnchorSpace;
//anchor
POINT ptScreenAnchor;
//wrapmodes
SCROLLERWRAPMODE swmHorizontal;
SCROLLERWRAPMODE swmVertical;

public:
//constructor
CScroller();
//destructor
~CScroller();
//screen space
RECT* GetScreenSpace();
void SetScreenSpace(RECT* prcNewScreenSpace);
void AdjustScreenSpace(int iLeftAdjust,int iTopAdjust,int iRightAdjust,

int iBottomAdjust);
int GetScreenSpaceWidth();
int GetScreenSpaceHeight();
//world space

The IsoHexCore Engine

388

RECT* GetWorldSpace();
void SetWorldSpace(RECT* prcNewWorldSpace);
void AdjustWorldSpace(int iLeftAdjust,int iTopAdjust,int iRightAdjust, int

iBottomAdjust);
int GetWorldSpaceWidth();
int GetWorldSpaceHeight();

//calculates worldspace based on a tile plotter, a tile extent rec-
tangle,

//and a map’s height and width
void CalcWorldSpace(CTilePlotter* TilePlotter,RECT* prcExtent,

int iMapWidth,int iMapHeight);
//anchor space
RECT* GetAnchorSpace();
void SetAnchorSpace(RECT* prcNewAnchorSpace);
void AdjustAnchorSpace(int iLeftAdjust,int iTopAdjust,int iRightAdjust,

int iBottomAdjust);
int GetAnchorSpaceWidth();
int GetAnchorSpaceHeight();
void CalcAnchorSpace();//calculates anchor space based on world space and

screen space
//anchor
POINT* GetAnchor();
void SetAnchor(POINT* pptNewAnchor,bool bWrap=true);
void MoveAnchor(int iXAdjust,int iYAdjust,bool bWrap=true);
void WrapAnchor();//applies clipping or wrapping to anchor
//conversion
POINT ScreenToWorld(POINT ptScreen);
POINT WorldToScreen(POINT ptWorld);
//wrap modes
void SetHWrapMode(SCROLLERWRAPMODE ScrollerWrapMode);
void SetVWrapMode(SCROLLERWRAPMODE ScrollerWrapMode);
SCROLLERWRAPMODE SetHWrapMode();
SCROLLERWRAPMODE SetVWrapMode();
//validation
bool IsWorldCoord(POINT ptWorld);
bool IsScreenCoord(POINT ptScreen);
bool IsAnchorCoord(POINT ptAnchor);

};

I told you it was big. The main thing I’d like to point out about this part of the engine is that it has
almost nothing to do with isometric tiles, or even tiles at all. Only a single member function even makes
mention of tiles of any sort (CalcWorldSpace). Without the CalcWorldSpace function, this class would

Isometric Game Programming with DirectX 7.0

TeamLRN

389

still perform just fine. It can be used wherever scrolling is required. It is placed here amidst an isometric
engine simply because scrolling is a very commonly needed component. This part of the engine consists of
two parts: SCROLLERWRAPMODE and CScroller.

SCROLLERWRAPMODE
This is a little enumeration containing three values: WRAPMODE_NONE, WRAPMODE_CLIP, and
WRAPMODE_WRAP. These values are used by CScroller to control how anchor space works. CScroller
has one value for each axis so that they can be controlled separately. Using WRAPMODE_NONE makes the
axis unbound, and anchor space has no effect on the anchor. WRAPMODE_CLIP make the axis clipped to a
given range. If a value is out of that range, WRAPMODE_CLIP sets it to the maximum or minimum value of
that range. WRAPMODE_WRAP is for making cylindrical or torus maps. The anchor moves from one edge to
the other.

CScroller
Like my other classes, CScroller is divided into two areas: data members (private) and member
functions (public).

Data Members
Table 15.6 lists the CScroller data members and briefly describes their purpose. Each one is explained
more thoroughly after the table.

The IsoHexCore Engine

Table 15.6 CScroller Data Members
Member Purpose

rcScreenSpace Stores a RECT that describes screen space

rcWorldSpace Stores a RECT that describes world space

rcAnchorSpace Stores a RECT that describes anchor space

ptScreenAnchor A POINT representing the screen anchor

swmHorizontal Controls the wrapping mode of the x-axis

swmVertical Controls the wrapping mode of the y-axis

390

rcScreenSpace

This data member keeps track of where screen space is. It can be set to the same size as the screen itself,
but it really has no limitations on what its size can be. It is set with SetScreenSpace, retrieved with
GetScreenSpace, and adjusted with AdjustScreenSpace. The width and height can be retrieved with
GetScreenSpaceWidth and GetScreenSpaceHeight.

rcWorldSpace

This data member keeps track of where world space is. Usually, it is calculated based on a tile plotter
and a tile extent using CalcWorldSpace. It can be set manually using SetWorldSpace, retrieved with
GetWorldSpace, and adjusted with AdjustWorldSpace. The width and height can be retrieved with
GetWorldSpaceWidth and GetWorldSpaceHeight.

rcAnchorSpace

This data member keeps track of where anchor space is. Normally, it is calculated from world space
and screen space by using CalcAnchorSpace, but it can be set manually by SetAnchorSpace. It can be
retrieved by GetAnchorSpace and adjusted by AdjustAnchorSpace. The width and height are returned
by GetAnchorSpaceWidth and GetAnchorSpaceHeight.

ptScreenAnchor

This data member holds the screen anchor for the scroller. It can be set by a call to SetAnchor. To retrieve
it, use GetAnchor. Other member functions that work on ptScreenAnchor include MoveAnchor, which
changes the position of the anchor by relative amounts, and WrapAnchor, which applies the wrapping
modes to x and y.

swmHorizontal/swmVertical

These two data members contain the wrapping modes for the x- and y-axis, respectively. They may be
assigned by using SetHWrapMode/SetVWrapMode and retrieved by GetHWrapMode/GetVWrapMode.

Member Functions
There are a large number of these. They were all listed a few pages back, and they are so numerous that I
don’t want to list them all again here. They are divided into several categories: Construction/Destruction,
Screen Space, World Space, Anchor Space, Anchor, Conversion, Wrap Mode, and Validation.

Construction/Destruction Member Functions

The constructor (CScroller()) doesn’t do a whole lot. It sets all the various spaces to empty rectangles,
sets the anchor to (0,0), and sets both the vertical and horizontal wrap modes to WRAPMODE_NONE. The

Isometric Game Programming with DirectX 7.0

TeamLRN

391

destructor (~CScroller()) does even less than the constructor. It’s there simply because it is my
custom to include a destructor, even if it isn’t being used. Unless you dynamically allocate your scroller
objects, you will not directly call either of these methods.

Screen Space Member Functions

Five screen space member functions perform all the necessary operations on the screen space rectangle
(stored in rcScreenSpace). Each of these functions is listed and explained next.

RECT* CScroller::GetScreenSpace();

This member function takes no parameters and returns a pointer to rcScreenSpace. Since this is a
pointer, and not a const pointer or a const reference, you can access (and modify) the members of
rcScreenSpace through the use of this function. You might not want to do that, though. I thought it
would be fair to warn you.

void CScroller::SetScreenSpace(RECT* prcNewScreenSpace);

This function takes a pointer to a RECT and returns no value. It copies the RECT pointed to by
prcNewScreenSpace and copies it member-for-member into rcScreenSpace. For the most part, you
would use this function a single time in a program and never need to call it again.

void CScroller::AdjustScreenSpace(int iLeftAdjust,int iTopAdjust,int
iRightAdjust, int iBottomAdjust);

If you need to be able to adjust the screen space on-the-fly, this function does that for you. It takes four
int parameters and returns no value. When this function is called, it adds the appropriate parameter to the
corresponding rcScreenSpace member. For example, iLeftAdjust is added to rcScreenSpace.left.

int CScroller::GetScreenSpaceWidth();

This function has no parameters and returns an integer. This returned value is the difference between
rcScreenSpace’s right and left members.

int CScroller::GetScreenSpaceHeight();

This function has no parameters and returns an integer. This returned value is the difference between
rcScreenSpace’s bottom and top members.

World Space Member Functions

There are six of these, and the first five of them correspond to a similar function that deals with screen
space. These functions all affect rcWorldSpace.

RECT* CScroller::GetWorldSpace();

This corresponds to GetScreenSpace. It takes no parameter and returns a pointer to rcWorldSpace. This
function can be used to change the values within rcWorldSpace.

void CScroller::SetWorldSpace(RECT* prcNewWorldSpace);

This corresponds to SetScreenSpace. It takes a pointer to a RECT and returns no value. It copies the
RECT pointed to by prcNewWorldSpace into rcWorldSpace.

The IsoHexCore Engine

392

void CScroller::AdjustWorldSpace(int iLeftAdjust,int iTopAdjust,int iRightAdjust,
int iBottomAdjust);

This corresponds to AdjustScreenSpace. It has no return value and four int parameters. It adds the
appropriate parameter to the corresponding member of rcWorldSpace.

int CScroller::GetWorldSpaceWidth();

This corresponds to GetScreenSpaceWidth. It takes no parameters and returns the difference between
rcWorldSpace’s right and left members.

int CScroller::GetWorldSpaceHeight();

This corresponds to GetScreenSpaceHeight. It takes no parameters and returns the difference between
rcWorldSpace’s bottom and top members.

void CScroller::CalcWorldSpace(CTilePlotter* TilePlotter,RECT* prcExtent,int
iMapWidth,int iMapHeight);

This member function is unique to the world space category. Given a TilePlotter pointer (TilePlotter),
a pointer to a RECT that contains the average tile’s extent (prcExtent), and the width and height of the
tilemap (iMapWidth and iMapHeight), this function calculates the coordinates that define world space.

Anchor Space

There are six of these. The first five correspond to similar screen space member functions. The last one
assists in anchor space calculation.

RECT* CScroller::GetAnchorSpace();

This corresponds to GetScreenSpace. It returns a pointer to the rcAnchorSpace data member. This
function can be used to directly access or modify the members of rcAnchorSpace. It takes no parameters
and returns a RECT pointer.

void CScroller::SetAnchorSpace(RECT* prcNewAnchorSpace);

This corresponds to SetScreenSpace. It copies the RECT pointed to by prcNewAnchorSpace into
rcAnchorSpace. It takes a RECT pointer parameter and returns no value.

void CScroller::AdjustAnchorSpace(int iLeftAdjust,int iTopAdjust,int
iRightAdjust, int iBottomAdjust);

This corresponds to AdjustScreenSpace. It takes four int parameters and returns no value. Each mem-
ber of rcAnchorSpace is adjusted by the appropriate parameter.

int CScroller::GetAnchorSpaceWidth();

This corresponds to GetScreenSpaceWidth. It takes no parameters and returns an int. The returned
value is the difference between rcAnchorSpace’s right and left members.

int CScroller::GetAnchorSpaceHeight();

Isometric Game Programming with DirectX 7.0

TeamLRN

393

This corresponds to GetScreenSpaceHeight. It takes no parameters and returns an int. The returned
value is the difference between rcAnchorSpace’s bottom and top members.

void CScroller::CalcAnchorSpace();

This member function is unique to the anchor space functions. Based on the current world space and
screen space (and the two wrap modes), the anchor space is calculated. The screen space’s width and/or
height are subtracted whenever the horizontal and vertical wrap modes are not WRAPMODE_WRAP.

Anchor Member Functions

The four anchor functions deal with the manipulation of the anchor itself. They affect the values of
ptScreenAnchor.

POINT* CScroller::GetAnchor();

This function returns a pointer to ptScreenAnchor. Using this function, you can change the values of
your anchor to outside of the valid range. This takes no value and returns a POINT pointer.

void CScroller::SetAnchor(POINT* pptNewAnchor,bool bWrap);

This function takes a POINT pointer and an optional bool pointer. It returns no value.
The ptScreenAnchor data member’s x and y are copied from those pointed to by pptNewAnchor.
If bWrap is true, the scroller calls WrapAnchor immediately afterward.

void CScroller::MoveAnchor(int iXAdjust,int iYAdjust,bool bWrap);

This member function takes two int parameters and an optional bool parameter. It returns no value.
The iXAdjust and iYAdjust parameters are added to ptScreenAnchor’s x and y members. If bWrap is
true, WrapAnchor is immediately called afterwards.

void CScroller::WrapAnchor();

This function takes no parameter and returns no value. Depending on the horizontal and vertical wrap
modes, it performs different operations on ptScreenAnchor.

If an axis has WRAPMODE_NONE, no range checking is performed. If an axis has WRAPMODE_CLIP, the anchor
is clipped to the nearest point in the range. If the axis has WRAPMODE_WRAP, either the anchor space’s width
or height are subtracted from or added to the anchor until it lies within the range.

Conversion Member Functions

After you set up the various spaces, these two functions, along with MoveAnchor, are the most commonly
used. They translate between coordinate sets (namely, world space and screen space).

POINT CScroller::ScreenToWorld(POINT ptScreen);

This function takes a POINT and returns a POINT. The ptScreen parameter is a screen coordinate, and the
returned value represents the corresponding world space coordinate. This function is helpful to use with a
MouseMap, since the first step of mousemapping is the conversion from screen to world.

The IsoHexCore Engine

394

POINT CScroller::WorldToScreen(POINT ptWorld);

This function takes a POINT and returns a POINT. The ptWorld parameter is a world coordinate, and the
returned value represents the corresponding screen space coordinate. This function is helpful to use with a
TilePlotter, because the TilePlotter spits out world coordinates, and those need to be converted into screen
coordinates.

Wrap Mode Member Functions

These four functions either get or set the two wrapping modes for the scroller. I abbreviated horizontal
and vertical to H and V in these functions—mainly to save myself some typing.

void CScroller::SetHWrapMode(SCROLLERWRAPMODE ScrollerWrapMode);

This takes a SCROLLERWRAPMODE parameter and returns no value. It sets a new value to swmHorizontal.
This value controls how the x value of the anchor is treated in calls to WrapAnchor.

void CScroller::SetVWrapMode(SCROLLERWRAPMODE ScrollerWrapMode);

This takes a SCROLLERWRAPMODE parameter and returns no value. It sets a new value to swmVertical.
This value controls how the y value of the anchor is treated in calls to WrapAnchor.

SCROLLERWRAPMODE CScroller::GetHWrapMode();

This takes no parameter and returns a SCROLLERWRAPMODE. It retrieves the value of swmHorizontal.

SCROLLERWRAPMODE CScroller::GetVWrapMode();

This takes no parameter and returns a SCROLLERWRAPMODE. It retrieves the value of swmVertical.

Validation Member Functions

These three functions aren’t absolutely necessary for the scroller to function. They are provided mainly for
utility, because code using the existing member functions and a RECT function would be longer. Each of
these functions checks to see if a given POINT lies within that space’s RECT.

bool CScroller::IsWorldCoord(POINT ptWorld);

This takes a POINT parameter and returns a bool. If ptWorld lies within world space, the return value is
true. If not, the return value is false.

bool CScroller::IsScreenCoord(POINT ptScreen);

This takes a POINT parameter and returns a bool. If ptScreen lies within screen space, the return value is
true. If not, the return value is false.

bool CScroller::IsAnchorCoord(POINT ptAnchor);

This takes a POINT parameter and returns a bool. If ptAnchor lies within anchor space, the return value is
true. If not, the return value is false.

Isometric Game Programming with DirectX 7.0

TeamLRN

395

Using CScroller
The beauty of CScroller is that it doesn’t have to be tied to any particular type of map, so it has no
ISOMAPTYPE member. However, using it properly with one of your map types requires world space to be
calculated (unless, of course, you want to do it on your own). This requires that you set up a TilePlotter
prior to setting up your scroller. The following are some snippets of code that demonstrate how to make
use of a scroller:

//
//declaration
CScroller Scroller;
//
//setup
SetRect(Scroller.GetScreenSpace(),0,0,640,480);//this will set up

//a screen space for the
entire

// screen in a 640x480 dis-
play
Scroller.SetHWrapMode(WRAPMODE_CLIP);//set up clipping for the anchor
Scroller.SetVWrapMode(WRAPMODE_CLIP);
//TilePlotter is a preexisting tile plotter object
//rcExtent is a RECT containing a tile extent, usually from a TileSet
//MAPWIDTH and MAPHEIGHT contain the width and height of the tilemap
Scroller.CalcWorldSpace(&TilePlotter,&rcExtent,MAPWIDTH,MAPHEIGHT);
Scroller.CalcAnchorSpace();//calculate the anchor space
//
//moving the anchor about
Scroller.MoveAnchor(dx,dy);//dx and dy are values you wish to scroll by

As you can see, despite the rather large size of the CScroller class, its use is pretty easy. In addition,
it makes scrolling a snap. If you were ever trapped on a desert island, and you could have only a single class
with you, CScroller would be the best one to pick.

IsoMouseMap.h/IsoMouseMap.cpp
Theses files contain the declarations and implementation required for the CMouseMap class. Of all the
components, this one changed the least since its last form. It relies on the use of a TileWalker and a
scroller, although this is not an absolute requirement. (I’d be interested to see a solution that didn’t
require at least one of the other components.)

//mousemap directions
typedef enum {

The IsoHexCore Engine

396

MM_CENTER=0,
MM_NW=1,
MM_NE=2,
MM_SW=3,
MM_SE=4

} MOUSEMAPDIRECTION;
//mousemap class
class CMouseMap
{
private:

//width and height of lookup
int iWidth;
int iHeight;
//reference point (adjustment for the upper left of tile 0,0)
POINT ptRef;
//lookup table
MOUSEMAPDIRECTION* mmdLookUp;
//scroller
CScroller* pScroller;
//walker
CTileWalker* pTileWalker;

public:
//constructor
CMouseMap();
//destructor
~CMouseMap();
//load mousemap
void Load(LPCTSTR lpszFileName);//used with iso and hex maps
void Create(int iWidth,int iHeight);//used with rectangular maps
//destroy mousemap
void Destroy();
//width/height
int GetWidth();
int GetHeight();
//reference
POINT* GetReferencePoint();
void SetReferencePoint(POINT* pptRefPt);
void CalcReferencePoint(CTilePlotter* pTilePlotter,RECT* prcExtent);
//map the mouse
POINT MapMouse(POINT ptMouse);
//scroller
CScroller* GetScroller();

Isometric Game Programming with DirectX 7.0

TeamLRN

397

void SetScroller(CScroller* pScroller);
//walker
CTileWalker* GetTileWalker();
void SetTileWalker(CTileWalker* pTileWalker);

};

Much like the rest of the components, IsoMouseMap.h and IsoMouseMap.cpp are divided into two main
declarations: MOUSEMAPDIRECTION and CMouseMap class. I’ll explain each.

MOUSEMAPDIRECTION
This enumerated type corresponds exactly to the MouseMapDirection enumerated types used in Chapters
12 through 14. The only real difference is that the name is now in all capital letters. The value MM_CENTER
represents the centered tile of the map. MM_NE, MM_SE, MM_NW, and MM_SW represent the corners of the
lookup. In case you need a refresher, Figure 15.3 shows what I’m talking about.

CMouseMap
Like with all the components so far, I decided to implement the MouseMap as a class. Also, just like all
the other classes, it is divided into a private data section and a public member function section. CMouseMap
is the final piece of the puzzle. Two of the other components—namely, the TileWalker and the scroller—
fit nicely into it. Similarly, the MouseMap fits nicely into the TilePlotter, which we will examine later.

Data Members
CMouseMap has six data members. They cover a hodgepodge of data, from the size of the map to what
scroller and TileWalker to use. Table 15.7 lists and briefly explains these data members.

aThe IsoHexCore EngineDiamond Maps

MM_NW MM_NE

MM_SW MM_SE

MM_CE

Figure 15.3

A MouseMap and its

MOUSEMAPDIRECTIONs

398

Member Functions
The member functions for CMouseMap are presented in groups of related functions, so that you don’t
have to look upon them as a big lump.

Construction/Destruction Member Functions

The constructor and destructor don’t really do much for the MouseMap. The constructor creates a default
1✕1 MouseMap so that if for some reason you use your MouseMap before using Load or Create, at least
you won’t get division by 0.

CMouseMap::CMouseMap();

This creates a default 1✕1 tilemap.

CMouseMap::~CMouseMap();

This destroys whatever MouseMap is currently loaded. (This means you don’t have to explicitly call
Destroy at the end of a program that uses CMouseMap.)

Lookup Table Member Functions

I needed to have some way to load bitmaps into my CMouseMap class, but I also needed a way to create my
own arbitrarily sized MouseMaps that initially are filled with MM_CENTER but that can be filled with what-
ever values I like. These three functions are what I came up with.

void CMouseMap::Load(LPCTSTR lpszFileName);

This function is used to load the bitmap specified by its lpszFileName parameter. The image in question
is loaded and parsed into a lookup table. It returns no value.

Isometric Game Programming with DirectX 7.0

Table 15.7 CMouseMap Data Members
Data Member Meaning

iWidth Width of the MouseMap

iHeight Height of the MouseMap

ptRef Reference point for measuring relative to tile (0,0)

mmdLookUp The actual MouseMap lookup array

pScroller A pointer to the scroller to use for converting screen space to
world space

pTileWalker A pointer to the TileWalker used for converting MouseMap
coordinates to map coordinates

TeamLRN

399

void CMouseMap::Create(int iWidth,int iHeight);

This function creates an arbitrarily sized lookup table, the dimensions of which are specified by the
iWidth and iHeight parameters. The lookup table is allocated and filled with the value MM_CENTER.
Use this function either for a rectangular MouseMap or for some other axonometric MouseMap that
needs a user-supplied lookup table.

void CMouseMap::Destroy();

This function deallocates the lookup table. It is called by the destructor, so you don’t ever have to
actually call it.

Tile Size Member Functions

Once the mouse map is loaded/created, you need some way to get the size of the MouseMap, so I’ve
provided two functions.

int CMouseMap::GetWidth();

Returns the width of the MouseMap. It takes no parameters.

int CMouseMap::GetHeight();

Returns the height of the MouseMap. It takes no parameters.

Reference Point Member Functions

You remember our nice talk about the reference point, right? The one about how you have to match up
the corners of the MouseMap with tile (0,0) and how that value isn’t necessarily world space (0,0)? That’s
what these functions help you with.

POINT* CMouseMap::GetReferencePoint();

This retrieves the reference point. It takes no parameters and returns a pointer to a POINT.

void CMouseMap::SetReferencePoint(POINT* pptRefPt);

This copies a point into the reference point. It takes a POINT pointer that points to the POINT you want to
copy. Returns no value.

void CMouseMap::CalcReferencePoint(CTilePlotter* pTilePlotter,RECT* prcExtent);

Most of the time, you will use this function to set up your reference point. Based on a tile plotter (pointed
to by the pTilePlotter parameter) and an extent rectangle (pointed to by prcExtent), the reference
point is calculated.

Scroller Member Functions

Unless your world space and screen space are the same, which usually isn’t so, you’ll need to plug a scroller
into your MouseMap so that it can do your screen-to-world calculation.

The IsoHexCore Engine

400

CScroller* CMouseMap::GetScroller();

This retrieves the scroller that is currently being used by the MouseMap. It takes no parameters and
returns a pointer to a CScroller.

void CMouseMap::SetScroller(CScroller* pScroller);

This sets a new scroller to be used with the MouseMap. It takes a pointer to a CScroller and returns
no value.

TileWalker Member Functions

The MouseMap, in addition to a scroller, needs a TileWalker to perform its job properly. These functions
get or set a pointer to a TileWalker for the MouseMap to use.

CTileWalker* CMouseMap::GetTileWalker();

This retrieves the pointer to the TileWalker that the MouseMap is using.

void CMouseMap::SetTileWalker(CTileWalker* pTileWalker);

This sets a new pointer to a TileWalker for the MouseMap to use.

Mouse Mapping Function

And last, but certainly not least, the main working function of the CMouseMap class. It has fewer
parameters than the MouseMaps used in Chapters 12 through 14, since the class itself stores the needed
extra information.

POINT CMouseMap::MapMouse(POINT ptMouse);

This takes the screen coordinate contained by the ptMouse parameter, converts it into a map coordinate,
and returns that coordinate.

Using CMouseMap
The CMouseMap class is easy to set up and use. The following code snippets show how the most common
tasks, like declaration, setup and use are done.

//
//declaration
CMouseMap MouseMap;
//
//setup
MouseMap.Load("mousemap.bmp");//mousemap.bmp contains the proper image.
MouseMap.SetScroller(&Scroller);//Scroller is a CScroller object
MouseMap.SetTileWalker(&TileWalker);//TileWalker is a CTileWalker object
//

Isometric Game Programming with DirectX 7.0

TeamLRN

401

//use
POINT ptMap=MouseMap.MapMouse(ptMouse);//ptMouse is a screen

//coordinate of the mouse

IsoHexCore.h
Because each of the four components (TilePlotter, TileWalker, Scroller, and MouseMap) is in a separate
header/cpp file, to make use of them you would need to include all the headers into your program.
IsoHexCore.h removes that requirement by including all the headers for you in a single header file.

There you have it—a complete isometric engine. Yes, you still have much work to do before it’s actually
game-worthy, but you have a solid foundation on which you can build.

An IsoHexCore Example
Now that all the explanations for these classes are done, let’s make a sample program. Load up
IsoHex15_1.cpp. This example demonstrates the true flexibility of the IsoHexCore engine. It can switch
from one type of tilemap to another while the application is still running. IsoHex15_1 is based on
IsoHex1_1.cpp. It uses most of the files you are accustomed to using—namely,
GDICanvas.h/GDICanvas.cpp, DDFuncs.h/DDFuncs.cpp, and TileSet.h/TileSet.cpp. In addition, it
brings in the IsoHexCore engine files we’ve been exploring in this chapter.

Figures 15.4, 15.5, and 15.6 show the three faces of this application. By pressing the 1, 2, or 3 key, you
can instantly change what map type is being used, and the scroller will be recalculated so that you can
maneuver around just like in some of the earlier chapters’ examples. It’s like three programs in one!

The IsoHexCore Engine

Figure 15.4

The result of pressing

the 1 key

402

Globals
Most of the globals listed next are self-explanatory and/or you’ve used them before. They cover everything
from your basic DirectDraw objects, to your tilesets, to your new iso engine components.

//directdraw
LPDIRECTDRAW7 lpdd=NULL;
LPDIRECTDRAWSURFACE7 lpddsMain=NULL;

Isometric Game Programming with DirectX 7.0

Figure 15.5

The result of pressing the

2 key

Figure 15.6

The result of pressing the

3 key

TeamLRN

403

LPDIRECTDRAWSURFACE7 lpddsBack=NULL;
LPDIRECTDRAWCLIPPER lpddClip=NULL;
//tilesets
CTileSet tsIso;//main tileset
CTileSet tsCursor;//cursor
//isohexcore components
CTilePlotter TilePlotter;//plotter
CTileWalker TileWalker;//walker
CScroller Scroller;//scroller
CMouseMap MouseMap;//mousemap
POINT ptCursor;//keep track of the cursor
POINT ptScroll;//keep track of how quickly we scroll
int iMap[MAPWIDTH][MAPHEIGHT];//map array

See? Nothing really new, except for the iso engine components, TilePlotter, TileWalker, Scroller, and
MouseMap. Is this seeming too easy to you? It sure is to me! (That’s not a bad thing, though. Easy is good.)

Initialization and Cleanup
I wanted to cover the beginning and end of the program together, since they are related. The cool thing
about IsoHexCore is that none of the components have to be dynamically allocated with new, which
means you don’t have to deallocate them later with delete, and they will automatically be destroyed
when they go out of scope (when the program ends). This frees you a great deal in your cleanup code.

First, let’s take a look inside Prog_Init, where you set everything up. This first part you should already
be familiar with, because it sets up your basic DirectDraw objects.

//DirectDraw Initialization
//create IDirectDraw object
lpdd=LPDD_Create(hWndMain,DDSCL_EXCLUSIVE |

DDSCL_FULLSCREEN | DDSCL_ALLOWREBOOT);
//set display mode
lpdd->SetDisplayMode(640,480,16,0,0);
//create primary surface
lpddsMain=LPDDS_CreatePrimary(lpdd,1);
//get back buffer
lpddsBack=LPDDS_GetSecondary(lpddsMain);
//create clipper
lpdd->CreateClipper(0,&lpddClip,NULL);
//associate window with the clipper
lpddClip->SetHWnd(0,hWndMain);
//attach clipper to back buffer
lpddsBack->SetClipper(lpddClip);

The IsoHexCore Engine

404

Nothing too hard, right? Next, you start to initialize your IsoHexCore components. Pay attention to the
order in which I’m doing this, because it may seem a little weird.

First, partially initialize the MouseMap by telling it to load the image from which it scans the
lookup table.

//load in the mousemap
MouseMap.Load("MouseMap.bmp");

Next, set up the TilePlotter, even though you aren’t yet done setting up the MouseMap. Told you it was
weird. Set the TilePlotter’s map type (on initially loading, you set it to ISOMAP_DIAMOND), and set the
width and height for the tileplotting calculations. You get this width and height from the MouseMap.
Aha! That’s why you load the MouseMap first, and it also explains why you don’t just have a single func-
tion that you call to initialize your MouseMap.

//set up the tile plotter
TilePlotter.SetMapType(ISOMAP_DIAMOND);//diamond mode
TilePlotter.SetTileSize(MouseMap.GetWidth(),

MouseMap.GetHeight());//grab width and height from mousemap

You don’t have to touch the TilePlotter again, so move on to the TileWalker. The TileWalker
could have been initialized earlier, but this was just the place I chose to do it. Set the map type
to ISOMAP_DIAMOND and be done with the TileWalker.

//set up tile walker to diamond mode
TileWalker.SetMapType(ISOMAP_DIAMOND);

Time for the scroller. The scroller’s initialization is probably the longest and most involved part of
IsoHexCore initialization. First, set up a RECT that has the same dimensions as the screen.

//set up screeen space
RECT rcTemp;
SetRect(&rcTemp,0,0,640,480);
Scroller.SetScreenSpace(&rcTemp);

Now you have to load in your tilesets. What? But you haven’t finished setting up the scroller! Well, you
need the tile extent to calculate world space, so you need to have the tilesets loaded. In the end, the only
thing that matters is that everything gets loaded properly and nothing gets left behind. So, as I was saying,
load in the tilesets.

//load in tiles and cursor
tsIso.Load(lpdd,"Tiles.bmp");
tsCursor.Load(lpdd,"cursor.bmp");

Isometric Game Programming with DirectX 7.0

TeamLRN

405

Grab the tile extent RECT from the first tile of tsIso. You could have picked any of the tiles, because they
all have the same dimensions. Once you have the extent send it, a pointer to the TilePlotter, and the width
and height of the map to calculate the scroller’s world space.

//grab tile extent from tileset
CopyRect(&rcTemp,&tsIso.GetTileList()[0].rcDstExt);
//calculate the worldspace
Scroller.CalcWorldSpace(&TilePlotter,&rcTemp,MAPWIDTH,MAPHEIGHT);

Back to the MouseMap. Use the TilePlotter and the extent RECT to calculate the reference point for the
MouseMap. Honestly, you could have waited, but I like having all the code dealing with the tile extent
RECT in one area rather than spread out all over the place, making it necessary to scroll up and down to
look for it if something went wrong.

//calculate the mousemap reference point
MouseMap.CalcReferencePoint(&TilePlotter,&rcTemp);

Now finalize the scroller initialization. First, set the horizontal and vertical wrap modes (both of them are
WRAPMODE_CLIP). Then calculate the anchor space, and finally set the scroller’s anchor to (0,0).

//set wrap modes for scroller
Scroller.SetHWrapMode(WRAPMODE_CLIP);
Scroller.SetVWrapMode(WRAPMODE_CLIP);
//calculate anchor space
Scroller.CalcAnchorSpace();
//set scroller anchor to (0,0)
Scroller.GetAnchor()->x=0;
Scroller.GetAnchor()->y=0;

At last, finish what you started by attaching the scroller and the TileWalker to the MouseMap, and you
have successfully wrapped up your IsoHexCore initialization.

//attach scroller and tilewalker to mousemap
MouseMap.SetScroller(&Scroller);
MouseMap.SetTileWalker(&TileWalker);

Finally, set up a random map, and return true.

//set up the map to a random tilefield
for(int x=0;x<MAPWIDTH;x++)
{

for(int y=0;y<MAPHEIGHT;y++)
{

The IsoHexCore Engine

406

iMap[x][y]=rand()%tsIso.GetTileCount();
}

}
return(true);//return success

The Prog_Done function isn’t nearly the size of Prog_Init, since you only have to clean up the
DirectDraw objects.

void Prog_Done()
{

//release main/back surfaces
LPDDS_Release(&lpddsMain);
//release clipper
LPDDCLIP_Release(&lpddClip);
//release directdraw
LPDD_Release(&lpdd);

}

Not much to it. It’s really cool that you don’t have to jump through elaborate hoops in order to get rid
of your iso engine components. They practically clean themselves up.

Main Loop
The main loop can be broken into four major steps: clear back buffer, draw tilemap, draw cursor, and flip.
All of this code is in Prog_Loop.

This first snippet clears out the back buffer by setting up a DDBLTFX structure. You’ve seen this before, so I
won’t say any more.

//clear out backbuffer
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);

Now, update the scroller’s anchor by moving the anchor in accordance with the values stored in ptScroll.
The manner in which ptScroll is assigned these values can be found later in the “Event Handling” sec-
tion.

//move the anchor based on scrolling speed
Scroller.MoveAnchor(ptScroll.x,ptScroll.y);

Time to plot your tiles. Loop through the map coordinates using a POINT variable ptMap. For each map
position, plot the tile using your TilePlotter and then convert that point from world to screen coordinates

Isometric Game Programming with DirectX 7.0

TeamLRN

407

using the scroller. Always remember that a TilePlotter outputs world coordinates only, and you need the
plotter to translate to screen coordinates. After the world-to-screen conversion, simply put the tile with the
tileset tsIso.

//plot our tiles
POINT ptPlot;
POINT ptMap;
for(ptMap.y=0;ptMap.y<MAPHEIGHT;ptMap.y++)
{

for(ptMap.x=0;ptMap.x<MAPWIDTH;ptMap.x++)
{

//plot the tile
ptPlot=TilePlotter.PlotTile(ptMap);
//convert from world to screen
ptPlot=Scroller.WorldToScreen(ptPlot);
//put the tile
tsIso.PutTile(lpddsBack,ptPlot.x,ptPlot.y,iMap[ptMap.x][ptMap.y]);

}
}

Next, grab the mouse’s current position using the WIN32 function GetCursorPos. I haven’t covered this
function in any of our discussions, but it’s pretty simple. Pass a pointer to a POINT to be filled with the
mouse’s current position. Alternatively, I could have stored the value of the current mouse position during
the WindowProc’s WM_MOUSEMOVE message handler, but this way works just as well.

//grab the mouse position
POINT ptMouse;
GetCursorPos(&ptMouse);

Because you have the mouse position now, you can go ahead and use the MouseMap to figure out what tile
you are on and store that position in ptCursor (which, if you look back, is your global variable for storing
the cursor position).

//map the mouse
ptCursor=MouseMap.MapMouse(ptMouse);

Naturally, your MouseMap doesn’t know how big your map is, so you have to clip it to valid map squares
by yourself. That is what this next bit does.

//clip the cursor to valid map coordinates
if(ptCursor.x<0) ptCursor.x=0;
if(ptCursor.y<0) ptCursor.y=0;
if(ptCursor.x>(MAPWIDTH-1)) ptCursor.x=MAPWIDTH-1;

The IsoHexCore Engine

408

if(ptCursor.y>(MAPHEIGHT-1)) ptCursor.y=MAPHEIGHT-1;

So, you’ve got a mousemapped and validated cursor position. All that is left to do is plot the darn thing.
First, you have to use the TilePlotter to calculate its world position, and then the scroller to convert that
to a screen position, and finally the tileset to blit the cursor.

//plot the cursor
ptPlot=TilePlotter.PlotTile(ptCursor);
//convert world to screen
ptPlot=Scroller.WorldToScreen(ptPlot);
//put the cursor on screen
tsCursor.PutTile(lpddsBack,ptPlot.x,ptPlot.y,0);

Oh, yes. . . and flip the primary surface.

//flip to show the back buffer
lpddsMain->Flip(0,DDFLIP_WAIT);

This function is a good place to see all the IsoHexCore components in action. All four are used here.
(The TileWalker is not explicitly used, but the MouseMap makes use of it.) You’ll notice that most of
the lines in the Prog_Loop function call one of the engine components, and you can see how very little
you do yourself.

Event Handling
You’re in the home stretch now. IsoHex15_1.cpp responds to two messages (at least as far as user interac-
tion is concerned)—WM_KEYDOWN and WM_MOUSEMOVE. We’ll take WM_MOUSEMOVE first, because it’s shorter.

The only purpose of the WM_MOUSEMOVE handler is to figure out if you intend to scroll and if you do, by
how much. You’ve seen code similar to this in prior chapters’ examples. Nothing really new here.

case WM_MOUSEMOVE:
{

//grab mouse x and y
int x=LOWORD(lParam);
int y=HIWORD(lParam);
//reset scrolling speeds to zero
ptScroll.x=0;
ptScroll.y=0;
//left scroll?
if(x<8) ptScroll.x=x-8;
//upward scroll?
if(y<8) ptScroll.y=y-8;

Isometric Game Programming with DirectX 7.0

TeamLRN

409

//right scroll?
if(x>=632) ptScroll.x=x-632;
//downward scroll?
if(y>=472) ptScroll.y=y-472;

}break;

In the WM_KEYDOWN handler you do something else entirely—namely, reconfigure the entire IsoHexCore
engine to work with another map type. First, the WM_KEYDOWN handler does a switch based
on the value of wParam (which contains the virtual key code). If the value is VK_ESCAPE, it tells the main
window to close, which then exits the program. If the value is 1, 2, or 3, it goes to short bits of code that
reinitialize the iso engine components. I’ll only show the code for if 1 is pressed, because 2 and 3 are very
similar. (Just replace the instances of ISOMAP_SLIDE with ISOMAP_STAGGERED or ISOMAP_DIAMOND.)

case ‘1’:
{

//set up the iso engine for slide maps
TileWalker.SetMapType(ISOMAP_SLIDE);//set walker to slide mapping
TilePlotter.SetMapType(ISOMAP_SLIDE);//set plotter to slide mapping
//recalculate the scroller

Scroller.CalcWorldSpace(&TilePlotter,&tsIso.GetTileList()[0].rcDstExt,
MAPWIDTH,MAPHEIGHT);

Scroller.CalcAnchorSpace();
//set the screen anchor back to zero
Scroller.GetAnchor()->x=0;
Scroller.GetAnchor()->y=0;

}break;

As you can see, you don’t have to go through all the rigmarole that you had to during Prog_Init, because
the main part of the iso engine doesn’t change. You simply have to change the map type for the plotter and
walker and recalculate the world and anchor spaces for the scroller. Nothing to it! And you can look at the
other map types; they have virtually the exact same code.

Summary
Wow. The end of the chapter (and you thought it would never come). Also, the end of the part on isohex
basics. You’ve learned about tiles, about what tile-based means, and about the three isometric map types.
You now have a solid engine core to work with. Seems like it’s been light-years since Part 1. Of course, at
the end of the next part, it’ll seem like you’ve progressed light-years ahead of where you are now. Finally,
you’re going to get into some real stuff. You’ve done enough “random tilemap” examples. You’re ready for
some info that will really make a cool isometric game.

The IsoHexCore Engine

Part I I I

Isometric

Methodology

TeamLRN

Layered Maps
and Optimized

Rendering
• Layered Map Basics

• Layered Map Methods

• Map Scale Layering

CHAPTER 16

412

It’s a brand-new day. The birds are chirping, the sun is shining, and all is right with the world. More
importantly, you have survived the first two parts of this book, which means that you are ready to

move on to some real stuff. Congratulations!

This chapter covers sort of a hodgepodge of isometric algorithms, and maily deals with layered maps.
There will also be some information on how to optimize the rendering of your iso map, and how to
update discrete areas of the map. All in all, it should be a fun ride, and you should be saying, “Oh, that’s
how you do that!” before you’re done.

As in previous chapters, the methods I will show you will be displayed in a manner that (I hope) is the eas-
iest to understand, which means that the methods aren’t necessarily the fastest or don’t necessarily perform
the best. However, once you have learned the basic idea of how to do something, I have full faith in your
ability to find a way to do it faster and better.

Also, you’re going to be working with IsoHexCore, which was introduced in Chapter 15, “The
IsoHexCore Engine.” I’ll add components to it, and it will become a more robust engine as time goes on.

Without further ado, let’s get started, shall we?

Layered Map Basics
Just so that you and I are both on the same page (figuratively speaking), I want to explain exactly what I
mean by a layered map. When I say layered map, I just mean that there is potentially more than one
tile/sprite blit on a given map location. Figure 16.1 shows a simple layered map. Sometimes, there is no
need for a layered map. For example, you can make some board games without layering, although, you’d
probably want to use them for most. For example, in a chess game, you might want to have separate images
for the board tiles and the piece sprites, although nothing prevents you from making each piece on each
board tile and just using a single layer.

What is the main purpose of having layered maps? Generally speaking, layered maps let you make richer
worlds (and richer worlds are more immersive) while at the same time decreasing the number of actual
tiles/sprites needed. This means you will need to use your artists less, and as a result, your art costs won’t
be as large.

With a layered map, you can have only a limited number of tiles. For example, if you took three types of
terrain (grassland, prairie, and ocean) a few tiles to build coastline (for iso, this can be done with as few as
16 tiles) eight tiles for roads and a few tiles to represent forests, hills, towns, and so on from these 30 or
so tiles you could create a world that seems like it was made of hundreds of tiles. In reality, the map only
consists of smaller tiles that are put together in different ways.

Isometric Game Programming with DirectX 7.0

TeamLRN

413

In addition, layering tiles and sprites allows you to convey information about the tile to the user graphical-
ly, letting him know where his units, characters, and buildings are, where his enemies are, what resources are
available at a given location, and so on.

Layered Map Methods
Now that you’ve seen the doors that layered maps open for you, you can start to really think about how
you’ll work with them. Basically, there are two methods: the tile scale method and the map scale method.
In most instances either one will work, but there are subtle differences of which you should be aware.

Tile Scale Layering
In tile scale layering, the layering occurs on a per-tile basis. This means that if you have a background of
grassland and a tree on a tile, when the map drawing gets to that tile, it blits the grassland, then the tree,
and then moves on to the next tile.

Figure 16.2 shows a three-layer map using the tile scale method of layering. The three layers are (from bot-
tom to top) background (a simple green tile), shadow, and foreground.

Layered Maps and Optimized Rendering

Figure 16.1

A layered iso map

414

Tile Scale Layering Example
Load up IsoHex16_1.cpp. It requires all the standard stuff, including DDFuncs.h/DDFuncs.cpp,
TileSet.h/TileSet.cpp, and the IsoHexCore files. This example is responsible for the image shown in
Figure 16.2. Mostly, this sample program is the same as IsoHex15_1.cpp, with the map type code taken
out and some extra tilesets loaded in. The main changes are in the blitting section of Prog_Loop, but the
differences aren’t limited to that section.

The first change is that instead of a single tileset for your images, you have a separate bitmap for each
layer. The background tile is stored in backgroundts.bmp. The tree’s shadow is in treeshadowts.bmp,
and the tree itself is in treets.bmp. Each of these tilesets has a single image, which might seem like a bit of
a waste, but having them separate makes it easier to show how layering works. The background is loaded
by a CTileset object called tsBack. The shadow is loaded into tsShadow, and the tree is loaded into
tsTree. This is all done within Prog_Init, in the middle of the IsoHexCore initialization.

The next fundamental change is the manner in which the map is set up. Before, when you had several
tiles and only one layer, you had it randomly choose an image to display. In this case, the background is
the same for all tiles. The only change from one tile to another is whether or not there is a tree. I picked
the value 0 for “no tree” and the value 1 for “tree.” Here’s the code that sets up the map:

//set up the map to a random tilefield
for(int x=0;x<MAPWIDTH;x++)
{

for(int y=0;y<MAPHEIGHT;y++)
{

iMap[x][y]=rand()%2;
}

}

Isometric Game Programming with DirectX 7.0

Figure 16.2

Tile scale layering

TeamLRN

415

It’s really basic. Just assign a map square to rand()%2, which gives you either a 0 or 1. No major trickery
occurring here! The major change (blitting the map in Prog_Loop) is a little more involved. The loop
through the map positions is the same as normal; the changes occur in the inner loop. First, blit the back-
ground tile, since the background is uniform for all areas. Next, check to see whether the current map
position coincides with the cursor. If it does, you blit the cursor onto that position.

Finally, there is a check to see if a tree is at the current position. If there is a tree, blit the shadow and
then blit the tree. If no tree exists, skip it. Easy enough, right? Take a look at the code that does it:

//plot our tiles
POINT ptPlot;
POINT ptMap;
for(ptMap.y=0;ptMap.y<MAPHEIGHT;ptMap.y++)
{

for(ptMap.x=0;ptMap.x<MAPWIDTH;ptMap.x++)
{

//plot the tile
ptPlot=TilePlotter.PlotTile(ptMap);
//convert from world to screen
ptPlot=Scroller.WorldToScreen(ptPlot);
//put the background
tsBack.PutTile(lpddsBack,ptPlot.x,ptPlot.y,0);
//check for cursor plotting
if(ptMap.x==ptCursor.x && ptMap.y==ptCursor.y)
{

tsCursor.PutTile(lpddsBack,ptPlot.x,ptPlot.y,0);
}
//check for tree
if(iMap[ptMap.x][ptMap.y]==1)
{

//put shadow
tsShadow.PutTile(lpddsBack,ptPlot.x,ptPlot.y,0);
//put tree
tsTree.PutTile(lpddsBack,ptPlot.x,ptPlot.y,0);

}
}

}

Layered Maps and Optimized Rendering

416

Nothing to it, right? If you had other foreground objects, like stones, signs, or buildings, you could handle
it in pretty much the same way, except that the map position might have 0 to represent nothing, 1 to rep-
resent a tree, 2 to represent another object, and so on.

And now I have to apologize. As it turns out, I lied about this example being a three-layer map.
Technically, it is not. The cursor can be considered a layer, squeezed between the background layer and the
shadow layer. So if you want to be completely accurate about it, this is a four-layer, not a three-layer map.
Luckily, I’m not too concerned about the cursor’s layer, since I think of the cursor as an almost completely
separate system. I just wanted to point out that it was technically a layer. I’ll say nothing more on the
topic, and we won’t consider the cursor layer from here on out.

If you compile and run the example, you’ll see something similar to Figure 16.2. By clicking, you can add
and remove trees. Moving the mouse to the edge of the screen scrolls in that direction. This is a rather
simple example of a map editor, except, of course, that you cannot save or load your map.

In this example, the fact that you are using tile scale layering introduces certain distortions to the images
on the map. For example, if a tree is placed to the southwest of another tree, the southwest tree’s shadow
will cover the lower part of the other tree’s trunk. Figure 16.3 zooms in on this effect. In many examples,
this would be acceptable, but not when you have a shadow layer.

Isometric Game Programming with DirectX 7.0

Figure 16.3

Image distortions for tile

scale layering

TeamLRN

417

Map Scale Layering
The other method of layering is to apply layers one at a time to the entire map, rather than applying
all the layers to a single tile. Figure 16.4 shows an example of this, using the same tree and tree shadow
images you’ve been using.

Map Scale Layering Example
IsoHex16_2.cpp is the map scale layering example. The code is almost identical to IsoHex16_1.cpp, with
one small, but meaningful, exception. That exception is the main rendering loop. Or, I should say, loops.

In map scale layering, you apply one layer to the entire map and then move on to the next, which means
that you have to do your nested mapx, mapy loops as many times as you have layers. You might be think-
ing that this adds more overhead (because the plotted coordinates have to be calculated several times).
True, the example does this, and so yes, you have more overhead than is necessary. However, this does not
mean that the map scale type of layering is always less efficient than tile scale layering. Indeed it is not;
it is simply less efficient in this case because of the way you set up the loop.

Here is the revised code for the rendering loops:

//plot our tiles
POINT ptPlot;
POINT ptMap;
for(ptMap.y=0;ptMap.y<MAPHEIGHT;ptMap.y++)
{

for(ptMap.x=0;ptMap.x<MAPWIDTH;ptMap.x++)

Layered Maps and Optimized Rendering

Figure 16.4

Map scale layering

418

{
//plot the tile
ptPlot=TilePlotter.PlotTile(ptMap);
//convert from world to screen
ptPlot=Scroller.WorldToScreen(ptPlot);
//put the background
tsBack.PutTile(lpddsBack,ptPlot.x,ptPlot.y,0);
//check for cursor plotting
if(ptMap.x==ptCursor.x && ptMap.y==ptCursor.y)
{

tsCursor.PutTile(lpddsBack,ptPlot.x,ptPlot.y,0);
}

}
}
for(ptMap.y=0;ptMap.y<MAPHEIGHT;ptMap.y++)
{

for(ptMap.x=0;ptMap.x<MAPWIDTH;ptMap.x++)
{

//plot the tile
ptPlot=TilePlotter.PlotTile(ptMap);
//convert from world to screen
ptPlot=Scroller.WorldToScreen(ptPlot);
//check for tree
if(iMap[ptMap.x][ptMap.y]==1)
{

//put shadow
tsShadow.PutTile(lpddsBack,ptPlot.x,ptPlot.y,0);

}
}

}
for(ptMap.y=0;ptMap.y<MAPHEIGHT;ptMap.y++)
{

for(ptMap.x=0;ptMap.x<MAPWIDTH;ptMap.x++)
{

//plot the tile
ptPlot=TilePlotter.PlotTile(ptMap);
//convert from world to screen
ptPlot=Scroller.WorldToScreen(ptPlot);
//check for tree
if(iMap[ptMap.x][ptMap.y]==1)
{

Isometric Game Programming with DirectX 7.0

TeamLRN

419

//put tree
tsTree.PutTile(lpddsBack,ptPlot.x,ptPlot.y,0);

}
}

}

As you can see, there are three sets of nested (x,y) loops, one for each layer. The first set of for loops
takes care of the background. The next set takes care of the shadow layer, and the final set takes care of
the foreground. The cursor is plotted during the background layer (it just looks strange if done otherwise).
If you compile and run the example, you’ll get something that looks like Figure 16.4.

In Figure 16.5, I’ve zoomed in on this example to show the subtle difference between tile scale and map
scale layering. In the current example, all the shadows are drawn before any of the trees are, so none of the
trees are obscured by the shadow like they are in the map scale example. Mostly, this is a matter of person-
al preference. I prefer the look of the second, but you might prefer the look of the first.

Layered Maps and Optimized Rendering

Figure 16.5

Map scale layering

close up

420

What’s the Big Deal?
You might have been following along in this chapter wondering, “Well, who cares?” and thinking that I’m
the most insane programming book author ever. You may be thinking it shouldn’t matter what layering
method you use, because it’ll turn out OK either way, right? I will conditionally agree with you. If none of
your art extends beyond the background tile shape, like it does in most hexagonal strategy games, it doesn’t
matter, since with either method you will have the same net result.

However, with isometric maps, it is quite rare to have graphics that do not extend outside the basic tile
shape, which means that the order of layer rendering does have an impact on the map’s final appearance.

A More Efficient Tile Blitting
Algorithm
Up until this point, every single isometric application we’ve written has drawn the entire map every frame.
After chapters and chapters of doing this, I’m telling you not to do it anymore. It’s fine if you have a small
number of tiles, not more than a few hundred. But if you have several thousand tiles, and several layers,
you will start to see some performance hits if you blit every tile every time.

An old game programming rule is never to draw anything you don’t have to. This is harder to do than it
sounds, especially in isometric graphics. So, the problem is how to fill in the screen (or, really, any rectan-
gular area) with isometric tiles and sprites without drawing more tiles than you have to?

The answer lies in the MouseMap. The MouseMap, you remember, converts screen coordinates into map
coordinates. Hence, you can determine what map locations are at the corners of the screen, and, based
on those map locations, you can blit only map locations that should appear on the screen. (To be honest,
you’ll include an extra row or two of tiles because of layering. That’s an extra 20 or so tiles—a small price
to pay in order to not blit 10,000 tiles.)

The main problem with using the MouseMap is that you cannot use it in its current configuration.
Whatever corner map locations you pick, they have to be in the same row and column as the other corner.
As Figure 16.6 shows, that cannot be done with the current MouseMap. In this figure, the lightly shaded
section shows the screen rectangle, and the darkly shaded tiles indicate the tiles found at the corners of
the screen space. Plainly, deciding what tiles to blit based on these results is a matter of guesswork, and
it would be impossible to come up with a solution that would work in all cases. So, you have to abandon
using the MouseMap as-is for an isometric map.

Isometric Game Programming with DirectX 7.0

TeamLRN

421

However, there is one type of map that can use the MouseMap as is to accomplish this task—the rectan-
gular map. Figure 16.7 shows a rectangular map, with the corner map locations of screen space shown
darkly shaded, and the tiles that need to be shown lightly shaded. From this figure, you can see how easy it
is to update a rectangular map without writing more tiles than you have to. You simply loop from left to
right and top to bottom, blit them, and go.

Layered Maps and Optimized Rendering

Figure 16.6

Using the MouseMap as-is

Figure 16.7

Using the MouseMap on a

rectangular map

422

You are dealing with isometric tiles, not rectangular tiles, so this stuff about rectangular tiles
can’t help you, right? Wrong, of course, or I wouldn’t have mentioned it. Think for a moment about how
the MouseMap works. First, it takes a screen coordinate and translates it to a world coordinate using a
scroller. Next, it changes world coordinates into MouseMap coordinates, both coarse and fine. Now, stop
here for a moment.

The phrase calculate coarse MouseMap coordinates means nothing more than divide the area into smaller rectangles.
You need rectangles if you want to limit the number of blits per loop.

Take a look at Figure 16.8, which shows a possible screen space (the inverted rectangular section) amid
a number of MouseMap images (which will serve as the rectangular area). It is now quite obvious what
tiles you need to blit, but you need a solution that will work no matter where the screen space rectangle
is located.

The MouseMap coarse coordinate takes you only halfway to where you want to go, but at least it’s a start.
You know that if a given rectangular area intersects with the screen space rectangle, at least one of the iso
parts that comprise it must be drawn. But, you aren’t concerned with the “at least.” Instead, you are con-
cerned with “at most.” At most, having a given MouseMap rectangle intersecting with your screen space
means that you have to redraw five tiles: the central tile and each of the corner tiles. Now you’re really get-
ting somewhere.

If you figure out the MouseMap coarse coordinates of each corner, figure out the map location of the
center tile, and then move one step in the same direction as the corner (for example, in the northwest cor-
ner, move one step northwest), you will have specified a range of tiles that you can draw. Each corner will
align with the other corners, and you’ll be able to loop through the tiles without a problem. (Well, with

Isometric Game Programming with DirectX 7.0

Figure 16.8

MouseMap coordinates

TeamLRN

423

only minor problems. You’ll have to use the TileWalker quite a bit to make this work right, but I’ll get
back to that in a minute.)

Figure 16.9 shows a possible screen space, the corner MouseMaps, and the corner isometric tiles.
Hopefully, this is a better representation of how this concept works. I know that the wording is a little
difficult to understand if you’re just reading it. It sounds like a recipe for chocolate chip cookies written
in Arabic.

As you can see, the four iso tiles are nicely aligned so that to walk from the northwest corner to the north-
east corner, you can simply take eastward steps, as shown in Figure 16.10. So, from a calculated starting
location, you simply walk until you hit the other corner.

Layered Maps and Optimized Rendering

Figure 16.9

Isometric corners

424

Similarly, you could walk top to bottom, except you would skip alternate rows of tiles that need blitting,
so you’ll take a zigzag path down each side. On the left side, you will alternately move southeast and
southwest. On the right side, you will alternately move southwest and southeast (that is, opposite of the
direction you are moving the left edge).

This brings me to an important point. You have to keep track of both edges at all times, because not only
do you tilewalk from the left to the right, but afterward you also walk diagonally from that point. In other
words, this will involve a whole lot of somewhat messy and hard-to-read code.

I’ll show you a programming example soon, but first I want to lay out the algorithm, just in case my expla-
nation up until now has left you wondering.

1. Calculate the coarse MouseMap coordinates for each corner of the screen space.
2. Determine the map location of the central tile of the MouseMap corresponding to the coarse

MouseMap coordinate calculated in Step 1 (that is, the map location where the lookup has an
MM_CENTER).

3. For each of the map locations from Step 2, take one step away from the screen space. This
means that the northwest corner takes a step to the northwest, the northeast corner takes a step
to the northeast, and so on for southwest and southeast.

4. Set a few control variables: RowCount counts the number of rows blitted, starting with 0.
RowStart and RowEnd mark the beginning and end of rows. It starts with the value of the map
locations for northwest and northeast, respectively.

5. Start at RowStart and blit tiles and move east until RowEnd has been blitted.
6. If RowCount is even, move RowStart to the southeast and RowEnd to the southwest.

Otherwise, move RowStart to the southwest and RowEnd to the southeast.
7. Increase RowCount by 1.

Isometric Game Programming with DirectX 7.0

Figure 16.10

Walking left to right

TeamLRN

425

8. If RowStart is at or above the southwest corner, return to Step 4 to blit another row.
9. All the required tile rows have been blitted, but you might want to blit an extra row or two

for taller structures that might be on their tiles.

You’ll notice something about this method. It doesn’t have the words “For Slide Maps,” “For Staggered
Maps,” or “For Diamond Maps,” and well it should not. This algorithm is independent of map type, and
it will work for any of them. The only issue you should be wary of is nonexistent tiles. The map location
found by the MouseMap might not be within the map’s range, so you need a “reality check” before going
ahead and blitting the tile in question.

Code Example: Reducing the Number
of Blits per Frame
Finally, it’s time for a programming example. Load up IsoHex16_3.cpp. If you are still a little confused
by the explanations so far, this example is a concrete application of what I’ve been discussing. The first
thing I’d like to point out about IsoHex16_3.cpp is that it is rather similar to IsoHex16_1.cpp. It uses
tile scale layering, for one, since that makes it easier to show the rendering loop. The second thing I want
to point out is that I have increased the map’s size from the 20✕40 you saw earlier in the chapter to
200✕400, a hundred-fold increase in size.

This brings up the question “Why the size increase?”Well, if you were to take one of the other examples
from this chapter and increase the map similarly, you would see a drastic reduction in performance. In
other words, it would be incredibly slow. Don’t take my word for it, though. Go ahead and load up one
of the other examples, change the map size to 200✕400, and run it. No, really—go ahead. I can wait.

Back? Good. Notice how slow that was? When I did it, it seemed to take ages to scroll even a slight
amount. That’s because the program is blitting every map location every frame. With 20✕40, at an average
of two blits per map location, that is 1,600 blits per frame, which most computers today can handle with-
out too much of a problem. However, increasing that to 160,000 blits per frame causes such a perform-
ance hit that you might be tempted to go back to your day job.

With the algorithm I’ve been talking about, you can reduce the number of blits per frame so that only
those tiles that need to be blitted to the screen will be blitted. (Actually, for good measure, you throw in
a few extras around the edges, but a few extra blits isn’t 160,000.)

First, I’m going to show some rough figures. You are currently using a 640✕480 display mode and tiles
that are 64✕32. If your tiles took up the entire 64✕32, you would need to blit only 15 rows of 10
columns each. Your tiles overlap, and each row is offset by only half a tile’s height, so you really need about
10✕30 map locations blitted per frame. For the bordering tiles, you have to expand this by one tile in each
direction, so you end up with 12✕32 map locations that probably should be blitted per frame. With an
average of two blits per map location, this makes for 12✕32✕2 or 768 blits per frame, which is less than 1
percent of the 160,000 for a 200✕400 map, and half of the figure for a 20✕40 map.

Layered Maps and Optimized Rendering

426

In conclusion, this is something you definitely want to do. So let’s do it. Most of IsoHex16_3.cpp is the
same as the other examples, as far as how it is initialized, how it is cleaned up, and how it responds to
various events. The only real difference is the rendering loop, which takes place during Prog_Loop.

The rendering loop has two parts. First is the preparatory stage, in which you use the MouseMap to figure
out what map locations bound the area you want to blit. Second is the rendering loop itself, which loops
between these calculated locations and draws the images. I should warn you that some of this code is a
little on the “evil” side, meaning that it might at first look a little strange and doesn’t necessarily follow
good programming practice. Don’t let that deter you. At least it’s fast!

Preparatory Stage
The preparatory stage calculates the corners from which you will be looping in the rendering loop. Each
corner is calculated separately and uses calculations in the same way, just with different starting positions.
I’ll show only the upper-left corner calculation and then tell you what is different for the other corners.

//screen point
ptScreen.x=Scroller.GetScreenSpace()->left;
ptScreen.y=Scroller.GetScreenSpace()->top;

Here, you start with the screen coordinate that corresponds to the upper-left corner of the screen space.
In this case it is (0,0). I could have just used 0s, but I wanted to show that this method can be used for
any rectangular area. Hint: this is important information for later in this chapter.

//change into world coordinate
ptWorld=Scroller.ScreenToWorld(ptScreen);
//adjust by mousemap reference point
ptWorld.x-=MouseMap.GetReferencePoint()->x;
ptWorld.y-=MouseMap.GetReferencePoint()->y;

Next, I translated these coordinates into world space and adjusted them by the MouseMap’s reference
point. As you can see, I am using a method very similar to the method of mousemapping that I intro-
duced in Part I.

//calculate coarse coordinates
ptCoarse.x=ptWorld.x/MouseMap.GetWidth();
ptCoarse.y=ptWorld.y/MouseMap.GetHeight();

Next, on to more mousemapping stuff. These are the calculations of the coarse MouseMap coordinates,
which you need to find the MouseMap’s central tile.

//adjust for negative remainders
if(ptWorld.x%MouseMap.GetWidth()<0) ptCoarse.x—;
if(ptWorld.y%MouseMap.GetHeight()<0) ptCoarse.y—;

Isometric Game Programming with DirectX 7.0

TeamLRN

427

You’ve seen this before. You have to adjust for negative world coordinates.

//set map point to 0,0
ptMap.x=0;
ptMap.y=0;
//do eastward tilewalk
ptMap=TileWalker.TileWalk(ptMap,ISO_EAST);
ptMap.x*=ptCoarse.x;
ptMap.y*=ptCoarse.x;
//assign ptmap to corner point
ptCornerUpperLeft.x=ptMap.x;
ptCornerUpperLeft.y=ptMap.y;

Okay, this is where I start to deviate from normal mousemapping algorithms. You start with a map point
of (0,0) and retrieve from the TileWalker by how much a step to the east will change it. Then you multi-
ply by the coarse coordinate’s x location. This serves the same purpose as doing a loop with single tilewalks
to the east. An eastward walk is always consistent, no matter what type of iso map you are using, so
this manner of doing a multi-tilewalk is acceptable. However, I still don’t suggest using this method for
diagonal directions. The results of the multiplication are assigned to the corner point variable.

//reset ptmap to 0,0
ptMap.x=0;
ptMap.y=0;
//do southward tilewalk
ptMap=TileWalker.TileWalk(ptMap,ISO_SOUTH);
ptMap.x*=ptCoarse.y;
ptMap.y*=ptCoarse.y;
//add ptmap to corner point
ptCornerUpperLeft.x+=ptMap.x;
ptCornerUpperLeft.y+=ptMap.y;

Here, you use a similar idea with the southward tilewalk, after first clearing out the map location. This
time you add the value to the corner point variable. South is another direction in which the walker is
always consistent.

So, you now have the central tile of the MouseMap that corresponds to the upper-left corner of the
screen space. The rest of the corners are calculated in a similar way, just starting with a different screen
coordinate at the top. After you’ve calculated all the corners, walk one step away from the screen space, as
shown in the following code snippet:

//tilewalk from corners
ptCornerUpperLeft=TileWalker.TileWalk(ptCornerUpperLeft,ISO_NORTHWEST);
ptCornerUpperRight=TileWalker.TileWalk(ptCornerUpperRight,ISO_NORTHEAST);

Layered Maps and Optimized Rendering

428

ptCornerLowerLeft=TileWalker.TileWalk(ptCornerLowerLeft,ISO_SOUTHWEST);
ptCornerLowerRight=TileWalker.TileWalk(ptCornerLowerRight,ISO_SOUTHEAST);

Now you have map locations guaranteed to be at least partially outside the screen space, and your calcula-
tions are complete. You’re ready to render!

Rendering Loop
The preparatory-stage code wasn’t too terrible, right? It’s pretty straightforward, I think. It just has a lot
of lines. This next bit might not seem nearly as straightforward. Since you have no way of knowing where
the corners are, and no way of knowing what map type is being used for the map, this means that you also
don’t know how many steps to the east the upper-right corner is from the upper-left corner. Nor do you
know how many steps south the lower-left corner is from the lower-right corner. Not knowing these things
is both good and bad. The good part is that you don’t actually have to know in order to render correctly.
That means that this method will work with any map type and any screen size, or even any portion of
the screen you want. The bad part is that it makes the code kind of strange to look at. Check it out:

//set up rows
ptRowStart=ptCornerUpperLeft;
ptRowEnd=ptCornerUpperRight;
//start rendering loops
for(;;)//"infinite" loop
{

//set current point to rowstart
ptCurrent=ptRowStart;
//render a row of tiles
for(;;)//’infinite’ loop
{

//check for valid point. if valid, render
if(ptCurrent.x>=0 && ptCurrent.y>=0 &&

ptCurrent.x<MAPWIDTH && ptCurrent.y<MAPHEIGHT)
{

//valid, so render
ptScreen=TilePlotter.PlotTile(ptCurrent);//plot tile
ptScreen=Scroller.WorldToScreen(ptScreen);//world->screen
tsBack.PutTile(lpddsBack,ptScreen.x,

ptScreen.y,0);//put background tile
if(iMap[ptCurrent.x][ptCurrent.y])//check for tree
{

tsShadow.PutTile(lpddsBack,ptScreen.x,
ptScreen.y,0);//put shadow

tsTree.PutTile(lpddsBack,ptScreen.x,ptScreen.y,0);//put

Isometric Game Programming with DirectX 7.0

TeamLRN

429

tree
}

}
//check if at end of row. if we are, break out of inner loop
if(ptCurrent.x==ptRowEnd.x && ptCurrent.y==ptRowEnd.y) break;
//walk east to next tile
ptCurrent=TileWalker.TileWalk(ptCurrent,ISO_EAST);

}
//check to see if we are at the last row. if we are, break out of loop
if(ptRowStart.x==ptCornerLowerLeft.x && ptRowStart.y==ptCornerLowerLeft.y)

break;
//move the row start and end points, based on the row number
if(dwRowCount&1)
{

//odd
//start moves SW, end moves SE
ptRowStart=TileWalker.TileWalk(ptRowStart,ISO_SOUTHWEST);
ptRowEnd=TileWalker.TileWalk(ptRowEnd,ISO_SOUTHEAST);

}
else
{

//even
//start moves SE, end moves SW
ptRowStart=TileWalker.TileWalk(ptRowStart,ISO_SOUTHEAST);
ptRowEnd=TileWalker.TileWalk(ptRowEnd,ISO_SOUTHWEST);

}
//increase the row number
dwRowCount++;

}

What might throw you is that there are two nested infinite for loops (the for(;;), which does the same
thing as a while(true)). Now that you’ve seen it all at once, you’re probably saying, “Huh?” and perhaps
checking how strong your keyboard is by hitting your head on it a few times. It’s weird code, and I didn’t
have fun debugging it, I can tell you. Trust me, there were plenty of bugs.

I’m going to change the way these loops look so that I can explain them a little better. First, I’ll tackle the
outer loop:

//set up rows
ptRowStart=ptCornerUpperLeft;
ptRowEnd=ptCornerUpperRight;

Layered Maps and Optimized Rendering

430

This sets up the two ends of the tile rows. You start at the top and move down. The ptRowStart variable
contains the west end of the row, and the ptRowEnd variable contains the east end of the row.

//start rendering loops
for(;;)//"infinite" loop
{

Oh joy! You’ve started your outer “infinite” loop. Since the loop has no exit condition, at some point you
need to have a method of determining that you are done and use break to get out of it.

//set current point to rowstart
ptCurrent=ptRowStart;

The ptCurrent variable keeps track of the map location that you are currently rendering. With each new
row, you set it to ptRowStart and then move eastward from there.

//render a row of tiles
RenderRow();//this replaces the inner loop

RenderRow isn’t a real function. It just replaces the inner loop, which renders each tile and then moves east-
ward until ptRowEnd is reached.

//check to see if we are at the last row. if we are, break out of loop
if(ptRowStart.x==ptCornerLowerLeft.x && ptRowStart.y==ptCornerLowerLeft.y)

break;

This is the exit condition. If the current value of ptRowStart is the same as the lower-left corner of the
tile range, you are done. This check is done after the row is rendered to ensure that you get all the rows
blitted.

//move the row start and end points, based on the row number
UpdateRowEnds();//this code replaces the row start and row end movement

code

There is also no UpdateRowEnds function. This just replaces the code used to modify the row’s start and
end variables. I’ll explain it in better detail later; it’s different depending on whether the dwRowCount vari-
able is odd or even.

//increase the row number
dwRowCount++;

}

Finally, you increase dwRowCount, which affects the behavior of UpdateRowEnds. dwRowCount starts at 0.

Isometric Game Programming with DirectX 7.0

TeamLRN

431

So, now the outer loop is demystified. On to the inner loop (the code replaced by RenderRow() in the
inner loop):

//render a row of tiles
for(;;)//’infinite’ loop
{

Ah, the inner “infinite” loop. You already have ptCurrent initialized to ptRowStart, so you can work
with it from there.

//check for valid point. if valid, render
if(ptCurrent.x>=0 && ptCurrent.y>=0 &&

ptCurrent.x<MAPWIDTH && ptCurrent.y<MAPHEIGHT)
{

//valid, so render
RenderTile();//replaces actual tile rendering code

}

The first check you have to do is to make sure that ptCurrent is an actual tile in the map, which means
it has to be at least 0 and less than the height. If the point falls within the proper range, you can go ahead
and render it. The RenderTile function is a replacement for the actual tile-rendering code.

//check if at end of row. if we are, break out of inner loop
if(ptCurrent.x==ptRowEnd.x && ptCurrent.y==ptRowEnd.y) break;

Just as you needed an exit condition to get out of the outer loop, you also need one here in the inner loop.
In this case, check to see if ptCurrent equals ptRowEnd. If it does, break out of the loop.

//walk east to next tile
ptCurrent=TileWalker.TileWalk(ptCurrent,ISO_EAST);

}

Last, walk to the next tile, taking a step to the east, and continue the row. This algorithm isn’t nearly
as bad as it appears, once you start to take it apart and make pseudocode out of it.

The last bit I have to cover is the part of the outer loop that was replaced by UpdateRowEnds().
Thankfully, it doesn’t include another infinite for loop!

if(dwRowCount&1)
{

//odd
//start moves SW, end moves SE
ptRowStart=TileWalker.TileWalk(ptRowStart,ISO_SOUTHWEST);
ptRowEnd=TileWalker.TileWalk(ptRowEnd,ISO_SOUTHEAST);

Layered Maps and Optimized Rendering

432

}
else
{

//even
//start moves SE, end moves SW
ptRowStart=TileWalker.TileWalk(ptRowStart,ISO_SOUTHEAST);
ptRowEnd=TileWalker.TileWalk(ptRowEnd,ISO_SOUTHWEST);

}

This is probably the most straightforward part of the rendering loop. This bit of code is called after a row
has been rendered. If you are on an odd row (dwRowCount&1!=0), you have to move the ends of the row
outward (ptRowStart to the southwest and ptRowEnd to the southeast). If you are on an even row, you
move inward instead. This gives you a zigzag in the southerly direction, which is what you want.

Now you’ve got an algorithm that limits the blitting in your rendering loop to a manageable number of
tiles. However, it should not satisfy you. Sure, it blits only those tiles that really need it, but ask yourself
this question: Frame by frame, how many map locations really change and really need to be redrawn? The
answer is just one, unless you’re scrolling. When scrolling, you need to update more of the map since
everything moves, but there are also ways of limiting that.

In addition, are the calculations in the “preparatory stage” really necessary for all four corners? Couldn’t
you just calculate an offset for the other four corners based on the upper-left?The fact of the matter is
that there are many things you can do to optimize this method and optimize your isometric engine in gen-
eral. And yes, you will do all of these things before you are done.

There’s something I want to point out about IsoHex16_3.cpp before we move on. Next time you run the
program, start scrolling to the right slowly, at maybe one or two pixels per frame. While you are scrolling,
keep watching the left side of the screen. You will see that as you scroll, certain tree shadows vanish before
they are fully off the screen. If you then scroll back to the left, you will see these same shadows suddenly
appear (you can see the same thing happen if you scroll up or down and watch the bottom of the screen).
This is yet another rendering problem with isometric graphics. Since some of the images extend beyond
the tile, you sometimes have to blit for areas that aren’t actually on-screen in order to avoid the sudden
appearance and disappearance of images. After all, you want the user to think that the screen is just a little
camera into this isometric world and have a consistent picture no matter where that camera is located.

So, how can you avoid this problem? Well, to fix the left-right scrolling problem, you could move the
upper-left and lower-left corners one tile to the west. Yes, you will have to blit a few more tiles this way,
maybe an extra 30 or so, but the cost will be well worth it. Similarly, to solve the up-down scrolling prob-
lem, you could move the lower-left and lower-right corners south by one tile. Again, blit a few more tiles
for added realism.

Isometric Game Programming with DirectX 7.0

TeamLRN

433

If you have exceptionally tall or wide images, you might want to extend the corners farther. This calls for
some judgment on your part. Do you use an exceptionally tall image? Or do you split it into two smaller
images and place each image to get the illusion of a very tall structure instead? The choice is yours. Either
way has its pluses and minuses.

Summary
In this chapter, you broke out of your shell, so to speak. You took the basics from Part I and started to
mold them into something real. Your journey is far from over, but hopefully you are starting to see what
you can do with this isometric stuff. You’ve explored layering and optimizing the rendering loop, both of
which are fundamental if you ever plan on writing an isometric engine or game that really performs well.

Layered Maps and Optimized Rendering

Further
Rendering

Optimizations

• Get Rid of Blt

• Moving to BltFast

• Whittling Down the Blits
er Frame

• Building Crenderer

CHAPTER 17

TeamLRN

435

In the last chapter, I introduced you to the idea that you can render faster by not rendering everything
all the time. In this chapter, I’ll take this concept even further—in fact, to the very limits of what you

can do (at least, within the bounds of using DirectX). You’ll add a new component, the map renderer, to
your list of isometric components. In any case, it should be an interesting experience, so let’s get going!

Get Rid of Blt
You’ve been using the CTileSet class for a while now, and you’ve gotten some very good mileage out of it.
It serves well as a tile/sprite blitter. However, it relies on IDirectDrawSurface7::Blt to do the rendering
and uses IDirectDrawClipper to do the clipping.

This, my friend, is just not acceptable. You have all the information you need to do your own clipping—
namely, rcScreenSpace in the CScroller class. You also have the extent rectangles of all your tiles stored
in your CTileSet. Surely, by using some simple WIN32 RECT functions, you can eliminate the need for a
clipper, and also for Blt, and replace both of these with the faster BltFast.

Take a gander at Figure 17.1. On the left, a source image is being blitted onto a larger image on the right.
The dark boxes represent the bounding rectangles. When you blit a partially visible image onto a surface,
the clipper is what decides which portion of the image is actually blitted, and which portion is not, based
on the clipping area with which you’ve made your clipper.

Further Rendering Optimizations

Source Image
Portion Blitted Destination Image

Portion Not Blitted

Figure 17.1

The current state of

affairs: using Blt with

a clipper

436

Consider this: IDirectDrawClipper is a general-purpose object, and early on I told you that general-pur-
pose objects are not necessarily good for performance. The example I used at the time was GDI, but the
same idea applies here. You have no idea how a clipper works internally; it might be the worst-performing
code ever written. I doubt that, but it’s possible.

Also, you don’t really need a clipper. Your clipping area is a single rectangle. If it were a number of rectan-
gles, you might be justified in using a clipper, but you should be able to work with a single rectangle by
yourself. And that is precisely what you will do.

First, take a look at how you will do this. When using Blt, you have to specify a source rectangle and a
destination rectangle. With BltFast, you only have to specify a destination point and a source rectangle.
Take a brief look at BltFast as a refresher:

HRESULT IDirectDrawSurface7::BltFast(
DWORD dwX,
DWORD dwY,
LPDIRECTDRAWSURFACE7 lpDDSrcSurface,
LPRECT lpSrcRect,
DWORD dwTrans

);

As with all DirectX member functions, BltFast returns an HRESULT, which contains either DD_OK, mean-
ing that no error occurred, or a DDERR_* constant, meaning that a problem was encountered. Table 17.1
explains the parameter list.

The dwTrans parameter is one or more of the flags listed in Table 17.2.

Isometric Game Programming with DirectX 7.0

Table 17.1 BltFast Parameter List
Parameter Purpose

dwX The destination coordinate for the left of the image

dwY The destination coordinate for the top of the image

lpDDSrcSurface The source surface

lpSrcRect The source rectangle

dwTrans Flags specifying how the blit is to occur

TeamLRN

437

Mainly, you are interested in using DDBLTFAST_SRCCOLORKEY and DDBLTFAST_WAIT, since you have trans-
parent areas in almost all your isometric images.

Moving to BltFast
Now your task is to figure out what to put into these parameters. You already know how to find a destina-
tion rectangle for the entire image. Simply take the extent rectangle and add the destination point to it.

//dstX,dstY are a destination point
//rcExt is the extent rect for the entire image
//rcSrc is the sourc rect for the entire image
//rcDst is the destination rect for the entire image
CopyRect(&rcDst,&rcExt);//copy the extent rect into the destination rect
OffsetRect(&rcDst,dstX,dstY);//offset the destination rect by the destination
point

I’d like to point out something here that will help you a little later. All three RECTs (rcSrc, rcDst, and
rcExt) have the same height and width (right-left and bottom-top come up with the same number for
each RECT). Hence, there is a number by which you can offset each of these RECTs to change it into the
exact same value as another RECT. This little tidbit will help you.

//changeX, changeY is the difference between the left and top of rcDst and
rcSrc.
//adding changeX and changeY to any destination pixel will convert it
//to a source pixel
changeX=rcSrc.left-rcDst.left;
changeY=rcSrc.top-rcDst.top;

Further Rendering Optimizations

Table 17.2 Flags for dwTrans
Flag Purpose

DDBLTFAST_DESTCOLORKEY The blit is to use the destination color key

DDBLTFAST_NOCOLORKEY The blit is not to use any sort of color key

DDBLTFAST_SRCCOLORKEY The blit is to use the source color key

DDBLTFAST_WAIT Instructs DirectDraw to wait until the blit is completed

438

Skeptical? I know I would be. Very well—I’ll prove that this will work. The following looks somewhat like
code, but it is not.

//left
rcDst.left+changeX=
rcDst.left+rcSrc.left-rcDst.left=
rcSrc.left

//right
rcDest.right+changeX=
rcDst.right+rcSrc.left-rcDst.left=
rcSrc.left+(rcDst.right-rcDst.left)=
rcSrc.left+WIDTH=
rcSrc.right

Do I need to go on and do top and bottom too? Or do you trust me now?

Your next task is to clip the destination rectangle. To do this, you need a rectangle to clip, which I will
conveniently supply in the form of rcClip. When you do this for real, this will be rcScreenSpace from
a CScroller object.

//determine the clipped destination coordinate
//rcDstClipped will contain the clipped destination
IntersectRect(&rcDstClipped,&rcDst,&rcClip);

Now you have your clipped destination RECT; you are most of the way there. You just have to figure out
the clipped source RECT and perform the BltFast, and you’re done. Of course, you first have to check
to make sure that rcDstClipped is not an empty rectangle. If it is, there is no reason to proceed.

//check to see if clipped destination is empty
if(!IsRectEmpty(&rcDstClipped))
{

//non-empty rectangle, so calculate clipped source rect
CopyRect(&rcSrcClipped,&rcDstClipped);//copy clipped destination

//to clipped source
OffsetRect(&rcSrcClipped,changeX,changeY);//change to source coords
//perform the bltfast
lpddsDst-

>BltFast(rcDstClipped.left,rcDstClipped.top,lpddsSrc,&rcSrcClipped,
DDBLTFAST_SRCCOLORKEY | DDBLTFAST_WAIT);

}

Isometric Game Programming with DirectX 7.0

TeamLRN

439

That’s it! You’re done! At first glance, this might look like a lot of code, but it really isn’t. Mainly, all you’re
doing is adding integers together and assigning integers, which on any machine is pretty quick, and takes a
negligible amount of time. The bottleneck in any graphically intensive application (like all the isometric
sample programs) is the rendering, not the calculations.

A BltFast Example
What’s next? Well, it’s time to put this algorithm into practice by extending the CTileSet class. Load
up IsoHex17_1.cpp, where I have done just that. This example is based on IsoHex16_3.cpp.

I didn’t want to completely redesign the CTileSet class; I just wanted to extend it. I chose to do so by
adding a member function called ClipTile. The declaration is shown here:

void CTileSet::ClipTile(
LPDIRECTDRAWSURFACE7 lpddsDst,
RECT* prcClip,
int xDst,
int yDst,
int iTileNum

);

This member function returns no values. Table 17.3 explains the parameters.

Further Rendering Optimizations

Table 17.3 ClipTile Parameters
Parameter Purpose

lpddsDst The destination surface to which the BltFast will occur

prcClip A pointer to a RECT that will be used for clipping

xDst The destination x-coordinate for the tile (used to calculate the
destination RECT)

yDst The destination y-coordinate for the tile (used to calculate the
destination RECT)

iTileNum The tile number to be blitted

440

In a nutshell, ClipTile is just like PutTile, but with an added parameter, prcClip, which is what the
function uses to perform its clipping. Now, take a look at the function itself.

void CTileSet::ClipTile(LPDIRECTDRAWSURFACE7 lpddsDst,RECT* prcClip,
int xDst,int yDst,int iTileNum)

{
//source and dest rects
RECT rcSrc;
RECT rcDst;
//changex and changey
int changeX;
int changeY;
//get the destination rectangle
CopyRect(&rcDst,&GetTileList()[iTileNum].rcDstExt);
OffsetRect(&rcDst,xDst,yDst);
//calculate changex and changey
changeX=GetTileList()[iTileNum].rcSrc.left-rcDst.left;
changeY=GetTileList()[iTileNum].rcSrc.top-rcDst.top;
//clip the destination rect to the clipping rect
IntersectRect(&rcDst,&rcDst,prcClip);
//check to see if the destination rectangle is not empty
if(!IsRectEmpty(&rcDst))
{

//copy dest rect to source
CopyRect(&rcSrc,&rcDst);
//offset the source rect by changex/y
OffsetRect(&rcSrc,changeX,changeY);
//do the bltfast
lpddsDst->BltFast(rcDst.left, rcDst.top, GetDDS(), &rcSrc,

DDBLTFAST_SRCCOLORKEY | DDBLTFAST_WAIT);
}

}

This function uses the exact same algorithm outlined earlier, just with fewer actual RECTs. I use only two
because. . . well, that’s the fewest I could get away with. Allocating local variables takes time, so I wanted to
allocate as few as possible. Admittedly, the allocation doesn’t take very much time, but why hurt yourself
when you don’t have to, right?

There are a few other minor changes in IsoHex17_1.cpp. First, the clipper is gone. In order to use
BltFast, you cannot use a clipper. That is just the way of things. Your goal was to get rid of the clipper
anyway, right? Another change has to do with the rendering loop, and is in the form of replacing the calls
to PutTile with calls to ClipTile. An example is shown here:

Isometric Game Programming with DirectX 7.0

TeamLRN

441

tsBack.ClipTile(lpddsBack,Scroller.GetScreenSpace(),ptScreen.x,ptScreen.y,0);
//put background tile

This line in particular replaces the call to PutTile that you previously used to draw the background tile.
No big deal; I’m just moving to the new (better) form of tile blitting.

You’ll probably see a few other minor changes as well. When scrolling, you no longer have the magically
appearing and disappearing images on the left and bottom of the screen. The code responsible for that
miracle is as follows:

//move left corners to the west by one
ptCornerUpperLeft=TileWalker.TileWalk(ptCornerUpperLeft,ISO_WEST);
ptCornerLowerLeft=TileWalker.TileWalk(ptCornerLowerLeft,ISO_WEST);
//move the lower corners to the south by one
ptCornerLowerLeft=TileWalker.TileWalk(ptCornerLowerLeft,ISO_SOUTH);
ptCornerLowerRight=TileWalker.TileWalk(ptCornerLowerRight,ISO_SOUTH);

Actually, I mentioned this concept in the last chapter; we just didn’t get around to actually doing it. Simply
move the left side one tile to the west and the bottom one tile to the south to give yourself a consistent
picture no matter how you scroll.

Last, there is a very, very minor change that ironically is the most noticeable of all. I changed the screen
space. Instead of being the entire screen, it is now only 480✕480. There was a purpose to this change, of
course. I wanted to show just how good our little ClipTile function is. Not a single pixel is plotted out-
side the screen space, which is the RECT you supply to your ClipTile function. This will have important
ramifications later.

Whittling down the Blits
per Frame
So you’ve successfully passed your first hurdle—eliminating the less-than-optimal Blt and replacing it with
the more optimal BltFast. This is a huge win for our team! (Yay team!) You still have a bit of work
ahead, though. Next, I’ll show you how to even further reduce your blitting overhead by using off-screen
frame buffers. You might be thinking, “But I already have a back buffer.”Yes, you do. The back buffer has
served you well by allowing you to go smoothly from one frame to another without flicker. As you
progress, the back buffer will continue to serve you in this capacity.

However, there is a problem with the back buffer. It has to be completely redrawn for every frame. Well,
for any frame in which scrolling has occurred, which, in the examples so far, might as well be every frame.
The problem stems from the fact that after the main surface is flipped, the contents of the back buffer are
from two frames ago. If you have been scrolling for the last two frames, the back buffer might as well be
full of random pixels, because it will do you no good. If there has been no scrolling during the past two
frames, the contents of the back buffer should be the same—unless you just clicked to add or remove a
tree, in which case it isn’t quite the same.

Further Rendering Optimizations

442

See what I mean? Keeping track of the contents of two frames ago is a logistical nightmare, which is why
up until this point you have just been redrawing the whole darn thing. It’s just easier. Unfortunately, it is
also quite costly. It means that you have to blit all the tiles that are in or partially in the screen space, even
if it doesn’t need redrawing. As I’ve said before, the first rule is that you never blit when you don’t have to,
if you want good performance.

So, concerning the additional frame buffer I’ve been discussing, as I said earlier, it is an off-screen surface
that is the same size as the screen space. Since the frame buffer is off-screen and does not flip, the image
data on it remains consistent from frame to frame, which means that you know what’s on it at any given
time. By knowing what is on the frame buffer, you can then manipulate the image data into the new frame,
usually without redrawing the entire thing.

Frame Buffer Scrolling
The first task I’m going to talk about for the frame buffer is scrolling. In any isometric game/engine/utili-
ty, scrolling is a must. More than that, scrolling quickly is a must. Have you ever played a game where the
scrolling is slow or stuttered? You know what I mean. . . you move the mouse to the side to scroll, and
nothing seems to happen for a moment, and then you are suddenly halfway across the playing field. It’s
annoying—you don’t want to have something like that in your game. You want to have a nice, smooth
scroll. Sometimes it’s just not possible, especially with outdated video hardware and lower-end machines,
but that’s no reason not to try!

If you have static data on an off-screen surface, most of your scrolling is very easy. When you scroll, you
can simply move a portion of the frame left, right, up, down—however the scroll is occurring. Figure 17.2
depicts the area that is unaffected by a scroll to the right (unaffected meaning that it doesn’t need to be
totally redrawn). Hence, you can use a large BltFast to do the majority of your scroll, rather than the
individual tiles. Then you simply need to fill in the left edge of the image with new data to complete the
current frame. A similar idea can be applied to left, up, or down scrolls.

Isometric Game Programming with DirectX 7.0

TeamLRN

443

Update Rectangles
Ah, if only it were that simple! The fact of the matter is that there very well could be portions of the
area that do need to be redrawn. There might be unit movement, animated objects, a tree added or
removed, or any number of things. This is not a problem that will keep you from your task, however.
You’ll just have to get creative.

Say, for instance, that there is a tile smack dab in the middle of that otherwise “unaffected” area that
needs to be redrawn. You’ve worked too hard to go back to redrawing the entire frame. So, you won’t.
Instead, you will figure out what tiles need to be redrawn using the same method you used to selectively
blit the tiles to the screen. You’ll just use a smaller clipping rectangle. I told you that algorithm would
come in handy!

So, you’ll do with this image what you did with the entire screen. You’ll determine what rectangle to use
for clipping, calculate where the corner tiles of the range are, and blit the tiles in that range. Simple
enough, right? But where does that rectangle for clipping come from? You only know what tiles need to
be updated. You have no idea how many neighboring tiles will be affected. You can figure it out, though.

The answer stems from the tiles themselves. Each one has its own extent RECT, right? Well, you can safely
assume that the most complicated thing you might do with all these images is blit every single one of them
onto a single tile location. You’re looking at me like I’m crazy. I’m not. It’s true, in this case, since you have
only three tiles—the background, the shadow, and the tree. True, in a more complicated tile map, with
hordes of objects, units, people, buildings, and so on, you probably wouldn’t blit all of them to a single
tile, but I’m just pointing out the most extreme case.

Further Rendering Optimizations

Area Unaffected
By Scrolling

Area Affected
By Scrolling

Previous Frame
(Stored in frame buffer)

Current Frame
(BackBuffer)

Scroll Direction: To The Right

Figure 17.2

Bulk scrolling

444

If you blit every single tile/sprite to a single location, what is the smallest RECT that will contain them?
Well, it’s the union of all the extent RECTs, offset by the screen space coordinates of the map location.
Make sense?

So, you can go through all the tiles of all the tilesets and use UnionRect to come up with the largest pos-
sible extent for a given map location. Since your tilesets don’t change, you can do this once, right after you
load them, and just use that extent RECT to figure out your update areas. Now you can update small areas
using your enhanced tile-rendering algorithm, and you’re doing fewer blits per frame. All is right with the
world. Well, almost.

Look at Figure 17.3, where I have placed some random areas for updating. With multiple update areas,
you can just go through the list of update rectangles, rendering them as you go. However, you might not
want to do that, and here’s why. In the figure, rectangle A is fine, and you can just update it. Rectangles B
and C, on the other hand, overlap. If you update each rectangle separately, the update for rectangles B and
C will update at least one of the same tiles more than once. Rectangles D and E are yet another case. Parts
of them lie outside the screen space. So, what to do?

In the case of D and E, the answer is simple. Just clip the update rectangles to the screen space, and then
update as normal. The answer to B and C is not as simple. One thing you might do is make a union from
them. However, that would cause additional tiles to be updated, which means you might as well just be
updating the overlapping tiles twice.

The answer to the dilemma is not to immediately update the frame. Instead, somehow mark the map loca-
tions for update. The easiest way to do this is to have an array of bools that has the same dimensions as
the map array, and to have true indicate that a tile needs updating and false indicate that it does not.

Isometric Game Programming with DirectX 7.0

D

E

C

B

A

Figure 17.3

Overlapping

update areas

TeamLRN

445

This way, when you add a RECT to be updated, the same tile might be marked several times, but since you
aren’t blitting yet, you won’t be concerned.

After all the update RECTs have been marked in this fashion, you can then scan the entire screen space
using your rendering algorithm, but only draw those map locations that are marked for update. This way,
a given tile is drawn only once, which is what you want. The way you have it set up now, the frame buffer
still has the prior frame on it, and the back buffer has the effects of the scroll on it. When you update the
tiles, you should write to the frame buffer, for reasons that will become clear in a moment. After you have
updated all the tiles, you then blit each of the update RECTs onto the back buffer so that the back buffer
now has the complete current frame. Finally, blit the current frame from the back buffer to the frame
buffer, and then go ahead and flip the primary surface.

Do you see why you are updating to the frame buffer rather than the back buffer? It’s because when
updating, you are using the entire screen space as the clipping RECT instead of the individual update
RECTs. Because of this, you will have portions of tiles that spill outside the update rectangle, quite
possibly obscuring other tiles. When you then move the update rectangles to the back buffer, you correct
this problem.

If you were paying close attention and thinking about overlapping update rectangles, you might have
noticed that I just contradicted myself, . When you are blitting the update RECTs from the frame buffer
onto the back buffer, you will be blitting the overlapped portion twice. Before you yell “Hypocrite!” and
start getting out the pitchfork and torches, give me a chance to explain why I’m allowing this double blit-
ting, but I wouldn’t allow drawing the same tile twice. It is a matter of simple arithmetic. Consider two
overlapping update RECTs that, for the purposes of this example, have a single map location that needs to
be updated for both. If you assume that this map location has a tree and shadow on it, and you update it
twice, that is six blits (drawing the background, shadow, and tree each twice). However, if you update the
map location only once, that is only three blits. Add to this 2, because the same area is blitted because of
the overlap, and that makes 5. This means you’ve saved yourself one blit! In real situations, the facts
become more complicated than what I just showed you here, but it’s good enough to show you that I’m
not just saying one thing and doing something different.

An Isometric Rendering Class
At last, I’m going to bring all the frame buffer stuff together and create a class that will minimize blitting
using a frame buffer for scrolling and update rectangles. First, a decision must be made about what infor-
mation such a class will need, based on the discussion so far.

Right out in front, you know that a rendering class will need two LPDIRECTDRAWSURFACE7 variables—one
for the back buffer and one for the frame buffer. You will supply these two things to the class. For optimal
tile updates, you need a CScroller, CMouseMap, CTileWalker, and CTilePlotter to do all the calcula-
tions for you. You will also supply these things to the class. You have to set them up anyway, so using
pointers to them in another component isn’t a big deal. Also, you’ll need an extent RECT, which you’ll have
to calculate based on all the tiles/sprites in the application. This might create a little bit of work for you

Further Rendering Optimizations

446

during initialization, but again, this is not a big deal. Since you’ll be using update RECTs, you need some
way to store a list of RECTs in the class. Unfortunately, you don’t know how many RECTs are needed, so
you should probably have some way to allocate a number of RECTs that should be sufficient. Because you
will rely on an array of boolean values to check whether to update a given map location, you need such an
array in the class itself. The update array isn’t needed anywhere but within the rendering class, so doing
this is OK. Finally, you need a rendering function. This will not be within the class itself, but rather a
function that you create outside of the class and give a pointer to it to the renderer. This will be just like
what you do with your TilePlotter and TileWalker, only you must always supply the function rather than
having it predefined.

Here’s a summary of what you need in the way of members of your rendering class:

• Two pointers to DirectDraw surfaces
• Pointers to one of each IsoHexCore component
• An extent rectangle used for calculating update RECTs
• An update RECT buffer of arbitrary size
• A boolean update array of arbitrary size
• A pointer to a rendering function

While we’re at it, I could certainly go for two turtledoves and a partridge in a pear tree!

For member functions, you should have nice friendly functions to set all the members of the class, like
the frame buffer, back buffer, IsoHexCore components, and so on. In addition, you should have functions
to add update RECTs to the update RECT list, and a function to add a tile to the update RECT list (the func-
tion would use the extent RECT and the TilePlotter to figure out what RECT is to be added). Also, you
should have a function to do the bulk scroll and a function to update the frame (which blits all the update
RECTs and resets the renderer for the next frame).

When using the renderer, you should first call the scrolling member function, then add whatever update
RECTs are necessary, and then call the update member function. That makes it pretty simple from your
side. Because some of the algorithms you are using are quite complex, you definitely want to wrap them
up in an easy-to-use class like this!

Building CRenderer
Without further delay, let’s get to it. Go ahead and load up IsoHex17_2.cpp. In this example, I have
supplied CRenderer in the files IsoRenderer.h and IsoRenderer.cpp.

The code for CRenderer is the most complicated that I’ve written so far. This is because there are just so
many things that have to be examined and calculated for it to work. The declaration of CRenderer looks
like the following:

//CRenderer Declaration
class CRenderer
{

Isometric Game Programming with DirectX 7.0

TeamLRN

447

public:
///////////////////
//members
///////////////////
//surfaces
LPDIRECTDRAWSURFACE7 lpddsBackBuffer;//back buffer
LPDIRECTDRAWSURFACE7 lpddsFrameBuffer;//frame buffer
//isohexcore components
CTilePlotter* pTilePlotter;//plotter
CTileWalker* pTileWalker;//walker
CMouseMap* pMouseMap;//mousemap
CScroller* pScroller;//scroller
//update RECT list
RECT* rcUpdateList;//must be allocated
int iUpdateRectCount;//number of RECTs in the update list
int iUpdateRectIndex;//stores the next update RECT in the list
//update map
bool* bMap;//will be allocated with enough space for the entire map
int iMapWidth;//width of the map
int iMapHeight;//height of the map
//extent rect
RECT rcExtent;//extent rect, used when adding tiles to the update list
//rendering function
RENDERFN RenderFunction;//function used to render a tile

/////////////////////
//member functions
/////////////////////
//constructor
CRenderer();
virtual ~CRenderer();
//destructor
//surfaces
void SetBackBuffer(LPDIRECTDRAWSURFACE7 lpdds);
void SetFrameBuffer(LPDIRECTDRAWSURFACE7 lpdds);
//isohexcore components
void SetPlotter(CTilePlotter* pPlotter);
void SetWalker(CTileWalker* pWalker);
void SetMouseMap(CMouseMap* pMMap);
void SetScroller(CScroller* pScroll);
//update list
void SetUpdateRectCount(int iMaxRects);//sets up the rectangle list

Further Rendering Optimizations

448

//update map
void SetMapSize(int MapWidth,int MapHeight);//sets up the update map
//rendering functions
void SetRenderFunction(RENDERFN RendFunc);
//extent rect
void SetExtentRect(RECT* rcExt);
//add rect to list
void AddRect(RECT* prcAdd);
void AddTile(int mapx,int mapy);
//scroll the frame
void ScrollFrame(int scrollx,int scrolly);
//update the frame
void UpdateFrame();

};

You can see that this class has far more members than any other class so far. Every single one of them is
needed, too. CRenderer takes from you the task of having to calculate updates yourself. I’m going to
briefly go over the parts of CRenderer. The actual implementation is something you can look at on
your own. I don’t have the space to go over it line by line here.

RENDERFN
There is one typedef for the CRenderer class of which you should be aware. Since the entire operation of
the class depends on a user-defined rendering function for individual tiles, you need a function pointer
type. This is supplied in the form of RENDERFN. Here is the declaration:

//rendering function pointer typedef
typedef void (*RENDERFN)(LPDIRECTDRAWSURFACE7 lpddsDst,RECT* rcClip,

int xDst,int yDst,int xMap,int yMap);

By now, you should be quite familiar with function pointer types. In the case of RENDERFN, there are six
parameters. Table 17.4 lists these members and their meanings.

Isometric Game Programming with DirectX 7.0

TeamLRN

449

Data Members
Table 17.5 lists the data members of CRenderer and describes their basic purpose. In almost all cases,
these members will be supplied by you—the programmer. In the case of rcUpdateList and bMap, how-
ever, you simply supply dimensions, and CRenderer does all the memory management for you.

Further Rendering Optimizations

Table 17.4 RENDERFN Parameters
Parameter Purpose

lpddsDst The destination surface. In all cases, this will be whatever surface is
being used as the frame buffer.

rcClip A pointer to a clipping rectangle that will be passed along to
whatever tilesets are used as the clipping RECT for calls to ClipTile.

xDst The tile’s screen x-coordinate. It is plotted by the renderer.

yDst The tile’s screen y-coordinate. It is plotted by the renderer.

xMap The tilemap x-coordinate.

yMap The tilemap y-coordinate.

450

All of these members are public and thus can be examined at any time without the use of member func-
tions. Also, this means that you can change the values of any of these members. While this “open” sort of
class design is very flexible and gives the programmer (you) a lot of power, the fact remains that for the
most part, you don’t want to mess with the member functions except when initializing them. Especially
stay away from rcUpdateList, bMap, and their related members.

Member Functions
The member functions of CRenderer fall into two main categories: member access and utilization. The
member access functions serve a purpose similar to the initialization functions of the IsoHexCore

Isometric Game Programming with DirectX 7.0

Table 17.5 CRenderer Data Members
Member Purpose

lpddsBackBuffer Contains a pointer to the back buffer. Used for rendering.

lpddsFrameBuffer Contains a pointer to the frame buffer. Used for rendering.

pTilePlotter Contains a pointer to a TilePlotter. Used for calculations.

pTileWalker Contains a pointer to a TileWalker. Used for calculations.

pMouseMap Contains a pointer to a MouseMap. Used for calculations.

pScroller Contains a pointer to a scroller. Used for calculations.

rcUpdateList A buffer that contains a list of update RECTs.

iUpdateRectCount Contains the total number of RECTs that can be stored in the
update RECT buffer.

iUpdateRectIndex An index into the update RECT buffer, indicating the next RECT
to be assigned.

bMap The update buffer, containing boolean values. It’s true if a
tile must be redrawn and false if it does not need redrawing.

iMapWidth Width of the update buffer.

iMapHeight Height of the update buffer.

rcExtent An extent rectangle to allow calculations of update RECTs
based on map locations.

RenderFunction A user-supplied rendering function.

TeamLRN

451

components, meaning that you use them to set up the data members. Generally, you have to do initializa-
tion only once. The utilization members, on the other hand, are used every frame.

Member Access Functions

The member access functions of CRenderer are listed in Table 17.6, alongside the data member(s) that
they set or help calculate. Most of these member access functions can be used multiple times without any
problem, but certain ones cannot. I’ll point them out to you so that you will be prepared.

All but two of these member functions can be called any number of times without detrimental effects.
The two oddballs, SetUpdateRectCount and SetMapSize, should not be called more than once. Why
not? Because they deal with memory allocation. If called more than once, they will allocate memory twice,
without ever deleting the memory that is no longer used. This means you are leaking memory, which is, on
the good-bad scale of things, a bad thing. There is no great secret to using the member access functions.

Further Rendering Optimizations

Table 17.6 CRenderer Member Access Functions
Member Function Purpose

SetBackBuffer Sets the surface to use as the back buffer (lpddsBackBuffer
data member).

SetFrameBuffer Sets the surface to use as the frame buffer (lpddsFrameBuffer
data member).

SetPlotter Sets a pointer to a TilePlotter (pTilePlotter data member).

SetWalker Sets a pointer to a TileWalker (pTileWalker data member).

SetMouseMap Sets a pointer to a MouseMap (pMouseMap data member).

SetScroller Sets a pointer to a scroller (pScroller data member).

SetUpdateRectCount Allocates the update RECT list (rcUpdateList) and sets the
size of the buffer (iUpdateRectCount). Sets iUpdateRectIndex
to 0.

SetMapSize Allocates the update buffer (bMap) and sets the width and
height of the update buffer (iMapWidth and iMapHeight).

SetRenderFunction Sets a pointer to a RENDERFN (RenderFunction).

SetExtentRect Copies a RECT into rcExtent.

452

With the exception of SetMapSize, they all take a single parameter. SetMapSize takes two. These member
functions are pretty much common sense.

Utilization Member Functions

After 14 data members and 10 member access functions, you might expect there to be approximately the
same number of functions to make use of the class on a frame-by-frame basis. Instead, there are only four,
one of which is called only very rarely. Table 17.7 lists these functions and their purpose.

It’s hard to believe, but that’s all there is to the CRenderer class. Here’s the basic operation per frame:

1. Scroll the frame using ScrollFrame.
2. Add any necessary update RECTs and update tiles that need it using AddRect or AddTile.
3. Update the frame using UpdateFrame.
4. Flip the primary surface.
5. Go make yourself a sandwich. While you’re at it, make me one, too. I’m kind of hungry.

I won’t go into the ugly details of CRenderer’s implementation here. It would easily take up 50 pages or
so, and neither of us has that kind of time. Suffice it to say that CRenderer bases most of its code on the
more efficient blitting algorithm that was developed in Chapter 16, “Layered Maps and Optimized
Rendering.” Every time AddRect is called, that RECT is scanned using that algorithm, and the tiles it
encompasses are marked for update. When AddTile is called, the coordinates for the tile are used to offset
the extent RECT, and the result is sent to AddRect. ScrollFrame does a bulk scroll and adds two update
RECTs to the list: one for the x scroll and one for the y scroll (and no, the update RECTs do not overlap).
The update frame is what does the real work, scanning the entire screen space for marked tiles and sending
the information to the rendering function.

Isometric Game Programming with DirectX 7.0

Table 17.7 CRenderer Utilization Functions
Function Purpose

AddRect Adds an update RECT to the update list

AddTile Uses a map location to calculate and add an update RECT

ScrollFrame Scrolls the frame

UpdateFrame Updates the frame

TeamLRN

453

A CRenderer Example
Even though I’m not sharing the nitty-gritty details of how I implemented CRenderer, I will show you
how I built an example that uses it. IsoHex17_2.cpp is the example in question. This example uses
CRenderer, which requires the addition of some global variables.

One extra global exists in the form of LPDIRECTDRAWSURFACE7. Namely, this is your frame buffer. During
Prog_Init, I create an off-screen plain surface that is 640 pixels wide and 480 pixels tall (the same size as
the back buffer). The other main extra global is an instance of CRenderer, which I have named, of all
things, “Renderer.”

Initialization
The main change in IsoHex17_2.cpp from IsoHex17_1.cpp is that you have the extra surface
(lpddsFrame) and the CRenderer (Renderer). Initializing the frame buffer is a simple one-line deal:

//create the frame buffer
lpddsFrame=LPDDS_CreateOffscreen(lpdd,640,480);

Woo hoo! Hooray for the DDFuncs library! It makes surface creation not only easy, but fun, too. However,
before you can initialize the renderer, first you need to calculate the extent RECT from all your various tile
images. This is a simple application of UnionRect, which is as follows:

//calculate the extent rect
RECT rcExtent;
//set to background extent
CopyRect(&rcExtent,&tsBack.GetTileList()[0].rcDstExt);
//union with shadow extent
UnionRect(&rcExtent,&rcExtent,&tsShadow.GetTileList()[0].rcDstExt);
//union with tree extent
UnionRect(&rcExtent,&rcExtent,&tsTree.GetTileList()[0].rcDstExt);

Pretty easy, I think. First, copy the extent of the background image into your temporary rcExtent vari-
able, and then use UnionRect to merge this with the extent RECTs from the shadow and tree image. If you
had more tiles/sprites, you would just loop through them here. To speed up the process, you might decide
to add a new member function to CTileSet that takes a union of all the extents in the set. Just an idea.
Finally, you initialize all the data members of Renderer, using the member access functions I spoke of ear-
lier.

//set up the renderer
Renderer.SetBackBuffer(lpddsBack);
Renderer.SetExtentRect(&rcExtent);
Renderer.SetFrameBuffer(lpddsFrame);

Further Rendering Optimizations

454

Renderer.SetMapSize(MAPWIDTH,MAPHEIGHT);
Renderer.SetMouseMap(&MouseMap);
Renderer.SetPlotter(&TilePlotter);
Renderer.SetRenderFunction(RenderFunc);
Renderer.SetScroller(&Scroller);
Renderer.SetUpdateRectCount(100);
Renderer.SetWalker(&TileWalker);
//update the entire screenspace
Renderer.AddRect(Scroller.GetScreenSpace());

This bit of code just goes down the list of member access functions, setting them to appropriate values
as you go. I used the Visual C++ 6 Intellisense to go alphabetically. For safety, I set the update rectangle
buffer to 100 RECTs, even though with your simple application, you will never have more than a few
update rectangles.

A brief note about update RECTs: You will never need a huge number, since the highest number of RECTs
that need updating is the number of tiles that make up the entire screen, plus two RECTs for scrolling.
Currently, your screen takes up about 12✕32 tiles, if you count the border tiles. Hence, you could
set the update RECT buffer to 500 RECTs, and you shouldn’t have to worry too much about overflow if
you’re careful.

The final line of the code snippet sends an update RECT for the entire screen. This is important, because
initially the frame buffer is empty and needs to be totally redrawn.

Cleanup
There is one extra line in the cleanup section of the program. This line releases the frame buffer surface.

//release frame buffer
LPDDS_Release(&lpddsFrame);

The renderer cleans up after itself after the program terminates.

Main Loop
Ah, finally the main loop! It’s actually quite simple compared to the code found in IsoHex17_1.cpp, since
all of the hard stuff has been moved to the CRenderer implementation.

void Prog_Loop()
{

//grab the mouse position
POINT ptMouse;
GetCursorPos(&ptMouse);
//map the mouse

Isometric Game Programming with DirectX 7.0

TeamLRN

455

ptCursor=MouseMap.MapMouse(ptMouse);
//clip the cursor to valid map coordinates
if(ptCursor.x<0) ptCursor.x=0;
if(ptCursor.y<0) ptCursor.y=0;
if(ptCursor.x>(MAPWIDTH-1)) ptCursor.x=MAPWIDTH-1;
if(ptCursor.y>(MAPHEIGHT-1)) ptCursor.y=MAPHEIGHT-1;

You’ve seen this code before. It grabs the position of the mouse and uses the MouseMap to calculate
where the cursor is.

//scroll the map
Renderer.ScrollFrame(ptScroll.x,ptScroll.y);

As you’ll recall from earlier examples, ptScroll is set during WM_MOUSEMOVE, and it indicates how far you
are to scroll the map in each frame. Rather than scrolling yourself, as you did in earlier examples, you pass
the task of scrolling to Renderer and allow it to do its job.

//if a click was registered, add an update tile
if(bClick)
{

Renderer.AddTile(ptCursor.x,ptCursor.y);
iMap[ptCursor.x][ptCursor.y]=1-iMap[ptCursor.x][ptCursor.y];

}
//set click to false
bClick=false;

This is a change from earlier examples. Before, when responding to WM_LBUTTONDOWN, you would change
the contents of the map location at the cursor. Using CRenderer, you cannot do that, because doing so
before the scroll will mess up the update RECT, and artifacts will result. To solve this problem, I made a
new global variable (bClick) that is set during WM_LBUTTONDOWN. In this code snippet, I check to see if
bClick is being set. If it is, only then do I update the map and add an update RECT to the renderer. This
ensures that what needs to be rendered will be rendered. Then I reset bClick to false to await another
WM_LBUTTONDOWN.

//update the frame
Renderer.UpdateFrame();

If you’ve looked at CRenderer’s code, you know just how much work is being done by this single line.
Here, you update the frame buffer and the back buffer and prepare for the next frame.

//plot the cursor
POINT ptPlot;
ptPlot=TilePlotter.PlotTile(ptCursor);

Further Rendering Optimizations

456

ptPlot=Scroller.WorldToScreen(ptPlot);
tsCursor.ClipTile(lpddsBack, Scroller.GetScreenSpace(), ptPlot.x,

ptPlot.y, 0);

You’ve seen code similar to this in prior examples. This is the “place the cursor on the back buffer” code.
Since you only put the cursor on the back buffer, and not on the frame buffer, you don’t have to worry
about erasing it later.

//flip to show the back buffer
lpddsMain->Flip(0,DDFLIP_WAIT);

}

Finally, you flip the primary surface, and your loop is complete. The only thing left to show is the actual
rendering function.

void RenderFunc(LPDIRECTDRAWSURFACE7 lpddsDst,RECT* rcClip,int xDst,int yDst,int
xMap,int yMap)
{

//put background tile
tsBack.ClipTile(lpddsDst,rcClip,xDst,yDst,0);
//check for a tree
if(iMap[xMap][yMap])
{

//put shadow
tsShadow.ClipTile(lpddsDst,rcClip,xDst,yDst,0);
//put tree
tsTree.ClipTile(lpddsDst,rcClip,xDst,yDst,0);

}
}

Looks a lot like the inner part of the rendering loop from IsoHex17_1.cpp, doesn’t it? It should because
it is, with a few minor changes like the removal of code using the TilePlotter and scroller. This is the

function you send to Renderer. It is called during UpdateFrame() for as many tiles as need redrawing.

So, you have now drastically simplified your life by encapsulating your rendering within CRenderer, and
it’s now faster to boot. How much faster depends on your computer and video card, but I can tell you that
on mine, the scrolling certainly became a lot smoother as a result. If your machine or video card is lower-
end, you might not notice a difference (it’ll be just as choppy either way). Also, if your machine and video
card are sufficiently high-end, you won’t see much of a difference either (it’ll be just as smooth, even if
you’re using the less-efficient method). That’s just hardware for you.

Isometric Game Programming with DirectX 7.0

TeamLRN

457

Summary
CRenderer will be around for the rest of the book, at least until you start to delve into Direct3D.
Crenderer is handy, it's fast, and it encapsulates a lot of otherwise very ugly code.

You probably have noticed that as you've built the various components of your isometric engine, you've
gotten further away from the raw calculations that make it work. This is a good thing. It means that you
have added power and flexibility and that you can adapt your engine to whatever task you can imagine
without having to redo anything you hard-coded.

I've taken rendering optimization about as far as DirectX will let me. Sure, there are still optimizations you
can do, using Lock/Unlock and rendering things yourself, but that's beyond the scope of this book.
However, if you do come up with an interesting optimization, be sure to drop me a line and let me know.
I'm always interested in increasing performance, and many people I talk to think of things that I might
not, and vice versa.

Further Rendering Optimizations

Object
Placement

and Movement

• Object Placement
(COP versus FOP)

• Course Object Placement

• Multiple Objects

• Multiple Units

CHAPTER 18

TeamLRN

459

I’d like to extend to you a hearty congratulations for making it through Chapter 17. There were
moments when I thought I wasn’t going to get through it. Believe it or not, the preceding chapter

contained about the most complicated code in the entire book. This isn’t to say I’m going to let you coast
through the rest! Plenty of challenges await you.

This chapter is about object selection and movement. I’m going to discuss the objects (units, items, obsta-
cles) that inhabit your isometric worlds. You started down this path in Chapters 16 and 17, but I’m pretty
sick of looking at that darned tree, and I think that you are too.

Object Placement
(COP versus FOP)
This next sentence might sound like common sense, but bear with me. Before you can get into object
selection, the objects must first be somewhere. While you cursing me for saying something so idiotic, let
me say that I’m not really talking about where the objects are placed, but rather how they are placed.

Basically, there are two ways to place objects. One way is to say that in a given map location, an object fills
the entire map location. So, if map location (15,15) contains a mountain, and you are moving your cavalry
unit there, and the rules state that cavalry units cannot move onto mountains, the move is disallowed, and
the unit must stay outside map location (15,15). With this type of object placement, all the objects within
a given location take up the entire location. Therefore, collision detection is very simple, because all moves
can be considered to be from the center of one location to the center of an adjacent location. This type of
object placement is common in turn-based strategy games, which by their nature are more abstract. I call
this method coarse object placement.

The other type of object placement is fuzzier. Objects do not necessarily take up the entire map location,
and they might or might not be positioned at the centers of locations. This type involves much more
work, and it complicates things. First, you have to do collision detection, through either bounding rectan-
gles or bounding ellipses. Second, the rendering is more complicated, because several different objects
might be occupying a location or a portion of a location, so you have to figure out in which order to blit
the images. This method adds realism, since it makes it harder to tell whether the world is tile-based, even
though the overhead that can be introduced by this method can easily degrade performance. This is the
method most commonly used by real-time strategy games. I call it fine object placement.

Both methods have their pluses and minuses when used in their pure forms. Generally speaking, you will
want to use coarse object placement when making turn-based strategy games and fine object placement
when making real-time strategy or role-playing games.

Object Placement and Movement

460

However, most real-time strategy games use a sort of hybrid methodology, perhaps using coarse object
placement to place buildings and structures and such and using fine object placement for units. Like
most things, there is no one true way. You have to consider the needs of your game before making a
decision either way.

Coarse Object Placement
Let’s say, for the moment, that you have decided to use coarse object placement in your game. This deci-
sion has some far-reaching ramifications for the methods you use within your game for object selection and
movement, mainly making both pretty easy, but some extra difficulties with a useful display echo occur.
(For example, you have to do some extra work for everything to look OK and to be able to size up your
situation at a glance.)

Moving Objects Around
You’ve already done coarse object placement with the little tree image, so I won’t bore you by explaining
it again. Suffice it to say that you just need to accommodate each object in the map structure somehow.
Inanimate objects, like trees, fortifications, roads, and rivers, should be handled separately from units, since
you can have both an inanimate object and a unit on the same tile.

It’s example time! Load up IsoHex18_1.cpp. In this example, I’ve provided a single unit/character that
will move around the map (almost the same as the map from Chapter 17). This unit/character is shown
in Figure 18.1. IsoHex18_1.cpp is quite a bit like IsoHex17_2.cpp, just with most of the mouse scrolling
ripped out and keyboard control placed in.

Isometric Game Programming with DirectX 7.0

Figure 18.1

An example of

a unit/character

TeamLRN

461

Figure 18.2 shows what this example looks like when I run it on my machine. After you press 6 on the
numeric keypad (with Num Lock engaged), it looks like Figure 18.3. Finally you have something on your
screen that isn’t background terrain or a darned tree! Go ahead and move the unit around the map. Right
now, the way it works is less than ideal, but at least it’s something.

Object Placement and Movement

Figure 18.2

IsoHex18_1.cpp on startup

Figure 18.3

IsoHex18_1.cpp after a

move to the east (right)

462

What do I mean by “less than ideal”? Well, for one thing, when the unit moves from one location to
another, it just “jumps” suddenly. One moment it’s in the original map location, and the next, it’s in the
new one, like magic. For some games this might be OK, but in most, you don’t want to do this, lest the
player get vertigo or go into epileptic fits. We’ll get to a more smooth movement in a few minutes.

Another aspect of IsoHex18_1.cpp is the manner in which it scrolls. Rather than using the mouse to
scroll, the display is scrolled whenever the unit passes the screen boundary (that is, when x<0, y<0,
x>=SCREENWIDTH or y>=SCREENHEIGHT). When one or more of these thresholds are crossed, the display
jumps up/down/left/right by half a screen (320 pixels for left or right and 240 pixels for up or down).
Figure 18.4 shows the “before” picture, and Figure 18.5 shows the “after” picture. This isn’t the only way
I could have done it, and in fact, it wasn’t the only way I did it. At first, I had the display centered on the
unit at all times. Talk about jumpy and disconcerting!

Isometric Game Programming with DirectX 7.0

Figure 18.4

Just before a

major scroll

TeamLRN

463

Naturally, you’d like me to just shut up and show you the code, right? Of course.

The Code
As I said earlier, IsoHex18_1.cpp is based on IsoHex17_2.cpp, meaning that CRenderer is being used.
Since the program is quite long, I will just highlight the big changes and leave it at that.

Globals

The first changes occur in the section of code where all the globals are declared. The code doesn’t use all
the same tilesets (I got rid of the shadow and the cursor), and I added a new tileset with the unit’s image.
The global tilesets are as follows:

//tilesets
CTileSet tsBack;//background
CTileSet tsTree;//tree foreground
CTileSet tsUnit;//unit

The tsBack and tsTree objects contain the tilesets for the background tile and the tree (can’t get away
from that tree!). The tsUnit object contains the image for our nifty new unit. Next is an addition to the
global section rather than a change. The following is all of the global variables needed to keep track of our
unit’s position, direction of movement, and whether or not it is moving.

//keep track of unit location
POINT ptUnit;//current position of the unit
POINT ptUnitOld;//last position of the unit

Object Placement and Movement

Figure 18.5

Just after a major scroll

464

ISODIRECTION idMoveUnit;//direction of movement
bool bMoveUnit;//the unit should be moved

ptUnit keeps track of the unit’s current position. ptUnitOld keeps tabs on the unit’s last position (since
you have to update both where the unit was and where the unit is when the unit is moved). idMoveUnit is
an ISODIRECTION specifying in which direction to move the unit. Finally, bMoveUnit is a bool that is true
when you move the unit and false when you don’t.

The last change to the global section is how the map is represented. As you might recall, in most of the
last two chapters’ examples, it was a simple two-dimensional array of ints, with 0 being no tree and 1
being a tree. Since a unit has been added to the mix, the map structure gets more complicated, but not
overly so, because this is still quite a simple stage.

//map location structure
struct MapLocation
{

bool bTree;//false=no tree; true=tree
bool bUnit;//false=no unit; true=unit;

};
MapLocation mlMap[MAPWIDTH][MAPHEIGHT];//map array

The struct named MapLocation contains two members, bTree and bUnit. They control what is on a
given tile. (At this point, all tiles have the same background, so they are not represented in the map struc-
ture.) The new array, mlMap, gives you a large-enough map to work with. It’s mostly the same as previous
sample programs, other than the type.

Initialization

Most of Prog_Init is the same as in previous examples. The images get loaded into their respective tileset
variables, and the CRenderer extent RECT is calculated from all tilesets. The initialization of the
IsoHexCore components is mainly the same. The first change occurs when you initialize the map.

//set up the map to a random tilefield
for(int x=0;x<MAPWIDTH;x++)
{

for(int y=0;y<MAPHEIGHT;y++)
{

mlMap[x][y].bTree=((rand()%2)==1);//random tree
mlMap[x][y].bUnit=false;//no unit

}
}

Isometric Game Programming with DirectX 7.0

TeamLRN

465

I admit it—this isn’t a really big change. This change occurred for the simple reason that the map structure
changed from being int-based to being MapLocation-based.

Now for something important: the unit’s initial placement. I’m going to explain as I go, because it’s too
long to explain all at once.

//set the position of the unit
ptUnit.x=rand()%MAPWIDTH;
ptUnit.y=rand()%MAPHEIGHT;

The idea here is that you want the unit to start on a random map location, so take random numbers based
on MAPWIDTH and MAPHEIGHT and assign them to ptUnit.

ptUnitOld=ptUnit;//set the old position to the same position
mlMap[ptUnit.x][ptUnit.y].bUnit=true;//set the unit on the map
bMoveUnit=false;//set unit movement to false

Since you are keeping track of the old unit position, you have to initially assign the old unit position to
the current position. Next, place the unit by setting the correct map location’s bUnit member to true.
Finally, you set bMoveUnit to false so that you won’t start out with a moving unit.

//plot the position of the unit
POINT ptPos=TilePlotter.PlotTile(ptUnit);
ptPos.x-=(Scroller.GetScreenSpaceWidth()/2);//center the unit horizontally
ptPos.y-=(Scroller.GetScreenSpaceHeight()/2);//center the unit vertically
//set the anchor
Scroller.SetAnchor(&ptPos);
Scroller.WrapAnchor();

This is where the code gets a little weird. Initially, I wanted to have the unit centered on the screen, if
possible. Since you have the rather spiffy IsoHexCore components to do the work for you, this is a simple
matter of setting the anchor location. So, I plotted the position of the unit, and from that location, sub-
tracted half of the screen width from x and half of the screen height from y to give me the position of
the upper-left corner, which I then assigned to the anchor. Take a moment and consider what kind of
work you would have to do if you didn’t have the IsoHexCore components. Makes me shudder just to
think about it!

Main Loop

Despite its length, the Prog_Loop is pretty simple. It mainly deals with movement of the unit whenever
it occurs. Let’s go over it piece by piece.

void Prog_Loop()
{

Object Placement and Movement

466

//set scroll to 0,0
ptScroll.x=0;
ptScroll.y=0;

First, you have to make sure that the scrolling is set to 0s. If the unit is being moved, this might be
changed a little later on. These two lines of code just ensure that if there was a scroll last frame, there isn’t
one this frame.

//if we are to move the unit
if(bMoveUnit)
{

//calculate the next position of the unit
POINT ptNextPos=TileWalker.TileWalk(ptUnit,idMoveUnit);
//bounds checking
if(ptNextPos.x<0) bMoveUnit=false;
if(ptNextPos.y<0) bMoveUnit=false;
if(ptNextPos.x>=MAPWIDTH) bMoveUnit=false;
if(ptNextPos.y>=MAPHEIGHT) bMoveUnit=false;

As stated earlier, bMoveUnit is true when you move the unit and false when you don’t. Also, idMoveUnit
is the direction of movement. In this snippet of code, you calculate the next position for the unit by using
the TileWalker. After that is done, the code performs a few checks to make certain that the new position is
still within the map. If the new position is not within the bounds of the map, bMoveUnit is set to false,
thus canceling the move.

//are we still moving the unit?
if(bMoveUnit)
{

//set the unit position to ptnextpos
ptUnit=ptNextPos;
//plot the unit’s next position
POINT ptPlot=TilePlotter.PlotTile(ptUnit);
//translate plot position into screen coordinates
ptPlot=Scroller.WorldToScreen(ptPlot);
//check for scrolling
if(ptPlot.x<0) ptScroll.x=-320;
if(ptPlot.y<0) ptScroll.y=-240;
if(ptPlot.x>640) ptScroll.x=320;
if(ptPlot.y>480) ptScroll.y=240;

}
}

Isometric Game Programming with DirectX 7.0

TeamLRN

467

If bMoveUnit is still true after the bounds checking, you set up the unit’s movement and any scrolling that
might be required. The unit’s position (stored in ptUnit) is set to the new calculated position. Then the
unit’s position is plotted using the TilePlotter and is translated into screen coordinates by the scroller.
If the plotted position is outside the screen, ptScroll is set to an appropriate scrolling value.

//scroll the map
Renderer.ScrollFrame(ptScroll.x,ptScroll.y);

This line performs whatever scrolling you might require. Most of the time, this will be none, so it will
just copy from the frame buffer to the back buffer the entire image using the renderer.

//if we are still moving the unit
if(bMoveUnit)
{

//reset the old position
mlMap[ptUnitOld.x][ptUnitOld.y].bUnit=false;
//set the new position
mlMap[ptUnit.x][ptUnit.y].bUnit=true;
//add update tiles to renderer
Renderer.AddTile(ptUnitOld.x,ptUnitOld.y);
Renderer.AddTile(ptUnit.x,ptUnit.y);
//set moveunit to false
bMoveUnit=false;
//set old position to current position
ptUnitOld=ptUnit;

}

Finally, you actually move the unit. Reset the bUnit member of the map location at ptUnitOld and set
the bUnit member of the map location at ptUnit. Then send the ptUnitOld and ptUnit positions to the
renderer to be updated. Last, set bMoveUnit to false (you are done moving now) and set ptUnitOld to the
current unit position, ptUnit.

//update the frame
Renderer.UpdateFrame();
//flip to show the back buffer
lpddsMain->Flip(0,DDFLIP_WAIT);

}

Last, tell the renderer to update the frame and then flip the primary surface. Note that there is absolutely
no rendering code of any form inside Prog_Loop. All rendering is done through CRenderer,
so you can concentrate on just figuring out what changes from frame to frame, and just deal with that.
Very liberating, really.

Object Placement and Movement

468

Rendering Function

All the rendering work is done through CRenderer and hence through RenderFunc.

void RenderFunc(LPDIRECTDRAWSURFACE7 lpddsDst, RECT* rcClip, int xDst, int yDst,
int xMap, int yMap)
{

//put background tile
tsBack.ClipTile(lpddsDst,rcClip,xDst,yDst,0);
//check for a tree
if(mlMap[xMap][yMap].bTree)
{

//put tree
tsTree.ClipTile(lpddsDst,rcClip,xDst,yDst,0);

}
//check for the unit
if(mlMap[xMap][yMap].bUnit)
{

//put unit
tsUnit.ClipTile(lpddsDst,rcClip,xDst,yDst,0);

}
}

How simple can you get? First, you render the background tile from tsBack. Next, if bTree is set at
(xMap,yMap), you render the tree from tsTree. Finally, if bUnit is true, you render the unit.

Event Handling

Mainly, you are only concerned with WM_KEYDOWN, since you are controlling the unit with the keyboard.
You can take a look at the code if you like. Table 18.1 shows the VK_* constants I used and the correspon-
ding ISODIRECTION values.

Isometric Game Programming with DirectX 7.0

TeamLRN

469

Smooth Sliding
Sample program IsoHex18_1 is pretty cool,
but it probably leaves you lacking. I agree, but
it’s just a simple example illustrating basic unit
movement; your vision of unit movement prob-
ably far exceeds its capabilities. First, it has only
a single unit, which is great for illustrating an
example, but it has rather limited use. Second,
the movement is too. . . abrupt. It’s like the unit
is teleporting from one map location to anoth-
er. On a purely aesthetic bent, the unit is taller
than the tree, so it looks unrealistic.

It would be preferable to have the unit either slide from one map location to the next or go through an
animated sequence of images from one tile to another. This will be a bit of work, considering how the
CRenderer class is set up, and because of the overlapping nature of isometric tiles. Fear not. We are cre-
ative, and we shall overcome all obstacles! (A positive attitude will take you far.)

The next example, which will be revealed in just a moment, slides the unit from one tile to the next, mak-
ing smaller movements per frame. I figure that four frames to make a move is more than adequate to make
it look like you are sliding the piece. Plus, 4 goes into 64 (the tile width) and 32 (the tile height) evenly.

Object Placement and Movement

Table 18.1 Virtual Keycode-to-ISODIRECTION
Mapping

Virtual Keycode Direction

VK_NUMPAD8 ISO_NORTH

VK_NUMPAD9 ISO_NORTHEAST

VK_NUMPAD6 ISO_EAST

VK_NUMPAD3 ISO_SOUTHEAST

VK_NUMPAD2 ISO_SOUTH

VK_NUMPAD1 ISO_SOUTHWEST

VK_NUMPAD4 ISO_WEST

VK_NUMPAD7 ISO_NORTHWEST

NOTE
The virtual keycodes listed in Table 18.1 work
only when the Num Lock is engaged. If you
wanted to respond to the keypad when the
Num Lock is off, you would have to respond
to the arrow keys (VK_LEFT, VK_RIGHT, VK_UP,
VK_DOWN) and the document navigation keys
(VK_HOME, VK_END, VK_PAGEUP, VK_PAGEDOWN).
For a simple example like this one, I felt it
unnecessary to do this, but in a professionally
done game, you’d want to have that feature.

470

For an even smoother slide, you could use eight frames, and for a very quick slide, you could use only two.
You’ll use four in the example, although adapting this method to use other numbers is a simple matter.

Table 18.2 shows the changes in screen/world coordinates for the various isometric directions, based on
the 64✕32 tile. It also shows the change in x and the change in y divided by 4. This table is just a rehash
of TilePlotter information. It’s nothing new.

The basic idea here is that when a user presses a key, indicating that the unit is to be moved, the unit’s
world/screen position will be changed by ChangeX/4 and ChangeY/4 during the next four frames.

Ah, if only it were that simple! Unfortunately, problems ensue because of the tile overlap. For example,
let’s say that you want to move your unit to the south. If, for the moment, the unit remains in its original
map location, and you change x and y each frame by the values in Table 18.2, after the bottom of the
unit’s image is below the bottom of the background’s tile image, it will be partially obscured by other tiles
that are “in front” of the original position. Similarly, you cannot move the unit to its new location and
offset from that, because in half of the cases, the same thing happens. Of the two positions for the unit,
the starting location and the ending location, during the move you want the unit to be associated with the
location that is rendered last.

Without further ado, load up IsoHex18_2.cpp. This example, which is based on IsoHex18_1, demon-
strates smooth sliding. Figure 18.6 shows one such slide in the middle of making it happen. Because of
the method I am using, there are certain visual inconsistencies when an object moves. For example, in
Figure 18.6, the unit is shown after the tree that would otherwise be “in front” of it. Of course, you prob-
ably wouldn’t notice these inconsistencies, because the unit moves too fast for you to notice them.

Isometric Game Programming with DirectX 7.0

Table 18.2 Pixel-Scale Movement
Direction ChangeX ChangeY ChangeX/4 ChangeY/4

North 0 –32 0 –8

Northeast +32 –16 +8 –4

East +64 0 +16 0

Southeast +32 +16 +8 +4

South 0 +32 0 +8

Southwest –32 +16 –8 +4

West –64 0 –16 0

Northwest –32 –16 –8 –4

TeamLRN

471

Let’s take a look under the hood, shall we?

Globals

Most of the globals in IsoHex18_2 are the same as in IsoHex18_1. A few were added to accommodate
the smooth scrolling nature of unit movement.

//game state
int iGameState=GS_IDLE;

The first of these new globals is iGameState. Unfortunately, the smooth scrolling algorithm is just too
complicated to do in a single game state. There are four game states, as shown in Table 18.3.

Object Placement and Movement

Figure 18.6

Smooth sliding demo

Table 18.3 Game States
State When It Happens

GS_IDLE Most of the time (when no movement is happening)

GS_STARTMOVE When a key is pressed

GS_DOMOVE During a move

GS_DONEMOVE When a move has finished

472

Most of the time, the application sits around in GS_IDLE, waiting for a key to be pressed. Figure 18.7
shows the flow of the program from game state to game state.

//unit offset
POINT ptUnitOffset;
int iUnitFrame=0;

These two little variables control how the unit is “slid” across the map. The x and y components of
ptUnitOffset are added to the unit’s plotted position during the RenderFunc. The iUnitFrame variable
keeps count of how many frames of the move have occurred. If it hits four, the move is finished.

Initialization/Cleanup

In this example, the initialization code and cleanup are identical to IsoHex18_1. No changes are necessary.

Main Loop

The main loop, on the other hand, has changed a great deal, especially because of the switch to multiple
game states. Let’s look at them one at a time.

GS_IDLE.

Most of the time, the application sits in GS_IDLE (sort of like being in neutral for a car). The code for
it is rather simple.

Isometric Game Programming with DirectX 7.0

GS_IDLE

GS_STARTMOVE

GS_DOMOVE

GS_DONEMOVE

Exit Program

Press
Escape

Press
Numeric
Keypad

No Key
Pressed

Framecounter<4

Framecounter==4

Figure 18.7

IsoHex18_2 game

states

TeamLRN

473

case GS_IDLE://the game is idling; update the frame, but that’s about it.
{

//scroll the frame (0,0)
Renderer.ScrollFrame(0,0);
//update the frame
Renderer.UpdateFrame();
//flip to show the back buffer
lpddsMain->Flip(0,DDFLIP_WAIT);

}break;

As you can see, not much is going on here. The code shown is the bare minimum required to update the
frame and flip the primary surface. No big deal.

GS_STARTMOVE.

At any time during GS_IDLE, if a numeric keypad key is pressed, a direction is placed in idMoveUnit, and
the game state is set to GS_STARTMOVE. GS_STARTMOVE does not update the display; it simply sets things up
so that the move can be performed.

case GS_STARTMOVE:
{

//remove the unit from the old position
mlMap[ptUnitOld.x][ptUnitOld.y].bUnit=false;

First, you remove the unit from its old position, even though there is a 50-50 chance that you’ll place it
right back there.

//calculate new position (virtual new position)
switch(idMoveUnit)
{
case ISO_NORTH:
case ISO_NORTHEAST:
case ISO_NORTHWEST:
case ISO_WEST:

{
//move ptUnit
ptUnit=TileWalker.TileWalk(ptUnit,idMoveUnit);
//set the offset
ptUnitOffset.x=0;
ptUnitOffset.y=0;
//place unit at old position
mlMap[ptUnitOld.x][ptUnitOld.y].bUnit=true;

}break;

Object Placement and Movement

474

Depending on the direction stored in idMoveUnit, you set up the ptUnitOffset and place the unit on
either the starting or ending location, depending on which location is rendered last. If the direction is
north, northwest, northeast, or west, you leave the unit at its old position and set ptUnitOffset to (0,0).
Take a look at Figure 18.8, which shows the rendering order of the original tile (the one in the center of
the figure) and its eight neighbors. The original tile is shaded darkly, and the neighbors rendered before the
center tile are lightly shaded. This is why for the four directions I just listed, you must leave the unit on the
original tile—at least for the time being.

case ISO_EAST:
{

//move ptUnit
ptUnit=TileWalker.TileWalk(ptUnit,idMoveUnit);
//set the offset
ptUnitOffset.x=-64;
ptUnitOffset.y=0;
//place unit at new position
mlMap[ptUnit.x][ptUnit.y].bUnit=true;

}break;
case ISO_SOUTHEAST:

{
//move ptUnit
ptUnit=TileWalker.TileWalk(ptUnit,idMoveUnit);
//set the offset
ptUnitOffset.x=-32;

Isometric Game Programming with DirectX 7.0

1

2 3

4 5

9

7 8

6

Figure 18.8

Rendering order

of neighboring

map locations

TeamLRN

475

ptUnitOffset.y=-16;
//place unit at new position
mlMap[ptUnit.x][ptUnit.y].bUnit=true;

}break;
case ISO_SOUTHWEST:

{
//move ptUnit
ptUnit=TileWalker.TileWalk(ptUnit,idMoveUnit);
//set the offset
ptUnitOffset.x=32;
ptUnitOffset.y=-16;
//place unit at new position
mlMap[ptUnit.x][ptUnit.y].bUnit=true;

}break;
case ISO_SOUTH:

{
//move ptUnit
ptUnit=TileWalker.TileWalk(ptUnit,idMoveUnit);
//set the offset
ptUnitOffset.x=0;
ptUnitOffset.y=-32;
//place unit at new position
mlMap[ptUnit.x][ptUnit.y].bUnit=true;

}break;
}

The rest of the directions—south, southeast, southwest, and east—are rendered after the center tile, so
you have to move the unit to that new tile and set up ptUnitOffset so that it appears to remain in the
same position.

//set unit frame to 0
iUnitFrame=0;
//set the next gamestate
iGameState=GS_DOMOVE;

}break;

Finally, you set the unit frame counter to 0 and set the game state to GS_DOMOVE. At this point, you’re
done with GS_STARTMOVE.

Object Placement and Movement

476

GS_DOMOVE

After the move is set up with GS_STARTMOVE, the next game state to be processed is GS_DOMOVE. This game
state is called four times and then yields control to GS_DONEMOVE.

case GS_DOMOVE:
{

//move the unit offset
switch(idMoveUnit)
{
case ISO_NORTH:

{
//change offset
ptUnitOffset.x+=0;
ptUnitOffset.y-=8;

}break;
case ISO_NORTHEAST:

{
//change offset
ptUnitOffset.x+=8;
ptUnitOffset.y-=4;

}break;
case ISO_EAST:

{
//change offset
ptUnitOffset.x+=16;
ptUnitOffset.y+=0;

}break;
case ISO_SOUTHEAST:

{
//change offset
ptUnitOffset.x+=8;
ptUnitOffset.y+=4;

}break;
case ISO_SOUTH:

Isometric Game Programming with DirectX 7.0

NOTE
You don’t have to have a separate game state for starting to move the unit.That’s just
the way I decided to do it in this case. It seems like kind of a waste, since nothing is ren-
dered during GS_STARTMOVE, so you might want to move this code into the event handler
or into a class or something. I’ll talk more about this later.

TeamLRN

477

{
//change offset
ptUnitOffset.x+=0;
ptUnitOffset.y+=8;

}break;
case ISO_SOUTHWEST:

{
//change offset
ptUnitOffset.x-=8;
ptUnitOffset.y+=4;

}break;
case ISO_WEST:

{
//change offset
ptUnitOffset.x-=16;
ptUnitOffset.y+=0;

}break;
case ISO_NORTHWEST:

{
//change offset
ptUnitOffset.x-=8;
ptUnitOffset.y-=4;

}break;
}

The very first thing that GS_DOMOVE does is update ptUnitOffset based on the value in idMoveUnit. The
values listed here come from Table 18.2, if you need to check back.

//grab the update RECTs
RECT rcUpdate1,rcUpdate2;
CopyRect(&rcUpdate1,&Renderer.rcExtent);
CopyRect(&rcUpdate2,&Renderer.rcExtent);
//plot the unit’s old position
POINT ptPlot=TilePlotter.PlotTile(ptUnitOld);
ptPlot=Scroller.WorldToScreen(ptPlot);
OffsetRect(&rcUpdate1,ptPlot.x,ptPlot.y);
//plot the unit’s new position
ptPlot=TilePlotter.PlotTile(ptUnit);
ptPlot=Scroller.WorldToScreen(ptPlot);
OffsetRect(&rcUpdate2,ptPlot.x,ptPlot.y);
//merge the two update RECTS
UnionRect(&rcUpdate1,&rcUpdate1,&rcUpdate2);

Object Placement and Movement

478

This part might be a little confusing, so I’m going to spend some time on it. What you need to do here is
calculate the update RECTs to send to the renderer. Unfortunately, you can’t just send the map location,
because as the unit is sliding, it might be partially outside of the rectangles that bound the starting and
ending map location (which, on the good-bad scale of things, is kind of bad). So, I chose to calculate the
RECTs for the tile locations contained in ptUnit and ptUnitOld and then merge those two RECTs into a
single update rectangle, thus guaranteeing that the unit will be fully displayed.

//scroll the frame (0,0)
Renderer.ScrollFrame(0,0);
//send update rect to the renderer
Renderer.AddRect(&rcUpdate1);
//update the frame
Renderer.UpdateFrame();
//flip to show the back buffer
lpddsMain->Flip(0,DDFLIP_WAIT);

These are the standard CRenderer calls to scroll the frame (albeit by 0 horizontally and vertically), add
the update rectangle that you calculated earlier, update the frame, and flip the primary surface.

//increase the unit frame counter
iUnitFrame++;
//check for done with gamestate
if(iUnitFrame==4)
{

//set to the next gamestate
iGameState=GS_DONEMOVE;

}
}break;

In the home stretch, I increment iUnitFrame and check to see if it equals 4 yet. When it reaches 4, I set
the game state to GS_DONEMOVE. Otherwise, it just continues next frame with GS_DOMOVE.

GS_DONEMOVE

This is the final game state. It finishes up the move, updates the map, and then returns the game to
GS_IDLE so that it can wait for another keypress.

case GS_DONEMOVE:
{

//finish the move, make sure the unit is positioned correctly
switch(idMoveUnit)
{
case ISO_NORTH:

Isometric Game Programming with DirectX 7.0

TeamLRN

479

case ISO_NORTHEAST:
case ISO_NORTHWEST:
case ISO_WEST:

{
//remove from old position
mlMap[ptUnitOld.x][ptUnitOld.y].bUnit=false;
//place on new position
mlMap[ptUnit.x][ptUnit.y].bUnit=true;

}break;
}

If you recall GS_STARTMOVE, you had a special case for a few directions—namely, north, northwest, north-
east, and west. This is where you correct for whatever inconsistency you might still have. It’s simply a mat-
ter of removing the unit from ptUnitOld and placing it on ptUnit.

//plot new tile’s position
POINT ptPlot=TilePlotter.PlotTile(ptUnit);
ptPlot=Scroller.WorldToScreen(ptPlot);
//set scrolling to 0,0
ptScroll.x=0;
ptScroll.y=0;
//check for scrolling
if(ptPlot.x<0) ptScroll.x=-320;
if(ptPlot.y<0) ptScroll.y=-240;
if(ptPlot.x>=640) ptScroll.x=320;
if(ptPlot.y>=480) ptScroll.y=240;

This should look somewhat familiar. After the move has finished, only then does the game scroll. In this
snippet, the position of the unit is plotted, and if it is outside of the screen space, ptScroll is set to an
appropriate value.

//scroll the frame
Renderer.ScrollFrame(ptScroll.x,ptScroll.y);
//add update tiles
Renderer.AddTile(ptUnitOld.x,ptUnitOld.y);
Renderer.AddTile(ptUnit.x,ptUnit.y);

Now the frame is scrolled (as needed) and the map locations ptUnitOld and ptUnit are added to the
update list.

//set ptUnitOffset to (0,0)
ptUnitOffset.x=0;
ptUnitOffset.y=0;

Object Placement and Movement

480

//set the old unit position to the current unit position
ptUnitOld=ptUnit;
//go to idling gamestate
iGameState=GS_IDLE;

After the tiles are sent to the update list, ptUnitOld is set to the same value as ptUnit. ptUnitOffset is
set to (0,0), and the game state is set to GS_IDLE.

//update the frame
Renderer.UpdateFrame();
//flip
lpddsMain->Flip(0,DDFLIP_WAIT);

}break;

Finally, the frame is updated by the renderer, the primary surface is flipped, and voila! A unit has success-
fully slid from one tile to another. Seems like an awful amount of work, doesn’t it? Perhaps it is. Maybe
your game doesn’t need this kind of precision as far as unit movement is concerned. It’s just one of those
things I thought I’d throw out there, just because.

Multiple Objects
Thus far, you’ve dealt with only a single unit of a single type all alone on a rather huge playing area. While
this is useful for instructional purposes, chances are your game will have dozens of unit types and hun-
dreds of individual units. You, as the programmer, have to find a way to keep track of all these units.

Storage Methods
There are many ways to keep track of units—everything from simple arrays to complex collections.
Usually, these methods have one thing in common—they keep track of the unit in at least two places—
once in a master list of all units (so that you can loop through the list and have them carry out orders)
and once in the map itself. They may also be stored in other places, but for now, you’re just concerned
with these two.

The first problem you’ll run into is developing a way to store all the units. In simple games, you might be
able to get away with a simple array. It’s a valid technique if the game is small or has a limitation on how
many units a player can control. Most games, however, require something more. My personal favorite is the
linked list.

If you’re already familiar with linked lists and, in particular, the STL list template, feel free to skip the next
couple of sections. If you are unfamiliar with linked lists (or dynamic storage structures in general) or have
never used the list template, you might want to give these sections a read, at least to get the basics.

Isometric Game Programming with DirectX 7.0

TeamLRN

481

What Is a Linked List?

A linked list is nothing more than a way to store data when you don’t know how many items you will need
to store. Consider an array for a moment. When you create your array, you write some code like the fol-
lowing:

int MyArray[10];

This, as you know, sets aside enough memory to store 10 ints which, on modern computers, are 32 bits
or 4 bytes long, so the code would set aside 40 bytes of memory which you can then access by using
MyArray with a subscript elsewhere in code.

Arrays are nice when you have a known number of items in a list. For example, a deck of cards can be
contained in an array that has a size of 52, or a chessboard can be stored in an 8✕8 array. However,
when the number of items might at some time be stored in a list, an array just can’t do it—at least, not
efficiently.

Following is an alternative way to declare an array of ints using C++’s new operator to dynamically allo-
cate the space on the heap:

int ArrayElements=10;
int* MyArray=new int[ArrayElements];

Using this code, you request 10 ints to be set aside on the heap, which is also known as the free store,
meaning just a big hunk o’ memory that isn’t being used. The key word in the preceding sentence is
“requested.”There is no guarantee that enough space for 10 ints will be available, which means that
MyArray will be set to 0 (NULL). Of course, this is an extreme case. Most of the time, with modern
machines, you have to really mess up in order to be out of memory.

Using new to make your arrays, if you suddenly determined that you needed an extra element in the list,
you could do something like the following:

int* TempArray=new int[ArrayElements+1];
for(int count=0;count<ArrayElements;count++)
{

TempArray[count]=MyArray[count];
}
delete[] MyArray;
MyArray=TempArray;
ArrayElements++;

Looks pretty evil, doesn’t it? Basically, I allocated a brand-new array, the size of the original plus 1, copied
from one to the other, and finally deleted the old array. I know it’s a mess. Also, while this method might
be fine for small arrays of 10 or 20 elements, doing the same thing for an array that has 10,000 elements

Object Placement and Movement

481

What Is a Linked List?

A linked list is nothing more than a way to store data when you don’t know how many items you will need
to store. Consider an array for a moment. When you create your array, you write some code like the fol-
lowing:

int MyArray[10];

This, as you know, sets aside enough memory to store 10 ints which, on modern computers, are 32 bits
or 4 bytes long, so the code would set aside 40 bytes of memory which you can then access by using
MyArray with a subscript elsewhere in code.

Arrays are nice when you have a known number of items in a list. For example, a deck of cards can be
contained in an array that has a size of 52, or a chessboard can be stored in an 8✕8 array. However,
when the number of items might at some time be stored in a list, an array just can’t do it—at least, not
efficiently.

Following is an alternative way to declare an array of ints using C++’s new operator to dynamically allo-
cate the space on the heap:

int ArrayElements=10;
int* MyArray=new int[ArrayElements];

Using this code, you request 10 ints to be set aside on the heap, which is also known as the free store,
meaning just a big hunk o’ memory that isn’t being used. The key word in the preceding sentence is
“requested.”There is no guarantee that enough space for 10 ints will be available, which means that
MyArray will be set to 0 (NULL). Of course, this is an extreme case. Most of the time, with modern
machines, you have to really mess up in order to be out of memory.

Using new to make your arrays, if you suddenly determined that you needed an extra element in the list,
you could do something like the following:

int* TempArray=new int[ArrayElements+1];
for(int count=0;count<ArrayElements;count++)
{

TempArray[count]=MyArray[count];
}
delete[] MyArray;
MyArray=TempArray;
ArrayElements++;

Looks pretty evil, doesn’t it? Basically, I allocated a brand-new array, the size of the original plus 1, copied
from one to the other, and finally deleted the old array. I know it’s a mess. Also, while this method might
be fine for small arrays of 10 or 20 elements, doing the same thing for an array that has 10,000 elements

Object Placement and Movement

TeamLRN

482

is disastrous for performance. Ideally, what you would like to do is to be able to add and remove elements
without having to do a lot of recopying. That is what a linked list will do, and here’s why.

How Linked Lists Work

The basic building block of a linked list is called a node. A node serves the same purpose as an index into
an array, like MyArray[4]. Keep in mind that “serves the same purpose” is not to be confused with
“works the same way.” Linked lists and arrays are completely different. The only thing they have in com-
mon is that they both store more than one element of data.

The following code is an example of what a typical node structure might look like:

struct Node//basic node structure
{

void* DataPtr;//pointer to the data stored in this node
Node* next;//pointer to the next node
Node* prev;//pointer to the previous node

};

A node consists of three simple parts. First is the DataPtr, which isn’t necessarily a void*. If you need a
linked list of integers, you would have an integer member instead—you get the idea. The other two parts
are integral to the way linked lists work. In order to arbitrarily insert nodes, you keep track of the next
node in the list (with the next member), and you also keep track of the node just prior to the current one
(with the prev members). Hence, the nodes are linked into a little string of pointers, so they are called
linked lists. Having both a next and prev pointer means that it is a “doubly linked list” since you can navi-
gate both ways along the list of nodes.

Heads or Tails

In your linked list, two nodes are special: the head node and the tail node. You might call them “front and
back” or “top and bottom” or “first and last,” but suffice it to say that the list “starts” at the head node
and “ends” at the tail node, even though you can work backwards from the tail node and wind up back at
the head node. This is just the convention used. If you want to use other terminology that you feel more
comfortable with, you’re free to do so.

Figure 18.9 shows how a linked list works. It shows identical rows of nodes, including the head node and
tail node. The top row shows how the next pointers are assigned to the address of the next node, and the
bottom row shows a similar thing for the prev pointers. (Showing them both at the same time would be a
mess of crisscrossed lines that would be hard to read.)

Isometric Game Programming with DirectX 7.0

483

Rolling Your Own Linked List

Even though I’m going to get to the STL list template in a few moments, no discussion about linked lists
is complete without at least showing how to make one on your own. Several methods are used to make
linked lists. Some use the same node for head and tail, in reality making a sort of “linked ring.” For our
purposes, I will have the head and tail nodes as separate nodes, both of which will contain nothing except
links to other nodes, so at any given time, our linked list will contain at least two nodes.

Node* pHead;//head node
Node* pTail;//tail node
//allocate the head and tail nodes
pHead=new Node;
pTail=new Node;
//point the head and tail nodes to one another and to NULL
pHead->prev=NULL;
pHead->next=pTail;
pTail->prev=pHead;
pTail->next=NULL;

This code snippet sets up the head and tail for a linked list. It is important to note that all nodes must be
dynamically allocated (by using either new or malloc). You cannot take a local variable of type Node and
add it to the list, because that variable disappears as soon as the function returns, which means that your
linked list will be broken. It is perfectly fine to use new or malloc to create new nodes within functions
using local Node* variables.

Object Placement and Movement

P N

Head

P N

Node

P N

Node

P N

Tail

P N

Head

P N

Node

P N

Node

P N

Tail

NULL

"next" pointers

"prev" pointers

NULL

Figure 18.9

Visual representation

of a linked list

TeamLRN

484

Adding to the Linked List

Just having a head and tail node (both of which contain nothing) won’t get you anywhere. In order for the
list to be useful, you must populate it with data, which means you have to insert nodes. The first insertion
I’m going to show you is how to insert a node at the beginning of the list (right after the node pointed to
by pHead).

Node* pNode=new Node;//allocate a new node
//set up the data in the node here
pNode->next=pHead->next;//copy the next pointer from pHead
pNode->prev=pHead;//set the prev pointer to the top of the list (pHead)
pHead->next=pNode;//point to the new node from pHead

As you can see, there’s a whole lot of messing around with the next and prev pointers. This is the basis
for how linked lists work and is also the source of most of the errors associated with linked lists.

Next, I’m going to show you how to add a node to the end (right before pTail). This code is rather simi-
lar to the previous “top of list” code. It just switches next for prev.

Node* pNode=new Node;
//set up data in node here
pNode->prev=pTail->prev;//copy prev pointer from tail to new node
pNode->next=pTail;//point to tail from new node
pTail->prev=pNode;//point to new node from tail

Like I said, it’s about the same code either way. Most of the time, these two insertions are the only ones
you’ll use. However, fast arbitrary insertions are one of the strengths of linked lists, and the code is almost
identical to the code I’ve already shown, so let’s take a look.

In both of the following examples, pCurrent is a node somewhere in the list, and not the head or the tail.
First, here is how to insert a node after pCurrent:

Node* pNode=new Node;//allocate new node
//set up data within node here
pNode->next=pCurrent->next;//set new node’s next pointer
pNode->prev=pCurrent;//set new node’s prev pointer
pCurrent->next=pNode;//update pCurrent’s next pointer

If you’re saying “Hey! You can take the ‘insert after the head’ code and replace all the pHeads with
pCurrents!” you are correct, and you get a blue ribbon. In fact, to do the “insert before pCurrent” code,
you can just take the “insert before tail” code and replace pTail with pCurrent. It’s just that easy.

Isometric Game Programming with DirectX 7.0

485

Deleting from a Linked List

In order to delete a node from a linked list, the list must first have a node that is not the head or the tail.
Deleting the head or tail nodes can be disastrous for this style of linked list. For this example, we return to
using pCurrent as a node somewhere in the list that is neither the head nor the tail.

Node* pNextNode=pCurrent->next;//get a pointer to the next node
Node* pPrevNode=pCurrent->prev;//get a pointer to the previous node
pNextNode->prev=pPrevNode;//link next node to previous node
pPrevNode->next=pNextNode;//link previous node to next node
//do whatever needs doing to free up the data used by the node here
delete pCurrent;//delete the current node
pCurrent=pNextNode;//set pCurrent to a valid node

Checking for an Empty List

Quite commonly, you will need to check if the list has any node (not the head or tail) in it. With this style
of linked list, this is a pretty easy check. You can do it two ways. One, you can see if the next pointer of
pHead points to pTail:

if(pHead->next==pTail) {/*the list is empty*/}

And two, you can see if the prev pointer of pTail points to pHead:

if(pTail->prev==pHead){/*the list is empty*/}

It is not always necessary to check if a list is empty before iterating through it, but this is a good idea at
many other times.

Iterating Through a List

The word “iterate” might be new to you, even though you are already familiar with the concept. Whenever
you do a for loop, you are in fact iterating:

for(int count=0;count<MAXVALUE;count++)
{

//do something
}

In this piece of code, you “iterate” through a number of values for count, which might be used as an
index into an array or part of a function that totals the values of count, searches for a particular item, or
whatever.

The dictionary definition of iteration is “the process of repeating a set of instructions a specified number
of times or until a specific result is achieved.”This is straight out of the American Heritage Dictionary of the
English Language, Third Edition. What better way to describe a for loop? A simpler definition is that iteration

Object Placement and Movement

TeamLRN

486

involves repetitive tasks, such as looking at each of the values stored in an array. In a linked list, you iterate
through all the nodes in the list, usually performing some action with them.

In order to iterate, you must first have an iterator. In the preceding for loop, the variable count was the
iterator. With your linked lists, you will use a node to step your way through the list.

Generally speaking, you will want to iterate through a linked list one of two ways: either forward or back-
ward, and usually from head to tail or tail to head. Both methods are very similar. Here’s a little look-see at
iterating from head to tail:

Node* pCurrent=pHead->next;//pHead is NOT the first node in the list; pHead->next
IS
while(pCurrent!=pTail)//while pCurrent does not point to the tail of the list
{

//do something with the current node
pCurrent=pCurrent->next;//move to the next node in the list

}

Or, if you prefer to use for rather than while (I know I do, anyway), do this:

for(pCurrent=pHead->next;pCurrent!=pTail;pCurrent=pCurrent->next)
{

//do something with the current node
}

During a list iteration, you might perform one of a number of operations, like counting nodes, searching
for a particular node, modifying the data stored in the node, and so on. Be careful about deleting or
adding nodes, however. If you add a node as a result of an iteration, you might not want it to be part of
the current iteration, in which case you probably want to add it to the beginning of the list. However, you
might indeed want to have the new item be part of this iteration, in which case you would add it to the
end. It’s all a matter of what function the iteration performs. Just be sure you design your iterations prop-
erly, and everything should be fine.

If you want to loop from tail to head, you just reverse everything, like so:

for(pCurrent=pTail->prev;pCurrent!=pHead;pCurrent=pCurrent->prev)
{

Isometric Game Programming with DirectX 7.0

NOTE
Another good example of an iterator is how the CTileWalker class is used by
CMouseMap to determine the position of a pixel on-screen.

487

//do something with pCurrent here
}

One of the more common tasks you will use list iteration for is that of searching out a particular node.
The way I normally go about this is shown next. For the moment, assume that Node contains a member
called Value that is an int, and assume that I am looking for the number 13 in the list.

Node* pFound=NULL;//this node will point to a node, if found,
//and NULL if not found
for(pCurrent=pHead->next;pCurrent!=pTail;pCurrent=pCurrent->next)
{

if(pCurrent->Value==13)//check for a value of 13
{

pFound=pCurrent;//set the found node to the current node
break;//break out of the loop

}
}
if(pFound)
{

//found a node!
}
else
{

//did not find a node!
}

At this point, I’m going to point out a major weakness of linked lists. Whenever you want to do anything,
like search, count, or whatever, you have to go from one end to the other, one step at a time. This makes
accessing a given node (for example, the fifth node) slower than it is in an array. However, most of the
time you will use linked lists in places where moving from one end to the other is what you wanted to do
in the first place anyway, so this is not a problem. Plus, you gain the ability to arbitrarily insert and delete
items quickly, which is not possible in an array.

Another common iteration you will be likely to perform is that of counting nodes. This is a rather simple
matter.

int Tally=0;//initialize counter to 0
for(pCurrent=pHead->next;pCurrent!=pTail;pCurrent=pCurrent->next) //iterate

Tally++;//for each node, add one to Tally

No big deal, right? How tough can counting things be, really? Unfortunately, counting the nodes does
require moving through the entire list each time you want to do so, and since adding nodes is so easy (it
can be done anywhere in code), keeping track of a count separately can be a pain.

Object Placement and Movement

TeamLRN

488

Fortunately, many times you don’t really care how many items are in a list. In a strategy game, for example,
you might be concerned with only three values: 0, 1, and more than 1. If a given map location has no
units, don’t render anything. If the map location has one unit, render it. If the map location has two
or more units, you want to render whatever unit is “on top” of the stack (the first node in the list),
and you want to render some sort of visual clue to let the player know that there is a stack of units on
this location.

I have already shown you how to check if a list has zero nodes—just check to see if it is empty or not. In
order to check for a single unit in the list, you just compare pHead->next and pTail->prev. If these two
values are the same, the list contains exactly one unit. In any other case, there is “more than one” unit.

The STL List Template

Now that I’ve gone over how to create and implement a linked list, let’s switch gears and just use Standard
Template Library (STL). STL is a library of templates that comes with most if not all C++ compilers,
including Visual C++ (hence the S in STL).

If you aren’t familiar with templates, they are a way to make a generic function or class that applies to
many different types without having to rewrite the code. For example, with a linked list, you have no idea
what kind of data you want to store in it, and using void* is just kind of messy. The declaration for
STL’s list looks like the following:

template<class T,class A=allocator<T>> class list{/*...*/}

The values between the < and the > are similar to function parameters that lie between a (and a), except
that now, the parameters are types. In a list, class T represents what you want to store in the list. It can
be any type—int, void*, float, double, or a struct or class that you make yourself. class A represents an
allocator for an object of class T, but you don’t worry about that, since it defaults to allocator<T>,
which is a generic version of an allocator object.

In order to use STL’s list template, you only have to do the following:

#include <list>//include the header file
std::list<int> MyList;//declare a linked list of ints
//now we can use MyList

If the std part confuses you, it is because the list template resides in a namespace called std (meaning
“standard,” of course). A namespace is simply a mechanism to keep name clashes to a minimum. The word
“list” is rather common, especially in programming.

Most of the time, you will use the STL list by first defining a struct or class that will store the informa-
tion for something. Then you will make a list for that class or struct. (Personally, I like to typdef them
into more easily readable type aliases.)

Isometric Game Programming with DirectX 7.0

489

struct UnitInfo{/*...*/};//unit information structure
typedef UnitInfo *PUNITINFO;//point typedef for unit info struct
typedef std::list<PUNITINFO> UNITLIST;//typedef for unit list
typedef std::list<PUNITINFO>::iterator UNITLISTITER;//typedef for unit list iter-
ator

After this code, you can just use UNITLIST instead of std::list<PUNITINFO> to declare your list and
work with that list type. Ah, the power of typedef to keep us from hurting ourselves! The last line
declares a type alias for the iterator type contained in the list template (the iterator is also a template).
We’ll use this iterator to walk through the list later. I just wanted to show you how to declare one.

I’m not going to show you the ins and outs of the list template. One, it would take too long, and two, it
would be a waste of space, since our use of lists is mainly just to keep track of units. Mainly, I’ll just show
you how to add, remove, and count items, check for emptiness, and iterate through a list.

For all of these examples, you will assume that the code using UnitInfo and PUNITINFO is what you’re
doing, plus the following declaration:

UNITLIST MainUnitList;//declare the main unit list

Adding Items

Just as when you rolled your own, there are three different ways you might like to add a new item to the
list: at the beginning, at the end, or somewhere in the middle. To add an item to the beginning of the list
(STL calls this the “front” of the list), you use push_front, like so:

PUNITINFO pUnitInfo=new UnitInfo;//allocate a new unit
//set up pUnitInfo here
MainUnitList.push_front(pUnitInfo);//put it in at the beginning

If instead you would like to place a new item at the end of the list, you use push_back:

PUNITINFO pUnitInfo=new UnitInfo;//allocate a new unit
//set up pUnitInfo here
MainUnitList.push_back(pUnitInfo);//put it in at the beginning

The third method, arbitrary insertion, requires an iterator (in this case, a UNITLISTITER), and you use
the insert method. The iterator works kind of like pCurrent did in the “Rolling Your Own Linked List”
section.

//assume iter is a valid UNITLISTITER
PUNITINFO pUnitInfo=new UnitInfo;//allocate a new unit
//set up pUnitInfo here
MainUnitList.insert(iter,pUnitInfo);//iter is a valid iterator for this list

Object Placement and Movement

TeamLRN

490

I’d like to point out that in all cases, the insert method places the new item before (in the direction of
the beginning of the list from) the iterator, not after. There are two other overloaded insert methods, but
I’m not going to cover them. We can make do with this “single item” insertion.

Removing Items

To remove items, you use the remove method of the list template. If your list is using pointers to a struct,
you probably first want to iterate through a list to find out what pointer you want to get rid of, and then
use remove:

//assume pUnitInfo is a pointer that you want removed from the list
MainUnitList.remove(pUnitInfo);//removes all items that equal pUnitInfo

If you instead have an iterator at which you would like the removal to occur, you can use erase instead:

//assume iter is a valid iterator
iter=MainUnitList.erase(iter);//remove the item at the iterator, points the
iterator to the item after

And, just in case you are interested in removing all the items in the list, I present the clear method:

//clear out the list
MainUnitList.clear();

If you are dynamically allocating items before placing them in the list, you probably want to iterate
through and deallocate all the items in the list prior to using clear, or else you’ll have a memory leak. If
you want to remove items at the beginning or end of the list, you can use pop_front and pop_back.
Neither has any parameters.

Checking for Emptiness

This one is really easy. To do this, you use the empty method:

if(MainUnitList.empty())
{

//empty
}
else
{

//not empty
}

Like I said. . . not a difficult method to master.

Isometric Game Programming with DirectX 7.0

491

Counting Items

Also not a very complicated method for STL lists. This time, the word is size.

int ItemCount=MainUnitList.size();//get the number of items in the list

While the documentation doesn’t say this, you know full well that when size is called, it iterates through
the entire list. You might not want that to happen. You might only be concerned about whether a list has
zero, one, or two items. I’ll get to how to do that with an STL list in just a moment.

Iterating Through a List

The final piece of using the STL list is iteration. Rather than going into explanations of the special itera-
tors that are built into the list class, let me just show you the generic iteration loop, and then I’ll explain it
in terms of the “roll your own” example.

PUNITINFO pUnitInfo=NULL;
for(UNITLISTITER iter=MainUnitList.begin();iter!=MainUnitList.end();iter++)
{

pUnitInfo=*iter;//grab the unit pointer from the iterator
//do something with pUnitInfo

}

MainUnitList.begin() works in a manner similar to pHead->next. It is the first item in the list if you
are iterating forward. MainUnitList.end() is similar to pTail. iter++ uses an overloaded operator (++)
to move to the next node in the list. Another overloaded operator (*) is used by the iterator to access the
data stored there. I’ve used the preceding code as a basis for my list iterations since I started using them. It
hasn’t failed me yet. It won’t fail you either.

As promised, I’m going to show you a quick function to check for how large a stack of items is using STL
and not iterating through the entire list using size.

int StackSize(UNITLIST& UnitList)
{

if(UnitList.empty()) return(0);//check for empty
UNITLISTITER iter=UnitList.begin();//move to beginning of list
iter++;//move to the next item (we know there is at least one)
if(iter==UnitList.end()) return(1);//if we are at the end of the list,

//there is only one unit in the stack
return(2);//all other cases, there are at least two units

}

This way is a lot more efficient than iterating through the entire list each time you want to see how large a
stack of units is, which is a very common task. Got all that? The STL lists will be a lot easier once you’ve
worked with them.

Object Placement and Movement

TeamLRN

492

Multiple Units
Now that you’ve got a handle on linked lists, you can make examples that start to actually resemble
strategy games. The first example in this vein is IsoHex18_3.cpp. Before I actually get into how it was
built, however, I’d like to take a moment to talk about the general idea of a turn-based strategy game, and
how the program will flow (in other words. . . design).

In turn-based strategy games, two or more players fight against each other, the goal being to either elimi-
nate all the other players or achieve some victory condition known from the start of the game. The players
might be actual human beings playing in turn on the same machine (this is called “hot seat multiplayer”),
human beings playing over a network or the Internet, or computer-controlled players.

Regardless of who is playing (human or computer), the game takes place in turns. Each player gets a
chance to give all his units (and/or bases) orders. In some games, the action is resolved automatically dur-
ing the player’s turn. In other games, the action is resolved only after all players have given their units
orders. Most of the time, the “immediate resolution” model is used, unless there is some overwhelming
reason not to. During a player’s turn, he may order any or all of his units to move, attack, or perform some
special action, or just do nothing. Special actions vary from game to game, but they typically include forti-
fying one’s position, “sleeping” until an enemy unit comes into range, boarding a naval vessel, destroying
structures (farms, roads, mines) built by enemy players, performing spy functions, or just about anything
else you can imagine.

IsoHex18_3.cpp doesn’t concern itself with any of the special actions. Rather, it just allows a team of
units to be moved around a tilemap. However, this example is a good step toward implementing an honest-
to-goodness turn-based strategy game.

Here’s a basic rundown of a game turn. A “game turn” is different from a “player turn” in that each player
has his player turn before a single game turn elapses.

Game Turn #1:
Player #1 gives his units orders (orders are carried out immediately)
Player #2 gives his units orders (orders are carried out immediately)

Game Turn #2:
Player #1 gives his units orders (orders are carried out immediately)
Player #2 gives his units orders (orders are carried out immediately)

(and so on)

With each player turn, typically the following actions occur:
Player Turn:
Check to see if player has achieved “victory condition.”
Do whatever “upkeep” is necessary. (There might be maintenance costs for units.)

Isometric Game Programming with DirectX 7.0

493

For each unit:
Wait for a command from the player.
Carry out the command.

Now that you’ve got the basic flow down, keep it in mind as I discuss the code. There are a number of dif-
ferences between IsoHex18_3 and prior examples. For one thing, most of Prog_Loop has been completely
rewritten and the map structure completely changed. I took out the tree (I knew you were getting tired of
seeing it; it’s rather homely), and I added a new type of unit. Most fundamentally, you are now using
linked lists to store your units.

Constants and Globals
Naturally, the constants and globals changed quite a bit. First, I made the map smaller (there’s no need to
have a huge map for a simple unit example). It is now 40✕40 tiles, so at least it’s bigger than the screen. I
could have had as large a map as I wanted.

const int MAPWIDTH=40;
const int MAPHEIGHT=40;
//gamestates
const int GS_IDLE=0;//waits for a keypress
const int GS_STARTTURN=1;//starts a player’s turn
const int GS_ENDTURN=2;//ends a player’s turn
const int GS_NEXTUNIT=3;//finds the next unit to move
const int GS_STARTMOVE=4;//starts moving the unit
const int GS_DOMOVE=5;//moves the unit
const int GS_ENDMOVE=6;//ends a unit move
const int GS_NULLMOVE=7;//tells a unit to not move
const int GS_SKIPMOVE=8;//temporarily skips the move

The second big change to the constants are the game states. The last example had only four. Now, there are
nine. Table 18.4 lists these game states and their purposes.

Object Placement and Movement

TeamLRN

494

Figure 18.10 shows a graphical view of these game states as well as the basic flow from game state to game
state. From this figure, it is easy to see that GS_NEXTUNIT and GS_IDLE are the most important. Most of
the time, the game will be in GS_IDLE, waiting for keyboard input.

Isometric Game Programming with DirectX 7.0

Table 18.4 IsoHex18_3 Game States
Game State Purpose

GS_IDLE This game state is “neutral” and is used to wait for keyboard input
from the player

GS_STARTTURN At the beginning of a player’s turn, this game state takes care of
all details that need to be taken care of at that time

GS_ENDTURN At the end of a player’s turn, this game state cleans up whatever
needs cleaning and sets the next player as the new current player

GS_NEXTUNIT This game state selects the next unit to receive commands from
the current player

GS_STARTMOVE After a move command has been received from the player,
GS_STARTMOVE begins the move

GS_DOMOVE After a move has begun, GS_DOMOVE implements the actual move

GS_ENDMOVE This game state finalizes a unit’s movement

GS_NULLMOVE If the player chooses not to move a unit during his turn, GS_NULLMOVE
takes care of it

GS_SKIPMOVE If the player does not want to move the current unit, but would
like the option to move it this turn, he can skip this unit and
come back to it later

495

We’ll talk all about these game states a little later. For now, let’s get back to globals.

struct UnitInfo//unit information structure
{

int iType;//type of unit
int iTeam;//team to which the unit belongs
POINT ptPosition;//map location of the unit

};
typedef UnitInfo *PUNITINFO;//pointer type alias for unitinfo
typedef std::list<PUNITINFO> UNITLIST;//list of units
typedef std::list<PUNITINFO>::iterator UNITLISTITER;//iterator for unit list

I sort of covered this earlier, in the discussion of linked lists. I defined a UnitInfo structure to contain
all the pertinent information about an individual unit. Table 18.5 lists the members of UnitInfo and
their meanings.

Object Placement and Movement

GS_STARTTURN GS_NEXTUNIT GS_IDLE

GS_NULLMOVE

GS_SKIPMOVE

GS_DOMOVE GS_STARTMOVE

GS_ENDMOVE

GS_ENDTURN

U
ni

t Q
ue

ue
 E

m
pt

y

Num Pad
or

Arrow
key

"W"

Space
 Bar

Unit Queue Not Empty

Figure 18.10

Graphical view of

game states

TeamLRN

496

Besides UnitInfo’s definition, a number of typedefs are used for the linked lists. PUNITINFO is a pointer
type alias for UnitInfo. UNITLIST is an STL list that keeps PUNITINFOs. UNITLISTITER is an iterator for
UNITLIST.

//map location structure
struct MapLocation
{

UNITLIST ulUnitList;//list of units on this map location
};
MapLocation mlMap[MAPWIDTH][MAPHEIGHT];//map array

The MapLocation structure has been completely changed as well. Both bTree and bUnit have been taken
out, and they have been replaced by a UNITLIST. Each map location maintains a list of all the units cur-
rently occupying that location.

UNITLIST MainUnitList;//unit list for all units
UNITLIST TeamUnitList;//unit list for teams (current player’s turn)
PUNITINFO pCurrentUnit;//current unit being moved
bool bFlash;//controls the flashing of the current unit
ISODIRECTION idMoveUnit;//direction in which the unit will be moved

This stuff is used to manage the units. MainUnitList is, to no one’s surprise, a master list of all units in
the game.

TeamUnitList is a list containing all the current player’s units. It gets filled during GS_STARTMOVE and is
slowly emptied from GS_NEXTUNIT. pCurrentUnit represents the current unit, or the unit that the player
is going to give orders to. It is assigned during GS_NEXTUNIT. bFlash toggles between false and true during
GS_IDLE. If it’s false, the current unit will not be shown during the current frame. If it’s true, the current
unit will be shown during the current frame. This results in a nice effect of a “blinking unit” to give the

Isometric Game Programming with DirectX 7.0

Table 18.5 UnitInfo Members
Member Meaning

iType The type of the unit. In tsUnit, there are two images, each of
which represents a “type” of unit.

iTeam The team or player to whom this unit belongs.A new tileset
called tsShield has images of shields with differing colors to
represent the different teams. Currently there are two teams:
blue(0) and red(1).

ptPosition The map location in which this unit can be found.

497

player a visual clue that this is the unit he will be moving. idMoveUnit is the same as it was in prior exam-
ples. It controls a unit’s direction of movement.

There are a few more globals, like iCurrentTeam, which keeps track of which player is having his turn.
Also, there is an additional tileset variable, tsShield, which I’ll get into more detail about in this example’s
rendering function.

Main Loop
Now that all the preliminaries are out of the way, we can get to the meat of the program—namely, the
game states that Prog_Loop responds to. These are in no particular order, so if you have to refer to
Figure 18.10 or Table 18.4 to keep them straight in your head, that’s OK.

GS_STARTTURN

Start at the beginning, and when you come to the end, stop. That’s good advice, and I’m going to follow it here. The
following snippet handles GS_STARTTURN, which occurs at the beginning of a player’s turn.

case GS_STARTTURN://start the current team’s turn
{

PUNITINFO pUnitInfo;//variable to check for the team’s units
UNITLISTITER iter;//iterator for the main unit list
for(iter=MainUnitList.begin();iter!=MainUnitList.end();iter++)

//iterate through the main unit list
{

pUnitInfo=*iter;//grab the unit from the list
if(pUnitInfo->iTeam==iCurrentTeam)

//does this unit belong to the current team?
{

//add this unit to the team list
TeamUnitList.push_back(pUnitInfo);

}
}
//set the next gamestate
iGameState=GS_NEXTUNIT;

}break;

This game state doesn’t do much, but what it does is very important. Basically, at the start of the player’s
turn, all his units (or, at least, pointers to them) are taken from MainUnitList and are added to
TeamUnitList. The main work is done by an iteration loop, which is a “search” loop that checks to see if
the iTeam member of UnitInfo is the same as iCurrentTeam. If this criteria is met, the unit is added to
the team’s unit list. After the TeamUnitList has been filled, this game state yields to the next game state,
GS_NEXTUNIT.

Object Placement and Movement

TeamLRN

498

GS_NEXTUNIT

Other than GS_IDLE, the program spends the most time in GS_NEXTUNIT, which is perhaps the most
important game state in the entire program. This one is a big one, so I will “annotate” as I go along.

case GS_NEXTUNIT://select the next unit as the current unit
{

//set current unit to NULL
pCurrentUnit=NULL;
if(TeamUnitList.empty())//if the team unit list is empty
{

iGameState=GS_ENDTURN;//end the turn
}

The entire purpose of GS_NEXTUNIT is to set the current unit (pCurrentUnit) to point to whatever the
next unit owned by the current player (iCurrentTeam) is to move. Since all the player’s units were placed
in TeamUnitList during GS_STARTTURN, the task is somewhat simplified. First, you check to see if
TeamUnitList is empty. If it is, this player’s turn is over, and you yield control to GS_ENDTURN.

else
{

//turn is not over
UNITLISTITER iter=TeamUnitList.begin();

//get the first unit in the team list
pCurrentUnit=*iter;//grab the unit from the list
TeamUnitList.pop_front();//remove the unit from the list

If TeamUnitList is not empty, simply take the unit from the top or front of the list (by setting an itera-
tor to the beginning of the list and grabbing the unit pointer from there). After you have this value,
remove this unit from TeamUnitList, since presumably the unit will be moved. If it is not moved, you will
replace it in the list.

mlMap[pCurrentUnit->ptPosition.x]
[pCurrentUnit->ptPosition.y].ulUnitList.remove(
pCurrentUnit);
//remove the unit from the map location

mlMap[pCurrentUnit->ptPosition.x]
[pCurrentUnit->ptPosition.y].ulUnitList.push_front(
pCurrentUnit);//place unit at the top of the

//map locations unit list

This part might puzzle you, because the reasons for doing it are not entirely self-evident. I discovered a
need to do this while writing the example. The rendering function only renders the image of the unit that

Isometric Game Programming with DirectX 7.0

499

is at the top or front of the map location’s unit list, which means that if you want the current unit to be
seen, it must be at the beginning of the list. That’s what the preceding lines of code do. The first line
removes the unit from the list, and the second line puts it in the front of the list.

POINT ptPlot=TilePlotter.PlotTile(pCurrentUnit->ptPosition);
//plot the unit’s location

POINT ptScreen=Scroller.WorldToScreen(ptPlot);
//translate into screen coordinates

if(!PtInRect(Scroller.GetScreenSpace(),ptScreen))
//check to see if point is within screenspace
{

//not on screen
ptPlot.x-=(Scroller.GetScreenSpaceWidth()/2);
ptPlot.y-=(Scroller.GetAnchorSpaceHeight()/2);
//set the anchor
Scroller.SetAnchor(&ptPlot);
Renderer.AddRect(Scroller.GetScreenSpace());

}
iGameState=GS_IDLE;//set to idling gamestate

}
}break;

Before yielding to GS_IDLE (the final task that takes place in GS_NEXTUNIT), you first must guarantee that
the unit can be seen on-screen. I took a rather simple approach to this by plotting the tile, translating to
screen coordinates, and checking to see if this point is within the screen space. If it isn’t, the scroller’s
anchor is modified to center on the unit, and the renderer is told to update the entire screen. This method
works, but it’s less than ideal, especially when a unit is near the edge of the screen space. You might replace
the screen space rectangle with some other rectangle that guarantees that the entire unit will be visible on-
screen.

GS_ENDTURN

As I said earlier, these game states are in no particular order. (Actually, they are, but explaining how my
mind works would take a whole other book.) The next on the list is GS_ENDTURN.

case GS_ENDTURN://end of a player’s turn
{

//clear out team unit list (just to be sure)
TeamUnitList.clear();
//change team
iCurrentTeam=1-iCurrentTeam;
iGameState=GS_STARTTURN;//set gamestate to start next turn

}break;

Object Placement and Movement

TeamLRN

500

This one is pretty short and sweet. First, you clear out the TeamUnitList. It’s empty already, of course,
because otherwise, GS_NEXTUNIT would not have sent you to GS_ENDTURN, but clearing out an empty list
doesn’t take up any overhead (at least, not enough to worry about), and being safe is good. After you have
ensured that the TeamUnitList is empty, the next player is selected (by changing the value of
iCurrentTeam), and you are then sent to GS_STARTTURN to start the cycle over.

GS_IDLE

As stated earlier, most of the time spent in the program is spent in GS_IDLE. Its job is to update the dis-
play each frame until keyboard input is processed, at which time you switch to another game state.

case GS_IDLE://the game is idling; update the frame, but that’s about it.
{

DWORD dwTimeStart=GetTickCount();//get the frame start time
//scroll the frame (0,0)
Renderer.ScrollFrame(0,0);
//toggle unit flash
bFlash=!bFlash;
//add the tile in which the current unit lives
Renderer.AddTile(pCurrentUnit->ptPosition.x,pCurrentUnit-

>ptPosition.y);
//update the frame
Renderer.UpdateFrame();
//flip to show the back buffer
lpddsMain->Flip(0,DDFLIP_WAIT);
//wait until 200 ms have passed
while(GetTickCount()-dwTimeStart<200);

}break;

There is nothing earth-shattering here. Mainly, you just tell the renderer to do its job. There’s one thing of
note, however. Your new global, bFlash, changes value each time GS_IDLE is executed, and the tile occu-
pied by the current unit is updated. Also, a frame limiter ensures that 200 milliseconds pass before another
frame is shown. This is what gives you a “flashing unit” effect for whichever unit is the current unit
(pCurrentUnit). There will be more about this when I cover the rendering function.

GS_NULLMOVE

This game state is one of three ways to get out of GS_IDLE. To get here, the user presses the spacebar,
indicating that he does not want to move this unit this turn.

case GS_NULLMOVE://do not move the current unit
{

//don’t really do anything, just go to the next unit

Isometric Game Programming with DirectX 7.0

501

pCurrentUnit=NULL;
iGameState=GS_NEXTUNIT;

}break;

Not a lot going on here. You set the current unit to NULL and set the game state to GS_NEXTUNIT.

GS_SKIPMOVE

The second option for getting out of GS_IDLE is GS_SKIPMOVE. You can get there by pressing the W key
on the keyboard, indicating that you might still want to move this unit a little later, but not right now.

case GS_SKIPMOVE://skip this unit for now
{

//put unit at end of team unit list
TeamUnitList.push_back(pCurrentUnit);
pCurrentUnit=NULL;//set current unit to NULL
iGameState=GS_NEXTUNIT;//select the next unit

}break;

This game state is only slightly more complicated than GS_NULLMOVE. In fact, it adds only one line. Since
the player might want to move the unit later, you replace it back in TeamUnitList before setting the cur-
rent unit to NULL and moving to GS_NEXTUNIT.

GS_STARTMOVE

This is the third and final way to get out of GS_IDLE. It is accomplished by processing a movement key-
stroke. The movement keys are the arrow keys, the numeric keypad, and Home, End, Page Up, and Page
Down. (The numeric keypad works whether Num Lock is on or off.)

case GS_STARTMOVE:
{

//remove the unit from the map location
mlMap[pCurrentUnit->ptPosition.x]

[pCurrentUnit->ptPosition.y].ulUnitList.remove(
pCurrentUnit);

Renderer.AddTile(pCurrentUnit->ptPosition.x,pCurrentUnit-
>ptPosition.y);

//set next gamestate
iGameState=GS_DOMOVE;

}break;

This example, as you might have already noticed, does not use the methods I discussed in IsoHex18_2,
where you smoothly slid the unit from one tile to another. However, all the appropriate game states already

Object Placement and Movement

TeamLRN

502

exist in this example, so implementing it wouldn’t be that big of a deal. The reason that I did not is
because I wanted to showcase the linked list and multiple-unit stuff without cluttering it up with other
code.

In GS_STARTMOVE, the current unit is removed from its current map location, and that map location’s coor-
dinates are added to the renderer for updating. No rendering is done during GS_STARTMOVE. Next, the
game moves to GS_DOMOVE. In essence, GS_STARTMOVE is “picking up” the unit, much in the same way you
would pick up a chess piece.

GS_DOMOVE

This game state performs the actual move. If GS_STARTMOVE is picking up the piece, this game state is
actually moving it (but not setting it down).

case GS_DOMOVE:
{

//move the unit
pCurrentUnit->ptPosition=

TileWalker.TileWalk(pCurrentUnit->ptPosition,idMoveUnit);
//set next gamestate
iGameState=GS_ENDMOVE;

}break;

This is an easy one. Simply use the TileWalker to move the current unit’s ptPosition member, and then
send the game into GS_ENDMOVE.

GS_ENDMOVE

This is the last game state, where you finally “set the piece down.” After this game state, a unit is consid-
ered to have made a complete move, and then the next unit is selected.

case GS_ENDMOVE:
{

//place the unit on its new map location
mlMap[pCurrentUnit->ptPosition.x]

Isometric Game Programming with DirectX 7.0

NOTE
It might seem silly to have these very small, overly broken-up game states, but I feel that
they illustrate the concept pretty well in bite-sized pieces, rather than dumping a whole
bunch of code on you and then saying “Here, figure this out.” In reality, you would prob-
ably implement it differently, but the same things would still occur.

503

[pCurrentUnit-
>ptPosition.y].ulUnitList.push_front(pCurrentUnit);
Renderer.AddTile(pCurrentUnit->ptPosition.x,pCurrentUnit-

>ptPosition.y);
pCurrentUnit=NULL;
//set next gamestate
iGameState=GS_NEXTUNIT;
DWORD dwTimeStart=GetTickCount();//get the frame start time
//scroll the frame (0,0)
Renderer.ScrollFrame(0,0);
//update the frame
Renderer.UpdateFrame();
//flip to show the back buffer
lpddsMain->Flip(0,DDFLIP_WAIT);
//wait until 500 ms have passed
while(GetTickCount()-dwTimeStart<500);

}break;

This game state does sort of the opposite of GS_STARTMOVE by placing the unit onto its new position.
Then, a single frame is rendered, and the game waits for 500 milliseconds so that you get at least a half-
second to see where your unit has moved. After that, the game moves to GS_NEXTUNIT, where the process
starts all over again.

Next, I want to move on to the rendering function, which will bring to light certain details that I have yet
to discuss.

Rendering Function
Ah, the rendering function. . . workhorse of the renderer, which accomplishes all the drawing for the entire
application. This time around, the rendering function has changed a great deal, and it has gotten rather
large, so I’m going to discuss it bit by bit.

void RenderFunc(LPDIRECTDRAWSURFACE7 lpddsDst, RECT* rcClip, int xDst, int yDst,
int xMap, int yMap)
{

//put background tile
tsBack.ClipTile(lpddsDst,rcClip,xDst,yDst,0);

This part you’ve seen before. It’s the only part that didn’t change from prior examples. Naturally, you have
to render the background tile before rendering anything else.

//check for an empty list
if(!mlMap[xMap][yMap].ulUnitList.empty())
{

Object Placement and Movement

TeamLRN

504

The remainder of the function is executed if and only if the unit list for the map location (xMap,yMap) is
not empty. If it is empty, the rest of this stuff is skipped.

//list is not empty
UNITLISTITER iter=mlMap[xMap][yMap].ulUnitList.begin();

//get iterator to beginning of list
PUNITINFO pUnitInfo=*iter;//grab the item

This is your basic “grab the unit pointer” code, which is in this example several times. Simply set an itera-
tor to the beginning of the unit list of the map location in question, and then use the overloaded * opera-
tor to gain access to the item stored there.

//if this is the current unit
if(pUnitInfo==pCurrentUnit)
{

//this is the current unit
if(!bFlash) return;//if flash is "off" don’t render

}

I mentioned bFlash (one of the new globals) earlier. This is where the “flashing” effect of the current
unit is accomplished. If the topmost unit is the current unit (pCurrentUnit), you check if bFlash is false.
If it is, return without rendering anything.

//place the unit
tsUnit.ClipTile(lpddsDst,rcClip,xDst,yDst,pUnitInfo->iType);

I know that this is just a single line, but it’s an important one. Based on what is stored in the unit’s iType,
render the appropriate image from tsUnit.

iter++;//move to the next item in the list
if(iter==mlMap[xMap][yMap].ulUnitList.end())

//if the end of the list, this is a single unit

Now that the unit is rendered, you must also render the shield next to it. Which shield image is shown
depends on two things. The first is the contents of iTeam, giving you which color to use, and the second is
whether this is a single unit or a stack. The preceding code moves the iterator (which previously was at the
beginning of the list) and advances it by 1. If the iterator now sits at the end of the list, you know that
there is only a single unit here, so the next bit of code is executed.

{
tsShield.ClipTile(lpddsDst,rcClip,xDst+

ptShieldOffset[pUnitInfo->iType].x,yDst+
ptShieldOffset[pUnitInfo->iType].y,pUnitInfo->iTeam*2);

Isometric Game Programming with DirectX 7.0

505

//place the shield
}

This code renders a “single unit” shield. The image for the shield contains four images: Team1-Single(0),
Team1-Stack(1), Team2-Single(2), and Team2-Stack(3). So, you can use iTeam*2 for single units.

else//more than one unit...this is a stack
{

tsShield.ClipTile(lpddsDst,rcClip,xDst+
ptShieldOffset[pUnitInfo->iType].x,yDst+
ptShieldOffset[pUnitInfo->iType].y,pUnitInfo-

>iTeam*2+1);
//place the shield

}
}

}

If the unit is part of a stack, you use iTeam*2+1 for the image number from the shield tileset.

And that’s it for the rendering function. Almost half of it is concerned with rendering the appropriate
shield. I could have instead used the count method of the list template, but since you don’t actually care
how many units are in the stack, I felt it was a waste.

Event Handling
Last, but certainly not least, we come to event handling. All input for this example is in the way of key-
presses and can be found under WM_KEYDOWN in the window procedure. These keypresses are the only way
to get out of GS_IDLE and into another game state.

VK_SPACE

Whenever the spacebar is pressed during GS_IDLE, you must inform the game that the current unit will
not be moving this turn.

case VK_SPACE://do not move unit
{

if(iGameState==GS_IDLE) iGameState=GS_NULLMOVE;
//only respond when gamestate is GS_IDLE;

return(0);
}break;

This is a simple event handler. First, make sure that the game state is GS_IDLE. If it is, set it to GS_NULL-
MOVE.

Object Placement and Movement

TeamLRN

506

W

The character W is the wait command, telling the game that you might want to move this unit during the
current turn, but you do not want to move it just now.

case ‘W’://wait to move this unit later
{

//skip this unit for now
if(iGameState==GS_IDLE) iGameState=GS_SKIPMOVE;
return(0);

}break;

Again, this is a very simple handler. Check for GS_IDLE, and set it to GS_SKIPMOVE.

Direction Keys

There are 16 of these in total, but I’m only going to show you two of them, since they are all so similar
(the only difference is the direction to which idMoveUnit is set). Table 18.6 shows what keys initiate
movement in the various directions.

Isometric Game Programming with DirectX 7.0

Table 18.6 Keys and Directions
Main Key Secondary Key Direction

VK_NUMPAD8 VK_UP ISO_NORTH

VK_NUMPAD9 VK_PRIOR ISO_NORTHEAST

VK_NUMPAD6 VK_RIGHT ISO_EAST

VK_NUMPAD3 VK_NEXT ISO_SOUTHEAST

VK_NUMPAD2 VK_DOWN ISO_SOUTH

VK_NUMPAD1 VK_END ISO_SOUTHWEST

VK_NUMPAD4 VK_LEFT ISO_WEST

VK_NUMPAD7 VK_HOME ISO_NORTHWEST

507

These keys were chosen so that the example would work regardless of the state of the Num Lock key.
With this in mind, let’s take a look at the case for northward movement, VK_NUMPAD8 and VK_UP.

case VK_NUMPAD8:
case VK_UP:

{
if(iGameState==GS_IDLE)//gamestate must be GS_IDLE
{

First and foremost, the game must be in GS_IDLE, or no key processing should be done, and this keypress
should be ignored.

idMoveUnit=ISO_NORTH;//move to the north
//check the next position
POINT ptNext=TileWalker.TileWalk(

pCurrentUnit->ptPosition,idMoveUnit);

Next, select the appropriate direction for idMoveUnit (ISO_NORTH in this case), and assign a POINT
variable (ptNext) to the next location if this move were allowed by using the TileWalker. Before a move
is processed, you must first validate it.

if(ptNext.x>=0 && ptNext.y>=0 &&
ptNext.x<MAPWIDTH && ptNext.y<MAPWIDTH)
//bounds checking

{

The very first thing to check before allowing this move to go forward is whether or not the destination
(ptNext) even exists as a map location. If you have moved out of bounds, the following code is skipped:

if(mlMap[ptNext.x][ptNext.y].ulUnitList.empty())
//if the map location is empty

{
//set the unit in motion
iGameState=GS_STARTMOVE;

}

The second part of validation requires that you eliminate “illegal” map locations. For the purposes of this
example, the only illegal map locations are those occupied by units of the opposing team, so if the map
location at ptNext is empty, the move can go ahead with no problems, and the game state is set to
GS_STARTMOVE.

else
{

UNITLISTITER iter=mlMap[ptNext.x]

Object Placement and Movement

TeamLRN

508

[ptNext.y].ulUnitList.begin();
//get the first entry in the list

PUNITINFO pUnitInfo=*iter;
//get the unit from the list
if(pUnitInfo->iTeam==pCurrentUnit->iTeam)

//must be the same team
{

iGameState=GS_STARTMOVE;
}

}
}

}
}break;

If the destination map location is not empty, you proceed to the third part of validation. You must deter-
mine what team occupies the map location at ptNext. If it is your team (pCurrentUnit->iTeam), the
move can proceed, and the game state can be set to GS_STARTMOVE. If not, the movement command is
ignored.

You now have full understanding of the thought process behind IsoHex18_3.cpp. I hope I have shown
that linked lists aren’t as scary as you might first have thought, and that STL isn’t as evil as everyone makes
it out to be. In our case, it drastically reduces the complexity of the program and also makes it so that you
don’t have to “roll your own” linked lists.

Oh. . . you probably want to see what the application looks like, right? Figure 18.11 gives a glimpse. This
figure really doesn’t do it justice, so you just have to run it and play around with it for a while. I think it’s
pretty neat, but then again, I wrote it.

Isometric Game Programming with DirectX 7.0

509

Summary
It’s been a long journey, but well worth it. We’ve covered coarse object placement and movement, and the
examples are starting to look game-like. We’ve gone from a single unit to multiple units and linked lists.
After a long time in building, you are starting to see some results from all the hard work you’ve put into
these isometric components, and they are serving you well. In the next few chapters, you’ll refine and
enhance what you’ve already got, and by the end, you should have enough information to start work on an
honest-to-goodness strategy game.

Object Placement and Movement

Figure 18.11

Output of IsoHex18_3.cpp

TeamLRN

Object
Selection

• Simple Object Selection Design

• Simple Object Selection
Implementation

• Pixel-Perfect Object Selection

• Minimap, Zones of Control,
and the Fog of War

CHAPTER 19

511

After spending so much time on object placement and movement, object selection might seem
almost anticlimactic, since most of the foundation for the tasks ahead has already been taken care

of. Nevertheless, a good, solid grasp of object selection will enhance your games immeasurably. If you’ve
ever played a game that had a clunky interface, you know what I mean. Many game developers tend to pay
only a passing amount of attention to what matters most—control over your game. I don’t mean user
interface elements (like buttons, windows, and so on), but rather how you select the objects under your
control, and how you give them orders. Also, I’ll introduce you to three very common strategy game fea-
tures: the minimap, zones of control, and the fog of war.

Simple Object Selection
I’m currently using the turn-based strategy game paradigm, and I’m going to stay with it for a while, since it
makes demonstrating concepts easy. Still, the concepts shown here can be adapted for use in a real-time
system as well. The first thing we’ll look at is a very simple object selection algorithm.

Chapter 18, “Object Placement and Movement,” explored a way to control multiple units in example
IsoHex18_3. Although it was a very simplistic example, it got the job done. However, it left the user rela-
tively few options as far as organizing unit movement. You could simply move the unit, not move the unit,
or move the unit later, which isn’t much as far as control is concerned. Ideally, you might like to select a
different unit with the mouse, either by clicking on that unit, or by clicking on the map location contain-
ing that unit. You’ll start with clicking on the map location, because that is easier, and later you’ll move on
to “pixel-perfect” unit selection.

Simple Object Selection Design
Before you do any work, you must figure out exactly what you want to accomplish. In the next example,
which is based on IsoHex18_3.cpp (it already has the multiple-unit stuff built into it), you want the fol-
lowing features:

• The ability to click on another unit and have it become the current unit
• The ability to tell a unit to “fortify” or “hold current position” indefinitely (it gets annoying to press the

spacebar each turn for units you do not want to move)
• The ability to “scout” the map by scrolling the screen space
• The ability to center the screen on the current unit (in case you were scouting and now you want to find your

unit again)

Now, let’s take these one by one, and explore the benefits and pitfalls of making them happen.

Object Selection

TeamLRN

512

Click-Selecting Units
In IsoHex18_3, you simply looped through all the units, one at a time, moving or not moving them as
desired. This method remains a suitable way to do things, so you won’t change it. What you want to do,
however, requires that you “short-circuit” this loop after clicking on a unit’s map location. The benefit
gained is that you help achieve one of the main objectives for this example—more choices in controlling
units.

The pitfalls aren’t too deep—there are just a few things to think about. First, you have to decide whether
you are responding to WM_LBUTTONDOWN or WM_LBUTTONUP. This isn’t a tough choice, but it’s a significant
one. You’ll use both, actually, and I’m about to tell you why.

If you’ve been working with Windows for a while, you probably use an important feature of it without
really thinking about it—canceling a button press by moving off it. Whenever you click on a button, it
displays its “down” image, indicating to you that yes, you have pressed the left mouse button over that
control. However, the action associated with that button does not occur until you release the left mouse
button, and, more importantly, you must release the mouse button over that same control, or nothing hap-
pens.

That is sort of what I want to accomplish here. If you click the left mouse button, the tile on which the
mouse rests is recorded. Later, if the left mouse button is released while over that same tile, a click is regis-
tered, and the appropriate action takes place. Later on, you’ll change this behavior to include unit dragging,
but for now, it will suffice. So, if the left mouse button is pressed and released within the same map loca-
tion, the program must perform the appropriate action. Depending on what the map location in question
contains, the “appropriate action” might differ.

For unit selection, you are concerned with map locations that contain units belonging to the current team.
Also, the map location must have a unit that has not moved or received an order earlier in the turn. This
will involve some bookkeeping on your part.

Finally, there might be more than one unit on the map location in question, so you have to allow some
manner of selecting exactly which unit is to be moved. See? It’s getting complicated already, or at least
less simple.

Fortification/Holding Position
This item sounds relatively simple, but it has some significant ramifications for the rest of the program.
The basic idea here is that you provide some way to tell a unit to stay where it is, indefinitely, until you
select it again on some other turn. The benefit is that you will no longer need to press the spacebar every
turn for that unit, which in turn lowers the “annoyance” factor. The first issue you need to address in order
to make this work is that of indication. You must have some way to visually show the player that the unit
is holding position. My personal choice is to make a little H that appears on the shield of that unit.

Isometric Game Programming with DirectX 7.0

513

The impact on your code is that there must be a flag in the UnitInfo struct that tells you the unit is hold-
ing position, which is a simple enough matter. Also, you have to add art to the shield bitmap (another sim-
ple matter), and you need to modify the rendering code.

The next little snag is more subtle. Let me paint you a scenario. During my turn, I tell one of my units to
hold position instead of move. This is fine, so I set the little member of UnitInfo to true. Now, later in
the same turn, I click on this same unit, and I should be able to move it, because it hasn’t moved yet. Now,
let’s say I wait until my next turn to click on it and move it. Again, this isn’t much of a problem, because
the unit has been holding position since the beginning of the turn.

Now, let’s look ahead. I’m rather confident that later you will want units that move more than a single tile
per turn. In fact, I’m sure of it. Let’s say that the unit I told to hold position has a movement allowance of
two squares per turn, and that I moved it one square and then told it to hold position. If I were to click
on it and select it later in the turn, I should be allowed to move it only one square.

The concept I’m trying to get across is “movement points.”You haven’t worried about them, because all
your units move only one square per turn, but this won’t always be so. So, you should add a member to
UnitInfo to keep track of how many movement points a unit has, even if for now the number is only one.

There are other issues: What happens when the units holding position come up during the iteration of the
team’s unit list? Do you just skip that unit’s turn? Do you hold off until all the nonholding units have
been moved? What if all of a player’s units are holding position? Do you just skip his turn, because there
is nothing to move? Answering these questions now, instead of when you’re in the middle of writing the
program, will help you immensely and will avoid problems when you are testing the program.

To answer the question of what to do when a holding unit comes up in rotation, it would be unfair to
skip that unit’s turn, since the player might still want to move that unit later, and he should be given a
chance to do so. To do this, you either have to leave the unit in the team list, which means you’ll have to
change how GS_NEXTUNIT selects its next unit, or you can keep units that are holding position in another
list, which means you’ll have to change the way you select units with the mouse (which you haven’t written
yet anyway, so it’s no big deal).

To answer the question of what to do if all of a player’s unit’s are holding position, it would be grossly
unfair (and not very fun) to exclude a chance for a player to change his orders. As long as at least one unit
has been moved, you can skip the units that are holding position and progress to the other player’s turn,
since the player had a chance to change orders if he wished. If no unit has been moved, the program
should go into a semi-paused state so that the player can change his unit’s orders if he wishes, or just click
a button or press a key to skip his turn. This will be pretty simple to implement. You’ll just need an extra
bool global that you set to false at the beginning of a player’s turn, set to true if a unit is moved (or given
an order) during that turn, and check for at the end of the player’s turn.

Object Selection

TeamLRN

514

Scouting
Compared to the last two items, this one is pretty simple. You want to be able to look around the map
before you decide what you’re doing with a unit. This feature is an absolute must for most types of games.

You have two basic methods to choose from. One is the “mouse at the edges” scrolling method (which
you’ve done in previous examples), and the other is the “click on an empty square to move screen space”
method. For a change, I want to use the second method (not that there is anything wrong with the first
one). This brings to mind the question of what constitutes an empty square. For your purposes, an empty
square is any square that does not have a unit belonging to the current player’s team. When clicked (you
will follow the same rules as for the first item), the screen space will be centered on the map location in
question.

That’s about it for scouting. It’s not tough, it just requires playing with the screen-space anchor.

Centering on the Current Unit
Because you added the ability to scout the surroundings in the preceding item, it is entirely possible that
the screen space might move quite far afield, and it’s quite likely that you will forget where the heck that
unit you were about to move is. This happens to me all the time in the games I play. Almost all games give
you the ability to quickly center screen space back on the current unit. (As for those that don’t, let’s just
say those CDs gather a lot of dust in my house.)

In this program, centering is simple. During GS_IDLE, if the C key is pressed, you have screen space center
on the current unit’s position, exactly the same way it does during GS_NEXTUNIT.

Simple Object Selection
Implementation
Go ahead and load up IsoHex19_1.cpp. In this example, I’ve implemented all of what was listed during
the design discussion. Visually, you won’t be able to tell the difference between this example and
IsoHex18_3.cpp (the example upon which this one is based), except in a few places.

Game States
Most of the changes in IsoHex19_1 consist of modifications to existing game states and the addition of
new game states. The rest of the application is left untouched for the most part. There is a new tileset
(tsPressEnter) and a few extra globals, but I’ll shed light on them as they are used.

Table 19.1 lists the game states for this example. As you can see, most of them are carried over from
IsoHex18_3. Because of the new capabilities, most of the game states have been modified, even if very
slightly.

Isometric Game Programming with DirectX 7.0

515

As you can see, there are only five new game states, but the functions of a few of the old ones have
changed significantly to compensate for the changes. Let’s take them one at a time.

GS_IDLE

As in IsoHex18_3, the bulk of the time is spent in GS_IDLE. However, GS_IDLE is now performing dou-
ble duty. The current unit (pCurrentUnit) can be NULL, indicating that no unit is currently selected, but
the player’s turn isn’t over yet. This happens when all of a player’s units are holding position. I’m going to
quickly go through this game state’s code and annotate the changes I have made.

case GS_IDLE://the game is idling; update the frame, but that’s about it.
{

DWORD dwTimeStart=GetTickCount();//get the frame start time
//scroll the frame (0,0)
Renderer.ScrollFrame(0,0);
//toggle unit flash
bFlash=!bFlash;
//if the current unit is not null
if(pCurrentUnit!=NULL)
{

//add the tile in which the current unit lives

Object Selection

GS_IDLE

GS_STARTTURN

GS_ENDTURN

GS_NEXTUNIT

GS_STARTMOVE

GS_DOMOVE

GS_ENDMOVE

GS_NULLMOVE

GS_SKIPMOVE

GS_HOLDPOSITION*

GS_CLICKSELECT*

GS_CLICKCENTER*

GS_CLICKSTACK*

GS_PICKUNIT*

*New game state

Table 19.1 IsoHex19_1 Game States

TeamLRN

516

Renderer.AddTile(pCurrentUnit->ptPosition.x, pCurrentUnit-
>ptPosition.y);

}

This is the first change. Before, no matter what, pCurrentUnit was always non-NULL when you were in
GS_IDLE. You can no longer make that assumption, so you must check to see if pCurrentUnit is not
NULL. If it is, you add its tile position to the renderer for updating.

//update the frame
Renderer.UpdateFrame();
//if the current unit IS null
if(pCurrentUnit==NULL)
{

//show the end of turn marker if bflash is true
if(bFlash) tsPressEnter.PutTile(lpddsBack,0,0,iCurrentTeam);

}

This is the flip side of the preceding change. If pCurrentUnit is NULL, the player can choose to select a
unit with the mouse or press Enter to indicate that he does not wish to move any of his units. While in
this situation, you must somehow clue the user in that he is in this state. I chose to do this by flashing
“Press Enter” in the player’s color (blue or red) in the upper-left corner of the screen. The images for this
text exist in tsPressEnter and come from PressEnter.bmp. In a real situation, you probably want to have
actual text, but implementing a font engine for such a small part seemed wasteful to me. Also of note, the
text is blitted to the back buffer after the renderer has updated the frame, so you don’t have to worry about
updating it next frame.

//flip to show the back buffer
lpddsMain->Flip(0,DDFLIP_WAIT);
//wait until 200 ms have passed
while(GetTickCount()-dwTimeStart<200);

}break;

GS_IDLE ends as it did before, waiting for 200 milliseconds before returning. The changes to GS_IDLE are
small, but they do have important impact as far as how the program looks.

GS_STARTTURN

This game state has also been modified slightly from its older version. IsoHex18_3 had no movement
points, but this example does. In fact, just to make things interesting, I made one unit able to move two
squares per turn, and the other unit just one.

case GS_STARTTURN://start the current team’s turn

Isometric Game Programming with DirectX 7.0

517

{
PUNITINFO pUnitInfo;//variable to check for the team’s units
UNITLISTITER iter;//iterator for the main unit list
for(iter=MainUnitList.begin();iter!=MainUnitList.end();

iter++)//iterate through the main unit list
{

pUnitInfo=*iter;//grab the unit from the list
if(pUnitInfo->iTeam==iCurrentTeam)

//does this unit belong to the current team?
{

//give the unit a movement point
pUnitInfo->iMovePoints=1+pUnitInfo->iType;

This is one change to GS_STARTTURN, setting each unit’s iMovePoints member to iType+1. Since iType
is either 0 or 1, iMovePoints will be set to 1 or 2.

//add this unit to the team list
TeamUnitList.push_back(pUnitInfo);

}
}
//set moved unit flag to false
bMovedUnit=false;
//set the next gamestate
iGameState=GS_NEXTUNIT;

}break;

A few lines from the bottom is another change—setting bMovedUnit to false. The bMovedUnit variable is
a new global. It records whether or not a player has given a unit a command during his turn—that is, by
going to GS_STARTMOVE, GS_NULLMOVE, or GS_HOLDPOSITION. The GS_SKIPMOVE game state does not set
this variable to true, because telling a unit to wait for orders later is not considered an actual order to do
something. bMovedUnit comes into play later in GS_NEXTUNIT.

GS_NEXTUNIT

This game state was modified more than most because of its central role in the program. The first factor
that I had to take into account was that of units that were holding position (bHolding==true). Another
factor was the state of bMovedUnit when there were no units left to move.

case GS_NEXTUNIT://select the next unit as the current unit
{

//set current unit to NULL
pCurrentUnit=NULL;
if(TeamUnitList.empty())//if the team unit list is empty

Object Selection

TeamLRN

518

{
//if a unit has been moved, send to end of turn
if(bMovedUnit)
{

iGameState=GS_ENDTURN;//end the turn
}
else
{

//send to GS_IDLE
iGameState=GS_IDLE;//send to idle state

}
}

This code takes into account the status of bMovedUnit. If bMovedUnit is true, a unit has been given an
order during this player’s turn, so it is safe to end his turn. If it is false, the player must be given a chance
to select a unit with the mouse and give it an order, so the program proceeds into GS_IDLE (with
pCurrentUnit==NULL).

else
{

//turn is not over
UNITLISTITER iter=TeamUnitList.begin();

//get the first unit in the team list
pCurrentUnit=*iter;//grab the unit from the list
TeamUnitList.pop_front();//remove the unit from the list
//check to see if this unit is holding position
if(pCurrentUnit->bHolding) return;//go to next unit
mlMap[pCurrentUnit->ptPosition.x]

[pCurrentUnit->ptPosition.y].ulUnitList.remove(
pCurrentUnit);//remove the unit from the map location

mlMap[pCurrentUnit->ptPosition.x]
[pCurrentUnit->ptPosition.y].ulUnitList.push_front(
pCurrentUnit);//place unit at the top of the map loca-

tions unit list
POINT ptPlot=TilePlotter.PlotTile(pCurrentUnit->ptPosition);

//plot the unit’s location
POINT ptScreen=Scroller.WorldToScreen(ptPlot);

//translate into screen coordinates
if(!PtInRect(Scroller.GetScreenSpace(),ptScreen))

//check to see if point is within screenspace
{

//not on screen

Isometric Game Programming with DirectX 7.0

519

ptPlot.x-=(Scroller.GetScreenSpaceWidth()/2);
ptPlot.y-=(Scroller.GetScreenSpaceHeight()/2);
//set the anchor
Scroller.SetAnchor(&ptPlot);
Renderer.AddRect(Scroller.GetScreenSpace());

}
iGameState=GS_IDLE;//set to idling gamestate

}
}break;

The rest of GS_NEXTUNIT remains the same, with one exception. If the first unit in TeamUnitList is hold-
ing position, you skip this unit (by simply returning from the function—the unit has already been moved
from the list) and wait for GS_NEXTUNIT to be executed again. Otherwise, you process the unit as normal,
set pCurrentUnit equal to it, and move into GS_IDLE.

GS_STARTMOVE and GS_NULLMOVE

These game states change almost imperceptibly, so I’m not going to waste space describing them here. You
can check them out in the code if you want. The main change for these game states is that they set
bMovedUnit to true in addition to their former roles.

GS_HOLDPOSITION

This is one of the new keyboard commands holding position. This can occur only during GS_IDLE when
pCurrentUnit is non-NULL and the H key is pressed. When this happens, the game moves into GS_HOLD-
POSITION.

case GS_HOLDPOSITION://tell unit to hold position
{

//set holding flag
pCurrentUnit->bHolding=true;
//show the holding unit
Renderer.AddTile(pCurrentUnit->ptPosition.x, pCurrentUnit-

>ptPosition.y);
pCurrentUnit=NULL;
bFlash=true;
//set next gamestate
iGameState=GS_NEXTUNIT;

This game state is comprised of two parts. This first part modifies the unit data (setting the bHolding
member to true), tells the renderer to update the tile on which the current unit is resting, sets

Object Selection

TeamLRN

520

pCurrentUnit to NULL, sets bFlash to false (you don’t want flashing right now), and sets the next game
state, which is GS_NEXTUNIT.

DWORD dwTimeStart=GetTickCount();//get the frame start time
//scroll the frame (0,0)
Renderer.ScrollFrame(0,0);
//update the frame
Renderer.UpdateFrame();
//flip to show the back buffer
lpddsMain->Flip(0,DDFLIP_WAIT);
//wait until 500 ms have passed
while(GetTickCount()-dwTimeStart<500);

}break;

This second half of GS_HOLDPOSITION is taken almost verbatim from GS_ENDMOVE, where the display is
updated. You wait for 500 milliseconds before proceeding. This is so that the player can actually see that
his unit is now holding position for a split second before proceeding to the next unit.

GS_CLICKSELECT

GS_CLICKSELECT, along with GS_CLICKCENTER, GS_CLICKSTACK, and GS_PICKUNIT, comprises the large
addition of functionality in this example. These game states handle all the mouse input once it occurs. See
figure 19.1.

Isometric Game Programming with DirectX 7.0

GS_STARTTURN GS_CLICKSELECT GS_CLICKCENTER

GS_CLICKSTACK

GS_NEXTUNIT
GS_PICKUNIT

Other GameStates

Select a Unit
From the
Selection
Window

Click on
a Stack
of Units

Click on
Empty

Map Location

Sele
ct

 a
Single

 U
nit

Figure 19.1

Additional Game States

521

GS_CLICKSELECT acts as a router of sorts. I decided I’d rather do that than put all the conditional code
(there’s a lot of it) into the handler for WM_LBUTTONDOWN and WM_LBUTTONUP. This game state, despite the
appearance, contains a lot of code, mainly because of all the testing that needs to be done in order to
decide what action to perform once a map location is clicked.

First, GS_CLICKSELECT checks if the map location in question is empty. If it is, the program gets sent to
GS_CLICKCENTER. If not, it then checks to see what team the units within that location belong to. If they
belong to the other player, again the program is sent to GS_CLICKCENTER. Otherwise, the current player
owns the units within that location. If it is a single unit, GS_CLICKSELECT attempts to make it the current
unit (checking if the unit has any movement points before doing so). If it is a stack of units, the program
goes into GS_CLICKSTACK.

case GS_CLICKSELECT:
{

//check map location for emptiness
if(mlMap[ptClick.x][ptClick.y].ulUnitList.empty())
{

//map location is empty
//we want to center on this map location
iGameState=GS_CLICKCENTER;

}

First, check the unit list at the map location stored in ptClick for emptiness. If the unit list is empty,
send the game into GS_CLICKCENTER.

else
{

//map location is not empty
//look at top of list
UNITLISTITER

iter=mlMap[ptClick.x][ptClick.y].ulUnitList.begin();
PUNITINFO pUnitInfo=*iter;
//check if this unit belongs to the current team

The unit list is not empty, so the mouse has clicked on an occupied square, and you must determine what
team the units there belong to. The preceding code grabs the unit at the beginning of the list.

if(pUnitInfo->iTeam==iCurrentTeam)
{

//belongs to current team
//one unit?

Object Selection

TeamLRN

522

Aha! The units in question belong to the current team! This leaves the question of how many units there
are and whether any of them receive orders.

if(mlMap[ptClick.x][ptClick.y].ulUnitList.size()==1)
{

//a single unit (already contained in pUnitInfo)
//is this the current unit?
if(pUnitInfo==pCurrentUnit)
{

//this is the current unit
iGameState=GS_IDLE;
//return to the neutral gamestate

}

This piece of code has detected a single unit belonging to the current team. Before proceeding, you check
to see if this unit is the same as pCurrentUnit. If it is, you need do nothing, and can just go back to
GS_IDLE.

else
{

//this is not the current unit
//does this unit have any movement points left?
if(pUnitInfo->iMovePoints>0)
{

//has movement points left
//push the current unit to front of team
if(pCurrentUnit)
TeamUnitList.push_front(pCurrentUnit);
pCurrentUnit=NULL;
//set holding to false for the new unit
pUnitInfo->bHolding=false;
//remove new unit from team list
TeamUnitList.remove(pUnitInfo);
//put new unit in front of team list
TeamUnitList.push_front(pUnitInfo);
//go to gs_nextunit
iGameState=GS_NEXTUNIT;

}

Isometric Game Programming with DirectX 7.0

523

Now that you have determined that it is not the current unit, the next test is to see whether the unit has
any movement points left. If it does, you should set this unit up to be the next selected. The way to do this
is to first put pCurrentUnit back into TeamUnitList if pCurrentUnit is non-NULL. Next, you put the
new unit at the head of the list and send the program into GS_NEXTUNIT.

else
{

//does not have movement points left
//go back to gs_idle
iGameState=GS_IDLE;

}

This bit of code is executed when no movement points are left for the unit. It simply returns you to
GS_IDLE. Alternatively, you could have it send the program into GS_CENTER.

else
{

//a stack of units
iGameState=GS_CLICKSTACK;

}

This bit is run when more than one unit is in the map location clicked on. You are sent into GS_CLICK-
STACK, where more processing will occur.

else
{

//does not belong to current team
iGameState=GS_CLICKCENTER;
//we want to center on this map location

}
}

}break;

Finally, this code executes when the units within the map location do not belong to the current team. For
all intents and purposes, it is treated as though it were an empty square by sending the program into
GS_CLICKCENTER. GS_CLICKSELECT might be really long, and perhaps it isn’t the best way to accomplish
the goals. Indeed, a few more game states could have been added to make the code a bit cleaner. Maybe I’ll
do that in a future example.

Object Selection

TeamLRN

524

GS_CLICKCENTER

This game state is small and simple. From GS_CLICKSELECT, there are a few places where the program gets
sent into this game state. All you have to do here is center the screen on the location clicked.

case GS_CLICKCENTER:
{

//center on clicked tile
POINT ptPlot=TilePlotter.PlotTile(ptClick);//plot tile
//adjust by half screenspace
ptPlot.x-=(Scroller.GetScreenSpaceWidth()/2);
ptPlot.y-=(Scroller.GetScreenSpaceHeight()/2);
Scroller.SetAnchor(&ptPlot);//set anchor
Renderer.AddRect(Scroller.GetScreenSpace());
//return to GS_IDLE
iGameState=GS_IDLE;

}break;

You’ll probably notice that this looks a great deal like the centering code of GS_NEXTUNIT. It should, since
I mostly cut and pasted it here. In fact, I probably could have just had GS_UNIT go to this game state and
eliminate the centering code there.

GS_CLICKSTACK

In order to explain fully what goes on in GS_CLICKSTACK, I must first discuss a few new globals, and a new
UI feature I added with this example. As I discussed earlier, you must provide some way of selecting a unit
when a stack of units is clicked. Figure 19.2 shows this (the stack of units to the right of the window is
the one that I clicked on to bring up this window). If you have ever played strategy games with stackable
units, you have undoubtedly seen similar windows.

Isometric Game Programming with DirectX 7.0

525

Select

Window Globals

To make this window happen, I added several globals:

//unit selection variables (for selecting stacks of units)
RECT rcSelectWindow;//the selection window
POINT ptCellSize;//size of selection cell
PUNITINFO SelectUnitList[20];//unit selection list (max of 20 units)
POINT ptUnitOffset;//offset for placing units in the selection window
DWORD dwSelectWindowColor;//color for the selection window

rcSelectWindow is a RECT that defines where and how big the selection window is. At first, I considered
putting it in a corner of the screen, but I wound up putting it in the middle, because it makes the display
more balanced.

ptCellSize keeps track of how large a cell of the selection window is. A cell can contain one unit, and
the selection window is five cells wide by four cells high. This lets you select from up to 20 stacked units
(since each player has only 20 units, this will work just fine). If the player could have any number of units,
you would have to modify the selection window, either to have more than one page or to have some sort of
way to scroll through the units. ptCellSize is based on the combined extents of all the units (using
UnionRect).

SelectUnitList is an array, not a linked list, that stores pointers to all the units to be shown within the
selection window. A NULL specifies that there is no unit in a given cell. ptUnitOffset helps place the unit
within a cell. Since the images for your units are anchored at the center, you must have a way of centering
the unit within the cell. ptUnitOffset allows you to do that. After the combined extent for the units is

Object Selection

Figure 19.2

The unit selection

window

TeamLRN

526

calculated, ptUnitOffset is set to –left and –top of that extent. dwSelectWindowColor just keeps track
of what color to fill the window with. I picked a 75% gray since it is a common color in Windows and it
doesn’t interfere with any of the colors in the units.

Select Window Initialization

All of the following was taken from Prog_Init. This is the only code added to that function this time.
You set up all the select window variables before you get started so you won’t forget later.

//set up the selection window variables
DDPIXELFORMAT ddpf;
DDPF_Clear(&ddpf);
lpddsMain->GetPixelFormat(&ddpf);//grab pixel format
ddpf.dwRBitMask=(ddpf.dwRBitMask*3/4)&(ddpf.dwRBitMask);//calculate 3/4 red
ddpf.dwGBitMask=(ddpf.dwGBitMask*3/4)&(ddpf.dwGBitMask);//calc 3/4 green
ddpf.dwBBitMask=(ddpf.dwBBitMask*3/4)&(ddpf.dwBBitMask);//calc 3/4 blue
//make select window color
dwSelectWindowColor=ddpf.dwBBitMask | ddpf.dwRBitMask | ddpf.dwGBitMask;

I did the simplest thing first—namely, calculate the color of the select window. Basically, I just grabbed the
pixel format and multiplied the color masks by three-fourths, getting a nice 75% gray tone.

//calculate the cell extent
RECT rcCell;
CopyRect(&rcCell,&tsUnit.GetTileList()[0].rcDstExt);
UnionRect(&rcCell,&rcCell,&tsUnit.GetTileList()[1].rcDstExt);
rcCell.right+=(tsShield.GetTileList()[0].rcDstExt.right-
tsShield.GetTileList()[0].rcDstExt.left);

Now move on to calculating the cell size; doing so will help you calculate the window size later. The first
task is to calculate the combined extents of the units. You have only two unit types right now, but you can
see how it would be simple to add others. After the rectangles are combined, you add the width of the
shield image so that you can also show a shield in the selection window without overlapping other units.

//cell size
ptCellSize.x=rcCell.right-rcCell.left;
ptCellSize.y=rcCell.bottom-rcCell.top;
//unit offset
ptUnitOffset.x=-rcCell.left;
ptUnitOffset.y=-rcCell.top;

This is where ptCellSize and ptUnitOffset are initialized. ptCellSize is assigned to the differences
between right and left and bottom and top, whereas ptUnitOffset is set to –left and –top (since rcCell

Isometric Game Programming with DirectX 7.0

527

contains negative values in left and top because it is an extent).

//calculate select window rect
SetRect(&rcSelectWindow,0,0,ptCellSize.x*5,ptCellSize.y*4);
//center the select window
OffsetRect(&rcSelectWindow, 320-rcSelectWindow.right/2, 240-rcSelectWindow.bot-
tom/2);

Finally, you can set up the RECT containing the position of the selection window. First, you place it with
left and top at 0 and then offset it to a centered position. Now, all the select window stuff is set up and
ready to use later.

Back to GS_CLICKSTACK. The following code is run after a mouse click has been registered and GS_CLICK-
SELECT decides that the map location in question contains a stack of units. The job of GS_CLICKSTACK is
simple: set everything up so that the program has enough information to show the selection window.

case GS_CLICKSTACK:
{

//prepare the stack
int count;
for(count=0;count<20;count++)//clear out the list

SelectUnitList[count]=NULL;
//reset count to 0
count=0;

First and foremost, you must ensure that SelectUnitList is empty (all items are NULL) so that you don’t
erroneously have a unit from some other map location shown in the window, which would be bad (or, at
least, a bug).

//iterate through the list of units at the current map location
UNITLISTITER iter;//iterator
PUNITINFO pUnitInfo;//unit info
for(iter=mlMap[ptClick.x][ptClick.y].ulUnitList.begin();

count<20 &&
iter!=mlMap[ptClick.x][ptClick.y].ulUnitList.end();

iter++)//iterate through list
{

pUnitInfo=*iter;//grab the unit
//place unit in list
SelectUnitList[count]=pUnitInfo;
//add 1 to count
count++;

}

Object Selection

TeamLRN

528

This for loop might seem a little weird, since it doesn’t follow the usual for loop pattern (I put two con-
ditions in its second part). This is the basic “iterate through a list” loop, with a “don’t look at more than
20” part added. The variable count starts at 0 and is used as an index into the SelectUnitList array. For
each unit found at this map location, add it to SelectUnitList, and add 1 to count.

//send to next gamestate
iGameState=GS_PICKUNIT;

}break;

That’s it for GS_CLICKSTACK. After it has completed its assigned tasks, it moves to GS_PICKUNIT, which is
discussed next.

GS_PICKUNIT

This game state displays the selection window every frame, and that’s about it. It’s kind of like a special-
ized render function for the select window. It’s important for me to note that the select window is rendered
onto the back buffer (lpddsBack) after the screen has been updated. This means it has to be fully redrawn
every frame. Sure, there were other ways to do it, but this way was the quickest.

case GS_PICKUNIT:
{

//no scrolling
Renderer.ScrollFrame(0,0);
//update frame
Renderer.UpdateFrame();

You have to update the display before rendering the select window, and that’s what these two lines do.
The display is scrolled by 0 (a necessary step), and then the frame is updated, even though there is no
update list.

//place select window onto display
DDBLTFX ddbltfx;
DDBLTFX_Clear(&ddbltfx);
ddbltfx.dwFillColor=dwSelectWindowColor;
lpddsBack->Blt(&rcSelectWindow,NULL,NULL,DDBLT_WAIT |

DDBLT_COLORFILL,&ddbltfx);

Next, you have to clear out the selection window rectangle with the color in dwSelectWindowColor. This
is just the basic “color fill a rectangle” code taken from Part 1 of this book.

//show the units
int cellx,celly;//cell position

Isometric Game Programming with DirectX 7.0

529

int cellnum;//number of the cell
int pixelx,pixely;//pixel position
for(celly=0;celly<4;celly++)
{

for(cellx=0;cellx<5;cellx++)
{

cellnum=cellx+celly*5;//calculate the cell number

Now you get into the fun part, looping through all the units in SelectUnitList. First, you set up a set of
nested loops (celly and cellx) and calculate the cell number (cellx+celly*5). Finally, you can check
for a unit.

//check that the unit exists
if(SelectUnitList[cellnum])
{

The bulk of the code happens here, on the inside of the nested loop, and only if there is a unit present in
the current cell.

//calculate pixel position
pixelx=rcSelectWindow.left+ptCellSize.x*cellx;
pixely=rcSelectWindow.top+ptCellSize.y*celly;
//plot the unit’s position
pixelx+=ptUnitOffset.x;
pixely+=ptUnitOffset.y;
//put the unit
tsUnit.PutTile(lpddsBack,pixelx,pixely,

SelectUnitList[cellnum]->iType);

First you do the easy part: plotting the cell’s location. (It’s easy. Because the cells are rectangular, you just
multiply by ptCellSize’s x and y. After that you offset by ptUnitOffset, which centers the unit in the
cell. Finally, you place the unit there, and the unit is rendered!

//move the pixel to place shield
pixelx+=ptShieldOffset[SelectUnitList[cellnum]->iType].x;
pixely+=ptShieldOffset[SelectUnitList[cellnum]->iType].y;

Now you have to place the shield, which is a bit more conditional. To set it up, you move the pixel posi-
tion you are plotting at by the ptShieldOffset of the unit you just rendered. Then you are just left with
the task of deciding which shield to render with it. For this example, I added a new shield with a check

Object Selection

TeamLRN

530

mark in it, indicating that the unit has already been moved this turn. This shield is shown only in the selec-
tion window, not anywhere else.

//place appropriate shield
if(SelectUnitList[cellnum]->bHolding)
{

//unit is holding
tsShield.PutTile(lpddsBack,pixelx,pixely,

iCurrentTeam*2+4);

This is simple enough. If the unit is holding position (bHolding==true), you show the “I am holding”
shield, which is image numbers 4 and 6, so iCurrentTeam*2+4.

}
else
{

//unit is not holding
if(SelectUnitList[cellnum]->iMovePoints)
{

The unit is not holding, so you check to see if it has any movement points left. If it does, you put the
normal shield, which is image 0 or 2.

//unit has movement points left
tsShield.PutTile(lpddsBack,pixelx,pixely,

iCurrentTeam*2);
}
else
{

The unit is not holding, nor does it have any movement points left. The images for the “I have moved”
shield are 8 and 10.

//unit does not have move points left
tsShield.PutTile(lpddsBack,pixelx,pixely,

iCurrentTeam*2+8);
}

}
}

}
}

Isometric Game Programming with DirectX 7.0

531

//flip
lpddsMain->Flip(0,DDFLIP_WAIT);

}break;

And, for the coup de grace, flip the primary surface so that the user can see the lovely select window you
have made!

RenderFunc

The rendering function, too, has undergone some changes, mainly in adding some checks to
pCurrentUnit, but also in checking the top of a map location’s stack to see whether or not the unit is
holding position.

void RenderFunc(LPDIRECTDRAWSURFACE7 lpddsDst, RECT* rcClip, int xDst, int yDst,
int xMap, int yMap)
{

//put background tile
tsBack.ClipTile(lpddsDst,rcClip,xDst,yDst,0);

Of course, no matter what, the background tile is always shown.

//check for an empty list
if(!mlMap[xMap][yMap].ulUnitList.empty())
{

If the unit list at this map location is empty, the rest of the function is skipped. Otherwise, all the unit
rendering code shown next is executed.

//list is not empty
//get iterator to beginning of list
UNITLISTITER iter=mlMap[xMap][yMap].ulUnitList.begin();
PUNITINFO pUnitInfo=*iter;//grab the item
//if this is the current unit
if(pUnitInfo==pCurrentUnit)
{

//this is the current unit
if(!bFlash) return;//if flash is "off" don’t render

}

First, you grab the unit from the top of the stack and check to see if it is the current unit. If it is, and
bFlash is false, nothing needs to be rendered, so just return. If not, you must render the unit.

tsUnit.ClipTile(lpddsDst,rcClip,xDst,yDst,pUnitInfo->iType);//place the unit

Object Selection

TeamLRN

532

iter++;//move to the next item in the list
if(iter==mlMap[xMap][yMap].ulUnitList.end())//if the end of the
list, this is a single unit
{

The next thing to check is whether or not this map location contains a single unit, or a stack, by moving
to the next unit in the map location’s list and checking that against the end of the list. If you have reached
the end of the list, you know that this is the only unit at the map location in question.

if(pUnitInfo->bHolding)//if holding position
{//holding

tsShield.ClipTile(lpddsDst,rcClip,
xDst+ptShieldOffset[pUnitInfo->iType].x,
yDst+ptShieldOffset[pUnitInfo->iType].y,
pUnitInfo->iTeam*2+4);//place the shield

The shield can be one of two states—holding position or normal. If bHolding is true for the unit, render
the H shield (either image 4 or 6).

}
else
{//not holding

tsShield.ClipTile(lpddsDst,rcClip,
xDst+ptShieldOffset[pUnitInfo->iType].x,
yDst+ptShieldOffset[pUnitInfo->iType].y,
pUnitInfo->iTeam*2);//place the shield

}
}

If it isn’t holding position, render the normal shield (image 0 or 2).

else//more than one unit...this is a stack
{

if(pUnitInfo->bHolding)//if holding position
{//holding

tsShield.ClipTile(lpddsDst,rcClip,
xDst+ptShieldOffset[pUnitInfo->iType].x,
yDst+ptShieldOffset[pUnitInfo->iType].y,
pUnitInfo->iTeam*2+5);//place the shield

In the case of a stack, the holding position images are 5 and 7, but choosing between holding and normal
is exactly the same.

}

Isometric Game Programming with DirectX 7.0

533

else
{//not holding

tsShield.ClipTile(lpddsDst,rcClip,
xDst+ptShieldOffset[pUnitInfo->iType].x,
yDst+ptShieldOffset[pUnitInfo->iType].y,
pUnitInfo->iTeam*2+1);//place the shield

}
}

Finally, if the top of a stack is not holding position, place the normal shield (image 1 or 3) from the
shield tileset.

Handling Input

In this example, most of the keyboard input remains the same, except that now there is a new check for
pCurrentUnit being NULL (which means that keyboard input is being ignored). Also, there are new han-
dlers for the H key and the C key, which respectively bring about the hold position and center on unit
commands. These key handlers are very simple (they just move from game state to game state), and you
can take a look at them in the windowproc if you like.

Mainly, I want to discuss here the mouse input that I incorporated into this example. Only two game
states respond to mouse input: GS_IDLE and GS_PICKUNIT. All other game states are ignored as far as the
mouse is concerned.

WM_LBUTTONDOWN

When the left mouse button goes down, only GS_IDLE responds to it. This response simply grabs the cur-
rent map position.

case WM_LBUTTONDOWN://beginning of click-select
{

//process differently, depending on gamestate
switch(iGameState)
{
case GS_IDLE:

{
//grab the mouse position
POINT ptCursor;
ptCursor.x=LOWORD(lParam);
ptCursor.y=HIWORD(lParam);
//use the mousemap to get click position
ptClick=MouseMap.MapMouse(ptCursor);

Object Selection

TeamLRN

534

}break;
}
return(0);//handled

}break;

There’s not much to this code. Mainly, you just grab the cursor position from lParam and use the
MouseMap to determine the current map location.

WM_LBUTTONUP

When the mouse button is released, the code is a bit lengthier. Both GS_IDLE and GS_PICKUNIT respond
to this input.

case WM_LBUTTONUP://end of click-select
{

//process differently, depending on gamestate
switch(iGameState)
{
case GS_IDLE:

{
//grab the mouse position
POINT ptCursor;
ptCursor.x=LOWORD(lParam);
ptCursor.y=HIWORD(lParam);
//use the mousemap to get click position
POINT ptMap=MouseMap.MapMouse(ptCursor);
//check map position against ptClick
if(ptMap.x==ptClick.x && ptMap.y==ptClick.y)
{

//set gamestate to GS_CLICKSELECT
iGameState=GS_CLICKSELECT;

}
}break;

When the left button is released during GS_IDLE, you again grab the mouse position from lParam.
However, you don’t stop there. You also check to see that this position is the same one you pressed the left
button on. If it is, you proceed to GS_CLICKSELECT. If it isn’t, you remain in GS_IDLE.

GS_PICKUNIT is another story. It has to do with the select window and has nothing to do with the map.

case GS_PICKUNIT:
{

//grab the mouse position
POINT ptMouse;

Isometric Game Programming with DirectX 7.0

535

ptMouse.x=LOWORD(lParam);
ptMouse.y=HIWORD(lParam);

First, as with all mouse handlers, you must grab the position from lParam. Most of the time, you can’t get
around this. . . it’s just a part of programming.

//check to see if the click was within the select window
if(PtInRect(&rcSelectWindow,ptMouse))
{

The first check is to see whether the mouse is in the selection window. If it is, the following code is run. If
not, you skip a bit.

//within the select window
//determine which cell was clicked
ptMouse.x-=rcSelectWindow.left;//subtract top left of the window
ptMouse.y-=rcSelectWindow.top;
ptMouse.x/=ptCellSize.x;//divide by cellsize
ptMouse.y/=ptCellSize.y;
int cellnum=ptMouse.x+5*ptMouse.y;//calc cell number

These few lines of code are kind of like a custom rectangular MouseMap. First, you subtract the left and
top of the selection window from the mouse’s x and y, getting the relative x and y pixel coordinates of the
mouse within the window. x will now be from 0 to the width of the selection window (minus 1), and y
will now be from 0 to the height of the selection window (again, minus 1). After the subtraction, divide
each by the cell’s width and height to get the cell’s column and row. Finally, based on cell column and row,
figure out which cell you are pointing to with the mouse.

//check for a NULL
if(SelectUnitList[cellnum]==NULL)
{

//empty cell
//do nothing
return(0);

}

Now that you have the cell number, you check to see if that cell contains NULL. If it does, the cell is
empty, so you treat it as a disabled button and do nothing.

else
{

//non-empty cell

Object Selection

TeamLRN

536

//check if the unit has any movement points left
if(SelectUnitList[cellnum]->iMovePoints==0)
{

//no movement points
//do nothing
return(0);

}

The unit here is non-NULL but has no movement points left, so again you do nothing.

else
{

//check for holding position
if(SelectUnitList[cellnum]->bHolding)
{

//set holding to false
SelectUnitList[cellnum]->bHolding=false;

}
//remove this unit from the team list
TeamUnitList.remove(SelectUnitList[cellnum]);
//re-add this unit to the team list at the beginning
TeamUnitList.push_front(SelectUnitList[cellnum]);
//select next unit
iGameState=GS_NEXTUNIT;
//add entire screen to update rect
Renderer.AddRect(Scroller.GetScreenSpace());

}

Finally, if the unit in the cell is non-NULL and has movement points left, you activate it, put it at the front
of the TeamUnitList, set bHolding to false, and move along to GS_NEXTUNIT, where this unit will be
selected.

else
{

If the click was not within the selection window’s rectangle, consider that a “cancellation” of the selection
window, and pass the program along to GS_NEXTUNIT, where you can resume normal stuff.

//outside of select window
iGameState=GS_NEXTUNIT;

Isometric Game Programming with DirectX 7.0

537

}
}break;

That’s about it for simple object selection. Wasn’t that fun? These examples are getting longer and more
complicated every time we do one. Heck, with IsoHex19_1, if you were to add a simple combat system, it
would almost be a game!

Pixel-Perfect Object Selection
Since I spent a great deal of time on simple object selection, I can only really give you an overview of
pixel-perfect object selection and nudge you along the correct path to making it work. For turn-based
strategy games, you can usually get away with simple object selection, but for real-time strategy games, you
need pixel-perfect selection, or something close.

Like many things in life, pixel-perfect object selection is simple for humans to understand but requires a
great deal of work for computers to understand. This is because of the human ability to think in the
abstract, whereas a computer can only think in rigid terms. I use the word “think” here to mean “process
information.”We are still some time away from having machines that actually “think” in a way that every-
one agrees on.

To start with, let’s think about pixel-perfect object selection as human beings and then think about it the
way a computer would. From the human perspective, we select a unit by clicking on it. As humans, this is
easy to determine, because we see the units as separate from the background. A computer, however, knows
no such distinction. As far as a computer is concerned, the display is just covered with a bunch of num-
bers. It knows nothing of color or shape or units. It just sees (for example) the value 0xFFFF (which to us
appears to be pure white). As far as the computer is concerned, this number is meaningless. While we, as
human beings, might be able to say “If you click here, this unit should be selected,” the computer has a
much more involved process to make the same thing happen, since pixel colors are meaningless. However,
the computer does have all the information necessary to determine whether or not you have clicked on a
unit, or, at least, it can be given this information.

As human beings, we can “eyeball” the display and see if we have clicked on a unit or not. The computer,
having no eyeballs (no, that webcam doesn’t count), cannot do this. The closest thing to “eyeballing” that a
computer has is bounding rectangles, as shown in Figure 19.3. By checking the mouse position against
these rectangles, you can easily determine if the mouse is not over a unit, but the best result you can get is
that the mouse might be on a unit, if it is within a bounding RECT.

Object Selection

TeamLRN

538

Well, something is better than nothing, so you’ll take it. If you can eliminate some pixels as “not on a
unit,” that just shortens your search. Computers do pretty well with deductive reasoning like this.

Next, if the mouse is over one of these bounding rectangles, you can determine where in the rectangle it is
by subtracting the left and top of the RECT from x and y. From here, you can get a pixel from the image
containing the unit, which will be either the transparent color of the unit’s tileset (in which case the mouse
is not on the unit) or some other color (in which case the mouse is on the unit).

I’m not actually suggesting you start poking around in the tileset image. Instead, right after loading it, you
can create a two-dimensional array that is the same size as the unit’s bounding RECT and fill it with true
and false, depending on the pixel’s color. Then, it’s just a matter of going into this lookup table. Using this
method, you have to poke around the image only once (right after loading), and looking up values is then
very quick. Of course, this solution isn’t quite complete. Sure, you can tell whether or not the mouse is
over a given unit, but the goal here is to select a single unit, and because of the isometric overlap, the
mouse might be pointing to two units at once.

If the mouse is over multiple units, logic dictates that you select the unit that is the southernmost (the far-
thest down the display). The easiest way to determine this (without poking around the tilemap structure
and doing some lengthy tests and calculations) is to check the value of the unit’s anchor point (specified in
world coordinates). A higher y value wins. If the y values are the same, a higher x wins.

Making It Happen
I’m not going to do a full-fledged example on pixel-perfect object selection, but I will give you some code
fragments that should put you on the right track.

Isometric Game Programming with DirectX 7.0

Figure 19.3

Bounding rectangles

539

Constructing a Lookup Table
Much of the information needed for pixel-perfect selection can be found in CTileSet or calculated from
it. The anchor and the extent can be pulled directly out of the tileset for bounding box information. For a
lookup table, you have to actually do some calculations and use some GDI.

//this pointer will be allocated to contain the lookup table for a unit
bool* bLookUp;
int iWidth;//width of the lookup table
int iHeight;//height of the lookup table
//we are going to take the first unit (index 0) from tsUnit
//get the width
iWidth=tsUnit.GetTileList()[0].rcSrc.right-tsUnit.GetTileList()[0].rcSrc.left;
//get the height
iHeight=tsUnit.GetTileList()[0].rcSrc.bottom-tsUnit.GetTileList()[0].rcSrc.top;
//allocate the lookup table
bLookUp=new bool[iHeight*iWidth];
//grab the dc from the tileset’s image
HDC hdc;
tsUnit.GetDDS()->GetDC(&hdc);
//grab the transparent color
COLORREF crTrans=GetPixel(hdc,0,0);
COLORREF crTest;//test pixel
for(int y=0;y<iHeight;y++)
{

for(int x=0;x<iWidth;x++)
{

crTest=GetPixel(hdc,tsUnit.GetTileList()[0].rcSrc.left+x,
tsUnit.GetTileList()[0].rcSrc.top+y);//grab pixel

if(crTest==crTrans)//test this pixel for transparency
{

bLookUp[x+y*iWidth]=false;//transparent pixel
}
else
{

bLookUp[x+y*iWidth]=true;//non-transparent
}

}
}
//put the dc back
tsUnit.GetDDS()->ReleaseDC(hdc);

Object Selection

TeamLRN

540

This is a simple scan conversion that copies the image into a monochrome bitmask. Now, anytime you
want to look up a value in this array, you can simply use bLookUp[x+y*iWidth]. If the value is true, the
pixel is within the unit. If it’s false, it isn’t. This code is good if you want to create just a single lookup
table. If you have more than one unit type (and it’s pretty likely that you do), you’ll want to have some
sort of structure and make an array of that structure, like so:

struct ObjectBitMask//structure to contain object bitmask
{

bool* bLookUp;
int iWidth;
int iHeight;

};
typedef ObjectBitMask* POBJECTBITMASK;//pointer type alias

From here, creating an array of ObjectBitMasks and filling in that array is a simple matter of iterating
through all the tiles and filling in the structures.

Creating a Unit Selection List
As I mentioned earlier, there are three steps to pixel-perfect object selection. First is the bounding box, sec-
ond is the object’s bitmask, which I just covered, and third is the object’s anchor, in case you are hovering
over more than one unit or object. The most convenient thing to do is to make a struct that contains this
information:

struct UnitSelector//unit selection information struct
{

RECT rcBound;//rectangle bounding the object (world coordinates)
POINT ptAnchor;//anchor for the object (world coordinates)
POBJECTBITMASK pobm;//pointer to a bitmask for the object

};
typedef UnitSelector* PUNITSELECTOR;

For each object that can be selected in the world, you must fill in one of these structures. This brings up
the question, “Which objects can be selected?” For the most part, you only want to fill out a structure for
units that belong to the current player, and moreover, only units that are currently on-screen. Some games
allow you to select enemy units so that you can see the status of that unit, but you cannot give it orders.
Either way, you still only want those objects on-screen to be selectable (it shortens the search time).

Before you get ahead of yourself, you must first know how to fill in this structure.

UnitSelector UnitSel;//structure for our unit
//pUnitInfo will be a pointer to a UNITINFO structure
//similar to the one we’ve been using
//first, copy the destination extent from the tileset

Isometric Game Programming with DirectX 7.0

541

CopyRect(&UnitSel.rcBound,tsUnit.GetTileList()[pUnitInfo->iType].rcDstExt);
//plot the world position of the unit
UnitSel.ptAnchor=TilePlotter.PlotTile(pUnitInfo->ptPosition);
//assume that OBMList is an array of ObjectBitMasks
//select the proper bitmask for the object
UnitSel.pobm=&OBMList[pUnitInfo->iType];
//offset rcBound by the anchor
OffsetRect(&UnitSel.rcBound,UnitSel.ptAnchor.x,UnitSel.ptAnchor.y);

UnitSel now contains all the applicable information for a single object in the game. If you did this for all
the units and objects in the game, perhaps storing them in a linked list, pixel-perfect selection would be
within your grasp.

typedef std::list<PUNITSELECTOR> UNITSELLIST;//unit selection list
typedef std::list<PUNITSELECTOR>::iterator UNITSELLISTITER;//iterator

However, you don’t want to look through the entire list, just those objects that are on-screen or partially
on-screen. You can keep a main list of UnitSelectors that gets updated whenever a unit is moved, per-
haps named MasterUnitSelList. This lowers the overhead a little, because you don’t have to completely
fill in this list each frame.

So, you can keep a separate list that you fill in each frame (or at least whenever the screen-space anchor
changes or a unit moves), perhaps calling it ScreenUnitSelList. Then all you need to do is fill it in.

RECT rcClip;//this will be the rect we clip selectable units by
RECT rcTest;//testing rect
PUNITSELECTOR pUnitSel;//list item
//copy the screenspace rect from the scroller
CopyRect(&rcClip,Scroller.GetScreenSpace());
//translate the screenspace rect into world space
OffsetRect(&rcClip,Scroller.GetAnchor()->x,Scroller.GetAnchor().y);
//clear out the ScreenUnitSelList
ScreenUnitSelList.clear();
//iterate through the master selectionlist
for(UNITSELLISTITER
iter=MasterUnitSelList.begin();iter!=MasterUnitSelList.end();iter++)
{

pUnitSel=*iter;//grab item from list
//find intersection
IntersectRect(&rcTest,&rcClip,&pUnitSel->rcBound);
if(!IsRectEmpty(&rcTest))//if the intersection rect is non-empty...
{

Object Selection

TeamLRN

542

ScreenUnitSelList.push_back(pUnitSel);// add unit to screen list
}

}

This isn’t the optimal way to go about this, and you probably don’t want to do this every frame, especially
if you have a large number of units, but the preceding code is the main idea. Naturally, you’ll want to opti-
mize it so that fewer calculations need to be done.

Finally, the actual selection can take place. You’ve got all the units and objects filtered into a smaller list.
Now you just have to see which units the mouse is over.

//ptMouse is the mouse position (translated into world coordinates)
POINT ptTemp;//temp testing point
//the selected unit will be here, or NULL if none found
PUNITSELECTOR pUnitSelFound=NULL;
PUNITSELECTOR pUnitSelTemp;//temporary, for grabbing info out of list
UNITSELLISTITER iter;//iterator
//iterate through the screen list
for(iter=ScreenUnitSelList.begin();iter!=ScreenUnitSelList.end();iter++)
{

ptTemp=ptMouse;//copy mouse point
pUnitSelTemp=*iter;//grab the item from list
//phase one: check bounding rectangle
if(PtInRect(&pUnitSel->rcBound,ptTemp))
{

//point is within bounding rect
//translate into rcBound coordinates
ptTemp.x-=pUnitSel->rcBound.left;
ptTemp.y-=pUnitSel->rcBound.top;
//check the bitmask
//phase two: check bitmask
if(pUnitSelTemp->pobm->bLookUp[ptTemp.x+

ptTemp.y*pUnitSelTemp->pobm->iWidth])
{

//this is a "hit"
if(pUnitSelFound==NULL)
{

//this is the first unit found
pUnitSelFound=pUnitSelTemp;

}
else
{

//phase three: anchor position

Isometric Game Programming with DirectX 7.0

543

//this is not the first unit found
if(pUnitSelTemp->ptAnchor.y>pUnitSelFound->ptAnchor.y)
{

//farther south
}
else
{

//not farther south
if(pUnitSelTemp->ptAnchor.y==pUnitSelFound-

>ptAnchor.y)
{

//same y
if(pUnitSelTemp-

>ptAnchor.x>pUnitSelFound->ptAnchor.x)
{

//greater x
pUnitSetFound=pUnitSetTemp;

}
}

The bold lines mark the beginning of each of the stages of the algorithm so that you can more easily sep-
arate them in your mind. This is about all I’m going to say on the matter of pixel-perfect object selection.
When you make your own object selection code, you should probably do the pixel-perfect stuff, because
your users will expect it.

Minimap, Zones of Control, and
the Fog of War
There are a few elements common to most if not all isometric strategy games. These are the minimap,
zones of control, and the fog of war. None of these are really very complicated or difficult to implement,
but a discussion of isometric games is not complete without discussing these, since they are so prevalent.

Minimaps
A minimap is a smaller version of the game’s tilemap that lets a player get the big picture of the game as
he is playing. All strategy games, whether real-time or turn-based, use the minimap. It has become a stan-
dard feature, so not including it will hurt you.

Since the minimap is just a smaller version of the tilemap, it is quite easy to implement. I usually have my
minimap use tiles that are 4✕2 pixels in size. In a 4✕2 iso tile, the top four pixels are filled in with a color
(usually all the same color and representing a full-sized tile), and the bottom four pixels are the transparent

Object Selection

TeamLRN

544

color. For example, if you were making a minimap tile for an ocean, the top four pixels would be blue, but
if you were making a minimap tile for a grassland, you would probably use a shade of green.

A minimap usually is shown somewhere on-screen, typically in a corner, so it has its own screen space. The
minimap tiles, being only 4✕2, calculate to a different world space, so in order to use a minimap, you need
to make new copies of the isometric components that you will use only with the minimap. However, you
won’t need all of the components—just the TilePlotter, and maybe the scroller.

The idea is that the minimap is there primarily to show you the status of the entire playing area, but it is
also a control that, if clicked, takes you to the area of the map that you clicked in the minimap. I think
you’ve probably got a good understanding of the minimap and its role in games, so I’ll just shut up now
and get to the example.

Minimap Example
Because you have decided that you want a minimap, you need someplace on-screen to put it. This means
you have to sacrifice some of the playing area. Typically, a minimap appears in the upper-right corner of
the display, so that’s where I decided to place it in IsoHex19_2.cpp, as you can see in Figure 19.4.

Isometric Game Programming with DirectX 7.0

Figure 19.4

Minimap example

545

The minimap code in this example is really just an add-on to the existing code base, so for easy separation,
I placed it in a number of functions that take care of all the minimap stuff. Table 19.2 lists these func-
tions, with a brief statement of their role in the example.

These five functions take care of most of what you want to do with the minimap, but they are not by any
means all-inclusive. Each of these functions is explained in detail in the following sections.

SetupMiniMap
Before I get to the actual code, I need to briefly discuss the new globals that were added because of the
minimap. After all, this information has to be stored somewhere, right? Table 19.3 lists the new globals
and describes their role in the application.

Object Selection

Table 19.2 Minimap Functions
Function Purpose

SetupMiniMap Allocates and sets up the initial state of the minimap

UpdateMiniMap Updates minimap information based on game information

RedrawMiniMap Redraws the minimap

ShowMiniMap Displays the minimap on-screen

DestroyMiniMap Cleans up minimap information and deallocates structures

Table 19.3 Minimap Globals
Variable Purpose

lpddsMiniMap Off-screen surface on which the minimap’s image is stored

tsMiniMap Tileset used by the minimap to plot its mini-tiles

MiniMap A pointer to an int, which is allocated to be the same size as
the tilemap. Each map location then holds a number that is an
index into the tsMiniMap tile list.

MiniTilePlotter TilePlotter used by the minimap

MiniScroller Scroller used by the minimap

TeamLRN

546

With the preliminaries out of the way, you can finally get to the code. First on the list is (naturally)
SetupMiniMap, which does all your minimap initializations.

void SetupMiniMap()//does initial setup of the minimap
{

//create the surface
lpddsMiniMap=LPDDS_CreateOffscreen(lpdd,160,80);
//load in the tileset
tsMiniMap.Load(lpdd,"minimapts.bmp");

Before doing anything else, create a new surface 160 pixels wide and 80 pixels tall to contain the entire
minimap. This is hardcoded in the example but probably should not be. When you use a diamond map, as
you are here, the calculations for width and height required by a minimap are as follows:

MiniMapWidth=(MAPWIDTH+MAPHEIGHT)*TILEWIDTH/2;
MiniMapHeight=(MAPWIDTH+MAPHEIGHT)*TILEHEIGHT/2;

In this example, MAPWIDTH and MAPHEIGHT are both 40, TILEWIDTH is 4, and TILEHEIGHT is 2. If you plug
these numbers into the equations just shown, you’ll get 160✕80, which is what I got. Other tilemap styles
have different ways of figuring out the size of the minimap. It’s just based on the world space calculations.

//initialize the minimap arrays
MiniMap=new int[MAPWIDTH*MAPHEIGHT];
for(int count=0;count<MAPWIDTH*MAPHEIGHT;count++)
{

MiniMap[count]=0;
}

Next, you allocate the minimap array by allocating space for the global variable MiniMap and initializing
the array to all 0s.

//initialize iso components
//tile plotter
MiniTilePlotter.SetMapType(ISOMAP_DIAMOND);
MiniTilePlotter.SetTileSize(4,2);
//scroller
//calc worldspace
MiniScroller.CalcWorldSpace(&MiniTilePlotter,

&tsMiniMap.GetTileList()[0].rcDstExt, MAPWIDTH, MAPHEIGHT);
//set screen space
RECT rcMiniScreenSpace;
SetRect(&rcMiniScreenSpace,0,0,160,80);
MiniScroller.SetScreenSpace(&rcMiniScreenSpace);

Isometric Game Programming with DirectX 7.0

547

//set the anchor
POINT ptAnchor;
ptAnchor.x=MiniScroller.GetWorldSpace()->left;
ptAnchor.y=MiniScroller.GetWorldSpace()->top;
MiniScroller.SetAnchor(&ptAnchor);

}

Last, SetupMiniMap initializes the iso components used by the minimap. This is pretty standard, and
you’ve seen it before. The only weird part might be setting the anchor position. Since the entire minimap
must be visible, the anchor is set to the world’s left and top.

UpdateMiniMap
Because the tilemap changes throughout the game, so too does the minimap, since it is nothing more than
a small reflection of the bigger picture. In this example, a given tile really has only three states. Either the
map location is empty, or it contains units from one team or the other. Empty map locations show up
green (tile 0 from tsMiniMap), and the blue and red teams each have their own tiles within tsMiniMap.

void UpdateMiniMap()//updates the minimap array
{

//update the minimap array to reflect game status
for(int y=0;y<MAPHEIGHT;y++)//loop through rows
{

for(int x=0;x<MAPWIDTH;x++)//loop through columns
{

MiniMap[y*MAPWIDTH+x]=0;
//if empty, place a zero
if(mlMap[x][y].ulUnitList.empty())
{

MiniMap[y*MAPWIDTH+x]=0;
}
else
{

//occupied by a player
UNITLISTITER iter=mlMap[x][y].ulUnitList.begin();
PUNITINFO pUnitInfo=*iter;
if(pUnitInfo!=pCurrentUnit || bFlash)

MiniMap[y*MAPWIDTH+x]=
1+pUnitInfo->iTeam;
//put team info into minimap array

}
}

Object Selection

TeamLRN

548

}
}

This is pretty simple, really. You loop through all the map locations and check for emptiness (in which
case you put a 0 in the minimap array). If the location is not empty, place the appropriate colored tile in
the array (with a special case if the unit being considered is the current unit, which must be made to
blink).

RedrawMiniMap
At some point, you will want to redraw the minimap. Naturally, you’ll want to completely draw it during
the beginning of the program, to give yourself a starting point. Later, as the map changes or as units move,
you will want to redraw the minimap (or portions of it) to reflect changes in the game.

The RedrawMiniMap function does a complete redraw of the entire minimap. In a real game, you probably
don’t want to do this, especially if the map is very large. Instead, you might want to come up with a way of
tracking changes on the minimap, and only redraw that which absolutely needs it.

void RedrawMiniMap()//redraws the minimap to reflect current gamestate
{

//redraw the entire minimap
//in real code, you can keep two arrays
//one valid this frame and one valid last frame
//and then only blit the changes from last frame to this one
//thus reducing the number of blits
//clear out the minimap surface
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsMiniMap->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);

The first thing, naturally, is to clear out the minimap’s surface to black (or whatever your background color
is). Do so if you intend to do a complete redraw, which is what I’m doing here.

POINT ptPlot;//plotting point
for(int y=0;y<MAPHEIGHT;y++)//loop through rows
{

for(int x=0;x<MAPWIDTH;x++)//loop through columns
{

//put the mini-tile
ptPlot.x=x;
ptPlot.y=y;
//plot map position
ptPlot=MiniTilePlotter.PlotTile(ptPlot);

Isometric Game Programming with DirectX 7.0

549

//convert to screen coords
ptPlot=MiniScroller.WorldToScreen(ptPlot);
tsMiniMap.PutTile(lpddsMiniMap,

ptPlot.x,ptPlot.y,MiniMap[y*MAPWIDTH+x]);
}

}

Next, loop through the map tiles and plot the appropriate tile image from tsMiniMap. To plot the tile
position, make use of MiniTilePlotter and MiniScroller, just like with a real isometric map.

//show a rectangle around viewable area on minimap
HDC hdc;
lpddsMiniMap->GetDC(&hdc);//borrow the dc from the minimap surface
//get the anchor point from the main scroller
POINT ptAnchor;
ptAnchor.x=Scroller.GetAnchor()->x;
ptAnchor.y=Scroller.GetAnchor()->y;
//scale down by a factor of 16 (to go from a 64x32 tile to 4x2)
ptAnchor.x/=16;
ptAnchor.y/=16;
//subtract the mini-scroller’s upper left
ptAnchor.x-=MiniScroller.GetWorldSpace()->left;
ptAnchor.y-=MiniScroller.GetWorldSpace()->top;
//move to position in minimap
MoveToEx(hdc,ptAnchor.x,ptAnchor.y,NULL);
//draw box, one line at a time
LineTo(hdc,ptAnchor.x+30,ptAnchor.y);//30 is 480/16
LineTo(hdc,ptAnchor.x+30,ptAnchor.y+30);
LineTo(hdc,ptAnchor.x,ptAnchor.y+30);
LineTo(hdc,ptAnchor.x,ptAnchor.y);
lpddsMiniMap->ReleaseDC(hdc);//restore the dc to the minimap

}

This final bit is lengthy but doesn’t do anything spectacular. When using a minimap, you will no doubt
want a rectangle bounding the area visible on-screen, since this gives your player a visible clue as to where
in the world he is looking. Most of the calculations convert world space coordinates into minimap pixel
coordinates. Since your world uses 64✕32 tiles, and the minimap only uses 4✕2, you have to scale x and y
down by a factor of 16.

Object Selection

TeamLRN

550

ShowMiniMap
This is an easy one. You simply blit the minimap onto the back buffer.

void ShowMiniMap()//shows the minimap on-screen
{

RECT rcSrc;//src blitting rect
RECT rcDst;//destination blitting rect
//set src rect
SetRect(&rcSrc,0,0,160,80);
//set dest rect
CopyRect(&rcDst,&rcSrc);
OffsetRect(&rcDst,480,0);
//do the blit
lpddsBack->Blt(&rcDst,lpddsMiniMap,&rcSrc,DDBLT_WAIT,NULL);

}

Like I said, not much to it.

DestroyMiniMap
As part of keeping the minimap separate from everything else in the program, I made a separate function
to clean up the memory and tileset used by the minimap.

void DestroyMiniMap()//cleans up the minimap
{

//delete minimap array
delete[] MiniMap;
//destroy minimap surface
if(lpddsMiniMap)
{

lpddsMiniMap->Release();
lpddsMiniMap=NULL;

}
//destroy minimap tileset
tsMiniMap.Unload();

}

Mainly, this function does three things: it gets rid of the minimap array, it gets rid of the minimap surface,
and it unloads the minimap tileset.

Isometric Game Programming with DirectX 7.0

551

Minimap Wrap-up
I’ve only really scratched the surface of minimaps. There are many ways to optimize what I’ve discussed
here. The main point of this exercise is just to show you that a minimap is nothing more than a regular
isometric map that has been reduced in size.

Zones of Control
If you play any turn-based strategy games, whether on computer or with the old-style hex grids with the
little pieces of cardboard to represent units, you are probably familiar with the concept of a zone of con-
trol. Other genres, like real-time strategy or RPGs, don’t include this concept. I include this topic here
mainly because it has to do with units, and I couldn’t really come up with a better place for it.

There will be no example demonstrating zones of control, since it is relatively simple to implement. I’m
just going to describe how to do it, show a few pictures demonstrating the concept, and leave it to you.

Figure 19.5 shows some units and the zones of control they exert. A zone of control includes not only the
square that the unit currently occupies, but also all neighboring squares, so determining which map loca-
tions are occupied by a given player is pretty simple.

The Purpose of Zones of Control
The reason for zones of control goes way back into tabletop strategy game history. The idea is that a unit
will not just control a single square, but can help regulate what goes on within one tile of that square.
When I say “square,” I mean map location, since an isometric game has no squares!

Object Selection

Figure 19.5

Zones of control

TeamLRN

552

The main purpose of zones of control is to enable a player to get a tactical or strategic advantage with a
relatively small number of units. In order to understand how this can happen, you must first examine the
rules of zones of control.

Zones of Control Rules
You may move your own units in and out of any zone of control exerted by other units you control. This
can also be extended to include “friendly” units with whom you have a diplomatic alliance, and so on. The
rules for zones of control only apply to “hostile” units. Hostile units are any units that are not “friendly.”
It’s sort of a circular definition, I know.

Table 19.4 is a subset of possible “diplomatic” relationships that your team of units might have with
other teams of units. It also describes whether units belonging to that team are considered friendly or
hostile. Keep in mind that even though you might be at peace with another team, it doesn’t make their
units friendly.

So, you’ve established that zones of control are only taken into account with hostile units. Also, certain
special units (such as diplomat and spy) might ignore zones of control entirely, and thus are not subject to
the effects. These special types of units are usually called “stealth” units and are not typically detectable
except by other stealth units.

A unit may move into a hostile unit’s zone of control. Once within a zone of control, however, he cannot
move from that tile onto another tile that is a zone of control. He can move into a non-zone-of-control
tile, or he can attack, and that’s about it. This is to simulate how one unit will keep another unit “pinned
down” and unable to maneuver in a location.

While you lose some maneuverability when moving into a zone of control, the enemy unit is similarly
constrained by your unit’s zone of control and so is “pinned down” as well. Obviously, adding more units

Isometric Game Programming with DirectX 7.0

Table 19.4 Diplomatic Situations and
Unit Friendliness

Relationship Unit Friendliness

Self* Friendly

Allied Friendly

Peace Hostile

War Hostile
*You are always considered to be “allied” with yourself

553

on either side can completely trap or surround a unit, which will then be completely unable to do anything
but attack and try to fight its way out.

Implementing Zones of Control
There are a couple of ways you might do this, but the simplest idea that occurs to me is to use some sort
of bit flag within the map location structure. Each bit can mean a different team has a zone of control
over that particular map location. If you don’t like bit flags, an array of bools works just as well. Keeping
it within the map structure is much better than calculating it on-the-fly, and is less prone to errors, plus
you need to update the zones of control only when a unit is moved or killed.

Fog of War
The fog of war is a feature much more widespread than the zones of control. Most genres that typify iso-
metric games have them, including turn-based strategy, real-time strategy, and RPGs.

I lump two related ideas into the single concept of the fog of war. One idea is to mark which areas of the
playing area you have explored, and the other is to mark which areas of the playing area you can actually
see at a given point in time.

Units typically have what is called a sight radius, which differs in size depending on the unit. For example, a
typical infantry unit might have a very small sight radius, but a unit on horseback will have a larger one.

As a unit moves, different parts of the map become actively visible. By “actively visible,” I mean that the
unit can see any enemy activity happening within that area. Once an area becomes actively visible, it is con-
sidered “explored,” and explored areas do not disappear from the map once it is no longer actively visible
(although when it is not actively visible, no enemy activity is shown). Typically, an explored area that is not
actively visible is darkened or grayed out. You can either supply a darkened version of each tile (this looks
nice but requires a lot of extra art) or supply a dithered (checkerboard) pattern of dark pixels to write over
the top of the explored but not actively visible tiles.

Implementing a Fog of War
Putting together a fog of war is no great feat, once you’ve got the basics of isometric algorithms down—
and you’ve already got the knowledge. It’s just a matter of putting the necessary information into the map
structure and keeping that information up-to-date. Then, you just have to modify the rendering function
to blit it correctly.

Keep in mind that the fog of war should affect not only the playing area, but also the minimap. I’m not
doing a fog of war example for the simple reason that you can figure out how to do it on your own by
now, I’m sure.

Object Selection

TeamLRN

554

Summary
We’ve explored quite a lot in this chapter—everything from object selection to minimaps and the fog of
war. Some topics I explored in detail, and others I touched on only briefly. My explanation of isometric
algorithms is pretty much complete. The rest of the book is just refinements and applications of those
algorithms.

Isometric Game Programming with DirectX 7.0

Isometric Art

• Tile Ripping and Slanting

• Extra Graphical Operations

CHAPTER 20

TeamLRN

556

Until now, you’ve been learning about programming various components of an isometric engine—
the plotter, the walker, the scroller, the MouseMap, and the renderer. You’ve learned about objects

and units, and how to get them onto your tilemap. As the creator of isometric worlds, you need to know
more than just these things to be effective.

One of the most frequently asked questions I hear—through e-mail, on my message board, and in the chat
room—is “How can I make isometric art?” Most of the time, I cannot answer this question in the small
space given to me by e-mail or the message board, because the explanations require pictures to make them
easy to understand. The chat room you can completely write off, since very little can really be explained
in that manner. So, this is my answer to all the people who have ever asked me about isometric art. My
techniques are neither all-inclusive nor exhaustive. They are the best I’ve come up with so far, and they
are effective.

However, this chapter is not just about art. I am a programmer first and foremost. My artistic skills (in
case you haven’t noticed) are somewhat lacking, and I have to fake it quite often. However, you can do
some things with textures (you can find textures just about anywhere on the Web) that will make them
look like isometric art.

Additionally, this chapter covers a few “how do they do that” kinds of algorithms that primarily have to
do with isometric art—things like coastline, terrain fringes (including making the fog of war fuzzier),
roads, rivers, and other connecting structures. Also, I have a few tricks up my sleeve to take a texture that
is the wrong color and make it the right color.

Tile Ripping and Slanting
I want to start with ripping and slanting. These are the two most fundamental tricks I use to convert a
rectangular piece of art into an isometric tile. Both give good-looking results. If you’re stuck for terrain
tiles, you can use these methods in a pinch to take a texture you found on the Web and turn it into
isometric tiles.

Tile Slanting
I’ve used tile slanting a number of times, mainly for board games, but this is not to say you couldn’t
use it in other situations. Figure 20.1 shows a snapshot of my game Knight’s Challenge (you can find
it on the CD in the Examples folder). Believe it or not, the entire chessboard was creating using a single
16✕16 square tile, but I rotated, slanted, and changed the color of the tile to make it look like more
art was required than actually was. In other words, I used tile slanting to fake it, and it turned out
looking awesome.

Isometric Game Programming with DirectX 7.0

557

So, how does tile slanting work? If you take a look at Figure 20.2, you will see the simple principle on
which it is based. Tile slanting is just texture mapping—extrapolating the pixels within a different shape
based on a texture and the vertices of another polygon.

Later, when you get into Direct3D, DirectX will take care of texture mapping for you. Unfortunately
you’re still in 2D land, so you have to do it yourself. Don’t worry, though. You won’t be required to do any

Isometric Art

Figure 20.1

Knight’s Challenge

uses tile slanting

Figure 20.2

Texture mapping

TeamLRN

558

really complicated math, because changing a square into a diamond is a lot easier than changing it into
a different arbitrary shape.

And now, here’s the big trick: when tile slanting, you simply treat the isometric tile as if it were a diamond
map, and just use really small tiles (4✕2 pixels in size, with the bottom pixel row empty), using the rectan-
gular art as a “tilemap” that contains the colors that belong on the diamond map.

For a 64✕32 isometric tile (which is my standard), you need a 16✕16 square image. From there, you
can slant it to look like it was drawn isometrically.

I’ve been throwing numbers at you here without really explaining their basis. I plan to rectify that
situation now.

Figure 20.3 shows a zoomed-in version of the tile shape I have been using throughout this book. It is no
accident that I use this tile shape (and very similar shapes with an aspect ration of 2:1). This shape is by
far the easiest to work with, and it looks good.

Isometric Game Programming with DirectX 7.0

CAUTION
I’ve only really gotten tile slanting to work for isometric tiles that have
an aspect ration of 2:1 (the width is 2 times the height). If you are
working with other sizes and shapes, texture mapping becomes more
complicated.

Figure 20.3

Standard iso tile shape,

severely magnified

559

Notice that there are four dark boxes around the topmost pixels of the tile. Also, next to and one row
down on either side are two more dark boxes. This is to show you how the tile shape is being converted
into a diamond map, to give a basis for all these numbers I’ve been spouting.

So, the first row of the image has 4 pixels, located at positions (30,0) through (33,0). The next row adds
2 to either side, giving 8 pixels from (28,1) through (35,1). This trend continues until row 16, which
extends the width of the image, from (0,15) to (63,15). After that, the number of pixels per row is
reduced on each side by 2, until at row 31 there are again only 4 pixels, from (30,30) to (33,30). Row 32
is empty. I’ll repeat that: row 32 is empty. In all of the 2:1 ratio tiles, the last row is empty. This will be
important in a minute.

Now, say that the top pixel row contains map location (0,0) of a diamond map. There are 4 pixels, so use
a 2:1 ratio tile that is 4 pixels wide, making a 4✕2 tile. The first row of this “micro-tile” is filled with 4
pixels. The second row, which is the last row, is empty. See? I told you that would be important.

The second row has 8 pixels, which can fit two micro-tiles, which, handily enough, will be map locations
(0,1) and (1,0) in the diamond map. See how this is shaping up? You keep progressing this way down the
map until row 16, which has all 64 pixels set. Dividing by 4, you get 16 micro-tiles across the image, so
the diagonal of the square image needs to have 16 pixels, which means you need a 16✕16 square image in
order to make this work.

To make a more general statement, if you want to break up a 2:1 iso tile into 4✕2 micro-tiles, you divide
the width by 4 and use that for the width and height of the square source image. However, you might not
have a 16✕16 image. Instead, you might have a 64✕64 or 128✕128 or even 256✕256 image (these three
are by far the most common texture sizes). No problem. Simply divide the image into little 16✕16
squares, and slant each one of them. Naturally, you probably want to keep track of which one is which so
that you can use the images together without having them look strange.

Tile Slanting Example
Enough talk about tile slanting. Let’s go ahead and do it, programmatically. Load IsoHex20_1.cpp. This
example is kind of a throwback to Part I, because it operates within a window instead of full-screen, and it
doesn’t use any of the isometric components you’ve developed since then.

The program works by loading a square texture into a CGDICanvas (gdicSquare) and creating a larger
GDI canvas to contain the isometric image (gdicIso). It is loaded during Prog_Init. The isometric tile
is created with the following code:

//loop through x texture coords
for(tx=0;tx<16;tx++)
{

//loop through y texture coords
for(ty=0;ty<16;ty++)
{

Isometric Art

TeamLRN

560

//grab the color from the texture
crColor=GetPixel(gdicSquare,tx,ty);
//calculate x and y
x=30+tx*2-ty*2;
y=tx+ty;
//loop through four pixel positions
for(tempx=x;tempx<(x+4);tempx++)
{

SetPixelV(gdicIso,tempx,y,crColor);
//set color on iso picture

}
}

}

This code is all hardcoded, and it will only work to convert a 16✕16 square image into a 64✕32 isometric
image. If you have a different size, though, this method is easily adjusted to accommodate it, as long as
the iso tile has a ratio of 2:1.

There isn’t much to the operation of this program. It loads the image and shows the isometric tile
repeated, as it would be on a tilemap. Pressing 2 takes you to a view of a map of the square tile. Pressing
1 takes you back to the isometric view. Figure 20.4 shows the isometric view, and Figure 20.5 shows
the square view.

Isometric Game Programming with DirectX 7.0

Figure 20.4

IsoHex20_1.cpp in the

isometric (default) view

561

Before you move on, I want to give you the generic code that will work with any 2:1 ratio isometric tile:

//WIDTH is the width of an isometric tile. This must be a multiple of 4.
//HEIGHT is the height of an isometric tile. This must be WIDTH/2.
//TEXTURESIZE is the width and height of the texture. It will be WIDTH/4.
//loop through x texture coords
for(tx=0;tx<TEXTURESIZE;tx++)
{

//loop through y texture coords
for(ty=0;ty<TEXTURESIZE;ty++)
{

//grab the color from the texture
crColor=GetPixel(gdicSquare,tx,ty);
//calculate x and y
x=WIDTH/2-2+tx*2-ty*2;//see below
y=tx+ty;
//loop through four pixel positions
for(tempx=x;tempx<(x+4);tempx++)
{

SetPixelV(gdicIso,tempx,y,crColor);
//set color on iso picture

}
}

}

Isometric Art

Figure 20.5

IsoHex20_1.cpp in

the square view

TeamLRN

562

Of the preceding lines of code, one in particular merits some extra discussion: x=WIDTH/2-2+tx*2-ty*2.
The tx*2-ty*2 is easily explained, because this is the standard calculation for a diamond map, but where
does the WIDTH/2-2 come from? Well, since a diamond map’s (0,0) lies at the topmost map location, you
must have some way of centering, so you add WIDTH/2. The -2 part comes in because the micro-tile you
are putting onto the image is 4 pixels wide and also must be centered. Hope this clears up any confusion.

Color-Blended Tile Slanting
Tile slanting looks pretty cool, and it can be used to generate decent looking images from square
textures. However, the isometric images generated in this manner look a bit more coarse than the
square textures from which they were generated. This is a natural result of a pixel’s being expanded
into a string of 4 pixels.

To minimize this look, you can either not use tile slanting at all, or you can find a way to smooth out
the isometric image. The way I’m about to show you is using color blending.

Consider Figure 20.6 for a moment. It’s a graphical, zoomed-in schematic of how tile slanting works.
Admittedly, it uses a very small 3✕3 texture, but the principle is the same. The three highlighted pixels
in the texture are stretched to become the highlighted squares in the isometric image.

Now, say you want to make the transition from one 4-pixel micro-tile to another less abrupt. You could
put an “in between” color on each of the ends and the main color in the middle two pixels. This would
give you something that resembles Figure 20.7. As you can see, the color transitions are smoothed out
somewhat for an overall better-looking tile.

Isometric Game Programming with DirectX 7.0

Figure 20.6

Tile slanting

(a zoomed-in view)

563

This color blending is done with just a modification of the scanning loop in IsoHex20_1.cpp. In fact,
IsoHex20_2.cpp has the exact modification you need. It’s all just a matter of grabbing the diagonal neigh-
bors and using them to calculate the appropriate colors.

Whether or not you color blend with your tile slanting is totally up to you. I’m just here to present the
information and give you choices.

Tile Ripping
I like tile ripping. It can make a boring tilemap into an interesting one, because you can texturize a map
with a texture that is larger than a single tile, and the texture can be a rectangular piece of art. In addition,
you can get some interesting effects from modulating a textured isometric tile onto another texture. I’ll
cover modulation and what it’s all about in a moment.

The first thing you need, of course, is a texture (see Figure 20.8). The texture should be repeating, mean-
ing that when a copy of the texture is put next to another copy, there should be no seam. If you do have a
texture with a seam, there are a few methods you can use to make it seamless. I’ll get to those methods
soon, too.

Isometric Art

Figure 20.7

Tile slanting with

color blending

TeamLRN

564

The size of the texture is pretty important. The width has to be a multiple of your iso tile width, and the
height has to be a multiple of the iso tile height. Since you are using 64✕32 tiles, this won’t be a problem,
because most textures are 128✕128 or 256✕256. If you are using a different tile size or an irregular tex-
ture, you might need to stretch or squash the texture.

Making a Repeating Texture out of a
Nonrepeating Texture
You don’t have to worry about the texture I chose for illustration. It repeats seamlessly, as shown in
Figure 20.9. However, many of the textures you’ll find (there are a lot of them on the Web) don’t quite
repeat. They’re supposed to, but there’s usually some sort of seam visible, despite the texture creator’s
attempts to hide it.

Isometric Game Programming with DirectX 7.0

Figure 20.8

A texture

565

Figure 20.10 shows a texture I found on the Web. It is a repeating texture, but there is a problem with
using it for my 64✕32 tiles. This texture is 170✕170, and neither 64 nor 32 divides evenly into 170.

Isometric Art

Figure 20.9

A repeating texture

NOTE
By the way, if you can’t make textures yourself, be sure to
get on the Web, go to your favorite search engine, and type
textures.You will find more textures than you’ll ever
need.Also, because I’ll show you how to modulate to
change the color, it doesn’t matter if the color of the tex-
ture doesn’t quite match, because you can make it match.

TeamLRN

566

So, I have a few choices. I can shrink it to 128✕128, expand it to 192✕192, or crop it to 128✕128.
Because cropping to 128✕128 gives me a nonrepeating texture, I’ll do that, just to illustrate how you
can get a repeating texture out of a nonrepeating one.

Figures 20.11 through 20.13 show the process of cropping to 128✕128, checking for the repeat, and
zooming in on the seams. Figure 20.12 demonstrates that even after being cropped to 128✕128, the
texture still looks pretty good, and the seam is hardly noticeable. Still, if you zoom in, as shown in
Figure 20.13, the seam is indeed there.

Isometric Game Programming with DirectX 7.0

Figure 20.10

Texture 170✕170

I found on the Web

Figure 20.11

The texture cropped

to 128✕128

567

Honestly, this texture can be used without any more work, and that is a credit to the texture’s designer.
Still, I’m trying to demonstrate making seamless tiles, so that is what you’re going to do!

Basically, you make a nonrepeating texture into a repeating one by using the texture four times and
flipping some of the copies horizontally or vertically, or both. You first make an image that is twice the
width and twice the height of the original texture. Then you place the texture (flipped as needed) in
each of the four corners.

Isometric Art

Figure 20.12

Checking for the repeat

Figure 20.13

Zooming in

on the seams

TeamLRN

568

In the upper-left corner, do no flipping at all. In the upper-right corner, do a horizontal flip. In the lower-
left corner, do a vertical flip, and in the lower-right corner, do a horizontal flip and a vertical flip. This gets
rid of the seam but adds a sort of “reflected” pattern to the texture, as shown in Figure 20.14. Also, the
texture is now four times larger, so you have to take that into consideration.

Basically, this is a game of deciding what looks good. You often have to play with a texture, stretching, flip-
ping, rotating, and applying filters until you find what looks good to you. There is no one set method.

Getting Tiles out of a Texture
So, you either found yourself a repeating texture of the appropriate size, or you played with a texture until
it was satisfactory in size and repeated. Great! Now what?

Now it’s just a matter of getting all the tiles out of it. In order to do that, you need your basic tile shape,
which you’ve got, and the RECT extent that will be used for your tiles, which you also have or can deter-
mine very easily. You need one other thing: a TilePlotter.

The basic steps for tile plotting are as follows:

1. Make a larger image, and place the texture on it four times in a 252 pattern.
2. Determine the number of tiles you need to fully rip this texture.
3. Loop through the tiles that need ripping.
4. Plot the tiles.
5. Rectify the tiles to be within the texture.

Isometric Game Programming with DirectX 7.0

Figure 20.14

Making it seamless

569

6. Copy the rectangular portion of the texture onto a new image.
7. Apply the isometric shape using modulation.

I know at this point the process sounds like a bunch of mumbo jumbo. All in due time.

Step 1: Tile the Texture 2✕2

Because of the nature of isometric tiles (the overlapping), you will have some tiles that will be on the edge
of the texture. If you didn’t tile your texture, you would have partially empty tiles, which is not good.

Step 2: Determine the Number of Tiles

The number of tiles you need depends on texture width and height and tile width and height. Divide
texture width by tile width and texture height by tile height. Multiply these two numbers, then multiply
the result by 2, and that’s the number of tiles.

If you’re interested in the basis, here goes: Imagine that you have a 128✕128 texture and are using 64✕32
tiles. An example of tile ripping for these parameters is shown in Figure 20.15. The tiles in this figure look
the most like a staggered map, so you’ll deal with this as though it were a staggered map for the time being.

Isometric Art

Figure 20.15

Example of tile ripping

TeamLRN

570

There are two columns of tiles and eight rows. Columns=TextureWidth/TileWidth. 128/64=2.

Rows are based on texture height, but you have to take into account the overlap between rows, and
multiply by 2. Rows=2*TextureHeight/TileHeight. 2*128/32=8.

Take the number of rows times the number of columns, and that’s the number of tiles. 2*8=16.

Step 3: Loop through the Tiles

This is pretty easy. You loop X from 0 to Columns–1, and you loop Y from 0 to Rows–1. It’s important
to note here that you can use any sort of tileplotting, and use the same loop, and it will come out fine no
matter what. One warning, though: be sure to use the same sort of tileplotting when ripping tiles as you
do when placing tiles. Otherwise, putting the tiles back together again is a pain.

//calculate columns and rows
int Columns=TEXTUREWIDTH/TILEWIDTH;
int Rows=2*TEXTUREHEIGHT/TILEHEIGHT;
//loop through columns
for(int x=0;x<Columns;x++)
{

//loop through rows
for(int y=0;y<Rows;y++)
{

//we’ll do some plotting and ripping here
}

}

Step 4: Plot the Tiles

You can already do this step. Use CTilePlotter, or your own function, or even just a few quicky
formulas—whichever makes you happy. The following code does a standard plot for a diamond-shaped
tilemap. (This code would go within the column and row loops).

//standard diamond-map plot
plotx=(x-y)*TILEWIDTH/2;
ploty=(x+y)*TILEHEIGHT/2;

Step 5: Rectify the Tiles

In this case, rectify means to validate, or to take a value and bring it into an acceptable range.

The variables plotx and ploty describe the upper-left corner of the rectangular region from which your
tile will be ripped. In order for tile ripping to work, plotx and ploty have to be within the upper-left

Isometric Game Programming with DirectX 7.0

571

quadrant of the 2✕2 tiled texture. This guarantees that you will have a full 64✕32 image from this portion
of the texture.

So, in order to get plotx and ploty where they need to be, simply take the modulus (%) with
TEXTUREWIDTH and TEXTUREHEIGHT, and check for negatives.

//find remainder
plotx%=TEXTUREWIDTH;
ploty%=TEXTUREHEIGHT;
//check for negatives
if(plotx<0) plotx+=TEXTUREWIDTH;
if(ploty<0) ploty+=TEXTUREHEIGHT;

Now plotx and ploty are within the acceptable range, and you can continue.

Step 6: Blit the Rectangular Area to Tile

Now you plot the part of the textured image from (plotx,ploty)-(plotx+TILEWIDTH,ploty+TILE-
HEIGHT) to wherever you are storing the tile image, whether that be an HDC somewhere, a DirectDraw
surface, or elsewhere. I’m not putting any code in right now, since rendering is rather API-specific. I’m just
trying to get the algorithm across.

Step 7: Modulate with the Tile Shape

Again with the word “modulate?” Modulate just means to multiply, although it’s a different sort of multipli-
cation, because you are multiplying colors. Essentially, this step can be accomplished with an all-white tile
shape and blitting with SRCAND. Officially, however, I have to say “modulate” because you can use tile
shapes that don’t necessarily consist of all-white pixels to do neat tricks.

So, there it is—seven steps to tile ripping. I’m pretty sure, however, that you would like some sort of
example to make the concept more concrete. I know I would, so let’s do that.

Tile Ripping Example
Go ahead and load up IsoHex20_3.cpp, our tile ripping example du jour. Like IsoHex20_1, this is a very
simple application that doesn’t use any fancy isometric components, because they are not needed.

The following code is all that is needed to rip a rectangular texture into small isometric bits. It should be
easy enough to follow.

//load texture canvas
gdicTexture.Load(NULL,”texture.bmp”);
//load iso shape
gdicIsoShape.Load(NULL,”IsoShape.bmp”);

Isometric Art

TeamLRN

571

quadrant of the 2✕2 tiled texture. This guarantees that you will have a full 64✕32 image from this portion
of the texture.

So, in order to get plotx and ploty where they need to be, simply take the modulus (%) with
TEXTUREWIDTH and TEXTUREHEIGHT, and check for negatives.

//find remainder
plotx%=TEXTUREWIDTH;
ploty%=TEXTUREHEIGHT;
//check for negatives
if(plotx<0) plotx+=TEXTUREWIDTH;
if(ploty<0) ploty+=TEXTUREHEIGHT;

Now plotx and ploty are within the acceptable range, and you can continue.

Step 6: Blit the Rectangular Area to Tile

Now you plot the part of the textured image from (plotx,ploty)-(plotx+TILEWIDTH,ploty+TILE-
HEIGHT) to wherever you are storing the tile image, whether that be an HDC somewhere, a DirectDraw
surface, or elsewhere. I’m not putting any code in right now, since rendering is rather API-specific. I’m just
trying to get the algorithm across.

Step 7: Modulate with the Tile Shape

Again with the word “modulate?” Modulate just means to multiply, although it’s a different sort of multipli-
cation, because you are multiplying colors. Essentially, this step can be accomplished with an all-white tile
shape and blitting with SRCAND. Officially, however, I have to say “modulate” because you can use tile
shapes that don’t necessarily consist of all-white pixels to do neat tricks.

So, there it is—seven steps to tile ripping. I’m pretty sure, however, that you would like some sort of
example to make the concept more concrete. I know I would, so let’s do that.

Tile Ripping Example
Go ahead and load up IsoHex20_3.cpp, our tile ripping example du jour. Like IsoHex20_1, this is a very
simple application that doesn’t use any fancy isometric components, because they are not needed.

The following code is all that is needed to rip a rectangular texture into small isometric bits. It should be
easy enough to follow.

//load texture canvas
gdicTexture.Load(NULL,”texture.bmp”);
//load iso shape
gdicIsoShape.Load(NULL,”IsoShape.bmp”);

Isometric Art

572

First (of course), you have to load in the two images you are using—the texture and the isometric shape.
It’s pretty cool, really, that only these two are necessary, and the rest can be generated programmatically.
In real-world situations, you’d want to prepare the textured tiles before distributing the game.

//grab dc from main window
HDC hdc=GetDC(hWndMain);
//calculate rows and columns of tiles
iColumns=gdicTexture.GetWidth()/gdicIsoShape.GetWidth();
iRows=2*gdicTexture.GetHeight()/gdicIsoShape.GetHeight();
//create tiled texture canvas
gdicSource.CreateBlank(hdc,gdicTexture.GetWidth()*2,gdicTexture.GetHeight()*2);
//create tile canvas
gdicTiles.CreateBlank(hdc,gdicIsoShape.GetWidth()*iColumns,gdicIsoShape.GetHeight
()*iRows);
//restore dc to main window
ReleaseDC(hWndMain,hdc);

Second, you need a few extra surfaces to work from, the 2✕2 texture tiled image, and an image large
enough to accommodate all the ripped tiles (which is why the columns and rows are calculated).

//create tiled texture image
//upper left
BitBlt(gdicSource,0,0,gdicTexture.GetWidth(),gdicTexture.GetWidth(),gdicTexture,0
,0,SRCCOPY);
//upper right
BitBlt(gdicSource,gdicTexture.GetWidth(),0,gdicTexture.GetWidth(),gdicTexture.Get
Width(),gdicTexture,0,0,SRCCOPY);
//lower left
BitBlt(gdicSource,0,gdicTexture.GetHeight(),gdicTexture.GetWidth(),gdicTexture.Ge
tWidth(),gdicTexture,0,0,SRCCOPY);
//lower right
BitBlt(gdicSource,gdicTexture.GetWidth(),gdicTexture.GetHeight(),gdicTexture.GetW
idth(),gdicTexture.GetWidth(),gdicTexture,0,0,SRCCOPY);

Next, you need to fill the source image (the 2✕2 tiled texture image) with the image data from the
textures. There are four blits, one for each corner.

//rip out the tiles
int x;
int y;
int plotx;
int ploty;
//loop through columns

Isometric Game Programming with DirectX 7.0

TeamLRN

573

for(x=0;x<iColumns;x++)
{
//loop through rows

for(y=0;y<iRows;y++)
{

//determine plotx and ploty
plotx=x*gdicIsoShape.GetWidth()+(y&1)*gdicIsoShape.GetWidth()/2;
ploty=y*gdicIsoShape.GetHeight()/2;
//bring plotx and ploty within appropriate range
plotx%=gdicTexture.GetWidth();
ploty%=gdicTexture.GetHeight();
//check for negatives
if(plotx<0) plotx+=gdicTexture.GetWidth();
if(ploty<0) ploty+=gdicTexture.GetHeight();
//grab this part of the source surface, and place it on the tile

surface

BitBlt(gdicTiles,x*gdicIsoShape.GetWidth(),y*gdicIsoShape.GetHeight(),
gdicIsoShape.GetWidth(),gdicIsoShape.GetHeight(),
gdicSource,plotx,ploty,SRCCOPY);

//modulate with the iso shape

BitBlt(gdicTiles,x*gdicIsoShape.GetWidth(),y*gdicIsoShape.GetHeight(),
gdicIsoShape.GetWidth(),gdicIsoShape.GetHeight(),
gdicIsoShape,0,0,SRCAND);

}
}

Finally, rip the tiles, and modulate the image data with the isometric shape. That’s really all there is to it.
Then, all you have to do is make use of the tiles you have created, as demonstrated in ShowMap.

void ShowMap(HDC hdc)//show sample map
{

//vars
int x;
int y;
int tilex;
int tiley;
int plotx;
int ploty;
//clear out dc
RECT rcFill;

Isometric Art

574

GetClientRect(hWndMain,&rcFill);
//fill rect
FillRect(hdc,&rcFill,(HBRUSH)GetStockObject(BLACK_BRUSH));
//loops
for(x=0;x<10;x++)
{

for(y=0;y<20;y++)
{

//calculate plotted positions
plotx=x*gdicIsoShape.GetWidth()+

(y&1)*gdicIsoShape.GetWidth()/2;
ploty=y*gdicIsoShape.GetHeight()/2;
//calculate which tile to use
tilex=(x%iColumns)*gdicIsoShape.GetWidth();
tiley=(y%iRows)*gdicIsoShape.GetHeight();
//blit the tile
BitBlt(hdc,plotx,ploty,gdicIsoShape.GetWidth(),
gdicIsoShape.GetHeight(),gdicTiles,tilex,tiley,
SRCPAINT);

}
}

}

This is pretty basic, with perhaps one exception—the calculation of tilex and tiley. These numbers are
based on the x and y (in a more complex app, they would be mapx, mapy). The reason is that you need to
keep the texture looking right, and any given tile has to have a certain piece of the texture or else the image
won’t look right. Luckily, you can just find the remainder of x/column and y/row to find out which one.

Extra Graphical Operations
I promised I’d discuss two very common graphical operations and how you can do them programmatically.
These are grayscaling—taking an image and converting it to an image with 256 shades of gray in it and
modulating, which you can use to modify an image’s colors). You can combine these two operations to
change textures to something more to your liking.

Grayscaling
The act of grayscaling is pretty simple and straightforward. You take the red, green, and blue components
and combine them, making a single gray component for the image.

Isometric Game Programming with DirectX 7.0

TeamLRN

575

Usually, the RGB components are weighted percentage-wise. The human eye is most sensitive to green,
so that usually gets the highest percentage weight. The eye is least sensitive to blue, which gets the lowest
weight. Red gets whatever is left over. A very good weighting scheme is 30% for red, 59% for green,
and 11% for blue.

The following is an example of grayscaling an image that has been loaded onto an HDC:

//hdc is the dc of the image
//WIDTH is the width of the image
//HEIGHT is the height of the image
int iRed,iGreen,iBlue,iCombine;
COLORREF crColor;
//loop through rows
for(int y=0;y<HEIGHT;y++)
{

//loop through columns
for(int x=0;x<WIDTH;x++)
{

//grab the pixel
crColor=GetPixel(hdc,x,y);
//extract the RGB components
//and multiply by percentage
iRed=GetRValue(crColor)*30;
iGreen=GetGValue(crColor)*59;
iBlue=GetBValue(crColor)*11;
//combine the rgb
iCombine=(iRed+iGreen+iBlue)/100;
//reform into a gray image based on iCombine
crColor=RGB(iCombine,iCombine,iCombine);
//replace the pixel
SetPixelV(hdc,x,y,crColor);

}
}

As you can see, grayscaling is pretty easy. You can also change the percentage weights (always make sure
they add up to 100) to get some different effects. The effects won’t be drastically different, but the
appearance will change.

Modulation
Modulation is the act of multiplying colored images to get new colored images. It can be used
for a variety of effects; one of these effects is changing a texture’s color after it has been grayscaled.

Isometric Art

576

For example, you might find a texture that you really like, but it’s the wrong color; maybe it’s purple when
you want it to be green. No problem. First, grayscale the image, and then modulate it with the color of
green that you want, and blammo, you’ve instantly changed the color of the texture while retaining its
detail and the proper variations in tone.

That just leaves you with the question of how to multiply a color by another color. Actually, you don’t
multiply the colors by one another. Instead, each color’s components get multiplied by another color’s
components. Red multiplies with red, green with green, and blue with blue. However, multiplying colors in
their current form (from 0 to 255) can’t work, because the final result must also be within that range. So
you have to make the components equal a value from 0.0 to 1.0, with 0 being 0.0 and 255 being 1.0. To
convert from the 0-to-255 to the 0.0-to-1.0 format, you need only convert to floating-point and divide by
255. So, the following formulae will work for modulating color components:

RC/255=R1/255*R2/255
GC/255=G1/255*G2/255
BC/255=B1/255*B2/255

R1,G1,B1 and R2,G2,B2 represent the two source colors, and RC,GC,BC is the combined color.
Naturally, you’d like a more simplified version of the formula, with RC,GC, and BC alone on the left
side so that you can use them in a program. Here they are:

RC=R1*R2/255;
GC=G1*G2/255;
BC=B1*B2/255;

And there you have it. You can use these lines as-is in a program. Now let’s modulate.

//hdc1 and hdc2 are source images; hdc3 is the combined
//WIDTH is width of images; HEIGHT is height of images
//all three images are the same dimensions
int r1,g1,b1;//source color 1
int r2,g2,b2;//source color 2
int r3,g3,b3;//destination color
COLORREF crColor1;//source 1
COLORREF crColor2;//source 2
COLORREF crColor3;//dest
//loop through rows
for(int y=0;y<HEIGHT;y++)
{

//loop through columns
for(int x=0;x<WIDTH;x++)
{

//grab pixels
crColor1=GetPixel(hdc1,x,y);

Isometric Game Programming with DirectX 7.0

TeamLRN

577

crColor2=GetPixel(hdc2,x,y);
//extract components
r1=GetRValue(crColor1);
g1=GetGValue(crColor1);
b1=GetBValue(crColor1);
r2=GetRValue(crColor2);
g2=GetGValue(crColor2);
b2=GetBValue(crColor2);
//multiply components
r3=r1*r2/255;
g3=g1*g2/255;
b3=b1*b2/255;
//combine components
crColor3=RGB(r3,g3,b3);
//set pixel
SetPixelV(hdc3,x,y,crColor3);

}
}

And that’s modulation. If you want to combine portions of an image with one color and other portions
with another color, just make a two-colored image and modulate. Modulation can also be used to make
light maps, shadow maps, and a variety of other effects. Play around with it and see what you can create.

Summary
Compared to other chapters, this one was a little short, and not nearly as technologically sophisticated.
Art, in general, tends not to be so. Still, looking good is a part of making a game, and it never hurts to
have a few tricks up your sleeve (especially if you can’t draw very well, like me).

Isometric Art

Fringes and
Interconnecting

Structures

• Art Requirements for Fringes

• Making a Lookup Table

• Making Interconnecting
Structures

CHAPTER 21

TeamLRN

579

Ihad a hard time deciding where to put this chapter. It seemed to belong in several places, and at the
same time there was really no perfect place for it. So I tacked it onto the end of Part II, because it was

just too important to put into an appendix.

This chapter is concerned with a few topics, mostly dealing with isometric art and how to handle it. I
focus on two major areas: fringes and interconnecting structures. By fringes, I mean transitions from one
sort of terrain to another, like from grassland to plains, but also including coastline (coastline being just a
transition from land to ocean). By interconnecting structures, I mean roads, railroads, rivers, forests, hills, moun-
tains, walls, and so on.

As you can see, these issues are important both to the artist designing the isometric tiles and objects and
to the programmer, who has to make use of the art. The main idea is that you want to make the art as
easy to generate as possible, and you want to rely on as few images as possible, thus conserving valuable
display memory. However, you still want good performance, so you want to reduce the number of blits
necessary to get a tile onto the screen. This is the eternal juggling act that you as a graphics programmer
have to face every day.

Fringes
Fringes can be used for several things, the most obvious being coastline, but they can also work for transi-
tions from one terrain to another, or the edge of a fog of war.

The first question out of your mouth will be “Why use fringes?” Figures 21.1 and 21.2 provide a good
example of why. This is an old isometric sample program I wrote about a year or so before I started this
book. You can find it and the source for it on the CD. In this program, I set out to demonstrate a very
simple coastline effect. Figure 21.1 has the coastline effect turned off, and Figure 21.2 has the coastline
effect on. Naturally, the coastline on makes a better-looking picture. So, in answer to your question, you
should use fringes because they enhance a game’s appearance.

Fringes and Interconnecting Structures

580

Just to hammer home the point, I’ve included Figure 21.3, which I believe looks very good, even though it
is very simple. (The graphics were tile ripped using the method presented in the last chapter from
128✕128 textures and then modulated with different colors.) The fringes look a lot better than just having
the two different terrains placed together with no sort of transition at all.

Isometric Game Programming with DirectX 7.0

Figure 21.1

No fringe makes

for unrealistic-

looking games

Figure 21.2

A fringe smoothes

things out

TeamLRN

581

Art Requirements for Fringes
Believe it or not, I can do a fringe like the one shown in Figure 21.3 for a 64✕32 standard iso tile shape
with an image that is 128✕64—exactly four tiles worth of information. Of course, this means a lot
of on-the-fly modulation of textures with the fringes, which decreases performance by quite a bit.

First, let’s take a look at some basic math. For any given tile, the fringe that needs to show within that tile
depends on all its neighbors. If you consider a case in which only two types of terrain exist, the neighbor-
ing tiles will either be of the same terrain or of the other terrain. Since each tile has eight neighbors, that
is 2 to the eighth power, or 64 combinations. If your terrain is ripped from a texture, meaning that you
could possibly have 2, 4, 8, 16, or even more different tiles that represent that same terrain, you are look-
ing at anywhere from 128 to 1,024 or even more different images that can appear for a tile.

Since it is very likely that you have more than two types of terrain, the number keeps increasing. The cold,
hard fact is that you don’t have enough display memory to store the fifty bazillion images for the various
fringe pictures, which would be ideal for performance. So, you have to compromise by taking a little away
from performance to reduce the requirements of the art to a manageable level. That is what I’m here to
show you how to do.

Before going on, let’s take a look at what kind of requirements you would have for art if you were to make
a distinct image for every possible tile configuration. I’m going to deal only with the fringing for coastline,
which is, in my opinion, the best example of using a fringe. First, you must decide which type of terrain
(either land or water) is “on top” of the other. The type of terrain “on top” does not get a fringe written
on top of it, but the “on the bottom” terrain does. Logically, land is on top of water, but this could go
either way. In most games you will see, the fringe/coastline is written onto water tiles and not onto land
tiles, but this is a convention, not something that’s written in stone.

Fringes and Interconnecting Structures

Figure 21.3

Another fringe example

showing transition

between terrains

582

To illustrate the point, I present Figure 21.4, which shows various representations of a 3✕3 tile neighbor-
hood. The lightly shaded tiles represent water, and the darkly shaded tiles represent land. Notice that the
central tile of each neighborhood is a water tile, since it is upon the water tiles that you will be placing
the fringe/coastline.

If you count the neighborhoods in Figure 21.4, there are 256 of them, and each neighborhood configura-
tion is represented exactly once. Ideally, you would provide images for each of these, and if you had such a
simplistic map—only water and land—you could probably get away with that. However, you usually can-
not spend the display memory required for 256 images when you also need units, the units’ animation
frames, various types of land terrain, buildings, and so on.

If having 256 distinct images just for coastline is wasteful, what do you do? My own way of getting
around the prohibitive art requirement for coastline (and other fringes) is to divide the tile into zones, as
shown in Figure 21.5.

Isometric Game Programming with DirectX 7.0

Figure 21.4

A tile neighborhood with

tiles representing water

and land

TeamLRN

583

With the tile divided into zones, you can just consider a single zone and its neighbors. Figure 21.6 shows
an analysis of the possibilities for the upper-left zone. As you can see, there are eight possibilities, so an
image that covers just the upper-left zone of the tile shape would need eight images. Do the same thing for
each of the other three zones. A total of 32 images is needed, which is already much better than 256, but
you aren’t done yet!

Fringes and Interconnecting Structures

Figure 21.5

A tile divided into zones

Figure 21.6

Neighbors of a fringe

tile zone (upper left)

584

The last picture I have to show you before we get into a more concrete example is Figure 21.7, which
shows the actual fringe for the upper-left tile zone based on the value of its tile neighbors. Eight tile neigh-
borhoods are shown in this figure, but if you look closely, you will see that whenever the northwest tile is
land, the same fringe is shown in the central tile. Since this occurs in four of the eight configurations, you
can eliminate three of the eight pictures you would otherwise require. Similarly, when all of a water tile’s
neighbors are also water, no picture is needed, so that eliminates another picture needed. Now you have
just four images required per tile zone, for a total of 16 pictures, which is hardly any at all.

I’ve seen a number of people flounder when trying to get some sort of coastline or fringing working, usu-
ally because they try to make an image for every possibility, which is completely unnecessary. I’m here to
show you the easy way, if not the fastest.

Making a Lookup Table
For the time being, give each of your images for each tile zone the numbers 0 through 3. The actual
images reflected by this number will be arbitrary. Now, the easiest thing to do is to take the values (land =
1, water = 0) of the tile neighborhood for a given zone and map them to the image numbers. (This way,
you can do coastline image lookup with a simple array rather than a bizarre set of if statements.)

I count my directions clockwise, just as a convention, and I see no need to stop doing so now. For tile
zones, I will start with the upper left and move clockwise to hit the other zones.

Isometric Game Programming with DirectX 7.0

Figure 21.7

Actual fringes based on

a tile’s upper-left zone

TeamLRN

585

Upper-Left Tile Zone
The three neighboring tiles are those to the west, the northwest, and the north, in clockwise order.
Check out table 21.1.

Remember that I said earlier that the northwest neighbor dominates the choice of image? That’s what
is happening here. The image number assignments, as you can see, are completely arbitrary.

Upper-Right Tile Zone, Lower-Right Tile Zone,
and Lower-Left Tile Zone
The work is finished, actually. You can use the same table; just use different directions in place of the ones
used for the upper-left zone.

• Upper right. Use north, northeast, and east.
• Lower right. Use east, southeast, and south.
• Lower left. Use south, southwest, and west.

Think ahead, keep it simple, and never write a convoluted mess of if/else blocks when a perfectly good
lookup table can be used in its stead!

Fringes and Interconnecting Structures

Table 21.1 Lookup Values for the Upper-Left Corner
West Northwest North Value Image

Water Water Water 0 –1*

Land Water Water 1 0

Water Land Water 2 1

Land Land Water 3 1

Water Water Land 4 2

Land Water Land 5 3

Water Land Land 6 1

Land Land Land 7 1
*The number –1 indicates that no fringe exists for this configuration.

586

A Fringing Example
Blah blah blah! All I seem to do is talk anymore! Well, it’s time for another code example. Warm up the
isometric components, for you shall be making use of them, although this won’t be nearly as complicated
as some of the stuff back in Chapter 17!

IsoHex21_1.cpp and associated files make up a very simple editor. They demonstrate my fringing algo-
rithm to make coastline. It’s not the most convincing coastline by any means, but it should get the idea
across.

Figure 21.8 shows the coastline example. Because of how the fringe was drawn, there is still something of
a “blocky” appearance to the map, but the difference is less stark than it would be if green land tiles were
laid next to blue water tiles without any sort of transition.

Isometric Game Programming with DirectX 7.0

NOTE
More than just the three tiles listed for each zone affect that zone. For example, for the
upper-left zone, I listed the west, northwest, and north tiles.To this list you should add
southwest and northeast.Why didn’t I list these earlier? Because the southwest counts
the same value as the west tile, and northeast counts the same as north.This would
have just made the previous table more confusing. Just keep this in mind during the
code example.

Figure 21.8

Coastline example,

IsoHex21_1.cpp

TeamLRN

587

The vast majority of IsoHex21_1.cpp is much the same as the examples in Chapters 17 through 19,
using the IsoHexCore components to take care of the details of isometric management. I won’t bore you
by repeating descriptions of these components. Mainly, I’m going to concentrate on what makes this
example unique.

Map Structure
First I changed the way in which the MapLocation structure looked, in order to accommodate the fringes.
I ripped out all the stuff for managing units so that I could highlight the stuff necessary for fringes. The
following is what MapLocation looks like:

const int UPPERLEFT=0;
const int UPPERRIGHT=1;
const int LOWERRIGHT=2;
const int LOWERLEFT=3;
//map location structure
struct MapLocation
{

bool bLand;
int iFringe[4];

};
MapLocation mlMap[MAPWIDTH][MAPHEIGHT];//map array
//fringe lookup table
int FringeLookUp[8]={-1,0,1,1,2,3,1,1};

It’s still a very basic structure. First, it contains a single bool that is true when that location contains land
and false when it contains water. In a more complicated example, this would very likely be replaced with
an int, with 0 representing water, 1 representing grassland, and 2 and up representing different types of
terrain. For now, a bool suffices.

The next bit is a four-item array called iFringe. Each of the items in this array contains a value for what-
ever fringe exists at that particular map location—one for each of the four tile zones. The four constants
in the code snippet give names to the four regions.

Lastly, the FringeLookUp table (an eight-item array) contains the lookup values for tile images, which
we talked about earlier. A –1 value means no fringe is to be rendered.

Rendering Function
Naturally, the next thing is the rendering function. We’ll get to how the MapLocation structure array
(mlMap) gets filled in and calculated in a moment.

Fringes and Interconnecting Structures

588

Here’s a basic rundown of RenderFunc before we get to the actual code. First, if bLand is true, you render
land and ignore the values in iFringe. Second, if bLand is false, you render a water tile and then put in
each of the appropriate fringes if applicable.

void RenderFunc(LPDIRECTDRAWSURFACE7 lpddsDst,RECT* rcClip,int xDst,int yDst,int
xMap,int yMap)
{

//check land or sea
if(mlMap[xMap][yMap].bLand)
{

//land
tsBack.ClipTile(lpddsDst,rcClip,xDst,yDst,0);

}

First case: If bLand is true, render the land tile, and that’s it. No other activity is required for this map
location. Both the land and the sea tiles are stored in tsBack. Land has a tile index of 0, and sea has an
index of 1.

else
{

//sea
tsBack.ClipTile(lpddsDst,rcClip,xDst,yDst,1);

Case, the second (to emulate my friend Mason’s manner of speech): bLand is false, which means you need
to render the sea tile (tile index 0 of tsBack) and then render any of the fringe images as appropriate.

//upper-left zone
if(FringeLookUp[mlMap[xMap][yMap].iFringe[UPPERLEFT]]>=0)

tsFringe.ClipTile(lpddsDst,rcClip,xDst,yDst,
FringeLookUp[mlMap[xMap][yMap].iFringe[UPPERLEFT]]);

A quick heads-up: the items in iFringe contain numbers 0 through 7, indicating land in neighboring tiles.
In order to determine which fringe image should be rendered, you first have to plug that number into the
FringeLookUp array, which you do here. If it is greater than or equal to 0 (that is, not –1), go ahead and
render the image you looked up. If it is –1, skip it.

//upper-right zone
if(FringeLookUp[mlMap[xMap][yMap].iFringe[UPPERRIGHT]]>=0)

tsFringe.ClipTile(lpddsDst,rcClip,xDst,yDst,
FringeLookUp[mlMap[xMap][yMap].iFringe[UPPERRIGHT]]+4);

//lower-right zone
if(FringeLookUp[mlMap[xMap][yMap].iFringe[LOWERRIGHT]]>=0)

tsFringe.ClipTile(lpddsDst,rcClip,xDst,yDst,

Isometric Game Programming with DirectX 7.0

TeamLRN

589

FringeLookUp[mlMap[xMap][yMap].iFringe[LOWERRIGHT]]+8);
//lower-left zone
if(FringeLookUp[mlMap[xMap][yMap].iFringe[LOWERLEFT]]>=0)

tsFringe.ClipTile(lpddsDst,rcClip,xDst,yDst,
FringeLookUp[mlMap[xMap][yMap].iFringe[LOWERLEFT]]+12);

}
}

You do the same thing for the other three tile zones: upper-right, lower-right, lower-left. I like doing things
clockwise. It seems more organized that way.

So, that’s it for RenderFunc. It seems incredibly simple and, in fact, it is. The hard part was done several
pages ago, divvying up the tile shape into zones, and coming up with lookup tables. Thinking ahead
pays off !

Calculating the Fringe
Naturally, the numbers in iFringe for all the map locations don’t just magically appear out of nowhere.
They were carefully calculated by several functions. Let’s get to them!

The CalcFringe Function (Part 1)

OK, it’s not the most original name for a function, I admit (I tend to make up uninteresting function
names). This function, to no one’s surprise, calculates all the fringes for the entire map.

void CalcFringe()
{

//loop through x
for(int x=0;x<MAPWIDTH;x++)
{

//loop through y
for(int y=0;y<MAPHEIGHT;y++)
{

//calc the fringe
CalcFringe(x,y);

}
}

}

This is one of the CalcFringe functions. There are two, and the other one is next. If any of you C pro-
grammers are feeling faint because I have two functions with the same name, just take a deep breath and be
a trouper.

Fringes and Interconnecting Structures

590

This CalcFringe function takes no parameters, returns no values, and simply loops through the entire
map, sending each (x,y) location to the other CalcFringe function.

The CalcFringe Function (Part 2)

The second CalcFringe function takes two parameters (an x- and y-coordinate), returns no value, and
does most of the fringe calculation (the other functions just pass information along to this one)..

void CalcFringe(int x,int y)//calculate for individual map location
{

//range checking
if(x<0) return;
if(y<0) return;
if(x>=MAPWIDTH) return;
if(y>=MAPHEIGHT) return;

First, check to see if (x,y) corresponds to a valid map coordinate, so if x or y is less than 0 or equal to or
greater than MAPWIDTH or MAPHEIGHT, respectively, you return immediately. This means you can call this
CalcFringe without fear.

//calculate the tile neighborhood
bool Neighbor[8];
//store starting point
POINT ptStart;
ptStart.x=x;
ptStart.y=y;
//next map location
POINT ptNext;

This next bit gets a little confusing, because of all the conditional code, so let me clue you in to exactly
what you’re doing. You’re storing the values of the tile neighborhood in a temporary array of ints (called
Neighborhood). The value of 0 means a water tile, and 1 means a land tile. These values, in turn, will be
used to determine the iFringe values for this map location. Got all that? Let’s dive in!

for(int dir=0;dir<8;dir++)
{

//walk to neighbor
ptNext=TileWalker.TileWalk(ptStart,(ISODIRECTION)dir);

A variable called ptStart contains the current (x,y) position, so use the TileWalker to determine what tile
lies in a given direction (loop through them all using the variable dir). Once you have the neighboring
map location, you can test it for land or water.

Isometric Game Programming with DirectX 7.0

TeamLRN

591

//range check
if(ptNext.x<0 || ptNext.y<0 || ptNext.x>=MAPWIDTH ||

ptNext.y>=MAPHEIGHT)
{

//out of bounds
Neighbor[dir]=0;

}

The first check, of course, is a bounds check. If ptNext does not exist on the map, set this neighbor to 0,
meaning water. Really, you could default to 1 or land; it doesn’t really matter. Generally, however, it is
assumed that outside of the map is open ocean.

else
{

//check map location
if(mlMap[ptNext.x][ptNext.y].bLand)
{

//land
Neighbor[dir]=1;

}
else
{

//water
Neighbor[dir]=0;

}
}

}

If ptNext is not out of bounds, you can check the value of bLand at that map location and assign 1 for
true and 0 for false. Then you can loop through the remaining values of dir.

//determine zones
mlMap[ptStart.x][ptStart.y].iFringe[UPPERLEFT]=(Neighbor[6]+2*Neighbor[7]+

4*Neighbor[0])|(Neighbor[5]+4*Neighbor[1]);
mlMap[ptStart.x][ptStart.y].iFringe[UPPERRIGHT]=(Neighbor[0]+2*Neighbor[1]+

4*Neighbor[2])|(Neighbor[7]+4*Neighbor[3]);
mlMap[ptStart.x][ptStart.y].iFringe[LOWERRIGHT]=(Neighbor[2]+2*Neighbor[3]+

4*Neighbor[4])|(Neighbor[1]+4*Neighbor[5]);
mlMap[ptStart.x][ptStart.y].iFringe[LOWERLEFT]=(Neighbor[4]+2*Neighbor[5]+

4*Neighbor[6])|(Neighbor[3]+4*Neighbor[7]);
}

Fringes and Interconnecting Structures

592

And finally, the end of the function with some crazy-looking equations. I used numbers here instead of
the ISO_* constants mainly because not doing so would make all the lines 10 miles long.

To better explain what the heck is going on, I’ll convert the first line into the ISO_* constants.

mlMap[ptStart.x][ptStart.y].iFringe[UPPERLEFT]=
(

1*Neighbor[ISO_WEST]+
2*Neighbor[ISO_NORTHWEST]+
4*Neighbor[ISO+NORTH]

)|(
1*Neighbor[ISO_SOUTHWEST]+
4*Neighbor[ISO_SOUTHEAST]

);

This should be a little easier to read. Remember that for the upper-left tile zone, you build a value based
on five tiles: West or southwest is 1, northwest is 2, and north or northeast is 4, giving you a value from
0 to 7. That’s all you’re doing here, in a very concise form.

The CalcFringeNeighborhood Function

The final fringe calculation function is CalcFringeNeighborhood. Supply it with an (x,y) coordinate, and
it recalculates not only that map location, but all map locations surrounding it. This function isn’t used in
this example, but if you were to, say, modify this program so that bLand were changed for whatever map
location you clicked on, you would want to recalculate not only that tile, but also all tiles around it.

void CalcFringeNeighborhood(int x,int y)//calculate for a tile neighborhood
{

//send tile (x,y) to calculate fringe function
CalcFringe(x,y);
//store center point
POINT ptCenter;
ptCenter.x=x;
ptCenter.y=y;
POINT ptNeighbor;
//loop through directions
for(int dir=0;dir<8;dir++)
{

//determine neighbor
ptNeighbor=TileWalker.TileWalk(ptCenter,(ISODIRECTION)dir);
//send neighbor to calculation function
CalcFringe(ptNeighbor.x,ptNeighbor.y);

}
}

Isometric Game Programming with DirectX 7.0

TeamLRN

593

This function is no great feat of computer science. I simply use the TileWalker to walk around the center
tile and send the (x,y) values to CalcFringe. The function is, however, of great use when you’re construct-
ing an editor that has to maintain coastlines or fringes.

A Final Note about Fringes
I certainly hope I was able to demystify and simplify fringes and coastline for you. My own first attempts
at making them were rather unsuccessful. I would either take up too much space with the images, or some-
thing else would go wrong and the resulting pictures looked awful. Eventually I stumbled upon this algo-
rithm, which makes life much easier.

However, it would be arrogant of me to say that my coastline algorithm is the best ever. My coastline algo-
rithm requires anywhere from one to five blits per map location, and if there is a lot of coastline, this can
affect performance detrimentally. It won’t matter so much once you get to iso-3D later on, but it seems to
me that there should be a less-performance-intensive solution that is also not very art-intensive. If you find
one, be sure to let me know!

Interconnecting Structures
This is possibly the vaguest heading I’ve come up with. When I say interconnecting structures, I primarily mean
two things: rivers and roads. These aren’t the only applications of interconnecting structures, of course.
You can also make forests, hills, mountains, walls, and so on as interconnecting structures, but rivers and
roads are the best examples and are the easiest to use for teaching.

I’m going to show you two basic methods for isometric tiles—one that uses four directions and one that
uses eight directions. Generally, the four-direction version is more commonly used for rivers and the eight-
direction for roads, but either can be adapted for use in a number of areas. I’m only going to show you
roads (because they are easy to draw).

Four-Direction Structures
As I stated, a four-direction connecting structure is commonly used for rivers, but I have also seen it used
for forests, hills, mountains, and walls. In all cases, the lines of the connecting structure (the road or river,
or the base line of the wall or trees) connect the center of one tile to the center of an adjacent tile.

In the four-direction version, you use the diagonal directions—northeast, southeast, southwest, and north-
west. Truth be told, you could use the cardinal directions instead, but the diagonals line up nicely with the
faces of the rhombus, and in my opinion, it looks nicer.

Fringes and Interconnecting Structures

594

A Four-Direction Example
Load up IsoHex21_2.cpp. Figure 21.9 shows this particular example. This program isn’t much, but it does
do interconnected lines (meant to simulate roads—m y mediocre artistic talent shows again).

This program is an awful lot like IsoHex21_1. In fact, all I had to do was rip out a few variables, change a
few function names, rewrite the rendering function, and poof, I had the new example.

Map Structure

The most fundamental change, of course, occured in the structure that contains information for a map
location. Dealing with roads is a little less involved than dealing with fringes and the four tile zones.

//road flags
const int ROAD_NORTHEAST=1;
const int ROAD_SOUTHEAST=2;
const int ROAD_SOUTHWEST=4;
const int ROAD_NORTHWEST=8;
//map location structure
struct MapLocation
{

bool bRoad;
int iRoad;

};
MapLocation mlMap[MAPWIDTH][MAPHEIGHT];//map array

Isometric Game Programming with DirectX 7.0

Figure 21.9

Four-direction

interconnectedness

TeamLRN

595

First, you have the road flags (all the ROAD_* constants at the top). I store road direction information in
individual bits rather than in a bool array (which is just as good, by the way). These flags, and combina-
tions of them, are stored in the iRoad member of MapLocation. The other member of MapLocation,
bRoad, indicates whether or not a road runs through this particular tile. In this simple model of reality,
a road either runs through an area or it doesn’t, period.

When initializing this map during Prog_Init, I simply set bRoad randomly to true or false, as
shown next.

//set up the map to a random tilefield
int x;
int y;
for(x=0;x<MAPWIDTH;x++)
{

for(y=0;y<MAPHEIGHT;y++)
{

if(rand()&1)
{

mlMap[x][y].bRoad=true;
}
else
{

mlMap[x][y].bRoad=false;
}

}
}
//calculate the fringe
CalcRoad();

This little bit of code takes no great programming skill, but it’s kind of hidden amid the IsoHexCore
initialization calls in Prog_Init, so I thought I’d point it out for you. In the case of the example, I can
get away with this totally random map. In a game, you’d probably load the map from disk, or generate the
world (see Chapter 22 for more on world generation).

Rendering a Map Location

Besides the change to MapLocation, I also had to completely rewrite RenderFunc, but this should come as
no surprise to you, since I couldn’t possibly use the fringe version to render roads.

Fringes and Interconnecting Structures

596

void RenderFunc(LPDIRECTDRAWSURFACE7 lpddsDst,RECT* rcClip,int xDst,int yDst,int
xMap,int yMap)
{

//put down a land tile
tsBack.ClipTile(lpddsDst,rcClip,xDst,yDst,0);
//check for a road
if(mlMap[xMap][yMap].bRoad)
{

//put the road image
tsRoad.ClipTile(lpddsDst,rcClip,xDst,yDst,mlMap[xMap][yMap].iRoad);

}
}

This RenderFunc is vastly simplified from that of the fringe. You render the background tile for every
map location and then render the road on top of it, but only if bRoad is true for that map location. Since
you’re storing road flags in iRoad, simply make the number (0 through 15) correspond to numbers within
the tsRoad tileset.

The CalcRoad Functions

Of course, the values in iRoad don’t just magically appear—they must be calculated. Thus, I created the
CalcRoad functions—one with no parameters that performs calculations for the entire map, and another
that calculates the value for only a single map location.

void CalcRoad()
{

//loop through x
for(int x=0;x<MAPWIDTH;x++)
{

//loop through y
for(int y=0;y<MAPHEIGHT;y++)
{

//calc the fringe
CalcRoad(x,y);

}
}

}

The void parametered CalcRoad performs much the same function as the void parametered CalcFringe.
In fact, it is the same code with “Fringe” taken out and replaced with “Road.” Cheap and easy, the way
I like it! The second CalcRoad function takes two parameters—the x and y map location to calculate.
You’ll probably note a striking similarity between this function and the CalcFringe(x,y) function in the
prior example. Again, cheap and easy.

Isometric Game Programming with DirectX 7.0

TeamLRN

597

void CalcRoad(int x,int y)//calculate for individual map location
{

//range checking
if(x<0) return;
if(y<0) return;
if(x>=MAPWIDTH) return;
if(y>=MAPHEIGHT) return;
//calculate the tile neighborhood
bool Neighbor[8];
//store starting point
POINT ptStart;
ptStart.x=x;
ptStart.y=y;
//next map location
POINT ptNext;
for(int dir=0;dir<8;dir++)
{

//walk to neighbor
ptNext=TileWalker.TileWalk(ptStart,(ISODIRECTION)dir);
//range check
if(ptNext.x<0 || ptNext.y<0 || ptNext.x>=MAPWIDTH ||

ptNext.y>=MAPHEIGHT)
{

//out of bounds
Neighbor[dir]=0;

}
else
{

//check map location
if(mlMap[ptNext.x][ptNext.y].bRoad)
{

//road
Neighbor[dir]=1;

}
else
{

//no road
Neighbor[dir]=0;

}
}

}
//clear road flags

Fringes and Interconnecting Structures

598

mlMap[x][y].iRoad=0;
//add road flags as appropriate
if(Neighbor[ISO_NORTHEAST]) mlMap[x][y].iRoad|=ROAD_NORTHEAST;
if(Neighbor[ISO_SOUTHEAST]) mlMap[x][y].iRoad|=ROAD_SOUTHEAST;
if(Neighbor[ISO_SOUTHWEST]) mlMap[x][y].iRoad|=ROAD_SOUTHWEST;
if(Neighbor[ISO_NORTHWEST]) mlMap[x][y].iRoad|=ROAD_NORTHWEST;

}

The vast majority of the CalcRoad function is unchanged from its former incarnation as the CalcFringe
function, except when you get to the last few lines. First, you clear out any prior ROAD_* flags by setting
iRoad to 0. Then, you check each of the pertinent directions (the diagonals) and tack on the appropriate
ROAD_* flag. It’s pretty self-explanatory, since I managed to use constant names instead of raw numbers.
You wind up with a value from 0 to 15 for iRoad, and that gives you the index into the tileset that is
used by RenderFunc.

Hopefully, you can now see why fringes and interconnecting structures were discussed in the same chapter,
since the algorithms used to determine what to show are closely related. Oh, and if you want to see an
example of interconnected structures that looks more impressive than the very simple roads, you can go
ahead and make tsRoad load in a bitmap called wallts.bmp, which replaces the road images with images
of walls.

Using the Four-Direction Method
As stated earlier, you can use the four-direction method for roads, rivers, forests, hills, mountains, walls,
and a lot of other stuff. There are a few things I want to mention before going on.

First, the four-direction method requires only 16 pictures, which is acceptable. You have to take care, how-
ever, to make these pictures line up properly (it took me a good half an hour to make even the simplistic
roads look right). The easiest way to do this is to put a few tiles on a bitmap, with the centers marked,
and draw images between the centers to the northeast and southeast, and then crop out the images for
each direction. It’s a painstaking process, but the results are faster than with trial and error.

A note about rivers: undoubtedly, you will want your rivers to empty into oceans or seas of some sort
(since real-life rivers tend to do that). Combining rivers and fringes can get a little hairy, since you have
to create graphics for the mouths of rivers. This adds only four extra images, but I felt it was worth
pointing out. Also, you have to mark the ocean square into which the river empties as a river square,
so that the coastal image comes out correctly when you call CalcRiver (or whatever you call your river
calculation function).

Isometric Game Programming with DirectX 7.0

TeamLRN

599

Eight-Direction Structures
The eight-direction structures are usually only used for roads, railroads, and so on. Most other types
of structures use only four directions. The eight-direction structure can be a severe liability to video
memory or performance, especially if the connecting structures are quite common in the game, as
roads tend to be. There are two methods you can use to make eight-direction structres—the high-perform-
ance and video-memory-costly solution, or the high-video-memory, low-performance solution.

The high-performance version requires a different image for each possible configuration. Since there are
eight directions and two possible values for each direction, the number of pictures required is 2 to the
eighth power, or 256. The advantage is that it adds only a single layer to the map, no matter what configu-
ration the road is in. The disadvantage is that it requires 256 images in order to do so.

The low-performance version requires one image for each direction. These images are combined during the
rendering to make the composite image. This requires only eight pictures. The advantage is that you have a
lower video memory requirement to get it done. The disadvantage is that it adds anywhere from one to
eight layers, which can adversely affect performance if there are many roads.

So, which to use? If performance isn’t as much of an issue, as with many turn-based strategy games, go
ahead and use the lower-performance version. If speed is required, and you have the video memory to
spare, go ahead with the higher-performance version.

The calculation of eight directions is much the same as that for four directions, except that you don’t
ignore any of the directions (duh), so I won’t offer a whole extra example of something that I’m confident
you can figure out on your own, based on the other examples from this chapter.

Summary
Fringes and interconnecting structures are very important in isometric games, and knowing how to work
with them will greatly improve the appearance of your games. Still, there is the specter of video memory
versus performance, although with modern video cards, available video memory increases, and the efficien-
cy of blitting increases, and both problems diminish. Still, that’s no reason to be sloppy.

This part of the book has been sort of a hodgepodge of stuff, starting with optimization and ending with
artistic concerns. I hope it has been an enlightening journey. We've got a few more topics to cover, but
with your arsenal of isometric knowledge, you are ready to face the challenges of AI and Iso-3D.

Fringes and Interconnecting Structures

Part IV

Advanced
Topics

TeamLRN

World
Generation

• What is World Generation?

• Using Mazes

• Growing Continents

CHAPTER 22

602

Welcome to the first part of the final leg of the journey through isometric land. You’ve mastered
quite a few isometric tricks to optimize and enhance the look of your game. However, you’ve

mainly been concerned with rendering, and as you know, being able to blit an image onto the screen does
not a game make! Indeed, a game needs more. It needs something to set the stage behind the scenes, before
you render even a single pixel. That is what this chapter and the next cover.

In a moment, I’ll get into world generation. This is a rather ambitious topic for a single chapter, for a cou-
ple of reasons. First, since many types of games make use of the isometric perspective, it is difficult to
offer a comprehensive solution for every possible circumstance. Second, there is never a single way to do
anything, and world generation is no exception.

As a result, I can only give you some very general world-generation algorithms and some vague hints to
head you in the right direction. Decent world generation involves trial and error. The goal is to be reason-
ably convincing with the finished product; it doesn’t have to be perfect.

What Is World Generation?
Naturally, before getting into this topic, you should take a moment to understand exactly what world
generation means and what your goals are. Foremost, the goal of world generation is to generate worlds.

And what is a world? If you are playing a strategy game, the world might consist of a single isometric map.
A dungeon-crawling game might involve several maps, each with its own unique look and configuration.
So, by world, I mean all the places in the game that the player might visit. What, then, are your goals when
generating worlds?

• Cohesiveness. Your worlds need to be cohesive. In other words, they must make sense. This doesn’t mean that
they have to be accurate representations of the real world, but there should be some sort of internal consis-
tency. For example, if I travel out of a room through a door to the west, I fully expect that when I arrive in
the new room, there should be a door on the east, or there should be a logical reason why there isn’t a door
going back (for example, it might be a magical one-way door, or maybe there was a cave-in after I passed
through the door and triggered a trap).

• Believability. Again, your world does not have to adhere to the real world, but some sort of “reality check”
should be performed. For example, you are not likely to find a desert right next to a swamp, and a good
world-generation algorithm will not combine two such unrelated elements. Instead, the algorithm would put
something in between, like grassland or plains.

Isometric Game Programming with DirectX 7.0

TeamLRN

603

As another example, imagine a room with four walls, a door in each. Each door is about the size of a normal
door in the real world (when game scale is taken into account). How, then, would a monster the size of a
dragon (dragons being much larger than the doors) get into this room? If there is a decent justification for
this apparent conflict, that’s fine. Just don’t make weak justifications. (“Um, a dark priest, yeah, that’s it, a dark
priest took the dragon egg and, um, brought it to this room, and he, no, he, um, well, anyway, it hatched, and
the dragon grew up, and, um, that’s how the 50-foot-long dragon is here in a room with doors it won’t fit
through.”)

• Playability. Games, for the most part, are finite in scope. They have a beginning and an end. Usually, the end
is brought about either by total defeat or by meeting certain criteria at which point the player is said to have
won the game. Not all games have a “win” condition, but almost all of them have a “lose” condition, or at
least a “stalemate” of some sort.
What does this have to do with world generation? Quite simply, if there is a win condition, the world gener-
ator must create a world in which reaching that goal is possible. It does not need to make achieving that goal
easy, but it should not render it impossible.

• Replayability. Separate and distinct from playability, replayability enhances a game’s value immensely.
Generally speaking, world generation uses some sort of random determination in order to put the pieces of
the world together in a coherent, believable, and playable manner. When you go back and start a new game
from scratch, you should have before you the same basic elements of the game you played before, but in a dif-
ferent order and in a variation you have not seen already. This keeps a game from getting stale and winding up
on someone’s shelf after it was played through a single time (I’ve got a few of these kinds of games).

Using Mazes
“World” is a rather vague term. It can mean anything. Some worlds might be continents and oceans, as in
empire-building games. Others might have wilderness locales or underground dungeons. In the latter case,
mazes can be utilized to generate unique worlds.

Mazes are not limited to the labyrinth-type structures we think of, or the little cardboard tabletop things
that lab mice run through in search of cheese. Mazes can simply tell you a path from one location to
another, no matter if the nature of the location is a bunch of forest paths, an underground cave, some sort
of building, a river, and so on.

The algorithm I’m about to show you builds a 2D maze of any size and can be extended to create 3D
mazes. I’ve even done 4D mazes, but you shouldn’t really think about those unless you want your brain to
short out! (Plus, they are extremely difficult to map out.)

Mazes are an integral part of the games you play, whether those mazes are obvious or not. Knowing how
to generate a maze and how to use it to build a world will take you far.

World Generation

604

What Is a Maze?
It seems like a silly question, I know, but as you have by now figured out, I like defining things so that
there aren’t any embarrassing questions later. You already know what a maze is, I’m sure.

A maze is a series of locations (they could be rooms, clearings in a forest, caves, whatever) connected by
passages of some sort (hallways, doors, portals, paths). In a basic maze, with no trickery going on,
any location in the maze can be reached from any other position in the maze by navigating the many
passages. In English, that means you can get from one end of the maze to another—there is a solution.
Generally, these passages follow some sort of rule so that the maze can be mapped on a normal piece of
paper or graph paper. This is not always so, however, especially if there are portals that teleport you from
one location to another.

Creating a Maze
The algorithm I’m going to show you is rather plain. It has locations and passages, but nothing else. No
secret doors, no one-way doors, no locked doors, no magic portals. This is intentional. You create a basic,
plain maze and then populate it with special features like those I just listed.

To start, you must have some sort of structure into which you can place data for a distinct location in the
maze. I usually call these “rooms” even if they aren’t used to make rooms in a world.

//constants to use for directions
const int MAZE_NORTH=0;
const int MAZE_EAST=1;
const int MAZE_SOUTH=2;
const int MAZE_WEST=3;
//number of doors possible
const int MAZE_DOORCOUNT=4;
//room structure
struct Room
{

//array of doors leaving this room
bool Door[MAZE_DOORCOUNT];

};

You’re looking at this, saying, “You’ve got whether or not the doors exist, but you don’t have where the
doors lead!”Well, you’re right, but in my defense, I haven’t stated the rules for this maze yet. I also call the
passages between rooms “doors” even though they might not be doors when I’m finished.

Isometric Game Programming with DirectX 7.0

TeamLRN

605

You will place the rooms in a rectangular grid of any size and call it MAZE_WIDTH by MAZE_HEIGHT.
So, you’ll make an array of rooms.

//room array
Room Maze[MAZE_WIDTH][MAZE_HEIGHT];

If you are in any given room and you travel in a direction, the x and y coordinate within the grid will
change based on the data listed in Table 22.1.

As usual, I start with north and rotate clockwise from there, as is my habit. To begin the maze, start with a
completely blank array of Room structures. It is a completely clean slate, a fresh piece of paper, upon which
your maze will be born.

The first time around, you can just pick a room randomly and place a door that will connect two of the
rooms. Thereafter, until the maze is complete, you must pick a room with a door already in it and figure
out whether or not you can add another door to it. If you can, add one. If not, pick another room.

There’s an important concept to point out here. One door connects two rooms. Adding another door con-
nects three, and so on. When you are all done, you will have one door less than the number of rooms. For
example, in a maze with MAZE_WIDTH*MAZE_HEIGHT, you will have MAZE_WIDTH*MAZE_HEIGHT-1 doors.

For your purposes, you’ll disallow wrapping around the maze, meaning that you can’t go west from the
westmost rooms and wind up on the eastern side of the map.

Without further ado, here is the maze-generation code. You can find this function in IsoHex22_1.cpp,
which is a simple little program that demonstrates a maze being built using the GDI method for drawing.

void MakeMaze()
{

//start making the maze
//assumes the maze array is clean (i.e. all values are false)

World Generation

Table 22.1 Maze Direction and Change in Location
Direction X Y

MAZE_NORTH +0 –1

MAZE_EAST +1 0

MAZE_SOUTH +0 +1

MAZE_WEST –1 +0

606

int doorcount=0;//number of doors we have placed
//x and y position of the room
int x;
int y;
int dir;//direction
//randomize the seed
srand(GetTickCount());
//clear out the maze
for(x=0;x<MAZE_WIDTH;x++)

for(y=0;y<MAZE_HEIGHT;y++)
for(dir=0;dir<MAZE_DOORCOUNT;dir++)

Maze[x][y].Door[dir]=false;

Before you do anything, make sure the data is properly initialized. This means that you must clear the
maze so that all doors are false. Failing to do so might cause a garbled maze or might cause the program
to hang. Actually, it is very likely that the program will hang indefinitely if you don’t clear the maze.

while (doorcount<MAZE_WIDTH*MAZE_HEIGHT-1)
{

DrawMaze();
//this flag is set if a suitable room is found
bool found=false;
//blocks, used a little later
int blockcount;
bool block[MAZE_DOORCOUNT];

Place each door individually. In order to do so, you must first find a place where a door can go, according
to your door placement rules. That is what the found variable is for. The blockcount and block variables
are used to test whether a particular room can add a door.

while(!found)
{

//if doorcount is 0, just pick a room
if(doorcount==0)
{

x=rand()%MAZE_WIDTH;
y=rand()%MAZE_HEIGHT;

}
else
{

//doorcount not zero, pick a room
//with a door in it

Isometric Game Programming with DirectX 7.0

TeamLRN

607

do
{

x=rand()%MAZE_WIDTH;
y=rand()%MAZE_HEIGHT;

} while (CountDoors(&Maze[x][y])==0);
//CountDoors is pseudocode for
//a function we’ll write later

}

The first part of finding a suitable location for a door is picking a room, since all doors exist within
rooms. Depending on the number of doors you have already placed (either none or more than none), you
choose a room differently. When you have not placed any doors at all, any old room will do. After the first
door, however, you must find a room with a door already in it. Otherwise, your maze will not be navigable.

//so far, so good, we have a room
//we now must analyze blocked passages
blockcount=0;

Once you have picked a room candidate, verify that this room can add another door. Not all rooms can.
For example, a room in the corner of a maze can have only two doors. Also, a direction from one room
might lead to a room that has always been created. There are a few conditions for which you call a
direction from a room “blocked.”

//loop through directions
for(dir=0;dir<MAZE_DOORCOUNT;dir++)
{

//set block to false
block[dir]=false;
//if the door in the room for dir is set, set the

block
if(Maze[x][y].Door[dir])
{

block[dir]=true;
blockcount++;
continue;

}

The first “blocked” condition is whether a door already exists in that direction. Naturally, you cannot
place a door twice, so you mark that direction as blocked and continue with the loop through all
the directions.

//calculate the next position based on this direction
int nx=x,ny=y;//next position

World Generation

608

switch(dir)
{
case MAZE_NORTH:

{
ny—;

}break;
case MAZE_EAST:

{
nx++;

}break;
case MAZE_SOUTH:

{
ny++;

}break;
case MAZE_WEST:

{
nx—;

}break;
}
//bounds checking
if(nx<0 || ny<0 || nx>=MAZE_WIDTH || ny>=MAZE_HEIGHT)
{

block[dir]=true;
blockcount++;
continue;

}

The second condition is whether the direction will cause you to leave the bounds of the maze. The big
switch statement just shown calculates the next position if you start at (x,y) and go in the direction of
dir. If nx or ny is less than 0 or equal to or greater than MAZE_WIDTH or MAZE_HEIGHT, mark this direc-
tion as blocked and continue with the loop.

//final check, make sure the room at nx,ny has no doors
if(CountDoors(&Maze[nx][ny])!=0)
{

block[dir]=true;
blockcount++;
continue;

}
}

Isometric Game Programming with DirectX 7.0

TeamLRN

609

The final test is to see whether a suitable destination lies on the other side of the wall, meaning that the
room at (nx, ny) cannot have existed prior to this moment. If it has, set a block and continue the loop.

//if blockcount is not the same as MAZE_DOORCOUNT,
//we can place a door
if(blockcount!=MAZE_DOORCOUNT) found=true;

}

If you have at least one opening after testing all the directions for blockage, you can place a door.

//found is now true, so we can place a door

do
{

//select a door direction
dir=rand()%MAZE_DOORCOUNT;

}while (block[dir]);//make sure that direction is not blocked
//dir contains a valid direction
Maze[x][y].Door[dir]=true;

To place a door, first pick a nonblocked direction. (This is easy, because you have the block array, and
you can just randomly choose until you find one that is false.) Once you have a suitable direction,
place the door.

//move to next room
switch(dir)
{
case MAZE_NORTH:

{
y—;

}break;
case MAZE_EAST:

{
x++;

}break;
case MAZE_SOUTH:

{
y++;

}break;
case MAZE_WEST:

{
x—;

}break;

World Generation

610

}
//change direction to opposite direction
dir=(dir+(MAZE_DOORCOUNT/2)) % MAZE_DOORCOUNT;
//set door in the next room
Maze[x][y].Door[dir]=true;
//increment the doorcount
doorcount++;

}
}

Next, move the x and y position in the direction specified in dir. Reverse the direction and place another
door so that the doors match. In this manner, you guarantee that someone in the maze can go back the
way he came.

Using a Maze
All right, you’ve got a maze. Now what to do with it? The mazes generated by IsoHex22_1.cpp are generic
and simplistic—practically featureless except for the doors. It’s a great starting point, but you will want to
do something to make the maze more interesting. A player will quickly get bored with such a simple maze,
and boring the player is the last thing you want to do. Now it’s time for me to throw out two big words:
variegate and populate.

Variegate
Variegation just means “variety,” but it’s a cool-sounding word and makes me seem smart. The fact is, it
just won’t do to have a bazillion rooms all the same size and shape, with a wall missing wherever passage
between rooms is allowed.

Instead, you might want to make some rooms into chambers and others into hallways. You might want to
place locked doors or hidden doors. You might even want to add a few extra nonessential doors just to
make it less. . . well, maze-like. If you put in locked doors in, be sure to put keys where the player can get
to them. If you put in secret doors, be sure there is a way to detect them. And so on, and so forth.

Or you might implement a maze as something that isn’t a dungeon or castle. A maze can just as easily be a
bunch of forest paths or roads through mountains. Or a river system, or anything where passage from one
area to another can occur.

Populate
The scenery is only part of a world, and you’re world-building here. So you need something of interest for
the players to do in the maze (in whatever form it takes). This can take the form of items, monsters, traps,
NPCs (non-player characters), and so on.

Isometric Game Programming with DirectX 7.0

TeamLRN

611

Both variegation and population should follow some sort of rules that you come up with beforehand.
For instance, you might decide that all dead ends are locked. Following this rule, you would need to create
the locks, create keys for the locks, and be sure not to put a key in a locked room (unless you’re sadistic).

A Few Words about Isometric Mazes
When you generated your maze, it was rectangular, not isometric. Thus, the changeover requires some
thought. I think that diamond maps are the best suited for mazes, since you simply have to shift the
directions a little bit, making MAZE_NORTH actually point to the northwest when you create the map.
This is just my opinion, though.

When taking a maze and converting it to an isometric map, you might want to use a sort of “tile tem-
plate.” I have not discussed these prior to now. A tile template is just a mini-tilemap representing perhaps
a room or corridor. The tile template contains all the information about what background tile goes where
and what foreground images go where, but it’s set up in such a way that they can be put together like a
puzzle and result in a reasonably rich-looking tilemap, even if it’s based on a generic maze.

Growing Continents
Mazes are rather on the microscopic end of world building. On the other end of things is growing
continents, where you build entire planets full of map information. It’s a pretty simple algorithm.

I generally like to begin my continent building by starting with a blank map, which represents unending
ocean. I then place a number of “seed” pixels to represent land. From there, I randomly seek out ocean
squares that exist next to land squares, and I place new land pixels there until I have as many land areas as
I desire (usually, I specify this as a percentage of the map).

Simple enough, right? IsoHex22_2 has an example of code that does this. Here’s a simple breakdown of
how it works: start with a blank blue (representing ocean) bitmap and place a number of seed dots con-
sisting of pixels and lines in green (representing land). After you place the seeds, randomly select ocean
squares next to land squares and make them into land squares. In this manner, you grow continents.

//map constants
const int MAPWIDTH=320;
const int MAPHEIGHT=320;
const int MAPSEEDS=100;
const int LANDPERC=30;

These are a few constants used for generating the continents. MAPWIDTH and MAPHEIGHT are self-explanato-
ry. MAPSEEDS is the number of seeds with which you start the map. LANDPERC is the percentage of the map
you want to have as land.

World Generation

612

int x,y,count;
//pick random location
x=rand()%MAPWIDTH;
y=rand()%MAPHEIGHT;
//move to the location
MoveToEx(gdicMap,x,y,NULL);

You start in a random location (x,y) and work from there. The method I came up with for this example
uses both single pixels and line segments. If a line segment is chosen first, it needs to have a starting point
other than (0,0).

//place the seeds
for(count=0;count<MAPSEEDS;count++)
{

if((rand()%4)==0)
{

//pick random location
x=rand()%MAPWIDTH;
y=rand()%MAPHEIGHT;
//move to the location
MoveToEx(gdicMap,x,y,NULL);
SetPixelV(gdicMap,x,y,RGB(0,255,0));

}

On a one-in-four chance, the generator will start a new continent with a single pixel. That’s what this little
bit of code does:

else
{

//line to that location
x=x+rand()%50-25;
y=y+rand()%50-25;
LineTo(gdicMap,x,y);

}

On a three-in-four chance, the generator continues with the same continent, drawing a short line segment.
Line segments make for better continents than single pixels.

}
//place the rest of the land
for(count=0;count<MAPWIDTH*MAPHEIGHT*LANDPERC/100;count++)
{

//pick a coord next to a land square
bool found=false;

Isometric Game Programming with DirectX 7.0

TeamLRN

613

do
{

//pick random place
x=rand()%MAPWIDTH;
y=rand()%MAPHEIGHT;
//ensure the area is water
if(GetPixel(gdicMap,x,y)!=RGB(0,0,255)) continue;

Finally, after you have placed all the map seeds, it is time to place the rest of the land. First, choose a ran-
dom location, and you make sure that this location has a water (blue) pixel there. You don’t want to place
land pixels twice in the same spot!

//ensure it is next to another land area
if(x>=0 && GetPixel(gdicMap,x-1,y)==RGB(0,255,0)) found=true;
if(x<(MAPWIDTH-1) && GetPixel(gdicMap,x+1,y)==RGB(0,255,0))

found=true;
if(y>=0 && GetPixel(gdicMap,x,y-1)==RGB(0,255,0)) found=true;
if(y<(MAPHEIGHT-1) && GetPixel(gdicMap,x,y+1)==RGB(0,255,0))

found=true;

The second rule is that the pixel in question has to be next to an existing land square (hence, you have the
seed pixels to start with). These lines check for a neighbor that is green:

//keep looping until you find an appropriate space
}while(!found);
//place pixel
SetPixelV(gdicMap,x,y,RGB(0,255,0));
SendMessage(hWndMain,WM_PAINT,0,0);

}

Finally, set the pixel, and continue looping until all the pixels are set. This method places
MAPWIDTH*MAPHEIGHT*LANDPERC/100 pixels, plus an insignificant number of pixels that were in the seeds.

After you have grown the continents, you need to variegate and populate them just like a maze. You might
want to place rivers, forests, mountain ranges, deserts, and so on. Just try to be coherent, and don’t put
ocean right next to mountains. Unfortunately, since there are so many different types of games in which
you would want to generate continents, it’s impossible to give decent advice as to how to populate them.

Summary
There are many more ways to generate worlds besides continent growing and maze generation, but the best
method is always the one you come up with on your own. Use the maze generator or the continent grower
as a base for your own methods. World generation isn’t very scientific; it’s very much trial and error.

World Generation

This page intentionally left blank

TeamLRN

Pathfinding
and AI

• What is AI

• More Advanced Algorithims

• Making Pathfinding Useful

CHAPTER 23

616

As you have seen over the course of this book, the graphical aspect of making isometric games is
quite easy once you’ve got the hang of the algorithms behind it. Unfortunately, spiffy graphics,

stereo sound, an intuitive user interface, and a shiny box do not a game make.

In this age of multiplayer “death match” and “capture the flag” games, artificial intelligence (AI) seems to have
gone by the wayside. Many games now ship with only a minimal solo play component, and this, in my
opinion, is just wrong. Multiplay is a great thing, and nowadays it is virtually a required feature of games,
but it should not be the whole game. A good game should be a challenge, period, whether you’re playing
against other players or playing against the computer. If this is not the case, you have failed. Harsh words,
yes, but I mean them.

This chapter can only touch upon a few relatively minor aspects of AI, since many voluminous books have
been written on the topic of AI in general. In the modern day, we cannot hope to put the computer on
par with an experienced player. The best we can do is fake it. I’m mainly going to discuss pathfinding, and
I’ll touch on a couple of other AI topics. The problem is that many different genres of game fall under the
isometric umbrella, and I can’t sufficiently cover all of them. If you want, go ahead and e-mail me, and I’ll
give you a few good suggestions for reading about AI.

What Is AI?
AI, as just stated, is artificial intelligence. A good definition cannot be found, because the great thinkers are
having a hard time deciding what “intelligence” means. The commonly understood meaning of AI is making
the computer think, which will do just fine for us.

We do not yet understand the inner workings of the human brain, which means we don’t actually know
how thinking takes place. So, you aren’t really going to make the computer think. Instead, you will make it
look like the computer is thinking, and if you do a good job, no one will be the wiser.

Really Simple AI Stuff
We’ll start out really simple and then get more complicated as we go. That way, you won’t have to digest
any seriously technical details up front.

Take a look at Figure 23.1, which shows a game board (8✕8, much like a checkerboard) with two pieces,
each shaded differently to show that the pieces are on different teams.

Isometric Game Programming with DirectX 7.0

TeamLRN

617

In the absence of obstacles, making the lighter piece move toward the darker piece is simple. As human
beings, we can simply eyeball it and move the lighter piece diagonally up and to the left, closing the gap, as
shown in Figure 23.2.

This is a simple matter for us, because we have long been accustomed to such tasks. A computer, on the
other hand, has no way of “eyeballing” the situation. It must rely on mathematical calculations. It is your
job to teach the machine to do this very simple task.

Pathfinding and AI

Figure 23.1

A board with tokens

Figure 23.2

Closing the gap

618

This example is elementary and very easy to solve, which is why I picked it. Since you can move in any of
the eight directions, you know that you can increase or decrease x and/or y by 1, or not change it at all,
so that making a move leaves the piece on any one of nine squares (the square it currently occupies and
all neighbors).

So, if you assigned numbers to the grid and made the light piece be at (lx,ly) and the dark piece be at
(dx,dy), you could use the following code to determine what move to make:

//chase algorithm
if(lx!=dx)//check for non-matching x
{

if(lx>dx)
{

//higher x, so decrease it
lx—;

}
else
{

//lower x, so increase it
lx++;

}
}
if(ly!=dy)//check for non-matching y
{

if(ly>dy)
{

//higher y, so decrease
ly—;

}
else
{

//lower y, so increase
ly++;

}
}

Voila! After a certain number of steps, the light piece would quickly catch the dark piece. This is a really
basic chase algorithm. It works effectively only in the simplest of cases.

While we’re here, let’s take a quick look at a really basic evade algorithm, which is the exact opposite of
the chase algorithm. If you switch around the ++s and - -s of the chase algorithm, you’ve now got an
algorithm that will run away as fast as it can.

Isometric Game Programming with DirectX 7.0

TeamLRN

619

//chase algorithm
if(lx!=dx)//check for non-matching x
{

if(lx>dx)
{

//higher x, so increase it
lx++;

}
else
{

//lower x, so decrease it
lx—;

}
}
if(ly!=dy)//check for non-matching y
{

if(ly>dy)
{

//higher y, so increase
ly++;

}
else
{

//lower y, so decrease
ly—;

}
}

Both the chase and evade algorithms are quite simple, so they’re only well-suited to very simple situations.
So, if the board were made more complicated, to include blocked squares where pieces cannot move,
something similar to Figure 23.3 might result.

Pathfinding and AI

620

Figure 23.3 has five blocked squares. If the light piece tries to use the simple chase algorithm, it will be
stuck after two moves (assuming, of course, that the dark piece remains stationary).

What the light piece should do is go around the obstacle, as shown in Figure 23.4. The path in Figure 23.4
isn’t the only one that the light piece could take, but it’ll do for now. Naturally, in order to make the light
piece catch the dark piece, you need a fancier algorithm than just the simple chase algorithm.

Isometric Game Programming with DirectX 7.0

2

1

Figure 23.3

Where the simple

chase algorithm fails

Figure 23.4

Evading the obstacle

TeamLRN

621

More Advanced Pathfinding
Algorithm
A lot of AI terms exist that I don’t use. The algorithm I’m about to show you is an implementation of
what is called A* (A-star) pathfinding. Rather than cluttering your mind (and these pages) with a lot of AI
mumbo-jumbo, I’m just going to show you how to do decent pathfinding without the terminology, which
you don’t need anyway.

First, you need a 2D array of integers (or any old type, really; it just has to be large enough to contain
distance values). The array, of course, has to have the same dimensions as the game board (8✕8 in the case
of the figures).

To start, set all of the array’s cells to a value of –1. –1 means that the square has not been tested yet. For
any “blocked” square, put a number so large as to not be a possible distance. In this case, 255 is a good
value. Finally, at the destination (meaning the dark piece’s location), place a 0. The current board is
shown in Figure 23.5.

Next you will perform a number of passes over the array. Each pass will involve a couple of steps.

Pathfinding and AI

255

255

255

255 255

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1
Figure 23.5

Initial state of the array

622

Step 1: Scan Array for Cells
Adjacent to Cells with Known
Distances
This step may need a little clarification. You know a few things about the board at this point. The cell con-
taining a 0 is the goal. Naturally, the cell with the goal is no distance from the goal (duh!). This is what I
call a known distance. Based on this, naturally any of the cells adjacent to the cell with a 0 in it would have
a distance of 1. I’m getting slightly ahead here, but it’s pretty plain to see.

The goal of Step 1 is to determine the cells next to a “known” distance. This can be stored in a 2D
boolean array where true means an adjacent cell and false means a nonadjacent square. In the figures, I’ll just
highlight the squares.

After the first step of the first pass, the result looks like Figure 23.6. Note that the 255 squares are not
considered known distances, and that only squares with a value of –1 are marked.

Isometric Game Programming with DirectX 7.0

255

255

255

255 255

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Figure 23.6

Step 1 of the first pass

TeamLRN

623

Now for something important about the first step of a pass: if no squares get marked in the first step, the
pathfinding is over, even if there are still values of –1 elsewhere in the array. If no squares were marked, no
adjacent squares were found, and a path might be impossible.

Step 2: Give Adjacent Squares a
Known Distance Value
Next, you replace all the –1s that have been highlighted with a value. For the first pass, this value is 1, for
the second pass, 2, and so on. The first pass would look like Figure 23.7.

This process is repeated until one of the following occurs:

• Step 1 finds no adjacent squares.
• The cell of origin (the location of the light piece) gets filled in.

I almost added a third condition—when the board is full—but in that condition, Step 1 would find no
adjacent squares in the next pass, so it is redundant.

When It’s All Done
Figure 23.8 shows the board with a completed pathfinding array. Note that the light piece has a value of
7. In order for the light piece to capture the dark piece, the light piece must move to lower-valued
squares—from 7 to 6, 6 to 5, 5 to 4, 4 to 3, 3 to 2, 2 to 1, and finally 1 to 0—until the dark piece has
been caught!

Pathfinding and AI

255

255

255

255 255

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-11

1

1

1

1

1

1

1

Figure 23.7

Giving values to

marked squares

624

All in all, this is a beautiful algorithm. It will always get the piece to where you want it to go, or it will let
you know if such a move is impossible.

Now, if I were to tell you that each of the squares in the array is called a node, and that you were making
links between the nodes into a search tree in order to do pathfinding, and that you have just learned how
A* pathfinding works, you’d look at me like I was nuts. It’s true, though. This algorithm is an implementa-
tion of A*, as I stated earlier, in a more practical form. (Since a grid of tiles is easier to work with than the
real world, the nodes become more discrete.)

IsoHex23_1.cpp has an implementation of this pathfinding algorithm. Most of this example is concerned
with showing the graphical representation of the map. The actual pathfinding is done in a function called
FindPath. This is a rather simple example. Two types of areas exist—one that you can walk on, and one
that you cannot. In a real application, this would be more complicated, with different types of terrain
having different path costs. However, the simplest case (this one) is easiest to understand, and once you
understand it, extending it to deal with more complicated maps is pretty easy. Figure 23.9 shows the
program output.

Isometric Game Programming with DirectX 7.0

255

255

255

255 255

0

1

1

1

1

1

1

1

1

2 3 4 5 6

2 3 4 5 6

5 6

666 6

5 6

5 6

5 6

666 6 66

7 7

7

7

7

8

8

8

5555

4 4 4 4

3

2

3 3

2 2

Figure 23.8

A completed array

TeamLRN

625

void FindPath()//find the path
{

POINT ptStart;
POINT ptEnd;
POINT ptPath;
ptStart.x=-1;
ptEnd.x=-1;
int x;
int y;
int nx;
int ny;
bool found;
int lowvalue;

First, you need a number of variables to make this work, including starting and ending positions (ptStart
and ptEnd), a few looping variables (x,y), some temporary variables for x,y coordinates (nx,ny), and some
testing vars (found and lowvalue). The x part of ptStart and ptEnd is set to –1, because you first
check that a starting point and an ending point exist in the map. If they don’t, there is no need to continue
with finding the path.

//find the start
for(x=0;x<MAPWIDTH;x++)
{

for(y=0;y<MAPHEIGHT;y++)

Pathfinding and AI

Figure 23.9

Output of IsoHex23_1.cpp

626

{
//check for the start
if(Map[x][y]==TILESTART)
{

ptStart.x=x;
ptStart.y=y;

}
}

}

Lo and behold, this code snippet attempts to find the starting point. If one is found, its position is
placed in ptStart.

//find the end
for(x=0;x<MAPWIDTH;x++)
{

for(y=0;y<MAPHEIGHT;y++)
{

//check for the end
if(Map[x][y]==TILEEND)
{

ptEnd.x=x;
ptEnd.y=y;

}
}

}
//if no start or end, exit function
if(ptStart.x==-1 || ptEnd.x==-1) return;

The following code is the same as the preceding, except that this time you are seeking the ending point.
After you have looked for both, you check to see whether they exist (that is, that the x values of the
POINTs in which they are stored is not –1).

//fill out the path array
for(x=0;x<MAPWIDTH;x++)
{

for(y=0;y<MAPHEIGHT;y++)
{

switch(Map[x][y])
{
case TILESTART://place a 0 at the start

{
MapPath[x][y]=0;

Isometric Game Programming with DirectX 7.0

TeamLRN

627

}break;
case TILEBLOCK://place a 999 at any blocks

{
MapPath[x][y]=999;

}break;
case TILEEMPTY://if empty, place a -1

{
MapPath[x][y]=-1;

}break;
default://anything else, place a -1

{
MapPath[x][y]=-1;

}break;
}

}
}

An array called MapPath (a global array) is where you build the pathfinding information. You start
by replacing everything with a –1 (passable square), a 0 (starting position) , or a 999 (a blocked,
unpassable area).

//scan for pathable tiles
do
{

//haven’t found one yet
found=false;
//scan the map
for(x=0;x<MAPWIDTH;x++)
{

for(y=0;y<MAPHEIGHT;y++)
{

MapMark[x][y]=false;

You now check for tiles to which you can determine paths. For this, you use another global array, MapMark.
This array contains true at a place where you can calculate the path cost and false in a
place where you cannot. To start out, set it to false, thus erasing whatever happened before.

//make sure this is a -1 square
if(MapPath[x][y]==-1)
{

Ensure that the MapPath array has a –1 at the position you are checking. If it does not, it is either a
blocked square or one whose path has already been calculated (and you don’t want to calculate it twice!).

Pathfinding and AI

628

//scan the neighbors
for(nx=x-1;nx<=x+1;nx++)
{

for(ny=y-1;ny<=y+1;ny++)
{

//make sure the neighbor
//is on the map
if(nx>=0 && ny>=0 && nx<MAPWIDTH
&& ny<MAPHEIGHT &&
!(nx==x && ny==y))
{

//check against negatives
//and 999
if(MapPath[nx][ny]>=0 &&
MapPath[nx][ny]!=999)
{

Next, you scan the neighbors of this location. You are looking for a nonnegative, non-999 value, indicating
that this position is next to a position that has already been calculated, which means that this position can
now be calculated.

//mark the map
MapMark[x][y]=true;
//mark it as found
found=true;

}
}

}
}

}
}

}

If you find such a neighbor, you mark it as true in the MapMark array and also set the local variable found
to true, meaning that you have found at least one. (When found stops being true, pathfinding is over,
whether or not the entire map has been calculated.)

//now scan the marks
for(x=0;x<MAPWIDTH;x++)
{

for(y=0;y<MAPHEIGHT;y++)
{

Isometric Game Programming with DirectX 7.0

TeamLRN

629

//if this square is marked
if(MapMark[x][y])
{

//set low value very high
lowvalue=999;

It’s time to loop again. This time, you’re checking for marked squares. If one is found, you know that you
can calculate the path. However, you want to step from this square to the square next to it with the lowest
path cost, so you need to loop through all the neighbors and check those path costs.

//loop through neighbors
for(nx=x-1;nx<=x+1;nx++)
{

for(ny=y-1;ny<=y+1;ny++)
{

//make sure the neighbor
//is on the map
if(nx>=0 && ny>=0 && nx<MAPWIDTH
&& ny<MAPHEIGHT)
{

if(MapPath[nx][ny]>=0)
//must be a nonnegative
//value
{

//assign the value
//if it is lower
if(MapPath[nx][ny]<

lowvalue)
lowvalue=MapPath[nx]
[ny];

}
}

}
}

This loops through the neighbors and checks their values against lowvalue. If the value at that square is
lower, lowvalue becomes that new value.

//assign the value to the path map
MapPath[x][y]=lowvalue+1;

}
}

Pathfinding and AI

630

}
}
while(found);

Because you have found the lowest-valued neighbor, assign that value +1 to the MapPath array at the posi-
tion in question, and continue looping. The last line, while(found), concerns the state of the found vari-
able, which I discussed briefly earlier.

Now you have as complete a picture of the board as you can. All squares that can be reached from the
starting point have been assigned values. What you need to do now is start at the ending point, make sure
that it has a path value, and work backwards.

//done with pathfinding
//check to see that ptEnd has found a path
if(MapPath[ptEnd.x][ptEnd.y]!=-1)
{

//start the path
ptPath=ptEnd;
//take the value from the map
lowvalue=MapPath[ptEnd.x][ptEnd.y];

You recycle the lowvalue variable here, this time keeping track of the current position’s path cost.
With each iteration, continue to seek a lower value.

while(lowvalue>0)
{

found=false;
do
{

do
{

//pick a random neighbor
nx=rand()%3-1;
ny=rand()%3-1;

}while((nx==0 && ny==0) || (ptPath.x+nx)<0 ||
(ptPath.x+nx)>=MAPWIDTH || (ptPath.y+ny)<0 ||
(ptPath.y+ny)>=MAPHEIGHT);

This bit of code picks a random direction of movement, making sure that the movement is not 0 and
that it does not go outside the map’s boundaries. Set found to false again, because you might need to
check several directions before you find one that has a lower pathing cost.

//check to see if the value is lower
if(MapPath[ptPath.x+nx][ptPath.y+ny]<lowvalue)

Isometric Game Programming with DirectX 7.0

TeamLRN

631

{
//found!
found=true;
//set tile to path tile
Map[ptPath.x][ptPath.y]=TILEPATH;
//move the path
ptPath.x+=nx;
ptPath.y+=ny;
lowvalue=MapPath[ptPath.x][ptPath.y];

}
}
while(!found);

If you have indeed struck gold, found is set to true, place a little marker for the path, move in that
direction, and decrease the value of lowvalue. If you have not found a suitable move, continue checking
until you do.

}
//replace the end tile
Map[ptEnd.x][ptEnd.y]=TILEEND;

}
}

Because of the method I used to place markers on the path, I needed to replace the end marker when
I was done. That’s all that this final line does. And that’s all there is to a pathfinding function. If I
weren’t actually marking the path, it wouldn’t be quite as long.

Making Pathfinding Useful
Although the algorithm for finding a path can become quite complicated (much more complicated than it
has been in the simple case I’ve shown here), it is by far the easiest part of AI. It is easy to figure out how
to get from point A to point B in the shortest path possible. The hard part is deciding to which point B
you want to go. That is the “true” AI aspect. By comparison, finding a path is child’s play.

For example, let’s say you’re writing an RPG of some sort (with monsters and the player characters,
treasure, swords, magic spells, the whole bit). You can go the simple route and have all the monsters head
for the player characters, but that’s not much of an AI. You might as well be playing Gauntlet.

Instead, you want to make your monsters work as a team. You might have some monsters maneuver around
so that the player’s escape is blocked, and you might place others in a position to fire arrows or cast spells
at the player. Also, if this is a party-based RPG in which the player controls a group of characters instead
of just one, you want your monsters to intelligently decide on targets, meaning that you want them to take

Pathfinding and AI

632

out the archers and spell casters first and then slug it out toe to toe with the rest. A pathfinding algorithm
can help with a lot of this. It can figure out how to get a monster from one place to another, but it can’t
decide where to send them. In addition, you need your monsters to be able to deal with the unforeseen,
such as when one of their comrades is killed and the plan has to be changed. This is the real AI.

Here’s another example, for turn-based strategy. The players (both human and computer) have a number
of units at their disposal. However, different units are better suited to different roles, such as attack,
defense, scouting, transporting, and so on.

Fast-moving horse units are good for exploring new territory, so you use the pathfinding algorithm to find
a square next to a previously unexplored square and send the explorer in that direction. Attack units need
to be able to find their way to enemy cities or move to ward off invaders. The uses of pathfinding here are
quite clear. Transport units need to be able to meet up with the units they will be transporting and then
get those units where they need to go.

As you can see, even after you can find the path from A to B, the work is anything but done. There is a lot
to AI besides algorithms.

Summary
Unfortunately, I can only vaguely touch on artificial intelligence, with emphasis on pathfinding, since its
need is so common in isometric games. Please forgive me. Many brilliant people have written entire
volumes on the nature of AI and the methodology for achieving a semblance of intellect. I am mainly
a graphics programmer. I’m not on par with people who make AI their life study.
Still, I hope this chapter at least got you thinking. Artificial intelligence is definitely an area that is not
written in stone. New theories are coming to the front all the time. As Andre LaMothe says, the next great
leap forward in computer technology will come from studies in AI, and nowhere else.

Isometric Game Programming with DirectX 7.0

TeamLRN

Introduction
to Direct3D

• Direct 3D as a 2D Renderer

• Direct 3D Basics

• Textures

CHAPTER 24

634

Throughout this book, one detail may have been gnawing at you. Up until now, I’ve been using
DirectDraw to do all of the rendering. Admittedly, we’ve wrapped it up pretty well with the

CTileSet class and the IsoHexCore components, but the fact is that it’s still DirectDraw, and it is
from DirectX 7.0, not DirectX 8.0, which was the latest version of DirectX at the time of
this book’s publication.

Why am I using the (obviously inferior) version 7.0 rather than the new and spiffy 8.0? The answer is a
bit involved and comes in two flavors. I have actual reasons for using 7.0 rather than 8.0, and I also have
some cop-outs. I’ll give you the cop-outs first:

• Cop-out #1. It’s easier to learn a 2D API like DirectDraw, which DirectX 8.0 doesn’t have (8.0 incorporates
DirectDraw and Direct3D (D3D) into a single part of the API).

• Cop-out #2. When DirectX 8.0 came out, I had less than two months until the book had to be complete,
which is insufficient time to update all the text and code adequately.

• Cop-out #3. DirectX is backward-compatible.
• Cop-out #4. The book is mainly concerned with algorithms, not 2D or 3D APIs, and the techniques apply

no matter what you are using to render.

How true or false are these cop-outs? Well, #1 is true to an extent. Learning a 3D API is a bit more
involved than learning a 2D API, and isometric algorithms are primarily 2D in nature, and the extra math
is unnecessary. Also, DirectDraw and D3D were merged in DirectX 8.0.

Similarly, cop-out #2 is true, sort of. I was not on the DirectX 8.0 beta program, so 8.0 became available
to me at the same moment it became available to all of the other developers in the world. When DX8
came out, I had two choices: Either stick with 7, or update everything (dozens of sample programs and
hundreds of pages of text).

Cop-out #3 is also true. DirectX is backward-compatible and promises to be so forever (forever meaning
until Microsoft doesn’t feel like it anymore). You can still use the old version 7 interfaces.

The final cop-out comes closest to the truth. The isometric algorithms in this book can be applied to any
platform and any API. I’ve done isometric games that use GDI, DirectDraw, Direct3D, and even some old
DOS stuff. The methodology is the same no matter what.

Now the truth: My reason for using DirectX 7.0 instead of DirectX 8.0 is that in DirectX 8.0, there is no
real support for traditional 2D graphics. You can still do 2D graphics with DirectX 8.0, as you will see in
a moment, but not in the traditional manner, and doing graphics the way you have been doing them thus
far is a pain in the butt in DX8 and would be highly confusing (for both of us).

Isometric Game Programming with DirectX 7.0

TeamLRN

635

Now that I have admitted this, let’s move on. This chapter is an introduction to D3D (version 7.0).
Because of the nature of isometric games and the algorithms behind them, you won’t be exploring most of
the D3D API, because most of it is useless to you. Instead, you will use D3D as a 2D renderer, and these
algorithms, with only slight modification, can be applied with ease.

Direct3D as a 2D Renderer
It might seem strange to read this heading. The word “3D” is right at the end of “Direct3D,” and to use
it as a 2D renderer seems far-fetched and a gross misuse of power. Far-fetched, no, but a gross misuse, yes!
However, that is a good thing. I will explain.

3D Games (and 3D APIs) Are Still
Only 2D
Yes, they look 3D. There is perspective correction for distance. There is the illusion of lighting, and
various other factors that make the image appear as though it were 3D. Your screen, however, is still flat
(or slightly curved, if you’re using a CRT and want to get technical about it) and is, for all intents and
purposes, strictly 2D. Hence, anything drawn on the screen can be nothing other than 2D, at least until
science invents some sort of holographic projector that will allow true 3D.

So, the image on your screen as you play a 3D game is merely a projection of that scene in 2D, giving
the illusion of 3D.

How Direct3D Works
This is probably going to be the most simplistic explanation of the workings of Direct3D ever written,
but at its core, it is true: Direct3D does nothing more than render triangles on the screen.

Naturally, it’s a little more involved than that. The triangles can be textured with a pattern of bits stored
in a DirectDraw surface, and the triangles can be given the illusion of lighting and can be blended translu-
cently. Even multiple textures can be used, merged by different means to give a different look. Direct3D
can also take care of the complex math required to project a 3D scene onto your 2D screen, but it doesn’t
require that you make use of that ability.

So, you’re still just drawing triangles on the screen, and two-dimensional triangles at that (triangles, by their
nature, being 2D). If all you are doing is rendering triangles, doing 2D graphics is very easy. To make a
rectangle, you need only two triangles, as shown in Figure 24.1. Similarly, you can split an isometric tile in
half (either lengthwise or widthwise), and you again have two triangles.

Introduction to Direct3D

636

Direct3D Basics
This next section will seem like a “back to basics” section, because I’ll discuss the innards of DirectX,
which you haven’t really dealt with since the creation of CTileSet many chapters ago.

In Direct3D (version 7.0, at least), you will be primarily concerned with two new objects—IDirect3D7
(which is akin to the IDirectDraw7 object) and IDirect3DDevice7 (similar in function to
IDirectDrawSurface7).

First, in order to have your applications use Direct3D, you must add a new library file and a new header.
The library is named d3dim.lib, and you add it to your project in the same manner as you have added
ddraw.lib and dxguid.lib all along. The header is named d3d.h, and you simply include it in any file that
needs to use Direct3D.

Icky COM Stuff
Before you do anything else related to Direct3D, you must first have an IDirect3D7 object and store a
pointer to it in an LPDIRECT3D7 variable. In order to get this pointer you must do icky COM stuff.

Every DirectX component has three member functions: AddRef, QueryInterface, and Release. You’re
already familiar with Release, since you use it all the time to clean up objects. AddRef is a way to man-
ually add a reference to an object so that it does not get deleted at an inappropriate time (AddRef remains
largely unused). QueryInterface, however, is a little trickier to explain, and it just so happens to be the
member function you need to get started with Direct3D.

Isometric Game Programming with DirectX 7.0

Triangle #1

Triangle #2

Figure 24.1

Using triangles to

make a rectangle

TeamLRN

637

I won’t go into the subtleties of the COM interface stuff. It takes a lot of explanation, it’s really boring,
and you probably don’t care. You just want to make use of Direct3D, and and you want to do it now. I
understand and will comply.

Here’s the magic line that will give you a pointer to an IDirect3D7 object:

//lpdd is an LPDIRECTDRAW7 variable
//lpd3d is an LPDIRECT3D7 variable
lpdd->QueryInterface(IID_IDirect3D7,(void**)&lpd3d);

I suppose a little explanation couldn’t hurt. The first parameter of QueryInterface is a REFIID, or a
reference to an interface identifier. Use a different one in DirectDrawCreateEx to make your
IDirectDraw7 object.

The software component that you are used to thinking of as an IDirectDraw7 object is more than it
seems. Hidden within it is an IDirect3D7 object. The best analogy would be the layers of an onion.
You simply use QueryInterface to bring the other layers to light.

Once you’ve got your IDirect3D7 object, all you need to do is store it in a variable somewhere, and don’t
forget to release it later. This is all the icky COM stuff you need to do for now.

Surface Creation
Since you’re now using Direct3D, you have to make some subtle modifications to the way in which your
rendering surfaces (the primary surface and the back buffer) are created. You have to let DirectX know
that you intend to render using 3D methods onto these surfaces. The manner in which you do this
involves a slight change to the DDSURFACEDESC2 structure.

The following code was taken from DDFuncs.cpp. It sets up a primary surface with a given number
of back buffers.

//set up a DDSD for a primary surface, with any number of back buffers
void DDSD_PrimarySurfaceWBackBuffer(DDSURFACEDESC2* pddsd, DWORD
dwBackBufferCount)
{

//clean out the ddsd
DDSD_Clear(pddsd);
//set flags
pddsd->dwFlags=DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
//set caps
pddsd->ddsCaps.dwCaps=DDSCAPS_PRIMARYSURFACE | DDSCAPS_COMPLEX |

DDSCAPS_FLIP;
//set back buffer count
pddsd->dwBackBufferCount=dwBackBufferCount;

}

Introduction to Direct3D

638

And now here’s the same function, rewritten so that the primary surface can be used with Direct3D.

//set up a DDSD for a primary surface, with any number of back buffers
void DDSD_3DPrimarySurfaceWBackBuffer(DDSURFACEDESC2* pddsd, DWORD
dwBackBufferCount)
{

//clean out the ddsd
DDSD_Clear(pddsd);
//set flags
pddsd->dwFlags=DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
//set caps
pddsd->ddsCaps.dwCaps=DDSCAPS_PRIMARYSURFACE | DDSCAPS_COMPLEX |

DDSCAPS_FLIP | DDSCAPS_3DDEVICE;
//set back buffer count
pddsd->dwBackBufferCount=dwBackBufferCount;

}

Since the change is not obvious, I made it bold. All you need to do is add an extra flag to the surface’s
ddsCaps.dwCaps, and you are ready to use it as a 3D device. It’s just that simple.

Similarly, if you intend to render onto the back buffer, you need to place the same flag into its DDSCAPS2
structure, as you did with the primary surface. Don’t worry too much. You’ll make a small set of functions
to help you out in this regard.

Creating a Device
Once you’ve got your IDirect3D7 object, and you’ve set up a surface to be used as the rendering
target, it’s time to make the IDirect3DDevice7 object. To do so, use IDirect3D7’s CreateDevice
member function.

HRESULT IDirect3D7::CreateDevice(
REFCLSID rclsid,
LPDIRECTDRAWSURFACE7 lpDDS,
LPDIRECT3DDEVICE7 * lplpD3DDevice,

);

The rclsid parameter is a REFCLSID, which is like a REFIID, which is in turn a GUID. Don’t ask me
why Microsoft felt it needed so many names for the same thing! More about this parameter a little
later. The lpDDS parameter is the surface you want to use as the rendering target for this device. Finally,
lplpD3DDevice is a pointer to a pointer to the device to be created. Devices are created in this way, much
like DirectDraw surfaces are.

Isometric Game Programming with DirectX 7.0

TeamLRN

639

So, what of rclsid? Well, this is a class identifier (GUID) telling Direct3D which 3D device to use.
Depending on your video card, you might have several flavors available to you. In DirectX 7.0, there are
four flavors of device: IID_IDirect3DTnLHalDevice, IID_IDirect3DHALDevice,
IID_IDirect3DMMXDevice, and IID_IDirect3DRGBDevice. These are listed in decreasing order of
desirability and speed.

Ideally, you have a TnLHal device, which is super fast. It handles texturing and lighting in hardware and
tends to have the best hardware capabilities. Next is the HAL device, which is usually pretty good, but not
nearly as good as the TnLHal. This is followed by the MMX device, which has multimedia extensions, etc.,
etc. And last and certainly least is the RGB device, which is software emulation and can always be used.
It is there mainly for maximum compatibility, and it is darned slow!

So, which one to pick? It would be nice to make use of the TnL, but not all machines have one. Same
thing for HAL and MMX. You could use the RGB device, but that would be an insult to the machines
that have a much greater 3D acceleration capability. What you must do, then, is use the best device of
the machine on which that the program is running, defaulting to the RGB device only when nothing
else is available.

How do you do that? There are two ways—the “professional” way, which enumerates devices, and the
“hack” way, which is simpler, shorter, and does the exact same thing as the professional way.

So, here’s the hack function to give you a 3D device for D3D:

LPDIRECT3DDEVICE7 CreateD3DDevice(LPDIRECT3D7 lpd3d,LPDIRECTDRAWSURFACE7 lpdds)
{

LPDIRECT3DDEVICE7 lpd3ddev;
//try to make a TnL device
if(FAILED(lpd3d->CreateDevice(IID_IDirect3DTnLHalDevice,lpdds,&lpd3ddev)))
{

//no TnL; try for HAL
if(FAILED(lpd3d-

>CreateDevice(IID_IDirect3DHALDevice,lpdds,&lpd3ddev)))
{

//no HAL; try for MMX
if(FAILED(lpd3d->CreateDevice(IID_IDirect3DMMXDevice,

lpdds,&lpd3ddev)))
{

//no MMX; try for RGB
if(FAILED(lpd3d->CreateDevice(IID_IDirect3DRGBDevice,

lpdds,&lpd3ddev)))
{

//no RGB; so return NULL
lpd3ddev=NULL;

}

Introduction to Direct3D

640

}
}

}
//return the new device
return(lpd3ddev);

}

This is a pretty simple function. You try to make the best device you can, and failing that, you fall back
to an inferior device, finally falling to an RGB. If you can’t even get an RGB, something else is probably
wrong, so the function returns NULL. Later, during program cleanup, you release the device just like any
other DirectX object.

Making a Viewport
You’ve got the IDirect3D7 object, and you’ve created your IDirect3DDevice. You’re most of the way
set up to start rendering. One last thing stands in your way: the viewport.

In D3D, you don’t have to render to the entire target surface. You can instead render to only a portion of
it, and you can choose which portion. To do so, fill out a D3DVIEWPORT7 structure.

typedef struct _D3DVIEWPORT7{
DWORD dwX;
DWORD dwY;
DWORD dwWidth;
DWORD dwHeight;
D3DVALUE dvMinZ;
D3DVALUE dvMaxZ;

} D3DVIEWPORT7, *LPD3DVIEWPORT7

Table 24.1 explains the members of D3DVIEWPORT7 and their purposes.

Isometric Game Programming with DirectX 7.0

TeamLRN

641

You might get a little hung up on D3DVALUE and dvMinZ and dvMaxZ. I’ll explain, briefly. A D3DVALUE is a
float, plain and simple. Since D3D is a 3D API, it takes into account a z value along with an x and a y to
do rendering. Since you’re just using x and y, you don’t really care about z, so you’ll use 0.0 for dvMinZ and
1.0 for dvMaxZ (these are the normal values for these members) and forget about it.

Once you’ve got a D3DVIEWPORT7 filled out, set your device’s viewport to it using
IDirect3DDevice7::SetViewport.

HRESULT IDirect3DDevice7::SetViewport(
LPD3DVIEWPORT7 lpViewport

);

This function returns D3D_OK if successful and an error value if not. The lpViewport parameter is just a
pointer to a D3DVIEWPORT7. The following code is what you might use to set a device’s viewport, assuming
you are at a 640✕480 resolution and want to use the entire screen.

D3DVIEWPORT7 vp;//vp stands for viewport
vp.dwX=0;
vp.dwY=0;
vp.dwWidth=640;
vp.dwHeight=480;
vp.dvMinZ=0.0;
vp.dvMaxZ=1.0;
lpd3ddev->SetViewport(&vp);

Not too rough, right? This is mostly like telling DirectX twice what you want to use—once when you
set the mode and once when you set the viewport. Most of the time, you’ll want to use the entire
surface for the viewport, but there are times when you might not, such as when you have a frame around
the playing area.

Introduction to Direct3D

Table 24.1 Members of D3DVIEWPORT7
Member Purpose

dwX The left edge pixel coordinate of the viewport

dwY The top edge pixel coordinate of the viewport

dwWidth Width of the viewport in pixels

dwHeight Height of the viewport in pixels

dvMinZ Minimum z value (see the next paragraph)

dvMaxZ Maximum z value (see the next paragraph)

642

Rendering
The stage is set, and your objects are initialized. You’re ready to start drawing. Unfortunately, drawing
objects in D3D is absolutely nothing like drawing objects in DirectDraw. In D3D, you generally adhere
to the following steps:

1. Clear out the viewport using IDirect3DDevice7::Clear.
2. Tell D3D you want to begin drawing by calling IDirect3DDevice7::BeginScene.
3. Do your drawing using IDirect3D7Device7::DrawPrimitive.
4. Tell D3D you are done drawing by calling IDirect3DDevice7::EndScene.
5. Flip the surfaces (assuming that you are writing to the back buffer).

All of this is done each time Prog_Loop is executed.

IDirect3DDevice7::Clear
In almost all cases, you will want to clear out the entire rendering surface each frame. This differs from
what you did in DirectDraw, where you used update rectangles and attempted to do as little blitting
as possible.

Why the difference? Well, assuming you have any hardware acceleration at all on your video card (and
chances are you do have a little), using Direct3D to render is just so much faster than doing the same
thing with DirectDraw, because of the hardware acceleration. So, to clear out the buffer, you use
IDirect3DDevice7::Clear.

HRESULT IDirect3DDevice7::Clear(
DWORD dwCount,
LPD3DRECT lpRects,
DWORD dwFlags,
DWORD dwColor,
D3DVALUE dvZ,
DWORD dwStencil

);

There are lots of parameters here, most of which you don’t care about. Like all DirectX functions, this
function returns an HRESULT, which contains D3D_OK if successful or something else if not. Table 24.2
explains the parameter list.

Isometric Game Programming with DirectX 7.0

TeamLRN

643

I need to add some explanation to the dwFlags and dwColor parameters. I’ll start with dwFlags.
Table 24.3 lists and describes the various flags that can be used in this parameter.

So, dwFlags tells you which of the dwColor, dwStencil, and dvZ parameters are valid. For your purposes,
you will only be using D3DCLEAR_TARGET.

That brings us to dwColor. If you recall from the discussion of DirectDraw, you had to deal with calcula-
tions involving members of the DDPIXELFORMAT structure. In D3D, that need is gone. There is a simple
macro you use to determine the color—D3DRGB. It takes three parameters—a red value, a green value,
and a blue value, each in the range from 0.0 to 1.0. Treat 0.0 the same as 0, and 1.0 the same as 255 in the

Introduction to Direct3D

Table 24.2 IDirect3DDevice7::Clear Parameters
Parameter Purpose

dwCount The number of RECTs pointed to by lpRects. May be 0 if lpRects
is NULL.

lpRects A pointer to a list of RECTs that will be cleared by this function.
May be NULL to clear the entire viewport.

dwFlags Flags specifying how the clear is to be performed (see Table 24.3).

dwColor A color value to clear the target (discussed in a moment).

dvZ A z value to assign on the z buffer. (Don’t worry about it; you don’t
use z buffers.)

dwStencil A stencil value to assign the stencil buffer. (You don’t use stencil
buffers.)

Table 24.3 Flags for Clear
Flag Meaning

D3DCLEAR_TARGET Clear out the target surface, so dwColor is valid.

D3DCLEAR_STENCIL Clear out the stencil buffer, so dwStencil is valid. (You aren’t
using stencil buffers, so you don’t care.)

D3DCLEAR_ZBUFFER Clear out the z buffer, so dvZ is valid. (You aren’t using z buffers,
so you don’t care.)

644

GDI RGB macro. So, if you wanted to clear the viewport to white, you would do the following.

//clear viewport to white
lpd3ddev->Clear(0,NULL,D3DCLEAR_TARGET,D3DRGB(1.0,1.0,1.0),0,0);

Normally, of course, you’ll use D3DRGB (0.0,0.0,0.0) to clear out the target surface so that you have
a nice, fresh black surface to work with. But clearing out the viewport is not the only use of
IDirect3DDevice7::Clear. You can also use this function to perform color fills, just as you did with
Blt. The mechanism changes just a little bit. Like the DirectDraw method, you still fill out a RECT with
information about the area you want to fill, and you pick a color using the D3DRGB macro and then
call Clear.

//rcFill contains information about the area to fill
//dwColor contains a color constructed with the D3DRGB macro
lpd3ddev->Clear(1,&rcFill,D3DCLEAR_TARGET,dwColor,0,0);

Additionally, if you have several rectangles you need filled with the same color, you can make an array, pass
the number of RECTs in the first parm and a pointer to the first RECT in the second parm, and do it.

IDirect3DDevice7::BeginScene and
IDirect3DDevice7::EndScene
Because of the intimate relationship between these two functions, I thought it best to discuss them at the
same time. You are about to make a rendering sandwich, and these functions are the slices of bread.

HRESULT IDirect3DDevice7::BeginScene();
HRESULT IDirect3DDevice7::EndScene();

Neither takes a parameter, and both return the usual HRESULT value, with success indicated by D3D_OK.
BeginScene tells D3D that you are ready to draw. EndScene tells D3D that you are done drawing.

IDirect3DDevice7::DrawPrimitive
Now, and finally, comes the actual rendering of primitives. A primitive is just a generic term for a geometric
object. There are several types, including points, lines, and triangles. You are concerned mainly with trian-
gles, but once you can draw one of them, you can draw the others without difficulty.

The DrawPrimitive function of IDirect3DDevice7 is probably the most complex DirectX function
I will cover in this book.

HRESULT IDirect3DDevice7::DrawPrimitive(
D3DPRIMITIVETYPE dptPrimitiveType,
DWORD dwVertexTypeDesc,
LPVOID lpvVertices,
DWORD dwVertexCount,

Isometric Game Programming with DirectX 7.0

TeamLRN

645

DWORD dwFlags
);

DrawPrimitive takes a number of parameters (explained in Table 24.4 and in the following text) and
returns the standard HRESULT, with D3D_OK indicating success.

I look at that table and think back to when I first looked at Direct3D and felt my stomach drop because it
seemed so complicated. It’s really not so bad, as long as it’s explained correctly.

dptPrimitiveType

dptPrimitiveType is of type D3DPRIMITIVETYPE, an enumeration. Table 24.5 lists the possible values
and their meanings. Some of them are a little vague and need extra explanation, but we’ll have picture
time in a moment.

Introduction to Direct3D

Table 24.4 DrawPrimitive Parameters
Parameter Purpose

dptPrimitiveType The type of primitive to be drawn (discussed in the next section).

dwVertexTypeDesc The format of the vertices to be drawn (discussed in a moment).

lpvVertices A pointer to a list of vertices (discussed in a moment).

dwVertexCount The number of vertices pointed to by lpvVertices.

dwFlags Either 0 or D3DDP_WAIT.You’ll be using 0.

646

The first four should be pretty self-explanatory. D3DPT_TRIANGLESTRIP and D3DPT_TRIANGLEFAN are a
little fuzzier, so I’ll show you pictures to give you a better idea of what I mean.

Figure 24.2 shows a triangle strip using six vertices. V0 through V5 are the end points, or vertices, and
they define triangles 1 through 4. Triangle 1 is defined by V0, V1, V2; Triangle 2 is defined by V1, V2,
V3; Triangle 3 is defined by V2, V3, V4; and Triangle 4 is defined by V3, V4, V5. In all cases, triangles
next to one another on the strip share one side.

Isometric Game Programming with DirectX 7.0

Table 24.5 D3DPRIMITIVETYPE Values
Value Meaning

D3DPT_POINTLIST Used to draw a series of points.This is useful for making
a star field.

D3DPT_LINELIST Used to draw a series of lines.

D3DPT_LINESTRIP Used to draw a series of lines connected end to end.

D3DPT_TRIANGLELIST Used to draw a series of triangles.

D3DPT_TRIANGLESTRIP Used to draw a series of triangles that are linked (more
on this later).

D3DPT_TRIANGLEFAN Used to draw a series of triangles in a fan shape (more on
this later).

V0

V1

V2

V3

V4

V5

Triangle 1

Triangle 2

Triangle 3

Triangle 4

Figure 24.2

A triangle strip

TeamLRN

647

Figure 24.3 shows a triangle fan. The difference between a fan and a strip is obvious once you see what
they look like. A triangle fan uses the first vertex (V0) in all the triangles and uses the other two vertices to
complete the triangle. Again, adjacent triangles end up sharing a side, and additionally, all triangles share a
single vertex.

dwVertexTypeDesc and lpvVertices

These two parameters are joined intimately, so by discussing one, you must discuss the other. There is
actually a great deal of information regarding these two parameters, but because you are just using D3D
as a 2D rasterizer, you will only be touching the tip of the iceberg.

The dwVertexTypeDesc parameter contains a combination of flags describing what kind of vertices you
are using. There are many ways you can represent a vertex, and to accommodate that, Microsoft came up
with the Flexible Vertex Format (FVF) to allow you to express the many types of vertices you might be
inclined to use. Table 24.6 lists and describes the various FVF flags.

Introduction to Direct3D

Triangle 1

Triangle 3

Triangle 4

V0
V1

V2

V3 V4

V5

Triangle 2

Figure 24.3

A triangle fan

648

Sound complicated? It is. Luckily, Microsoft knew that people like us would exist, and they did a nice
thing for us by making a vertex type that we can use for our purposes and by making a D3DFVF_* constant
to use it with DrawPrimitive. Be sure to send Microsoft a thank you note.

The vertex type is called D3DTLVERTEX, and the FVF constant associated with it is D3DFVF_TLVERTEX.
Actually, this type has more information than you really need, but you can just ignore what you don’t use.
The TL part stands for “transformed and lit.”You won’t be making use of D3D transformation and light-
ing. You’ll specify all the information pertinent to the primitive yourself.

typedef struct _D3DTLVERTEX {
D3DVALUE sx;
D3DVALUE sy;
D3DVALUE sz;
D3DVALUE rhw;
D3DCOLOR color;
D3DCOLOR specular;
D3DVALUE tu;
D3DVALUE tv;

} D3DTLVERTEX, *LPD3DTLVERTEX;

Isometric Game Programming with DirectX 7.0

Table 24.6 Flexible Vertex Format Flags
Flag Meaning

D3DFVF_DIFFUSE The vertex contains a diffuse color (we’ll get to diffuse colors a
bit later).

D3DFVF_NORMAL The vertex contains a surface normal (this is vector stuff, and
you won’t be using vectors).

D3DFVF_SPECULAR The vertex contains a specular color (you won’t be using
specular highlights, either).

D3DFVF_XYZ The vertex contains untransformed position data.

D3DFVF_XYZRHW The vertex contains transformed position data.

D3DFVF_XYZBn This is for vertex blending, which you won’t be doing. n is a
value 1 through 5.

D3DFVF_TEXn This specifies how many sets of texture coordinates the vertex
has. n is a value 0 through 8.

D3DFVF_TEXTUREFORMATn This specifies in what format the texture coordinates
are. n is a value 1 through 4.

TeamLRN

649

This isn’t the actual declaration for D3DTLVERTEX, so don’t be surprised if you see something bizarre when
looking it up in the help files. There are anonymous unions for each of the members. Table 24.7 lists the
members and their meanings.

The sx, sy, and sz members are intuitive enough. They are the coordinates at which the vertex exists.
The rhw explanation has to do with matrix multiplication and homogenous coordinates, and you really
don’t want to hear about it, so just trust me and put a 1.0 in your rhw. Color and specular are your two
colors, diffuse and specular. You don’t need to worry about specular—it’s just added baggage. tu and
tv are texture coordinates. I’ll get to texture a little later, because it is a discussion in its own right.

The lpVertices parameter of DrawPrimitive is just a pointer to an array of whatever type of vertex
you specify using dwVertexTypeDesc, which in this case will always be D3DTLVERTEX.

A Simple Direct3D Example
This section is subtitled “The Spinning Technicolor Nacho of Death.” Just like you did when you got into
GDI by plotting single pixels, you will similarly immerse yourself in Direct3D by drawing its most com-
mon primitive—the triangle.

Introduction to Direct3D

Table 24.7 D3DTLVERTEX Members
Member Purpose

sx x-coordinate of the vertex

sy y-coordinate of the vertex

sz z-coordinate of the vertex

rhw Reciprocal of the homogenous w-coordinate

color Diffuse color

specular Specular color

tu First texture u-coordinate

tv First texture v-coordinate

650

Traditionally, the “hello world” program for a 3D API is a triangle spinning in three dimensions. Because
you are not using the third dimension, you will instead have a slight variation on this simple example. The
triangle will rotate in two dimensions instead of three.

Load up IsoHex24_1.cpp and run it, because Figure 24.4 doesn’t do it justice. You really need to see it in
color. It shows a shaded triangle with one red corner, one blue corner, and one green corner, slowly rotat-
ing around the center of the screen.

This program is about as simple as you can get with Direct3D. It is even simpler than any example using
actual 3D math with matrices, because you don’t have to set up any transformations. Take a look at how
this example was built so that you can move on to bigger and better things.

Globals
IsoHex24_1 is based on IsoHex1_1, with DirectDraw stuff added. Globals include the normal LPDI-
RECTDRAW7, LPDIRECTDRAWSURFACE7 for the primary surface and the back buffer, and also a few globals
you have not yet seen—mainly the stuff to set up Direct3D.

Isometric Game Programming with DirectX 7.0

CAUTION
In order to compile a Direct3D program, your application needs to include d3d.h, not
d3d8.h, because you are using version 7 of the API, not version 8. However, the library file
required is still d3d8.lib, no matter what version you use.

Figure 24.4

Spinning Technicolor

Nacho of Death

TeamLRN

651

//IDirect3D7
LPDIRECT3D7 lpd3d=NULL;
//IDirect3DDevice
LPDIRECT3DDEVICE7 lpd3ddev=NULL;
//vertices
D3DTLVERTEX vert[3];//three vertices
//angle, used for vertex calculations
double angle=0.0;

lpd3d is a pointer to your IDirect3D7 object, which you have to QueryInterface from out lpdd.
lpd3ddev is your 3D device, which you create from lpd3d. vert is an array of D3DTLVERTEX, and you
use it for drawing. angle is used to calculate the positions of the vertices stored in the vert array.

Initialization and Cleanup
Most of this will be familiar, except that the surface creation is no longer from
DDFuncs.h/DDFuncs.cpp, because you need to add a capability to the surface. The rest involves setting
up Direct3D and initializing the parts of your vertex array (vert) that will not change throughout the
course of the application. And so, for your perusal, here is the Prog_Init function:

bool Prog_Init()
{

lpdd=LPDD_Create(hWndMain,DDSCL_EXCLUSIVE |
DDSCL_FULLSCREEN | DDSCL_ALLOWREBOOT);

//set the display mode
lpdd->SetDisplayMode(SCREENWIDTH,SCREENHEIGHT,SCREENBPP,0,0);

This bit has not changed since you first started using DDFuncs.h/DDFuncs.cpp. You create your
IDirectDraw7 object, and you still set the display mode. There’s nothing new here.

//create primary surface
DDSURFACEDESC2 ddsd;
memset(&ddsd,0,sizeof(DDSURFACEDESC2));
ddsd.dwSize=sizeof(DDSURFACEDESC2);
ddsd.dwFlags=DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
ddsd.dwBackBufferCount=1;
ddsd.ddsCaps.dwCaps=DDSCAPS_PRIMARYSURFACE |

DDSCAPS_FLIP | DDSCAPS_COMPLEX | DDSCAPS_3DDEVICE;
lpdd->CreateSurface(&ddsd,&lpddsPrime,NULL);

Introduction to Direct3D

652

Earlier in this chapter, I told you about DDSCAPS_3DDEVICE, which allows you to use a surface as a render-
ing target for a D3D device. Hence, the way you create your primary surface has changed subtly, which
means that you can no longer use DDFuncs.h/DDFuncs.cpp to create your primary surface. (Don’t worry.
You’ll make a D3DFuncs.h/D3DFuncs.cpp in the next chapter.)

You probably will never set your primary surface as the rendering target, but for debugging purposes,
you might want to use it in a limited way, so that it doesn’t really hurt anything.

//create back buffer
DDSCAPS2 ddscaps;
memset(&ddscaps,0,sizeof(DDSCAPS2));
ddscaps.dwCaps=DDSCAPS_BACKBUFFER | DDSCAPS_3DDEVICE;
lpddsPrime->GetAttachedSurface(&ddscaps,&lpddsBack);

Just as the primary surface is now a D3D rendering target, so must the back buffer be. Setting this up is
less involved than creating the primary surface, but it is necessary, because the back buffer is the surface
to which you want D3D to render.

//get the idirect3d pointer
lpdd->QueryInterface(IID_IDirect3D7,(void**)&lpd3d);//ICKY COM STUFF!

Next on the list is to get your IDirect3D7 pointer by using the evil COM QueryInterface method
of your IDirectDraw7 object. Now you’re ready to make your 3D device.

//create the idirect3ddevice (hack method)
if(FAILED(lpd3d-

>CreateDevice(IID_IDirect3DTnLHalDevice,lpddsBack,&lpd3ddev)))//try tnl
if(FAILED(lpd3d->CreateDevice(IID_IDirect3DHALDevice,

lpddsBack,&lpd3ddev)))//no tnl; try hal
if(FAILED(lpd3d->CreateDevice(IID_IDirect3DMMXDevice,

lpddsBack,&lpd3ddev)))//no hal; try mmp
if(FAILED(lpd3d->CreateDevice(IID_IDirect3DRGBDevice,

lpddsBack,&lpd3ddev)))//no mmx; resort to
rgb
return(false);//problem; return false

This is the hack method. You use it to create your 3D device, using the back buffer as the rendering target.
I took out all the brackets in order to take up less space, but this remains the exact same method I showed
you earlier. Try the most advanced device first, and gradually settle for less and less capability.

//set up viewport
D3DVIEWPORT7 vp;
vp.dwX=0;

Isometric Game Programming with DirectX 7.0

TeamLRN

653

vp.dwY=0;
vp.dwWidth=SCREENWIDTH;
vp.dwHeight=SCREENHEIGHT;
vp.dvMinZ=0.0;
vp.dvMaxZ=1.0;
//set viewport for device
lpd3ddev->SetViewport(&vp);

Now that you have a 3D device, you must set up the viewport for it. You’ll be using the entire screen, so
dwX, dwY, dwWidth, and dwHeight are set appropriately. Set the z values to their “usual” values, even
though you don’t care at all about z.

//initialize the vertices (partially, anyway)
vert[0].color=D3DRGB(0.0,1.0,0.0);//set the color for this vertex
vert[0].specular=0;//zero for specular
vert[0].rhw=1.0;//rhw is 1.0
vert[0].tu=0.0;//0.0 for both texture coordinates
vert[0].tv=0.0;
vert[0].sz=0.5;//static z value

Finally, set up the static parts of your vertex array. During this example, the only values that will change
are sx and sy, so you can safely fill in the rest of the values. For vertex 0, you have a diffuse color of pure
green, no specular color, and an rhw of 1.0 (you need this to make it look right). You need a texture coor-
dinate of (0.0,0.0) since you aren’t using textures yet, and to top it off, you need an sz value of 0.5. The
sz value doesn’t really matter.

vert[1].color=D3DRGB(0.0,0.0,1.0);//set the color for this vertex
vert[1].specular=0;//zero for specular
vert[1].rhw=1.0;//rhw is 1.0
vert[1].tu=0.0;//0.0 for both texture coordinates
vert[1].tv=0.0;
vert[1].sz=0.5;//static z value
vert[2].color=D3DRGB(1.0,0.0,0.0);//set the color for this vertex
vert[2].specular=0;//zero for specular
vert[2].rhw=1.0;//rhw is 1.0
vert[2].tu=0.0;//0.0 for both texture coordinates
vert[2].tv=0.0;
vert[2].sz=0.5;//static z value
return(true);//return success

}

Introduction to Direct3D

654

Then set up the other two vertices, mostly with the same values, except for color. Vertex 1 is bright blue,
and vertex 2 is bright red.

On the other end of the program, Prog_Done, simply do a safe release of all your DirectX objects, which
you should be accustomed to by now.

Main Loop
The really sick part of this example is that the initialization takes longer than the main loop. I’m not kid-
ding. Take a look:

void Prog_Loop()
{

//set up the vertex positions
vert[0].sx=cos(angle)*240.0+320.0;
vert[0].sy=sin(angle)*240.0+240.0;
vert[1].sx=cos(angle+2*PI/3)*240.0+320.0;
vert[1].sy=sin(angle+2*PI/3)*240.0+240.0;
vert[2].sx=cos(angle-2*PI/3)*240.0+320.0;
vert[2].sy=sin(angle-2*PI/3)*240.0+240.0;
//add to the angle for next time
angle+=PI/180;

These six lines calculate the sx and sy values for each of the vertices based on the value of the global vari-
able angle. If you aren’t familiar with trigonometry, don’t worry about it, because this is the only time I use
it in this book, and only to make the nacho spin.

After the vertex positions are calculated, the angle is increased by pi/180, which is the same as turning the
triangle 1 degree.

//clear the viewport to black
lpd3ddev->Clear(0,NULL,D3DCLEAR_TARGET,0,0,0);
//start the scene
lpd3ddev->BeginScene();

Next, clear out the entire viewport and tell D3D you are ready to begin the scene.

//draw the triangle
lpd3ddev->DrawPrimitive(D3DPT_TRIANGLELIST,

D3DFVF_TLVERTEX,vert,3,0);

After all that setup and all those calculations, the entire functionality of this program boils down to this
single line, a DrawPrimitive call. This is what draws the triangle on the screen. All the rest just sets every-
thing up so that you can do so.

Isometric Game Programming with DirectX 7.0

TeamLRN

655

//end the scene
lpd3ddev->EndScene();
//flip
lpddsPrime->Flip(NULL,DDFLIP_WAIT);

}

Finally, end the scene, and flip so that the back buffer is now visible. Then return so that you can process
input and draw another frame.

You’re probably disappointed, I know. Direct3D should be so much more complicated than what I’ve just
shown you. Actually, it is more complicated. You’re just using a limited subset with no 3D math involved.
However, even if you included everything else in Direct3D, you’re still just drawing triangles.

This wraps up the Direct3D basics. If you can draw one triangle, you can draw a billion of them. I have
a bit more to cover in Direct3D, because colored triangles won’t get you where you need to go. What you
need is a way to do textures, and then you’re good to go for ISO 3D.

Textures
Nifty colored triangles are neat, and they are the basis of all other 3D graphics, but you want more, right?
You want the ability to place images on the screen much as you did in DirectDraw, while making use of
the hardware acceleration you can get from Direct3D.

Of course, you can still use DirectDraw’s Blt to copy rectangles from surface to surface, much as you
have been doing all along. After all, these are still just surfaces, at least in DirectX7.0 (this isn’t so in
DirectX8.0, which has no Blt to speak of).

The other road you can take is to use textures. After all, the rectangles you’ve been blitting throughout this
book are nothing more than two triangles with a common line between them.

What Is a Texture?
In DirectX 7.0, a texture is just a special kind of surface. It has the capabilities of DDSCAPS_TEXTURE to
indicate that it is a texture surface, and the width and height each have to be a power of 2, although they
need not be the same power of 2. With that in mind, 64✕64, 128✕64, 64✕128, and 128✕128 are all
valid measurements for a texture, whereas something like 65✕21 is not.

Depending on hardware, support for nonsquare textures (like 128✕64) can be limited to allow only a sin-
gle power difference (so, 128✕64 is allowed, but 128✕32 is not). Also, a texture’s maximum size is limited
by hardware, but just about all hardware supports sizes up to 256✕256, which is more than sufficient for
your needs.

For maximum compatibility, you need to follow a few rules. First, always use a square texture. Second,
don’t use a texture greater than 256✕256. Third, use only a single texture at a time.

Introduction to Direct3D

656

The “single texture at a time” rule exists because some cards support multitexturing—that is, combining
up to eight textures on a single polygon (triangle). Many cards still do not support this, so you’ll use just a
single texture at any given time. You don’t really need multitexturing anyway.

This is how you create a texture:

//lpdd is a pointer to an IDirectDraw7 object
//lpddsTex is a LPDIRECTDRAWSURFACE7 variable
//TEXTUREWIDTH and TEXTUREHEIGHT specify the size of the texture
DDSURFACEDESC2 ddsd;
memset(&ddsd,0,sizeof(DDSURFACEDESC2));
ddsd.dwSize=sizeof(DDSURFACEDESC2);
ddsd.dwFlags=DDSD_WIDTH | DDSD_HEIGHT | DDSD_CAPS;
ddsd.dwWidth=TEXTUREWIDTH;
ddsd.dwHeight=TEXTUREHEIGHT;
ddsd.ddsCaps.dwCaps=DDSCAPS_TEXTURE;
lpdd->CreateSurface(&ddsd,&lpddsTex,NULL);//create the surface

It’s just like creating an off-screen surface, with the exception of the size requirements and the
DDSCAPS_TEXTURE instead of DDSCAPS_OFFSCREENPLAIN.

Texture Mapping and Texture
Coordinates
After you’ve created a texture, your next task is using it. In order to use it, you must first know something
about how texture mapping works, at least on a conceptual level, and you must be able to specify texture
coordinates.

If you think back to Chapter 20, “Isometric Art,” when you did tile slanting, it was very much like texture
mapping. You took a square texture and stretched and slanted it into a rhombus shape. This is not true tex-
ture mapping, but it has similarities.

You don’t have to go into the intricacies of how texture mapping works on a pixel-by-pixel level. That part
has been done for you by the people who programmed Direct3D. You just have to know what information
to send Direct3D so that it all comes out looking right. Figure 24.5 shows a texture and a texture-mapped
polygon. The texture (on the left) shows its four corners with the coordinates that correspond to them.
Likewise, the polygon (on the right) has its four corners (vertices) marked with their coordinates (no actu-
al numbers, of course). Table 24.8 shows how the texture’s coordinates correspond to the vertices.

Isometric Game Programming with DirectX 7.0

TeamLRN

657

Based on these coordinate matchups, you can do a whole lot of linear algebra and figure out that a particu-
lar pixel in a particular polygon matches up with such-and-such a pixel within the texture. Or, you can just
rely on Direct3D to do it for you. That is Direct3D’s entire purpose—to make fancy triangles.

However, you have to take it just one small step further, since texture coordinates are not specified between
0 and WIDTH and 0 and HEIGHT, but rather in the range of 0.0 to 1.0, where 0.0 corresponds to the 0
coordinate on the texture surface (duh!) and 1.0 corresponds to WIDTH (or HEIGHT, depending on the tex-
ture coordinate).

The horizontal coordinate is called U by Direct3D, and the vertical coordinate is called V. The reasons for
these letters? X, Y, and Z were already taken, and W is for homogenous coordinates, so they decided to
work their way backward through the alphabet. In other words, I don’t really know, but that’s my guess.

Introduction to Direct3D

Figure 24.5

A texture and a texture-

mapped polygon

Table 24.8 Texture Coordinates to Vertices
Texture Coordinate Vertex Coordinate

(0,0) (X0,Y0)

(WIDTH,0) (X1,Y1)

(0,HEIGHT) (X2,Y2)

(WIDTH,HEIGHT) (X3,Y3)

658

The various U and V coordinates are stored in the tu and tv members of D3DTLVERTEX. Pretty simple,
eh? After setting up the appropriate texture coordinates for each vertex (there will be a lot more about this
in Chapter 25, “The Much Anticipated ISO3D”), you have only one thing left to do in order to make use
of your texture.

//set tells Direct3D what texture we wish to use
lpd3ddev->SetTexture(0,lpddsTex);

The first parameter of IDirect3DDevice::SetTexture is a number that specifies the texture stage.
There are eight stages, numbered 0 through 7. You aren’t multitexturing, so you only care about the first
texture stage (0). After a call to SetTexture, rendering a texture-mapped triangle is as simple as a call
to DrawPrimitive.

Texture Mapping Example
This example is called “The Spinning Texture-Mapped Saltine of Death” (see Figure 24.6), and other
than a few lines, it is identical to IsoHex24_1.cpp. Following are the changes:

• There are four vertices instead of just three (hence a Saltine and not a nacho).
• The texture surface is created and is loaded with a texture.
• The vertices now have texture coordinates.
• Because you are rendering a square and not a triangle, the call to DrawPrimitive uses a triangle strip, not

a triangle list.
• I changed the colors of the vertices to give the illusion that one corner is lit and the opposite corner is

in shadow.

The changes are so minor I’m not even going to show the code, because I’ve already shown the snippets
that do it. It would be like listing IsoHex24_1.cpp twice. Just be sure to take a look at the code before
moving on to the next chapter, where you will use texture mapping (a lot).

Isometric Game Programming with DirectX 7.0

TeamLRN

659

Summary
One thing this chapter should demonstrate is that Direct3D is not nearly as hard as everyone makes it out.
I admit, you haven’t used a lot of its functionality, such as vectors, matrices, depth buffers, and lighting.
You don’t need all of those things where you’re going. Already, you can render a textured square onto the
screen (and rotate it to boot! Try doing that in DirectDraw), and that is the fundamental way in which you
will be using Direct3D as a 2D renderer.

Indeed, once you strip down D3D to its bare functionality, it’s not so intimidating at all. At the same time,
it does a lot for you. The texture mapping is superb, and you have only two polygons per object, unlike a
“real” 3D game, in which an object can consist of thousands of polygons.
Next up, we'll take the knowledge in this chapter and adapt it to the unique needs of an isometric game.
I'll show you a few tricks, too, that'll make life a lot easier (for one thing, we're going to get rid of the
MouseMap). The really good stuff, the stuff you've been waiting for, is next.

Introduction to Direct3D

Figure 24.6

IsoHex24_2.cpp output

The Much-
Anticipated

ISO3D
• D3DFuncs.h/D3DFuncs.opp

• 2D Sprites Using Direct 3D

• Tile Selection/Mousemapping

CHAPTER 25

TeamLRN

661

This is what you have been waiting for. Over hill and dale you’ve trudged through 2D isometric
algorithms with the promise that using 3D was just around the corner. You have finally

rounded that corner.

Using an API like Direct3D to do an isometric display is called “ISO3D” even though all of the drawing
is still 2D-based. Such is life.

The first thing you’ll do here is put together a group of functions in a header and cpp file, much like you
did in DirectDraw with DDFuncs. Then we will discuss what changes occur when you move from a 2D
API to a 3D API. All in all, it should be great fun.

D3DFuncs.h/D3DFuncs.cpp
Much as you have relied on DDFuncs.h/DDFuncs.cpp throughout most of the book, so shall you come
to rely on D3DFuncs.h/D3DFuncs.cpp to help you create and manage the D3D pointers you will be
using in this chapter. Table 25.1 lists the functions in the D3DFuncs minilibrary.

The Much-Anticipated ISO3D

662

This is a pretty sparse little library of functions, really, but if you look back, so was
DDFuncs.h/DDFuncs.cpp, and you’ve done plenty of stuff using that simple little set of functions. And
so shall it be with D3DFuncs.h/D3DFuncs.cpp.

Isometric Game Programming with DirectX 7.0

Table 25.1 Functions from D3DFuncs.h/cpp
Function Purpose

LPD3D_Create Creates an IDirect3D7 object using an LPDIRECT-
DRAW7 pointer.

LPD3D_Release Cleans up an IDirect3D7 object.

LPD3DDEV_Create Creates an IDirect3DDevice7 object using an
LPDIRECT3D7 pointer.

LPD3DDEV_SetViewport Sets a viewport for an IDirect3DDevice7.

LPD3DDEV_Clear Clears a viewport.

LPD3DDEV_DrawTriangleList Draws a triangle list using a D3DTLVERTEX
array/pointer.

LPD3DDEV_DrawTriangleStrip Draws a triangle strip using a D3DTLVERTEX
array/pointer.

LPD3DDEV_Release Cleans up an IDirect3DDevice7.

LPDDS_CreatePrimary3D Creates a primary surface that can be used as a
3D device’s rendering target.

LPDDS_GetSecondary3D Gets a back buffer that can be used as a 3D
device’s rendering target.

LPDDS_CreateTexture Creates a texture surface.

LPDDS_CreateTexturePixelFormat Creates a texture surface and specifies what
pixel format it will have (more on this a bit later).

VERTEX_Set Sets up the values in a D3DTLVERTEX.

TeamLRN

663

LPD3D Functions
There are two of these. One creates the IDirect3D7 object (LPD3D_Create), and the other cleans it up
afterwards (LPD3D_Release).

//create the IDirect3D7 interface
LPDIRECT3D7 LPD3D_Create(LPDIRECTDRAW7 lpdd);

LPD3D_Create takes a single parameter (lpdd). It uses QueryInterface to call the proper interface to
use for D3D stuff and then returns the newly gotten LPDIRECT3D7 pointer. Typically, this function is
called during Prog_Init.

//clean up an IDirect3D7
void LPD3D_Release(LPDIRECT3D7* lpd3d);

During Prog_Done, you need to clean up all the DirectX stuff you’ve used. To clean up the LPDIRECT3D7
pointer, you need only call LPD3D_Release and send a pointer to the LPDIRECT3D7 variable.

LPD3DDEV Functions
In spite of the many tasks that an IDirect3DDevice7 object can be called on to do (and believe me, in a
“normal” type of 3D program, there are plenty of diverse tasks), we are concerned with only six functions.

//create the device
LPDIRECT3DDEVICE7 LPD3DDEV_Create(LPDIRECT3D7 lpd3d,LPDIRECTDRAWSURFACE7 lpdds);

Naturally, after you’ve called LPD3D_Create, your next task (after creating the appropriate surfaces) is to
create the 3D device itself. To do this, you call LPD3DDEV_Create and pass an LPDIRECT3D7 pointer (used
to create the device) and an LPDIRECTDRAWSURFACE7 pointer (used as the rendering target). The return
value is a pointer to the new device, which you can begin to use immediately. This function uses the
“hack” method of creating a 3D device.

//set up the viewport
void LPD3DDEV_SetViewport(LPDIRECT3DDEVICE7 lpd3ddev,DWORD x,DWORD y,DWORD
width,DWORD height);

After your device is created, you need to set up the viewport parameters. Because you ignore the z-
coordinate, you need only specify the upper-left corner (x and y) and the width and height of the view-
port. This function returns no value but does fill in a D3DVIEWPORT7 structure and sets the device to use
that viewport.

//clear out the viewport
void LPD3DDEV_Clear(LPDIRECT3DDEVICE7 lpd3ddev,D3DCOLOR color);

The Much-Anticipated ISO3D

664

I didn’t bother making functions for BeginScene or EndScene, because these functions would take up
more typing time than just calling them in the first place. However, since you are using only one part of
the IDirect3DDevice7::Clear member function, and you’re only interested in clearing out the entire
viewport, making a special function for it seemed appropriate. Calling LPD3DDEV_Clear with the pointer
to the device and a color causes the entire viewport to be filled with that color.

//draw triangle list
void LPD3DDEV_DrawTriangleList(LPDIRECT3DDEVICE7 lpd3ddev,D3DTLVERTEX* pver-
tices,DWORD dwvertexcount);
//draw triangle strip
void LPD3DDEV_DrawTriangleStrip(LPDIRECT3DDEVICE7 lpd3ddev,D3DTLVERTEX* pver-
tices,DWORD dwvertexcount);

These functions are so similar that I thought it best to discuss them together. The first draws a triangle
list, and the second draws a triangle strip. They take as parameters a pointer to the device and a pointer to
an array of D3DTLVERTEXs, along with a count of how many vertices are in the array. It’s pretty simple,
really, and it beats the heck out of typing D3DFVF_TLVERTEX every time you want to call DrawPrimitive.

//clean up a device
void LPD3DDEV_Release(LPDIRECT3DDEVICE7* lpd3ddev);

This is the ubiquitous “cleanup” function, much the same as all the other functions used to clean up
the various components of DirectX. When you’re done with a device, usually at the end of a program,
call this function.

LPDDS Functions
Since there is a change in the way you have to set up surfaces to be rendering targets, I needed to add a
couple of functions to create primary surfaces and back buffers. These two functions, described next, work
about the same as their DDFuncs.h/DDFuncs.cpp versions, just with a “3D” appended to the end.

//primary surface as a 3D rendering target
LPDIRECTDRAWSURFACE7 LPDDS_CreatePrimary3D(LPDIRECTDRAW7 lpdd,DWORD
dwBackBufferCount);
//back buffer as a 3D rendering target
LPDIRECTDRAWSURFACE7 LPDDS_GetSecondary3D(LPDIRECTDRAWSURFACE7 lpdds);

Now, instead of LPDDS_CreatePrimary, you use LPDDS_CreatePrimary3D, and instead of
LPDDS_GetSecondary, you use LPDDS_GetSecondary3D. You still use LPDDS_Release to clean up at the
end of the program, however.

Isometric Game Programming with DirectX 7.0

TeamLRN

665

Texture Functions
I’ve spoken only briefly about textures and texture surfaces. I’ll talk about them a great deal more as this
chapter progresses (since just about everything in ISO3D relies on the use of textures).

//create a texture
LPDIRECTDRAWSURFACE7 LPDDS_CreateTexture(LPDIRECTDRAW7 lpdd,DWORD dwWidth,DWORD
dwHeight);
//create a texture with a particular pixel format
LPDIRECTDRAWSURFACE7 LPDDS_CreateTexturePixelFormat(LPDIRECTDRAW7 lpdd,DWORD
dwWidth,DWORD dwHeight,LPDDPIXELFORMAT lpddpf);

These two functions are quite similar. The first, LPDDS_CreateTexture, creates a texture surface with the
given width and height (remember, these must be powers of 2!) with the same pixel format as the primary
surface. The second function allows you to supply a pixel format different from that of the primary sur-
face. The reasons for having this function may not be clear now, but they will be soon; I didn’t want to add
to D3DFuncs.h/D3DFuncs.cpp in the middle of the chapter.

Vector Function
This is just a single function, but it is pretty important and will save you a great deal of work.

//set vertex data
void VERTEX_Set(D3DTLVERTEX* pVert,D3DVALUE x,D3DVALUE y, D3DCOLOR color, D3DVAL-
UE tu, D3DVALUE tv);

VERTEX_Set allows you to fill out a D3DTLVERTEX structure without having to type the variable name a
billion times. Instead, you can do this concisely in a single line.

The D3D Shell Application
If you load IsoHex25_1.cpp you’ll see all the basic functionality necessary for a D3D application. I admit,
the program doesn’t really do anything, but it definitely sets you up nicely so that you can start doing things.

The applications in this chapter rely on IsoHex25_1.cpp as the code base.

Plotting Tiles in ISO3D
Naturally, the first thing you’ll want to be able to do is plot tiles, just as you did in 2D. To do so, you need
an isometric plotting equation (any one will do), some vertices, and some textures.

The Much-Anticipated ISO3D

666

Figure 25.1 shows a standard isometric tile with some coordinates. In ISO3D, you will base everything on
the middle of the tile, just to make things easy. If you’re like me, you like things easy (please try not to
read anything into that).

So, you have a four-pointed figure, but D3D draws only triangles. Luckily, this four-pointed figure splits
nicely into two triangles, as shown in Figure 25.2. The vertices are numbered V1 through V4 and are in
order of how you must make a triangle strip out of them. Poly1 (really, TRIANGLE 1) is defined by V1
through V3, and Poly2 is defined by V2 through V4.

Isometric Game Programming with DirectX 7.0

Top

Left
(x-TILEWIDTH/2,y)

(x,y-TILEHEIGHT/2)

Center
(x,y)

Bottom
(x,y+TILEHEIGHT/2)

Right
(x+TILEWIDTH/2,y)

Figure 25.1

A standard isometric

tile with coordinates

TeamLRN

667

Using an isometric plotting equation (for example, for staggered maps), filling out an array of vertices
is quite easy.

//mapx,mapy are map coordinates
//TILEWIDTH and TILEHEIGHT are dimensions of a tile
//vert is an array of D3DTLVERTEX
//calculate center point (staggered calculation)
D3DVALUE CenterX=(float)((mapx*TILEWIDTH)+(mapy&1)*(TILEWIDTH/2));
D3DVALUE CenterY=(float)(mapy*(TILEHEIGHT/2));
//v1
VERTEX_Set(&vert[0],CenterX-TILEWIDTH/2,CenterY,D3DRGB(1.0,1.0,1.0),0.0,0.0);
//v2
VERTEX_Set(&vert[1],CenterX,CenterY-TILEHEIGHT/2,D3DRGB(1.0,1.0,1.0),0.0,0.0);
//v3
VERTEX_Set(&vert[0],CenterX,CenterY+TILEHEIGHT/2,D3DRGB(1.0,1.0,1.0),0.0,0.0);
//v4
VERTEX_Set(&vert[0],CenterX+TILEWIDTH/2,CenterY,D3DRGB(1.0,1.0,1.0),0.0,0.0);

With this code, you could then progress to a call to LPD3DDEV_DrawTriangleStrip, and you would see
a white isometric tile (since you have no texture yet).

But that’s not quite good enough. You want a textured isometric tile, which means you need texture
coordinates and a suitable texture. Figure 25.3 has a possible set of texture coordinates for your tile.
This is not the only configuration, of course. Also, it assumes you are using the entire texture, which you
most likely will.

The Much-Anticipated ISO3D

Top

Left
(x-TILEWIDTH/2,y)

(x,y-TILEHEIGHT/2)

Center
(x,y)

Bottom
(x,y+TILEHEIGHT/2)

Right
(x+TILEWIDTH/2,y)

V1

V2

V3

V4
Poly1 Poly2

Figure 25.2

An isometric tile split

into triangles

668

With the addition of texture coordinates, your code for loading a triangle strip becomes as follows:

//mapx,mapy are map coordinates
//TILEWIDTH and TILEHEIGHT are dimensions of a tile
//vert is an array of D3DTLVERTEX
//calculate center point (staggered calculation)
D3DVALUE CenterX=(float)((mapx*TILEWIDTH)+(mapy&1)*(TILEWIDTH/2));
D3DVALUE CenterY=(float)(mapy*(TILEHEIGHT/2));
//v1
VERTEX_Set(&vert[0],CenterX-TILEWIDTH/2,CenterY,D3DRGB(1.0,1.0,1.0),0.0,0.0);
//v2
VERTEX_Set(&vert[1],CenterX,CenterY-TILEHEIGHT/2,D3DRGB(1.0,1.0,1.0),1.0,0.0);
//v3
VERTEX_Set(&vert[0],CenterX,CenterY+TILEHEIGHT/2,D3DRGB(1.0,1.0,1.0),0.0,1.0);
//v4
VERTEX_Set(&vert[0],CenterX+TILEWIDTH/2,CenterY,D3DRGB(1.0,1.0,1.0),1.0,1.0);

After this, you would set the texture and draw the triangle strip. This isn’t as hard or as daunting as it
might have seemed. So, let’s do it!

Go ahead and load IsoHex25_2.cpp. In this example, I use almost line-for-line the earlier code for setting
vertices, and I added a line for drawing the triangle strip. This is what the Prog_Loop function looks like:

Isometric Game Programming with DirectX 7.0

Top

Left
(x-TILEWIDTH/2,y)

(x,y-TILEHEIGHT/2)

Center
(x,y)

Bottom
(x,y+TILEHEIGHT/2)

Right
(x+TILEWIDTH/2,y)

(0.0,0.0)

(1.0,0.0)

(0.0,1.0)

(1.0,1.0)

Figure 25.3

Texture coordinates

for an isometric tile

TeamLRN

669

void Prog_Loop()
{

//clear the viewport to black
lpd3ddev->Clear(0,NULL,D3DCLEAR_TARGET,0,0,0);
//start the scene
lpd3ddev->BeginScene();
//center positions
D3DVALUE CenterX,CenterY;
//loop through map
for(int y=0;y<MAPHEIGHT;y++)
{

for(int x=0;x<MAPWIDTH;x++)
{

//calculate world coordinates for center of tile
CenterX=(float)(x*TILEWIDTH+(y&1)*(TILEWIDTH/2));
CenterY=(float)(y*(TILEHEIGHT/2));
//set up the vertex
//v1
VERTEX_Set(&vert[0],CenterX-TILEWIDTH/2,

CenterY,D3DRGB(1.0,1.0,1.0),0.0,0.0);
//v2
VERTEX_Set(&vert[1],CenterX,

CenterY-TILEHEIGHT/2,D3DRGB(1.0,1.0,1.0),1.0,0.0);
//v3
VERTEX_Set(&vert[2],CenterX,

CenterY+TILEHEIGHT/2,D3DRGB(1.0,1.0,1.0),0.0,1.0);
//v4
VERTEX_Set(&vert[3],CenterX+TILEWIDTH/2,

CenterY,D3DRGB(1.0,1.0,1.0),1.0,1.0);
//render the triangle strip
LPD3DDEV_DrawTriangleStrip(lpd3ddev,vert,4);

}
}
//end the scene
lpd3ddev->EndScene();
//flip
lpddsPrime->Flip(NULL,DDFLIP_WAIT);

}

The Much-Anticipated ISO3D

670

As you can see, this is the same as the preceding code, just nested within two loops. If you take a look at
texture.bmp (the graphic for this example), you will find that it is a 128✕128 bitmap, and yet D3D does
a marvelous job of shrinking and rotating it into your isometric tile shape.

With this example in mind, it is easy enough to extend it to allow for more than one type of tile. You
would simply make an array of texture surfaces and set the device to use the appropriate one for each tile.

2D Sprites Using Direct3D
Although it would be nice if every graphic in your game were the same size and shape as an isometric tile,
unfortunately this is just not the case. Your units, objects, trees, mountains, roads, and so on are oddly
shaped, so you need to do the 3D equivalent of a color key in order for everything to look right.

Direct3D does have some support for the type of color keys you have used in your 2D programs.
However, using this support is not suggested. I was reading a newsgroup post about it, and the answerer
(whose name eludes me) said there are other ways to do it.

At the time, I didn’t know what the “other ways” were, but knowing that I would have to use a technique
for doing this, and also tell others how to do it, and not wanting to do it “the wrong way,” I asked around.

A friend of mine told me what I had to do. It’s a little bizarre, but not too hard. In order to do it, you
have to use some of Direct3D’s alpha functionality. If you haven’t heard of alpha before, don’t worry
about it too much. It is used to blend colors to make objects look partially transparent (translucent) for
things like ghosts, pieces of glass, and water. In addition, it can be used to simulate a color key.

In order to make use of this functionality, you must make a texture that has alpha information. You don’t
need a whole lot of alpha information (just a single bit will suffice), but you do need some. In 16bpp
mode, with the normal format being 5:6:5 for RGB, giving up a bunch of bits for alpha is the last thing
you want to do. Luckily, most graphics cards support a 1:5:5:5 ARGB format, so you have to give up
only 1 bit of green.

Enumerating Texture Formats
So, how do you figure out what texture formats are available to use? You use
IDirect3DDevice7::EnumTextureFormats and a callback function.

HRESULT IDirect3DDevice7::EnumTextureFormats(
LPD3DENUMPIXELFORMATSCALLBACK lpd3dEnumPixelProc,
LPVOID lpArg

);

This function returns an HRESULT, which is D3D_OK if successful and some D3DERR_* value if it fails. The
first parameter is the address of your callback function (which I will get to in a moment), and the second
parameter (lpArg) is a pointer used to retrieve information from the callback.

Isometric Game Programming with DirectX 7.0

TeamLRN

671

Texture Format Callback
In order to make use of IDirect3DDevice7::EnumTextureFormats, you must create a callback for it to
use. Because you are simply looking for a format with alpha information, retrieving this information is
quite easy. Here’s an example of what a texture format callback function looks like:

HRESULT CALLBACK D3DEnumPixelFormatsCallback(
LPDDPIXELFORMAT lpDDPixFmt,
LPVOID lpContext

);

You can name the function whatever you want, actually. It returns an HRESULT, which is D3DENUMRET_OK if
you want to continue enumerating, or D3DENUMRET_CANCEL if you want enumeration to end. After you’ve
found what you’re looking for, you don’t need to enumerate any further. The first parameter is a pointer to
a DDPIXELFORMAT, which contains the various masks for red, blue, green, and alpha. The second parameter,
lpContext, is the same pointer you send to EnumTextureFormats in the lpArg parameter.

This is the texture format callback you’ll be using:

HRESULT CALLBACK TextureFormatCallback(LPDDPIXELFORMAT lpDDPF,LPVOID lpContext)
{

//check the alpha bitmask of the pixel format
if(lpDDPF->dwRGBAlphaBitMask)
{

//alpha
//copy to context
memcpy(lpContext,lpDDPF,sizeof(DDPIXELFORMAT));
//stop enumeration
return(D3DENUMRET_CANCEL);

}
//no alpha found
//continue enumeration
return(D3DENUMRET_OK);

}

In the case of this callback, you aren’t being picky about the pixel format. It just has to have alpha in it,
and you’ll take the first one. It copies the DDPIXELFORMAT information into the context pointer, so you
need to send a DDPIXELFORMAT pointer to the enumeration function, like so:

//enumerate texture formats
DDPIXELFORMAT ddpf;
memset(&ddpf,0,sizeof(DDPIXELFORMAT);
lpd3ddev->EnumTextureFormats(TextureFormatCallback,&ddpf);

The Much-Anticipated ISO3D

672

//check if we found a texture format with alpha in it
if(ddpf.dwSize==0)
{

//no texture format with alpha
}

What do you do if there is no texture format with an alpha in it? Well, there isn’t much you can do, but I
don’t think this issue will come up, so don’t worry about it.

Creating the Texture Surface
The next step is to create the texture surface using the LPDDS_CreateTexturePixelFormat function from
D3DFuncs.h/D3DFuncs.cpp.

//create a 64x64 texture surface
lpddsTex=LPDDS_CreateTexturePixelFormat(lpdd,64,64,&ddpf);

Now you’ve got the new texture surface, and the only thing left is to fill it with the graphical information
from a bitmap.

Lock and Unlock Review
Unfortunately, using GetDC and ReleaseDC won’t work in this case (I’ve tried). Apparently GDI doesn’t
like alpha, so this time, you have to do it manually, which means you have to use
IDirectDrawSurface7::Lock and IDirectDrawSurface7::Unlock. We covered these earlier in the
book, but here’s a quick refresher.

HRESULT IDirectDrawSurface7::Lock(
LPRECT lpDestRect,
LPDDSURFACEDESC2 lpDDSurfaceDesc,
DWORD dwFlags,
HANDLE hEvent

);

The return value, as with almost all DirectX function calls, is an HRESULT, which returns DD_OK if success-
ful or some DDERR_* value if it fails.

Of the parameters, lpDestRect is a pointer to a RECT that describes the area you are locking. If you want
to lock the entire surface (and that is what you will do), use NULL in this parameter. lpDDSurfaceDesc is a
pointer to a DDSURFACEDESC2, which you send in to retrieve the locking information. dwFlags tells
DirectDraw exactly how you want to lock the surface. hEvent isn’t supported, so put NULL.

Isometric Game Programming with DirectX 7.0

TeamLRN

673

HRESULT IDirectDrawSurface7::Unlock(
LPRECT lpRect

);

Unlock is a lot simpler than Lock. The return value is an HRESULT again, so check for DD_OK. The lpRect
parameter is a pointer to the RECT you want to unlock. The RECT has to be the same as the RECT you used
to lock, so if you use NULL to lock, use NULL to unlock.

Now that your memory has been refreshed on Lock/Unlock, let’s explore how you’ll use them to write
to your surface. Here is the basic breakdown of the code, minus the actual writing of the pixels:

//set up the surface desc
DDSURFACEDESC2 ddsd;
DDSD_Clear(&ddsd);
//lock the surface (lpddsTex is the texture surface)
lpddsTex->Lock(NULL,&ddsd,DDLOCK_WAIT,NULL);
//retrieve the pitch and the pointer to surface memory
LONG lPitch=ddsd.lPitch/sizeof(WORD);
WORD* pSurface=(WORD*)ddsd.lpSurface;
///////////////////////////////
//do whatever drawing here
///////////////////////////////
//unlock surface
lpddsTex->Unlock(NULL);

A brief note about lPitch and pSurface: these correspond to the lPitch and lpSurface members of
DDSURFACEDESC2, and they let you write directly to a surface’s memory buffer. pSurface is the pointer
itself, and it’s a void*, because Lock works on all manner of surfaces, which might have different bits per
pixel. lPitch is the length of a scan line, in bytes. It might or might not be the actual width of the sur-
face, so always use lPitch instead of the width.

You’ll notice that I cast pSurface to WORD* (WORD is the same as unsigned short). I did so because you
are primarily working in 16-bit color, and a WORD has 16 bits, which makes it really easy to use pSurface
as an array.

I also divided lPitch by sizeof(WORD) (which is 2) so that lPitch now measures the size of a horizon-
tal row of pixels in WORDs rather than bytes. This has some important ramifications. For example, this is
how to read and write a pixel:

//read pixel
WORD pel=pSurface[x+y*lPitch];//retrieve pixel at x,y
//write pixel
pSurface[x+y*lPitch]=0;//set pixel at x,y to 0 (black)

The Much-Anticipated ISO3D

674

Pretty simple, right? Now you can read and write pixels on the lowest level DirectX allows, and you can
now load your image onto a texture surface, even with the alpha information.

Loading Pixel Data
You will load pixel data by loading the image into a CGDICanvas object (which you can’t BitBlt directly,
but it’s good at loading graphics anyway), determining which color to use as the transparent color (black
is easiest), locking the surface, and converting the pixels in the GDICanvas to the format of the surface
using ConvertColorRef from DDFuncs. You have to add just a little bit of code, because of the
alpha information.

Therefore, the code for converting information on a CGDICanvas onto a texture surface looks something
like the following:

//variables
COLORREF crColor;
COLORREF crTransparent;
int x,y;
DWORD ddColor;
CGDICanvas gdic;
//load the image
gdic.load(“texture.bmp”);
for(y=0;y<TEXHEIGHT;y++)
{

for(x=0;x<TEXWIDTH;x++)
{

//grab color
crColor=GetPixel(gdic,x,y);
//convert color
ddColor=ConvertColorRef(crColor,&ddpf);
//check for transparency
if(crColor!=crTransparent)
{

//add non-transparent alpha value
ddColor|=ddpf.dwRGBAlphaBitMask;

}
//set pixel on surface
pSurface[x+y*lPitch]=(WORD)ddColor;

}
}

Isometric Game Programming with DirectX 7.0

TeamLRN

675

Place this code (or something very similar) between the surface’s Lock and Unlock. The texture will be
properly loaded onto the surface, and you will be nearly ready to start rendering it.

Render States
You have one last stop to make before you actually can do transparency in D3D, and that is letting
Direct3D know what you are doing—namely, that you want to use its alpha testing capabilities. For you
to do so I must introduce a new method of IDirect3DDevice7—SetRenderState.

HRESULT IDirect3DDevice7::SetRenderState(
D3DRENDERSTATETYPE dwRenderStateType,
DWORD dwRenderState

);

This function returns D3D_OK on success and D3DERR_* values on failure. dwRenderStateType specifies
which render state you want to set, and dwRenderState specifies what you want to change the render state
to. Confused? I’m not surprised. It’s a pretty vague explanation for a pretty vague concept.

Direct3D is a state machine, which is sort of like being a big struct with a whole bunch of members,
where the value to which any of these members are set changes the way in which it operates. For example,
one member might control what type of lighting or shading to use, or whether to use shading at all. This
is what render states are—just little values stored who-knows-where that affect the behavior of Direct3D.

Up until now, you’ve been using the default values of all the render states. This was fine for what you were
doing, but it’s no longer sufficient, because you want to make use of alpha stuff as transparency. You need
to change three render states: D3DRENDERSTATE_ALPHATESTENABLE, D3DRENDERSTATE_ALPHAREF, and
D3DRENDERSTATE_ALPHAFUNC.

The first, D3DRENDERSTATE_ALPHATESTENABLE, is a BOOL that specifies whether or not alpha testing is
used. The default value is FALSE, so you must set it to TRUE. Make sure you use capital letters, since the
BOOL is not the same as bool.

Next, D3DRENDERSTATE_ALPHAREF contains a reference alpha value (from 0 to 0xFF) against which you
will be testing the texture’s alpha values. To this render state, you will assign 0x7F. This value is of particu-
lar importance because of the 1:5:5:5 format, which has only a single bit for alpha. If the alpha bit is 0,
the actual alpha (in the 0 to 0xFF range) is 0. If the alpha bit is 1, the actual alpha is 0x80, which is
greater than your alpha test value.

Last, D3DRENDERSTATE_ALPHAFUNC needs an enumerated type called D3DCMP, which contains values like
D3DCMP_NEVER, D3DCMP_ALWAYS, and D3DCMP_GREATER. The default value is D3DCMP_ALWAYS, so you need
to change it to D3DCMP_GREATER.

The Much-Anticipated ISO3D

676

The following is the code to set all your render states for alpha testing:

lpd3ddev->SetRenderState(D3DRENDERSTATE_ALPHATESTENABLE,TRUE);
lpd3ddev->SetRenderState(D3DRENDERSTATE_ALPHAREF,0x7F);
lpd3ddev->SetRenderState(D3DRENDERSTATE_ALPHAFUNC,D3DCMP_GREATER);

With the render states set, Direct3D is ready for your alpha test rendering. Now just supply a triangle
strip with the proper vertices and set IDirect3DDevice7’s texture, and you can blit a partially transparent
sprite, just like you did in DirectDraw (except that using Direct3D is a ton faster).

Setting Up Vertices
Since you are basing the rendering of a tile on its center, you want to be able to do something similar for
your sprites—that is, you want to have anchors of a sort. Figure 25.4 shows the basic layout of the
bounding rectangle. You can easily supply this information within the image itself by adding an extra col-
umn on the right and an extra row on the bottom and placing some sort of control pixel for centering
there, just as you did for CTileSet. When rendering, you use the entire texture, so there is no need to have
the width and height indicated with these control pixels. Figure 25.5 shows what I mean.

Isometric Game Programming with DirectX 7.0

(x-anchorx,y-achory) (x-anchorx+TEXWIDTH,y-anchory)

(x-anchorx,y-anchory+TEXHEIGHT)

(x,y)

(x-anchorx+TEXWIDTH,y-anchory+TEXHEIGHT)

Figure 25.4

Vertex information

for a sprite

TeamLRN

677

Figure 25.6 shows the four vertices and two polygons that make up the triangle strip needed to make up
the sprite, and Figure 25.7 shows the texture coordinates corresponding to these points. You will use all
this information to display the sprite on-screen.

The Much-Anticipated ISO3D

Figure 25.5

Anchor information for sprite

(x-anchorx,y-achory) (x-anchorx+TEXWIDTH,y-anchory)

(x-anchorx,y-anchory+TEXHEIGHT)

(x,y)

(x-anchorx+TEXWIDTH,y-anchory+TEXHEIGHT)

V1 V2

V3 V4

Poly1

Poly2

Figure 25.6

Triangle strip for

a sprite

678

3D Transparency Example
IsoHex25_3.cpp is the 3D transparency sample program (see Figure 25.8). It is based on
IsoHex25_2.cpp, with the addition of some code that loads a sprite texture and shows a scene of isomet-
ric tiles with the sprite in the center of the screen, so you can see that it is indeed a partially transparent
texture. All of the code in this example has been shown before, so I won’t repeat it here.

Isometric Game Programming with DirectX 7.0

(x-anchorx,y-achory) (x-anchorx+TEXWIDTH,y-anchory)

(x-anchorx,y-anchory+TEXHEIGHT)

(x,y)

(x-anchorx+TEXWIDTH,y-anchory+TEXHEIGHT)

V1 V2

V3 V4

Poly1

Poly2

(0.0,0.0) (1.0,0.0)

(1.0,1.0)(0.0,1.0)

Figure 25.7

Texture coordinates

for a sprite

Figure 25.8

IsoHex25_3.cpp, the 3D

transparency sample

program.

TeamLRN

679

Now you have the ability to do in Direct3D all that you have done in DirectDraw. You can blit tiles and
sprites. In DirectDraw, you would have been totally happy with just this. However, this is 3D, and there
are a lot more options available to you now, and you have a new set of difficulties to overcome.

Dynamic Lighting
One feature you can add to something rendered with Direct3D is dynamic lighting. You won’t actually be
using the Direct3D lighting mechanism (you’ll be doing it yourself), but since you can change the colors
of a vertex and have portions of a texture appear brighter or dimmer, you can certainly do some cool
“lighting” effects.

The only thing you need to change is the color of the vertex, so in your calls to VERTEX_Set, you can just
vary the intensity of the color attributes. Go ahead and load IsoHex25_4.cpp. This example is based on
IsoHex25_2.cpp, with only minor modifications to Prog_Loop.

void Prog_Loop()
{

//clear the viewport to black
lpd3ddev->Clear(0,NULL,D3DCLEAR_TARGET,0,0,0);
//grab the mouse position
POINT ptMouse;
GetCursorPos(&ptMouse);
//convert mouse position to floating point values
D3DVALUE MouseX=(D3DVALUE)ptMouse.x;
D3DVALUE MouseY=(D3DVALUE)ptMouse.y;

The area around the mouse pointer will appear lit up compared to the rest of the screen. In order to make
that happen, though, I first needed the mouse position—hence the call to GetCursorPos. Since D3D
deals with floating-point values, I converted the mouse position into D3DVALUE’s MouseX and MouseY.

//declare vector x and y for lighting calculations
D3DVALUE VertexX;
D3DVALUE VertexY;
//distance
float distance;
//start the scene
lpd3ddev->BeginScene();

Also, I’m using a few extra variables for lighting calculations. The calculations are based on the distance of
a vertex from the mouse. VertexX and VertexY contain the coordinate of the vertex, and distance is
used to calculate the distance (in pixels) from the mouse pointer to the vertex.

The Much-Anticipated ISO3D

680

//center positions
D3DVALUE CenterX,CenterY;
//loop through map
for(int y=0;y<MAPHEIGHT;y++)
{

for(int x=0;x<MAPWIDTH;x++)
{

//calculate world coordinates for center of tile
CenterX=(float)(x*TILEWIDTH+(y&1)*(TILEWIDTH/2));
CenterY=(float)(y*(TILEHEIGHT/2));

This is the normal stuff that plots the tiles using the staggered plotting equation. It doesn’t change a bit.

//set up the vertex
//v1
VERTEX_Set(&vert[0],CenterX-TILEWIDTH/2,

CenterY,D3DRGB(1.0,1.0,1.0),0.0,0.0);
//distance calculation
VertexX=vert[0].sx;
VertexY=vert[0].sy;
distance=sqrt((VertexX-MouseX)*(VertexX-MouseX)+

(VertexY-MouseY)*(VertexY-MouseY))+1.0;
//max distance of 128
if(distance>128.0) distance=128.0;
//convert distance to 0.0 to 0.5
distance/=256.0;
//change color
vert[0].color=D3DRGB(1.0-distance,1.0-distance,1.0-distance);

And here’s the lighting calculation for the first vertex. First grab the x- and y-coordinates of vert[0], and
then do the distance calculation with the mouse position. Next, make sure that you clamp the distance to a
maximum value (in this case, I picked 128 as the maximum distance). So, a vertex can have a “distance” of
anywhere between 0.0 and 128.0 from the mouse. Next, convert this number to a number between 0.0
and 0.5 by dividing by 256. Since you specify color as being between 0.0 and 1.0, this is necessary if you
intend to use some sort of lighting. Finally, set the color of the vertex, all components set to 1.0-dis-
tance, so that a vertex at distance 0 will have a color of D3DRGB(1.0,1.0,1.0), or pure white, and a
vertex at or beyond the maximum distance will be at D3DRGB(0.5,0.5,0.5), or dark gray.

//v2
VERTEX_Set(&vert[1],CenterX,

CenterY-TILEHEIGHT/2,D3DRGB(1.0,1.0,1.0),1.0,0.0);

Isometric Game Programming with DirectX 7.0

TeamLRN

681

//distance calculation
VertexX=vert[1].sx;
VertexY=vert[1].sy;
distance=sqrt((VertexX-MouseX)*(VertexX-MouseX)+

(VertexY-MouseY)*(VertexY-MouseY))+1.0;
//max distance of 128
if(distance>128.0) distance=128.0;
//convert distance to 0.0 to 0.5
distance/=256.0;
//change color
vert[1].color=D3DRGB(1.0-distance,1.0-distance,1.0-distance);
//v3
VERTEX_Set(&vert[2],CenterX,CenterY+TILEHEIGHT/2,

D3DRGB(1.0,1.0,1.0),0.0,1.0);
//distance calculation
VertexX=vert[2].sx;
VertexY=vert[2].sy;
distance=sqrt((VertexX-MouseX)*(VertexX-MouseX)+

(VertexY-MouseY)*(VertexY-MouseY))+1.0;
//max distance of 128
if(distance>128.0) distance=128.0;
//convert distance to 0.0 to 0.5
distance/=256.0;
//change color
vert[2].color=D3DRGB(1.0-distance,1.0-distance,1.0-distance);
//v4
VERTEX_Set(&vert[3],CenterX+TILEWIDTH/2,

CenterY,D3DRGB(1.0,1.0,1.0),1.0,1.0);
//distance calculation
VertexX=vert[3].sx;
VertexY=vert[3].sy;
distance=sqrt((VertexX-MouseX)*(VertexX-MouseX)+

(VertexY-MouseY)*(VertexY-MouseY));
//max distance of 128
if(distance>128.0) distance=128.0;
//convert distance to 0.0 to 0.5
distance/=256.0;
//change color
vert[3].color=D3DRGB(1.0-distance,1.0-distance,1.0-distance);
//render the triangle strip
LPD3DDEV_DrawTriangleStrip(lpd3ddev,vert,4);

The Much-Anticipated ISO3D

682

}
}
//end the scene
lpd3ddev->EndScene();
//flip
lpddsPrime->Flip(NULL,DDFLIP_WAIT);

}

Do the same lighting calculations for the other vertices and then draw the triangle strip as normal. The
end result looks like Figure 25.9. You can put a light just about anywhere, or even have multiple lights like
this (perhaps torches or something). You can even vary their intensity to make them flicker, and get some
really neat lighting effects. Don’t be afraid to experiment.

Height Mapping
In 2D, your isometric worlds have been horribly flat. Sure, there may be trees or units or other things that
“stick up” out of the map, but the terrain itself is flat and boring.

Direct3D’s entire job is to make things that look 3D. So, it’s only fitting that you can use it to give your
isometric maps an illusion of depth, even within an isometric projection. This method is called height map-
ping. It takes information from a grid of heights and applies it to the vertices of your tiles. In ISO3D, this
is very easy, since “up” goes in the same direction as “north.” For example, if a vertex is 32 pixels “up,”
you just subtract 32 from its y-coordinate. If it’s 32 pixels down, you add 32 to y.

Isometric Game Programming with DirectX 7.0

Figure 25.9

IsoHex25_4.cpp; some

light is shed.

TeamLRN

683

Of course, in order to make the height map look right, you need to make neighboring tiles share vertices
with their neighbors. The easiest way to do so is to use a diamond map (since it is so similar to a rectangu-
lar grid) and place another grid on top of it that keeps track of the lines between the tiles and the inter-
sections of those lines. If you’re using another type of map, you just have to be more careful about keeping
heights matched between tile vertices.

Having said that, go ahead and load IsoHex25_5.cpp, shown in Figure 25.10. It is based on IsoHex25_2
and shows a random height map. This example combines a small amount of lighting (higher vertices are
more lit than lower vertices) and has a variable-height terrain. Normally, you wouldn’t have such rugged
terrain, but I wanted to accentuate what you can do with height mapping.

The following code sets up the height map. The height map itself is an array with a first dimension size of
MAPWIDTH+1 and a second dimension size of MAPHEIGHT+1.

The Much-Anticipated ISO3D

NOTE
A 20✕20 diamond map has 21✕21 lines, because there is an extra line at the end of the
map as well as before each tile row/column.

Figure 25.10

IsoHex25_5.cpp

684

//set up the height map
int x;
int y;
//loop through x
for(x=0;x<=MAPWIDTH;x++)
{

//loop through y
for(y=0;y<=MAPHEIGHT;y++)
{

//assign random value
HeightMap[x][y]=(float)(rand()%32);

}
}

This is a simple-enough bit of code. Loop through all the positions in the height map, and assign them a
random value of 0 through 31. After the map is initialized, the only other major change to this program is
in Prog_Loop, during the actual rendering.

//loop through map
for(int y=0;y<MAPHEIGHT;y++)
{

for(int x=0;x<MAPWIDTH;x++)
{

//calculate world coordinates for center of tile
CenterX=(float)((x-y)*(TILEWIDTH/2)+320);
CenterY=(float)((x+y)*(TILEHEIGHT/2));
//set up the vertex
//v1
VERTEX_Set(&vert[0],CenterX-TILEWIDTH/2,CenterY

-HeightMap[x][y+1],D3DRGB(1.0,1.0,1.0),0.0,0.0);
vert[0].color=D3DRGB(0.5+HeightMap[x][y+1]/64.0,

0.5+HeightMap[x][y+1]/64.0,0.5+HeightMap[x][y+1]/64.0);
//v2
VERTEX_Set(&vert[1],CenterX,CenterY-TILEHEIGHT/2

-HeightMap[x][y],D3DRGB(1.0,1.0,1.0),1.0,0.0);
vert[1].color=D3DRGB(0.5+HeightMap[x][y]/64.0,

0.5+HeightMap[x][y]/64.0,0.5+HeightMap[x][y]/64.0);
//v3
VERTEX_Set(&vert[2],CenterX,CenterY+TILEHEIGHT/2

-HeightMap[x+1][y+1],D3DRGB(1.0,1.0,1.0),0.0,1.0);
vert[2].color=D3DRGB(0.5+HeightMap[x+1][y+1]/64.0,

0.5+HeightMap[x+1][y+1]/64.0,0.5+HeightMap[x+1][y+1]/64.0);

Isometric Game Programming with DirectX 7.0

TeamLRN

685

//v4
VERTEX_Set(&vert[3],CenterX+TILEWIDTH/2,

CenterY-HeightMap[x+1][y],D3DRGB(1.0,1.0,1.0),1.0,1.0);
vert[3].color=D3DRGB(0.5+HeightMap[x+1][y]/64.0,

0.5+HeightMap[x+1][y]/64.0,0.5+HeightMap[x+1][y]/64.0);
//render the triangle strip
LPD3DDEV_DrawTriangleStrip(lpd3ddev,vert,4);

}
}

There is a change to each call to VERTEX_Set to incorporate the appropriate HeightMap value, subtracted
from the y-coordinate. After each vertex is set up, a calculation is done based on the height of the vertex
to determine the color of that vertex. All in all, it’s a pretty simple example, but it looks pretty sweet.
Play around with it.

Tile Selection/Mousemapping
So, now that you’ve seen what Direct3D makes very easy, it’s time for the other shoe to drop. You may have
looked at the height map example and wondered, “How the heck do I use a MouseMap on this?”The
short answer is, you don’t use a MouseMap in ISO3D. The long answer is, you do use a MouseMap, just
not one like you are used to. Instead of using a small MouseMap that is repeated across the tilemap, you
will be constructing a full-screen MouseMap. Why? Because with ISO3D—and especially when you use a
height map—no set area is taken up by a tile’s pixels. You will counteract this situation by having an extra
surface that Direct3D will write your MouseMap onto.

One of the properties of isometric maps is that the x-coordinates align perfectly, even when you use a
height map, since the z-coordinate affects only the y and leaves the x alone (see Figure 25.11). You can
use this property to your advantage, because it divides the map into horizontal strips. This makes part
of mousemapping easy, because you can narrow down which tiles the mouse is on, depending on the
mouse’s x position.

The Much-Anticipated ISO3D

686

Unfortunately, the same cannot be said for the y position, because in a height map, it can vary widely.
This is the part you have to do. The simplest solution that I have found is to assign a number to each
row, starting with the number 1 for the first row (0 means “off the map”), and keep adding 1 to this
number for additional rows.

I should point out that these are horizontal rows, not the diagonal rows you find on a diamond map. For
slide and staggered maps, calculating which row a tile is on is easy, since it is just MapY+1. For diamond
maps, it is MapX+MapY+1.

So, why not give each tile its own color? Well, you can do that, too, but it limits your map’s size. In 16bpp,
you have 65535 colors (not counting 0). This allows a map no larger than 255✕255 if you are using the
map colors strictly for tiles and not for object selection. In the one-color-per-row solution, you can have as
many as 65535 rows. In a diamond map, this means that up to a 32767✕32767 map is supported, and in
other styles of map, up to 65534 rows are supported. Since you are unlikely to even come close to these
limits, I’d say that one color per row is a good long-term solution.

You are left with only one problem: converting a row number into a color. Since Direct3D uses the
D3DRGB macro to construct colors, you’ll have something of a hard time converting. As luck would have it,
the D3DCOLOR type is just a DWORD with 8 bits set aside for each of alpha, red, green, and blue. So, you can
construct a color manually and guarantee that it will be unique for the row. In order to do that, however,
you need to do some bit shifting.

You are in 16-bit mode, meaning either 5:6:5 or 5:5:5, and D3DCOLOR is 8:8:8, so you must ignore the
2 to 3 bits of each color component when constructing your colors from row numbers. This isn’t really
a big deal.

Isometric Game Programming with DirectX 7.0

Figure 25.11

Alignment of

x-coordinates

TeamLRN

687

//5:6:5
//dwRow is row number
DWORD dwColor;
DWORD dwBlue=(dwRow & 0x1F)<<3;//and with mask, shift right by 3
DWORD dwGreen=((dwRow>>5)&0x3F)<<2;//and with mask, shift right by 2
DWORD dwRed=((dwRow>>11)&0x1f)<<3;//and with mask, shift right by 3
//construct the color
dwColor=(0xFF<<24)+(dwRed<<16)+(dwGreen<<8)+dwBlue;

Here’s the equivalent code if you’re unlucky enough to still have a 5:5:5 card (there’s no shame in having
an old computer):

//5:5:5
//dwRow is row number
DWORD dwColor;
DWORD dwBlue=(dwRow & 0x1F)<<3;//and with mask, shift right by 3
DWORD dwGreen=((dwRow>>5)&0x1F)<<3;//and with mask, shift right by 3
DWORD dwRed=((dwRow>>10)&0x1f)<<3;//and with mask, shift right by 3
//construct the color
dwColor=(0xFF<<24)+(dwRed<<16)+(dwGreen<<8)+dwBlue;

It seems silly, really. You take a number and convert it to a D3DCOLOR, which Direct3D converts into the
surface’s pixel format (it winds up as the same number you encoded in the first place).

So, how do you read this number? Simply lock the surface you are using for the MouseMap, and read the
color at MouseX, MouseY. It’s just that easy. From here, you can use the vertical strip that MouseX is in, and
use the row number, and figure out which tile you are on. I’ll let you figure out how on your own.

If you want to include object selection in your MouseMap, you must do only a few things. First, you must
have a monochrome version of the sprite’s texture (white where the image exists and black where it does
not), which you load just like any other sprite texture (that is, alpha information). Next, you set aside one
of the color bits as an indicator of an “object” (usually, this will be the highest red bit). Finally, you
draw this texture on your additional rendering target. This makes object selection a cinch! It does limit
the number of objects, but if you have more than 32,000 objects, there’s really nothing I can do to help
you make it fast!

The Much-Anticipated ISO3D

688

Summary
We’ve touched on many subjects in this chapter without going deeply into any, because the information
found herein relies entirely on the foundation of earlier chapters. For example, I didn’t discuss how to do
coastlines or roads on an ISO3D map because you’re smart enough to be able to translate the 2D version
to the 3D version, and I don’t want to insult your intelligence or unnecessarily repeat subject matter.
Everything is moving to 3D now. For a while, isometric graphics were holding out in 2D land. As time
progresses, doing so will be harder and harder, so it's best to accept the inevitable and just go to ISO3D—
but not before you have mastered the fundamentals of ISO2D.

Isometric Game Programming with DirectX 7.0

TeamLRN

The Road
Ahead

• Current Trends

• What Lies Ahead

CHAPTER 26

690

It looks like we’ve reached the end of the book. I hope I haven’t left you hanging too much; I tried
my best to cover all the bases adequately. If I haven’t, I sincerely apologize, and I promise to make

it up to you.

I started out easy, with basic WIN32 coding. It was by no means a comprehensive lesson in WIN32. I
didn’t talk about a whole bunch of stuff, including multithreaded programming, using controls such as
buttons and textboxes, and so on. Then I moved into DirectX—namely, DirectDraw and DirectSound.
I purposely didn’t cover DirectInput, DirectShow, DirectPlay, DirectMusic, and any other
DirectSomethings. I just put in what I thought was important. You might want to get a more well-
rounded DirectX education. Also, I used DirectX 7 instead of 8, so you’ll probably want to update to
a newer version at some point.

With a firm foundation in place in WIN32 and DirectX, I got into the nuts and bolts of isometric graph-
ics, the various types of maps, how to scroll, and object placement and selection. All of this stuff works
mostly the same no matter what platform you’re programming for or what type of game you’re making.

Next, it was time for a bit of optimization, containing some of the wackiest code I’ve ever written. As a
side note, I don’t actually write code like what you’ve seen in this book. My usual approach to coding is a
lot more object-oriented, but I was trying to write code that was pretty easy to read (I know my normal
code takes an interpreter to decipher).

I touched on isometric art issues, tile slanting, and tile ripping. I also touched on world building and artifi-
cial intelligence. I truly wish I could have done more with AI, but I am not exactly a master of it (my skills
lie mainly with graphics), and besides, there are entire volumes written about AI that cover it much better
than I could.

Finally, I gave you a taste of Direct3D and showed you a few neat things you can do with 3D graphics to
simulate 2D graphics while not overly complicating the rendering. You may be alarmed that I covered it in
only two chapters. Well, in my defense, I can say that all the rest of the knowledge about isometric engines
is in the chapters leading up to the Direct3D chapters.

If I didn’t answer all your questions, or if I brought up more, come find me. I’ve got a Web site dedicated
to support of this book (http://www.isohex.net). You can also e-mail me at tanstaafl@gamedev.net. I’ll
either try to answer your concern myself or refer you to a Web page that answers your question.

And hey, you can always come find me at the GDC or XGDC. I’m the fat guy with a crew cut wearing a
GameDev.net t-shirt.

Isometric Game Programming with DirectX 7.0

TeamLRN

691

Current Trends
The entire world, it seems, is programming 3D games, although the isometric perspective is still quite
popular, mainly for strategy and role-playing games. These games too are moving into 3D, even if that just
means using 3D acceleration to render in 2D.

Why is this so? There are a number of factors. First, publishers won’t put out any more 2D games except
as value titles (things like “1,000 Games” packages that you see on the rack in department stores and elec-
tronics stores). Even in value titles, they are usually bundled with a bunch of other 2D games.

Second, technology is continuing to grow by leaps and bounds. At the beginning of 2000, I had a K6-2
300MHz computer with a lousy video card. By the end of the year, I was using an Athlon 700MHz with
a Geforce 2 GTS, which still isn’t top of the line. (If you’re reading this any significant amount of time in
the future—that is, 2002 or later—please try not to snicker at my puny computer.) The theory is that a
big-title game should make use of the most modern technology available. If you’re anything like me, you
understand that not all games need to be 3D. Unfortunately, the rest of the world disagrees—or, at least,
it seems to.

Third, gamers are like drug addicts; they need something new and better with each game they buy in order
to get their high. This is especially true of first- and third-person shooter gamers. Gamers who are into
strategy games and RPGs usually don’t require that all the graphics be top-notch. The trick is to reach this
group with your product. Since a publisher won’t publish a 2D game, this makes it a little bit tougher, but
that’s where the Web comes in.

What Lies Ahead
Why are you still reading, when you should be coding a game? There’s no time like the present, you know.
I don’t exactly have a crystal ball to look into the future and anticipate all the problems that are coming.

What I think is ahead: a more complete move to 3D. If DirectX 8.0 is any indicator, traditional 2D will,
for the most part, be dead. Why blit partially transparent rectangles when you can texture map while using
dynamic lighting and height mapping? The stuff that is currently new in video card technology will
become commonplace (if the feature is used a lot) or will go away (if no one uses it). This is the way of
things in technology.

The Road Ahead

692

What’s ahead for you is totally up to you. Following are just a few bits of wisdom to ponder:

• It doesn’t happen overnight. It takes a certain mind-set that not everyone has to be a solid game
programmer. You must be creatively logical and logically creative. Both hemispheres of your brain
must be fully engaged.

• Programming is programming. The rest is just syntax. Currently, I program in C++ using Microsoft Visual
C++ 6.0 and make use of the DirectX API. This has not always been so and will not always be so. I have no
particular loyalty to any operating system, compiler, or API. I used to program in BASIC and Pascal. I only
moved to C++ in 1998. Lately, I’ve been learning to program for the Cybiko, so as of this moment, I am a
cross-platform programmer. Here’s the point: you don’t want to be a “Windows programmer” or a “DirectX
programmer”—you want to be a programmer. Programmers solve the problems of the day using the tools of
the day, and they create the problems of tomorrow (job security, you know).

• Games are supposed to be fun. You probably already know that, but some people forget and they need to be
reminded. Also, if you’re just doing this as a hobby, game programming should also be fun. If neither the
game nor making it is fun, stop and move on to something else. You can always take up gardening.

• Start small. I’ve seen it a thousand times: some young dude gets a compiler and a book and gets it into his
head that he can program the greatest game ever with full 3D graphics, multiplayer, surround sound, and so
on. This just doesn’t happen. Beware of “feature creep,” where you start adding ideas to the program in the
middle of making it, thus guaranteeing it will never be done.

• Finish what you start. This goes along with the previous item. When you start small, finishing is easier, pro-
vided that you keep feature creep in check. Also, by finishing a project, you boost your morale a great deal,
which makes finishing other projects easier. Oh, and by “finished,” I don’t mean “playable” or “fully function-
al.” I mean a game that has been polished to publishable or near-publishable quality.

• Don’t be afraid to fail. This is really important. If something is unfamiliar to you, try it out. Attempt to
muddle through it. Leave a long trail of runtime errors and page faults and blue screens of death in your
wake. Be patient.

• Don't be afraid to get help. Buy books. Buy lots of books. Read them. Do the sample programs. Modify
the sample programs until they break (that’s what they’re for). Go to Web sites and look for articles, post
your questions on message boards, go to game programming chat rooms, find the game programmers on ICQ
and AIM. No matter what your programming level, there are programmers better than you are (apologies if
this book happens to get into the hands of the best programmer in the world).

“Never give up; never surrender!“ “Do, or do not. There is no try.“ (Insert words of encouragement here.)
All right...enough is enough. Stop reading and go make a game or something. Shoo!

Isometric Game Programming with DirectX 7.0

TeamLRN

This page intentionally left blank

Part V

Appendices

TeamLRN

Loading
Sample

Projects into
the IDE

APPENDIX A

696

In this appendix, I’ll show you how to load the examples into your compiler so that you can build
them and run them. I wrote all the examples for this book using VC++ version 6. This isn’t to say

that they won’t work on other versions of VC++ or that you can’t get them to work on other compilers.

To demonstrate the loading of an example, I will use IsoHex1_1.cpp. I have chosen this example because
it contains only one file. At the top of the main file (the only file in this case), you can see a number of
commented lines.

/**
IsoHex1_1.cpp
Ernest S. Pazera
08APR2000
Start a WIN32 Application Workspace, add in this file
No other libs are required
***/

Within this area, I have placed applicable information about the example: the name of the file, the name of
the author (me!), when I wrote it, how to start a project for it, and what other files or libraries are required
to make the program work. As you get further along, you’ll have more than just a single file in your proj-
ects. You’ll never quite get to the level of a real-world project, which can contain hundreds of source files,
but expect at some point to reach at least half a dozen.

To load an example into your compiler, do the following:

1. Start your compiler and select the menu option File, New, as shown in Figure A.1. This brings
up the dialog box shown in Figure A.2.

Isometric Game Programming with DirectX 7.0

TeamLRN

697

2. Make certain you are on the Projects tab.
3. You can create many different types of projects. My examples are all WIN32 applications, so

click on the line that says Win32 Application, and enter a project name in the Project name
textbox at the top right (see Figure A.3).

Appendix A

Figure A.1

Selecting File, New from

the IDE

Figure A.2

The new project dialog box

698

4. Click on the OK button. You’ll see the dialog box shown in Figure A.4.

5. Make certain that the “An empty project.” option is selected, and click on the Finish button.

You will be taken to your new, empty workspace. Now, copy any of the needed files into the project’s fold-
er. (The default location when you install VC++ is C:\Program Files\Microsoft Visual
Studio\MyProjects\ProjectName\, where ProjectName is whatever name you gave your project.)

Isometric Game Programming with DirectX 7.0

Figure A.3

Giving a project a name

(always be sure to select

WIN32 Application)

Figure A.4

The WIN32 Application

Wizard

TeamLRN

699

After you have copied the applicable files, you must add them to your project by doing the following:

1. Select Project, Add To Project, Files, as shown in Figure A.5. The dialog box shown in Figure
A.6 will open.

Appendix A

Figure A.5

Adding files to a project

Figure A.6

The standard file open dialog

700

2. Select whatever .cpp or .h files the example requires, and click on OK.

You can now examine the files from the File View tab in the compiler’s leftmost pane by manipulating the
tree view (see Figure A.7).

You can build the executable by pressing F7 or by selecting Build, Build. After it is built, you can run it by
pressing Ctrl+F5 or by selecting Build, Execute. There are also buttons on the toolbar for these tasks. If
you run before you have rebuilt, the compiler will ask you if you want things rebuilt (compilers are getting
smarter and smarter).

That’s really all there is to it, at least until you get into DirectX in Chapter 4 (I’ll show you what you need
to do then).

Coding Conventions
After you spend any amount of time looking at code I have written, you’ll notice that I precede the names
of variables with letters such as “dw” and “lp” and “n.”This is called Hungarian notation. I don’t follow
all the convention to the letter, but I’ve tried to be consistent for the book’s sake. Table 0.1 lists some of
the most common prefixes I commonly use. Knowing these will help you when you read Microsoft docu-
mentation, because all Microsoft code uses Hungarian notation.

Isometric Game Programming with DirectX 7.0

Figure A.7

The tree view of files, in which double-clicking on a file

displays the file’s contents in the main viewing pane

TeamLRN

701

My indentation style is pretty normal. The contents between a { and a } are indented. The initial { is on a
new line, as shown here:

for(int x=0;x<10;x++)
{

//code here is indented
}

This might be a slight change if you’re used to indenting in the more traditional C style:

for(int x=0;x<10;x++){
//code here is indented

}

I was never very fond of this style (I used to program in Pascal), because I like to see the { and } line up
vertically. This is just a matter of taste.

Appendix A

Table A.1 Common Prefixes in Hungarian Notation
Data Type Prefix

bool b

char c or ch

unsigned char (BYTE) uc or by

short int n

unsigned short (WORD) w

int n or i

unsigned int (DWORD) dw

Flags f (usually combined with w or dw)

char* (pointer to a string) lpsz

Pointer p

Long pointer lp

Hexagonal
Tile-Based

Games

APPENDIX B

TeamLRN

703

In my original articles on the topic of isometric graphics, I also spoke of hexagonal graphics, because
they were so similar. In this book, I have primarily concentrated on isometric graphics, but I didn’t

want to leave out people who are into hex (and you know who you are). I also wanted all the hex-specific
stuff to be in one place, where I could just show what differs from iso, for those who are just interested in
the iso stuff (and I imagine most people are interested in iso rather than hex).

Iso versus Hex
Depending on the game you’re making, there are plenty of good reasons to choose iso over hex, or hex over
iso. Some games make more sense one way and seem kind of weird when using the other. This mainly
boils down to a judgment call on your part. If something isn’t working as well using hex, switch to iso to
see if it’s any better. If something just doesn’t seem right in iso, give hex a try.

If you’ve played tabletop strategy games (many of these games are from Avalon Hill, the ones with little
cardboard counters to keep track of units), and you like these games, and you want to make a video game
that is similar, hex is probably your best bet.

Another reason to use hex rather than iso is that hex is different. All kinds of games use iso, but not many
use hex. If you want your game to stand out, hex is a way to do it.

What’s the Difference?
The vast majority of the algorithms for iso can be used for hex, with no change or very little change.
Generally, about the only thing you’ll need to change is the MouseMap. Figure B.1 shows what a hex
MouseMap might look like.

Appendix B

704

Take a look at IsoHexB_1.cpp and its associated files (shown in figure B.2). This example is the exact same
code as IsoHex15_1.cpp, except with different, hexagonal graphics. This example shows you exactly how
easy it is to switch between iso and hex. It also shows that there is nothing you don’t already know about
the rendering of the hexagonal engine. Almost everything is the same. I do suggest that you primarily stick
to staggered maps for hex, unless you have a good reason not to.

Moving around the hex map is slightly different than in iso, but it simply involves the removal of two
directions (in the case of this tile shape, north and south are those directions). So if you don’t move in
those directions, everything will be OK.

Summary
Hexagonal graphics and hexagonal engines are nothing but an isometric graphical engine with a rectangular
block inserted in the middle. I don't mean to belittle hexagonal engines, but this is what they really boil
down to. This book's support site (http://www.isohex.net) has a section dedicated to hex games.

Isometric Game Programming with DirectX 7.0

Figure B.1

Hexagonal MouseMap

TeamLRN

IsoHex
Resources

APPENDIX C

706

Abook about game programming is not complete without a list of other resources you can turn to
for help. This appendix mainly lists Web pages, but I’ve also included a few books on general

game programming and other general programming topics. As luck would have it, this book is the only
book (that I know of) that specifically covers the topic of isometric graphics in games, so I really have no
competition to speak of.

See the Sites
The following is a list of Web sites/pages that might be of interest to you. You’ve probably already been to
several of these in search of knowledge.

IsoHex.net
http://www.isohex.net

This is my own site, specifically for the support of this book. If you are having trouble with some of my
code, or are looking for errata, or have a neat isometric game or tutorial or new technique you’ve written,
come on by. The purpose of IsoHex.net is to build upon the content in the book, and you can contribute
if you like.

I will also keep a list of good sites for isometric information at this site.

GameDev.net
http://www.gamedev.net/gamedev.asp

Apologies to Dave, Kevin, John, and Mike for not listing this page first. GameDev.net is the best game pro-
gramming Web site ever created. I know this because I am one of the members of the company that main-
tains this site.

http://www.gamedev.net/reference/list.asp?categoryid=44

This specific GameDev link is for the list of isometric and other tile-based programming articles on the
site. A few old ones are by me. There’s lots of good stuff there.

XTreme Games
http://www.xgames3d.com/

This is Andre LaMothe’s site. If you don’t know who Andre LaMothe is, well, you should. He’s the series
editor for this book and series; his name is on the cover. He’s the guy who wrote Tricks of the Windows Game
Programming Gurus, as well as a number of other books about game programming. And he plays Metallica
MIDIs on his page.

Isometric Game Programming with DirectX 7.0

TeamLRN

707

Isometrix
http://www.isometrix.org/

Comprehensive resources on isometric algorithms and graphics are few and far between. Before I created
IsoHex.net, this site, run by Yanni Deliyannis, was really the only one. Isometrix is an iso engine based on
an older DOS engine by Jim Adams. If you don’t know who Jim Adams is, just wait. He has a book in
this series that should be coming out soon.

Hit the Books
It would be great if you only needed the information in this book and never needed to go to another.
Unfortunately, it doesn’t work like that. And yes, I know that these books are expensive. Here are a few
selections from my own library I’d like to share.

LaMothe, Andre. Windows Game Programming for Dummies Indianapolis: IDG Books, 1998

This is a great book for learning DirectX and WIN32 programming (it goes into greater detail than I was
able to).

LaMothe, Andre. Tricks of the Windows Game Programming Gurus Indianapolis: Sams Publishing, 1999

Although much of the subject matter in this book and the Dummies book is the same or similar, there is
much more detail in this one. Also, the second edition will cover more 3D graphics.

Drop Me a Line
Web sites come and go, as do Internet service providers. If you want to get in touch with me, your best bet
is probably to e-mail me. For the conceivable future, my e-mail address is tanstaafl@gamedev.net. I also
hang out in IRC on afternet, in the #gamedev channel. My nick is TANSTAAFL.

And before you feel the need to ask, TANSTAAFL stands for “There ain’t no such thing as a free lunch.”

Appendix C

708

Index
1Param member, 8
2:1 ratio isometric tiles, 561
2D sprites in Direct3D, 670–679
3D games, 635, 691
3D transparency example, 678–679

A
Adams, Jim, 286, 707
AddFontResource function, 83
AddRect function, 452
AddRef function, 131, 636
AddTile function, 452
AddUpdate function, 121–122
AdjustanchorSpace function, 390, 392
AdjustScreenSpace function, 390–392
AdjustWindowRectEx function, 54–55
AdjustwindowRect function, 53–55
AdjustWorldSpace function, 390, 392
agents, 238, 240
AI (artificial intelligence), 616

chase algorithm, 618
elementary, 616–620
evade algorithm, 618–619
Pathfinding algorithm, 621–632

AI_COUNT constant, 274
ALTERNATE fill mode, 100
ALTERNATE polygon fill mode, 77–78
anchor member functions, 393
anchor point, 246–247, 253
anchors, 240

coordinates, 244
IsoHex tilesets, 294–296
screen-to-view, 264
tracking, 246

anchor space, 240, 311
member functions, 392–393

AND bitwise operator, 109–110
animated sprite example

cleaning up, 256
main loop, 255–256
Prog_Init function, 254
setting up, 254–255
taking control, 256

applications
activating or deactivating, 34–35
checking message queue for waiting

messages, 8–9
handle to current instance of, 6
paused state, 34

arcade/action genre, 226–227
Ari Feldman Web site, 241
arrays, 481

tilemaps as, 259–261
attached surfaces, 153
axonometric projections, 287

B
back buffers, 441

absence in windowed Direct Draw,
186–187

creation of, 152–154, 664
reasons for using, 153

backgroundts.bmp file, 414
back story, 225
bActive global variable, 35
bClick global variable, 455
BeginPaint function, 28, 56
BeginScene function, 644
bFlash global variable, 504
BGR pixel format, 171
bHilite member, 276
BitBld function, 105–109
BITMAPHeight constant, 108
bitmaps

blank, 102–104, 117
compatible, 102
containing garbage, 103
deleting, 105
loading, 155–158
loading from disk, 103–105
management class, 115–118
usage, 104–111

BITMAPWIDTH constant, 108
bitmasking, 113–115
bitwise operators, 109

combining colors, 110–111
rules for, 114

blank bitmaps, 102, 104, 117
double buffering, 119–122
size, 119

blastMove member, 276
BldFast function, 158, 179–180
BLD function and clippers, 179
blitting

more efficient algorithm, 420–425
order in diamond tilemaps, 363
rectangular area to tile, 571
rectangular tiles, 300
reducing number of blits per frame,

425–433
reducing overhead, 441–442
tiles, 247

blockcount variable, 606
block variable, 606
BltFast function, 166–167, 435

parameters, 436–437
putting values in parameters,

437–439
Blt function, 158–166, 435436
bMap data member, 450
bMoveUnit global variable, 464,

517–518
bouncing ball demo, 156–158,

162–163

Breakout, 230–234
brushes

creation of, 69–70
destroying, 70
example, 71
filling area, 70–73
filling shapes, 101
handle to, 19
hatch styles, 70
outlining regions, 101–102
solid-color, 69–70

buffers
retrieving data into, 183
size required for, 183
sound, 198–200
streaming, 205

Build, Build command, 700
Build (F7) function key, 700

C
CalcAnchorSpace function, 390, 393
CalcFringe function, 589–592
CalcFringeNeighborhood function,

592–593
CalcReferencePoint function, 399
CalcWorldSpace function, 388, 390,

392
CALLBACK function, 9
centering on current unit, 514
CGDICanvas class, 115–119
CGDICanvas object, 674
char buffer, 181
chase algorithm, 618
child windows, 23
chMouseMapLookUp pointer, 332
Civilization II, 286
classes

bitmap management, 115–118
identifiers, 134

Clear function, 642–644
clear method, 490
ClearUpdate function, 121
click-selecting units, 512
client area

area contained in, 52
clearing, 73
invalidating portions, 57
modifying size, 53–54
repainting, 51

client coordinates converting to screen
coordinates, 186–187

ClientToScreen function, 186–187
clippers, 436

assigning to surfaces, 183–184
BldFast function, 179
BLD function, 179
full-screen DirectDraw, 187
not owned by DirectDraw object,

180

Isometric Game Programming with DirectX 7.0

TeamLRN

709

setting up clipping region, 180–183
windowed DirectDraw, 187–188

clipping, 95–101
clipping regions

creation functions, 182
setting up, 180–183
updating, 443–445

ClipScreenAnchor function, 324, 334,
351–352, 357–358

ClipTile function, 439–441
CloseHandle function, 212
closing files, 212
CMouseMap class, 395–401

data members, 397–398
member functions, 398–400

CMouseMap function, 398
(~)cMouseMap function, 398
code, special-case, 340
coding conventions, 700–701
color-blended tile slanting, 562–563
color depths, 60, 139
color fill on surfaces, 162
color key, 166–167
color keys, 163–167
COLORREF pixel format, 61, 169,

171–172
colors

combining with bitwise operators,
110–111

fills, 19
GDI, 61
of position on specified HDC, 62
selection window, 526
text, 86

COM (Component Object Model),
130–131

COM objects and class identifiers, 134
compatible bitmaps, 102
compilers, loading sample programs,

696–700
computer games, 223
constants

IsoHex18_3.cpp file, 493, 495–497
TileMap editor, 265–266

construction/destruction functions,
380–381, 398

content, double buffering, 119–122
continents, 611–613
controls, 229–230
conversion member functions,

393–394
ConvertColorRef function, 175
ConvertDDColor function, 175
cooperative level, 135–136
coordinate system

diamond tilemaps, 360–361
slide tilemaps, 305–306
staggered tile maps, 339–340

COP (coarse object placement), 459

copying
RECT structure, 47
between surfaces, 162–163

CopyRect function, 45, 47
count variable, 486
CreateClipper function, 180
CreateCompatibleBitmap function,

102–103
CreateCompatibleDC function, 58
CreateDevice member function,

638–640
CreateEllipticRgn function, 92–93, 182
CreateFile function, 209–210
CreateFont function, 83–85
Create function, 399
CreateHatchBrush function, 70
CreatePen function, 64
CreatePolygonRgn function, 93, 182
CreateRectRgn function, 94, 182
CreateRoundRectRgn function, 94–95
CreateRoundRgn function, 182
CreateSolidBrush function, 69–70
CreateSoundBuffer function, 198–200
CreateWindowEx function, 21–23,

54–55
CreateWindow function, 21, 54–55
CRenderer class, 446–448, 468–469

member functions, 450–452
RENDERFN function pointer, 448
utilization functions, 452

CRenderer class example
cleanup, 454
initialization, 453–454
main loop, 454–456

CScroller class, 387–395, 435
data member, 389–390
member functions, 390–394

CScroller function, 390
(~)CScroller function, 391
CTilePlotter class, 376–377, 382–383

data members, 379–380
member function, 380–381

CTilePlotter function, 380–381, 570
(~)CTilePlotter function, 380–381
CTileSet class, 248–253, 435, 453, 539

extending, 439–441
member functions, 251–253
private members, 250

CTileset object, 414
CTileWalker class, 386

data members, 384
member functions, 385–386

CTileWalker() member function,
385–386

(~)CTileWalker() member function,
385–386

customizing game play, 229
CWAVLoader, 215–217
CWAVLoader class, 213

D
D3D (Direct3D), 125

as 2D renderer, 635
2Dsprites, 670–679
basics, 636
compiling programs, 650
device creation, 638–640
drawing objects, 642–649
dynamic lighting, 679–682
functions, 661–670
height mapping, 682–685
mousemapping, 385–387
operation of, 635
rendering, 642–649
render states, 675–676
setting up vertices, 676
surface creation, 637–638
tile selection, 385–387
triangles, 635
viewport creation, 640–649

d3d8.lib library, 650
d3d.h header file, 636, 650
d3dim.lib library, 636
D3DRENDERSTATE_ALPHAFUNC

render state, 675–676
D3DRENDERSTATE_ALPHAREF ren-

der state, 675–676
D3DRENDERSTATE_ALPHATESTEN-

ABLE render state, 675–676
D3DRGB macro, 644, 686
D3DTLVERTEX structure, 665
D3DVIEWPORT7 structure, 640–649,

663
DCs (device contexts), 56

bringing, 70
current position, 65
deleting, 105
memory, 58–59
moving information between,

105–109
obtaining, 56–58
placing GDI object in, 59–60
releasing, 57–58

DD (DirectDraw), 125, 133–135
DDBLTFX_Clear function, 174
DDBLTFX_ColorFill function, 174
DDBLTFX structure, 160–162, 164,

174, 406
DDCOLORKEY structure, 164–165
DDFuncs.cpp file, 173, 177, 183, 637,

661–670
DDFuncs.h file, 173, 183, 661–670
DDFuncs library, 453
DDPF_Clear function, 175
ddpfPixelFormat member, 139
DDPIXELFORMAT structure,

139–140, 169–170, 171, 643
ddraw.lib library, 130
DDSCAPS2 structure, 153, 174

Index

710

DDSCAPS_BackBuffer function, 174
DDSCAPS_Clear function, 174
DDSCL_NORMAL mode, 188
DDSD_Clear function, 174, 637–638
DDSD_OffscreenSurface function, 174
DDSD_PrimarySurface function, 174
DDSD_PrimarySurfaceWBackBuffer

function, 174
DDSURFACEDESC2 structure,

138–139, 148–149, 154–155, 168,
185, 637

ddsCaps member, 150–151
dwFlags member, 150
initializing, 144
meaningful members, 149–150
setting up functions, 174
valid members, 150

DD (DirectDraw) wrapper, 173–176
Debug configuration, 130
decibels, 203
deGBitMask member, 171
DeleteObject function, 70, 85, 95
deleting

DCs (device contexts), 105
from linked lists, 485
memory DC (device context), 58
regions, 95

Deliyannis, Yanni, 707
DeltaX function, 315
DeltaY function, 315
DelteDC function, 58
destination color keys, 164
destination surfaces, 253
Destroy function, 399
destroying widows, 27
DestroyMiniMap function, 545–547,

550
devices

creation of, 663
DCs (device contexts), 56
Direct3D creation, 638–640
independence, 56
varying coordinate systems, 56
viewport creation, 653
viewports, 640–649

DI (DirectInput), 125
DiamondMap_TilePlotter function,

362
DiamondMap_TileWalker function,

368–369
diamond shapes, 287
diamond tilemaps

blitting order, 363
coordinate system, 360–361
diagonal axis, 361
extending off-screen, 362
MouseMap component, 294
mousemapping, 369–370
scrolling, 363–364
TilePlotter component, 294

tileplotting, 361–362
TileWalker component, 294
tilewalking, 365–369

digital sound, 191
Direct3D example, 649–650

cleanup, 651–654
global variables, 650–651
initialization, 651–654
main loop, 654–655
Prog_Init function, 651–654

DirectDraw, 634
clippers, 179–184
full-screen, 185
surfaces, 147–177
windowed, 184–188

DirectDrawCreateClipper function,
180

DirectDrawCreateEx function,
133–134, 637

DirectDraw objects
off-screen surfaces, 147
primary surface, 147
secondary surface, 147

direction keys, 506–508
DirectSetup, 125
DirectSound, 191

control flags, 202–205
cooperative level, 197–198
IDirectSound, 196

DirectSoundCreate function, 196–197
DirectX

COM (Component Object Model),
130

components, 125
configuring, 125–130
D3D (Direct3D), 125, 133
DD (DirectDraw), 125, 133–145
Debug configuration, 130
DI (DirectInput), 125
DirectSetup, 125
DirectSound, 191–218
DM (DirectMusic), 125
DP (DirectPlay), 125
DS (DirectSound), 125
initializing structures, 144
interfaces, 131
objects, 130
Project, Settings command, 130
reference counting, 131
Release configuration, 130
version control, 131

DirectX 8, 634
DirectX objects

releasing, 145
dir variable, 590
DispatchMessage function, 26
display modes

bit depth, 140
bits per pixel, 144
color depth, 139

enumerating, 136–143
height, 139, 144
information about, 138
refresh rate, 137
retrieving current, 144
setting, 153
VGA, 137
width, 139, 144
windowed Direct Draw, 185–186

distance variable, 679
DM (DirectMusic), 125
double buffer

creation of, 120
double buffering, 119–122

blank bitmaps, 119–122
DP (DirectPlay), 125
drawing functions, 65–66
drawing lines, 66–69
DrawMap function, 307, 308–309, 313,

355–356, 363
DrawPrimitive function, 644–649, 654

dptPrimitiveType parameter,
645–647

dwVertexTypeDesc parameter,
647–649

lpVertices parameter, 649
parameters, 645

DrawText function, 89–91
DS (DirectSound), 125
DSBCAP_CTRLPAN flag, 204
DSBCAPS_CTRLFREQUENCY flag,

202
DSBCAPS_CTRLVOLUME flag, 203
DSBFREQUENCY_MAX constant, 202
DSBFREQUENCY_MIN constant, 202
DSBFREQUENCY_ORIGINAL con-

stant, 202
DSBPAN_CENTER constant, 204
DSBPAN_LEFT constant, 204
DSBPAN_RIGHT constant, 204
DSBUFFERDESC structure, 199

members, 199–200
nSamplesPerSec member, 202

DSBVOLUME_MAX constant, 203
DSBVOLUME_MIN constant, 203
DSFuncs library, 218
dsound.library, 130
DuplicateBuffer function, 208
duplicating

sound buffers, 208
dwBBitMask member, 171
dwRBitMast member, 171
dwRGBBCount member, 140
dwRop member, 164
dwRowCount variable, 430
dwSize member, 144
dxguid.lib library, 130, 134
dynamic lighting, 679–682

Isometric Game Programming with DirectX 7.0

TeamLRN

711

E
editing panel, 263–264
eight-direction structures, 599
ellipse, 73–74
Ellipse function, 73–74
elliptical region, 92–93
empty method, 490
empty square, 514
end game, 222
EndPaint function, 28, 56
EndScene function, 644
engines, IsoHex versus rectangular, 291
EnumDisplayModes, 136–143
enumerating display modes, 136–143
EnumTextureFormats function,

670–672
EqualRect function, 45, 50
erase method, 490
error checking, 135
evade algorithm, 618–619
event-driven operating system, 7–8
even y tilewalking, 346–347
example programs, loading, 696–700
extended templates, 245
extents, 240, 248
ExtFloodFill function, 70–71

F
FAILED macro, 135
Feldman, Ari, 241
File, New command, 696
files

accessing, 6
closing, 212
creation of, 209–210
opening, 209–210
reading data from, 211–212
WIN32 access, 209–212
writing data to, 210–211

filling
rectangular area, 72–73
shapes, 101

fill modes, 77
FillRect function, 72–73, 103
FillRgn function, 101
fills

color or pattern, 19
GDI objects, 69–73
rectangular area, 158

final game state, 222
FindPath function, 624–625
finishing games, 234–235
Flip function, 153–154
flipping chains, 147, 153–154
fog of war, 553
fonts, 82

background mode, 85–86
bringing to device context, 85
color, 86
creation of, 83–85

destroying, 85
formatting, 89–91
localization, 85
logical units, 85
removing, 83
temporarily loading, 83

FOP (fine object placement), 459
for loop, 485, 528
formatting text, 89–91
fortification/holding position,

512–513
found variable, 606, 628, 630
four-direction structures

CalcRoad functions, 596–598
map structure, 594–595
rendering map location, 595–596
usage, 598

frame buffers
scrolling, 442
updating, 445

frame rate lock, 233
FrameRgn function, 101–102
frames

reducing number of blits per,
425–433

updating, 528
free function, 142
free store, 481
FringeLookUp array, 588
FringeLookUp table, 587
fringes, 579–580

art requirements, 581–584
calculating, 589–593
example, 586–593
lookup table, 584–585
map structure, 587
rendering function, 587–589
tile zones, 584–585

full-screen DirectDraw, 185, 187
function pointers, 378
functions, 377

clipping region creation, 182
construction/destruction, 380–381
DDBLTFX structure, 174
DDSCAPS2 structure, 174
DDSURFACEDESC2 structure, 174
Direct3D, 661–670
IµDirectDraw7 interfaces, 175
LPDIRECTDRAWSURFACE7,

175–176
map type, 381
minimaps, 545
pixel formats, 175
plotting, 381
tile size, 381

FVF (Flexible Vertex Format), 647

G
gameDev.net Web site, 287, 706
game mechanic, 222–223

game programs demand on operating
system and hardware, 6

games
3D, 635
8-bit graphic performance, 186
analysis of, 223–224
arcade/action genre, 226–227
back story, 225
commonality, 224
computer, 223
controls, 229–230
customizing play, 229
definition of, 221
designing, 224–225
documentation, 229
end game, 222
equipment, 221
fairness, 223
features appropriate to, 224–225
final game state, 222
finishing, 234–235
fleshing out, 225
frame rate lock, 233
future of, 691–692
game mechanic, 222
game states, 222
icons, 229
incremental difficulty, 227
initial concept, 225
intangible nature of, 221–222
isometric, 227–229
learning curve, 229
levels or waves, 227
limitations, 235
mini-map, 230
necessary win conditions, 228
necessity of hostiles, 227
obstacles, 226
optional features, 224
planning, 235
playability, 603
polishing, 235
power-ups, 227
power-up system, 226
reasons for playing, 222–223
replayability, 603
rewards, 227
rules, 222
running single frame, 26
starting player with few units, 228
story board, 225
technology and research, 228
tile-based, 238
time working on, 235
turn-based strategy, 228, 492
user interface, 229

game states, 222
IsoHex19_1 file, 515
object selection, 514–537
Reversi, 278–284

Index

712

game state space, 222
GameState variable, 231–233
game turn, 492
GDI (Graphical Device Interface), 44

colors, 61
surfaces, 155–158

GDICanvas.cpp file, 117–118, 120, 156,
177

GDICanvas.h file, 115, 118, 120, 156
GDI objects

destroying, 60
fills, 69–73
pixel plotting, 60–63
placing in DC (device context),

59–60
regions, 92–102

GetAnchor function, 390, 393
GetAnchorSpace function, 390, 392
GetAnchorSpaceHeight function, 390,

392–393
GetAnchorSpaceWidth function, 390,

392
GetAsyncKeyState function, 31–32
GetAttachedSurface function, 153
GetClientRect function, 52, 55–56
GetCurrentPositionEx function, 65–66
GetCursorPos function, 407, 679
GetDC function, 57–58, 155–158
GetDisplayMode function, 144, 185
GetDOS function, 253
GetFileName function, 253
GetFrequency function, 202–203
GetHeight function, 118, 380, 399
GetHWrapMode function, 390, 394
GetMapType function, 379, 380–381,

385–386
GetMessage function, 24
GetPan function, 204–205
GetPixelFormat function, 169
GetPixel function, 62
GetPolyFillMode function, 77
GetReferencePoint function, 399
GetRegionData function, 182–183
GetScreenSpace function, 390–391
GetScreenSpaceHeight function,

390–391
GetScreenSpaceWidth function,

390–391
GetScroller function, 400
GetStockObject function, 158
GetSystemMetrics function, 40
GetTickCount function, 233
GetTileCount function, 252
GetTileHeight function, 380–381
GetTileList function, 253
GetTileWalker function, 400
GetTileWidth member function,

380–381
GetVolume function, 203
GetVWrapMode function, 390

GetVWrapmode function, 394
GetWidowText function, 39–40
GetWidth function, 118, 380, 399
GetWindowInfo function, 38–39
GetWindowRect function, 52–53,

55–56
GetWindowTextLength function,

39–40
GetWorldSpace function, 390–391
GetWorldSpaceHeight function, 390,

392
GetWorldSpaceWidth function, 390,

392
GET_X_LPARAM macro, 34
GET_Y_LPARAM macro, 34
global tilesets, 463
global variables

hInstance parameter’s value in, 16
IsoHex18_3.cpp file, 493, 495–497
IsoHexCore example, 402–403
Reversi, 277–278
TileMap editor, 266

GPMega, 286–287
graphics, 44

oddly-shaped, 113–115
parsing into arrays of rectangles and

points, 245
grayscaling, 574–575
GS_CLICKCENTER game state,

520–524
GS_CLICKSELECT game state,

520–523
GS_CLICKSTACK game state, 520–528
GS_DOMOVE game state, 471–472,

476–478, 494, 502
GS_DONEMOVE game state, 471–472,

478–480
GS_ENDMOVE game state, 494,

502–503
GS_ENDTURN game state, 494,

499–500
GS_FLIP game state, 275
GS_HOLDPOSITION game state,

519–520
GS_IDLE game state, 471–473, 494,

500, 505–507, 514–516, 533–534
GSL_FLIP game state, 282–283
GS_NEWGAME game state, 275, 280
GS_NEXTPLAYER game state, 275,

283–284
GS_NEXTUNIT game state, 498–499,

513–514, 517–519, 536
GS_NONE game state, 275
GS_NULLMOVE game state, 494,

500–501, 505, 519
GS_PICKUNIT game state, 520–523,

528–531, 533–534
GS_SHIPMOVE game state, 501
GS_SKIPMOVE game state, 494, 506
GS_STARTMOVE game state,

471–475, 494, 501–502, 507–508,
519

GS_STARTTURN game state, 494, 497,
516–517

GS_WAITFORINPUT game state, 275
GUID (globally unique identifier), 34

H
HAL device, 639
handles

to brush, 19
to icon, 18
to mouse cursor, 19
ordinary variables, 6

hardware GUID (globally unique iden-
tifier), 34

hatch brush styles, 70
HBITMAP object, 59
HBRUSH object, 59
HDC operator, 118
head node, 482
hearing, operation of, 191
height mapping, 682–685
HEPNs, 64
hexagonal, 287
hexagonal tile-based games, 703–704
hex maps, 287
hex tiles, 287–288

direction of movement, 314
plotting, 304
standard, 301

HFONT object, 59
HINSTANCE, 6
hInstMain global variable, 16
HIWORD macro, 34
hpenNew global variable, 66
HPEN object, 59
hpenOld global variable, 66
HRGN handle, 92
HRGN object, 59
Hungarian notation, 700–701
HWND, 6
HWND_BOTTOM constant, 36
hwnd member, 8
HWND_NOTOPMOST constant, 36
HWND_TOP constant, 36
HWND_TOPMOST constant, 36

I
icons, 18, 229
IDI_APPLICATION system icon, 18
IDirect3D7 object, 636–337, 663
IDirect3DDevice7 object, 636, 638–640
IDirectDraw7 interface, 131, 143

functions, 175
global variable pointing, 133

IDirectDraw7 object, 131, 188
cooperative level, 135–136
creation of, 133
full-screen, 135–136
windowed, 135–136

Isometric Game Programming with DirectX 7.0

TeamLRN

713

IDirectDrawClipper interface, 131
IDirectDrawClipper object, 435–436
IDirectDrawSurface7 interface, 131
IDirectDrawSurface7 object, 131
IDirectDrawSurface7 structure and

empowering user, 176–177
IDirectSound, 196
IDirectSoundBuffer, 215–217
IDirectSound object, 196–197, 218
idMoveUnit global variable, 464
iFringe array, 587
iGameState switch, 279
iGameState variable, 471
iHeight data member, 398
IID_IDirect3DHALDevice device, 639
IID_IDirect3DMMXDevice device, 369
IID_IDirect3DTnLHalDevice device,

639
illegal map locations, 507
images

grayscaling, 574–575
loading, 117
modulation, 575–577
transparent, 163–166

iMapHeight data member, 450
iMapWidth data member, 450
InflateRect function, 50
initialization code, user-supplied,

23–24
input, handling, 533
insert function, 489
insert method, 490
instances owning window, 23
interconnecting structures, 579, 593

eight-direction structures, 599
four-direction structures, 593–598

interfaces, 131
interlocking IsoHex, 298–305
interlocking rectangular tiles, 298
IntersectRect function, 45, 48
InvalidateRect function, 57
iPiece member, 276
IsAnchorCoord function, 394
Iso3D, plotting tiles, 665–670
ISODIRECTION enumeration, 374
IsoDirection function, 319
ISODIRECTION macros, 375
IsoHex, 286–289, 298–305
IsoHex2_3.cpp file, 66–68
IsoHex2_4.cpp file, 71
IsoHex3_1.cpp file, 87
IsoHex3_2.cpp file, 90–91
IsoHex3_3.cpp file, 95–97
IsoHex3_4.cpp file, 107–108
IsoHex3_5.bmp file, 113
IsoHex3_5.cpp file, 111
IsoHex3_6_1.bmp file, 114
IsoHex3_6.bmp file, 114
IsoHex3_6.cpp file, 114
IsoHex3_7.cpp file, 118

IsoHex3_8.cpp file, 120–122
IsoHex5_1.cpp file, 145
IsoHex6_1.bmp file, 156
IsoHex6_1.cpp file, 156
IsoHex6_2.cpp file, 162
IsoHex6_3A.cpp file, 165
IsoHex6_3.cpp file, 163
IsoHex6_4.cpp file, 177
IsoHex7_1.cpp file, 183
IsoHex7_2.cpp file, 188
IsoHex8_1.cpp file, 195
IsoHex8_2.cpp file, 215–217
IsoHex9_1.cpp file, 230–234
IsoHex10_2.cpp file, 256–258
IsoHex10_3.cpp file, 265
IsoHex10_4.bmp file, 273
IsoHex12_1.cpp file, 307
IsoHex12_2.cpp file, 311
IsoHex12_3.cpp file, 321
IsoHex12_3 file, 322–324
IsoHex12_4.cpp file, 251, 334–336
IsoHex13_1.cpp file, 341
IsoHex13_2.cpp file, 350
IsoHex13_4.cpp file, 352
IsoHex13_5.cpp file, 355
IsoHex14_1.cpp file, 362
IsoHex14_2.cpp file, 364
IsoHex14_3.cpp file, 369
IsoHex14_4.cpp file, 370
IsoHex15_1.cpp file, 401–409
IsoHex16_1.cpp file, 414
IsoHex16_2.cpp file, 417–419
IsoHex16_3.cpp file, 425–433
IsoHex17_1.cpp file, 439–441
IsoHex17_2.cpp file, 446–456
IsoHex18_1.cpp file

event handling, 468–469
global variables, 463–464
initialization, 464–465
main loop, 465–467
moving objects, 460–462
rendering function, 468
scrolling, 462

IsoHex18_2.cpp file, 470
global variables, 471–472
GS_DOMOVE game state, 476–478
GS_DONEMOVE game state,

478–480
GS_Idle game state, 472–473
GS_STARTMOVE game state,

473–475
initialization/cleanup, 472
main loop, 472

IsoHex18_3.cpp file, 492
constants, 493, 495–497
event handling, 505–508
game states, 494
global variables, 493, 495–497
GS_DOMOVE game state, 502
GS_ENDMOVE game state, 502–503

GS_ENDTURN game state, 499–500
GS_IDLE game state, 500
GS_NEXTUNIT game state,

498–499
GS_NULLMOVE game state,

500–501
GS_SHIPMOVE game state, 501
GS_STARTMOVE game state,

501–502
GS_STARTTURN game state, 497
main loop, 497–503
rendering function, 503–505

IsoHex19_1 file, 514–537
IsoHex20_1.cpp file, 559–563
IsoHex20_2.cpp file, 563
IsoHex20_3.cpp file, 571–574
IsoHex21_1.cpp file, 586–593
IsoHex21_2.cpp file, 594–598
IsoHex22_1.cpp file, 605–610
IsoHex22_2.cpp file, 611–613
IsoHex23_1.cpp file, 624–631
IsoHex24_1.cpp file, 650–655, 658
IsoHex25_1.cpp file, 665
IsoHex25_2.cpp file, 668
IsoHex25_3.cpp file, 678
IsoHex25_4.cpp file, 679–682
IsoHex25_5.cpp file, 683–685
IsoHexB_1.cpp file, 704
IsoHexCore engine

files, 372
IsoHexCore.h file, 401
IsoHexDefs.h file, 373–375
IsoMouseMap.cpp file, 395–401
IsoMouseMap.h file, 395–401
IsoScroller.cpp file, 387–395
IsoScroller.h file, 387–395
IsoTilePlotter.cpp file, 376–383
IsoTilePlotter.h file, 376–383
IsoTileWalker.cpp file, 383–387
IsoTileWalker file, 383–387
overview, 372

IsoHexCore example, 401
event handling, 408–409
global variables, 402–403
initialization and cleanup, 403–406
main loop, 406–408

IsoHexCore.h file, 372, 401
IsoHexDefs.h file, 372–375
IsoHex_DiamondPlotTile function,

378
IsoHex_DiamondTileWalk function, 384
IsoHex engine, 291–292

converting tilemap coordinates into
world space coordinates, 291

determining on which tile mouse
rests, 325

MouseMap component, 325–336,
351, 369–370

TilePlotter component, 306–309,
340–342, 361–362

Index

714

TileWalker component, 314–321,
342–350, 365–369

IsoHexI_1.cpp file, 4, 9–15
isohex.net Web site, 706
IsoHex_RectPlotTile function, 378
IsoHex_RectTileWalk function, 384
IsoHex_SlidePlotTile function, 378
IsoHex_SlideTileWalk function, 384
IsoHex_StagPlotTile function, 378
IsoHex_StagTileWalk function, 384
IsoHex tilemaps

navigating, 291
slide tilemap, 292–293
staggered tile map, 293–294

IsoHexTilePlotterFn data member,
379–380

ISOHEXTILEPLOTTERFN type,
377–379

IsoHex tiles, 289–290
IsoHex tilesets, 294–296
ISOHEXTILEWALKERF function

pointer, 383–384
IsoHexTileWalkerFn data member,

384–385
IsoMapType data member, 379–380,

384–385
ISOMAPTYPE enumeration, 375
isometric, 287
isometric art

grayscaling, 574–575
modulation, 575–577
tile ripping, 563–574
tile slanting, 556–563

isometric games, 227–229
isometric map, 286
isometric mazes, 611
isometric plotting equation, 667
isometric projection, 287
isometric tiles, 286, 287

2:1 ratio, 561
creation, 559–560
tile slanting, 558

“Isometric Views,” 286
Isometrix Web site, 707
IsoMouseMap.cpp file, 372, 395–401
IsoMouseMap.h file, 372, 395–401
IsoRenderer.cpp file, 446
IsoRenderer.h file, 446
IsoScroller.cpp file, 372, 387–395
IsoScroller.h file, 372, 387–395
IsoTilePlotter.cpp file, 372, 376–383
IsoTilePlotter.h file, 372, 376–383
iso tiles, 287–288

direction of movement, 314
plotting, 302
standard, 301

IsoTileWalker.cpp file, 372, 383–387
IsoTileWalker.h file, 372
IsRectEmpty function, 45, 50
IsScreenCoord function, 394

IsWorldCoord function, 394
iteration, 485–488
iTileHeight data member, 379–380
iTileMap array, 266
iTileNum member, 276
iTileSelected global variable, 266
iTileTop global variable, 266
iTileWidth data member, 379–380
iUnitFrame global variable, 472
iUpdateRectCount data member, 450
iUpdateRectIndex data member, 450
iWidth data member, 398

K
keyboard

controls, 229
key press and release, 30–31
messages, 29–32
special characters, 31
VK_* constants, 30

keypad controls, 229

L
LaMothe, Andre, 706
LANDPERC constant, 611
latency, 191
layered maps

basics, 412–413
map scale layering method, 417–419
scale layering method, 413–416
tiles, 412

layering sprites and tiles, 413
lines, drawing, 66–69
LineTo function, 66
linked lists

adding to, 484
checking for empty, 485
counting nodes, 487
deleting from, 485
head node, 482
iterating through, 485–488
nodes, 482
operation of, 482
searching out particular node, 487
STL list template, 488–491
tail node, 481
user-created, 483

LoadCursor function, 19
Load function, 214–215, 251–252, 398
LoadIcon function, 18
LoadImage function, 103
loading

bitmap from disk, 103–105
example programs, 696–700
images, 117
pixel data, 674–675

Load IsoHex10_1.bmp file, 243
localization, 85
Lock function, 167–173, 205–207,

672–674

locking
sound buffers, 205–207
surface memory, 167–173

log function and infinite feedback, 204
logical units, 85
lookup table

construction, 539–540
fringes, 584–585
member functions, 398–399

LOWORD macro, 34
lowvalue variable, 630
LPD3D_Create function, 662–663
LPD3DDEV_Clear function, 662–664
LPD3DDEV_Create function, 662–663
LPD3DDEV_DrawTriangleList func-

tion, 662, 664
LPD3DDEV_DrawTriangleStrip func-

tion, 664, 667
lpd3ddev global variable, 651
LPD3DDEV_Release function, 662,

664
LPD3DDEV_SetViewport function, 662
lpd3d global variable, 651
LPD3D_Release function, 662–663
lpddBackBuffer data member, 450
LPDD_Create function, 175
LPDD_Release function, 175
lpddsBack back buffer, 528
lpddsBall surface, 162
LPDDS_CreateOffscreen function, 175
LPDDS_CreatePimary structure, 175
LPDDS_CreatePrimary3D function,

662, 664
LPDDS_CreateTexture function, 662,

665
LPDDS_CreateTexturePixelFormat

function, 662, 665, 672
lpddsFrameBuffer data member, 450
LPDDS_GetSecondary3D function,

662, 664
LPDDS_GetSecondary function, 175
LPDDS_LoadFromFile function, 176
lpddsMiniMap global variable, 545
LPDDS_Release function, 176
LPDDS_ReloadFromFile function,

176–177
LPDDS-SetSrcColorKey function, 176
LPDIRECT3D7 variable, 636
LPDIRECTDRAWSURFACE7 struc-

ture, 153
functions, 175–176

LPDSB_LoadFromFile function, 218
LPDSB_Release function, 218
lPitch member, 168–169
lpSurface member, 168

M
MakeMaze function, 605–606
map coordinates, moving between, 292
MAPHEIGHT constant, 611

Isometric Game Programming with DirectX 7.0

TeamLRN

715

map location empty, 521
MapLocation structure, 464, 496, 587,

595
MapMouse function, 400
map panel, 265
MapPath array, 627–628, 630
mapping functions and mouse, 400
mapping modes, 85
map scale layering method, 417–419
MAPSEEDS constant, 611
map type functions, 381
MAPWIDTH constant, 611
MasterUnitSelList, 541
mazes, 603

adding doors, 607
blocked conditions, 607–608
clearing, 606
creation of, 604–610
defining, 604
direction and change in location,

605
isometric, 611
leaving, 608
placing door, 609
populating, 610
selecting room, 607
usage, 610–611
variegation, 610

mc use cursor, 34
member functions

anchor, 393
anchor space, 392–393
construction/destruction, 390–391,

398
conversion, 393–394
lookup table, 398–399
reference point, 399
screen space, 391
scroller, 399–400
tile size, 399
tilewalker, 400
validation, 394
world space, 391–392
wrap mode, 394

memory, 58–59
menus, 23
message member, 8, 24
message pump

checking for messages, 24–25
processing messages, 25–26

message queue, 7–9
messages

adding to list of events, 29
checking for, 24–25
handling, 8–9
keyboard, 29–32
managing, 23–24
mouse, 32–34
processing, 25–26
processing window input, 29–32

sending to window, 28–29
viewing in MSDN, 34

MiniMap global variable, 545–546
minimaps

blitting onto back buffer, 550
cleaning up memory and tileset

used by, 550
function, 545
global variables, 545
initialization, 546–547
redrawing, 548–549
updating, 547–548

mini-maps, 230
MiniScroller global variable, 545, 549
MiniTilePlotter global variable, 545, 549
MM_CENTER value, 397
mmdLookUp data member, 398
MM_NE value, 397
MM_NW value, 397
MM_SE value, 397
MM_SW value, 397
mmsystem.h file, 193
MMX device, 639
modulation, 575–577
modulus operator (%), 329–330
mouse

buttons, 32–34
canceling button press, 512
determining which tile it rests on,

325
handle to cursor, 19
handling input, 520–523
left button, 533–534
messages, 32–34
movement, 32
releasing left button, 534–537
in selection window, 535

mouse controls, 229
MouseMap component, 291, 404–405,

420
diamond tilemap, 294
IsoHex engine, 351, 369–370
rectangular tile map, 421
slide tilemap, 293
staggered tile maps, 294

MOUSEMAPDIRECTION enumerated
type, 397

MouseMapLoad function, 332–333
mousemapping, 426–427

converting screen coordinates to
world coordinates, 328

determining coordinates, 329–330
diamond tilemaps, 369–370
Direct3D, 385–387
example, 334–336
functions, 400
lookup table, 331–334
performing coarse tile walk,

330–331
slide tilemaps, 325–336

staggered tilemaps, 352–352
subtracting world coordinates from

upper left of map position, 328
MoveAnchor function, 390, 393
MoveCursor function, 323–324
MoveLeft global variable, 257
movement points, 513, 516–517
MoveRight global variable, 257
MoveToEx function, 65
MoveWindow function, 37–38, 55–56
moving

information between device con-
texts, 105–109

objects, 460–480
windows, 37–38

MSDN, viewing messages, 34
MSG structure, 7–8

messages, 7
msg variable, 23
multiple objects, 480–491
multiple units, 492–508
multitasking, 4
multithreaded, 4

N
new operator, 142, 481
nIndex values, 41
nodes, 482
nonclient area, 51

O
ObjectBitMask structure, 540
objects, 240

COP (coarse object placement),
459, 460

DirectX, 130
FOP (fine object placement), 459
moving, 460–480
multiple, 480–491
on-screen selectable, 540
placement, 459–460

object selection
centering on current unit, 514
click-selecting units, 512
design, 511–514
fog of war, 553
fortification/holding position,

512–513
game states, 514–537
handling input, 533
implementation, 514–537
minimaps, 543–551
pixel-perfect, 537–543
RenderFunc function, 531–533
scouting, 514
zones of control, 551–553

oddly-shaped graphics, 113–115
odd y tilewalking, 347–350

Index

716

off-screen surfaces, 147, 154–155
video cards, 151
windowed Direct Draw, 186

OffsetRect function, 45, 48
opening files, 209–210
operating systems

event-driven, 7–8
multitasking, multithreaded, 4

Options dialog box, 126–128
OR bitwise operator, 109–110
overloaded operator (*), 491, 504
overloaded operator (++), 491

P
Paganini.ttf file, 87
PaintRgn function, 101
PAINTSTRUCT struct, 27–28
panning, 204–205
parent windows, 23
Pathfinding algorithm

cells adjacent to cells with known
distances, 622–623

known distance value, 623
usage, 631–632

patterns and fills, 19
pCurrent node, 484
PeekMessage function, 24–25
pens

creation of, 64
drawing line, 66–69
usage, 64

pixel formats, 158–166, 169–171
functions, 175
known and stable, 171

pixel-perfect object selection, 537–538
lookup table construction, 539–540
unit selection list, 540–543

pixel plotting example, 62–63
pixels, 60

color plotted, 61
loading data, 674–675
manipulation functions, 61–62
plotting to HDC, 61–62
RGB representation, 61

pixel-scale movement, 470
player turn, 492–493
Play function, 207–208
playing sounds, 207–208
PlaySound function, 193–196
PlotTile member function, 380–381
plotting

functions, 381
hex tiles, 304
iso tiles, 302
rectangular tiles, 299
tiles, 570

pMouseMap data member, 450
POINT structure, 44–50
polygon fill modes, 77
Polygon function, 76–77

polygon region, 93, 100
pop_back function, 490
pop_front function, 490
PostMessage function, 29
PostQuitMessage function, 26–27
precalculating extents, 248
PressEnter.bmp file, 516
primary surfaces, 147

coordinates, 186
creation of, 151–152, 664
description, 152
number of back buffers, 152
safe relase, 152
video cards, 151

primitives, 644–649
processing messages, 25–26
Prog_Done function, 26, 67, 87, 107,

256, 266, 406
Prog_Init function, 23, 35, 55, 66–67,

87, 107, 111, 188, 254, 266,
403–406, 464–465, 651–654

Prog_Loop function, 26, 35, 119, 157,
231–233, 255–256, 313–314, 406,
465–467, 668–669, 679

programs and threads, 4
Project, Add To Project, Files com-

mand, 699
Project, Settings command, 128
Project Settings dialog, 129–130
Project Settings (Alt+F7) key combina-

tion, 129
pScroller data member, 398, 450
ptCellSize global variable, 525–526
ptCellSize variable, 529
ptCurrent variable, 430–431
ptCursor variable, 113, 322
ptEnd variable, 625
pTilePlotter data member, 450
pTileWalker data member, 398, 450
PtInRect function, 45, 50, 325
ptLastPosition variable, 163
ptMap variable, 406
pt member, 8
ptMouseMapSize member, 332
ptMouse variable, 269
ptPrimeBlt variable, 188
ptRef data member, 398
ptRowEnd variable, 430
ptRowStart variable, 430–431
ptScreenAnchor data member,

389–390
ptScreenAnchorScroll variable, 334
ptShieldOffset variable, 529–530
ptStart variable, 590, 625–626
ptUnit global variable, 464
ptUnitOffset global variable, 472,

525–526, 529
ptUnitOld global variable, 464
PUNITINFO typedef, 496
push_back function, 489

push_front function, 489
PutTile function, 253

Q
QueryInterface function, 636–637

R
raster operations, 106–109

bitmasking, 113–115
example, 111–113

rcAnchorSpace data member, 389–390
rcExtent data member, 450
rcExtent variable, 453
rcScreenSpace data member, 389–390
rcSelectWindow global variable, 525
rcUpdate global variable, 120
rcWorldSpace data member, 389–390
ReadFile function, 211–212
Rectangle function, 74–75
rectangles, 74–75
rectangular area, 44–45, 158
rectangular engine, 291–292
rectangular region, 94
rectangular tilemaps, 290–291, 421
rectangular tiles, 241–242

blitting, 300
blitting order, 290
interlocking, 298
versus IsoHex tiles, 289–290
plotting, 299
tile walking, 315

rectifying tiles, 570–571
RECT structure, 44–45

assigning values, 46
assignment functions, 46–47
checking if point is within, 50
copying, 46–47
empty, 50
equal-sized, 50
functions, 45–50
intersecting, 48
joining, 49
offsetting, 48
operation function, 47–49
setting to empty, 47
testing functions, 50

RedrawMiniMap function, 545–549
reducing blits example, 425

preparatory stage, 426–428
rendering loop, 428–433

reference counting, 131
reference point member functions,

399
regions

clipping, 95–101
creation of, 92–95
deleting, 95
encompass entire clienting area, 99
HRGN handle, 92

Isometric Game Programming with DirectX 7.0

TeamLRN

717

outlining, 101–102
usage, 95–102

RegisterClassEx function, 19
registering window class, 19
Reiferson, Matt, 286
Release configuration, 130
ReleaseDC function, 57–58, 156–158
Release function, 131, 636
releasing DirectX objects, 145
Reload function, 252
RemoveFontResource function, 83
remove method, 490
RENDERFN function, 449–450
RenderFunc function, 456, 468, 472,

503–505, 588–589, 595–596
RenderFunction data member, 450
rendering class, 445–457
rendering tilemaps, 262
RenderRow function, 430–431
render states, 675–676
RenderTile function, 431
RenderUpdate function, 122
RenterTile function, 355
repainting

client area, 51
windows, 27–28

repeating texture, 564–568
RestoreAllSurfaces function, 177
Reversi

AI_GREEDY level, 274
AI_HUMAN level, 274
AI level control, 276
AI_MISER level, 274
AI_RANDOM level, 174
changing AI levels, 284
designing, 273–276
features needed by, 284
game states, 275, 278–284
GL_NEWGAME game state, 280
GL_NEXTPLAYER game state,

283–284
GL_NONE game state, 279–280
global variables, 277–278
GSL_FLIP game state, 282–283
GS_WAITFORINPUT game state,

281–282
implementation, 277–284
keyboard controls, 284
rules, 272–273
score indication, 276
tile information structure, 275–276
tilesets, 273

RGB555 pixel format, 171
RGB565 pixel format, 171
RGB device, 639
RGB macro, 61
RGNDATAHEADER structure, 181
RGNDATA structure, 181–182
rhombuses, 287
RIF format, 212

Room Maze array, 605
rounded rectangle, 75–76
rounded rectangle clipping region, 99
rounded rectangular region, 94–95
RoundRect function, 75–76
RowCount variable, 424
RowEnd variable, 424
RowStart variable, 424–425
rules, 222

S
scale layering method, 413–416
scouting, 514
screen

centering on location clicked, 524
color depths, 60
pixels, 60

screen anchor and world space,
310–311

screen coordinates
converting to client coordinates,

186–187
converting to world coordinates,

328
screen saver, 156–158
screen space, 239, 264

member functions, 391
slide tilemaps, 309

screen-to-view anchor, 264
ScreenToWorld function, 393
ScreenUnitSelList, 541
scroller, 404
scroller member functions, 399–400
SCROLLERWRAPMODE enumera-

tion, 389
ScrollFrame function, 452
scrolling

diamond tilemaps, 363–364
frame buffer, 442
slide tilemaps, 309–314

SDK (Software Developer’s Kit), 125
secondary surfaces, 147

creation of, 152–154
reasons for using, 153
retrieving, 153

selecting objects. See object selection
selection window

cell size, 525–527
color, 526
color fill, 528–529
displaying every frame, 528–531
initialization, 526–527
location, 525
mouse in, 535–536
pointer to units within, 525–526
position, 527
selecting unit from, 525
showing, 527–528
size, 525

SelectObject function, 59–60, 64, 70,
85, 95

SelectUnitList array, 525–529
SendMessage function, 28–29
SetAnchor function, 390, 393
SetAnchorSpace function, 390, 392
SetBackBuffer function, 451
SetBkMode function, 85–86
SetClipList function, 181
SetClipper function, 183–184
SetCooperativeLevel function,

135–136, 197–198
SetDisplayMode member function, 143
SeteRectEmpty function, 47
SetExtentRect function, 451
SetFrameBuffer function, 451
SetHWnd function, 187–188
SetHWrapMode function, 390, 394
SetMapMode function, 85
SetMapSize function, 451–452
SetMapType function, 379, 380–381,

385–386
SetMouseMap function, 451
SetPan function, 204
SetPixel function, 61
SetPixelV function, 61–62
SetPlotter function, 451
SetPolyFillMode function, 77
SetRectEmpty function, 45
SetRect function, 45–46
SetReferencePoint function, 399
SetRenderFunction function, 451
SetRenderState function, 675–676
SetScreenSpace function, 390–391
SetScroller function, 400, 451
SetTextColor function, 86
SetTexture function, 658
SetTileWalker function, 400
SetUpdateRectCount function, 451
SetUpMap function, 307–308
SetupMinMap function, 545–547
SetUpSpaces function, 311–312,

352–353, 356–357
SetViewport function, 641
SetVolume function, 203
SetVWrapMode function, 390
SetWalker function, 451
SetWindowPos function, 35–37
SetWindowText function, 40
SetWorldSpace function, 390–392
SetWrapMode function, 394
shape function, 73–79
shapes

ellipse, 73–74
filling, 101
polygons, 76–77
rectangles, 74–75
rounded rectangle, 75–76

ShowBoard function, 279
ShowIsoCursor function, 322–323

Index

718

ShowMap function, 573–574
ShowMapPanel function, 267
ShowMiniMap function, 545–547, 550
ShowPlayers function, 279
ShowScores function, 279
ShowTheCursor function, 113
ShowTilePanel function, 268–269
sight radius, 553
single-step tilewalking, 343
SlideMap_TilePlotter function, 307
SlideMap_TileWalker function,

320–321, 342–343
slide tilemaps, 292–293

anchor space, 311
calculating world space, 310
coordinate system, 305–306
enumeration for direction con-

stants, 319
limitations, 309
mousemapping, 325–336
northeast moves, 317
north moves, 317
screen anchor, 310–311
screen space, 309
scrolling, 309–314
single-step tilewalking, 343
south move, 318
southwest moves, 318
tile plotting, 306–309
tile walking, 314–321, 343–343
two-dimensional array, 305
view space, 309

sound
adjusting volume, 218
attenuation, 203
controlling, 202–205
decibels, 203
digital, 191
empowering user, 218
format, 213
frequency, 202–203
latency, 191
length, 202
operation of ears, 191
panning, 204–205
pitch, 202
playing, 207–208
properties, 200–202
turning off, 218
volume controls, 203–204
WIN32, 193–196

sound buffers
creation of, 198–200
DSBCAPS_CTRLFREQUENCY flag,

202
duplicating, 208
locking, 205–207
new, 218
raw audio data, 213
save release, 218

unlocking, 207
sound cards, operation of, 193
source color keys, 164
source rectangles, 245
space, 239
speakers

operation of, 192–193
panning, 204–205

special-case code, 340
special characters, 31
SpriteLib, 241
sprites, 239

animated example, 254–258
Direct3D, 670–679
layering, 413
loading pixel data, 674–675
locking and unlocking surfaces,

672–674
texture formats, 670–672
texture surface, 671

square tiles, 241–242
SRCPAINT raster operation, 108–109
StackSize function, 491
staggered tilemaps, 293–294

coordinate system, 339–340
cylindrical, 354–358
eliminating jaggies, 352–354
even y tilewalking, 346–347
map coordinates as two special

cases, 344–345
mousemapping, 352–352
MouseMapping component, 294
problems tilewalking, 344
tileplotting, 340–342
TilePlotting components, 294
tilewalking, 342–350
TileWalking component, 294
unique properties, 352–358

staggered tilewalking, 347–350
StagMap_TilePlotter function, 341
StagMap_TileWalker function,

349–350
standard hex tiles, 301
standard iso tiles, 301
STD list template, 489–491
std name space, 488
STL (Standard Template Library), 488
STL list template, 488–491
streaming buffers, 205
SubtractRect function, 50
surfaces

assigning clipper to, 183–184
attached, 153
color fill, 162
color keys, 163–167
copying between, 162–163
creation of, 147–148, 672
decreasing order of importance, 151
Direct3Dcreation, 637–638
direct access to, 169

GDI, 155–158
hardcoding pitches, 169
locking and unlocking, 672–674
locking memory, 167–173
off-screen, 147
pixel formats, 158–166, 170–171
primary, 147
reallocating memory, 177
secondary, 147
specifying type, 150
tilesets, 253
unlocking, 173
usage, 155–167

Sweet Oblivion Web site, 287
swmHorizontal data member, 389–390
swmVertical data member, 389–390
system font table, 83
system memory and off-screen sur-

faces, 154–155
system metrics, 40–41

T
TeamUnitList, 519
templates

extended, 245
tilesets, 243–248

temporary swap file, 6
text

color, 86
formatting, 89–91
outputting to window, 86–89

TextOut function, 86–89
texture, 563–564
texture.bmp file, 670
texture mapping example, 658
textures

coordinates, 656–658
definition of, 655–656
different pixel format, 665
finding on Web, 565
formats, 670–672
getting tiles from, 568–571
mapping, 656–658
number of tiles from, 569–570
repeating from nonrepeating tex-

ture, 564–568
rules, 655–656
surface creation, 672
surface with given width and height,

665
tiling, 569

TheWidowProc function, 18
TheWindowProc procedure, 107
threads, 4
tile array, 253
tile-based games

3D, 238
agents, 238, 240
anchors, 240
anchor space, 240

Isometric Game Programming with DirectX 7.0

TeamLRN

719

animated sprite example, 254–258
complicated tilemaps, 261–262
CTileSet class, 248–253
extent, 240
managing tilesets, 243–248
movement costs, 238
myths, 238
objects, 240
rectangular tiles, 241–242
Reversi example, 272–284
rules of, 238
screen space, 239
space, 239
sprites, 239
square tiles, 241–242
tilemaps, 240, 259–272
tiles, 239
tilesets, 239
tile space, 239
view space, 239
world space, 239

TILEINFO structure, 248–249
TileMap editor, 265

accepting input, 269–271
constants, 265–266
global variables, 266
main loop, 267–269
set up and clean up, 266

tilemaps, 240
basics, 259–261
complicated, 261–262
converting coordinates into world

space coordinates, 291
cylindrical, 354–358
diamond, 360–370
identifiers, 375
layers, 261–262
rectangular versus IsoHex, 290–291
rendering, 262
screen space, 262–265
size, 263
torus, 354
two-dimensional arrays, 259
view space, 264
world space, 264

tile panel, 265
TilePlotter component, 291, 328,

404–405
diamond tilemap, 294
IsoHex engine, 306–309, 340–342,

361–362
slide tilemap, 293

tileplotting
diamond tilemaps, 361–362
staggered tile maps, 340–342

tile ripping
blitting rectangular area to tile, 571
getting tiles out of texture, 568–571
looping through tiles, 570
plotting tiles, 570

rectifying tiles, 570–571
repeating texture from nonrepeat-

ing texture, 564–568
texture, 563–564

tiles, 239, 253
anchor point, 253
blitting, 247
blitting rectangular area to, 571
destination surfaces, 253
fringes, 581–584
layered maps, 412
layering, 413
looping through, 570
numbering, 253
parsing image into, 251–252
plotting, 570
rectifying, 570–571

tile selection panel, 263–264
tilesets, 239, 262–263, 404–405

accessing tile information, 253
animated sprite example, 254–258
control colors, 245
file name, 253
freeing resources used by, 252
global, 463
managing, 243–248
number of tiles in, 252
reloading image, 252
Reversi, 273
surfaces, 253
templates, 243–248

tile size functions, 381, 399
tile slanting

color-blended, 562–563
isometric tile creation, 559
isometric tiles, 558

tile space, 239
TileWalker component, 292, 404

diamond tilemap, 294
IsoHex engine, 314–321, 342–350
slide tilemap, 293
staggered tile maps, 294

TileWalkerFunction function, 384
TileWalker member function, 385–386
TileWalk function, 385
tilewalking

diamond tilemaps, 365–369
even y, 346–347
odd y, 347–350
problem with staggered tile maps,

344
rectangular tiles, 315
single-step, 343
slide tilemap, 314–321, 343–343
staggered tilemaps, 342–350

tile zones, 584–585
TIMEMAPSQUARE structure, 262
time member, 8
time slice, 5
TnLHal device, 639

Tools, Options command, 125
topmost windows, 36
torus tilemaps, 354
TranslateMessage function, 25
transparency, 113
transparent images, 163–166
treeshadowts.bmp file, 414
treets.bmp file, 414
triangle list, 664
triangles, 635
triangle strip, 664
Tricks for the Windows Game

Programming Gurus, 707
Tricks of the Window Game Programming

Gurus, 706
tsBack object, 463
tsCaveMan global variable, 254
tsCursor tileset, 322
tsIso tileset, 407
tsMiniMap global variable, 545, 547,

549
tsPressEnter teleset, 514
tsTileSet global variable, 266
tsTree object, 463
tsUnit object, 463
turn-based strategy games, 228, 492, 511
typedef, 378

U
UnionRect function, 45, 49, 120–121,

363–364, 453
UnitInfo structure, 495–496, 513
UNITLISTITER typedef, 496
UNITLIST typedef, 496
units

centering in cell, 525–526, 529
centering on current, 514
checking for, 529
clicked on, 523
click-selecting, 512
current, 522, 531
empty location, 531
fortification/holding position,

512–513
holding position, 515–517, 519,

530–531
linked lists, 481–482
movement points, 513, 516–517,

523, 530
multiple, 492–508
none left to move, 517–518
number of, 522
only at map location, 532
player belonging to, 521
receiving orders, 522
rendering, 531–532
selecting from stack, 525–526
sight radius, 553
storage methods, 480–491

Index

720

UnitSel, 541
unit selection list, 540–543
UnitSelector, 541
Unload function, 252
Unlock function, 173, 207, 672–674
unlocking

sound buffers, 207
surfaces, 173

UpdateFrame function, 452, 456
UpdateMiniMap function, 545–547
update rectangle, 119–122
UpdateRowEnds function, 430–431
updating

clipping rectangles, 443–445
frame buffers, 445
frames, 528
minimaps, 547–548

user-created linked lists, 483
user-defined callback function,

137–138
user interface, 229
users, empowering, 176–177
user-supplied initialization code, 23–24

V
validation member functions, 394
Vanier, Isaac, 286
variables, 258, 377
vert array, 651
vertex array, 653
VERTEX_Set function, 662, 665
VertexX variable, 679
VertexY variable, 679
vertices, 647–649, 676–678
video cards, 151
video memory and off-screen surfaces,

154–155
video resources, 176–177
viewports, 663
view space, 239, 264, 309
virtual keycode-to-ISODIRECTION

mapping, 469
virtual memory, 6
VK_* constants, 30
VK_SPACE key press, 505

W
WAVEFORMATEX structure, 200–202
WAV files

data chunks, 213–214
fmt chunk, 213
loading from disk, 213–215
structure, 212–213

wcx.lpfnWndProc member, 18
widows

DC (device context), 18
destroying, 27

WIN32
file access, 209–212
programming, 4

sounds, 193–196
WINDING fill mode, 78–79
window class

code for setting up, 17–18
name, 19, 22
registering, 19
style, 18

windowed DirectDraw
clippers, 187–188
display modes, 185–186
lack of back buffers, 186–187
off-screen surface, 186

window handles, 6
WINDOWINFO structure, 38–39
windowproc, 26–28
window procedures, 8–9, 18, 26–28
WindowProc procedure, 9
windows

appearance, 22
area of entire, 52–53
behavior, 22
checking existence of, 23
child, 23
client area, 51
creation of, 21–23
describing type of, 16–19
elements, 51
extended styles, 21
extra creation data, 23
getting correct size, 55–56
handle, 6
information about, 38–39
instance owning, 23
length of title, 39–40
managing, 35–40
menus, 23
moving, 37–38
name of window class, 22
nonclient area, 51
outputting text to, 86–89
parent, 23
processing input with messages,

29–32
repainting, 27–28
repainting resized, 18
responding to double-clicks, 18
sending messages to, 28–29
size, 35–36
title, 22, 39–40
topmost, 36
z-order, 35–36

Windows Game Programming for
Dummies, 707

Windows platform, 4
Windows programs overview, 4–6
WinMain function, 9–26, 15–16, 20–21
winmm.lib library, 130, 193
W key press, 506
WM_ACTIVATEAPP message, 34–35, 177
WM_BUTTONDOWN message, 455

WM_CHAR message, 25, 29, 31
WM_DESTROY message, 27
WM_KEYDOWN message, 25, 29–31,

257, 323, 409
WM_KEYUP message, 25, 29–31, 257
WM_LBUTTONDOWN message, 32,

67, 107, 114, 269–271, 512,
533–534

WM_LBUTTONUP message, 32, 279,
281, 512, 534–537

WM_MOUSEMOVE message, 32, 63,
67, 113, 269–271, 335, 358,
407–409, 455

WM_MOVE message, 187–188
WM_NCPAINT message, 51
WM_PAINT message, 27–28, 51,

56–57, 113, 120
WM_QUIT message, 24–25
WM_RBUTTONDOWN message, 32,

71
WM_RBUTTONUP message, 32
WM_SYSCHAR message, 25
WM_SYSKEYDOWN message, 25
WM_SYSKEYUP message, 25
WNDCLASSEX structure, 16–19
world building continents, 611–613
world coordinates, converting screen

coordinates to, 328
world generation, 602–603
worlds

believability, 602–603
cohesiveness, 602
generating, 602–603
mazes, 603–611
playability, 603
replayability, 603

world space, 239, 264
coordinates converting to tilemap

coordinates, 291
member functions, 391–392
screen anchor, 310–311
slide tilemaps, 310

WorldToScreen function, 394
wParam flags, 33
wParam member, 8
WrapAnchor function, 390, 393
WRAPMODE_CLIP value, 389
wrap mode member functions, 394
WRAPMODE_NONE value, 389
WRAPMODE_WRAP value, 389
wrapper, purposes, 176
WriteFile function, 210–211

X
XOR bitwise operator, 109, 111, 113
XTreme Games Web site, 706

Z
zones of control, 551–553

Isometric Game Programming with DirectX 7.0

TeamLRN

“Game programming is without a doubt the most intellectually challenging field of Computer Science in the world.
However, we would be fooling ourselves if we said that we are ‘serious’ people! Writing (and reading) a game pro-
gramming book should be an exciting adventure for both the author and the reader.”

—André LaMothe,
Series Editor

www.prima-tech.com
www.PrimaGameDev.com

TeamLRN

Take Your
Game to the

XTREME!

Xtreme Games LLC was founded to help small game developers
around the world create and publish their games on the commercial
market. Xtreme Games helps younger developers break into the field
of game programming by insulating them from complex legal and
business issues. Xtreme Games has hundreds of developers around
the world, if you’re interested in becoming one of them, then visit us
at www.xgames3d.com.

www.xgames3d.com

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and conditions. If,
upon reading the following license agreement and notice of limited warranty, you cannot agree to the
terms and conditions set forth, return the unused book with unopened disc to the place where you
purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc. You
are licensed to copy the software onto a single computer for use by a single concurrent user and to a
backup disk. You may not reproduce, make copies, or distribute copies or rent or lease the software
in whole or in part, except with written permission of the copyright holder(s). You may transfer the
enclosed disc only together with this license, and only if you destroy all other copies of the software
and the transferee agrees to the terms of the license. You may not decompile, reverse assemble, or
reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Prima Publishing to be free of physical defects in materials and
workmanship for a period of sixty (60) days from end user’s purchase of the book/disc combination.
During the sixty-day term of the limited warranty, Prima will provide a replacement disc upon the
return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY
OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL PRIMA OR THE
AUTHORS BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF
DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPER-
ATING SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF PRIMA
AND/OR THE AUTHOR HAVE PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF
SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
PRIMA AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, SUITABIL-
ITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO
NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL
OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MAY NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of California without regard to choice of law
principles. The United Convention of Contracts for the International Sale of Goods is specifically dis-
claimed. This Agreement constitutes the entire agreement

	logo.pdf
	Cover.pdf
	Cover1.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf
	359.pdf
	360.pdf
	361.pdf
	362.pdf
	363.pdf
	364.pdf
	365.pdf
	366.pdf
	367.pdf
	368.pdf
	369.pdf
	370.pdf
	371.pdf
	372.pdf
	373.pdf
	374.pdf
	375.pdf
	376.pdf
	377.pdf
	378.pdf
	379.pdf
	380.pdf
	381.pdf
	382.pdf
	383.pdf
	384.pdf
	385.pdf
	386.pdf
	387.pdf
	388.pdf
	389.pdf
	390.pdf
	391.pdf
	392.pdf
	393.pdf
	394.pdf
	395.pdf
	396.pdf
	397.pdf
	398.pdf
	399.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf
	410.pdf
	411.pdf
	412.pdf
	413.pdf
	414.pdf
	415.pdf
	416.pdf
	417.pdf
	418.pdf
	419.pdf
	420.pdf
	421.pdf
	422.pdf
	423.pdf
	424.pdf
	425.pdf
	426.pdf
	427.pdf
	428.pdf
	429.pdf
	430.pdf
	431.pdf
	432.pdf
	433.pdf
	434.pdf
	435.pdf
	436.pdf
	437.pdf
	438.pdf
	439.pdf
	440.pdf
	441.pdf
	442.pdf
	443.pdf
	444.pdf
	445.pdf
	446.pdf
	447.pdf
	448.pdf
	449.pdf
	450.pdf
	451.pdf
	452.pdf
	453.pdf
	454.pdf
	455.pdf
	456.pdf
	457.pdf
	458.pdf
	459.pdf
	460.pdf
	461.pdf
	462.pdf
	463.pdf
	464.pdf
	465.pdf
	466.pdf
	467.pdf
	468.pdf
	469.pdf
	470.pdf
	471.pdf
	472.pdf
	473.pdf
	474.pdf
	475.pdf
	476.pdf
	477.pdf
	478.pdf
	479.pdf
	480.pdf
	481.pdf
	482.pdf
	483.pdf
	484.pdf
	485.pdf
	486.pdf
	487.pdf
	488.pdf
	489.pdf
	490.pdf
	491.pdf
	492.pdf
	493.pdf
	494.pdf
	495.pdf
	496.pdf
	497.pdf
	498.pdf
	499.pdf
	500.pdf
	501.pdf
	502.pdf
	503.pdf
	504.pdf
	505.pdf
	506.pdf
	507.pdf
	508.pdf
	509.pdf
	510.pdf
	511.pdf
	512.pdf
	513.pdf
	514.pdf
	515.pdf
	516.pdf
	517.pdf
	518.pdf
	519.pdf
	520.pdf
	521.pdf
	522.pdf
	523.pdf
	524.pdf
	525.pdf
	526.pdf
	527.pdf
	528.pdf
	529.pdf
	530.pdf
	531.pdf
	532.pdf
	533.pdf
	534.pdf
	535.pdf
	536.pdf
	537.pdf
	538.pdf
	539.pdf
	540.pdf
	541.pdf
	542.pdf
	543.pdf
	544.pdf
	545.pdf
	546.pdf
	547.pdf
	548.pdf
	549.pdf
	550.pdf
	551.pdf
	552.pdf
	553.pdf
	554.pdf
	555.pdf
	556.pdf
	557.pdf
	558.pdf
	559.pdf
	560.pdf
	561.pdf
	562.pdf
	563.pdf
	564.pdf
	565.pdf
	566.pdf
	567.pdf
	568.pdf
	569.pdf
	570.pdf
	571.pdf
	572.pdf
	573.pdf
	574.pdf
	575.pdf
	576.pdf
	577.pdf
	578.pdf
	579.pdf
	580.pdf
	581.pdf
	582.pdf
	583.pdf
	584.pdf
	585.pdf
	586.pdf
	587.pdf
	588.pdf
	589.pdf
	590.pdf
	591.pdf
	592.pdf
	593.pdf
	594.pdf
	595.pdf
	596.pdf
	597.pdf
	598.pdf
	599.pdf
	600.pdf
	601.pdf
	602.pdf
	603.pdf
	604.pdf
	605.pdf
	606.pdf
	607.pdf
	608.pdf
	609.pdf
	610.pdf
	611.pdf
	612.pdf
	613.pdf
	614.pdf
	615.pdf
	616.pdf
	617.pdf
	618.pdf
	619.pdf
	620.pdf
	621.pdf
	622.pdf
	623.pdf
	624.pdf
	625.pdf
	626.pdf
	627.pdf
	628.pdf
	629.pdf
	630.pdf
	631.pdf
	632.pdf
	633.pdf
	634.pdf
	635.pdf
	636.pdf
	637.pdf
	638.pdf
	639.pdf
	640.pdf
	641.pdf
	642.pdf
	643.pdf
	644.pdf
	645.pdf
	646.pdf
	647.pdf
	648.pdf
	649.pdf
	650.pdf
	651.pdf
	652.pdf
	653.pdf
	654.pdf
	655.pdf
	656.pdf
	657.pdf
	658.pdf
	659.pdf
	660.pdf
	661.pdf
	662.pdf
	663.pdf
	664.pdf
	665.pdf
	666.pdf
	667.pdf
	668.pdf
	669.pdf
	670.pdf
	671.pdf
	672.pdf
	673.pdf
	674.pdf
	675.pdf
	676.pdf
	677.pdf
	678.pdf
	679.pdf
	680.pdf
	681.pdf
	682.pdf
	683.pdf
	684.pdf
	685.pdf
	686.pdf
	687.pdf
	688.pdf
	689.pdf
	690.pdf
	691.pdf
	692.pdf
	693.pdf
	694.pdf
	695.pdf
	696.pdf
	697.pdf
	698.pdf
	699.pdf
	700.pdf
	701.pdf
	702.pdf
	703.pdf
	704.pdf
	705.pdf
	706.pdf
	707.pdf
	708.pdf
	709.pdf
	710.pdf
	711.pdf
	712.pdf
	713.pdf
	714.pdf
	715.pdf
	716.pdf
	717.pdf
	718.pdf
	719.pdf
	720.pdf
	721.pdf
	722.pdf
	723.pdf
	724.pdf
	725.pdf
	726.pdf
	727.pdf
	728.pdf
	729.pdf
	730.pdf
	731.pdf
	732.pdf
	733.pdf
	734.pdf
	735.pdf
	736.pdf
	737.pdf
	738.pdf
	739.pdf
	740.pdf
	741.pdf
	742.pdf
	743.pdf
	744.pdf
	745.pdf
	746.pdf
	747.pdf
	748.pdf
	749.pdf

