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Preface

“3D graphics” is a term that anyone involved with computers has heard and seen; modern pro-

grams of all kinds increasingly use 3D graphics. Similarly, the term “Linux” has worked its way

into everyday usage; the free, zero cost, open source, and community-developed Linux operating

system is a significant player in the ongoing OS wars, and shows no signs of slowing down.

Only very recently, however, have we begun to see the terms “3D graphics” and “Linux”

combined in the same sentence. The suitability of Linux for learning and programming 3D graph-

ics appears to be less well known, or a closely guarded secret. I hope this book helps to change

that. Linux is an excellent and enjoyable environment for interactive 3D graphics programming.

For a programmer—and I assume you are one if you are reading this book—3D graphics is

one of the most challenging and rewarding of problem domains. Programmers in all fields grapple

daily with abstract concepts requiring powerful mental visualization skills. With 3D graphics pro-

gramming, the abstract concepts move into the realm of the concrete. You see the results of your

effort, and with interactive programs, your creations appear to come alive in the most realistic way

technology can produce—in 3D. All programmers know the satisfaction that comes with an ele-

gant solution to a difficult problem. Such inherent satisfaction for a job well done is immeasurably

greater with 3D graphics programs, because the reward also comes in the form of a breathtaking,

animated 3D world—a believable universe conceived and brought to life by the programmer, a

masterpiece of technical and visual synergy. The visual and creative rewards offered by 3D graph-

ics programming are among the highest any field can offer.

Creating 3D programs requires a programming environment. As an absolute minimum, you

need an editor, a compiler, and some standard libraries; a debugger is also practically indispens-

able. In general, programming 3D graphics demands more; you need image manipulation

programs to create texture maps and generate common palettes, 3D modeling programs to gener-

ate 3D worlds and objects, language-parsing utilities to convert between file formats, and libraries

to abstract some areas of the problem domain such as hardware accelerated rasterization.

All of these tools and more are available at no cost, and mostly with source code, for the Linux

system. On other platforms, you must literally pay thousands of dollars just to get started program-

ming 3D graphics: a compiler, a 3D modeler, and of course the operating system itself must all be

purchased or licensed—assuming, of course, that you wish to legally use the software as opposed

to illegally copying it. Under Linux, you can legally get all of this for free.

The low cost of 3D graphics development under Linux opens up this exciting realm to many

creative, innovative, but financially limited individuals who otherwise might never get involved

with 3D graphics. Students, universities, schools, hobbyists, and amateurs are but a few of the

groups for whom Linux represents an economically attractive environment to explore profes-

sional 3D graphics.
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But this low cost does not imply that Linux is just a toy system for starving students—indeed,

nothing could be further from the truth! Linux is renowned for its power, stability, and flexibility

in rigorous production environments. Linux workstations have been used to create professional

graphics for Hollywood special effects and commercial 3D games. The freely available develop-

ment and modeling tools are first-rate—literally some of the best software available at any price.

Linux is absolutely a viable and proven production platform for professional programs.

Linux represents a new, open, and economical model of software development and distribu-

tion—one that has proven itself in practice. I am continually surprised and excited by the quality

of software appearing for Linux and the new possibilities it opens. I hope that through this book

you, too, will get a sense for the exciting and infinite possibilities that Linux and 3D graphics have

to offer.
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Introduction

W
elcome, reader! I am glad to have you along, and hope that you are as excited as I am

about Linux and interactive 3D graphics programming. Take your time and enjoy the

following few pages as we leisurely discuss the goals and contents of this book.

This book is the first volume of a two-volume work on interactive 3D graphics programming

under Linux. First, let’s look at the two-volume work as a whole; then, we’ll look more specifi-

cally at the contents of this volume.

Taken as a whole, the two-volume work aims to provide you with the knowledge, code, and

tools to program top-notch, object-oriented, real-time 3D games and interactive graphics applica-

tions for Linux, which can also easily be ported to other platforms. By working through both

volumes, you will learn to use the most important techniques, tools, and libraries for Linux 3D

graphics: portals, OpenGL/Mesa, Xlib, 3D hardware acceleration, collision detection, shadows,

object-oriented techniques, and more. We also cover the often neglected topic of 3D modeling,

illustrating in detail how to use the professional 3D modeling package Blender, included on the

CD-ROM, to create animated 3D models and portal worlds for use in our interactive 3D programs.

This first volume, titled simply Linux 3D Graphics Programming, covers the basics of Linux

programming and 3D polygonal graphics. Broadly, this encompasses the following major topics:

Linux programming tools, the X Window System, rasterization, hardware acceleration, Mesa and

OpenGL, 3D-to-2D projection, coordinate systems, vectors, matrices, transformations, arbitrary

camera orientation, 3D polygonal objects, simple hidden surface removal, object-oriented design,

and creation of basic 3D models using the program Blender. Summaries of each chapter in this

volume appear later in this section. The second volume, titled Advanced Linux 3D Graphics Pro-

gramming, covers more advanced techniques needed for realistic display of larger datasets often

used in interactive 3D environments. Topics in the Advanced volume include: advanced rendering

and animation techniques for 3D polygons (3D morphing, texture mapping, light mapping, fog),

the creation of more sophisticated 3D models with Blender (including jointed figures animated

with inverse kinematics), importing such models from Blender into our programs, hidden surface

removal (portals, BSP trees, octrees, z-buffer), non-graphical issues relevant to interactive envi-

ronments (special effects, collision detection, digital sound, TCP/IP networking, particle

systems), and tutorials on using advanced 3D content development systems under Linux (Game

Blender and World Foundry). In both volumes, sample programs are provided, both in the text and

on the CD-ROM, that illustrate the concepts.

The field of interactive 3D graphics programming under Linux is a very exciting area due

mainly to two parallel developments: the explosion of 3D graphics applications and the wide-

spread acceptance of Linux in all areas of computing, including 3D graphics. Furthermore, 3D

graphics has always been an inherently challenging and exciting field, and Linux has always been
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an inherently exciting operating system for programmers due to its open source nature and freely

available tools.

Goals of This Text
This text has several objectives.

A primary goal of this text is to give you a solid understanding of the fundamental concepts

involved in interactive 3D graphics programming. Such an understanding not only enables you to

write your own 3D programs, libraries, and games under Linux, but also gives you the knowledge

and confidence you need to analyze and use other 3D graphics texts and programs. In the open

source world of Linux, understanding fundamental concepts is indeed important so that you can

understand and possibly contribute to the common pool of knowledge and code. Furthermore,

learning fundamental 3D graphics concepts also enables you to understand and effectively use

sophisticated 3D applications and libraries such as 3D modelers and OpenGL. After completing

this book, you will have a firm grasp on the theoretical and technical issues involved with 3D

graphics programming.

TIP This intentional emphasis on the foundations prepares you for the Advanced volume or
for further independent study.

A second goal of this text is to give you plenty of hands-on experience programming 3D graphics

applications under Linux. It is one thing to understand the theoretical mechanics of an algorithm;

it is another to actually implement, debug, and optimize that same algorithm using a particular set

of programming tools. Small standalone programs are scattered throughout this text to demon-

strate key 3D graphics concepts. It is often easy to lose sight of the forest for the trees, particularly

in the complicated world of 3D graphics. Standalone sample programs address this problem by

concisely illustrating how all the necessary components of a 3D program “fit together.” They

reduce the intimidation that often accompanies the study of large, complicated programs, giving

you confidence in developing and modifying complete 3D programs under Linux.

A third goal of this text is to help you develop and understand the techniques for creating a

reusable 3D application framework or library. In addition to the standalone programs mentioned

above, the book also develops a series of generally reusable C++ library classes for 3D graphics,

called the l3d library. This C++ library code follows an object-oriented approach, relying heavily

on virtual functions, (multiple) inheritance, and design patterns. In this manner, the developed

library classes are usable as is but still open for extension through subclassing. Each chapter builds

upon the library classes developed in previous chapters, either adding new classes or combining

existing classes in new ways. The new concepts in each chapter are implemented via new classes

or subclasses which add exactly the new functionality, instead of a time-consuming and wasteful

complete reimplementation via cut-and-paste which is “similar but different” and not reusable. A

constant search for abstract classes, including such less-than-obvious behavior classes as

rasterizer, pipeline, and event dispatcher, yields code that is extremely flexible and modular, run-

ning on a variety of platforms including Linux, Microsoft Windows, and DOS, with and without

hardware acceleration through a Mesa/OpenGL back end. Through subclassing, the library
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classes can be adapted to work with virtually any hardware or software platform or API. The tech-

niques used to develop the 3D library classes illustrate both valuable 3D abstractions and

generally applicable object-oriented techniques.

A fourth goal of this text is to demonstrate the excellence of the Linux platform as a graphics

programming environment. For a programmer, Linux is a dream come true—all of the source

code is available, all of the operating system features are enabled, a large number of excellent

first-rate software development tools exist, and it is all freely available, being constantly tested

and improved by thousands of programmers around the world. Linux empowers the programmer

with open source, open information, and open standards. Given this outstanding basis for develop-

ment, it is no wonder that programmers in every conceivable application area—including 3D

graphics—have flocked to Linux. This has created a wealth of 3D libraries, tools, and applications

for Linux. Linux is therefore an outstanding software development platform with powerful 3D

tools and software—an ideal environment for learning and practicing 3D graphics programming.

A final, personal goal of this text, and the main reason I am writing this book, is to impart to

you a sense of the excitement that 3D graphics programming offers. You, the 3D programmer,

have the power to model reality. You control every single z-buffered, Gourad-shaded, tex-

ture-mapped, perspective-correct, dynamically morphed, 24-bit, real-time pixel on the flat 2D

screen, and amazingly, your painstakingly coded bits and bytes merge to form a believable 3D

world. And by working under Linux, you are no longer held back by a lack of tools or software.

It’s all out there—free for download, and top quality. Linux software gives you the tools you need

to realize your 3D ideas.

Organization of the Book and the Code
This text follows a bottom-up organization for the presentation order of both concepts and pro-

gram code. This bottom-up organization serves two purposes: pedagogical and practical.

Seen pedagogically, a bottom-up approach means first covering fundamental concepts (such

as 2D graphics) before proceeding to more complex subjects (3D to 2D projection, 3D polygons,

3D objects, and complete interactive 3D worlds). This is a fully natural progression which deals

with computer graphics at ever-increasing levels of abstraction. Seen practically, a bottom-up

approach means that simple C++ classes are developed first, with later, more complicated exam-

ples literally “building upon” the foundation developed earlier through the object-oriented

mechanism of inheritance. This ensures compilable, executable code at each level of abstraction

which is incrementally understandable and extensible. Every chapter has complete, executable

sample programs illustrating the concepts presented.

The bottom-up organization has a rather far-reaching impact on the structure of the code in

general. The principal goal I had in mind when structuring the code for the book was that all parts

of a class presented within a chapter should also be explained within that same chapter. While in

some cases it was not practically feasible to fulfill this requirement completely, in most cases the

chosen code and chapter structure does allow understanding a class as fully as possible within the

context of the current chapter, with minimal references to future chapters. The second most impor-

tant goal for the code was to reuse as much code as possible from previous chapters, typically
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through subclassing, thus truly illustrating how more complex 3D concepts literally, at the code

level, build upon simpler concepts. To achieve these goals, the overall design of the code relies

heavily on indirection through virtual functions, even in fairly time-critical low-level routines

such as accessing elements of a list. The presence of so many virtual functions allows for a rather

clean, step-by-step, bottom-up, incrementally understandable presentation of the code. The

design is also very flexible; new concepts can be implemented through new subclasses, and

behavior can be swapped out at run time by plugging in new concrete classes.

But as is always the case in computer science, there is a tradeoff between flexibility and per-

formance. The code design chosen for the book is not absolutely as fast as it could be if all the

virtual function calls were eliminated; of course, eliminating virtual function calls leads to

reduced flexibility and increased difficulty extending the code later. Still, the code performs well;

it achieves 30+ frames per second with software rendering on a Pentium II 366 in a 320� 240 win-

dow with 24-bit color, and 30+ frames per second in 1024� 768 with Voodoo3 hardware

acceleration. In spite of its definite educational slant, it is fast enough for real use. Again, this is

one of the great things about doing 3D programming in the 21st century: a straightforward, educa-

tionally biased code structure can still be executed fast enough by consumer hardware for

real-time, interactive 3D environments. Real-time 3D no longer forces you to wrestle with assem-

bly or to have access to expensive dedicated graphics workstations. If you know how to program

in C++, and you understand the geometrical concepts behind 3D graphics, you can program

real-time 3D graphics applications using free tools under Linux.

Let’s now look at the organization of the text itself.

Chapter 1 provides an overview of 3D graphics programming under Linux and reviews the

available tools, trends, and programs. We also write a simple Linux program that displays a win-

dow, with the goal of familiarizing ourselves with the entire process of editing, compiling, and

running C++ programs under Linux.

Chapter 2 explains 2D screen access under Linux, since the foundation of traditional 3D

graphics is the presentation of images that appear to be 3D on a 2D screen. This chapter first gives

a few practical examples of 2D graphics under the X Window System and illustrates

object-oriented techniques for developing reusable code. Basic 2D theory is then covered, includ-

ing discussion of pixels, colors, and 2D screen coordinates. Along the way, we develop reusable

library classes for 2D graphics, separating abstraction from implementation. Sample programs

illustrate the use of the developed library classes.

Chapter 3 discusses 2D rasterization. We look at the algorithms necessary to draw lines and

polygons using individual pixels of the 2D screen. We also discuss convexity, clipping, and

sub-pixel correction, all of which complicate 2D rasterization. Finally, we examine hardware

acceleration with the Mesa library and present new subclasses implementing hardware

acceleration.

Chapter 4 lays the theoretical foundation for understanding what 3D graphics are all about:

fooling the eye into seeing 3D objects on a 2D computer screen. This chapter examines in detail

the processes of vision, visual perception, and light rays. By understanding these subjects, we

understand how the eye can be tricked into seeing a 3D image where only a 2D image exists. We

write a “fake” 3D program using a parallax effect, and explain the “3D effect” in terms of percep-

tual concepts. We then discuss the problems with the sample program’s simple-minded approach
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to 3D graphics, all of which stem from the lack of a formal model for displaying arbitrary 3D data

realistically on a 2D screen.

Chapter 5 solves the problems of Chapter 4 by developing the mathematical formulas neces-

sary for specifying and projecting arbitrary 3D points onto a 2D plane. We redevelop the example

3D program in a more general, mathematically correct way. We also cover 3D coordinate systems,

3D points, 3D vectors, and operations on 3D vectors. Furthermore, we see how to use point pro-

jection to project entire polygons from 3D into 2D, thereby creating 3D polygonal graphics.

Library classes are developed for all of these concepts.

Chapter 6 serves a number of purposes. First, it explains the idea of transformations as a

manipulation of a 3D point. Second, it justifies the use of matrices to store transformations. Matrix

math can generate a certain aura of mystique or skepticism for new 3D programmers or for those

unfamiliar with the use of matrices in graphics. The justification for matrices is followed by a

series of C++ classes which implement the necessary matrix operations. The chapter then shows

the matrix form of three important transformations: translation, rotation, and scaling of a 3D point.

We demonstrate the power of combining transformations through three practical examples: speci-

fication of an arbitrary camera location and orientation, rotation about an arbitrary axis

(sometimes called “Descent-style” camera rotation, in honor of one of the first PC games incorpo-

rating this technique in real time), and local rotation and scaling. We also discuss some of the

general properties of matrices which are useful for 3D graphics.

Chapter 7 justifies and implements the use of 3D polygons to model individual 3D objects and

entire 3D worlds in computer memory. We also look at basic hidden surface removal, which

allows for a correct display of complex polygonal objects. We discuss how to clip objects against

arbitrary planes in 3D, which is needed for some advanced visible surface determination algo-

rithms covered in the Advanced volume. All of these techniques are implemented in C++ classes.

Chapter 8 introduces Blender, a free and powerful 3D modeling and animation package for

Linux (included on the CD-ROM). The information in the previous chapters gives us the code to

create visually realistic polygonal 3D images, but we still need interesting 3D data to display. Cre-

ating this data is the role of a 3D modeler. We review the extensive features of Blender and then

create, step by step, a basic spaceship model. This 3D model is then imported and displayed in a

3D program.

Chapter 9 briefly introduces a number of advanced topics, all covered in the Advanced vol-

ume. These topics include 3D morphing, more advanced algorithms for visible surface

determination (portals, BSP trees), texture mapping, lighting and light mapping, special visual

effects (particle systems, billboards), and non-graphical elements often used in interactive 3D

graphics programs (collision detection, sound, Newtonian physics).

The Appendix provides installation instructions for the CD-ROM, an explanation of

fixed-point math, information on porting the graphics code to Windows, and a list of useful refer-

ences, both in electronic (WWW) and in print form. Notations in brackets, such as [MEYE97], are

detailed in the “References” section of the Appendix.

The CD-ROM contains the Linux operating system, C++ software development tools, freely

available Linux 3D libraries and applications, the Blender 3D modeling and animation suite, all

sample code from the book, and a series of animated videos illustrating some of the more diffi-

cult-to-visualize 3D concepts discussed in the text (such as the transformation from world space to
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camera space). In other words, the CD-ROM contains a complete learning and development envi-

ronment for 3D programming and modeling.

Reader and System Requirements
This book requires you to have a working Linux installation up and running with the XFree86

server for the X Windows System on an IBM PC or compatible system with a Pentium or better

processor. If you don’t yet have Linux installed, you can install the Linux distribution included on

the CD-ROM or download Linux for free from the Internet (see the Appendix). Installing Linux is

no more difficult than installing other common PC operating systems, such as Microsoft Win-

dows. A 3D graphics card with Mesa drivers is necessary for the hardware-accelerated

demonstration programs, although the code will also run acceptably fast without hardware accel-

eration. If your graphics card is supported by the new XFree86 4.0 Direct Rendering

Infrastructure, you can also link the code with the DRI’s OpenGL library to achieve hardware

accelerated rendering in a window.

In order to effectively read this book, you should have a working knowledge of the following:

� Executing programs from the command line under Linux

� Finding, loading, editing, and saving text files under Linux

� Manipulation of windows under the X Window System (dragging, resizing, switching

among, minimizing, maximizing, etc.)

� The concepts of “compiling” and “linking” programs (the exact Linux commands are

described later)

� Basic to intermediate concepts of the C++ language (bit manipulation, classes, virtual func-

tions, multiple inheritance)

� Basic data structures and algorithms (pointers, linked lists, binary trees, recursive traversal,

binary search)

� Basic high school mathematics (geometry, trigonometry, linear algebra)

In essence, this means that you should have programmed in C++ before, and that you should have

basic familiarity with using Linux and the X Window System.

NOTE If you need to brush up on some of the above topics, have a look at the references,
both online and in book form, presented in the Appendix.

Even if you are an absolute newcomer to Linux, don’t despair. Linux comes with a variety of

online documents which can help you with installation and basic file and directory manipulation.

Many of these documents are on the CD-ROM; see the Appendix for details.
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Typographical Conventions
Used in This Book

The following typographical conventions are used in this book.

� Program code, class names, variable names, function names, filenames, and any other text

identifiers referenced by program code or the operating system are printed in a fixed-
width font.

� Commands or text to be typed in exactly as shown are printed in boldface.

� Key sequences connected by a plus (+) sign (such as Ctrl+C) mean to hold the first key while

typing the second key.
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C h a p t e r 1

Introduction to 3DIntroduction to 3D
Graphics and LinuxGraphics and Linux

D
uring the course of the 15th century, great painters of the Renaissance grew very excited

about a new discovery that was sweeping the artistic world. This new discovery, now

termed linear perspective, allowed painters to portray their visions with striking real-

ism—realism that drew viewers into the painting with the feeling of depth. Closer objects

appeared larger, farther objects appeared smaller, parallel lines converged on the horizon, and it

all was done with convincing, mathematical precision. Through the use of perspective,

two-dimensional pictures could finally faithfully capture the elusive third dimension. The art

world was changed forever.

The field of computer graphics has experienced a similar revolution. Barely a decade ago, text

interaction was still a standard means for communicating with computers. Graphics, on those

computers supporting them, generally merely enhanced text-based applications by drawing

accompanying 2D pictures or graphs. As graphics capabilities became common on more comput-

ers, graphical user interfaces began to replace command-line interfaces, until completely

graphical operating systems became widely available. Correspondingly, programming languages

incorporated 2D graphics features, or could be linked with 2D graphics libraries.

1

Figure 1-1: A Renaissance-style
image illustrating linear
perspective and the convergence
of parallel lines on the horizon.



As soon as 2D graphics capabilities were available, enthusiastic computer scientists com-

bined their knowledge of linear perspective with these 2D graphics capabilities to create so-called

3D graphics. The display on the screen was of course still 2D (although even this has changed in

recent years), yet through perspective, the images appeared to exist and move convincingly in 3D.

The problem was one of computational speed. 3D graphics requires many mathematical com-

putations; the more realistic the image, the more computations needed. Early consumer PCs

simply did not have the raw power needed to display interactive 3D graphics. Computing just one

reasonably realistic image could take minutes—far too slow for interactive displays. Thus, inter-

active 3D graphics was only a reality on expensive, high-end computers, which are far out of the

reach of the average consumer or the average programmer.

But at long last, today, interactive 3D graphics has become widespread. The ever-increasing

computational power of personal computers has reached such a stage that the average consumer’s

PC can now display real-time, interactive, animated 3D graphics—indeed, complete immersive

3D environments. Compiler technology has also matured to such a level that a straightforward

implementation of 3D graphics concepts in a high-level language yields acceptable real-time per-

formance. 3D graphics has become accessible to both the consumer and the programmer.

The proliferation of 3D computer graphics implies increasingly that successful software must

incorporate 3D graphics. Though most evident in the computer games industry, this trend also

affects other software areas: business and scientific software often allow some form of 3D data

visualization; WWW browsers allow 3D navigation through virtual worlds written in VRML;

word processors even offer built-in 3D drawing functions with controllable lighting and perspec-

tive parameters. The consumer has come to expect 3D graphics in modern software of all kinds.

Apart from consumer expectation, there is another, perhaps ultimately more compelling rea-

son to program 3D graphics: it’s just plain fun. 3D graphics programmers have the unique
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Figure 1-2: 3D graphics comes
to the personal computer.
Here, one of the 3D figures for
this book is being prepared
using a free Linux 3D
modeling package, Blender. A
few years ago, it would have
been impossible to run such a
computationally demanding
3D application on a normal,
consumer-level PC.



privilege of seeing stunning animated displays as a result of their long hours of coding. However

complicated or intricate 3D graphics might seem at times, it’s important not to lose sight of the

“fun” aspect!

Why Linux
Linux is an excellent and perhaps unsurpassed environment for learning, programming, and pro-

ducing 3D graphics. Two good examples from the late 1990s include the heavy use of Linux

machines in producing the graphics for the movie Titanic, and the appearance of commercial

games for the Linux platform (Quake from id software is but one example). Let’s examine more

closely why Linux makes such a good environment for 3D graphics programming.

Linux is Free and Open
Linux is a freely available, open source operating system. The operating system and most of the

available software are released under a free software license, typically the GNU General Public

License, abbreviated GPL. The accompanying CD-ROM contains the text of the GPL; Figure 1-3

shows a portion of the license. The GPL ensures the availability of source code for the licensed

product and for all derivative works. In practice, this means that a vast amount of Linux software

is available and will remain available free of charge and with source code.

Linux therefore offers the 3D graphics programmer a low-cost, open source platform. Freely

available compilers and graphical debuggers make real software development possible, and the

availability of source code for 3D applications allows you to study and learn from others’ code.

You might expect the available 3D graphics source code to be limited to small example programs

written by individuals. Though many examples fall into this category, larger scale 3D programs

are also available with source code for study. This includes blockbuster games from a few years

ago, such as Descent, Doom, and Quake, all of which are now available with source code and free

of charge for the Linux platform.
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NOTE As with any other software license, you should read the GPL carefully and make sure
that you understand your rights and obligations. Also note that not all Linux software is
licensed under the GPL; always read the license agreement for the particular software pack-
age in question.

Linux is Powerful
Linux is sometimes viewed as the operating system for “power users.” Its tools are no different:

they are powerful and efficient. Let’s take a quick glance at some of the powerful tools Linux

offers the 3D graphics programmer:

� gcc: Fully featured optimizing C++ compiler. Features include support for various dialects of

C and C++, configurable debugging and optimization, inline assembly, cross compilation,

several processor targets, and front ends for compiling other computer languages.

� gprof: Code profiler. Various reports and graphs illustrate how much time was spent in partic-

ular routines, which routines called which others, or how often a particular source code line

was executed.

� gdb: Text-mode debugger. All typical debugger features are supported: setting breakpoints,

single stepping, stack tracing, dynamic inspection, and alteration of data.

� xxgdb: Graphical interface to the debugger gdb. Through xxgdb most functions may be

invoked via the mouse, and source code is displayed in its own window with breakpoint.

� Blender: Professional 3D modeling and animation package.

� rcs: Revision control system for tracking changes to individual files.

� cvs: Concurrent version control system fulfilling the same role as rcs, but allowing multiple

developers to simultaneously make changes to the same file; often used for projects which

have a modifiable source code repository accessible through the Internet.

� Aegis: Change management system built on top of a version control system; used for tracking

problem reports and changes to sets of files.

� Emacs: Multi-file editor with interfaces to compiler, debugger, version control, and more.

Linux has the powerful tools needed to do serious, professional 3D graphics programming—tools

for everything from version control to code profiling to 3D modeling. These tools often surpass

their commercial counterparts that cost thousands of dollars. With the right tools, you can concen-

trate on the task at hand: programming interactive 3D graphics.
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Linux is Compatible
The open source nature of Linux development implies that programmers must eventually agree

upon some standards to support: libraries, languages, protocols, and so on. The many standards

supported in Linux ensure long-term compatibility with a wide range of other systems and

programs.

Some of these standards include:

� C++: This is a standardized, widespread, object-oriented language. The GNU/Linux C++

compiler gcc is available on a large number of platforms, including 68000-based Linux sys-

tems, Microsoft Windows, DOS, and even some console game systems. The availability of

the same C++ compiler for all of these systems allows C++ programs developed under Linux

to run on a wide range of platforms with a minimum of code change. In fact, the 3D graphics

programs in this book can also be made to compile and run under Windows and DOS; see the

Appendix for details.

� Mesa and OpenGL: OpenGL is a standardized, widespread library for interfacing to 2D and

3D graphics hardware. Mesa is a free library written by Brian Paul, which, in practice, is

source-code compatible with OpenGL. (Mesa is not an “officially” licensed OpenGL imple-

mentation, since the official licensing and conformance testing process costs money, which

programmers working for free cannot be expected to pay.) Under Linux, Mesa offers support

for hardware acceleration on 3DFX cards, and support for other high-performance 3D hard-

ware has just become available through the Direct Rendering Infrastructure, which is part of

XFree86 4.0. OpenGL or Mesa implementations are also available for Microsoft Windows

and DOS.
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desktop under Linux,
using the X Window
System (X) and the K
Desktop Environment
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� VRML: VRML, the Virtual Reality Modeling Language, is an object and scene description

language widely used in WWW pages. The free 3D modeler Blender can import and export

VRML files.

By supporting these 3D graphics standards, Linux allows the 3D graphics programmer to remain

compatible with several platforms. This compatibility allows for easier porting of programs and

exchange of data.

Linux is Contemporary
Linux 3D graphics is constantly evolving. Today, this means support for hardware acceleration

and the development of standardized APIs. Current examples include Mesa’s support for 3DFX

hardware acceleration, and SGI’s release of the Performer scene graph library for Linux. In the

future, this will probably mean increased support for true 3D input and display devices and further

development of 3D operating system interfaces to replace the 2D desktop metaphor. Whatever the

future may hold, this much is certain: the 3D graphics community does not stand still, and neither

does the Linux community. The open source, distributed development philosophy ensures that

Linux can keep up with the most current 3D graphics developments, whether these developments

are in the form of ideas, algorithms, software, or hardware.

A Survey of 3D Graphics Under Linux
Under Linux, programming 3D graphics—or programming any real system, for that matter—

requires a different approach than on commercial systems. With commercial systems, you typi-

cally pay a software vendor for an operating system license and a compiler license. You then read

the compiler manuals to see what libraries and operating system features are available, and pro-

gram your application based on the features that the operating system, the compiler, and its

libraries offer. You build your systems based on the building blocks you buy or license from your

software vendor.

Linux software development is radically different. As mentioned earlier, the operating system

itself has been released under an open source license, in this case the GPL. The GPL requires that

the source code to the product, and all derivative products, always be available to everyone. Most

software available under Linux also falls under either the GPL or a similar open source license

(notable non-GPL but open source products include XFree86 and the Qt graphics library used by

the K Desktop Environment, KDE—though the legal status of Qt was just recently changed). This

unique approach to software development means that you as a programmer literally determine

what features the operating system, the compiler, and available software libraries have to offer.

The entire environment was programmed by programmers like you, and must be extended in the

future by you or programmers like you. It is a radical concept, but one that works amazingly well

in practice due in no small part to the communication possibilities offered by the growing Internet.

This means, however, that there is no official ruling body which will tell you what functions

or libraries are “officially supported.” You must decide for yourself which resources are available

under Linux to help you get your job done. In our case, this job is 3D graphics.
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Figure 1-5 summarizes graphically the important concepts and libraries relevant to Linux 3D

graphics programming. Linux 3D graphics programming, like many other programming endeav-

ors, can be viewed and carried out at various layers of abstraction. In the figure, the topmost layer

is the most abstract; the bottommost, the least abstract. In between are various libraries and con-

cepts which allow your 3D application (top layer) to ultimately create the hardware signals

necessary to display a 3D image on the monitor (bottom layer). The arrows in the figure represent

possible communications between layers. (The solid and dotted lines represent which concepts

are emphasized or not emphasized in this book, respectively, and have no technical significance.)

Notice that a particular layer may not only communicate with the layer immediately beneath it, but

may also bypass the immediately underlying layer to communicate more directly, and thereby

more quickly, with lower layers. Bypassing a lower layer, though, means that the higher layer

must do the bypassed layer’s work as well—usually in a faster, more specific, and less general

way than the lower layer would have done. The higher the layer, the more choices must be made as

to which underlying layers should be used, and which not. This is what makes the figure, and the

practical side of 3D programming, complex.
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Let’s now take a closer look at some of the available 3D tools and libraries under Linux. We

first cover projects that are relatively stable, continue with a list of developing projects, and close

with a list of “dead” projects. As you read the following sections, you may want to refer to Figure

1-5 in order to keep the overall structure in mind.

NOTE The following sections are not exhaustive, but do provide a representative view of 3D
graphics development under Linux at the time of this writing. Again, the open source model
requires you to inform yourself about trends in this area, but at the same time gives you the
freedom to choose and the power to change. The Appendix lists some useful Internet
resources for Linux and 3D graphics, where you can inform yourself about the latest
happenings.

Stable Ideas, Projects, and Libraries
The following list provides an overview of some of the stable and well-established ideas, projects,

and libraries related to 3D graphics programming under Linux.

� 2D/3D theory: There are no two ways about it—you must understand the geometric and

mathematical theory behind 2D and 3D graphics in order to do any sort of serious 3D graphics

programming. Rest assured, after completing this book, you will indeed have a firm under-

standing of this theory. Coordinate systems, mappings, perspective projection, vectors, matri-

ces, and intersections are but a few of the fundamental topics which every 3D programmer,

and you too, must know by heart. This theory is the very foundation of every 3D program ever

written and is the area where the most exciting new discoveries can be made. Know the the-

ory, and the rest is just implementation.

� Hardware: A basic understanding of hardware display technology and raster displays is

essential to programming graphics of any kind.

� X Window System/XFree86: The X Window System forms the primary display environment

under Linux. It provides a device-independent, network-transparent interface to graphics

hardware. XFree86 is one freely available implementation of the X Window System. Pro-

grams may draw into a window by using functions provided by X.

� Mesa: Mesa is a free graphics library written by Brian Paul, with a syntax identical to that of

the standard graphics library OpenGL. Programs using Mesa can take advantage of hardware

acceleration in a platform-independent way.

� GLUT: The OpenGL Utility Toolkit is a free library, written by Mark Kilgard, which is built

on top of OpenGL and which makes the implementation of certain frequently occurring

OpenGL operations much simpler. GLUT is compatible with Mesa.

� Blender: Blender is a freely available professional 3D modeling and animation package

which has been used to produce 3D graphics in commercial production environments. Its

advanced features include keyframe animation, motion curves, inverse kinematics, and lattice

deformation—to name just a few.
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Developing Ideas, Projects, and Libraries
The following sections provide an overview of some of the significant development efforts taking

place in the field of Linux 3D graphics. These represent works in progress, projects to which you

may eventually wish to contribute.

Developing APIs

The following list summarizes some of the important developing APIs (application programming

interfaces) relevant to Linux and 3D graphics programming. These libraries are in various stages

of development, some more usable than others. You should check the WWW pages of these librar-

ies (provided in the appendix) for more details.

� SDL: The Simple DirectMedia Layer (SDL) is a 2D frame buffer, audio, and input API. SDL

works on a number of operating systems including Linux.

� GGI: The General Graphics Interface (GGI) aims to develop a portable 2D (ggi2D) and 3D

API (ggi3D) offering Linux graphics developers an alternative to the “SVGALIB or X” deci-

sion for graphics ouptut. GGI has both a kernel part, KGI, which interfaces at a low level to

the OS, and a user part such as XGGI. GGI does not replace X; X is a window system, GGI is a

graphics interface. Mesa can direct its output to 2D GGI devices.

� GAMES: The GNU Animation and Multimedia Entertainment System is an object-oriented

2D, sprite, 3D, and sound API for multimedia and games applications.

� ClanLib: ClanLib is a gaming library planning to offer 2D and 3D graphics, image, sound,

and networking routines.
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professional 3D
modeling and
animation package.
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the CD-ROM
accompanying this
book.



3D Applications with Source

The following list summarizes some important 3D applications available with source code for the

Linux system. These applications illustrate a variety of techniques for 3D graphics programming

and most are being actively extended. You might eventually want to contribute to these projects.

� Descent: The game Descent is a commercial, indoor, portal-based 3D game whose source has

been released and ported to Linux.

� Doom: Doom was one of the first games with real-time texture mapping for PCs, utilizing

special restrictions on game geometry to speed up texture mapping. Its source has also been

released and ported to Linux.

� Golgotha: This is a mostly complete game from crack.com which unfortunately was not com-

pleted. Instead of letting the source code and numerous graphics and music files go to waste,

crack.com released it all to the public for study and use.

� Obsidian: This is an Internet, multi-player, client-server virtual reality system, currently

being developed under an open source model.

� Crystal Space: This is a portal-based engine aiming to become a general purpose gaming sys-

tem, currently being developed under an open source model.

� Flight Gear: This is an open source flight simulator project for PCs with hardware

acceleration.

� World Foundry: The World Foundry system is an open source, complete 3D game production

environment with advanced physics, camera, and scripting systems, allowing an extremely

rich variety of virtual worlds to be created with little or no additional programming. Ori-

ginally used to produce commercial games for Windows and the Sony PlayStation, World

Foundry is now being ported to Linux.

NOTE I personally have helped with porting the World Foundry system to Linux. This is one
of the most enticing features of an open source development model: if a project interests you,
and if you know enough about the subject, nothing stops you from jumping in and helping. As
mentioned in the introduction, one of the major goals of this book is to give you a solid
enough foundation and broad enough perspective on Linux 3D graphics so that you too can
participate in or even initiate your own open source 3D projects.

3D Modelers

The following list summarizes some of the many 3D modeling programs available under Linux

that are in various stages of development.

� amapi: Modeler with a tool-based interface and various deformation and mesh editing

capabilities.

� sced, sceda: Constraint-based scene editor, allowing linking of objects based on “constraints”

(somewhat similar in effect to inverse kinematics). Support for Computational Solid Geome-

try (CSG).

� Midnight Modeler: CAD-like modeler with tools for generating and deforming meshes.

Command-line and menu-based interface.
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� 3DOM: Open source 3D modeler.

� ac3d: Shareware modeler with multiple simultaneous views.

None of these modelers currently matches Blender’s flexibility and power (introduced in the sec-

tion titled “Stable Ideas, Projects, and Libraries”). For this reason, we cover Blender in this book;

Chapter 8 goes into more detail about the specifics of using Blender to create models and portal

worlds.

Dead Ideas, Projects, and Libraries
Not all software projects enjoy great success or even long life. The following list describes some

previously potentially promising but now essentially dead ideas, projects, and libraries relating to

Linux 3D graphics.

� SVGALIB: This library provides direct access routines for displaying graphics on SVGA

video cards. The main problems are that SVGALIB programs don’t interface well with X, and

that not all video cards are supported—fewer video cards than are supported by XFree86, for

instance. SVGALIB historically played an important role in early Linux graphics program-

ming because it offered a working, fast graphics solution. However, due to the problems men-

tioned above, it is no longer as important as it once was. The future lies with X and 3D

hardware acceleration integrated into the X server (covered in the next section).

� X3D-PEX/PEX/PHIGS: The Programmers Hierarchical Interface Graphics System, PHIGS,

is an ANSI 3D graphics standard which never really enjoyed great acceptance. PEX, or the

PHIGS Extension to X, was an extension to the X Window System to incorporate PHIGS

functions. PHIGS is basically dead; OpenGL and the OpenGL Extension to X (GLX) have

taken its place.

Other Ideas, Projects, and Libraries
Outside of “stable,” “developing,” and “dead,” there are also some other important trends in Linux

3D graphics which go beyond the scope of this book but which deserve mentioning.

� VRML/Java/Java 3D: The Virtual Reality Modeling Language is a scene description lan-

guage which also offers facilities for user interaction. Java programs can interface with

VRML worlds, making VRML an attractive language for WWW-based 3D applications. Java

3D is a high-level, scene graph API in Java intended for more direct programming of plat-

form-independent 3D applications (notice that VRML is fundamentally a “modeling lan-

guage,” whereas Java 3D aims to be a high-performance programming API). The main

problem with WWW-based Java and VRML applications is the speed of the network connec-

tion. Linux VRML browsers (such as VRWave and FreeWRL) already exist.

NOTE A scene graph is a data structure storing the various components of a 3D scene and
the relationships among these components. That Java 3D is a scene graph API means that it
provides application programmers access to a data structure representing the 3D scene,
rather than requiring the programmer to define his own data structures to manipulate the 3D
scene. The higher-level access at the scene graph level means that application programmers
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can focus on higher-level issues, but also constrains programmers to work within the scene
graph structure as provided by the API.

� Non-interactive 3D graphics: A number of packages exist for doing non-interactive,

photorealistic 3D graphics under Linux. Some of the important packages in this area include

POVRay, the Persistence of Vision Raytracer, and BMRT, the Blue Moon Rendering Tools,

which implement the Renderman specification.

Scope of This Book, Revisited
The introduction covered in detail the goals and contents of this book. Given the survey of Linux

3D graphics just presented, we can now understand the book’s scope in a new context: we focus on

stable ideas, projects, and libraries dealing with real-time Linux 3D graphics programming. These

are also the solid arrows in Figure 1-5. Toward the end of the book and in the advanced volume we

also discuss some of the developing trends and provide a list of WWW addresses that often con-

tain information about new developments.

Let’s Talk About X
The graphics programs we write under Linux will display their output under the X Window Sys-

tem. So, let us now examine the X Window System in more detail to understand at a high level

how the system works. As mentioned in the introduction, you should already be familiar with

basic usage of the X Window System; the following discussion is primarily from a programmer’s

point of view, not necessarily a user’s.

The X Window System, as mentioned earlier, is the usual display environment under Linux. If

you have used other operating systems, you may be slightly confused by this terminology. What is

meant by “usual display environment”? Let’s first look at Linux itself: Linux is a variant of the

Unix operating system, and provides access to services such as files, directories, processes, hard-

ware, and network connections. Unlike some other operating systems, Linux does not dictate a

particular display environment. You can, for instance, productively run Linux in an 80x25 text

console. A Linux-based WWW server often does exactly this. For graphics programming, you can

either try to access the video hardware directly, or you can go through a graphical display environ-

ment. But regardless of what your program does, the operating system itself is separate from any

graphical display environment.

That understood, the usual graphical display environment under Linux is, in fact, the X Win-

dow System, also called simply “X” or “X11.” (The term “X Windows” is to be avoided, since it

incorrectly suggests a relationship to a proprietary operating system of a similar name and often

causes confusion.) The particular implementation of the X Window System most commonly used

on Linux systems is XFree86, so named because its target processor family is the Intel x86 family.
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Definition of X: A Client-Server System
So, what exactly is X?

X is a distributed, hardware-independent windowing system developed at MIT. X is based

upon a client-server model. An X server controls access to the video hardware and runs on the

computer which is physically connected to the monitor. Applications, also called X clients, con-

nect to an X server and send a request to the X server to display something, such as a point,

rectangle, circle, or bitmap image, which then appears on the X server’s screen. X clients can also

send requests to the X server to access the server’s video hardware in other ways, such as to

change a color palette (which we define in Chapter 2). Since it is a windowing system, X handles

the display as being composed of windows (a rectangular area of the display capable of receiving

input and displaying output). Under X, windows may be hierarchically arranged and may overlap.

NOTE From a programming point of view, a window is not necessarily the same as the
informal concept of an application window. For instance, one application window might con-
tain three buttons and a text entry field. Each button and the edit field might be a separate
window, all hierarchically existing as children of the main window. Typically, each application
window in reality contains several child windows. You cannot tell just by looking how many
child windows a particular window has, since a child window does not necessarily have any
visible delineating border.

An important component of X is its network transparency: X clients do not need to be running on

the same machine as the X server. If you are encountering this concept for the first time, its full

impact might not yet be clear. Network transparency means that any machine, running any operat-

ing system, can connect to an X server and display graphics on its screen. You can think of an X

server as a sort of universal monitor on which any program (which understands the X protocol)

can display graphics. For this reason, some vendors produce inexpensive X terminals, which con-

tain nothing more than a monitor, a network card, and an X server in firmware. Such X terminals

simply need to be connected to a network and can immediately display graphics coming from any

program (any X client) reachable via the network—in the case of the Internet, this means world-

wide. As a personal anecdote, I used to use a low-cost X terminal to display graphics coming from

a Cray supercomputer located hundreds of miles away in a different scientific computing center.

Furthermore, dozens of other users were doing the same thing at the same time, each with their

own X terminal, located in various laboratories throughout the world. Here, each X terminal is an

X server controlling access to its own monitor; the Cray in this case runs several X clients, each X

client requesting to display graphics on the X server from the user who started the X client. (If you

are particularly devious, you can try to start an X client requesting to display its output on a differ-

ent X server than your own, which is sometimes desirable but usually viewed as a security risk, for

which reason this is usually disabled by default.)

The terms “X server” and “X client” are often confusing to newcomers to X, because of the

pervasive notion that “the computer running the application is the server.” This notion is too nar-

row: in general, a server controls usage of particular resources. In the Cray example above, the

Cray may therefore be viewed as the application server, controlling usage of the Cray CPU. The X

server is always the machine physically connected to the target monitor. The X server serves
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requests for display on the target monitor. In other words, from an X viewpoint, your machine is

the X server, the application program is the X client, and the machine running the application pro-

gram is irrelevant (network transparency).

NOTE Even when the X server and client are on the same machine, the communication still
takes place via the same mechanism, namely, network sockets. The client is thus isolated from
the server and generally does not know whether the display is local or not.

The X programs we write in this book will be X clients, which, like all X clients, contact an X

server to do the actual graphics display. Thankfully, we don’t need to write an X server, because

that has already been done for us by the XFree86 team. The XFree86 X server is a stable and freely

available X server supporting a wide range of video cards on PCs using the Intel x86 processor

family. XFree86 undergoes active development and improvement. Lately, much work has gone

into integrating hardware acceleration into the X server. Let’s examine this topic a bit more

closely.

Hardware Acceleration and X Servers
One current field of development in the area of Linux X servers is the ongoing work to integrate

3D hardware acceleration into the X server. In order to understand the significance of this devel-

opment, let us first examine what hardware acceleration is, what the difficulties are, and some

current hardware acceleration projects.
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What is Hardware Acceleration?

The term “hardware acceleration” generally refers to the use of additional hardware components

to offload processing which would otherwise need to be done in the main CPU, thereby freeing the

main CPU for other tasks. Hardware acceleration is therefore a form of parallelism, where the

additional hardware and the CPU perform different processing tasks simultaneously. One of the

oldest examples of hardware acceleration is the now-ubiquitous FPU, or floating-point unit,

which performs time-consuming floating-point operations in a special processor, thereby freeing

the CPU for other calculations.

In 3D graphics, hardware acceleration more specifically refers to hardware which performs

computations specific to 3D graphics. In this way, image quality and/or speed may be improved.

To understand what 3D hardware can accelerate, we need to understand what 3D graphics

programs, in general, do. Covering this in detail is the subject of the rest of the book. For now, here

is a broad generalization of typical processing which 3D programs do, also called a 3D pipeline.

You are not yet expected to fully understand all terms below, such as culling, polygons, or camera

space. These terms are all defined in due course in the coming chapters.

1. Objects in the 3D world or scene are processed. This means updating the position of any

moving objects and coarse culling (rejection) of objects which are deemed to be invisible for

the current camera position (i.e., objects behind the camera or outside of the view frustum).

2. Polygons (more specifically, just their corner points or vertices) belonging to the remaining

objects are rotated and transformed into so-called camera space, finer culling of individual

polygons is performed, and surviving polygons are projected into screen space for display.

3. Pixels for each remaining polygon are computed and displayed. Depending on the type of

surface detail applied to the polygon, there may be a lot of computation done for each pixel:

lighting, texture mapping, fog, antialiasing, z-buffering, and so forth.

The 3D pipeline is executed for each frame (image) to be displayed, where the number of frames

per second for interactive programs is usually anywhere from 10 to 60 or more.

Figures 1-9 through 1-11 illustrate the pipeline graphically. Here, a viewer is looking at a

scene containing several cubes, only two of which are visible. The viewer’s location is represented

by the sphere located at the left of the figures. The large truncated pyramidal shape with its apex at

the camera is the view frustum, which represents the portion of the world visible to the camera.

The figures show object-level, polygon-level, and pixel-level operations, respectively.

Notice that for each object, we have several polygons, and for each polygon, we have several

pixels. Thus the amount of processing at each stage in the pipeline (objects, polygons, and pixels)

increases by an order of magnitude or more.

NOTE An “order of magnitude” is a difference that is a factor of ten.
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Figure 1-9: Object-level processing.
All objects are first updated. Then,
based on the camera position, only
the two cube objects in the center
of the picture are retained. Other
objects are culled.

Figure 1-10: Polygon-level
processing. For the surviving
objects, the visible polygons or
potentially visible polygons are
computed and retained. Other
polygons are culled. Here, only the
polygons facing the camera will be
retained, a technique called
back-face culling.

Figure 1-11: Pixel-level processing.
Pixels for all surviving polygons are
computed and displayed on the
screen, which is located in the
diagram between the camera (left)
and the objects (right). Notice the
large number of pixels displayed
for each polygon.
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In the last stage, at the pixel level, we have the most time-consuming operations: hundreds of

thousands or even millions of operations must be performed per frame. Therefore, this stage was

the first to be accelerated in consumer-level 3D graphics hardware. 3D hardware acceleration at

this level is also called hardware-accelerated rasterization. Such hardware takes over the most

numerous and time-consuming pixel-for-pixel operations required when drawing polygons to the

screen. Hardware acceleration on consumer-level 3D graphics hardware (under $1,000) typically

supports hardware-accelerated rasterization.

The next step is to move polygon-level operations into 3D hardware. This already exists on

high-end ($50,000) graphics workstations, and has recently started to become available for con-

sumer-level PCs. For instance, MMX is a fixed-point math coprocessor which can operate on

multiple scalars simultaneously. This accelerates 3D geometry by allowing effectively more 3D

calculations to be performed in less time than with the main CPU.

Object-level operations will also, eventually, be moved into common consumer-level 3D

hardware. Hardware acceleration at the polygon and object level is also called hardware-acceler-

ated geometry, because the hardware assumes the responsibility for mathematically manipulating

the higher-level geometrical description of the world, as opposed to the lower-level pixel-based

view of rasterization hardware.

NOTE Notice that hardware acceleration, which is most important at the lowest (pixel) level,
cooperates with software-based culling schemes, which are most important at the highest
(object) level. Hardware accelerates the pipeline from the bottom up; software culling accel-
erates the pipeline from the top down. You can think of this as “cull what you can, accelerate
what you can’t.” The companion book Advanced Linux 3D Graphics Programming discusses
culling schemes.

Integrating Hardware Acceleration into X

We have seen that the X Window System forms the primary display environment under Linux. It is

therefore vital that Linux 3D hardware somehow interface with X. The fundamental difficulty is

that X by default views the underlying graphics hardware as being 2D. There are various solutions

to this problem.

The oldest solution was that of 3Dfx graphics cards: the 3D hardware is physically separate

from the 2D hardware and is not controlled by or even known to X. This allows for full-screen

accelerated 3D graphics through a special driver, but not accelerated graphics within an X win-

dow. The next solution was then a hack to copy the image from the 3D card into an X window,

which is slower than full-screen mode (since copying the entire image into an X window is a

time-consuming process), but still faster than non-accelerated rendering. Finally, the newest and

most promising approach is to extend the X server and the Linux kernel to communicate directly

with the 3D hardware.

3Dfx Hardware Acceleration

The company 3Dfx manufactures variants of the Voodoo chipset, which are used in a number of

3D accelerator cards. The earliest cards were 3D-only cards, designed to work in cooperation with

an existing 2D card. The library Glide (from 3 Dfx) forms the programmer’s interface to the
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Voodoo hardware, offering functions for sending 3D data directly to the chips. Daryll Straus wrote

the Linux version of Glide, thereby making accelerated 3D under Linux a reality. David

Bucciarelli then wrote a Glide device driver for Mesa, another important achievement which

allowed normal Mesa programs using standard OpenGL commands to take advantage of 3Dfx

hardware acceleration. For these reasons, 3Dfx hardware has historically been the best supported

3D hardware under Linux.

One reason that 3Dfx hardware works well under Linux is that it is a physically separate card.

Full-screen accelerated programs can be started from within the X Window System without crash-

ing or otherwise disturbing the X server. The normal X display takes place on the 2D graphics

card, while the full-screen 3D accelerated application switches the monitor to use the 3D card for

display. In fact, it is possible to use two completely separate monitors with 3Dfx hardware: one for

the normal 2D display and one for the hardware-accelerated 3D display. The 3D hardware is com-

pletely separate from the 2D hardware, and thus causes no problems with the 2D hardware or the

X server.

Of course, full-screen isn’t always desirable—this is why windowing systems were invented

in the first place. While full-screen mode might be most effective for a 3D game, this is not neces-

sarily the case for a less immersive 3D program, such as a 3D Modeler. We often want both the

speed provided by 3D hardware acceleration and the convenience of display within a window.

To address this need for 3Dfx cards, a special “trick,” called the in-window hack, used the sep-

arate 3Dfx card to render the image, then did a memory copy of the image from the 3Dfx card into

an X window. This is not nearly as fast as full-screen rendering, because the memory copy is slow,

but is in most cases faster than pure Mesa software rendering. Also, you can’t really run more than

one accelerated application at once. If you try this, the applications will fight for use of the 3D

card, creating a somewhat amusing flickering effect among the windows as the competing images

from each application are sent to the card.

While the first generation of 3Dfx hardware provides a working solution, which for a long

time was the only working solution, a more general approach is needed for integrating hardware

acceleration and windowed display under X.

GLX: The OpenGL Extension to X

We have seen that one fundamental problem is that X views display hardware as being 2D. 3Dfx

hardware works well because it is separate and left alone by X, but this makes true integration into

the windowing system difficult. A more direct approach is to extend the X server itself to under-

stand a more sophisticated concept of display system.

GLX is one such X extension. (PEX, as mentioned in the “dead projects” section, was another

which is no longer of great significance today.) GLX is the OpenGL extension to the X protocol,

allowing OpenGL commands to be communicated to a server directly. The X server then commu-

nicates with the 3D hardware.

Though it was originally not open source, Silicon Graphics has since released the source code

to their reference implementation of GLX. This makes the creation of a fully working and compli-

ant Linux GLX implementation much easier, and is a major step in realizing accelerated X servers

making use of 3D hardware.
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Accelerated X Servers of the Future

Hardware acceleration of the future will use GLX to communicate Mesa (OpenGL) commands to

a newer form of X server which can communicate through a software infrastructure with underly-

ing 3D hardware. At the time of this writing, two major projects are currently underway to create

such software infrastructures for communication with the 3D hardware. These projects are DRI,

the Direct Rendering Infrastructure from Precision Insight Inc., and MLX, the Mesa-Linux ker-

nel-X server project from SuSE. The goals of these projects are essentially the same: to allow

multiple simultaneous applications to use 3D hardware acceleration under X. There are a number

of architectural questions raised by such goals (related to context switching and synchronization

with the X server), and it will be interesting to see which ideas from these two projects eventually

flow into the mainstream. Currently, both projects have working demonstrations in the form of

patched X servers with hardware drivers for a small number of 3D cards.

The latest news on this front at the time of this writing (March 2001) is that the DRI has been

integrated into the newest version of XFree86 4.0, and currently offers in-window acceleration for

a number of 3D graphics cards. The DRI has more or less established itself as the current standard

for 3D acceleration in an X window under Linux. For those cards not yet supported by the DRI,

you might be able to find Linux drivers in the Utah-GLX project (http://utah-

glx.sourceforge.net)—a separate effort with goals similar to those of the DRI, and which

will eventually be integrated into the DRI.

Summary of Hardware Acceleration

Let’s take a step back and summarize the preceding hardware acceleration projects. 3Dfx hard-

ware acceleration works today, and has historically been the best supported Linux 3D hardware.

Future hardware acceleration focuses on a tighter integration with X. Originally this meant a

patched X server with drivers for your particular 3D card, but the recent release of XFree86 4.0

with the DRI provides a more robust solution supporting a wide range of 3D hardware.

But what impact does hardware acceleration have on 3D programming? How can we write

programs which will take advantage of hardware acceleration, when the field is in a constant state

of flux?

The answer, in a word, is OpenGL. For Linux, this means Mesa, the free OpenGL-like library.

OpenGL is a standard, and the projects involving hardware acceleration all focus on using

OpenGL as the interface to the hardware. So, for Linux 3D programming, “hardware accelera-

tion” can currently be equated with “Mesa.” This makes our lives much easier. To take advantage

of hardware acceleration, we simply use Mesa routines where appropriate and don’t worry about

the underlying hardware acceleration infrastructure. Chapter 2 provides a detailed example of

this.

Having completed our introductory X education, let’s now try writing a simple X program

under Linux.
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“Hello, Linux”: A Sample Program
This section introduces you to compiling and debugging C++ programs under Linux. The goal is

to familiarize you with the software development tools by entering, compiling, executing, and

debugging a simple program which displays an empty window under X. This is perhaps somewhat

less than spectacular, but it’s at least a start.

First, you should install the software on the CD-ROM. The Appendix provides instructions to

get the software up and running on your Linux system. The software includes development tools

(such as the compiler and debugger), the Mesa graphics library, the Blender 3D modeling and ani-

mation package, and all of the sample programs in the book. After installing the software, you are

ready to get started programming.

Start the X server, enter a command shell, and verify that theDISPLAY andL3D environment

variables are set correctly. If you don’t know how to do this, see the Appendix. From the command

shell, you can start all other applications.

NOTE From now on, if not otherwise specified, it will be assumed that you have started the
X server, have started a command shell, have verified that the DISPLAY and L3D environ-
ment variables are set correctly, and know how to activate the window containing the
command shell. For all commands intended to be passed to the operating system (also called
shell commands), you should activate the window containing the command shell, type the
command to be executed, and press Enter to execute the command.

Entering the Sample Program
We first edit the program using a text editor. This immediately raises the question, which editor?

Two of the most common editors under Linux are vi and Emacs. If you have seriously used

any Unix system before, you will almost certainly have extensively used one or both of these edi-

tors. For those new to Linux and not familiar with these editors, a brief description follows.

The Vi and Emacs Editors

Vi is a single file text editor with keystroke commands designed to minimize typing. Vi has the

advantage of being small, fast, powerful, and available on almost all systems. Once you learn the

commands, you can perform text editing tasks (replacement, indentation, deleting and moving

text) extremely quickly in vi. I used to (and sometimes still do) race other programmers with text

editing tasks, each of us using the text editor of our own choice. I would almost always win with

vi, simply because I know the vi commands by heart, and because the vi philosophy minimizes

keystrokes—even going so far as to place commonly used keys on the touch-typist’s “home row”

(the row containing the keys A-S-D-F) to maximize potential speed. There is no menu to invoke,

no mouse to click; you press a key, and the command is done. Vi’s disadvantages, however, also

stem from this “speed above all” philosophy; its keystroke-based interface is admittedly cryptic

with a steep learning curve. Furthermore, vi is primarily aimed at editing one single text file; while

editing more than two files at once is technically possible, it is extremely inconvenient using vi.

Editing binary files with vi is generally not possible.

20 Chapter 1: Introduction to 3D Graphics and Linux



NOTE It has been proved, so I am told, that the expressive power of vi’s commands (includ-
ing simple keyboard macros) is equivalent to that of a Turing machine, meaning effectively
that any computational problem can be solved through vi commands! This is amazing when
one considers that vi has no “programming language” as such. This means that, theoreti-
cally, you could write an X server, the Linux operating system, or 3D graphics programs using
only vi commands.

Emacs is a multiple-file, multiple-window, extensible editor for text and binary files. Emacs has

literally no limits and is the most powerful editor available on any system, period. You might think

this statement exaggerated, but it is not: Emacs is programmatically extensible, which means that

its functionality can be infinitely extended through new program modules, with a power and flexi-

bility exceeding that of simple plug-in or macro-based systems. Furthermore, a very large number

of useful modules (packages) do in fact exist, either built-in or available for download. As a small

example of the unmatched integrated functionality which Emacs offers, here are some of its fea-

tures: multiple simultaneous editing of text and binary files, automatic syntax highlighting for

scores of languages, symbol completion, multiple windows, interfaces to compilation, version

control, and debugging systems, multi-byte character set support, class browser, symbolic and

numeric math, directory browser, keyboard macros, desktop save, file differencing, shell inter-

face, calendar, diary, web browser, mail and USENET news reader, fully remappable keyboard

bindings, typesetting modes, and emulation of other editors. Emacs is often viewed as one of the

shining examples of the excellent software that can be developed under the open source model.

With all of this power, Emacs also has a bit of a learning curve. However, for a while now,

Emacs has provided a drop-down menu system which makes learning much simpler. Furthermore,

Emacs has an extensive online help system. Taking the time to learn Emacs will be paid off by

higher productivity while programming.

The following sections describe how to start and use the Emacs editor to enter the program.

For simple text editing, Emacs is fairly intuitive to use—the normal arrow, cursor movement, and

text deletion keys act as expected and are all that is required.
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NOTE Although Emacs has a lot of integrated functionality, we will not concentrate on this
aspect, instead using Emacs simply to edit text. Other commands, even if they are integrated
into Emacs, will be entered in a normal command shell. This doesn’t force you to use Emacs if
you don’t want to—for instance, if you already know how to use another text editor and wish
to use it to edit the program code. If you are interested in learning more about the integrated
features of Emacs, simply start using it and read the online documentation, which includes a
hands-on tutorial section. I personally learned Emacs exactly this way—just by using it regu-
larly and by working through the extensive online documentation.

Basic Editing with Emacs

After this brief excursion into text editors, we are now ready to start Emacs.

1. Enter a command shell.

2. Type cd $L3D/source/app to change to the directory containing the sample programs. If you

receive the error “No such file or directory,” then either the software is not correctly installed

or the L3D variable is not set correctly. See the Appendix for installation instructions.

3. Type emacs and press Enter. A new Emacs window opens:

If you do not see a new Emacs window but instead see a text-based Emacs program within the

same window, then you have not set theDISPLAY environment variable correctly (as described in

the Appendix). To correct this, you should:

1. Press Ctrl+x, Ctrl+c to quit the text-based Emacs program. You should now again be in the

command shell.

2. Type export DISPLAY=localhost:0.0 and press Enter.

3. Type emacs and press Enter to restart Emacs in a separate window.

NOTE For key sequences connected by a plus (+) sign (such as Ctrl+C), hold the first key
while typing the second key.
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Next, open the sample file hello/hello.cc in the sample programs directory. In the Emacs

window:

1. Press Ctrl+x, Ctrl+f to “Find” (i.e., open or create) a file. Notice the words “Find file:” and

the current pathname at the bottom of the screen.

2. Press Tab, Tab to display a completion list. The first Tab tries to complete any partially

entered string you have entered; the second Tab displays a list of possible completions. Notice

the completion window which appears, and the subdirectory hello.

3. Type hel and press Tab. Notice that Emacs completes this automatically to the subdirectory

hello, the first entry matching “hel.” Then type / to complete the directory name.

4. Press Tab, Tab to again display a completion list. Notice the completion window again

appears and displays the contents of the subdirectory hello.

5. Type hello.c and press Tab. Notice that Emacs completes this automatically to the full

filename hello.cc.

6. Press Enter to accept the filename. Emacs opens and displays the file. The source code is

automatically highlighted in color if your copy of Emacs has been so configured. To manually

toggle the syntax highlighting, press Alt+x, type font-lock-mode, and press Enter.
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If you make a mistake while entering an Emacs command, press Ctrl+g to cancel the com-

mand. You might need to press Ctrl+g multiple times, depending on the command you are

canceling. If you ever get completely lost, press Ctrl+x, Ctrl+c to quit Emacs and try again.

NOTE To create a new file, follow exactly the same procedure described above, but enter
the new filename instead of entering “hello.cc.” Emacs notices that the file does not yet exist
and creates a new file upon saving.

The contents of the file hello.cc are shown in Listing 1-1.

NOTE The code listings in this book have been automatically reformatted so that extrane-
ous comments do not appear in the printed source listings. These comments, however, are
useful if you wish to change or debug the code, so they do appear in the code on the
CD-ROM. Therefore, the actual code you see in Emacs when you open the source files will
likely contain some extra comment lines which you do not see in the printed listings here.

Listing 1-1: hello.cc
#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/Xlib.h>
//- empty line
#define SCREEN_XSIZE 320
#define SCREEN_YSIZE 200

main() {
Display *dpy;
//- establish connection to X server

dpy = XopenDisplay(NULL);

//- create and map (display) an X window for output

Visual *vis;
Window w;
vis = DefaultVisual(dpy,0);
w = XCreateWindow(dpy, //- display

DefaultRootWindow(dpy), //- parent
100, 100, //- x, y position
SCREEN_XSIZE, SCREEN_YSIZE, //- width, height
0, //- border width
CopyFromParent, //- depth (we use max. possible)
CopyFromParent, //- visual class (TrueColor etc)
vis, //- visual
0, NULL); //- valuemask, window attributes

XStoreName(dpy, w, "hello");

XMapWindow(dpy, w);

XSelectInput(dpy, w, KeyPressMask);

XEvent event;
char ch;
KeySym keysym;
XComposeStatus xcompstat;

while(1) {
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if(XCheckWindowEvent(dpy,w,KeyPressMask,&event)) {
XLookupString(&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {

exit(0);
}

}
}

}
}

Let’s now make a few changes to the file to familiarize ourselves with editing in Emacs. In the

Emacs window:

1. Press the arrow keys, PgUp, and PgDn to scroll through the text. Notice that the cursor moves

and the text scrolls in a completely usual manner. Press Home and End to go to the beginning

and end of file, respectively.

2. Move the cursor to the beginning of the line containing the text “empty line.”

3. Press Del several times until the entire line has been erased.

4. Type the following text: // sample comment.

5. Move the cursor to the space between the words “sample” and “comment.”

6. Type the text new. Notice that the text is inserted at the cursor position and by default does not

overwrite the following text.

7. Save the file by pressing Ctrl+x, Ctrl+s.

8. Close the file (more precisely, the editing buffer containing the file) by pressing Ctrl+x, k,

Enter. The “k” stands for “kill buffer,” and the final Enter confirms the choice of which

buffer to kill, which is by default the current buffer.

You may exit Emacs by pressing Ctrl+x, Ctrl+c. However, during a programming session, it is

useful to leave Emacs itself open, and to open and close individual files as needed.

We now have enough knowledge of Emacs to open, edit, and save files. There are many more

Emacs commands available—enough to fill a book. Since this book is on 3D graphics and not on

Emacs, we won’t go into further detail about the myriad of Emacs commands. I do, however,

encourage you to explore the online documentation available from within Emacs itself. The best

place to start is the online tutorial.

TIP In Emacs, press Ctrl+h, t to invoke the online tutorial.

Compiling and Linking the Sample Program
We use a utility called make to compile and link our program. The make utility searches for a file

called Makefile, reads compilation rules from the Makefile, and executes the proper com-

mands to compile and link the programs (or targets) listed in the Makefile. A Makefile is therefore

simply a description of how to compile a particular program or library.

The general compilation process under Linux is identical to that of other systems. In the first

phase, compilation, a compiler translates the source code files written by a programmer into object

files. Under Linux, the C++ compiler is g++ (which calls the C compiler gcc with special C++
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parameters). By convention, C++ source files have .cc as the filename extension; object files,

.o. In the second phase, linking, a linker binds the object files with one another and possibly with

a number of external libraries, resolves all inter-module dependencies which can be statically

determined, and creates an executable program file. Under Linux, the C linker is ld; the C++

linker, g++. Finally, at run time, dynamic module dependencies, known as shared libraries,

shared object files, or .so files, are loaded during program execution by the dynamic linker and

loader, ld.so.

For complicated programs, there is a large number of source, object, and executable files—all

possibly in different directory hierarchies. The compilation process must find all of the input files

and create all of the output files in the right places. Manually specifying all of this information dur-

ing every compilation is unmanageable. The make utility addresses this problem by automating

program compilation and collecting compilation information once and for all in Makefiles.

Overview of Makefiles

A Makefile is a non-procedural description of how to compile a program. Similar to a script file or

a batch file, a Makefile in effect does nothing other than execute a series of commands in sequen-

tial order (ignoring some parallelizing variants of make). But unlike a script file, the contents of a

Makefile do not explicitly list the commands in the order to be executed. Instead, a Makefile is

ordered based on rules and dependencies. A rule states how to generate a particular file; for

instance, an object file is created by calling the gcc compiler on the corresponding C++ file, and an

executable file is created by calling the linker on the corresponding object files. A dependency

states which other files are needed to create a particular file; for instance, the executable hello

file depends on the existence of the hello.o object file. The idea of rules and dependencies is

that make can save compilation time by reusing existing object files from previous compilations

instead of recompiling everything every time. Make checks the dependencies, and only executes a

command to create a target if the target does not already exist or is older than its dependents.

CAUTION Incorrect Makefile dependencies can lead to linking of old object files and to
segmentation faults at run time. If in doubt, recompile everything by manually deleting all
object files.

Determining dependencies, though, is a very tricky subject indeed. If your Makefile dependencies

are not 100% correct, then make will sometimes reuse an old object file when it should actually

recompile the file. Such reuse of old object files can lead to segmentation faults at run time,

because of changes in structure or class definitions which have propagated to some but not all

object files. There are tools to automatically generate Makefile dependencies, but unfortunately,

even these sometimes make mistakes! At least, this had been my experience while developing a

system for compilation under Linux, Windows, and DOS. In this case, the automatic dependen-

cies intermittently failed on one of these three platforms, leading intermittently to segmentation

faults. For this reason, the more complicated Makefiles in this book always recompile everything

(by removing all object files beforehand), which is slower but always correct. If you wish to inves-

tigate the more efficient usage of Makefiles, only recompiling files when absolutely necessary, see
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the manual entry for the makedepend command, and be aware that mysterious segmentation

faults at run time may be due to incorrect dependencies. When in doubt, recompile everything.

We use Makefiles primarily to save us effort during compilation. Often, we need to pass spe-

cific flags or #define directives to the compiler, and pass several long object filenames and

library names to the linker. With a Makefile, we write the compilation rules once, and every time

thereafter we simply type make.

The Makefile for the hello application looks as follows:
LD = g++
LDFLAGS = -L/usr/X11R6/lib -lX11 -lXt -lm
CPPFLAGS = -O3

hello: hello.o
$(LD) $(LDFLAGS) $^ -o $@

Let’s first run the make process, then analyze the Makefile.

Compiling the Program with Make

To compile the program using make:

1. Enter a command shell.

2. Type cd $L3D/source/app/hello and press Enter.

3. Type ls and press Enter. Notice that the only files in the current directory are hello.cc and

Makefile.

4. Type make and press Enter. Notice the compilation and linking commands which are printed

to the screen and executed. Wait until the command prompt appears again.

5. Type ls and press Enter. Notice that the new files hello.o (object file) and hello

(executable program) have been created by the make process.

NOTE You can compile your program from within Emacs. Press Alt+x, type compile, and
press Enter. Then, type the compilation command make and press Enter. Emacs changes
the current directory to be the directory of the source file and executes the command you
entered. Error and warning messages are displayed in a separate Emacs window, allowing
you to simultaneously view the compile messages and your source code. See the online info
documentation for more information.

TIP Makefiles usually have the filename Makefile. However, you can tell make to use a dif-
ferently named Makefile by specifying the flag -f [filename].

Compiling the Program Manually

After typing make, the following commands are printed on screen and are executed:
g++ -O3 -c hello.cc -o hello.o
g++ -L/usr/X11R6/lib -lX11 -lXt -lm hello.o -o hello

To demonstrate that make has simply executed these commands and only these commands, let’s

execute these commands manually. In the command shell from the previous section:
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1. Type rm hello hello.o and press Enter to remove the executable and object files created by

the previous make process.

2. Type the first command that was executed by make: g++ -O3 -c hello.cc -o hello.o, and press

Enter. This calls the gcc compiler to create the object file hello.o from the source file

hello.cc. Wait for the command to complete.

3. Type ls and press Enter to verify that the file hello.o has been created.

4. Type the second command that was executed by make: g++ -L/usr/X11R6/lib -lX11 -lXt -lm

hello.o -o hello, and press Enter. This calls gcc to link the object file hello.o with the

necessary libraries to create the executable program hello. Wait for the command to

complete.

5. Type ls and press Enter to verify that the file hello has been created.

As a final experiment, now type make again and press Enter. The following message appears:
make: 'hello' is up to date.

Make has noticed that the target file hello already exists, and is newer than its dependent file

hello.o. Therefore, nothing needs to be done, and make accordingly does nothing.

NOTE This Makefile, since it is so simple, did not delete the existing object files before
recompilation. It is for exactly this reason that make found the old object files and decided
that nothing needed to be done.

Analysis of Makefile

Let’s now take a closer look at the Makefile to understand its structure. The Makefile’s contents,

once again, are as follows:
LD = g++
LDFLAGS = -L/usr/X11R6/lib -lX11 -lXt -lm
CPPFLAGS = -O3

hello: hello.o
$(LD) $(LDFLAGS) $^ -o $@

The first line sets the variable named LD to be g++, instead of the standard ld. The variable

LD—which is written $(LD) when its value is being read—signifies the name of the program

used as the linker. We change the linker to be g++ instead of ld because we are writing C++ pro-

grams and thus use g++ as a C++ linker.

The second line lists the flags passed to the linker. We include the X11 directory (with the flag

-L/usr/X11R6/lib), and link in the X11 library (-lX11), the Xt Intrinsics library (-lXt),

and the math library (-lm).

The third line lists the flags passed to the C++ compiler. Here, we pass -O3, which optimizes

the program for speed, at the cost of space.

The next line states that the executable file hello depends on the file hello.o. Below this

line is the rule for making hello once all of its dependencies exist. Assuming hello.o exists,

we invoke the linker (designated by $(LD) $(LDFLAGS)) on all dependent object files (desig-

nated by $^) to create the target file hello (designated by -o $@).
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CAUTION The rules line(s) should begin with a Tab character, not spaces.

NOTE $^ and $@ are automatic variables which have special meanings in Makefiles. A list
of all internal variables and their meanings appears under the entry for make in the online
info documentation (described later in this chapter, and invoked with command info.).

At this point, you should be wondering, “but where do we call the gcc compiler to compile

hello.cc into hello.o?” Until now, we have said that program hello requires hello.o

to be present, but we have not said where hello.o comes from. Of course, we as programmers

know that the object file hello.o should be compiled from the hello.cc source file. This is

actually also an implicit rule, which is internally known to the make program. Make knows of sev-

eral ways to make a .o file, and one of the ways is to look for a corresponding .cc file. This rule

is so common that it has been built into make and we do not need to specify it explicitly. Since the

file hello.cc is indeed present in the current directory, make realizes that it should invoke the

rule to create a .o file from a .cc file. What exactly is this rule? According to the online info doc-

umentation, the rule is to invoke $(CXX) -c $(CPPFLAGS) $(CXXFLAGS). Notice that the

variable CPPFLAGS appears in this implicit rule, which is exactly the reason that the flags set in

CPPFLAGS get passed on to the compiler during compilation. The variable CXX signifies by

default the gcc C++ compiler, and the variable CXXFLAGS allows further compilation flags to be

set. (The actual compilation command which appeared above, g++, simply calls the gcc compiler

with certain C++ specific flags.)

NOTE If you wish to see exactly what rules make is trying to execute, type make -d. This
starts make in debug mode and is useful for understanding the machinery behind make.

Complicated Makefiles for large projects (millions of lines of code over thousands of source files)

can literally span scores of pages. I used to have the pleasure of debugging such Makefiles on a

regular basis, where the -d flag, mentioned above, was invaluable. The Makefiles in this book

will not be nearly this complicated, but it is worth knowing that make can handle very large

projects.

All of the programs in this book come with Makefiles, so you normally need only type make

to compile the sample programs. Detailed instructions for compiling all of the code at once appear

in the Appendix.

For your own programs, you may also wish to use Makefiles. In this case, you can use the

sample Makefile above as a template. You will probably also want to look at some of the more

complicated Makefiles for the other sample programs in this book which illustrate the use of mul-

tiple targets, multiple dependencies per target, and multiple commands per target.

Executing the Sample Program
After compiling the program as described above, execute the sample program as follows. In the

command shell from the previous section:

1. Type hello and press Enter. The program window appears. (Some distributions of Linux by

default do not allow you to execute files in the current directory. If this is the case with your

Chapter 1: Introduction to 3D Graphics and Linux 29



system, you must type ./hello to execute the program.) Try moving the window by dragging

its title bar with the mouse, or try resizing the window, and observe the results.

2. Type q in the program window to quit.

A detailed explanation of the workings of this program must wait until the next chapter; for now, it

is enough that we have edited, compiled, and executed the program. Now let’s cover every pro-

grammer’s favorite topic: debugging.

Debugging the Sample Program
Life would be great if all programs followed the simple progression “edit, compile, execute.” Our

programs would work perfectly the first time and we could spend our evenings musing about

Turing machines or NP-complete problems.

In reality, of course, we programmers spend our evenings hunched over the keyboard trying to

find that elusive “bug,” caffeinated drink and Kung-Pao chicken close at hand. While not abso-

lutely necessary, a debugger is usually an extremely useful tool for serious bug tracking and real

software development. Naturally, Linux has had good debuggers for some time now.

A debugger is a controlled execution environment for a program. It allows you to step through

the source code one instruction at a time to see what line in your source file is currently being exe-

cuted. You can set breakpoints, which signal the debugger to stop execution at a certain point in

the source code. A debugger also allows dynamic inspection and alteration of data, eliminating or

greatly reducing the need for printf-type statements littered throughout the code just to inspect

data, and which can themselves be a source of errors.

NOTE With the relatively recent industry acceptance of object-oriented programming para-
digms, the importance of tracing data flow, rather than control flow, has increased. This is
because the very notion of object orientation centers around the class, which is an abstract
data type. The flow of control or execution in object-oriented designs tends to be less central-
ized, because good object-oriented designs yield architectures which can be easily
recombined to form new solutions to problems. Enabling such recombination means that an
object-oriented design should generally not be based on a sequential, step-by-step view of
the problem domain, but rather on a data-centered view, trying to find relevant domain
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abstractions as classes. In terms of debugging, this means that understanding the data within
objects and the ways in which it is transformed—in other words, understanding data flow—is
at least as important as understanding the control flow.

The classical Linux debugger is gdb, the GNU Debugger. The gdb is a freely available text-based

debugger which offers all typical debugger features. While fully functional, gdb is somewhat less

than comfortable to use. When stepping through a complicated series of function calls, it is impor-

tant to visualize the context of the current operation within the framework of the program. With a

text-mode debugger, this is somewhat difficult, because we typically only see one line of the pro-

gram at a time—the line currently being executed. While we can easily display the surrounding

context, we must invoke an extra command to do so. This distracts from the main debugging task.

For this reason, graphical front ends to gdb have been developed. These graphical front ends

still use gdb as the core debugger, but have a much more comfortable interface. For instance, they

automatically switch to the appropriate source file, positioning the cursor on the current line. This

allows a much more fluid debugging process which does not interrupt the train of thought.

NOTE Emacs, not surprisingly, has an integrated and easy-to-use interface to gdb. To
invoke it, press Alt+x, type gdb, and press Enter. See the online info documentation for
more information.

To use a debugger, we must compile the program with debugging information included in the

object file. For this, we change the compilation flags to include the debugging flag-g. To do this:

1. Open the Makefile in Emacs.

2. Use the arrow keys to move the cursor to the beginning of the line containing the text

“CPPFLAGS.”

3. Press Ctrl+k to delete the contents of the current line.

4. Type CPPFLAGS=-g.

5. Save the Makefile: Ctrl+x, Ctrl+s.

6. Close the buffer containing the Makefile: Ctrl+x, k, Enter.

7. Enter a command shell, type cd $L3D/source/app/hello, and press Enter.

8. Type rm *.o and press Enter to remove all old object files. The old object files did not contain

any debugging information.

9. Compile the program again by entering make. Notice that the -g flag appears in the

compilation command instead of the -O3which appeared previously. Wait for the command

to complete.

10. Start the graphical debugger by typing xxgdb hello and pressing Enter.

NOTE Under the Debian Linux distribution included on the CD-ROM, you must be logged
in as the root user (who has all access rights to the system) in order to be able to run xxgdb.
This is apparently due to an unusual default configuration of access rights.

The xxgdb debugger appears as shown in Figure 1-17 on the following page.
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The xxgdb window is divided into three sub-windows. A sub-window is active and can

receive keyboard input only when the mouse cursor is on top of it.

The top window shows the current source file. Notice that the caret (the position of the cursor

in a non-active window, shown as “^”) appears on the first function name, main. During debug-

ging, if a function in another file is called, xxgdb displays the new file automatically. The scroll

bar on the left or the arrow keys scroll the window.

The middle window contains a number of buttons for executing debugger functions. Some of

these buttons only work if an item is highlighted in the top section of the window. For instance,

you cannot use the Print button (which displays the value of a variable) unless you have already

highlighted a variable. Other buttons, such as the Continue button, require no highlighted items.

The bottom window shows debugger output and also allows direct input of debugger com-

mands via the keyboard. The scroll bar or the arrow keys scroll the window.
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Let’s now set a breakpoint and single step through the program to familiarize ourself with the use

of xxgdb.

1. Left-click the word main in the top section of the window. Notice that the word “main”

becomes highlighted.

2. Left-click the Break button in the middle section of the window. This sets a breakpoint at the

symbol highlighted in the top section of the window. Notice the command break main in

the bottom section of the window, the message verifying the setting of the breakpoint, and the

red hand icon in the left margin of the top section. This icon graphically represents the

breakpoint’s location. The breakpoint appears at the first executable line below the clicked

line, which in this case is a few lines later.

3. Move the mouse cursor on top of the bottom section of the window to activate it. Type run

and press Enter. Alternatively, you can left-click the Run button in the middle section of the

window.

4. Wait a few moments for the program to initialize. Notice the blue arrow which then appears in

the left margin of the top section, and the message “Breakpoint 1, main()” in the middle and

bottom sections of the window. The blue arrow signifies that the statement is about to be

executed.

5. Inspect data as follows. Left-click the word dpy in the top window, left-click the Print button,

and notice the output in the bottom section: “$1 = (Display *)0x0.” This indicates that the

value of the variable dpy is currently NULL. This makes sense, since the current line has not

yet been executed.

6. Left-click the Step button, wait a few moments until the blue arrow reappears, and notice that

the blue arrow now appears next to the following instruction.

7. Again, left-click the word dpy in the top window, left-click the Print button, and notice the

output in the bottom section: “$2 = (Display *)0x804d7a0.” (The exact hexadecimal address

will be different on your machine.) This indicates that the variable dpy now has a particular

value as a result of the instruction just executed.

8. Left-click the Cont button to continue program execution normally.

9. Left-click on the application window to activate it and press q to end the program. Notice the

message “Program exited normally” in the xxgdb window.

We have just worked through the most important functions of xxgdb: setting a breakpoint, exam-

ining data, single stepping through instructions, and resuming execution. You might also want to

try single-stepping through the entire program; simply keep on left-clicking Step instead of Cont.

To summarize the most important features of xxgdb:

� The window is divided into three sub-windows: source, buttons, and output/command. A

sub-window is active only when the mouse cursor is positioned on top of it.

� Left-clicking an item in the top window highlights it for later use. Left-clicking a button acti-

vates the function, using the highlighted item if appropriate.
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� The Break button sets a breakpoint, Print examines data, Step steps to the next instruction in

the program, and Cont continues execution after a breakpoint.

� All button commands can also be entered in the output/command window as text commands,

which are passed directly to the underlying text debugger.

The Text Debugger—Not Just for Masochists

It’s worth noting that in some cases, using the text debugger gdb is actually more convenient than

using a graphical interface. This is particularly the case if your program crashes in such a way that

the stack is corrupted and gdb no longer knows where the program execution stopped.

If the program crashes in this way, then to find the offending statement, you must find the

error just before it occurs; after execution of the offending statement, it is in this case too late—the

debugger will no longer be able to print out the location where execution stopped because of the

corrupted stack. This is one of the classical, rather annoying problems with debugging: needing to

find an error without having any idea where it is.

In this case, you typically set a breakpoint at a statement which you know is executed before

the error can possibly have occurred. You then execute the program and wait until this breakpoint

is reached. Then, you single step through the program until the error occurs, observing as you go

along where the program crashes.

With a graphical debugger, such a continuous step-through operation might require hundreds

of mouse clicks on the Step button. With the text-mode debugger, you can enter the step command

just once, and simply press Enter to execute the last command again. So, by holding down the

Enter key, you can very quickly step through the program execution one step at a time, with each

line being printed as it is executed. Eventually your program will crash and gdb will not allow exe-

cution of any further instructions. At this point you simply scroll back through the text (using the

scroll bar on your shell window) to see the last instruction that was executed before gdb stopped.

Although you can use the same trick within xxgdb (remember, the bottom window in xxgdb is

a direct interface to the underlying debugger), it is much slower than the plain gdb interface,

because xxgdb must find and display the source file for each line it executes. If you enter several

single step instructions in a row, by first clicking Step then pressing Enter several times in the bot-

tom xxgdb window, xxgdb will only be able to step through the program at a very slow rate

because it must always find, load, and display the associated source file after every instruction. (In

fact, as I write this now, xxgdb is still churning away in the background doing exactly this.) With

the text-based gdb, you can step through hundreds of lines in just a few seconds, and scroll back in

the window to see a chronological log of which statements were executed in which order.

To summarize, a graphical debugger such as xxgdb is useful for interactive debugging of

selected, detailed parts of your program, where you must carefully inspect several variables at

each step of execution and visualize the context of each operation within its source file. The text

debugger gdb is useful when you have no idea where the error is occurring and want to step very

quickly through large blocks of code until the program crashes.

Both xxgdb, and the underlying text debugger gdb, have entries in the online manual.
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NOTE I find that using the Emacs interface to gdb is the most convenient way of debugging
a program, since I can develop, compile, execute, and debug all within Emacs. It is worth not-
ing, however, that recently a number of fancier graphical debuggers and even IDEs
(integrated development environments) have appeared for Linux. Some of these include
DDD, Code Crusader, and Code Medic.

Getting Online Help
We have referred a number of times to the “online manual” and the “online info documentation.”

Let’s take a closer look at these and other documentation which Linux offers the programmer.

Linux has a staggering amount of online information available. By “online,” we mean acces-

sible in electronic form from your system. This does not mean “online” in the network sense of the

word; that is, you don’t need to download this information off of the Internet. It’s all already avail-

able and installed on a standard Linux system.

It cannot be emphasized enough how vital this online information is to the Linux programmer.

You can learn a lot just by reading other people’s code and looking up the online documentation

for the functions used. In this way, you learn of the existence of a function, its specification, and its

idiomatic use in a certain context.

The information in this book does not, and should not, replace the online manual. The online

documentation is an excellent reference for specific details of particular functions, but often lacks

a broader perspective. For this reason, this book aims to provide this broader perspective, describ-

ing the general purpose and context of a function and leaving the details of exact bytes or

parameters to the copious online documentation. This book and the online documentation thus

complement one another and should be seen as addressing needs at two different levels.

The Online Manual “man”
The most important online reference available to the Linux programmer is the online manual. The

online manual refers collectively to all documentation accessible to the Linux system via the

command man. The online manual, also called the man pages, covers countless numbers of utili-

ties, programs, and functions useful to the programmer.

The online manual is divided into a number of sections. These sections are:

1. Executable programs or shell commands

2. System calls (functions provided by the kernel)

3. Library calls (functions within system libraries)

4. Special files (usually found in /dev)

5. File formats and conventions e.g., /etc/passwd

6. Games

7. Macro packages and conventions e.g., man(7), groff(7)

8. System administration commands (usually only for root)

9. Kernel routines [non-standard]
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In practice, you usually do not need to know what section of the manual a particular entry is in,

since this is only important if identically named entries appear in different sections of the manual.

In this case, you would need to specify which section of the manual you want (see below).

There are two main ways of using the online manual. The first is if you know the exact name

of the function, utility, or program you want information on. The second is if you need to do a key-

word search on the manual entries.

If you know the exact name of the manual entry, simply type man [entry], where [entry] is the

name of the function, utility, or program. For instance, type man XCreateWindow and press

Enter. The text in Figure 1-18 appears. Press Space to scroll through the text of the manual entry,

and press q to quit.

The manual entry contains a detailed, complete specification of the XCreateWindow func-

tion. Standard C library functions, X functions, and Linux system functions all have similarly

complete entries in the online manual.

If you do not know the exact name of the manual entry for which you are looking, you should

invoke man as follows: type man -k [entry]. The “-k” stands for keyword search. For instance,

let’s say you wanted to read up on the X Visual structure. Type man -k visual and press Enter. On

my system, the following list appears:
GetVisual (3) - translate from string to visual
SetVisual (3) - change visual characteristics of window
Tk_GetVisual (3) - translate from string to visual
Tk_SetWindowVisual (3) - change visual characteristics of window
GetVisual (3) - translate from string to visual
SetVisual (3) - change visual characteristics of window
Tk_GetVisual (3) - translate from string to visual
Tk_SetWindowVisual (3) - change visual characteristics of window
XGetVisualInfo (3x) - obtain visual information and visual structure
XMatchVisualInfo (3x) - obtain visual information and visual structure
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XVisualIDFromVisual (3x) - obtain visual information and visual structure
XVisualInfo (3x) - obtain visual information and visual structure
pnmindex (1) - build a visual index of a bunch of anymaps

This list displays the name of the manual entry, the manual section number in parentheses, and a

brief description. You can then refer to the specific manual page by using the first form of the man

command described above.

In the rare event that two or more entries with identical names appear under different sections

of the manual, you need to specify which entry in which section you want. In this case, simply type

man [section] [entry], where [section] is the desired section number of the manual.

For more information on the online manual itself, can you guess where you need to look?

That’s right: the online manual. Type man man and press Enter to see the manual entry on the

manual itself.

TIP Emacs offers an integrated interface to the online manual. Press Alt+x, type man, and
press Enter. Then, enter the manual entry and press Enter. The manual page is displayed in
a separate window within Emacs.

The Online Info Documentation
Many programs, in addition to or instead of the manual entries, have entries in the so-called “info”

or “TeXinfo” documentation. Info offers an Emacs-like hypertext interface with hierarchically

arranged nodes of information. The primary advantage of info over man pages is the hierarchical

organization. Extremely comprehensive documentation, such as the documentation for the gcc

compiler, is better viewed online as a hierarchy of information which can be read a page at a time,

rather than as a linear mass of text.

Info, like Emacs, has a built-in tutorial. Type info, press Enter, and press h to invoke the info

documentation and start the tutorial. It takes about 10 minutes to complete.

When you first invoke info, you see the top level of the information hierarchy. This typically

lists just a few pages of entries which have info documentation. Since the information is hierarchi-

cally arranged, each entry may eventually correspond to many commands; thus, the total amount

of information available is more than it may seem at first.

The most important keystroke commands within info are as follows:

� h: Invoke the tutorial.

� q: Quit to the shell.

� Arrow keys: Scroll the screen.

� Enter: Go down one level in the hierarchy, to the node (menu) underneath the cursor.

Selectable nodes are marked with an asterisk (*).

� n: Go to the next node at the same level in the hierarchy.

� p: Go to the previous node at the same level in the hierarchy.

� u: Go up one level in the hierarchy.

� l: Go to the last-visited node.

Again, you can learn more by going through the online tutorial.

Chapter 1: Introduction to 3D Graphics and Linux 37



TIP Yes, Emacs also has an integrated interface to the info documentation. Invoke it by
pressing Alt+x, info, Enter.

Other Ways of Finding Information
There are a few other methods of finding information on a Linux system which deserve mention.

This section covers some of these methods.

Searching header files is always an informative, if somewhat low-level, way of finding and

hopefully understanding structure and class definitions. The header files are usually located in

/usr/include or /usr/local/include and have the file extension .h. You can search

through the header files with a command such as grep or find.

The GNU “binutils” offer routines for manipulating binary files. This is useful to find which

library file contains a particular function. For instance, if you are calling a function in your code

and get a linker error that the function could not be found, you have most likely not specified the

required library name on the linker command line in the Makefile. The question is, which library

contains the function? You can use the nm command, part of the binutils, on a library file (ending

with extension .a or .so) to determine its contents. This can help you find the exact library file

containing a function you need. Library files are usually located in /usr/lib, /usr/

local/lib, /lib, and /usr/X11/lib. You can also use the find command to search for

other .a or .so library files on your system.

The HOWTO files are a collection of files describing answers to common “how-to” ques-

tions. Most HOWTO files tend to deal more directly with hardware or configuration issues rather

than programming issues, but the information can be useful for programming in certain areas. The

HOWTO files are usually located in /usr/doc/howto.

Summary
Linux and 3D graphics is a winning combination because of the power, price, and openness of

Linux, and because of the 3D graphics revolution. In this chapter, we looked at available Linux

libraries and tools for doing 3D graphics. We then defined the X Window System and discussed

3D hardware acceleration with X. We familiarized ourselves with the practical side of Linux pro-

gramming by writing a simple program, compiling it, and debugging it. Finally, we looked at

some of the online documentation available to the Linux programmer.

With this experience, we are now ready to dive into writing Linux applications in earnest. The

next chapter explores how to access the 2D screen under Linux. The 3D graphics we create in later

chapters must eventually appear on the screen, so it is natural that we first discuss screen access.
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C h a p t e r 2

Accessing the ScreenAccessing the Screen

Overview

T
his chapter explains screen access under Linux. Most consumer PCs have one graphics card

and one flat, 2D screen. Therefore, 3D graphics programs, such as the ones we write in this

book, must ultimately display their results on this single 2D screen. In this chapter, we look

at the terminology, techniques, and program code for initializing and creating some elementary

output on the 2D screen. The next chapter covers rasterization algorithms which build on the ideas

in this chapter to draw specific images on the screen.

This chapter begins by looking at 2D graphics programming under Linux by using Xlib

directly. We then abstract the Xlib concepts to illustrate the development of reusable graphics

classes, called l3d. We extend and build upon these l3d classes throughout the rest of this book.

TIP We also continue to build upon the l3d library in the companion book, Advanced Linux
3D Graphics Programming. The l3d library is available on the CD-ROM and for download
from the Internet; see the Appendix for more information.

This chapter covers the following concepts:

� Object-oriented, event-driven programming with the X Window System

� Graphics display and event handling under X

� Development and use of reusable graphics classes, called l3d

� Coordinate systems in 2D

X Programming
We begin this chapter by writing some sample programs which display windows and respond to

user input under X. The 2D code and the object-oriented techniques developed in the following

sections form the theoretical and practical basis for the graphics code in the rest of the book.

The Role of X
Before going into the details of X programming, let us first briefly consider X’s role in graphical

applications under Linux.
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At a basic level, one goal of computer graphics is to display images on a screen. We use the

term “screen” to denote a number of related but slightly different concepts. Generally, the term

“screen” describes either the entire physical display area or the logical display area into which the

operating system allows a program to write graphics data. The context determines the usage. If we

say that a program writes to the “screen,” we usually mean that it actually writes to a small portion

of the physical screen in a windowing system, and that the rest of the physical screen is occupied

by other applications. On the other hand, if we say “part of the screen,” we usually mean “part of

the entire display area.” Also, the X Window System uses the term “screen” to denote a monitor

number when dealing with multiple-monitor displays.

Physically, the display monitor of your computer translates the electrical signals from the

video card into visible patterns of light. In the early days of computer graphics, applications typi-

cally had exclusive access to the video memory (and often to the entire computer). A graphics

application would write directly to video memory, which the hardware would directly interpret

and display on the monitor. As a result, graphics applications typically took over the entire physi-

cal display area, a practice also called full-screen mode (Figure 2-1).

The emergence of multi-tasking operating systems changed the nature of this practice. Pro-

grams no longer had exclusive access to all computer resources, including the display. The

operating system regulated access to all shared resources and prevented programs from directly

accessing the resource (Figure 2-2). In the case of the screen, a windowing system was given the

responsibility of controlling access to the video memory. The windowing system allowed each

application to use a portion of the physical video memory, called a window, for its display pur-

poses. This system allowed multiple graphical applications to run simultaneously, all sharing one

physical screen.
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The windowing system forms a middle layer between the application and the video hardware.

Graphics applications can, in general, no longer directly access the video hardware but instead

direct requests to the windowing system to display images within the application’s window (Fig-

ure 2-3).
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The introduction of a windowing system between the application and the video hardware

imposes a slight performance penalty. In general, we have to live with this performance hit, since

well-behaved graphics programs must be able to function within windows. It cannot be expected

that every graphics application should always be allowed to have complete access to the entire dis-

play, refusing to coexist with other running graphical applications. The performance problem,

however, is not as limiting as it might at first seem. The efforts to incorporate 3D hardware accel-

eration into the X Window System, described in the last chapter, have yielded high-performance X

architectures. With faster 3D hardware and an efficient X interface, the performance penalty

imposed by going through X becomes negligible.

A well-designed program will, however, isolate application code from the underlying screen

access code. An application should only access a screen as a logical output device through an

abstract C++ class interface. This allows the application to display its output on a variety of physi-

cal screens—for instance, on an unaccelerated window under X, full-screen using hardware

acceleration, or on a window using another operating system such as Microsoft Windows.

NOTE An abstract class is one which has at least one pure virtual function and cannot be
instantiated. A concrete class is one which is not abstract, though it may descend from an
abstract class. Abstract classes are the key to good object-oriented design, since they repre-
sent characteristic, fundamental abstractions of the problem domain independent of
“irrelevant” details. The “irrelevant” details are implemented within derived concrete classes
by overriding the pure virtual functions, but users of the class who go through the abstract
interface will remain compatible for all variants, past and future, of the abstract class. The
requirement for this to work is that the abstract class truly be a general, characteristic classifi-
cation of all possible past and future variants of the data type represented by the class,
thereby allowing the future flexibility and compatibility through subclassing. Finding the
appropriate abstract classes is equivalent to identifying or defining the fundamental, univer-
sal abstractions in the problem domain, and is one of the most difficult parts of
object-oriented design.

Thus, from the application’s point of view, its display is directed to a logical output device which

we will call the “screen.” In reality, the screen will usually be a window which has been allocated

by a windowing system and which only uses up part of the physical display, but this fact is hidden

from the application program so that the program may be configured (even at run time) to use dif-

ferent physical output devices.

Under the older Linux operating system, “direct access” to video memory was often done

through a graphics library called SVGALIB. This library, as we saw in Chapter 1, is more or less

outdated. The X Window System now regulates access to the video hardware.

Therefore, with the exception of full-screen hardware-accelerated graphics, when we use the

term “screen” we are actually referring to a display window created under the X Window System.

Let us now see how we create windows under X, then see how to display images in the window.
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Structure of an X Program
The X Window System, like other windowing systems, is an event-driven system which notifies

individual windows of events of interest, thereby allowing the window to respond accordingly.

For instance, pressing a key when a window is active would automatically (through the window-

ing system) send a keypress event to the window. The application code for this window would

then notice the event and call a function to respond to the event; such an event-handling function is

called a callback function. The calling of the appropriate function in response to an event is called

event dispatching.

Programming the X Window System is a very broad area of expertise; volumes have been

written on the subject. For the purposes of this book, we won’t delve too deeply into the intricacies

of X, but will instead simply focus on X as a mechanism for displaying windowed 2D images.

(This alone is complicated enough!) 3D graphics, as will be explained in Chapter 4, also ulti-

mately reduces to 2D images.

Let us begin by examining the typical structure of an X program; in the next section, we then

deal specifically with displaying graphics. In pseudocode, a typical X application would look as

follows:
create_window();
ask_to_be_notified_of_interesting_events();
while(1) {
if event_pending_for_window() {

dispatch_event(); // call callback function
}
}

The program is nothing more than a classical event-polling loop. We have an infinite loop which

waits for an event to occur, then reacts to that event. In most cases, some particular event, such as

typing q or clicking on a Quit button, will eventually cause the program to exit the event-polling

loop and terminate execution.
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With this understanding, we can now make a detailed analysis of the sample program hello
from the previous chapter, which created a simple window under X. The program’s code is shown

here again, in Listing 2-1.

Listing 2-1: hello.cc
#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/Xlib.h>
//- empty line
#define SCREEN_XSIZE 320
#define SCREEN_YSIZE 200

main() {
Display *dpy;
//- establish connection to X server

dpy = XopenDisplay(NULL);

//- create and map (display) an X window for output

Visual *vis;
Window w;
vis = DefaultVisual(dpy,0);
w = XCreateWindow(dpy, //- display

DefaultRootWindow(dpy), //- parent
100, 100, //- x, y position
SCREEN_XSIZE, SCREEN_YSIZE, //- width, height
0, //- border width
CopyFromParent, //- depth (we use max. possible)
CopyFromParent, //- visual class (TrueColor etc)
vis, //- visual
0, NULL); //- valuemask, window attributes

XStoreName(dpy, w, "hello");

XMapWindow(dpy, w);

XSelectInput(dpy, w, KeyPressMask);

XEvent event;
char ch;
KeySym keysym;
XComposeStatus xcompstat;

while(1) {
if(XCheckWindowEvent(dpy,w,KeyPressMask,&event)) {
XLookupString(&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {

exit(0);
}

}
}

}
}
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Xlib, the X Toolkit, and the Xt Intrinsics

The program hello.cc begins by including the header files we need to do X programming:
#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/Xlib.h>

Every C programmer is familiar with stdio.h, the header file for the standard input/output

library, but the X header files may be new to you. The exact location for these files is

/usr/include/X11/Intrinsic.h and /usr/include/X11/Xlib.h. You might

want to glance at the contents of these files to get an idea of what you are including.

TIP The location for #include files appearing within angle brackets (< >) is the
pathname within the brackets prefaced by /usr/include or /usr/local/include.
These directories are the standard include file directories for a Linux system.

The X files in our case don’t contain secret government information, but rather function and struc-

ture definitions for the Xlib library and for the X Toolkit. Xlib is a low-level C library for

controlling output to and input from windows on an X server. The X Toolkit is a higher-level col-

lection of functions for programming X, and is divided into two parts: the Xt Intrinsics and a

widget set. The functions in the Xt Intrinsics allow applications to create user interfaces by com-

bining user interface components, called widgets. Figure 2-5 illustrates graphically the

relationship between Xlib, the Xt Intrinsics, and a widget set.

It should now be clear exactly which header files we have included: Xlib.h contains the

Xlib declarations; Intrinsic.h contains the Xt Intrinsics declarations. We don’t use any wid-

get set in this program (since it doesn’t have any user interface), so we correspondingly do not

include any widget header file.

NOTE In contrast to other windowing systems, it is theoretically possible to write an X appli-
cation without using any X library at all. This is because the X server protocol is defined at the
byte level of network packets. An X client could therefore directly open a TCP/IP network con-
nection to the X server, and manually send, receive, and decode packets of bytes in order to
control the display on the X server. This would, however, be absurdly complicated, but it is
useful to know that, technically speaking, the X libraries are a convenience, not a necessity.
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Next, we define some constants for the screen size:
#define SCREEN_XSIZE 320
#define SCREEN_YSIZE 200

Connecting to the X Server

Since X is a client-server system, and since our programs are all X clients, we must connect to the

X server in order to create a window and display graphics on the screen. hello.cc declares the

variable dpy, which represents a pointer to an X Display structure. The display represents the

connection between our application program (the X client) and the X server (connected to the

monitor).
Display *dpy;

The connection between client and server might be a TCP/IP network connection in the case of a

true client-server setup, where the X server and the X client are located on two physically separate

machines. With a local setup, where the X server and the X client are located on the same machine,

the connection will be done through some local interprocess communication protocol.

Let’s take a glance at the definition of the Display structure. This is located in

/usr/include/X11/Xlib.h:
/*
* Display datatype maintaining display specific data.
* The contents of this structure are implementation dependent.
* A Display should be treated as opaque by application code.
*/
#ifndef XLIB_ILLEGAL_ACCESS
typedef struct _XDisplay Display;
#endif

As seen in the structure definition, we don’t need to—and should not—know more about the inter-

nals of the Display structure, since its contents are implementation specific and not guaranteed

to remain constant among implementations or versions of XFree86. This is a typical example of

the object-oriented technique of information hiding, where users of a particular class or structure

are protected from the inevitable changes which sooner or later will occur. By treating the Dis-
play structure as opaque, we are guaranteed that our program will continue to compile and

function even in the face of changes to the internal representation of the Display structure.

NOTE This particular example of information hiding is somewhat extreme, since the Dis-
play structure is completely opaque; as users of this structure, we do not have access to any
part of it. More generally, a class in an object-oriented design will expose a public interface to
the outside world, which must be a relatively stable foundation upon which users of the class
(called client classes) can build. The internal workings of the supplier class (the class being
used by the client class) are much more volatile and therefore “hidden” in the private sections
of the supplier class. These sections may be changed without affecting client classes, since the
compiler prohibits client classes from accessing the private members of a supplier class,
aborting compilation with an error message. This guarantees the public/private separation at
the lowest level. One of the most difficult decisions for object-oriented designs is deciding
which parts of the class declaration should be made public, and which private. A complete
answer to this question exists, but is rather theoretical in nature, being based upon class the-
ory and the theory of abstract data types (ADTs) [MEYE97]. Briefly summarized, the idea is
that it must be impossible to write a client class whose correctness depends in any way on the
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private declarations of the supplier class. In other words, correctness of the clients of a partic-
ular supplier class must be formally provable using only the public declarations of the
supplier class.

With the dpy variable declared, we can establish a connection to the X server by using the

XOpenDisplay function:
dpy = XOpenDisplay(NULL);

A complete description of this function appears in the online manual. Hopefully you have already

taken the time to read through some of the entries in the man pages. If not, here is the complete

manual entry for XOpenDisplay:
XOpenDisplay(3X11) XLIB FUNCTIONS XOpenDisplay(3X11)

NAME
XOpenDisplay, XCloseDisplay - connect or disconnect to X
server

SYNTAX
Display *XOpenDisplay(display_name)

char *display_name;

XCloseDisplay(display)
Display *display;

ARGUMENTS
display Specifies the connection to the X server.

display_name
Specifies the hardware display name, which
determines the display and communications domain
to be used. On a POSIX-conformant system, if
the display_name is NULL, it defaults to the
value of the DISPLAY environment variable.

DESCRIPTION
The XOpenDisplay function returns a Display structure that
serves as the connection to the X server and that contains
all the information about that X server. XOpenDisplay
connects your application to the X server through TCP or
DECnet communications protocols, or through some local
inter-process communication protocol. If the hostname is
a host machine name and a single colon (:) separates the
hostname and display number, XOpenDisplay connects using
TCP streams. If the hostname is not specified, Xlib uses
whatever it believes is the fastest transport. If the
hostname is a host machine name and a double colon (::)
separates the hostname and display number, XOpenDisplay
connects using DECnet. A single X server can support any
or all of these transport mechanisms simultaneously. A
particular Xlib implementation can support many more of
these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display
structure, which is defined in <X11/Xlib.h>. If XopenDis-
play does not succeed, it returns NULL. After a success-
ful call to XOpenDisplay, all of the screens in the dis-
play can be used by the client. The screen number speci-
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fied in the display_name argument is returned by the
DefaultScreen macro (or the XDefaultScreen function). You
can access elements of the Display and Screen structures
only by using the information macros or functions. For
information about using macros and functions to obtain
information from the Display structure, see section 2.2.1.

The XCloseDisplay function closes the connection to the X
server for the display specified in the Display structure
and destroys all windows, resource IDs (Window, Font,
Pixmap, Colormap, Cursor, and GContext), or other
resources that the client has created on this display,
unless the close-down mode of the resource has been
changed (see XSetCloseDownMode). Therefore, these win-
dows, resource IDs, and other resources should never be
referenced again or an error will be generated. Before
exiting, you should call XCloseDisplay explicitly so that
any pending errors are reported as XCloseDisplay performs
a final XSync operation.

XCloseDisplay can generate a BadGC error.

SEE ALSO
AllPlanes(3X11), XFlush(3X11), XSetCloseDownMode(3X11)
Xlib - C Language X Interface

NOTE From now on, you are encouraged to look up the manual entries for the functions
described in the text.

Notice that we passed NULL as the parameter to XOpenDisplay. As documented in the man

page, this uses the default display.

Having now established the connection to the X server, we can create a window on the X

server’s display.

Creating and Mapping the Window

The next thing hello.cc does is create a window. Two variables are declared for this purpose:

one to store so-called “visual” information, and one for the window itself:
Visual *vis;
Window w;

The definition for the Visual structure is in /usr/include/X11/Xlib.h:
/*
* Visual structure; contains information about colormapping possible.
*/
typedef struct {

XExtData *ext_data; /* hook for extension to hang data */
VisualID visualid; /* visual id of this visual */

#if defined(__cplusplus) || defined(c_plusplus)
int c_class; /* C++ class of screen (monochrome, etc.) */

#else
int class; /* class of screen (monochrome, etc.) */

#endif
unsigned long red_mask, green_mask, blue_mask; /* mask values */
int bits_per_rgb; /* log base 2 of distinct color values */
int map_entries; /* color map entries */

} Visual;
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The Visual structure definition is quite simple and well commented. It deals with the color

structure of the X server. We return to this topic shortly, in the section titled “X Server Depth and

Visual Class.” For now, we only need to know the visual so that we may create the window, since

the window creation function requires a visual as a parameter.

The other variable we have declared is from type Window. Its declaration, in

/usr/include/X11/X.h, is as follows:
typedef unsigned long XID;
typedef XID Window;

A Window is therefore nothing more than an integer identifier.

The first step is to ask the X server for the default visual of the screen, by using the

DefaultVisual macro:
vis = DefaultVisual(dpy,0);

With the display from the previous step and the visual now known to us, we have enough informa-

tion to create the window. The XCreateWindow function creates a window on a particular

display. hello.cc calls this function as follows:
w = XCreateWindow(dpy, //- display

DefaultRootWindow(dpy), //- parent
100, 100, //- x, y position
SCREEN_XSIZE, SCREEN_YSIZE, //- width, height
0, //- border width
CopyFromParent, //- color depth (we use max. possible)
CopyFromParent, //- visual class (TrueColor etc)
vis, //- visual
0, NULL); //- valuemask, window attributes

XStoreName(dpy, w, "hello");

The XCreateWindow function takes a number of parameters, only a few of which need further

explanation. In particular, the parameters labeled parent, color depth, visual class,

valuemask, and window attributes deserve mention.

The parent parameter specifies the parent window for the window about to be created. As

mentioned in Chapter 1, windows under X are hierarchically arranged. The parent window is the

immediate ancestor of the child window in the hierarchy. In our case, we have specified that the

parent window is to be the root window, which is the window at the very top of the hierarchy that

encompasses the entire physical screen.

The color depth parameter and the visual class parameter work closely together to

specify the number and type of colors available to the window. We cover this in more detail in the

section titled “X Server Depth and Visual Class.” In our case, we specify these parameters as

CopyFromParentwhich simply copies the values from the parent window. The valuemask
and window attributes parameters are used together to toggle specific creation options of

the window. The valuemask is interpreted bit-wise and is specified as a logical OR of the

desired options. The valid options are listed in the man page and cover such options as the cursor

for the window or which events should be passed to the window. The window attributes
parameter points to a structure of type XSetWindowAttributes, which specifies the data

needed by the options activated through thevaluemask. For now, we do not specify any particu-

lar window attributes.
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The next line calls XStoreName, which simply associates a text string with the window.

This text string typically appears in the title bar of the window to assist the user in identifying and

finding windows. (We say “typically appears” because this behavior is dependent upon the win-

dow manager being used.)

After callingXCreateWindow, the window has been allocated in memory but is not yet vis-

ible. To display the window, we must map it by calling XMapWindow:
XMapWindow(dpy, w);

Receiving X Events

hello.cc calls the XSelectInput function to request notification for certain types of input

events. Specifically, we ask X to inform us of keypress events, which are generated whenever a

key is pressed within our window:
XSelectInput(dpy, w, KeyPressMask);

The constant KeyPressMask, along with other masks for watching other events, are defined in

/usr/include/X11/X.h. The list of all event masks is as follows:
/*****************************************************************
* EVENT DEFINITIONS
*****************************************************************/

/* Input Event Masks. Used as event-mask window attribute and as arguments
to Grab requests. Not to be confused with event names. */

#define NoEventMask 0L
#define KeyPressMask (1L<0)
#define KeyReleaseMask (1L<1)
#define ButtonPressMask (1L<2)
#define ButtonReleaseMask (1L<3)
#define EnterWindowMask (1L<4)
#define LeaveWindowMask (1L<5)
#define PointerMotionMask (1L<6)
#define PointerMotionHintMask (1L<7)
#define Button1MotionMask (1L<8)
#define Button2MotionMask (1L<9)
#define Button3MotionMask (1L<10)
#define Button4MotionMask (1L<11)
#define Button5MotionMask (1L<12)
#define ButtonMotionMask (1L<13)
#define KeymapStateMask (1L<14)
#define ExposureMask (1L<15)
#define VisibilityChangeMask (1L<16)
#define StructureNotifyMask (1L<17)
#define ResizeRedirectMask (1L<18)
#define SubstructureNotifyMask (1L<19)
#define SubstructureRedirectMask (1L<20)
#define FocusChangeMask (1L<21)
#define PropertyChangeMask (1L<22)
#define ColormapChangeMask (1L<23)
#define OwnerGrabButtonMask (1L<24)

XSelectInput is not the only way to request event notification. We could have achieved the

same effect at window creation time by specifying these parameters in the valuemask and

window attributes parameters passed to XCreateWindow. We would have declared and

initialized a variable to hold the window parameters:
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XSetWindowAttributes a;
a.event_mask = KeyPressMask;

We then would have passed the values CWEventMask, &a as the last two parameters to

XCreateWindow.

Notice that if you do not specify KeyPressMask in either the window attributes or through

XSelectInput, the program will not respond to keyboard events at all. Indeed, any event type

for which you do not request notification will not be sent to your window.

Responding to X Events

The last part of hello.cc is an event loop which checks for keypress events and responds to

them. For this, we use the XCheckWindowEvent function, which searches for any pending

events corresponding to the given window and event mask. If XCheckWindowEvent finds an

event, it returns it in an XEvent structure, which you specify as the last parameter of the function

call. Other routines which search for relevant events are XNextEvent, XPeekEvent,

XWindowEvent, XCheckWindowEvent, XMaskEvent, XCheckMaskEvent, XCheck-
TypedEvent, and XCheckTypedWindowEvent. These routines differ in the way that they

look for events, whether or not they leave the event on the queue, and whether or not they block, or

wait until a matching event can be found. The following list summarizes the available event

checking routines:

� XNextEvent: Removes and returns the first event from the queue. Blocks if no events could

be found.

� XPeekEvent: Returns but does not remove the first event from the event queue. Blocks if

no events could be found.

� XWindowEvent: Searches for, removes, and returns an event matching a particular window

and event mask. Blocks if no matching events could be found.

� XCheckWindowEvent: Searches for, removes, and returns the first event matching a par-

ticular window and event mask. Does not block. Returns TRUE if an event could be found,

FALSE otherwise.

� XMaskEvent: Searches for, removes, and returns an event matching a particular event

mask. Blocks if no matching events could be found.

� XCheckMaskEvent: Searches for, removes, and returns the first event matching a particu-

lar event mask. Does not block. Returns TRUE if an event could be found, FALSE otherwise.

� XCheckTypedEvent: Searches for, removes, and returns the first event matching a partic-

ular type. Does not block. Returns TRUE if an event could be found, FALSE otherwise.

� XCheckTypedWindowEvent: Searches for, removes, and returns the first event matching

a particular window and event type. Does not block. Returns TRUE if an event could be

found, FALSE otherwise.

By using one of the event functions above, we receive an XEvent structure as a result (assuming

some matching event could be found). The XEvent contains detailed information about the par-

ticular event which occurred; the application program then extracts this information out of the

event and responds accordingly. TheXEvent structure, defined inXlib.h, is actually a union of
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several structures, with a type field to distinguish the actual type of the event (i.e., which element

of the union we should access).
/*
* this union is defined so Xlib can always use the same sized
* event structure internally, to avoid memory fragmentation.
*/
typedef union _XEvent {

int type; /* must not be changed; first element */
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];

} Xevent;

The valid values for the type field are defined in X.h:
/* Event names. Used in "type" field in XEvent structures. Not to be
confused with event masks above. They start from 2 because 0 and 1
are reserved in the protocol for errors and replies. */

#define KeyPress 2
#define KeyRelease 3
#define ButtonPress 4
#define ButtonRelease 5
#define MotionNotify 6
#define EnterNotify 7
#define LeaveNotify 8
#define FocusIn 9
#define FocusOut 10
#define KeymapNotify 11
#define Expose 12
#define GraphicsExpose 13
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#define NoExpose 14
#define VisibilityNotify 15
#define CreateNotify 16
#define DestroyNotify 17
#define UnmapNotify 18
#define MapNotify 19
#define MapRequest 20
#define ReparentNotify 21
#define ConfigureNotify 22
#define ConfigureRequest 23
#define GravityNotify 24
#define ResizeRequest 25
#define CirculateNotify 26
#define CirculateRequest 27
#define PropertyNotify 28
#define SelectionClear 29
#define SelectionRequest 30
#define SelectionNotify 31
#define ColormapNotify 32
#define ClientMessage 33
#define MappingNotify 34
#define LASTEvent 35 /* must be bigger than any event # */

NOTE The use of a type field is generally frowned upon in object-oriented designs, since
the mechanism of inheritance is used to specify subtypes in a much safer and more flexible
way. Nothing prevents us, for instance, from accidentally changing the type field or accessing
the wrong member of the union. Manipulation of types through type fields cannot be checked
for validity by the compiler, in contrast to a class-based approach. The idea of “class as type”
is therefore central to object orientation in strongly typed languages. The reason X uses a type
field is quite simple: X is written in the C language, which unlike C++ has no true support for
object-oriented mechanisms such as inheritance.

In the case of keyboard events, the returned event is of type KeyPress, corresponding to the

member xkey in the XEvent structure. xkey is of type XKeyEvent, which is defined as

follows:
typedef struct {

int type; /* of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window it is reported relative to */
Window root; /* root window that the event occured on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event window */
int x_root, y_root; /* coordinates relative to root */
unsigned int state; /* key or xbutton mask */
unsigned int keycode; /* detail */
Bool same_screen; /* same screen flag */

} XKeyEvent;
typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

The returned event contains detailed information about which key was pressed, and where, when,

and how it was pressed. We could decode all of this information manually, but we don’t have to. X

provides a convenient function to decode keypress events: XLookupString. We use this
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function to extract keypress information out of the event structure, and only respond to the q key,

which ends the program. The event loop in hello.cc looks as follows:
XEvent event;
char ch;
KeySym keysym;
XComposeStatus xcompstat;

while(1) {
if(XCheckWindowEvent(dpy,w,KeyPressMask,&event)) {
XLookupString(&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {

exit(0);
}

}
}

}
}

TIP Remember that all of these X functions have entries in the online manual.

We’ve now covered all of the important topics relevant to a basic X program. The sample program

hello is not much more complicated than the pseudocode presented at the beginning of the dis-

cussion. There are a few extra variables and parameters, but the overall structure is quite simple.

Critique of the Sample Program

You may have noticed that the window created by the program hello is not truly empty, but

instead seems to contain the contents of the window lying “underneath” it. On my computer, the

image looks like Figure 2-6. Exactly what you see depends on your particular video card, since the

X server handles video memory differently for different cards.

The reason for the strange window contents is simple: we did not explicitly specify that the

window should be drawn. This means that the background is not even empty, but is instead com-

pletely undefined. In particular, each window under X is always responsible for drawing itself

when requested to do so. This request comes, as you might have guessed, in the form of an
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event—specifically, a so-called expose event. This request was indeed sent to our sample pro-

gram, but our program did not watch for this event and therefore never even knew about the

request.

Another thing you have probably noticed about hello.cc is that the code is about as

non-object-oriented as can be. Since this book uses C++ as the language of choice, we should

make use of the object-oriented features of the C++ language to achieve better reusability and

extendibility of our program modules.

Let us now rewrite the program so that it is better structured and reacts a bit more intelligently

to events. We will first restructure the original program in an object-oriented (class-based) fash-

ion, then implement an improved event handler by subclassing our original application class.

An Object-Oriented Rewrite
Listings 2-2 through 2-11 are an object-oriented rewrite of the program hello.cc. This code is

located in directory $L3D/source/app/hello_oo.

Listing 2-2: ch2_app.h
#ifndef __CH2_APP_H
#define __CH2_APP_H

#include <stdio.h>

class ch2_app {
protected:
virtual void create_window(void) = 0;
virtual void ask_to_be_notified_of_interesting_events(void) = 0;
virtual void event_loop(void) = 0;

public:
virtual ~ch2_app(void) {};
virtual void execute(void);

};
#endif

Listing 2-3: ch2_app.cc
#include "ch2_app.h"

void ch2_app::execute(void) {
create_window();
ask_to_be_notified_of_interesting_events();
event_loop();

}

Listing 2-4: ch2_app_x.h
#ifndef __CH2_APP_X_H
#define __CH2_APP_X_H
#include "ch2_app.h"
#include <X11/Intrinsic.h>
#include <X11/Xlib.h>

class ch2_app_x : public ch2_app {
protected:
const static int screen_xsize = 320;
const static int screen_ysize = 200;
Visual *vis;
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Display *dpy;
Window w;

void create_window(void);
void ask_to_be_notified_of_interesting_events(void);
void event_loop(void);

public:
virtual ~ch2_app_x(void) {};

};
#endif

Listing 2-5: ch2_app_x.cc
#include "ch2_app_x.h"
#include <stdio.h>

void ch2_app_x::create_window(void) {

dpy = XopenDisplay(NULL);

vis = DefaultVisual(dpy,0);
w = XcreateWindow(dpy,

DefaultRootWindow(dpy),
100, 100,
screen_xsize, screen_ysize,
0,
CopyFromParent,
CopyFromParent,
vis,
0, NULL);

XMapWindow(dpy, w);
}

void ch2_app_x::ask_to_be_notified_of_interesting_events(void) {
XSelectInput(dpy, w, KeyPressMask);

}

void ch2_app_x::event_loop(void) {
XEvent event;
char ch;
KeySym keysym;
XComposeStatus xcompstat;

while(1) {
if(XCheckWindowEvent(dpy,w,KeyPressMask,&event)) {
XLookupString(&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {

exit(0);
}

}
}

}

}
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Listing 2-6: ch2_appfactory.h
#ifndef __CH2_APPFACTORY_H
#define __CH2_APPFACTORY_H

#include "ch2_app.h"

class ch2_appfactory {
public:
virtual ch2_app *create(void) = 0;

};

#endif

Listing 2-7: ch2_appfactory_x.h
#ifndef __CH2_APPFACTORY_X_H
#define __CH2_APPFACTORY_X_H

#include "ch2_appfactory.h"

class ch2_appfactory_x : public ch2_appfactory {
ch2_app *create(void);

};
#endif

Listing 2-8: ch2_appfactory_x.cc
#include "ch2_appfactory_x.h"
#include "ch2_app_x.h"

ch2_app *ch2_appfactory_x::create(void) {
return new ch2_app_x;

}

Listing 2-9: ch2_factorymanager.h
#ifndef __CH2_FACTORYMANAGER_H
#define __CH2_FACTORYMANAGER_H
#include "ch2_appfactory.h"

class ch2_factorymanager {
public:
static ch2_appfactory *appfactory;
void choose_factories(void);

};

#endif

Listing 2-10: ch2_factorymanager.cc
#include "ch2_factorymanager.h"

#include "ch2_appfactory_x.h"

ch2_appfactory *ch2_factorymanager::appfactory = 0;

void ch2_factorymanager::choose_factories(void) {
int i;

printf("Which Appfactory should create your application?");
printf("1. Appfactory creating the simple X app");

scanf("%d", &i);
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switch(i) {
case 1: {

appfactory = new ch2_appfactory_x;
};
break;

}
}

Listing 2-11: ch2_hello.cc
#include "ch2_factorymanager.h"

main() {
ch2_app *application;
ch2_factorymanager fm;

fm.choose_factories();
application = fm.appfactory->create();
application->execute();

}

Figure 2-7 illustrates the class hierarchy for these files. The notation used in the class diagram is

similar to UML, the Unified Modeling Language. The following list explains the diagrammatical

conventions.

� A class is represented by a rectangle with three sections. From top to bottom, these sections

are: class names, class attributes (variables), and class methods (functions).

� A line without an arrowhead between two classes indicates a component relationship. A com-

ponent relationship relates two classes: the containing class, marked with a pound sign (#),

and the contained class, not marked with a pound sign. The numbers on each side of the com-

ponent relationship indicate the cardinality of the relationship. The label on the component

relationship indicates the name of the member variable within the containing class. An aster-

isk before the component relationship name indicates that a pointer to the component object,

rather than the component object itself, is stored.

� The solid arrows indicate inheritance relationships and are labeled with the text “is_a.”

For instance, the class ch2_factorymanager contains a variable named appfactory (the

label on the component relationship). This variable is a pointer (indicated by the asterisk in the

label) to an object of type ch2_appfactory (the contained class, indicated by the lack of a

pound sign on that side of the relationship). The cardinality of the relationship is 1:1—that is, one

object of type ch2_factorymanager has a pointer to exactly one object of type

ch2_appfactory. Furthermore, the class ch2_appfactory_x inherits from class

ch2_appfactory, indicated by the “is_a” arrow.
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To compile the code, follow the same instructions as before. Change to the source directory by

typing cd $L3D/source/app/hello_oo and pressing Enter. Type make and press Enter. After suc-

cessful compilation, type ch2_hello_oo and press Enter to execute the program. Notice the new

question which appears:
Which Appfactory should create your application?
1. Appfactory creating the simple X app

The section titled “Factory Design Pattern” discusses the concept of an application factory in

detail. For now, type 1 and press Enter. Notice that the program then does exactly the same thing

ashello.cc—it creates an empty window with undefined contents. Press q to exit the program.

Program ch2_hello_oo illustrates a number of important object-oriented techniques that

will be used throughout the rest of this book. Therefore, understanding the design techniques used

is very important and the subject of the following sections.

An Abstract Application Class

Let us begin with the class ch2_app (files ch2_app.h and ch2_app.cc). This is an abstract

class, as defined earlier, since it has at least one pure virtual function. This class represents the gen-

eral structure of an event-driven application. The function execute starts execution of the

application. Notice that the code for execute calls, quite logically, the following three functions

in order:
void ch2_app::execute(void) {
create_window();
ask_to_be_notified_of_interesting_events();
event_loop();

}
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All of these function calls are purely virtual. This means that the ch2_app class cannot function

as it is, but must be subclassed to “fill in the blanks” left by the virtual functions. What the abstract

class does is define that an execution of an event-driven program consists of the three steps listed

above. In the original discussion of event-driven programs, we said that exactly these three steps

formed the general structure of all event-driven programs. We have therefore captured the essence

of the problem domain clearly and concisely within this abstract class.

CAUTION If you use polymorphic assignment, make sure your destructors are virtual.

Notice that the destructor for ch2_app is virtual, since we will be using polymorphic assign-

ments, and destructor calls should also be virtual in this case. Without a virtual destructor, the

compiler would call the destructor based upon the type of the pointer, not the type of the object

pointed to. In other words, resolution of a destructor call in the face of polymorphic assignment

takes place in the same manner as resolution of any other function call with polymorphic

assignment.

A Concrete Application Class

The next class of interest is ch2_app_x, which is derived from class ch2_app. This class

defines an event-driven application implemented under the X Window System. Notice that noth-

ing in the abstract ch2_app class is in any way dependent on X; there is not a single #include
of an X header file. Only in the ch2_app_x descendant do we introduce platform-specific code.

Accordingly, ch2_app_x includes the X header files and defines the protected variables neces-

sary for windowed display under X: the visual, the display, and the window. Finally, class

ch2_app_x overrides the pure virtual functions declared in ch2_app: create_window,

ask_to_be_notified_of_interesting_events, and event_loop.

In other words, ch2_app_x fills in the spaces left open by the abstract ch2_app class, and

in particular, fills in these spaces with X-specific code. Class ch2_app_x, therefore, is a con-

crete class, one of many possible concretely realized implementations of the abstract ch2_app
concept. Class ch2_app_x can be instantiated and used at run time, whereas ch2_app cannot;

an attempt to create an object of type ch2_appwould cause the linker to abort with an error mes-

sage that the virtual table for class ch2_app could not be resolved. (Try it.)

The code in classch2_app_x is the same as appeared inhello.cc—the only difference is

that the code has been logically restructured to fit within the three-step framework provided by the

abstract class. This is an important property of object-oriented designs: they tend to restructure

designs into abstract frameworks representing the problem domain.

Factory Design Pattern

The next few classes are factory classes that represent an important design pattern in

object-oriented architectures: the so-called abstract factory pattern. A design pattern is an archi-

tectural combination of classes in a particular way which solves a recurring type of problem

occurring in object-oriented designs. Design Patterns: Elements of Reusable Object-Oriented

Software [GAMM95] was the milestone publication which introduced this object-oriented tech-

nique in a coherent manner for the first time. The key thing to understand about design patterns is
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that a number of classes must cooperate in a particular way to solve a particular type of problem.

The specification of the roles of the classes and the communication between them, which is appli-

cable in a broad range of contexts, forms a design pattern.

The factory design pattern is something like a “virtual constructor.” The idea is that instead of

creating an object directly (via the C++ operator new), we ask some other object, called the fac-

tory, to create an object for us and return a pointer to the newly created object. What is the

advantage of such an apparently roundabout scheme?

The advantage is that by going through a factory, the program requesting the object only

needs to maintain an abstract class pointer to the object being created. The factory creates a con-

crete object (indeed, only concrete objects can be created at all), but returns a pointer of the more

general, less specific abstract type. This means that the factory can be extended to create new

types of concrete objects, without needing to modify the main program.

Consider the following analogy. Assume you are a carpenter, and that you need to build a lad-

der to climb on your roof. You actually don’t care too much for building ladders; you just want to

reach your roof to get your job done. The process of building your own ladder is analogous to cre-

ating an object directly with the C++ operator new. That is to say, if you want to build your own

ladder, you must specifically know everything about the ladder to create it: the material, the spac-

ing between the rungs, the length of the ladder, and so forth. If you only know how to build one

type of ladder, say a wooden ladder, and one day decide that you need a metal ladder, you must

learn to build a metal ladder. In a similar manner, a program which directly creates objects using

the C++ new operator must know, specifically, the exact class of the object being created, even

though this knowledge might distract from the main task of the program. If, in the future, the pro-

gram needs to be modified to work with new kinds of objects, the code of the main program must

be changed to invoke new on the new class, just as the carpenter needing new metal ladders must

first learn how to create metal ladders.

The factory analogy extends to the carpenter as follows: instead of building your own ladder

to climb on the roof, you call up a ladder factory and tell them, “give me a ladder.” Depending on

what factory you call, they might give you a wooden ladder, a metal ladder, with wide or narrow

spacing between the rungs, extendable or not, and so on. But you as the carpenter no longer need

to know, or care, about the exact fabrication process or even what kind of ladder you receive. All

you know and care about is that you are getting a “ladder” which fulfills your specifications and

with which you can do your job. The exact type of ladder and its creation are unknown to you; you

only deal with the ladder factory.

The reasoning is the same with software factories and the factory design pattern. A class

requesting object creation through a factory does not want to be burdened by knowing the exact

concrete type (i.e., the exact concrete class) of the objects being created by the factory; its only

condition is that the returned object belong to a particular abstract class. The carpenter doesn’t

care if the ladder is wooden or metal (the concrete class); he only cares about the fact that it is a

ladder (the abstract class).

Moving object creation into an external factory object eliminates the dependency between the

main program (or more generally the client class) and the myriad of possible concrete classes

which the factory might produce. The factory can be extended to create new kinds of objects
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without even needing a recompile of the client class. Plug-in architectures, which have become

quite popular recently for programs such as WWW browsers, also use a similar scheme: the

browser cannot possibly anticipate the different kinds of plug-ins which might be plugged into the

browser, yet through a factory the browser can indeed request creation of some plug-in object

without knowing its concrete type.

An Application Factory and Factory Manager

In the case of our programch2_hello_oo, the factory creates an application object conforming

to a ch2_app abstract interface. The abstract factory class is therefore called

ch2_appfactory—it is an application factory, which creates an application object. The object

creation function is, surprisingly enough, the create function. Notice that create returns an

abstract pointer to a ch2_app object, not a concrete pointer to a ch2_app_x object:
class ch2_appfactory {
public:
virtual ch2_app *create(void) = 0;

};

We then create a concrete factory, which, concretely speaking, returns objects of type

ch2_app_x. This factory is implemented in class ch2_appfactory_x. Notice that the

create function of this concrete factory actually creates an object of the concrete type

ch2_app_x, yet returns a pointer of abstract type ch2_app. This is called upcasting and is a

form of type-safe polymorphic assignment, where a pointer of one type points to an object of a dif-

ferent (but related) type.
ch2_app *ch2_appfactory_x::create(void) {
return new ch2_app_x;

}

Some class in the program must know about the existence of this concrete factory; otherwise,

there is no possible way any part of the program could ever use it. That is to say, some class, even-

tually, has to actually create the concrete factory so that it may be used by other classes, albeit

through an abstract interface. Managing the concrete factory or factories is the role of the factory

manager class, ch2_factorymanager. This class is a singleton class, which means that it will

be created once during program execution. This single instance is declared in the main program, in

the new version of ch2_hello.cc:
main() {
ch2_app *application;
ch2_factorymanager fm;

The ch2_factorymanager class has a static member appfactory which points to the

actual application factory that the main program will call in order to receive its application object.

This appfactory is initialized by the factory manager’s choose_factories()method, which

interactively asks the user which factory he wants to use. This information could also be read out

of a configuration file or set to a default value.
fm.choose_factories();
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Execution of the Main Program

As we just saw, the first thing the main program does is create a factory manager and ask it

(through the user) to select the appropriate application factory. Having chosen an application fac-

tory, the next step is for the main program to ask the factory to create an application. We don’t

know and don’t care what kind of application, because we know that we have already selected the

right factory and that the factory will give us the proper type of object.
application = fm.appfactory->create();
application->execute();

}

Finally, once we have our application object, we callexecute on it to start. This is a virtual func-

tion call, since we have no idea what kind of application lies behind the abstract interface. But we

know that it is an application, and we know therefore that it must support the execute method.

We call it, the virtual function call is resolved through the virtual function table, and execution

begins in the execute method of the concrete class, which we, in this case, know to be

ch2_app_x (since that is the only factory we have defined so far).

The execute method of ch2_app_x has not been overridden, so the version from

ch2_app, the ancestor class, is called. From here, the three-step process, which we already

described above, begins: create_window, ask_to_be_notified_of_interest-
ing_events, and event_loop.

You might find it useful to step through this program with the debugger. Set a breakpoint on

the main function and single step through every instruction. Figure 2-8 illustrates the execution

order of the program graphically. Each oval represents an object (not a class) at run time. The

numbered arrows represent the order of function calls within the program. To summarize the

entire execution process, based on Figure 2-8:

1. The main program object asks the factory manager to choose the appropriate factories.

2. The factory manager creates, via the new operator, the appropriate concrete appfactory, in

this case of type ch2_appfactory_x.

3. The main program asks the newly created appfactory to create an application.

4. The appfactory creates, via the new operator, an application of type ch2_app_x.

5. The main program asks the newly created application, fresh from the factory, to begin

execution.

6. The application’sexecutemethod first asks the application (i.e., itself) to create a window.

7. The application’s execute method next asks the application to take the necessary steps to

be notified in case of interesting events.

8. The application’s execute method finally asks the application to enter its event loop.
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Object-Oriented: Is It Worth It?

If this is your first encounter with design patterns or the general indirection techniques achievable

through virtual functions, your head might be spinning at this point. You might wonder if such

techniques are really worth the apparent extra effort they incur. Let’s consider the alternative for a

moment.

In this example, we used a factory design pattern to move creation of the application object

out of the main program. It would have been very tempting indeed to have allowed the main pro-

gram to directly create the concrete ch2_app_x object itself. But by doing this, we would have

infected the main program with a physical dependency (in the form of an #include) on the

ch2_app_x.h file. We would have forever tied our application code to the concrete

ch2_app_x class. Suppose that we then write a new descendant of the abstract ch2_app class,

which implements the event loop under a completely different operating system, say Microsoft

Windows. (Indeed, the Appendix discusses how to do exactly this.) We then have a problem—our

main program is physically tied to the ch2_app_x class because of the #include. The main

program will not even compile under Microsoft Windows, which does not have the X include

files. We would have to have conditional compilation statements in the main program—if X11,

then include the ch2_app_x header file, otherwise include the ch2_app_windows file. Simi-

lar type-based conditional statements would litter our code as well—if X11, then do this; if

Windows, then that. The problem gets even worse. Any new variation of the abstract class requires

extending all of the conditional compilation and execution statements. From personal experience,

I can say that maintaining such code over a period of years becomes a programmer’s worst

nightmare.

We solve this once and for all by moving all platform-specific code—that is, all concrete or

non-abstract code—into subclasses in separate files. The abstract class simply contains

placeholders, in the form of virtual functions, for those functions which will be implemented in a

platform-specific way in the concrete subclasses. We then ensure that our main program only

directly uses the abstract class, and not any concrete class. In this way the program is kept at a

higher level of abstraction, can be compiled on a variety of platforms, and can be extended with
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minimal impact through subclassing. Through virtual function calls, the proper platform-specific

code is called at run time. The hard part is finding that abstract class in the first place, i.e., recog-

nizing that an abstraction exists or can be justified.

The problems which object-oriented design addresses might appear insignificant with small

example programs of a few hundred lines. But exactly these problems—and the solutions offered

by object orientation—become absolutely critical with programs consisting of thousands, tens of

thousands, or even hundreds of thousands or millions of lines of code, developed by different peo-

ple over several years. Object orientation is currently one of the most effective weapons that

software architects have to combat the number one enemy of software development: complexity.

To check if your object-oriented design is really as modular as you think it is, try making all of

your source and object files read-only, with the chmod command. Then create a new concrete

subclass implementing your new functionality. See how many existing files you need to

change—this will be evident because to change a file, you must first make it writable again. If you

find that you have to change more than a few files, your concrete classes have probably infected

your main program too greatly. While a few extra #include dependencies on concrete classes

might seem harmless, they very quickly destroy the extensibility and reusability of the class, espe-

cially in other contexts. Trying to port the code at an early stage to another operating system is also

a good test (though not necessarily comprehensive) of system modularity.

Creating modular object-oriented architectures requires a different perspective on program-

ming. It requires a search for abstractions, for underlying fundamental characteristics of the

problem at hand. The sequential step-by-step execution of “the main program” is secondary. You

need to look beyond the immediate problem for more general abstractions. You need to constantly

ask yourself, “how can the functionality of my program be seen as operations on some abstract

data type? Do these operations generally characterize all possible variants of the abstracted data

type? If I were to use this code in a different environment, would my abstractions still be valid?”

Abstraction, indirection, virtual functions, abstract classes, concrete classes, factories, design

patterns—these are some of the object-oriented techniques which we use for the code throughout

this book. Through such techniques we will develop graphics classes which work with and with-

out hardware acceleration, under Linux and Microsoft Windows. The object-oriented perspective

on software construction might seem a bit awkward at first, but it is worth it, and it does yield

architectures that are much more resilient to change than traditional function-oriented programs.

Introduction to XImages
The previous program, while better structured, still suffers from the same technical shortcoming

as the first: its display is undefined because it does not respond to X events. The next program cor-

rects this. It displays a black background and prints in real time all events being sent to the

window. It is quite instructive to see exactly what events X is sending to the window and when—

when the mouse pointer moves, when the window loses or gains focus, when a key is pressed,

when part of the window is exposed, and so forth.

This program has three goals: to illustrate extension of existing code through subclassing, to

illustrate basic use of XImages, and to reinforce the event-handling concepts by displaying in real

time all events.
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A Practical Example of OO Reuse

The code for this program is in directory $L3D/source/app/hello_oo_event. The code

in this directory is not complete in and of itself, but rather uses the classes from the previous pro-

gram and extends them by adding new classes. This is a key goal of object-oriented software:

instead of copying heaps of source code and destroying carefully created structures in the original

code with new specializations, we leave the original code untouched and build upon it with new

derived classes.

The Makefile is the key to the practical side of this reuse process. To reuse the original source

and object files in another project located in another directory, the compiler and linker need to be

able to find the original files. In our case, the original directory is hello_oo and the new direc-

tory is hello_oo_event. The Makefile for the new project is located in hello_oo_event,

and contains specific compiler and linker flags referring to the original hello_oo directory. The

new Makefile is shown in Listing 2-12.

Listing 2-12: The Makefile for the hello_oo_event program
References to the old hello_oo directory, which are necessary so that the original code may be reused, are underlined.

OLDDIR_OO = ../hello_oo

LD = gcc
LDFLAGS = -L/usr/X11/lib -lg++ -lX11 -lXt -lm
CPPFLAGS = -g -I$(OLDDIR_OO)

ch2_hello_oo_event:\
$(OLDDIR_OO)/ch2_hello.o\
$(OLDDIR_OO)/ch2_app.o\
$(OLDDIR_OO)/ch2_app_x.o\
$(OLDDIR_OO)/ch2_appfactory_x.o\
ch2_factorymanager.o \
ch2_app_xevent.o \
ch2_appfactory_xevent.o

$(LD) $(LDFLAGS) $^ -o $@

The first line in the Makefile defines a (string) variable named OLDDIR_OO, containing the name

of the original directory. Then, the line with CPPFLAGS, which indicates the flags to be passed to

the C++ compiler, includes the directive -I$(OLDDIR_OO). This indicates that header files

during compilation should also be searched for in this directory. Finally, the dependency lines for

the Makefile indicate that the object files containing the classes we want to reuse are also located

in the original directory, indicated by the$(OLDDIR_OO) preceding the object file name. For the

newly created or changed source files, we want to use the new files, and therefore do not specify

$(OLDDIR_OO) on the dependency line. In this particular example, we are reusing four object

files, containing four classes, exactly as is from the previous example. We changed slightly the

original class ch2_factorymanager, located in file ch2_factorymanager.cc, and

compiled into object file ch2_factorymanager.o. Since we changed this class, we don’t

specify $(OLDDIR_OO) on the dependency line, so that our new version is compiled and linked.

The other two object files, ch2_app_event.o and ch2_appfactory_xevent.o, corre-

spond to source files containing completely new classes, so naturally these must also come from

the new directory.
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When you compile this program (as usual, simply with make), you will notice that none of the

object files in the old directory need to be recompiled. Thus, code reuse at the programming lan-

guage level (through inheritance) also translates directly into object-file reuse at the linker level.

This means that the new directory contains exactly the new code. All of the old code we reused

appears, unchanged and in its pristine state, in the original directory. “Reused code” is therefore

really “reused” and not “copied.” This makes maintenance easier; instead of needing to maintain

the original and copied versions of the code, you can physically treat the new code and the old

code as separate modules.

TIP If you find that it is impossible for you to extend a program by creating new subclasses,
instead requiring you to copy the original source code into a new file and to modify the origi-
nal source code directly, you almost certainly do not have an object-oriented design.

The following list summarizes the theoretical side (source code level) and practical side (file-

system level) of object-oriented code reuse:

� At the source code level, we do reuse a class either by declaring a new class inheriting from

the original class (the inheritance relationship), or by creating an instance of the original class

as is and using its features in a new context (the client relationship, not illustrated above). We

don’t copy the source code from the old class into a new class.

� At the file-system level, we do reuse a class by physically compiling and linking the program

with the original class’s header, source, and object files. We don’t copy the original class’s

files and modify the copied file.

� At the source code level, the technical mechanisms allowing for code reuse are virtual func-

tions and inheritance. Through inheritance, a derived class reuses (inherits) all the attributes

and functions of the ancestor class. Through virtual functions, a derived class can selectively

redefine specific parts of the original class, in a type-compatible way, without needing access

to its source code. Through new declarations in the derived class, the derived class can offer

new features not present in the ancestor class. Through object-oriented C++ mechanisms we

thus achieve code reuse, selective code adaptation, and code extension, all without modifying

the original source code.

� At the file-system level, the technical mechanisms allowing for code reuse are search direc-

tives for the compilation and linking commands, located in the makefile.

NOTE Code reuse through inheritance is called the inheritance relationship between
classes and represents a type-compatible form of reuse: instances of classes of the derived
type may be assigned to variables of the ancestor type. Another form of reuse is the client
relationship and simply entails creating an instance of an existing class, the supplier class,
and reusing its features (its functions and variables) in a new context to perform a new job.
However, a client class simply reusing the features of a supplier class will not, in general, be
type compatible with the supplier class—although it could be, if both classes inherited (possi-
bly through multiple inheritance) from a common ancestor class.
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Running the New Subclassed Program

After compilation of the new subclassed program, the executable file named ch2_hello_
oo_event is created. Execute the program as follows.

1. Type ch2_hello_oo_event and press Enter.

2. Notice the new appfactory which appears in the list at program start. Previously, only one

factory was listed, but now two appear. Remember: our main program file, ch2_hello.o,

has not been changed at all and was linked from the original object file in the original

directory, yet we have introduced new behavior indirectly into the unchanged main program

by supplying a new factory. This is very difficult or tedious to achieve with non-object-

oriented designs.
Which Appfactory should create your application?
1. Appfactory creating the simple X app
2. Appfactory creating the simple X app with event display

3. Type 2 and press Enter. This creates an instance of the new application class (described in

detail in the next section). Notice the messages which appear in the shell window. The first

few lines display information about the X display. Then follows a list of all X events received

by the program.
max depth of display 24
bytes per pixel: 4
Vis is TrueColor
lsb first
Event type PropertyNotify
Event type PropertyNotify
Event type PropertyNotify
Event type ReparentNotify
Event type PropertyNotify
Event type ConfigureNotify
Event type PropertyNotify
Event type PropertyNotify
Event type PropertyNotify
Event type PropertyNotify
Event type PropertyNotify
Event type MapNotify
Event type VisibilityNotify
Event type Expose
Event type PropertyNotify
Event type PropertyNotify
Event type FocusIn

4. Notice the new window which appears. See Figure 2-9. The background is black, not

undefined as previously, and a status line in the window displays the same event messages

which appear in the shell window.

5. Move the mouse cursor within the window. Notice the event messages that are generated, and

that the string “hello!” is printed underneath the mouse cursor.

6. Press some random keys (avoiding the key q) in the window. Notice the event messages that

are generated. Notice that keys such as Shift or Alt by themselves also generate events.

7. Type q to quit the program.
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This program provides a good illustration of event-based programming under X by showing

all of the many events that a typical X window can receive. If you are new to event-based pro-

gramming, you may be surprised at the large number of events which are generated, all

automatically and transparently by the X Window System.

Let us now see exactly what new classes we have added to the program, and how they respond

to X events in a better way than the original program, which silently ignored most events.

New Classes

Figure 2-10 shows the updated class diagram for the new classes we have created. Listings 2-13

through 2-17 contain the code for the new classes.
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Listing 2-13: ch2_appfactory_xevent.h
#ifndef __CH2_APPFACTORY_XEVENT_H
#define __CH2_APPFACTORY_XEVENT_H

#include "ch2_appfactory.h"

class ch2_appfactory_xevent : public ch2_appfactory {
ch2_app *create(void);

};

#endif

Listing 2-14: ch2_appfactory_xevent.cc
#include "ch2_appfactory_xevent.h"
#include "ch2_app_xevent.h"

ch2_app *ch2_appfactory_xevent::create(void) {
return new ch2_app_xevent;

}

Listing 2-15: ch2_app_xevent.h
#ifndef __CH2_APP_XEVENT_H
#define __CH2_APP_XEVENT_H

#include "ch2_app_x.h"

class ch2_app_xevent : public ch2_app_x {
protected:
char *screen;
XImage *ximg;
int depth, bytespp, scanline_pad;

const char *event_name(int type) const;
void create_window(void);
void ask_to_be_notified_of_interesting_events(void);
void event_loop(void);

public:
virtual ~ch2_app_xevent(void);

};

#endif

Listing 2-16: ch2_app_xevent.cc
#include "ch2_app_xevent.h"
#include <stdio.h>

const char *ch2_app_xevent::event_name(int e_type) const {
static char text[80];

switch (e_type) {

//- event types from X11.h

case KeyPress : sprintf(text, "KeyPress"); break;
case KeyRelease : sprintf(text, "KeyRelease"); break;
case ButtonPress : sprintf(text, "ButtonPress"); break;
case ButtonRelease : sprintf(text, "ButtonRelease"); break;
case MotionNotify : sprintf(text, "MotionNotify"); break;
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case EnterNotify : sprintf(text, "EnterNotify"); break;
case LeaveNotify : sprintf(text, "LeaveNotify"); break;
case FocusIn : sprintf(text, "FocusIn"); break;
case FocusOut : sprintf(text, "FocusOut"); break;
case KeymapNotify : sprintf(text, "KeymapNotify"); break;
case Expose : sprintf(text, "Expose"); break;
case GraphicsExpose : sprintf(text, "GraphicsExpose"); break;
case NoExpose : sprintf(text, "NoExpose"); break;
case VisibilityNotify : sprintf(text, "VisibilityNotify"); break;
case CreateNotify : sprintf(text, "CreateNotify"); break;
case DestroyNotify : sprintf(text, "DestroyNotify"); break;
case UnmapNotify : sprintf(text, "UnmapNotify"); break;
case MapNotify : sprintf(text, "MapNotify"); break;
case MapRequest : sprintf(text, "MapRequest"); break;
case ReparentNotify : sprintf(text, "ReparentNotify"); break;
case ConfigureNotify : sprintf(text, "ConfigureNotify"); break;
case ConfigureRequest : sprintf(text, "ConfigureRequest"); break;
case GravityNotify : sprintf(text, "GravityNotify"); break;
case ResizeRequest : sprintf(text, "ResizeRequest"); break;
case CirculateNotify : sprintf(text, "CirculateNotify"); break;
case CirculateRequest : sprintf(text, "CirculateRequest"); break;
case PropertyNotify : sprintf(text, "PropertyNotify"); break;
case SelectionClear : sprintf(text, "SelectionClear"); break;
case SelectionRequest : sprintf(text, "SelectionRequest"); break;
case SelectionNotify : sprintf(text, "SelectionNotify"); break;
case ColormapNotify : sprintf(text, "ColormapNotify"); break;
case ClientMessage : sprintf(text, "ClientMessage"); break;
case MappingNotify : sprintf(text, "MappingNotify"); break;
case LASTEvent : sprintf(text, "LASTEvent"); break;

}

return text;
}

ch2_app_xevent::~ch2_app_xevent(void) {
if(screen) {delete [] screen; }

}

void ch2_app_xevent::create_window(void) {
XPixmapFormatValues *pixmap_formats;
int i, count;
const int bits_per_byte = 8;

//- establish connection to X server

dpy = XopenDisplay(NULL);

//- find deepest pixmap format allowable

pixmap_formats = XListPixmapFormats(dpy, &count);
for(i=0, depth=0; i<count; i++) {
if(pixmap_formats[i].depth > depth) {
depth = pixmap_formats[i].depth;
bytespp = pixmap_formats[i].bits_per_pixel / bits_per_byte;
scanline_pad = pixmap_formats[i].scanline_pad;

}
}
Xfree(pixmap_formats);
printf("max depth of display %d", depth);

Chapter 2: Accessing the Screen 71



printf("bytes per pixel: %d", bytespp);

//- print out some information about the visual

vis = DefaultVisual(dpy,0);
switch(vis->c_class) {
case PseudoColor: printf("Vis is pseudocolor");break;
case StaticColor: printf("Vis is StaticColor");break;
case GrayScale: printf("Vis is GrayScale");break;
case StaticGray: printf("Vis is StaticGray");break;
case DirectColor: printf("Vis is DirectColor");break;
case TrueColor: printf("Vis is TrueColor");break;

}

//- create and map the window using max. possible depth

w = XCreateWindow(dpy, DefaultRootWindow(dpy), 100, 100,
screen_xsize, screen_ysize,
0,
depth, CopyFromParent, vis,
0, NULL);

XStoreName(dpy, w,"hello_oo_event");
XMapWindow(dpy, w);

//- create XImage and offscreen buffer

screen = new char[screen_xsize*screen_ysize*bytespp];

if (ImageByteOrder(dpy) == LSBFirst ) {
printf("lsb first");

}else {
printf("msb first");

}

ximg = XCreateImage(dpy, vis, depth,
Zpixmap,
0,
screen,
screen_xsize, screen_ysize,
scanline_pad,
0);

XSetForeground(dpy, DefaultGC(dpy, 0), ~0);
XSetBackground(dpy, DefaultGC(dpy, 0), 0);

}

void ch2_app_xevent::ask_to_be_notified_of_interesting_events(void) {
XSelectInput(dpy, w, 0x00FFFFFF ^ PointerMotionHintMask);

}

void ch2_app_xevent::event_loop(void) {
XEvent event;
char ch;
KeySym keysym;
XComposeStatus xcompstat;

int mouse_x, mouse_y;
while(1) {
XNextEvent(dpy, &event);
char event_text[80];
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sprintf(event_text, "Event type %s ", event_name(event.type));
printf("%s", event_text);

switch(event.type) {
case KeyPress: {

XLookupString(&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {

exit(0);
}

}
}
break;

case MotionNotify: {
printf("x %d y %d", event.xmotion.x,event.xmotion.y);
mouse_x = event.xmotion.x;
mouse_y = event.xmotion.y;

XEvent e;
e.type = Expose;
e.xexpose.send_event = TRUE;
e.xexpose.display = dpy;
e.xexpose.window = w;
e.xexpose.x = e.xexpose.y = e.xexpose.width = e.xexpose.height =

e.xexpose.count = 0;

XSendEvent(dpy, w, TRUE, ExposureMask, &e);
}
break;

case Expose: {
if(event.xexpose.count==0) {
XPutImage(dpy, w, DefaultGC(dpy,0), ximg,

0,0,0,0, /* source x,y; destination x,y */
screen_xsize, screen_ysize);

XDrawString(dpy, w, DefaultGC(dpy, 0), mouse_x, mouse_y, "hello!", 6);
}

}
break;

}

XDrawImageString(dpy, w, DefaultGC(dpy, 0), 50, 50, event_text,
strlen(event_text));

}
}

Listing 2-17: The changed ch2_factory_manager.cc
#include "ch2_factorymanager.h"

#include "ch2_appfactory_x.h"
#include "ch2_appfactory_xevent.h"

ch2_appfactory *ch2_factorymanager::appfactory = 0;

void ch2_factorymanager::choose_factories(void) {
int i;

printf("Which Appfactory should create your application?");
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printf("1. Appfactory creating the simple X app");
printf("2. Appfactory creating the simple X app with event display");

scanf("%d", &i);

switch(i) {
case 1: {

appfactory = new ch2_appfactory_x;
};
break;

case 2: {
appfactory = new ch2_appfactory_xevent;

};
break;

}
}

Referring to the class diagram, it should be clear what we have done: we have added a new class

ch2_app_xevent, derived from class ch2_app_x. We have also added a new application

factory class, ch2_appfactory_xevent, which descends directly from class

ch2_appfactory and is responsible for creating objects of type ch2_app_xevent. We

have made a minor change to the factory manager to allow selection of the new factory. This is the

only change we made to the original source code and is indeed minimal.

The new factory class requires little explanation, as its function is exactly the same as the

existing factory class, only returning a different kind of application object. The new application

class is where the improved event handling takes place. Let’s take a closer look at the functions

defined in the ch2_app_xevent class.

X Server Depth and Visual Class

The first routine which is called is ch2_app_xevent::create_window. This routine

begins as usual by connecting to the X server with XOpenDisplay. Then, we call

XListPixmapFormats to obtain a list of image formats supported by the X server. The image

formats are returned as a list of XPixmapFormatValues structures, which is defined as

follows.
typedef struct {

int depth;
int bits_per_pixel;
int scanline_pad;

} XpixmapFormatValues;

The reason we need to query the server in this way is that we are going to create a black back-

ground image to fill the window. In order to create any sort of image, we need to know some

details about how the image is to be stored so we know how much memory to allocate. In particu-

lar, we need to know how many bits to allocate for each pixel in the image. A pixel is the smallest

physically addressable element of an image; the section “Picture Elements—Pixels” covers this in

more detail.

The number of bits per pixel, returned in the bits_per_pixelmember of the structure, is

also known as the color depth or simply depth of the image. If we consider the 2D area of an image

to be its width and height, we can imagine the color as being an additional dimension, thus leading
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to the concept of color “depth.” The greater the depth, the more colors can be displayed and the

higher the potential image quality.

The depth of an image sent to an X server must be supported by the X server; otherwise, the

results will probably be unrecognizable. This is why we ask the server, through

XListPixmapFormats, which image depths are supported.

As described in the Appendix, you control the depth of the X server by specifying extra

parameters to the startx command. For instance, startx -- -bpp 32 starts the X server with 32

bits per pixel (bpp), while startx -- -bpp 8 starts with 8 bits per pixel. Your video hardware and

your X server configuration determine the maximum depth supported. You can use the

xdpyinfo command to find out what depth(s) your X server supports.

Because our application program can’t know beforehand the depth of the X server, it has to be

flexible enough to query the X server for its depth and configure itself accordingly.

ch2_app_xevent chooses the maximum depth supported by the X server, and then uses the

depth information to calculate the correct number of bytes to allocate for an empty (black) image.

For an X server with 8 bits per pixel, we have to allocate one byte for every pixel in the display. For

an X server with 32 bits per pixel, we have to allocate four bytes (32 bits divided by 8 bits per byte)

for every pixel in the display.

Alternatively, we could have chosen to only support one depth, for instance 8 bits per pixel,

aborting the program if the X server does not support exactly this depth. Some programs do this,

but it is rather frustrating to have to shut down the X server and start it in another depth just to run a

program. It is a bit more difficult to make a program which adaptively supports multiple depths,

but this makes the user’s life easier.

After querying the supported depths, the ch2_app_xevent program also prints out some

information about the types of visuals supported by the X server. (Remember, a “visual” describes

a color structure supported by an X server.) The “type” of visual is called its class. The following

six visual classes are supported by X, as defined in X.h.
/* Display classes used in opening the connection
* Note that the statically allocated ones are even numbered and the
* dynamically changeable ones are odd numbered */

#define StaticGray 0
#define GrayScale 1
#define StaticColor 2
#define PseudoColor 3
#define TrueColor 4
#define DirectColor 5

We mentioned earlier, in the discussion of XCreateWindow, that the depth and visual class

work closely together to specify the number and type of colors available to the window. We can

now understand this more precisely. With a depth of N bits per pixel, the visual class determines

how these N bits for each pixel are used to display a color on the screen. The following list

describes the meaning of each visual.

� StaticGray: The N bits for each pixel are interpreted as an index into a static grayscale

colormap with 2^N entries.

� GrayScale: The N bits for each pixel are interpreted as an index into a dynamically change-

able grayscale colormap with 2^N entries.
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� StaticColor: The N bits for each pixel are interpreted as an index into a static colormap with

2^N entries.

� PseudoColor: The N bits for each pixel are interpreted as an index into a dynamically change-

able colormap with 2^N entries.

� TrueColor: The N bits for each pixel are divided into R bits for red, G bits for green, and B bits

for blue, where R+G+B = N. The R, G, and B bits map statically to 2^R, 2^G, and 2^B red,

green, and blue intensities, respectively.

� DirectColor: The N bits for each pixel are divided into R bits for red, G bits for green, and B

bits for blue, where R+G+B = N. The R, G, and B bits are interpreted as indices into a dynami-

cally changeable red, green, and blue colormap, respectively.

Note that most colors can be defined as a combination of intensities of red, green, and blue; those

which cannot (such as some pastel colors) form only a small part of the color spectrum and are

ignored in the RGB color model.

A colormap, also sometimes called a color palette, is simply a table containing color values.

When a colormap is used, we refer to a color by its index within the colormap. In other words,

instead of saying, “the color with red intensity 128, green intensity 64, and blue intensity 96,” we

might say, “the color at location 25 in the colormap.” Colormapped color models are also called

indexed or paletted color. We usually use a colormap when the video hardware physically cannot

display more than a certain number of colors at once. The X color model allows for both static and

dynamic colormaps. With a static colormap, the color of each entry is predefined; with a dynamic

colormap, each entry may be individually set by the application program.

The most common visuals you will probably encounter are 8-bit PseudoColor (256 simulta-

neous arbitrary colors), 16-bit TrueColor (65,536 simultaneous colors), and 24-bit TrueColor

(16,777,216 simultaneous colors, though a typical display does not have that many pixels).

After retrieving the visual and maximum depth from the server, the ch2_app_xevent pro-

gram creates and maps a window with this visual and depth. The next step is to create an empty

background image compatible with the visual and depth.

Graphics and Double Buffering with XImages

Our first program, hello.cc, did not respond to requests that the window redraw itself (the

expose event). Indeed, the program did not draw anything at all.

To correct this, ch2_app_xevent creates an empty image to fill the window, and draws

this when requested. This image is of type XImage.

An XImage is an off-screen graphics image which can be copied to the screen with the func-

tion XPutImage. An XImage stores the image in a region of memory which is allocated by and

accessible to the application program. Therefore, modifying the image data for an XImage simply

requires setting the appropriate bytes in the memory region used by the XImage, then calling

XPutImage to display the changes on-screen.

The idea of making image changes off-screen then copying them to the screen is called double

buffering; the copying of the off-screen image to the screen is sometimes called blitting (from the

phrase “bit block transfer,” yielding the infinitive which only a computer scientist could invent,

“to blit”). The alternative to double buffering is a drawing scheme which directly and immediately
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updates the display after every drawing operation. The reason we use double buffering is to reduce

flickering. We perform all drawing operations invisibly off-screen; then, when the entire image

has been prepared, we copy the finished image as quickly as possible to the screen with a single

function call. Updating the screen after every drawing operation would allow the user to see the

partial image as it is still being drawn, which causes flickering and is visually very distracting.

NOTE A pixmap is another X structure which stores an off-screen image, similar to an
XImage. However, the image data for a pixmap cannot be accessed directly, but must instead
be manipulated through Xlib functions (XDrawLine, XDrawPoint, XDrawRectangle,
XDrawArc, and so forth). This is too slow for interactive displays, where every single pixel
must be updated for each new image. Also, it is possible to use Xlib functions to draw directly
to a visible window, in which case the window is updated immediately. This, too, is not ideal
for interactive displays due to the flickering effect mentioned above.

For now, we just create an image, but don’t fill it with any data. ch2_app_xevent first allo-

cates the off-screen image data for the XImage as follows:
screen = new char[screen_xsize*screen_ysize*bytespp];

Notice that the total number of bytes to be allocated must be multiplied by the number of bytes per

pixel, which we determined earlier (in the form of bits per pixel, which we divide by 8 to get bytes

per pixel) by querying the X server.

With the off-screen image data (also called the off-screen buffer or the frame buffer) allocated,

we can then create the XImage itself:
ximg = XCreateImage(dpy, vis, depth,

Zpixmap,
0,
screen,
screen_xsize, screen_ysize,
scanline_pad,
0);

The first three parameters to XCreateImage specify the display, visual, and depth. The next

parameter will for our purposes always be the constant ZPixmap. This parameter specifies the

ordering of bits for each pixel in the image. ZPixmap specifies that each byte in the image data

corresponds to at most one pixel. (The other option would be to allow the individual bits of each

byte to correspond to different pixels.) The fifth parameter specifies the number of pixels to ignore

at the beginning of each line; we set this to zero. The sixth parameter is a pointer to the off-screen

buffer which we just allocated. The seventh and eighth parameters specify the dimensions in pix-

els of the image. Thescanline_pad parameter indicates that one horizontal line in the image is

a multiple of this many bits long; we use the same value which we received from the X server ear-

lier with the XListPixmapFormats function. The last parameter specifies the number of

bytes per line in the image; if the image data is continuous in memory (which for the programs in

this book will always be the case), then we can set this parameter to zero and let the function auto-

matically compute this value itself.

The last thing that ch2_app_event::create_window does is set the foreground and

background color for future drawing operations. These are used by the text output functions.
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Requesting Notification for All Events

The next function which is called in the ch2_app_event class is the function

ask_to_be_notified_of_interesting_events. We use XSelectInput with a

mask consisting of all 1s in the lower 24 bits. We use 24 bits because according to the X header

files, all event masks are currently defined in the lower 24 bits. We explicitly exclude one event

type, PointerMotionHintMask, because this interferes with continuous tracking of

PointerMotion events.

Since the application has specified 23 of the 24 possible event masks, all of these events will

be reported to the window.

Visual Event Display

The next function which is called in the ch2_app_event class is the function event_loop.

The event loop begins by taking the next event out of the queue withXNextEvent. We then have

a case statement which handles the event based upon its type.

If the event was a keypress event, we check if it was q and if so, exit.

If the event is a motion notify event, we know that the mouse pointer just moved. We store the

current location for later use, and then generate an expose event to force the window to redraw

itself. We do this by declaring a variable of type XEvent, initializing its fields as required for an

expose event, and sending this message to the window with XSendEvent.

If the event is an expose event, we check to see if this is the last of a series of expose events, by

seeing if the number parameter is zero. An expose event, which is a request for a window to

redraw itself, need not apply to an entire window; it might only apply to part of a window. Appli-

cations that want to optimize redrawing will only redraw that part of the window which is

specified in the expose event. For our application, we won’t optimize at this level, instead redraw-

ing the entire image. In general, 3D programs must regenerate the entire image every time the

screen is updated anyway. In any case, once we decide that this expose event is one which needs

acting upon—one with zero as the number parameter—we do two things: we copy our empty

XImage to the screen, ensuring a blank background, and then we draw the string “hello!” under-

neath the mouse cursor, the position of which we saved during the last motion notify event.

The XPutImage function copies the XImage to the window; the XDrawString function

draws a text string to the window. Both of these functions have quite simple parameter lists requir-

ing no further explanation. The only parameter of note to both of these functions is the third

parameter, which specifies the graphics context, abbreviated GC. A graphics context is a context

for doing graphics operations; it stores “global parameters” which then apply to all graphics oper-

ations occurring within this context. These parameters include such things as line width,

foreground color, background color, fill patterns, fonts, and so on. You can think of a GC as a

saveable set of parameters for graphics operations. Since we aren’t using any built-in drawing

functions, instead manipulating the XImage data directly, we don’t need to allocate or manipulate

our own GC. We just use the default GC of the display.

The last thing that the event loop of class ch2_app_event does is draw a string in the win-

dow displaying the type of the event just received. The helper function event_name converts

the event type code to a string.
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Summary

This program, subclassed from the previous one, displayed all events received by the window in

real time. Its techniques introduced us to XImages by creating an empty XImage and copying it

into the window on an expose event. Creating an XImage requires us to ask the X server about the

supported depths, so that we know how many bits per pixel to allocate for the image data. The

visual class of the X server determines how the bits for each pixel are interpreted to form a color.

The data of an XImage may be changed by directly manipulating the bytes in an off-screen buffer.

The next thing we would like to do is display graphics in the XImage.

Displaying Graphics in XImages
As we saw earlier, an XImage stores an off-screen graphical image in a region of memory accessi-

ble to the application program. The last program didn’t put any data into the off-screen buffer,

which is why the background was empty. Let’s try putting some data into the buffer and see what

happens.

Random Dots

Our first experiment will be to put completely random data into the buffer. Listings 2-18 through

2-22 illustrate the program changes necessary. The source code for this program is in directory

$L3D/source/app/hello_oo_image, and the class diagram appears in Figure 2-11.

Listing 2-18: ch2_appfactory_ximage.h
#ifndef __CH2_APPFACTORY_XIMAGE_H
#define __CH2_APPFACTORY_XIMAGE_H

#include "ch2_appfactory.h"

class ch2_appfactory_ximage : public ch2_appfactory {
ch2_app *create(void);

};

#endif

Listing 2-19: ch2_appfactory_ximage.cc
#include "ch2_appfactory_ximage.h"
#include "ch2_app_ximage.h"

ch2_app *ch2_appfactory_ximage::create(void) {
return new ch2_app_ximage;

}

Listing 2-20: ch2_app_ximage.h
#ifndef __CH2_APP_XIMAGE_H
#define __CH2_APP_XIMAGE_H

#include "ch2_app_xevent.h"

class ch2_app_ximage : public ch2_app_xevent {
protected:
void event_loop(void);
void ask_to_be_notified_of_interesting_events(void);
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public:
virtual ~ch2_app_ximage(void) {};

};

#endif

Listing 2-21: ch2_app_ximage.cc
#include "ch2_app_ximage.h"
#include <stdio.h>
#include <stdlib.h>

void ch2_app_ximage::ask_to_be_notified_of_interesting_events(void) {
XSelectInput(dpy, w, KeyPressMask);

}

void ch2_app_ximage::event_loop(void) {
XEvent event;
char ch;
KeySym keysym;
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XComposeStatus xcompstat;

int mouse_x, mouse_y;
while(1) {
if (XCheckWindowEvent(dpy, w, KeyPressMask, &event)) {
XLookupString(&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {

exit(0);
}

}
}

int i,j,k;
char *c;
c = screen;
for(i=0; i<screen_xsize; i++) {
for(j=0; j<screen_ysize; j++) {
for(k=0; k<bytespp; k++) {
*c++ = rand() % 255;

}
}

}

XPutImage(dpy, w, DefaultGC(dpy,0), ximg,
0,0,0,0, /* source x,y; destination x,y */
screen_xsize, screen_ysize);

}
}

Listing 2-22: The changed ch2_factorymanager.cc
#include "ch2_factorymanager.h"

#include "ch2_appfactory_x.h"
#include "ch2_appfactory_xevent.h"
#include "ch2_appfactory_ximage.h"

ch2_appfactory *ch2_factorymanager::appfactory = 0;

void ch2_factorymanager::choose_factories(void) {
int i;

printf("Which Appfactory should create your application?");
printf("1. Appfactory creating the simple X app");
printf("2. Appfactory creating the simple X app with event display");
printf("3. Appfactory creating the random dots app");

scanf("%d", &i);

switch(i) {
case 1: {

appfactory = new ch2_appfactory_x;
};
break;

case 2: {
appfactory = new ch2_appfactory_xevent;

};
break;
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case 3: {
appfactory = new ch2_appfactory_ximage;

};
break;

}
}

The new application factory and the updated factory manager should look quite familiar to you

now. As usual, the new application class, in this casech2_app_ximage, is where the action is.

The new class ch2_app_ximage descends from the existing ch2_app_ximage class,

overriding the event notification and event loop. The window creation and XImage initialization

remain the same. (It is for this reason, incidentally, that the title bar of the window for this program

still displays the name of the previous program; the window creation, which includes setting the

title text, is inherited from the previous program’s class.)

In the event notification routine ask_to_be_notified_of_interesting_
events, we again revert to only monitoring keypress events. Monitoring events we are not inter-

ested in creates unnecessary communication between the server and the application, resulting in

poorer performance.

You might think that we still need to monitor expose events, but in this particular case we

do not, because in the main loop, after we look for an event to process (with

XCheckWindowEvent), we update and copy the XImage to the screen. This takes place regard-

less of whether any event occurred or not. Therefore, our application is pushing images as fast as it

can to the display, even in the absence of any events, and does not need to worry about expose

events: another image will be generated within a fraction of a second anyway.

The following code from class ch2_app_ximage updates and copies the image to the

screen:
int I,j,k;
char *c;
c = screen;
for(i=0; i<screen_xsize; i++) {
for(j=0; j<screen_ysize; j++) {
for(k=0; k<bytespp; k++) {
*c++ = rand() % 255;

}
}

}

XPutImage(dpy, w, DefaultGC(dpy,0), ximg,
0,0,0,0, /* source x,y; destination x,y */
screen_xsize, screen_ysize);

First we initialize the pointer c to point to the beginning of the off-screen image data which we

allocated earlier and connected with the XImage. We then have three nested for loops which iter-

ate through all bytes in the image. The for loops iterate along the width, height, and depth of the

image, respectively. In the innermost loop, we set the current byte of the image to a random value

and increase the pointer to point to the next byte in the image.

Compile and run the program. Type 3 and press Enter to select the new application factory for

this program. Notice that a window appears and is filled with a randomly changing pattern of dots.

Press q to quit.
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A Word on Animation

Although simple, this program illustrates a fundamental animation technique: draw off-screen,

copy to screen, repeat. Our “drawing” in this case simply consists of filling the buffer with random

dots, but the random pattern of dots changes every frame. (A frame is simply a single image in an

animated sequence of images.) Since the image is changed and displayed several times a second,

we see a moving pattern reminiscent of television static.

The exact same technique is used for 2D or 3D animation: we draw our complete 2D or 3D

scene in an off-screen buffer, then copy this image to the screen to make it visible. While the image

is visible, we draw the next frame, and display it as soon as it is ready. We repeat this process for

the duration of the program.

Summary

Now we’re starting to see some practical results. We have an application which creates an X win-

dow, queries the X server for allowable image depths, creates an off-screen image of the correct

depth, directly manipulates the bytes in the image, copies this image to the screen, animates the

image in real time, and responds to user events. This is a lot indeed. We’ve overcome the first hur-

dle and have created a fully functional X program under Linux.

However, so far, we have either created no image at all or created a completely random image.

Both of these tasks are similarly easy because they do not require us to understand exactly how the

order of bytes in the image memory corresponds to the physical pixel order on the screen. We sim-

ply fill the entire buffer, but have no idea which bytes correspond to which pixels on-screen. The

next section discusses controlling individual pixels in the image. We also begin with the develop-

ment of generally reusable graphics classes which will be reused throughout the book.
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Picture Elements—Pixels
Up to this point, we have fairly casually referred to “pixels” as they relate to 2D images. We have

used the concept of “pixel” somewhat loosely in reference to “bytes per pixel” and the “pixels”

making up an XImage. It’s now time to take a closer look at exactly what pixels are, since we must

control them exactly in image memory to create graphics.

Physically, images on a 2D raster display consist of a 2D, evenly spaced grid of individually

controllable rectangular picture elements, called pixels. This grid is also called a raster, hence the

term “raster graphics.” A pixel is the smallest individually addressable visible element of an

image on a raster display. In particular, “individually addressable” means “addressable by the

video hardware”—in other words, a pixel is the smallest element of an image which can be con-

trolled by the hardware.

Each pixel is the same size as other pixels, and may be assigned a color (in the case of color

displays), an intensity level (in the case of gray-level displays), or an on/off status (in the case of

monochrome displays). We may say that pixels are “set” or “on” if they have been assigned a visi-

ble color or intensity value. We say that pixels are “unset” or “off” if they have been assigned a

color or intensity which is the same as the background color (e.g., black). Figure 2-13 illustrates a

sample line drawing and its approximation on a raster display. Each shaded box represents a set

pixel. Pixels can only form a discrete approximation to an image, but the finer the grid of pixels,

the more accurate the image.

2D Pixel Coordinates

In general, a coordinate system provides a unique way of identifying points, or locations in space.

In particular, a 2D pixel coordinate system allows specifying physical pixel locations on the

screen. (In this case, by “screen” we mean the logical display device, which for our current pur-

poses is a window under X.) The 2D pixel coordinate system, by definition, exactly covers the

number of pixels which may be displayed on the screen—no more and no less.

NOTE The term coordinate space, or simply space, describes the same concept as a coor-
dinate system. We may thus say “a 2D pixel coordinate system,” “2D pixel coordinates,” “a
2D pixel coordinate space,” or “2D pixel space” interchangeably.

84 Chapter 2: Accessing the Screen

Figure 2-13: Pixels form an approximation to an
image.



Since computer screens and windows are flat and rectangular, being oriented in a normal upright

position (as opposed to, for instance, standing on a corner), it makes sense to refer to pixels in rela-

tion to horizontal (x) and vertical (y) axes. A pixel may then be uniquely identified by its position

along the x and y axes, which is written in the form of a coordinate pair (x,y). In order for a coordi-

nate pair (x,y) to have any meaning, we must define a coordinate system which specifies how

values of x and values of y should be interpreted. There are two main coordinate systems we can

use for specifying pixels: 2D Cartesian coordinates and “reversed-y” coordinates.

2D Cartesian Coordinate System

The 2D Cartesian coordinate system, which you may recall from high school geometry, is illus-

trated in Figure 2-14. In this coordinate system, two perpendicular (or orthogonal) coordinate

axes, the x axis and the y axis, specify horizontal and vertical positions. Values of x increase as they

move towards the right, and values of y increase as they move upwards. Given a coordinate pair of

the form (x,y), the corresponding pixel is found by starting at the origin, whose coordinates are

(0,0), and moving x pixels horizontally and y pixels vertically. This coordinate system is a “natu-

ral” system, in that it corresponds to the “natural” way we usually measure sizes or distances. For

instance, rulers (in Western cultures) are marked with digits from left to right, with the larger num-

bers representing larger horizontal distances appearing towards the right. This corresponds to the

left-to-right ordering of values along the x axis in 2D Cartesian coordinates. Furthermore, when

we speak of “height” in everyday usage, we expect that an item 10 cm “higher” than another item

extends 10 cm upwards above the shorter item. This corresponds to the bottom-to-top ordering of

values along the y axis in 2D Cartesian coordinates. Display systems which implement 2D Carte-

sian coordinates usually place point (0,0) at the lower left of the physical screen. All pixels in the

display thus have coordinates in the shaded portion of the diagram.
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Reversed-y or 2D Screen Coordinate System

Figure 2-15 illustrates a similar coordinate system, but with the y axis “reversed.” That is, values

of y increase as they move downwards, in contrast to the standard 2D Cartesian coordinate system.

Values of x still increase as they move towards the right, just as in the normal Cartesian system.

Graphics systems which implement this coordinate system usually place the point (0,0) at the

upper left of the screen. All pixels in the display thus have coordinates in the shaded portion of the

figure. This system is somewhat unnatural in the vertical direction, because larger values of y,

which correspond to larger height values, grow downward, instead of upward as in standard 2D

Cartesian coordinates.

The reversed-y coordinate system is the more commonly used system to specify pixel coordi-

nates, and is the one we use for this book. The reason for this is mainly due to the fact that the 2D

grid of pixels is often physically a linear sequence of bytes in memory representing the rows of

pixels from the top down (as discussed in the next section). The “top down” ordering implies the

reversal of y orientation. We will assume from now on when we refer to physical screen coordi-

nates that we are using this reversed-y coordinate system, and we will refer to this as the 2D pixel

coordinate system.

Byte-to-Pixel Correspondence

As far as we are concerned, we manipulate bytes in an off-screen buffer to control pixels; this

off-screen buffer is attached to an XImage and may be displayed by calling XPutImage. A rele-

vant question then is: “how do the bytes in an XImage’s image data map to the actual pixels

forming the image?”

NOTE The XFree86 DGA extension, which we cover briefly later in this chapter, allows direct
access to the video memory as the video hardware sees it. This physical video memory is very
often not linearly arranged. This is why we specifically phrased the question above in relation
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to XImage image data; in general, there is no single definitive way for mapping a set of bytes
onto a set of pixels.

With an XImage in ZPixmap format, the answer is relatively simple. The 2D grid of pixels in the

image is treated as a linear sequence of pixels, starting at the upper left-hand corner of the image,

traversing all pixels from left to right in the first line, then continuing with the leftmost pixel of the

second line, finally ending up at the last pixel in the lower right-hand corner of the image. Given

this pixel ordering, the bytes in the image data are then mapped to the pixels in the image in this

same order.

There are two complications we must consider. First, multiple bytes may map to just one

pixel, and second, we must somehow interpret the bits that make up one pixel.

The first problem is that multiple bytes may map to one pixel. With 8-bit depths, we conve-

niently have one byte (i.e., 8 bits) per pixel, a situation which is easy to understand and implement.

The problem arises with greater display depths. As with scuba diving, increased depth means

more problems but also increased beauty. The greater visual quality possible with greater color

depths implies that the color information for one pixel cannot be stored in one single byte, and that

pixel plotting routines must deal with a variable number of bits (and thus bytes) per pixel. With a

32-bit color depth, for instance, we need 4 bytes per pixel. Figures 2-16 and 2-17 illustrate the cor-

respondence between bytes in memory and pixels for display depths of 8 and 32 bits, respectively.
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The following formula maps a pixel location to offset image memory to the first byte associ-

ated with the pixel. Given a pixel located in row x and column y of the image:

The width of the image in pixels is represented by width; the number of bytes per pixel, by

bytes_per_pixel (which must be a positive integer value). This formula assumes that the leftmost

row and the topmost column are labeled zero, that the x axis increases to the right, and that the y

axis increases downward. These are exactly the conditions describing the 2D pixel coordinate sys-

tem discussed previously. The linear arrangement of pixels, the fact that the first pixel corresponds

to the upper-left corner of the image, and the use of a reversed-y pixel coordinate system yield the

intuitive formula presented above. (With a Cartesian pixel coordinate system, we would need to

reverse the y orientation by subtracting the y value from the image height.)

So now we know which bytes correspond to which pixels. The next question is, what data do

we put into these bytes to give a pixel a certain color?

Colors and XImages

The second problem mentioned above is the interpretation of the bits making up a pixel. With the

above formula and the bytes_per_pixel, we can figure out exactly which bytes in the image buffer

correspond to a particular pixel. But what values do we assign to this byte or these bytes to make a

color appear?

We actually already addressed this question earlier during our discussion of X visual classes.

The visual class determines the interpretation of the bits making up each pixel.

Indexed, Colormapped, or Paletted Color

If the visual is StaticGray, GrayScale, StaticColor, or PseudoColor, then the bits of the pixel are

interpreted as being an index into a colormap. As mentioned earlier, this is called indexed,

colormapped, or paletted color.

There may be multiple bytes per pixel. If so, then the pixel value is obtained by interpreting all

bits of all bytes in least-significant-byte first (LSBFirst) order. Expressed as a formula, this means

that for all bytes of a pixel, the LSBFirst value is computed as follows:

With only one byte per pixel, we ignore the second_byte, third_byte, and fourth_byte terms; with

two bytes per pixel, we ignore the third_byte and fourth_byte; with three bytes per pixel, we ignore

the fourth_byte; with four bytes per pixel, we use all four terms.

NOTE To be completely portable, we would theoretically have to question this byte order
assumption. The ImageByteOrder macro provided by Xlib indicates whether the bits are to
be interpreted LSBFirst (also called little endian) or MSBFirst (also called big endian).

88 Chapter 2: Accessing the Screen

Equation 2-1

Equation 2-2



However, it’s a pretty safe bet that on x86-based Linux machines running XFree86, the byte
order will be little endian.

The final value of each pixel is then used as an index into a colormap. The colormap is simply a

table containing a specific color for each index. We need to create a colormap and fill it with colors

before we can use it. Under X, the general process of creating a colormap is as follows:

1. Create a colormap with the XCreateColormap function.

2. Allocate empty color cells for the colormap with the XAllocColorCells function.

3. For each empty entry within the colormap, declare a temporary variable of type XColor, fill

the XColor variable with the appropriate RGB values, and call XAllocColor and

XStoreColor to enter this color into the colormap.

NOTE The red, green, and blue values in the XColor structure are always specified in the
range 0 (lowest intensity) to 65535 (highest intensity); the X server then scales these RGB val-
ues to the actual red, green, and blue values needed by the video hardware.
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4. After initializing all entries within the colormap, assign it to your window with

XSetWindowColormap.

The class l3d_screen_x11, presented in the section titled “Developing Reusable Graphics

Classes,” illustrates this process in source code.

TrueColor and DirectColor

For TrueColor and DirectColor visuals, the bits for each pixel are divided into red, green, and blue

components. We have to determine which bits are responsible for red, green, and blue. Unfortu-

nately, this is a rather confusing issue, because of logical and physical bit orders. Let’s see how this

works.

X provides the function XMatchVisualInfo function to find and return extra information

about a particular visual. The information is returned in an XVisualInfo structure. For

TrueColor and DirectColor visuals, the XVisualInfo structure contains three members of

interest: red_mask, green_mask, and blue_mask, each of type unsigned long. For the

matching visual structure, these fields contain the bit masks necessary to access the red part of the

pixel, the green part of the pixel, and the blue part of the pixel.

The confusing part is that these masks assume a most-significant-byte first order (MSBFirst),

while the XImage (on Linux x86 systems) stores the bytes in least-significant-byte first order

(LSBFirst). Thus, to correctly interpret the bit masks, we have to swap the byte order.

An example will make this clear. Let’s say your X server is running at 16 bits per pixel. After

querying the visual withXMatchVisualInfo, we would obtain values such as the following:
red_mask = 63488
green_mask = 2016
blue_mask = 31

Let’s see what these numbers are in binary. To do this we can use the command line calculator bc
as follows:

1. Type bc and press Enter.

2. Notice the welcome message. Type obase=2 and press Enter to set the output number base to

be base 2 (binary).

3. Type 63488, the decimal value of the red mask, and press Enter.

4. Notice the output 1111100000000000.

5. Type 2016, the decimal value of the green mask, and press Enter.

6. Notice the output 11111100000.

7. Type 31, the decimal value of the blue mask, and press Enter.

8. Notice the output 11111.

9. Press Ctrl+D to quit.

Notice that these bit masks define different, contiguous, non-overlapping positions of bits within

the 16 bits of color depth we have available. If we denote the bits in the red mask by “r,” the green

mask by “g,” and the blue mask by “b,” we would obtain the following result:
r r r r r g g g g g g b b b b b
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We have 5 bits of red resolution, 6 bits of green, and 5 bits of blue. This is often called “565 RGB.”

We interpret the red bits, green bits, and blue bits separately. Within the red bits, for instance, we

have 5 bits and can thus specify 2^5 = 32 shades of red, where 0 is the least intense and 31 the

most. For the green bits, we can specify 2^6 = 64 shades of green, with 0 being the least intense

and 63 the most intense. Finally, for the blue bits, we again have 2^5 = 32 shades of blue, from 0 to

31. This gives a total of 32 * 64 * 32 = 65536 possible combinations of red, green, and blue—in

other words, 65,536 possible colors.

Each section of bits is interpreted in normal binary fashion, with the leftmost bits being more

significant than the rightmost bits. For instance, to specify a color with red=10, green=20, and

blue=30, we would first convert these values to binary:
red = 10 = 1010 in binary
green = 20 = 10100 in binary
blue = 30 = 11110 in binary

We then fill the red bits into the 5 bits for red, the green bits in the 6 bits for green, and blue bits in

the 5 bits for blue, padding each section on the left with 0s if needed:
r r r r r g g g g g g b b b b b
0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0

So far, so good. The problem is that these 16 bits of color resolution are too much to fit in one byte,

so they are divided into two bytes as follows:
Byte 1: r r r r r g g g
Byte 2: g g g b b b b b

Notice that the green values have been split across a byte boundary. For our example of red=10,

green=20, and blue=30, the bytes would then look as follows:
Byte 1: r r r r r g g g

0 1 0 1 0 0 1 0

Byte 2: g g g b b b b b
1 0 0 1 1 1 1 0

The confusing part (if you are not already confused!) is that byte 2, the least significant byte, is

stored first in memory, followed by byte 1. So, in memory, the values look like this:
Byte 1: g g g b b b b b

1 0 0 1 1 1 1 0

Byte 2: r r r r r g g g
0 1 0 1 0 0 1 0

So, you see that the byte order in memory must be reversed in order to use the bit mask returned by

XMatchVisualInfo. Whenever we write pixels to memory, we must take this byte-swapping

into account. What makes the situation even more enjoyable is that each particular color depth has

its own red mask, green mask, and blue mask, since the total number of color bits is different in

each case.

Fortunately, we can encapsulate this rather confusing calculation once and for all within a

class, so that we can then just say “draw this pixel, with this color” and be assured that the right bits

get set.
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Developing Reusable Graphics Classes:
l3d Library

As we just saw in the preceding discussion of colors and XImages, X programming can be a bit

tedious at times. Just plotting a single pixel requires us to know the image depth, the RGB masks,

and whether the visual is based on an indexed or a TrueColor model. And plotting a pixel in an

XImage is only the beginning. We want to develop much more advanced graphics routines—

incorporating shading, texture mapping, hardware acceleration, and other interesting effects—all

of which fundamentally rely upon plotting pixels in particular colors at particular locations on a

screen. It is absolutely vital that we create a solid, understandable, and extendable foundation so

that more advanced graphics routines don’t need to worry about the infinitude of irrelevant and

distracting implementation details such as window creation, event monitoring, byte swapping,

RGB masks, or color depths. Without a solid foundation, we’ll never be able to program advanced

graphics routines; they would quickly become far too complicated if they had to take care of every

single implementation detail themselves.

Starting now, we will therefore be developing some library classes which encapsulate all of

the graphics concepts we have discussed so far and which will be useful throughout the rest of this

book. In fact, these classes are useful beyond the scope of this book, since good object-oriented

designs yield classes which can be used in a variety of situations.

NOTE Recall at the beginning of this chapter we said that we would first look at Xlib pro-
gramming, then abstract the Xlib concepts into a more general framework. This more general
framework is the l3d library presented and used in the following sections.

If you’ve cast even a fleeting glance at the sample code, you will have noticed that all of the

classes so far have begun with the prefix ch2_. This indicates that these classes, while very possi-

bly being reused within the current chapter, are generally illustrative in nature and are not

completely fit as is for general-purpose use. The library classes, in contrast to the chapter-specific

classes, all begin with the prefix l3d_, which stands for “library 3d.”

The developed l3d classes strictly separate the abstraction (plotting a pixel) from the imple-

mentation (setting particular bits in an XImage using RGB masks obtained from an

XVisualInfo structure). As you have probably guessed, this is accomplished through use of an
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abstract class specifying the abstraction, and a concrete class for the X implementation. A differ-

ent derived, concrete class can implement the same abstraction using hardware acceleration

(illustrated in Chapter 3) or a different operating system (discussed in the Appendix).

Sample Program Using l3d
Before looking at the l3d code itself, let’s first look at a sample program which uses l3d. This will

give you a practical perspective on the code before looking at the following sections, which go

into more detail on the inner workings of the classes. For the most part, the library classes don’t

introduce many new ideas; we have already covered most of the important technical issues related

to 2D programming under X and Linux.

The next sample program is called drawdot and illustrates usage of the l3d library classes in

order to move a green dot around the screen, thereby forming a simple drawing program. Signifi-

cantly, this is the first program where we draw a pixel at a specific location and with a specific

color. This program works with visuals of any color depth and in both TrueColor or indexed color

modes. This is no mean feat—as we saw earlier, calculation of pixel position and pixel contents is

all quite complicated due to the multitude of possible color depths and color models. These com-

plicated calculations have all been encapsulated in easy-to-use classes. Incidentally, as we see

later, the program not only works with “normal” X windows, but also can use shared-memory or

hardware-accelerated output devices.

Listing 2-23: drawdot.cc
#include <stdlib.h>
#include <stdio.h>

#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/system/factorys.h"

//————————————————————————————————————
//-
//- STEP 1: CHOOSE THE FACTORIES
//-

Chapter 2: Accessing the Screen 93

Figure 2-20: Output from sample program
drawdot.



//————————————————————————————————————

void choose_factories(void) {
factory_manager_v_0_1.choose_factories();

}

//————————————————————————————————————
//-
//- STEP 2: DECLARE A PIPELINE SUBCLASS
//-
//————————————————————————————————————

class my_pipeline : public l3d_pipeline {
protected:
l3d_rasterizer_2d_imp *ri;
l3d_rasterizer_2d *r;

int x, y, dx, dy;
unsigned long color;

public:
l3d_screen *s;
my_pipeline(void);
virtual ~my_pipeline(void);

void key_event(int ch); //- from dispatcher
void update_event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

};

my_pipeline::my_pipeline(void) {
s = factory_manager_v_0_1.screen_factory->create(320,200);
ri = factory_manager_v_0_1.ras_2d_imp_factory->create(320,200,s->sinfo);
r = new l3d_rasterizer_2d(ri);

s->sinfo->ext_max_red =
s->sinfo->ext_max_green =
s->sinfo->ext_max_blue = 255;

s->sinfo->ext_to_native(0, 0, 0); //- allocate background color
color = s->sinfo->ext_to_native(0, 255, 128);
s->refresh_palette();

x = y = dx = dy = 0;
}

my_pipeline::~my_pipeline(void) {
delete s;
delete ri;
delete r;

}

void my_pipeline::key_event(int ch) {
switch(ch) {
case 'h': dx=-1; dy=0; break;
case 'l': dx=1; dy=0; break;
case 'j': dx=0; dy=1; break;
case 'k': dx=0; dy=-1; break;
case ' ': dx=0;dy=0; break;
case 'q': {
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exit(0);
}

}
}

void my_pipeline::update_event() {
x += dx;
y += dy;

if(x < 0) x = 0;
if(x > s->xsize-1) x = s->xsize-1;
if(y < 0) y = 0;
if(y > s->ysize-1) y = s->ysize-1;

}

void my_pipeline::draw_event(void) {
r->draw_point(x,y, color);
s->blit_screen();

}

main() {
choose_factories();

l3d_dispatcher *d;
my_pipeline *p;

//————————————————————————————————————
//-
//- STEP 3: CREATE A DISPATCHER
//-
//————————————————————————————————————

d = factory_manager_v_0_1.dispatcher_factory->create();

//————————————————————————————————————
//-
//- STEP 4: CREATE A PIPELINE
//-
//————————————————————————————————————

//- plug our custom behavior pipeline into the dispatcher
p = new my_pipeline();

//————————————————————————————————————
//-
//- STEP 5: START DISPATCHER
//-
//————————————————————————————————————

d->pipeline = p; //- polymorphic assignment
d->event_source = p->s;
d->start();

delete d;
delete p;

}

NOTE Notice that this program is rather short and declares only one class. This is because
the l3d library has already declared several useful classes to simplify application programs.
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First, let’s look at compiling the program, since the programs using l3d have a slightly different

directory structure. Then, we look at the structure program itself. Finally, we discuss the l3d

classes themselves.

The source code for the sample program is located in directory $L3D/source/app/
drawdot. In contrast to the other sample programs we have seen so far, the source and binary

files are located in different directory trees. The next section discusses this in detail. For now,

compile and run the program as follows:

1. Compile the l3d library: type cd $L3D/source/app/lib, press Enter, type make -f

makeall.lnx, and press Enter. Notice that this Makefile has a different filename than the

standard name of “Makefile”; therefore we specify the -f flag to tell the make command

which file is the Makefile.

2. Change to the source directory for drawdot: type cd $L3D/source/app/drawdot and press

Enter. Compile drawdot: type make -f makeall.lnx and press Enter.

3. Change to the binaries directory: type cd $L3D/binaries/linux_x/float/app/drawdot and

press Enter.

4. Notice the object and executable files from the compilation process are placed in the

corresponding binary directory. Type drawdot and press Enter to run the program.

5. Notice the question, “which configuration?” Type 1 for now to select a normal X11 window,

and press Enter.

6. Notice the empty, black window which appears. Type l. Notice the green line which moves

from left to right across the very top of the display, and that the line continues moving after

you release the key.

7. Type j. Notice that the green line moves downward.

8. Control the movement of the line with the following keys: h to move left, l to move right, j to

move down, k to move up, and Space to stop movement.

9. Type q to end the program.

Having now successfully executed the program, let’s now take a look at the organization of the l3d

directory structure, then examine the drawdot program itself.

l3d Directory Structure

The library classes and the applications using them follow a different directory structure than that

of the sample programs we have looked at so far. Up until now, the source and binary files for the

programs were in the same directory. By contrast, the library classes and applications using the

library classes are split into separate source and binary directory trees.

The reason we split the source files and binary files into two separate trees is that the same

source code can be compiled on a number of different platforms. Keeping the binary files, which

vary from platform to platform, in the same directory as the source files, which remain the same,

leads to a rather chaotic organization. While chaos theory is a rich and fascinating field of scien-

tific study, we don’t necessarily want to organize our directory structure on this basis. Splitting

source and binary directories allows for a neater multi-platform directory structure.

Specifically, the following directory structure is used:
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� $L3D/source: All source files.

� $L3D/source/util: Non-C++ source files (preprocessing scripts, etc.).

� $L3D/source/app: C++ source files related directly to 3D applications.

� $L3D/source/app/lib: C++ source for the l3d library classes.

� $L3D/source/app/[program_name]: C++ source for example programs. A few sim-

ple programs (such as the ones we have seen until now) place the binary files in the source

directory, but most programs place them in the binaries directory.

� $L3D/binaries/linux_x: Linux binary files compiled for the X Window System.

� $L3D/binaries/linux_x/fixed: Linux binary files compiled with fixed-point math

(a topic covered in more detail in the Appendix). Subdirectory structure is the same as that

under the float subdirectory.

� $L3D/binaries/linux_x/float: Linux binary files compiled with floating-point

math. This is the primary output directory for binary files.

� $L3D/binaries/linux_x/float/app/lib: Linux floating-point binary files for

the l3d library.

� $L3D/binaries/linux_x/float/app/[program name]: Linux floating-point

binary files for example programs.

The Makefiles automatically place the binary files in the corresponding binary directory. You typ-

ically invoke make -f makeall.lnx in the source directory for an application program, which then

compiles all of the Linux binaries and places them in the appropriate binaries directories.

NOTE Remember, the Appendix provides instructions on how to compile all of the sample
programs at once. The preceding discussion is primarily to give you an idea of the directory
structure and the reasoning behind it.

To summarize, then, the source files for the l3d library are in $L3D/source/app/lib, and the

source files for the sample programs are all in $L3D/source/app. The primary binaries are in

$L3D/binaries/linux_x/float/app.

Fundamental l3d Concepts

Let’s now turn our attention to the exact workings of the drawdot program, since it illustrates

compactly many key ideas of the l3d library.

The drawdot program can be broken up into five steps, which are representative of pro-

gramming with l3d. In fact, these steps are representative of event-based programming in general,

on a variety of platforms, as evidenced by the fact that the following scheme also can be applied to

event-driven programs under various operating systems.

The five steps are as follows.

1. Choose the proper factories for three classes: the screen, the rasterizer implementation, and

the event dispatcher.

2. Declare a pipeline subclass. The pipeline must directly or indirectly ask the factory to create a

screen and a rasterizer implementation (typically in the pipeline constructor). Override the
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abstract pipeline methods to allow your program to respond to events, to update itself, and to

draw to the screen using the rasterizer implementation.

3. Create a dispatcher, by using the factory.

4. Create a pipeline. Your pipeline should in its constructor ask the factory to create a screen and

a rasterizer implementation, and store these objects locally. Connect the pipeline and the

screen to the dispatcher.

5. Start the dispatcher. The dispatcher enters an event loop, extracts events from the screen, and

calls your pipeline periodically to allow your pipeline to do its work, respond to input, and

draw to the screen.

Let’s examine each step in detail to understand the general l3d structure within the context of the

sample drawdot program. This serves two goals: first, to understand the general l3d structure,

and second, to understand the specific functions called by drawdot in order to draw to the

screen. Then, we will take a look at the l3d classes themselves, which we build upon throughout

the book to incorporate increasingly advanced and reusable 3D graphics concepts.

Step 1. Choose the Proper Factories

The first step in writing an l3d application is to choose the proper factories for the program. This is

done by calling the choose_factories function defined in the so-called “factory manager.”

We encountered this concept earlier: to localize object creation and free applications from needing

to know specific details of concrete classes, we used the factory design pattern. The factory man-

ager is the central location where all concrete factories, globally visible to the entire program, are

accessible. The following line chooses the factories within the factory manager:
factory_manager_v_0_1.choose_factories();

NOTE The class name has the suffix v_0_1 to represent the fact that this is the first version
of the factory manager. In a later chapter, we subclass this first version of the factory manager
to create a new factory manager which manages more factories. This is an example of how
subclassing can provide a historical record of program development, within the source code
itself.

Choosing the factories essentially means customizing, at run time, all customizable behavior

which then takes effect for the duration of the program. In particular, the l3d factory manager man-

ages three factories:

1. A screen factory, producing objects corresponding to the abstract interface l3d_screen.

Class l3d_screen represents the physical output device—a window under X11, a

full-screen hardware-accelerated window using Mesa, or even a DIBSection under Microsoft

Windows.

2. A rasterizer implementation factory, producing objects corresponding to the abstract

interface l3d_rasterizer_2d_imp. Class l3d_rasterizer_2d_imp represents a

particular implementation of 2D rasterization concepts. We use the term “rasterizer” to

denote a software interface to a rasterizer implementation. A rasterizer implementation, then,

is a particular hardware or software component which draws 2D graphics primitives

(triangles, lines, dots) into a frame buffer. Two important types of rasterizer implementations
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are software rasterizer implementations, which write directly into an off-screen buffer, and

hardware rasterizer implementations, which use specialized, faster functions for

hardware-accelerated pixel operations. See Chapter 3 for details on rasterization.

3. A dispatcher factory, producing objects corresponding to the abstract interface

l3d_dispatcher. Class l3d_dispatcher represents a generalized event dispatcher

in a particular operating system environment. Under X, the dispatcher intercepts X events

within a window’s event loop and passes them on transparently to our application. Using

hardware acceleration with Mesa, the dispatcher works within the event framework provided

by Mesa and GLUT, again forwarding events in a transparent way to our application. Under

another operating system, the dispatcher would need to call any OS-specific routines

necessary to capture and forward events.

All of these factories represent system-specific information: the output device, the rasterizer

implementation, and the event dispatcher. Therefore, by choosing the factories, we are essentially

dynamically configuring the program to use the desired run-time environment. In our case, the

factory manager simply asks the user which factories should be used, but more sophisticated solu-

tions are also possible. We could, for instance, have an auto-detect routine which searches for the

existence of particular hardware, and which, depending on whether or not it finds it, configures the

factory to create the appropriate software component accordingly.

Step 2. Declare a Pipeline Subclass

The second step in writing an l3d application is to declare a pipeline subclass. A pipeline is simply

a sequence of operations on data. The main loop in a game or graphics program is typically called

the pipeline. Therefore, the pipeline contains, directly or indirectly, your application’s main data

and functionality.

We say “directly or indirectly” because the pipeline might do nothing other than create

another object, to which it then delegates the main program’s responsibility. In such a case, the

pipeline is not directly responsible for the application’s data and functionality, but instead merely

serves as an interface between the dispatcher and the object actually doing the real work. We see

this in Chapter 7, where an l3d_world class manages an entire 3D world.

The pipeline does not control execution of the program. Instead, it responds to events. The

abstract l3d_pipeline class provides a set of virtual event functions, which are automatically

called by an event dispatcher (class l3d_dispatcher, covered in the next section). By declar-

ing a subclass of l3d_pipeline, you can override the virtual event functions to provide

specific responses to specific events, without needing to know how or when these functions are

invoked.

In particular, an l3d_pipeline subclass should do three things:

1. Directly or indirectly create and store a screen object, a rasterizer implementation object, and

a rasterizer object. This is typically done in the constructor. The first two objects, the screen

and rasterizer implementation, must be created by using the already chosen factories. The

third object, the rasterizer itself, is directly created via the C++ operator new, since the

rasterizer itself contains no platform-specific dependencies. (Such dependencies are all in the

rasterizer implementation, not the rasterizer.)
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2. Declare internal variables, functions, and objects to store the current state of the virtual world.

3. Override the l3d_pipeline virtual event functions to handle input, update internal

objects, and draw output to the screen. Handling input and updating internal objects are both

done by using data structures specific to the application program. Drawing output to the

screen is done by using the screen, rasterizer, and rasterizer implementation objects created in

the constructor.

The first responsibility of an l3d_pipeline subclass is easy to understand. The pipeline repre-

sents the application. The application should display interactive graphics on the screen. We

therefore create and store a screen object, representing the output device, and a rasterizer imple-

mentation, representing a strategy for drawing graphics to the screen. The rasterizer itself presents

a high-level interface to rasterization functionality, implemented by the low-level tools offered by

a rasterizer implementation. Again, remember that a rasterizer implementation can be either a

software rasterizer implementation, directly manipulating bytes in an off-screen frame buffer, or a

hardware rasterizer implementation, calling hardware API functions to instruct the hardware to

draw the graphics for us. Therefore, through the rasterizer, rasterizer implementation, and screen,

our program has an interface to screen and screen-drawing functionality.

NOTE Theoretically, the screen object could also be created outside of the pipeline. (The
following discussion also applies to the rasterizer and rasterizer implementation objects.)
There is no technical reason why the screen absolutely must be created within the pipeline
constructor. In practice, though, this would make little sense. Consider this: the pipeline rep-
resents the entire application logic. Creating a screen outside of the pipeline would also
mean needing to destroy the screen outside of the pipeline. This would imply some sort of a
“higher-level” layer of functionality which creates and destroys objects the pipeline needs in
order to function. This would only make sense if the screen object often needed to be used
outside of the context of the pipeline, at this “higher-level” layer. Given the current premise
that the pipeline is the application, a higher-level layer makes no sense. Therefore, in the cur-
rent architecture, there is no reason to move management of the screen object outside of the
pipeline.

The second responsibility of an l3d_pipeline subclass, declaring data, is also intuitive. Since

it represents the application, the pipeline subclass must contain all data necessary for maintaining

and updating the current state of everything within the virtual world. This might include such

things as the current positions and velocities for objects of interest, energy levels for spaceships,

the prevailing wind velocity, or anything else being modeled. All of this data is stored within the

l3d_pipeline subclass in the form of member variables or objects.

The third and final responsibility of an l3d_pipeline subclass is to override virtual event

functions to respond to events. An l3d_pipeline subclass can override any of the following

virtual functions declared in l3d_pipeline:
void key_event(int ch); //- from dispatcher
void update_event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

The key_event function is automatically called whenever a key is pressed in the application

window. The function is called with a parameter indicating the ASCII value of the key pressed,

thereby allowing the application to respond to the particular key pressed.
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Theupdate_event function is automatically called whenever the application is allowed to

update itself. You can think of your program as being a giant clockwork, with everything happen-

ing at each tick of the clock. This event function represents one “tick” in your program. At this

point you update the internal variables storing the positions of various objects, update velocities,

check for collisions, and so on.

TIP The calling frequency of update_event is not necessarily guaranteed to be constant.
That is to say, the amount of physical time which elapses between successive calls may be
slightly different. For accurate physical simulations, where velocities or other physical quanti-
ties should be updated based on time, we can store an internal variable recording the value
of the system clock the last time that update_event was called. We can then compare the
current system clock to the value of the variable to determine how much physical time has
elapsed, and update the time-dependent quantities accordingly. The companion book
Advanced Linux 3D Graphics Programming contains examples of this sort of code.

The draw_event function is called whenever the application is allowed to draw its output

to the screen. This function typically will be called immediately after update_event, but this

does not necessarily have to be the case. In other words, the updating of the virtual world and the

drawing of the virtual world can be thought of as two separate threads of control, which are usually

but not necessarily synchronized.

With this general understanding of a pipeline’s structure (creation of screen, storage of vari-

ables, and response to events), we can take a closer look at the particular details of the pipeline in

the drawdot program.

The constructor for the drawdot pipeline takes care of the first responsibility of an

l3d_pipeline subclass: creation of screen, rasterizer implementation, and rasterizer objects.

In the constructor, we first ask the screen factory to create a screen and the rasterizer implementa-

tion factory to create a rasterizer implementation. We then create a rasterizer which uses the

created rasterizer implementation. The member variables s, ri, and r represent the screen,

rasterizer implementation, and rasterizer, respectively.

The constructor also takes care of the second responsibility of an l3d_pipeline subclass:

management of data representing our virtual world. In our case, our virtual world consists of a sin-

gle pixel (a humble start). The following member variables are declared and initialized to keep

track of the dot’s status: color, x, y, dx, and dy. Variables x, y, dx, and dy represent the dot’s

current horizontal and vertical positions and velocities, and are all initialized to zero. The variable

color represents the dot’s current color, and is specified as follows. First, we logically define the

maximum red, green, and blue values to be 255. Then, we specify a color of (0, 255, 128), which

means a red intensity of 0, a green intensity of 255, and a blue intensity of 128, all being measured

in relation to the logical maximum of 255 which we just set. Finally, we convert this RGB color to

a “native” color appropriate for the current screen’s color depth and color model. The conversion

is done via an object of type l3d_screen_info, which encapsulates the complicated color

calculation discussed earlier. The color conversion function is called ext_to_native, as it

changes a color from an “external” RGB format into a format “native” to the XImage.
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The drawdot pipeline then overrides the key_event, update_event, and

draw_event methods to respond to events. This fulfills the third and final responsibility of an

l3d_pipeline subclass, responding to events.

The key_event for the drawdot pipeline checks if any one of the directional keys was

pressed, and updates the dx and dy variables, representing the horizontal and vertical velocities,

accordingly.

The update_event for the drawdot pipeline adds the velocities to the positional vari-

ables, and makes sure the position stays within the bounds of the screen. In other words, x += dx
and y += dy.

The draw_event for the drawdot pipeline first calls the draw_point routine of the

rasterizer, which then forwards the request to the rasterizer implementation to draw a pixel at a

particular point in a particular color. Remember that the drawing occurs off-screen (double buffer-

ing). The pixel color must be specified in “native” format for the current color depth and color

model. We already computed and stored this color earlier by using the function

l3d_screen_info::ext_to_native. After plotting the point, we callblit_screen to

cause the off-screen graphics to be copied to the screen.

Let us summarize the main idea behind the pipeline. A pipeline represents the main function-

ality of an application and is subclassed from l3d_pipeline. An l3d_pipeline subclass

has three responsibilities: creating screen-access objects, declaring world data, and responding to

events. Creating screen-access objects (screen, rasterizer implementation, and rasterizer) allows

access to the screen and screen-drawing functions. Declaring world data allows the program to

keep track of the state of all objects in the virtual world. Responding to events is how the pipeline

responds to input (through key_event), updates the virtual world (through update_event),

and draws to the screen (through draw_event, using the previously created screen-access

objects).

The pipeline does not need to worry about how or when events occur; it merely responds to

them. The pipeline’s virtual event functions are thus called from an outside source. This outside

source is the dispatcher.

Step 3. Create a Dispatcher

The third step in writing an l3d application is to create an event dispatcher object. The event dis-

patcher serves as an interface between an event source and an event receiver. The event receiver in

our case is the pipeline. The event source is a window created under a specific event-driven win-

dowing system. The role of the dispatcher is to receive events from the system-specific window,

and to call the appropriate pipeline functions to allow the pipeline to respond to the events.

The whole idea is to isolate the pipeline (i.e., your application logic) from the details of the

underlying event generating mechanism. This way, the pipeline’s logic can focus exclusively on

application-specific responses to events, without needing to know exactly how the windowing

system generates and transmits events. The dispatcher handles all the messy details of event cap-

turing and translates this into a clean, simple, virtual function call to the pipeline. This allows your

pipeline to work on a variety of platforms, with a variety of event generating mechanisms.

The event dispatcher must be created using the factory chosen in step 1. This is because the

dispatcher represents system-specific code, and should thus be created through an abstract factory.
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Step 4. Create a Pipeline

The fourth step in creating an l3d application is to create your pipeline object. This step is easy.

Having already declared and defined an l3d_pipeline subclass, which fulfills the three pipe-

line responsibilities (creating screen-access objects, declaring world data, and overriding event-

handling functions), we simply create the pipeline directly with the C++ new operator. This in

turn invokes the pipeline’s constructor, which creates the screen, rasterizer implementation, and

rasterizer objects.

At this point, the application is ready to respond to events. We just need to pump events to the

pipeline in order to allow it to respond to input, update itself internally, and draw to the screen. To

start the entire event process, we start the dispatcher.

Step 5. Start the Dispatcher

The fifth step in writing an l3d application is to start the dispatcher. We must do three things:

1. Assign a pipeline to the dispatcher.

2. Assign an event source to the dispatcher.

3. Call start.

A moment’s reflection makes it clear why the two assignments are necessary. The dispatcher takes

events from the event source, interprets them minimally, and calls the appropriate pipeline virtual

event function to allow the pipeline to respond. The pipeline member of the dispatcher object

is set to the pipeline which we just created. The event_source member of the dispatcher

object is set to the screen object created in the pipeline’s constructor—in other words, the screen

(in our case the X window) is the source of events. With these two member variables set, the dis-

patcher can then begin to extract events from event_source and pass them on to

pipeline—a process set in motion by calling start.

Summary of Fundamental l3d Concepts

The five-step process presented above is typical of l3d programs. First, you choose the proper fac-

tories to configure the program to its environment. Then, you declare a pipeline representing your

application and its data. You create an instance of the pipeline, which in turn creates screen,

rasterizer implementation, and rasterizer objects. You “plug in” this pipeline into an event dis-

patcher. Your application pipeline responds to events from the dispatcher by filling in the blanks

left by the virtual functionskey_event,update_event, anddraw_event. The application

pipeline draws to the screen by using the screen, rasterizer implementation, and rasterizer objects

it created within its constructor. This forms a complete, interactive, event-driven, hardware-inde-

pendent graphics program.

Having understood the sample l3d program, we are now ready to look at the specific l3d

classes in a bit more detail.

Overview of l3d Classes
Let us first consider, at a very high level, the roles of the l3d library classes we are about to discuss

in the following sections. This overview will help keep the class descriptions, found in the
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following sections, in perspective. Again, the classes do not really introduce any concepts we have

not already covered. They do, however, reorganize the concepts into general, reusable, abstract

classes.

The main application is subclassed from l3d_pipeline. The l3d_dispatcher takes

events from an l3d_event_source and automatically calls the appropriate event-handling

routines in l3d_pipeline. Class l3d_dispatcher_x11 is the X specific dispatcher.

Class l3d_screen is subclassed from l3d_event_source, and represents an output

device into which an l3d_rasterizer_2d_imp (next paragraph) can draw. The screen,

under this model, must also be able to provide event notification to other objects, which is the role

of the parent class l3d_event_source. Class l3d_screen_x11 is a screen under X, in the

form of an X window with an XImage in it.

Classl3d_rasterizer_2d represents a high-level interface to 2D rasterization concepts;

class l3d_rasterizer_2d_imp represents a low-level implementation of 2D rasterization

functions using either software or hardware. Class l3d_rasterizer_2d uses

l3d_rasterizer_2d_imp to do its work. Class l3d_rasterizer_2d_sw_imp is a

software rasterizer implementation.

Class l3d_screen_info provides the rasterizer implementation with information about

the screen which is necessary in order to perform rasterization. The ext_to_native function

transparently converts arbitrary RGB colors into the native bit format required by the

screen—regardless of the color depth and color model. The light_native and fog_native
methods apply a light or a fog factor to a particular color in native format, altering the color appro-

priately. Class l3d_screen_info_rgb handles information about screens based upon a

direct RGB color specification, while class l3d_screen_info_indexed handles informa-

tion about screens based upon an indexed color model. Class l3d_screen_info_indexed
also manages a palette of RGB colors, which is simply a dynamically allocated array containing

entries of type l3d_rgb.

Class l3d_factory_manager_v_0_1 is the factory manager which centrally manages

all factories for the entire program. One global instance of this class is automatically created, with

the name factory_manager_v_0_1. An application chooses its factories through variable

factory_manager_v_0_1.

An X application using l3d will follow the five-step process illustrated by drawdot: choose

factories, declare pipeline subclass, create dispatcher, create pipeline, start dispatcher. The facto-

ries are chosen by calling factory_manager_v_0_1.choose_factories. For now, the

chosen factories will be of types l3d_dispatcher_factory_x11, l3d_screen_fac-
tory_x11, and l3d_rasterizer_2d_sw_imp_factory. This means that the dispatcher

(l3d_dispatcher_x11 knows how to handle X events, and that the screen

(l3d_screen_x11) knows how to communicate with and display XImages on the X server.

Drawing into the XImage’s off-screen buffer is done by using a 2D, software rasterizer implemen-

tation (l3d_rasterizer_2d_sw_imp).

NOTE Later, we see how to use hardware-accelerated rasterizer implementations and
shared memory screen factories. So, the preceding paragraph is not a hard-and-fast rule
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dictating which classes will always be used by an X application using l3d; it merely illustrates a
typical structure based on the concepts we have seen so far.

Source Code Walk-through of l3d Classes
With the preceding overview of the l3d classes we are about to cover, we can now dive head-first

into the source code of the classes themselves. Remember, you have already seen everything

which is about to be presented, just in a less general form.

The following sections describe in detail each l3d class we use in this chapter. We first

describe the general type of data represented by the class, and mention where we first encountered

the concept within our previous discussions. Then we list the meaning of each member variable

and function within the class. Each class is presented with its complete source code. When several

classes work together, a class diagram is presented after the description of the last class, illustrat-

ing the relationships among the classes. At the end, a class diagram is presented for all l3d classes

discussed so far.

When reading the following sections, you may find it useful to refer to the preceding over-

view of the l3d classes and to the concluding class diagram to keep everything in perspective.

Abstracting an Event-Driven Graphics Application:
l3d_pipeline

The class l3d_pipeline is an abstract class representing your application. As we saw earlier,

you subclass froml3d_pipeline to create your application, and must fulfill three responsibili-

ties: creating the screen-access objects, declaring world data, and responding to events.

We first saw this concept in the sample program hello_oo, which used an abstract applica-

tion class.

Member variable done is a flag indicating that the pipeline has finished its processing com-

pletely; in other words, the application should exit. This variable is initially set to zero, and is

typically set to one somewhere within key_event as a response to the user pressing some key to

exit the application pipeline. This variable’s value is checked by the event dispatcher object.

Listing 2-24: pipeline.h
#ifndef __PIPELINE_H
#define __PIPELINE_H
#include "../tool_os/memman.h"

class l3d_pipeline {
public:
int done;
l3d_pipeline(void) {done = 0; }
virtual void draw_event(void) {};
virtual void update_event(void) {};
virtual void key_event(int c) {};

};

#endif
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Abstracting Event Generation: l3d_event_source

Class l3d_event_source is an empty class whose sole purpose is to indicate that any class

derived from this class is capable of serving as an event source for an l3d_dispatcher object.

A class will inherit, possibly multiply inherit, from l3d_event_source if it is usable as a

source of events. Class l3d_screen inherits from l3d_event_source.

We first saw this concept in the sample program hello_oo, which directly monitored the X

window to check for events (in ask_to_be_notified_of_interesting_events and

event_loop). Class l3d_event_source is a recognition of the more general concept of

any object—not just an X window—capable of generating events which need to be monitored.

Listing 2-25: ev_src.h
#ifndef __EV_SRC_H
#define __EV_SRC_H
#include "../tool_os/memman.h"

class l3d_event_source {
};

#endif

Abstracting the Event Dispatching Loop: l3d_dispatcher

The class l3d_dispatcher is an abstract class representing an event dispatching mechanism.

It extracts events from an underlying event generating mechanism and translates these into virtual

function calls on a pipeline, thereby allowing the pipeline to respond to events.

We first saw this concept in program hello_oo, which directly had a loop in the main appli-

cation class which extracted and dispatched events from an X window (in the overridden function

event_loop). Class l3d_dispatcher is a recognition of the more general concept of an

event dispatching mechanism, which can be subclassed to provide support for event dispatching

on a variety of platforms other than Linux and X (e.g., Linux and Mesa, or Microsoft Windows

and a Windows window). This is an example of the strategy design pattern, in which an algorithm

(in this case the event loop) is turned into a class of its own; this allows more flexibility than the

approach originally taken in hello_oo, where a virtual function had to be overridden to define

the event dispatching strategy. A virtual function approach requires a new application subclass if

the event dispatching strategy changes (the inheritance relationship); a strategy approach simply

requires connecting the unchanged application subclass with a new event dispatching strategy (the

client relationship).

Listing 2-26: dispatch.h
#ifndef _DISPATCH_H
#define _DISPATCH_H
#include "../tool_os/memman.h"

#include "../tool_2d/screen.h"
#include "../pipeline/pipeline.h"
#include "ev_src.h"

class l3d_dispatcher {
public:
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l3d_pipeline *pipeline;
l3d_event_source *event_source;

virtual void start(void) = 0;
};

class l3d_dispatcher_factory {
public:
virtual l3d_dispatcher *create(void) = 0;

};

#endif

The variable pipeline points to the pipeline which should be called when particular events

occur.

The variable event_source points to the object which generates events in a sys-

tem-specific way. In our case, event_source is an l3d_screen object.

The method start sets the event loop in motion, calling the appropriate pipeline virtual

functions when relevant events from the event_source occur.

Figure 2-21 illustrates the relationship among the abstract classes l3d_pipeline,

l3d_dispatcher, and l3d_event_source.

A Dispatcher for X: l3d_dispatcher_x11

The class l3d_dispatcher_x11, subclassed from l3d_dispatcher, represents a dis-

patcher specific to the X Window System.

As with the parent class l3d_dispatcher, we first saw this concept in program

hello_oo.

Listing 2-27: dis_x11.h
#ifndef _DIS_X11_H
#define _DIS_X11_H
#include "../tool_os/memman.h"

#include <X11/Intrinsic.h>
#include <X11/Xlib.h>
#include "dispatch.h"
#include "../tool_2d/sc_x11.h"

class l3d_dispatcher_x11 : public l3d_dispatcher {
public:
void start(void);

};

class l3d_dispatcher_factory_x11 : public l3d_dispatcher_factory {
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public:
l3d_dispatcher *create(void) {
return new l3d_dispatcher_x11;

}
};

#endif

Listing 2-28: dis_x11.cc
#include "dis_x11.h"
#include "../tool_os/memman.h"

void l3d_dispatcher_x11::start(void) {
XEvent event;
char ch;
KeySym keysym;
XComposeStatus xcompstat;
l3d_screen_x11 *screen;

screen = (l3d_screen_x11 *)event_source;
{
while(!pipeline->done) {
if(XCheckWindowEvent(screen->dpy,screen->w,KeyPressMask,&event)) {
XLookupString(&event.xkey, &ch, 1, &keysym, &xcompstat);
pipeline->key_event(ch);

}

pipeline->update_event();
pipeline->draw_event();
XSync(screen->dpy, False);

}
}

The method start is overridden and interprets the event_source as an object of type

l3d_screen_x11. It extracts the display and window variables from the X11 screen, checks

for keyboard events withXCheckWindowEvent, and translates these into a virtual function call

on the pipeline. It also immediately calls update_event and draw_event on the pipeline for

every iteration through the event loop, meaning that these events occur as quickly as the operating

system allows. Finally, we call XSync to make sure that the output is really displayed to the

screen; otherwise, the X server might queue up events, including display requests, causing an

indeterminate delay before the output is actually visible within the X window. Calling XSync
guarantees that the output is immediately visible.

Abstracting Control of the Screen: l3d_screen

The classes l3d_screen and l3d_screen_info work closely together to control and pro-

vide access to the display hardware.

The class l3d_screen is an abstract interface to a display device. A screen is responsible

for the creation, setup, and display of the data which has been plotted to the screen. However, the

screen is not responsible for doing the plotting itself. In other words, the screen is a “dumb” dis-

play device. It can show itself, initialize a color palette, and so forth, but it does not know how to

draw polygons, lines, dots, or anything else. The screen is simply a passive display device which

other objects can use as a target to draw into. In particular, the l3d_rasterizer class handles

plotting (rasterization) tasks, manipulating data within the screen.
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We first saw this concept in program hello_oo_image, which directly used an XImage as

a screen to display a random pattern of dots. Classl3d_screen is a recognition of the more gen-

eral concept of a screen as a generalized output device—not just an X Window with an XImage.

The application program uses a screen through the abstract l3d_screen interface, and is there-

fore not tied to any particular display device.

Listing 2-29: screen.h
#ifndef __SCREEN_H
#define __SCREEN_H
#include "../tool_os/memman.h"

#include "../geom/polygon/polygon.h"
#include "si_rgb.h"
#include "si_idx.h"
#include "../tool_os/ev_src.h"

class l3d_screen : public l3d_event_source {
protected:
virtual void wait_vtrace(void) {};
virtual void close_screen(void) {};
l3d_two_part_list<l3d_coordinate> *vwin_vlist;
int bufsize;

public:
l3d_screen(int xsize, int ysize);
virtual ~l3d_screen(void);
int xsize, ysize;
l3d_polygon_2d *view_win;
l3d_screen_info *sinfo;

virtual void refresh_palette(void) {};
virtual void open_screen(void)=0;
virtual void blit_screen(void)=0;

};

class l3d_screen_factory {
public:
virtual l3d_screen *create(int xsize, int ysize)=0;

};

#endif

Listing 2-30: screen.cc
#include <stdlib.h>
#include "screen.h"
#include "../tool_os/memman.h"

l3d_screen::l3d_screen(int xsize, int ysize) {

this->xsize = xsize; this->ysize = ysize;

//- initialize view-window to a rectangle

vwin_vlist = new l3d_two_part_list<l3d_coordinate> ( 4 );

#define BORDER 3
(*vwin_vlist)[0].transformed.set(int_to_l3d_real(BORDER),

int_to_l3d_real(BORDER),
int_to_l3d_real(0),
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int_to_l3d_real(0));
(*vwin_vlist)[1].transformed.set(int_to_l3d_real(xsize-BORDER),

int_to_l3d_real(BORDER),
int_to_l3d_real(0),
int_to_l3d_real(0));

(*vwin_vlist)[2].transformed.set(int_to_l3d_real(xsize-BORDER),
int_to_l3d_real(ysize-BORDER),
int_to_l3d_real(0),
int_to_l3d_real(0));

(*vwin_vlist)[3].transformed.set(int_to_l3d_real(BORDER),
int_to_l3d_real(ysize-BORDER),
int_to_l3d_real(0),
int_to_l3d_real(0));

view_win = new l3d_polygon_2d(4);
view_win->vlist = &vwin_vlist;

(*(view_win->ivertices)) [view_win->ivertices->next_index()].ivertex = 0;
(*(view_win->ivertices)) [view_win->ivertices->next_index()].ivertex = 1;
(*(view_win->ivertices)) [view_win->ivertices->next_index()].ivertex = 2;
(*(view_win->ivertices)) [view_win->ivertices->next_index()].ivertex = 3;
view_win->init_clip_ivertices();

}

l3d_screen::~l3d_screen(void) {

//- Close the physical screen
close_screen();

delete vwin_vlist;
delete view_win;

}

The variables xsize and ysize represent the horizontal and vertical size of the screen (win-

dow) in pixels.

The variable bufsize represents the number of bytes in the off-screen buffer.

The variables view_win and vwin_vlist represent the clip window of the screen.

The method open_screen performs any initialization necessary to display the screen for

the first time.

The method blit_screen copies the off-screen buffer onto the visible screen.

The method close_screen performs any shutdown operations necessary when a graphics

display on the screen is finished.

The method refresh_palette applies only to indexed color modes. It makes sure that

the palette we have defined for our application is made known to the operating system and/or

hardware. You must call refresh_palette whenever you wish any changes made to the pal-

ette to take effect; this implies that you must call refresh_palette at least once in your

program if you wish the program’s colors to display correctly under an indexed color mode. Call-

ing refresh_palette when the program is running in a non-indexed color mode has no

effect.

The method wait_vtrace is not used under X. Under other operating systems, this routine

would wait for the so-called “vertical retrace,” a period of time which lasts for a fraction of a sec-

ond and which occurs when the video hardware has just finished drawing one frame on the

monitor. By performing operations such as blit_screen during the vertical retrace, we can try
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to copy our off-screen image on-screen when the video hardware is between frames, thereby elim-

inating flickering. In multi-tasking operating or windowing systems such as Linux and X, there is

no real way to wait for the vertical trace, since it is the windowing system which ultimately con-

trols the visibility of graphics. Furthermore, hardware acceleration makes this issue mostly

irrelevant.

Abstracting Relevant Screen Attributes: l3d_screen_info

The class l3d_screen_info is an abstract interface to screen information. We define screen

information as follows: any information which an external class needs to know about a screen

object in order to be able to work with that screen. Class l3d_screen_info encapsulates the

vital statistics about a screen and makes them available through a clean, easy interface.

We first saw this concept in the discussion of colors and XImages, where we observed that the

bytes making up a pixel and their interpretation depend on the color depth and color model of the

underlying X server. Class l3d_screen_info is a recognition of the more general concept

that external users of a screen need to access such “screen information” in order to do anything

useful with the screen.

Listing 2-31: scrinfo.h
#ifndef _SCRINFO_H
#define _SCRINFO_H
#include "../tool_os/memman.h"

#define MAX_LIGHT_LEVELS 255
#define NUM_LIGHT_LEVELS (MAX_LIGHT_LEVELS+1)

class l3d_screen_info {
public:
int ext_max_red, ext_max_green, ext_max_blue;
char bytes_per_pixel;
virtual unsigned long ext_to_native(int red, int green, int blue)=0;
virtual ~l3d_screen_info(void) {};

virtual void compute_light_table(void)=0;
virtual void compute_fog_table(void)=0;
virtual void light_native(unsigned char *pcolor, int intensity)=0;
virtual void fog_native(unsigned char *pcolor, int intensity)=0;

virtual void set_color(unsigned long col ) {};

unsigned char *p_screenbuf;

};

#endif

The method ext_to_native converts an RGB color, specified in an external format, to a long

integer value representing the proper color in “native” format for the screen associated with this

l3d_screen_info object. This is a great convenience indeed. The tedious calculation of pixel

bits based upon color depth and color model is all hidden behind the function ext_to_native.

This function takes as parameters a red, green, and blue value, and returns an unsigned long
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integer with the color in native format. This native color can then be dumped directly into the

off-screen buffer.

The variables ext_max_red, ext_max_green, and ext_max_blue set the maximum

logical red, green, and blue intensities which will be passed to the ext_to_native function.

The idea is that you define your own custom, external maximum red, green, and blue values to any

convenient value (e.g., 255). Then, you call ext_to_native with red, green, and blue values

within this range. The function ext_to_native then scales the red, green, and blue values to

the proper RGB value appropriate for the screen’s color depth and color model. In the case of

indexed color, ext_to_native allocates a palette entry for the specified RGB color.

The variable bytes_per_pixel represents the number of bytes per pixel for the screen.

The variable p_screenbuf is a pointer to the off-screen image data. This is used by soft-

ware rasterizer implementations, which draw pixels directly into the off-screen buffer.

The method set_color is a placeholder for a call to a hardware color-setting routine. By

default this routine does nothing. In the case of a Mesa screen, we must call an OpenGL function

(glIndexi or glColor4f) to set the current color; therefore, in l3d_screen_info
descendants for Mesa, we override this function.

The abstract method compute_light_table computes a so-called “lighting table” for

all possible colors in the screen. We haven’t encountered the concept of a lighting table yet, but the

idea is very simple. Assume we have an arbitrary color specified by red, green, and blue intensi-

ties. An interesting question is, given this particular color, what is the same color at a different

intensity? This question arises because the color of an object typically is a constant, but the inten-

sity of light falling on it might not be. Therefore, it makes sense to define colors independent of

intensity (e.g., a box is red), and to compute a final display color as a combination of color and

light intensity (in the sun with a light intensity of 255, the box is bright red; in shadow, with a light

intensity of 15, the box is dark red). Let us define intensity to be an integer from 0 to 255, with 0

being the lowest, darkest intensity, and 255 being the highest, brightest intensity. (The #define
MAX_LIGHT_LEVELS controls the brightest intensity in the program code.) A lighting table is

simply a 2D lookup table of colors and intensities. Along one axis, we specify the desired color.

Along the other axis, we specify the desired intensity. The corresponding entry in the table is the

desired color at the desired intensity. Using such a lighting table allows us to display any color at

any intensity. This is very useful when applying lighting effects: we can define the colors of an

object any way we want, compute a dynamic light intensity, then use the lighting table to combine

the known color and the computed intensity to give a final, appropriately lighted color to be dis-

played on-screen. The companion book Advanced Linux 3D Graphics Programming discusses

lighting algorithms, light maps, and lighting tables in more detail, including working code

examples.

The abstract method compute_fog_table computes a so-called fog table for all possible

colors in the screen. The concept of a fog table is very similar to that of a lighting table. Whereas a

lighting table computed the various intensities of a color from completely black to the normal

intensity, the fog table computes intensities of a color from normal intensity to completely white.

A lighting table fades from black (intensity of 0) up to the normal color (intensity of 255). A fog

table, on the other hand, fades from the normal color intensity (fog of 0) up to completely white
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(fog of 255). Increasing values of fog cause the color to wash out and appear whiter, as if the color

were disappearing into a thick white fog. With a fog table, we look up the desired color on one

axis, and the desired fog factor on the other axis. The corresponding entry in the table is the desired

color with the desired fog factor applied. Note that a fog table does not need to fade to pure white,

but can instead fade to gray or another color entirely.

The abstract method light_native changes the intensity of a pixel, stored in native

screen format and pointed to by parameter pcolor, based on the intensity parameter and the

pre-computed lighting table. The original color in pcolor is looked up in the lighting table with

the specified intensity, and is then overwritten in memory with the new, lighted color.

The abstract method fog_native changes the intensity of a pixel, stored in native screen

format and pointed to by parameter pcolor, based on the intensity parameter and the

pre-computed fog table. The original color in pcolor is looked up in the fog table with the speci-

fied intensity, and is then overwritten in memory with the new, fogged color.

NOTE It might appear tempting to merge l3d_screen_info into the l3d_screen class
itself. After all, isn’t screen information part of the screen itself? The problem appears when
we try to subclass the screen. Screen information can be handled fundamentally in two differ-
ent ways: as RGB (TrueColor) or as indexed color. Similarly, screens themselves come in a
variety of sorts: X11 screens, Mesa screens, Windows screens, DOS screens. If screen infor-
mation and the screen were merged into one class, we would have the unpleasant situation of
having several sorts of each screen: an X11 RGB screen, an X11 indexed screen, a Mesa RGB
screen, a Mesa indexed screen, a Windows RGB screen, a Windows indexed screen, a DOS
RGB screen, a DOS indexed screen. Extending the class hierarchy with a new information
type or a new screen type becomes a major headache. This situation is sometimes called a
nested generalization and indicates that the class should be split into two. For this reason, we
keep the screen information separate, in its own l3d_screen_info class hierarchy. The
l3d_screen is also separate, in its own l3d_screen class hierarchy. We can then, at run
time, mix and match screen information types and screen types freely, without the multiplica-
tive explosion of classes which would have resulted had we combined l3d_screen_info
and l3d_screen into one class.

Screen Information for TrueColor: l3d_screen_info_rgb

The class l3d_screen_info_rgb, subclassed from l3d_screen_info, represents

screen information for X TrueColor visuals or other color models based upon a direct specifica-

tion of red, green, and blue pixel values.

We first saw this concept in the discussion of colors and XImages, for TrueColor visuals

under X.

Listing 2-32: si_rgb.h
#ifndef _SI_RGB_H
#define _SI_RGB_H
#include "../tool_os/memman.h"

#include "scrinfo.h"

class l3d_screen_info_rgb : public l3d_screen_info {
private:
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int *red_light_table, *green_light_table, *blue_light_table,
*red_fog_table, *green_fog_table, *blue_fog_table;

public:
l3d_screen_info_rgb(unsigned long red_mask, unsigned long green_mask,

unsigned long blue_mask, char bytes_per_pixel, char bytes_per_rgb);
virtual l3d_screen_info_rgb::~l3d_screen_info_rgb(void);

char bytes_per_rgb;
unsigned long red_mask, green_mask, blue_mask;
int red_shift, green_shift, blue_shift,
red_max, green_max, blue_max;
void compute_color_resolution();

unsigned long ext_to_native(int red, int green, int blue);
void compute_light_table(void);
void compute_fog_table(void);
void light_native(unsigned char *pcolor, int intensity);
void fog_native(unsigned char *pcolor, int intensity);

};

#endif

Listing 2-33: si_rgb.cc
#include "si_rgb.h"
#include "../system/sys_dep.h"
#include "../tool_os/memman.h"

l3d_screen_info_rgb::l3d_screen_info_rgb(unsigned long red_mask, unsigned
long green_mask, unsigned long blue_mask, char bytes_per_pixel,
char bytes_per_rgb)

{

this->red_mask = red_mask;
this->green_mask = green_mask;
this->blue_mask = blue_mask;
this->bytes_per_pixel = bytes_per_pixel;
this->bytes_per_rgb = bytes_per_rgb;

//- initial reasonable default values for external max rgb values; these
//- can be overridden just before actually reading rgb values from an
//- external source
ext_max_red = 255;
ext_max_green = 255;
ext_max_blue = 255;

compute_color_resolution();

red_light_table = new int[(red_max+1)*NUM_LIGHT_LEVELS];
green_light_table = new int[(green_max+1)*NUM_LIGHT_LEVELS];
blue_light_table = new int[(blue_max+1)*NUM_LIGHT_LEVELS];
red_fog_table = new int[(red_max+1)*NUM_LIGHT_LEVELS];
green_fog_table = new int[(green_max+1)*NUM_LIGHT_LEVELS];
blue_fog_table = new int[(blue_max+1)*NUM_LIGHT_LEVELS];

compute_light_table();
compute_fog_table();

}

l3d_screen_info_rgb::~l3d_screen_info_rgb(void) {
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delete [] red_light_table;
delete [] green_light_table;
delete [] blue_light_table;
delete [] red_fog_table;
delete [] green_fog_table;
delete [] blue_fog_table;

}

void l3d_screen_info_rgb::compute_color_resolution(void) {
int red_mask_tmp=red_mask,

green_mask_tmp=green_mask,
blue_mask_tmp=blue_mask;

for(red_shift=0;
(red_mask_tmp & 0x01) == 0 ;
red_shift++, red_mask_tmp>=1);

for(red_max=1;
(red_mask_tmp & 0x01) == 1 ;
red_max*=2, red_mask_tmp>=1);

red_max—;

for(green_shift=0;
(green_mask_tmp & 0x01) == 0 ;
green_shift++, green_mask_tmp>=1);

for(green_max=1;
(green_mask_tmp & 0x01) == 1 ;
green_max*=2, green_mask_tmp>=1);

green_max—;

for(blue_shift=0;
(blue_mask_tmp & 0x01) == 0 ;
blue_shift++, blue_mask_tmp>=1);

for(blue_max=1;
(blue_mask_tmp & 0x01) == 1 ;
blue_max*=2, blue_mask_tmp>=1);

blue_max—;

}

unsigned long l3d_screen_info_rgb::ext_to_native(int red,
int green, int blue)

{
unsigned long red_rescaled, green_rescaled, blue_rescaled;

red_rescaled = red * red_max / ext_max_red;
green_rescaled = green * green_max / ext_max_green;
blue_rescaled = blue * blue_max / ext_max_blue;

return (red_rescaled<red_shift)
| (green_rescaled<green_shift)
| (blue_rescaled<blue_shift);

}

void l3d_screen_info_rgb::compute_light_table(void)
{
int i,c;
int *tableptr;

tableptr = red_light_table;
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for(c=0; c<=red_max; c++) {
for(i=0; i<NUM_LIGHT_LEVELS; i++) {
*tableptr++ = c * i / MAX_LIGHT_LEVELS;

}
}
tableptr = green_light_table;
for(c=0; c<=green_max; c++) {
for(i=0; i<NUM_LIGHT_LEVELS; i++) {
*tableptr++ = c * i / MAX_LIGHT_LEVELS;

}
}
tableptr = blue_light_table;
for(c=0; c<=blue_max; c++) {
for(i=0; i<NUM_LIGHT_LEVELS; i++) {
*tableptr++ = c * i / MAX_LIGHT_LEVELS;

}
}

}

void l3d_screen_info_rgb::compute_fog_table(void)
{
int i,c;
int *tableptr;

tableptr = red_fog_table;
for(c=0; c<=red_max; c++) {
for(i=0; i<NUM_LIGHT_LEVELS; i++) {
*tableptr++ = c + (int) (((float)i/MAX_LIGHT_LEVELS)*(red_max - c));

}
}
tableptr = green_fog_table;
for(c=0; c<=green_max; c++) {
for(i=0; i<NUM_LIGHT_LEVELS; i++) {
*tableptr++ = c + (int) (((float)i/MAX_LIGHT_LEVELS)*(green_max - c));

}
}
tableptr = blue_fog_table;
for(c=0; c<=blue_max; c++) {
for(i=0; i<NUM_LIGHT_LEVELS; i++) {
*tableptr++ = c + (int) (((float)i/MAX_LIGHT_LEVELS)*(blue_max - c));

}
}

}

void l3d_screen_info_rgb::light_native(unsigned char *pcolor,
int intensity)

{

unsigned char *c2 = pcolor;

register int p;
unsigned long color=0;
unsigned long color_shift = 0;
for(p=0; p<bytes_per_rgb; p++) {
color += (*c2++) < color_shift;
color_shift += BITS_PER_BYTE;

}
for(p=bytes_per_rgb; p<bytes_per_pixel;p++) {c2++; }

unsigned long r = (color & red_mask) > red_shift;
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unsigned long g = (color & green_mask) > green_shift;
unsigned long b = (color & blue_mask) > blue_shift;

color =
(red_light_table[r*NUM_LIGHT_LEVELS+intensity] <red_shift) |
(green_light_table[g*NUM_LIGHT_LEVELS+intensity] <green_shift) |
(blue_light_table[b*NUM_LIGHT_LEVELS+intensity] <blue_shift);

{
register int i;
unsigned long mask = 255;
char shift = 0;

for(c2-=bytes_per_pixel, i=0; i<bytes_per_pixel; i++) {
*c2 = (color & mask) > shift;
c2++;
mask <= BITS_PER_BYTE;
shift += BITS_PER_BYTE;

}
}

}

void l3d_screen_info_rgb::fog_native(unsigned char *pcolor,
int intensity)

{

unsigned char *c2 = pcolor;

register int p;
unsigned long color=0;
unsigned long color_shift = 0;
for(p=0; p<bytes_per_rgb; p++) {
color += (*c2++) < color_shift;
color_shift += BITS_PER_BYTE;

}
for(p=bytes_per_rgb; p<bytes_per_pixel;p++) {c2++; }

unsigned long r = (color & red_mask) > red_shift;
unsigned long g = (color & green_mask) > green_shift;
unsigned long b = (color & blue_mask) > blue_shift;

color =
(red_fog_table[r*NUM_LIGHT_LEVELS+intensity] <red_shift) |
(green_fog_table[g*NUM_LIGHT_LEVELS+intensity] <green_shift) |
(blue_fog_table[b*NUM_LIGHT_LEVELS+intensity] <blue_shift);

{
register int i;
unsigned long mask = 255;
char shift = 0;

for(c2-=bytes_per_pixel, i=0; i<bytes_per_pixel; i++) {
*c2 = (color & mask) > shift;
c2++;
mask <= BITS_PER_BYTE;
shift += BITS_PER_BYTE;

}
}

}
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The constructor takes as parameters a red mask, a blue mask, a green mask, and a bytes-per-pixel

specification. The masks are bit masks indicating which bit positions specify the red, green, and

blue parts of the color. These bit masks are the same as those obtained from an XVisualInfo
structure, discussed earlier. The constructor calls its own helper routine compute_color_
resolution to compute the shift and max variables, discussed next.

The variables red_shift, green_shift, and blue_shift represent the number of

bits by which we must left-shift a color value in order to place it in the red, green, or blue portion of

the color specification.

The variables red_max, green_max, and blue_max represent the maximum red, green,

and blue values which may be specified for the given color depth.

The overridden method ext_to_native uses the mask, shift, and max variables to

scale the externally specified RGB values to lie within the range of the native RGB values.

The variables red_light_table, green_light_table, and blue_light_
table are pointers to the light tables: one for each component of the RGB color. The variables

red_fog_table, green_fog_table, and blue_fog_table are pointers to the fog

tables: one for each component of the RGB color. It would have been equally possible to make one

huge table for light values and one huge table for fog values; this would, however, require

(red_max+1)*(green_max+1)*(blue_max+1)*MAX_LIGHT_LEVELS total entries in

each table—a staggeringly large number. By splitting the tables into separate red, green, and blue

components, we have a total requirement of only ((red_max+1)+(green_max+1)+

(blue_max+1))*MAX_LIGHT_LEVELS entries.

The overridden method compute_light_table computes the red, green, and blue light

tables separately. The computation for each color component is identical. Each color (red, green,

or blue) has an intrinsic, unlit color value going from 0 to xxx_max, where xxx is red, green, or

blue. For each intrinsic, unlit color value, we then compute 256 (which is the constant

MAX_LIGHT_LEVELS+1) lighted intensities of this color. The lighted colors start at 0, which is

completely black and corresponds to intensity 0, and progress all the way up to the intrinsic unlit

value, which is as bright as possible and corresponds to intensity 255 (MAX_LIGHT_LEVELS).

The overridden method compute_fog_table similarly computes the red, green, and blue

fog tables separately. For all three tables, for each intrinsic, non-fogged color value, we then com-

pute 256 (which is the constant MAX_LIGHT_LEVELS+1) fogged intensities of this color. The

fogged colors start at the intrinsic, non-fogged color value, which corresponds to fog factor 0, and

progress all the way up to completely white, which washes out all traces of the original color and

corresponds to the maximum fog factor of 255 (MAX_LIGHT_LEVELS).

The overridden method light_native changes the intensity of a pixel, pointed to by

parameter pcolor, based on the intensity parameter and the pre-computed lighting table.

First, we decode the original color in pcolor, by extracting the bytes one by one, and split the

color into its separate red, green, and blue components by using the appropriate bit masks. Then,

we use the value of each color component (red, green, and blue) and the intensity parameter

to perform a lookup in the corresponding red, green, or blue lighting table. We then take these

lighted, and still separate, red, green, and blue values, combine them back into one single RGB
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color value, and write the new lighted RGB color value back to the same memory location as the

original color.

The overridden methodfog_native changes the intensity of a pixel, pointed to by parame-

ter pcolor, based on the intensity parameter and the pre-computed fog table. As with the

method light_native, we first split the original color into red, green, and blue; perform a

lookup in the fog tables for each component and the fog factor; combine the separated fogged red,

green, and blue values back into one RGB color; and finally write the RGB color back to memory.

Screen Information for Indexed Color:
l3d_screen_info_indexed

The class l3d_screen_info_indexed, subclassed from l3d_screen_info, represents

screen information for X PseudoColor visuals or other color models based upon an indexed or

paletted color model.

We first saw this concept in the discussion of colors and XImages, for PseudoColor visuals

under X.

Listing 2-34: si_idx.h
#ifndef _SI_IDX_H
#define _SI_IDX_H
#include "../tool_os/memman.h"

#include "scrinfo.h"

struct l3d_rgb {
int red, green, blue;

};

class l3d_screen_info_indexed : public l3d_screen_info {
int *light_table;
int *fog_table;

public:
l3d_screen_info_indexed(int palette_size, int max_red, int max_green, int max_blue);
virtual ~l3d_screen_info_indexed(void);

int palette_size;
l3d_rgb *palette;
int get_palette_size(void) {return palette_size; }
int palette_num_used;
int palette_max_red, palette_max_green, palette_max_blue;
unsigned long ext_to_native(int red, int green, int blue);
void compute_light_table(void);
void compute_fog_table(void);
void light_native(unsigned char *pcolor, int intensity);
void fog_native(unsigned char *pcolor, int intensity);

};

#endif
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Listing 2-35: si_idx.cc
#include "si_idx.h"

#include <stdio.h>
#include <values.h>
#include "../tool_os/memman.h"

l3d_screen_info_indexed::l3d_screen_info_indexed(int palette_size,
int max_red, int max_green, int max_blue)

{

this->palette = new l3d_rgb[palette_size];
this->palette_size = palette_size;
this->palette_num_used = 0;

this->palette_max_red = max_red;
this->palette_max_green = max_green;
this->palette_max_blue = max_blue;

this->bytes_per_pixel = 1;

light_table = new int[palette_size * NUM_LIGHT_LEVELS];
fog_table = new int[palette_size * NUM_LIGHT_LEVELS];

//- initial reasonable default values for external max rgb values; these
//- can be overridden just before actually reading rgb values from an
//- external source
ext_max_red = 255;
ext_max_green = 255;
ext_max_blue = 255;

}

l3d_screen_info_indexed::~l3d_screen_info_indexed() {
delete [] palette;
delete [] light_table;
delete [] fog_table;

}

unsigned long l3d_screen_info_indexed::ext_to_native(int red,
int green, int blue)

{
int i;
unsigned long result=0;
int found = 0;

int red_scaled = red*palette_max_red / ext_max_red,
green_scaled = green*palette_max_green / ext_max_green,

blue_scaled = blue*palette_max_blue / ext_max_blue;

for(i=0; i<palette_num_used && !found; i++) {
if ( (palette[i].red == red_scaled)

&& (palette[i].green == green_scaled)
&& (palette[i].blue == blue_scaled) )

{
found = 1;
result = i;

}
}
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if ( !found ) {
if (palette_num_used >= palette_size) {
printf("palette overflow; generate common palette for all textures");
result = 0;

}
else {
palette[palette_num_used].red = red_scaled;
palette[palette_num_used].green = green_scaled;
palette[palette_num_used].blue = blue_scaled;
result = palette_num_used;
palette_num_used++;

}
}

return result;
}

void l3d_screen_info_indexed::compute_light_table(void)
{
int c,i;
int unlit_r, unlit_g, unlit_b;
int lit_r, lit_g, lit_b;

int *tableptr;
tableptr = light_table;

for(c=0; c<palette_num_used; c++) {
unlit_r = palette[c].red;
unlit_g = palette[c].green;
unlit_b = palette[c].blue;

for(i=0; i<=MAX_LIGHT_LEVELS; i++) {
lit_r = unlit_r * i / MAX_LIGHT_LEVELS;
lit_g = unlit_g * i / MAX_LIGHT_LEVELS;
lit_b = unlit_b * i / MAX_LIGHT_LEVELS;

int existing_c;
int closest_existing_c=0;
int smallest_distance=MAXINT;
int squared_distance=0;
for(existing_c=0; existing_c < palette_num_used; existing_c++) {
squared_distance =
(palette[existing_c].red - lit_r) *
(palette[existing_c].red - lit_r)
+
(palette[existing_c].green - lit_g) *
(palette[existing_c].green - lit_g)
+
(palette[existing_c].blue - lit_b) *
(palette[existing_c].blue - lit_b) ;

if(squared_distance < smallest_distance) {
closest_existing_c = existing_c;
smallest_distance = squared_distance;

}
}

if(squared_distance > 300
&& palette_num_used < palette_size)

{
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palette[palette_num_used].red = lit_r * palette_max_red / ext_max_red;
palette[palette_num_used].red = lit_g * palette_max_red / ext_max_red;
palette[palette_num_used].red = lit_b * palette_max_red / ext_max_red;
closest_existing_c = palette_num_used;

palette_num_used++;
}

*tableptr++ = closest_existing_c;

}
}

}

void l3d_screen_info_indexed::compute_fog_table(void)
{
int c,i;
int unlit_r, unlit_g, unlit_b;
int lit_r, lit_g, lit_b;

int *tableptr;
tableptr = fog_table;

for(c=0; c<palette_num_used; c++) {
unlit_r = palette[c].red;
unlit_g = palette[c].green;
unlit_b = palette[c].blue;

for(i=0; i<=MAX_LIGHT_LEVELS; i++) {
lit_r = unlit_r + (int) (((float)i/MAX_LIGHT_LEVELS)*

(palette_max_red - unlit_r));
lit_g = unlit_g + (int) (((float)i/MAX_LIGHT_LEVELS)*

(palette_max_green - unlit_g));
lit_b = unlit_b + (int) (((float)i/MAX_LIGHT_LEVELS)*

(palette_max_blue - unlit_b));

int existing_c;
int closest_existing_c=0;
int smallest_distance=MAXINT;
for(existing_c=0; existing_c < palette_num_used; existing_c++) {
int squared_distance =
(palette[existing_c].red - lit_r) *
(palette[existing_c].red - lit_r)
+
(palette[existing_c].green - lit_g) *
(palette[existing_c].green - lit_g)
+
(palette[existing_c].blue - lit_b) *
(palette[existing_c].blue - lit_b) ;

if(squared_distance < smallest_distance) {
closest_existing_c = existing_c;
smallest_distance = squared_distance;

}
}

*tableptr++ = closest_existing_c;

}
}
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}

void l3d_screen_info_indexed::light_native(unsigned char *pcolor, int intensity)
{
*pcolor = light_table[ (*pcolor) * NUM_LIGHT_LEVELS + intensity ];

}

void l3d_screen_info_indexed::fog_native(unsigned char *pcolor, int intensity)
{
*pcolor = fog_table[ (*pcolor) * NUM_LIGHT_LEVELS + intensity ];

}

The variable palette is a dynamically allocated array of red, green, and blue color entries (of

type l3d_rgb).

The variables palette_size and palette_num_used keep track of the total size and

the currently used entries within the palette.

The variables palette_max_red, palette_max_green, and palette_max_
blue store the maximum allowable red, green, and blue intensities in each palette entry. These

are used as a reference in mapping the palette entries to the actual color range needed by the under-

lying windowing or hardware system.

The overridden method ext_to_native returns a palette index corresponding to the RGB

color. First, it scales the specified RGB value to lie within the RGB range supported by the palette.

It then searches to see if the specified RGB value can be found in the palette. If so, then the color

has already been used before, and the index of the already-allocated palette entry is returned. If

not, the color has not yet been used, a new palette entry is allocated for the new RGB color, and the

new index is returned. If the palette is full (i.e., no new entries can be allocated), an error message

is printed indicating palette overflow. It is the responsibility of the calling routine to ensure that

palette overflow does not occur. Typically, the allocated colors come from external image files,

and palette overflow at run time can be avoided by using a preprocessing tool on all image files to

generate a common palette for all images, thereby ensuring that all image files and therefore all

allocated colors do not overflow the palette size. The companion book Advanced Linux 3D

Graphics Programming discusses texture mapping, palettes, and common palette generation in

more detail.

The variable light_table is pointer to the single light table; since a palette typically has

no more than 256 entries, we do not need to split the light table into red, green, and blue compo-

nents as we did with class l3d_screen_info_rgb. The variable fog_table is a pointer to

the fog table.

The overridden method compute_light_table functions similarly to its counterpart in

class l3d_screen_info_rgb, but with the added restriction that only palette_size col-

ors are available for use. For each entry in the palette, we extract the corresponding true red, green,

and blue color components. We then compute the light intensity for this color exactly as in class

l3d_screen_info_rgb, for all intensities from 0 to MAX_LIGHT_LEVELS, where 0 corre-

sponds to black and MAX_LIGHT_LEVELS corresponds to the intrinsic unlit color. This is then

the desired color entry which should be referenced in the light table for this particular color and

intensity. But, we must work within the restrictions of the palette; we cannot have all the colors we

want. We therefore search the existing palette color entries for the entry which is nearest to the
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desired entry. The nearest entry is the existing palette entry whose red, green, and blue values have

the smallest squared distance from the desired red, green, and blue values (this is the well-known

“least-squares” method). After finding the nearest match in the palette, we then have two possibil-

ities. First, it is possible that all palette entries have already been allocated to other colors—in this

case, we cannot allocate any new colors, and must accept the nearest match which we found, no

matter how close or far it is to the actual desired color. We therefore enter the palette index of the

nearest match into the light table. On the other hand, it might be the case that the palette still has

some free entries into which we can allocate new colors. In this case, we see how close the nearest

existing match was. If it was “near enough” to the desired color, then we just go ahead and accept

the nearest match; however, if the nearest match was substantially different from the desired color,

then we allocate a new entry in the palette, assign the exact desired color to the new palette entry,

and finally enter the new palette index into the light table. The criteria for deciding how near “near

enough” must be is arbitrary; in the code, this is currently set to be any squared distance less than

300. Note that this compute_light_table method should only be called after all other pal-

ette entries, for the main colors used by the program, have been allocated. Otherwise, the light

table computation may, as we just saw, reserve some palette entries for its computed light values,

meaning that fewer or perhaps no other palette entries will be available for use by the program if

other colors are needed.

The overridden method compute_fog_table functions identically to com-
pute_light_table, except that it accesses the fog table, and computes the desired color

based on the fog factor going from the normal intensity to pure white.

The overridden method light_native changes the intensity of a pixel, pointed to by

parameter pcolor, based on the intensity parameter and the pre-computed lighting table.

The pixel being pointed to is an index into a palette. We simply use this palette index and the

desired intensity to perform a look-up in the light table. The entry we find in the light table is also a

palette index, pointing to the nearest match in the palette for the original color at the desired inten-

sity. Then, we just write this nearest-match palette index back into the memory pointed to by

pcolor.

The overridden methodfog_native changes the intensity of a pixel, pointed to by parame-

ter pcolor, based on the intensity parameter and the pre-computed fog table. It functions

identically to thelight_nativemethod, merely using the fog table instead of the light table.

A Screen Under X: l3d_screen_x11

The class l3d_screen_x11, subclassed from l3d_screen, represents a screen under the X

Window System, in the form of a window using an XImage for graphics display.

As with the parent class l3d_screen, we first saw this concept in program

hello_oo_image, which directly used an XImage in an X window as an output device. Con-

crete classl3d_screen_x11 is a recognition of the fact that an X window is only one particular

concrete type of screen, but does not necessarily characterize all abstract types of screens which

our application program may use in the future.
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Listing 2-36: sc_x11.h
#ifndef __SC_X11_H
#define __SC_X11_H
#include "../tool_os/memman.h"

#include "screen.h"
#include <X11/Intrinsic.h>
#include <X11/Xlib.h>

class l3d_screen_x11 : public l3d_screen {
protected:
Visual *vis;
Colormap cmap;
unsigned char *buffer;
GC gc;
int depth, bytespp, scanline_pad;
unsigned long* col_cells;

void close_screen(void);
public:
XImage *ximg;
virtual XImage *create_ximage(void);
virtual void create_buffer(void);

Display *dpy;
Window w;
l3d_screen_x11(int xsize, int ysize);
virtual ~l3d_screen_x11(void);
void refresh_palette(void);
void open_screen(void);
void blit_screen(void);

};

class l3d_screen_factory_x11 : public l3d_screen_factory {
public:
l3d_screen *create(int xsize, int ysize) {
l3d_screen_x11 *s;
s = new l3d_screen_x11(xsize,ysize);

s->create_buffer();
s->ximg = s->create_ximage();

return s;
}

};

#endif

Listing 2-37: sc_x11.cc
#include "sc_x11.h"
#include <stdlib.h>
#include "../tool_os/memman.h"

l3d_screen_x11::l3d_screen_x11(int xsize, int ysize) :
l3d_screen(xsize,ysize)

{

XPixmapFormatValues *pixmap_formats;
int i, count;
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dpy = XopenDisplay(NULL);

pixmap_formats = XListPixmapFormats(dpy, &count);
for(i=0, depth=0; i<count; i++) {
if(pixmap_formats[i].depth > depth) {
depth = pixmap_formats[i].depth;
bytespp = pixmap_formats[i].bits_per_pixel / BITS_PER_BYTE;
scanline_pad = pixmap_formats[i].scanline_pad;

}
}
Xfree(pixmap_formats);
printf("max depth of display %d", depth);
printf("bytes per pixel: %d", bytespp);

bufsize = xsize * ysize * bytespp;

vis = DefaultVisual(dpy,0);
w = XcreateWindow(dpy,

DefaultRootWindow(dpy),
100, 100,
xsize, ysize,
0,
depth,
CopyFromParent,
vis,
0, NULL);

XStoreName(dpy, w, "l3d application");
XMapWindow(dpy, w);

switch(vis->c_class) {

XVisualInfo vi;
int result;

case PseudoColor:
result=
XMatchVisualInfo(dpy, DefaultScreen(dpy), depth, PseudoColor, &vi);

if(result) {
printf("visual is PseudoColor (indexed),");
printf("colormapsize %d,", vi.colormap_size);
printf("bits per rgb %d",vis->bits_per_rgb);

col_cells = new unsigned long[vi.colormap_size];
sinfo = new l3d_screen_info_indexed(vi.colormap_size,

(1<vis->bits_per_rgb)-1,
(1<vis->bits_per_rgb)-1,
(1<vis->bits_per_rgb)-1);

printf("is indexed");
}else {
printf("no information for PseudoColor visual");

}

break;

case TrueColor:
result=
XMatchVisualInfo(dpy, DefaultScreen(dpy), depth, TrueColor, &vi);

if(result) {
printf("visual is TrueColor, %d bytes per pix, %d bytes per rgb",

bytespp,
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vi.depth / BITS_PER_BYTE);
col_cells = NULL;
sinfo = new l3d_screen_info_rgb(vis->red_mask,

vis->green_mask,
vis->blue_mask,
bytespp,
vi.depth / BITS_PER_BYTE);

}else {
printf("Couldn't get visual information, XmatchVisualInfo");
exit(-1);

}
break;

case StaticColor: printf("unsupported visual StaticColor");break;
case GrayScale: printf("unsupported visual GrayScale");break;
case StaticGray: printf("unsupported visual StaticGray");break;
case DirectColor: printf("unsupported visual DirectColor");break;

}

XSelectInput(dpy, w, KeyPressMask);
gc = DefaultGC(dpy, DefaultScreen(dpy));

}

l3d_screen_x11::~l3d_screen_x11(void) {
delete sinfo;
XdestroyImage(ximg);
if(col_cells) delete [] col_cells;
XcloseDisplay(dpy);

}

inline void l3d_screen_x11::blit_screen(void) {
XPutImage(dpy, w, gc, ximg,

0,0,0,0, /* source x,y; destination x,y */
xsize, ysize);

}

void l3d_screen_x11::open_screen(void) {
}

void l3d_screen_x11::close_screen(void) {

}

void l3d_screen_x11::refresh_palette(void) {

l3d_screen_info_indexed *si;
if ((si = dynamic_cast<l3d_screen_info_indexed *>(sinfo))) {

int idx;

cmap = XCreateColormap(dpy, w, vis, AllocNone);

XAllocColorCells(dpy, cmap, TRUE, NULL, 0, col_cells,
(int)pow(2.0, (double)depth));

for(idx=0; idx<si->palette_size; idx++) {
XColor xcolor;

xcolor.pixel = idx;
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xcolor.red = (int) (( (float)si->palette[idx].red /
si->palette_max_red ) * 65535);

xcolor.green = (int) (( (float)si->palette[idx].green /
si->palette_max_green ) * 65535);

xcolor.blue = (int)( ( (float)si->palette[idx].blue /
si->palette_max_blue ) * 65535);

xcolor.flags = DoRed | DoGreen | DoBlue;
XAllocColor(dpy, cmap, &xcolor);
XStoreColor(dpy, cmap, &xcolor);

}
XSetWindowColormap(dpy, w, cmap);

}

}

XImage *l3d_screen_x11::create_ximage(void) {
return XCreateImage(dpy, vis, depth,

Zpixmap,
0,
(char *)buffer,
xsize, ysize,
scanline_pad,
0);

}

void l3d_screen_x11::create_buffer(void) {
buffer = new unsigned char [xsize*ysize*bytespp];
sinfo->p_screenbuf = buffer;

}

The variables dpy, w, vis, and GC store the X display, window, visual, and graphics context,

respectively.

The variable ximg points to the XImage used for graphics display.

The variable buffer points to the memory allocated for the off-screen buffer, used by the

XImage.

The variables cmap and col_cells are internally used for specification and storage of an

X colormap, used only for visuals based on an indexed color model.

The variables depth, bytespp, and scanline_pad represent information about the

supported image format of the X window.

The constructor creates and maps the X window, allocates an off-screen buffer, creates an

l3d_screen_info object corresponding to the window’s color depth and model, and requests

event notification for the window.

The overridden method blit_screen calls XPutImage to copy the off-screen image into

the window.

The overridden method refresh_palette transfers the platform-independent palette

stored in the l3d_screen_info_indexed object into the X colormap. The Xlib functions

XCreateColormap, XAllocColorCells, XAllocColor, XStoreColor, and

XSetWindowColormap are used to set the X colormap.

The method create_buffer allocates off-screen memory for the XImage. It also stores a

pointer to this memory in the l3d_screen_info object. This does not take place automati-

cally in the constructor for reasons discussed in the next paragraph.
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The method create_ximage creates the XImage that is used to display the graphics. This

is a virtual function and is not called within the constructor because subclasses might call a differ-

ent routine to create an XImage. In particular, the shared-memory extension allows creation of a

faster, shared-memory XImage, in which case we override the create_ximage virtual

method—a technique which would not work if the XImage had already been created within the

constructor. The factory, which is responsible for creating l3d_screen_x11 objects, calls the

virtual create_buffer and create_ximage functions, thereby correctly initializing the

object.

NOTE In general, virtual functions called from within a constructor don’t work.

Figure 2-22 illustrates the class diagram for the screen-related classes.
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Abstracting the Rasterizer: l3d_rasterizer_2d

The class l3d_rasterizer_2d represents a 2D, double-buffered rasterizer—a subsystem

capable of drawing 2D geometric primitives on a double-buffered raster output device. The class

does not do any of the rasterization work itself, but instead relies on a rasterizer implementation

(covered in the next section) to provide a “toolkit” of functions which the rasterizer then calls.

We first saw this concept in the discussion of byte-to-pixel correspondence, where we manu-

ally used a formula to calculate which bytes in an off-screen buffer correspond to a pixel at a

particular location. At that point, we implicitly assumed that the main application program

directly manipulates the bytes in an off-screen buffer, thereby assuming full responsibility for

rasterization concepts (such as plotting a pixel) and their implementation (calculating the

byte-to-pixel correspondence and setting the bytes according to the color depth and color model).

Class l3d_rasterizer_2d is a recognition of the more general concept of a rasterizer inter-

face, which allows access to abstract rasterization concepts. The rasterizer interface allows

drawing not only of individual pixels, but also of groups of pixels forming geometric primitives,

such as lines and polygons.

NOTE Separating the rasterizer and the rasterizer implementation is an example of the
generally applicable bridge design pattern, where an abstraction and its implementation are
two separate classes. This allows for the class hierarchies for the abstraction and the imple-
mentation thereof to vary and be refined independently, avoiding the multiplicative explosion
of classes discussed earlier (nested generalizations). This technique is also referred to as
using a handle.

Listing 2-38: rasteriz.h
#ifndef __RASTERIZ_H
#define __RASTERIZ_H
#include "../tool_os/memman.h"

#include "../tool_2d/scrinfo.h"

class l3d_polygon;
class l3d_polygon_2d_flatshaded;

class l3d_rasterizer_2d_imp {
protected:
int xsize, ysize;
l3d_screen_info *sinfo;

public:
l3d_rasterizer_2d_imp(int xs, int ys, l3d_screen_info *si);
virtual ~l3d_rasterizer_2d_imp(void) {};

virtual void clear_buffer(void);
virtual void draw_point( int x ,

int y ,
unsigned long col );

virtual void draw_line( int x0 ,
int y0 ,
int x1 ,
int y1 ,
unsigned long col );
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virtual void draw_polygon_flatshaded( const l3d_polygon_2d_flatshaded
*p_poly );

};

class l3d_rasterizer_2d {
protected:
l3d_rasterizer_2d_imp *imp2d;

public:
l3d_rasterizer_2d(l3d_rasterizer_2d_imp *i) {
imp2d = i;

}
virtual ~l3d_rasterizer_2d(void) {}

virtual void clear_buffer(void)
{imp2d->clear_buffer(); }

virtual void draw_point( int x ,
int y ,
unsigned long col )

{imp2d->draw_point(x,y,col); }

virtual void draw_line( int x0 ,
int y0 ,
int x1 ,
int y1 ,
unsigned long col )

{imp2d->draw_line(x0,y0,x1,y1,col);}

virtual void draw_polygon_flatshaded( const l3d_polygon_2d_flatshaded
*p_poly )

{imp2d->draw_polygon_flatshaded(p_poly); }
};

class l3d_rasterizer_2d_imp_factory {
public:
virtual l3d_rasterizer_2d_imp *create(int xs, int ys, l3d_screen_info *si)=0;

};

#include "../geom/polygon/polygon.h"
#include "../geom/polygon/p_flat.h"

#endif

Listing 2-39: rasteriz.cc
#include "rasteriz.h"
#include "../tool_os/memman.h"

l3d_rasterizer_2d_imp::l3d_rasterizer_2d_imp
(int xs, int ys, l3d_screen_info *si)
{
xsize=xs; ysize=ys; sinfo=si;

}

void l3d_rasterizer_2d_imp::clear_buffer(void)
{}

void l3d_rasterizer_2d_imp::draw_point( int x ,
int y ,
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unsigned long col )
{}

void l3d_rasterizer_2d_imp::draw_line( int x0 ,
int y0 ,
int x1 ,
int y1 ,
unsigned long col )

{}

void l3d_rasterizer_2d_imp::draw_polygon_flatshaded
( const l3d_polygon_2d_flatshaded
*p_poly )

{}

The variable imp2d is a pointer to a 2D rasterizer implementation object, which provides the

rasterizer with a toolkit of system-specific functions for directly manipulating the underlying ras-

ter display hardware.

Notice the absence of an off-screen buffer pointer in the rasterizer class. The rasterizer does

not need to and in fact cannot provide the rasterizer implementation with an off-screen buffer. This

is because the rasterizer implementation might be a hardware rasterizer implementation, where

direct access to the frame buffer might not be possible or desirable. Therefore, the rasterizer

implementation itself must worry about whether the off-screen buffer exists in main memory

directly accessible to the program, or whether the off-screen buffer is only accessible through

hardware API functions of a dedicated hardware rasterization subsystem.

The method clear_buffer clears the off-screen buffer by asking the rasterizer implemen-

tation to do so. Clearing the off-screen buffer erases any image in the buffer, making it completely

empty. We often do this before drawing to the off-screen buffer, since otherwise the “leftover”

contents from the last frame still remain within the buffer. One exception to this is if we always

update every pixel in the screen every frame, in which case clearing the off-screen buffer is unnec-

essary and a waste of time. This situation is indeed the case with indoor portal-based environments

(discussed and implemented in the companion book Advanced Linux 3D Graphics

Programming).

The method draw_point draws a point in the off-screen buffer by asking the rasterizer

implementation to do so. The parameters specify the location and color of the point, where the

color is specified in native screen format, as supplied by l3d_screen_info::ext_to_
native.

The method draw_line draws a line of pixels in the off-screen buffer by asking the

rasterizer implementation to do so. The parameters specify the location of the starting and ending

points, and the color is specified in native screen format, as supplied by l3d_screen_
info::ext_to_native. We have not used draw_line yet; it is described in Chapter 3.

The method draw_polygon_flatshaded draws a single-colored (flat-shaded) poly-

gon, filled with identically colored pixels, in the off-screen buffer by asking the rasterizer

implementation to do so. The parameter is a polygon object. We have not used draw_poly-

gon_flatshaded or polygon objects yet; they are introduced in Chapter 3.
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A Rasterizer Implementation: l3d_rasterizer_2d_imp

The class l3d_rasterizer_2d_imp represents an implementation of the tools necessary for

a 2D rasterizer to do its work, and is called a rasterizer implementation. A rasterizer implementa-

tion is an abstract class, and is subclassed to provide concrete rasterizer implementations for

specific software or hardware platforms.

As with the related class l3d_rasterizer_2d, we first saw this concept in the discussion

of byte-to-pixel correspondence. While the related class l3d_rasterizer_2d represents an

interface to 2D rasterizer functionality, the class l3d_rasterizer_2d_imp represents an

interface to an implementation of 2D rasterizer functionality. This rasterizer implementation can

(in subclasses) be based upon either hand-coded software algorithms or an API to hard-

ware-accelerated rasterization functions.

The code for class l3d_rasterizer_2d_imp is in the previously shown Listings 2-38

and 2-39; the code for the rasterizer and the (abstract) rasterizer implementation are in the same

files.

The variable sinfo points to an object of type l3d_screen_info. Through the sinfo
pointer, the rasterizer implementation can obtain all the information it needs about the target dis-

play device in order to draw into it.

The variables xsize and ysize store the horizontal and vertical dimensions of the

off-screen buffer in pixels.

The abstract method clear_buffer is a placeholder for a routine to clear the off-screen

buffer. This method is overridden in descendants with the actual system-specific implementation

code.

The abstract method draw_point is a placeholder for a routine to draw a point in the

off-screen buffer. This method is overridden in descendants with the actual system-specific imple-

mentation code.

The abstract method draw_line is a placeholder for a routine to draw a line in the

off-screen buffer. This method is overridden in descendants with the actual system-specific imple-

mentation code. Drawing lines in software is covered in Chapter 3.

The method draw_polygon_flatshaded is a placeholder for a routine to draw a sin-

gle-colored (flat-shaded) polygon in the off-screen buffer. This method is overridden in

descendants with the actual system-specific implementation code. Drawing polygons in software

is covered in Chapter 3.

A Software Rasterizer Implementation:
l3d_rasterizer_2d_sw_imp

The class l3d_rasterizer_2d_sw_imp, derived from class l3d_rasterizer_2d_
imp, represents a rasterizer implementation implemented in software (as opposed to hardware).

As with the parent class l3d_rasterizer_2d_imp, we first saw this concept in the dis-

cussion of byte-to-pixel correspondence. The calculation of the bytes corresponding to a pixel and

setting these bytes in order to display geometric primitives are all operations typical of software

rasterization implementations, but not necessarily of hardware rasterizer implementations. This is

the reason that such byte and pixel calculations take place only in the concrete
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l3d_rasterizer_2d_sw_imp subclass, which represents a software rasterizer implementa-

tion, and not in the abstract ancestor class l3d_rasterizer_2d_imp, which represents a

more abstract concept of a software or hardware rasterizer implementation.

NOTE The following code implements in software two functions which we have not yet seen
in any example programs: drawing a line and drawing a flat-shaded polygon. For now, just
skip these functions; we return to them in Chapter 3, which discusses rasterization in detail.

Listing 2-40: ras_sw.h
#ifndef __RAS_SW_H
#define __RAS_SW_H
#include "../tool_os/memman.h"

#include "rasteriz.h"
#include "math.h"
#include "../system/sys_dep.h"

class l3d_rasterizer_2d_sw_imp :
virtual public l3d_rasterizer_2d_imp

{
protected:
unsigned char *address_of_point(int x, int y);
void draw_point_at_paddress(unsigned char **a, unsigned long col);

public:
l3d_rasterizer_2d_sw_imp(int xs, int ys, l3d_screen_info *si);
void clear_buffer(void);
void draw_point(int x, int y, unsigned long col);
void draw_line(int x0, int y0, int x1, int y1, unsigned long col);
void draw_polygon_flatshaded(const l3d_polygon_2d_flatshaded *p_poly);

};

class l3d_rasterizer_2d_sw_imp_factory :
public l3d_rasterizer_2d_imp_factory

{
public:
l3d_rasterizer_2d_imp *create(int xs, int ys, l3d_screen_info *si);

};

inline unsigned char *l3d_rasterizer_2d_sw_imp::address_of_point(int x, int y)
{
return sinfo->p_screenbuf +(x + (y*xsize)) * sinfo->bytes_per_pixel;

}

inline void l3d_rasterizer_2d_sw_imp::draw_point_at_paddress
(unsigned char **p, unsigned long col)
{
register int i;
unsigned long mask = MAX_BYTE;
char shift = 0;

for(i=0; i<sinfo->bytes_per_pixel; i++) {
**p = (col & mask) > shift;
(*p)++;
mask <= BITS_PER_BYTE;
shift += BITS_PER_BYTE;

}
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}

inline void l3d_rasterizer_2d_sw_imp::draw_point
(int x, int y, unsigned long col)
{
unsigned char *p = address_of_point(x,y);
draw_point_at_paddress(&p, col);

}

#endif

Listing 2-41: ras_sw.cc
#include "ras_sw.h"
#include "../system/sys_dep.h"
#include <string.h>
#include <stdlib.h>
#include "../tool_os/memman.h"

l3d_rasterizer_2d_imp * l3d_rasterizer_2d_sw_imp_factory::create
(int xs, int ys, l3d_screen_info *si)
{
return new l3d_rasterizer_2d_sw_imp(xs,ys,si);

}

l3d_rasterizer_2d_sw_imp::l3d_rasterizer_2d_sw_imp
(int xs, int ys, l3d_screen_info *si)

: l3d_rasterizer_2d_imp(xs,ys,si)
{
}

void l3d_rasterizer_2d_sw_imp::clear_buffer(void) {
memset(sinfo->p_screenbuf, 0x00, (size_t)xsize*ysize*sinfo->bytes_per_pixel);

}

void l3d_rasterizer_2d_sw_imp::draw_line(int x0, int y0,
int x1, int y1, unsigned long col)

{
l3d_real fx,fy,m;
int x,y,tmp,dx,dy;

dx = x1 - x0;
dy = y1 - y0;

if(abs( ABS_CAST dx) > abs( ABS_CAST dy)) {//- a "mostly horizontal" line
//- ensure (x0,y0) is horizontally smaller than (x1,y1)
if(x1<x0) {tmp=x0;x0=x1;x1=tmp; tmp=y0;y0=y1;y1=tmp;}
fy = int_to_l3d_real(y0);
m = l3d_divrr( int_to_l3d_real(dy), int_to_l3d_real(dx) );
for(x=x0; x<=x1; x++) {
draw_point(x,

SW_RAST_Y_REVERSAL(ysize,
l3d_real_to_int
(fy+float_to_l3d_real(0.5))),

col);
fy = fy + m;

}
}//- mostly horizontal line
else {//- mostly vertical line
//- ensure (x0,y0) is vertically smaller than (x1,y1)
if(y1<y0) {tmp=x0;x0=x1;x1=tmp; tmp=y0;y0=y1;y1=tmp;}
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fx = int_to_l3d_real(x0);
if( !(int_to_l3d_real(dy) )) return; //- degenerate: line is just a point
m = l3d_divrr( int_to_l3d_real(dx), int_to_l3d_real(dy) );
for(y=y0; y<=y1; y++) {
draw_point(l3d_real_to_int(fx+float_to_l3d_real(0.5)),

SW_RAST_Y_REVERSAL(ysize,y),
col);

fx = fx + m;
}

}//- mostly vertical line
}

void l3d_rasterizer_2d_sw_imp::draw_polygon_flatshaded
(const l3d_polygon_2d_flatshaded *p_poly)
{
l3d_real x0,y0,x1,y1,x2,y2,x3,
left_x_start,left_y_start,left_x_end,left_y_end,left_dx,left_x,leftedge,
right_x_start,right_y_start,right_x_end,right_y_end,right_dx,right_x,rightedge;
int left_ceily_start, left_ceily_end,
right_ceily_start, right_ceily_end, scanline;
l3d_real top_y, bottom_y;
int point_on_right=0;
int left_idx, right_idx, top_y_idx, bottom_y_idx;

int clipleftedge, cliprightedge;
int maxy_upper, iceil_y0, iceil_y1, iceil_y2;

int i;

//- convenience macro for accessing the vertex coordinates. Notice
//- that we access the clipped vertex index list (not the original),
//- and the transformed coordinate (not the original). This means
//- we draw the clipped version of the transformed polygon.

#define VTX(i) ((**(p_poly->vlist))[ (*(p_poly->clip_ivertices))[i].ivertex ].transformed)

//————————————————————————————————————–
//- STEP 1: Find top and bottom vertices
//————————————————————————————————————–

top_y = VTX(0).Y_;
top_y_idx = 0;
bottom_y = top_y;
bottom_y_idx = top_y_idx;
for(i=0; i<p_poly->clip_ivertices->num_items; i++) {

if(VTX(i).Y_ < top_y) {
top_y = VTX(i).Y_;
top_y_idx = i;

}
if(VTX(i).Y_ > bottom_y) {
bottom_y = VTX(i).Y_;
bottom_y_idx = i;

}
}

left_idx = top_y_idx;
right_idx = top_y_idx;

//————————————————————————————————————–
//- STEP 2: Create empty left edge
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//————————————————————————————————————–
left_x_start = VTX(top_y_idx).X_;
left_y_start = VTX(top_y_idx).Y_;
left_ceily_start=iceil(left_y_start);
left_ceily_end=left_ceily_start;

//————————————————————————————————————–
//- STEP 3: Create empty right edge
//————————————————————————————————————–
right_x_start=left_x_start;
right_y_start=left_y_start;
right_ceily_start=left_ceily_start;
right_ceily_end=right_ceily_start;

//————————————————————————————————————–
//- STEP 4: Loop from top y to bottom y
//————————————————————————————————————–
scanline = left_ceily_start;

while(scanline < ysize) {

//————————————————————————————————————–
//- STEP 5: Find next left-edge of non-zero height (if needed)
//————————————————————————————————————–
while( left_ceily_end - scanline <= 0 ) {
if (left_idx == bottom_y_idx) return; //- done
left_idx = p_poly->next_clipidx_left

(left_idx, p_poly->clip_ivertices->num_items);
left_y_end= VTX(left_idx).Y_;
left_ceily_end = iceil(left_y_end);

if(left_ceily_end - scanline) { //- found next vertex
//—————————————————————————————————–
//- STEP 5a: Initialize left-x variables
//—————————————————————————————————–
left_x_end= VTX(left_idx).X_;
left_dx = l3d_divrr(left_x_end-left_x_start,left_y_end-left_y_start);
left_x = left_x_start + //- sub-pixel correction

l3d_mulrr(int_to_l3d_real(left_ceily_start)-left_y_start , left_dx);
}else { //- did not find next vertex: last failed end = new start
left_x_start = VTX(left_idx).X_;
left_y_start = VTX(left_idx).Y_;
left_ceily_start = iceil(left_y_start);

}
}

//————————————————————————————————————–
//- STEP 6: Find next right-edge of non-zero height (if needed)
//————————————————————————————————————–
//- if needed, find next right-edge whose ceily_end > current scanline
//- this is a while and not an if, as desribed above...
while(right_ceily_end - scanline <= 0 ) {
if (right_idx == bottom_y_idx) return; //- done
right_idx = p_poly->next_clipidx_right

(right_idx,p_poly->clip_ivertices->num_items);
right_y_end=VTX(right_idx).Y_;
right_ceily_end = iceil(right_y_end);
if(right_ceily_end - scanline) { //- found next vertex
//—————————————————————————————————–
//- STEP 6a: Initialize right-x variables
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//—————————————————————————————————–
right_x_end=VTX(right_idx).X_;
right_dx =
l3d_divrr(right_x_end-right_x_start,right_y_end-right_y_start);

right_x = right_x_start + //- sub-pixel correction
l3d_mulrr(int_to_l3d_real(right_ceily_start)-right_y_start , right_dx);

}else { //- did not find next vertex: last failed end = new start
right_x_start = VTX(right_idx).X_;
right_y_start = VTX(right_idx).Y_;
right_ceily_start = iceil(right_y_start);

}
}

//- clamp edge values to screen
if (left_ceily_end > ysize) left_ceily_end = ysize;
if (right_ceily_end > ysize) right_ceily_end = ysize;

//—————————————————————————————————–
//- STEP 7: Loop until left and/or right edge is finished
//—————————————————————————————————–
while ( (scanline < left_ceily_end) && (scanline < right_ceily_end) ) {
clipleftedge = iceil(left_x);

#ifdef FIXED_POINT_MATH
//- due to numerical inaccuracy with fixed-point math we also
//- perform this (otherwise unnecessary) check here to clamp the
//- edge values to the screen borders
clipleftedge = (clipleftedge < 0) ? 0 : clipleftedge;

#endif
cliprightedge = iceil(right_x);

#ifdef FIXED_POINT_MATH
//- due to numerical inaccuracy with fixed-point math we also
//- perform this (otherwise unnecessary) check here to clamp the
//- edge values to the screen borders
cliprightedge = (cliprightedge > xsize) ? xsize : cliprightedge;

#endif

#ifdef FIXED_POINT_MATH
//- due to numerical inaccuracy with fixed-point math we also
//- perform this (otherwise unnecessary) check here to clamp the
//- edge values to the screen borders
if( (left_x<int_to_l3d_real(xsize )) && (right_x>int_to_l3d_real(0))

&& (clipleftedge <= cliprightedge) && (scanline>0) )
#endif

{

//—————————————————————————————————–
//- STEP 8: Draw horizontal span
//—————————————————————————————————–
for(register char unsigned *pix =

address_of_point(clipleftedge,
SW_RAST_Y_REVERSAL(ysize,scanline));

pix < address_of_point(cliprightedge, scanline);
)

{
draw_point_at_paddress(&pix, p_poly->final_color);

}
}

//—————————————————————————————————–
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//- STEP 9: Increase y, and step x-values on left and right edges
//—————————————————————————————————–
scanline++;
left_x += left_dx;
right_x += right_dx;

}

//—————————————————————————————————–
//- STEP 10: Continue loop, looking for next edge of non-zero height
//—————————————————————————————————–

//- for the left and/or right segment(s) which just completed drawing
//- initialize xxx_start = xxx_end, to begin next segment. xxx_end is
//- then searched for in the next iteration (the while() loops)
if ( left_ceily_end - scanline <= 0 ) {
left_x_start=left_x_end;
left_y_start=left_y_end;
left_ceily_start=left_ceily_end;

}
if ( right_ceily_end - scanline <= 0 ) {
right_x_start=right_x_end;
right_y_start=right_y_end;
right_ceily_start=right_ceily_end;

}
}

}
#undef VTX(i)

The private method address_of_point returns the memory address in the off-screen buffer

of the first byte corresponding to the pixel at the given location. The formula which is used was

presented earlier, in the discussion of byte-to-pixel correspondence. Notice that this function uses

the sinfo object (of type l3d_screen_info) to find out the display depth and the address of

the first byte in the off-screen buffer.

The private method draw_point_at_paddress draws a pixel with a specified color at a

particular address in the off-screen buffer. As parameters it takes a pointer to the first address to be

drawn to (obtainable via the address_of_point function) and a color specified in native for-

mat (obtainable via the l3d_screen_info::ext_to_native function). The function

places the bytes from the color parameter into the off-screen buffer in the proper order, and incre-

ments the pointer variable in the calling function to point to the next pixel in the off-screen buffer.

This way, plotting a series of horizontally adjacent pixels only requires one call to

address_of_point and a series of repeated calls to draw_point_at_paddress. Call-

ing both address_of_point and draw_point_at_paddress for every single pixel to

be drawn would be wasteful and unnecessarily slow. When drawing filled polygons (covered in

Chapter 3), we often need to draw series of horizontally adjacent pixels (called horizontal spans),

and will thus follow the strategy of calling address_of_point once and

draw_point_at_paddress several times for each horizontal span.

The overridden method clear_buffer uses the memset function to set all bytes in the

off-screen buffer to zero, thereby clearing the screen. Recall, we need to clear the off-screen buffer

before drawing a new frame, since otherwise the contents from the previous frame will still be in

the buffer. The exception to this rule is if every pixel in the buffer is updated every frame.
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The overridden method draw_point uses the address_of_point and

draw_point_at_paddress functions to find and fill the correct bytes in the off-screen

buffer corresponding to the desired pixel. As mentioned above, calling both

address_of_point and draw_point_at_paddress is unnecessarily slow if we are

drawing a series of horizontal span of pixels, so the function draw_point is only used if we are

drawing a single point to the screen.

The overridden method draw_line uses a software algorithm to draw pixels lying on a line

between the given endpoints. The algorithm used is covered later in Chapter 3, which deals with

the topic of software rasterization.

The overridden method draw_polygon_flatshaded uses a software algorithm to draw

pixels lying within a polygon specified by the given polygon object. The algorithm used, as well

as the polygon class itself, is covered in Chapter 3.

Figure 2-23 illustrates the class diagram for rasterization-related classes.
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Choosing the Concrete Factories

The classl3d_factory_manager represents the factory manager which contains all factories

that any class might need in the entire program. Whenever an object requests object creation

through “a factory,” this factory is to be found in the central factory manager.

We first encountered this concept in sample program ch2_hello_oo, which used an appli-

cation factory to create the main application object, thereby shielding the program logic from the

underlying concrete application type. (We also discussed at length the idea behind the abstract fac-

tory design pattern, using a carpenter analogy.)

Listing 2-42: factorys.h
#ifndef __FACTORYS_H
#define __FACTORYS_H
#include "../tool_os/memman.h"

#include "../tool_2d/screen.h"
#include "../raster/rasteriz.h"
#include "../tool_os/dispatch.h"

class l3d_factory_manager_v_0_1 {
public:
l3d_factory_manager_v_0_1(void);
virtual ~l3d_factory_manager_v_0_1(void);
int should_delete_factories;
l3d_screen_factory *screen_factory;
l3d_rasterizer_2d_imp_factory *ras_2d_imp_factory;
l3d_dispatcher_factory *dispatcher_factory;

int choose_factories(void);
};

extern l3d_factory_manager_v_0_1 factory_manager_v_0_1;

#endif

Listing 2-43: factorys.cc
#include "factorys.h"

#include "../tool_os/dis_x11.h"
#include "../tool_os/dis_mesa.h"
#include "../tool_2d/sc_x11.h"
#include "../tool_2d/sc_x11sh.h"
#include "../tool_2d/sc_mesa.h"
#include "../raster/ras_sw.h"
#include "../raster/ras_mesa.h"
#include <stdio.h>
#include "../tool_os/memman.h"

l3d_factory_manager_v_0_1 factory_manager_v_0_1;

l3d_factory_manager_v_0_1::l3d_factory_manager_v_0_1(void) {
screen_factory = NULL;
ras_2d_imp_factory = NULL;
dispatcher_factory = NULL;
should_delete_factories=1;

}
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l3d_factory_manager_v_0_1::~l3d_factory_manager_v_0_1(void) {
if(should_delete_factories) {
if(screen_factory) {
delete screen_factory;
screen_factory = NULL;

}
if(ras_2d_imp_factory) {
delete ras_2d_imp_factory;
ras_2d_imp_factory = NULL;

}
if(dispatcher_factory) {
delete dispatcher_factory;
dispatcher_factory = NULL;

}
}

}

int l3d_factory_manager_v_0_1::choose_factories(void) {
char input[80];
int i;

printf("which configuration?");
printf("1. Software X11");
printf("2. Software X11 with SHM extension");
printf("3. Mesa (with 3DFX h/w accel if installed with Mesa)");
gets(input);
sscanf(input,"%d", &i);
switch(i) {
case 1:
screen_factory = new l3d_screen_factory_x11;
ras_2d_imp_factory = new l3d_rasterizer_2d_sw_imp_factory;
dispatcher_factory = new l3d_dispatcher_factory_x11;
break;

case 2:
screen_factory = new l3d_screen_factory_x11_shm;
ras_2d_imp_factory = new l3d_rasterizer_2d_sw_imp_factory;
dispatcher_factory = new l3d_dispatcher_factory_x11;
break;

case 3:
screen_factory = new l3d_screen_factory_mesa;
ras_2d_imp_factory = new l3d_rasterizer_2d_mesa_imp_factory;
dispatcher_factory = new l3d_dispatcher_factory_mesa;
break;

}
return i;

}

The variable screen_factory is a pointer of abstract type l3d_screen_factory, which

polymorphically points to an actual concrete screen factory. Concrete screen factories (such as

l3d_screen_factory_x11) are declared in the same files as the concrete screens them-

selves (such as l3d_screen_x11). External objects requesting screen creation do so through

the abstractscreen_factory pointer, which then gets connected at run time to the correct con-

crete screen factory. The screen factory then returns a concrete screen object through an abstract

pointer of type l3d_screen.

The variable ras_2d_imp_factory is a pointer of abstract type l3d_rasterizer_
2d_imp_factory, which polymorphically points to an actual concrete rasterizer implementa-

tion factory. Concrete rasterizer implementation factories (such as l3d_rasterizer_
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2d_sw_imp_factory) are declared in the same files as the concrete rasterizer implementa-

tions themselves (such as l3d_rasterizer_2d_sw_imp). External objects requesting

creation of a rasterizer implementation do so through the abstract ras_2d_imp_factory
pointer.

The variable dispatcher_factory is a pointer of abstract type l3d_dispatcher_
factory, which polymorphically points to an actual concrete dispatcher factory. Concrete dis-

patcher factories (such as l3d_dispatcher_factory_x11) are declared in the same files

as the concrete dispatchers themselves (such as l3d_dispatcher_x11). External objects

requesting creation of a dispatcher do so through the abstractdispatcher_factory pointer.

The method choose_factories interactively asks the user which factories should be

chosen, and creates the appropriate concrete factories, assigning them to the factory variables

listed above. The concrete factories are created directly with the C++ new operator. The interac-

tive user query could be replaced with an automatic hardware detection routine or conditional

compilation statements which create the proper concrete factories. Conditional compilation state-

ments would be required if the different concrete factories require different, incompatible header

files in order to be compiled at all.

Global variable factory_manager_v_0_1 is a global instance of the factory manager.

An application chooses its factories at startup time through the global variable factory_man-
ager_v_0_1. Thus, the factory manager class is a singleton class, which is instantiated only

once in the entire program.

Notice that this is the only l3d class which directly manipulates the concrete factories by their

class name, and which includes the header files for the concrete factories. All other users of the

factories always go through an abstract factory interface, and do not include the header files for the

concrete factories. This is the whole point of the abstract factory: to completely isolate the applica-

tion from the underlying concrete types to allow for future extension of code without any change

of original code (as we saw illustrated in the hello_oo_event example).

Summary of l3d Classes Covered So Far

Figure 2-24 illustrates all classes covered up to this point. Study the previously presented

drawdot program to keep a practical perspective on the use of the l3d classes, and remember the

general five-step process for creating l3d applications.

Generally, the main part of an l3d program will only directly deal with the pipeline, screen,

and rasterizer classes. Your application is the pipeline; it draws to the screen using the rasterizer.

With one exception, all of the l3d classes presented above implement concepts which we

already covered in the previous sections. Again, this is an important property of object-oriented

designs: they organize or reorganize code in terms of relevant abstractions.

The “one exception” we mentioned above is the l3d_rasterizer_2d_sw_imp class. In

this class, we presented routines for drawing pixels, lines, and flat-shaded polygons. While we

have already looked at drawing individual pixels (in the earlier discussions of byte-to-pixel corre-

spondence and colors in XImages), we have not yet discussed drawing lines and polygons. This is

the topic of the next chapter: rasterization.
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Summary
In this chapter, we covered accessing the 2D screen under Linux under the X Window System. We

looked at the following topics:

� Creation of windows under X and X event handling

� XImages and animated, double-buffered graphics

� X visuals, color depths, color models, and pixel formats

� Object-oriented techniques such as inheritance, virtual functions, design patterns, factories,

and handles

� Design of an object-oriented graphics library, l3d

We therefore have a theoretical and practical foundation for flexibly accessing the 2D screen

under Linux. The next chapter deals with 2D graphics, which we need for 3D graphics. In particu-

lar, we look at the rasterization of 2D lines and polygons, both in pure software as well as in a

hardware-accelerated environment.

146 Chapter 2: Accessing the Screen

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



C h a p t e r 3

2D Rasterization2D Rasterization

Overview

T
his chapter discusses 2D rasterization and related issues. Rasterization, as we touched on in

the previous chapter, is the process of rendering geometric primitives onto a raster display

composed of pixels. Chapter 2 showed us how to initialize a screen under Linux and how to

light individual pixels with specific colors. In this chapter, we look at algorithms to draw groups of

pixels—in particular, lines and filled polygons. Drawing polygons is an important and frequently

occurring operation in 3D graphics programs. Indeed, Chapter 7 returns to the topic of polygons,

and extends the ideas to 3D.

Geometric primitives rendered to the screen may be larger than the screen itself, which intro-

duces the need for clipping the primitives to fit within the display. This chapter therefore discusses

a few approaches to clipping. Also, rasterization may be carried out either purely in software or

with the help of dedicated graphics hardware. This chapter discusses and implements both. We use

the Mesa library to realize hardware-accelerated rasterization under Linux. In the process, we also

learn about Mesa and OpenGL programming in general.

This chapter covers the following concepts:

� Software rasterization of dots, lines, and polygons

� Clipping polygons in 2D

� Vertex animation and morphing of polygons

� Basic Mesa/OpenGL programming

� Hardware acceleration using Mesa and 3DFX

The sample programs in this chapter illustrate working code to draw lines and polygons on the 2D

screen using l3d classes.

NOTE From now on, it is assumed that you already know how to compile and run the sam-
ple programs, so we won’t devote any more space to these issues. Chapter 2 contains several
step-by-step examples of compiling and running individual programs, and the Appendix
contains instructions for compiling all the example programs in the book at once.
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Software Rasterization
In Chapter 2, we saw the sample program drawdot, which uses the l3d library. We also looked at

the structure of l3d programs, and at the structure of the l3d library itself. In this process, we saw

how the rasterizer and rasterizer implementation objects in the l3d library form an interface to and

implementation of rasterization services (the bridge design pattern).

Although we discussed the structure of the l3d rasterization classes in the previous chapter,

what we didn’t discuss were the actual rasterization algorithms appearing in the software

rasterizer implementation class. That is the purpose of this section: to describe in detail the soft-

ware rasterization algorithms used in the l3d library.

The term software rasterization refers to the use of algorithms in software to draw geometric

primitives into a frame buffer. The alternative to software rasterization is hardware rasterization,

where dedicated hardware provides functions for drawing primitives more quickly than is possi-

ble through software.

The l3d class dealing with software rasterization, initially presented in Chapter 2, is

l3d_rasterizer_2d_sw_imp. The l3d classes distinguish between the rasterizer itself,

which is a description of (or equivalently, an interface to) rasterizer functionality, and the

rasterizer implementation, which is one particular way of realizing the functionality described by

the rasterizer. A software rasterizer implementation implements algorithms to set the appropriate

pixels corresponding to a geometric primitive.

By “geometric primitive,” we mean a point, line, or polygon. (Don’t worry if you don’t yet

have a solid idea of what a “polygon” is; we define this below, in the section titled “Rasterizing

Flat-shaded Polygons.”) Therefore, a software rasterizer implementation takes a specification of a

point, line, or polygon, and sets the corresponding pixels within the frame buffer to produce a

rasterized image of the specified primitive.

If you have done some 2D graphics programming before, you might question the need for a

software rasterizer implementation. After all, as noted in Chapter 1, practically all modern operat-

ing systems offer some sort of a library for drawing 2D primitives to the screen. Is it really

necessary to do this work ourselves?

The answer to this question used to be a clear-cut “yes,” but the appearance of hardware accel-

eration on the PC scene has changed this slightly. Let’s first view the situation historically,

assuming no hardware acceleration, then see what role hardware acceleration plays.

In the absence of hardware acceleration, there are two compelling reasons to do your own

rasterization instead of relying on an external library provided by the OS or your compiler: speed

and flexibility. Typically, a ready-made, general-purpose 2D drawing library (such as the 2D

drawing functions provided by Xlib) will be slower than a specialized routine, might not support

double buffering, and will almost certainly not offer any provision for per-pixel operations neces-

sary for high-quality 3D graphics such as smooth shading or texture mapping. For these reasons,

interactive, high-quality 3D programs have historically done their own rasterization. At first, it

might seem to be a rather mind-boggling proposition that the CPU actually can be fast enough to

compute each and every single pixel in each image, several times a second. However, the situation

becomes understandable when we realize that setting a pixel by hand is equivalent to setting bytes
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in memory, as opposed to calling an API function with its associated function-call overhead. Call-

ing a function thousands of times per frame to set a pixel is intolerably slow (due to the push and

pop activity of the run-time stack); on the other hand, setting bytes in memory thousands of times

per frame is acceptably fast. Recall, this is why we chose XImages as the display medium of

choice: we can directly access the bytes and do not need to go through functions to manipulate pix-

els. (We actually do have a pixel-plotting function in the rasterizer implementation, but it is

declared inline and therefore incurs no function-call penalty at run time.)

That software rasterization outperforms a ready-made API was a general truth until 3D hard-

ware acceleration appeared. With hardware acceleration, API function calls get translated into

hardware instructions. If a single function call can then set thousands of pixels at once, the over-

head of the single function call is outweighed by the drastically increased speed of the entire

rasterization operation in hardware. Furthermore, 3D hardware acceleration also provides support

for specifying texture mapping, smooth shading, and other parameters necessary for high-quality

3D graphics. Accelerated hardware can also perform many more operations which are typically

too time-consuming for software rasterizer implementations, such as z-buffering, blending, or

filtering.

If hardware acceleration provides such advantages, why bother with software rasterization?

There are three reasons. First, the l3d library is designed such that it can use either software or

hardware rasterization; we do not lose any flexibility by implementing software rasterization. Sec-

ond, not everyone has hardware acceleration—laptop, notebook, palmtop, or embedded computer

devices often do not have any sort of 3D hardware acceleration. Third, understanding rasterization

concepts is important for a well-rounded understanding of 3D graphics. Without an understanding

of rasterization, the hardware API becomes a magical black box which somehow mysteriously

draws polygons. I believe it would be a great hinderance to a 3D programmer not to understand

how rasterization works. There is something very enlightening and satisfying about knowing

exactly how and why every single pixel on the display is generated.

Rasterizing Dots
Rasterizing a dot means drawing one pixel. To do this in software, we need to calculate the address

of the pixel in the frame buffer, and fill the byte or bytes corresponding to the pixel with the correct

values for the desired color. We already discussed this topic in Chapter 2 (in the discussions of

byte-to-pixel correspondence and colors in XImages), so the l3d methods for rasterizing a dot are

only briefly described here.

The method address_of_point calculates the memory address of a pixel within the

frame buffer, given the pixel’s (x,y) coordinates:
inline unsigned char *l3d_rasterizer_2d_sw_imp::address_of_point(int x, int y)
{
return sinfo->p_screenbuf +(x + (y*xsize)) * sinfo->bytes_per_pixel;

}

The method draw_point_at_paddress takes a pointer to a pointer to a memory address

(typically initially calculated by the method address_of_point) and a color specification.

The exact format of the color specification depends on the bit depth of the screen and can be com-

puted by using the method l3d_screen_info::ext_to_native, as we saw in Chapter 2.
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The method draw_point then draws the specified color into the pixel at the specified address,

and updates the pointer to point to the next horizontally adjacent pixel in the frame buffer. In this

manner, we can plot groups of horizontally adjacent pixels (called spans) without needing to

invoke the code in address_of_point for every pixel in the horizontal span. As we see later

in this chapter, we draw polygons by drawing a vertical stack of horizontal spans.
inline void l3d_rasterizer_2d_sw_imp::draw_point_at_address
(unsigned char **p, unsigned long col)
{
register int I;
unsigned long mask = MAX_BYTE;
char shift = 0;

for(i=0; i<sinfo->bytes_per_pixel; i++) {
**p = (col & mask) > shift;
(*p)++;
mask <= BITS_PER_BYTE;
shift += BITS_PER_BYTE;

}
}

The method draw_point takes an (x,y) location and a color as parameters. It then plots a pixel with

the specified color at the specified (x,y) location. It merely calls the above two methods in order.
inline void l3d_rasterizer_2d_sw_imp::draw_point
(int x, int y, unsigned long col)
{
unsigned char *p = address_of_point(x,y);
draw_point_at_paddress(&p, col);

}

Rasterizing Lines
Rasterizing a line means drawing a set of pixels which lie on the line segment between two given

endpoints specified in pixel coordinates. In reality, we will rarely need to draw lines for the pro-

grams in this book, but the function is provided for completeness.

There are several ways to approach the problem of drawing a line. We will use the most geo-

metrically intuitive approach, called the incremental algorithm.

NOTE The incremental algorithm (also sometimes called a digital differential analyzer or
DDA algorithm) is in practice not the most accurate method for drawing lines. We can define
“accuracy” to mean always drawing the pixels which are closest to the mathematically “true”
line segment between the two specified points. Bresenham’s algorithm and the midpoint
algorithm are two approaches for drawing the most “accurate” lines possible. These algo-
rithms are a bit less geometrically intuitive, and rely upon an error term and a decision
variable to incrementally choose the next “correct” pixel as they step across the line in pixel
space.

The idea behind the incremental algorithm is as follows. Let us name the coordinates of the start-

ing point (x0,y0), and those of the ending point (x1,y1). We first calculate the slope of the line,

called m:
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We then use the slope-intercept form of the line:

B represents the y-intercept of the line, which is the coordinate along the y axis where the line

intercepts it. For each pixel xi between x0 and x1, we then use the above slope-intercept formula to

compute the appropriate value of yi. We then plot the pixel at (xi, yi), though we must first round

the value of yi to an integer pixel coordinate before plotting it, since in general the slope-intercept

formula will generally yield a y coordinate with a fractional part.

The above algorithm can be made more efficient by realizing the following:

In other words, we now have an incremental way of determining the next y value, yi+1, based

upon the current y value, yi. The next y value is the current y value plus the slope times the x step-

ping increment ?x. Since we want to draw all pixels within the line, we will step by single pixels,

and ?x = 1. The formula then becomes:

This means that the next value of y is the current y plus the slope. The first y value is set to y0; the

first x value is set to x0. We step in the x direction from x0 to x1, incrementing y and plotting pixels

as we go.

The catch is that the above logic only works as is for lines with a slope less than or equal to one

(i.e., lines which are more horizontal than vertical). The implicit assumption of the previous equa-

tion is that y is a function of x. For lines with a slope greater than one, stepping in the x direction

yields vertical gaps in the line, because y is no longer a function of x (in the discrete domain of pix-

els). In fact, x is a function of y in this case. This simply means that we need to reverse the roles of x

and y in the above equation, computing an inverse slope, stepping in the y direction, and increasing

x each time by the inverse slope.

With this knowledge, understanding the l3d_rasterizer_2d_sw_imp::draw
_line function is straightforward. We first decide if the line is mostly horizontal or mostly verti-

cal, compute the slope or inverse slope as appropriate, and step in whole pixels along one axis

while moving by the slope or inverse slope along the other axis.
void l3d_rasterizer_2d_sw_imp::draw_line(int x0, int y0,

int x1, int y1, unsigned long col)
{
l3d_real fx,fy,m;
int x,y,tmp,dx,dy;

dx = x1 - x0;
dy = y1 - y0;

if(abs( ABS_CAST dx) > abs( ABS_CAST dy)) {//- a "mostly horizontal" line
//- ensure (x0,y0) is horizontally smaller than (x1,y1)
if(x1<x0) {tmp=x0;x0=x1;x1=tmp; tmp=y0;y0=y1;y1=tmp;}
fy = int_to_l3d_real(y0);
m = l3d_divrr( int_to_l3d_real(dy), int_to_l3d_real(dx) );
for(x=x0; x<=x1; x++) {
draw_point(x,
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SW_RAST_Y_REVERSAL(ysize,
l3d_real_to_int
(fy+float_to_l3d_real(0.5))),

col);
fy = fy + m;

}
}//- mostly horizontal line
else {//- mostly vertical line
//- ensure (x0,y0) is vertically smaller than (x1,y1)
if(y1<y0) {tmp=x0;x0=x1;x1=tmp; tmp=y0;y0=y1;y1=tmp;}
fx = int_to_l3d_real(x0);
if( !(int_to_l3d_real(dy) )) return; //- degenerate: line is just a point
m = l3d_divrr( int_to_l3d_real(dx), int_to_l3d_real(dy) );
for(y=y0; y<=y1; y++) {
draw_point(l3d_real_to_int(fx+float_to_l3d_real(0.5)),

SW_RAST_Y_REVERSAL(ysize,y),
col);

fx = fx + m;
}

}//- mostly vertical line
}

The macro SW_RAST_Y_REVERSAL performs, if necessary, a reversal of the y-axis orientation.

Whether this is necessary or not is determined at compile time; depending on the target system

(Linux or Windows, for instance) this macro is defined differently. In the case of Linux, this macro

returns the passed-in y value. When compiling for Windows, this macro effectively reverses the

orientation of the y axis by returning the value of the expression (ysize–y), where ysize is the verti-

cal size of the screen. The reason for the necessity of this macro is that systems can map the frame

buffer memory to the physical display differently. On many systems (e.g., Linux using XImages in

ZPixmap format), the first byte of the frame buffer represents the upper-left corner of the screen,

and increasing memory addresses in the frame buffer represent positions which are successively

further to the right and downward on the physical display. This organization corresponds to the

left-to-right, top-to-bottom operation of the electron gun in a CRT display, and also corresponds to

the natural left-to-right, top-to-bottom reading order we are used to in English. Other systems

(e.g., Microsoft Windows using device-independent bitmaps) map the bytes in the frame buffer so

that they start at the lower-left corner of the image, and move to the right and upward as memory

addresses increase. This corresponds to a left-to-right, bottom-to-top organization of image

memory.

The only other thing of note in the draw_line function is the use of the type l3d_real,

and a few functions for dealing with this type. Let’s take a brief look at the purpose and workings

of the l3d_real type.

Real Numbers in l3d: Type l3d_real

Until now, we have only used integer variables in our computations. We have dealt with pixels and

bytes, both of which are discrete values and can be addressed completely with integers.

For the incremental line algorithm, however, we for the first time need a fractional value: the

slope of an arbitrary line will generally be a fractional value. For this, we introduce the type

l3d_real.
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The purpose of the l3d_real type is to allow all computations using real values to be per-

formed using either floating- or fixed-point arithmetic. Floating-point arithmetic is done by using

the C type float, and for good real-time performance requires a hardware floating-point unit.

Fixed-point arithmetic requires no floating-point unit in hardware, and simulates fractional values

with integers by multiplying the fractional value so that the fractional part moves into the integer

part. The Appendix covers this in more detail.

By using l3d_real any time we want a real value, we can configure our code at compile

time to use either fixed- or floating-point math. For now, there are four rules you need to know for

using variables of type l3d_real:

1. Type conversions. A variable of type l3d_real can be converted to and from an integer or

floating-point value through the macros l3d_real_to_float, l3d_real_to_int,

float_to_l3d_real, and int_to_l3d_real. Furthermore, a variable of type

l3d_real can be converted to and from a fixed-point number through the macros

l3d_real_to_fixed and fixed_to_l3d_real.

2. Addition and subtraction. Variables of type l3d_realmay be added to and subtracted from

other variables types of l3d_real with the normal plus (+) and minus (–) operators.

Addition and subtraction with variables of any other type must first use one of the type

conversion macros to convert the variable of the other type to l3d_real.

3. Multiplication and division. Variables of type l3d_real can be multiplied or divided by

variables of type l3d_real or of type int only. Such multiplications or divisions must use

one of the following macros, all of which return a type of l3d_real: l3d_mulrr
(multiplies an l3d_real by an l3d_real), l3d_mulri (multiplies an l3d_real by

an int), l3d_divrr (divides an l3d_real by an l3d_real), and l3d_divri
(divides an l3d_real by an int).

4. Other functions. The iceil function returns the integer ceiling of (i.e., the smallest integer

larger than) an l3d_real. ifloor returns the integer floor of (the largest integer smaller

than) an l3d_real. The function l3d_sqrt returns an l3d_real representing the

square root of the given l3d_real argument.

NOTE Ordinarily, we should make l3d_real a class, with the above functions (or more
precisely, macros) being member operations on the class. Unfortunately, in this one particular
case, we cannot do this, because the entire reason for using fixed-point math is performance;
the subtle overheads introduced by making l3d_real a class are too great. Type l3d_real
forms the very basis for all mathematical operations in our 3D programs, of which there are
thousands or millions per frame. See the Appendix for a more detailed discussion of the per-
formance issues involved and a detailed answer as to why we (unfortunately) cannot make
l3d_real a class.

If we choose to use floating-point math (at compile time via a #define), then the l3d_real
macros are defined as shown in Listing 3-1. Notice that the macros do nothing other than call the

ordinary cast, multiplication, or division operators.
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Listing 3-1: An excerpt from sys_dep.h, illustrating the definitions of the l3d_realmacros
typedef float l3d_real;
#define l3d_real_to_float(m) (m)
#define float_to_l3d_real(f) ((float)(f))
#define l3d_real_to_int(m) ((int)(m))
#define int_to_l3d_real(i) ((float)(i))
#define l3d_mulrr(a,b) (a)*(b)
#define l3d_mulri(a,b) (a)*(b)
#define l3d_divrr(a,b) (a)/(b)
#define l3d_divri(a,b) (a)/(b)
#define iceil(x) ( (int)ceil((double)(x)) )
#define ifloor(x) ( (int)floor((double)(x)) )
#define l3d_sqrt(x) ( float_to_l3d_real(sqrt(l3d_real_to_float(x))) )
#define l3d_real_to_fixed(f) float2fix(f)
#define fixed_to_l3d_real(f) fix2float(f)

If we choose to use fixed-point math (again, at compile time via a #define), then the

l3d_real macros are defined quite differently, applying the somewhat arcane rules for

fixed-point math to simulate real-valued computations using purely integer arithmetic. Again, the

Appendix covers this in more detail; for now, you just need to know how to properly use the

l3d_real types, and know that by doing so, your code will be able to use either fixed- or float-

ing-point math with no changes.

An unfortunate consequence of using the l3d_real macros for multiplication and division

is that this leads to somewhat awkward code. For instance, the following computation with float-

ing-point values:
x = a * ( ( b + c ) / d )

would need to be expressed with l3d_real types as:
x = l3d_mulrr( a , l3d_divrr( b + c , d ) )

The multiplication and division must therefore be realized as nested macro invocations. Notice,

however, that no macro invocation is necessary for the addition of b and c, since addition and sub-

traction of l3d_real types can be done with the normal addition and subtraction operators.

Returning to the subject of the current section, rasterization, the draw_line function uses

int_to_l3d_real and l3d_divrr to compute the real-valued slope (or inverse slope) of

the line from the given integer coordinates.

Rasterizing Flat-shaded Polygons
Rasterizing a polygon means drawing the set of pixels that lie inside of a polygon. A polygon is the

area contained within a closed, connected series of line segments. See Figure 3-1. Informally, you

can think of polygons as flat, finite surfaces with straight edges. In 2D and 3D graphics, drawing a

polygon is one of the most frequently occurring operations. Typically, an entire 3D world consists

of polygons (albeit in 3D, not in 2D, as we see in Chapter 7).

For various reasons, complex or concave polygons (those which intersect themselves or

which have “dents” or “holes”) are computationally expensive to process. Therefore, almost all

graphics programs (including l3d and OpenGL) restrict themselves to simple, convex polygons. It

should be noted, however, that a complex or concave polygon can be decomposed into a series of

simple, convex polygons, which is called tessellation. Figure 3-2 illustrates some various kinds of

polygons and tessellation.
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NOTE A test to see if a polygon is convex is to draw a line between every pair of vertices in
the polygon. If all such lines lie within the interior of the polygon, then the polygon is convex;
otherwise, it is concave or complex. You can also use the “rubber band rule”: if you were to
stretch an imaginary rubber band around the polygon, the rubber band would touch every
edge of the polygon, if the polygon is convex. Otherwise, the polygon must have dents or
holes, and is therefore not convex.

We may specify a polygon by choosing an arbitrary endpoint of any one of the lines as a start-

ing point, and then specifying the endpoints of the line segments in clockwise or counterclockwise

order. This is shown in Figure 3-3.
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Figure 3-2: Convex, concave, and
complex polygons. (Left, middle,
and right, respectively.)



We will use the clockwise ordering convention to specify polygon points. The points defining

a polygon are called vertices (singular vertex).

Though polygons are one of the most widely used means of modeling worlds in computer

graphics, other methods exist as well. Some are based on curves, where points may then define

control points through which curves or curved surfaces must pass. Some are based on spatial

occupancy, where we explicitly define all points belonging to the figure (voxels, short for volume

pixels, are an example of this). Due to their simplicity and ease of processing (in hardware as

well), polygons are still the main building block of most 3D models used in interactive

applications.

Before discussing the rasterization of polygons, let us first discuss their storage in memory.

This is not as simple as it might seem because we want to create a general, flexible, extendable

polygon structure which we can reuse later for 3D graphics (see Chapter 7). This requires a bit of

forethought and some less-than-obvious data structures. After laying down the structure of a poly-

gon class, we then discuss the actual polygon rasterization algorithm.

Specifying Coordinates

To specify a polygon, we first need to specify its coordinates. Specifying coordinates is done

through two classes: l3d_point and l3d_coordinate.

Listing 3-2: point.h
#ifndef __POINT_H
#define __POINT_H
#include "../../tool_os/memman.h"

#include <math.h>
#include <stdio.h>
#include "../../system/sys_dep.h"

class l3d_point {
public:
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l3d_point(void);
l3d_point(l3d_real a0, l3d_real a1, l3d_real a2, l3d_real a3);
l3d_point(int a0, int a1, int a2, int a3);
l3d_point(const l3d_point &right);
const l3d_point &set(l3d_real a0, l3d_real a1, l3d_real a2, l3d_real a3);
const l3d_point &set(int a0, int a1, int a2, int a3);

const l3d_point &operator = (const l3d_point &right);

void print(void)
{
printf("%f %f %f %f",

l3d_real_to_float(a[0]),
l3d_real_to_float(a[1]),
l3d_real_to_float(a[2]),
l3d_real_to_float(a[3]));

}

l3d_real a[4];
};

//- useful defines for accessing matrix elements occurring in standard
//- positions for l3d_point:
#define X_ a[0]
#define Y_ a[1]
#define Z_ a[2]
#define W_ a[3]

//- function for grabbing a temporary point object from a global
//- pre-allocated pool of temporary objects.
extern l3d_point &l3d_get_point_temp(void);

inline l3d_point::l3d_point(void) {
a[0] = a[1] = a[2] = a[3] = 0;

}

inline l3d_point::l3d_point(l3d_real a0, l3d_real a1, l3d_real a2, l3d_real a3) {
a[0] = a0;
a[1] = a1;
a[2] = a2;
a[3] = a3;

}

inline l3d_point::l3d_point(int a0, int a1, int a2, int a3) {
a[0] = int_to_l3d_real(a0);
a[1] = int_to_l3d_real(a1);
a[2] = int_to_l3d_real(a2);
a[3] = int_to_l3d_real(a3);

}

inline l3d_point::l3d_point(const l3d_point &right) {
a[0] = right.a[0];
a[1] = right.a[1];
a[2] = right.a[2];
a[3] = right.a[3];

}

inline const l3d_point &l3d_point::operator = (const l3d_point &right) {
a[0] = right.a[0];
a[1] = right.a[1];
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a[2] = right.a[2];
a[3] = right.a[3];

return *this;
}

inline const l3d_point &l3d_point::set(l3d_real a0, l3d_real a1, l3d_real a2, l3d_real a3) {
a[0] = a0;
a[1] = a1;
a[2] = a2;
a[3] = a3;

return *this;
}

inline const l3d_point &l3d_point::set(int a0, int a1, int a2, int a3) {
a[0] = int_to_l3d_real(a0);
a[1] = int_to_l3d_real(a1);
a[2] = int_to_l3d_real(a2);
a[3] = int_to_l3d_real(a3);

return *this;
}

inline const l3d_point &operator * (const l3d_point& l,
const l3d_real aScalar)

{
l3d_point &res = l3d_get_point_temp();
res.set(
l3d_mulrr(l.a[0], /* TIMES */ aScalar),
l3d_mulrr(l.a[1], /* TIMES */ aScalar),
l3d_mulrr(l.a[2], /* TIMES */ aScalar),
l3d_mulrr(l.a[3], /* TIMES */ aScalar));

return res;
}

#endif

Listing 3-3: point.cc
#include "point.h"
#include "../../tool_os/memman.h"

//- Global pool of temporary variables for point operations.

const int l3d_max_point_temp = 15;
l3d_point &l3d_get_point_temp(void) {
static int nbuf=0;
static l3d_point buf[l3d_max_point_temp];

if(nbuf>=l3d_max_point_temp) nbuf=0;
return buf[nbuf++];

}

Listing 3-4: coord.h
#ifndef _COORD_H
#define _COORD_H
#include "../../tool_os/memman.h"

#include "../../geom/point/point.h"
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const int max_transformed_intermediates = 2;
class l3d_coordinate {
public:
l3d_coordinate(void) {transform_stage = 0; }

l3d_point original;
l3d_point transformed;
char transform_stage;

l3d_point transformed_intermediates[max_transformed_intermediates];

void reset(void) {transform_stage = 0; transformed = original; }
void transform(const l3d_matrix &m, int count) {
if (transform_stage != count) {
transform_stage = count;
transformed = m | transformed;

}
}

};

#endif

The class l3d_point represents a set of four numbers, of the form (x, y, z, w). These numbers

represent a location in space, in terms of displacements along coordinate axes. Sincel3d_point
contains four numbers, it can represent locations in 1D, 2D, 3D, or 4D space. As odd as it might

sound at this point, we do in fact later need to deal with four-dimensional space, although only

briefly. In this chapter, we only use the first two numbers, since we only need to specify 2D loca-

tions; the last two coordinates, z and w, are simply ignored.

The class l3d_coordinate represents a transformable coordinate location in space. It

stores two variables of type l3d_point, named original and transformed. The idea is

that the original member should store the original, never-to-be-modified location, while the

transformedmember should store some transformed version of the original location: perhaps

moved slightly, rotated, scaled, or even (as we see in Chapter 5) projected from 3D into 2D. In 3D

graphics, the particular transformations applied to a particular coordinate can change if the object

containing the coordinate moves, or if the virtual “camera” observing the object moves. See Chap-

ter 6 for a detailed discussion of transformations. Saving the original coordinate thus becomes

necessary, since we repeatedly apply different transformations to the original coordinate. We call a

coordinate that is used to define a polygon a vertex.

NOTE You can liken the need to save the original coordinate to the need to save an original
paper document when making copies. If you repeatedly make copies of copies, the image
quality eventually degrades. Similarly, if we continue to apply mathematical transformations
to already transformed coordinates, the coordinates slowly drift away from their “true” posi-
tions due to numerical computational inaccuracy. Saving the original coordinate in the
original member variable means that we always start applying transformations to the
original, 100% accurate coordinate location.

The transform_stagemember is a counter indicating at which “stage” of transformation this

coordinate is during the processing for a particular frame. For instance, let us say we have an

object defined by 1,000 vertices. Assume that we need to perform three transformations on all of

these vertices for a particular frame. Again, for now, simply think of a transformation as a change
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in position. (Chapter 6 covers transformations in detail.) Assume further that our traversal of the

vertices is not in any particular order and might visit a vertex more than once. (The following para-

graph explores this assumption in more detail.) Thetransform_stage variable is like a “flag”

allowing us to know if a particular vertex has already been transformed during this frame or not.

For instance, before any transformations for this frame are done, we call the reset routine for all

vertices, which sets transform_stage to 0 and transformed to original. To perform

the first transformation, which we will call transformation number 1, we look for all vertices

whose transform_stage is not 1. Initially, this will be all vertices. As soon as we transform a

vertex, we set its transform_stage to be the current transformation number. Since our vertex

traversal might visit a vertex more than once, we compare each visited vertex’s trans-
form_stage with the current transformation number; if it is the same, we know that we have

already visited this vertex for this frame and do not need to do the (time-consuming) vertex trans-

formation again. After the first transformation, all transformed vertices will have a

transform_stage of 1. The next transformation is number 2, and the process repeats, this

time transforming only vertices which are not yet at transformation stage 2. This entire process is

repeated for each frame. The actual transformation of the coordinate is done via a matrix. Chapter

6 covers transformations and matrices in detail.

In case you are wondering why the vertex traversal might visit a vertex more than once, the

reason is that many polygons might share one vertex list. For a given viewpoint, only some of

these polygons will be visible. The vertex traversal algorithm is: for all visible polygons, trans-

form each of the polygon’s vertices if the vertex is not already transformed. The fact that vertices

are shared means that some or even all of a polygon’s vertices might have already been trans-

formed if the neighboring polygon has already been transformed. This strategy requires us to

check if a vertex has already been transformed by using the transform_stage variable, but it

also allows us to completely avoid transforming vertices which are not visible (i.e., which do not

belong to any visible polygon). Doing the extra check is typically cheaper than blindly transform-

ing all vertices, especially if there are many vertices, many of which may be invisible. We

therefore transform only visible vertices. However, it’s also important to mention that for physical

simulation purposes, where objects physically interact, we might still need to transform invisible

vertices if these vertices represent some physical part of an object which can affect the virtual

world even if this action is taking place in a currently invisible location. On the other hand, with

such physical simulation, we often use a simplified version of the geometry (e.g., spherical or

box-like) for the simulation to simplify physics computations, meaning that the original vertices

used for drawing might not actually be used at all for the simulation purposes. An example of this

would be using a sphere for physical collision detection purposes (as discussed in the companion

book Advanced Linux 3D Graphics Programming).

The next member of l3d_coordinate that is of interest is the transformed_inter-
mediates array. As we mentioned above, typical processing of coordinates involves an original

location, a series of one or more transformations, and a final transformed location. The purpose of

the transformed_intermediates array is to provide a temporary storage location, within

the coordinate itself, which can be used to save the location at a particular transformation stage.

For instance, let us say we perform three transformations one after another on a coordinate, then at
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some point later we need to know where the coordinate was after the second transformation was

applied. We can store this information in an element of the transformed_intermediates
array, immediately after we perform the second transformation. Then, later, even after more trans-

formations have been applied, we can look up the old location in the coordinate to determine its

earlier position. Therefore, we are storing older, “intermediate” transformed locations within the

transformed_intermediates array. The alternative to storing the transformed intermedi-

ates within the coordinate itself would be for the application code to declare a separate list of

coordinates for saving intermediate locations. The size and order of this list would need to be

maintained in parallel with the original list of polygon coordinates—a rather tedious task, since

the list of polygon coordinates may change due to a 2D clipping operation (covered in detail later

in this chapter). The need for storing intermediate locations can be seen in Chapter 6, where we

must “remember” the position of coordinates after the camera transformation, although another

transformation (the perspective projection) has already been applied to the coordinate.

The method transform actually effects a transformation: it changes the position of the

point, updating the transform_stage counter and storing the new transformed point in the

transformed member variable. First, though, we check to see if the point has already been

transformed by comparing the current transformation stage (parameter count) with the transfor-

mation stage of the vertex (member l3d_coordinate::transform_stage); if count
equals transform_stage, then the point has already been transformed earlier. The actual

transformation of the point is performed by means of a matrix multiplication, so an explanation of

this method must wait until Chapter 6, on matrices and transformations. We do not yet use the

transform method in this chapter.

To summarize, l3d_point represents a single location in 1D, 2D, 3D, or 4D space. Class

l3d_coordinate has two main l3d_point objects, an original and a transformed one, as

well as a sort of “history list” of points for storing any arbitrary intermediate transformed loca-

tions. The transformed coordinate is always initialized to equal the original coordinate at the

beginning of each frame (method reset), after which it may be transformed by zero or more

transformations (method transform). After any number of transformations, the application

may choose to save the current location in one of the intermediate storage locations (member

transformed_intermediates), so that the old location may be referenced later. In the end,

the transformed coordinate must represent a point in 2D pixel space, since ultimately the points

must be used to plot images on-screen. The whole idea is that a l3d_coordinate is more than

just a single location in space: it is an original location, a number of optional intermediate loca-

tions, and a final location.

For now, the most important thing to remember about the original and transformed
members is that the transformed coordinate is the one which is finally used to display the pixels on

the screen. An application must at some point put the final pixel coordinates in the trans-
formed member variable. For the examples in this chapter, we will place the pixel coordinates

directly in the originalmember, and call reset to copy original into transformed. In

other words, we do not yet apply any transformation between original and transformed.
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NOTE In Chapter 5, we perform the 3D to 2D projection, which transforms 3D space into
2D pixel space. In this case, the original member variable contains the 3D space coordi-
nate, which is transformed through projection into 2D pixel space. The final 2D pixel
coordinate ends up in the transformed member.

Two-Part Vertex Lists

Using thel3d_coordinate class, we can represent locations in space. The topic of this section

is rasterization of polygons, so we are interested in using l3d_coordinate objects to specify

the vertices (i.e., corner points) of a polygon.

The strategy we will follow is this: we define a vertex list separate from the polygon object,

and store a pointer to a pointer to this list within a polygon object. The polygon’s vertices are then

defined by a list of indices into the external vertex list. Figure 3-4 illustrates this concept.

This strategy may seem quite roundabout. It might seem more appropriate to store a list of

l3d_coordinate objects within each polygon. This, however, fails to take into account the

fact that polygons rarely exist in isolation; more often, they are grouped with other polygons to

form objects—especially when we move to 3D polygons. Grouping polygons means that many

polygons might be able to share vertices, which eliminates duplicate processing of vertices at the

same location in two different polygons. Furthermore, storing vertices in an external list allows us

to change the polygon’s appearance very easily by changing the external list—a technique invalu-

able for vertex animation or morphing, of which we see an example later in this chapter.
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Specifically, the external vertex list strategy has the following concrete benefits:

� By allowing the list to be external to the polygon, we enable multiple polygons to share verti-

ces within the same list. Each shared vertex must be transformed only once, instead of multi-

ple times (as would be the case if each polygon had its own copy of the vertex).

� By changing the contents of the external vertex list, we can change the appearance of the poly-

gon by changing individual vertices.

� By changing the external pointer to point to a different vertex list altogether, we can change

the appearance of the polygon by swapping out the entire vertex list.

We use a combination of two data structures to store a list of vertices: l3d_list and

l3d_two_part_list. Class l3d_list is a dynamically growable list which is like an array,

but which automatically expands and allocates more space as necessary. The elements are

accessed as normal through the array index operator []. Class l3d_two_part_list is an

extension of l3d_list and partitions the list of items into two parts: a fixed part and a varying

part. The fixed part is fixed in size and never changes; the varying part is based on some dynamic

calculation and changes often in size. However—and this is the whole point of the

l3d_two_part_list—both the fixed and the varying parts are accessed identically. If we

stored the fixed and varying parts in two separate lists, any references to list items would need to

specify if the item comes out of the fixed or the varying list, which makes for rather inconvenient

code. With the l3d_two_part_list, external users don’t need to worry about whether the

referenced item is fixed or varying. This uniformity of access is primarily of use in clipping, which

we cover later in this chapter; clipping can create temporary (varying) vertices which must be

accessible exactly like normal (fixed) vertices, but which may vary wildly in number from frame

to frame.

Listing 3-5 is the source code for the list classes. At this point it is not necessarily important to

know exactly how the classes work (though their code is quite straightforward); more important is

understanding how to use the classes, which we cover next.

Listing 3-5: list.h
#ifndef __LIST_H
#define __LIST_H
#include "../tool_os/memman.h"

template<class Item> class l3d_list_item_factory {
public:
virtual Item *create(void) {return new Item ; }
virtual ~l3d_list_item_factory() {}

};

template<class Item> class l3d_list
{
protected:
bool is_my_factory;

public:
int max_items;
l3d_list_item_factory<Item> *factory;

Item **items;
int num_items;
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l3d_list(int initial_size) {
factory = new l3d_list_item_factory<Item>;
is_my_factory = true;
num_items = 0;
max_items = initial_size;

items = new Item* [max_items];
for(int i=0; i<max_items; i++) {
items[i] = factory->create();

}
};

l3d_list(void) {
factory = new l3d_list_item_factory<Item>;
is_my_factory = true;
num_items = 0;
max_items = 10;

items = new Item* [max_items];
for(int i=0; i<max_items; i++) {
items[i] = factory->create();

}
};

l3d_list(int initial_size, l3d_list_item_factory<Item> *factory) {
this->factory = factory;
is_my_factory = false;
num_items = 0;
max_items = initial_size;

items = new Item* [max_items];
for(int i=0; i<max_items; i++) {
items[i] = factory->create();

}
}

~l3d_list(void) {
for(int i=0; i<max_items; i++) {
delete items[i];

}
delete [] items;
if(is_my_factory) {delete factory; }

};

int next_index(void) {
if ( num_items < max_items ) {

return num_items ++;
}else {

int oldsize = max_items;
max_items += 20;

Item **bigger_items = new Item* [max_items];
int i;
for(i=0; i<oldsize; i++) {
bigger_items[i] = items[i];

}
for(; i < max_items; i++) {
bigger_items[i] = factory->create();
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}
delete [] items;
items = bigger_items;

return num_items++;
}

}

Item & operator [] (int idx) const {return *items[idx]; }

l3d_list<Item> & operator = ( const l3d_list<Item> &r ) {
while(num_items < r.num_items) {
next_index();

}

for(int i=0; i<r.num_items; i++) {
*items[i] = *(r.items[i]);

}

num_items = r.num_items;

return *this;

}

};

template<class Item> class l3d_two_part_list {
protected:
l3d_list_item_factory<Item> *factory;

public:
l3d_list<Item> *list;
int num_fixed_items;
int num_varying_items;
int max_varying_items;

l3d_two_part_list<Item> & operator= (const l3d_two_part_list<Item> &r) {
*list = *r.list;
num_fixed_items = r.num_fixed_items;
num_varying_items = r.num_varying_items;
factory = r.factory;
max_varying_items = r.max_varying_items;
return *this;

}

l3d_two_part_list(int fixed_size) {
num_fixed_items = fixed_size;
max_varying_items = fixed_size > 1;
list = new l3d_list<Item> (fixed_size + max_varying_items);
for(register int i=0; i<fixed_size+max_varying_items; i++) {
list->next_index();

}
num_varying_items = 0;

};

l3d_two_part_list(int fixed_size, l3d_list_item_factory<Item> *factory) {
this->factory = factory;
num_fixed_items = fixed_size;
max_varying_items = fixed_size > 1;
list = new l3d_list<Item> (fixed_size + max_varying_items, factory);
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for(register int i=0; i<fixed_size+max_varying_items; i++) {
list->next_index();

}
num_varying_items = 0;

};

~l3d_two_part_list(void) {
delete list;

};

int next_varying_index(void) {
if ( num_varying_items < max_varying_items) {
return num_fixed_items + num_varying_items++;

}else {
list->next_index();
max_varying_items++;
return num_fixed_items + num_varying_items++;

}
};

Item & operator[] (int index) const {return *(list->items[index]); }
};

#endif

Using these list classes is easy. They are declared as template classes so that they work with any

data type. Let’s first begin with the l3d_list class.

To use l3d_list, do the following:

1. Declare an instance of the list, providing the data type as the template parameter and passing

the initial size of the list to the constructor. The initial size must be greater than zero.

2. Call next_index before storing any new element into the list, to obtain the next free index

within the list. This also causes the list to grow if you exceed the current size of the list.

3. Store and access elements into the list using the array index operator []. Never attempt to

access an element which you have not already allocated by having called next_index.

4. Query the number of items via the num_items member. Valid indices range from 0 to

num_items - 1.

5. Effectively empty or reduce the size of the list by setting num_items to zero or a smaller

number. Never set num_items to a larger number; use next_index to increase the size of

the list.

6. Copy the list by assigning it to another l3d_list object. This makes a full copy of the list

and its contents; the two copies are completely independent of one another and contain no

pointers to common objects (unless the contents of the list themselves are pointers, in which

case the two lists contain separate copies of pointer objects, which point to the same locations

in memory).

NOTE The creation of the list elements occurs through an abstract factory; the copying of
list elements, through a possibly virtual assignment operator; and the access of list elements,
through an abstract class pointer in the overloaded array index operator [ ]. This means that
by providing a new factory (via the l3d_list constructor) and overriding a virtual assign-
ment operator =, an existing l3d_list in already existing code can be extended after the
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fact to work with new subclasses, and the original code is still guaranteed to work because the
internal access to the list elements is done through an abstract class pointer. A detailed exam-
ple of this technique appears in the companion book, Advanced Linux 3D Graphics
Programming, when we extend the existing polygon class to store texture coordinate informa-
tion with each vertex, without needing to change any of the already existing code. By default,
an abstract factory is automatically created and destroyed if you do not provide one; the flexi-
bility is there if you need it, but does not burden you if you do not.

The other list class is the l3d_two_part_list. Again, a two-part list consists of a fixed part,

whose size never changes, and a varying part, whose size may change greatly over time. The list

elements in both the fixed part and the varying part are accessed identically (with the array opera-

tor [ ]). To use an l3d_two_part_list, do the following:

1. Declare an instance of the list, providing the data type as the template parameter and passing

the initial fixed size of the list to the constructor. The initial size must be greater than zero.

2. Store and access fixed items in the list by using the array index operator []. Valid indices for

fixed items range from 0 to num_fixed_items – 1. Do not store fixed items outside of this

range. Do not change the num_fixed_items variable.

3. Call next_varying_index before storing any element in the varying part of the list, to

obtain the next free index within the varying part. This also causes the varying part of the list

to grow if you exceed the current size of the list.

4. Store and access elements in the varying part of the list using the array index operator [ ].

Never attempt to access an element in the varying part which you have not already allocated

by having called next_varying_index.

5. Query the number of varying items via the num_varying_items member. Valid indices

for varying items range from num_fixed_items to num_fixed_items + num_
varying_items – 1.

6. Effectively empty or reduce the size of the varying part of the list by setting

num_varying_items to zero or a smaller number. Never set num_varying_items to

a larger number; use next_varying_index to increase the size of the varying part of the

list.

7. Copy the list by assigning it to another l3d_two_part_list object. This makes a full

copy of the fixed and varying parts of the list and its contents; the two copies are completely

independent of one another and contain no pointers to common objects (unless, again, the

contents are themselves pointers).

Notice that access to both fixed and varying items is done uniformly through the array access

operator [ ].

NOTE The earlier comments about factory creation, virtual assignment, and polymorphic
access all apply to l3d_two_part_list as well. This is because l3d_two_part_list
internally uses an l3d_list to store the items.

We use two-part lists for storing vertices (i.e., objects of type l3d_coordinate) which are

later used to define polygons. A typical creation of a vertex list looks as follows:
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vlist = new l3d_two_part_list<l3d_coordinate> ( 4 );
(*vlist)[0].original.X_ = float_to_l3d_real(100.0);
(*vlist)[0].original.Y_ = float_to_l3d_real(100.0);

(*vlist)[1].original.X_ = float_to_l3d_real(200.0);
(*vlist)[1].original.Y_ = float_to_l3d_real(150.0);

(*vlist)[2].original.X_ = float_to_l3d_real(150.0);
(*vlist)[2].original.Y_ = float_to_l3d_real(200.0);

(*vlist)[3].original.X_ = float_to_l3d_real( 50.0);
(*vlist)[3].original.Y_ = float_to_l3d_real(120.0);

First we create an object of type l3d_two_part_list with a data type of l3d_coordi-
nate. The constructor parameter 4 indicates the size of the fixed part of the two-part list. We then

initialize the first four elements, with indices 0 through 3, simply by using the array access opera-

tor [ ]. Each element of the list is an object of type l3d_coordinate, which we can manipulate

directly. In the code snippet above, we initialize the original member of the l3d_coordi-
nate, which is what an application program does to initially define a vertex list. The varying part

of the two-part list is not used above, and is first used during the clipping operation covered later.

Defining Polygons: Indices into a Vertex List

As we just saw, a two-part vertex list is declared in order to specify vertices to be used by one or

more polygons. Inside of the polygon itself, we store indices into this external vertex list by using

a l3d_list. Since we now understand the general use of the l3d_list and

l3d_two_part_list data structures, we are in a position to look at the definition of the poly-

gon class itself. See Listings 3-6 and 3-7.

Listing 3-6: polygon.h
#ifndef __POLYGON_H
#define __POLYGON_H
#include "../../tool_os/memman.h"

#include "../../system/sys_dep.h"
#include "../../math/matrix.h"
#include "../vertex/coord.h"
#include "../../datastr/list.h"

#define MAX_VERTICES 150
#define MAX_CLIP_VERTICES 20
#define MAX_FACETS 300
#define MAX_XFORMS 7
#define PTS_PER_FACET 20
#define TEX_WIDTH 64
#define TEX_HEIGHT 64

#define DEFAULT_IVERTICES_PER_POLY 10

class l3d_rasterizer_2d;

class l3d_polygon_ivertex {
public:
int ivertex;

virtual l3d_polygon_ivertex& operator= (const l3d_polygon_ivertex &r) {

168 Chapter 3: 2D Rasterization



ivertex = r.ivertex;
return *this;

}

virtual ~l3d_polygon_ivertex(void) {
}

};

class l3d_polygon_ivertex_items_factory :
public l3d_list_item_factory<l3d_polygon_ivertex>

{
public:
virtual l3d_polygon_ivertex_items_factory *clone(void);

};

class l3d_polygon_2d {
protected:

public:
l3d_polygon_ivertex_items_factory *iv_items_factory;
l3d_polygon_2d(void) {iv_items_factory = NULL; };

l3d_polygon_2d(int num_pts);

l3d_polygon_2d(const l3d_polygon_2d &r);

void init(int num_pts);
virtual ~l3d_polygon_2d(void);

l3d_two_part_list<l3d_coordinate> **vlist;

l3d_list<l3d_polygon_ivertex>
*ivertices,
*clip_ivertices,
*temp_clip_ivertices;

void init_clip_ivertices(void);

void swap_temp_and_main_clip_lists(void);

virtual void clip_segment_to_edge_2d
(l3d_polygon_ivertex *ivertex,
const l3d_point *pC0, const l3d_point *pC1,
int crossedge_idx0,int crossedge_idx1);
virtual int clip_to_edge_2d
(const l3d_point *pPoint1, const l3d_point *pPoint2);
int clip_to_polygon_2d(const l3d_polygon_2d *p_poly);
int side_of_point(const l3d_point *p,

const l3d_point *p1,
const l3d_point *p2);

int next_clipidx_left(int idx, int count) const;
int next_clipidx_right(int idx, int count) const;

virtual void draw(l3d_rasterizer_2d *r) {}
virtual l3d_polygon_2d *clone(void);

};

inline int l3d_polygon_2d::next_clipidx_left(int idx, int count) const {
idx = idx - 1;
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if(idx<0) idx = count-1;
return idx;

}

inline int l3d_polygon_2d::next_clipidx_right(int idx, int count) const {
idx = idx + 1;
if(idx>=count) idx = 0;
return idx;

}

inline int l3d_polygon_2d::side_of_point(const l3d_point *p,
const l3d_point *p1, const l3d_point *p2)

{
l3d_real s;

const l3d_real EPSILON=float_to_l3d_real(0.05);

#ifdef FIXED_POINT_MATH

#undef FX_PRECIS
#undef FX_PRECIS_QUOT
#undef FX_PRECIS_MASK
#undef FX_PRECIS_MAX
#undef FX_CVT
#undef FX_CVT_BACK

#define FX_PRECIS 8
#define FX_PRECIS_QUOT 8

#define FX_SIGN_MASK 0x80000000L
#define FX_ALLBITS_MASK 0xFFFFFFFFL

#define FX_PRECIS_MASK 0x000000FFL
#define FX_PRECIS_MAX 256.0

#define FX_CONVERT > FX_PRECIS_DEFAULT-FX_PRECIS
#define FX_CONVERT_BACK < FX_PRECIS_DEFAULT-FX_PRECIS

#else

#define FX_CONVERT
#define FX_CONVERT_BACK

#endif

l3d_vector normal_vector_pointing_inside_segment
(p1->Y_ - p2->Y_,
p2->X_ - p1->X_,
int_to_l3d_real(0),
int_to_l3d_real(0));

#ifndef FIXED_POINT_MATH
s = dot(normal_vector_pointing_inside_segment, *p - *p1);

#else

//- explicitly formulate dot product for fixed point to avoid overflow
s =

l3d_mulrr(normal_vector_pointing_inside_segment.X_ FX_CONVERT,
(p->X_ - p1->X_) FX_CONVERT)
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+ l3d_mulrr((normal_vector_pointing_inside_segment.Y_) FX_CONVERT,
(p->Y_ - p1->Y_) FX_CONVERT ) ;

#endif

if(s<-EPSILON) return -1;
else if(s>-EPSILON) return 1;
else return 0;

#include "../../math/fix_prec.h"

}

#include "../../raster/rasteriz.h"

#endif

Listing 3-7: polygon.cc
#include "polygon.h"
#include <string.h>
#include "../../tool_os/memman.h"

l3d_polygon_ivertex_items_factory *
l3d_polygon_ivertex_items_factory::clone(void) {
return new l3d_polygon_ivertex_items_factory;

}

l3d_polygon_2d::l3d_polygon_2d(int num_pts) {
iv_items_factory = new l3d_polygon_ivertex_items_factory;
init(num_pts);

}

void l3d_polygon_2d::init(int num_pts) {
ivertices = new l3d_list<l3d_polygon_ivertex>

(num_pts, iv_items_factory);
clip_ivertices = new l3d_list<l3d_polygon_ivertex>

(num_pts, iv_items_factory);
temp_clip_ivertices = new l3d_list<l3d_polygon_ivertex>

(num_pts, iv_items_factory);
}

l3d_polygon_2d::~l3d_polygon_2d(void) {
delete ivertices;
delete clip_ivertices;
delete temp_clip_ivertices;

delete iv_items_factory;
}

inline void l3d_polygon_2d::init_clip_ivertices(void) {

*clip_ivertices = *ivertices ;
}

inline void l3d_polygon_2d::swap_temp_and_main_clip_lists(void) {

l3d_list<l3d_polygon_ivertex> *temp;
temp = clip_ivertices;
clip_ivertices = temp_clip_ivertices;
temp_clip_ivertices = temp;
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}

void l3d_polygon_2d::clip_segment_to_edge_2d
(l3d_polygon_ivertex *ivertex,
const l3d_point *pC0, const l3d_point *pC1,
int crossedge_idx0,int crossedge_idx1)
{

#ifdef FIXED_POINT_MATH

#undef FX_PRECIS
#undef FX_PRECIS_QUOT
#undef FX_SIGN_MASK
#undef FX_ALLBITS_MASK
#undef FX_PRECIS_MASK
#undef FX_PRECIS_MAX
#undef l3d_fix_new_prec
#undef l3d_fix_norm_prec

#define FX_PRECIS 8
#define FX_PRECIS_QUOT 8

#define FX_SIGN_MASK 0x80000000L
#define FX_ALLBITS_MASK 0xFFFFFFFFL

#define FX_PRECIS_MASK 0x000000FFL
#define FX_PRECIS_MAX 256.0

#define l3d_fix_new_prec(x) ((x) > (FX_PRECIS_DEFAULT-FX_PRECIS))
#define l3d_fix_norm_prec(x) ((x) < (FX_PRECIS_DEFAULT-FX_PRECIS))

#else

#define l3d_fix_new_prec(x) (x)
#define l3d_fix_norm_prec(x) (x)

#endif

l3d_real t,x_intersect,y_intersect,denom;

denom =
l3d_mulrr(l3d_fix_new_prec

((**vlist)[ (*clip_ivertices)[crossedge_idx1].ivertex ].transformed.X_ -
(**vlist)[ (*clip_ivertices)[crossedge_idx0].ivertex ].transformed.X_ )
,
l3d_fix_new_prec(pC1->Y_ - pC0->Y_) )

-
l3d_mulrr(l3d_fix_new_prec

((**vlist)[ (*clip_ivertices)[crossedge_idx1].ivertex ].transformed.Y_ -
(**vlist)[ (*clip_ivertices)[crossedge_idx0].ivertex ].transformed.Y_)
,
l3d_fix_new_prec(pC1->X_ - pC0->X_ ) );

if (denom == 0) {
printf("shouldnt be here: cannot clip segment to edge");
ivertex->ivertex= -1;
return;

}

t=
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l3d_divrr(l3d_mulrr(l3d_fix_new_prec(pC1->X_ - pC0->X_)
,
l3d_fix_new_prec
((**vlist)[(*clip_ivertices)[crossedge_idx0].ivertex].transformed.Y_
-pC0->Y_)

)
+
l3d_mulrr(l3d_fix_new_prec(pC1->Y_ - pC0->Y_)

,
l3d_fix_new_prec(pC0->X_ -

(**vlist)[(*clip_ivertices)[crossedge_idx0].ivertex]
.transformed.X_)

)

,
denom);

x_intersect =
(l3d_fix_new_prec
((**vlist)[(*clip_ivertices)[crossedge_idx0].ivertex].transformed.X_) )
+
l3d_mulrr(t,

l3d_fix_new_prec
((**vlist)[(*clip_ivertices)[crossedge_idx1].ivertex].transformed.X_ -
(**vlist)[(*clip_ivertices)[crossedge_idx0].ivertex].transformed.X_)

);
y_intersect =
(l3d_fix_new_prec
((**vlist)[(*clip_ivertices)[crossedge_idx0].ivertex].transformed.Y_) )
+
l3d_mulrr(t,

l3d_fix_new_prec
((**vlist)[(*clip_ivertices)[crossedge_idx1].ivertex].transformed.Y_ -
(**vlist)[(*clip_ivertices)[crossedge_idx0].ivertex].transformed.Y_ )

);

int new_idx = (*vlist)->next_varying_index();
(**vlist)[new_idx].original.X_ =
(**vlist)[new_idx].transformed.X_ =
l3d_fix_norm_prec(x_intersect);

(**vlist)[new_idx].original.Y_ =
(**vlist)[new_idx].transformed.Y_ =
l3d_fix_norm_prec(y_intersect);

#include "../../math/fix_prec.h"

ivertex->ivertex = new_idx;
return;

}

int l3d_polygon_2d::clip_to_edge_2d
(const l3d_point *pPoint1, const l3d_point *pPoint2)
{
int idx0,idx1;
int crossedge0_idx0,crossedge0_idx1,crossedge1_idx0,crossedge1_idx1;
int newedge_ivertex0, newedge_ivertex1;
int i;
l3d_polygon_ivertex new_ivertex0, new_ivertex1;

int extends_outside_edge=0;
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idx0 = 0;
idx1 = next_clipidx_right(idx0, clip_ivertices->num_items);
//- search for 1st crossing edge FROM outside idx0 TO inside idx1
while( ! (side_of_point(&((**vlist)[(*clip_ivertices)[idx0].ivertex].transformed),

pPoint1, pPoint2) < 1
&&
side_of_point(&((**vlist)[(*clip_ivertices)[idx1].ivertex].transformed),

pPoint1, pPoint2) == 1 )
)

{
idx0=idx1;

if(side_of_point
(&((**vlist)[(*clip_ivertices)[idx0].ivertex].transformed),
pPoint1,pPoint2) == -1 ) {extends_outside_edge = 1; }

//- did we loop through all vertices without finding an edge cross?
if(idx0 == 0) {
//- all points (and thus the current point) are "outside"...

if(extends_outside_edge)
{
return 0;

}

//- all points (and thus the current point) are "inside"...
else
{
return 1;

}
}

//- still looking for the crossing edge
idx1=next_clipidx_right(idx0, clip_ivertices->num_items);

}

crossedge0_idx0 = idx0;
crossedge0_idx1 = idx1;

idx0=idx1;
idx1=next_clipidx_right(idx0, clip_ivertices->num_items);

//- search for next crossing edge, FROM inside idx0 TO outside idx1
while( !

(
side_of_point(&((**vlist)[(*clip_ivertices)[idx1].ivertex].transformed),

pPoint1,pPoint2) < 1 )
)

{
idx0=idx1;
//- did we loop through all vertices without finding 2nd z-plane cross?
if(idx0==crossedge0_idx0) {
fprintf(stderr,"shouldn't be here! can't find 2nd crossing edge");
return 0;

}

//- continue looking for 2nd cross
idx1=next_clipidx_right(idx0, clip_ivertices->num_items);
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}

crossedge1_idx0 = idx0;
crossedge1_idx1 = idx1;

clip_segment_to_edge_2d(&new_ivertex0,
pPoint1, pPoint2,
crossedge0_idx0,crossedge0_idx1);

if ( (newedge_ivertex0 = new_ivertex0.ivertex) == -1)
{
return 0;

}

clip_segment_to_edge_2d(&new_ivertex1,
pPoint1, pPoint2,
crossedge1_idx0,crossedge1_idx1);

if ( (newedge_ivertex1 = new_ivertex1.ivertex) == -1 )
{
return 0;

}

temp_clip_ivertices->num_items = 0;
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
newedge_ivertex0;

for(i=crossedge0_idx1;
i!=crossedge1_idx0;
i=next_clipidx_right(i,clip_ivertices->num_items))

{
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[i].ivertex;

}

(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[crossedge1_idx0].ivertex;

(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
newedge_ivertex1;

swap_temp_and_main_clip_lists();

return 1;
}

int l3d_polygon_2d::clip_to_polygon_2d(const l3d_polygon_2d *pClipPoly)
{
int idx0,idx1;

if ( (clip_ivertices->num_items == 0)
|| (pClipPoly->clip_ivertices->num_items == 0)

)
{
return 0;

}

idx0 = pClipPoly->clip_ivertices->num_items-1;
idx1 = 0;
while(1) {
if(!clip_to_edge_2d(&((**(pClipPoly->vlist)) [

(*pClipPoly->clip_ivertices)[idx0].ivertex
].transformed),
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&((**(pClipPoly->vlist)) [
(*pClipPoly->clip_ivertices)[idx1].ivertex

].transformed)) )
{
clip_ivertices->num_items=0;
return 0;

}

idx0 = idx1;
if(idx0==pClipPoly->clip_ivertices->num_items-1) break;
idx1++;

}

return 1;
}

l3d_polygon_2d::l3d_polygon_2d(const l3d_polygon_2d &r) {

iv_items_factory = r.iv_items_factory->clone();
init(DEFAULT_IVERTICES_PER_POLY);

vlist = r.vlist;
*ivertices = *r.ivertices;
*clip_ivertices = *r.clip_ivertices;
*temp_clip_ivertices = *r.temp_clip_ivertices;

}

l3d_polygon_2d* l3d_polygon_2d::clone(void) {
return new l3d_polygon_2d(*this);

}

The majority of the polygon.cc file deals with code for analytical clipping of the 2D polygon,

which we cover in the next section. For now, we are more interested in the data structures used

within the l3d_polygon_2d class for specifying polygon geometry.

Thel3d_polygon_2d class declares a pointer to a pointer to a vertex list, for the animation

and efficiency reasons we explained earlier:
l3d_two_part_list<l3d_coordinate> **vlist;

Filepolygon.cc also declares a class of typel3d_polygon_ivertex, which represents an

index into a vertex list. For now, such a vertex index is just an integer value, which is interpreted as

an index into the external vertex list pointed to indirectly by the variable above. We could subclass

l3d_polygon_ivertex to store additional information with each vertex index, such as a

color value or a texture coordinate (as is done in the companion book Advanced Linux 3D Graph-

ics Programming). Notice that we declare the assignment operator = to be virtual, so that when

l3d_list copies elements, it does so through the virtual assignment operator. This leaves the

door open for later adding new subtypes of l3d_polygon_ivertex.
class l3d_polygon_ivertex {
public:
int ivertex;

virtual l3d_polygon_ivertex& operator= (const l3d_polygon_ivertex &r) {
ivertex = r.ivertex;
return *this;

}

virtual ~l3d_polygon_ivertex(void) {
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}
};

Again, to allow for future flexibility with new vertex index types, we declare an abstract factory to

create the l3d_polygon_ivertex objects:
class l3d_polygon_ivertex_items_factory :

public l3d_list_item_factory<l3d_polygon_ivertex>
{
public:
virtual l3d_polygon_ivertex_items_factory *clone(void);

};

The factory provides a virtual clone method to create a new factory of the same type; when

copying a polygon, we also should copy the vertex index factory so that the copied polygon can

produce the same kind of vertex indices as the original polygon. (In the companion book

Advanced Linux 3D Graphics Programming, we override this clone method because we need

textured vertex indices; also, see the upcoming discussion in a few paragraphs on the polygon’s

clone method.) We create this factory during creation of the polygon object, in the polygon

constructor:
l3d_polygon_2d::l3d_polygon_2d(int num_pts) {
iv_items_factory = new l3d_polygon_ivertex_items_factory;
init(num_pts);

}

Finally, when initializing the polygon object, we create three l3d_list objects to hold our

l3d_polygon_ivertex objects. These are the lists of indices into the external vertex list.

Notice in the following code that we pass the factory object to the constructor so that the list will

use the factory when filling, expanding, or copying the elements in the list. Later on, we can swap

out the factory with a subtype-compatible one, without “breaking” our old code.
void l3d_polygon_2d::init(int num_pts) {
ivertices = new l3d_list<l3d_polygon_ivertex>

(num_pts, iv_items_factory);
clip_ivertices = new l3d_list<l3d_polygon_ivertex>

(num_pts, iv_items_factory);
temp_clip_ivertices = new l3d_list<l3d_polygon_ivertex>

(num_pts, iv_items_factory);
}

An application program will typically create and initialize an l3d_polygon_2d object as

follows:
facet = new l3d_polygon_2d_flatshaded ( 4 );
facet->vlist = & vlist;
facet->final_color = xcolor;
(*(facet->ivertices))[facet->ivertices->next_index()].ivertex = 0;
(*(facet->ivertices))[facet->ivertices->next_index()].ivertex = 1;
(*(facet->ivertices))[facet->ivertices->next_index()].ivertex = 2;
(*(facet->ivertices))[facet->ivertices->next_index()].ivertex = 3;

Assuming the external variable vlist is a pointer to an already created l3d_two_part_
list object, then the above code snippet works as follows. First, we create a new l3d_poly-
gon_2d object, passing a parameter of 4 to the constructor, indicating that the polygon initially

consists of four vertices (this number can grow if the polygon is clipped, as we see later). Next, we

initialize the polygon’svlistmember to be the address of the external pointervlist. After set-

ting the polygon’s color, we initialize each of the polygon’s vertex indices. The polygon’s vertex
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indices are accessible through the ivertices member (which stands for index to vertices). As

we saw above, the ivertices member is a list (more precisely, a pointer to a list) of type

l3d_list, containing elements of type l3d_polygon_ivertex. We access the list’s ele-

ments via the array access operator [ ], each time calling the next_index method on the list to

obtain the next free array index. After specifying the next free list element inside of the operator [

], we have access to the l3d_polygon_ivertex object stored at this location in the list. We

finally set the ivertex member of this object, which represents the index into the external ver-

tex list pointed to indirectly by vlist. For instance, the first ivertex assignment in the above

code snippet effectively says, “the first vertex of this polygon is the vertex with index number 0 in

the external vertex list.” Notice, again, that the polygon’s vertices are not explicitly defined, but

rather indirectly, which allows for flexibility in changing the polygon’s appearance without need-

ing access to the polygon’s internals; we just change the external list.

The three constructors of l3d_polygon_2dwarrant a brief discussion. The first construc-

tor with the num_pts parameter creates and initializes a 2D polygon. The second constructor

with no parameters creates but does not initialize a 2D polygon. The reason we might need an

uninitialized polygon is if we subclass from l3d_polygon_2d but take care of the polygon ini-

tialization in the new subclass, either by calling another base class constructor from a different

base class (in the case of multiple inheritance possibly with virtual base classes), or by performing

the initialization in the constructor of the new subclass. An example of this appears in the compan-

ion book Advanced Linux 3D Graphics Programming, with class l3d_polygon_3d_
textured.

The third and last constructor is a custom copy constructor. Due to the complexity of the

l3d_polygon_2d class, involving pointers to lists and contained objects, the semantics for the

C++ default copy constructor (member-by-member copy) are not sufficient. Of particular note is

that the custom copy constructor copies the lists of vertices and the contents of the lists. This is

accomplished by copying the lists themselves (through an assignment such as

*ivertices=*r.ivertices) , and not just the pointers to the lists (which, with a statement

such as ivertices=r.ivertices, would result in two pointers to the same list, not two sep-

arate copies of the list). Copying entire lists and their contents is possible because of the

overloaded = operator in template class l3d_list, which then asks each object in the list to

copy itself via another possibly overloaded = operator belonging to the object. Thus, a copy of a

polygon has the same structure as the original, but can be freely altered without affecting the origi-

nal: the copy of the list has no pointers to objects also pointed to by the original. This complete

separation between original and copy is the desired copy semantic, and is therefore defined in a

custom copy constructor.

The clonemethod of l3d_polygon_2d is a virtual method which creates a new polygon

object of the same type (l3d_polygon_2d) and returns a pointer to this newly created polygon

object. Creation of the new object is done with the copy constructor, meaning that a fully separate

copy of the polygon is created. This method provides a convenient way of duplicating a polygon.

We need this virtual method clone because later subclasses of l3d_polygon_2d can still be

accessed through an abstract pointer of type l3d_polygon_2d*. This means we might need to

clone a polygon, accessed through an abstract pointer, without knowing its exact subtype.
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Therefore, subclasses of l3d_polygon_2d simply override the virtual clone method to cre-

ate a new polygon of the correct concrete subtype, returning an abstract pointer, of type

l3d_polygon_2d*, to the new cloned polygon. The need for cloning polygons arises when we

want to split a polygon into two halves. To do this, we clone the polygon, creating two identical

copies. Then for one polygon we clip away one particular half of the polygon, and for the other

polygon we clip away exactly the other half of the polygon. The result is two polygons which

together have the same shape as the original polygon, but which are two separate polygons which

can be manipulated separately. See Chapter 7 for an implementation of the polygon split algo-

rithm, and see the companion book Advanced Linux 3D Graphics Programming for a discussion

of visible surface algorithms requiring polygon splits.

NOTE All polygon subclasses which might need to be cloned (and split) must override the
method clone.

The l3d_polygon_2d class only represents the geometry (shape) of a polygon, not its color or

any other visible attributes. In other words, l3d_polygon_2d is a purely mathematical

description of polygon geometry. The class l3d_polygon_2d_flatshaded is subclassed

from l3d_polygon_2d, and represents a polygon with a single color. The member variable

final_color represents the color with which the polygon will be drawn; this color is specified

in “native” format, using the ext_to_native function discussed earlier. The overridden

method draw, which by default did nothing in parent class l3d_polygon_2d, asks the

rasterizer to draw the polygon, which, in turn, asks its rasterizer implementation to draw the poly-

gon, using an algorithm we cover in the next section. Also, notice that l3d_polygon_2d_
flatshaded overrides theclonemethod, creating and returning a flat-shaded polygon object.

Listing 3-8: p_flat.h
#ifndef __P_FLAT_H
#define __P_FLAT_H
#include "../../tool_os/memman.h"

#include "polygon.h"

class l3d_polygon_2d_flatshaded :
virtual public l3d_polygon_2d

{
public:
unsigned long final_color;

l3d_polygon_2d_flatshaded(void) {};

l3d_polygon_2d_flatshaded(int num_pts) :
l3d_polygon_2d(num_pts) {};

void draw(l3d_rasterizer_2d *r) {
r->draw_polygon_flatshaded(this);

}

l3d_polygon_2d_flatshaded(const l3d_polygon_2d_flatshaded &r);
virtual l3d_polygon_2d *clone(void);
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};

#endif

Listing 3-9: p_flat.cc
#include "p_flat.h"
#include "../../math/matrix.h"
#include "../../tool_os/memman.h"

l3d_polygon_2d* l3d_polygon_2d_flatshaded::clone(void) {
return new l3d_polygon_2d_flatshaded(*this);

}

l3d_polygon_2d_flatshaded::l3d_polygon_2d_flatshaded
(const l3d_polygon_2d_flatshaded &r)

: l3d_polygon_2d(r)
{
final_color = r.final_color;

}

Figure 3-5 illustrates the class diagram for the polygon-related classes.

Drawing the Polygon

Now that we have a flexible set of classes for specifying vertex lists and polygons, we can discuss

the actual rasterization of polygons. For the time being, we are interested in drawing polygons

filled with one color, which is also called flat-shading. The flat-shading polygon rasterization

function in l3d is l3d_rasterizer_2d_sw_imp::draw _polygon_flatshaded.

This function takes as a parameter a pointer to an l3d_polygon_2d_flatshaded object as

described in the previous section.
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The approach we will take to drawing a polygon is to draw a series of horizontal spans of pix-

els, one on top of another. Recall that a span is simply a continuous sequence of pixels. You can

imagine this process as being similar to stacking wooden planks of various length, one on top of

another. Figure 3-6 illustrates this process. By drawing a series of horizontal spans on top of each

other, we can approximate the appearance of any convex polygon.

Notice that only convex polygons can be rasterized in this fashion. A concave polygon might

have holes in it or curving sections which might require multiple spans to be drawn for each row of

the polygon (Figure 3-7). Since any concave polygon can be decomposed into a set of convex

polygons, it is not a great limitation that our rasterization routines only work for convex polygons.

The algorithm for rasterizing convex polygons is based upon the line rasterization algorithm

we discussed earlier. The idea is to start at the top vertex of the polygon, and find the edge immedi-

ately to the left and immediately to the right of the top vertex. We then step in the positive
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a series of horizontal spans.

Figure 3-7: Concave polygons cannot as
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y-direction (downward) along the left edge and the right edge simultaneously, calculating the x

coordinate for the left edge and the right edge incrementally by adding the inverse slope, exactly

as we did when rasterizing lines. But instead of drawing the edges themselves, we draw a horizon-

tal span between the edges; specifically, for each y coordinate, we draw a span between the left x

coordinate and the right x coordinate. While stepping vertically along the left and right edges, we

need to notice when we have finished processing one edge (i.e., when the current y coordinate is

greater than the edge’s largest y coordinate), because then we must search for the next adjacent

edge so that the vertical stepping can continue with the next edge. When we have processed all

edges (which is also when we reach the bottommost vertex of the polygon), we are finished.

NOTE The polygon rasterization algorithm we describe can therefore rasterize any convex
polygon. Many simple 3D engines can only rasterize triangles or quads (four-sided poly-
gons), because of the belief that rasterizing these simpler primitives is easier than rasterizing
arbitrary convex polygons, and because any polygon can be decomposed into triangles.
Although, in theory, any polygon can in fact be decomposed into triangles, in practice it is
often a great hinderance if a 3D engine can only fundamentally draw triangles or quads. This
is because for applications such as portal rendering (described in the companion book
Advanced Linux 3D Graphics Programming), we need to draw and clip to arbitrary convex
polygons. Furthermore, clipping (covered in the next section) can add new vertices to any
polygon. If an arbitrary convex polygon must first be decomposed into triangles before we
can do anything with it, this opens up a Pandora’s box of practical problems. Conceptually we
want to deal with a convex polygon as a whole, but in practice we are forced to juggle a set of
disjointed and possibly changing triangles which are all accessed and stored separately, and
on top of that, have also lost the delineating border of the original polygon. It’s always a sign
of trouble if the implementation of an idea radically differs from the conceptual framework
used to think about the idea. Supporting arbitrary convex polygons early on eliminates many
headaches later. And, as we just saw in the previous paragraph, rasterizing an arbitrary con-
vex polygon is not more difficult than rasterizing a triangle; we simply need to keep track of
current edges on the left and right sides of the polygon during rasterization.

The steps for the algorithm are as follows:

1. Find the topmost and bottommost vertices of the polygon (i.e., those with the smallest and

largest y coordinate) by sequentially searching through the vertices. We will draw the

polygon starting from the top (smallest y) and proceeding towards the bottom (largest y).

2. Create a zero-height left edge as an initialization step. This left edge consists of two vertices: a

left-start vertex and a left-end vertex. Initialize both of these to be the top vertex.

3. Create a zero-height right edge as an initialization step. This right edge consists of two

vertices: a right-start vertex and a right-end vertex. Initialize both of these to be the top vertex.

4. Start a loop to go from the top y coordinate to the bottom y coordinate (or the bottom of the

screen, whichever comes first). We will draw one horizontal span of pixels for each y

coordinate.

5. Check if the left edge has any remaining height with respect to the current y coordinate. This is

the distance between the y coordinate of left-end and the current y coordinate. If this is zero,

then this left edge has no height with respect to the current y coordinate, either because the

edge itself is of zero height (because its starting and ending y coordinates are the same) or
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because the current y coordinate, which we increase in each loop iteration, has passed the end

of this edge. In either case, search for a new left edge of non-zero height in the

counterclockwise direction. If we loop through all edges and find no new edge of non-zero

height, the polygon has been completely drawn.

5a. After finding a left edge of non-zero height, initialize the current left x coordinate to be the x

coordinate of left-start (the topmost vertex of the left edge).

6. Check to see if the right edge has any remaining height with respect to the current y

coordinate. This is the distance between the y coordinate of right-end and the current y

coordinate. If this is zero, then this right edge has no height with respect to the current y

coordinate, either because the edge itself is of zero height or because the current y coordinate,

which we increase in each loop iteration, has passed the end of this edge. In either case, search

for a new right edge of non-zero height in the clockwise direction. If we loop through all edges

and find no new edge of non-zero height, then the polygon has been completely drawn.

6a. After finding a right edge of non-zero height, initialize the current right x coordinate to be the

x coordinate of right-start (the topmost vertex of the right edge).

7. Begin a loop which goes from the current y coordinate until the end of the y coordinate of the

left edge or the right edge, whichever is reached first.

8. Draw a span of pixels between the left and right edges at the current y coordinate.

9. Increase the y coordinate by one, and “step” the left-x and right-x coordinates by adding the

inverse edge slopes to them. This is the same strategy we used for rasterizing lines. Continue

the loop begun in Step 7.

10. After exiting the loop, we have now stepped the y coordinate past the bottom of one or both of

the edges. Continue the loop begun in step 4 to look for the next left and/or right edge (if any).

Referring back to Listing 2-41, you can see that the draw_polygon_flatshadedmethod of

class l3d_rasterizer_2d_sw_imp is commented with each of the steps listed above. Also,

notice the macro VTX(i) in the listing from Chapter 2. As we have seen, the polygon’s vertices

are defined by indices into a list which is accessed through a pointer to a pointer. While this allows

for the most flexible polygon definition, it makes accessing the vertices from within the polygon a

bit awkward at times. The VTX(i) macro allows for a more convenient access to the actual

l3d_coordinate object associated with a particular vertex in the polygon’s vertex index list.

NOTE Notice also that the VTX(i) macro accesses the transformed (not the original)
member of the vertex list pointed to by a vertex index in the clipped vertex index list (list
clip_ivertices and not list ivertices). This means that we only ever draw trans-
formed, clipped polygons, or more accurately, that the definition for the polygon to be drawn
is taken out of the storage area reserved for the transformed, clipped data. Whether the data
stored in this storage area has actually been transformed and clipped or not is irrelevant; the
point is to understand where the rasterizer implementation looks for the final, to-be-
rasterized definition of the polygon data. It looks in the polygon’s clipped vertex index list, and
takes the associated transformed coordinates out of the external vertex list. This is the most
general and most common case.
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There is, however, one slightly tricky part about the polygon rasterization code. It stems from the

fact that pixel coordinates are integer coordinates; however, the polygon coordinates are ulti-

mately from type l3d_real. We therefore need to convert real to integer coordinates. When we

drew lines, we treated this issue somewhat casually, since we don’t use the line drawing function

very often. With polygons, however, the situation looks a bit different; it is important to define a

consistent real-to-integer rounding convention to eliminate cracks between adjacent polygons and

to determine which pixels are “inside” the polygon and which are not. Collectively, we can call

these issues sub-pixel rasterization issues, which we now look at in more detail.

Sub-Pixel Correct Rasterization

Polygon coordinates, as we have seen, are stored as type l3d_real, not as integers. There are

two reasons for this. First, 2D polygon coordinates, in the context of 3D graphics, arise out of a

3D-to-2D projection operation, which takes place in a continuous real-valued 3D space. There-

fore, the 2D coordinates that come from a projection operation will be real-valued and not integer

values. (See Chapter 5.) Second, allowing 2D polygon coordinates to be real values allows for

so-called sub-pixel correct rasterization, which creates a smooth “flowing” effect for polygon

edges as the polygon moves across the screen at a rate of less than one pixel per frame. This is

important, for instance, when the virtual camera or player is moving slowly through a scene.

The fundamental problem is that we need to convert real values into integer values. Until now,

we have dealt with pixel coordinates in an integer coordinate system. The coordinate (0,0), for

instance, represents the pixel at an offset of 0 rows and 0 columns from the upper-leftmost pixel in

the image. An integer pixel coordinate therefore specifies the region of space occupied by a pixel.

When dealing with real-valued coordinates, however, the situation is completely different: a

real-valued coordinate does not specify an occupied space, unlike integer pixel coordinates; a

real-valued coordinate specifies an infinitely small point, with no size, at a particular location.

Therefore, if we want to work with pixels in a real-valued coordinate system, we have to decide

what space a pixel occupies in the real-valued coordinate system. For instance, if we say that a

pixel is located at an integer location of “0” horizontally, does the pixel occupy the space starting

at real-valued x coordinate 0 and ending at 1, or the space ending at real-valued x coordinate 0 and

starting at –1, or the space extending halfway to the left and halfway to the right of real-valued x

coordinate 0, starting at –0.5 and ending at 0.5? The same questions apply to the vertical coordi-

nate. The choice is arbitrary, but I find it is most intuitive to take the “starting at” approach. This

means that the pixel (x,y), specified in integer pixel-space coordinates, occupies in a real-valued

coordinate system the space from x up to but not including x+1 in the horizontal direction, and the

space from y up to but not including y+1 in the vertical direction. Another way of saying this is that

the integer coordinates of a pixel in an integer reversed-y coordinate system correspond to the

position of the pixel’s upper-left corner in a real-valued reversed-y coordinate system. This system

ensures that every part of all visible pixels lies within the non-negative quadrant of the real-valued

coordinate system. Any other approach would mean that parts of the pixels in row 0 and column 0

would “hang off the edge” of the coordinate system, extending partially into the negative region.

This would mathematically cause no problems but seems conceptually a bit odd.
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There are fundamentally two goals we would like to achieve:

1. Only pixels whose upper-left corner is “inside” of the polygon should be drawn.

2. For adjacent polygons sharing an edge, the pixels on the shared edge should be drawn by one

and only one polygon. No pixel should be drawn twice; no pixel should be left undrawn.

The first requirement is not an absolute must, but is very useful to understand what we are trying to

accomplish and follows naturally from a consistent coordinate definition. The second requirement

is much more important, because otherwise we can have quite ugly black gaps where polygons

meet at the edges, a condition which could be called polygonal periodontitis. A consistent

real-to-integer conversion makes sure that the edges of polygons line up perfectly.

To achieve these goals, we follow these simple rules when rasterizing a polygon:

1. In the vertical direction, for an edge whose real-valued y coordinates range from start_y to

end_y, we define the edge to extend starting from ceil(start_y) and extending up to and

including ceil(end_y) –1.

2. In the horizontal direction, for a span whose real-valued x coordinates range from left_x to

right_x, we define the span to extend starting from the pixel at ceil(left_x) and extending up to

and including the pixel at ceil(right_x) –1.

The ceil(x) function, where x is a real value, is the mathematical ceiling function. It returns the

smallest integer larger than x. In other words, it rounds upward in the positive direction.

These rules have two effects. The first effect comes about through the use of the ceiling func-

tion, and effectively associates the upper-left corner of each pixel with the corresponding

real-valued coordinate. The second effect comes from the “– 1” term, which, in combination with

the ceiling function, effectively guarantees that shared edges, both horizontal and vertical, will

only be drawn by one polygon. Let’s look at this a bit more closely.

By taking the ceil(start_y) coordinate, we initialize y to be the first row of pixels whose upper

edge lies on or below the start_y coordinate. By stepping horizontally starting from ceil(left_x),

we find the first pixel whose left edge lies on or to the right of the left_x coordinate. Taken

together, this means that the upper-left corner of all pixels found in this way lie on or below the top

edge and on or to the right of the left edge—in other words, “inside” the left and top edges.

The ceil(end_y) coordinate is the first row of pixels whose upper edge lies on or below the

end_y coordinate. Reasoning backwards, then, ceil(end_y) –1 is the last row of pixels whose

upper edge lies strictly above the end_y coordinate. The ceil(right_x) coordinate is the first pixel

whose left edge lies on or to the right of the right_x coordinate. Reasoning backwards,

ceil(right_x) –1 is the last pixel whose left edge lies strictly to the left of the right_x coordinate.

Taken together, this means that the upper-left corner of all pixels found in this way lies strictly

above the bottom edge and strictly to the left of the right edge—in other words, “inside” the bot-

tom and right edges.

The results of the two previous paragraphs together mean that all pixels lie inside the polygon,

and that the last pixel not drawn horizontally or vertically is the first pixel drawn in an adjacent

polygon. For instance, the point with x coordinate 7.32718 is rounded down to 7 if it is used as a

right_x coordinate (ceil(right_x) – 1 = ceil(7.32718) – 1 = 8 – 1 = 7), but is rounded up to 8 if it is

used as a left_x coordinate (ceil(left_x) = ceil(7.32718) = 8). The same logic applies for vertical

edges. This consistently ensures that each pixel belongs to one and only one polygon.
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NOTE As mentioned in the discussion of rasterizing lines, the DDA algorithm presented
here is not necessarily always 100 percent accurate. The fact that the next value of x is
dependent on the previous value can conceivably lead to numerical drift for extremely long
lines or edges, since a small inaccuracy in the initial computation of x cumulatively increases
as we step along the edge. This could, conceivably, cause a pixel whose upper-left corner is
not strictly within the polygon to occasionally be drawn. In practice, this is rarely a problem
(typically only with texture mapping, and even then there are workarounds). In any event, we
still never have gaps between polygons with the approach presented above, since a pixel is
always drawn by one and only one edge.

The only additional thing we need to do is to realize that the mathematically “true” edge always

goes from the real-valued start_y and end_y y coordinates, and that the “true” span extends hori-

zontally from left_x to right_x. However, we draw the edge vertically starting at ceil(start_y), and

horizontally starting at ceil(left_x). This means that when we initialize our x and y variables to step

along the edge, we must make an initial sub-pixel correction. Since we start vertically drawing at y

coordinate ceil(y_start), we have skipped over the top, sub-pixel part of the edge, whose size is

ceil(y_start) – y_start. This means that the first x coordinate we draw along the edge should be ini-

tialized not to the starting x coordinate of the edge, but rather to the starting x coordinate plus

(ceil(y_start) – y_start) * inverse_slope.

Similarly, when drawing a horizontal span, we start drawing the span not at left_x, but at

ceil(left_x); we have thus skipped over the left, sub-pixel part of the span, whose size is

ceil(left_x) – start_x. However, for flat-shaded polygons, we have no variable which depends on

the x coordinate, and thus do not need any sub-pixel correction. Note that some texture mapping or

lighting schemes (described in the companion book Advanced Linux 3D Graphics Programming)

require a sub-pixel correction in both the horizontal and vertical directions, since in this case the

texture or other coordinates do indeed depend on both x and y, and any sub-pixel portions that are

“skipped over” must be accounted for.

Figure 3-8 illustrates the rasterization and sub-pixel correction process for a triangle. We have

two edges on the left, and one edge on the right. For the first left edge and the first right edge, we

skip the sub-pixel top part of the triangle, and actually start drawing at ceil(start_y). Thus the verti-

cal portion of the triangle labeled “sub-pixel correction” is the vertical amount we skip, which we

must compensate for in the horizontal edge variables. Also notice that we skip the very last

sub-pixel part of an edge, since we draw up to ceil(end_y) – 1 and not up to ceil(end_y). This

skipped portion, however, belongs exactly to the pixel which will be drawn by an edge underneath

the current one, thereby ensuring that, vertically, each pixel is only drawn by one edge or polygon.

Horizontally, the process works similarly in Figure 3-8. The dark dots represent the true x

coordinate of the edge for the given y coordinate. The circles represent the ceiling of the true x

coordinate. We thus start drawing the edge a bit to the right of the true left edge; specifically, we

begin drawing with the first pixel whose upper-left corner lies on or to the right of the true edge.

We continue horizontally up but not including ceil(right_x), which is the first pixel whose upper-

left corner is strictly to the right of the right edge. We thus stop drawing the edge a bit to the left of

the true right edge. The difference between ceil(x) and the true x is the sub-pixel “jump” in x which

would need to be accounted for if any variables depend on x, but as noted above, nothing depends

on x for flat-shaded polygons.
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In the C++ source code fordraw_polygon_flatshaded, the sub-pixel correction due to

the skipped y part takes place in the code for Steps 5a and 6a, and is commented with the phrase

“sub-pixel correction.”

Polygon Clipping in 2D
Until this point, we have implicitly assumed that the polygons we draw all have coordinates which

lie within the boundaries of the screen. In general, this is not the case. In the 2D domain, we often

want to model 2D figures which are larger than the pixel dimensions of the screen. In this case we

can only display part of our figures on the screen at a time. This means that very often, parts of our

polygons will lie outside of the screen coordinates. And in the 3D world, we generate 2D polygons

by projecting polygons from 3D space into 2D space. Polygons generated in this way are also very

often partially (or totally, but this is a culling and not a clipping issue) invisible.

Any polygon which is partially off-screen must be clipped. Recall, our polygon rasterization

code draws into an off-screen buffer by directly setting bytes in memory, bytes whose address is

calculated via the formula (x + width * y) * bytes_per_pixel. If our screen is 800� 600 pixels with a

depth of 2 bytes per pixel, this means we have 1,920,000 bytes in the off-screen buffer. Without

clipping, if we try to plot a point at coordinate (77281, 33892), the rasterization formula would

blindly comply, yielding an address 54,381,762 bytes from the beginning of the buffer, which is

52,461,763 bytes too far into no-man’s land (also known as crash-your-program land). To keep
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our memory accesses within safe bounds, we need to clip our polygons so that all vertices lie

within valid screen coordinates.

There are several approaches to clipping polygons. Clipping lines is similar, and clipping

points is trivial (discard the point if it lies outside of the screen coordinates).

NOTE We present the clipping strategies below in the context of clipping 2D polygons, but
the ideas extend readily to 3D as well. Chapter 7 covers this in more detail.

Discard the Polygon Completely

The easiest and most visually disturbing means of “clipping” polygons is to refrain from drawing

the polygon completely if any of its vertices lie outside of the screen. This method can work if

most of the polygons are small, so that discarding one polygon does not cause significantly large

parts of the image to disappear. This method fails if there are many large polygons, because we

then completely discard very large portions of geometry as soon as one single part (in this case,

vertex) of that geometry is invisible.

Discard Invalid Vertices Only

The next approach to polygon clipping is to discard vertices which lie outside of the screen,

thereby reducing the number of vertices in the polygon. Figure 3-9 illustrates this idea. The prob-

lem with this approach is that discarding vertices causes the invisible part of the polygon to

disappear. In the top half of Figure 3-9, the rightmost vertex lies outside of the screen boundaries

and is discarded. This yields the result in the bottom half of Figure 3-9, where only three vertices

remain. The section marked “Incorrectly omitted area” should ideally still be visible, but is incor-

rectly clipped away by discarding the offending vertex.

This approach can work if the geometry consists of smaller polygons with many vertices

each, so that discarding one vertex has a less disruptive effect on the rest of the geometry. If many

large polygons with few vertices each are used, this approach is visually unpleasing.

Scissoring or Scanline Clipping

The next approach to polygon clipping is to perform clipping during the rasterization process, in

the rasterizer implementation itself. As we mentioned, a software rasterizer implementation draws

polygons as a series of horizontal spans. If we “clamp” the left and right edges of each span to the

left and right screen boundaries, we can ensure that the polygon gets correctly clipped to the

screen. A similar clamping must take place in the vertical direction, but we must be careful that the

initialization of the rasterization algorithm also takes place correctly. We originally assumed that

the polygon is rasterized from the top vertex to the bottom vertex; however, if the top vertex is

beyond the top edge of the screen, the initialization steps in the polygon rasterization algorithm

must search for the first left edge and right edge which are at least partially visible, and start the

algorithm at the first visible part of each edge. It is a bit complicated, but it can be done. This

approach to polygon clipping is called scanline clipping or scissoring.
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Figure 3-9:
Clipping by
discarding
vertices

Figure 3-10:
Scanline clipping,
also called
scissoring.



This clipping algorithm is relatively easy to understand and implement. It also allows clipping

to non-polygonal regions; this requires storing an array of left-clamp values and right-clamp val-

ues for each row in the frame buffer. We then clip each span to the left-clamp and right-clamp

values appropriate for the current row.

There are three serious drawbacks to this method of clipping. First of all, it requires two extra

comparisons for each and every span to be drawn to the screen, which slows down as the screen

size increases. Second, although it can be fairly easily implemented for flat-shaded polygons, as

soon as we associate more information with each polygon vertex (lighting or texture coordinates),

a scanline clipping algorithm becomes a headache to manage because the discarded portion of the

span must be accounted for in the computation of lighting or texture coordinates for the span, simi-

lar to the way that we needed to account for a discarded sub-pixel portion of an edge or a span.

Such extra accounting clutters the code with extra comparisons and calculations during initializa-

tion and for each span. Finally, this method of clipping assumes a software rasterizer

implementation which has direct control over the spans to be drawn. This algorithm cannot be

effectively accelerated with hardware, since accessing spans at the hardware level, even if it were

possible, would require so many function calls that the overhead would outweigh any perfor-

mance gain from the hardware.

Analytical 2D Clipping

The most flexible method for polygon clipping is to perform so-called “analytical 2D clipping.” In

this approach, we clip one polygon to the boundaries of another polygon. Both polygons must be

convex, a limitation which by now should come as no surprise to you. In the case of clipping to the

screen, we define a rectangular polygon which encompasses the screen, and clip all polygons to be

drawn against this rectangular polygon. This is the clipping method implemented in l3d. Spe-

cifically, this rectangular clip polygon for the screen is stored in the l3d_screen class, in

member variables view_win and vwin_vlist, which we previously promised would be

explained later. Having now encountered polygons, we now can understand what exactly these

variables are. The view_win variable is of type l3d_polygon_2d, and is the polygon data

structure itself for the screen’s clip window. The vwin_vlist variable is an

l3d_two_part_list containing objects of type l3d_coordinate defining the corners of

the clip window. This is a completely typical polygon configuration as we saw earlier—a polygon

object with an external two-part vertex list.

NOTE Notice that the view_win variable is of type l3d_polygon_2d and not of
l3d_polygon_2d_flatshaded, since the clip window never needs to be drawn and thus
does not need the color attribute and drawing functions provided by l3d_poly-
gon_2d_flatshaded.

Let’s now discuss the polygon-to-polygon clipping algorithm itself. Let us call the polygon to be

clipped the target polygon, and the polygon being clipped against the clip polygon. The goal is to

redefine the target polygon so that all of its vertices lie “inside of” the clip polygon, ensuring that

the shape of the final, clipped polygon corresponds exactly to the shape of that part of the original
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target polygon which lies inside the clip polygon. In other words, we want to avoid the distortion

which occurs with the “discard invalid vertices” algorithm.

The first thing to define is what we mean by “inside of the clip polygon.” We previously men-

tioned, in the original discussion of polygons, that this book uses the clockwise vertex ordering

convention for specifying polygons. Then, we can say that a point is “inside” of a clip polygon if,

for all edges in the clip polygon, the point lies on the right side of the edge when looking along the

edge in a clockwise direction with respect to the clip polygon. We can also call the right side of an

edge the “inside side” of an edge. This means that testing for containment within a polygon

reduces to a series of simple tests. If the point lies on the inside side of each and every edge, then

the point must lie inside of the entire polygon.

The clipping algorithm itself takes a similar “divide-and-conquer” approach. For each edge of

the target polygon, we clip it against each edge of the clip polygon. To avoid confusion in the fol-

lowing discussion, let us call the edges in the target polygon “segments.” To clip a segment to an

edge of the clip polygon means to calculate an intersection between the segment and the infinitely

long line containing the edge of the clip polygon. (The fact that we clip the target polygon’s seg-

ments against infinitely long edges—as opposed to just the finitely long edge—is not a problem,

because we clip the target polygon against all infinitely long edges making up the clip polygon.)

To do this, we search for the first segment of the target polygon that has one endpoint outside the

clip edge and one endpoint inside the clip edge. If no such segment can be found, then either the

target polygon is completely inside or completely outside of the clip polygon, and no clipping

needs to be done.

If we do find such a segment, then we have found the point where the target polygon is cross-

ing either from inside the clip polygon to the outside, or from the outside to the inside. We call this

situation an edge cross, because the segment has crossed an edge. Since the target polygon is con-

vex, for a given edge there are either zero or two edge crosses. We see the benefit of convexity

here: all convex polygons are “simple,” loop-like, somewhat O-shaped figures. If an O-shaped

figure crosses an edge at one point, then there must also be a second crossing point where the “O”

loops back on itself, thereby crossing the edge a second time. (Note that if the “O” touches the
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point is on the
“inside side” of a
polygon’s edge if
it is on the right
side when looking
clockwise along
the edge.



edge at one point, this does not count as a “crossing.”) Therefore, if we find one edge cross, we

know there must be a second edge cross, and we must search for it.

With the two crossing segments thus found, we then calculate the exact intersection points

between the crossing segments and the edge which was crossed. This creates two new vertices,

both lying exactly on the clip edge and both also lying on the crossing segments.

These newly calculated intersection points are used as new vertices in the polygon. We use

these two new vertices to redefine two segments and to add a new segment to the target polygon.

We redefine the two crossing segments so that they no longer extend outside of the polygon, but

only extend up to the newly calculated clip vertices. We then “close up” the polygon by adding a

new segment joining the newly calculated clip vertices.

Figure 3-12 illustrates this process for clipping against the rightmost edge of the screen. One

vertex lies outside of the clip polygon. The two edges attached to this vertex are found as being

crossing segments, because one vertex for each edge lies inside and one outside of the clip poly-

gon. We compute the intersection points between the crossing segments and the clip edge,

yielding the new clip vertices indicated by the shaded circles in the bottom half of the figure. The

two crossing segments are changed so that they only extend up to the newly calculated clip verti-

ces, and a new segment is created between the new clip vertices.

The example in Figure 3-12 only shows clipping against the right edge of the clip polygon, but

the exact same procedure is followed for all edges of the clip polygon. Also, there may be more

than just one vertex outside of the clip edge; there could be many. Even if there are many vertices

outside of the clip polygon, we are still only interested in finding the two crossing segments. We

then discard not just one but all vertices outside of the clip polygon.
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NOTE Although I independently reasoned out and implemented this clipping algorithm for
l3d, the algorithm turns out to be a variant of the famous Sutherland-Hodgman polygon clip-
ping algorithm [SUTH74]. The algorithm presented here, however, limits itself to clipping
convex polygons against other convex polygons, whereas the Sutherland-Hodgman algo-
rithm clips either concave or convex polygons against another convex polygon. I believe that
the convexity restrictions placed on the algorithm presented here allow it to be faster than the
general Sutherland-Hodgman algorithm, because we know that there are either exactly zero
or two crossing segments.

Notice that during this process, new vertices are created. Also notice that the polygon’s definition

changes, since the edges and therefore the contents of the vertex index list change in number and

size. If the polygon is clipped against a clip polygon with many edges, then it is conceivable that

none of the original edges or vertices remain after a clipping operation. Furthermore, if the poly-

gon is moving, then some vertices which did not need to be clipped in the previous frame might

now need to be clipped, and vice versa.

Now we can understand fully the purpose of the two-part list data structure introduced earlier.

The fixed part defines the original vertices of the polygon. The varying part is the storage for the

clip vertices which are generated during clipping. There might be no vertices generated during

clipping, or there might be dozens; it all depends on the shapes and positions of the target and clip

polygons. Furthermore, if multiple polygons share the same vertex list, the vertex list will contain

clip-generated vertices for all polygons using the list. With moving polygons, the clipping vertices

and indices to these can change every frame. It is clear that a dynamically growable, dynamically

clearable data structure is needed here. This is exactly the role of the two-part list. Before every

new clipping operation, we reset the varying part of the vertex list by setting num_vary-
ing_items to 0; this essentially “deletes” all clip-generated vertices and allows the clipping

operation to begin again with the original polygon definition.

Inside of the polygon itself, we have three lists of indices to vertices: ivertices,

clip_ivertices, and temp_clip_ivertices. These lists define the polygon by listing

the vertices in clockwise order. Variable ivertices contains the original, never-to-be-changed

definition of which vertices in the external list define this polygon. Variable clip_ivertices
initially contains exactly the same contents as ivertices, and is initialized with the function

init_clip_ivertices. During a clipping operation, we build the new definition of the

polygon (i.e., the new list of indices to vertices, since we need to add indices to any clip vertices

and discard indices of any vertices outside of the clip polygon) inside of the

temp_clip_ivertices list. This is because to build the new list, we need to reference the old

list; we cannot easily update the clip_ivertices list “in-place.” After creating the new ver-

tex-index list in temp_clip_ivertices, we call swap_temp_and_main_clip_
lists to swap the temporary and the main clip_ivertices lists. At this point the clip oper-

ation for one edge is done, any new vertices have been placed in the varying part of the external

two-part vertex list, and any new indices to these new vertices have been placed in the

clip_ivertices list. Notice that any newly created vertices in the external two-part vertex

list are accessible via their index exactly as the original vertices are—this is the advantage of the

two-part list. The ivertices lists (more importantly, the users of these lists, such as the
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rasterizer implementation) don’t know or care if the referenced vertices are original vertices or

clip-generated vertices; during rasterization, for instance, this is completely irrelevant.

Note that the ivertices lists are from type l3d_list, not l3d_two_part_list.

This is because these vertex-index lists can change completely based upon a clipping operation;

we might need to discard all indices to original vertices and replace them with indices to

clip-generated vertices. This is also why we have a temporary and a main clipping vertex-index

list; we create a possibly entirely new list based on the old list. This is in contrast to the external

vertex list, where the original vertices themselves always remain accessible, but clip-generated

vertices might be inserted in addition to, but not instead of, the originals.

TIP Remember that the rasterizer uses the clip_ivertices list, not the ivertices list,
to determine the vertices that make up the polygon, and that the transformed coordinate for
these vertices, not the original coordinate, is used to draw the polygon to the screen.

The actual polygon clipping is done in class l3d_polygon_2d in function clip_to_poly-
gon_2d, which takes a pointer to the clip polygon as a parameter. This function returns 1 if the

polygon still is visible after clipping to the clip polygon, or 0 if the polygon has been completely

clipped away. The function simply loops through all edges of the clip polygon, clipping the target

polygon against each clip edge via the function clip_to_edge_2d. Function

clip_to_edge_2d searches for the two crossing segments as outlined above, using the helper

functionside_of_point to determine if a point is on the inside side or the outside side of a clip

edge. Function clip_to_edge_2d then calls clip_segment_to_edge_2d to calculate

the exact intersection points between the crossing segments and the clip edge. Functions

next_clipidx_left and next_clipidx_right return the next index in a counterclock-

wise and clockwise direction, respectively. These functions “wrap around” if they go past the last

or first index; in other words, the index to the left of the first index is the last index, and the index to

the right of the last index is the first index.

NOTE Notice that the polygon clipping is implemented in the l3d_polygon_2d class, not
in the l3d_polygon_2d_flatshaded class. This is because polygon clipping is a mathe-
matical operation independent of any display attributes.

It’s worth commenting briefly on the functions side_of_point and clip_seg-
ment_to_edge_2d. These functions use a bit of geometry to calculate the position of a point

relative to an edge and to intersect a polygon segment with a clip edge. Let’s cover each function

separately.

The side_of_point function uses the concept of point subtraction as well as the as-of-yet

undefined function dot to compute a vector dot product. The sign of the vector dot product (posi-

tive or negative) then determines which side of the line segment the point is on (inside or outside).

See Chapter 5 for details.

The clip_segment_to_edge_2d function uses simple geometry to compute an inter-

section between two lines. The idea is to derive the line equation for both the segment to be clipped

and for the clipping edge against which the segment is clipped. We then solve the equations
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simultaneously for the intersection point. Let’s go through the details of the derivation so that you

can understand the solution technique and apply it elsewhere.

The slope-intercept equation of a line, as we saw earlier during the discussion of line

rasterization, is y = mx + B. This equation, however, fails if the line is completely vertical (since

the slope m would be infinite). There is a more flexible line equation which is valid for lines of any

orientation. The line passing through points (x0,y0) and (x1,y1) is:

You can derive this equation from the slope-intercept form by realizing that m is (y1–y0)/(x1–x0),

solving for B in terms of x0, y0, x1, and y1, replacing the explicit forms of m and B in the

slope-intercept equation, collecting all terms on one side of the equation so that zero is on the other

side, and finally simplifying to eliminate the division by (x1–x0), which is the reason that the

slope-intercept form fails for vertical lines. We thereby arrive at the above line equation which

holds for all line orientations.

Next, let us say that the segment which is being clipped goes from coordinates (x0seg, y0seg)

to (x1seg, y1seg). The equation for this line is then:

Now, let us augment this formula with information from the second line, namely, the line contain-

ing the edge against which it is being clipped. For this, we use the parametric form of the line,

expressing position based upon a time variable t. (We could use the same previous implicit line

equation, but this complicates the math needlessly.) Assuming the edge being clipped against goes

from (x0edge,y0edge) to (x1edge,y1edge), then the parametric form of the line going between

these two points is:

Notable is that when t=0, the (x,y) coordinates are at (x0edge,y0edge)—the starting point. When

t=1, the (x,y) coordinates are at (x1edge,y1edge)—the ending point. If t=0.5, the (x,y) coordinates

are exactly halfway between the starting and ending points. This is the idea behind the parametric

form of an equation: to parameterize the function in terms of a “time variable” t. A more mathe-

matically rigorous way of thinking about the parameter t is a percentage of distance; t=0.1 means

that the point is 10% of the distance between the starting and ending points.

Using the parametric form of the line equation for the clipping edge, and plugging these

results into the implicit line equation for segment to be clipped, we obtain:
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Solving for t gives us:

This gives us the “intersection time” (as a percentage of distance) between the segment and the

edge. If the denominator in the above calculation is zero, then the segment and edge are parallel

and do not intersect; this corresponds to an intersection time of infinity (i.e., never). This should,

however, never happen, since before we call this routine at all we first check if the segment does

indeed cross the edge, via side_of_point. In the normal event that t is not zero, we can then

use the value of t to determine the actual coordinates of intersection by substituting the determined

value of t back into the original parametric line in Equations 3-7 and 3-8.

In this way we obtain the exact (x,y) coordinates of the intersection between the segment and

the edge. Having obtained the intersection point, we then insert a new vertex into the polygon’s

two-part vertex list, and we return an index to this vertex so that the calling function can redefine

the clipped segment to extend only up to the intersection point with the edge.

TIP Emacs has a freely available symbolic math module (Calc, current version 2.02f,
included on the CD-ROM) which can do very powerful symbolic algebra manipulations,
allowing for highly automated symbolic (as opposed to purely numeric) solutions to equa-
tions such as the ones above. A symbolic algebra package can be a 3D programmer’s best
friend, as it eliminates the tedious, error-prone, and above all time-consuming manual solu-
tion of the myriad of equations which form the very basis of 3D graphics. The companion
book Advanced Linux 3D Graphics Programming provides a detailed example of using Calc
to derive the equations needed for texture mapping.

The X11 SHM Extension: l3d_screen_x11_shm
Although this topic does not strictly belong under the heading “Software Rasterization,” it is nev-

ertheless very important to software rasterization. The X11 MIT shared-memory extension

(MIT-SHM) is a mechanism for copying an XImage faster to the display. Image copying speed is

an important issue with software rasterization, and is often a bottleneck. Since X is a client-server

system, normally every request to copy an XImage to the screen must go through the X server and

some local communications protocol, causing the XImage data to be copied around in memory

needlessly. If the X server and client are on the same machine, the shared memory extension

allows the XImage to store its off-screen buffer in an area of memory accessible both to your

application and to the X server. This means that the exact bytes you write in memory will be read

at the same location by the X server, which eliminates the client-server overhead of copying the

XImage. (Although at some level the image is still “copied” from main memory to video memory,

using shared memory eliminates as much overhead as possible at the X level.)

Thanks to l3d’s modular structure, adding support for shared memory XImages is no more

difficult than creating a new screen subclass, creating a new factory returning objects of this new

screen type, and updating the factory manager to allow choosing the new factory. The application

program remains unchanged.
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The following two listings illustrate the additions necessary, in a new class l3d_screen_
x11_shm, subclassed from l3d_screen_x11.

Listing 3-10: sc_x11sh.h
#ifndef __SC_X11SH_H
#define __SC_X11SH_H
#include "../tool_os/memman.h"

#include "sc_x11.h"
#include <X11/extensions/XShm.h>
#include <sys/shm.h>
#include <sys/ipc.h>

class l3d_screen_x11_shm : public l3d_screen_x11 {
protected:
XShmSegmentInfo shminfo;

public:
l3d_screen_x11_shm(int xsize, int ysize)
: l3d_screen_x11(xsize,ysize) {}
virtual ~l3d_screen_x11_shm(void);
XImage *create_ximage(void);
void create_buffer(void);
void blit_screen(void);

};

class l3d_screen_factory_x11_shm : public l3d_screen_factory {
public:
l3d_screen *create(int xsize, int ysize) {
l3d_screen_x11_shm *s;
s = new l3d_screen_x11_shm(xsize,ysize);

/* create offscreen buffer and ximage */

s->ximg = s->create_ximage();
s->create_buffer();

return s;
}

};

#endif

Listing 3-11: sc_x11sh.cc
#include "sc_x11.h"
#include <stdlib.h>
#include "../tool_os/memman.h"

l3d_screen_x11::l3d_screen_x11(int xsize, int ysize) :
l3d_screen(xsize,ysize)

{

XPixmapFormatValues *pixmap_formats;
int i, count;

dpy = XopenDisplay(NULL);

pixmap_formats = XListPixmapFormats(dpy, &count);
for(i=0, depth=0; i<count; i++) {
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if(pixmap_formats[i].depth > depth) {
depth = pixmap_formats[i].depth;
bytespp = pixmap_formats[i].bits_per_pixel / BITS_PER_BYTE;
scanline_pad = pixmap_formats[i].scanline_pad;

}
}
Xfree(pixmap_formats);
printf("max depth of display %d", depth);
printf("bytes per pixel: %d", bytespp);

bufsize = xsize * ysize * bytespp;

vis = DefaultVisual(dpy,0);
w = XcreateWindow(dpy,

DefaultRootWindow(dpy),
100, 100,
xsize, ysize,
0,
depth,
CopyFromParent,
vis,
0, NULL);

XStoreName(dpy, w, "l3d application");
XMapWindow(dpy, w);

switch(vis->c_class) {

XVisualInfo vi;
int result;

case PseudoColor:
result=
XMatchVisualInfo(dpy, DefaultScreen(dpy), depth, PseudoColor, &vi);

if(result) {
printf("visual is PseudoColor (indexed),");
printf("colormapsize %d,", vi.colormap_size);
printf("bits per rgb %d",vis->bits_per_rgb);

col_cells = new unsigned long[vi.colormap_size];
sinfo = new l3d_screen_info_indexed(vi.colormap_size,

(1<vis->bits_per_rgb)-1,
(1<vis->bits_per_rgb)-1,
(1<vis->bits_per_rgb)-1);

printf("is indexed");
}else {
printf("no information for PseudoColor visual");

}

break;

case TrueColor:
result=
XMatchVisualInfo(dpy, DefaultScreen(dpy), depth, TrueColor, &vi);

if(result) {
printf("visual is TrueColor, %d bytes per pix, %d bytes per rgb",

bytespp,
vi.depth / BITS_PER_BYTE);

col_cells = NULL;
sinfo = new l3d_screen_info_rgb(vis->red_mask,

vis->green_mask,

198 Chapter 3: 2D Rasterization



vis->blue_mask,
bytespp,
vi.depth / BITS_PER_BYTE);

}else {
printf("Couldn't get visual information, XmatchVisualInfo");
exit(-1);

}
break;

case StaticColor: printf("unsupported visual StaticColor");break;
case GrayScale: printf("unsupported visual GrayScale");break;
case StaticGray: printf("unsupported visual StaticGray");break;
case DirectColor: printf("unsupported visual DirectColor");break;

}

XSelectInput(dpy, w, KeyPressMask);
gc = DefaultGC(dpy, DefaultScreen(dpy));

}

l3d_screen_x11::~l3d_screen_x11(void) {
delete sinfo;
XdestroyImage(ximg);
if(col_cells) delete [] col_cells;
XcloseDisplay(dpy);

}

inline void l3d_screen_x11::blit_screen(void) {
XPutImage(dpy, w, gc, ximg,

0,0,0,0, /* source x,y; destination x,y */
xsize, ysize);

}

void l3d_screen_x11::open_screen(void) {
}

void l3d_screen_x11::close_screen(void) {

}

void l3d_screen_x11::refresh_palette(void) {

l3d_screen_info_indexed *si;
if ((si = dynamic_cast<l3d_screen_info_indexed *>(sinfo))) {

int idx;

cmap = XCreateColormap(dpy, w, vis, AllocNone);

XAllocColorCells(dpy, cmap, TRUE, NULL, 0, col_cells,
(int)pow(2.0, (double)depth));

for(idx=0; idx<si->palette_size; idx++) {
XColor xcolor;

xcolor.pixel = idx;
xcolor.red = (int) (( (float)si->palette[idx].red /

si->palette_max_red ) * 65535);
xcolor.green = (int) (( (float)si->palette[idx].green /

si->palette_max_green ) * 65535);

Chapter 3: 2D Rasterization 199



xcolor.blue = (int)( ( (float)si->palette[idx].blue /
si->palette_max_blue ) * 65535);

xcolor.flags = DoRed | DoGreen | DoBlue;
XAllocColor(dpy, cmap, &xcolor);
XStoreColor(dpy, cmap, &xcolor);

}
XSetWindowColormap(dpy, w, cmap);

}

}

XImage *l3d_screen_x11::create_ximage(void) {
return XCreateImage(dpy, vis, depth,

Zpixmap,
0,
(char *)buffer,
xsize, ysize,
scanline_pad,
0);

}

void l3d_screen_x11::create_buffer(void) {
buffer = new unsigned char [xsize*ysize*bytespp];
sinfo->p_screenbuf = buffer;

}

The variable shminfo is a storage area for the XImage to obtain the location of the shared mem-

ory segment used to store the image data.

The overridden create_ximage method creates a shared-memory XImage instead of a

normal one. It first calls XShmCreateImage with the address of the shminfo variable as a

new parameter. Next, we callshmget to allocate a shared memory segment, and shmat to attach

this shared memory to the current process. Finally we call XShmAttach to attach the shared

memory segment to the XImage.

The overridden blit_screenmethod calls XShmPutImage (instead of XPutImage) to

copy the image to the server’s screen, using shared memory.

The overridden create_buffer method sets the internal screen buffer pointer, in the

screen and in the screen information object, to be the shared memory segment allocated earlier.

The overridden virtual destructor calls XShmDetach to detach the shared memory segment

from the X server, destroys the XImage, and finally releases the shared memory segment back to

the system with shmdt.

The X11 DGA Extension
The Direct Graphics Access or XFree86-DGA extension to X allows a client application to have

direct access to the video frame buffer. This is theoretically the fastest access that a client program

can have to the video memory. However, we have seen that XImages assume a linear storage of

image data, which is (relatively) easy to understand. With XFree86-DGA, the arrangement of the

video buffer memory depends on the video card itself. In many cases this may be a non-linear

arrangement. Non-linear arrangements of video memory can sometimes defy human comprehen-

sion and efficient processing, since the byte-to-pixel mapping might be based on a planar or other
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arbitrary arrangement of memory. The intuitive formula offset = (x + (width * y)) *

bytes_per_pixel would then be invalid for direct access of non-linear video memory.

For this reason, we do not cover DGA further; in my opinion, it is not worth the extra trouble it

incurs. SHM is fast and flexible enough for software rendering; real 3D hardware acceleration can

go through Mesa (covered in the last section in this chapter).

Sample Programs
We have now covered the most important 2D graphics topics and their implementation as reusable

C++ classes in l3d. The following sample programs serve to reinforce the concepts presented ear-

lier and illustrate use of the polygon structures and the clipping and rasterization routines.

Sample Program XForm

Listing 3-12 draws and clips a number of polygon objects and lines at random locations on the

screen. Its main purpose is to demonstrate the storage, rasterization, and clipping of polygons.

Listing 3-12: main.cc for sample program xform
#include "../lib/geom/polygon/p_flat.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/si_idx.h"
#include "../lib/tool_2d/si_rgb.h"
#include "../lib/system/factorys.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

class my_pipeline : public l3d_pipeline {
public:
l3d_screen *screen;
l3d_rasterizer_2d *rasterizer;
l3d_rasterizer_2d_imp *ras_imp;

l3d_two_part_list<l3d_coordinate> *vlist;

int c;

my_pipeline(void);
virtual ~my_pipeline(void);
void key_event(int ch);
void update_event(void);
void draw_event(void);

void init(void);
virtual void pixel(char **p,int a,int b,int c, int d){};

};

my_pipeline::my_pipeline(void) {
screen = factory_manager_v_0_1.screen_factory->create(640,480);
ras_imp = factory_manager_v_0_1.
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ras_2d_imp_factory->create(640,480,screen->sinfo);
rasterizer = new l3d_rasterizer_2d(ras_imp);

vlist = new l3d_two_part_list<l3d_coordinate> ( 3 );

}

my_pipeline::~my_pipeline(void) {
delete screen;
delete ras_imp;
delete rasterizer;
delete vlist;

}

void my_pipeline::key_event(int c) {
switch(c) {
case 'q': exit(0);

}
}

void my_pipeline::update_event() {
int i;
int x,y;

for(i=0; i<7 ; i++) {

int px=rand()%1200-640, py=rand()%800-400;

(*vlist)[0].transformed.X_ = int_to_l3d_real(100+px);
(*vlist)[0].transformed.Y_ = int_to_l3d_real(100+py);
(*vlist)[1].transformed.X_ = int_to_l3d_real(300+px);
(*vlist)[1].transformed.Y_ = int_to_l3d_real(150+py);
(*vlist)[2].transformed.X_ = int_to_l3d_real(70+px);
(*vlist)[2].transformed.Y_ = int_to_l3d_real(120+py);

l3d_polygon_2d_flatshaded p(3);

p.vlist = &vlist;
(*(p.ivertices))[p.ivertices->next_index()].ivertex = 0;
(*(p.ivertices))[p.ivertices->next_index()].ivertex = 1;
(*(p.ivertices))[p.ivertices->next_index()].ivertex = 2;

int r,g,b;

unsigned long col;
l3d_screen_info_indexed *si_idx;
l3d_screen_info_rgb *si_rgb;
if (si_idx = dynamic_cast<l3d_screen_info_indexed *>( screen->sinfo )) {
col = rand() % si_idx->get_palette_size();

}else if (si_rgb = dynamic_cast<l3d_screen_info_rgb *>(screen->sinfo)) {

r = rand() % ((si_rgb->red_mask) > (si_rgb->red_shift));
g = rand() % ((si_rgb->green_mask) > (si_rgb->green_shift));
b = rand() % ((si_rgb->blue_mask) > (si_rgb->blue_shift));

col = r<si_rgb->red_shift |
g<si_rgb->green_shift |
b<si_rgb->blue_shift;

}
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p.final_color = col;

vlist->num_varying_items = 0;
p.init_clip_ivertices();

if (p.clip_to_polygon_2d(screen->view_win)) {
rasterizer->draw_polygon_flatshaded(&p);

}

x = rand() % 540;
y = rand() % 380;
rasterizer->draw_line(0,0,x,y,col);

}
}

void my_pipeline::draw_event(void) {
screen->blit_screen();

}

main() {
l3d_dispatcher *d;
my_pipeline *p;

factory_manager_v_0_1.choose_factories();
d = factory_manager_v_0_1.dispatcher_factory->create();

p = new my_pipeline();
d->pipeline = p;
d->event_source = p->screen;

d->start();

delete p;
delete d;

}

The program follows the usual five-step structure typical of l3d programs. The main action occurs

in update_event. First, we define a vertex list with vertices at random locations:
int px=rand()%1200-640, py=rand()%800-400;

(*vlist)[0].transformed.X_ = int_to_l3d_real(100+px);
(*vlist)[0].transformed.Y_ = int_to_l3d_real(100+py);
(*vlist)[1].transformed.X_ = int_to_l3d_real(300+px);
(*vlist)[1].transformed.Y_ = int_to_l3d_real(150+py);
(*vlist)[2].transformed.X_ = int_to_l3d_real(70+px);
(*vlist)[2].transformed.Y_ = int_to_l3d_real(120+py);

Notice that we work directly with the transformed coordinate, since this is the one which is used

during rasterization. Normally we would put our coordinates in the original coordinate and per-

form some calculations to transform the original into the transformed coordinate, but this program

is so simple that we work directly with the transformed coordinates.

Next we define a polygon based upon this vertex list. Remember, we could define many more

vertices in the vertex list and share the list among several polygons. In this example the vertex list

is only used by one polygon.
l3d_polygon_2d_flatshaded p(3);
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p.vlist = &list;
(*(p.ivertices))[p.ivertices->next_index()].ivertex = 0;
(*(p.ivertices))[p.ivertices->next_index()].ivertex = 1;
(*(p.ivertices))[p.ivertices->next_index()].ivertex = 2;

After defining the polygon we assign it a random color, with different code being executed based

on whether the screen is based on an indexed or a RGB color model.
int r,g,b;

unsigned long col;
l3d_screen_info_indexed *si_idx;
l3d_screen_info_rgb *si_rgb;
if (si_idx = dynamic_cast<l3d_screen_info_indexed *>( screen->sinfo )) {
col = rand() % si_idx->get_palette_size();

}else if (si_rgb = dynamic_cast<l3d_screen_info_rgb *>(screen->sinfo)) {

r = rand() % ((si_rgb->red_mask) > (si_rgb->red_shift));
g = rand() % ((si_rgb->green_mask) > (si_rgb->green_shift));
b = rand() % ((si_rgb->blue_mask) > (si_rgb->blue_shift));

col = r<si_rgb->red_shift |
g<si_rgb->green_shift |
b<si_rgb->blue_shift;

}
p.final_color = col;

The final thing we do with the polygon is clip it. First, we set num_varying_items of the ver-

tex list to be 0, to effectively erase all clip vertices. (The clip vertices are not really erased; the

space allocated for them is simply marked as free.) Next, we call init_clip_ivertices to

initialize the polygon for the clip operation (copying the ivertices list into the

clip_ivertices list). Then we call the actual clipping routine, passing the screen’s clip win-

dow as the clip polygon. This clips the polygon to the screen, possibly adding new vertices into the

vertex list and adding new indices to these vertices in the polygon’s clip_ivertices list. If

the clip function returns a non-zero value, the polygon is still partially visible after the clip opera-

tion and should be drawn, a task which we execute through the rasterizer.
vlist->num_varying_items = 0;
p.init_clip_ivertices();

if (p.clip_to_polygon_2d(screen->view_win)) {
rasterizer->draw_polygon_flatshaded(&p);

}

Finally, we also draw a line from (0,0) to a random location.
x = rand() % 540;
y = rand() % 380;
rasterizer->draw_line(0,0,x,y,col);

Press q to exit this sample program.
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Sample Program Morph2d

The next program illustrates the technique of vertex animation for dynamically changing or

morphing a polygon. We have four different polygon shapes, all with the same number of vertices.

By changing the external vertex list, we can change the polygon’s shape to be any one of our four

defined shapes, without needing to alter the polygon itself.

In this program, we define a new class, l3d_vertex_interpolator, which is used to

interpolate the positions between two different vertex lists. The idea is that instead of defining

every single vertex list for each shape we want to animate, we only define a small number of

important frames of animation (also called key frames). We then interpolate (step along) the verti-

ces between these key frames. This allows us to easily and smoothly convert one vertex list into

another by moving each point in the first vertex list closer and closer to the point in the second ver-

tex list. For each frame of animation, we “step” the position of the source point a certain distance

towards the destination point. The amount by which we move each point is determined by the total

number of steps and the distance between the points. Note that not all points in the vertex list move

at the same speed. For instance, if the original x coordinate of a point is 0, and the final x coordi-

nate is 100, and we want to interpolate in 10 steps, each step moves the point 10 pixels closer to the

final x coordinate. However, we might also have a second point in the vertex list, whose original x

coordinate is 0 and whose final x coordinate is 500. We still must interpolate in 10 steps, since all

points in the vertex list should reach their final positions at the same time, but for this new point

each step must move the point by 50 pixels in order to reach its target coordinate of 500 within 10

steps. In general, each vertex in a vertex list during an interpolation process will move with its own

individual speed toward its own destination.
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Listing 3-13: verint.h
#include "system/sys_dep.h"
#include "datastr/list.h"
#include "geom/vertex/coord.h"
#include "../../tool_os/memman.h"

class l3d_vertex_interpolator {
public:
int steps;
int pos;
int dimension;

l3d_two_part_list<l3d_coordinate> *list;

l3d_list<l3d_vector> *deltas;

l3d_vertex_interpolator(void) {
list = new l3d_two_part_list<l3d_coordinate> ( 1 );
deltas = new l3d_list<l3d_vector> ( 1 );

}

~l3d_vertex_interpolator(void) {
delete list;
delete deltas;

}

void start(const l3d_two_part_list<l3d_coordinate> & source,
const l3d_two_part_list<l3d_coordinate> & dest,
int steps, int dimension)

{
this->steps = steps;
this->dimension = dimension;

*list = source;

deltas->num_items = 0;

int i,j;
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Figure 3-14: The idea behind vertex
interpolation. Each vertex in the
original polygon (shown hollow)
moves towards a vertex in the new
polygon (shown in black). All
vertices should end up at their
respective destinations at the same
time. Since each vertex has a
different distance to travel, and
since the amount of time to travel is
fixed, each vertex travels with a
different speed towards its
destination. The gray dots indicate
the vertices interpolated halfway
between the starting and ending
positions.
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for(i=0; i<list->num_fixed_items; i++) {
for(j=0; j<dimension; j++) {
deltas->next_index();
(*deltas)[i].a[j] =
l3d_divri(dest[i].original.a[j] - source[i].original.a[j],

steps);
}

}

pos = 0;
}

bool step(void) {
int i,j;
for(i=0; i<list->num_fixed_items; i++) {
for(j=0; j<dimension; j++) {
(*list)[i].original.a[j] += (*deltas)[i].a[j];

}
}

pos++;
return pos < steps;

}

};

Listing 3-14: morph2d.cc
#include <stdio.h>
#include <stdlib.h>

#include "tool_2d/screen.h"
#include "geom/polygon/polygon.h"
#include "raster/rasteriz.h"
#include "datastr/list.h"
#include "geom/vertex/verint.h"

#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/system/factorys.h"

class my_pipeline : public l3d_pipeline {
protected:
static const int num_frames = 4;
l3d_rasterizer_2d_imp *ri;
l3d_rasterizer_2d *r;
l3d_vertex_interpolator interp;
l3d_two_part_list<l3d_coordinate> *vlist, *vlist_frames[num_frames];
l3d_polygon_2d_flatshaded *facet;

int frame_no;
bool currently_interpolating;

public:
l3d_screen *s;
my_pipeline(void);
virtual ~my_pipeline(void);
void update_event(void);
void key_event(int ch);
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void draw_event(void);
};

my_pipeline::my_pipeline(void) {
s = factory_manager_v_0_1.screen_factory->create(320,200);
ri = factory_manager_v_0_1.ras_2d_imp_factory->create(320,200,s->sinfo);
r = new l3d_rasterizer_2d(ri);

s->sinfo->ext_max_red = 255;
s->sinfo->ext_max_green = 255;
s->sinfo->ext_max_blue = 255;
s->sinfo->ext_to_native(0,0,0); //- allocate black background color
unsigned long color = s->sinfo->ext_to_native(0, 128, 255);
s->refresh_palette();

s->open_screen();

vlist_frames[0] = new l3d_two_part_list<l3d_coordinate> ( 4 );
(*vlist_frames[0])[0].original.X_ = float_to_l3d_real(100.0);
(*vlist_frames[0])[0].original.Y_ = float_to_l3d_real(100.0);

(*vlist_frames[0])[1].original.X_ = float_to_l3d_real(200.0);
(*vlist_frames[0])[1].original.Y_ = float_to_l3d_real(150.0);

(*vlist_frames[0])[2].original.X_ = float_to_l3d_real(150.0);
(*vlist_frames[0])[2].original.Y_ = float_to_l3d_real(200.0);

(*vlist_frames[0])[3].original.X_ = float_to_l3d_real( 50.0);
(*vlist_frames[0])[3].original.Y_ = float_to_l3d_real(120.0);

vlist_frames[1] = new l3d_two_part_list<l3d_coordinate> ( 4 );
(*vlist_frames[1])[0].original.X_ = float_to_l3d_real(100.0);
(*vlist_frames[1])[0].original.Y_ = float_to_l3d_real(100.0);

(*vlist_frames[1])[1].original.X_ = float_to_l3d_real(200.0);
(*vlist_frames[1])[1].original.Y_ = float_to_l3d_real(100.0);

(*vlist_frames[1])[2].original.X_ = float_to_l3d_real(150.0);
(*vlist_frames[1])[2].original.Y_ = float_to_l3d_real(200.0);

(*vlist_frames[1])[3].original.X_ = float_to_l3d_real(140.0);
(*vlist_frames[1])[3].original.Y_ = float_to_l3d_real(200.0);

vlist_frames[2] = new l3d_two_part_list<l3d_coordinate> ( 4 );
(*vlist_frames[2])[0].original.X_ = float_to_l3d_real(-100.0);
(*vlist_frames[2])[0].original.Y_ = float_to_l3d_real(100.0);

(*vlist_frames[2])[1].original.X_ = float_to_l3d_real(200.0);
(*vlist_frames[2])[1].original.Y_ = float_to_l3d_real(100.0);

(*vlist_frames[2])[2].original.X_ = float_to_l3d_real(950.0);
(*vlist_frames[2])[2].original.Y_ = float_to_l3d_real(200.0);

(*vlist_frames[2])[3].original.X_ = float_to_l3d_real(940.0);
(*vlist_frames[2])[3].original.Y_ = float_to_l3d_real(200.0);

vlist_frames[3] = new l3d_two_part_list<l3d_coordinate> ( 4 );
(*vlist_frames[3])[0].original.X_ = float_to_l3d_real(100.0);
(*vlist_frames[3])[0].original.Y_ = float_to_l3d_real(150.0);
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(*vlist_frames[3])[1].original.X_ = float_to_l3d_real(100.0);
(*vlist_frames[3])[1].original.Y_ = float_to_l3d_real(100.0);

(*vlist_frames[3])[2].original.X_ = float_to_l3d_real(250.0);
(*vlist_frames[3])[2].original.Y_ = float_to_l3d_real(200.0);

(*vlist_frames[3])[3].original.X_ = float_to_l3d_real(100.0);
(*vlist_frames[3])[3].original.Y_ = float_to_l3d_real(200.0);

frame_no = 0;
currently_interpolating = false;
vlist = vlist_frames[frame_no];

facet = new l3d_polygon_2d_flatshaded ( 4 );
facet->vlist = & vlist;
facet->final_color = color;
(*(facet->ivertices))[facet->ivertices->next_index()].ivertex = 0;
(*(facet->ivertices))[facet->ivertices->next_index()].ivertex = 1;
(*(facet->ivertices))[facet->ivertices->next_index()].ivertex = 2;
(*(facet->ivertices))[facet->ivertices->next_index()].ivertex = 3;

}

my_pipeline::~my_pipeline(void) {
delete vlist_frames[0];
delete vlist_frames[1];
delete vlist_frames[2];
delete vlist_frames[3];
delete s;
delete ri;
delete r;
delete facet;

}

void my_pipeline::update_event(void) {
if(currently_interpolating) {
vlist = interp.list;
if(! interp.step()) {
currently_interpolating = false;

}
}else {
frame_no++;
if(frame_no >= num_frames) {frame_no = 0; }
int next_frame = frame_no + 1;
if(next_frame >= num_frames) {next_frame = 0; }

vlist = vlist_frames[frame_no];
interp.start( *vlist_frames[frame_no], *vlist_frames[next_frame],

50, 2);

currently_interpolating = true;
}

}

void my_pipeline::draw_event(void) {
vlist->num_varying_items = 0;
for(int i=0; i<vlist->num_fixed_items; i++) {(*vlist)[i].reset(); }
facet->init_clip_ivertices();

facet->clip_to_polygon_2d(s->view_win);
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r->clear_buffer();
r->draw_polygon_flatshaded(facet);
s->blit_screen();

}

void my_pipeline::key_event(int ch) {
switch(ch) {
case 'q': done = 1;

}
}

main() {
factory_manager_v_0_1.choose_factories();

l3d_dispatcher *d;
my_pipeline *p;

d = factory_manager_v_0_1.dispatcher_factory->create();

p = new my_pipeline();
d->pipeline = p;
d->event_source = p->s;

d->start();

delete d;
delete p;

}

The constructor creates four different vertex lists in an array. The program then interpolates the

vertex positions of the polygon from vertex list 0 to vertex list 1, then from list 1 to 2, then from 2

to 3, then finally back from 3 to 0 again.

The two functions in this program which control the morphing are update_event and

draw_event. In update_event, we either start the interpolator by calling start, or we

step the interpolator by calling step. Calling start initializes an internal vertex list and com-

putes the speed necessary for each point in the source list to reach the final point in the destination

list, in a given number of steps. Callingstepmoves each point by its previously calculated speed,

inexorably towards its final destination. When step returns 0, the interpolation has finished.

While interpolation is taking place, we set the polygon’s vertex list to be the vertex list which is

being calculated within the interpolator.

Function draw_event clips the shape-shifting polygon to the screen. First, it effectively

deletes any clip-generated vertices by setting num_varying_items in the vertex list to 0.

Then, it calls reset on each vertex in the vertex list; this sets the transformed member of

each coordinate to equal the originalmember and resets the transform_stage variable to

0. The last initialization step is to call init_clip_ivertices to copy the original ver-

tex-index list into the clipped vertex-index list. Then we clip and draw the polygon, using the

clipped, transformed polygon vertices during the final rasterization.

The vertex animation technique illustrated by this program can be used, with much greater

visual impact, in 3D. The companion book Advanced Linux 3D Graphics Programming discusses

this.
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Hardware-Accelerated Rasterization
The sample programs so far have all used a software rasterization implementation to draw points,

lines, and polygons into the frame buffer. As discussed in Chapter 1, support for 3D hardware

acceleration under Linux is becoming widespread, and the interface we can use to take advantage

of hardware acceleration is Mesa. Let’s take a closer look at Mesa, OpenGL, and the OpenGL

Utility Toolkit GLUT, then see how we can incorporate Mesa subclasses, and thereby hardware

acceleration, into our l3d classes.
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Figure 3-15: One frame from program morph2d,
illustrating a changing shape.

Figure 3-16: The shape from the previous figure
changes slowly into another.

Figure 3-17: Another stage in polygonal
metamorphosis.



Mesa and OpenGL
OpenGL is a standard software interface to graphics hardware. It is a procedural rather than

descriptive system, meaning that the programmer tells OpenGL what to draw and how to draw it,

rather than describing what the final result must look like. OpenGL is a state machine; various

commands are issued to set a certain mode of operation, then commands are issued which react

based upon the current state settings.

Mesa is a freely available library, written by Brian Paul, implementing the OpenGL syntax.

Since official OpenGL certification costs time and money, and since Mesa is freely available, it is

quite understandable that Mesa is not and probably will not be an officially certified “OpenGL

implementation.” Nevertheless, in practice, programs written for OpenGL will work with Mesa,

and under Linux, they will work with hardware acceleration.

We will use the terms “Mesa” and “OpenGL” somewhat interchangeably. Whenever we are

talking about concepts that are generally applicable to any OpenGL implementation, we will usu-

ally say “OpenGL.” If we are specifically talking about concepts particular to the Linux Mesa

library (such as hardware acceleration), we will say “Mesa.”

The OpenGL Utility Toolkit (GLUT)
The OpenGL Utility Toolkit or GLUT, written by Mark Kilgard, is a window system-independent

toolkit designed to make writing complete OpenGL programs easier, with windowed output and

user input. “Pure” OpenGL commands are independent of any windowing or operating system

(very much like the l3d_rasterizer_2d_sw_imp class) and therefore provide no direct

means of creating windowed output or reading user input. GLUT forms an additional layer on top

of OpenGL to enable easier creation of complete OpenGL programs.

We will treat OpenGL and GLUT (or more specifically, Mesa and GLUT) as one logical sys-

tem, not distinguishing whether a function comes from OpenGL or from GLUT. For our purposes,

Mesa and GLUT are like one library, which allows us to access accelerated 3D hardware in a stan-

dardized way.

A Sample Program with Mesa and GLUT
The following program, mesaflat, demonstrates basic use of Mesa and GLUT to draw a series

of random triangles to the screen.

NOTE To compile this program, you must have the Mesa library installed, as described in
the Appendix. After compilation, the executable file for this program is placed in the same
directory as the source file (since this program does not use l3d and therefore does not follow
the l3d directory structure of separate source and binary directory trees).

Listing 3-15: mesaflat.cc
#include <stdio.h>
#include <stdlib.h>
#include <GL/glut.h>

void display(void) {

212 Chapter 3: 2D Rasterization



int i;
int x,y;

for(i=0; i<7 ; i++) {
x = rand() % 540;
y = rand() % 380;

glBegin(GL_POLYGON);
glColor3i(rand(), rand(), rand());
glVertex2i(x,y);
glVertex2i(x+100,y+10);
glVertex2i(x+70,y+100);
glEnd();

}
glutSwapBuffers();

glFlush();
}

void init(void) {
glClearColor(0.0,0.0,0.0,0.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, 640, 480, 0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.375, 0.375, 0.0);
glViewport(0,0,640,480);

}

void update(void) {
glutPostRedisplay();

}

void key(unsigned char c, int x, int y) {
switch(c) {
case 'q': exit(0);

}
}

main(int argc, char *argv[]) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);
glutInitWindowSize(640,480);
glutInitWindowPosition(100,100);
glutCreateWindow("hello");
init();
glutDisplayFunc(display);
glutIdleFunc(update);
glutKeyboardFunc(key);
glutMainLoop();
return 0;

}

The first thing we do is to include the GLUT header file, GL/glut.h. This also automatically

includes other standard OpenGL header files such as GL/gl.h and GL/glu.h.

The program’s execution begins in main. We call glutInit to initialize GLUT. This

should be called before any other GLUT routine. Next, we call glutInitDisplayMode and

specify the options GLUT_DOUBLE and GLUT_RGB. This means that we want an RGB color
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model (as opposed to an indexed color model, GLUT_INDEX), and a double-buffered window so

that we can perform smooth animation. We then call glutInitWindowSize and

glutInitWindowPosition to set the parameters for window size and position, and call

glutCreateWindow to create the window. The function init (covered in the next paragraph)

initializes the OpenGL drawing parameters by calling OpenGL (not GLUT) functions directly.

The next step in main is to register callback functions with GLUT. GLUT is an event-driven sys-

tem, and we call specific GLUT functions to plug in our own event-handling functions which

GLUT will automatically call when certain events occur. In this program, we call

glutDisplayFunc to register a callback function whenever the application should display

itself; glutIdleFunc to register a callback function which updates the application; and

glutKeyboardFunc to register a callback function for responding to keyboard input. Finally,

we call glutMainLoop, which enters the GLUT main event-handling loop. This loop never

exits; GLUT takes control of the application and calls any callback functions which you have pre-

viously registered. This is the typical event-driven approach: your program is not “in control,” but

instead “is controlled by” (or influenced by) outside events.

The init function directly calls pure OpenGL functions to set drawing parameters. Remem-

ber, OpenGL is a state machine. Therefore, we typically call functions to “set the state” of the

machine, then call action functions to perform graphics drawing based on the current machine

state (which can determine color, line width, fill pattern, and so forth). In the case of init, we

first call glClearColor to set the background color which will be used to clear the buffer.

Clearing the buffer is done through a call to glClear, similar to the way that the

clear_buffer routine in l3d_rasterizer_2d_sw_imp class called memset to set the

bytes in the XImage data to zero. The remaining lines in the function init call the appropriate

OpenGL functions to allow us to use OpenGL as a 2D rasterization layer, by effectively disabling

the so-called “projection transformation” and “model-view transformation.” These transforma-

tions are first selected by calling glMatrixMode, and are disabled by calling

glLoadIdentity, which loads a so-called “identity matrix” for the projection and model-view

transformations. Chapter 6 discusses matrices and transformations in more detail. The important

thing for now is to understand that these lines in the init function simply set the OpenGL state

such that we can treat OpenGL as a 2D rasterizer (with hardware acceleration).

The display function is the most important function in a GLUT program. It should contain

all GLUT or OpenGL commands necessary to draw the image you wish to display. In this sample

program, display draws a series of polygons at random locations. First, we call

glBegin(GL_POLYGON) to set the OpenGL state to be “polygon-drawing mode.” Then we

call glColor3i to set the current color to some random combination of red, green, and blue.

With the state now set to polygon mode and the color set to a random value, we call glVertex2i
to specify vertices for the geometric primitive currently being specified, in this case a polygon.

After specifying three vertices, we call glEnd to tell OpenGL that we have finished specifying

the polygon.
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NOTE OpenGL supports primitives other than polygons: the valid primitive types which can
be passed to glBegin are GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP,
GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP,
and GL_POLYGON. We will concentrate on GL_POINTS, GL_LINES, and GL_POLYGON.
The other primitives are special cases of these three, and can sometimes be faster if the
underlying hardware directly supports these other primitives.

The last two lines in the function display call the GLUT function glutSwapBuffers,

which copies the now completely-drawn off-screen buffer into the on-screen buffer, and the func-

tion glFlush, which tells OpenGL to in any event immediately begin execution of the

commands we just specified. In a client-server OpenGL setup, the client might, for instance, wait

for more commands to fill up a network buffer before it actually sends the OpenGL commands to

the server to begin drawing. Calling glFlush makes sure that the process starts right away.

The function update calls the GLUT function glutPostRedisplay, which tells GLUT

to call the display function again at the next opportunity.

To summarize, an OpenGL program using GLUT begins by initializing GLUT and OpenGL,

then registers event callback functions, the most important of which is the display callback, and

finally calls glutMainLoop to enter GLUT’s main loop.

Mesa and 3DFX Hardware Acceleration
The Mesa library for Linux offers support for hardware acceleration for 3Dfx cards. Specifically,

the OpenGL functions are then translated through a Mesa device driver into calls to the Glide

library, which is the direct interface to the 3Dfx hardware. In this way, we can use normal OpenGL

commands and still take advantage of hardware acceleration.

In order to use 3Dfx hardware acceleration with Mesa, you must have the Glide library for

Linux installed on your system, as described in the Appendix. Of course, you also need a 3Dfx

video card.
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Figure 3-18: Output from sample
program mesaflat, which draws
2D polygons using OpenGL and
GLUT as a 2D rasterization layer.



As mentioned in Chapter 1, a lot of active development is currently underway to support more

3D hardware under Linux and X, all of which revolves around using OpenGL/Mesa as the com-

mon interface to the different hardware-accelerated cards. Check the WWW sites listed in the

Appendix for the latest information.

Let’s now take a look at the l3d classes necessary for supporting Mesa, then see how we can

run our previous sample programs with Mesa and hardware acceleration.

Classes for Using Mesa
We can easily extend l3d to use Mesa as a rasterization layer. By doing so, existing l3d programs

remain unchanged but can now take advantage of new screen and rasterizer implementation

classes which interface to Mesa and hardware acceleration. Through new abstract factories which

create and return Mesa-specific objects, existing code simply receives a Mesa screen instead of an

X11 screen or a Mesa rasterizer implementation instead of a software rasterizer implementation.

Since existing code goes through the abstract screen and rasterizer implementation interfaces, no

change or even recompilation of the original code is necessary to support Mesa. This is the real

meaning of code extensibility—adding new features in the future, without touching old code.

Figure 3-19 shows the new Mesa-specific classes, which the following sections describe in

more detail.

l3d_screen_mesa

Class l3d_screen_mesa, subclassed from l3d_screen, represents a display device using

the Mesa library under the X Window System on a Linux machine.
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Listing 3-16: sc_mesa.h
#ifndef __SC_MESA_H
#define __SC_MESA_H
#include "../tool_os/memman.h"

#include "screen.h"
#include "si_imes.h"
#include "si_rmes.h"
#include <GL/glut.h>
#include <X11/Intrinsic.h>
#include <X11/Xlib.h>

class l3d_screen_mesa : public l3d_screen {
public:
l3d_screen_mesa(int xsize, int ysize);
void open_screen(void);
void blit_screen(void);

};

class l3d_screen_factory_mesa : public l3d_screen_factory {
public:
l3d_screen *create(int xsize, int ysize) {
return new l3d_screen_mesa(xsize,ysize);

}
};

#endif

Listing 3-17: sc_mesa.cc
#include "sc_mesa.h"
#include <stdlib.h>
#include "../tool_os/memman.h"

l3d_screen_mesa::l3d_screen_mesa(int xsize, int ysize) :
l3d_screen(xsize,ysize)

{
int argc=1;
char *argv[1];
argv[0] = "a";

Visual *vis;
int depth=0, bytespp=0, scanline_pad=0;
Display *dpy;
XPixmapFormatValues *pixmap_formats;
int i, count;

//- establish connection to X server

dpy = XopenDisplay(NULL);

//- find out the supported depths of this server and take the max depth

pixmap_formats = XListPixmapFormats(dpy, &count);
for(i=0, depth=0; i<count; i++) {
if(pixmap_formats[i].depth > depth) {
depth = pixmap_formats[i].depth;
bytespp = pixmap_formats[i].bits_per_pixel / BITS_PER_BYTE;
scanline_pad = pixmap_formats[i].scanline_pad;

}
}
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Xfree(pixmap_formats);
printf("max depth of display %d", depth);
printf("bytes per pixel: %d", bytespp);

bufsize = xsize * ysize * bytespp;

vis = DefaultVisual(dpy,0);

switch(vis->c_class) {

case PseudoColor:
sinfo = new l3d_screen_info_indexed_mesa(255, 65535, 65535, 65535);
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE|GLUT_INDEX);
glutInitWindowSize(xsize,ysize);
glutInitWindowPosition(100,100);
glutCreateWindow("l3d");

glClearColor(0.0,0.0,0.0,0.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, xsize, ysize, 0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.375, 0.375, 0.0);
glViewport(0,0,xsize,ysize);

break;
case TrueColor:
sinfo = new l3d_screen_info_rgb_mesa(vis->red_mask, vis->green_mask,

vis->blue_mask, bytespp);
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);
glutInitWindowSize(xsize,ysize);
glutInitWindowPosition(100,100);
glutCreateWindow("l3d");

glClearColor(0.0,0.0,0.0,0.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, xsize, ysize, 0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.375, 0.375, 0.0);
glViewport(0,0,xsize,ysize);

break;
case StaticColor: printf("unsupported visual StaticColor");break;
case GrayScale: printf("unsupported visual GrayScale");break;
case StaticGray: printf("unsupported visual StaticGray");break;
case DirectColor: printf("unsupported visual DirectColor");break;

}

}

inline void l3d_screen_mesa::blit_screen(void) {
glutSwapBuffers();
glFlush();

}
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void l3d_screen_mesa::open_screen(void) {
}

The constructor first queries the X server for the color model (indexed or RGB) and color depth.

Depending on the color model, we create an l3d_screen_info_mesa screen-information

object (covered in the next section) to store the color information about the screen. We then initial-

ize GLUT, calling glutInitDisplayMode with either GLUT_INDEX or GLUT_RGB,

depending on the color model. Finally we create the window and initialize OpenGL for use as a 2D

rasterizer, exactly as we saw in the sample program mesaflat.

The overridden method blit_screen calls glutSwapBuffers and glFlush to copy

the off-screen buffer into the on-screen buffer, exactly as we saw in the sample program

mesaflat.

l3d_screen_info_rgb_mesa, l3d_screen_info_indexed_mesa

Class l3d_screen_info_rgb_mesa, subclassed from class l3d_screen_info_rgb,

represents screen information for a Mesa screen using an RGB color model. Class

l3d_screen_info_indexed_mesa, subclassed from class l3d_screen_info, repre-

sents screen information for a Mesa screen using an indexed color model.

Listing 3-18: si_rmes.h
#ifndef _SI_RMES_H
#define _SI_RMES_H
#include "../tool_os/memman.h"

#include <GL/glut.h>
#include "si_rgb.h"

class l3d_screen_info_rgb_mesa : public l3d_screen_info_rgb {
public:
l3d_screen_info_rgb_mesa(unsigned long red_mask, unsigned long green_mask,

unsigned long blue_mask, char bytes_per_pixel):
l3d_screen_info_rgb(red_mask, green_mask, blue_mask, bytes_per_pixel,

3)
{

this->red_mask = 0x000000FF;
this->green_mask = 0x0000FF00;
this->blue_mask = 0x00FF0000;
this->bytes_per_pixel = 4;
this->bytes_per_rgb = 3;

compute_color_resolution();
};

void set_color(unsigned long col) {
glColor4f( (float)(col & red_mask) / red_mask,

(float)(col & green_mask) / green_mask,
(float)(col & blue_mask) / blue_mask,
1.0 );

}

void compute_light_table(void) {};
void compute_fog_table(void) {};
void light_native(unsigned char *pcolor, int intensity) {};
void fog_native(unsigned char *pcolor, int intensity) {};
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};

#endif

Listing 3-19: si_imes.h
#ifndef _SI_IMES_H
#define _SI_IMES_H
#include "../tool_os/memman.h"

#include <GL/glut.h>
#include "si_idx.h"

class l3d_screen_info_indexed_mesa : public l3d_screen_info_indexed {
public:
l3d_screen_info_indexed_mesa(int palette_size,

int max_red, int max_green, int max_blue) :
l3d_screen_info_indexed(palette_size, max_red, max_green, max_blue) {};

void set_color(unsigned long col) {glIndexi(col); }
};

#endif

Overridden method set_color in l3d_screen_info_rgb_mesa calls glColor4f to

set the OpenGL color. The function takes as parameters floating-point values in the range from 0.0

to 1.0 representing red, green, and blue intensities. We scale the specified RGB values to lie within

this range. The fourth parameter is an alpha parameter, specifying transparency; we specify 1.0,

meaning no transparency.

Overridden method set_color in l3d_screen_info_indexed_mesa calls

glIndexi to select the current color index in the color palette.

l3d_dispatcher_mesa

Class l3d_dispatcher_mesa, subclassed from class l3d_dispatcher, represents an

event dispatcher within the context of a GLUT program.

Listing 3-20: dis_mesa.h
#ifndef _DIS_MESA_H
#define _DIS_MESA_H
#include "../tool_os/memman.h"

#include "dispatch.h"
#include <GL/glut.h>

class l3d_dispatcher_mesa : public l3d_dispatcher {
private:
static l3d_dispatcher *last_dispatcher;
static void glut_display_func(void);
static void glut_idle_func(void);
static void glut_keyboard_func(unsigned char key, int x, int y);

public:
l3d_dispatcher_mesa(void);
void start(void);

};

class l3d_dispatcher_factory_mesa : public l3d_dispatcher_factory {
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public:
l3d_dispatcher *create(void) {
return new l3d_dispatcher_mesa;

}
};

#endif

Listing 3-21: dis_mesa.cc
#include "dis_mesa.h"
#include "../tool_os/memman.h"

l3d_dispatcher *l3d_dispatcher_mesa::last_dispatcher;

l3d_dispatcher_mesa::l3d_dispatcher_mesa(void) {
l3d_dispatcher_mesa::last_dispatcher = this;

}

void l3d_dispatcher_mesa::glut_display_func(void) {
l3d_dispatcher_mesa::last_dispatcher->pipeline->draw_event();
glutPostRedisplay();

}

void l3d_dispatcher_mesa::glut_idle_func(void) {
l3d_dispatcher_mesa::last_dispatcher->pipeline->update_event();

}

void l3d_dispatcher_mesa::glut_keyboard_func(unsigned char key, int x, int y) {
l3d_dispatcher_mesa::last_dispatcher->pipeline->key_event(key);

//- unfortunately GLUT doesnt provide a clean way of exiting, so
//- we have to jump out of the program here if the pipeline says
//- it is done
if(l3d_dispatcher_mesa::last_dispatcher->pipeline->done) exit(0);

}

void l3d_dispatcher_mesa::start(void) {
glutDisplayFunc(l3d_dispatcher_mesa::glut_display_func);
glutIdleFunc(l3d_dispatcher_mesa::glut_idle_func);
glutKeyboardFunc(l3d_dispatcher_mesa::glut_keyboard_func);
glutMainLoop();

}

Static member last_dispatcher points to the last-created instance of a l3d_dis-
patcher_mesa object. There will normally only be one dispatcher in a program, but if more are

created, last_dispatcher points to the last one.

Static member function glut_display_func is the callback routine passed to

glutDisplayFunc, and is called by GLUT whenever the program is allowed to display itself.

This function calls draw_event of the associated pipeline object, allowing the pipeline to

respond, then calls glutPostRedisplay to cause GLUT to redraw the screen at the next

opportunity. This is a static member function because GLUT cannot accept a normal C++ member

function as a callback (due to the hidden “this” pointer parameter present in normal member func-

tions). Since this is a static member function, we cannot access any member variables, and thus

must access the pipeline through the static last_dispatcher member.

Static member function glut_idle_func is the callback routine passed to

glutIdleFunc, and is called by GLUT whenever the program is allowed to update itself. This
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function calls update_event of the associated pipeline object, allowing the pipeline to

respond.

Static member function glut_keyboard_func is the callback routine passed to

glutKeyboardFunc, and is called by GLUT whenever the program has received keyboard

input. This function calls key_event of the associated pipeline object, allowing the pipeline to

respond.

Overridden method start registers the static member functions with GLUT by calling

glutDisplayFunc, glutIdleFunc, and glutKeyboardFunc. It then enters the

glutMainLoop, which then assumes responsibility for event dispatching and calling the regis-

tered callback routines.

l3d_rasterizer_2d_mesa_imp

Class l3d_rasterizer_2d_mesa_imp, subclassed from class l3d_rasterizer_2d_
imp, represents a rasterizer implementation using Mesa function calls.

Listing 3-22: ras_mesa.h
#ifndef __RAS_MESA_H
#define __RAS_MESA_H
#include "../tool_os/memman.h"

#include <GL/glut.h>
#include "rasteriz.h"

class l3d_rasterizer_2d_mesa_imp :
virtual public l3d_rasterizer_2d_imp

{
public:
l3d_rasterizer_2d_mesa_imp(int xs, int ys, l3d_screen_info *si);

void clear_buffer(void);
void draw_point(int x, int y, unsigned long col);
void draw_line(int x0, int y0, int x1, int y1, unsigned long col);
void draw_polygon_flatshaded(const l3d_polygon_2d_flatshaded *p_poly);

};

class l3d_rasterizer_2d_mesa_imp_factory :
public l3d_rasterizer_2d_imp_factory {
public:
l3d_rasterizer_2d_imp *create(int xs, int ys, l3d_screen_info *si);

};

#endif

Listing 3-23: ras_mesa.cc
#include "ras_mesa.h"
#include <math.h>
#include "../tool_os/memman.h"

l3d_rasterizer_2d_imp * l3d_rasterizer_2d_mesa_imp_factory::create
(int xs, int ys, l3d_screen_info *si)
{
return new l3d_rasterizer_2d_mesa_imp(xs,ys,si);

}
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l3d_rasterizer_2d_mesa_imp::l3d_rasterizer_2d_mesa_imp
(int xs, int ys, l3d_screen_info *si)

: l3d_rasterizer_2d_imp(xs,ys,si)
{}

void l3d_rasterizer_2d_mesa_imp::clear_buffer(void) {
glClear(GL_COLOR_BUFFER_BIT);

}

void l3d_rasterizer_2d_mesa_imp::draw_point(int x, int y, unsigned long col) {
glBegin(GL_POINTS);
sinfo->set_color(col);
glVertex2i(x,y);
glEnd();

}

void l3d_rasterizer_2d_mesa_imp::draw_line(int x0, int y0, int x1, int y1,
unsigned long col)

{
glBegin(GL_LINES);
sinfo->set_color(col);
glVertex2i(x0,y0);
glVertex2i(x1,y1);
glEnd();

}

void l3d_rasterizer_2d_mesa_imp::draw_polygon_flatshaded
(const l3d_polygon_2d_flatshaded *p_poly)
{
int i;

glBegin(GL_POLYGON);
sinfo->set_color(p_poly->final_color);
for(i=0; i<p_poly->clip_ivertices->num_items; i++) {
glVertex2i(iceil((**(p_poly->vlist))

[(*p_poly->clip_ivertices)[i].ivertex].transformed.X_),
iceil((**(p_poly->vlist))

[(*p_poly->clip_ivertices)[i].ivertex].transformed.Y_));
}
glEnd();

}

The overridden method clear_buffer calls OpenGL function glClear, which we briefly

mentioned earlier, with a parameter of GL_COLOR_BUFFER_BIT. This clears the off-screen

buffer containing the visible pixels (colors) for the image, meaning that the image in the off-screen

buffer is erased. OpenGL can keep track of a number of buffers in addition to the color buffer;

valid parameters to glClear are GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT,

GL_STENCIL_BUFFER_BIT, andGL_ACCUM_BUFFER_BIT. We only use the color buffer in

this book. Overridden method draw_point draws a point using OpenGL calls as follows. First,

we set the state to be “point-drawing mode” by calling glBegin(GL_POINTS). Next, we set

the color of the point to be drawn by calling the set_color method of the screen-information

object. This calls the appropriate OpenGL color-setting routine, depending on whether the color

model is RGB or indexed. Next, we call glVertex2i to set the coordinates of the point to be

drawn. Finally, we call glEnd to finish drawing the point.
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Overridden method draw_line draws a line using OpenGL calls as follows. First, we set

the state to be “line-drawing mode” by calling glBegin(GL_LINES). Next, we set the color of

the line to be drawn by calling the set_color method of the screen-information object. This

calls the appropriate OpenGL color-setting routine, depending on whether the color model is RGB

or indexed. Next, we call glVertex2i twice, to specify the starting and ending coordinates of

the line. In line-drawing mode, the first call to glVertex2i specifies the start coordinate; the

second, the end coordinate. Finally, we call glEnd to finish drawing the line.

Overridden method draw_polygon_flatshaded draws a polygon using OpenGL calls

as follows. First, we set the state to be “polygon-drawing mode” by calling

glBegin(GL_POLYGON). Next, we set the color of the polygon to be drawn by calling the

set_color method of the screen-information object. This calls the appropriate OpenGL

color-setting routine, depending on whether the color model is RGB or indexed. Next, we loop

through all of the clipped vertex indices referenced in the clip_ivertices member of the

polygon. For each vertex index, we access the actual vertex and take its transformed member. We

specify this transformed, clipped vertex to OpenGL with glVertex2i. After looping through

all clipped vertex indices for the polygon, we call glEnd to finish drawing the polygon.

Running the Sample Programs with Mesa
All of the l3d sample programs up to this point will work unchanged with Mesa. The factory man-

ager allows choosing the Mesa factories at program start, after which point everything in the

program then transparently accesses Mesa. We saw in the very first l3d program drawdot that

the first thing you see from an l3d program is the following question:
which configuration?
1. Software X11
2. Software X11 with SHM extension
3. Mesa (with 3DFX h/w accel if installed with Mesa)

Although you might not have guessed it, choosing 3 configures the program to use the Mesa

factories.

If you run a sample l3d program and choose 3 expecting immediately to see full-screen hard-

ware-accelerated graphics, you might be disappointed at first. This is because by default, Mesa

uses its own accurate but sometimes slow software rendering routines. Mesa can be dynamically

configured to use hardware-accelerated or software rendering.

To tell Mesa to use full-screen hardware acceleration, follow these steps:

1. Become the root user on your machine. Type su, enter the password for the user “root,” and

press Enter. To access the 3Dfx video hardware, you need the special privileges of the root

user.

2. Type export MESA_GLX_FX = f and press Enter. This tells Mesa to use full-screen

hardware-accelerated rendering (“f”).

3. Ensure that the LD_LIBRARY_PATH environment variable points to the directories where

you installed Mesa and Glide. See the Appendix for more details.

After performing the above three steps, and still as the root user, you can run any Mesa program

with full-screen hardware acceleration. Often, the current directory will not be in the search path
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for the root user (for security reasons), so you may need to type ./program_name (with a preced-

ing dot and slash character) to execute programs in the current directory. With an l3d program, as

soon as you choose the Mesa configuration, the 3D video hardware switches into full-screen

mode, your multi-window X environment disappears, and you see your graphics program

full-screen and accelerated. You will immediately notice the speed difference when running with

hardware acceleration.

NOTE Notice that the fact that you must become the root user to access 3Dfx hardware
acceleration is a sign of the lack of integration between this method of 3D hardware acceler-
ation and the X Window system, which is why the efforts to incorporate hardware acceleration
into X are so important. More recent versions of the 3Dfx Linux driver do, however, allow for
non-root access to the 3D hardware.

One problem with full-screen 3Dfx graphics is that if your program crashes or enters an infinite

loop, the video hardware still remains “connected” to the 3D graphics card, meaning you see a

frozen or a black image. By default, you do not return to the X environment. You can try to press

Alt+Tab to change the focus back to the shell window from which you started the program, then

try pressing Ctrl+C to terminate the offending program, in which case you can sometimes recover

from a frozen or crashed program. However, this is no guarantee.

One way around this problem is to use the 3Dfx “window hack,” introduced in Chapter 1.

This uses the 3Dfx hardware to render the image off-screen at the full accelerated speed of the

hardware, but then uses a “hack” to copy the image back into video memory to display it in an X

window. Follow these steps to enable the “window hack”:

1. Shut down the X server. If your window manager provides a convenient means of doing so

(for instance, via the K-menu in KDE), then end X through the window manager. If your

window manager provides no such function, you can press Ctrl+Alt+Backspace, which

forcefully kills the X server.

2. Restart the X server in 16-bpp mode: type startx -- -bpp 16 and press Enter. Shutting down

and restarting the X server in 16-bpp mode is not strictly necessary, but leads to the best

performance.

3. Become the root user. Type su, press Enter, enter the root password, and press Enter.

4. Type export MESA_GLX_FX="window" and press Enter to enable window rendering.

5. Type export SST_VGA_PASS=1 and press Enter. This “stops video signal switching,”

according to the Mesa documentation on the 3Dfx driver.

6. Type export SST_NOSHUTDOWN=1 and press Enter. This also is to stop video signal

switching.

7. Ensure that the LD_LIBRARY_PATH environment variable points to the libraries where you

installed Mesa and Glide (see the Appendix).

After performing the above steps, and still as the root user, you can run any Mesa program with

windowed hardware acceleration. Remember, this will not be nearly as fast as full-screen hard-

ware acceleration, but is still usually faster than pure Mesa software rendering. As noted above, as
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the root user you might not be able to execute programs in the current directory without typing a

dot and a slash before the program name.

The newly released XFree86 4.0 incorporates the Direct Rendering Infrastructure, mentioned

in Chapter 1. This means that accelerated 3D graphics under X has become a reality for Linux. A

number of popular 3D cards are supported, but exactly how to enable this acceleration depends on

your specific graphic card. You might need to load a special operating system module before start-

ing the X server, and you might need to update your dynamic library search path to use the

hardware-accelerated OpenGL libraries provided by XFree86 4.0. You also might need to start

your X server with a particular color depth. See the XFree86 4.0 documentation for details, or con-

sult their web page at http://www.xfree86.org. Also, if your 3D card is not yet supported

by XFree86 4.0, you might have luck with the drivers from the Utah-GLX project at

http://utah-glx.sourceforge.net.

Summary
In this chapter, we looked at ways of drawing specific geometric primitives onto the 2D raster dis-

play. We looked at all of the following topics:

� Rasterization and clipping of points, lines, and polygons in 2D

� Storage structures for 2D polygons

� Polygon morphing in 2D by interpolating between vertex lists and changing a vertex list

pointer

� Accelerated 2D graphics through MIT-SHM

� Basic OpenGL programming with Mesa and GLUT

� 3DFX hardware acceleration through Mesa

We now know how to access the screen, and how to use rasterization algorithms to draw dots,

lines, and polygons on the screen. In other words, we now can write programs to draw simple 2D

graphics under Linux. The next chapter begins our journey into the next dimension—into the

world of 3D.
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C h a p t e r 4

3D Vision and3D Vision and
Perception

Overview

T
his chapter explains the fundamental concepts enabling the apparent display of 3D graphics

on a 2D screen. We say “apparent display” because, essentially, 3D graphics is the creation

of 2D images which appear to be 3D. Achieving this appearance requires an understanding

of the perceptual, physical, and geometrical factors involved in 3D viewing. Human vision results

from the mind’s three-dimensional perception of physical light rays; studying vision, then, allows

us to understand geometrically how 3D graphics works.

In this chapter, we define what we want to accomplish with 3D graphics, examine the physics

and geometry of vision, and present our first 3D program. We cover the following topics:

� The visual goal of 3D graphics

� Human visual perception of 3D objects, and why 2D images can appear 3D

� The concept of parallax

� Using qualitative knowledge about 3D perception to produce simple 3D graphics

� The problems with a simple qualitative approach to 3D graphics.

The Goal of 3D Graphics
We often hear that a program has great 3D graphics, or that a particular animation sequence looks

amazingly 3D. But what exactly is meant by “3D graphics” anyway? For the purposes of this

chapter, we define 3D graphics as follows.

3D graphics is the creation of a two-dimensional image or series of images on a flat computer

screen such that the visual interpretation of the image or series of images is that of a

three-dimensional image or series of images.
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Let’s examine each part of this definition in more detail.

� Two-dimensional image: As detailed in the previous chapter, the computer screen is divided

into a two-dimensional grid of individually controllable pixels. By activating or deactivating

pixels at selected (x,y) positions, we specify a 2D image.

� Series of images: By displaying a rapid succession of similar but slightly differing 2D images,

the illusion of 2D motion can be produced. By displaying a rapid succession of 2D images,

each of whose visual interpretation is that of a 3D image, the illusion of 3D motion can be

produced.

� Flat computer screen: The computer screen (or monitor) is the computer’s main visual output

device. The pixellated two-dimensional images described in the first item are displayed phys-

ically as luminous phosphors or dots on the computer monitor. Physically, the display surface

of the monitor is flat or very close to flat. Thus, all of the (x,y) pixel coordinates which the

computer can plot will physically lie in a two-dimensional plane in space. (This fact allows us

to understand and mathematically compute the equations necessary for the so-called “planar

perspective projections”; see Chapter 5.)

NOTE Not all screens are flat. For instance, some large, immersive, 3D movie theaters pro-
ject images on a huge cylindrical or spherical screen encompassing the entire field of vision. If
we want to use 3D computer graphics to compute images for projection onto such non-flat
display surfaces, we would need to use slightly more complicated projection formulas than
the ones presented in this chapter. Fortunately, typical displays for personal computers are
indeed flat, and we therefore assume for this book that the target display is also flat. Further-
more, we also assume that we only have one screen on which we generate images; however,
larger virtual reality environments such as CAVEs often use multiple screens to surround the
viewer, all calculated and updated simultaneously, with a corresponding increase in required
computing power. Again, the typical personal computer will only have one screen.
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� Visual interpretation: The human eye receives the light rays from the image on the computer

screen and sends signals to the brain for visual interpretation. We must understand how the

eye and mind receive and interpret light rays from real-world, three-dimensional objects, if

we are to “fool” the eye/mind into interpreting the light rays coming from a two-dimensional

image as the light rays coming from a three-dimensional object.

Notice that our current definition of 3D graphics only concerns itself with the visual compo-

nent—and indeed, strictly speaking, graphics does deal only with that which is “graphic” or

visual. In the field of 3D graphics, however, we often wish to imitate not only the way the 3D

world looks, but also how it behaves. In particular, 3D games, virtual reality environments, and

other interactive 3D programs require some resemblance to the real world in order to create a con-

vincing illusion of a virtual environment. Objects should not be able to pass through one another

(collision detection), should accelerate and decelerate realistically (physics), and generally should

behave according to rules similar to or at least reminiscent of the physical laws governing our

ordinary, observable, physical reality. We can use the term “simulation” to describe any program

code which deals with modeling the behavior of 3D objects. A sample program later in this chap-

ter implements simulation code in order to control the movement of dots in a variety of physically

realistic ways. Later chapters also implement various types of simulation code such as collision

detection, sound, and acceleration. This allows us to create believable and entertaining 3D worlds.

For now, though, let’s return to the visual part of 3D graphics.

Moving from 2D to 3D
The 2D graphics concepts presented in Chapter 2 are fundamentally easy and intuitive to under-

stand and visualize. While a robust, flexible, extendable Linux implementation of the 2D concepts

raises many practical issues, the actual geometric 2D graphics concepts themselves are not diffi-

cult to understand. However, while the geometry of 2D graphics is easy, it is not clear how to start

making the move to 3D. Perhaps the most natural question, one which you might have at this

moment, is the following:

“My screen is 2D, and I know how to plot 2D points. But how do I plot 3D points on a 2D

screen?”

Or, put in somewhat more mathematical terms:

“I want to plot a 3D point of the form (x,y,z) on my 2D (x,y) screen. I know what to do with the

x and y coordinates, but what do I do with the z coordinate?”

This question is a bit deeper than it might appear at first. To answer it, we first consider how

humans see objects at all. With this understanding, it will then be possible to understand how a 2D

image may be made to appear like the physical 3D objects in our world. The next chapter then

examines the mathematical answer to the question, which involves 3D linear perspective.
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Vision and Optics: 3D in the Physical World
The following sections discuss the geometry of visual perception and optics. We develop a geo-

metrical model of the way humans perceive light, and use this model to understand how visual

ambiguities can occur. In particular, we see how 2D images may appear to be 3D. We then use this

basic knowledge to write a program displaying a crude but passable 3D animation.

The Retina: Biochemical Vision
The retina forms the biochemical basis for vision in humans. It is a small patch of photosensitive

tissue located near the back of the eyeball. Light striking the retina causes certain cells (called rods

and cones) to send a message to the brain indicating that light has been perceived.

Therefore, the physical basis for vision is light striking the retina. The particular patterns of

light striking the retina determine which particular rods and cones in the retina fire off a signal to

the brain. The mind then interprets all the signals from the retina and gives us what we call the sen-

sation of vision. Regardless of whether we are looking at a flat, depthless picture or the

tremendous three-dimensional expanse of the Grand Canyon, our visual perception all comes

down to light striking the retina.

NOTE We stated that light striking the retina forms the physical basis for vision. Of course,
we have two eyes and therefore two retinas. The brain’s synthesis of the two slightly different
images received by both eyes provides a very strong sensation of 3D perception, called binoc-
ular vision or stereopsis. However, in this book, we ignore this effect, assuming effectively that
we are looking at the world through only one eye (monocular vision). This is a reasonable lim-
itation, because most computers have only one display monitor, at which both eyes look.
Thus, binocular depth cues cannot currently be implemented on the average personal com-
puter. Of course, devices exist which actually do present slightly differing views to each eye
separately and thus do provide for true binocular depth perception. These devices typically
take the form of some sort of a visor, helmet, or glasses. Although prices have come down for
such devices, they are still by no means standard equipment, and thus we assume monocular
vision.

But how, exactly, does light “strike the retina”? By what mechanism and in what manner does

light travel? What is light?

These questions may seem peripheral to a text dealing with 3D graphics, but I feel it is vital for

a 3D programmer to understand how the eye perceives objects in order to be able to “fool” the eye

into seeing 3D images on a 2D screen. Many 3D texts simply draw “rays” or “projectors” from

objects to the eye, without ever explaining what these rays represent, where they come from, or

what happens to them when they enter the eye. As we are about to see, these rays form the very

basis of vision.

The Geometry of Light
For the purposes of this book, it is convenient to concentrate on the particulate properties of light,

from which we know that light energy radiates in straight lines outward from all points in all
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directions. We call these lines of light energy light rays. Light rays travel in straight lines unless

bent by some agent or device. The only light-bending device we will need to consider in this

book—and then only briefly—is the lens within the human eye. When a light ray passes through

the eye’s lens and strikes the retina, the light ray causes a biochemical reaction to take place in the

retina, which then causes a signal to be sent to the brain; this is interpreted as the sensation of sight.

The following series of diagrams illustrate visually the path of light rays for a variety of view-

ing situations. We trace the light rays from their point of origin (points on the perceived object) to

the point of perception (points where the light rays strike the retina). Along the way, we establish

several diagrammatical conventions used throughout the book. Recall, again, the purpose of this

discussion on human vision is to understand perception of real-world 3D objects as well as per-

ception of 2D images. We will see at the end how the perception of one can seem like a perception

of the other, thus allowing a 2D image (or series of images) to be perceived as 3D.

Single Point

Figure 4-2 illustrates the visual situation with the simplest object possible, a single point source of

light. This point, located at the right of the figure, radiates an infinite number of light rays in all

directions. Of all the light rays emanating from this point, only a small fraction (those rays drawn

with a solid line in the figure) actually are perceived from the particular position of the eye, called

the viewpoint. We will call these light rays the seen light rays. Seen rays are therefore the particu-

lar subset of all light rays emanating from a point or a set of points, which pass through the eye’s

lens, strike the retina, and are perceived. This particular subset depends on the position of the eye.

Due to the optical properties of the eye’s convex lens, all of the seen light rays coming from one

point focus to exactly one point on the retina, due to the refractive (light-bending) properties of the

focusing lens. Thus, the seen light rays emanating from the single point in space are focused to a

single point on the retina, and are therefore perceived by the mind as a single point.
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Two Points

Figure 4-3 illustrates the same situation, but with two points. To reduce diagram clutter, only the

seen light rays are drawn; the unseen light rays are omitted. This convention will be used through-

out the book. Notice in Figure 4-3 that for the light rays falling on the retina, the up/down

orientation of points 1 and 2 is actually reversed from the actual physical up/down orientation.

That is, the image falling on the retina is inverted with respect to the physical up/down orientation

of the object. However, the mind internally “inverts” the image back so it is perceived

right-side-up.

Figure 4-3 illustrates only two points, but already the diagram is cluttered with light rays. As a

further diagrammatical convention, future diagrams will only draw one light ray per point per eye.

(Usually only one eye will be illustrated per diagram since, recall, we are ignoring the effects of

binocular vision.) Since all the light rays from one physical point focus to one point on the retina,

we are not losing any information by making this diagrammatical simplification. Figure 4-4 is the

same as Figure 4-3, but with this convention applied.

Let us establish one more diagrammatical convention before continuing. Only “significant”

points within the objects of interest will be considered. Since each object theoretically consists of

an infinite number of points, we cannot illustrate the behavior of light rays for all of these infinite

points. Instead, we concentrate on the points which most naturally are significant to the object

under observation. Some examples are:
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Object Significant points

Line Two endpoints

Triangle Three vertices

Cube Eight vertices

Arbitrary 2D polygon Polygon’s vertices in 2D

Arbitrary 3D polygonal object Shared vertices of all comprising polygons in 3D

We will see later that a convenient representation of 3D objects is 3D polygonal modeling. Fur-

thermore, the most natural method of representing 3D polygonal objects in a data structure is to

store the 3D coordinates of the object’s vertices, just as in Chapter 2 we stored the 2D coordinates

of polygons’ vertices in an l3d_two_part_list.

The following list summarizes the diagrammatical conventions which will be used through-

out the rest of the book:

� Only seen rays are drawn.

� Only one seen ray per point per eye is drawn; monocular vision is assumed.

� Only “significant” points within objects of interest are considered.

� Usually, for space reasons, light rays will be drawn as terminating when they reach the eye,

though actually the light rays pass through the eye’s lens and only stop once they reach the

retina.

Lines

Figure 4-5 illustrates the light rays for a series of identically sized line segments placed at different

distances from the eye. For diagrammatical reasons we will only consider the endpoints of each

line segment, though recall that, in reality, light is radiated from all points on each line segment.

There are three line segments in this figure, which will be referred to by their endpoints: segment

1a-1b, segment 2a-2b, and segment 3a-3b. Segment 1a-1b is nearest to the eye; segment 3a-3b is

farthest from the eye. The perceived image of the real-world segment 1a-1b is the segment 1a-1b

on the retina; similarly for segments 2a-2b and 3a-3b. Notice that segment 1a-1b, closest to the

eye, has the largest perceived image; segment 3a-3b, farthest from the eye, has the smallest per-

ceived image. This fits with common sense; farther objects appear smaller.
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Now observe Figure 4-6, which presents line segments of differing sizes. Here, segment

1a-1b is the smallest but also the nearest segment to the eye. Segment 2a-2b is slightly larger but

farther from the eye; segment 3a-3b is the largest segment but is also the farthest from the eye.

Notice that the light rays from all of these segments end up striking the same points on the retina.

That is, the perception of size of segments 1a-1b, 2a-2b, and 3a-3b is identical, though physically

they are of differing sizes. Why is this? The answer is that the seen light rays which emanate from

segment 1a-1b are exactly the same as (i.e., follow the same paths as) the seen light rays from seg-

ments 2a-2b and 3a-3b. Since the physical basis of perception is seen light rays striking the retina,

all three line segments are perceived identically. This also fits with common experience, since a

small but close-up object is indistinguishable from an identical but larger object located farther

from the eye. This is why the special effects crews for movies can use miniature models for spec-

tacular explosions and other movie magic; if filmed from a close enough viewpoint, miniature

models look just like their real-life counterparts as seen from a greater distance.

Figure 4-6 implies a number of interesting properties about visual perception. First of all,

monocular vision is inherently ambiguous. Given an image on the retina, we can uniquely deter-

mine the light rays which cause that image to be formed. We cannot, however, uniquely determine

the physical location of points in space which are emitting those light rays. In Figure 4-6, the

image on the retina (retina segment 1a-1b, which is identical to retina segments 2a-2b and 3a-3b)

implies that the two illustrated light rays are striking the eye, but we do not know if these rays orig-

inate from segment 1a-1b, segment 2a-2b, segment 3a-3b, or even from some entirely different

object which, by virtue of its position relative to the eye, happens to radiate light rays along the

same paths.

NOTE Binocular vision provides additional depth information unobtainable from just one
eye; three eyes would provide even more. Such techniques are often used in image process-
ing applications, using multiple cameras to capture multiple simultaneous views of a scene.
Even with multiple cameras, however, ambiguity still remains.

Since vision is ambiguous, we can make one object look like another object if the same light rays

strike the eye from each object. In particular, if we can create a 2D image such that the seen light

rays radiated from this 2D image match the seen light rays for some 3D object, then the eye will
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perceive the 2D image just as it would perceive the 3D object! This was the miraculous “linear

perspective” discovery made during the Renaissance.

Note well, however, that this does not mean that the 2D image will look like the 3D object

from all viewpoints. If the viewpoint changes, then the set of seen rays—the subset of all rays radi-

ated from the 2D image—will change. However, the set of seen rays will not change in the same

manner as the set of seen rays from the 3D object would change for the same viewpoint change.

An example is a photograph of the front face of a cube. If we look at the cube and the photograph

straight on, they appear identical. But if we move our head up a bit and look down, then with the

physical cube we can see a bit of its top face. With the photograph of the cube, however, our view-

point change only causes foreshortening of the photograph itself, but we do not see the top of the

cube in the photograph. This is what is meant when we say that for a change in viewpoint, the seen

rays for a 3D object do not change in the same manner as the seen rays for a 2D image of that 3D

object. This is why a photograph, while it can look 3D from one viewpoint, cannot look 3D from

all viewpoints and therefore is quickly recognizable by the brain as being a flat projection of a 3D

image.

NOTE As an interesting aside, a few novelty “3D cameras” attempt to create a 3D image by
integrating several 2D images from different viewpoints into one image, and coating the sur-
face of the photograph with a special optical screen which allows a different image to be seen
depending on the viewpoint. Most such cameras, however, only compensate for left-right
viewpoint changes, not up-down viewpoint changes. In a similar vein, immersive virtual real-
ity environments such as CAVEs attempt to track the movements of the viewer’s head (or even
eyes, in some cases) and re-create the 2D image to correspond to the new viewpoint, thereby
contributing to the illusion that the viewer is looking at and moving in relation to a real 3D
object. But update latency (delay) is always a problem with such systems.

A Cube

Until now, the light ray diagrams have been essentially 2D. Figure 4-7 illustrates a 3D cube and

the seen light rays which are radiated from the cube’s corners and strike the eye. For simplicity we

only consider the corners of the cube, rather than all the infinite points lying along each edge and

face of the cube. We also omit the diagrammatical details of the light rays entering the eye, being

focused by the lens, and striking the retina; instead, the rays are drawn as terminating at the eye.

A 2D plane cuts through the light rays in the middle of Figure 4-7. In this diagram, we have

traced the light rays from the cube and have intersected them with the 2D plane. The resulting

image on the plane radiates light rays in such a way that the seen rays from this image are identical

to the seen rays from the actual 3D cube, for the given viewpoint. Given the rays that strike the

eye, we cannot tell if we are looking at the actual 3D cube or if we are looking at the 2D image of

the 3D cube. Or, put another way, if we are looking at the 2D image, it may be interpreted by the

mind as a 3D object—which is exactly the goal of 3D graphics we defined earlier.

Later in this chapter, we deal with the precise mathematical question of projection: given a

viewpoint and a 3D object, how do we obtain a 2D image for which the seen light rays from the

given viewpoint are identical to the seen light rays from the 3D object? But before tackling that

question, let’s address one other important 3D concept, parallax, and then put some of this theory

into practice with our first 3D graphics program, “runway lights.”
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Parallax
In this section, we look at the concept of parallax—a strong cue which can help trick the mind into

seeing 3D images from a dynamic 2D scene. By understanding and implementing a parallax

effect, we can create a simple yet convincing 3D display.

Definition of Parallax

Parallax is the phenomenon that an object a given distance from a viewer moving with a given

velocity across the field of vision appears to move more quickly than a more distant object moving

with the same velocity. An example from everyday life will make this clear. Let’s say you’re driv-

ing along the highway. The road is clear, so you turn your head to look out the passenger side

window. You notice that the trees along the side of the road appear to be zipping by at a great

speed, but the mountains in the distance hardly appear to move at all. This difference in perceived

speed is the parallax effect.

How Parallax Comes About

The geometrical analysis in Figure 4-8 illustrates why this is so. In the left half of Figure 4-8 we

have two dots: one nearer to the eye (hollow) and one farther from the eye (solid). Let us say that

both dots move the same physical distance from left to right. The perceived movement is the

movement of the focused points on the retina, which is determined by the geometry of the seen

light rays. As you can intuitively see from Figure 4-8, the nearer the point is to the eye, the greater

the perceived movement, and the farther the point, the smaller the perceived movement. In other

words, the perceived movement varies inversely with the distance from the eye.

A somewhat more mathematical justification may be seen in the right half of Figure 4-8. For a

given fixed physical distance from point a to point b, we wish to determine the perceived distance

(point d to point e) as a function of the distance of the point from the eye (point c to point f). The

distance de (perceived distance) depends on the size of the angle dce. If we simplify the situation
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and consider the half-perceived-distance dg, as part of the half-triangle dcg, then we can say that

the distance dg depends on the size of the angle dcg. Distance cg (focal length of the eye) is fixed.

As angle dcg grows larger, so does its tangent (tan(dcg) = dg/cg); since cg is fixed, dg must grow

larger as angle dcg grows larger, and dg must grow smaller as angle dcg grows smaller. Extending

this to the whole distance de and the whole triangle dce, we may then conclude that perceived dis-

tance de varies directly with the size of the angle dce.

Angle dce and angle acb are equal, since they are opposite angles; therefore, perceived dis-

tance de varies directly with the size of angle acb. Let us again simplify and consider only the

half-triangle acf and the half-physical-distance af. The physical distance af is fixed. As distance

from the eye (length cf) increases, the tangent of angle acf decreases (tan(acf) = af/cf), since cf is

fixed. As tan(acf) decreases, so does acf. Extending this result to the whole triangle acb, we may

conclude that as distance from the eye (length cf) increases, angle acb decreases—in other words,

the size of angle acb varies inversely with the distance from the eye cf. Combining this with the

previous result that perceived distance de varies directly with the size of angle acb, we may finally

conclude that for a fixed distance ab, the perceived distance de varies inversely with the distance

from the eye cf, which is the same result we obtained from our earlier informal observation.

Chapter 4: 3D Vision and Perception 237

Figure 4-8: Analysis of
parallax.



NOTE The preceding two explanations of parallax—geometric and mathematic—illustrate
an important way of understanding and discovering new 3D graphics concepts. First, we
observe a behavior or a property of a system under consideration. Then, we attempt to under-
stand and explain it geometrically. Finally, to verify and crystallize our understanding, we
analyze the situation mathematically.

Why Parallax is Important

Parallax is important because it provides a cue or a visual suggestion to the viewer that one object

is closer than another, thereby producing the illusion of 3D depth. We are so used to seeing and

experiencing parallax in our ordinary visual perception that any parallax-like movement will

likely be interpreted as parallax. If two on-screen objects move in a parallax-like manner, then this

movement will very likely be interpreted by the viewer as parallax, creating the illusion of depth.

Later in this chapter we investigate the mathematics necessary to create a 2D image for which

the seen light rays duplicate those of a 3D image. As it turns out, by solving this problem we also

automatically generate the parallax effect. That is, the process of projection, as described later,

“correctly” or “realistically” transforms 3D images into 2D images, including the effects of

parallax.

“Runway Lights”—A Simple 3D Program
We’ve now made a number of qualitative observations about human perception of 3D objects:

1. Perceived size, that is, perceived distance between points, decreases with distance from

viewer.

2. Perceived speed decreases with distance from viewer—the parallax effect.

3. If seen light rays for a 2D image correspond to seen light rays for a 3D object, the 2D image

may be interpreted by the mind as a 3D image.

Let us now apply this qualitative knowledge by writing a program to simulate the 3D appearance

of runway lights at night. First, we translate our qualitative knowledge into C++ code, then discuss

the shortcomings of this purely qualitative approach. This paves the way for the following discus-

sion of mathematically correct perspective projection, which is the only way to realistically

display arbitrary 3D objects from an arbitrary 3D viewpoint on a 2D screen.

Runway Lights: Physical Situation

Physically, runway lights are arranged on airport grounds in a more or less grid-like fashion: there

are evenly spaced rows of lights, each row with a number of evenly spaced lights. As the airplane

taxis down the runway, parallel to the rows of runway lights, a viewer looking out the airplane

window will see the runway lights moving horizontally across the field of vision.

Figure 4-9 illustrates the situation; the airplane is moving down the page, with the runway

lights located to the right of the page. The viewer, sitting in the airplane, is looking out of the air-

plane window and is observing the relative motion of the runway lights. The viewer cannot see all

of the runway lights at once; his field of view is limited by, among other things, the physical

boundaries of the airplane window. There are therefore definite leftmost and rightmost “bound-

aries” beyond which radiated light rays cannot be perceived. These boundaries are shown by the
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dashed lines in the figure, and represent the field of view, a topic that we cover in more detail in

Chapter 5.

What the viewer sees, therefore, is the region of lights in the figure labeled “visible region.”

Notice that the visible region grows in size with the distance from the viewer. This means that the

viewer sees more lights in the farthest row and fewer lights in the nearest row. Furthermore, we

“know” from common experience that the nearest row will appear vertically lowest in the win-

dow; the farthest row, highest. Distant things appear higher because we look down on the ground.

If we could put our head below ground and look up at the ground, then distant objects would

appear lower on-screen; if we put our head exactly at ground level, then both near and distant

objects appear at the same level on-screen, namely eye level.

If you are somewhat unsettled by the imprecise nature of the previous assumptions, don’t

worry—remember, this is our first attempt at a 3D program, and the goal for now is to see if an

informal, qualitatively justified implementation of 3D graphics can yield acceptable results.

Code Listing

To implement all of this, we plot a series of dots on the screen as shown in Figure 4-10. We have

three rows of dots, representing the three rows of runway lights we would see out the window of

the airplane.

Listing 4-1: runway.cc: runway lights
#include <stdlib.h>
#include <stdio.h>

#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"

Chapter 4: 3D Vision and Perception 239

Figure 4-9: Physical
viewing situation for
runway lights.



#include "../lib/system/factorys.h"

#define MAXDOTS 500
#define NEARDOTS_INTERVAL 1
#define MEDDOTS_INTERVAL 2
#define FARDOTS_INTERVAL 4

//- STEP 1: CHOOSE THE FACTORIES

void choose_factories(void) {
factory_manager_v_0_1.choose_factories();

}

//- STEP 2: DECLARE A PIPELINE SUBCLASS

class my_pipeline : public l3d_pipeline {
protected:
l3d_rasterizer_2d_imp *ri;
l3d_rasterizer_2d *r;

unsigned long color;

int neardots_x[MAXDOTS], neardots_y, neardot_x_spacing, neardots_ctr,
meddots_x[MAXDOTS], meddots_y, meddot_x_spacing, meddots_ctr,
fardots_x[MAXDOTS], fardots_y, fardot_x_spacing, fardots_ctr,
num_neardots, num_meddots, num_fardots;

public:
l3d_screen *s;
my_pipeline(void);
virtual ~my_pipeline(void);

void key_event(int ch); //- from dispatcher
void update_event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

};

my_pipeline::my_pipeline(void) {
s = factory_manager_v_0_1.screen_factory->create(320,200);
ri = factory_manager_v_0_1.ras_2d_imp_factory->create(320,200,s->sinfo);
r = new l3d_rasterizer_2d(ri);

s->sinfo->ext_max_red =
s->sinfo->ext_max_green =
s->sinfo->ext_max_blue = 255;

s->sinfo->ext_to_native(0, 0, 0); //- allocate black background color
color = s->sinfo->ext_to_native(255, 255, 255);
s->refresh_palette();

int i,x;
neardots_y = 180;
neardot_x_spacing=20;
neardots_ctr = NEARDOTS_INTERVAL;
for(i=0, x=0; x<320 && i < MAXDOTS; i++) {
neardots_x[i] = x;
x+=neardot_x_spacing;

}
num_neardots=i;

/* Middle row of runway lights */
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meddots_y = 140; /* middle row: higher on screen */
meddot_x_spacing=10; /* middle row: medium spacing */
meddots_ctr = MEDDOTS_INTERVAL; /* middle row: medium speed */
/* squeeze as many lights as possible into a row, with the given spacing */
for(i=0, x=0; x<320 && i < MAXDOTS; i++) {
meddots_x[i] = x;
x+=meddot_x_spacing;

}
num_meddots=i;

/* Farthest row of runway lights */
fardots_y = 120; /* farthest row: highest up on screen */
fardot_x_spacing=7; /* farthest row: tightly spaced */
fardots_ctr = FARDOTS_INTERVAL; /* farthest row: slow movement */
/* squeeze as many lights as possible into a row, with the given spacing */
for(i=0, x=0; x<320 && i < MAXDOTS; i++) {
fardots_x[i] = x;
x+=fardot_x_spacing;

}
num_fardots=i;

}

my_pipeline::~my_pipeline(void) {
delete s;
delete ri;
delete r;

}

void my_pipeline::key_event(int ch) {
switch(ch) {
case 'q': {

exit(0);
}

}
}

void my_pipeline::update_event() {
int i;

/* move all dots */
neardots_ctr—;
if (neardots_ctr == 0) {/* neardots move once every NEARDOTS_INTERVAL */
neardots_ctr = NEARDOTS_INTERVAL;
for(i=0;i<num_neardots;i++) {
neardots_x[i] —;
if(neardots_x[i]<0) neardots_x[i] += 320;

}
}
meddots_ctr—;
if (meddots_ctr == 0) {/* meddots move once every MEDDOTS_INTERVAL */
meddots_ctr = MEDDOTS_INTERVAL;
for(i=0;i<num_meddots;i++) {
meddots_x[i] —;
if(meddots_x[i]<0) meddots_x[i] += 320;

}
}
fardots_ctr—;
if (fardots_ctr == 0) {/* fardots move once every FARDOTS_INTERVAL */
fardots_ctr = FARDOTS_INTERVAL;
for(i=0;i<num_fardots;i++) {
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fardots_x[i] —;
if(fardots_x[i]<0) fardots_x[i] += 320;

}
}

}

void my_pipeline::draw_event(void) {
int i;
r->clear_buffer();
/* plot all dots */

for(i=0; i<num_neardots; i++) {
r->draw_point(neardots_x[i],neardots_y,color);

}
for(i=0; i<num_meddots; i++) {
r->draw_point(meddots_x[i],meddots_y,color);

}
for(i=0; i<num_fardots; i++) {
r->draw_point(fardots_x[i],fardots_y,color);

}

s->blit_screen();
}

main() {
choose_factories();

l3d_dispatcher *d;
my_pipeline *p;

//- STEP 3: CREATE A DISPATCHER

d = factory_manager_v_0_1.dispatcher_factory->create();

//- STEP 4: CREATE A PIPELINE

//- plug our custom behavior pipeline into the dispatcher
p = new my_pipeline();

//- STEP 5: START DISPATCHER

d->pipeline = p; //- polymorphic assignment
d->event_source = p->s;
d->start();

delete d;
delete p;

}

The following paragraphs describe the characteristics of the program which reflect the observa-

tions we have made thus far.
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Size Decreases with Distance

The size of the horizontal spacing between lights in the nearest row is large; in the farthest row,

small. The program variables with names ending in _spacing control the horizontal dot spac-

ing. In a similar manner, the vertical spacing between the rows themselves, controlled by the

variables ending in _y, also decreases with greater distance. The middle row of dots is closer to

the top, distant row than to the bottom, near row. In the vertical direction, this apparent size shrink-

age is called foreshortening.

Field of View

The farthest row has the most dots; the nearest row, the fewest. Dependent on the spacing between

lights, we squeeze the maximum number of lights into the on-screen space available in the row of

pixels. Tight spacing yields many dots; wide spacing, few.

Parallax

The speed of movement in the nearest row is fast; in the farthest row, slow. We store and initialize a

countdown counter for each row. Each time the countdown counter for a row hits zero, all dots in

that row are moved left and the counter is reset. The countdown counter for the nearest row is set

to a low value (yielding fast movement); for the farthest row, it is set to a high value (yielding

slower movement).

2D Seen Rays = 3D Seen Rays

The set of seen light rays radiating from the 2D on-screen image may be interpreted by the mind in

one of two ways: as the seen light rays coming from a flat 2D picture of dots, or as the seen light

rays coming from a 3D field of runway lights. See Figure 4-11. Due to the combination of visual

cues, in particular the parallax cue, the animation appears convincingly 3D.
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Evaluation of “Runway Lights” Program

If you run the runway lights program, you will probably agree that the effect is at least a passable

simulation of 3D runway lights moving horizontally across the field of vision. We have therefore

succeeded in transforming our qualitative knowledge about 3D perception into a qualitatively

passable 3D graphics program.

But why do we say “qualitative?” Let’s look at all the factors we control in the program:

� Dot spacing for near, medium, and far rows (the _spacing terms in the code)
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� Dot speed for near, medium, and far rows (the _INTERVAL terms in the code)

� Vertical position on-screen of near, medium, and far rows (the _y terms in the code)

You might be wondering how we decided on the values for these terms in the code. The answer is,

these terms were assigned by trial and error. We observed and qualitatively reasoned that near dots

are more widely spaced than far dots, that near dots appear to move faster than far dots, and that

near dots appear vertically lower than far dots. However, the quantitative, hard, cold numbers in

the code were determined by trial and error, within the qualitative guidelines we observed, until

the results appeared satisfactory.

We might like to think that if the results look fine, then a qualitative approach suffices. And

indeed, some of the earliest video games used exactly such qualitative techniques to simulate 3D

effects in, for instance, left-to-right scrolling games. There might have been cars in the fore-

ground, trees in the middle, and mountains in the background, all scrolling by in a very similar

fashion to the runway lights we just programmed.

If we look more closely, however, we will start to realize some difficult to insurmountable

problems with the qualitative approach we just took:

� How can we make the dots move toward the user or in any direction other than horizontal?

� How can we display more complicated objects than dots?

� How can we allow the user to independently move around in a 3D world?

� How can we allow the user to point the eye in a different direction (to look up, down, or diago-

nally, for instance)?

If we try to use this qualitative approach to 3D graphics in more general 3D situations, we quickly

realize that such an approach is not useful for much more than an optical attention-getter. As soon

as you need to display, manipulate, and move around in 3D data, the qualitative observations we

made and implemented are simply not enough.

The problem is that we are still fundamentally working with 2D data and not with 3D data. We

were able to cheat because we qualitatively happened to notice that the 3D motion of horizontal

rows of runway lights is simple 2D horizontal motion (although we did make some interesting and

correct observations about the relationships between distance from the viewer and perceived size

and speed). So we programmed some simple horizontal 2D lines of dots on-screen and moved

these dots horizontally in accordance with the qualitative observations we had made earlier. But

we are moving 2D dots in a 3D fashion; we are not truly modeling and moving 3D data. It is a spe-

cial case and a lucky coincidence that horizontal 3D motion translates into simple horizontal 2D

motion. This is not the case in general, and leads to the inability of this approach to handle the

other situations described above (arbitrary movement, display of more complicated objects, and

so forth).

In order to correctly and flexibly implement 3D graphics, we must make the commitment to

model our data in 3D, then determine a way to convert or project the 3D data onto our 2D display.

This process is called planar perspective projection and is the topic of the next chapter.
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Summary
In this chapter we defined 3D graphics and took a close look at the physics and geometry of vision.

We observed that when the seen light rays from a 2D image duplicate the seen light rays from a 3D

object, the 2D image will “look 3D.”

We also made several qualitative observations about perception of 3D objects, and imple-

mented these observations in an ad-hoc way in the demonstration program “runway lights.” The

program generated a believable 3D effect, yet was not flexible enough to allow for interactive dis-

play and manipulation of arbitrary 3D data.

We realized that the problem with the approach of the “runway lights” program is that it is a

2D simulation of 3D phenomena. The program is actually modeling the movement of the runway

lights in 2D, not in 3D. It is this shortcoming which does not allow this approach or similar

approaches to be applied to arbitrary viewing of arbitrary 3D data. The next chapter tackles this

subject head on. How do we model 3D data, and exactly how do we display this 3D data on a 2D

screen?
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C h a p t e r 5

Perspective ProjectionPerspective Projection

Overview

T
his chapter explains the concepts, equations, and implementation details for displaying

arbitrary 3D graphics on a 2D screen. Creating a general-purpose 3D graphics program

requires a mathematical approach to generating 2D images from 3D data. This chapter is an

introduction to the mathematics of 3D graphics. In particular, we look at the process of planar per-

spective projection.

This chapter formalizes the qualitative observations made in Chapter 4, which result in a set

of equations—the perspective projection equations—which mathematically convert 3D data into

a 2D form suitable for display. Using this knowledge, we then develop a better, mathematically

correct version of the sample 3D program from the previous chapter, and see how much more flex-

ible this approach is. We also look at a 3D program which uses the polygon drawing routines from

Chapter 3 to display 3D polygonal graphics.

This chapter covers the following topics:

� 3D coordinate systems and vectors

� Modeling 3D data with 3D points

� The perspective projection equation for a single point

� Field of view

� Projecting lines, polygons, and polyhedra from 3D into 2D

� The general structure of a 3D engine

Projection from 3D to 2D
In computer graphics, projection refers to the transformation of points in a coordinate system of n

dimensions into points in a coordinate system of less than n dimensions. For the purposes of 3D

graphics, this means transforming 3D points into 2D points. The 3D points represent physical

points modeling a 3D object, and the projected 2D points are the 2D representation of the object

which we display on-screen by using the 2D graphics classes we developed in Chapters 2 and 3.
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We are interested in a very specific kind of 3D-to-2D projection. In particular, we would like

the results of the projection to be such that a viewer regarding the 2D projected points is “fooled”

into seeing the original set of 3D points. As we mentioned earlier in Chapter 4, this is our main

goal in 3D graphics and is achieved when the seen light rays from the 2D image correspond to the

seen light rays from the 3D object. This is called a planar geometric perspective projection. We

focus exclusively on this form of projection, because it produces 2D images which look realistic,

simulating the light rays we would see if we were actually looking at the 3D objects being mod-

eled. Farther objects appear smaller, parallel lines converge on the horizon, parallax is produced,

and perspective foreshortening is precisely handled with this type of projection. Perspective pro-

jection produces images very similar to those which would be produced by a physical camera

viewing a 3D scene, capturing the seen light rays through a lens and recording them on a flat 2D

film surface.

Another type of projection which is commonly seen is the parallel or orthographic projec-

tion, which can be useful in situations where the exact measurements of a 3D object must be con-

veyed in a 2D diagram—in architecture or engineering diagrams, for instance. Other projections

include non-planar projections and non-geometric projections, such as the projections onto a

curved screen which we mentioned earlier. Again, in this book we focus only on perspective pro-

jection, which is all we need to produce realistic 3D images on a flat 2D screen.
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The Inputs and Outputs to the Projection Process
As mentioned above, we may view projection as a conversion process from points in 3D into

points in 2D. The 3D points being projected represent the real world being modeled and must be

stored in the application program in some sort of data structure—in particular, an

l3d_two_part_list containing l3d_coordinate objects, as we saw in Chapter 3 for 2D

polygons.

The 3D points form part of the “inputs” to the projection process. A complete list of necessary

inputs follows; we discuss each input in detail in the coming sections.

� 3D points to be transformed

� Desired horizontal and vertical field of view

� Pixel width and pixel height of the screen

As “output” come the transformed or projected points in 2D pixel coordinates, ready for plotting

on a 2D raster display using the routines of Chapter 3. The projection is done in such a way that the

resulting 2D points generate the same seen light rays as if we were actually looking at the original

set of 3D points.

Points Form Objects
Until now, we have only talked about projecting 3D points into 2D points. What about more com-

plicated objects such as lines or polygons? For instance, a line in 3D mathematically consists of an

infinite number of points. Do we need to project all of these points from 3D into 2D in order to dis-

play the line in 2D? Fortunately, the answer is no. The projection of a 3D line into 2D is also a line.

Therefore, in order to project a 3D line into 2D, we only need to project the line’s 3D endpoints

into 2D, then draw a 2D line between the projected endpoints. The proof is shown in Figure 5-3. If

we consider the seen light rays for all points lying on the line (using the simplification that only

one seen light ray per point is drawn), we notice that all the seen light rays lie within the triangle

defined by the three points p1, p2, and Eye. Projection, as we will see in the following section, is

the mathematical process of calculating intersections between seen light rays and the screen plane.

The projection of a line is therefore the intersection between the triangle p1-p2-Eye and the screen

plane. This intersection is a line, since the triangle lies within a plane, and the intersection of a

plane and another plane—the screen in our case—is in general a line. Therefore, the projection of

a 3D line into 2D is also a line, and we need only project the endpoints into 2D.

NOTE The fact that we only project the endpoints of the line from 3D into 2D has a subtle
implication—namely, that we only know the real 3D location of the projected endpoints of the
line. For each of the 2D pixels lying between the two endpoints, we do not immediately know
exactly which point on the original 3D line projects to this 2D pixel, even though we do know
that some point on the 3D line must project to the 2D pixel, due to the above proof. The tricki-
ness comes from the fact that the perspective projection is a non-linear mapping from 3D into
2D, meaning that the midpoint of the projected 2D line does not correspond to (i.e., is not the
2D point resulting from the projection of) the midpoint of the original 3D line. More generally,
the issue is to non-linearly compute the original pre-projection 3D coordinates for each
drawn 2D pixel which does not directly result from a projection operation. The z buffer and
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texture mapping algorithms require exactly this computation. See the companion book,
Advanced Linux 3D Graphics Programming, for a detailed discussion of the “reverse projec-
tion” issue and its solution in relation to these advanced polygon drawing algorithms.

We can use lines to define polygons, and furthermore, we can use polygons to define 3D poly-

hedra. Therefore, knowing how to project points means knowing how to project lines (by

projecting the two corresponding endpoints), how to project polygons (by projecting all the con-

stituent lines), and how to project polyhedra (by projecting all the constituent polygons). This

means that point projection is all we need in order to project the entire geometry of an object from

3D into 2D. The last sample program in this chapter illustrates precisely how to use projected

points to draw a 3D polygonal object.

3D Coordinate Systems and Vectors
In order to specify 3D points to be projected, we must define a 3D world coordinate system. A 3D

world coordinate system (also called 3D WC) is a means of specifying points belonging to objects

in a 3D virtual world. For instance, we might define a wall in our virtual world as being a square

polygon. To specify this wall, we would specify its four corner points or vertices as 3D coordi-

nates: for instance, these vertices might be located at the four points (0,0,50), (0,100,50),

(100,100,50), and (100,0,50). Specifying these points is the way that 3D programs define the vir-

tual world which is then projected onto the 2D screen for display. Through the projection process,

we see the objects we have modeled in the 3D world coordinate system. Note that the units in 3D

WC are irrelevant to the projection process itself; you can use any units which are convenient for

the virtual world being modeled. If you are modeling microscopic objects, microns might be a

good choice; if you are modeling houses and cars, meters or feet might be good choices. As long as

your 3D WC units are consistent throughout your program, it is unimportant what these units actu-

ally are—at least for the projection process.

NOTE Although the 3D WC units are irrelevant for the projection process itself, they may
very well be relevant for a realistic physical simulation. An object moving 3 mm/second
should have quite a different impact upon collision than an object moving 3 km/second. In
this case you simply need to convert whatever units you are using for 3D WC into the appro-
priate units for the physics equation being used to simulate the physical behavior.
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Figure 5-3: Proof that
projection of a 3D line is a
2D line. Thin lines indicate
seen light rays.



Points in 3D are conceptually specified by an ordered triple of the form (x,y,z), where x represents

displacement along the x axis, y represents displacement along the y axis, and the new coordinate z

represents displacement along the (as-of-yet undefined) z axis. We define a fixed point, the 3D ori-

gin, which has coordinates (0,0,0), the intersection point of all three axes. The point (x,y,z) is

located by starting at the origin, moving x units along the x axis, y units along the y axis, and z units

along the z axis. It is useful to think of the x axis as corresponding to length, the y axis as height,

and the z axis as depth.

Similar to the different approaches seen in Chapter 2 for specifying 2D coordinates, where we

had to decide in which direction the axes pointed relative to one another, there are also different

approaches for specifying 3D coordinates. These are known as right-handed 3D Cartesian coor-

dinates and left-handed 3D Cartesian coordinates, illustrated in Figures 5-4 and 5-5, respectively.

In this book we use left-handed coordinates.

The difference between left-handed and right-handed coordinate systems lies in how we

choose to define the orientation of the z axis in relation to the orientation of the x and y axes. The

relationship is mathematically expressed by using a concept called the vector cross product. Inter-

preting the cross product geometrically can be done by observing the physical relationship

Chapter 5: Perspective Projection 251

Figure 5-4: Right-handed 3D coordinate
system. The z axis comes out of the page.

Figure 5-5: Left-handed 3D coordinate
system. The z axis goes into the page.



between fingers on your left or your right hand, which leads to the terms left-handed and

right-handed. We return to this topic of “handedness” after discussing the cross product.

Let us, therefore, now take a brief detour to discuss vectors and mathematical operations

defined on vectors. Vectors play an important role in all parts of 3D graphics, so an understanding

of their definition and use is vital. Then, by using vectors, we can mathematically define the differ-

ence between left-handed and right-handed coordinate systems.

Definition of Vectors
Mathematically, a vector in n-dimensional space is simply a list of n numbers, also called an

n-tuple. In 2D space a vector is a 2-tuple of the form (v1,v2). In 3D space a vector is a 3-tuple, or

triple, of the form (v1,v2,v3). In 4D space, a vector is a 4-tuple (v1,v2,v3,v4). The components of

the vector, in contrast to the components of a point, do not represent a location in space, but rather

a displacement in space.

Conceptually, a vector is a directed displacement in space, such as “3 kilometers southwest.”

A vector has a magnitude (length) and a direction. In this example, the magnitude of the vector is 3

kilometers; the direction is southwest. Informally, we may think of a vector as an “arrow” with a

particular length and which points a particular direction. The position of the arrow in space is irrel-

evant; only the magnitude and the direction define the vector.

Even though a vector itself has no location, it may be defined by two locations, or points, in

3D space. In fact, this is very often the case in 3D graphics, for reasons having to do with trans-

forming vectors (Chapter 6). When using two points, we then define the vector as the directed

distance from the first point to the second point. The first point may be thought of as the “starting

point” for the vector; the second, the “ending point.” These would correspond to the base and tip

of the arrow. Given a starting and an ending point, we obtain the vector between them by subtract-

ing the starting point from the ending point (the next section describes the exact meaning of

“subtracting two points”). Equivalently, given a starting point and a vector, we arrive at the ending

point by adding the vector to the starting point. This reinforces the idea that a vector is a directed
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Figure 5-6: A vector represents magnitude and
displacement in a particular direction.



displacement; by adding a displacement of the proper magnitude and direction to the starting

point, we arrive exactly at the ending point. See Figure 5-7.

Two vectors are said to be equal if their magnitude and direction are identical. In Figure 5-8,

the two thicker vectors are equal, since their magnitudes and directions are identical. Even though

the starting and ending points for each of the two thick vectors are different, the magnitude and

direction are identical, meaning that the vectors are identical. The other vectors are not equal to the

thicker vectors, because their direction or size are different.

We use vectors in mathematical formulas to represent simultaneously magnitude (length of

the arrow, or distance between the two points) and direction (the path from the arrow’s base or first

point to its tip or second point). For instance, in 3D graphics, vectors may be used to indicate the

direction in 3D space that the eye is pointing (see Chapter 6), the direction and intensity of light
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Figure 5-7: The vector (–1,3) as
defined by the starting point (4,5)
and ending point (3,8). Adding
the vector (–1,3) to the starting
point (4,5) gives us the ending
point (–1+4, 5+3) or (3,8).
Equivalently, subtracting the
starting point from the ending
point gives us the vector.

Figure 5-8: Various vectors in 2D
space. The two thick vectors are
equal, since their magnitudes and
directions are equal. All other
vectors are not equal to the thick
vectors or each other.



falling on a surface (see the companion book Advanced Linux 3D Graphics Programming), or the

velocity (speed and direction) of a particular moving object.

Adding and Subtracting Vectors and Points
Points define location in 3D space. Vectors define directed displacement of a particular size.

Points and vectors may be added or subtracted in a number of ways, but not all ways make sense.

First, let’s discuss those combinations that do make sense. Adding two vectors gives a com-

bined displacement vector which would result if we applied each vector separately to a point. For

instance, a vector moving 2 kilometers west may be added to a vector moving 2 kilometers south

to yield a vector moving 2 kilometers southwest. Mathematically, given vector v=(v1,v2,v3) and

w=(w1,w2,w3), we define the new vector v+w as follows:

In other words, we simply add the components of each vector to one another. You can think of vec-

tor addition as the application of the first vector’s displacement followed by the application of the

second vector’s displacement. Geometrically, if you place the base of vector v at the tip of vector

w, you arrive at the tip of the vector v+w.

Subtracting a vector from another vector can be thought of as adding its negative. So, given

vector v=(v1,v2,v3) and w=(w1,w2,w3), then the new vector v–w is:

Adding a vector to a point gives a new point which is offset in the direction and magnitude speci-

fied by the vector. Mathematically, given point p=(x1,y1,z1) and vector v=(v1,v2,v3), then the new

point p+v is located at absolute position defined by:
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Equation 5-1

Figure 5-9: Addition of two
vectors yields a combined vector.
The two thin vectors combine to
yield the thick vector.

Equation 5-2

Equation 5-3



Adding a vector to a point is the same thing as adding a point to a vector.

Subtracting a vector from a point can again be thought of as adding the negative vector to the

point. So, given point p=(x1,y1,z1) and vector v=(v1,v2,v3), then new point p–v is located at abso-

lute position given by:

Subtracting one point from another point gives the directed distance between the points—in other

words, it gives us the vector from the first point to the second point. Mathematically, given point

p1=(x1,y1,z1) and point p2=(x2,y2,z2), then the vector p2–p1 is given by:
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Figure 5-10: Addition of a vector
and a point yields a new point.

Equation 5-4

Equation 5-5

Figure 5-11: Subtracting point p2
from point p1 gives the vector
from p1 to p2.



This is the vector from p1 to p2. Notice that we subtract the starting point from the ending point to

get the vector from the starting point to the ending point.

Combinations that do not make sense are: adding two points, or subtracting a point from a

vector. Neither one of these operations has any physical meaning, and so these operations are

undefined.

Notice that both vectors and points are represented as (x,y,z) triples. However, it is very

important to distinguish between points and vectors! Just by looking, there is no way to tell if a

particular triple (x,y,z) represents a point (an absolute location) or a vector (a relative displace-

ment). It all depends on the context. (Chapter 6 discusses the concept of homogeneous

coordinates, where we introduce a fourth coordinate to 3D points and 3D vectors, which then does

indeed allow a mathematical distinction between points and vectors.) If, for instance, a formula or

a piece of program code is computing vector cross products (a topic covered later in this chapter),

it will (or had better) be manipulating the (x,y,z) triples as vectors, meaning that all values are rela-

tive displacements. If in another context points are being computed to determine the location of an

object, then the (x,y,z) triples must be interpreted as absolute locations. We attempt to avoid this

confusion in C++ code by declaring separate classes for points and vectors, with carefully defined

point-vector operations as described above. But in mathematical notation, both points and vectors

are just tuples of numbers whose interpretation depends on the context. If you are ever confused as

to whether you are or should be dealing with a vector or a point, then the relevant question to ask

is, “Is this value a relative displacement or an absolute location?”

The Relationship Between Points and Vectors

Although points and vectors are separate concepts, we should, however, note the following rela-

tionship between points and vectors: for a given point location (x,y,z), the vector displacement

(x,y,z) will arrive at exactly this point location, assuming we start at the origin (0,0,0). In other

words, we can reach point (x,y,z) by starting at point (0,0,0) and moving along the vector (x,y,z).

This vector displacement, like all vectors, can be defined by a starting point and an ending point:

the starting point of the vector is (0,0,0); the ending point is (x,y,z). The vector between any two

points is, as we saw earlier, simply the difference between the ending and the starting points: in

this case, (x–0,y–0,z–0)=(x,y,z).

In fact, our very definition of the location of a point relies on vector math. What is the mean-

ing of point (x,y,z)? It means we start at the origin of our coordinate system (0,0,0), move x units

along the x axis, y units along the y axis, and z units along the z axis. This movement is a vector dis-

placement of (x,y,z) from the origin! In this sense, points and vectors are closely related yet distinct

concepts.

Some 3D texts might appear to refer interchangeably to a tuple (x,y,z) as both a point and a

vector. This can be slightly confusing, but it is important to understand whether a point or a vector

is required within the context of the immediate problem. Again, a point is a location; a vector is a

displacement; the relationship is that the point can define the tip of a vector whose starting point is

the origin (0,0,0). In this book, I have done my best to avoid indiscriminately interchanging points

and vectors and to explicitly state whenever the focus of the discussion changes from a point to a

vector or vice versa.

256 Chapter 5: Perspective Projection

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Chapter 5: Perspective Projection 257

Figure 5-12: The 3D point
(6,8,6). It is located at absolute
position x=6, y=8, z=6.

Figure 5-13: The 3D vector
(6,8,6). It is a displacement of 6
units in the x direction, 8 units in
the y direction, and 6 units in the
z direction. The vector has a
direction and a magnitude, but
no location. Therefore, all of the
vectors shown in this figure are
examples of the vector (6,8,6),
since they all have equal
magnitude and direction.

Figure 5-14: One particular
instance of the vector (6,8,6),
which is defined by two points:
the point (0,0,0) and the point
(6,8,6). This vector starts at the
origin and ends at the point
whose coordinates are equal to
the vector displacement.



Multiplying a Vector by a Scalar
We have just seen how the concepts of addition and subtraction apply to vectors and points.

Vectors also may be multiplied in a number of different ways. The first way is to multiply a vector

by a scalar. A scalar is simply a single number, as opposed to a tuple of numbers. The product of

a vector and a scalar is again a vector. Specifically, given vector v=(v1,v2,v3) and scalar s, the

equation is:

In other words, we simply multiply each component of the vector by the scalar. For instance:

The vector is thus “scaled” by the scalar amount. If, for instance, the vector represents a velocity,

we can use vector-scalar multiplication to increase or decrease the velocity.

Multiplying a Vector by a Vector: the Dot Product
Another way of multiplying vectors is the vector dot product. The dot product is a binary opera-

tion taking two vectors and giving a scalar as a result. The dot product between vector v and

vector w is written v•w and is read “v dot w.” If v=(v1,v2,v3) and w=(w1,w2,w3), then the dot

product v•w is:

In other words, we simply multiply each component of the first vector by the corresponding

component of the second vector, and add all such products together. Again, notice that the final

result is not a vector, but rather a scalar. The dot product is symmetric; in other words, v•w is the

same as w•v.

NOTE Unfortunately, standard mathematical notation allows the dot symbol to represent
both regular multiplication of two scalars with one another, as well as the vector dot product.
Therefore, if you see the dot symbol, you should not immediately assume that the vector dot
product is intended. As with points and vectors, it depends on the context: if vectors are being
multiplied with the dot operator, then the vector dot product is indeed meant. But, if any of the
quantities involved are scalars, then a scalar multiplication is meant. Incidentally, the other
obvious choices for a symbol to represent scalar multiplication would be the cross symbol ×,
used in grade-school texts, or the star symbol *, often used in computer texts. But both of
these symbols also have other mathematical meanings (cross product and convolution), so
there really is no completely context-independent way of uniquely writing scalar multiplica-
tion. Often, when the context allows it, a scalar multiplication of two quantities a and b is
simply written ab, with no symbol. This is also standard mathematical convention, but has the
disadvantage—especially in computer texts, where multi-character variables are the
norm—that it might look like the single quantity named “ab” is meant, rather than the product
of the quantities “a” and “b.”
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Equation 5-6

Equation 5-7

Equation 5-8



The dot product has several useful properties: it can define distance between two points as well as

the angle between two vectors. Let’s explore these properties a bit more closely, as we use them

extensively later.

The Dot Product and the Concept of Length

In 2D, we can use the Pythagorean theorem to determine the length of a line segment going from

point (x0,y0) to (x1,y1). The Pythagorean theorem states that for a right triangle with sides of

length a and b and a hypotenuse of length c, the following equation holds:

Or equivalently:

In other words, the length of the hypotenuse, c, is the square root of the sum of the squares of the

lengths of the sides. If we consider the line segment from (x0,y0) to (x1,y1) to be the hypotenuse of

a right triangle, then applying the Pythagorean theorem yields:

Now, consider the vector from (x0,y0) to (x1,y1). This vector is, according to the point sub-

traction rule defined earlier, (x1–x0,y1–y0). Furthermore, consider the dot product of this vector

with itself:

Interestingly, this is the square of the distance. In other words, the distance between two points is

the square root of the dot product of the vector v, where v is the vector from the first point to the

second point.
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Equation 5-9

Equation 5-10

Equation 5-11

Figure 5-15: Using the Pythagorean
theorem to compute distance. The
distance to be computed is viewed
as the hypotenuse of a right
triangle, of which the lengths of the
sides are known.

Equation 5-12

Equation 5-13



Remember that subtracting two points yields a vector; it is for this reason that we can use the dot

product operation on the vector (p2–p1).

We can also use these results to find the result of an arbitrary vector, independently of any

points which might have been used to define the vector. The length of an arbitrary vector is the

square root of the vector dotted with itself. A vector’s length is also called its magnitude and is

written |v|.

These formulas hold not only in 2D, but also in 3D. We compute the length of a vector in 3D by

taking the 3D dot product of the vector with itself and taking the square root. Similarly, the dis-

tance between two known points in 3D is computed by finding the 3D vector between the two

points, taking the dot product of this vector with itself, and taking the square root.

A common operation in 3D graphics is to compare two distances, to see which is greater. To

do this, we could compute the distances by using the formula above, taking the square root of the

dot product for each displacement vector, then comparing the resulting distances. While this

works perfectly, it is more work than is necessary; we can actually skip the square root operation

and save some computation time if we are only interested in the relative comparison of the dis-

tances. In this case, we can simply compute the dot of the first vector with itself, and compare this

with the dot of the second vector with itself. This means we are comparing squared distances

instead of actual distances. But the relationship between the two distances (first longer than sec-

ond, or second longer than first) remains the same even if we do not perform the square root

operation; often, all we are interested in is the relationship between distances, and not the actual

distances.

The Dot Product and Unit Vectors

A unit vector is a vector whose length is exactly one. Unit vectors simplify some formulas involv-

ing vectors; if we know that the length is one, we can sometimes omit certain calculations. Given a

vector of arbitrary length, we can scale it to become a unit vector by dividing all of its elements by

the length of the vector. This process is called normalizing a vector. The length of the vector is, of

course, computed by using the dot product. Mathematically, given vector v=(v1,v2,v3), the nor-

malized vector is:

The normalized vector points in the same direction as the original vector; only its length is

changed.

The Dot Product and the Concept of Angle

An alternate definition of the dot product involves the angle between the vectors. Given vectors v

and w, we can also define the dot product to be:
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Equation 5-16



where � is the angle between the two vectors. Recall from trigonometry the important points along

the curve of the cosine function:

Rearranging the formula allows us to solve for � , the angle between the vectors:

Recall that cos–1(x) is the inverse cosine function, and should be read “the angle whose cosine is

x.” Notice that if v and w are normalized, then the division is unnecessary since both vector lengths

are one.

Often, we don’t need to perform the inverse cosine operation. For instance, to determine if

two vectors are perpendicular, we simply need to check if the dot product is zero. Furthermore, for

some operations it is enough to know just the sign and not the value of the dot product. The sign by

itself allows us to classify whether the angle � is between 90-270 degrees (negative dot product) or

if the angle is between 0-90 or 270-360 degrees (positive dot product), without going through the

trouble of computing the actual angle with an inverse cosine. For instance, the 3D operation of

back-face culling uses the sign of the dot product (see the companion book Advanced Linux 3D

Graphics Programming for details). Furthermore, the side_of_point function from Chapter

3 also uses the sign of the dot product as an angle test. In Chapter 3, we postponed the explanation

of the workings of the function. Now let’s look at it again in detail.
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Equation 5-17

Figure 5-16: The cosine function.

Equation 5-18



The Dot Product and the side_of_point Function

Recall in Chapter 3 that the class l3d_polygon_2d introduced a function side_of_point
used in 2D polygon clipping. This function takes as input a point to be tested and two endpoints of

a line segment. The function returns a positive value if the point is on the inside side of the edge

and a negative value of the point is outside. (Refer to Chapter 3 for precise definitions of the

“inside side” and “outside side” of a polygon edge.)

With the dot product, we can now understand exactly how the function side_of_point
works. First, we compute a vector which is perpendicular to the segment and which points inside

the segment. This can be done starting at the segment’s starting point and by swapping the x and y

displacements to arrive at a new ending point. For instance, in Figure 5-17, the edge goes from

point p
1

to point p
2
, moving a distance of dx horizontally and dy vertically. To compute the

inward-pointing vector perpendicular to this edge, we again start at p
1
, but move a distance of –dy

horizontally and a distance of dx vertically, thereby swapping the x and y displacements. The vec-

tor from point p
1

to this new point is the inward-pointing vector perpendicular to the edge. To

verify that the new vector is indeed perpendicular, notice that the dot product of the perpendicular

vector with the vector from p
1

to p
2

is zero.

Next, we compute the vector from the first point of the edge p
1

to the point being tested.
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Figure 5-17: Computing an inward-
pointing 2D vector perpendicular to
an edge, by swapping the x and y
displacements. Note that the
coordinates are 2D pixel coordinates;
x increases to the right, and y increases
downward.

Figure 5-18: Computing the vector from
the first point of the edge to the point
being tested.



The angle � is the angle between the perpendicular vector and the edge-point vector. Observe

that � will be between 0-90 degrees or 270-360 degrees if the point is on the inside side of the

edge; conversely, � will be between 90-270 degrees if the point is on the outside side of the edge.

Using our knowledge of where the cosine function is positive and negative, we can further observe

that the cosine of � will be positive if the point is inside of the edge, and negative if the point is out-

side of the edge. Finally, using the definition of the dot product in terms of the cosine (Equation

5-16), we see that the sign of the dot product (positive or negative) is always the same as the sign

of the cosine term (since the first two terms, being vector lengths, will always be positive).

In other words, if the sign of the dot product is positive, the point is inside the edge. If the sign

of the dot product is negative, the point is outside the edge. This is why the side_of_point
function works.

The important thing to notice here is how we managed to specify the problem “on which side

of an edge is the point located?” in terms of carefully constructed vectors and a dot product. Chap-

ter 7 extends this same concept to 3D; polygon clipping in 3D requires us to ask on which side of a

plane a 3D point is located.

The Dot Product and the Concept of Vector Projection

From the preceding sections, we know that the dot product of two vectors can be expressed as the

product of their magnitudes and the cosine of the angle between them. If one of the vectors is a unit

vector, the dot product represents the length of the projection of the non-unit vector onto the unit

vector.

Figure 5-19 illustrates the concept of vector projection. To project vector w onto vector v, we

“drop” a line from the tip of w down to v, so that the dropped line intersects v at a right angle. Then,

the portion of v up until the intersection is the projection of w into v.

More abstractly, the projection of vector w onto vector v answers the question, “how much of

the direction represented by vector w is in the direction represented by vector v?” You can also

think of the projection as the “shadow” cast by w onto v, assuming the light source is infinitely far

away and emitting light rays exactly perpendicular to v.
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Figure 5-19: The projection of one
vector onto another.



From trigonometry we can deduce that the projection of w onto v in Figure 5-19 is the cosine

of the angle between w and v, multiplied by the original length of w. (Trigonometrically, the cosine

is defined as length of the adjacent edge divided by the length of the hypotenuse, so the length of

the adjacent edge (the projection) is the length of the hypotenuse (w) times the cosine.) And if vec-

tor v has length one, then this is the same as the dot product between v and w.

Therefore: if v is a unit vector and w is any vector, then v•w is the length of the projection of w

onto v.

Multiplying a Vector by a Vector: the Cross Product
A final way to multiply two vectors is the vector cross product. The cross product multiplies two

vectors and returns another vector as a result. This is in contrast to the dot product, which yields a

scalar. Mathematically the cross product of vector v=(v1,v2,v3) and w=(w1,w2,w3) is the vector

defined as follows:

The symbol × represents the cross product and is read “cross,” as in “v cross w.” (The derivation of

the cross product, since it involves matrices and determinants, is covered in Chapter 6.) The mag-

nitude of the resulting vector is:

� is the angle between the two vectors. Compare this with the dot product, which returned a scalar

equal to |v||w|cos� . Remember, though, that the cross product returns a vector; the dot product is

simply a scalar.

The cross product has an important geometrical interpretation. Given two vectors v and w in

3D space, these two vectors will, in general, lie within a unique plane. (If the two vectors lie on top

of one another, then they lie within a line, which is then contained by an infinite number of planes.)

For now, we define a plane as an infinite, thin, flat surface with arbitrary orientation in 3D space;

Chapter 7 presents the mathematical definition, which relies upon the dot product. The cross prod-

uct of v and w has the property that it defines a vector in 3D space which is perpendicular to the

plane containing v and w. We also use the term normal to refer to the concept of 3D perpendicular-

ity, as in, “the normal vector to a plane.”

NOTE Do not confuse a normalized vector, whose length is one, with a normal vector,
which is perpendicular to a particular surface. A normal vector, like any other vector, is nor-
malized if its length is one. And any vector, regardless of whether it is a normal vector or not,
can be normalized by scaling it to a length of one. Thus, vector normalization, which deals
with the length of a vector, has nothing to do with normal vectors, which deal with the rela-
tionship of a vector to a surface.

As an example, imagine two vectors, one horizontal and one vertical, lying on the sheet of paper

you are now reading. Such vectors could lie along the x and y axes in Figures 5-5 and 5-4. Call the

horizontal vector x, call the vertical vector y, and call the cross product of x and y the vector z. Vec-

tor z will be normal to the plane of the sheet of paper in which x and y lie. But z can have two
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possible orientations. z can point out of the paper, as in Figure 5-4, in which case we name the

coordinate system xyz a right-handed coordinate system. Or, vector z can point into the paper, as in

Figure 5-5, in which case we call the coordinate system xyz a left-handed coordinate system.

Left-handed and Right-handed Coordinate Systems
We use the terms left-handed coordinate system and right-handed coordinate system because we

may use either our left hand or our right hand to determine the orientation of the vector cross prod-

uct. Consider a left-handed coordinate system as an example. If we have a vector x and a vector y,

the direction of the cross product is determined as follows. Lay your left hand along the x vector

such that the base of your left hand is at the base of the vector x, and the fingertips of your left hand

point towards the tip of the vector x. The open palm of your left hand must face in the same direc-

tion that vector y points, so that if you curl your fingers towards your palm, the fingers curl

towards vector y. Then, the direction in which your left thumb points is the direction of the cross

product. For right-handed coordinates, you use your right hand in the above procedure. Notice that

for two given vectors, the cross product in left-handed coordinates points in the opposite direction

as compared with right-handed coordinates. Also, unlike the dot product, the cross product is not

symmetric: x×y is not the same as y×x; in particular, x×y = –(y×x).

We choose to use left-handed coordinates for the following reason. In order to develop the

mathematics of perspective projection in the following sections, we begin with a simplified “stan-

dard” eye location and orientation—namely, with the eye located at the 3D origin, looking straight

down the z axis, and perfectly right-side-up. As we see later, this corresponds to aligning the 3D x

and y axes with the screen’s horizontal and vertical directions. The positive z axis then points into

the screen, moving away from the viewer. This is a natural interpretation, since increasing values

of z correspond to increasing distance from the viewer. In a right-handed system, increasing z

would represent decreasing distance from the viewer. Thus we have chosen a left-handed 3D coor-

dinate system.

NOTE Literature in the field of mathematics typically uses a right-handed coordinate sys-
tem. Also, 3D modeling packages or libraries vary as to the preferred coordinate
system—some left-handed, some right-handed. Furthermore, some 3D libraries (such as
SGI’s Performer, or the CAVELib for programming CAVE applications) have the z axis point-
ing vertically upward, with the y axis pointing forward away from the viewer. The choice of
which coordinate system to use is arbitrary, but should be consistent within a program. In
Chapter 6, we see how to use matrices to convert between arbitrary coordinate systems,
should the need arise.

The l3d_vector Class
With all this talk of vectors, let’s now look at the C++ class which implements vectors. We also

look at a simple program which adds and subtracts vectors and points. This program doesn’t dis-

play any graphics; it merely serves to reinforce the fundamental vector concepts and the

relationship between vectors and points. The next sample program, called dots, uses vectors to

control the movement of dots in various ways.
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The class l3d_vector defines a vector having four components, just as the class

l3d_point from Chapter 3 defined a point having four components. This means that our vec-

tors can represent displacements in 1D, 2D, 3D, or 4D space, depending on how many

components of the vector we choose to use. The operators defined in class l3d_vector imple-

ment quite straightforwardly the mathematical operations on vectors and points described in the

previous sections.

Listing 5-1: vector.h
#ifndef __VECTOR_H
#define __VECTOR_H
#include "../tool_os/memman.h"

#include <math.h>
#include <stdio.h>
#include "../system/sys_dep.h"
#include "math_fix.h"
#include "sincos.h"
#include "../geom/point/point.h"

class l3d_vector {
public:

l3d_vector(void);
l3d_vector(l3d_real a0, l3d_real a1, l3d_real a2, l3d_real a3);
l3d_vector(int a0, int a1, int a2, int a3);
const l3d_vector &set(l3d_real a0, l3d_real a1, l3d_real a2, l3d_real a3);
const l3d_vector &set(int a0, int a1, int a2, int a3);

void print(void)
{
printf("%f %f %f %f",

l3d_real_to_float(a[0]),
l3d_real_to_float(a[1]),
l3d_real_to_float(a[2]),
l3d_real_to_float(a[3]));

}
l3d_real a[4];

};

//- useful defines for accessing matrix elements occurring in standard
//- positions for l3d_vector:
#define X_ a[0]
#define Y_ a[1]
#define Z_ a[2]
#define W_ a[3]

#define U_ a[0]
#define V_ a[1]
#define N_ a[2]

//- function for grabbing a temporary vector object from a global
//- pre-allocated pool of temporary objects.
extern l3d_vector &l3d_get_vector_temp(void);

inline l3d_vector::l3d_vector(void) {
a[0] = a[1] = a[2] = a[3] = 0;

}
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inline l3d_vector::l3d_vector(l3d_real a0, l3d_real a1, l3d_real a2, l3d_real a3) {
a[0] = a0;
a[1] = a1;
a[2] = a2;
a[3] = a3;

}

inline l3d_vector::l3d_vector(int a0, int a1, int a2, int a3) {
a[0] = int_to_l3d_real(a0);
a[1] = int_to_l3d_real(a1);
a[2] = int_to_l3d_real(a2);
a[3] = int_to_l3d_real(a3);

}

inline const l3d_vector &l3d_vector::set(l3d_real a0, l3d_real a1, l3d_real a2, l3d_real a3) {
a[0] = a0;
a[1] = a1;
a[2] = a2;
a[3] = a3;

return *this;
}

inline const l3d_vector &l3d_vector::set(int a0, int a1, int a2, int a3) {
a[0] = int_to_l3d_real(a0);
a[1] = int_to_l3d_real(a1);
a[2] = int_to_l3d_real(a2);
a[3] = int_to_l3d_real(a3);

return *this;
}

inline const l3d_vector &operator * (const l3d_vector& l,
const l3d_real aScalar)

{
l3d_vector &res = l3d_get_vector_temp();
res.set(
l3d_mulrr(l.a[0], /* TIMES */ aScalar),
l3d_mulrr(l.a[1], /* TIMES */ aScalar),
l3d_mulrr(l.a[2], /* TIMES */ aScalar),
l3d_mulrr(l.a[3], /* TIMES */ aScalar));

return res;
}

inline const l3d_vector& cross(const l3d_vector &l, const l3d_vector &r) {
l3d_vector &res = l3d_get_vector_temp();

#define V(q) l.a[(q-1)]
#define W(q) r.a[(q-1)]

res.set(
l3d_mulrr(V(2),W(3)) - l3d_mulrr(V(3),W(2)),
l3d_mulrr(V(3),W(1)) - l3d_mulrr(V(1),W(3)),
l3d_mulrr(V(1),W(2)) - l3d_mulrr(V(2),W(1)),
int_to_l3d_real(0) );

#undef V
#undef W
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return res;
}

inline const l3d_real dot(const l3d_vector &l, const l3d_vector &r) {
return l3d_mulrr(l.a[0],r.a[0])

+ l3d_mulrr(l.a[1],r.a[1])
+ l3d_mulrr(l.a[2],r.a[2])
+ l3d_mulrr(l.a[3],r.a[3]) ;

}

inline const l3d_vector& normalized(const l3d_vector &l) {
l3d_vector &res = l3d_get_vector_temp();
l3d_real mm_vec_magnitude;

mm_vec_magnitude = l3d_sqrt( dot(l,l) );

if ((mm_vec_magnitude > float_to_l3d_real(0.01))
|| (mm_vec_magnitude < float_to_l3d_real(-0.01)))

{

res.set(
l3d_divrr(l.a[0],mm_vec_magnitude),
l3d_divrr(l.a[1],mm_vec_magnitude),
l3d_divrr(l.a[2],mm_vec_magnitude),
l3d_divrr(l.a[3],mm_vec_magnitude));

}

return res;
}

inline const l3d_vector& operator + (const l3d_vector &l,
const l3d_vector &right)

{
l3d_vector& res = l3d_get_vector_temp();
res.set(
l.X_ + right.X_,
l.Y_ + right.Y_,
l.Z_ + right.Z_,
l.W_ + right.W_);

return res;
}

inline const l3d_vector& operator - (const l3d_vector &l,
const l3d_vector &right)

{
l3d_vector& res = l3d_get_vector_temp();
res.set(
l.X_ - right.X_,
l.Y_ - right.Y_,
l.Z_ - right.Z_,
l.W_ - right.W_);

return res;
}

inline const l3d_point& operator + (const l3d_point &l,
const l3d_vector &right)

{
l3d_point& res = l3d_get_point_temp();
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res.set(
l.X_ + right.X_,
l.Y_ + right.Y_,
l.Z_ + right.Z_,
l.W_ + right.W_);

return res;
}

inline const l3d_point& operator + (const l3d_vector &l,
const l3d_point &right)

{
l3d_point& res = l3d_get_point_temp();
res.set(
l.X_ + right.X_,
l.Y_ + right.Y_,
l.Z_ + right.Z_,
l.W_ + right.W_);

return res;
}

inline const l3d_vector& operator - (const l3d_point &l,
const l3d_point &right)

{
l3d_vector& res = l3d_get_vector_temp();
res.set(
l.X_ - right.X_,
l.Y_ - right.Y_,
l.Z_ - right.Z_,
l.W_ - right.W_);

return res;
}

inline const l3d_point& operator - (const l3d_point &l,
const l3d_vector &right)

{
l3d_point& res = l3d_get_point_temp();
res.set(
l.X_ - right.X_,
l.Y_ - right.Y_,
l.Z_ - right.Z_,
l.W_ - right.W_);

return res;
}

#endif

Listing 5-2: vector.cc
#include "vector.h"
#include "../tool_os/memman.h"

//- Global pool of temporary variables for vector operations.

const int l3d_max_vector_temp = 15;
l3d_vector &l3d_get_vector_temp(void) {
static int nbuf=0;
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static l3d_vector buf[l3d_max_vector_temp];

if(nbuf>=l3d_max_vector_temp) nbuf=0;
return buf[nbuf++];

}

One interesting feature of the overloaded operators for the l3d_vector (and l3d_point)

class is the way that they allocate new intermediate objects to return. In general, an overloaded

binary operator operating on a particular class needs to return a new object reflecting the result of

the operation. For instance, the expression (a+b)*c requires two intermediates: one to hold the

result of a+b and one to hold the final result of (a+b)*c.

One way to return new objects from overloaded binary operators is to declare the return type

of the operator to be of the desired class and having the final return statement in the function

body return an object of the desired type, which then automatically gets duplicated via the copy

constructor and returned as a new intermediate object to the calling function. The compiler auto-

matically generates code to allocate, copy, and destroy such intermediate objects, making use of

overloaded operators quite natural. The problem with this is that complicated expressions such as

a+(b+(c-d*3-(e+f))) cause several intermediate objects to be created, copied, and

destroyed, which, although it all happens automatically and correctly behind the scenes, can be

inefficient.

An alternative approach, suggested by creator of the C++ language Bjarne Stroustrup

[STRO97] and implemented for the l3d_vector and l3d_point classes, is to declare a fixed

pool of pre-allocated intermediate objects. The operators themselves simply grab one of these

pre-allocated objects any time they need to return an intermediate object, thus sparing the object

creation overhead during operator invocation. Furthermore, the operators return references to the

intermediate objects rather than the objects themselves, thus sparing the copy constructor over-

head. Since only references are being passed around, we also avoid the overhead of destruction of

the intermediate objects after expression evaluation. The only disadvantage to this approach is

that if any one single expression is so long that it requires more intermediate objects than have

been allocated in the fixed pool, an overflow and incorrect result will occur (unless we explicitly

check for this condition, but this would slow down every operator invocation with an additional

overflow check).

Sample Program Using Vectors
The following program, vecmath, simply declares two point and vector objects and performs

various operations on them. Trace through the program and make sure you can calculate the

results manually, and then check your results by running the program.

Listing 5-3: vecmath.cc
#include <stdio.h>
#include "../lib/geom/point/point.h"
#include "../lib/math/vector.h"

int main(int argc, char **argv) {
l3d_point p1(int_to_l3d_real(5),

int_to_l3d_real(5),
int_to_l3d_real(4),
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int_to_l3d_real(1)),
p2(int_to_l3d_real(2),

int_to_l3d_real(7),
int_to_l3d_real(3),
int_to_l3d_real(1));

l3d_vector v1,v2,v3;
l3d_real scalar;

printf("Point P1 = (%f,%f,%f,%f)",
l3d_real_to_float(p1.X_),
l3d_real_to_float(p1.Y_),
l3d_real_to_float(p1.Z_),
l3d_real_to_float(p1.W_));

printf("Point P2 = (%f,%f,%f,%f)",
l3d_real_to_float(p2.X_),
l3d_real_to_float(p2.Y_),
l3d_real_to_float(p2.Z_),
l3d_real_to_float(p2.W_));

v1 = p2 - p1;
printf("The vector V1 from P1 to P2 = P2 - P1 = (%f,%f,%f,%f)",

l3d_real_to_float(v1.X_),
l3d_real_to_float(v1.Y_),
l3d_real_to_float(v1.Z_),
l3d_real_to_float(v1.W_));

v2.set(int_to_l3d_real(10),
int_to_l3d_real(10),
int_to_l3d_real(10),
int_to_l3d_real(0));

printf("A different vector V2 = (%f,%f,%f,%f)",
l3d_real_to_float(v2.X_),
l3d_real_to_float(v2.Y_),
l3d_real_to_float(v2.Z_),
l3d_real_to_float(v2.W_));

p1 = p1 + v2;
printf("Moving from P1 in the direction of V2 = P1 + V2 = (%f,%f,%f,%f)",

l3d_real_to_float(p1.X_),
l3d_real_to_float(p1.Y_),
l3d_real_to_float(p1.Z_),
l3d_real_to_float(p1.W_));

v1 = v1 + v2;
printf("The combined displacement of V1 and V2 = V1 + V2 = (%f,%f,%f,%f)",

l3d_real_to_float(v1.X_),
l3d_real_to_float(v1.Y_),
l3d_real_to_float(v1.Z_),
l3d_real_to_float(v1.W_));

v1.set(int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0));

v2.set(int_to_l3d_real(0),
int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0));

v3 = cross(v1,v2);
printf("The cross product of (%f,%f,%f,%f) and (%f,%f,%f,%f) "
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"is (%f,%f,%f,%f)",
l3d_real_to_float(v1.X_),
l3d_real_to_float(v1.Y_),
l3d_real_to_float(v1.Z_),
l3d_real_to_float(v1.W_),
l3d_real_to_float(v2.X_),
l3d_real_to_float(v2.Y_),
l3d_real_to_float(v2.Z_),
l3d_real_to_float(v2.W_),
l3d_real_to_float(v3.X_),
l3d_real_to_float(v3.Y_),
l3d_real_to_float(v3.Z_),
l3d_real_to_float(v3.W_));

v1.set(int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0));

v2.set(int_to_l3d_real(0),
int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0));

v3 = cross(v2,v1);
printf("The cross product of (%f,%f,%f,%f) and (%f,%f,%f,%f) "

"is (%f,%f,%f,%f)",
l3d_real_to_float(v2.X_),
l3d_real_to_float(v2.Y_),
l3d_real_to_float(v2.Z_),
l3d_real_to_float(v2.W_),
l3d_real_to_float(v1.X_),
l3d_real_to_float(v1.Y_),
l3d_real_to_float(v1.Z_),
l3d_real_to_float(v1.W_),
l3d_real_to_float(v3.X_),
l3d_real_to_float(v3.Y_),
l3d_real_to_float(v3.Z_),
l3d_real_to_float(v3.W_));

v1.set(int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0));

v2.set(int_to_l3d_real(1),
int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0));

scalar = dot(v1,v2);
printf("The dot product of (%f,%f,%f,%f) and (%f,%f,%f,%f) "

"is %f",
l3d_real_to_float(v1.X_),
l3d_real_to_float(v1.Y_),
l3d_real_to_float(v1.Z_),
l3d_real_to_float(v1.W_),
l3d_real_to_float(v2.X_),
l3d_real_to_float(v2.Y_),
l3d_real_to_float(v2.Z_),
l3d_real_to_float(v2.W_),
scalar);

}
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NOTE This program uses the fourth component of the vector and point objects, which is the
homogeneous w coordinate. Chapter 6 explains the purpose and significance of this compo-
nent. For now, simply observe that the w coordinate is 1 for 3D points, and is 0 for 3D vectors.

The Mathematics of Projection
With the previous material on 3D coordinate systems and vectors, we now have a basis for speci-

fying locations and orientations in 3D space. Our goal is now to develop an equation for

converting from 3D world coordinates, which specify the locations of objects in our virtual world,

to 2D pixel coordinates, which we use to plot the projected images on-screen. We develop this

equation through a strongly geometrical approach, in effect modeling the physical viewing situa-

tion (you sitting in front of your computer screen) in 3D WC.

The Physical Viewing Situation
Let’s first consider the physical viewing situation. As depicted in Figure 5-20, you physically sit in

front of a computer screen with a physical distance of dPhysical between the eye and the screen.

The screen has a physical width of wPhysical and a physical height of hPhysical. Some typical val-

ues might be dPhysical=40cm, wPhysical=40cm, and hPhysical=30cm.

We assume that your eye is horizontally and vertically positioned at the center of the screen,

and is furthermore focused on the center of the screen. That is, you are looking straight at the

screen, the vertical screen center is at eye level, and the horizontal screen center is aligned with the

horizontal eye position. Your gaze is focused on the center of the screen as opposed to, for

instance, looking at the corner of the screen. Your eye is furthermore oriented perfectly

right-side-up so that a vertical line on your computer screen appears vertical to you; that is, your

head is not tilted sideways or upside-down.

The situation we are simulating with 3D graphics is shown in Figure 5-21. We treat the screen

as if it were a window on the world. You are sitting on one side of the window and we pretend that

the world is on the other side of the window. Your eye would then perceive light rays traveling
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from the objects in the world, through the window, to your eye, and finally through the eye’s lens

to the retina. We want to generate on this window, our screen, a series of points such that the seen

light rays are the same as the seen light rays would be for objects lying on the other side of the win-

dow. For a given 3D point, this is mathematically accomplished by calculating the intersection

between the seen light ray and the screen, and lighting the pixel at the point of intersection. The

intersection points are illustrated in Figure 5-21 as the dark dots on the 2D window.

As previously mentioned, we model our world in the computer by defining points in a 3D

world coordinate system. Therefore, in order to calculate intersections between light rays and the

screen, we must also model the physical screen and the viewer’s eye in 3D world coordinates. Fig-

ure 5-22 illustrates this situation. We have a left-handed 3D WC system, with the eye being placed

at the origin of this system. The physical screen is modeled as a 2D window lying in the plane

defined by z = dWC.

We call the 2D plane the projection plane, and the window the projection plane window. The

projection plane is infinite in width and height, but our screen is not—hence the need to define a

window or subset of the infinite projection plane. The contents of the projection plane window are

then mapped to the 2D screen for display. The projection plane window has a width, expressed in

3D WC units, of wWC and a height of hWC. We calculate the intersections between the seen light

rays and the projection plane, and map those intersection points lying within the projection plane

window to the physical screen. The mapping from the projection plane window to the physical

screen coordinates is nothing more than a simple scaling operation, as we see a little later.

A few moments of thought about the above formulation bring some questions to mind:

� Calculating WC window size: How do we calculate dWC, wWC, and hWC from the known

values of dPhysical, wPhysical, and hPhysical?

� Eye location: If the eye is fixed at the origin, how can we move the eye to see other parts of the

virtual world?

� Eye orientation: The eye is always oriented such that the direction “up” for the eye is also

“up” in 3D WC. We name this situation “perfectly right-side-up.” Furthermore, the eye is

always looking straight ahead along the z axis. What if we want the eye to look at a point

which does not lie along the z axis? Or, what if we want to tilt the eye such that vertical lines

appear diagonal or such that the eye is “upside-down”?
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With regard to the first question, calculation of WC window size, we will see soon that it is the

ratios among dWC, wWC, and hWC which are more important, not their actual values. We can

therefore choose any values for these terms as long as their ratios correspond in a certain way.

With regard to the last two questions, Chapter 6 illustrates that these situations can all be trans-

formed into the simplified situation developed above (eye at the origin, perfectly right-side-up,

and looking straight ahead).

With all of this in mind, we now develop the mathematics necessary for the simplified view-

ing situation, examining later how other more general viewing situations can all be transformed to

this formulation.

Calculating Intersections
Let us now consider a single point in 3D space whose coordinates in 3D WC are (x,y,z). As a 3D

application programmer you would specify this point as part of some 3D object you are modeling.

This point could represent the tip of a spaceship, the corner of a wall, or the peak of a mountain. In

addition to knowing the coordinates of the point (x,y,z), we also know that the eye is located at the

origin (0,0,0), based on our assumption earlier of a simplified viewing situation. We want to com-

pute the intersection between the seen light ray, traveling from (x,y,z) to the eye at (0,0,0), and the

2D plane located at z = dWC, which is the 2D plane in which our projection plane window lies.

This intersection point will have coordinates (xp, yp, dWC), where xp and yp are the

unknowns. The subscript p indicates that we are solving for projected coordinates; later, these pro-

jected coordinates will be mapped (scaled) to the 2D pixel coordinates of Chapter 2. Recall that we
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viewing process.



assume for the time being that we know dWC; this term will, when we later combine the intersec-

tion formula with a screen mapping formula, be simplified to a ratio, called field of view, which

we can then compute.

Figures 5-23 and 5-24 illustrate this situation. Figure 5-23 depicts a side view of the viewing

situation, looking across the x axis towards the origin. Figure 5-24 depicts a bird’s-eye view, look-

ing down along the y axis towards the origin. Our strategy is to use a “divide-and-conquer”

approach to calculate the intersection point. In particular, we compute the x intersection point and

the y intersection point independently of one another, using the top and side views, respectively.

Let us use Figure 5-23, the side view, to help us calculate the y coordinate yp of the projected

point. All points of interest in the figure are numbered for notational convenience. Observe that

the smaller triangle formed by Eye-1-2 is geometrically similar to the larger triangle Eye-3-4.

When we say “similar” we mean this in the mathematical sense—namely, the ratios of the sides of

one triangle will be the same as the ratios of the corresponding sides of any similar triangle. With

this knowledge, we can state that the height:width ratio of the smaller triangle is the same as the

height:width ratio of the larger.

Equation 5-21 shows equating similar triangles using the y and z coordinates. Note that the

quantity dWC is not the total distance from the eye to point 1 (which would require considering
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looking along the x axis
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both x and z components of point 1), but instead represents only the displacement in the z direction

(ignoring any displacement in the x direction). Similarly, the quantity z is not the distance from the

eye to point 3, but is instead simply the displacement in the z direction. A development using dis-

tance instead of single-axis displacement is also possible but needlessly complicates the

derivation.

A similar development for Figure 5-24 gives the result:

If we multiply both sides of each of these equations by dWC, we obtain the following mathemati-

cal formulas for perspective projection.

So, at least from a mathematical standpoint, this is the answer to the question raised at the begin-

ning of Chapter 4, “What do I do with the z coordinate?” With the simplified viewing situation

(eye at origin, perfectly right-side-up, looking along z axis), you simply divide by z and multiply

by the distance between the eye and the screen.
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Figure 5-24: Calculating
intersection (xp,yp) of seen
light ray from 3D point (x,y,z)
with 2D plane at z=dWC.
Birds-eye view of the
situation, looking down the y
axis toward the origin.
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The question remains as to what value to use for this screen distance dWC. Let us answer this

question indirectly by combining the above perspective projection equations with a screen map-

ping equation which maps the projected coordinates (which are still in WC) to pixel coordinates

(which we can then plot directly on the screen). In the process, the term dWC then occurs in a

ratio, which we call the field of view. We then discuss how we compute this field of view term.

Mapping to 2D Pixel Coordinates
The projected intersection coordinates (xp,yp) tell us, in 3D world coordinates, where the seen

light ray from a particular point intersects the projection plane. We cannot, however, use these

coordinates directly for plotting pixels; we first need to convert these projected world coordinates

into pixel coordinates. This is essentially a scaling operation, with the one additional complication

that the scaling to the pixel coordinates should preserve the width/height ratio on the projection

plane.

Figure 5-25 illustrates the scaling operation and the necessity of preserving the width/height

ratio. On the top, we have the projection plane window, which in this case is a square. On the bot-

tom, we have the screen, which, for illustrative purposes, is much wider than it is high. We have

three options for mapping the projection plane window onto the screen. First, we can simply scale

the x and y coordinates of the projection plane window to fit within the screen, but this results in

distortion if the physical screen width/height ratio size differs from the projection plane window’s

width/height ratio. Second, we can scale the projection plane window such that its height maps

exactly to the screen’s height, and its width maps to a proportionally large area of the screen width.

Third, we can scale the projection plane window such that its width maps exactly to the screen’s
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Figure 5-25. Left: scaling both width and height of the projection plane window to fit the screen.
Middle: scaling just the height to fit the screen, and scaling the width proportionally. Right: scaling
just the width to fit the screen, and scaling the height proportionally.



width, and its height maps to a proportionally large area of the screen’s height. The term “propor-

tionally” here means, “such that the physical width/height ratio on-screen matches the

width/height ratio of the projection plane window.”

We should choose the second or third options if we wish to avoid stretching or squashing dis-

tortions when mapping from the projection plane window to the screen. Both the second and third

options preserve the width/height ratio, so it does not matter which we choose. Here, we choose to

map the width of the projection plane window to the full width of the screen, and accordingly scale

the height to be proportionally large enough so that the physical width/height ratio on-screen

matches the width/height ratio of the projection plane window.

NOTE Fortunately, for most monitors and display modes offered by graphic cards, pixels
are square-shaped, with equal width and height. This means that the physical width and
height of the display screen can be specified in pixels. If the pixels were not physically square,
being wider than they were high, for instance, then you would have to pick some other uni-
formly sized physical unit of measurement, such as centimeters, and calculate the pixels/cm
in the vertical direction and the pixels/cm in the horizontal direction in order to be able to
compute the physical size of the screen given its pixel dimensions. Again, since most modern
displays have square pixels, you can just use the pixels themselves as a physical unit of
measurement.

Under the assumption that we map the projection plane window’s width to the full width of the

screen, and given world-space intersection coordinates (xp,yp), we arrive at screen-space (i.e.,

pixel) coordinates (xs,ys) via the following formulas:

The terms ws and hs represent the pixel width and height of the output screen. The terms wWC and

hWC represent the width and height of the projection plane window, in world coordinates—these

terms are currently unknown. The terms xoffsetWC and yoffsetWC represent the distance (still in

world coordinate units) between the intersection coordinate and the left or top sides of the projec-

tion plane window, respectively. These offset terms are calculated as follows:

winleftWC and wintopWC are the WC coordinates of the left and top edges of the projection plane

window. Notice that the yoffsetWC term is computed as wintopWC–yp and not yp–wintopWC.

This is because our 3D world coordinate system has x increasing to the right and y increasing

towards the top. However, pixel coordinates have y increasing towards the bottom. Thus, we need

to reverse the sense of “top” and “bottom” for (xp,yp), in 3D WC, in order to arrive at the 2D pixel

coordinates (xs,ys).

We take these offsets and divide them by the WC width and height of the projection plane

window in order to get a unit-less relative position of the intersection point with respect to the
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width and height of the projection plane window. Then, we multiply these relative positions by the

pixel width and pixel height of the screen, effectively scaling the displacements to the screen size,

to obtain the actual pixel coordinates which we then draw.

Remember, though, we cannot in general scale both the x and y displacements to the full

screen size if we wish to avoid stretching or squashing. Since we have chosen to scale the x dis-

placement to the full screen size, the y displacement needs to be scaled proportionally. Thus, in

Equation 5-24, the term (hWC/wWC)/(hPhys/wPhys) is the scaling factor which ensures that the

physical size of the coordinates in the y direction maintain their width/height ratio with the physi-

cal size of the coordinates in the x direction. Notice that if we multiply this term with the y

displacement, we end up dividing yoffsetWC by wWC and not by hWC. This makes sense: we

compute the percentage displacement for both x and y with respect to the chosen, fixed x size, then

scale the y displacement by the physical screen’s width/height ratio (wPhys/hPhys) to obtain a pro-

portionally large y coordinate whose physical height on-screen has the same percentage

displacement as the original y coordinate’s displacement in WC with respect to the projection

plane window. With square pixels, as we said earlier, we can use the pixel dimensions of the win-

dow, such as 400 pixels by 300 pixels, to obtain the values for hPhys and wPhys. With non-square

pixels (a situation which is nowadays more unlikely), we must choose a square (i.e., uniform) unit

of measurement and scale the pixel dimensions differently in the horizontal and vertical directions

to arrive at the physical sizes hPhys and wPhys.

Substituting the above equations for xoffsetWC and yoffsetWC into the original equations for

(xs,ys) gives the following formula for going from the 3D projected intersection point (xp,yp) to

2D pixel coordinates (xs,ys):

Substituting the original formulas for xp and yp yields:

We can express wintopWC and winleftWC in terms of hWC and wWC by using the assumptions

we made earlier that the eye is horizontally and vertically centered on the screen, and that the eye

is at the origin (0,0,0). Equation 5-28 shows computing the top and left of the projection plane

window in terms of its height and width.

Substituting these terms into the WC-to-pixel mapping equations above:
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We can rearrange the equations slightly to obtain:

We can also distribute the multiplication by wPhys/hPhys in the ys term to give:

Notice that dWC and wWC now only appear in a ratio, dWC/wWC. Furthermore, this ratio occurs

both in the equation for xs and also in the equation for ys, though in the equation for ys this ratio is

multiplied by wPhys/hPhys. Let us use the term fovx to denote the ratio appearing in the xs equa-

tion, and let us use the term fovy to denote the multiplied ratio appearing in the equation for ys.

Finally, let us use the term scaley to denote the term (hWC/wWC)*(wPhys/hPhys) appearing in

the equation for ys. This scaley term is responsible for ensuring that the width/height ratio is the

same between the projection plane window and the physical screen. Applying these notational

conventions, we obtain:

Equation 5-32 shows perspective projection from WC to screen coordinates. As is evident from

this equation, and as we claimed earlier, the actual values of dWC, wWC, and hWC are not as

important as their ratios. In particular, only two ratios remain: the fovx ratio dWC/wWC, and the

ratio hWC/wWC appearing in the scaley term.

We can eliminate the hWC/wWC term—indeed, the entire scaley term—if we assume that the

width/height ratio of the projection plane window, expressed by wWC/hWC, is identical to the

physical width/height ratio of the screen, expressed by wPhys/hPhys. If these two ratios are the

same, then the scaley term multiplies the reciprocal of this ratio with itself, which gives a result of

1. Thus, the scaley term vanishes under this assumption.

Then, the only remaining terms involving the WC window size are dWC and wWC. What val-

ues should we use for these terms? One possibility would be simply to use the physical screen’s

distance from the viewer and its width. This would be the most “realistic” approach, but as we will

see shortly, it can be useful to exaggerate the physical parameters in order to allow more flexible

viewing possibilities.

Let’s first see what, physically, the fraction dWC/wWC represents. After understanding what

this fraction physically represents, we can then make an informed decision about how to choose

the actual values.
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Field of View: the Connection Between Window Size
and Distance

Figure 5-26 illustrates the physical meaning of the term dWC/wWC. In the figure, we are looking

down along the y axis. The projection plane window (which represents the screen) is the quadrilat-

eral to the right of the figure.

Recall that the projection plane window is a conceptual representation of a physical window

on a physical 3D world whose objects radiate physical light rays. Imagine a small window in an

otherwise opaque wall. We can only see a small part of the world through the window; the window

limits the amount of the world we can see. We cannot see light rays which do not pass through the

window. In Figure 5-26 we have drawn two dotted lines representing the horizontal limits of

vision; any light rays which do not fall between the two dotted lines do not pass through the win-

dow and therefore cannot be seen. (Note that the use of a dotted line is actually a diagrammatical

simplification; in actuality, the horizontal visibility is bounded by two planes.) The amount of the

world which we can see horizontally is called the horizontal field of view, which we represent by

the angle � between the two dotted lines.

Let us now determine the relationship between the horizontal field of view angle � and the

viewing parameters dWC and wWC. Instead of considering the entire angle � , it is easier if we
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Figure 5-26: Relationship
between horizontal field of view

� (“theta” in the diagram), wWC,
and dWC.



consider the angle � /2. We draw a line which bisects � ; this line goes through the eye and intersects

the projection plane window at a right angle, exactly dividing the window into two horizontally

equal halves (this is because of the assumption that the eye is horizontally and vertically centered

on the screen). We can now observe a right triangle denoted by the bold lines in Figure 5-26,

whose width and height are known quantities. From trigonometry, we know that the cotangent

function (denoted cot) can relate the width and height of our right triangle. Specifically,

We see now that the ratio dWC/wWC is half of the cotangent of half of the horizontal field of view

angle. We therefore call this ratio the horizontal field of view term. We multiply this field of view

term by a constant, the ratio of physical screen width to height, to arrive at the corresponding verti-

cal field of view term.

Determining the Horizontal Field of View Term
By the above definitions of the horizontal field of view term, we can either choose to define this

term as a ratio of viewing width/distance or as a cotangent of a field of view angle. Let’s look at

both approaches.

Determining Field of View Term as Ratio of Width/Distance

As mentioned earlier, one approach to determining the field of view term dWC/wWC is simply to

use the physical values of wPhys and dPhys in place of wWC and dWC. This yields the most phys-

ically “correct” results, displaying on the screen what we would actually see if our screen were

really a physical window through which we were looking at a 3D world. For instance, if we have a

sample physical screen width of 40 cm, a height of 30 cm, and a viewing distance of 40 cm, then

substituting these values for wWC and dWC yields a ratio of 40cm/40cm = 1.0 for the horizontal

field of view term. We multiply this by the physical width/height ratio of the screen, which is

40cm/30cm, or 1.333333, to arrive at the vertical field of view term. Here, the vertical field of

view term would be 1.0*1.333333, or 1.333333.

If this result is the most physically correct, why should we consider any other approach to

determining the field of view terms? The answer is that we often would like to exaggerate the size

of our screen, to pretend that we have a larger screen so that we may see more of the world. For

instance, imagine that your screen is actually 40 cm wide by 30 cm high and that you are actually

sitting 40 cm from the screen. Now imagine using a physical window of exactly this size and dis-

tance as the windshield of your car. If you can accurately imagine this situation, it should become

clear to you that you would see only a small portion of the world through such a window, in com-

parison to the amount of the world you normally see through a car’s windshield. If we are

programming a race car simulator, we would like the amount of the world we see on-screen to cor-

respond to the amount of the world we would see sitting in a real car, and not necessarily the
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amount of the world we would see if we had a window of the physical size and distance of our

computer screen.

The above discussion implies that we are “stretching reality,” so to speak. That is, we have a

computer screen of a certain size and distance. In order for the physical sizes of the images dis-

played on-screen (and consequently, the physical sizes of the images projected on the eye’s retina)

to accurately reflect the world we are modeling, we would have to use the physical viewing

parameters to calculate the field of view term. However, accuracy of the physical sizes of

on-screen images is not necessarily the most important factor. More important to the reality of a

simulation is the amount of the world we see. If we give up the accuracy of the physical image

size, we can gain accuracy in the amount of the world we see.

NOTE For immersive virtual reality environments, such as a CAVE in which the viewer is sur-
rounded by multiple life-size projections of 3D images, both physical image size and the
amount of the world the user sees should be accurate in order to create the most realistic
experience possible.

If we want to model the amount of the world we see, it is easiest to use the second approach to cal-

culating the field of view term—namely, using the cotangent of the field of view angle.

Determining Field of View Term as the Cotangent of the
Field of View Angle

As we just mentioned, it is better not to concentrate on the accuracy of the physical sizes of our

on-screen images, but instead to concentrate on the amount of the world we see through our

screen. The “amount” of the world we see on-screen is most easily and intuitively represented by

the horizontal field of view angle q. Taking half of the cotangent of half of this angle gives the hor-

izontal field of view term, which we then use in our 3D WC to pixel coordinate mapping formula.

The human eye is physically able to see approximately a 100 degree field of vision horizon-

tally. Therefore, to create a natural-looking perspective projection, as the human eye would see it,

we should use 0.5*cot(0.5*100 degrees) as the horizontal field of view term. This works out to be

0.41955. For the vertical field of view term, we multiply this by the physical screen’s width/height

ratio, which for this example is 40cm/30cm, or 1.333333. Multiplying this by the horizontal field

of view term yields a vertical field of view term of 0.54555. These field of view terms assume,

however, that the physical screen physically encompasses the viewer’s entire field of vision. This

may be the case with extremely large screens (the CAVE, for instance, uses a series of screens each

sized 3 meters by 3 meters) or with 3D glasses, but for a normal computer screen which only

encompasses a small part of the viewer’s field of view, a smaller field of view angle might be

better, such as 60 degrees. This would yield a horizontal field of view term of

0.5*cot(0.5*60)=0.86603, and a vertical field of view term of 1.333333*0.86603=1.1547.

We can adjust these values if we wish to create some visually interesting effects. In particular,

if we use unusually large values for q, we get an uncanny fish-eye type of effect, since we see more

of the scene than our eyes would normally allow us to see. With the sample programs in Chapter 7

(and with all programs which use the l3d_pipeline_world class), you can interactively
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manipulate the field of view by pressing x, Shift+x, y, or Shift+y to decrease or increase the hori-

zontal or vertical field of view terms, respectively.

Changing the field of view terms can be thought of as being the computer graphics equivalent

of a photographer changing the focal length of a camera lens.

Summary of Perspective Projection
The final equations we have for perspective projection are the following:

Equation 5-34 shows perspective projection from WC to screen coordinates using field of view

angle. Notice that apart from x, y, and z, all other quantities are constants. These equations map

from 3D WC to 2D pixel coordinates, under the following assumptions: that we have a left-handed

3D WC system, that the eye in 3D WC is located at the origin looking straight along the positive z

axis and is perfectly right-side-up, that you as a viewer of the computer screen have your eye cen-

tered horizontally and vertically on the physical screen, and that � represents the horizontal field

of view angle. The division by z effects the perspective foreshortening which occurs due to the

geometric laws governing light rays. The field of view angle controls the amount of foreshorten-

ing. The hs, ws, and 0.5 terms map from projected world coordinates into 2D screen coordinates

with a given screen width, height, and centered eye position. The wPhys/hPhys term converts

from the horizontal to the vertical field of view term. The scaley term ensures that the width/height

ratio of the physical screen is the same as that of the projection plane window, and is 1 if the physi-

cal screen and projection plane window have the same relative proportions.

Sample Program: Dots
This sample program serves to solidify the concepts presented in this chapter. It contains three 3D

demonstrations in one—runway lights, star field, and snow. Specify a command-line parameter of

0, 1, or 2 to choose which demonstration to run, for instance, dots 0. With no parameter, the pro-

gram executes the runway lights demo.

Listing 5-4: dots.cc
#include <stdlib.h>
#include <stdio.h>

#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/system/factorys.h"

#include "../lib/geom/point/point.h"
#include "../lib/math/vector.h"
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#include "../lib/math/matrix.h"

#define MAXDOTS 150

#define PI 3.14159265

enum progtypes {RUNWAY, STARS, SNOW };

progtypes progtype;

//- STEP 1: CHOOSE THE FACTORIES

void choose_factories(void) {
factory_manager_v_0_1.choose_factories();

}

//- STEP 2: DECLARE A PIPELINE SUBCLASS

l3d_real fovx, fovy;
int xsize, ysize;
//- in a real program these projection parameters, which are set by the main
//- program but used by the dot's projection routines, would not be global
//- but rather in a "projection parameters" class, used by both the dot
//- class and the main program class

class mydot {
public:
l3d_coordinate position;
l3d_vector displacement;
l3d_vector velocity;
mydot(void) {position.original.set(int_to_l3d_real(0),

int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1)); }

virtual void place_dot(void) = 0;
virtual void move_dot(void) = 0;
virtual void project_dot(void) {
position.transformed.X_ =
l3d_mulri(l3d_mulrr(l3d_divrr( position.transformed.X_,

position.transformed.Z_),
fovx),

xsize)
+
int_to_l3d_real(xsize > 1);

position.transformed.Y_ =
l3d_mulri(l3d_mulrr(l3d_divrr(-position.transformed.Y_,

position.transformed.Z_),
fovy),

ysize)
+
int_to_l3d_real(ysize > 1);

}
};

class my_pipeline : public l3d_pipeline {
protected:
l3d_rasterizer_2d_imp *ri;
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l3d_rasterizer_2d *r;

unsigned long color;

mydot *dots[MAXDOTS];
int numdots;

long i, j;
long wc_win_width, wc_win_height, wc_win_dist, fov;
long wc_win_left, wc_win_top;

virtual int out_of_wc_bounds(l3d_point const &p)=0;

public:
l3d_screen *s;
my_pipeline(void);
virtual ~my_pipeline(void);

void key_event(int ch); //- from dispatcher
void update_event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

};

my_pipeline::my_pipeline(void) {
s = factory_manager_v_0_1.screen_factory->create(320,240);
ri = factory_manager_v_0_1.ras_2d_imp_factory->create(320,240,s->sinfo);
r = new l3d_rasterizer_2d(ri);

s->sinfo->ext_to_native(0,0,0); //- allocate black background color
s->sinfo->ext_max_red =
s->sinfo->ext_max_green =
s->sinfo->ext_max_blue = 255;

color = s->sinfo->ext_to_native(255, 255, 255);
s->refresh_palette();

xsize = s->xsize;
ysize = s->ysize;
fovx = float_to_l3d_real(1.0/tan(50./180. * PI));
fovy = l3d_mulrr(fovx,float_to_l3d_real(320.0/240.0));
//- 320/240 is the physical screen size ratio, which is 4/3 or 1.3333

}

my_pipeline::~my_pipeline(void) {

int dot_i = 0;
for(dot_i=0; dot_i<numdots; dot_i++) {
delete dots[dot_i];

}

delete s;
delete ri;
delete r;

}

void my_pipeline::key_event(int ch) {
switch(ch) {
case 'q': {

exit(0);
}

}
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}

void my_pipeline::update_event() {
int i;

/* move and display all dots */
for(i=0;i<numdots;i++) {
//- dynamics / simulation
dots[i]->position.reset();
dots[i]->move_dot();
if(out_of_wc_bounds(dots[i]->position.transformed)) {
dots[i]->place_dot();

}

//- perspective projection
dots[i]->project_dot();

}
}

void my_pipeline::draw_event(void) {
int i;
r->clear_buffer();

for(i=0;i<numdots;i++) {
//- culling
if(dots[i]->position.transformed.X_>=0 &&

dots[i]->position.transformed.X_ <= int_to_l3d_real(s->xsize) &&
dots[i]->position.transformed.Y_ >= 0 &&
dots[i]->position.transformed.Y_ <= int_to_l3d_real(s->ysize))

{
//- rasterization
r->draw_point(ifloor(dots[i]->position.transformed.X_),

ifloor(dots[i]->position.transformed.Y_),
color);

}
}

s->blit_screen();
}

//-
//- runway pipeline subclass
//-

class dot_runway_light : public mydot {
public:
void place_dot(void); //- virtual
void move_dot(void); //- virtual

};

void dot_runway_light::place_dot(void) {
position.reset();

displacement.X_ = int_to_l3d_real(xsize);
velocity.set(int_to_l3d_real(-5),

int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0));

}
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void dot_runway_light::move_dot(void) {
displacement = displacement + velocity;
position.reset();
position.transformed = position.transformed + displacement;

}

class my_pipeline_runway : public my_pipeline {
public:
my_pipeline_runway(void) {
int dot_i = 0;
for(dot_i=0; dot_i<MAXDOTS; dot_i++) {
dots[dot_i] = new dot_runway_light;

}

dot_i = 0;
for(i=-200; i<200; i+=40) {
for(j=100; j<500; j+=40) {
dots[dot_i]->position.reset();
dots[dot_i]->displacement.set(int_to_l3d_real(i),

int_to_l3d_real(-70),
int_to_l3d_real(j),
int_to_l3d_real(0));

dots[dot_i]->velocity.set(int_to_l3d_real(-5),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0));

dot_i++;
}

}
numdots = dot_i;

}

int out_of_wc_bounds(l3d_point const &p);
};

int my_pipeline_runway::out_of_wc_bounds(l3d_point const &p) {
return(p.X_<int_to_l3d_real(-200));

}

//-
//- snow pipeline subclass
//-

class dot_snowflake : public mydot {
public:
void place_dot(void); //- virtual
void move_dot(void); //- virtual

};

void dot_snowflake::place_dot(void) {
displacement.set(int_to_l3d_real( - (rand() % xsize)),

int_to_l3d_real(100 + (rand()%100)),
int_to_l3d_real(64 + (rand()%ysize)),
int_to_l3d_real(0));

position.reset();
velocity.set(int_to_l3d_real(rand()%2),

int_to_l3d_real(-1),
int_to_l3d_real(0),
int_to_l3d_real(0));
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}

void dot_snowflake::move_dot(void) {
displacement = displacement + velocity;
position.reset();
position.transformed = position.transformed + displacement;
velocity.set(int_to_l3d_real(rand()%2),

int_to_l3d_real(-1),
int_to_l3d_real(0),
int_to_l3d_real(0));

}

class my_pipeline_snow : public my_pipeline {
public:
my_pipeline_snow(void) {
int i;

for(i=0; i<MAXDOTS; i++) {
dots[i] = new dot_snowflake();
dots[i]->place_dot();

}
numdots = MAXDOTS;

}
int out_of_wc_bounds(l3d_point const &p);

};

int my_pipeline_snow::out_of_wc_bounds(l3d_point const &p) {
return(p.Y_<int_to_l3d_real(-70));

}

//-
//- star field pipeline subclass
//-

class dot_star : public mydot {
public:
void place_dot(void); //- virtual
void move_dot(void); //- virtual

};

void dot_star::place_dot(void) {
displacement.set(int_to_l3d_real(1000 - (rand() % 2000)),

int_to_l3d_real(1000 - (rand() % 2000)),
int_to_l3d_real(200 + (rand()%1000)),
int_to_l3d_real(0));

position.reset();
velocity.set(int_to_l3d_real(0),

int_to_l3d_real(0),
int_to_l3d_real(-10),
int_to_l3d_real(0));

}

void dot_star::move_dot(void) {
displacement = displacement + velocity;
position.reset();
position.transformed = position.transformed + displacement;

}

class my_pipeline_stars : public my_pipeline {
public:
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my_pipeline_stars(void) {

int i;

for(i=0; i<MAXDOTS; i++) {
dots[i] = new dot_star();
dots[i]->place_dot();

}
numdots = MAXDOTS;

}
int out_of_wc_bounds(l3d_point const &p);

};

int my_pipeline_stars::out_of_wc_bounds(l3d_point const &p) {
return(p.Z_<int_to_l3d_real(20));

}

int main(int argc, char **argv) {
if(argc==2) {
sscanf(argv[1], "%d", &progtype);

}
else {
progtype = RUNWAY;

}

choose_factories();

l3d_dispatcher *d;
my_pipeline *p;

//- STEP 3: CREATE A DISPATCHER

d = factory_manager_v_0_1.dispatcher_factory->create();

//- STEP 4: CREATE A PIPELINE

//- plug our custom behavior pipeline into the dispatcher
switch(progtype) {
case RUNWAY: p = new my_pipeline_runway(); break;
case STARS: p = new my_pipeline_stars(); break;
case SNOW: p = new my_pipeline_snow(); break;

}

//- STEP 5: START DISPATCHER

d->pipeline = p; //- polymorphic assignment
d->event_source = p->s;
d->start();

delete d;
delete p;

}

The following code implements the perspective projection:
class mydot {

virtual void project_dot(void) {
position.transformed.X_ =
l3d_mulri(l3d_mulrr(l3d_divrr( position.transformed.X_,

position.transformed.Z_),
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fovx),
xsize)

+
int_to_l3d_real(xsize > 1);

position.transformed.Y_ =
l3d_mulri(l3d_mulrr(l3d_divrr(-position.transformed.Y_,

position.transformed.Z_),
fovy),

ysize)
+
int_to_l3d_real(ysize > 1);

}

These few lines therefore embody the essence of this chapter. Once you understand the idea

behind this formula, its implementation is extremely simple.

The rest of the program concerns itself with the placement and movement of dots in a particu-

lar manner, depending on whether we are modeling runway lights (which move constantly in the x

direction), stars (which move constantly towards the viewer in the z direction), or snow (which

falls constantly downward in the y direction). This code is a simple example of the type of “simu-

lation code” we mentioned earlier, which causes objects to move in a physically realistic way.

Notice that we use vectors to move the points; adding a vector to a point gives us a new, displaced

point.

Regardless of the type of object and movement being modeled, the process of perspective

projection is the same for all cases. This shows that once we understand and implement a mathe-

matically correct perspective projection, we can use it to display any type of 3D data. This is in

contrast to the “pseudo-3D” approach taken in the original runway lights program.
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The Parts of a 3D Engine
Let us take a moment to study the structure of this program, since it contains many important fea-

tures of a complete rendering engine. We will see this same general structure as we add more

routines to the l3d library.

The Rendering Pipeline
The program exhibits the typical five-step structure of event-driven l3d programs, covered in

detail in Chapter 2. As usual, a custom pipeline subclass forms the heart of our application. We

declare an abstract pipeline subclass my_pipeline, with the main methods of interest being

update_event and draw_event.
void my_pipeline::update_event() {
int i;

/* move and display all dots */
for(i=0;i<numdots;i++) {
//- dynamics / simulation
dots[i]->position.reset();
dots[i]->move_dot();
if(out_of_wc_bounds(dots[i]->position.transformed)) {
dots[i]->place_dot();

}

//- perspective projection
dots[i]->project_dot();

}
}

void my_pipeline::draw_event(void) {
int i;
r->clear_buffer();

for(i=0;i<numdots;i++) {
//- culling
if(dots[i]->position.transformed.X_>=0 &&

dots[i]->position.transformed.X_ <= int_to_l3d_real(s->xsize) &&
dots[i]->position.transformed.Y_ >= 0 &&
dots[i]->position.transformed.Y_ <= int_to_l3d_real(s->ysize))

{
//- rasterization
r->draw_point(ifloor(dots[i]->position.transformed.X_),

ifloor(dots[i]->position.transformed.Y_),
color);

}
}

s->blit_screen();
}

Taken together, the update_event and draw_event methods loop through and process all

points—moving, projecting, and displaying them. When speaking of 3D engines, we refer to such

a loop as the 3D pipeline. We can see that all points pass through a series of steps before they are

actually displayed on screen. First they are moved, then they are projected, then they are tested to
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see if they are within the screen bounds, then they are finally displayed. We can think of this series

of steps as being a “pipeline” through which the 3D data points are “pumped.”

Database and Database Traversal
This program deals with displaying dots; dots are the 3D objects of interest in this application. The

my_pipeline class, since it represents the main application (Chapter 2), declares the program’s

main database of dot objects as shown below. Notice that we declare pointers to abstract dot

objects instead of creating the objects automatically; this is so that we can insert objects of differ-

ent concrete dot subclasses into the object database.
class my_pipeline : public l3d_pipeline {

mydot *dots[MAXDOTS];
int numdots;

In general, a 3D engine contains an in-memory database of the 3D objects which are being mod-

eled. This “database” may be no more than a simple linear list of objects; in other words, the

database in memory does not necessarily need to offer advanced storage features of full-fledged

database management systems (index and key management, concurrent access, transaction log-

ging, etc.). The 3D objects in the database are usually 3D polyhedra, but again, in this simple

example they are simply dots.

The mydot class is an abstract parent class representing a dot in 3D space which can place,

move, and project itself. Our object database in this program consists of abstract pointers to dot

objects.

The position member of the dot class stores the dot’s position, and is a variable of type

l3d_coordinate. Recall from Chapter 2 that an l3d_coordinate consists of two points:

an original and a transformed point. The original point contains the original definition of the

geometry; the transformed point is the temporary storage area for all movement and projection

operations and, after all frame processing is done, contains the final pixel coordinates to be plotted
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on screen. The position.original member of every dot object in this sample program is

always (0,0,0); in other words, we choose to define all points as initially being located at the

origin.

The displacementmember variable reflects the displacement from position.orig-
inal (which, for this program, is always (0,0,0)) to the current position. The current position,

unlike the original position, changes every frame since the dots are moving. The current position is

therefore given byposition.original + displacement, which is a point plus a vector.

Thevelocitymember represents the speed and direction with which the dot is moving. We

add the current position, computed as described above, and the velocity vector to obtain the new

position. This is again a point plus vector addition, yielding a new point.

The abstract place_dot method places the dot in an initial, valid location, by setting the

displacement member. We override this method in dot subclasses.

The abstract move_dot method moves the dot to a new location. Again, we override this

method in dot subclasses, since each dot subclass moves differently.

We derive subclasses from mydot to define special types of dots which have specialized

movement behaviors (see next section).

We must examine all objects in the database to update their positions and to see if they need to

be displayed. This occurs in theupdate_eventmethod of themy_pipeline class, where we

loop through all dots in a for loop. We use the term database traversal for the process of going

through the objects in the database. With increasing database size, it becomes important to limit

the portion of the database we have to update or display for each frame of animation. See the com-

panion book Advanced Linux 3D Graphics Programming for details.

Simulation
We declare a dot subclass for each type of dot we want to simulate: runway lights (class

dot_runway_light), snowflakes (class dot_snowflake), or stars (class dot_star).

Each dot subclass knows how to move itself; the main pipeline code simply asks each dot to

update its own position. We can think of updating the dots’ positions as updating the object data-

base, since the dots define the object database. The following code segments initialize (method

place_dot) and dynamically modify (methodmove_dot) the positions of the various kinds of

dots. This is an example of simulation code, which physically simulates movement according to

some rules.
class dot_runway_light : public mydot {
public:
void place_dot(void); //- virtual
void move_dot(void); //- virtual

};

void dot_runway_light::place_dot(void) {
position.reset();

displacement.X_ = int_to_l3d_real(xsize);
velocity.set(int_to_l3d_real(-5),

int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0));
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}

void dot_runway_light::move_dot(void) {
displacement = displacement + velocity;
position.reset();
position.transformed = position.transformed + displacement;

}

class dot_snowflake : public mydot {
public:
void place_dot(void); //- virtual
void move_dot(void); //- virtual

};

void dot_snowflake::place_dot(void) {
displacement.set(int_to_l3d_real( - (rand() % xsize)),

int_to_l3d_real(100 + (rand()%100)),
int_to_l3d_real(64 + (rand()%ysize)),
int_to_l3d_real(0));

position.reset();
velocity.set(int_to_l3d_real(rand()%2),

int_to_l3d_real(-1),
int_to_l3d_real(0),
int_to_l3d_real(0));

}

void dot_snowflake::move_dot(void) {
displacement = displacement + velocity;
position.reset();
position.transformed = position.transformed + displacement;
velocity.set(int_to_l3d_real(rand()%2),

int_to_l3d_real(-1),
int_to_l3d_real(0),
int_to_l3d_real(0));

}

class dot_star : public mydot {
public:
void place_dot(void); //- virtual
void move_dot(void); //- virtual

};

void dot_star::place_dot(void) {
displacement.set(int_to_l3d_real(1000 - (rand() % 2000)),

int_to_l3d_real(1000 - (rand() % 2000)),
int_to_l3d_real(200 + (rand()%1000)),
int_to_l3d_real(0));

position.reset();
velocity.set(int_to_l3d_real(0),

int_to_l3d_real(0),
int_to_l3d_real(-10),
int_to_l3d_real(0));

}

void dot_star::move_dot(void) {
displacement = displacement + velocity;
position.reset();
position.transformed = position.transformed + displacement;

}
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By changing coordinates in 3D WC we are modeling movement of the objects in the 3D virtual

world. This movement is modeled in the most natural way possible. For instance, in the class

dot_star, we update the dot position for a star by decreasing its z coordinate (via a velocity vec-

tor with a negative z component). Based on the definition of the left-handed 3D WC system we are

using, decreasing the z coordinate means moving toward the viewer—precisely the motion we

wish to model. In the case of dot_runway_light, we model the horizontal movement for run-

way lights by decreasing the x coordinate. Finally, in the case of dot_snowflake, the

movement is modeled as a drift downward (decreasing the y coordinate) and also a possible ran-

dom drift right (increasing the x coordinate by a random amount). We implement all movements

by using velocity vectors, adding a vector to the current position to give a new position.

So to model movement in the 3D world, we manipulate the points or objects in the 3D world

database. Since for now our eye is at a fixed location in 3D space, we can’t keep moving points

forever in the same direction: they will become invisible sooner or later. Each subclass of

my_pipeline overrides the virtual function out_of_wc_bounds to define when a dot has

passed outside of some application-specific boundary. When this occurs, the dot needs to be repo-

sitioned so that it is visible again.
int my_pipeline_runway::out_of_wc_bounds(l3d_point const &p) {
return(p.X_<int_to_l3d_real(-200));

}

int my_pipeline_snow::out_of_wc_bounds(l3d_point const &p) {
return(p.Y_<int_to_l3d_real(-70));

}

int my_pipeline_stars::out_of_wc_bounds(l3d_point const &p) {
return(p.Z_<int_to_l3d_real(20));

}

For instance, we model snowflakes as falling downwards. When a snowflake passes down beyond

a certain y level it hits the ground and melts, effectively disappearing. In our program, whenever a

snowflake disappears or passes out of bounds, we reinitialize its position with new values (via

place_dot), effectively creating a new snowflake to replace the old one. In computer memory,

of course, it is the same snowflake repositioned somewhere else, but this fact is hidden from the

viewer.

Notice again that we never change a dot’s original coordinate. (Recall that we mentioned this

in Chapter 2, in the introductory discussion on the purpose of the original and trans-
formedmembers of the l3d_coordinate class.) Instead, to change its position, we update a

separate displacement vector. This displacement vector displaces the original coordinate to the

current location via a vector-point addition, storing the results in the transformed coordinate. Then

we update this current location with the current velocity vector, again storing the new results in the

transformed coordinate. Finally, we project this updated current location from 3D into 2D, again

storing the results in the transformed coordinate. The transformed coordinate then finally contains

the pixel coordinates to be plotted on-screen.

The necessity of using such an original-transformed scheme becomes more apparent when we

group points into objects, as we do in the next sample program. In this case, it is essential that we
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save the original points defining an object and always perform any movement by starting with the

original points and storing the results in a separate transformed storage area. The alternative, con-

stantly updating the original points “in-place” to reflect the new position, will eventually, due to

inevitable numerical inaccuracies during repeated computations, lead to the points drifting apart

from one another until the relative positions of the points no longer correspond to the original

shape of the object. If an object just consists of one point, as in this sample program, you would

probably never notice the problem, but when an object consists of many points, you eventually

would.

Perspective Projection and Screen Mapping
The update_event method of the my_pipeline subclass asks each dot to project itself by

calling project_dot, which implements the perspective projection and screen mapping devel-

oped earlier in this chapter.

In general, we should avoid projecting any points which have z values less than or equal to 0.

Points with z=0 are problematic because the perspective projection works by dividing by z.

Dividing by 0 is, of course, impossible. Points with z<0 are physically points located behind the

viewer. We should also avoid projecting these points since our eyes can only see objects in front of

us. Mathematically, projection of a point behind the eye is possible; it will however be vertically

inverted with respect to the original point and has no physical significance.

In this program, we handle these z value issues by ensuring that z values are always positive.

For the demonstrations runway lights and snow, we always explicitly assign a positive z value; for

the star field, we reset z if it falls below 20 (via routine out_of_wc_bounds). In general, we

solve this problem by using 3D polygons for modeling, and by clipping these 3D polygons against

a near z clip plane so that only positive z values remain (Chapter 7).

Culling
In the draw_event method, which draws the projected points, the code for actually plotting a

point is enclosed within a simple if statement which prevents off-screen points from being

drawn. Off-screen points are points whose projected values fall outside of the screen boundaries;

for the given eye location and field of view, they are not visible. These unseen points should not be

drawn.
//- culling
if(dots[i]->position.transformed.X_>=0 &&

dots[i]->position.transformed.X_ <= int_to_l3d_real(s->xsize) &&
dots[i]->position.transformed.Y_ >= 0 &&
dots[i]->position.transformed.Y_ <= int_to_l3d_real(s->ysize))

{

This step may seem obvious, but the more generally applicable idea is quite important. More

advanced culling schemes can determine much earlier that a particular point or polygon cannot

possibly be seen. The earlier we determine that a point or polygon cannot be seen, the more pro-

cessing time we can save and the faster our program will run. (Recall the discussion on hardware

acceleration in Chapter 1—“cull what you can, accelerate what you can’t.”) For instance, in the

dots program, we only cull points after projecting them, which is quite late in the pipeline. What
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if we had 50 million points? For a given viewpoint, only a tiny fraction, say 5%, of these points are

visible. Would we have to project all 50 million points—meaning 50 million divide opera-

tions—only to determine that 95% are invisible? Culling schemes attempt to eliminate a point

from further consideration as early as possible.

Rasterization
Once the point has made it this far through the 3D pipeline, it has been projected, mapped to the

screen, and is visible. We only need to plot it, which is done in line by calling the 2D graphics rou-

tine to plot a pixel from Chapter 2.
r->draw_point(ifloor(dots[i]->position.transformed.X_),

ifloor(dots[i]->position.transformed.Y_),
color);

With more complicated polyhedral 3D objects, as in the next sample program, we use the pro-

jected points to draw a polygon instead of just a dot.

Blitting
Due to the double-buffering scheme introduced in Chapter 2, we rasterize all graphics off-screen,

then make the off-screen graphics buffer visible all at once. This is the blit_screen method

called as the last line of the draw_event method.
s->blit_screen();

3D Polygonal Graphics
We claimed earlier that projecting points from 3D to 2D is enough to project any object from 3D

into 2D. To project a line from 3D into 2D, we simply project the endpoints and draw a line in 2D

between the projected endpoints. To project a polygon, we project the vertices of the polygon and

draw a 2D polygon using the projected vertices. This is conceptually equivalent to projecting the

endpoints of each edge from 3D to 2D, and drawing each edge as a line in 2D; drawing a filled

polygon then simply means drawing 2D horizontal lines between the 2D projected edges.

Since we developed code in Chapter 3 for drawing 2D polygons, projecting polygons from

3D into 2D is therefore as simple as combining the perspective projection equation with the 2D

polygon drawing routines. This is what the next sample program, spikes, does.

Listing 5-5: spikes.cc
#include <stdlib.h>
#include <stdio.h>

#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/system/factorys.h"

#include "../lib/geom/point/point.h"
#include "../lib/math/vector.h"
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#include "../lib/math/matrix.h"

#define MAXSPIKES 150
#define PI 3.14159265

unsigned long red_color;
unsigned long green_color;
unsigned long blue_color;

//- STEP 1: CHOOSE THE FACTORIES

void choose_factories(void) {
factory_manager_v_0_1.choose_factories();

}

//- STEP 2: DECLARE A PIPELINE SUBCLASS

l3d_real fovx, fovy;
int xsize, ysize;

class spike {
public:

l3d_two_part_list<l3d_coordinate> *vlist;
l3d_polygon_2d_flatshaded *faces[3];
l3d_vector displacement;
l3d_vector velocity;

spike(void) {
//- declare common shared vertex list for all polygons
vlist = new l3d_two_part_list<l3d_coordinate> (4);
int i=0;
(*vlist)[i++].original.set(int_to_l3d_real(0),

int_to_l3d_real(0),
int_to_l3d_real(100),
int_to_l3d_real(1));

(*vlist)[i++].original.set(int_to_l3d_real(10),
int_to_l3d_real(10),
int_to_l3d_real(100),
int_to_l3d_real(1));

(*vlist)[i++].original.set(int_to_l3d_real(10),
int_to_l3d_real(0),
int_to_l3d_real(100),
int_to_l3d_real(1));

(*vlist)[i++].original.set(int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1));

//- define polygons in terms of indices into shared vertex list
faces[0] = new l3d_polygon_2d_flatshaded(3);
faces[0]->vlist = & vlist; //- shared vertex list
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 3;
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 0;
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 1;

faces[1] = new l3d_polygon_2d_flatshaded(3);
faces[1]->vlist = & vlist; //- shared vertex list
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 3;
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 1;
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(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 2;

faces[2] = new l3d_polygon_2d_flatshaded(3);
faces[2]->vlist = & vlist; //- shared vertex list
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 3;
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 2;
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 0;

}

~spike(void) {
delete faces[0];
delete faces[1];
delete faces[2];
delete vlist;

}

void place_spike(void) {
displacement.set(int_to_l3d_real(1000 - (rand() % 2000)),

int_to_l3d_real(1000 - (rand() % 2000)),
int_to_l3d_real(100 + (rand()%1000)),
int_to_l3d_real(1));

velocity.set(int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(-(rand()%75 + 5)),
int_to_l3d_real(0));

int q;
for(q=0; q<vlist->num_fixed_items; q++) {
(*vlist)[q].reset();
(*vlist)[q].transformed = (*vlist)[q].transformed + displacement;

}
}

void move_spike(void) {
displacement = displacement + velocity;

int q;
for(q=0; q<vlist->num_fixed_items; q++) {
(*vlist)[q].reset();
(*vlist)[q].transformed = (*vlist)[q].transformed + displacement;

}
}

void project_spike() {
int v;

for(v=0; v<vlist->num_fixed_items; v++) {
(*vlist)[v].transformed.X_ =
l3d_mulri(l3d_mulrr(l3d_divrr( (*vlist)[v].transformed.X_,

(*vlist)[v].transformed.Z_),
fovx),

xsize)
+
int_to_l3d_real(xsize > 1);

(*vlist)[v].transformed.Y_ =
l3d_mulri(l3d_mulrr(l3d_divrr(-(*vlist)[v].transformed.Y_,

(*vlist)[v].transformed.Z_),
fovy),

ysize)
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+
int_to_l3d_real(ysize > 1);

}
}

};

class my_pipeline : public l3d_pipeline {
protected:
l3d_rasterizer_2d_imp *ri;
l3d_rasterizer_2d *r;

spike spikes[MAXSPIKES];
long i, j;
long wc_win_width, wc_win_height, wc_win_dist, fov;
long wc_win_left, wc_win_top;
int numspikes;

virtual int out_of_wc_bounds(l3d_point const &p);

public:
l3d_screen *s;
my_pipeline(void);
virtual ~my_pipeline(void);

void key_event(int ch); //- from dispatcher
void update_event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

};

my_pipeline::my_pipeline(void) {
s = factory_manager_v_0_1.screen_factory->create(320,200);
ri = factory_manager_v_0_1.ras_2d_imp_factory->create(320,200,s->sinfo);
r = new l3d_rasterizer_2d(ri);

s->sinfo->ext_max_red =
s->sinfo->ext_max_green =
s->sinfo->ext_max_blue = 255;

s->sinfo->ext_to_native(0,0,0); //- allocate black background color
red_color = s->sinfo->ext_to_native(255, 0, 0);
green_color = s->sinfo->ext_to_native(0, 255, 0);
blue_color = s->sinfo->ext_to_native(0,0, 255);
s->refresh_palette();

fovx = float_to_l3d_real(0.5*1.0/tan(50./180. * PI));
fovy = float_to_l3d_real(0.5*1.0/tan(30./180. * PI));
xsize = s->xsize;
ysize = s->ysize;

numspikes = MAXSPIKES;
for(i=0; i<MAXSPIKES; i++) {
spikes[i].place_spike();

spikes[i].faces[0]->final_color = red_color;
spikes[i].faces[1]->final_color = green_color;
spikes[i].faces[2]->final_color = blue_color;

}
}
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my_pipeline::~my_pipeline(void) {
delete s;
delete ri;
delete r;

}

void my_pipeline::key_event(int ch) {
switch(ch) {
case 'q': {

exit(0);
}

}
}

void my_pipeline::update_event() {
int i;

for(i=0;i<numspikes;i++) {
spikes[i].move_spike();
if(out_of_wc_bounds( (*spikes[i].vlist)[3].transformed))
//- we use the vertex with index 3 because we know that this is the
//- vertex which has the smallest z-component of all vertices.
//- in general we don't know which vertex is foremost (since
//- the object might be rotated or morphed, for instance),
//- so in general we either need to check all vertices or
//- we need to clip all vertices to make sure they are valid.

{
spikes[i].place_spike();

}

spikes[i].project_spike();
}

}

void my_pipeline::draw_event(void) {
int i;
r->clear_buffer();

for(i=0;i<numspikes;i++) {
for(int f=0; f<3; f++) {
spikes[i].faces[f]->init_clip_ivertices();
spikes[i].faces[f]->clip_to_polygon_2d(s->view_win);
r->draw_polygon_flatshaded(spikes[i].faces[f]);

}
}
s->blit_screen();

}

int my_pipeline::out_of_wc_bounds(l3d_point const &p) {
return(p.Z_<int_to_l3d_real(1));

}

int main(int argc, char **argv) {
choose_factories();

l3d_dispatcher *d;
my_pipeline *p;

//- STEP 3: CREATE A DISPATCHER

Chapter 5: Perspective Projection 303



d = factory_manager_v_0_1.dispatcher_factory->create();

//- STEP 4: CREATE A PIPELINE

//- plug our custom behavior pipeline into the dispatcher
p = new my_pipeline();

//- STEP 5: START DISPATCHER

d->pipeline = p; //- polymorphic assignment
d->event_source = p->s;
d->start();

delete d;
delete p;

}

Overview of Program “Spikes”
This program is essentially the same as the star field simulation from the previous program. How-

ever, instead of projecting and animating just dots, we project sets of dots, defined in the spike
class. Each set of dots defines three polygons in 3D which geometrically form the sides of a pyra-

mid pointing towards the viewer—a spike.

The spike class declares a common vertex list vlist, containing four vertices defined in

3D. Furthermore, thefaces array holds three polygons, each of which is defined in terms of indi-

ces into this common, external vertex list.

Does the structure of this code look familiar? It should, because all of the polygon examples

from the previous chapter used this same structure: each polygon contains a pointer to an external

vertex list and is defined in terms of indices into this external vertex list. The only difference from

Chapter 3 is that we are treating the points in the vertex list as 3D points (x,y,z) instead of 2D points

(x,y). Since our existing l3d_point class already can handle up to 4D points, no new point class

is required.

Each polygon in the spike references the same vertex list. For instance, the point with index 3

appears in all three polygons; the other points all appear in two polygons. If each polygon had

stored its own vertex list, this would mean a wasteful and dangerous duplication of data: wasteful

because identical points are being subjected to the same computations, and dangerous because any

redundant data duplication leads to the danger of inconsistencies among the various copies.

These spikes appear to fly towards the viewer as did the stars from the previous star field sim-

ulation. As with the previous program, notice the use of vectors for movement and the fact that the

original coordinates of a spike object are never changed, only the transformed coordinates.
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From Dots to Polygons
The following list summarizes the important changes from the previous dots program.

� We define a spike in terms of several points, not just one point as in the dots program. These

several points are stored in a vertex list, which is an l3d_two_part_list of

l3d_coordinate objects. After the initial assignment, we never change the original
member of these l3d_coordinate objects, only the transformed member. The

original members represent the “pure” geometric definition of the spike object.

� The spike object defines several polygons in terms of the vertex list.

� Initialization and movement of the spike’s location (methods place_spike and

move_spike) must initialize and move all of the points in the vertex list. We therefore have
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Figure 5-29: Each
polygon in a spike
is defined in terms
of the same
shared vertex list.

Figure 5-30: Polygonal 3D graphics from the
sample program spikes.



several loops going from 0 to vlist->num_fixed_items, to loop through the vertices in

the fixed part of the vertex list. (Recall that we have a fixed part, consisting of the original ver-

tices, and a temporary varying part, reserved for clipping purposes.)

� Projection of the spike (method project_spike) must also project all of the points in the

vertex list and not just one point as in the dots program.

� Drawing the spike (method draw_event in my_pipeline) requires us to draw each

polygon in the spike. For this, we simply loop through all polygons for each spike and draw

each polygon exactly as we did in the previous chapter (first clipping, then drawing).

Importantly, notice that we can use exactly the same 2D polygon drawing routines from the previ-

ous chapter to draw projected 3D polygons. We define the spike’s vertices in 3D in a vertex list,

and then define 3D polygons referencing these 3D vertices. By projecting the spike’s vertices

from 3D into 2D, all 3D polygons then automatically become 2D polygons, since they now all ref-

erence 2D vertices. Conveniently, and not at all accidentally, we can then draw these 2D polygons

exactly as discussed in Chapter 3, even though the now 2D polygons’ vertices actually arose out of

a 3D-to-2D projection operation. The flattened, projected vertices get stored into the trans-
formed members of the vertices, which (as mentioned in Chapter 2) are the points used for

drawing and which are separate from the original, in this case three-dimensional definition of the

spike geometry.

NOTE We clip the polygon in 2D after the 3D to 2D projection. This can produce new 2D
vertices. These new vertices, unlike the original projected 3D vertices, do not result directly
from a 3D-to-2D projection operation. As mentioned earlier in this chapter, this is an issue for
algorithms which need to know the original, pre-projection 3D location of each 2D point
on-screen. The companion book Advanced Linux 3D Graphics Programming discusses such
algorithms (e.g., texture mapping and z buffering).

The pipeline for the spikes program is the same as that of the dots program, except that the

points are grouped into objects. The group of original coordinate values belonging to a spike

define the original geometry of a spike, but not its location. We only obtain location after adding a

displacement or positional vector to the original geometry. If you like, you can loosely think of this

as a class-object relationship: the original geometry (the class) is a template defining how the

object must look but not where specifically it is; the transformed geometry (the object) is a partic-

ular instance of the original geometry located at a particular offset from the origin and possibly

having undergone further transformations.

Because the original coordinates define the geometry of an object but not its location, we

can also refer to them as object coordinates. Object coordinates allow us to define an object’s

geometry relative to itself (i.e., “the first button is always 2 cm left of the second button”) rather

than always having to specify coordinates with respect to a containing world coordinate system. In

other words, object coordinates represent the innate geometry of the object, independently of

where the object is located. These object coordinates get transformed into world coordinates, rep-

resenting the actual location of one instance of the object. World coordinates change whenever the

object changes position; object coordinates only change if the object changes shape. Chapter 6
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discusses the concept of multiple coordinate systems, and the transformations among them, in

more detail.

Summary
In this chapter we defined 3D graphics, examined the physics of vision, and derived the mathe-

matics of projection. We discussed:

� 3D coordinate systems and vectors

� 3D-to-2D projection through division by the z coordinate

� Projecting dots and polygons

� Modeling 3D objects as a set of 3D polygons

� The general structure of a 3D engine

Let’s take a moment and reflect on the material we have covered up to this point in the book. We

have learned about Linux programming and debugging, Linux tools, the X Window System, plot-

ting pixels in arbitrary colors in arbitrary bit depths, double buffering, animation, drawing 2D

lines and polygons, vertex morphing using a vertex interpolator, the physics and geometry of

vision, 3D coordinate systems, 3D vectors, projecting from 3D into 2D, modeling 3D polygonal

objects, and the general structure of a 3D engine.

The knowledge summarized above provides a very solid basis for Linux 3D graphics pro-

gramming. 3D games have been written with little more than this. I encourage you to expand on

the sample programs in this chapter and create some simple 3D demonstration programs of your

own. For instance, try to use the vertex interpolator class introduced in Chapter 3 to do 3D polygon

morphing in the spikes program. (The companion book Advanced Linux 3D Graphics Pro-

gramming implements 3D polygon morphing.) Try to define and draw more complex polygonal

objects than spikes—for instance, a six-sided cube or a desk. Do you ever notice any drawing

anomalies when displaying more complicated polygonal objects? (Chapter 7 touches upon these

problems, collectively called hidden surface removal, and presents one solution, the so-called

“painter’s algorithm.”) There’s nothing like learning by doing.

The preceding chapters have provided enough information to produce simple 3D demos,

screen savers, or even games under Linux. The remainder of the book presents more generally

applicable techniques for creating larger and more flexible 3D applications—techniques with

which every 3D programmer should be familiar. The techniques presented in the rest of the book

provide a solid basis for dealing with real problems in real 3D programs, ranging from technical

issues, such as arbitrary camera orientation, to practical issues, such as creating interesting 3D

models using the free Blender 3D modeling package for Linux (included on the CD-ROM).

Specifically, the next chapter deals with 3D transformations and the mathematical tool we use

for manipulating them, the matrix. We have already encountered a simple form of transformation:

movement of an object in 3D by adding a velocity vector. More generally, 3D transformations also

allow rotation and scaling of objects in 3D (in addition to many other effects). Furthermore, com-

bining transformations allows us to move and orient the eye, or any other object, arbitrarily in 3D,

which is a major step in creating believable, interactive 3D applications.
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C h a p t e r 6

Matrices andMatrices and
Transformations

Overview

I
n the previous chapter, we saw how to project 3D points into 2D points for display on-screen.

We assumed a simple and fixed-eye location and orientation, and animation of the 3D points

was fairly rudimentary: runway lights moving right to left, snow falling downward, spikes fly-

ing directly forward.

In this chapter, we look at how transformations can be used to model movement of 3D points

in more complicated ways—for instance, an asteroid tumbling through space while rotating about

all three axes in 3D. We also see how transformations can transform an arbitrary eye location and

orientation into the standard location and orientation assumed in the last chapter. This accom-

plishes two important goals: objects can move more flexibly in 3D, and the camera can look at

these objects from any angle. These contribute greatly to the realism of a 3D program, enabling a

completely 3D walk-through or “fly-through” of the virtual world. At the end of this chapter we

develop a 3D simulation program which allows you to fly through a virtual world and look at the

objects from any position and orientation.

This chapter is a bit heavy on the math, but this is unavoidable; true 3D graphics involves a lot

of linear algebra and trigonometry. But rest assured: with only a bit of clear thinking and a good

geometric visualization capacity, none of the math presented in this chapter is very difficult, and

you always see the results of your efforts as a more realistic or visually pleasing 3D program. The

math for 3D graphics is a very broad and fascinating field, so enjoy it!

This chapter covers the following topics:

� Definition of transformations

� Non-matrix form of translation, rotation, and scaling transformations

� Definition of matrices and matrix-vector math

� Matrix form of translation, rotation, and scaling transformations

� Combining transformations via matrix-matrix multiplication

� Arbitrary camera and object orientation and rotation

� Matrices and coordinate systems

� Perspective projection as a non-linear warping transformation of 3D space
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Introduction to Transformations
A transformation in 3D graphics defines a precise way of altering the position of a 3D point in the

3D world coordinate system. We can apply a transformation to one, several, or all points in a 3D

space.

If we apply a transformation only to selected points within the 3D space, we can think of the

transformation as being a tool to move particular objects around. An example of this would be

transforming the individual vertices of a single spaceship object in order to move it within the 3D

world coordinate system. On the other hand, if we apply a transformation to all points in a 3D

space, then we can think of the transformation as transforming the entire 3D space and all objects

in it. An example of this would be the perspective projection itself, covered in the previous chap-

ter, which applies to all points uniformly, dividing each point’s x and y coordinate by its z

coordinate. Another example is the camera transformation, covered later in this chapter, which

converts an arbitrary camera location and orientation into the standard camera location and orien-

tation required by the perspective projection of the previous chapter.

NOTE In Chapter 4, which focused on the human perceptual mechanisms which play a
role in 3D graphics, we used the term “eye” to refer to the location of the viewer in the virtual
3D space. Starting with this chapter, we also use the term “camera” to denote the location of
the virtual viewer. Both terms are common in the 3D literature.

Two points can define the base and tip of a vector, as we saw in Chapter 5. Thus, transformations

can also change vectors, by altering the vector’s starting and/or ending point. Remember that the

vector itself, though, is the directed displacement between the two points.

The three most important geometric transformations we need to understand for 3D graphics

are translation, rotation, and scaling. The main thrust of this chapter, therefore, is on developing,

understanding, using, and combining these transformations. Let’s start by geometrically defining

these transformations. For each transformation, we will look at:

� A description of the transformation

� An illustration of the transformation in 2D space, applied to multiple points

� A simplified illustration of the transformation in 3D space, applied to a single point. Since a

book is a 2D medium, the illustrations of the 3D transformations are applied only to a single

point to reduce diagram clutter.

Translation
Translation is moving a point by a given offset in the x, y, and/or z axis directions. You can think of

a translation as “pushing” a point in a given direction by a given amount. The following are all

examples of translations.

� Move a point 5 units (in 3D world coordinates) to the left.

� Move a point 3 units vertically along the y axis and –2 units horizontally to the left along the x

axis.

� Move a point 1 unit along the x axis, 32 units along the y axis, and –5 units along the z axis.
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A translation can be implemented as a component-wise vector addition, as done in Chapter 5.

But, as we see later in this chapter, a matrix is actually the preferred form for representing transfor-

mations, including translation.

NOTE In the discrete world of digital computers, a translation—or any transformation, for
that matter—occurs instantaneously. That is to say, at one particular point in time a coordi-
nate has a particular value, such as 0. After transformation, at a later point in time, the
coordinate might have a value of 5. This raises some issues if the transformation models a
real-world physical movement. In the real world, an object cannot move from position 0 to
position 5 without also passing through all points in between. In the computer world, how-
ever, the position “jumps” or “teleports” instantaneously from 0 to 5, without ever having
been located at any of the points in between. This can cause problems for collision detection
or other physically based simulation, since an object jumping from position 0 to position 5
never collides or interacts with objects located between these two positions. The solution to
this problem requires that physically based simulation routines do more than merely compare
the instantaneous “snapshot” positions of interacting objects; they must also account for
objects’ movement (velocity). Mathematically, this means not only considering the instanta-
neous location, but also the higher-order derivatives of location—velocity, the first derivative,
and for more realism, acceleration, the second derivative. Recall from calculus that the deriv-
ative of a variable with respect to another variable is nothing more than the limit approaching
zero of the change in the first divided by the change in the second. Velocity is thus the instan-
taneous change in location with respect to time; acceleration is the instantaneous change in
velocity with respect to time. This topic is covered in the companion book Advanced Linux 3D
Graphics Programming, where we discuss collision detection.

Figure 6-1 illustrates the translation of four points, defining a box, in 2D space. The box—or, more

precisely, each of the four vertices defining the box—is translated by 2 units in the x direction and

–1 units in the y direction.
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Figure 6-1: Translation of
points in 2D space. The box is
translated by (2,–1).



Figure 6-2 illustrates translation of a single point in 3D space.

Rotation
Rotation is the movement of a point in a circle. In 2D, we specify a rotation with an angle � (writ-

ten “theta”). Rotation of the point by an angle � means moving the point � degrees in the

counterclockwise direction along a circle, with the center of the circle at the origin.

Figure 6-3 illustrates the rotation of a box in 2D space. The box is rotated by an angle � (in this

case, 27 degrees) counterclockwise around the origin. Rotation of the entire box is equivalent to

rotating each of its defining vertices. Each vertex in the figure has been rotated by � degrees about

the origin counterclockwise. This has been illustrated in the figure only for the lower-left vertex of

the box, but all vertices are rotated by the same amount; otherwise, the shape of the box would

change after rotation.

Notice that in addition to rotating, the box also changes position (assuming, for instance, that

we define the box’s “position” to be at its center). Later in this chapter we take another look at this

phenomenon and a way around it; often we wish to rotate an object about its own center.
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Figure 6-2: Translation of a point in 3D space.

Figure 6-3: Rotation of points in
2D space.



For 3D rotation, in addition to � , we must also specify an axis around which we wish to rotate

the point (x, y, or z axis). A positive rotation angle � specifies a clockwise rotation around the

given axis, when looking along the positive axis toward the origin. This is consistent with a

left-handed coordinate system; if you point your thumb in the positive direction of the axis of rota-

tion, your fingers curl in the direction of rotation for a positive angle—clockwise. A negative

rotation angle rotates in the counterclockwise direction with respect to the axis of rotation.

Figures 6-4, 6-5, and 6-6 illustrate positive rotations around the x, y, and z axes for a given 3D

point. In each case the arrow in the diagram represents the direction of positive rotation.
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Figure 6-4: 3D rotation of a point in a circle about the x
axis.

Figure 6-5: 3D rotation of a point in a
circle about the y axis.



Notice carefully the convention we just defined for the concept of “clockwise” in 3D space.

A 3D rotation takes place in a clockwise direction around an axis when looking along the positive

axis toward the origin. More generally, we can say that rotation around a vector is in a clockwise

direction around the vector when looking along the vector from its tip to its base. If we look along

the axis or vector in the opposite direction (from base to tip), the rotation appears to take place in

the opposite direction (counterclockwise instead of clockwise). This is why a positive 2D rotation

was defined counterclockwise (with respect to the page), but a positive 3D rotation is defined

clockwise (with respect to the axis of rotation). In reality, the 2D and 3D rotations take place in

exactly the same direction; it is merely our point of view which is different. By taking the 2D coor-

dinate system and adding a left-handed z axis, which points into the page, we are looking from the

base to the tip of the z axis. From this point of view, a positive rotation appears to be counterclock-

wise. But if we imagine changing our point of view so that we are looking from the tip to the base

of the z axis, the positive rotation appears to take place in the clockwise direction, which is consis-

tent with the left-hand rule we defined above.

If you are having trouble visualizing this, the following series of diagrams should help. They

show how a counterclockwise rotation viewed from the base of the vector is the same as a clock-

wise rotation viewed from the tip of the vector. To keep clockwise and counterclockwise straight,

simply ask yourself, “in which direction is the axis of rotation pointing?” Then, imagine viewing

the situation from the tip of this vector looking towards its base. From this point of view, a positive

rotation angle is clockwise. Alternatively, you can completely forget about clockwise and coun-

terclockwise and simply point the thumb of your left hand along the positive direction of the axis

of rotation. The direction in which your fingers curl is the positive direction of rotation.
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Figure 6-6: 3D rotation of a point in a circle
about the z axis.
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Figure 6-7: An apparently counterclockwise
rotation in the positive direction of rotation.
This corresponds to the 2D rotation illustrated
in Figure 6-3.

Figure 6-8: If we change our point of view...

Figure 6-9: ...so that we are looking from the tip
to the base of the vector...



Scaling
Scaling is stretching the distance of a point from the origin. A 3D point with coordinates (x,y,z)

may be thought of as the point obtained by starting at the origin and moving a distance of x units

along the x axis, y units along the y axis, and z units along the z axis. If we scale the point (x,y,z), we

multiply x, y, and z by scaling factors sx, sy, and sz to define a new point. This has the effect of

increasing or decreasing the displacements in the x, y, and z directions. Scaling factors greater than

one move a point farther from the origin (expansive movement); scaling factors smaller than one

move a point closer to the origin (contractive movement).

If sx, sy, and sz are all equal, we call the scaling a uniform scaling; otherwise, we call it a

non-uniform scaling. We use uniform scaling to change the size of an object uniformly in all direc-

tions. Non-uniform scaling stretches an object by varying amounts along the different coordinate

axes.

NOTE Non-uniform scaling is a bit tricky to handle, since a non-uniform scaling of a poly-
gon changes its shape: it is stretched unequally in different directions. This change in shape
also causes a change in length of the polygon’s surface normal vector (Chapter 7). If the sur-
face normal vector was normalized before, it will no longer be normalized after non-uniform
scaling, which could be a problem if any code assumes that the vectors are normalized.

Figure 6-11 illustrates uniform scaling of a box in 2D space. The box is scaled by a factor of 0.5.

Notice that the box is not only smaller, but also closer to the origin. Sometimes this is desirable,

but usually not. Later in this chapter we see how to scale an object while leaving its (center) loca-

tion the same.
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Figure 6-10: ...then the same rotation
appears to take place in the clockwise
direction. The rotation is the same and is still
in the positive direction; only our point of
view has changed. The point of view in this
figure (looking from the tip to the base of the
rotation vector) is the point of view we need
in order to apply the rule that a positive
rotation takes place in the “clockwise”
direction. Alternatively, use your left hand to
determine the direction of positive rotation.
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Figure 6-12 illustrates a 3D point (2,2,2) and the 3D points resulting from uniform scale oper-

ations of 0.5 and 1.5.

What is... the Matrix?
We have now developed an intuitive, geometric feeling for the transformations of translation,

rotation, and scaling. How do we represent these transformations mathematically? The standard

of representing transformations relies upon a mathematical construct called the matrix, which

comes with its own set of mathematical rules. Therefore, to further understand transformations,

we must first answer the fundamental question:

What is the Matrix?

If you want to find out, read on. (Otherwise, take the blue pill.)

Definitions: Matrices and Vectors
A matrix (plural matrices) is a rectangular, two-dimensional grid of numbers. The size of a matrix

is expressed as m� n, where m is the number of rows in the matrix and n is the number of columns.

Note the reversal of terms in comparison to conventional expressions of width times height. If m is

1, the matrix has only one row, and is called a row matrix or, equivalently, a row vector. If n is 1, the
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Figure 6-11: Uniform scaling by 0.5 of a
box in 2D space. The box is not only
smaller, but also closer to the origin.

Figure 6-12: Uniform scale operations (0.5 and 1.5 scale factors) of
a point at (2,2,2).



matrix has only one column, and is called a column matrix or a column vector. We can therefore

think of a vector as a single column or row of numbers, whereas a matrix consists of multiple col-

umns and rows of numbers. In fact, we can view a matrix as being a collection of row vectors or a

collection of column vectors.

A column vector is normally written vertically as a column of numbers. This vertical notation,

however, does not integrate well into the horizontal flow of running text. Therefore, within run-

ning text, we can write column vectors horizontally but with a superscripted T. This means that the

horizontal (row) vector has been written “transposed,” and is actually a vertical column vector.

The following figure shows two different ways of writing a column vector.

It might appear that a row vector and a column vector are essentially identical, since they are

both simply tuples of numbers. However, we must distinguish between row vectors and column

vectors because the orientation (horizontal or vertical) plays an important role in the rules govern-

ing matrix arithmetic, covered later in this chapter.

A Note on the Term “Vector”

In the context of matrix operations, we are using the term “vector” in a new way. In Chapter 5, a

vector was a displacement in space. Here, the term “row vector” or “column vector” refers to a

notational convention used to describe an n-tuple. A row vector or a column vector is a tuple of

numbers written within square brackets and subject to the mathematical rules governing matrix

arithmetic, presented later. A row vector or a column vector can be used as a notation for specify-

ing the 3D points or 3D vectors covered in Chapter 5.

In other words, a column vector (the notation) can be used to describe a 3D vector (a spatial

displacement) or a 3D point (a spatial location). If the meaning of the term “vector” is clear from

the context, we will simply say “vector.” Otherwise, we will explicitly say “row vector” or “col-

umn vector” to refer to the notational convention, and say “2D vector” or “3D vector” to refer to a

spatial displacement.

Writing 3D Points and 3D Vectors in Matrix Notation
In Chapter 5, we wrote points and vectors as ordered lists in parentheses, such as point (x,y,z) or

vector (v1,v2,v3). Now, we introduce a new notation using 4� 1 column vectors to represent 3D

points and 3D vectors. The reason for this change in notation is to allow a consistent notation—

namely, the matrix notation—for expressing and combining points, vectors, and transformations.
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4� 1 matrix or column vector, and a 1� 4 matrix or row
vector.

Figure 6-14: Two equivalent notations for writing a column vector.



The notation is as follows:

� A 3D vector (v1,v2,v3) is written in matrix notation as the 4� 1 column vector [v1,v2,v3,0]T.

� A 3D point (x,y,z) is written in matrix notation as the 4� 1 column vector [x,y,z,1]T. (This is

usually the case, but see below for cases when the fourth coordinate is not 1.)

Notice that we use an additional fourth coordinate in this notation. This fourth coordinate is the

homogeneous coordinate, which has an important significance in 3D graphics and is discussed

below.

The Homogeneous W Coordinate

We mentioned in Chapter 5 that it is important to distinguish between points and vectors: points

are locations; vectors are displacements. (Here we are talking about 3D vectors, not column vec-

tors.) Using matrix notation, we can distinguish between points and vectors by introducing an

extra coordinate, the so-called homogeneous coordinate. Points and vectors in three dimensions

can be naturally expressed with three numbers, as we saw in Chapter 5. The homogeneous coordi-

nate is therefore a fourth coordinate in addition to the x, y, and z values. We call this fourth

coordinate w.

For points, we normally set the homogeneous coordinate to 1. (But see below for an explana-

tion of when w is not 1.) For vectors, we set the homogeneous coordinate to 0.

Notice what happens when we subtract a point from another point using this convention.

Given point p1=[x1,y1,z1,1]T and p2=[x1,y1,z1,1]T, the difference p2–p1 should be a vector,

since a point minus a point yields a vector displacement between the two points, as we saw in

Chapter 5. Performing the component-wise subtraction, we see that p2–p1 =

[x2–x1,y2–y1,z2–z1,1–1]T = [x2–x1,y2–y1,z2–z1,0]T. Notice that after subtraction, the homoge-

neous coordinate is zero. According to our convention, this indicates a vector, not a

point—exactly the expected result from a point-point subtraction. Similarly, we can also verify the

other point-vector rules presented in Chapter 5. Adding two vectors yields a vector, since the

homogeneous coordinate is 0 for both vectors and is thus 0 after addition. Adding a point and a

vector yields a point, since the vector has a w of 0 and the point has a w of 1, yielding a w after addi-

tion of 1—a point.

The Meaning of W

The homogeneous coordinate w is, however, more than just a “flag” signaling if a column vector

[x,y,z,w]T represents a 3D point or a 3D vector. Specifically, the mathematical significance of the

w coordinate is as follows:

� The homogeneous point [x,y,z,w]T corresponds to the 3D point (x/w,y/w,z/w). The term

“homogeneous point” simply refers to the four-coordinate notation for a 3D point or 3D

vector.

That is, given a homogeneous point with an arbitrary value of w (not just 0 or 1), we divide the

other components by w to arrive at the corresponding point in “normal” 3D space. Notice that sev-

eral homogeneous points map to the same 3D point. [3,4,5,1]T, [6,8,10,2]T, or [1.5,2,2.5,0.5]T all

correspond to the 3D point (3,4,5), since (3/1,4/1,5/1) = (6/2,8/2,10/2) = (1.5/0.5, 2/0.5, 2.5/0.5).
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This is the reason for the term “homogeneous coordinates”: several points in 4D space correspond

to one point in 3D space; therefore, by dividing by w, we are homogenizing the 4D space, mapping

several 4D points onto the same 3D point.

In other words, w is simply a divisor. It provides a convenient notation for expressing a

built-in dividing factor into our notation for describing a 3D point. Let us assume for now that

w>0. (This will always be the case for all transformations in this book.) Notice that for values of

w>1, the corresponding 3D (x,y,z) coordinates are smaller than the homogeneous x, y, and z,

because they get divided by a large w value. For 0<w<1, the corresponding 3D (x,y,z) coordinates

are larger than the homogeneous x, y, and z, because they get divided by a fractional w value,

which is effectively a multiplication. (For instance, dividing by 0.25 is the same as multiplying by

4.) For w=1, the corresponding 3D (x,y,z) coordinates are the same as the homogeneous x, y, and z.

TIP Think of the homogeneous coordinate w as the weight of a point.

It is helpful to think of w as the “weight” of a point with respect to a gravitational center at the ori-

gin (0,0,0). For a given homogeneous point [x,y,z,w]T, the larger the weight (w>1), the more the

homogeneous point gets pulled in towards the origin before arriving at the corresponding 3D coor-

dinates. The smaller the weight (0<w<1), the more the homogeneous point gets pushed away from

the origin. For a normal weight (w=1), the homogeneous point is neither pushed nor pulled.

Therefore, a homogeneous point with w=1, such as [x,y,z,1]T, corresponds to the 3D point at

the same coordinates (x,y,z). This is why we said earlier that a 3D point (x,y,z) can be written in

matrix notation as [x,y,z,1]T; dividing by a w of 1 leaves the x, y, and z coordinates unchanged. We

now can see, though, that in actuality any homogeneous point of the form [kx,ky,kz,k]T , for all

non-zero k, would correspond to 3D point (x,y,z).

But what about vectors? We said that a 3D vector (v1,v2,v3) is written in matrix notation as

[v1,v2,v3,0]T. This would correspond to the location in 3D at (v1/0,v2/0,v3/0). We can’t divide by

zero. Is this a contradiction?

Not at all. A 3D vector is not a 3D point, and therefore the homogeneous representation of a

3D vector corresponds to no point in 3D space. A 3D vector represents displacement in 3D space.

Homogeneous points with w=0 are also called “points at infinity,” since a division by zero can be

thought of as a multiplication by infinity. Therefore, a 3D vector represents a particular 3D dis-

placement with a magnitude and direction, and is “located,” if you will, infinitely beyond the

outermost edges of the 3D space. The 3D space itself holds locations; infinitely beyond the 3D

space, where w=0, is where vectors are “located.”

Admittedly, homogeneous coordinates take a while to get used to. If you get confused,

remember just two rules. If you like to think mathematically, w is simply a divisor. If you like to

think geometrically, w is a weight.

Why Homogeneous Coordinates

We use homogeneous coordinates in 3D graphics for several reasons, but three are of primary

importance in this book and in particular in this chapter:
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1. Homogeneous coordinates allow a consistent matrix representation of the three important

geometric transformations—rotation, scaling, and translation. Without homogeneous

coordinates, translation cannot be expressed as a matrix.

2. Homogeneous coordinates allow the perspective transformation, which is a division, to be

expressed as a matrix, since w is a divisor and allows each point to encode its perspective

division within its w coordinate. Other non-linear transformations, involving divisions, can

also be expressed in matrix form through use of homogeneous coordinates.

3. Homogeneous coordinates are often used by 3D graphics hardware, requiring us to provide

the w coordinate in some cases.

Combining Matrices and Column Vectors
We now have an application for 4� 1 column vectors: they can be used to represent 3D points or

vectors. But what about a larger matrix of numbers, which consists of many rows and columns?

What is the purpose, in 3D graphics, of using such matrices?

We use matrices to represent transformations on 3D points represented as column vectors.

Translation, rotation, and scaling may all be represented by a specially structured matrix. In order

to understand this, we must first examine the mathematical operations we can perform with matri-

ces and column vectors. We then can see how matrices can transform one column vector into

another through the use of matrix arithmetic.

Mathematical Operations on Matrices
A number of operations may be defined for manipulating matrices, but two operations are particu-

larly important for 3D graphics: the operation of multiplying a matrix by a scalar, and the

operation of multiplying a matrix by another matrix. The former is referred to as scalar multiplica-

tion; the latter, matrix multiplication or composition. When there is no confusion, we use the

general term “multiplication” to refer to either operation, though the term “composition” refers

solely to the operation of matrix-matrix multiplication.

Scalar-Matrix Multiplication

A scalar, as we saw in Chapter 5, is simply a number—3.5, –87.88153, or the square root of 479

are all examples of scalars. You can think of a scalar as a single value used to scale another value or

set of values. In the case of scalar-matrix multiplication, a scalar is used to uniformly scale all val-

ues in the matrix. Specifically, the result of multiplying a matrix by a scalar is a new matrix, of the

same row-column dimension, whose individual elements are the elements of the original matrix

times the scalar. The following equation illustrates the process for a 4� 4 matrix, but the process is

the same for any size matrix (including row vectors and column vectors).

Equation 6-1 shows an example of scalar-matrix multiplication. The scalar 3 is applied to the

4� 4 matrix. The resulting matrix is the same size (also 4� 4) and its elements are obtained by multi-

plying the corresponding element in the original matrix by the scalar.
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Matrix-Matrix Multiplication, or Composition

A matrix may also be multiplied by another matrix, though this process is slightly more compli-

cated than that of scalar multiplication. Scalar multiplication was simply defined; we could

multiply any matrix by any scalar. However, with matrix-matrix multiplication, we cannot multi-

ply just any matrix by any other matrix. The following rules govern matrix-matrix multiplication:

� Size is important. We may multiply a matrix A with a matrix B (denoted as AB) only if the

number of columns in A equals the number of rows in B. We can say this mathematically, that

matrix A with an arbitrary size m� n (rows� columns) may be multiplied with another matrix B

only if matrix B has dimension n� r. n, the number of rows in B, is the same n, the number of

columns in A, and r is any size.

� If matrix A is m� n, and matrix B is n� r, the dimension of the resulting matrix AB is m� r.

� Order is important. Matrix AB, the result of multiplying A with B, is generally not the same as

matrix BA, the result of multiplying B with A. In fact, BA might not even be defined if the

dimensions of B and A do not allow multiplying B by A.

� In the resultant matrix AB, the scalar entry located at row i and column j is determined by tak-

ing the vector dot product of row i from A and column j from B. Since, by the definition of

matrix multiplication, the number of columns in A is the same as the number of rows in B, row

i from A and column j from B will have the same number of elements, thereby facilitating the

dot product operation.

Example: 4�4 Matrix Times 4�4 Matrix

Let’s look at an example to make the process of matrix-matrix multiplication somewhat more con-

crete. We want to multiply two 4� 4 matrices, A and B. We call the resulting matrix C: C=AB.

The size of the resulting matrix will also be 4� 4. Recall that if matrix A is of size m� n, and

matrix B is of size n� r, the result of multiplying A times B is a matrix of size m� r.

Let us denote the contents of our matrices with subscripted variables: the variable name

denotes the corresponding matrix, the first subscript denotes the column of the entry, and the sec-

ond subscript denotes the row of the entry.
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We know the values a11 through a44 and b11 through b44; they are the “input” matrices we are

multiplying. We wish to determine the values c11 through c44. As a representative example, let us

determine the value for one entry in C, c32; all other values are determined similarly.

c32 is in row 3 and column 2. As we defined earlier, this element in the resultant matrix is

defined by taking the dot product of row 3 in matrix A and column 2 in matrix B:

We compute the dot product of row 3 from A and column 2 from B as defined in Chapter 5: multi-

ply all corresponding elements in the two vectors and add them.

The same process is repeated for all elements of C. Just to make sure it’s all clear, let’s calculate the

value for one other element in C, c11, which is at row 1, column 1. We therefore take the dot prod-

uct of row 1 from A and column 1 from B:

The dot product of row 1 from A and column 1 from B is the value at c11:

Example: 4� 4 Matrix Times 4� 1 Column Vector

We can also multiply a matrix A by a column vector P, since a column vector is after all simply a

one-column matrix. The exact same restrictions and rules apply to the dimensions of the two

matrices A and P; A must have the same number of columns as P has rows. For instance, we could

multiply a 4� 4 matrix by a 4� 1 column vector. The resulting matrix, let us call it Q, is a 4� 1

matrix—the same size as P.

NOTE Notice that we cannot multiply a 4� 4 matrix with a 1� 4 row vector, because the
dimensions of the two matrices are incorrect for matrix multiplication. This is why we stated
earlier that it is important to distinguish between row vectors and column vectors. Although
conceptually each is simply a list of numbers, the orientation determines which matrix opera-
tions we can carry out. Also notice that we could multiply a 1� 4 row vector by a 4� 4
matrix—that is, the multiplication with a row vector is possible if we reverse the order of the
multiplication. To avoid confusion, though, we should choose just one convention and use it
consistently. As stated earlier, we have chosen the column vector notation for this book.
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For example, to calculate element q21 of the resultant matrix, we take the dot product of row 2

from the first matrix A and column 1, which happens to be the only column, of the second matrix

P:

Taking the dot product of row 2 from A and column 1 from P gives q21.

Other elements of Q are determined similarly.

Multiple Matrix Multiplications

We may multiply a series of more than two matrices, yielding one final resultant matrix. For

instance, we might have Z=ABCDEFG.

We evaluate such a series of multiplications by performing the multiplications from right to

left, always using the newly resulting matrix as the right-hand term of the next leftmost matrix.

For instance, we would evaluate the above expression first by multiplying F and G:

Z=ABCDE(FG) After computing this matrix, we then multiply E by the newly obtained result FG:

Z=ABCD(E(FG)) We continue in this manner, yielding a final order of operations of

Z=A(B(C(D(E(FG))))).

NOTE Mathematically, matrix multiplication is commutative, meaning that (AB)C = A(BC).
However, the above right-to-left style of thinking about matrix multiplications makes it easier
to understand the geometrical meaning of multiple transformations expressed by matrices,
as we see later in this chapter.

In general, we must ensure with such a chained multiplication that sizes of all the matrices, includ-

ing the intermediate result matrices, allow for matrix-matrix multiplication. That is to say, the size

of matrix FG must be matrix-multiplication compatible with the size of matrix E. Similarly, the

size of EFG must be compatible with D; the size of DEFG must be compatible with C, and so

forth. In the special case of 3D graphics, we are usually dealing with square matrices of all the

same size—4� 4. Multiplying a 4� 4 matrix with a 4� 4 matrix always yields another 4� 4 matrix as

a result. We therefore do not need to worry about compatibility of matrix sizes for multiple matrix

multiplications.
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The Identity Matrix

A special matrix is the identity matrix. The identity matrix, denoted I, has the property that for a

given matrix A, IA=A. In other words, multiplying a matrix A with the identity matrix results in the

same matrix A.

The identity matrix is a square matrix; that is, its number of rows is equal to the number of col-

umns. Furthermore, the elements along the main diagonal of the matrix (from upper left to lower

right) are all 1; all other elements in the matrix are 0. The 4� 4 identity matrix appears below.

Try multiplying the identity matrix with another 4� 4 matrix or with a 4� 1 column vector to verify

that the matrix remains unchanged.

Matrix Inverse

The inverse of a matrix M is denoted M–1, and is the matrix such that MM–1=I and M–1M=I. In

other words, multiplying a matrix with its inverse yields the identity matrix. For real-valued matri-

ces (the only kind we deal with in this book), if MM–1=I is true, then M–1M=I is also true, and vice

versa. In other words, when finding an inverse, we do not need to verify that the multiplication of

the inverse on both the left and the right yields I; it is enough to verify one or the other.

In general, computing the inverse of a matrix is not necessarily easy; it essentially amounts to

solving a system of simultaneous linear equations. It is also possible that the inverse might not

exist. If the inverse exists, the matrix is said to be invertible.

For some special matrices, the inverse is extremely easy to compute. In particular, a 4� 4

matrix representing a 3D rotation (which we haven’t seen yet, but will develop shortly) can be

inverted simply by taking its transpose, which amounts to swapping the rows and columns of the

matrix. Furthermore, the inverse of a rotation matrix represents the opposite rotation; indeed, the

inverse of any transformation matrix represents the opposite effect of the original transformation.

This is the reason that the matrix inverse is of interest.

TIP The inverse of any transformation matrix represents the opposite transformation.

If the inverse of a transformation matrix does not exist, then this means that the transformation

expressed by the matrix is not reversible. For instance, a matrix consisting of all zeros reduces

every point to the point (0,0,0). Such a matrix is not reversible. As a more realistic example, the

3D-to-2D perspective projection as described in Chapter 5 is also not reversible because the third

dimension (the z coordinate) gets completely flattened into a flat plane; afterwards, it is impossi-

ble to recover the original depth information destroyed by the perspective projection. As we see

later in this chapter, however, there is an alternative formulation of the perspective projection,

called the perspective transformation, which does allow recovery of depth information, and which

is therefore expressed as an invertible matrix.
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NOTE The determinant of a matrix, covered later in this chapter, is a tool for determining
whether a matrix is invertible or not.

Matrix Transpose

The transpose of a matrix M, denoted MT, is obtained by making each row of the original matrix

into a column in a new matrix. The transpose of a 4� 4 matrix is again a 4� 4 matrix. However, the

transpose of a 4� 1 matrix is a 1� 4 matrix, and the transpose of a 1� 4 matrix is a 4� 1 matrix. This is

why we can use the transpose notation to write vertical column vectors using a horizontal notation

within running text: [x,y,z,w]T is the transpose of a horizontal 1� 4 row vector, yielding a vertical

4� 1 column vector. The following equation shows the transpose of a 4� 4 matrix.

As mentioned earlier, the main reason the matrix transpose is interesting is because in certain

cases the transpose of a matrix—which is easy to compute—is also the inverse of the matrix.

The l3d_matrix Class

The following listings present the l3d class for 4� 4 matrices, l3d_matrix. The class contains a

4� 4 array of l3d_real values for storing the matrix elements, and defines a series of operators

conforming to the rules of matrix arithmetic. We use the vertical bar (or pipe, in Linux terminol-

ogy) “|” as the operator for matrix-matrix multiplication.

The entries in the matrix are from type l3d_real. As discussed in Chapter 3, we use the

float_to_l3d_real macro to convert from floating-point values to the real values in the

matrix. To set the values in the matrix, we can either call a constructor with 16 l3d_real values

or with 16 integer values (but we cannot mix the two within one constructor call). Alternatively,

after creation of the matrix, you can use the set method, taking either 16 l3d_real or integer

values, to set all values in the matrix at once. The 16 values are in row-major order; that is, first

you specify the four values left to right in the first row, then the four values from the second row,

then the four values from the third row, and finally the four values form the fourth row.

Note that the matrix-vector multiplication as implemented here omits some computations

based on the structure of typical matrices used in 3D graphics. In particular, when using matrices

to represent translation, rotation, and scaling transformations (which we discuss shortly), then the

bottom row of the matrix will always be [0,0,0,1]. Also, the fourth component of vectors is always

zero. With this knowledge, we can simply omit those terms involving the multiplication by zero,

since their result is zero. It would also be possible to optimize the matrix-matrix multiplication in

this manner. The danger with this sort of optimization is that matrices not conforming to this spe-

cial structure would be incorrectly multiplied.

To access a particular element in the matrix, use the variable a of the matrix object, which is a

4� 4 array of l3d_real values. The first index of the array references the column; the second

index, the row.
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Listing 6-3 is a sample program illustrating the use of the matrix classes by declaring and mul-

tiplying some random matrices. Run the program and verify the math by hand to test your

understanding of matrix math.

All functions beginning with the prefix l3d_mat_ represent matrix forms of important geo-

metric transformations. We’ll cover these functions and their derivation shortly.

Listing 6-1: matrix.h
#ifndef __MATRIX_H
#define __MATRIX_H
#include "../tool_os/memman.h"

#include <stdio.h>
#include <math.h>
#include "../system/sys_dep.h"
#include "math_fix.h"
#include "sincos.h"
#include "vector.h"
#include "../geom/point/point.h"

class l3d_matrix {
public:
l3d_matrix(void);
l3d_matrix(l3d_real a00,l3d_real a01,l3d_real a02,l3d_real a03,

l3d_real a10,l3d_real a11,l3d_real a12,l3d_real a13,
l3d_real a20,l3d_real a21,l3d_real a22,l3d_real a23,
l3d_real a30,l3d_real a31,l3d_real a32,l3d_real a33);

l3d_matrix(int a00,int a01,int a02,int a03,
int a10,int a11,int a12,int a13,
int a20,int a21,int a22,int a23,
int a30,int a31,int a32,int a33);

l3d_matrix(const l3d_matrix &right);
const l3d_matrix &set(l3d_real a00,l3d_real a01,l3d_real a02,l3d_real a03,

l3d_real a10,l3d_real a11,l3d_real a12,l3d_real a13,
l3d_real a20,l3d_real a21,l3d_real a22,l3d_real a23,
l3d_real a30,l3d_real a31,l3d_real a32,l3d_real a33);

const l3d_matrix &set(int a00,int a01,int a02,int a03,
int a10,int a11,int a12,int a13,
int a20,int a21,int a22,int a23,
int a30,int a31,int a32,int a33);

l3d_matrix &operator = (const l3d_matrix &right);

void print(void)
{
int i,j;
for(j=0;j<4;j++) {
for(i=0;i<4;i++) {
printf("%f ", l3d_real_to_float(a[j][i]));

}
printf("");

}
};

l3d_real a[4][4];
};

extern l3d_matrix &l3d_get_matrix_temp(void);
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//- useful defines for accessing matrix elements occurring in standard
//- positions for l3d_vector:

#define X_ a[0]
#define Y_ a[1]
#define Z_ a[2]
#define W_ a[3]

#define U_ a[0]
#define V_ a[1]
#define N_ a[2]

inline l3d_matrix::l3d_matrix() {

a[0][0]=0; a[0][1]=0; a[0][2]=0; a[0][3]=0;
a[1][0]=0; a[1][1]=0; a[1][2]=0; a[1][3]=0;
a[2][0]=0; a[2][1]=0; a[2][2]=0; a[2][3]=0;
a[3][0]=0; a[3][1]=0; a[3][2]=0; a[3][3]=0;

}

inline l3d_matrix::l3d_matrix(l3d_real a00,l3d_real a01,l3d_real a02,l3d_real a03,
l3d_real a10,l3d_real a11,l3d_real a12,l3d_real a13,
l3d_real a20,l3d_real a21,l3d_real a22,l3d_real a23,
l3d_real a30,l3d_real a31,l3d_real a32,l3d_real a33)

{
a[0][0]=a00; a[0][1]=a01; a[0][2]=a02; a[0][3]=a03;
a[1][0]=a10; a[1][1]=a11; a[1][2]=a12; a[1][3]=a13;
a[2][0]=a20; a[2][1]=a21; a[2][2]=a22; a[2][3]=a23;
a[3][0]=a30; a[3][1]=a31; a[3][2]=a32; a[3][3]=a33;

}

inline l3d_matrix::l3d_matrix(int a00,int a01,int a02,int a03,
int a10,int a11,int a12,int a13,
int a20,int a21,int a22,int a23,
int a30,int a31,int a32,int a33)

{
a[0][0]=int_to_l3d_real(a00); a[0][1]=int_to_l3d_real(a01);
a[0][2]=int_to_l3d_real(a02); a[0][3]=int_to_l3d_real(a03);

a[1][0]=int_to_l3d_real(a10); a[1][1]=int_to_l3d_real(a11);
a[1][2]=int_to_l3d_real(a12); a[1][3]=int_to_l3d_real(a13);

a[2][0]=int_to_l3d_real(a20); a[2][1]=int_to_l3d_real(a21);
a[2][2]=int_to_l3d_real(a22); a[2][3]=int_to_l3d_real(a23);

a[3][0]=int_to_l3d_real(a30); a[3][1]=int_to_l3d_real(a31);
a[3][2]=int_to_l3d_real(a32); a[3][3]=int_to_l3d_real(a33);

}

inline l3d_matrix::l3d_matrix(const l3d_matrix &right) {
a[0][0]=right.a[0][0]; a[0][1]=right.a[0][1];
a[0][2]=right.a[0][2]; a[0][3]=right.a[0][3];

a[1][0]=right.a[1][0]; a[1][1]=right.a[1][1];
a[1][2]=right.a[1][2]; a[1][3]=right.a[1][3];

a[2][0]=right.a[2][0]; a[2][1]=right.a[2][1];
a[2][2]=right.a[2][2]; a[2][3]=right.a[2][3];
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a[3][0]=right.a[3][0]; a[3][1]=right.a[3][1];
a[3][2]=right.a[3][2]; a[3][3]=right.a[3][3];

}

inline l3d_matrix &l3d_matrix::operator = (const l3d_matrix &right) {
a[0][0]=right.a[0][0]; a[0][1]=right.a[0][1];
a[0][2]=right.a[0][2]; a[0][3]=right.a[0][3];

a[1][0]=right.a[1][0]; a[1][1]=right.a[1][1];
a[1][2]=right.a[1][2]; a[1][3]=right.a[1][3];

a[2][0]=right.a[2][0]; a[2][1]=right.a[2][1];
a[2][2]=right.a[2][2]; a[2][3]=right.a[2][3];

a[3][0]=right.a[3][0]; a[3][1]=right.a[3][1];
a[3][2]=right.a[3][2]; a[3][3]=right.a[3][3];

return *this;
}

inline const l3d_matrix &l3d_matrix::set(l3d_real a00,l3d_real a01,l3d_real a02,l3d_real a03,
l3d_real a10,l3d_real a11,l3d_real a12,l3d_real a13,
l3d_real a20,l3d_real a21,l3d_real a22,l3d_real a23,
l3d_real a30,l3d_real a31,l3d_real a32,l3d_real a33)

{
a[0][0]=a00; a[0][1]=a01; a[0][2]=a02; a[0][3]=a03;
a[1][0]=a10; a[1][1]=a11; a[1][2]=a12; a[1][3]=a13;
a[2][0]=a20; a[2][1]=a21; a[2][2]=a22; a[2][3]=a23;
a[3][0]=a30; a[3][1]=a31; a[3][2]=a32; a[3][3]=a33;

return *this;
}

inline const l3d_matrix &l3d_matrix::set(int a00,int a01,int a02,int a03,
int a10,int a11,int a12,int a13,
int a20,int a21,int a22,int a23,
int a30,int a31,int a32,int a33)

{
a[0][0]=int_to_l3d_real(a00); a[0][1]=int_to_l3d_real(a01);
a[0][2]=int_to_l3d_real(a02); a[0][3]=int_to_l3d_real(a03);

a[1][0]=int_to_l3d_real(a10); a[1][1]=int_to_l3d_real(a11);
a[1][2]=int_to_l3d_real(a12); a[1][3]=int_to_l3d_real(a13);

a[2][0]=int_to_l3d_real(a20); a[2][1]=int_to_l3d_real(a21);
a[2][2]=int_to_l3d_real(a22); a[2][3]=int_to_l3d_real(a23);

a[3][0]=int_to_l3d_real(a30); a[3][1]=int_to_l3d_real(a31);
a[3][2]=int_to_l3d_real(a32); a[3][3]=int_to_l3d_real(a33);

return *this;
}

inline l3d_matrix& operator |(const l3d_matrix &l, const l3d_matrix &r) {
l3d_matrix &res = l3d_get_matrix_temp();

res.set(l3d_mulrr(l.a[0][0],r.a[0][0])
+l3d_mulrr(l.a[0][1],r.a[1][0])
+l3d_mulrr(l.a[0][2],r.a[2][0])
+l3d_mulrr(l.a[0][3],r.a[3][0]),
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l3d_mulrr(l.a[0][0],r.a[0][1])
+l3d_mulrr(l.a[0][1],r.a[1][1])
+l3d_mulrr(l.a[0][2],r.a[2][1])
+l3d_mulrr(l.a[0][3],r.a[3][1]),
l3d_mulrr(l.a[0][0],r.a[0][2])
+l3d_mulrr(l.a[0][1],r.a[1][2])
+l3d_mulrr(l.a[0][2],r.a[2][2])
+l3d_mulrr(l.a[0][3],r.a[3][2]),
l3d_mulrr(l.a[0][0],r.a[0][3])
+l3d_mulrr(l.a[0][1],r.a[1][3])
+l3d_mulrr(l.a[0][2],r.a[2][3])
+l3d_mulrr(l.a[0][3],r.a[3][3]),
l3d_mulrr(l.a[1][0],r.a[0][0])
+l3d_mulrr(l.a[1][1],r.a[1][0])
+l3d_mulrr(l.a[1][2],r.a[2][0])
+l3d_mulrr(l.a[1][3],r.a[3][0]),
l3d_mulrr(l.a[1][0],r.a[0][1])
+l3d_mulrr(l.a[1][1],r.a[1][1])
+l3d_mulrr(l.a[1][2],r.a[2][1])
+l3d_mulrr(l.a[1][3],r.a[3][1]),
l3d_mulrr(l.a[1][0],r.a[0][2])
+l3d_mulrr(l.a[1][1],r.a[1][2])
+l3d_mulrr(l.a[1][2],r.a[2][2])
+l3d_mulrr(l.a[1][3],r.a[3][2]),
l3d_mulrr(l.a[1][0],r.a[0][3])
+l3d_mulrr(l.a[1][1],r.a[1][3])
+l3d_mulrr(l.a[1][2],r.a[2][3])
+l3d_mulrr(l.a[1][3],r.a[3][3]),
l3d_mulrr(l.a[2][0],r.a[0][0])
+l3d_mulrr(l.a[2][1],r.a[1][0])
+l3d_mulrr(l.a[2][2],r.a[2][0])
+l3d_mulrr(l.a[2][3],r.a[3][0]),
l3d_mulrr(l.a[2][0],r.a[0][1])
+l3d_mulrr(l.a[2][1],r.a[1][1])
+l3d_mulrr(l.a[2][2],r.a[2][1])
+l3d_mulrr(l.a[2][3],r.a[3][1]),
l3d_mulrr(l.a[2][0],r.a[0][2])
+l3d_mulrr(l.a[2][1],r.a[1][2])
+l3d_mulrr(l.a[2][2],r.a[2][2])
+l3d_mulrr(l.a[2][3],r.a[3][2]),
l3d_mulrr(l.a[2][0],r.a[0][3])
+l3d_mulrr(l.a[2][1],r.a[1][3])
+l3d_mulrr(l.a[2][2],r.a[2][3])
+l3d_mulrr(l.a[2][3],r.a[3][3]),
l3d_mulrr(l.a[3][0],r.a[0][0])
+l3d_mulrr(l.a[3][1],r.a[1][0])
+l3d_mulrr(l.a[3][2],r.a[2][0])
+l3d_mulrr(l.a[3][3],r.a[3][0]),
l3d_mulrr(l.a[3][0],r.a[0][1])
+l3d_mulrr(l.a[3][1],r.a[1][1])
+l3d_mulrr(l.a[3][2],r.a[2][1])
+l3d_mulrr(l.a[3][3],r.a[3][1]),
l3d_mulrr(l.a[3][0],r.a[0][2])
+l3d_mulrr(l.a[3][1],r.a[1][2])
+l3d_mulrr(l.a[3][2],r.a[2][2])
+l3d_mulrr(l.a[3][3],r.a[3][2]),
l3d_mulrr(l.a[3][0],r.a[0][3])
+l3d_mulrr(l.a[3][1],r.a[1][3])
+l3d_mulrr(l.a[3][2],r.a[2][3])
+l3d_mulrr(l.a[3][3],r.a[3][3]));
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return res;
}

inline l3d_vector &operator |(const l3d_matrix &l, const l3d_vector &r) {
l3d_vector &res = l3d_get_vector_temp();

res.set(
l3d_mulrr( l.a[0][0],r.a[0]) +
l3d_mulrr( l.a[0][1],r.a[1]) +
l3d_mulrr( l.a[0][2],r.a[2]) ,
//- r.a[3] is 0 for our vectors: +l3d_mulrr( l.a[0][3],r.a[3]),
l3d_mulrr( l.a[1][0],r.a[0]) +
l3d_mulrr( l.a[1][1],r.a[1]) +
l3d_mulrr( l.a[1][2],r.a[2]) ,
//- r.a[3] is 0 for our vectors: l3d_mulrr( l.a[1][3],r.a[3]),
l3d_mulrr( l.a[2][0],r.a[0]) +
l3d_mulrr( l.a[2][1],r.a[1]) +
l3d_mulrr( l.a[2][2],r.a[2]) ,
//- r.a[3] is 0 for our vectors: l3d_mulrr( l.a[2][3],r.a[3]),

//- l.a[3][0] is 0 for our matrices: l3d_mulrr( l.a[3][0],r.a[0]) +
//- l.a[3][1] is 0 for our matrices: l3d_mulrr( l.a[3][1],r.a[1]) +
//- l.a[3][2] is 0 for our matrices: l3d_mulrr( l.a[3][2],r.a[2]) +
l3d_mulrr( l.a[3][3],r.a[3]) ) ;

return res;
}

inline l3d_matrix& operator * (const l3d_matrix &l,
const l3d_real aScalar)

{
l3d_matrix &res = l3d_get_matrix_temp();
res.set (
l3d_mulrr( l.a[0][0] , aScalar),
l3d_mulrr( l.a[0][1] , aScalar),
l3d_mulrr( l.a[0][2] , aScalar),
l3d_mulrr( l.a[0][3] , aScalar),

l3d_mulrr( l.a[1][0] , aScalar),
l3d_mulrr( l.a[1][1] , aScalar),
l3d_mulrr( l.a[1][2] , aScalar),
l3d_mulrr( l.a[1][3] , aScalar),

l3d_mulrr( l.a[2][0] , aScalar),
l3d_mulrr( l.a[2][1] , aScalar),
l3d_mulrr( l.a[2][2] , aScalar),
l3d_mulrr( l.a[2][3] , aScalar),

l3d_mulrr( l.a[3][0] , aScalar),
l3d_mulrr( l.a[3][1] , aScalar),
l3d_mulrr( l.a[3][2] , aScalar),
l3d_mulrr( l.a[3][3] , aScalar)) ;

return res;
}

inline l3d_matrix &l3d_mat_translate(l3d_real x, l3d_real y, l3d_real z) {
l3d_matrix &res = l3d_get_matrix_temp();

res.set(int_to_l3d_real(1),int_to_l3d_real(0),int_to_l3d_real(0),x,
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int_to_l3d_real(0),int_to_l3d_real(1),int_to_l3d_real(0),y,
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(1),z,
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(1) );

return res;
}

inline l3d_matrix &l3d_mat_scale(l3d_real x, l3d_real y, l3d_real z) {
l3d_matrix &res = l3d_get_matrix_temp();

res.set(int_to_l3d_real(x),int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(0),
int_to_l3d_real(0),int_to_l3d_real(y),int_to_l3d_real(0),int_to_l3d_real(0),
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(z),int_to_l3d_real(0),
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(1) );

return res;
}

inline l3d_matrix &l3d_mat_rotx(int theta) {
l3d_matrix &res = l3d_get_matrix_temp();

res.set ( int_to_l3d_real(1),int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(0),
int_to_l3d_real(0),cos_lu[theta],-sin_lu[theta],int_to_l3d_real(0),
int_to_l3d_real(0),sin_lu[theta],cos_lu[theta],int_to_l3d_real(0),
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(1) );

return res;
}

inline l3d_matrix &l3d_mat_roty(int theta) {
l3d_matrix &res = l3d_get_matrix_temp();

res.set(cos_lu[theta],int_to_l3d_real(0),sin_lu[theta],int_to_l3d_real(0),
int_to_l3d_real(0),int_to_l3d_real(1),int_to_l3d_real(0),int_to_l3d_real(0),
-sin_lu[theta],int_to_l3d_real(0),cos_lu[theta],int_to_l3d_real(0),
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(1) );

return res;
}

inline l3d_matrix &l3d_mat_rotz(int theta) {
l3d_matrix &res = l3d_get_matrix_temp();

res.set(cos_lu[theta],-sin_lu[theta],int_to_l3d_real(0),int_to_l3d_real(0),
sin_lu[theta],cos_lu[theta],int_to_l3d_real(0),int_to_l3d_real(0),
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(1),int_to_l3d_real(0),
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(1));

return res;
}

inline l3d_matrix &l3d_mat_rotu(const l3d_vector &u, int theta) {
l3d_matrix &res = l3d_get_matrix_temp();

res.set
(l3d_mulrr(u.X_,u.X_) + l3d_mulrr(cos_lu[theta], int_to_l3d_real(1)-l3d_mulrr(u.X_,u.X_)),
l3d_mulrr(l3d_mulrr(u.X_,u.Y_) , int_to_l3d_real(1)-cos_lu[theta])-l3d_mulrr(u.Z_,sin_lu[theta]),
l3d_mulrr(l3d_mulrr(u.Z_,u.X_) , int_to_l3d_real(1)-cos_lu[theta])+l3d_mulrr(u.Y_,sin_lu[theta]),
int_to_l3d_real(0),

l3d_mulrr(l3d_mulrr(u.X_,u.Y_) , int_to_l3d_real(1)-cos_lu[theta])+l3d_mulrr(u.Z_,sin_lu[theta]),
l3d_mulrr(u.Y_,u.Y_) + l3d_mulrr(cos_lu[theta], int_to_l3d_real(1)-l3d_mulrr(u.Y_,u.Y_)),
l3d_mulrr(l3d_mulrr(u.Y_,u.Z_), int_to_l3d_real(1)-cos_lu[theta]) - l3d_mulrr(u.X_,sin_lu[theta]),
int_to_l3d_real(0),

l3d_mulrr(l3d_mulrr(u.Z_,u.X_), int_to_l3d_real(1)-cos_lu[theta]) - l3d_mulrr(u.Y_,sin_lu[theta]),
l3d_mulrr(l3d_mulrr(u.Y_,u.Z_), int_to_l3d_real(1)-cos_lu[theta]) + l3d_mulrr(u.X_,sin_lu[theta]),
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l3d_mulrr(u.Z_,u.Z_) + l3d_mulrr(cos_lu[theta], int_to_l3d_real(1)-l3d_mulrr(u.Z_,u.Z_)),
int_to_l3d_real(0),

int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1) );

return res;
}

inline l3d_point &operator |(const l3d_matrix &l, const l3d_point &r) {
l3d_point &res = l3d_get_point_temp();

res.set(
l3d_mulrr( l.a[0][0],r.a[0]) +
l3d_mulrr( l.a[0][1],r.a[1]) +
l3d_mulrr( l.a[0][2],r.a[2]) +
//- r.a[3] is normally 1 for points: l3d_mulrr( l.a[0][3],r.a[3]),
l.a[0][3] ,
l3d_mulrr( l.a[1][0],r.a[0]) +
l3d_mulrr( l.a[1][1],r.a[1]) +
l3d_mulrr( l.a[1][2],r.a[2]) +
//- r.a[3] is normally 1 for points: l3d_mulrr( l.a[1][3],r.a[3]),
l.a[1][3],
l3d_mulrr( l.a[2][0],r.a[0]) +
l3d_mulrr( l.a[2][1],r.a[1]) +
l3d_mulrr( l.a[2][2],r.a[2]) +
//- r.a[3] is normally 1 for points: l3d_mulrr( l.a[2][3],r.a[3]),
l.a[2][3],
//- l.a[3][0] is 0 for our matrices: l3d_mulrr( l.a[3][0],r.a[0]) +
//- l.a[3][1] is 0 for our matrices: l3d_mulrr( l.a[3][1],r.a[1]) +
//- l.a[3][2] is 0 for our matrices: l3d_mulrr( l.a[3][2],r.a[2]) +
l3d_mulrr( l.a[3][3],r.a[3]) ) ;

return res;
}

#endif

Listing 6-2: matrix.cc
#include "matrix.h"
#include "../tool_os/memman.h"

const int l3d_max_matrix_temp = 15;
l3d_matrix &l3d_get_matrix_temp(void) {
static int nbuf=0;
static l3d_matrix buf[l3d_max_matrix_temp];

if(nbuf>=l3d_max_matrix_temp) nbuf=0;
return buf[nbuf++];

}

Listing 6-3: Sample program demonstrating matrix multiplication, matmul.cc
#include <stdio.h>

#include "math/matrix.h"

int main(int argc, char *argv[]) {
l3d_matrix a, b, c;
l3d_point p;
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a.set(2,0,0,0,
0,2,0,0,
0,0,2,0,
0,0,0,1);

b.set(float_to_l3d_real(1.1),
float_to_l3d_real(2.2),
float_to_l3d_real(3.3),
float_to_l3d_real(4.4),
float_to_l3d_real(5.5),
float_to_l3d_real(6.6),
float_to_l3d_real(7.7),
float_to_l3d_real(8.8),
float_to_l3d_real(9.9),
float_to_l3d_real(10.10),
float_to_l3d_real(11.11),
float_to_l3d_real(12.12),
float_to_l3d_real(13.13),
float_to_l3d_real(14.14),
float_to_l3d_real(15.15),
float_to_l3d_real(16.16)) ;

p.set(5,6,7,1);

printf("matrix a is:");
a.print();

printf("b is:");
b.print();

printf("a|b is:");
(a|b).print();

printf("c=a|b is:");
c = a | b;
c.print();

printf("b|a is:");
(b|a).print();

printf("p is:");
p.print();

printf("|p is:");
(a|p).print();

printf("|b|p is:");
(a|b|p).print();

printf("|p is:");
(c|p).print();

printf("|a|p is:");
(b|a|p).print();

printf("c*2 is:");
(c * int_to_l3d_real(2)).print();

printf("c*2|p is:");
(c*int_to_l3d_real(2)|p).print();

}
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What’s All This Got to Do with 3D Graphics?

It’s time to build some practical examples in 3D graphics upon the preceding mathematical

foundation.

We mentioned earlier that we can use column vectors of dimension 4� 1 to represent 3D

points. We also saw that if we multiply a 4� 4 matrix A with a 4� 1 column vector P, we obtain a

new 4� 1 column vector Q, the same size as the original column vector P. From a functional point

of view, we can therefore view the column vector Q as a transformed copy of the original column

vector P. The individual numbers within the 4� 4 matrix A combined with the rules for matrix mul-

tiplication define exactly how the elements of P get transformed into the elements of Q.

Furthermore, we also saw that we can multiply several matrices together by recursively

applying the multiplication rule for two matrices. If we multiply an arbitrary sequence of 4� 4

matrices together, we always obtain a 4� 4 matrix as a result. We can therefore construct a long

chain of matrices to be multiplied as follows.

Each of the matrices A, B, C, D, E, and F is 4� 4; multiplying them all gives a 4� 4 matrix; and mul-

tiplying this by the 4� 1 column vector P, representing a point, yields a transformed 4� 1 column

vector Q, representing the location of the transformed point. The transformation going from P to

Q is defined by the combined effect of all of the matrices A through F, applied in the order F, E, D,

C, B, A (because of the multiplication order we defined for matrices).

Importantly, notice that the combined effect of several transformation matrix multiplications

can be achieved by first multiplying all transformation matrices together to obtain one composite

transformation matrix, then using this one composite matrix to transform one or several points. If

we have to apply five transformations to 1000 points, we don’t need to do 5000 matrix multiplica-

tions (5*1000), but instead only 1005 (5+1000): first we combine all five transformations into one

composite matrix, then multiply this composite matrix with each of the 1000 points. One matrix

can therefore embody several transformations: for instance, a scale, a rotation, a translation,

another scale, and finally a perspective projection can all be represented with one single transfor-

mation matrix, obtained by multiplying the individual transformation matrices together. We see

examples of such combined transformation matrices later in this chapter.

You can think of a 4� 4 transformation matrix A as the mathematical equivalent of a subrou-

tine. This subroutine takes point P as its input, performs some transformation specified entirely

with the contents of A (which might consist of several individual transformations strung together

into one), and returns a new point Q as output.

Consider again the multiplication between a matrix and a column vector illustrated in Equa-

tion 6-7. The vector [p11,p21,p31,p41]T can be interpreted as the original or old location of a 3D

homogeneous point [x,y,z,w]T. The elements [q11,q21,q31,q41]T can be interpreted as the new

location of the point. Then, if you perform the matrix multiplication, notice that you can interpret

the elements of the matrix as follows:
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� a11 controls how much of the old x appears in the new x.

� a12 controls how much of the old y appears in the new x.

� a13 controls how much of the old z appears in the new x.

� a14 controls how much of the old w appears in the new x; if w=1, then proper translation

occurs (see next section).

� a21 controls how much of the old x appears in the new y.

� a22 controls how much of the old y appears in the new y.

� a23 controls how much of the old z appears in the new y.

� a24 controls how much of the old w appears in the new y.

The rest of the elements of the matrix are interpreted in the same manner.

To summarize, we use 4� 1 column vectors to represent 3D points and vectors, and we use 4� 4

matrices to represent transformations. We use the operation of matrix-matrix multiplication to

multiply a 4� 4 matrix or a series of 4� 4 matrices by a 4� 1 column vector P. The result of such a

matrix-matrix multiplication is a new transformed 4� 1 column vector Q.

With this understanding of matrices and transformations, we can now understand the

l3d_coordinate::transform method which was left unexplained in Chapter 2. This

method simply takes the current position of an l3d_coordinate, as stored in the trans-
formed member variable, and applies a given transformation (passed as parameter m) to the

point by performing a matrix multiplication of m with transformed, again storing the new

result in member variable transformed.

Mathematical Equations for Translation, Rotation, and
Scaling

We now have a framework within which we can represent 3D points, 3D vectors, and transforma-

tions as matrices. We also know that a 4� 4 matrix can transform a 3D point. Let us now develop

some specific 4� 4 transformation matrices which have a physical significance: the transforma-

tions to translate, rotate, and scale a 3D point. In the following sections we will first develop each

individual transformation without matrices, to understand the underlying physical and geometri-

cal idea. We then develop a matrix version of the transformation which we can apply to a 3D point

through the use of a matrix-matrix multiplication.

Translation

Translating a point means moving a point from its current position to a new position which is spec-

ified in terms of offsets in the x, y, and z axis directions.

Expressed without Matrices

Mathematically, we say that for a given 3D point (x,y,z), and for given 3D offsets tx, ty, and tz, the

translated point is obtained by adding the offsets to the point’s coordinates. Therefore the trans-

lated point in 3D is located at (x+tx,y+ty,z+tz). We may mathematically denote this translation as

T(tx,ty,tz).
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Expressed in Matrix Form

To write translation in matrix form, we first represent the point (x,y,z) as a 4� 1 column vector.

Then, the translation T(tx,ty,tz) is the following 4� 4 matrix.

If we multiply the translation matrix by the point [x,y,z,1]T, we obtain the new translated point

[x+tx,y+ty,z+tz,1]T.

Try this matrix-vector multiplication for yourself and verify that the resulting point is in fact as

stated above. Notice that if you try the same multiplication with the homogeneous coordinate set

to 0, i.e., using [x,y,z,0]T, you will see that the result is the same: [x,y,z,0]T. Therefore, we see that

the homogeneous coordinate needs to be present, and needs to be 1 in order for translation

expressed as a matrix to work.

NOTE We stated earlier that a homogeneous coordinate of 0 corresponds to a vector. A
vector, as we saw in the last chapter, has a magnitude and direction, but no position. There-
fore, trying to translate a vector—that is, trying to change its position—yields the same vector.

The l3d_mat_translate Function

The function l3d_mat_translate, which we saw earlier in Listing 6-1, constructs a transla-

tion matrix. As input, the function takes three parameters representing the translational offsets in

the x, y, and z directions. As output, the function returns a translation matrix having the form

described in the previous section, so that multiplication of a column vector with this matrix trans-

lates the point represented by the column vector.

Rotation

Rotation of a 3D point is moving it in a circle perpendicular to and with center on the x, y, or z axis.

(Later we see how to rotate about an arbitrary axis, which is more complicated.)
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Equation 6-14
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Expressed without Matrices

For a 3D point (x0,y0,z0), we geometrically define the rotations about the x, y, and z axes as

follows:

� Rotation about x axis: Moving a point along the circle which lies in the 2D plane x=x0 and

whose center is (x0,0,0).

� Rotation about y axis: Moving a point along the circle which lies in the 2D plane y=y0 and

whose center is (0,y0,0).

� Rotation about z axis: Moving a point along the circle which lies in the 2D plane z=z0 and

whose center is (0,0,z0).

From geometry, we know that a circle is defined as the set of all points in a plane a fixed distance r

from a given center point. Let us consider the case of rotation of a point (x,y,z) around the z axis, as

shown in Figure 6-15. The center point of the circle is (0,0,z); the plane within which the circle lies

is z=z0. The radius of the circle is the distance from the circle’s center point (0,0,z) to any and

every point on the circle. The given point to be rotated (x,y,z) must lie on the circle, and thus we

define the radius of the circle as the distance from center (0,0,z) to point (x,y,z). Let us call the cir-

cle’s radius r. We do not calculate r because, as we will see shortly, the actual value of r does not

appear in the final rotation equations and matrices. (The radius can be computed with the distance

formula from Chapter 5.)

The z axis has been eliminated from the diagram for simplicity; illustrated is the circle of rota-

tion in the plane z=2. The original point is p0 with coordinates (x,y,z). We wish to rotate this point

by an angle � around the z axis to find the new point p1 at (x',y',z'). With respect to the axis of rota-

tion, the z axis, the rotation is in the clockwise direction, which corresponds to the left-hand rule.
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Figure 6-15: Rotation of a point in
3D space around the z axis. The z
axis is not shown and is pointing
straight into the paper. Notice that
the z coordinate for both the old
point and the new point are the
same.



However, in this diagram, we are looking along the opposite direction along the axis of rotation

(looking outward away from the origin instead of toward the origin), which is why the rotation

appears to be counterclockwise in the diagram.

Let us call the angle between the original point p0 and the x axis � (written “phi”). If we form

two right triangles as shown in Figure 6-15, then we can define the cosine and sine of angle � in

terms of the coordinates of p0 and r, the radius of the circle of rotation:

We can furthermore express the coordinates x' and y' of the new point in terms of the angle � +� ,

which is the combined angle of rotation starting at zero degrees. (Recall, we do not need to com-

pute a new z coordinate for p1 since rotation is about the z axis and therefore the z coordinate is

identical for p0 and p1.) By doing this and utilizing the previous expressions for cos� and sin� ,we

obtain the following equations for the new coordinates after rotation.

NOTE Notice that for the development of these equations we use the trigonometric expan-
sions for the terms cos(� +� )=cos� cos� – sin� sin� , and sin(� +� )=sin� cos� + cos� sin� .

A similar development for rotations around the y and z axes yields the following results.

Equation 6-18 shows rotation around the y axis, where y stays the same and we calculate new val-

ues for x and z.

Equation 6-19 shows rotation around the x axis, where x stays the same and we calculate new val-

ues for y and z.

Chapter 6: Matrices and Transformations 339

Equation 6-16

Equation 6-17

Equation 6-18
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TIP You can interpret the rotation equation y'=x*sin� + y*cos� as meaning: how much of
the old x would you like in the new y, and how much of the old y would you like in the new y?
Since the sine and cosine functions are 90 degrees displaced from one another, one goes up
while the other goes down. Similar logic applies for all of the other rotation equations.

Expressed in Matrix Form

The above equations for rotation treat each coordinate of the new point separately; that is, a for-

mula is provided for the new x, y, and/or z coordinate. If we express the rotation as a matrix, we can

think of the operation as a whole—“rotation” (expressed as a matrix) of a “point” (expressed as a

column vector).

Let us use the term Rx(� ) to denote the matrix which rotates a point by an angle � around the x

axis, similarly for Ry(� ) and Rz(� ). Assuming we express the 3D point to be rotated as a 4� 1 col-

umn vector, we obtain the following rotation matrices from the separate rotation formulas

developed in the previous section.

As verification of the above, if we multiply the matrix Rx(� ) by the point [x,y,z,1]T, we obtain the

new rotated point exactly as derived above:

Similarly, multiplication with matrices Ry(� ) and Rz(� ) yields exactly the results of the non-matrix

forms of the rotation equations developed earlier.

As a final verification that the above rotation formulas really work, you can try multiplying

the rotation matrix Rz(90°) by the point [1,0,0,1]T, which is one unit along the positive x axis. You

should obtain the new point [0,1,0,1]T, which is one unit along the positive y axis. This is the result

of rotating the original point 90° in the positive direction (for a left-handed system, clockwise)

around the z axis.
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The l3d_mat_rotx, l3d_mat_roty, and l3d_mat_rotz Functions

The functionsl3d_mat_rotx,l3d_mat_roty, andl3d_mat_rotz, which we saw earlier

in Listing 6-1, construct rotation matrices for rotating around the x, y, and z axes, respectively. As

input, the functions take a single parameter � representing the number of degrees by which the

point should be rotated. As we discussed earlier in this chapter when we introduced rotation, a

positive angle � represents a clockwise rotation when looking along the axis of rotation from its tip

towards its base. As output, the functions return a rotation matrix which, when multiplied with a

column vector, rotate the column vector by � degrees around the appropriate axis.

Scaling

To scale a 3D point is to multiply by a factor s the point’s distance from the origin along the x, y,

and z axes. For a uniform scaling, we scale x, y, and z by the same amounts; for a non-uniform scal-

ing, we scale them by different amounts.

Expressed without Matrices

Remembering the relationship between points and vectors (Chapter 5), we know that the coordi-

nates of a point represent its displacement from the origin. Since scaling a point means scaling the

displacement from the origin, we simply multiply x, y, and z by scaling factors, which might be all

the same for a uniform scaling, but which may all be different in the case of a non-uniform scaling.

Let us call the coordinates of the scaled point (x',y',z'). Given scaling factors of sx, sy, and sz
for the three coordinate axes, the following formulas perform scaling about the origin:

We use the term S(sx,sy,sz) to denote the scaling operation.

Expressed in Matrix Form

Scaling expressed in matrix form is as follows:

Multiplying this matrix by a column vector, you can see that the x component gets multiplied by

sx, the y component by sy, and the z component by sz.

The l3d_mat_scale Function

The function l3d_mat_scale, which we saw earlier in Listing 6-1, constructs a scaling matrix

for scaling about the origin. As input, the function takes three parameters for the scaling factor in

the x, y, and z directions. As output, the function returns a scaling matrix which, when multiplied

with a column vector, scales the column vector by the given amounts in the x, y, and z directions.
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Sample Program: Rotspikes
The following sample program, rotspikes, illustrates the use of rotation matrices. It is similar

to the programspikes from Chapter 5, in that spike-shaped objects fly towards the viewer. Here,

however, the spikes also have a random rotational velocity in the x, y, and z directions. The spikes

thus appear to be tumbling toward the viewer instead of flying straight ahead. This effect could be

used, for instance, to simulate flying debris coming from an explosion.

Listing 6-4: rotspikes.cc
#include <stdlib.h>
#include <stdio.h>

#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/system/factorys.h"

#include "../lib/geom/point/point.h"
#include "../lib/math/vector.h"
#include "../lib/math/matrix.h"

#define MAXSPIKES 150
#define PI 3.14159265

unsigned long red_color;
unsigned long green_color;
unsigned long blue_color;

//- STEP 1: CHOOSE THE FACTORIES

void choose_factories(void) {
factory_manager_v_0_1.choose_factories();

}

//- STEP 2: DECLARE A PIPELINE SUBCLASS

l3d_real fovx, fovy;
int xsize, ysize;

class spike {
public:

l3d_two_part_list<l3d_coordinate> *vlist;
l3d_polygon_2d_flatshaded *faces[3];
l3d_vector displacement;

int rx, ry, rz, drx, dry, drz;
l3d_vector velocity;

spike(void) {
//- declare common shared vertex list for all polygons
vlist = new l3d_two_part_list<l3d_coordinate> (4);
int i=0;
(*vlist)[i++].original.set(int_to_l3d_real(0),

int_to_l3d_real(0),
int_to_l3d_real(100),
int_to_l3d_real(1));
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(*vlist)[i++].original.set(int_to_l3d_real(10),
int_to_l3d_real(10),
int_to_l3d_real(100),
int_to_l3d_real(1));

(*vlist)[i++].original.set(int_to_l3d_real(10),
int_to_l3d_real(0),
int_to_l3d_real(100),
int_to_l3d_real(1));

(*vlist)[i++].original.set(int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1));

//- define polygons in terms of indices into shared vertex list
faces[0] = new l3d_polygon_2d_flatshaded(3);
faces[0]->vlist = & vlist; //- shared vertex list
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 3;
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 0;
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 1;

faces[1] = new l3d_polygon_2d_flatshaded(3);
faces[1]->vlist = & vlist; //- shared vertex list
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 3;
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 1;
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 2;

faces[2] = new l3d_polygon_2d_flatshaded(3);
faces[2]->vlist = & vlist; //- shared vertex list
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 3;
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 2;
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 0;

}

~spike(void) {
delete faces[0];
delete faces[1];
delete faces[2];
delete vlist;

}

void place_spike(void) {
displacement.set(int_to_l3d_real(1000 - (rand() % 2000)),

int_to_l3d_real(1000 - (rand() % 2000)),
int_to_l3d_real(100 + (rand()%1000)),
int_to_l3d_real(1));

velocity.set(int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(-(rand()%75 + 5)),
int_to_l3d_real(0));

rx = ry = rz = 0;
drx = (rand() % 16 - 8);
dry = (rand() % 16 - 8);
drz = (rand() % 16 - 8);

l3d_matrix transform;

transform =
l3d_mat_translate(displacement.a[0],

displacement.a[1],
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displacement.a[2]);

l3d_mat_rotz(rz) | l3d_mat_roty(ry) | l3d_mat_rotx(rx) ;

int q;
for(q=0; q<vlist->num_fixed_items; q++) {
(*vlist)[q].reset();
(*vlist)[q].transformed = transform | (*vlist)[q].transformed;

}
}

void move_spike(void) {
displacement = displacement + velocity;
rx = rx + drx;
if(rx<0) {rx += 360; }
if(rx>=360) {rx -= 360; }
ry = ry + dry;
if(ry<0) {ry += 360; }
if(ry>=360) {ry -= 360; }
rz = rz + drz;
if(rz<0) {rz += 360; }
if(rz>=360) {rz -= 360; }
l3d_matrix transform;

transform =
l3d_mat_translate(displacement.a[0],

displacement.a[1],
displacement.a[2]) |

l3d_mat_rotz(rz) | l3d_mat_roty(ry) | l3d_mat_rotx(rx) ;
int q;
for(q=0; q<vlist->num_fixed_items; q++) {
(*vlist)[q].reset();
(*vlist)[q].transformed = transform | (*vlist)[q].transformed;

}
}

void project_spike() {
int v;

for(v=0; v<vlist->num_fixed_items; v++) {
(*vlist)[v].transformed.X_ =
l3d_mulri(l3d_mulrr(l3d_divrr( (*vlist)[v].transformed.X_,

(*vlist)[v].transformed.Z_),
fovx),

xsize)
+
int_to_l3d_real(xsize > 1);

(*vlist)[v].transformed.Y_ =
l3d_mulri(l3d_mulrr(l3d_divrr(-(*vlist)[v].transformed.Y_,

(*vlist)[v].transformed.Z_),
fovy),

ysize)
+
int_to_l3d_real(ysize > 1);

}
}
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};

class my_pipeline : public l3d_pipeline {
protected:
l3d_rasterizer_2d_imp *ri;
l3d_rasterizer_2d *r;

spike spikes[MAXSPIKES];
long i, j;
long wc_win_width, wc_win_height, wc_win_dist, fov;
long wc_win_left, wc_win_top;
int numspikes;

virtual int out_of_wc_bounds(l3d_point const &p);

public:
l3d_screen *s;
my_pipeline(void);
virtual ~my_pipeline(void);

void key_event(int ch); //- from dispatcher
void update_event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

};

my_pipeline::my_pipeline(void) {
s = factory_manager_v_0_1.screen_factory->create(320,200);
ri = factory_manager_v_0_1.ras_2d_imp_factory->create(320,200,s->sinfo);
r = new l3d_rasterizer_2d(ri);

s->sinfo->ext_max_red =
s->sinfo->ext_max_green =
s->sinfo->ext_max_blue = 255;

s->sinfo->ext_to_native(0,0,0); //- allocate black background color
red_color = s->sinfo->ext_to_native(255, 0, 0);
green_color = s->sinfo->ext_to_native(0, 255, 0);
blue_color = s->sinfo->ext_to_native(0,0, 255);
s->refresh_palette();

fovx = float_to_l3d_real(0.5*1.0/tan(50./180. * PI));
fovy = float_to_l3d_real(0.5*1.0/tan(30./180. * PI));
xsize = s->xsize;
ysize = s->ysize;

numspikes = MAXSPIKES;
for(i=0; i<MAXSPIKES; i++) {
spikes[i].place_spike();

spikes[i].faces[0]->final_color = red_color;
spikes[i].faces[1]->final_color = green_color;
spikes[i].faces[2]->final_color = blue_color;

}
}

my_pipeline::~my_pipeline(void) {
delete s;
delete ri;
delete r;

}
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void my_pipeline::key_event(int ch) {
switch(ch) {
case 'q': {

exit(0);
}

}
}

void my_pipeline::update_event() {
int i;

for(i=0;i<numspikes;i++) {
spikes[i].move_spike();
if(out_of_wc_bounds( (*spikes[i].vlist)[0].transformed)

|| out_of_wc_bounds( (*spikes[i].vlist)[1].transformed)
|| out_of_wc_bounds( (*spikes[i].vlist)[2].transformed)
|| out_of_wc_bounds( (*spikes[i].vlist)[3].transformed))

//- we must check all vertices of the spike since its orientation
//- is now arbitrary, and any point might be the foremost point
//- which has now moved out of bounds

{
spikes[i].place_spike();

}

spikes[i].project_spike();
}

}

void my_pipeline::draw_event(void) {
int i;
r->clear_buffer();

for(i=0;i<numspikes;i++) {
for(int f=0; f<3; f++) {
spikes[i].faces[f]->init_clip_ivertices();
spikes[i].faces[f]->clip_to_polygon_2d(s->view_win);
r->draw_polygon_flatshaded(spikes[i].faces[f]);

}
}
s->blit_screen();

}

int my_pipeline::out_of_wc_bounds(l3d_point const &p) {
return(p.Z_<int_to_l3d_real(1));

}

int main(int argc, char **argv) {
choose_factories();

l3d_dispatcher *d;
my_pipeline *p;

//- STEP 3: CREATE A DISPATCHER

d = factory_manager_v_0_1.dispatcher_factory->create();

//- STEP 4: CREATE A PIPELINE
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//- plug our custom behavior pipeline into the dispatcher
p = new my_pipeline();

//- STEP 5: START DISPATCHER

d->pipeline = p; //- polymorphic assignment
d->event_source = p->s;
d->start();

delete d;
delete p;

}

Let’s look at the changes from the original spikes program of Chapter 5. First of all, we

declare some variables to hold the rotation angles as well as the rotational velocities in each spike.
int rx, ry, rz, drx, dry, drz;

Next, in the functions place_spike and move_spike, we initialize and update the rotational

variables, respectively. Then, we use both the rotation angles, representing the rotation, and the

displacement vector, representing the translation, to form appropriate transformation matrices

using the l3d_mat_ functions. We multiply all of these rotation matrices together, using the

matrix multiplication operator |, and store the result in the composite matrix variable

transform.
transform =
l3d_mat_translate(displacement.a[0],

displacement.a[1],
displacement.a[2]) |

l3d_mat_rotz(rz) | l3d_mat_roty(ry) | l3d_mat_rotx(rx) ;

After computing the combined transformation matrix consisting of the translation and all three

rotations, we apply the transformation matrix to each point in the spike, by multiplying the matrix

with the point. In the original spikes program of Chapter 5, we simply added a displacement

vector to the spike’s position. Here, we multiply a general transformation matrix with the spike’s

position, thereby applying several transformations at once.
for(q=0; q<vlist->num_fixed_items; q++) {
(*vlist)[q].reset();
(*vlist)[q].transformed = transform | (*vlist)[q].transformed;

}

Chapter 6: Matrices and Transformations 347
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Finally, we also have to change the out-of-bounds check for the spike. In Chapter 5, we simply

checked vertex number three to see if it was out of bounds or not. This is because the vertex had a

fixed orientation, and we knew that vertex three would always be the foremost vertex nearest to

the camera (located, recall, at the origin). Furthermore, since the spikes only move forward, we

knew in Chapter 5 that the foremost vertex would be the first one to move out of bounds. However,

with the new rotspikes program, these assumptions no longer hold. The spike may have an

arbitrary orientation; any one of the four vertices of the spike might be foremost, and therefore any

of the four vertices might be out of bounds at any given time. Therefore, the out-of-bounds check

needs to be augmented to check all vertices of a spike to determine if the spike needs to be

repositioned.
spikes[i].move_spike();
if(out_of_wc_bounds( (*spikes[i].vlist)[0].transformed)

|| out_of_wc_bounds( (*spikes[i].vlist)[1].transformed)
|| out_of_wc_bounds( (*spikes[i].vlist)[2].transformed)
|| out_of_wc_bounds( (*spikes[i].vlist)[3].transformed))

//- we must check all vertices of the spike since its orientation
//- is now arbitrary, and any point might be the foremost point
//- which has now moved out of bounds

{
spikes[i].place_spike();

}

With this sample program, we have now seen how to use the rotation matrix functions. Further-

more, we have also seen how to combine several transformations into one composite

transformation matrix. Let’s now look more closely at this concept of combining transformations.

Combining Transformations

We mentioned earlier in this chapter that we can combine a series of 4� 4 transformation matrices

to apply several transformations to a point. In the following sections, we see concrete applications

of this powerful and flexible technique. The unifying idea is that we break up a complicated 3D

transformation into a series of simple 3D transformations. We combine the simple 3D transforma-

tion matrices by multiplying them together, and finally multiply the composite transformation

matrix with the 3D point to be transformed.

Simple Sequential Transformations
The simplest example of a combined transformation is the case where we naturally geometrically

think of sequentially applying one transformation, then another. An example of such simple

sequential transformations is the spike movement in the example program rotspikes. First, we

want to rotate the spike according to its random rotational velocities. Then, we want to translate

the spike to its current position. See Figure 6-17.
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Mathematically, recall that we defined that a series of matrix multiplications ABCD is per-

formed in the order D, C, B, A. Assume we are given a rotation matrix R, a translation matrix T, and

a point P. Then, in order to apply the rotation first and the translation next, we should take the prod-

uct of TRP. You can see in the source code for rotspikes that we do exactly this when we

compute the total transformation matrix transform: the leftmost matrix is the translation

matrix, followed by three rotation matrices, followed finally by the original point. This means that

the order of application of the transformations is right to left, even though they are written left to

right.

Notice that if we reverse the order of the transformations, we arrive at an entirely different end

result. Consider again the example with T, R, and P. Assume that instead of computing TRP, we

compute RTP. This has the effect of first applying the translation matrix T (since it is rightmost),

followed by the rotation matrix R. The effect is as seen in Figure 6-18. First, we displace the object

away from the origin. Then we perform a rotation—but rotation, as we defined earlier, takes place

around the origin. Since the object has already been displaced away from the origin but the rota-

tion still takes place around the origin, the object gets rotated in a large arc with the origin as the

center. This is similar to the earth revolving around the sun.
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Figure 6-17: Rotational, then translational movement in rotspikes. The spike
undergoes a local rotational movement around the origin, which happens also to be
the spike’s local origin. This is similar to the earth spinning around its own axis. Then,
the spike is translated to its final position.



What we learn from this, then, is that the order of application transformations is very impor-

tant. The parallel with matrix multiplication is clear. Matrices, which represent transformations,

also must be multiplied in a particular order; changing the order of multiplication, in general,

changes the result, just as changing the order of transformations changes the result.

Rotation or Scaling About an Arbitrary Point
The rotation and scaling formulas developed earlier were defined with respect to the origin. This

means that if we rotate a series of points (defining an object), the object is not only rotated but is

also given a new position. Similarly, if we scale down an object, it is not only smaller, but also

closer to the origin; if we scale it up, it is farther from the origin.

NOTE For the time being, assume that the “position” of an object defined by several points
is the center among all of the points. The precise meaning of the “position” of an object
requires us to define a so-called object coordinate system, the origin of which is then the
“position” of the object. We cover this topic later in this chapter in the discussion about matri-
ces and coordinate systems.
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Figure 6-18: Applying the translation before the rotation (RTP) results in an “orbital”
revolution instead of a local rotation, similar to the earth orbiting around the sun.
This is because the rotation around the origin takes place after the object has already
been displaced away from the origin.



Often, we would like to rotate or scale an object about its own center. This way, the center

point of an object stays in the same position in space, with the rest of the object changing its orien-

tation or size. Figures 6-19 and 6-20 illustrate these ideas of local rotation and local scaling.

The solution to this problem is simple: we first translate all points of the object such that the

desired center of rotation or scaling is moved to the origin in world coordinates. Then, we use the

normal rotation or scaling matrix to perform rotation or scaling about the origin. Finally, we trans-

late all points of the object back by an amount exactly opposite to that of the initial translation.

Remembering that a series of matrix multiplications represents geometric operations per-

formed right to left, we can write the equation for local rotation as follows:

Consider what happens when we multiply this matrix with a series of points belonging to an

object. Assume the center location of the object is at (x,y,z). The rightmost matrix T(-x,-y,-z),

which is geometrically applied first, translates all points of the object such that the object’s center
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Figure 6-19: Rotation about the origin versus local rotation in 2D space.

Figure 6-20: Scaling about the origin versus local scaling in 2D space.

Equation 6-26



is exactly at the origin. The next matrix, in right-to-left order, is the desired rotation matrix, or

series of rotation matrices. Since the translation matrix has already been applied, all points of the

object are centered about the origin in world coordinates. Therefore, we can use the normal rota-

tion matrices we derived earlier for rotation about the origin. Finally, after the rotation is complete,

we translate the object back to its original location by applying the opposite translation, T(x,y,z).

See Figure 6-21.

Similarly, we can express local scaling as a series of transformations which translate the

object’s points to the origin, scale the points with respect to the origin, and translate the points

back. Mathematically:

Arbitrary Camera Position and Orientation
One of the most important applications of transformation matrices is the transformation of an arbi-

trary camera position and orientation into the standard camera position and orientation discussed

earlier (camera at origin, looking straight down z axis, perfectly right-side-up). We need to do this

because the perspective projection equations developed in Chapter 5 all assume that the camera is

in the standard position and orientation, but we would like to allow our virtual camera to be arbi-

trarily positioned and oriented.

We solve this problem by application of a series of matrices. First, we need to state the prob-

lem more precisely. To allow the camera to be arbitrarily located and oriented in space, we first

need a convention for specifying the camera’s position and orientation in 3D space.
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Figure 6-21: Local rotation
as a series of
transformations.

Equation 6-27



How to Specify an Arbitrary Camera Position and
Orientation

We specify the camera’s 3D position by a point, which we call the VRP, for View Reference Point.

We specify the camera’s orientation with three normalized and orthogonal vectors, which we call

the up vector VUP, the forward vector VFW, and the right vector VRI. (The terms VRP and VUP

are from the book Computer Graphics: Principles and Practices [FOLE92].) The VUP points in

the direction that the camera perceives as an “up” direction; the VFW, in the “forward” direction;

and the VRI, in the “right” direction. Notice that these vectors form a left-handed coordinate sys-

tem; VRI� VUP=VFW.

Given this convention for specifying the camera’s location and orientation, we want to find a

transformation matrix that translates the VRP to the origin and rotates the VRI, VUP, and VFW

vectors to align with the x, y, and z axes, respectively. After this transformation, the camera has the

standard position and orientation required for the perspective projection equation of Chapter 5.

Deriving the Matrix

With the precise problem formulation given above, the problem’s solution is straightforward. We

use two steps. First, we translate the camera’s position to the origin. Second, we rotate the cam-

era’s orientation so that the camera is perfectly right-side-up and is looking straight down the z

axis.

The first transformation, translating the VRP to the origin, is simply a translation by the nega-

tive of each component of VRP:

After this transformation, the VRP is at the origin, as shown in Figure 6-23. The vectors VRI,

VUP, and VFW all now have a starting point located at the origin (0,0,0).
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Figure 6-22: Specifying an arbitrary camera location
orientation with one point and three vectors.

Equation 6-28



The second transformation, the rotation, is a bit trickier. Given three origin-based vectors,

VRI, VUP, and VFW, how can we rotate these into the x, y, and z axes? We solve this problem by

approaching it in reverse. First, we determine how we can rotate the x, y, and z axes into the VRI,

VUP, and VFW vectors. Then, we take the inverse of this matrix to find the opposite transforma-

tion which rotates VRI, VUP, and VFW into the x, y, and z axes.

We can represent each axis x, y, and z with a vector of length one along the corresponding axis.

The x axis vector is therefore [1,0,0,0]T; the y axis, [0,1,0,0]T; and the z axis, [0,0,1,0]T. Let us

name these vectors i, j, and k, respectively.

Now, let us assume we have a matrix Q of the following form:

This matrix transforms the i vector into the first column of Q, namely [A,D,G,0]T, the j vector into

the second column [B,E,H,0]T, and the k vector into the third column [C,F,I,0]T. (Try performing

the matrix multiplication between Q and [1,0,0,0]T to verify this.) This is an important observa-

tion; the first three columns of the matrix represent the vectors to which the i, j, and k vectors get

transformed after multiplication with the matrix.

This means that the following matrix rotates the vectors i, j, and k into VRI, VUP, and VFW:

If we invert this matrix, we obtain the matrix which performs the opposite rotation, rotating VRI,

VUP, and VFW into i, j, and k. Fortunately, in this particular case, this matrix is easy to invert.

(Although, as noted earlier, computing a matrix inverse is not always easy.) For this matrix, we

simply take its transpose to find the inverse. Therefore, the desired rotation matrix is:
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Equation 6-29

Figure 6-23: VRP has been translated to the origin. The
rotation still must be performed.

Equation 6-30



To verify that this really is the inverse, recall the definition of the matrix inverse: M–1M=I. If we

perform this multiplication, we see why the inverse in this case works:

Notice that if you perform this matrix multiplication, it is a series of dot products between mutu-

ally orthogonal, unit size vectors. This is the reason that the matrix inverse is the matrix transpose.

The dot of a unit vector with itself gives one, explaining the 1 entries in the result. The dot of a unit

vector with an orthogonal vector gives zero, explaining the 0 entries in the result. The final result

is the identity matrix, verifying that the transpose is indeed the inverse in this special case.

In general, any series of rotation matrices multiplied together yields a matrix of the form

shown in Equation 6-29. Therefore, any such matrix may be inverted by taking its transpose. But,

if a series of rotation matrices is multiplied with any other matrix (scaling or translation, for

instance), then the inverse may no longer be computed as the transpose.

TIP A 4� 4 rotation matrix or composition of rotation matrices may be inverted by taking its
transpose.

CAUTION If a rotation matrix is concatenated with any matrix other than a rotation matrix,
the inverse can no longer always be computed as the transpose.

The Final Camera Transformation Matrix

Combining the VRP translation matrix with the VRI, VUP, and VFW rotation matrix yields the

following equation for converting from camera to world coordinates:

Notice that the resulting matrix, since it consists of both a rotation matrix and a translation matrix,

cannot be inverted simply by taking its transpose. We can, however, easily compute the inverse

matrix, by multiplying the inverse transformation matrices in the opposite order; we do know how

to compute the inverses of the individual component matrices. We start with the inverse rotation

matrix, which is merely the transpose of the camera rotation matrix. This undoes the rotation of

the camera. We then multiply this with the inverse translation matrix. The inverse translation

matrix is merely the identical translation matrix with negated translation terms in the last column.

This matrix undoes the camera translation, moving the camera back to its original position. If we
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Equation 6-31

Equation 6-32

Equation 6-33



call the inverse rotation matrix R–1 and the inverse translation matrix T–1, then the combined

matrix T–1R–1 is the inverse of the complete camera transformation matrix.

After application of the final camera transformation matrix, the camera is at the origin and is

perfectly right-side-up, looking straight down the positive z axis. See Figure 6-24. This is the cam-

era location and orientation needed for the perspective projection.

We apply this matrix to all points specified in world coordinates to obtain the points’ coordi-

nates with respect to the camera. Then, these transformed points may be projected with the

perspective projection equation of Chapter 5.

The l3d_moveable Class

The l3d class which allows specification of an arbitrary location and orientation for a camera is the

l3d_moveable class, given in Listings 6-5 and 6-6.

Listing 6-5: moveable.h
#ifndef __MOVEABLE_H
#define __MOVEABLE_H
#include "../tool_os/memman.h"

#include "../system/sys_dep.h"
#include "../math/matrix.h"
#include "../geom/point/point.h"

class l3d_moveable {
public:
l3d_moveable(void);

l3d_point VRP, VFW_tip, VUP_tip, VRI_tip;
l3d_vector VFW, VUP, VRI;

l3d_matrix viewing_xform;
l3d_matrix inverse_viewing_xform;

void calculate_viewing_xform(void);

virtual int update(void); //- update position of camera
l3d_real
rot_VUP_velocity,
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Figure 6-24: The camera position and orientation after
application of the final camera transformation matrix.
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rot_VRI_velocity,
rot_VFW_velocity,
VUP_velocity,
VRI_velocity,
VFW_velocity,
VUP_thrust,
VRI_thrust,
VFW_thrust;
void rotateVFW(void);
void rotateVUP(void);
void rotateVRI(void);
void translateVFW(void);
void translateVUP(void);
void translateVRI(void);

virtual void transform(const l3d_matrix &m);
};
#endif

Listing 6-6: moveable.cc
#include <stdio.h>
#include <math.h>
#include "moveable.h"
#include "../tool_os/memman.h"

l3d_moveable::l3d_moveable(void) {

VRP.set(int_to_l3d_real(50),int_to_l3d_real(5),int_to_l3d_real(50),int_to_l3d_real(0));

VUP.set(float_to_l3d_real(0.0),float_to_l3d_real(1.0),float_to_l3d_real(0.0),
float_to_l3d_real(0.0));

VFW.set(float_to_l3d_real(0.0), float_to_l3d_real(0.0), float_to_l3d_real(1.0),
float_to_l3d_real(0.0));

VRI = cross(VUP,VFW);

VUP_tip=VRP+VUP;
VFW_tip=VRP+VFW;
VRI_tip=VRP+VRI;

VFW_velocity = int_to_l3d_real(0);
VUP_velocity = int_to_l3d_real(0);
VRI_velocity = int_to_l3d_real(0);
VFW_thrust = int_to_l3d_real(0.2);
VUP_thrust = int_to_l3d_real(0.2);
VRI_thrust = int_to_l3d_real(0.2);

rot_VUP_velocity = int_to_l3d_real(0);
rot_VRI_velocity = int_to_l3d_real(0);
rot_VFW_velocity = int_to_l3d_real(0);

calculate_viewing_xform();
}

void l3d_moveable::translateVFW() {
VRP.X_ = VRP.X_ + l3d_mulrr(VFW.X_, VFW_velocity);
VUP_tip.X_ = VUP_tip.X_ + l3d_mulrr(VFW.X_, VFW_velocity);
VFW_tip.X_ = VFW_tip.X_ + l3d_mulrr(VFW.X_, VFW_velocity);
VRI_tip.X_ = VRI_tip.X_ + l3d_mulrr(VFW.X_, VFW_velocity);

VRP.Y_ = VRP.Y_ + l3d_mulrr(VFW.Y_, VFW_velocity);
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VUP_tip.Y_ = VUP_tip.Y_ + l3d_mulrr(VFW.Y_, VFW_velocity);
VFW_tip.Y_ = VFW_tip.Y_ + l3d_mulrr(VFW.Y_, VFW_velocity);
VRI_tip.Y_ = VRI_tip.Y_ + l3d_mulrr(VFW.Y_, VFW_velocity);

VRP.Z_ = VRP.Z_ + l3d_mulrr(VFW.Z_, VFW_velocity);
VUP_tip.Z_ = VUP_tip.Z_ + l3d_mulrr(VFW.Z_, VFW_velocity);
VFW_tip.Z_ = VFW_tip.Z_ + l3d_mulrr(VFW.Z_, VFW_velocity);
VRI_tip.Z_ = VRI_tip.Z_ + l3d_mulrr(VFW.Z_, VFW_velocity);

}

void l3d_moveable::translateVRI() {
VRP.X_ = VRP.X_ + l3d_mulrr(VRI.X_, VRI_velocity);
VUP_tip.X_ = VUP_tip.X_ + l3d_mulrr(VRI.X_, VRI_velocity);
VFW_tip.X_ = VFW_tip.X_ + l3d_mulrr(VRI.X_, VRI_velocity);
VRI_tip.X_ = VRI_tip.X_ + l3d_mulrr(VRI.X_, VRI_velocity);

VRP.Y_ = VRP.Y_ + l3d_mulrr(VRI.Y_, VRI_velocity);
VUP_tip.Y_ = VUP_tip.Y_ + l3d_mulrr(VRI.Y_, VRI_velocity);
VFW_tip.Y_ = VFW_tip.Y_ + l3d_mulrr(VRI.Y_, VRI_velocity);
VRI_tip.Y_ = VRI_tip.Y_ + l3d_mulrr(VRI.Y_, VRI_velocity);

VRP.Z_ = VRP.Z_ + l3d_mulrr(VRI.Z_, VRI_velocity);
VUP_tip.Z_ = VUP_tip.Z_ + l3d_mulrr(VRI.Z_, VRI_velocity);
VFW_tip.Z_ = VFW_tip.Z_ + l3d_mulrr(VRI.Z_, VRI_velocity);
VRI_tip.Z_ = VRI_tip.Z_ + l3d_mulrr(VRI.Z_, VRI_velocity);

}

void l3d_moveable::translateVUP() {
VRP.X_ = VRP.X_ + l3d_mulrr(VUP.X_, VUP_velocity);
VUP_tip.X_ = VUP_tip.X_ + l3d_mulrr(VUP.X_, VUP_velocity);
VFW_tip.X_ = VFW_tip.X_ + l3d_mulrr(VUP.X_, VUP_velocity);
VRI_tip.X_ = VRI_tip.X_ + l3d_mulrr(VUP.X_, VUP_velocity);

VRP.Y_ = VRP.Y_ + l3d_mulrr(VUP.Y_, VUP_velocity);
VUP_tip.Y_ = VUP_tip.Y_ + l3d_mulrr(VUP.Y_, VUP_velocity);
VFW_tip.Y_ = VFW_tip.Y_ + l3d_mulrr(VUP.Y_, VUP_velocity);
VRI_tip.Y_ = VRI_tip.Y_ + l3d_mulrr(VUP.Y_, VUP_velocity);

VRP.Z_ = VRP.Z_ + l3d_mulrr(VUP.Z_, VUP_velocity);
VUP_tip.Z_ = VUP_tip.Z_ + l3d_mulrr(VUP.Z_, VUP_velocity);
VFW_tip.Z_ = VFW_tip.Z_ + l3d_mulrr(VUP.Z_, VUP_velocity);
VRI_tip.Z_ = VRI_tip.Z_ + l3d_mulrr(VUP.Z_, VUP_velocity);

}

void l3d_moveable::rotateVUP() {
int angle=l3d_real_to_int(rot_VUP_velocity);
l3d_matrix a;

if(angle<0) angle+=360; //- convert negative angle into 360-angle

VFW = l3d_mat_rotu(VUP, angle) | VFW;
VRI = cross(VUP,VFW); //- calculate VRI based on VUP and new VFW

}

void l3d_moveable::rotateVRI() {
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int angle=l3d_real_to_int(rot_VRI_velocity);

if(angle<0) angle+=360; //- convert negative angle into 360-angle

VFW = l3d_mat_rotu(VRI,angle) | VFW;
VUP = cross(VFW,VRI); //- calculate VUP based on VRI and new VFW

}

void l3d_moveable::rotateVFW() {
int angle=l3d_real_to_int(rot_VFW_velocity);
if(angle<0) angle+=360;
VUP = l3d_mat_rotu(VFW,angle) | VUP;
VRI = cross(VUP,VFW); //- calculate VRI based on VFW and new VUP

}

int l3d_moveable::update(void) {

if(VFW_velocity != int_to_l3d_real(0)) {
VFW_velocity = l3d_mulrr(VFW_velocity,float_to_l3d_real(0.95));

}
if(VRI_velocity != int_to_l3d_real(0)) {
VRI_velocity = l3d_mulrr(VRI_velocity,float_to_l3d_real(0.95));

}
if(VUP_velocity != int_to_l3d_real(0)) {
VUP_velocity = l3d_mulrr(VUP_velocity,float_to_l3d_real(0.95));

}
if(rot_VUP_velocity != int_to_l3d_real(0)) {
rot_VUP_velocity = l3d_mulrr(rot_VUP_velocity,float_to_l3d_real(0.85));

}
if(rot_VRI_velocity != int_to_l3d_real(0)) {
rot_VRI_velocity = l3d_mulrr(rot_VRI_velocity,float_to_l3d_real(0.85));

}
if(rot_VFW_velocity != int_to_l3d_real(0)) {
rot_VFW_velocity = l3d_mulrr(rot_VFW_velocity,float_to_l3d_real(0.85));

}

if(rot_VUP_velocity) rotateVUP();
if(rot_VRI_velocity) rotateVRI();
if(rot_VFW_velocity) rotateVFW();

if(VFW_velocity) translateVFW();
if(VUP_velocity) translateVUP();
if(VRI_velocity) translateVRI();

//- It is important to normalize our camera vectors now, since repeated
//- application of relative rotational transformations will eventually,
//- due to numerical round off error, cause the length of these vectors
//- to no longer be one. This subsequently causes problems in the calculation
//- of the camera rotation matrix, which assumes that the vectors VFW,
//- VRI, and VUP are all unit vectors (i.e., length 1). It would also be
//- possible to do the normalization during computation of the camera
//- rotation matrix, but this is not the approach chosen here.

VFW = normalized(VFW);
VRI = normalized(VRI);
VUP = normalized(VUP);
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calculate_viewing_xform();

return 0;
}

void l3d_moveable::calculate_viewing_xform(void) {

l3d_matrix R, TnVRP;
l3d_matrix inverse_R, inverse_TnVRP;

//- Translate VRP to origin

TnVRP.set
(int_to_l3d_real(1),int_to_l3d_real(0),int_to_l3d_real(0),-VRP.X_,
int_to_l3d_real(0),int_to_l3d_real(1),int_to_l3d_real(0),-VRP.Y_,
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(1),-VRP.Z_,
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(0),
int_to_l3d_real(1) );

//- Rotate VRI (View RIght vector) into positive X-axis,
//- VUP (View UP vector) into positive Y-axis,
//- VFW (View ForWard vector) into positive Z-axis.

R.set
( VRI.X_, VRI.Y_, VRI.Z_, int_to_l3d_real(0),
VUP.X_, VUP.Y_, VUP.Z_, int_to_l3d_real(0),
VFW.X_, VFW.Y_, VFW.Z_, int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1) );

viewing_xform = R | TnVRP;

//- calculate the inverse matrix by applying the inverse transformations
//- in the reverse order.

//- First, undo the rotation: the inverse is the transpose of the original
//- rotation matrix.

inverse_R.set
( VRI.X_, VUP.X_, VFW.X_, int_to_l3d_real(0),
VRI.Y_, VUP.Y_, VFW.Y_, int_to_l3d_real(0),
VRI.Z_, VUP.Z_, VFW.Z_, int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1) );

//- next, undo the translation: simply translate by the opposite amount

inverse_TnVRP.set
(int_to_l3d_real(1),int_to_l3d_real(0),int_to_l3d_real(0),VRP.X_,
int_to_l3d_real(0),int_to_l3d_real(1),int_to_l3d_real(0),VRP.Y_,
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(1),VRP.Z_,
int_to_l3d_real(0),int_to_l3d_real(0),int_to_l3d_real(0),
int_to_l3d_real(1) );

//- concatenate the inverse matrices: first undo the rotation, then undo the
//- translation
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inverse_viewing_xform = inverse_TnVRP | inverse_R;
}

void l3d_moveable::transform(const l3d_matrix &m) {

}

The class l3d_moveable represents a moveable object with arbitrary orientation.

The member VRP stores the location of the moveable object. The members VFW, VUP, and

VRI are unit vectors representing the orientation of the moveable object. The members

VFW_tip,VUP_tip, andVRI_tip store the locations of the tips of the vectors VFW, VUP, and

VRI, relative to the VRP.

The member viewing_xform stores the composite matrix that effects the viewing trans-

formation, which moves the VRP to the origin and rotates such that the VRI, VUP, and VFW

vectors align with the x, y, and z axes. The method calculate_viewing_xform calculates

the composite viewing transformation matrix, as described above, and stores it in the view-
ing_xform variable. Also, we compute the inverse viewing transformation matrix, using a

concatenation of the individual inverse matrices as described earlier. This inverse viewing matrix

comes in handy if we need to compute a so-called “viewing frustum” in world space, which is

often done as part of a culling scheme and which is covered in the companion book Advanced

Linux 3D Graphics Programming.

The above members and methods deal with representing position and orientation. The

remaining members and methods allow for movement of the object. For instance, in the spikes
and rotspikes programs, the spike class updated its position and orientation. The

l3d_moveable class is a generalization of the concept of an object, such as the spike, which can

update its own position. The l3d_moveable class offers support for linear movement in a par-

ticular direction, and for rotation about the VRI, VUP, and VFW axes, which, importantly, may be

oriented arbitrarily in space.

NOTE Other types of movement would include movement along predefined or mathemati-
cally specified paths, such as a spiral or a helix. Of course, all types of movement can be
simulated by a series of short linear movements, which are supported by l3d_moveable.

Specifically, the member variables VUP_velocity, VRI_velocity, and VFW_velocity
represent the linear velocity (in world coordinate units per time interval) of the object in the direc-

tions of the VUP, VRI, and VFW vectors, respectively. For instance, if, with respect to its own

orientation, the object is moving “forward,” then its VFW_velocitywould be greater than zero.

Notice that all velocities are therefore specified in relation to the object’s own orientation, instead

of in relation to the fixed world coordinate axes. Using the local VUP, VRI, and VFW vectors for

specifying velocities tends to be the most natural way of specifying object movement in an arbi-

trary 3D environment.

The member variables VUP_thrust, VRI_thrust, and VFW_thrust represent the

increase to the VUP, VRI, or VFW velocity when a “thrust” is applied. We can think of the object

as a spaceship, with rocket thrusters for propelling the vehicle in the VUP, VRI, or VFW direc-

tions. The thrust variables represent the amount of change for each application of thrust in a

particular direction.
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The methods translateVFW, translateVUP, and translateVRI change the posi-

tion (in other words, the VRP) of the object by using the velocity in the VFW, VUP, and VRI

directions. This is done by using simple vector addition. VRI, VUP, and VFW are all unit vec-

tors—that is, they all have length 1. Therefore, to move 1 unit in the VFW direction, we simply

compute VRP+VFW (point+vector, yielding a point). To move 2 units in the VRI direction, we

simply compute VRP+2*VRI (point+scalar*vector, yielding a point).

The member variables rot_VUP_velocity, rot_VRI_velocity, and

rot_VFW_velocity represent the rotational velocity (in degrees per time interval) of the

object around the VUP, VRI, and VFW axes, respectively. This means that the object can rotate

around its own VUP, VRI, or VFW axes. The methods rotateVUP, rotateVRI, and

rotateVFW apply the rotation determined from the rotational velocities. Rotating an object

about its own orientation axes is a naturally occurring operation, but a bit of a tricky one—the

coming section titled “Rotation About an Arbitrary Axis” covers this in detail.

NOTE The movement mechanisms illustrated so far are overly simplistic because they are
not based on time. For instance, VFW_velocity represents the change in VRP in the direc-
tion of VFW, per time unit. However, the method translateVFW, which adds
VFW_velocity to VRP, does not take physically elapsed time into account, instead simply
adding VFW_velocity to VRP. This would only be accurate if translateVFW were called at
a regularly physically occurring time interval. But due to varying scene complexity and the
varying amount of time it takes to draw each different frame, translateVFW is not called
regularly, as we noted in Chapter 2 during the discussion of the pipeline event mechanisms.
Therefore, for a more realistic, so-called frame-rate-independent or real-time, simulation,
translateVFW would need to keep track of the elapsed physical time (by calling a system
timer routine) since the last call of the routine, and multiply the elapsed physical time with the
VFW_velocity to scale it accordingly. In this way, longer elapsed time yields greater change
in position; shorter elapsed time yields smaller change in position. (The companion book
Advanced Linux 3D Graphics Programming has examples of this sort of code.) For now, the
examples use this simplistic movement mechanism because it requires less code, but with the
side effect that the faster or slower your computer is, the faster or slower the apparent motion
on-screen will be.

The method transform applies a particular transformation matrix to the object, by multiplying

the matrix with the orientation vectors.

The method update slowly decreases all velocities to simulate a deceleration. It also applies

the current velocities to change the current position and orientation, by calling the rotate and trans-

late methods. Finally, after changing the position and orientation, it recalculates the viewing

transformation matrix.

The l3d_camera Class

The class l3d_camera derives from l3d_moveable. It merely adds the following member

variables:fovx, the horizontal field of view term from Chapter 5;fovy, the vertical field of view

term; near_z, the near z clipping plane; and far_z, the far z clipping plane. The field of view

terms require no further explanation here; Chapter 7 covers the clipping planes in more detail.
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Briefly, the clipping planes clip away parts of polygons which are either too close to or too far

from the eye.

Rotation About an Arbitrary Axis
So far, we have seen how to rotate points around the x, y, and z axes, with respect to either a local or

global origin. However, it is often difficult to express a desired rotation purely in terms of rotations

around the x, y, and z axes. In such cases, it is more natural to view the rotation in terms of a locally

defined rotation axis. For instance, let’s say we are programming a flight simulator. The airplane

being simulated can have an arbitrary orientation expressed in terms of forward, up, and right vec-

tors, as we saw in the class l3d_moveable. When the player rotates the plane to the left, it

should rotate with respect to its own local orientation and not with respect to the global coordinate

axes. In Figure 6-25, this means that we wish to rotate the plane around the vector v instead of

around the x, y, or z axis. (We store and transform the starting and ending points of vector v along

with the coordinates of the airplane geometry, so that the vector v always has the same position rel-

ative to the airplane geometry.)

The rotation matrices we have seen so far only deal with rotations around the principal coordi-

nate axes. But now, we need to develop a rotation matrix for rotating a point about an arbitrary

vector v=[v1,v2,v3,0]T.

Our strategy, based on Chris Hecker’s four-part series of articles “Physics” [HECK97], is as

follows. First, we consider the rotation equations we derived earlier for rotation around the z axis;

then, we rewrite this rotation equation in vector form; finally, for an arbitrary axis of rotation, we

find the correct vectors to plug into the vector rotation equation.

We begin with the equations for rotation around the z axis.
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Figure 6-25: We want to rotate the airplane around the vector v.

Equation 6-34



Assume that the starting y coordinate is zero. In other words, the starting point before rotation lies

upon the x axis. Then, the rotation equations become:

Since the y coordinate is zero, the x coordinate is also the radius of rotation. Call this radius of rota-

tion r. We can then write the rotation equation in vector form as follows. p' is the new point after

rotation.

We can view this equation as a point plus a vector: the center of rotation at point (0,0,z) plus the

vector effecting the rotation.

Furthermore, we can split up the vector effecting the rotation into two vectors: one acting in the

horizontal direction, and one acting in the vertical direction. These vectors have a length equal to

the radius of rotation.

Replacing the horizontal vector with i and the vertical vector with j yields:

Let us consider this equation for a moment. It says that if we are given a horizontal vector i and a

vertical vector j, both of which have a length equal to the radius of rotation, and given an original

point which lies on the tip of the vector i, then rotating the point about the center o and within the

plane defined by i and j yields a new point as defined by the equation.

Notice that this vector form of the rotation equation is free of all absolute references to x, y, or

z locations. Instead, the equation consists entirely of relative references defined in terms of a cen-

ter of rotation o and orientation vectors i and j. This is the key to generalizing the rotation equation

to rotation about an arbitrary axis. The next task, therefore, is to analyze the geometrical situation

for rotation around an arbitrary axis, and to compute the vectors o, i, and j.

If you have been particularly attentive, you might have raised an eyebrow upon having seen

the above phrase “vectors o, i, and j.” Indeed, o is not a vector, but is a point! (If you noticed this

yourself, you should also pat yourself on the back—it’s exactly this kind of attention to detail that

is required to solve those late-night bugs which crop up in your 3D engine.) Why have we sud-

denly referred to o as a vector? Recall from Chapter 5 the relationship between points and vectors:

starting at the origin (0,0,0), the vector (x,y,z) extends exactly to reach point (x,y,z). In the deriva-

tion which follows, it is more convenient to consider the vector from the origin point (0,0,0) to

point o, rather than the point itself. We could perform the derivation based on the point o by con-

stantly writing [0,0,0,1]T+vector to refer to the point, and point–[0,0,0,1]T to refer to the vector,
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but this notational clumsiness distracts from the main focus of the equations, which are difficult

enough already. Focusing exclusively on the vectors makes the equations more straightforward.

Therefore, we perform the following derivation using the vector from the origin to point o,

which we simply refer to henceforth as o. Also, instead of point p, we consider the vector v from

the origin to point p; similarly for point p' and vector v'.

Figure 6-26 illustrates the geometric situation for rotation about an arbitrary axis. Let’s con-

sider the diagram one step at a time.

First of all, we have the axis of rotation, which is the vector u in the diagram. Let us assume

without loss of generality that u is of unit length and has its starting point at the origin. If u is not of

unit length we can always normalize it before the rotation; if u does not start at point (0,0,0) we can

use the “translate-rotate-translate back” strategy discussed earlier for local rotation.

The point to be rotated is point p. The vector from the origin to point p is v. The plane of rota-

tion is the plane perpendicular to the axis of rotation and containing point p. The center of rotation

o is a point lying on the axis of rotation and contained within the plane of rotation. The new point

after rotation is p'; the vector from the origin to this point is v'. We wish to solve for vector v' (and

by doing so also find point p').

We know vectors v and u. To solve for v', we need to compute the vectors o, i, and j in terms of

v and u, and plug these vectors into the vector version of the rotation equation.

Vector o points in the same direction as vector u, but has a different length. We compute the

length vector o by projecting v onto u with the dot product, as described in Chapter 5. We can do

this because vector u is a unit vector. We then multiply this vector length by the vector u to get the

vector o.

We can rewrite the dot product as a matrix multiplication:
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Figure 6-26: Rotation about an arbitrary axis.
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Since u is ordinarily a column vector, uT is a row vector; multiplying this row vector with the col-

umn vector v is exactly the same as a dot product operation.

Next, to be consistent with the vector rotation equation developed earlier, we need to define a

vector i which goes from the center of rotation o to the point being rotated p. This is simply the dif-

ference point p – point o, or equivalently vector v – vector o.

Substituting the earlier expression for o yields:

Finally, the “vertical” vector j is the cross product u� v. Using the left-hand rule for cross products,

this yields the vector pointing in the direction shown in the diagram. The magnitude of this cross

product vector is |u||v|sin� . |u|is 1 and sin� is |i|/|v|, so the magnitude of j is the same as the magni-

tude of i.

We can now substitute these equations for o, u, and v into the vector version of the rotation

equation.

yields the following result:

We’re almost there. This equation indeed rotates any vector v about the vector u. But we want to

find a single rotation matrix which does this rotation. This means we must isolate the vector v in

the above equation so that we have an equation of the form v'=Mv. M is the matrix which, when

applied to a column vector, rotates this column vector about the vector u.

To isolate v, we need to move it to the rightmost side of every expression in which it occurs.

This requires a bit of cleverness. We use the following two rules:

Verifying these two rules is a simple but useful exercise in vector-matrix arithmetic, left to the

reader (that means you). With the first rule, you will notice that after performing the matrix multi-

plication on the left-hand side, the elements of the resulting matrix are all coefficients to the

elements of v, meaning that v can be “pulled out” to yield the right-hand side of the equation. With

the second rule, we see that we can express a cross product operation as a matrix multiplication.
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We simply need to construct a special matrix using the elements of the left-hand vector arranged in

the particular order shown. We write this special matrix in shorthand by using the tilde operator. If

you perform the matrix multiplication, you can see that the result is identical to the definition of

the cross product from Chapter 5, but writing the cross product as a matrix multiplication allows

us to isolate v.

Using these two rules allows us to rewrite the vector rotation equation as follows:

Rearranging to isolate v gives:

We now have an expression involving only v', a rotation matrix, and v.

The matrix M, computed solely from elements of the vector of rotation u, rotates any point about

the vector u, assuming that u is a unit vector and starts at the origin.

Performing this matrix multiplication yields a final rotation matrix of:

The l3d_mat_rotu Function

The library functionl3d_mat_rotu, which we saw earlier in Listing 6-1, computes the rotation

matrix to rotate a point about a given unit vector. It simply implements the final rotation matrix

derived above.

Sample Program: Camspikes
The sample program camspikes is a fully 3D simulation allowing arbitrary positioning of the

camera within the virtual world. It allows you to interactively fly through a landscape of moving

spikes. You can also turn off the spike movement if you want to practice flying through a static

scene. The keyboard controls are as follows:

0: Stop spike animation

1 (number): Start spike animation

j: Rotate left (rotates around the VUP axis)

l (letter): Rotate right (rotates around the VUP axis)

i: Thrust forward (translates along the VFW axis)

k: Thrust backward (translates along the VFW axis)

J: Roll left (rotates around the VFW axis)
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L: Roll right (rotates around the VFW axis)

I: Pitch forward (rotates around the VRI axis)

K: Pitch backward (rotates around the VRI axis)

s: Thrust left (translates along the VRI axis)

f: Thrust right (translates along the VRI axis)

e: Thrust up (translates along the VUP axis)

d: Thrust down (translates along the VUP axis)

v: Cycle through to the next thrust level

Notice that the camera navigation is done with respect to the camera’s own local orientation axes,

which is a natural means of movement for an arbitrary environment. If the environment were not

arbitrary, but instead, for instance, contained a fixed “floor” area, then it might make sense to

restrict movement to be on and rotation to be relative to the floor. However, for this program, there

is no fixed environment or orientation, so a completely free, locally defined movement system is

preferable. The movement keys allow for rotation and translation along all of the three local orien-

tation axes VRI, VUP, and VFW.

Immediately after starting the program, the spikes will be rotating and flying towards you.

You can press 0 immediately to stop the spikes’ movement, then use the navigation keys described

above to navigate through the now “frozen” spikes. After you get a sense for the movement, press

1 (number one) to see the moving spikes from a different viewpoint. Press q to exit the program.

Listing 6-7: camspikes.cc
#include <stdlib.h>
#include <stdio.h>

#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/system/factorys.h"

#include "../lib/geom/point/point.h"
#include "../lib/math/vector.h"
#include "../lib/math/matrix.h"
#include "../lib/view/camera.h"

#define MAXSPIKES 150
#define PI 3.14159265

unsigned long red_color;
unsigned long green_color;
unsigned long blue_color;

//- STEP 1: CHOOSE THE FACTORIES

void choose_factories(void) {
factory_manager_v_0_1.choose_factories();

}

//- STEP 2: DECLARE A PIPELINE SUBCLASS

l3d_real fovx, fovy;
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int xsize, ysize;

class spike {
public:

l3d_two_part_list<l3d_coordinate> *vlist;
l3d_polygon_2d_flatshaded *faces[3];
l3d_vector displacement;

l3d_vector velocity;

spike(void) {
//- declare common shared vertex list for all polygons
vlist = new l3d_two_part_list<l3d_coordinate> (4);
int i=0;
(*vlist)[i++].original.set(int_to_l3d_real(0),

int_to_l3d_real(0),
int_to_l3d_real(100),
int_to_l3d_real(1));

(*vlist)[i++].original.set(int_to_l3d_real(10),
int_to_l3d_real(10),
int_to_l3d_real(100),
int_to_l3d_real(1));

(*vlist)[i++].original.set(int_to_l3d_real(10),
int_to_l3d_real(0),
int_to_l3d_real(100),
int_to_l3d_real(1));

(*vlist)[i++].original.set(int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1));

//- define polygons in terms of indices into shared vertex list
faces[0] = new l3d_polygon_2d_flatshaded(3);
faces[0]->vlist = & vlist; //- shared vertex list
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 3;
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 0;
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 1;

faces[1] = new l3d_polygon_2d_flatshaded(3);
faces[1]->vlist = & vlist; //- shared vertex list
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 3;
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 1;
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 2;

faces[2] = new l3d_polygon_2d_flatshaded(3);
faces[2]->vlist = & vlist; //- shared vertex list
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 3;
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 2;
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 0;

}

~spike(void) {
delete faces[0];
delete faces[1];
delete faces[2];
delete vlist;

}

void place_spike(void) {
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displacement.set(int_to_l3d_real(1000 - (rand() % 2000)),
int_to_l3d_real(1000 - (rand() % 2000)),
int_to_l3d_real(200),
int_to_l3d_real(1));

velocity.set(int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(-10-rand()%40),
int_to_l3d_real(0));

l3d_matrix transform;

transform =
l3d_mat_translate(displacement.a[0],

displacement.a[1],
displacement.a[2]);

int q;
for(q=0; q<vlist->num_fixed_items; q++) {
(*vlist)[q].reset();
(*vlist)[q].transformed = transform | (*vlist)[q].transformed;

}
}

void move_spike(void) {
displacement = displacement + velocity;

}

void reset(void) {
int q;
for(q=0; q<vlist->num_fixed_items; q++) {
(*vlist)[q].reset();

}
}

void apply_xform(const l3d_matrix & m) {
int q;
for(q=0; q<vlist->num_fixed_items; q++) {
(*vlist)[q].transformed = m | (*vlist)[q].transformed;

}
}

void project_spike() {
int v;

for(v=0; v<vlist->num_fixed_items; v++) {
(*vlist)[v].transformed.X_ =
l3d_mulri(l3d_mulrr(l3d_divrr( (*vlist)[v].transformed.X_,

(*vlist)[v].transformed.Z_),
fovx),

xsize)
+
int_to_l3d_real(xsize > 1);

(*vlist)[v].transformed.Y_ =
l3d_mulri(l3d_mulrr(l3d_divrr(-(*vlist)[v].transformed.Y_,

(*vlist)[v].transformed.Z_),
fovy),

ysize)
+
int_to_l3d_real(ysize > 1);
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}
}

};

class my_pipeline : public l3d_pipeline {
protected:
l3d_rasterizer_2d_imp *ri;
l3d_rasterizer_2d *r;

spike spikes[MAXSPIKES];
long i, j;
long wc_win_width, wc_win_height, wc_win_dist, fov;
long wc_win_left, wc_win_top;
int numspikes;

virtual int out_of_wc_bounds(l3d_point const &p);

l3d_camera *camera;

public:
l3d_screen *s;
int animation;
my_pipeline(void);
virtual ~my_pipeline(void);

void key_event(int ch); //- from dispatcher
void update_event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

};

my_pipeline::my_pipeline(void) {
s = factory_manager_v_0_1.screen_factory->create(320,200);
ri = factory_manager_v_0_1.ras_2d_imp_factory->create(320,200,s->sinfo);
r = new l3d_rasterizer_2d(ri);

s->sinfo->ext_max_red =
s->sinfo->ext_max_green =
s->sinfo->ext_max_blue = 255;

s->sinfo->ext_to_native(0,0,0); //- allocate black background color
red_color = s->sinfo->ext_to_native(255, 0, 0);
green_color = s->sinfo->ext_to_native(0, 255, 0);
blue_color = s->sinfo->ext_to_native(0,0, 255);
s->refresh_palette();

fovx = float_to_l3d_real(0.5*1.0/tan(50./180. * PI));
fovy = float_to_l3d_real(0.5*1.0/tan(30./180. * PI));
xsize = s->xsize;
ysize = s->ysize;

numspikes = MAXSPIKES;
for(i=0; i<MAXSPIKES; i++) {
spikes[i].place_spike();

spikes[i].faces[0]->final_color = red_color;
spikes[i].faces[1]->final_color = green_color;
spikes[i].faces[2]->final_color = blue_color;

}

camera = new l3d_camera;
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camera->fovx = 0.41955;
camera->near_z = 0.01;
camera->far_z = 100;

animation = 1;
}

my_pipeline::~my_pipeline(void) {
delete s;
delete ri;
delete r;
delete camera;

}

void my_pipeline::key_event(int ch) {
switch(ch) {
case 'q': {

exit(0);
}

case 'j':
if(camera->rot_VUP_velocity>int_to_l3d_real(-95))
camera->rot_VUP_velocity -= int_to_l3d_real(5);

break;
case 'l':
if(camera->rot_VUP_velocity<int_to_l3d_real( 95))
camera->rot_VUP_velocity += int_to_l3d_real(5);

break;
case 'J':
if(camera->rot_VFW_velocity<int_to_l3d_real( 95))
camera->rot_VFW_velocity += int_to_l3d_real(5);

break;
case 'L':
if(camera->rot_VFW_velocity>int_to_l3d_real(-95))
camera->rot_VFW_velocity -= int_to_l3d_real(5);

break;
case 'I':
if(camera->rot_VRI_velocity<int_to_l3d_real( 95))
camera->rot_VRI_velocity += int_to_l3d_real(5);

break;
case 'K':
if(camera->rot_VRI_velocity>int_to_l3d_real(-95))
camera->rot_VRI_velocity -= int_to_l3d_real(5);

break;
case 'k':
if(camera->VFW_velocity >int_to_l3d_real(-90))
camera->VFW_velocity -= camera->VFW_thrust;

break;
case 'i':
if(camera->VFW_velocity <int_to_l3d_real( 90))
camera->VFW_velocity += camera->VFW_thrust;

break;
case 's':
if(camera->VRI_velocity >int_to_l3d_real(-90))
camera->VRI_velocity -= camera->VRI_thrust;

break;
case 'f':
if(camera->VRI_velocity <int_to_l3d_real( 90))
camera->VRI_velocity += camera->VRI_thrust;

break;
case 'd':
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if(camera->VUP_velocity >int_to_l3d_real(-90))
camera->VUP_velocity -= camera->VUP_thrust;

break;
case 'e':
if(camera->VUP_velocity <int_to_l3d_real( 90))
camera->VUP_velocity += camera->VUP_thrust;

break;

//- field-of-view modification
case 'X':
camera->fovx = camera->fovx + float_to_l3d_real(0.1);
break;

case 'x':
camera->fovx = camera->fovx - float_to_l3d_real(0.1);
break;

case 'Y':
camera->fovy = camera->fovy + float_to_l3d_real(0.1);
break;

case 'y':
camera->fovy = camera->fovy - float_to_l3d_real(0.1);
break;

//- speed
case 'v': case 'V':

camera->VUP_thrust += int_to_l3d_real(1.0);
if(camera->VUP_thrust > 3.0) {
camera->VUP_thrust -= int_to_l3d_real(3.0);

}
camera->VFW_thrust = camera->VUP_thrust;
camera->VRI_thrust = camera->VUP_thrust;
break;

case '1':
animation = 1;
break;

case '0':
animation = 0;
break;

}
}

void my_pipeline::update_event() {
int i;

camera->update();

for(i=0;i<numspikes;i++) {

if(animation) {
spikes[i].move_spike();

}
spikes[i].reset();

spikes[i].apply_xform(
l3d_mat_translate(spikes[i].displacement.a[0],

spikes[i].displacement.a[1],
spikes[i].displacement.a[2])

);

//- "transformed" now contains MODEL COORDINATES
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if(out_of_wc_bounds( (*spikes[i].vlist)[0].transformed)
|| out_of_wc_bounds( (*spikes[i].vlist)[1].transformed)
|| out_of_wc_bounds( (*spikes[i].vlist)[2].transformed)
|| out_of_wc_bounds( (*spikes[i].vlist)[3].transformed))

//- we must check all vertices of the spike since its orientation
//- is now arbitrary, and any point might be the foremost point
//- which has now moved out of bounds

{
spikes[i].place_spike();

}

spikes[i].apply_xform(camera->viewing_xform);
//- "transformed" now contains VIEW (or CAMERA) COORDINATES

}
}

void my_pipeline::draw_event(void) {
int i;
r->clear_buffer();

for(i=0;i<numspikes;i++) {
int v;
int infront = 1;
for(v=0;v<spikes[i].vlist->num_fixed_items;v++) {

//- at this point, "transformed" is in view coordinates
if( (*spikes[i].vlist)[v].transformed.a[2] < camera->near_z ) {
infront = 0;
break;

}
}

if(infront) {
spikes[i].project_spike();

for(int f=0; f<3; f++) {
spikes[i].faces[f]->init_clip_ivertices();
spikes[i].faces[f]->clip_to_polygon_2d(s->view_win);
r->draw_polygon_flatshaded(spikes[i].faces[f]);

}
}

}
s->blit_screen();

}

int my_pipeline::out_of_wc_bounds(l3d_point const &p) {
return(p.Z_<int_to_l3d_real(1));

}

int main(int argc, char **argv) {
choose_factories();

l3d_dispatcher *d;
my_pipeline *p;

//- STEP 3: CREATE A DISPATCHER

d = factory_manager_v_0_1.dispatcher_factory->create();
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//- STEP 4: CREATE A PIPELINE

//- plug our custom behavior pipeline into the dispatcher
p = new my_pipeline();

//- STEP 5: START DISPATCHER

d->pipeline = p; //- polymorphic assignment
d->event_source = p->s;
d->start();

delete d;
delete p;

}

The code is similar to that of the rotspikes program, so we’ll only cover the important dif-

ferences here.

First of all, there are a few nominal changes which do not need much description:

� The new member my_pipeline::camera is a pointer to an l3d_camera object that

contains the location and orientation of the eye or camera in the virtual world. In method

spike::move_spike, we now only compute the new position variables, but do not yet

compute and multiply a transformation matrix, as we did in rotspikes.

� The new method spike::reset resets all points of a spike by copying the original coordi-

nate into the transformed coordinate, for reasons discussed at length in Chapter 2 and 5. After

an invocation of reset, the spike is back at its original location in object coordinates, with

no transformations applied.

� The new method spike::apply_xformmultiplies all points in the spike by the supplied

transformation matrix.

� The constructor for my_pipeline creates and initializes an l3d_camera object, and the

destructor frees it.

� The my_pipeline::key_event method checks for input of any of the navigational

keys described above, and updates the camera’s rotational or translational velocity accord-

ingly. These velocities are used to update the camera’s position in the method l3d_move-
able::update, which also computes the viewing transformation matrix.
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Figure 6-27: Output from sample program
camspikes. Notice that the viewpoint is
slightly above the spikescape, looking
diagonally down, with a tilted horizon.



Now, let’s look at the more significant changes.

Themy_pipeline::update_event routine calls the camera’supdatemethod, which

applies the velocities to change the camera’s position, and which computes the viewing transfor-

mation matrix. Next, it calls move_spike to update the variables containing the spike’s

position, if the animation is enabled. Then, the spike’s coordinates are reset, and we apply the

translational and rotational matrices to the spike’s points. After this, the vertices of the spike are

now in world coordinates. We must now check to see if the spike is out of bounds

(out_of_wc_bounds) and needs to be repositioned to be within the world coordinate bound-

aries. Finally, after ensuring that the spike is validly positioned, we apply the new camera

transformation matrix in camera->viewing_xform. This matrix has the effect of transform-

ing the entire world such that the camera, however it is positioned or oriented in the world, has the

standard camera position and orientation described in Chapter 5. This way, we fulfill the require-

ments for the perspective projection equation of Chapter 5. Notice that we did not need to change

the project_spike routine to accommodate the arbitrary camera position and orientation; the

perspective projection remains exactly the same.

The my_pipeline::draw_event performs a new check before projecting, clipping,

and drawing the spike—namely, that the spike is in front of the camera. Previously, with the

rotspikes program, the camera was fixed at the origin and only the spikes moved. In

rotspikes, then, the out_of_wc_bounds method made sure that no spikes moved behind

the camera. However, with a moveable camera as in camspikes, it’s not so easy: we can move

the camera anywhere, so any spike might potentially be behind the camera. As mentioned previ-

ously, we should not project any points which lie behind the camera, since these points are not

physically visible. In draw_event, we check if any points of the spike are behind the cam-

era—in other words, if any points have a z<0 (after the camera transformation has been applied). If

any points of the spike are behind the camera, we refrain from drawing the spike entirely, and pro-

ceed to try to draw the next spike.

NOTE Not drawing a spike if any single one of its points is behind the camera is similar to
the 2D clipping strategy of discarding a polygon if any of its points lies outside of the clip
edge. Just as the 2D all-or-nothing strategy is somewhat limiting, so is the 3D all-or-nothing
approach of camspikes. A better approach is to clip away only the parts of the 3D object
which are behind the camera (or more specifically, the parts which are in front of the near
clipping plane). Chapter 7 covers this topic, called 3D clipping, in detail.

With this sample program, we now have a flight-simulator style arbitrary camera movement. We

achieved this by specifying a camera location and orientation via the point VRP and the vectors

VRI, VUP, and VFW. Then, we used the rotation matrix for rotation about an arbitrary axis to

allow for rotation of the camera around its own axes VRI, VUP, or VFW. Translation of the camera

along its own axes is comparatively simple, since it merely requires vector addition. Finally, we

developed a matrix to move and orient the entire world (and the camera) such that the camera is at

the origin with the standard orientation. After application of this camera transformation matrix,

we can use the standard perspective projection of Chapter 5 to project the world from 3D into 2D.
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Additional Notes on Matrices
We’ve already seen a few interesting tricks with vector and matrix math. We know how to use

matrices to effect simple geometric transformations (the so-called affine transformations, which

preserve parallelism of lines but not necessarily distance and angle), how to combine these trans-

formations, and how to write dot and cross products as matrix multiplications. Now, let’s take a

brief look at some other important matrix concepts which often arise in 3D graphics. You may not

need these concepts immediately, and we touch on them only indirectly in the rest of this book, but

this section is useful for a broader understanding of matrices.

Inverting a Matrix
The inverse of a matrix is useful because it represents the opposite transformation of the transfor-

mation of the original matrix.

We have already seen that for rotation matrices, the inverse is the transpose, which is easy to

compute.

In other cases, we may know the individual transformations which were multiplied together

to arrive at a final matrix M. In such a case, we can compute the inverse of M by applying the oppo-

site transformations in the opposite order. For instance, if we have a matrix M=Rx(20)T(1,1,1),

this matrix M first translates by (1,1,1), then rotates around the x axis by 20 degrees. Therefore, we

can compute the inverse of this matrix by applying the opposite transformations in the opposite

order: M–1=T(–1,–1,–1)Rx(–20). By the definition of inverse, MM–1 must equal I, and so must

M–1 M. If we then look at MM–1, we see that this first applies a rotation, then a translation, then an

opposite translation, then an opposite rotation—giving in effect, no transformation equivalent to

the identity matrix (MM–1=I). Looking further at M–1M, we see that this first applies a transla-

tion, then a rotation, then an opposite rotation, then an opposite translation—again yielding in

effect no transformation, or the identity matrix. Thus, M–1M=I. So, by applying the opposite

transformations in the opposite order, we can undo the effect of the original transformation, and

can in this manner compute the inverse.

In some cases, we might know nothing about the matrix we need to invert. For general matri-

ces, there may or may not be an inverse. We can use the determinant of a matrix (covered in the

next section) to determine if there is an inverse or not. Assuming there is an inverse, there are a

number of ways to actually compute the inverse. The simplest to understand is to write the matrix

equation as MM–1=I. All elements of M and I are known; all elements of M–1 are unknown.

Assuming M is a 4� 4 matrix, then so is M–1. Treating the 16 elements of M–1 as unknown vari-

ables and performing the matrix multiplication gives 16 equations with 16 unknowns. This system

of linear equations may be solved to find the 16 unknown variables, which are then the elements of

the inverse matrix M–1. The technique of Gaussian elimination, covered in any linear algebra text-

book, can be used to solve the system of equations. Under Linux, you can use the Calc package,

which can be installed as part of Emacs, to automatically solve such systems of equations. The

companion book Advanced Linux 3D Graphics Programming provides a detailed example of

using Calc to invert matrices needed for texture mapping.
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Alternatively, we can use a method called Cramer’s rule to determine a matrix inverse by

computing a large number of determinants [FOLE92]. To compute the inverse of M, we first com-

pute an intermediate matrix M', which we will then use to compute the actual inverse. Let each

entry of M' be called Mij. The value of entry Mij in matrix M' is the determinant of the sub-matrix

of the original matrix M with row i and column j deleted, then multiplied by the value (–1)i+j.

After computing all of these determinants to find the intermediate matrix M', the actual inverse of

M is (1/det(M))(M')T. The notation det(M) denotes the determinant of the matrix M, which we

now describe.

Determinant of a Matrix
The determinant of a matrix is a single number which can be used to determine whether the matrix

has an inverse or not. If the determinant is zero, the matrix does not have an inverse. If the determi-

nant is non-zero, the matrix has an inverse. More generally, since any n� n matrix represents a

transformation of n-dimensional space, the determinant’s value tells us the volume change

effected by the transformation [FOLE92]. A determinant of zero means that the n-dimensional

volume has been reduced to zero because of the complete loss of one or more dimensions; such a

transformation is non-reversible, and such a matrix is also non-invertible. A determinant of one

means that no volume change is effected by the transformation; greater than one, that a volumetric

expansion has taken place; less than one, that a contraction has taken place.

Computing a determinant is a recursive process. As a starting point, we define the determinant

of the following 2� 2 matrix:

The determinant in this case, which we write as det(M), is defined to be AD–BC.

For larger matrices, the determinant is defined recursively in terms of the determinants of the

sub-matrices. The equation for the determinant of an arbitrary matrix is as follows.

The term a1i indicates the single value at matrix row 1 and column i. The term submat1i denotes

the sub-matrix obtained by deleting row 1 and column i from the matrix M. The sub-matrix, thus,

is one row and one column smaller than the original matrix M. The –1 term, which is raised to the

power (i+1), causes every second determinant to be evaluated negatively.

In other words, the determinant of a matrix is defined in terms of a weighted sum of the deter-

minants of the smaller sub-matrices (where every second determinant is evaluated negatively).

These determinants of the sub-matrices, in turn, are also defined recursively, until the

sub-matrices are finally of size 2� 2, at which point we use the AD-BC determinant definition for a

2� 2 matrix.
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For example, say we wish to compute the determinant of the following 3� 3 matrix:

Using the recursive definition for determinants, this expands to:

Computing the 2� 2 determinants and evaluating the (–1) terms yields:

This is therefore the determinant of a 3� 3 matrix.

Now, consider the following matrix:

Let vector v=[v1,v2,v3]T, and vector w=[w1,w2,w3]T. Furthermore, let vector i=[1,0,0]T, vector

j=[0,1,0]T, and vector k=[0,0,1]T.

Taking the determinant of this matrix yields:

Collecting the terms for i, j, and k yields:

Finally, remembering that i, j, and k are vectors, and performing the vector addition on these vec-

tors yields a final single vector of:

This vector is the cross product of the vectors v and w as defined in Chapter 5. Thus, by using the

matrix determinant in this manner, we arrive at the cross product.

Perspective Projection as a Transformation Matrix
The homogeneous w coordinate allows us to associate a division with a point. One consequence of

this is that we can represent the perspective projection as a matrix.

In its simplest form, the perspective projection can be expressed as xs=x/z, ys=y/z. (Recall, the

actual final perspective projection developed in Chapter 5 also multiplies these terms with a field

of view term, adds x and y offsets to compensate for the fact that the screen coordinates start at the

upper-left corner and not in the center of the screen, and finally reverses the orientation of the y
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axis to increase downward instead of upward.) The matrix which effects this perspective projec-

tion is:

Notice what happens if we multiply this projection matrix with a point. The point [x,y,z,1]T

becomes [x,y,dz,z]T after projection. Importantly, the w coordinate is a variable dependent on the

input point—a situation which we have not yet encountered. We said earlier in this chapter that to

return from homogeneous coordinates to normal 3D space, we divide by w. This means that the

projected point becomes [x/z,y/z,d,1]T in 3D space. We divide x and y by z, and z becomes a con-

stant equal to the projection plane’s distance from the eye. This is exactly the expected result from

a perspective projection.

The complete perspective projection as developed in Chapter 5, including the reversed y axis

and the upper-left origin of the screen coordinate system, can be expressed as the following

matrix:

Multiplying this matrix with the point [x,y,z,1]T, and dividing x, y, and z by the fourth coordinate w

yields:

This result is identical to that derived in Chapter 5, except for addition of the z component, which

is equal to the distance d between the eye and the projection plane.

Notice that this matrix reduces the entire z dimension to a plane. In other words, for any input

z, the output z will be the constant d. This is an example of a non-reversible transformation and a

non-invertible matrix. After projecting the coordinates from 3D into 2D, we irrecoverably lose the

original depth information stored in the z coordinate. We only have a flat picture—a projection.

There are cases where we would like to have perspective foreshortening, but also still retain

the original depth information stored in the z coordinate. In this way, we can recover the original

3D point after perspective transformation, in case we need to go from the projected screen coordi-

nate back to the original 3D coordinate. This procedure forms the basis for texture mapping,

covered in the companion book Advanced Linux 3D Graphics Programming.

The following matrix performs perspective foreshortening, while retaining depth informa-

tion. We call this a perspective transformation matrix, in contrast to the dimension-reducing

perspective projection of Chapter 5. The matrix is identical to the normal perspective projection
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matrix, but with an additional entry of 1 in row 3 and column 4. This element of the matrix is the

key to preserving the depth information.

Multiplying this matrix with a point [x,y,z,1]T yields:

The x and y terms after application of this matrix are the same as with the normal perspective pro-

jection matrix. But notice that the z term after multiplying with the perspective matrix (let us call

this the “screen-z term”) is now no longer a flat plane d as it was previously, but is instead the value

of d+1/z. The entry of 1 in row 3 and column 4 of the projection transformation matrix causes a

“+1” to appear in the screen-z term after perspective, and after the homogeneous division by w

(which has a value of z because of the entry of 1 at row 4 and column 3), this term becomes 1/z. In

other words, after transformation into screen space, the screen-x and screen-y values have been

properly projected and can be plotted on-screen, and the screen-z value is a constant plus this new

1/z term (where z is the original 3D z coordinate). In other words, after the perspective transforma-

tion, we have a ready-to-plot (x,y) location, as well as a screen-z coordinate which is related to the

reciprocal of the original 3D z coordinate. Therefore, the original 3D z coordinate is no longer

smashed flat into a plane, causing the loss of an entire dimension; instead, the z coordinate is trans-

formed into a “screen-z” or 1/z term.

The 1/z term has some interesting properties and uses. Notice that the 1/z term arises from an

augmented projection matrix and enables us to associate depth information, which is related to the

original 3D depth of z, with each projected (x,y) point. These properties come in handy for z-buff-

ering and texture mapping, both of which are described and implemented in the companion book

Advanced Linux 3D Graphics Programming.

OpenGL, Matrices, and Hardware-Accelerated
Geometry

The OpenGL library has some functions which deal with matrices. Some functions require a

matrix as a parameter; some functions compute a matrix based on input parameters. First, let’s

look at the OpenGL matrix system; then we’ll see how OpenGL matrices are specified via pro-

gram code; and finally, we’ll take a look at some of the functions which OpenGL offers for

manipulating and computing matrices.

The OpenGL transformation system is based upon a matrix stack, which is nothing more than

a last-in-first-out list of matrices. OpenGL offers a few functions to manipulate the top matrix on

the stack; most importantly, you can replace it with another matrix or multiply it with another

matrix. You can also “push” or “pop” the matrix stack: pushing creates a new copy of the top

matrix on the stack and makes the new copy the current matrix; popping discards the top matrix on
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the stack, so that the matrix underneath becomes current. Pushing and popping are useful for hier-

archically built objects, to “remember” a certain location (pushing) and to return to it later

(popping).

There are three matrix stacks in OpenGL: the GL_MODELVIEW matrix stack, the

GL_PROJECTION matrix stack, and the GL_TEXTURE matrix stack.

As we saw in Chapter 3, we can use the OpenGL glVertex2i command to specify vertices

of a polygon to be drawn. There are also corresponding functions glVertex3f and

glVertex4fwhich allow the specification of vertices in 3D space; glVertex3f uses normal

3D coordinates, while glVertex4f uses homogeneous 3D coordinates with an extra w parame-

ter. All glVertex* commands to specify geometry in OpenGL transform the geometry by the

matrix currently at the top of the GL_MODELVIEW stack. It is very important to know which

matrix is currently at the top of the GL_MODELVIEW stack in order to correctly specify geometry.

Effecting transformations in OpenGL is therefore done by loading or appropriately modifying the

top matrix of the GL_MODELVIEWmatrix stack, then issuing a glVertex* command to specify

a location which is transformed by the current GL_MODELVIEW matrix. The points we specify

using glVertex* eventually get projected from 3D into 2D using the projection matrix at the

top of the GL_PROJECTION matrix stack, after which the points and their associated polygons

(after additional scaling and clipping) can be drawn on-screen.

NOTE Recall that in Chapter 3, in the mesaflat program and in the l3d_screen_mesa
class, we set the projection and model-view matrices to the identity matrix, effectively dis-
abling all OpenGL transformations. It is exactly in this way, by disabling OpenGL
transformations, that we can use OpenGL as a 2D rasterization layer.

Following is a list of OpenGL functions which manipulate the matrices and the matrix stacks.

Some of these functions take a matrix as a parameter. In OpenGL, we specify matrices as a linear

array of 16 float values m1, m2, ... , m16, where the values form a matrix as follows:

CAUTION Notice carefully the exact positions of the values m1 to m16. If you declare a
4� 4 of float values in C++, then element [i][j] of the array refers to the element in row i and
column j. However, the element [i][j] of this matrix refers to the element which will be inter-
preted by OpenGL as being at row j and column i. In other words, OpenGL has a
column-major storage convention, whereas C++ (and most post-1977 languages) have a
row-major storage convention. According to OpenGL Programming Guide, Second Edition,
matrices to be passed to OpenGL should be declared float[16] to “avoid confusion” (or at
least, to draw attention to it) [WOO97].
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NOTE For those OpenGL functions requiring floating-point values, the function name typi-
cally ends with the letter f. There is typically an equivalent routine, ending with the letter d,
which takes integer values instead.

� glMatrixMode(GLenum mode) chooses the currently active matrix stack: either

GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE. The currently active matrix is the

top matrix of the currently active matrix stack. Only one matrix stack and one matrix can be

active at any given time, and only the active matrix can be modified.

� glLoadIdentity(void) sets the active matrix to the 4� 4 identity matrix.

� glLoadMatrix(const float *m) sets the active matrix to the 4� 4 matrix specified by

m.

� glMultMatrixf(const float *m) multiplies the active matrix by the 4� 4 matrix

specified by m, and stores the result in the active matrix, overwriting the previous matrix.

� glTranslatef(float x, float y, float z)internally computes a translation

matrix which moves a point by the given x, y, and z offsets, multiplies the active matrix by the

translation matrix, and stores the resulting matrix in the active matrix, overwriting the previ-

ous matrix.

� glRotatef(float angle, float x, float y, float z) internally computes

a rotation matrix which rotates a point about by the given angle in degrees around the vector

(x,y,z), multiplies the active matrix by the rotation matrix, and stores the resulting matrix in

the active matrix, overwriting the previous matrix. When looking from point (x,y,z) toward

the origin, a positive angle is in the clockwise direction. Alternatively, when looking from the

origin towards point (x,y,z), a positive angle is in the counterclockwise direction.

� glScalef(float x, float y, float z) internally computes a scaling matrix for

the given scaling factors x, y, and z, multiplies the active matrix by the scaling matrix, and

stores the resulting matrix in the active matrix, overwriting the previous matrix.

You might wonder why you would want to use OpenGL’s functions for specifying and multiplying

matrices. After all, l3d also has a matrix class, and it is absolutely essential to understand exactly

how matrix operations work, which is the reason that l3d—primarily intended to teach 3D con-

cepts—implements these operations explicitly in code instead of handing them off to OpenGL. Is

there any advantage to using OpenGL functions to manipulate matrices? As you might have

expected, the answer is, “maybe.” First of all, using OpenGL functions to compute matrices ties

you to using OpenGL as the underlying graphics library; although since OpenGL is a standard,

this is not necessarily important. If you are committed to OpenGL, then using OpenGL matrix

functions can lead to improved performance, if dedicated transformation-capable hardware is

available. In this case, OpenGL sends the matrix data to the 3D hardware to be computed, which

lessens the burden on the application processor, leading to better performance. If no dedicated

transformation-capable 3D hardware is available, there is no performance benefit to using

OpenGL matrix functions.

But as with all things, there is a catch to this possible acceleration. Notice that the entire

stack-based model is best viewed as a write-only system. You choose which matrix stack you wish

to modify, you multiply or directly assign the top matrix, the results of which then get stored on the
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stack. You can then issue additional commands to change the matrix further. But nowhere have we

said that you can easily read the contents of the currently active matrix. Using OpenGL’s matrix

functions instructs the hardware to change or multiply the current matrix in a certain way.

Obtaining the intermediate results of these computations, for use within the application program,

may result in performance degradation. The reason for this is that the hardware is likely optimized

for performing the matrix operations quickly, but not necessarily for reading the intermediate

results of matrix computations. Asking the 3D hardware to return the results of intermediate cal-

culations can be viewed as an “interruption” in the streamlined operation of the 3D pipeline,

which might negate the performance gains obtained in the first place by using hardware-acceler-

ated transformations through the OpenGL matrix functions.

NOTE You can call glGetFloatv(GL_MODELVIEW_MATRIX, m) to return the contents
of the OpenGL model-view matrix, where m is an array of 16 elements of type GLfloat. Sim-
ilarly, the parameters GL_PROJECTION_MATRIX and GL_TEXTURE_MATRIX return the
values for these matrices. Remember to be careful about the column-major order of the
returned elements!

An example will hopefully make it clearer when this situation might arise. Let’s say you wanted to

rewrite the camspikes program to exclusively use OpenGL matrix functions. The program first

positions a spike in world coordinates, then transforms it via the viewing transformation, then

checks to see if it is in front of the camera, and finally it projects and draws the spike. The part

which would be questionable in OpenGL is immediately after application of the viewing transfor-

mation matrix: the check to see if the transformed coordinates are in front of the camera. This

check takes place after a transformation matrix has been applied, but before the point has been

completely transformed for display on-screen. In other words, we need intermediate results from a

matrix calculation taking place somewhere in the middle of the graphics pipeline. Getting these

intermediate results may be slow enough to negate the gains afforded by the accelerated transfor-

mation hardware.

One solution to this problem, in order to take advantage of both hardware-accelerated trans-

formations and to allow the program to access intermediate results, is to have two computation

pathways within the application code. One computation pathway operates on a simplified version

of the geometry with fewer vertices (so there is less computation to be done). These matrix com-

putations are done on the main CPU, so that access to all of the intermediate results is possible.

Typically, the computations in this stage should reduce the work to be done in the next stage by

eliminating large numbers of objects (such as those behind the camera, or which are otherwise

invisible). In the second computation pathway, after the preliminary calculations have been per-

formed on the main CPU and have hopefully reduced the number of objects to be considered in the

second stage, the complete object geometry and transformations can be sent with OpenGL matrix

commands to the 3D hardware accelerator. The hardware then uses its specialized circuitry to

compute the matrix transformations quickly and to display the appropriate pixels on-screen, with-

out needing to send any intermediate computation results back to the main CPU.
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Matrices and Coordinate Systems
The camera transformation matrix developed earlier, when applied to a 3D point expressed in 3D

world coordinates, tells us where the point is with respect to the camera. The camera transforma-

tion moves and rotates the entire world, including all geometry and the camera, such that the

camera is in the standard viewing position at the origin, looking along the positive z axis, and per-

fectly right-side-up.

The camera transformation is one example of a so-called “change in coordinate system.” A

coordinate system, as we defined in Chapter 2, provides a way of uniquely identifying the location

of points in space. However, multiple coordinate systems may refer to the same points. This means

that the concept of “location” in space is always with respect to a particular coordinate system. If

we wish to refer to the same point but with respect to a different coordinate system, we must

change the coordinate system.

The following series of figures illustrates this concept of a change in coordinate system. In

Figure 6-28, we have two points. What are the (x,y) coordinates of these two points?

Of course, without any coordinate system, we have no way of referring to the locations of the

points. If we add a coordinate system C, as in Figure 6-29, then we identify the locations with

respect to the coordinate axes: the points are at (3,8) and (11,5).
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We can, however, also refer to the point with respect to any other coordinate system. For

instance, with respect to the second coordinate system D in Figure 6-30, with a translated origin

and scaled axes, the points are located at (0,4.2) and (11.75,0).

The third coordinate system E in Figure 6-31 is translated, scaled, and rotated. With respect to

this coordinate system, the points are located at (13,10.5) and (0,4.75).
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The question is, if we have the coordinates of the point in one coordinate system, how do we

find the coordinates of the point in another coordinate system? For the camera transformation, we

can state the problem as follows. For a given point (x,y,z) in the world coordinate system, what are

the new coordinates of this point with respect to the camera coordinate system? More generally,

given

� a first coordinate system C,

� a second coordinate system D, and

� the coordinates (x,y,z) of a point in the C coordinate system,

how can we find the new coordinates (x',y',z') of the point in the second coordinate system D?

We can specify a coordinate system in n dimensions with an origin point and a list of n

orthogonal vectors, called the basis vectors. In normal 3D world coordinates, the origin is point

[0,0,0,1]T, and the three basis vectors are the [1,0,0,0]T, [0,1,0,0]T, and [0,0,1,0]T. These vectors

represent a displacement of magnitude one along the x, y, and z axes, respectively. Indeed, these

vectors define the directions and the unit size along the three coordinate axes.

It follows that we can specify an arbitrary coordinate system by specifying any origin and

three orthogonal basis vectors. (Theoretically the vectors don’t even have to be orthogonal, but

allowing the vectors to be non-orthogonal does not bring any practical benefit.) Therefore, our

earlier specification of camera location and orientation (via VRP, VRI, VUP, and VFW) is actually

a specification of a coordinate system.

Recall how we derived the camera transformation matrix. We observed that the first three col-

umns of a matrix represent the three new vectors to which the vectors i=[1,0,0,0]T, j=[0,1,0,0]T,

and k=[0,0,1,0]T are transformed after multiplication with the matrix. Also, the last column of a

matrix, since it is the part of the matrix which encodes a translation, represents the new point to

which the origin [0,0,0,1]T is translated after multiplication with the matrix.

Therefore, we can interpret any matrix as a set of three vectors (the first three columns) and an

origin point (the last column). Since three vectors and an origin point define a coordinate system in
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3D, we can therefore interpret any 4� 4 matrix as a coordinate system, and can specify any coordi-

nate system as a 4� 4 matrix. By multiplying a point with this matrix, we obtain the world

coordinates of the point as seen relative to the coordinate system of the matrix. In other words, if

we have a matrix M and a point P, then in the matrix product MP, the matrix M represents the coor-

dinate system in which P is specified. The product MP yields the location of P in the world

coordinate system.

By inverting a matrix representing a coordinate system, we obtain the reverse transformation.

Therefore, the matrix product M–1P yields the coordinates relative to P of the point as seen rela-

tive to the world coordinate system. Notice that this is exactly the opposite formulation from the

previous paragraph. In other words, if we have a matrix M and a point P, in the matrix product

M–1P, the original matrix M represents the coordinate system with respect to which we want to

find the location of P; P itself has been specified with respect to the world coordinate system.

(Contrast with the previous paragraph.) The product M–1P yields the location of P in the coordi-

nate system of M.

TIP When you see the matrix product MP, think of this as answering the question, “P, which
has been specified relative to M, is at what location in world coordinates?” When you see
M–1P, think of this as answering the question, “P, which has been specified in world coordi-
nates, is at what location relative to M?”

The above explains how we can convert between world coordinates and an arbitrary coordinate

system C. We can also convert between arbitrary coordinate systems. Given two arbitrary coordi-

nate systems represented by matrices C and D, and given a point P specified in the coordinate

system of C, we wish to find the coordinates of the point specified in the coordinate system of D.

We can name this conversion as a change in coordinate system from C coordinates to D coordi-

nates. The matrix that converts from C coordinates to D coordinates is D–1C. Recall from the

discussion of matrix multiplication that this expression has the effect of first applying C, then

applying D–1. The multiplication with matrix C converts a point specified in C coordinates into a

point specified in world coordinates. Then, the multiplication with matrix D–1 converts a point

specified in world coordinates to a point specified in D coordinates. Thus, with this matrix, we

effect a change from C coordinates to D coordinates.

Notice that if the C coordinates are world coordinates, then the matrix C is the identity matrix,

and the transform simply becomes D–1. Furthermore, if D coordinates are camera coordinates,

then D–1 converts a point specified in world coordinates into a point specified in camera coordi-

nates—which is exactly the result we developed earlier.

Typical Coordinate Systems in 3D Graphics

A natural question to ask at this point is, “which coordinate systems arise in 3D graphics?” In gen-

eral, any time we need to look at 3D points from a particular point of view in 3D space, we define a

coordinate system. This is a general problem-solving technique in 3D graphics; many interesting

questions in 3D can be answered by viewing the problem as a change in coordinate system.

We have already seen world coordinates, which we can think of as the grand, universal coor-

dinate system in which we ultimately specify all locations. All points must eventually be
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expressed in world coordinates because the perspective projection, which is the only tool we use

to visualize the virtual world, transforms world coordinates into screen coordinates.

Screen coordinates, as we have used them so far, are a 2D coordinate system for plotting pix-

els on-screen. Therefore, the perspective projection can be thought of as a non-reversible change

in coordinate system, from world coordinates to screen coordinates. The projection is

non-reversible because data gets irrevocably lost when we discard the third dimension to come

into the two dimensions of the screen. However, as we saw above in the discussion of perspective

projection as a matrix, it is also possible to perform perspective projection (and its associated fore-

shortening effects) while still preserving the third dimension in a screen-z or 1/z term; with the

addition of the 1/z term, the projection process is then indeed reversible.

The reversibility of the projection process plays an important role in the process of texture

mapping, which needs to convert from screen coordinates back into world coordinates and then

finally into texture coordinates. See the companion book Advanced Linux 3D Graphics Pro-

gramming for details on the math and concepts behind texture mapping and for an explanation of

texture coordinates.

Camera coordinates allow us to view points in terms of their location with respect to a cam-

era’s location and orientation. Generalizing the idea, so-called object coordinates (also sometimes

called local coordinates) allow us to view or define points with respect to an object’s position and

orientation. For instance, if we are defining the coordinates for the corners of a triangle, it is con-

venient to define only one point in world coordinates as a reference point. This point is the origin

of the object coordinate system and also conveniently is a single location which represents “the

position” of the object in world coordinates. We can then define the corners or vertices of the

object in terms of their locations with respect to the object coordinate system, instead of with

respect to the world coordinate system.

Figure 6-32 compares world coordinates with object coordinates. On the left, the coordinates

of two triangles are specified in world coordinates. Based on the world coordinates, it is difficult to

ascertain that the two sets of coordinates actually describe the same triangle. Furthermore, we

have no concept of the “location”—a single point describing the position—of a triangle. We only

have a set of “raw” vertices in world coordinates. On the right, the coordinates of the same two
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triangles are given, each time using a local coordinate system with its origin at the lower-left cor-

ner of the triangle. Using local or object coordinates, it is clear that we are dealing with the same

object; only the placement of the object’s coordinate system within the world coordinate system

has changed. (Here, only the placement has changed via a translation, but we could also rotate or

scale the local coordinate system.) Also, the origin of each local coordinate system can be thought

of as a single point conveniently describing the “location” of each triangle. Through a change in

coordinate system, the coordinates in the object coordinate systems may be converted into world

coordinates.

Using object coordinates leads to a style of thinking where each object defines its own geome-

try in terms of its own local and isolated coordinate system. Placing the object within a world

coordinate system may then be viewed as a change in coordinate system from object to world

coordinates. Through this transformation, we transform points with respect to a local origin and

orientation into points with respect to a global origin and orientation.

Notice that whereas we typically use the camera coordinate system to transform from world

coordinates into camera coordinates for projection, we typically use an object coordinate system

in the opposite direction: we transform from object coordinates into world coordinates, to place all

of the points of an object into the world coordinate system.

Remember, this list of coordinate systems is meant to be illustrative, not exhaustive. Coordi-

nate systems and changes among them are important and valuable concepts which arise again and

again in 3D graphics.

Right-to-left vs. Left-to-right Interpretation
Until now, we have said that the order of operations for transformations expressed as matrices is

right to left: the transformation of the rightmost matrix is applied first; that of the leftmost matrix,

last. This is a perfectly valid and self-consistent definition. It is noteworthy, however, that another

way of thinking allows a left-to-right interpretation of matrix transformations. It is vital to under-

stand that this second way of thinking is just that—a way of thinking. It does not affect in any way

whatsoever the order of matrices in the code you write; this remains the same. What changes is the

way you interpret the meaning of a left-to-right sequence of matrices.

Let us assume we have a translation matrix T, a rotation matrix R, and a point P. If we consider

the matrix multiplication TRP, as in the rotspikes program, we have until now interpreted this

as applying a rotation about the WC origin first, then a translation in the WC system. This means

we always consider the effect of a transformation with respect to the outermost world coordinate

system which contains all objects. Indeed, we defined all transformations with respect to WC.

The alternative interpretation for the matrix multiplication TRP is to imagine that all transfor-

mations take place within a local coordinate system, and that all transformations affect this same

local coordinate system. Under this interpretation, we must then consider the effect of the matrices

left to right. We begin with a local coordinate system which corresponds with the world coordinate

system. Then, we first transform the local coordinate system by translating it to some position (the

leftmost matrix T). Next, with respect to the transformed coordinate system, we perform a rotation

about the origin of the transformed coordinate system. Further transformations, such as scalings,

further translations, or further rotations, are all interpreted, left to right, as changing the size,
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location, or orientation of the local coordinate system. After each transformation of the local coor-

dinate system, the next transformation operates within this transformed coordinate system.

Interpreting transformations as affecting a local coordinate system permits (indeed, mandates) a

left-to-right interpretation of the matrices.

A left-to-right interpretation of matrix operations, where transformations affect and take

place within a local coordinate system, can be useful for thinking about hierarchical transforma-

tions, such as the movement of an arm hierarchy. Consider a model of an arm where we have an

upper arm, a forearm, a hand, and fingers. At the top of the hierarchy is the upper arm. Any transla-

tion or rotation of the upper arm should translate everything attached to the arm—that is,

everything beneath it in the hierarchy. This means the forearm, hand, and fingers should be

affected when the upper arm moves. Similarly, any transformation of the forearm should trans-

form the hand and fingers; any transformation of the hand should transform the fingers. The

hierarchy is thus upper arm-forearm-hand-fingers. With respect to a world coordinate system,

transformations should take place from the lowest level to the highest level of the hierarchy. For

instance, to move a finger, we should first apply all finger rotations and translations with the finger

still at the origin. Call this matrix Mf. Then, having positioned the finger properly, we proceed to

position the finger with respect to the hand transformations (Mh), with respect to the forearm

transformations (Ma), and finally with respect to the upper arm transformations (Mu). With

respect to a world coordinate system, we interpret matrices right to left and would thus write the

transformation of a finger as MuMaMhMf. But, with respect to a local coordinate system, we can

interpret the same transformation sequence left to right. First, the frame of reference is world coor-

dinates. Then, we use Mu to define a new frame of reference with respect to the upper arm. With

respect to the new frame of reference, we then specify, left to right, the frame of reference with

respect to the forearm (Ma) and the hand (Mh). Finally, with the frame of reference being the hand,

we specify the new position of the finger in this frame of reference by using Mf.

TIP To interpret a series of matrices ABCD right to left, think of all transformations as occur-
ring within world coordinates. Each subsequent matrix from right to left causes a new
transformation of the point with respect to world coordinates: first move to the location speci-
fied by D within world coordinates, then move further to C, then move further to B, then move
further to A. To interpret left to right, think of all transforms as occurring within an
incrementally changing frame of reference. First, look at the world from the frame of refer-
ence of world coordinates. Then, apply A to your frame of reference, to look at the world from
A. From within this changed frame of reference, apply B to look at the world from B, then
apply C to look at the world from C, then finally D to look at the world from D. Finally, coordi-
nates are specified with respect to this accumulated frame of reference.

To summarize: a right-to-left interpretation converts a coordinate specified in a local coordinate

system to a coordinate in a world coordinate system. A left-to-right interpretation converts an

entire world coordinate system to a local coordinate system in which points are then specified.

If this confuses you, I suggest that you stick with the right-to-left interpretation of matrix

operations, where all transformations take place with respect to a global world coordinate system

which contains all objects. This tends to be easier to understand at first. But again, the order of
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matrices is identical for both ways of thinking, and the end result is the same. It is only a question

of how you interpret the meaning of the chain of transformations.

Summary
In this chapter, we looked at transformations and matrices. We saw how to mathematically manip-

ulate matrices, and how to geometrically apply matrices to effect translation, rotation, and scaling.

We also saw how to combine transformations to achieve more complicated motion, such as rota-

tion about an arbitrary axis or arbitrary camera movement. Sample programs illustrated complex

object movement and a camera which could be freely positioned within the virtual world. We

developed l3d library classes to handle matrices, transformations, arbitrary orientations, and a

camera. Finally, we looked at some more abstract matrix concepts, including inverses, determi-

nants, projection, and the relationship between matrices and coordinate systems.

The knowledge in this chapter may take a while to digest, but it all definitely belongs in the

3D programmer’s bag of tricks. Understanding matrices and transformations allows you to model

any sort of orientation or movement in 3D space.

Having now gotten a grip on transformations, it is now time to turn some more serious atten-

tion to the things to which we apply the transformations: polygonal 3D objects. In Chapter 7, we

look at the whys and hows of polygonal 3D objects, including practical and geometrical issues.

392 Chapter 6: Matrices and Transformations



C h a p t e r 7

Polygonal ModelingPolygonal Modeling
and Rendering in 3Dand Rendering in 3D

Overview

T
his chapter takes a closer look at 3D polygons, which form the foundation of contemporary

interactive 3D graphics. Chapter 3 already covered 2D polygonal graphics, and Chapters 5

and 6 used ad hoc structures to store 3D polygonal data. In this chapter, we take a more

detailed look at storing, manipulating, and drawing 3D polygons. We cover the following topics:

� Reasons for using 3D polygons

� Geometry of 3D polygons, including normal vectors, 3D clipping, and planes

� Grouping polygons into 3D objects, and grouping objects into a world

This chapter represents a change in style from the previous chapters. While Chapters 5 and 6 were

heavy on the theory and relatively light on the code, the first part of this chapter is fairly heavy on

the code whereas the theory is comparatively easy to understand. The statement “group polygons

to form 3D objects” is easy enough in theory, but a number of important practical issues must be

addressed to create working C++ code for 3D polygonal objects. The focus of the first part of the

chapter is therefore to understand the structural and geometrical properties of 3D polygons, and to

devise appropriate and reusable C++ classes in the l3d library for manipulating and grouping 3D

polygons. It is admittedly somewhat tedious work to devise and implement the classes needed for

3D polygonal objects. The problems are largely structural in nature: deciding when a separate

temporary list is needed, providing means to reset lists at the beginning of a frame, avoiding erro-

neous double-transformation of vertices, using linked lists to save sequential search time, and so

forth. But this work pays off by providing a flexible object structure.

This chapter presents the following sample programs: clipz illustrating near z clipping,

fltsim illustrating creation of polygonal 3D objects with subclassed and plug-in behavior, and

objcopy illustrating the use of object copy constructors and planar clipping to split an object

into two separate pieces.
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Reasons for 3D Polygonal Modeling
We’ve been using polygons since Chapter 3, where we defined the meaning of a 2D polygon and

developed routines for drawing polygons. In Chapters 5 and 6 we projected the vertices of poly-

gons from 3D into 2D, allowing us to store and view 3D polygonal data by projecting the 3D

polygons into 2D polygons, which we then drew using the routines of Chapter 3. Now, it’s time to

focus on the specifics of 3D polygonal modeling and rendering.

A 3D polygon is a 2D polygon oriented and positioned arbitrarily in 3D space. This means

that a 3D polygon is a flat, bounded area in 3D space. By flat we mean that all of the points belong-

ing to the polygon must lie on a plane; we mathematically define the meaning of a plane later in

this chapter. The area of a 3D polygon, as with 2D polygons, is bounded by a series of straight,

connected edges.

By using a series of small and adjacently positioned flat polygons, we can describe or at least

approximate any surface in 3D. For curved surfaces, the larger the number of polygons, the better

the approximation. See Figure 7-2.

In interactive 3D graphics, we typically only model the surface of an object, since the outer

surface is usually all we see of any opaque object. This means that when using 3D polygonal tech-

niques, the interior of an object is generally not modeled. Instead, we only describe the infinitely

thin outer surface of an object. Surface modeling shows its limitations when we wish to break

open or cut away parts of an object to see its interior. In such cases, if we only use polygons to

model the surface of an object, we would see a hollow cutaway view of the object, as if the object

were constructed of cardboard but empty inside. See Figure 7-3.
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In spite of this limitation, 3D polygons offer a fairly versatile, straightforward, and fast means

of describing 3D surfaces. Assuming we only wish to model surfaces—which is most often the

case for the kinds of interactive 3D graphics applications this book is about—polygons are typi-

cally the best choice. They are mathematically simple to describe and conceptually easy to

understand, which makes writing and understanding algorithms for manipulating and rendering

polygons comparatively easy. The simplicity of 3D polygons has also led to widespread hardware

acceleration of common operations on 3D polygons. Modern 3D acceleration hardware is capable

of drawing staggering numbers of polygons to the screen per second, meaning that high visual

complexity can be achieved with acceptable run-time performance.

Alternatives to 3D polygons include modeling curved surfaces, or using a volumetric repre-

sentation of data (voxels, short for volume pixels) instead of merely a surface representation. See

Figure 7-4. Using mathematical descriptions of curved surfaces instead of flat polygonal surfaces

allows for a more accurate representation of real-world curved surfaces, which continues to

appear round at all magnifications. With polygons, if the viewer is close enough to the object, the

inherent flatness of the polygons can become apparent, though by using large numbers of poly-

gons, this problem can be alleviated. Voxels are a volumetric means of data representation which

can be likened to building an object, including the interior, from a huge number of tiny cubes. Just

as a 2D image can be approximated by a large number of tiny squares (pixels) within a 2D grid, so

can any 3D object be approximated by a large number of tiny cubes within a 3D grid. A special

case of voxel graphics is the height field, which records the height of a large number of small

points on a finely spaced 2D grid. This can be useful for modeling landscapes consisting of hills

and mountains. Voxel representations require much more storage space than a polygonal represen-

tation, because they model the entire volume and not just the surface.

The main problem with non-polygonal representations of 3D graphics is that they are not as

simple as polygons. Simplicity is important, because in interactive 3D graphics we indeed interact

with the 3D model, requiring us to test objects for collision or intersection, to classify the positions

of objects relative to one another, and so forth. All of these are mathematical operations which, for

polygons, are straightforward, easily understood, and can be accelerated through hardware. For

voxels and curved surfaces, the math for manipulating or testing the geometry is more compli-

cated, typically not supported well in hardware, and in the case of voxels requires dealing with
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much larger amounts of data. Nevertheless, there are applications which do use non-polygonal

representation of their data, either because they must (for instance, if the interior of an object must

be accurately modeled, such as in medical imaging), or to experiment with finding efficient and

innovative non-polygonal storage and rendering methods.

The rest of the chapter focuses exclusively on polygons. The next several sections deal with

the geometry of 3D polygons. By this, we mean the essential geometrical and mathematical prop-

erties of a 3D polygon, operations which we can perform on 3D polygons using these properties,

and the C++ classes necessary for storing and manipulating these properties. This information

allows us to model and manipulate 3D polygonal objects or environments in a more general way

than we have done so far. Let’s start by taking a brief look at the C++ class for storing and manipu-

lating 3D polygons. Then we discuss the concepts in the class one by one.

Extending Polygons from 2D into 3D
The example programs of Chapter 5 and Chapter 6 used the l3d_polygon_2d class to store

polygons in 3D, projecting the coordinates of the polygon into 2D and then rasterizing the polygon

with a 2D rasterizer class. While this works, it is not the best solution because, as we are about to

see, more general operations on polygons in 3D require storing additional 3D information with the

polygon as well as performing geometrical computations in 3D. To accommodate these new fea-

tures of 3D polygons, we define a new class l3d_polygon_3d, shown in Listings 7-1 and 7-2.

Notice that l3d_polygon_3d inherits from l3d_polygon_2d. Therefore, a 3D polygon is a

2D polygon with additional features. This means that all of the features of 2D polygons, such as

2D clipping or vertex animation, are also available in 3D polygons. Also, any existing routines

expecting a 2D polygon can also work with a 3D polygon.

Listing 7-1: poly3.h
#ifndef __POLY3_H
#define __POLY3_H
#include "../../tool_os/memman.h"

#include "polygon.h"

class l3d_rasterizer_3d;

class l3d_polygon_3d :
virtual public l3d_polygon_2d

{
public:
l3d_polygon_3d(void) : l3d_polygon_2d() {};

l3d_polygon_3d(int num_pts) : l3d_polygon_2d(num_pts) {};

virtual ~l3d_polygon_3d(void) {};

l3d_coordinate sfcnormal;
l3d_coordinate center;
void compute_sfcnormal();
void compute_center();
l3d_real zvisible;
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virtual void init_transformed(void);
virtual void transform(const l3d_matrix &m, int count);
virtual void set_transform_stage(int count);
virtual void after_camera_transform(void);
void camera_transform(const l3d_matrix &m, int count) {
transform(m, count);
after_camera_transform();

}
virtual void clip_segment_to_near_z
(l3d_polygon_ivertex *ivertex,
l3d_real zclip, int idx0, int idx1);
virtual int clip_near_z(l3d_real zclip);
virtual void draw(l3d_rasterizer_3d *r) {}
l3d_polygon_3d(const l3d_polygon_3d &r);
l3d_polygon_2d *clone(void);

};

struct l3d_polygon_3d_node {
l3d_polygon_3d *polygon;
l3d_polygon_3d_node *prev,*next;

};

#include "../../raster/rast3.h"

#endif

Listing 7-2: poly3.cc
#include "poly3.h"
#include <string.h>
#include "../../tool_os/memman.h"

void l3d_polygon_3d::init_transformed(void) {
sfcnormal.reset();
center.reset();

}

void l3d_polygon_3d::compute_sfcnormal() {
const l3d_real collinear_epsilon = float_to_l3d_real(0.999);
int found_noncollinear_points = 0;
int p0,p1,p2;
for(p0=0; p0<ivertices->num_items; p0++) {
p1 = p0 + 1;
if(p1 >= ivertices->num_items) {p1 = 0; }
p2 = p1 + 1;
if(p2 >= ivertices->num_items) {p2 = 0; }

l3d_vector v1 =
(**vlist)[(*ivertices)[p1].ivertex].original -
(**vlist)[(*ivertices)[p0].ivertex].original;

l3d_vector v2 =
(**vlist)[(*ivertices)[p2].ivertex].original -
(**vlist)[(*ivertices)[p0].ivertex].original;

//- if angle between vectors is too close to 0 or 180 deg, they are
//- almost in a straight line, so we choose the next 3 points
if(l3d_abs(dot(normalized(v1),normalized(v2)))

< int_to_l3d_real(collinear_epsilon))
{
sfcnormal.original = center.original + normalized(cross(v1,v2));
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found_noncollinear_points = 1;
}

}

}

void l3d_polygon_3d::compute_center() {

l3d_real xsum=0, ysum=0, zsum=0;
register int i;

for (i=0; i<ivertices->num_items; i++) {
xsum += (**vlist)[(*ivertices)[i].ivertex].original.X_;
ysum += (**vlist)[(*ivertices)[i].ivertex].original.Y_;
zsum += (**vlist)[(*ivertices)[i].ivertex].original.Z_;

}

center.original.set(
l3d_divri(xsum, i),
l3d_divri(ysum, i),
l3d_divri(zsum, i),
int_to_l3d_real(1) );

}

void l3d_polygon_3d::clip_segment_to_near_z
(l3d_polygon_ivertex *ivertex, l3d_real zclip, int idx0, int idx1)
{
l3d_real x0,y0,z0, x1,y1,z1, t, clip_x, clip_y, clip_z;

if((**vlist)[ (*ivertices)[idx0].ivertex ].transformed.Z_ > zclip) {
x0 = (**vlist)[ (*ivertices)[idx1].ivertex ].transformed.X_;
y0 = (**vlist)[ (*ivertices)[idx1].ivertex ].transformed.Y_;
z0 = (**vlist)[ (*ivertices)[idx1].ivertex ].transformed.Z_;

x1 = (**vlist)[ (*ivertices)[idx0].ivertex ].transformed.X_;
y1 = (**vlist)[ (*ivertices)[idx0].ivertex ].transformed.Y_;
z1 = (**vlist)[ (*ivertices)[idx0].ivertex ].transformed.Z_;

}
else {
x0 = (**vlist)[ (*ivertices)[idx0].ivertex ].transformed.X_;
y0 = (**vlist)[ (*ivertices)[idx0].ivertex ].transformed.Y_;
z0 = (**vlist)[ (*ivertices)[idx0].ivertex ].transformed.Z_;

x1 = (**vlist)[ (*ivertices)[idx1].ivertex ].transformed.X_;
y1 = (**vlist)[ (*ivertices)[idx1].ivertex ].transformed.Y_;
z1 = (**vlist)[ (*ivertices)[idx1].ivertex ].transformed.Z_;

}

t = l3d_divrr( zclip-z0, z1-z0);

clip_x = x0 + l3d_mulrr( x1-x0 , t );
clip_y = y0 + l3d_mulrr( y1-y0 , t );
clip_z = zclip;

int new_idx = (*vlist)->next_varying_index();

(**vlist)[ new_idx ].transform_stage = 0;
(**vlist)[ new_idx ].original.X_ =
(**vlist)[ new_idx ].transformed.X_ = clip_x;

(**vlist)[ new_idx ].original.Y_ =
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(**vlist)[ new_idx ].transformed.Y_ = clip_y;
(**vlist)[ new_idx ].original.Z_ =
(**vlist)[ new_idx ].transformed.Z_ = clip_z;

(**vlist)[ new_idx ].original.W_ =
(**vlist)[ new_idx ].transformed.W_ = int_to_l3d_real(1);

ivertex->ivertex = new_idx;
}

int l3d_polygon_3d::clip_near_z(l3d_real zclip) {
int idx0,idx1;
int crossedge0_idx0,crossedge0_idx1,crossedge1_idx0,crossedge1_idx1;
int newedge_ivertex0, newedge_ivertex1;
int i;
int dir;

#define FIRST_CROSS_FRONT_TO_BACK 0
#define FIRST_CROSS_BACK_TO_FRONT 1

l3d_polygon_ivertex new_ivertex0, new_ivertex1;

idx0=0;
idx1=next_clipidx_right(idx0, clip_ivertices->num_items);

temp_clip_ivertices->num_items = 0;

while(
!( ((**vlist)[ (*clip_ivertices)[idx0].ivertex ].transformed.Z_ > zclip

&& (**vlist)[ (*clip_ivertices)[idx1].ivertex ].transformed.Z_ <=zclip)
||
((**vlist)[ (*clip_ivertices)[idx0].ivertex ].transformed.Z_ <=zclip
&& (**vlist)[ (*clip_ivertices)[idx1].ivertex ].transformed.Z_ > zclip)))

{
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[idx0].ivertex;

idx0=idx1;

if(idx0==0) {

if ((**vlist)[ (*clip_ivertices)[idx0].ivertex ].transformed.Z_ <=zclip)
return 0;

else
{
return 1;

}

}

idx1=next_clipidx_right(idx0, clip_ivertices->num_items);
}
if ((**vlist)[ (*clip_ivertices)[idx0].ivertex ].transformed.Z_ > zclip

&& (**vlist)[ (*clip_ivertices)[idx1].ivertex ].transformed.Z_ <=zclip)
{dir = FIRST_CROSS_FRONT_TO_BACK; }else {dir = FIRST_CROSS_BACK_TO_FRONT; }

crossedge0_idx0 = idx0;
crossedge0_idx1 = idx1;

idx0=idx1;
idx1=next_clipidx_right(idx0, clip_ivertices->num_items);
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while(
!( ((**vlist)[ (*clip_ivertices)[idx0].ivertex ].transformed.Z_ > zclip

&& (**vlist)[ (*clip_ivertices)[idx1].ivertex ].transformed.Z_ <=zclip)
||
((**vlist)[ (*clip_ivertices)[idx0].ivertex ].transformed.Z_ <=zclip
&& (**vlist)[ (*clip_ivertices)[idx1].ivertex ].transformed.Z_ > zclip)))

{
idx0=idx1;
if(idx0==crossedge0_idx0) {
fprintf(stderr,"shouldn't be here! can't find 2nd crossing edge");
return 0;

}

idx1=next_clipidx_right(idx0, clip_ivertices->num_items);
}

crossedge1_idx0 = idx0;
crossedge1_idx1 = idx1;

clip_segment_to_near_z(&new_ivertex0, zclip,
crossedge0_idx0,crossedge0_idx1);

newedge_ivertex0 = new_ivertex0.ivertex;

clip_segment_to_near_z(&new_ivertex1, zclip,
crossedge1_idx0,crossedge1_idx1);

newedge_ivertex1 = new_ivertex1.ivertex;

{
idx0=idx1; idx1=next_clipidx_right(idx0, clip_ivertices->num_items);

}

temp_clip_ivertices->num_items = 0;

if(dir==FIRST_CROSS_FRONT_TO_BACK) {
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
newedge_ivertex1;

for(i=crossedge1_idx1;
i!=crossedge0_idx0;
i=next_clipidx_right(i,clip_ivertices->num_items))

{
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[i].ivertex;

}
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[crossedge0_idx0].ivertex;

(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
newedge_ivertex0;

swap_temp_and_main_clip_lists();
}else {
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
newedge_ivertex0;

for(i=crossedge0_idx1;
i!=crossedge1_idx0;
i=next_clipidx_right(i, clip_ivertices->num_items))

{
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(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[i].ivertex;

}
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[crossedge1_idx0].ivertex;

(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
newedge_ivertex1;

swap_temp_and_main_clip_lists();
}

return 1;
}

void l3d_polygon_3d::transform(const l3d_matrix &m, int count) {
register int i;
for(i=0; i<clip_ivertices->num_items; i++) {
(**vlist)[ (*clip_ivertices)[i].ivertex ].transform(m, count);

}

sfcnormal.transform(m, count);
center.transform(m, count);

}

void l3d_polygon_3d::set_transform_stage(int count) {
register int i;
for(i=0; i<clip_ivertices->num_items; i++) {
(**vlist)[ (*clip_ivertices)[i].ivertex ].transform_stage = count;

}

sfcnormal.transform_stage = count;
center.transform_stage = count;

}

l3d_polygon_2d* l3d_polygon_3d::clone(void) {
return new l3d_polygon_3d(*this);

}

l3d_polygon_3d::l3d_polygon_3d(const l3d_polygon_3d &r) {

iv_items_factory = r.iv_items_factory->clone();
init(DEFAULT_IVERTICES_PER_POLY);

vlist = r.vlist;
*ivertices = *r.ivertices;
*clip_ivertices = *r.clip_ivertices;
*temp_clip_ivertices = *r.temp_clip_ivertices;

sfcnormal = r.sfcnormal;
center = r.center;
zvisible = r.zvisible;

}

void l3d_polygon_3d::after_camera_transform(void) {
}
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l3d_polygon_3d, like l3d_polygon_2d, has three constructors: one to create and initial-

ize, one to create but not initialize for use by subclasses, and a copy constructor. It also overrides

the clone method, as we saw in Chapter 3.

Let’s begin our examination of l3d_polygon_3d by looking at the member variable

sfcnormal, which represents the surface normal vector to the polygon.

Surface Normal Vectors
We mentioned earlier in this chapter that most modeling in interactive 3D graphics deals only with

the surface of the objects being modeled. If we pick any point on an arbitrary surface in 3D, an

important property of the surface is the normal vector to the surface at the chosen point. The nor-

mal vector to a surface at a given point is a vector that is perpendicular to the surface at the point.

The normal vector therefore defines the orientation of a surface at a particular point.

The reason we are interested in the normal vector to a surface is that the orientation of the sur-

face is important for several geometrical computations. For instance, to compute the amount of

light falling on a surface, we need to compute the angle between the direction of the incident light

and the normal vector to the surface. Another example requiring normal vectors is back-face cull-

ing, where polygons facing away from the viewer (as determined by the direction of the normal

vector) are not drawn to save time. Finally, the process of collision detection also requires the use

of normal vectors to determine the distance between a point and a polygon. All of these topics are

covered in the companion book Advanced Linux 3D Graphics Programming.

For convenience, normal vectors in 3D are typically scaled so that they have a length of one;

in other words, we typically normalize (Chapter 5) normal vectors in 3D. This is because some

operations on 3D normal vectors, which we see later in this chapter, are easier to compute if the

normal vectors are normalized.

NOTE Normal vectors are also called surface normals, or simply normals.

For a flat surface, such as a polygon, calculating the normal vector is quite easy. Recall from Chap-

ter 5 that the cross product of two vectors yields a new vector which is perpendicular to the plane

defined by the first two vectors. Also, subtracting two points yields a vector between the two

points. Since by definition all points of a polygon must lie in a plane, we can simply take any three

consecutive points of the polygon in order (for our left-handed convention, this means clockwise),

which we can call p1, p2, and p3. Since the three points are consecutive, p2 lies after p1, and p3
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lies after p2. The surface normal is the vector given by the cross product (p2–p1)� (p3–p1). After

computing the cross product, we usually normalize the vector, by dividing by its magnitude.

The points p1, p2, and p3 chosen to compute the normal vector must not lie in a straight line. If

they do, the cross product computation will return the vector (0,0,0). Furthermore, if the points lie

“almost” in a straight line, the cross product will be “close to” the vector (0,0,0), which might

cause problems with numerical accuracy due to the extremely small values involved. (The nor-

malization process divides a vector by its magnitude; if the vector is very small, dividing by its

magnitude means dividing by a very small number, which can be numerically inaccurate.) Thus, if

the cross product is too small, you can choose the next three points p2, p3, and p4 to compute a

better (i.e., more reasonably sized) cross product vector.

Although we can easily compute surface normals from polygonal data, this is not always

done. This is because often polygons are used as an approximation of a real surface, but do not rep-

resent the real surface. For instance, a curved surface cannot be completely accurately represented

by a series of polygons—the fewer the polygons, the worse the approximation. This means that

the surface normal calculated using the polygon’s vertices might not always be exactly equal to the

true surface normal of the actual surface approximated by polygons, simply because the polygon

in this case is not the surface: it is an approximation to the surface. The surface normal calculated

by using the polygon’s vertices will be close to the true surface normal, but we may be able to use

an analytical (mathematical) description of the surface to compute a more representative surface

normal for the area of the surface approximated by the polygon. In this book, however, we will

always use surface normals computed from the polygonal data itself.

Storing Normal Vectors as Base and Tip Points
In class l3d_polygon_3d, we use two member variables to store the surface normal vector.

Specifically, we use one variable, center, to store the base point of the normal vector, which we

define to be the geometric center of the polygon (hence the name “center”). We use a second vari-

able, sfcnormal, to store the tip point of the normal vector. Both of these variables are of type

l3d_coordinate. Recall from Chapter 5 that we can subtract the tip point from the base point

to obtain the corresponding vector, and that we can add the vector to the base point to obtain the tip
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point. Therefore, internally we store the vector as two points, and whenever we need to know the

actual vector, we subtract the base point from the tip point.

You might wonder why we use two l3d_coordinate objects to store a normal vector

instead of using one l3d_vector object. The reason is for uniformity of the transformation

code. Recall that we use matrices to effect transformations, and that an l3d_coordinate
object stores several l3d_point objects: an original point, zero or more optional transformed

intermediate points, and a final transformed point. By storing vectors as two l3d_coordinate
objects, one for the base and one for the tip, we can transform vectors just as we transform points,

via method l3d_coordinate::transform. Indeed, when we transform the points of an

object from object space into world space and into camera space, we must also transform the nor-

mal vectors along with the geometry, so that after transformation the vector still has the same

orientation relative to the transformed geometry. (However, transforming normal vectors is in

general even more complicated; see the section titled “Transforming Normal Vectors.”)

Furthermore, we can access the original or transformed intermediate positions of the vector

by retrieving the corresponding entries out of the l3d_coordinate objects, one for the base

and one for the tip, and subtracting base from tip. This gives us the orientation of the vector at a

previous point in time, which corresponds exactly to retrieving the old positions of geometry from

an l3d_coordinate. In other words, storing vectors as pairs of l3d_coordinate objects

leads to a uniformity of code for transforming points and vectors, including the retrieval of older

entries out of the l3d_coordinate object. (Storing vectors as l3d_vector objects would

require creating a similar system of original, intermediate, and final vector orientations for

l3d_vector objects, resulting in another class similar to l3d_coordinate, but just for

vectors.)

In general, whenever we need to store a vector which needs to be transformed with other

points, we store the vector as two points: a base and a tip. These two points are stored in two

l3d_coordinate objects, in the original member variables. We can then transform the

base and tip l3d_coordinate objects via l3d_coordinate::transform. To retrieve

the actual vector (the directed displacement) from the base and tip points, we subtract the base
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point from the tip point, accessed through l3d_coordinate::transformed (or trans-
formed_intermediates, if we need to determine the vector at a previous intermediate point

in time).

CAUTION Be very attentive when implementing mathematical formulas requiring vectors
as inputs. Always pay attention to whether the formula needs the vector or the tip point of the
vector. Typical formulas in 3D graphics require the vector and not the tip point, so always be
sure in such cases to subtract the base point from the tip point to obtain the vector.

In class l3d_polygon_3d, the method compute_center computes the geometric centroid

of the polygon simply by averaging the x, y, and z coordinates of all vertices in the polygon. This

computation is done in object coordinates, i.e., with the originalmember of the l3d_coor-
dinate objects forming the polygon. We then use this center point as the base point of the

surface normal vector.

The method compute_sfcnormal computes the surface normal vector by taking a cross

product as described above, searching through the points for any consecutive series of three points

which do not lie in a straight line (measured by using the dot product). After computing the vector,

we normalize it, then add it to the base point (member variable center) to obtain the tip point of

the vector, which, like the base point, is in object coordinates. We then store this tip point in the

member sfcnormal.

Orientation of Normal Vectors
For a given surface, there are two vectors, not just one, which are perpendicular to the surface.

These two normal vectors point in exactly opposite directions: one points inward, the other points

outward. We define the outward pointing normal vector to be the one computed as described in the

previous section by taking a cross product of vectors using three points taken from the polygon in

clockwise order. This is consistent with a left-handed coordinate system. Take your left hand, and

hold it such that the direction of your hand from palm to finger points in the same direction as the

order of the polygon vertices. The direction your thumb points is the direction of the out-

ward-pointing normal vector.
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In this book, the normal vector that we compute and store with each polygon is the out-

ward-pointing normal vector.

Given an outward-pointing surface normal vector to a polygon and a camera located in 3D

space, an interesting question of orientation is whether the normal is pointing towards the camera

or away from the camera. If the normal points towards the camera, we can say that the normal (and

the polygon) are forward-facing. If the normal points away from the camera, we can say that the

normal (and the polygon) are backward-facing.

Assuming all points have been transformed into the left-handed camera coordinate system

introduced in Chapter 5, the orientation of the normal vector can be determined quite easily by

examining the sign of the z coordinate of the normal vector: if it is negative, the normal vector is

pointing towards the origin and therefore towards the camera; if it is positive, the normal vector is

pointing away from the origin and therefore away from the camera. Figure 7-9 illustrates this

computation.

In the more general case, we might want to determine whether a face is backward- or for-

ward-facing in world coordinates. This can save on processing time because it eliminates the need

to perform an additional matrix multiplication to convert to camera coordinates before performing

back-face determination. In world coordinates, we take the dot product of the surface normal vec-

tor with the vector from the polygon’s center (or actually from any point on the polygon) to the

camera’s location. If the dot product is positive, the polygon is front-facing (facing towards the

camera); if the dot product is negative, the polygon is back-facing (facing away from the camera);

if the dot product is zero, the polygon is being viewed exactly on its edge. This dot product can be

interpreted as the cosine of the angle between the surface normal vector and the poly-

gon-to-camera vector. If the angle is 0 to 90 degrees or 270 to 360 degrees, then the polygon is

pointing toward the camera, and the cosine and therefore the dot product are positive. If the angle

is 90 to 270 degrees, the polygon is pointing away from the camera, and the cosine and dot product

are negative.
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NOTE OpenGL uses a different method for performing back-face determination: it defines
a vertex order for each polygon, and checks after perspective projection in screen coordinates
to see if the vertex order has been reversed. If it has been reversed, this means that the poly-
gon is being viewed from its back side.

The classification of polygons into backward-facing or forward-facing polygons plays an impor-

tant role in the operation of back-face culling, which is covered in the companion book Advanced

Linux 3D Graphics Programming.

Vertex Normal Vectors
The surface normal vector that we just described is a single vector representing the orientation of

the surface. If we have several polygons sharing several vertices, then it is also possible to specify

normal vectors for the vertices shared by polygons. Such normal vectors are called vertex nor-

mals. We might want to specify vertex normals in order to provide additional information about

the orientation of the surface at the points between polygons. This additional orientation informa-

tion can then, for instance, lead to improved lighting calculations, simply because more surface

orientation information, in the form of more normal vectors, is available upon which to compute

light intensities. The vertex normal for a particular vertex can be computed either by averaging the

surface normals from all polygons sharing the vertex (possibly a weighted average based on the

angle the polygon forms with the vertex) or by using some formula based on the mathematical

description of the surface at the vertex point, assuming a mathematical description of the surface is

known.
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Transforming Normal Vectors

In general, transforming normal vectors is tricky. This is because a normal vector is not just any

vector, but is instead a special vector with a constraint on its orientation. By definition, this vector

must always be normal (perpendicular) to a given surface. We use matrices to effect transforma-

tions. If we transform the points of a surface by a matrix M, and use the same matrix to transform

the normal vector to the surface, the normal vector still might not be perpendicular to the surface,

as it was before the transformation. In particular, if the transformation matrix M only involves

translation, rotation, and uniform scaling matrices, we can use the same matrix for transforming

points and normal vectors. But, if the transformation matrix M involves any other angle- or

length-changing operations, such as non-uniform scaling or shearing, then transforming the nor-

mal vector with the same transformation matrix M yields an incorrect result: the normal vector

will no longer be perpendicular to the surface as it was before. Figure 7-12 illustrates this

phenomenon.

For the program code in this book, we restrict ourselves to transformations which do not

change the angles or lengths of the original data. Therefore, in our program code, we use the same

matrix M for transforming points and normal vectors—indeed, we store normal vectors as base

and tip points (not vectors), subtracting base from tip to retrieve the vector. This leads to code

which is simpler to understand, but which is not correct in all cases. For completeness, though, let

us consider exactly how to transform normal vectors in the general case. The mathematical deriva-

tion presented here is taken from Open GL Programming Guide, Second Edition [WOO97].

As mentioned above, a normal vector is a special entity; it must be perpendicular to a particu-

lar surface. Generally, we can say that a normal vector n must always be perpendicular to another

vector v, where the vector v lies within the surface to which n is perpendicular. This is the con-

straint which must be maintained in order for the normal vector to be “normal” to the surface.

Mathematically, we can express this constraint as the vector dot product nv=0. Remember, the dot

product represents the cosine of the angle between two vectors; this means that the cosine of the

angle between the two vectors must remain zero for the two vectors to be defined as being “nor-

mal” to one another. Expressed in matrix form, we can rewrite this dot product as a matrix-matrix
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transformation is a non-uniform scaling of 0.5 in the x direction.



multiplication: nTv=0. This means that the transpose of the normal vector dotted with the vector to

which the normal is perpendicular yields a result of zero.

Now, consider an arbitrary transformation matrix M which transforms v. The result after

transformation is Mv. Therefore, the normal to this transformed vector must satisfy the constraint

that the dot product of the normal and the transformed vector is still zero. If we call the trans-

formed vector n', the mathematical constraint that must be satisfied is n'TMv=0.

The equation nTM–1Mv=0 satisfies the constraint. You can verify this by recognizing that the

matrix product M–1M reduces to the identity matrix, yielding the original constraint nTv=0. Now,

recall that the term Mv in this equation represents the transformed vector, to which the transformed

normal must be perpendicular. Remembering our original interpretation of the constraint, this

means that term nTM–1 in the above equation must be the transpose of the transformed normal

vector, because we said earlier that the transpose of the normal vector (nTM–1) dotted with the

vector to which the normal is perpendicular (Mv) yields a result of zero.

We therefore know that the transpose of the transformed normal vector is nTM–1. Therefore,

the transformed normal vector itself is the transpose of the transpose of the transformed normal

vector—in other words, (nTM–1)T. A general rule of matrix multiplication is that the transpose of

a matrix product AB, represented as (AB)T, is equal to BTAT—we transpose each matrix, and

reverse the order of multiplication. (Verify this by realizing that taking the transpose of each

matrix reverses the row-column sense of each matrix, and reversing the order of multiplication

again reverses the row-column sense of the multiplication, yielding the same result as the original

multiplication.) Using this rule, this means that the transformed normal vector is (M–1)T(nT)T, or

equivalently, (M–1)Tn.

Finally, we can recognize that this last equation expresses the transformed normal vector in

terms of a matrix multiplication with the original normal vector. Therefore, the matrix which

transforms normal vectors is (M–1)T—the transpose of the inverse of the matrix M used to trans-

form the original vector or point.

Again, for the code in this book, we make the simplification that we only use translation, rota-

tion, and uniform scaling matrices, thereby allowing us to use the same matrices for transforming

points and normals. It is important, however, to realize that this is a simplification, and that, in

general, we must compute a matrix inverse and transpose in order to transform normal vectors cor-

rectly in all cases.

NOTE Instead of transforming a normal vector as described above, we could recompute
the normal after transforming the geometry.

Transforming 3D Polygons
Transforming a 3D polygon allows us to change its location and orientation in space. Chapter 6

showed how to use matrices and the l3d_matrix class to effect transformations on points. We

also saw in Chapter 3 the class l3d_coordinate, which stores an original location, zero or

more intermediate transformed locations, and a final transformed location.
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Transforming a 3D polygon, however, requires us to transform more than just the

l3d_coordinate objects forming the vertices of the polygon. In general, when we say “trans-

forming a polygon,” we actually mean “transforming the l3d_coordinate objects of the

polygon, and transforming any other relevant geometrical attributes of the polygon.” Specifically,

for now, this means additionally transforming the surface normal. Just as class l3d_coordi-
nate provides methods to allow transforming a point by a matrix, the class l3d_polygon_3d
similarly provides such transformation methods to allow transforming a 3D polygon (including

geometry and normal) by a matrix.

Methods for Transforming a Polygon
Let’s now look at the methods in l3d_polygon_3d dealing with transforming a polygon. Most

of these methods are virtual. The reason for this is that to transform a polygon, we must transform

all “relevant geometric attributes” of the polygon. For now, as we said, the relevant geometric

attributes, other than the vertices, are the base and tip points of the surface normal vector. Later,

subclasses of l3d_polygon_3d will introduce extra geometrical attributes which also need to

be transformed. Overriding these virtual transformation methods allows subclasses to transform

any extra geometrical attributes.

The virtual methodinit_transformed resets the positions of all transformable members

of the polygon, excluding the vertex list, back to their original (as opposed to transformed) loca-

tions. Here, we call sfcnormal.reset and center.reset to reset the tip and base of the

surface normal vector to be at their original positions. We do not reset the vertex list of the poly-

gon, because the vertex list is probably a vertex list shared among several polygons, as discussed

in Chapter 3. It would be inefficient for each polygon to reset the entire external vertex list, since

each polygon only uses a small part of the list; however, we could use the transform_stage
member of the vertices to ensure that each vertex gets reset only once, at the cost of executing sev-

eral if statements. Instead, we require that the entire vertex list be reset externally. This means

thatinit_transformed is responsible for resetting all polygon attributes, excluding the verti-

ces, to their original positions.

The virtual method transform transforms all vertices and additional attributes of the poly-

gon by the given matrix m. It does so by calling l3d_coordinate::transform for each

vertex. Furthermore, we also transform the base and tip of the surface normal vector. This method

uses the clipped list of vertex indices (clip_ivertices) instead of the original list

(ivertices), as do all methods which might temporarily change the polygon. Chapter 3 dis-

cusses the clip_ivertices member. This means that before calling transform, the

clip_ivertices member of the polygon must have already been initialized (l3d_poly-
gon_2d::init_clip_ivertices).

The virtual method set_transform_stage resets the transform_stage counter for

all vertices and for all additional polygon attributes to a particular value. Here, we assign trans-
form_stage for each vertex (in the clipped vertex index list), for the surface normal base, and

for the surface normal tip. Remember that the transform_stage variable is checked within

l3d_coordinate to see if a coordinate has already been transformed or not; if so, we do not

transform the coordinate a second time. We use the method set_transform_stage to reset
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this counter. If some polygons have undergone more or fewer transformations than others, but we

want to make sure that all following transformations are applied equally to all polygons, we would

call set_transform_stage on all polygons to ensure that all polygons are at the same trans-

formation stage. Then, all subsequent transformations will definitely be applied to all polygons.

This sort of situation can arise when we have a child object contained within another parent object;

the child object in this case might have undergone more transformations than the parent object due

to its own local movement within the parent object. This means that the child object’s polygons

would have a higher transformation stage than those in the parent object. But we may still at some

later point in time wish to apply some global transformations equally to all polygons in the child

and parent objects. In such a case we should call set_transform_stage before applying the

global transformations, to ensure that all polygons are transformed and none are incorrectly

skipped over because they already coincidentally had a higher transform_stage from a pre-

vious extra transformation. See the companion book Advanced Linux 3D Graphics Programming

for an example of this, where an object contained within a sector in a portal environment may have

undergone more transformations than the containing sector itself.

The virtual method after_camera_transform allows the polygon to perform any

additional processing after application of the camera transformation as described in Chapter 6. In

l3d_polygon_3d this method is empty, but subclasses can override this method. This method

is called immediately after the camera transformation has been applied to the polygon’s vertices

(also see next method camera_transform). The reason for having this method is that some

computations in 3D require the camera space coordinates of the vertices of a polygon. By overrid-

ing after_camera_transform, the polygon can access the camera space coordinates,

because all of its vertices at the time of the invocation of this routine are in camera space. The

polygon can then save the camera space coordinates in one of the transformed_interme-
diates. Later access to the camera space coordinates is then possible, even after the polygon’s

vertices have undergone additional transformations (such as perspective projection), by accessing

the previously saved transformed_intermediates item.

The method camera_transform works closely with the method after_cam-
era_transform. Method camera_transform simply calls method transform, then

method after_camera_transform. The idea is that this method camera_transform
should be called instead of the method transform whenever the transformation matrix being

applied is the camera transformation matrix. As mentioned before, many interesting computations

in 3D require the coordinates right after application of the camera transformation matrix. But the

transform method itself has no way of knowing whether an arbitrary matrix is indeed being

used as a camera transformation matrix or not. Therefore, the application program itself must

explicitly call camera_transform instead of transform whenever the matrix being

applied is the camera transformation matrix. By adhering to this convention, we notify the poly-

gon that the camera space coordinates are now available, and allow the polygon to perform any

camera space processing or to save the camera space coordinates for later use.
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Step-by-Step Guide to Transforming 3D Polygons
The following list summarizes the typical operations needed in order to correctly transform a 3D

polygon. To begin transforming a polygon from its original position to a new position, follow the

steps below.

1. Reset the external vertex list for the polygon by calling reset for each vertex in the list.

Eliminate any varying items in the external vertex list by setting num_varying_items to

zero. Note that if this vertex list is shared among polygons, then the vertex list will be reset for

all polygons (which is the desired effect).

2. Call init_transformed to allow the polygon to reset any additional geometric attributes

back to their original, untransformed positions.

3. Call init_clip_ivertices (described in Chapter 3) to initialize the clip vertex index

list from the original vertex index list.

4. The polygon and all of its attributes are now in their original, untransformed, non-clipped

state. Call transform, possibly multiple times, to effect transformations on the polygon.

Maintain an external transform_stage counter, increasing it with every call to

transform. Pass the current transform_stage counter to every call of transform.

Reset transform_stage to zero whenever you reset the polygon’s vertex list (step 1).

5. Call camera_transform instead of transform if the matrix being applied is the

camera transformation matrix and if the polygon needs to do any camera-space processing.

Declare a polygon subclass and override the virtual method after_camera_transform
to perform camera-space processing within the polygon.

6. Call set_transform_stage to manually set the transformation stage to a particular

value, for all vertices and for all additional geometric attributes of the polygon.

The upcoming sample program, clipz, provides functions which automate much of the “house-

keeping” work involved with transforming a 3D polygon. The l3d classl3d_object also builds

on this idea, yielding an easy-to-use framework for transforming groups of 3D polygons.

Now that we know how to transform a 3D polygon and its relevant geometrical attributes,

let’s turn to another important geometrical concern with 3D polygons: near z clipping.

Near Z Clipping
Due to the physical properties of light, we can only see objects in front of our eyes. The perspec-

tive projection equation developed in Chapter 5 divides the camera space x and y coordinates by z,

and assumes that z is positive—in other words, in front of the camera. Applying perspective pro-

jection to a point whose camera space z is negative is mathematically possible but physically

unrealistic, resulting in a reversal of up and down orientation. Attempting to apply perspective

projection to a point with z=0 results in a division by zero and a run-time error. Finally, even if z is

positive, very small values of z (for instance, z=0.000000000001) result in extremely large pro-

jected coordinates, which can cause numerical instability or overflows when attempting to

rasterize or otherwise manipulate the projected coordinates.
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All of this implies that for a robust perspective projection, the z values should not be smaller

than a certain small, positive z value. Until now, we have dealt with this problem in a fairly loose

manner. The sample programs of Chapters 5 and 6 simply refrained from drawing an entire poly-

gon if any vertex of the polygon had a z value less than a certain lower bound. This treatment is

similar to the 2D clipping strategy, covered in Chapter 3, of “discard the polygon completely”: if

any vertices are invalid, refrain from drawing the entire polygon. This strategy has the same prob-

lem in 3D as it does in 2D: entire polygons or groups of polygons suddenly disappear as soon as

any one of their vertices has a z value which is too small.

In 2D, we turned to analytical clipping to mathematically compute which parts of the polygon

should be clipped away and which parts should be retained, finally drawing the retained part of the

polygon. We can use the same strategy in 3D to ensure that the z values of our polygons never drop

below a certain value. Specifically, we define a near z clipping plane, analogous to the 2D clipping

edge we defined in Chapter 3 for clipping 2D polygons. Just like a 2D clipping edge, a 3D clipping

plane has an “inside side” and an “outside side.” We clip 3D polygons to the near z plane by check-

ing all vertices of the polygon to see if they are on the inside side or the outside side of the clipping

plane. If they are all on the outside side, we discard the entire polygon. If they are all on the inside

side, we accept the entire polygon. If some are on the inside and some are on the outside side, we

find each crossing segment of the polygon, where one vertex lies on the inside side and the next

vertex lies on the outside side. Just as in 2D, there will always be either zero or two crossing seg-

ments for convex polygons, due to the O-shaped nature of convex polygons. We then clip each

crossing segment to the near z plane, creating new temporary clip vertices and indices to these clip

vertices. The process is entirely analogous to the process of analytical 2D polygon clipping: we

have merely extended the process to 3D.
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This entire procedure is called near z clipping and ensures that all z values of vertices passed

on to the perspective projection have a minimum positive value, thereby avoiding any mirroring,

division by zero, or numerical instability effects caused by negative, zero, or extremely small posi-

tive z values.

Implementing near z clipping is a simple extension of the 2D clipping idea. From 2D clipping,

we already have the structures in place for dealing with the creation of temporary clipped vertices,

temporarily redefining the polygon’s geometry to reference the new clipped vertices, and resetting

the polygon back to its original non-clipped state. Therefore, implementing near z plane clipping

requires only a few new steps. Specifically, we need to do the following:

1. Define the near z plane mathematically.

2. Define the inside side and the outside side of the near z plane.

3. Classify a 3D point as being on the inside side or the outside side of the near z plane.

4. Calculate the intersection between a crossing segment (a line segment with one vertex inside

and outside the near z plane) and the near z plane.

With these four operations, we can then use exactly the same logic we used for 2D clipping: clas-

sify points with respect to the clipping plane, find crossing segments, clip crossing segments to the

inside side, and rebuild the polygon definition to use the new clipped edges and vertices.

Let’s now discuss each of the four new operations needed for near z plane clipping.

Define the Near Z Plane Mathematically
In camera coordinates (in other words, after we have applied the camera transformation to all

points) the near z clipping plane is a plane stretching infinitely in the x and y directions, with a

fixed z value. You can think of the near z clipping plane as an infinitely wide and high flat surface

positioned vertically at some distance in front of the camera.

Fortunately, the mathematical definition of a near z clipping plane is very simple: it is simply

an equation of the form z=zclip, where zclip is the desired z coordinate of the clipping plane, below

which points will be clipped. zclip is therefore the minimum allowable z value.
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In C++, this means that we only need a single number to represent the near z clipping plane.

The method l3d_polygon_3d::clip_near_z clips a 3D polygon to a near z plane, and

takes as input a single parameter zclip, which represents the near z clipping plane against which

the polygon should be clipped. Furthermore, the class l3d_camera, which we saw in Chapter 6,

contains a member variable near_z, which is the near z clipping plane for the camera. This clip-

ping plane is then passed to the clip_near_z method.

Define the Inside and Outside Sides of the Near Z
Plane

Having defined the near z clipping plane, we next need to define the inside and outside sides of the

clipping plane. As with clipping edges in 2D, we define the inside side of a clipping plane to be the

side on which vertices are allowed to be located. We define the outside side to be the side of the

plane on which vertices must not be located. We must clip polygon edges which cross from the

inside side to the outside side, so that they stop before crossing over to the outside side.

CAUTION The definition of the inside side as being the side which remains after clipping is
not necessarily universal among all graphics texts; when reading other literature, the sides of
a plane may be defined differently.

The purpose of the near z clipping plane is to eliminate points with z coordinates that are too small,

i.e., too close to the camera. Therefore, the outside side of the near z clipping plane, where points

must be clipped, is the side nearer to the camera than zclip. Mathematically, this means that the

outside side is defined by the equation z < zclip. The inside side is therefore the opposite: all points

on or beyond the near clipping plane or, mathematically, z > zclip.

Classify a Point as being Inside or Outside
For all polygon vertices, we must test to see if the vertex is on the inside side or the outside side of

the clipping plane. If we find any pair of two consecutive vertices where one is on the inside side

and one is on the outside side, then we have found a crossing segment and must clip this segment

to the plane.

To classify a point as being inside or outside the near z clipping plane, we simply use the for-

mulas we defined above for the inside and outside sides. If the z coordinate of a particular point is

less than the zclip value, the point is outside. If the z coordinate is greater than or equal to zclip, the

point is inside.

Calculate the Intersection Between a Crossing Segment
and the Near Z Plane

The last operation we need in order to perform near z plane clipping is the calculation of the inter-

section between a crossing segment and the near z plane. Fortunately, this computation is

somewhat easier than in the 2D case, where we computed the intersection between an arbitrary

crossing segment and an arbitrary clipping edge.
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Assume that the crossing segment crosses from the outside side to the inside side. Call the

invalid z value z0 and the valid z value z1. This means that the z component of the edge starts out

invalid on the outside, but becomes valid by the time it reaches the end of the segment. We use a

parameter t to represent the fractional percentage of the invalid z distance divided by the total z

distance: t=(zclip–z0) / (z1–z0).

This t parameter tells us, then, how much of the total segment is invalid from the first invalid

point to the second valid point. Call the first point (x0,y0,z0) and the second point (x1,y1,z1). Then,

the intersection of the crossing segment with the near z clip plane is given by (x0+t(x1–x0),

y0+t(y1–y0), zclip). For both the x and y displacements, we simply take the entire displacement,

multiply it by t to get the invalid part of the displacement, and add this to the invalid starting point

to arrive exactly at the first valid point on the displacement—in other words, at the intersection

point between the crossing segment and the near z plane.

The method l3d_polygon_3d::clip_segment_to_near_z performs exactly this

computation. Given as input a near z clipping plane and two indices to vertices forming a crossing

segment, the routine first orders the vertices to go from outside the plane to inside the plane. Then,

it computes the t value, computes the corresponding intersection point based on t, creates a new

vertex, sets the position of this vertex to be the just-computed intersection point, and finally

returns an index to the newly created vertex. The calling routine is then responsible for taking this

newly created vertex and redefining the polygon geometry.

Putting It All Together
The method l3d_polygon_3d::clip_near_z performs the entire near z clipping opera-

tion. Its operation is very straightforward if you recall the logic behind the 2D analytical clipping
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process from Chapter 3. First, we loop through all of the clip_ivertices, checking each ver-

tex to see if it is inside or outside. If it is inside, we add the vertex to the temporary list of vertices,

temp_clip_ivertices. But if the vertex is outside, then we clip the current segment to the

near z plane, add the clipped vertex to temp_clip_ivertices, and look for the next segment

crossing back inside the z plane. Once we find the second crossing segment, we again clip it to the

near z plane, add the clipped vertex to temp_clip_ivertices, then add the rest of the verti-

ces from clip_ivertices to the temp_clip_ivertices. The code also has to account

for the reverse case, where the first crossing is outside to inside and the second crossing is inside to

outside, as well as cases where the polygon is either completely outside or completely inside.

At this point, temp_clip_ivertices contains some or all of the vertices from the origi-

nalclip_ivertices list, and also possibly two new vertices if any part of the original polygon

was clipped away. Then, we simply call swap_temp_and_main_clip_lists to make the

current definition of the polygon correspond to the results of our clipping operation. Finally, we

return a value of 0 to the caller if the polygon was completely clipped away, or 1 if some part of the

polygon remained after the clipping operation.

Linked Lists of Polygons
We have just seen how to clip polygons to the near z plane. After such a clipping operation, it is

possible that the polygon has been completely clipped away if all of its vertices were outside the

near z clipping plane. We should refrain from doing further processing (such as additional trans-

formations, projection, or rasterization) on any polygons which have been completely clipped

away: any further processing of such a polygon is a waste of time since it has been clipped away

and therefore does not contribute to the final image for the current frame. (The viewpoint might

change for the next frame, however, meaning that a polygon completely clipped away in the last

frame might still become visible in the next frame.)

At the beginning of each new frame, since the viewpoint might have changed from the previ-

ous frame, we initially consider all polygons as being potentially visible. Then, we perform

various clipping operations, which might result in some polygons being completely clipped away.

So for each frame, for all polygons in a scene, we need to keep track of which polygons should be

further processed, and which ones should not be further processed because they have already been

completely clipped away in this frame.

One way of doing this is to keep the flag is_valid with each polygon. If the polygon has

not been clipped away, is_valid is 1; as soon as it is clipped away, is_valid is set to 0. By

checking the value of this flag, we could determine whether or not to continue processing the

polygon.

The problem with a flag variable is that we still need to check each and every polygon to see if

it is still valid. If we have clipped away several polygons, this would imply many redundant

checks on polygons which have already been clipped away. A more attractive option is to use a

linked list of polygons. At the beginning of each frame, all polygons are potentially visible, and

are inserted into the list. If a polygon is clipped away, we simply remove it from the list, and relink

the surrounding elements together to skip the clipped away polygon. Then, after all clipping
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operations are done, we simply need to traverse the linked list and draw all polygons in the list; we

do not need to perform a test on every single polygon to see if it is still valid or not.

NOTE We’ve said that at the beginning of each frame, since the viewpoint may have
changed from the last frame, all polygons are considered potentially visible and are thus
inserted into the linked list at the beginning of the frame. In a typical application, though, the
viewpoint does not tend to change drastically from one frame to another. This implies that the
polygons that were visible in the last frame will probably remain visible for a few frames to
come; those that were invisible will probably remain invisible. If we are clever, we can try to
reuse the contents of the previous visible polygon list to more quickly build up the visible poly-
gon list for the new frame. Such an approach is said to “exploit frame coherence,” because it
tries to reuse the results from the previous frame to save work in the current frame.

The upcoming sample program, clipz, uses a linked list of polygons to keep track of all poly-

gons which have not been completely clipped away. The C++ structure we use to create the linked

list is l3d_polygon_3d_node.
struct l3d_polygon_3d_node {
l3d_polygon_3d *polygon;
l3d_polygon_3d_node *prev,*next;

};

The member variable polygon is a pointer to a 3D polygon. The member variables next and

prev point to the next and previous nodes in the linked list. We setprev ornext to NULL at the

beginning or end of the list, respectively. Since we are keeping track of previous and next nodes,

this is a doubly linked list.

Drawing 3D Polygons: Flat Shading
The class l3d_polygon_3d, similar to its ancestor l3d_polygon_2d, represents the geom-

etry of a 3D polygon and not its appearance. Therefore, we cannot rasterize an
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l3d_polygon_3d to the screen. Since this is a book on computer graphics and not computa-

tional geometry, it would be a shame if we couldn’t see our 3D polygons on screen. Therefore,

let’s now look at a simple 3D polygon subclass which we can rasterize to the screen: l3d_poly-
gon_3d_flatshaded. As we saw in Chapter 3, a flat-shaded polygon is one which we

rasterize with a single color. In the companion book Advanced Linux 3D Graphics Programming,

we encounter other descendants of l3d_polygon_3dwhich store and use additional 3D infor-

mation such as texture or light map coordinates for more advanced rasterization and a more

impressive visual appearance. For now, though, we start with a single-colored, flat-shaded 3D

polygon. Listings 7-3 and 7-4 contain the code for class l3d_polygon_3d_flatshaded.

Listing 7-3: p3_flat.h
#include "p_flat.h"
#include "poly3.h"

#ifndef __P3_FLAT_H
#define __P3_FLAT_H
#include "../../tool_os/memman.h"

class l3d_rasterizer_3d;

class l3d_polygon_3d_flatshaded :
virtual public l3d_polygon_2d_flatshaded,
virtual public l3d_polygon_3d

{
public:

l3d_polygon_3d_flatshaded(int num_faces) :
l3d_polygon_3d(num_faces),
l3d_polygon_2d_flatshaded(num_faces),
l3d_polygon_2d(num_faces)

{}

unsigned long color;
int light_intensity;

void draw(l3d_rasterizer_3d *r );
l3d_polygon_3d_flatshaded(const l3d_polygon_3d_flatshaded &r);
l3d_polygon_2d *clone(void);

};

#include "../../raster/rast3.h"

#endif

Listing 7-4: p3_flat.cc
#include "p3_flat.h"
#include "../../math/matrix.h"
#include "../../tool_os/memman.h"

void l3d_polygon_3d_flatshaded::draw(l3d_rasterizer_3d *r ) {
r->draw_polygon_flatshaded(this);

}

l3d_polygon_2d* l3d_polygon_3d_flatshaded::clone(void) {
return new l3d_polygon_3d_flatshaded(*this);

}
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l3d_polygon_3d_flatshaded::l3d_polygon_3d_flatshaded
(const l3d_polygon_3d_flatshaded &r)

: l3d_polygon_3d(r),
l3d_polygon_2d_flatshaded(r),
l3d_polygon_2d(r)

{
color = r.color;
light_intensity = r.light_intensity;

}

The class l3d_polygon_3d_flatshaded inherits from class l3d_poly-
gon_2d_flatshaded and from class l3d_polygon_3d. (Notice that the base classes are

virtual, which ensures that the common ancestral components are only created once.) This means

it has the 3D surface normal and the clipping capabilities of a 3D polygon, and the single-colored

drawing capabilities of a 2D flat-shaded polygon. We can therefore clip a 3D flat-shaded polygon

in 3D by using the routines inherited from l3d_polygon_3d, and can also pass the 3D polygon

to a rasterizer to be rasterized as a 2D flat-shaded polygon.

The constructors for l3d_polygon_3d_flatshaded are a normal initializing construc-

tor and a copy constructor. The overridden clone method uses the copy constructor, as we have

seen before.

The new member variables color and light_intensity provide a means of separating

the color of the polygon from the intensity of the light falling on the polygon. Recall that for the

2D flat-shaded polygon, we only stored one color value, in a member variable named

final_color. The namefinal_color implies that the color used in the 2D flat-shaded case

is exactly the color which we pass to the rasterizer layer, and which will appear on-screen. With

3D flat-shaded polygons, however, we can do better than this. We can define a certain color and

store it in the color member variable. Then, separately from the color, we can compute a light

intensity falling on the surface, by means of one of the formulas covered below in the section on

computing light. We can then store this light intensity in member variable light_intensity.

Then, by combining the color and the light intensity (through a light table as described in Chapter

2), we arrive at a final color to be displayed on screen, and store this in the final_colormem-

ber variable inherited from l3d_polygon_2d. The separation of color and intensity makes it

easy to recompute a new final color value if the light intensity changes.

The overridden drawmethod draws a flat-shaded 3D polygon by passing it on to a rasterizer

of type l3d_rasterizer_3d, which then forwards the request to a rasterizer implementation

of type l3d_rasterizer_3d_imp. The 3D rasterizer and implementation classes inherit

from their 2D counterparts, and drawing flat-shaded polygons is done by forwarding the request to

the 2D rasterizer. Later, other polygon types (such as texture-mapped or light-mapped polygons)

will make use of new features of the 3D rasterizer class not available in the 2D rasterizer.

NOTE The preceding statement, that the 3D rasterizer forwards the flat-shaded drawing
request to the 2D rasterizer, is not entirely accurate. In the case of the software rasterizer, the
3D rasterizer does indeed simply forward the request to the 2D rasterizer, which is the reason
we don’t cover the 3D rasterizer class in more detail in this book. However, in the case of the
Mesa/OpenGL rasterizer, the 3D rasterizer changes the screen coordinate system so that the
(0,0) point is in the center of the screen and not in the upper-left corner as usual. This change
in coordinate system means that the 2D Mesa rasterizer routines, which assumed that the
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(0,0) point was in the upper-left corner, cannot be used; the 3D Mesa rasterizer must
reimplement the exact same OpenGL calls as the 2D Mesa rasterizer, but based on a
screen-centered coordinate system and not an upper-left coordinate system. The reason that
the 3D rasterizer must make such a change in coordinate system has to do with texture map-
ping, a topic covered in the companion book Advanced Linux 3D Graphics Programming.

Sample Program: clipz
The previous sections discussed several concepts dealing with the geometrical definition and

manipulation of 3D polygons: the definition of a surface normal, storing a surface normal as a base

and tip point, transforming the geometry and the normal together, clipping against the near z plane,

and using a linked list to keep track of which polygons deserve further processing. We also

declared a flat-shaded 3D polygon subclass which we can rasterize and see on-screen. Now, let’s

look at a sample program which illustrates the use of the 3D polygons in practice.

The sample program clipz is similar in structure and function to the camspikes program

of Chapter 6: a number of pointed objects fly toward you, and you can stop the motion and navi-

gate freely through the scene. The main difference between this program and camspikes is that

we clip the spike objects to the near z plane. See this for yourself as follows:

1. Compile the program and change to the binary output directory. Type clipz and press Enter.

Notice the menu of possible factories; type 1, and press Enter to choose the standard X11

factories. The program opens a new window and begins execution.

2. Notice the spikes flying towards you. Press 0 to stop the movement of the spikes. Use the

navigation keys (as described in Chapter 6 for the camspikes program) to fly towards one

of the spikes.

3. Use the navigation keys to position yourself close to the tip of a spike. Rotate the viewpoint so

that you are looking directly forward at the tip of a spike.

4. Briefly press i to fly forward slowly. Continue to press i until the tip of the spike disappears.

5. Notice that the entire spike does not suddenly disappear as you slowly get closer, but instead

that the portion of the spike that is too close is clipped away. As you approach closer by

pressing the i key, more and more of the spike gets clipped away. As you retreat further by

pressing the k key, more and more of the spike becomes visible again, until the entire spike is

again visible. Press q to end the program.
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Listing 7-5: clipz.cc
#include <stdlib.h>
#include <stdio.h>

#include "../lib/geom/polygon/poly3.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/system/factorys.h"

#include "../lib/geom/point/point.h"
#include "../lib/math/vector.h"
#include "../lib/math/matrix.h"
#include "../lib/view/camera.h"

#define MAXSPIKES 50
#define PI 3.14159265

unsigned long red_color;
unsigned long green_color;
unsigned long blue_color;

//- STEP 1: CHOOSE THE FACTORIES

void choose_factories(void) {
factory_manager_v_0_1.choose_factories();

}

//- STEP 2: DECLARE A PIPELINE SUBCLASS

l3d_real fovx, fovy;
int xsize, ysize;

class spike {
public:

l3d_two_part_list<l3d_coordinate> *vlist;
l3d_polygon_3d_flatshaded *faces[3];

l3d_polygon_3d_node *nonculled_polygon_nodes;
l3d_list<l3d_polygon_3d_node> polygon_node_pool;

l3d_vector displacement;
l3d_vector velocity;

int transform_stage;

spike(void) {
//- declare common shared vertex list for all polygons
vlist = new l3d_two_part_list<l3d_coordinate> (4);
int i=0;
(*vlist)[i++].original.set(int_to_l3d_real(0),

int_to_l3d_real(0),
int_to_l3d_real(50),
int_to_l3d_real(1));

(*vlist)[i++].original.set(int_to_l3d_real(50),
int_to_l3d_real(50),
int_to_l3d_real(50),
int_to_l3d_real(1));
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(*vlist)[i++].original.set(int_to_l3d_real(50),
int_to_l3d_real(0),
int_to_l3d_real(50),
int_to_l3d_real(1));

(*vlist)[i++].original.set(int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1));

//- define polygons in terms of indices into shared vertex list
faces[0] = new l3d_polygon_3d_flatshaded(3);
faces[0]->vlist = & vlist; //- shared vertex list
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 3;
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 0;
(*(faces[0]->ivertices))[faces[0]->ivertices->next_index()].ivertex = 1;

faces[1] = new l3d_polygon_3d_flatshaded(3);
faces[1]->vlist = & vlist; //- shared vertex list
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 3;
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 1;
(*(faces[1]->ivertices))[faces[1]->ivertices->next_index()].ivertex = 2;

faces[2] = new l3d_polygon_3d_flatshaded(3);
faces[2]->vlist = & vlist; //- shared vertex list
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 3;
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 2;
(*(faces[2]->ivertices))[faces[2]->ivertices->next_index()].ivertex = 0;

nonculled_polygon_nodes = NULL;
}

~spike(void) {
delete faces[0];
delete faces[1];
delete faces[2];
delete vlist;

}

void init_nonculled_list(void) {
l3d_polygon_3d_node *prev=NULL;

polygon_node_pool.num_items = 0;
for (int i=0; i<3; i++) {
if(faces[i]) {
int next_pool_idx = polygon_node_pool.next_index();
polygon_node_pool[next_pool_idx].polygon = faces[i];

}else {
}

}

for(int i=0;i<polygon_node_pool.num_items; i++) {
polygon_node_pool[i].prev = prev;
polygon_node_pool[i].next = NULL;
if (prev) {
prev->next = &polygon_node_pool[i];

}
prev = &polygon_node_pool[i];

}

nonculled_polygon_nodes = &polygon_node_pool[0];
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}

void place_spike(void) {
displacement.set(int_to_l3d_real(1000 - (rand() % 2000)),

int_to_l3d_real(1000 - (rand() % 2000)),
int_to_l3d_real(200),
int_to_l3d_real(1));

velocity.set(int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(-10-rand()%40),
int_to_l3d_real(0));

l3d_matrix transform;

transform =
l3d_mat_translate(displacement.a[0],

displacement.a[1],
displacement.a[2]);

transform_stage = 0;
reset();
apply_xform(transform);

}

void move_spike(void) {
displacement = displacement + velocity;

}

void reset(void) {
init_nonculled_list();

vlist->num_varying_items = 0;

for(register int ivtx=0;
ivtx<vlist->num_fixed_items;
ivtx++)

{
(*vlist)[ivtx].reset();

}

l3d_polygon_3d_node *n;
n = nonculled_polygon_nodes;
while(n) {
n->polygon->init_clip_ivertices();
n->polygon->init_transformed();
n=n->next;

}

transform_stage = 0;
}

void apply_xform(const l3d_matrix & m) {

transform_stage++;

l3d_polygon_3d_node *n;
n = nonculled_polygon_nodes;
while(n) {
n->polygon->transform(m, transform_stage);
n = n->next;
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}
}

void project_spike(void) {

transform_stage++;

l3d_polygon_3d_node *n;
n = nonculled_polygon_nodes;
while(n) {
int iv;

for(iv=0; iv<n->polygon->clip_ivertices->num_items; iv++) {
if ( (**n->polygon->vlist)[ (*n->polygon->clip_ivertices)[iv].ivertex ].transform_stage !=

transform_stage) {
(**n->polygon->vlist)[ (*n->polygon->clip_ivertices)[iv].ivertex ].transform_stage =

transform_stage;

(**n->polygon->vlist)[ (*n->polygon->clip_ivertices)[iv].ivertex ].transformed.X_ =
l3d_mulri(l3d_mulrr(l3d_divrr( (**n->polygon->vlist)[

(*n->polygon->clip_ivertices)[iv].ivertex ].transformed.X_,
(**n->polygon->vlist)[

(*n->polygon->clip_ivertices)[iv].ivertex ].transformed.Z_),
fovx),

xsize)
+
int_to_l3d_real(xsize > 1);

(**n->polygon->vlist)[ (*n->polygon->clip_ivertices)[iv].ivertex ].transformed.Y_ =
l3d_mulri(l3d_mulrr(l3d_divrr(-(**n->polygon->vlist)[

(*n->polygon->clip_ivertices)[iv].ivertex ].transformed.Y_,
(**n->polygon->vlist)[

(*n->polygon->clip_ivertices)[iv].ivertex ].transformed.Z_),
fovy),

ysize)
+
int_to_l3d_real(ysize > 1);

}
}
n = n->next;

}
}

};

class my_pipeline : public l3d_pipeline {
protected:
l3d_rasterizer_2d_imp *ri;
l3d_rasterizer_2d *r;

spike spikes[MAXSPIKES];
long i, j;
long wc_win_width, wc_win_height, wc_win_dist, fov;
long wc_win_left, wc_win_top;
int numspikes;

virtual int out_of_wc_bounds(l3d_point const &p);

l3d_camera *camera;
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public:
l3d_screen *s;
int animation;
my_pipeline(void);
virtual ~my_pipeline(void);

void key_event(int ch); //- from dispatcher
void update_event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

};

my_pipeline::my_pipeline(void) {
s = factory_manager_v_0_1.screen_factory->create(320,200);
ri = factory_manager_v_0_1.ras_2d_imp_factory->create(320,200,s->sinfo);
r = new l3d_rasterizer_2d(ri);

s->sinfo->ext_max_red =
s->sinfo->ext_max_green =
s->sinfo->ext_max_blue = 255;

s->sinfo->ext_to_native(0,0,0); //- allocate black background color
red_color = s->sinfo->ext_to_native(255, 0, 0);
green_color = s->sinfo->ext_to_native(0, 255, 0);
blue_color = s->sinfo->ext_to_native(0,0, 255);
s->refresh_palette();

fovx = float_to_l3d_real(0.5*1.0/tan(50./180. * PI));
fovy = float_to_l3d_real(0.5*1.0/tan(30./180. * PI));
xsize = s->xsize;
ysize = s->ysize;

numspikes = MAXSPIKES;
for(i=0; i<MAXSPIKES; i++) {
spikes[i].place_spike();

spikes[i].faces[0]->final_color = red_color;
spikes[i].faces[1]->final_color = green_color;
spikes[i].faces[2]->final_color = blue_color;

}

camera = new l3d_camera;
camera->fovx = 0.41955;
camera->near_z = 0.01;
camera->far_z = 100;

animation = 1;
}

my_pipeline::~my_pipeline(void) {
delete s;
delete ri;
delete r;
delete camera;

}

void my_pipeline::key_event(int ch) {
switch(ch) {
case 'q': {

exit(0);
}

case 'j':
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if(camera->rot_VUP_velocity>int_to_l3d_real(-95))
camera->rot_VUP_velocity -= int_to_l3d_real(5);

break;
case 'l':
if(camera->rot_VUP_velocity<int_to_l3d_real( 95))
camera->rot_VUP_velocity += int_to_l3d_real(5);

break;
case 'J':
if(camera->rot_VFW_velocity<int_to_l3d_real( 95))
camera->rot_VFW_velocity += int_to_l3d_real(5);

break;
case 'L':
if(camera->rot_VFW_velocity>int_to_l3d_real(-95))
camera->rot_VFW_velocity -= int_to_l3d_real(5);

break;
case 'I':
if(camera->rot_VRI_velocity<int_to_l3d_real( 95))
camera->rot_VRI_velocity += int_to_l3d_real(5);

break;
case 'K':
if(camera->rot_VRI_velocity>int_to_l3d_real(-95))
camera->rot_VRI_velocity -= int_to_l3d_real(5);

break;
case 'k':
if(camera->VFW_velocity >int_to_l3d_real(-90))
camera->VFW_velocity -= camera->VFW_thrust;

break;
case 'i':
if(camera->VFW_velocity <int_to_l3d_real( 90))
camera->VFW_velocity += camera->VFW_thrust;

break;
case 's':
if(camera->VRI_velocity >int_to_l3d_real(-90))
camera->VRI_velocity -= camera->VRI_thrust;

break;
case 'f':
if(camera->VRI_velocity <int_to_l3d_real( 90))
camera->VRI_velocity += camera->VRI_thrust;

break;
case 'd':
if(camera->VUP_velocity >int_to_l3d_real(-90))
camera->VUP_velocity -= camera->VUP_thrust;

break;
case 'e':
if(camera->VUP_velocity <int_to_l3d_real( 90))
camera->VUP_velocity += camera->VUP_thrust;

break;

//- field-of-view modification
case 'X':
camera->fovx = camera->fovx + float_to_l3d_real(0.1);
break;

case 'x':
camera->fovx = camera->fovx - float_to_l3d_real(0.1);
break;

case 'Y':
camera->fovy = camera->fovy + float_to_l3d_real(0.1);
break;

case 'y':
camera->fovy = camera->fovy - float_to_l3d_real(0.1);

Chapter 7: Polygonal Modeling and Rendering in 3D 427



break;

//- speed
case 'v': case 'V':

camera->VUP_thrust += int_to_l3d_real(1.0);
if(camera->VUP_thrust > 3.0) {
camera->VUP_thrust -= int_to_l3d_real(3.0);

}
camera->VFW_thrust = camera->VUP_thrust;
camera->VRI_thrust = camera->VUP_thrust;
break;

case '1':
animation = 1;
break;

case '0':
animation = 0;
break;

}
}

void my_pipeline::update_event() {
int i;

camera->update();

for(i=0;i<numspikes;i++) {

if(animation) {
spikes[i].move_spike();

}
spikes[i].reset();

spikes[i].apply_xform(
l3d_mat_translate(spikes[i].displacement.a[0],

spikes[i].displacement.a[1],
spikes[i].displacement.a[2])

);

//- "transformed" now contains WORLD COORDINATES
if(out_of_wc_bounds( (*spikes[i].vlist)[0].transformed)

|| out_of_wc_bounds( (*spikes[i].vlist)[1].transformed)
|| out_of_wc_bounds( (*spikes[i].vlist)[2].transformed)
|| out_of_wc_bounds( (*spikes[i].vlist)[3].transformed))

//- we must check all vertices of the spike since its orientation
//- is now arbitrary, and any point might be the foremost point
//- which has now moved out of bounds

{
spikes[i].place_spike();

}

spikes[i].apply_xform(camera->viewing_xform);
//- "transformed" now contains VIEW (or CAMERA) COORDINATES

l3d_polygon_3d_node *n;
n = spikes[i].nonculled_polygon_nodes;
while(n) {
if(n->polygon->clip_near_z(int_to_l3d_real(10)))
{
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}else {

if(n->prev) {
n->prev->next = n->next;

}else {
spikes[i].nonculled_polygon_nodes = n->next;

}

if(n->next) {
n->next->prev = n->prev;

}
}
n = n->next;

}

}
}

void my_pipeline::draw_event(void) {
int i;
r->clear_buffer();

for(i=0;i<numspikes;i++) {
spikes[i].project_spike();

l3d_polygon_3d_node *n;
n = spikes[i].nonculled_polygon_nodes;
while(n) {
n->polygon->clip_to_polygon_2d(s->view_win);
l3d_polygon_3d_flatshaded *pflat;
pflat = dynamic_cast<l3d_polygon_3d_flatshaded *>(n->polygon);
if(pflat) {
r->draw_polygon_flatshaded(pflat);

}
n = n->next;

}
}
s->blit_screen();

}

int my_pipeline::out_of_wc_bounds(l3d_point const &p) {
return(p.Z_<int_to_l3d_real(1));

}

int main(int argc, char **argv) {
choose_factories();

l3d_dispatcher *d;
my_pipeline *p;

//- STEP 3: CREATE A DISPATCHER

d = factory_manager_v_0_1.dispatcher_factory->create();

//- STEP 4: CREATE A PIPELINE

//- plug our custom behavior pipeline into the dispatcher
p = new my_pipeline();
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//- STEP 5: START DISPATCHER

d->pipeline = p; //- polymorphic assignment
d->event_source = p->s;
d->start();

delete d;
delete p;

}

Fundamentally, this program works very similarly to its predecessor from Chapter 6, program

camspikes. Therefore, let’s just focus on the differences between the two programs. The

changes all deal with using the new features of 3D polygons we discussed earlier: transformation,

surface normals, linked lists of polygons, and near z clipping.

First of all, we have made some small and easy changes. All references to l3d_poly-
gon_2d_flatshaded objects have been replaced with references to l3d_polygon_3d_
flatshaded objects; since l3d_polygon_3d_flatshaded inherits from l3d_poly-
gon_2d_flatshaded, this replacement is rather easy. In the spike constructor, we also have

changed the spike’s geometry to be shorter, so that the effect of near z clipping—the whole point of

this program—can be seen more easily.

Changes to the Spike Class
The spike class has undergone some important changes. We have added a linked list pointer

nonculled_polygon_nodes and a growable l3d_list of l3d_polygon_nodes.
class spike {
public:

l3d_polygon_3d_node *nonculled_polygon_nodes;
l3d_list<l3d_polygon_3d_node> polygon_node_pool;

The idea is the following. A spike object consists of polygons, but any number of these polygons

might be completely clipped away due to a near z clip operation. As we mentioned earlier in the

discussion of linked lists of polygons, an efficient way to keep track of which polygons require

further processing and which do not is to use a linked list of polygon nodes, simply removing a

node from the list as soon as its corresponding polygon has been completely clipped away. We

allocate a pool of polygon nodes, one for each polygon in the spike, and at the beginning of a

frame, we insert all of these nodes from the pool into a linked list. As we perform successive clip-

ping operations, some polygons might disappear completely. If they do, we simply remove them

from the linked list, for this frame. After the frame is drawn and when processing begins for the

next frame, we again copy all polygons from the pool into the linked list, and remove them from

the list as necessary.

Specifically, the polygon_node_pool is the pool of polygon nodes described above. It is

a standard growable l3d_list of l3d_polygon_node objects. Each polygon in the spike

requires one corresponding l3d_polygon_node in the pool. The routine init_
nonculled_list ensures this simply by accessing one element in the pool for each polygon;

the list grows automatically if necessary to accommodate all accessed entries. If the list is already

large enough, it does not grow, and the existing node entries are reused.
polygon_node_pool.num_items = 0;
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for (int i=0; i<3; i++) {
if(faces[i]) {
int next_pool_idx = polygon_node_pool.next_index();
polygon_node_pool[next_pool_idx].polygon = faces[i];

}else {
}

}

After ensuring that each polygon has a node in the pool, we then create a linked list of polygon

nodes by linking all the nodes together: we assign the prev and next members of each node to

point to the previous or next member in the pool. Finally, we assign the linked list pointer

nonculled_polygon_nodes to point to the first node in the linked list.
for(int i=0;i<polygon_node_pool.num_items; i++) {
polygon_node_pool[i].prev = prev;
polygon_node_pool[i].next = NULL;
if (prev) {
prev->next = &polygon_node_pool[i];

}
prev = &polygon_node_pool[i];

}

nonculled_polygon_nodes = &polygon_node_pool[0];

At this point, nonculled_polygon_nodes points to the head element of a linked list of

polygon nodes, with one node for each polygon in the spike object. During clipping operations, we

might discard a polygon completely, in which case we simply remove the polygon from the linked

list by assigning the next and prev members of the surrounding nodes to point around the

removed polygon node. After drawing the current frame and before beginning to process the next

frame, we call init_nonculled_list again, to reset the linked list to once again contain all

polygon nodes.

NOTE The names of the linked list variables refer to non-culled polygons instead of
non-clipped polygons. This is because in general, a polygon might be discarded (culled) for
reasons other than just near z plane clipping. The companion book Advanced Linux 3D
Graphics Programming discusses culling schemes in more detail. Using the term “culled” for
the linked list of polygons points out that the linked list structure is useful for removing poly-
gons, for whatever culling reason, from further consideration.

We have also added a new variable transform_stage to the spike class. Just as a polygon

can have a transformation stage, we now allow a spike (a collection of polygons) to have a trans-

formation stage. This transformation stage for the entire spike represents the transformation stage

to which all non-culled polygons belonging to the spike should be brought. In turn, the polygons

should ensure that all of their vertices are brought to the transformation stage of the polygon. Ulti-

mately, as we saw in Chapters 2 and 6, the l3d_coordinate::transform method checks

the transform_stage variable of the l3d_coordinate, and applies the given transforma-

tion m to the coordinate if the coordinate is not already at the proper transformation stage.

Accordingly, the apply_xform method of the spike has also been changed to make use of

the transformation stage variable. Previously, apply_xform simply blindly applied the given

transformation matrix m to all points of the spike. Now, however, apply_xform increases the

spike’s transform_stage counter, because a new transformation is being applied, then
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forwards the transformation request along with the transformation stage on to all of the polygon

objects in the nonculled_polygon_list. This implies that already culled polygons, which

have been taken out of the list, are not transformed at all, which is exactly what we want. Each

non-culled polygon is then asked to transform itself by using the transformation matrix m and the

current transformation stage passed in parameter count. In this program, each polygon is a 3D

polygon, which transforms itself by transforming all of its vertices and also the base and tip points

of the surface normal vector. Already transformed points, as determined by comparing the point’s

transform_stage with the count parameter, are not transformed a second time.

The project_spike routine has undergone similar changes. Instead of blindly projecting

all vertices as we did earlier, we now increase the transformation stage of the spike, loop through

all non-culled polygons (not all vertices), and for all vertices of each non-culled polygon, we

transform the vertex by calling l3d_coordinate::transform, which takes care of check-

ing the vertex to see if it has already been transformed, and transforming it if necessary.

The reset method, which as we saw in Chapter 6 resets the spike’s vertices to the original

untransformed positions, has been extended to reset the additional 3D attributes we have added to

the spike class. First of all, we call init_nonculled_list to copy all polygon nodes belong-

ing to the spike back into the linked list nonculled_polygon_list; due to clipping

operations, we might have removed some polygons from this list. Next, we set num_vary-
ing_items of the vertex list back to zero; this effectively deletes any clipping vertices which

might have been generated from a previous clip operation. Next, we reset each vertex, which cop-

ies the original location into the transformed location. Then, for each polygon, we call

init_clip_ivertices to copy the original, permanent vertex index list into the clip vertex

index list, where it may be freely modified by clipping operations. We also call init_trans-
formed for each polygon, to allow the polygon to reset any information it needs to reset—in this

case, the 3D polygon must reset the base and tip points of the surface normal vector (method

l3d_polygon_3d::init_transformed). Finally, we set the transform_stage for

the entire spike to be 0. After all of these operations, the spike, all of its vertices, and all of its poly-

gons have been reset to their initial, untransformed position and orientation in object coordinates,

and we may begin transformation and clipping operations as usual.

TIP Notice that the transform_stage variable, the apply_xform method, and the
reset method taken together all follow the steps outlined in the section titled “Step-by-Step
Guide to Transforming 3D Polygons.” These new variables and methods encapsulate the
functionality needed to transform 3D polygons as described earlier. We use the same basic
framework for transforming 3D polygons when we develop the general l3d class for 3D
polygonal objects, l3d_object.

Changes to the Pipeline Class
The pipeline class in the clipz program has also undergone some changes from the

camspikes program. The most significant change is in the update method, which now per-

forms the near z clipping operation. The following code performs the near z clip.
l3d_polygon_3d_node *n;
n = spikes[i].nonculled_polygon_nodes;

432 Chapter 7: Polygonal Modeling and Rendering in 3D



while(n) {
if(n->polygon->clip_near_z(int_to_l3d_real(10)))
{
}else {

if(n->prev) {
n->prev->next = n->next;

}else {
spikes[i].nonculled_polygon_nodes = n->next;

}

if(n->next) {
n->next->prev = n->prev;

}
}
n = n->next;

}

We begin with a pointer to the non-culled polygon list of the spike object. For each polygon in this

linked list, we try to clip it against the near z plane using the clip_near_z method of the poly-

gon. If this routine returns 0, the polygon was completely clipped away, and we simply remove it

from the list by redirecting the previous and next nodes around the removed node.

The my_pipeline::draw_eventmethod is simpler than its counterpart in the previous

programcamspikes. In particular, we no longer need to do a camera space test to see if the spike

is in front of the camera. Because we have performed near z plane clipping, we know that poly-

gons that are still in the non-culled list must be in front of the camera; otherwise, they would have

been clipped away completely by the near z plane and thus removed from the non-culled list. So,

for each spike, we perform perspective projection of all vertices belonging to all polygons in the

non-culled list, then we loop through the non-culled polygon list, clip the projected polygon

against the 2D view window, and finally draw the polygon.

Summary
With this program we have seen a simple example of using the l3d_polygon_3d class. This

sample program illustrated the use of linked lists of polygons, transformation stages, and near z

clipping. It did not yet, however, illustrate use of the surface normal; applications of the surface

normal (such as back-face culling and lighting) appear in the companion book Advanced Linux 3D

Graphics Programming.

Grouping Polygons into Objects
Since Chapter 5, some sample programs have declared ad hoc classes for storing groups of poly-

gons to form objects. Since this book deals primarily with polygonal 3D graphics, it makes sense

to try to abstract the common ideas from these classes into a general, reusable class for storing

polygonal objects.

We call a group of 3D polygons a 3D object, or just object for short. Do not confuse this term

with the object-oriented meaning of the word “object” (an instance of a class).
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Creating a generally reusable 3D object class allows us to collect the common attributes and

operations on 3D objects into one convenient package. We can then subclass a 3D object to add

special attributes or behaviors. The idea is that we create, position, and communicate with a num-

ber of autonomous, self-updating 3D objects in order to define and interact with a virtual 3D

world. In a space combat simulator, for instance, the spaceships and the photon torpedoes would

be modeled as instances of a 3D object class, with different geometry and behaviors defined. The

spaceship objects would know how to rotate, move, and fire torpedoes; the torpedo objects would

know how to move along a particular trajectory and how to explode upon impact. As we see later,

we can redefine the geometry and behavior of a 3D object either by declaring a subclass or by writ-

ing a plug-in.

The class for 3D objects, then, is an important building block for our interactive 3D applica-

tions, at a level of abstraction higher than the level of raw, ungrouped polygons. Let’s now look at

this class in detail: class l3d_object.

The l3d_object Class
The class l3d_object is a group of 3D polygons forming a logical whole. Listings 7-6 and 7-7

present the class l3d_object.

Listing 7-6: object3d.h
#ifndef __OBJECT3D_H
#define __OBJECT3D_H
#include "../../tool_os/memman.h"

#include "../../system/sys_dep.h"
#include "../../view/camera.h"
#include "../../math/matrix.h"
#include "../texture/texture.h"
#include "../polygon/poly3.h"
#include "../../datastr/list.h"
#include "../point/point.h"
#include "../../dynamics/plugins/plugload.h"

#define MAX_XFORMS 7

class l3d_object
{

public:

l3d_object(int num_fixed_vertices);
char name[80];
virtual ~l3d_object(void);
l3d_object& operator= (const l3d_object &r);

l3d_object *parent;

virtual int update(void);

l3d_matrix modeling_xform;
l3d_matrix modeling_xforms[MAX_XFORMS];
int num_xforms;
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l3d_two_part_list<l3d_coordinate> *vertices;

l3d_list<l3d_polygon_3d *> polygons;
l3d_list<l3d_polygon_3d_node> polygon_node_pool;
l3d_polygon_3d_node *nonculled_polygon_nodes;

void init_nonculled_list(void);

int transform_stage;

virtual void reset(void);
virtual void transform(const l3d_matrix &m);
void after_camera_transform(void)
{

l3d_polygon_3d_node *n = nonculled_polygon_nodes;
while(n) {
for(register int i=0; i<n->polygon->clip_ivertices->num_items; i++) {
{
(**n->polygon->vlist)[ (*n->polygon->clip_ivertices)[i].ivertex ]
.transformed_intermediates[1] =
(**n->polygon->vlist)[ (*n->polygon->clip_ivertices)[i].ivertex ]
.transformed;

}
}

n = n->next;
}

n = nonculled_polygon_nodes;
while(n) {
n->polygon->after_camera_transform();

n = n->next;
}

}

void camera_transform(l3d_matrix const &m) {

transform(m);
after_camera_transform();

}

void apply_perspective_projection
(const l3d_camera &aCamera, int xsize, int ysize);

char plugin_name[1024];
l3d_plugin_loader *plugin_loader;
void (*plugin_constructor)(l3d_object *target, void *data);
void (*plugin_update)(l3d_object *target);
void (*plugin_destructor)(l3d_object *target);
void (*plugin_copy_data)(const l3d_object *target,l3d_object *copy_target);
void *plugin_data;

};

inline void l3d_object::apply_perspective_projection(const l3d_camera &aCamera,
int xsize, int ysize)

{
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transform_stage++;

l3d_polygon_3d_node *n = nonculled_polygon_nodes;
while(n) {
for(register int i=0; i<n->polygon->clip_ivertices->num_items; i++) {

if ((**(n->polygon->vlist))[(*n->polygon->clip_ivertices)[i].ivertex].
transform_stage != transform_stage )

{
l3d_point *v;
v = & ( (**(n->polygon->vlist))

[(*n->polygon->clip_ivertices)[i].ivertex ].transformed );

#define COORD ( (**(n->polygon->vlist)) [(*n->polygon->clip_ivertices)[i].ivertex ] )

(**(n->polygon->vlist))[(*n->polygon->clip_ivertices)[i].ivertex ].
transform_stage = transform_stage;

v->X_ = l3d_mulri(l3d_divrr(l3d_mulrr(v->X_,
/* TIMES */ aCamera.fovx),

/* DIVBY */ v->Z_),
/* TIMES */ xsize) + int_to_l3d_real(xsize>1);

v->Y_ = int_to_l3d_real(ysize>1) -
l3d_mulrr(l3d_divrr(l3d_mulrr(v->Y_,

aCamera.fovy),
v->Z_) ,

ysize) ;

}
}
n = n->next;

}
}

#endif

Listing 7-7: object3d.cc
#include <stdio.h>
#include <stdlib.h>
#include "object3d.h"
#include "../../view/camera.h"
#include "../../tool_os/memman.h"

l3d_object::l3d_object(int num_fixed_vertices) {

vertices = new l3d_two_part_list<l3d_coordinate> ( num_fixed_vertices );

nonculled_polygon_nodes = NULL;

transform_stage = 0;
num_xforms = 0;

parent = NULL;

plugin_constructor = NULL;
plugin_update = NULL;
plugin_destructor = NULL;

}

l3d_object & l3d_object::operator= (const l3d_object &r) {
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strcpy(name, r.name);
parent = r.parent;

num_xforms = r.num_xforms;
modeling_xform = r.modeling_xform;
for(int i=0; i<r.num_xforms; i++) {
modeling_xforms[i] = r.modeling_xforms[i];

}

*vertices = *r.vertices; //- copy list and contents, not just pointer to list

polygons = r.polygons;
for(int i=0; i<r.polygons.num_items; i++) {
l3d_polygon_3d *p = dynamic_cast<l3d_polygon_3d *>(r.polygons[i]->clone());
if(p) {
p->vlist = &vertices;
polygons[i] = p;

}else {
printf("error during cloning: somehow a non-3d polygon is in an object!");

}
}

polygon_node_pool = r.polygon_node_pool;

//- nonculled_polygon_nodes points to a polygon node in the polygon
//- node pool. since we are making a copy, we have to point to the
//- *corresponding* entry in the *new* node pool, which means we have to
//- find the INDEX of the entry in the original list.

nonculled_polygon_nodes = NULL;
for(int i=0; i<r.polygon_node_pool.num_items; i++) {
if(r.nonculled_polygon_nodes == &r.polygon_node_pool[i]) {
nonculled_polygon_nodes = &polygon_node_pool[i];

}
}

transform_stage = r.transform_stage;
strcpy(plugin_name, r.plugin_name);
if(r.plugin_loader) {
plugin_loader = r.plugin_loader->clone();

}else {
plugin_loader = NULL;

}
plugin_constructor = r.plugin_constructor;
plugin_update = r.plugin_update;
plugin_destructor = r.plugin_destructor;
plugin_copy_data = r.plugin_copy_data;
if(r.plugin_copy_data) {
(*r.plugin_copy_data)(&r, this);

}else {
plugin_data = NULL;

}

return *this;
}

void l3d_object::init_nonculled_list(void) {
l3d_polygon_3d_node *prev=NULL;

polygon_node_pool.num_items = 0;

Chapter 7: Polygonal Modeling and Rendering in 3D 437



for (int i=0; i<polygons.num_items; i++) {
if(polygons[i]) {
int next_pool_idx = polygon_node_pool.next_index();
polygon_node_pool[next_pool_idx].polygon = polygons[i];

}else {
}

}

for(int i=0;i<polygon_node_pool.num_items; i++) {
polygon_node_pool[i].prev = prev;
polygon_node_pool[i].next = NULL;
if (prev) {
prev->next = &polygon_node_pool[i];

}
prev = &polygon_node_pool[i];

}

if(polygon_node_pool.num_items > 0) {
nonculled_polygon_nodes = &polygon_node_pool[0];

}else {
nonculled_polygon_nodes = NULL;

}
}

l3d_object::~l3d_object() {

for(int i=0; i<polygons.num_items;i++) {
delete polygons[i];

}

if(vertices) delete vertices;

if(plugin_destructor) {
(*plugin_destructor)(this);

}

if(plugin_loader) {
plugin_loader->close();

}

if(plugin_loader) delete plugin_loader;
}

int l3d_object::update(void) {
if(plugin_update) {
(*plugin_update)(this);

}

return 1;
}

void l3d_object::transform(const l3d_matrix &m) {

transform_stage++;

l3d_polygon_3d_node *n = nonculled_polygon_nodes;

while(n) {

n->polygon->transform(m, transform_stage);
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n = n->next;
}

}

void l3d_object::reset(void) {
init_nonculled_list();
transform_stage = 0;

vertices->num_varying_items = 0;

for(register int ivtx=0;
ivtx<vertices->num_fixed_items;
ivtx++)

{
(*vertices)[ivtx].reset();

}

l3d_polygon_3d_node *n;
n = nonculled_polygon_nodes;
while(n) {
n->polygon->init_clip_ivertices();
n->polygon->init_transformed();
n=n->next;

}
}

Most of the class l3d_object is a generalization of the concepts we have already seen from the

spike class in the previous sample programclipz. Let’s now look at the members and methods

of an l3d_object.

Creating and Copying 3D Objects
The l3d_object constructor takes a single integer parameter representing the number of fixed

vertices belonging to the object. The vertices of the object are defined in an l3d_two_
part_list, which needs to know how much space to allocate for the fixed and varying parts of

the list, hence the need for a parameter in the constructor.

The member variable name allows us to save a character string with this object which lets us

later search for an object by name in a larger list of many objects.

The overridden operator= allows us to completely copy the contents of one

l3d_object into another. The idea is that if we wish to split an object into two halves, we can

easily do so by copying the object, cutting away one half of one object, and cutting away the other

half of the other object. The result is two objects which, together, have the same shape as the origi-

nal object, but which are completely separate. Recall that the reason for the existence of the

l3d_polygon_2d::clone method (Chapter 3) is the same: to allow for splitting a polygon

into two pieces. Since an object is a collection of polygons, it should come as no surprise that the

l3d_object::operator= calls the virtual method l3d_polygon_2d::clone to clone

all of the object’s polygons. Later in this chapter we see how to split a polygon or an entire polygo-

nal object into two (or more) pieces.
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Defining the Geometry of a 3D Object
Seen purely geometrically, a 3D object is a collection of 3D polygons. (3D objects also have

behavior, but we cover that later.) After creating an l3d_objectwith the constructor, the object

initially has no geometry defined. The purpose of the following member variables and methods is

to allow the definition of polygonal geometry in a 3D object.

Defining Vertices

The first step in defining the geometry of a 3D object is to define a list of vertices in 3D. The vari-

ablevertices is a pointer to a two-part list ofl3d_coordinate objects. Thel3d_object
constructor creates the two-part list at object creation time, with the fixed part of the list having the

number of vertices specified by the constructor parameter. Recall that the fixed part of the list

stores the permanent definition of the vertices; the varying part of the vertex list is temporary stor-

age for new vertices created during an analytical clipping operation. The l3d_object
destructor deletes the list. Because the size of the fixed part of the vertex list depends on the

parameter passed to the constructor, it is not possible to allocate the vertex list statically; a static

allocation would most likely have either too few or too many fixed vertices. Too many fixed verti-

ces would only waste space, but too few would be a disaster, as clipping operations would then

overwrite the original vertices with new clip vertices, irrevocably destroying the original geome-

try after a clip operation. For this reason, we allocate the vertex list vertices dynamically, and

the variable vertices is a pointer to the list and not the list itself.

Therefore, when an l3d_object is created, the vertex list is also automatically created. We

should then fill this vertex list with all vertices needed by all polygons forming the object. This is

the same approach we have been taking with the sample programs in Chapter 5 and 6: the spike

object declares one list of vertices, which are then referenced by all polygons belonging to the

spike. File formats for saving 3D models also often use such an approach. First the file presents

one list of vertices, followed by many polygons defined in terms of the same vertex list. As we see

in Chapter 8, the Videoscape file format used by the 3D modeling program Blender has exactly

such a format.

We fill in the vertex list by assigning values to the original member of the l3d_coor-
dinate objects. Theoriginalmember, recall, defines a permanent, never-to-be-changed part

of the object geometry, which is exactly what we need to define when initializing a 3D object.

Here is an excerpt from the upcoming sample program,fltsim, which defines the vertex list

for a l3d_object descendant. Notice that the constructor calls the base class l3d_object
constructor with a parameter of 4, meaning that four fixed vertices will be made available in the

vertex list. The derived class constructor then accesses the first four elements of the vertex list, set-

ting the original member of each vertex to be the desired location of the vertex in object

coordinates. Notice that since the variable vertices is a pointer to the list, to access the list

itself (and the elements within the list), we must reference *vertices and not vertices.
pyramid::pyramid(void) :

l3d_object(4)
{
(*vertices)[0].original.set
(float_to_l3d_real(0.),
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float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*vertices)[1].original.set
(float_to_l3d_real(10.0),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*vertices)[2].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(10.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*vertices)[3].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(10.),
float_to_l3d_real(1.));

Graphically, you can picture the object at this point as in Figure 7-18. We have defined a number of

vertices in 3D space and have associated a number with each vertex, representing its position in

the list *vertices. However, the vertices are all unconnected at this point. Thus comes the next

step: connecting the vertices to form polygons.

Defining Polygons

After filling in the vertex list as described above, we can then create an arbitrary number of 3D

polygons defined in terms of these vertices. The variable polygons is a list of pointers to the 3D

polygons making up the 3D object. This list is a normal growable l3d_list object, meaning

that the rules for accessing the list, described in Chapter 3, still apply. In particular, we should

remember to call next_index on the list to get the next free index in the list, since this also

allows the list to grow automatically if necessary.

To insert a polygon into the list, we carry out the following steps.

1. Retrieve the next free index in the polygon list by calling polygons.next_index. Let us

call this new free index pi.

2. Create a new polygon object with new, and assign a pointer to this new polygon object to

polygons[pi], the next element of the list. Let us call a pointer to the new polygon p.
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3. Assign the polygon’s pointer to a pointer to a vertex list to point to the verticesmember of

the 3D object. The statement p->vlist=&vertices accomplishes this. See Chapter 3 for

an explanation of why the vlist member of the polygon is a pointer to a pointer to a vertex

list.

4. Define the polygon in terms of indices into the vertex list. Do this by fetching the next free

index from the vertex index list withp->ivertices->next_index. Let us call this next

free index i. Then, assign an integer value to the (*p–>ivertices)[i].ivertex. The

integer value is the integer index of the desired vertex in the vertex array accessed through

p->vlist. Continue assigning entries in the ivertices list until all vertices of the

polygon have been defined. The order of the entries in theivertices list is very important!

According to our left-handed rule, the order of the entries in iverticesmust correspond to

a clockwise list of the polygon’s vertices when looking at the front face of the polygon (the

front face of a polygon, recall, is the face on the side of the polygon in the direction which the

normal vector points).

5. Call p->compute_center and p->compute_sfcnormal to compute the base and tip

points of the surface normal vector.

NOTE In the companion book Advanced Linux 3D Graphics Programming, where we deal
with texture mapped and light mapped polygons, we will perform additional initialization
steps to initialize the texture space of each polygon.

Step 4 above, the definition of the polygon in terms of a vertex index list, warrants a bit more atten-

tion. In particular, as noted, we should make sure to specify the vertex indices in the correct order

when defining our polygons. If we specify the vertices in the incorrect order, then our polygon

might face in the wrong direction. See Figures 7-19 and 7-20 for an illustration of this problem. In

Figure 7-19, we have a polygon whose surface normal and front side are pointing upwards. There-

fore, in the figure, we are looking at the front side of the polygon. As we said, the correct order in

the vertex index list is clockwise when looking at the front face of the polygon. So this

upward-facing polygon can be defined as any of the following vertex index lists: [0,3,1], [3,1,0],

or [1,0,3]. All of these orderings of the vertex indices are clockwise when looking at the front side

of the polygon.

On the other hand, let us say we want to define the polygon to face downwards, as in Figure

7-20. In this figure, the vertex normal and therefore the front face of the polygon are facing
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downwards. Thus, in the figure we are looking at the back side of the polygon, not the front side!

But the polygon definition relies upon us looking at the front side of the polygon. Therefore, it is

helpful to imagine seeing the polygon from its front side, as depicted in Figure 7-21. In this figure,

we are looking at the same downward-facing polygon, but from its front side. Now, it is clear what

the order of the vertex indices must be: any clockwise ordering, when looking at the polygon’s

front face, is valid. The valid definitions of this polygon are [3,0,1], [0,1,3], or [1,3,0].

Now that we’re clear on vertex ordering, let’s look at some other members of the class

l3d_object which also deal with polygons.

Class l3d_object defines a linked list of polygons in order to eliminate completely

clipped away polygons from further processing in a particular frame. The member variables

polygon_node_pool and nonculled_polygon_nodes form this linked list, just as we

saw in the spike class of the clipz program. The function init_nonculled_list, called

at the beginning of each frame, ensures that each polygon in the polygons list has a node in the

pool, then links all nodes together into a complete linked list and points the pointer

nonculled_polygon_nodes to the first element of the list.

TIP The polygons list, of type l3d_list, always contains all polygons for the object, and
is the “permanent” list of polygons forming the 3D object. The linked list nonculled_poly-
gon_nodes, on the other hand, is a temporary list of polygons which have not been culled
away for the current frame. nonculled_polygon_nodes initially contains all polygons for
the object (at the beginning of each frame), but after clipping operations may contain fewer
polygons if any were clipped away completely. The relationship between the two polygon lists
polygons and nonculled_polygon_nodes can be likened to the relationship between
the two vertex index lists ivertices and clip_ivertices, which we saw in Chapter 3.
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The member variable parent is a pointer to another l3d_object. This allows for hierarchical

modeling of 3D objects, where objects “belong to” or are contained within other objects. The

companion book Advanced Linux 3D Graphics Programming presents an example of this, where

we assign 3D objects to rooms in a portal engine. In this case, the parent of each contained object is

the room object.

Specifying Transformations
Just as we can transform individual polygons in 3D, we also want to be able to transform entire

polygonal objects. Transforming a 3D object transforms all of its polygons and any additional 3D

attributes belonging to the entire object. Class l3d_object contains a number of member vari-

ables and functions to specify transformations for the 3D object.

As we saw earlier, transforming 3D polygons is complicated due to a number of factors: origi-

nal and transformed positions, transformation stages, shared vertex lists, vertex index lists in both

original and clipped form, surface normal data, and the special significance of the camera transfor-

mation. The goal of the l3d_object transformation functions is to try to encapsulate the

complicated transformation process into an easy-to-use interface.

The l3d_object transformation methods follow the same structure for transformations

presented in the sample program clipz. Specifically, we introduce a transformation counter

transform_stage to keep track of the transformation stage for the entire object. The method

reset resets the entire object back into a non-clipped and untransformed state: it sets transforma-

tion stage to 0, copies all polygons into the non-culled linked list, deletes all temporary clip

vertices from the vertex list, resets all vertices to their original positions, and resets all polygons

(including surface normal or other information) to their original positions.

The method transform increases transform_stage and applies the supplied transfor-

mation matrix to all non-culled polygons in the object, by traversing the nonculled_
polygon_nodes list. The method apply_perspective_projection similarly

increases the transformation stage, then transforms all vertices of all surviving polygons by apply-

ing the perspective projection of Chapter 5.

NOTE It is also possible to implement the perspective projection via a matrix multiplication
with the perspective transformation matrix presented in Chapter 6. In this case, you can forget
about the method apply_perspective_projection. But, if you use the perspective
transformation matrix, the w component of the resulting point after multiplication with the
matrix will not be 1. This means that after the transformation with the perspective matrix, you
must homogenize the point by dividing all of its components (x, y, z, and w) by the w compo-
nent. With a perspective projection matrix, the value of w is equal to the value of the original z
coordinate (or some constant multiple thereof), meaning that a division by w effectively
divides by the 3D z coordinate, thereby effecting the perspective projection. At the end you
should have a point of the form [x,y,z,1]T, where x and y are the screen coordinates of the pro-
jected point, and z is either a constant or a 1/z “screen-z” value, depending on whether you
used a non-invertible flattening perspective matrix or the depth-preserving version.

We noted earlier the importance of the camera transformation, and that 3D polygons provide the

methods camera_transform and after_camera_transform to enable any special
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processing immediately after application of the camera transform. Similarly, class l3d_object
offers the methods camera_transform and after_camera_transform. We call

l3d_object::camera_transform instead of l3d_object::transform if the trans-

formation matrix being passed is the camera transform. This simply calls

l3d_object::transform followed by a call to l3d_object::after_cam-
era_transform, which then saves the camera space coordinates of all polygons in

transformed intermediate number 1. Furthermore, l3d_object::after_camera_trans-
form calls l3d_polygon_3d::after_camera_transform for each non-culled

polygon in the object, thereby allowing the non-culled polygons also to perform any poly-

gon-specific processing with the camera space coordinates.

Finally, a 3D object provides storage space for a number of transformation matrices (the exact

number is controlled by the #define MAX_XFORMS). By storing a number of separate transfor-

mation matrices with a 3D object, we can support the idea of successive or hierarchical

transformations, as explained in Chapter 6. The matrix array modeling_xforms contains the

separate modeling transformations to be applied to the object, and the counter num_xforms is

the number of transformations.

The single matrix modeling_xform represents a concatenation (i.e., multiplication) of all

matrices in the modeling_xforms array. By convention, we define that the single matrix

modeling_xform must always be kept up to date; if any code changes the contents of the

modeling_xforms array, it must also immediately update the single modeling_xform
array by re-multiplying all matrices in the array. This convention allows us always to transform

the object from object coordinates into world coordinates via a single matrix multiplication with

matrix modeling_xform. The alternative would have been to always require calling code to

concatenate all matrices in the object’s matrix array, which would likely be more inefficient

because we would then always be multiplying all matrices in the matrix array even if no entries

had changed. By requiring that any change to the matrix array immediately update the single com-

posite transformation matrix, we only remultiply the matrices when we need to and always have a

single matrix representing the entire transformation.

NOTE By appropriately defining accessor functions on the matrix, we could also store a
“dirty” flag with the matrix, indicating whether the individual component matrices are newer
than the composite matrix. Then, when accessing the composite matrix, if the dirty flag is set,
we recompute the matrix and reset the dirty flag to be false. This recomputes the composite
matrix at the last possible moment.

Implicit Position and Orientation
Class l3d_object does not explicitly store position and orientation as in the class

l3d_moveable, but instead takes a different approach and uses the composite transformation

matrix as a coordinate system. The first three columns of the composite transformation matrix

therefore represent the VRI, VUP, and VFW vectors; the last column represents the point VRP. We

could store this information explicitly in class l3d_object, but this would be redundant

because, as we saw at the end of Chapter 6, the matrix itself implicitly contains the position and

orientation of the object. The companion book Advanced Linux 3D Graphics Programming
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presents an example of a plug-in object (the “seeker” object) which extracts its position and orien-

tation from the composite transformation matrix.

Inheritable Behavior
The l3d_object member variables and methods we have looked at so far all deal with an

essentially static view of the 3D object. But, an object which doesn’t move or change in any way

isn’t very interesting. The virtual method update, therefore, provides a means for an object to

change itself autonomously. By declaring subclasses of l3d_object, we can override the vir-

tual updatemethod to perform any sort of update appropriate to the object class. For instance, a

car class might update itself by changing its position to move along its forward vector; a balloon

class might update itself by moving upward along the world’s y axis. Such changes are typically

done by changing one or more of the transformation matrices in the modeling_xforms array.

Remember, if you make any changes to this array, you must also immediately update the compos-

ite modeling_xform array by multiplying all of the modeling_xforms together.

The main program loop should periodically call update on all objects which are allowed to

change themselves at a particular point in time. This function call is virtual, and is bound at run

time to the appropriate update method of the actual object being accessed. Each object then

updates itself—perhaps by changing its position, orientation, velocity, or shape. This leads to a

natural modeling of our virtual world: we populate the world with objects, and the objects know

how to update themselves. This also leads to a maintainable code structure: instead of having one

humongous, global update function sticking its fingers into every object and manipulating every-

one’s vertices, vectors, and velocities, we have a clean division of labor where each object type is

responsible for its own behavior and no one else’s.

By default the l3d_object::update method effectively does nothing. We say “effec-

tively” because what it actually does is try to call a plug-in, if one is attached to the object. By

default, no plug-in is attached to the object, and thus the l3d_object::update method does

nothing. To associate some interesting behavior with an object, we can create a new subclass of

l3d_object and override update to do something more interesting.

While extending behavior through subclassing is a key object-oriented technique, it is not

without disadvantages. If we create a new subclass, we must then modify our program to create an

instance of the new subclass and must recompile the program. An interesting alternative to this,

which we just alluded to, is a plug-in system. This allows the introduction of new object types and

behaviors into a program without recompiling the original program. Let’s look at this technique in

more detail.

Plug-in Behavior
In general, a plug-in is a program module which is developed separately from and usually long

after the existence of a separate host program. The plug-in program module extends the function-

ality of the host program in new ways which might not have been foreseen by the original creators

of the host program. The interesting requirement for a host program supporting plug-ins is that it
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must be able to run with program modules whose existence and type are specified completely

dynamically at run time.

What we’d like to do now is develop a plug-in system for 3D objects. By this we mean that we

would like to compile a program which is then able to dynamically load an arbitrary plug-in at run

time, and to associate the program code in the plug-in with an l3d_object. In this way, the

l3d_object is defined completely in terms of the plug-in, meaning essentially that we have

“plugged in” a new object into our application program. The attraction of this approach is that it

truly requires no change to the host program; new object types can be developed separately as

plug-ins and can be imported into our virtual world at run time.

NOTE An alternative to plug-in systems is offered by scripting systems. With a scripting sys-
tem, we control a 3D object by writing a small program in a custom scripting language. The
script, which is evaluated at run time by a script interpreter within the host program, then con-
trols the appearance and behavior of the 3D object. You can think of a scripting system as a
plug-in system where the plug-in data is the source code of the script.

Thankfully, the Linux operating system offers support for dynamic libraries, meaning that an

object file can be loaded at run time, and the symbols in the object file can then be accessed exactly

as if they were part of the original program. This is the key to creating a plug-in system. We define

a plug-in interface as a small set of function signatures (function names and parameter lists). Writ-

ing a plug-in then amounts to writing a small C file, with no main function, which implements

exactly the functions in the plug-in interface. The plug-in source file is compiled not into an exe-

cutable file, but instead into a special dynamic library or shared object file, with the file extension

of .so.

Then, at run time, we can load a plug-in (through the operating system routine dlopen, cov-

ered later in this section) by specifying the filename of its shared object file. We load the object file

and dynamically bind the functions in the object file into the address space of the program—actu-

ally a rather impressive feat, if you stop and think about it. At this point, the host program can call

the functions defined in the shared object file exactly as if they had been defined in the host pro-

gram itself.

Therefore, we can (and will) create a plug-in system for 3D objects according to the following

plan.

1. Define a series of functions through which a host program can create, update, copy, and

destroy plug-in 3D objects.

2. Declare pointers to these functions, and to any data required by these functions, in the

l3d_object class.

3. Write a plug-in and compile it into a dynamic library file.

4. Provide a plug-in loader which calls the operating system routines to load the shared object

file from disk and which binds the functions in the shared object file to the function pointers in

the l3d_object class.
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The 3D Object Plug-in Interface

For plug-in 3D objects, we essentially need to perform four operations on the plug-in: create,

update, copy, and destroy it. Therefore, we define our plug-in interface in terms of the following

four functions.

� void constructor(l3d_object *target, void *data)

� void update(l3d_object *target)

� void copy_data(const l3d_object *target, l3d_object *copy_tar-

get)

� void destructor(l3d_object *target)

Notice that these are plain C functions, not C++ member functions. The reason for this is that the

Linux dynamic library mechanism (as well as most other dynamic library mechanisms on other

operating systems) has much better support for C functions than C++ member functions. All sorts

of ugly issues, such as name mangling, crop up when trying to export C++ member functions.

Since we are restricting ourselves to plain C functions, and since the plug-in functions are meant to

alter the appearance and behavior of an instance of type l3d_object, the plug-in functions

somehow need to access the memory of the l3d_object object which they are supposed to

modify. This is the purpose of the parameter target in each of the plug-in functions; target
points to the l3d_object which the plug-in function should modify. This is incidentally the

same reason that C++ member functions all have a hidden this parameter.

We use the plug-in system by creating an empty l3d_object, and then calling the plug-in

functions to let the plug-in initialize and change the object. Therefore, the first step before calling

any plug-in functions is to create an empty l3d_object and save a pointer to it. Then, we pass

this pointer to all plug-in functions.

The plug-in function constructor should be called with an empty l3d_object. This

function should initialize the data in the l3d_object, typically by defining vertices and poly-

gons. The data parameter is a void pointer to any data that the plug-in needs from an external

source in order to initialize the object properly, similar to the way that we pass parameters to a nor-

mal C++ constructor in order to tell the constructor any information necessary to create the object.

In C++ we can declare any number of different constructors to initialize an object based on differ-

ent input parameters, but with a plug-in interface we cannot dynamically declare new constructor

functions. Therefore we must make do with exactly one function, but add a void parameter to

allow the calling program to pass any data, cast to a void pointer, to the plug-in constructor. The

plug-in constructor must then cast the void pointer back into a pointer to the data type it is expect-

ing, and can then use the data to initialize the object properly. This is, of course, not a type-safe

mechanism; if the calling program passes data which is in a different format than is expected by

the plug-in constructor, then the program will most likely crash. This is the price of a truly

dynamic plug-in system.

The plug-in function update is called from l3d_object::update, which in turn is

called from the main application processing loop. The plug-in function update has the same role

as the member function l3d_object::update; it should update the object in some plug-in

specific manner. The plug-in function has a pointer to the object, and so is free to change the object

in any way it wishes.
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NOTE It is easiest to understand the plug-in system if we restrict the plug-in function to
accessing only the public data of the l3d_object. So anything that the plug-in needs to
change must be declared public. Ways around this would require using friend functions
and/or static member functions.

The plug-in function copy_data is called from within the l3d_object assignment operator.

This asks the plug-in to copy its plug-in data from itself into the plug-in object referenced by

parameter copy_target. In this way, the target of the assignment operation contains an identi-

cal copy of the contents of the source. The reason that we ask the plug-in itself to copy the plug-in

data is that the plug-in data is only known to the plug-in; externally, it is merely a void pointer to

some unknown data. The plug-in itself must cast the void pointer into a meaningful pointer, at

which point the plug-in can create another copy of this data to be stored separately in another

object.

Finally, the plug-in function destructor is called from the l3d_object destructor. This

allows the plug-in to free any memory it has allocated or to perform any last operations just before

the object to which the plug-in functions belong is destroyed.

These four functions define the interface between a program and the functionality stored in an

external plug-in. The next step is to declare pointers to the plug-in functions in the l3d_object
class.

Pointers to the Plug-in Functions and Data

A plug-in is nothing more than a set of functions which are bound at run time to a particular 3D

object. Therefore, the 3D object class l3d_object must provide function pointers that will

point to the functions dynamically loaded out of the plug-in.

The following excerpt from object3d.h declares the plug-in function pointers in class

l3d_object. After loading and binding the plug-in (covered in the next section), we can then

call the plug-in routines through these function pointers.
void (*plugin_constructor)(l3d_object *target, void *data);
void (*plugin_update)(l3d_object *target);
void (*plugin_destructor)(l3d_object *target);
void (*plugin_copy_data)(const l3d_object *target,l3d_object *copy_target);
void *plugin_data;

Notice also the member variable plugin_data, which is a void pointer. This pointer is

designed to be accessed by the plug-in functions in order to point to any dynamically allocated

data which the plug-in might need to use. For instance, say that a plug-in, in its constructor, needs

to allocate some memory which will then be used by the plug-in’s update function. The plug-in

function constructor can allocate memory with new as normal, but the question is, where

should the constructor save a pointer to this newly allocated memory, so that later on the update
function can access it? The answer is to save a pointer to any allocated memory in the

l3d_object itself, in the member variable plugin_data. The plug-in function

copy_data creates a duplicate of this data; function destructor is responsible for deleting

any memory allocated in this manner.

Now let’s see how we can write a plug-in.
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Writing a Plug-in

Writing a plug-in essentially amounts to implementing the main plug-in functions construc-
tor, update, copy_data, and destructor. But, there are a few issues which need special

attention.

First, we must enclose all of the above plug-in functions within an extern "C" block. In

other words, before the declaration of these functions we need the line:
extern "C" {

After the declaration of the three main plug-in functions, we close the extern "C" block with a

closing brace (}).

The purpose of this extern "C" block is to allow exporting of the plug-in function names

so that they may be referenced and loaded later. Without extern "C", the names would be man-

gled according to the compiler-specific name mangling convention for encoding C++ function

arguments within the name, and it would be difficult if not impossible to reference and load the

plug-in functions according to their now mangled names.

NOTE You can verify this for yourself by writing a simple one-line C++ program consisting
of one empty function. Save the program in file.cc. Compile the program to an object file:
type gcc -c file.cc. This creates the object file file.o. Dump all symbols from the object file:
type nm file.o. Notice that the function name appears, but has been “mangled” to encode
the parameters and return type of the function. Now, re-edit file.cc and enclose the func-
tion within an extern "C" block. Recompile the program and re-run nm. Notice that the
function name now appears it its original, unmangled form in the object file.

Implementing the plug-in functions is straightforward; you simply program the required function-

ality in each plug-in function in standard C++. As mentioned earlier, the constructor function

should initialize the l3d_object passed in the target parameter, by declaring vertices and

polygons and performing any other necessary initialization. The update function updates the

target by changing any attributes of target it needs to (shape, location, orientation, speed),

and the destructor function performs any necessary cleanup. Remember, if the construc-
tor needs to allocate any data needed by the update function, store a pointer to this data in

target–>plugin_data, so that you can access the data again later.

Compiling a plug-in requires a bit of a change to the compilation process. If we have written a

.cc file containing the code for the plug-in functions as described above, we first compile this

.cc file into an .o file (a normal object file) as usual. Then, we need to make a dynamic library

from this object file. To do this, we invoke the linker g++ on the object file with a command line

option of –shared and specify the output file with –o name.so, where “name” is the desired

output filename. This creates a dynamic library from the object file. This dynamic library can then

be loaded into a running program with the function call dlopen—our next topic.

NOTE See the Makefiles in the directory $L3D/binaries/linux_x/float/app/lib/
dynamics/plugins to see concrete examples of how plug-ins are compiled.
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Classes for Loading Plug-ins

Loading a plug-in means making its symbols (i.e., functions) available for use within the current

program. To load plug-ins, we declare an abstract class l3d_plugin_loader, shown in List-

ing 7-8. We require one plug-in loader object per plug-in. This is because the plug-in loader

maintains a handle on the dynamic library file, and separate plug-ins in separate dynamic libraries

require separate handles.

This class l3d_plugin_loader contains four pure virtual methods. The method load
takes a filename as a parameter and loads the file as a dynamic library, maintaining a handle on the

library. The find_symbol method looks for a particular symbol in the dynamic library and

returns a pointer to it. In our case, the symbol is a function name, and the returned pointer is a func-

tion pointer. The close method releases the handle on the dynamic library. The clone method

causes the plug-in loader object to create another copy of itself, which is needed when copying

plug-in objects (the new plug-in object should also have its own plug-in loader).

The way we use 3D object plug-ins is to ask the plug-in loader to load the dynamic library file

containing the plug-in. Then, we ask the plug-in loader to look for the symbols with the names

“constructor,” “update,” “copy_data,” and “destructor.” The plug-in loader finds these symbols

within the dynamic library and returns pointers to these functions. We assign these pointers to the

function pointers we declared in l3d_object: plugin_constructor, plug-
in_update, plugin_copy_data, and plugin_destructor. After assigning values to

the function pointers, we can then call the plug-in functions through the function pointers to

invoke the plug-in functionality.

Listing 7-8: plugload.h
#ifndef __PLUGLOAD_H
#define __PLUGLOAD_H
#include "../../tool_os/memman.h"

class l3d_plugin_loader {
public:
virtual void load(const char *filename)=0;
virtual void *find_symbol(char *symbol)=0;
virtual void close(void)=0;
virtual l3d_plugin_loader *clone(void)=0;
virtual ~l3d_plugin_loader(void) {};

};

class l3d_plugin_loader_factory {
public:
virtual l3d_plugin_loader *create(void) = 0;

};

#endif

We also declare a class plugin_loader_factory, to protect application code from needing

to create a concrete plug-in loader; application code need only deal with the abstract interface,

allowing the factory to deal with the actual concrete type. (See Chapter 2 for an explanation of this

factory design pattern.)
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The concrete subclass l3d_plugin_loader_linux overrides the virtual methods in

l3d_plugin_loader with the Linux-specific operating system calls necessary to realize

dynamic loading of symbols. See Listings 7-9 and 7-10.

Listing 7-9: pl_linux.h
#ifndef __PL_LINUX_H
#define __PL_LINUX_H
#include "../../tool_os/memman.h"

#include "plugload.h"

class l3d_plugin_loader_linux : public l3d_plugin_loader {
protected:
void *handle;

public:
char filename[256];
l3d_plugin_loader_linux(void);
virtual ~l3d_plugin_loader_linux(void) {};
void load(const char *filename);
void *find_symbol(char *symbol);
void close(void);
l3d_plugin_loader *clone(void);

};

class l3d_plugin_loader_linux_factory : public l3d_plugin_loader_factory {
public:
l3d_plugin_loader *create(void);

};

#endif

Listing 7-10: pl_linux.cc
#include "pl_linux.h"
#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "../../tool_os/memman.h"

l3d_plugin_loader *l3d_plugin_loader_linux_factory::create(void) {
return new l3d_plugin_loader_linux;

}

l3d_plugin_loader_linux::l3d_plugin_loader_linux(void) {
filename[0] = '0';
handle = 0;

}

void l3d_plugin_loader_linux::load(const char *filename) {

strncpy(this->filename, filename, sizeof(this->filename));
handle = dlopen(filename, RTLD_LAZY);
if(!handle) {
fputs(dlerror(),stderr);

}
}
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void *l3d_plugin_loader_linux::find_symbol(char *symbol) {

return dlsym(handle, symbol);
}

void l3d_plugin_loader_linux::close(void) {

if(handle) {
dlclose(handle);

}
}

l3d_plugin_loader * l3d_plugin_loader_linux::clone(void) {

l3d_plugin_loader_linux *loader;
loader = new l3d_plugin_loader_linux;
strncpy(loader->filename, filename, sizeof(loader->filename));
loader->load(loader->filename);
return loader;

}

The overridden load method calls the Linux system function dlopen with the given filename

parameter to open the dynamic library. We also pass a parameter of RTLD_LAZY to dlopen,

which only has the effect of resolving undefined symbols as code from the library is executed (the

other option, RTLD_NOW, forces resolution of undefined symbols to take place immediately).

After loading the dynamic library, we save a handle to the library in the variable handle.

The overriddenfind_symbolmethod calls the Linux system functiondlsym to search for

the specified symbol (i.e., function name) within the previously loaded dynamic library. dlsym
then returns a pointer to this symbol. Since dlsym must be compatible with all symbols in the

library regardless of their type, it returns a void pointer; the calling routine must then cast the

pointer to the correct type. Again, lack of type safety (perhaps we can call it “type danger”?) is the

price we pay for dynamic symbol resolution.

The overriddenclosemethod callsdlclose to notify the operating system that we are fin-

ished using the dynamic library. If no other routines are using the dynamic library, it is freed at this

point by the operating system; otherwise, it is only freed when all users of the library have called

dlclose.

The overridden clone method creates a new Linux plug-in loader of type l3d_plugin_
loader_linux, which references the same dynamic library file as the original.

A New Factory Manager for Plug-ins

Because application code accesses the plug-in loader through an abstract pointer, and because the

concrete plug-in loader is created through a factory, we need to extend the factory manager of

Chapter 2 to manage a plug-in loader factory as well. The class l3d_factory_man-
ager_v_0_2 is the new version of the factory manager, shown in Listings 7-11 and 7-12.

Listing 7-11: fact0_2.h
#ifndef __FACT0_2_H
#define __FACT0_2_H
#include "../tool_os/memman.h"

#include "factorys.h"
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#include "../raster/rast3.h"
#include "../dynamics/plugins/plugload.h"

class l3d_factory_manager_v_0_2 : public l3d_factory_manager_v_0_1 {
public:
l3d_factory_manager_v_0_2(void);
virtual ~l3d_factory_manager_v_0_2(void);
l3d_rasterizer_3d_imp_factory *ras_3d_imp_factory;
l3d_plugin_loader_factory *plugin_loader_factory;
int choose_factories(void);

};

extern l3d_factory_manager_v_0_2 factory_manager_v_0_2;

#endif

Listing 7-12: fact0_2.cc
#include "fact0_2.h"

#include "../tool_os/dis_x11.h"
#include "../tool_os/dis_mesa.h"
#include "../tool_2d/sc_x11.h"
#include "../tool_2d/sc_x11sh.h"
#include "../tool_2d/sc_mesa.h"
#include "../raster/ras3_sw.h"
#include "../raster/ras3_mes.h"
#include "../dynamics/plugins/pl_linux.h"

#include <stdio.h>
#include "../tool_os/memman.h"

l3d_factory_manager_v_0_2 factory_manager_v_0_2;

l3d_factory_manager_v_0_2::l3d_factory_manager_v_0_2(void) :
l3d_factory_manager_v_0_1()

{
ras_3d_imp_factory = NULL;
plugin_loader_factory = NULL;

}

l3d_factory_manager_v_0_2::~l3d_factory_manager_v_0_2(void)
{
if(should_delete_factories) {
if (ras_3d_imp_factory) {
delete ras_3d_imp_factory;
ras_3d_imp_factory = NULL;

}
if (plugin_loader_factory) {
delete plugin_loader_factory;
plugin_loader_factory = NULL;

}
}

}

int l3d_factory_manager_v_0_2::choose_factories(void) {
int i = l3d_factory_manager_v_0_1::choose_factories();

switch(i) {
case 1:
ras_3d_imp_factory = new l3d_rasterizer_3d_sw_imp_factory;
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plugin_loader_factory = new l3d_plugin_loader_linux_factory;
break;

case 2:
ras_3d_imp_factory = new l3d_rasterizer_3d_sw_imp_factory;
plugin_loader_factory = new l3d_plugin_loader_linux_factory;
break;

case 3:
ras_3d_imp_factory = new l3d_rasterizer_3d_mesa_imp_factory;
plugin_loader_factory = new l3d_plugin_loader_linux_factory;
break;

}

return i;
}

The new factory manager class declares an additional variable of type l3d_plugin_
loader_factory, which is actually created in the overridden choose_factories
method. Since we are running under Linux, we always create a Linux plug-in loader factory,

which creates Linux plug-in loaders. Under another operating system, the factory manager would

create and make available a different kind of plug-in loader factory, which would return a different

kind of plug-in loader to the application code. The application code, of course, would not need to

be changed in this case, since the factory design pattern shields the application code from the cre-

ation of new concrete types.

NOTE The new factory manager also creates and maintains a 3D rasterizer implementa-
tion. The companion book Advanced Linux 3D Graphics Programming uses this member for
more sophisticated rasterization of 3D polygons.

Summary of Using Plug-ins

The following list summarizes the steps for using plug-ins.

1. Write a plug-in conforming to the plug-in interface, and compile it into a.so dynamic library

file.

2. In the l3d application program, create a plug-in loader by asking the plug-in loader factory to

do so.

3. Create an empty instance of l3d_object with new. Call this object o.

4. Ask the plug-in loader to load the previously compiled .so file.

5. Ask the plug-in loader to find the symbol named “constructor.” Assign the pointer which is

returned to the function pointer o.plugin_constructor. Repeat this for symbols

“update,” “copy_data,” and “destructor,” assigning them to function pointers o.plugin_
update, o.plugin_copy_data, and o.plugin_destructor.

6. The function pointers have now been bound to the actual executable code of the plug-in. Call

o.plugin_constructor(o, data). The pointer data is a pointer to any data which

the constructor function, loaded from the plug-in file, needs in order to initialize o
correctly. Therefore, the contents of the pointer data are completely dependent on the plug-

in which is loaded; the plug-in constructor interprets the data in any way it wants. If the

plug-in needs no data, simply pass NULL. Note that a plug-in will usually need at least some
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data from the external environment in order to initialize itself correctly—the color depth of

the screen, for instance.

7. Call o.update, as usual, to allow the object to update itself. The object automatically calls

the plugin_update function if a plug-in is loaded, thus executing the plug-in’s update

code.

8. Destroy the object o with delete, as usual. The object’s destructor automatically calls the

plugin_destructor function if a plug-in is loaded.

The example programs in this chapter use both subclassing and plug-ins to implement dynamic

behavior, so you’ll get a chance to see both in action.

Grouping Objects into a World
We’ve now seen quite a bit about using 3D polygons to form objects, including specifications of

geometry, transformations, and behavior. Thinking in terms of 3D objects (autonomous polygonal

entities) increases the level of abstraction of our 3D programs, allowing us to speak of and think in

terms of objects instead of one unmanageably large and unstructured set of polygons.

It is useful to introduce one more, higher level of abstraction: the concept of a world. Just as

groups of 3D polygons form a 3D object, groups of 3D objects form a world. Class l3d_world
is the class we use for storing worlds. See Listings 7-13 and 7-14. A world is a displayable, interac-

tive 3D environment. It therefore contains 3D objects to populate the world, a camera to see the

world, a rasterizer to plot pixels, and a screen to display the output.

For now, a world as implemented by l3d_world is really little more than a simple list of

objects. In the companion book Advanced Linux 3D Graphics Programming, we subclass from

l3d_world to perform more advanced visibility operations on our 3D objects, leading to a

graph-like structure of objects connected via portals.

Listing 7-13: world.h
#ifndef __WORLD_H
#define __WORLD_H
#include "../../tool_os/memman.h"

#include "../../tool_os/dispatch.h"
#include "../../view/camera.h"
#include "../../tool_2d/screen.h"
#include "../object/object3d.h"

#define MAX_VISIBLE_FACETS 5000
#define MAX_OBJECTS 12000

class l3d_world {

public:
l3d_world(int xsize, int ysize);
virtual ~l3d_world(void);

l3d_screen *screen;
l3d_rasterizer_3d *rasterizer;
l3d_rasterizer_2d_imp *rasterizer_2d_imp;
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l3d_rasterizer_3d_imp *rasterizer_3d_imp;
l3d_camera *camera;

l3d_list<l3d_object *> objects;

virtual void update_all(void);
virtual void draw_all(void);

static int compare_facet_zdepth(const void *key, const void *elem);

int should_display_status;
unsigned int framecount, first_tickcount, last_tickcount;

};

#endif

Listing 7-14: world.cc
#include "world.h"
#include <stdlib.h>
#include <string.h>

#include "../object/object3d.h"
#include "../polygon/polygon.h"
#include "../../tool_2d/screen.h"
#include "../../tool_os/dispatch.h"
#include "../../raster/rasteriz.h"
#include "../../tool_2d/scrinfo.h"
#include "../../system/fact0_2.h"
#include "../../tool_os/memman.h"

l3d_world::l3d_world(int xsize, int ysize) {

screen =
factory_manager_v_0_2.screen_factory->create(xsize,ysize);

rasterizer_2d_imp =
factory_manager_v_0_2.ras_2d_imp_factory->
create(xsize,ysize,screen->sinfo);

rasterizer_3d_imp =
factory_manager_v_0_2.ras_3d_imp_factory->
create(xsize,ysize,screen->sinfo);

rasterizer = new l3d_rasterizer_3d(rasterizer_2d_imp, rasterizer_3d_imp);

#ifdef DGROUP64K
#define PI 3.14159265
int i;
for(i=0; i<360; i++) {
cos_lu[i] = Float2MT(cos(i*PI/180.));
sin_lu[i] = Float2MT(sin(i*PI/180.));

}
#endif

screen->open_screen();

camera = new l3d_camera;

should_display_status = 0;
}

l3d_world::~l3d_world() {
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int i;

//- clean up world database
for(i=0; i<objects.num_items; i++) {
delete objects[i];

}

delete screen;
delete rasterizer_2d_imp;
delete rasterizer_3d_imp;
delete rasterizer;
delete camera;

}

int l3d_world::compare_facet_zdepth(const void *key, const void *elem) {

l3d_real zdif =
( (*((l3d_polygon_3d **)elem))->zvisible - (*((l3d_polygon_3d **)key))->zvisible );

if (zdif>0) return 1;
else if(zdif<0) return -1;
else return 0;

}

void l3d_world::draw_all(void) {
int iObj, iFacet;

//- don't make this array into a l3d_list because we use qsort later
l3d_polygon_3d *plist[MAX_VISIBLE_FACETS]; int pnum=0;

rasterizer->clear_buffer();

for(iObj=0; iObj<objects.num_items; iObj++) {

//- reset object to its original position
objects[iObj]->reset();

//- position all vertices of object into world space
if (objects[iObj]->num_xforms) {
objects[iObj]->transform(objects[iObj]->modeling_xform);

}

//- transform polys to camera space
objects[iObj]->camera_transform(camera->viewing_xform);

//- clip polys to near-z
l3d_polygon_3d_node *n;
n = objects[iObj]->nonculled_polygon_nodes;
while(n) {
if(n->polygon->clip_near_z(camera->near_z))

{
//- polygon is not culled

}else {

//- take this polygon out of the list of nonculled_polygon_nodes
if(n->prev) {
n->prev->next = n->next;

}else {
objects[iObj]->nonculled_polygon_nodes = n->next;
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}

if(n->next) {
n->next->prev = n->prev;

}
}
n = n->next;

}

//- perspective projection of vertices only of surviving polys
objects[iObj]->apply_perspective_projection(*camera,

screen->xsize, screen->ysize);

n = objects[iObj]->nonculled_polygon_nodes;

while(n) {
if ( n->polygon->clip_to_polygon_2d(screen->view_win)) {

//- polygon survived all culling tests and will be drawn.

plist[pnum++] = n->polygon;

//- Use the average of all z-values for depth sorting
l3d_real zsum=int_to_l3d_real(0);
register int ivtx;

for(ivtx=0; ivtx<n->polygon->ivertices->num_items; ivtx++) {
zsum += (**(n->polygon->vlist))[ (*n->polygon->ivertices)[ivtx].ivertex

].transformed_intermediates[1].Z_ ;
}
n->polygon->zvisible = l3d_divri(zsum, ivtx);

}
n = n->next;

}
}

//- Sort the visible facets in decreasing order of z-depth
qsort(plist, pnum, sizeof(l3d_polygon_3d *), compare_facet_zdepth);

//- Display the facets in the sorted z-depth order (painter's algorithm)

for(int i=0; i<pnum; i++) {
plist[i]->draw(rasterizer);

}

if(should_display_status) {
char msg[256];
sprintf(msg,"%d polys drawn", pnum);
rasterizer->draw_text(0,16,msg);

}
}

void l3d_world::update_all(void) {
register int i;

for(i=0; i<objects.num_items; i++) {
objects[i]->update();

}
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//- camera is separate object not in objects[] so it is separately updated
camera->update();

}

The World Database
The most important member of the class l3d_world is the world database, stored in the mem-

ber variable objects. This is simply a list of pointers to l3d_object instances. The world

class therefore manages the 3D objects contained within the world.

We call this list of objects a world database because this is standard graphics terminology, and

because in the most general case, a 3D engine does deal with a database of objects which must be

searched and traversed, not necessarily in simple linear order. For now, we do traverse the list of

objects in linear order. In the companion book Advanced Linux 3D Graphics Programming, we

see a visibility-based recursive portal traversal based on the current camera position.

Interaction with the Pipeline
As we saw in Chapter 2, l3d programs run in an event-based fashion: the dispatcher extracts events

from the screen, and allows the pipeline to do its work, respond to input, and draw to the screen.

The idea behind l3d_world is that it should represent the entire interactive 3D environ-

ment. Since l3d programs do their processing in the pipeline class, we declare a subclass of

l3d_pipeline, calledl3d_pipeline_world, which does little more than forward update,

keypress, and drawing events to the l3d_world for further processing. The l3d_world class

provides appropriate functions to be called from the pipeline.

First, let’s look at the l3d_pipeline_world class. See Listings 7-15 and 7-16.

Listing 7-15: pi_wor.h
#ifndef __PI_WOR_H
#define __PI_WOR_H
#include "../tool_os/memman.h"

#include "pipeline.h"
#include "../geom/world/world.h"

class l3d_pipeline_world : public l3d_pipeline {
protected:
l3d_world *world;

public:

l3d_pipeline_world(l3d_world *w) {world = w; }
virtual ~l3d_pipeline_world(void) {};
void key_event(int ch);
void update_event(void);
void draw_event(void);

};

#endif

Listing 7-16: pi_wor.cc
#include "pi_wor.h"

#include <sys/time.h>
#include <unistd.h>
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#include <string.h>
#include "../tool_os/memman.h"

void l3d_pipeline_world::key_event(int c) {
switch(c) {
case 'q': done = 1;

//- default keys for world->camera movement — full 360 degree movement
case 'j': if(world->camera->rot_VUP_velocity>int_to_l3d_real(-95)) world->camera->rot_VUP_velocity

-= int_to_l3d_real(5); break;
case 'l': if(world->camera->rot_VUP_velocity<int_to_l3d_real( 95)) world->camera->rot_VUP_velocity

+= int_to_l3d_real(5); break;
case 'J': if(world->camera->rot_VFW_velocity<int_to_l3d_real( 95)) world->camera->rot_VFW_velocity

+= int_to_l3d_real(5); break;
case 'L': if(world->camera->rot_VFW_velocity>int_to_l3d_real(-95)) world->camera->rot_VFW_velocity

-= int_to_l3d_real(5); break;
case 'I': if(world->camera->rot_VRI_velocity<int_to_l3d_real( 95)) world->camera->rot_VRI_velocity

+= int_to_l3d_real(5); break;
case 'K': if(world->camera->rot_VRI_velocity>int_to_l3d_real(-95)) world->camera->rot_VRI_velocity

-= int_to_l3d_real(5); break;
case 'k': if(world->camera->VFW_velocity >int_to_l3d_real(-90)) world->camera->VFW_velocity -=

world->camera->VFW_thrust; break;
case 'i': if(world->camera->VFW_velocity <int_to_l3d_real( 90)) world->camera->VFW_velocity +=

world->camera->VFW_thrust; break;
case 's': if(world->camera->VRI_velocity >int_to_l3d_real(-90)) world->camera->VRI_velocity -=

world->camera->VRI_thrust; break;
case 'f': if(world->camera->VRI_velocity <int_to_l3d_real( 90)) world->camera->VRI_velocity +=

world->camera->VRI_thrust; break;
case 'd': if(world->camera->VUP_velocity >int_to_l3d_real(-90)) world->camera->VUP_velocity -=

world->camera->VUP_thrust; break;
case 'e': if(world->camera->VUP_velocity <int_to_l3d_real( 90)) world->camera->VUP_velocity +=

world->camera->VUP_thrust; break;

//- field-of-view modification
case 'X': world->camera->fovx = world->camera->fovx + float_to_l3d_real(0.1); break;
case 'x': world->camera->fovx = world->camera->fovx - float_to_l3d_real(0.1); break;
case 'Y': world->camera->fovy = world->camera->fovy + float_to_l3d_real(0.1); break;
case 'y': world->camera->fovy = world->camera->fovy - float_to_l3d_real(0.1); break;

//- speed
case 'v': case 'V':

world->camera->VUP_thrust += int_to_l3d_real(1.0);
if(world->camera->VUP_thrust > 3.0) {
world->camera->VUP_thrust -= int_to_l3d_real(3.0);

}
world->camera->VFW_thrust = world->camera->VUP_thrust;
world->camera->VRI_thrust = world->camera->VUP_thrust;
break;

//- display

case 'n': case 'N':
world->should_display_status = 1-world->should_display_status; //- toggle
break;

}

}

void l3d_pipeline_world::update_event() {
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world->update_all();
}

void l3d_pipeline_world::draw_event(void) {
static int frame=0;
static long last_sec, last_usec;
long sec, usec;
static float fps;
static char str[80];

struct timeval tv;
struct timezone tz;
tz.tz_minuteswest = -60;

world->rasterizer->clear_buffer();
world->draw_all();

frame++;
if((frame & 0x3F) == 0) {
gettimeofday(&tv,&tz);
fps = 64 * 1.0 / ( (tv.tv_sec + tv.tv_usec/1000000.0) - (last_sec + last_usec/1000000.0) );
last_sec = tv.tv_sec;
last_usec = tv.tv_usec;

}

if(world->should_display_status) {
sprintf(str,"FPS: %f", fps);
world->rasterizer->draw_text(0, 0, str);

}

world->screen->blit_screen();

}

The l3d_pipeline_world class is a pipeline which forwards its processing to an

l3d_world object. The constructor for class l3d_pipeline_world requires a pointer to

the world object with which it interacts; an l3d_pipeline_world cannot exist without a cor-

responding world object. The pointer to the world is then saved within the pipeline in variable

world.

The overridden pipeline method key_event handles the typical keyboard input for the

pipeline by modifying the position of the camera within the world. The handling of the keys is

identical to that of programs camspikes or clipz; we have just moved the code into a com-

mon location so that we don’t always have to rewrite the same code to handle the same keys in the

same way. Notice that the keys x, Shift+x, y, and Shift+y modify the field of view terms, meaning

that for all programs using this pipeline class, you can experiment with modifying the field of view

interactively, as mentioned in Chapter 5. Also notice that the n key toggles the display of numeric

statistics, such as the frames per second.

The overridden pipeline method update_event does nothing other than call the method

update_all of the world, which we cover in the next section. Thus, the update processing is

handed off to the world object.

The overridden pipeline method draw_event is similarly simple. It clears the world’s

rasterizer buffer, asks the world to draw itself by calling draw_all, and asks the world’s screen
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to blit itself. It essentially forwards the drawing processing on to the world object. After the world

has drawn itself, this method performs one new operation which we have not seen yet: it calculates

the frames per second, also called FPS or frame rate. As our worlds increase in complexity, it can

be interesting to see how the performance of the application holds up. FPS is one way of measur-

ing this. To calculate FPS, we retrieve the physical system clock time every 64 frames. We use 64

frames instead of just one frame to get an average FPS value over several frames. We then subtract

the current clock time from the clock time 64 frames ago. This gives us the elapsed seconds

required to draw 64 frames. So, we divide 64 frames by the elapsed seconds to obtain the frames

per second. The physical clock time is retrieved with the function gettimeofday, which takes

a time zone structure as an input parameter and a time value structure as an output parameter. After

the function call, the time value structure is filled with the current time of day. The fields tv_sec
and tv_usec give the elapsed seconds and microseconds since 00:00:00 UTC January 1, 1970.

We don’t care about the actual values; what we care about is the difference between the current

time and the time 64 frames ago. After computing the FPS, we display it by using the new

draw_text method of the 3D rasterizer; this draws a text string into the rasterizer buffer as a

series of pixels forming the characters.

So, the l3d_pipeline_world class essentially forwards the bulk of its processing to the

world object. It calls two important functions of the world object: update_all and

draw_all. These two functions form the interface between the pipeline object and the world

object. Let’s look at each one separately.

Updating the Entire World
Since a world consists of autonomous 3D objects, and since each object knows how to update

itself through the method l3d_object::update, the world must allow each object to update

itself by calling update on each object. This is exactly what the method

l3d_world::update_all does. It loops through all objects in the world database and calls

update for each object. It also calls update on the camera object of the world, since the camera

is not in the objects list but also needs to be updated whenever the objects are updated. Note that if

the world database consists of many objects, we might not want to allow all objects to update

themselves every frame; instead, we might wish to define “active regions” of the world and “inac-

tive regions,” perhaps based on some criteria such as distance from the camera. We could then

only update certain parts of the world—the active regions—for each frame, saving processing

time, although with the slight oddity that the inactive regions of the world are “frozen in time.” As

the camera moves closer to inactive regions of the world, we could change them into active

regions, simultaneously making some of the now more distant regions inactive.

Drawing the Entire World
The pipeline calls l3d_world::draw_all to allow the world to draw itself. We do this by

looping through all objects in the world database. For each object, we reset its position, then trans-

form it into world space using its composite modeling_xform array, and then transform it into

camera space. In camera space, we clip all polygons of the object against the near z clip plane,
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removing a polygon from the linked list if it gets completely clipped away. For all surviving poly-

gons, we apply the perspective projection, then clip the projected 2D polygon to the screen. All of

this we have seen before, in the previous program clipz.

What is new is what happens to the surviving polygons which are ready to be displayed on

screen. Instead of drawing them immediately, as we did in program clipz, we insert all surviv-

ing polygons for this object into a common array of polygons, and proceed to process the next

object. The next object will also have zero or more surviving polygons, which are likewise

inserted into the common array and not drawn immediately. Processing continues in this manner

for all polygons of all objects.

After processing all objects, and before drawing anything, we then have an array containing

pointers to all polygons that survived all clipping operations, both 2D and 3D, and are ready to be

displayed on-screen. See Figure 7-22.

Before drawing the polygons, we call qsort to sort the list of polygons. The qsort func-

tion can sort any array of homogeneous items, but needs a helper function which tells it how to

compare items so that it knows which element comes before which. But what criteria should we

use for sorting polygons, and why should we bother sorting polygons at all? This question

scratches on the surface of the very broad area of visible surface determination or hidden surface

removal, covered in more detail in the companion book Advanced Linux 3D Graphics Pro-

gramming. If you look closely at the clipz program, you will notice some unusual drawing

errors. In particular, objects which are nearer to you sometimes appear to be obstructed by smaller

objects which are farther away. In reality, of course, this is impossible: the light rays coming from

a farther object are blocked by the nearer object, meaning we see the nearer object in front of the

farther object.
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All surviving polygons are inserted into one common list
before being drawn.

Figure 7-23: Drawing polygons in random order
means that physically farther polygons might
obstruct physically nearer polygons—a physical
impossibility. Here, the large pyramid in the
foreground should actually obscure all polygons
behind it, but due to incorrect drawing order,
polygons behind the large pyramid are drawn on
top of it.



The reason for the odd drawing anomalies in clipz is that we didn’t pay any attention to the

physical distance of the polygons we were drawing. As soon as we found a polygon whose clipped

and projected vertices were within the screen, we immediately drew the polygon to the screen,

even if something was already on the screen at that position. We can liken the screen to a painter’s

canvas: if we draw in an area where something was already present, then we overwrite and

obscure the previous contents. The problem with the clipz program is that the order in which we

drew polygons was essentially random. Maybe we already drew some large, close-up polygons to

the screen, but then we might later start to process some farther, smaller polygons. Since we draw

a polygon to the screen as soon as it is deemed visible, a smaller polygon processed later will

obscure a nearer polygon drawn earlier. Imagine a painter who first paints the house in the fore-

ground, then paints the mountains in the background, blindly painting on top of the already

painted house. The result is a background object obscuring a foreground object.

Continuing the painter’s analogy leads to the painter’s algorithm: first draw the background,

then draw the foreground on top of the background.

Returning to our array of polygons, we define the background polygons to be the ones with

the largest z values in camera coordinates. Similarly, the foreground polygons are those with the

smallest z values in camera coordinates. This reasoning therefore provides the sort criteria for the

qsort routine: we sort all polygons from largest z to smallest z in the polygon array, and only

then do we draw the polygons. The result is a far-to-near ordering of polygons, so that the nearest

polygons are drawn last and obscure any farther polygons.

The compare_facet_zdepth function is the helper function for qsort, which sorts the

polygons in order of decreasing z. The z value we use for sorting is the average of all the camera

space z values of all vertices in the polygon. Conveniently, the classl3d_object saves the cam-

era space coordinates of all its polygons in transformed intermediate number 1. So, all we need to

do now is just retrieve the z component of the previously saved transformed intermediate coordi-

nate number 1.
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foreground first, and then the
background on top, the results are
physically incorrect.

Figure 7-25: The painter’s algorithm.
First draw the background, then draw
the foreground.



The painter’s algorithm is one of the simplest and easiest to understand of the visible surface

algorithms, returning mostly correct results most of the time, but it is not ideal in all cases. See the

companion book Advanced Linux 3D Graphics Programming for a discussion of other

techniques.

Finally, the world class uses the rasterizer routine draw_text to display a text message

indicating the number of polygons sent to the rasterizer to be drawn. Toggle this display on and off

by typing n.

Sample Program: fltsim
We’ve now seen a number of classes used for building worlds from 3D polygons. At the lowest

level, we have an individual polygon, l3d_polygon_3d. At a higher level, we have 3D polyg-

onal objects, l3d_object. Finally we have complete 3D worlds, l3d_world. Now, let’s look

at a sample program, fltsim, which uses these classes to make a 3D world. See Listings 7-17,

7-18, and 7-19. This program has the same keyboard controls as the program camspikes. It cre-

ates an l3d_world and populates the world with a number of 3D objects, both subclassed

l3d_objects and plug-in l3d_objects. You can fly through the scene freely as in a flight

simulator, hence the name fltsim, even if the landscape in this program is a bit on the simple

side. The purpose of this program is mainly to illustrate the use of the world, object, and polygon

classes. As an exercise, you might want to try writing a 3D object plug-in which draws a more

interesting landscape.

When you run the program fltsim, you will see a long row of rotating pyramids. If you

rotate the view slightly to the right (press l immediately after the program displays the 3D win-

dow), you will also see a more distant pyramid, rotating more slowly and around a different axis.
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Figure 7-26: We sort polygons from
farthest to nearest for the painter’s
algorithm.
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NOTE To execute this program, you must have compiled the plug-in files so that they can be
loaded at run time. Execute make -f makeall.lnx in the $L3D directory to compile every-
thing, including the plug-in files. See the Appendix for details. The plug-in files are located in
directory $L3D/binaries/linux_x/float/app/lib/dynamics/plugins.

The long row of pyramids are all subclassed 3D objects. The more slowly rotating pyramid in the

distance is a plug-in 3D object. We’ll look at both of these next.

Listing 7-17: main.cc, the main program file for program fltsim
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p3_flat.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rast3.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
#include "../lib/system/fact0_2.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/dynamics/plugins/plugenv.h"

#include "shapes.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

class my_world:public l3d_world {
public:
my_world(void);

};

my_world::my_world(void)
: l3d_world(640,400)

{
l3d_screen_info *si = screen->sinfo;

camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(5.5);
camera->far_z = int_to_l3d_real(500);

int i,j,k,onum=0;

i=10; j=0; k=20;
k=0;

//- create some pyramid objects
for(i=1; i<200; i+=20) {
objects[onum=objects.next_index()] = new pyramid();
l3d_screen_info_indexed *si_idx;
l3d_screen_info_rgb *si_rgb;
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l3d_polygon_3d_flatshaded *p;
for(int pnum=0; pnum<objects[onum]->polygons.num_items; pnum++) {
p = dynamic_cast<l3d_polygon_3d_flatshaded *>(objects[onum]->polygons[pnum]);
if(p) {
p->final_color = si->ext_to_native

(rand()%si->ext_max_red,
rand()%si->ext_max_green,
rand()%si->ext_max_blue);

}
}

if (objects[onum]==NULL) exit;
objects[onum]->modeling_xforms[1].set
( int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(i),
int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1) );

objects[onum]->modeling_xform =
objects[onum]->modeling_xforms[1] |
objects[onum]->modeling_xforms[0] ;

}

//- create a plugin object

objects[onum=objects.next_index()] = new l3d_object(10);
//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

objects[onum]->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

objects[onum]->plugin_loader->load("../lib/dynamics/plugins/pyramid/pyramid.so");
objects[onum]->plugin_constructor =
(void (*)(l3d_object *, void *))
objects[onum]->plugin_loader->find_symbol("constructor");

objects[onum]->plugin_update =
(void (*)(l3d_object *))
objects[onum]->plugin_loader->find_symbol("update");

objects[onum]->plugin_destructor =
(void (*)(l3d_object *))
objects[onum]->plugin_loader->find_symbol("destructor");

objects[onum]->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
objects[onum]->plugin_loader->find_symbol("copy_data");

l3d_plugin_environment *e = new l3d_plugin_environment
(NULL, screen->sinfo, NULL, (void *)"");

if(objects[onum]->plugin_constructor) {
(*objects[onum]->plugin_constructor) (objects[onum],e);

}

screen->refresh_palette();
}

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;

factory_manager_v_0_2.choose_factories();
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d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete d;
delete p;
delete w;

}

Listing 7-18: shapes.h, declaring a 3D object subclass for program fltsim
#include "../lib/geom/object/object3d.h"

class pyramid:public l3d_object {
int xtheta;

public:
pyramid(void);
virtual ~pyramid(void);
int update(void);

};

Listing 7-19: shapes.cc, defining a 3D object subclass for program fltsim
#include "shapes.h"

#include <stdlib.h>
#include <string.h>

pyramid::pyramid(void) :
l3d_object(4)

{
(*vertices)[0].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*vertices)[1].original.set
(float_to_l3d_real(10.0),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*vertices)[2].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(10.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*vertices)[3].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(10.),
float_to_l3d_real(1.));

int pi;
pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
printf("before: %p", polygons[pi]->vlist);
polygons[pi]->vlist = &vertices;
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printf("after: %p", polygons[pi]->vlist);
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

num_xforms = 2;
xtheta=0;
modeling_xforms[0] = l3d_mat_rotx(xtheta);
modeling_xforms[1].set
( float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.) );

modeling_xform=
modeling_xforms[1] | modeling_xforms[0];

}

pyramid::~pyramid(void) {
for(register int i=0; i<polygons.num_items; i++) {delete polygons[i]; }

}

int pyramid::update(void) {
xtheta += 10; if (xtheta>359) xtheta-=360;
modeling_xforms[0]=l3d_mat_rotx(xtheta);
modeling_xform=
modeling_xforms[1] | modeling_xforms[0];

}

The main function of the program is quite straightforward, choosing factories, creating a pipe-

line, and connecting the pipeline to the event dispatcher. The pipeline we create is of type

l3d_pipeline_world. The main function therefore also declares a world, of type

my_world, which is subclassed from l3d_world.
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The class my_world is very small and makes only minimal additions to the standard

l3d_world class. It declares no new member functions or variables; it only performs some extra

initialization in the constructor. In particular, the constructor populates the 3D world by creating

some objects of type pyramid, and inserting these objects into the world database. The class

pyramid is a subclass of l3d_object, and defines custom geometry and behavior through the

inheritance mechanism. The my_world class also creates and loads a plug-in object. Let’s see

how the sample program uses both subclassing and plug-ins to define custom objects.

A Subclassed 3D Object
Class pyramid is a subclassed 3D object which defines custom geometry and behavior.

The constructor defines the geometry. It calls the l3d_object base class constructor with a

parameter of 4 to set the number of fixed vertices; then it defines these vertices. Next, the con-

structor defines a number of polygons based on the vertex list. Finally, it stores some modeling

transformations in the modeling_xforms array, also immediately updating the composite

modeling_xform matrix.

The overridden update method is responsible for the pyramid’s behavior. In this case, the

pyramid simply rotates itself. It does so by increasing an internal rotation variable representing the

rotation angle in degrees, creating a rotation matrix based on the rotation angle, entering this rota-

tion matrix into the modeling_xforms array, and updating the composite modeling_
xform array.

That is actually all that is necessary to define an l3d_object subclass with custom geome-

try and behavior! Now, let’s look at the other possibility to create customized 3D objects: plug-ins.

A Plug-in 3D Object
The following excerpt from the my_world constructor illustrates the creation of a plug-in 3D

object.
//- create a plugin object

objects[onum=objects.next_index()] = new l3d_object(10);
//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

objects[onum]->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

objects[onum]->plugin_loader->load("../lib/dynamics/plugins/pyramid/pyramid.so");
objects[onum]->plugin_constructor =
(void (*)(l3d_object *, void *))
objects[onum]->plugin_loader->find_symbol("constructor");

objects[onum]->plugin_update =
(void (*)(l3d_object *))
objects[onum]->plugin_loader->find_symbol("update");

objects[onum]->plugin_destructor =
(void (*)(l3d_object *))
objects[onum]->plugin_loader->find_symbol("destructor");

objects[onum]->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
objects[onum]->plugin_loader->find_symbol("copy_data");
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l3d_plugin_environment *e = new l3d_plugin_environment
(NULL, screen->sinfo, NULL, (void *)"");

if(objects[onum]->plugin_constructor) {
(*objects[onum]->plugin_constructor) (objects[onum],e);

}

The code follows the steps outlined earlier for creating plug-in objects. First, we create an empty

l3d_object. Then, we create a plug-in loader and ask the plug-in loader to load a particular

dynamic library. In this case, we have hard-coded the name of the dynamic library into the pro-

gram code, but we could just as well have read the plug-in name from a configuration file. (The

companion book Advanced Linux 3D Graphics Programming provides sample programs which

do exactly this.) Then we ask the plug-in loader to find the plug-in functions; we assign these func-

tions to the plug-in function pointers in l3d_object. Finally we call the plug-in

constructor function.

The plug-in code itself is stored in a separate file. See Listing 7-20.

Listing 7-20: pyramid.cc, the plug-in for program fltsim
#include "../../../system/sys_dep.h"
#include "../../../geom/object/object3d.h"
#include "../../../geom/texture/texload.h"
#include "../../../geom/polygon/p3_ltex.h"
#include "../plugenv.h"
#include "../../../tool_os/memman.h"

class l3d_plugin_pyramid {
public:
l3d_plugin_environment *env;

int xtheta;

l3d_plugin_pyramid::l3d_plugin_pyramid(l3d_plugin_environment *e) {
env = e;

}
l3d_plugin_pyramid::~l3d_plugin_pyramid(void) {
delete env;

}
};

extern "C" {

void constructor(l3d_object *target, void *data) {
l3d_plugin_pyramid *pyramid;

target->plugin_data = pyramid =
new l3d_plugin_pyramid((l3d_plugin_environment *)data);

int i;
int vi;
vi = 0;
(*target->vertices)[vi].original.set(float_to_l3d_real(0.),float_to_l3d_real(0.),

float_to_l3d_real(0.),float_to_l3d_real(1.));
vi++;
(*target->vertices)[vi].original.set(float_to_l3d_real(10.0),float_to_l3d_real(0.),

float_to_l3d_real(0.),float_to_l3d_real(1.));
vi++;
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(*target->vertices)[vi].original.set(float_to_l3d_real(0.),float_to_l3d_real(10.),
float_to_l3d_real(0.),float_to_l3d_real(1.));

vi++;
(*target->vertices)[vi].original.set(float_to_l3d_real(0.),float_to_l3d_real(0.),

float_to_l3d_real(10.),float_to_l3d_real(1.));

l3d_polygon_3d_flatshaded *p;

i = target->polygons.next_index();
target->polygons[i] = p = new l3d_polygon_3d_flatshaded(3);
p->vlist = &target->vertices;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=0;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=1;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=3;
p->compute_center();target->polygons[0]->compute_sfcnormal();
p->final_color = pyramid->env->sinfo->ext_to_native

(rand()%pyramid->env->sinfo->ext_max_red,
rand()%pyramid->env->sinfo->ext_max_green,
rand()%pyramid->env->sinfo->ext_max_blue);

i = target->polygons.next_index();
target->polygons[i] = p = new l3d_polygon_3d_flatshaded(3);
p->vlist = &target->vertices;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=2;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=3;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=1;
p->compute_center();p->compute_sfcnormal();
p->final_color = pyramid->env->sinfo->ext_to_native

(rand()%pyramid->env->sinfo->ext_max_red,
rand()%pyramid->env->sinfo->ext_max_green,
rand()%pyramid->env->sinfo->ext_max_blue);

i = target->polygons.next_index();
target->polygons[i] = p = new l3d_polygon_3d_flatshaded(3);
p->vlist = &target->vertices;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=0;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=2;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=1;
p->compute_center();p->compute_sfcnormal();
p->final_color = pyramid->env->sinfo->ext_to_native

(rand()%pyramid->env->sinfo->ext_max_red,
rand()%pyramid->env->sinfo->ext_max_green,
rand()%pyramid->env->sinfo->ext_max_blue);

i = target->polygons.next_index();
target->polygons[i] = p = new l3d_polygon_3d_flatshaded(3);
p->vlist = &target->vertices;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=3;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=2;
(*(p->ivertices))[p->ivertices->next_index()].ivertex=0;
p->compute_center();p->compute_sfcnormal();
p->final_color = pyramid->env->sinfo->ext_to_native

(rand()%pyramid->env->sinfo->ext_max_red,
rand()%pyramid->env->sinfo->ext_max_green,
rand()%pyramid->env->sinfo->ext_max_blue);

target->num_xforms = 3;

pyramid->xtheta=0;
target->modeling_xforms[0] = l3d_mat_rotz(pyramid->xtheta);
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target->modeling_xforms[1].set
( float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(70.),
float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.) );

target->modeling_xforms[2].set
( float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(50.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.) );

target->modeling_xform=
target->modeling_xforms[2] | (target->modeling_xforms[1] | target->modeling_xforms[0]);

}

void update(l3d_object *target) {
l3d_plugin_pyramid *pyramid;
pyramid = (l3d_plugin_pyramid *)target->plugin_data;
pyramid->xtheta += 1; if (pyramid->xtheta>359) pyramid->xtheta-=360;
target->modeling_xforms[0]=l3d_mat_rotz(pyramid->xtheta);
target->modeling_xform=
target->modeling_xforms[2] | target->modeling_xforms[1] | target->modeling_xforms[0];

}

void destructor(l3d_object *target) {
delete (l3d_plugin_pyramid *) target->plugin_data;

}

void copy_data(l3d_object *target, l3d_object *copy_target) {
l3d_plugin_pyramid *pyramid;
pyramid = (l3d_plugin_pyramid *) target->plugin_data;

l3d_plugin_environment *new_env;
l3d_plugin_pyramid *new_pyramid;

new_env = pyramid->env->clone();
new_env->data = NULL;
new_pyramid = new l3d_plugin_pyramid(new_env);
new_pyramid->xtheta = pyramid->xtheta;

copy_target->plugin_data = (void *) new_pyramid;
}

}

The plug-in code is almost identical to that of the subclassed 3D object: the constructor
initializes the geometry, andupdate changes the transformation matrices. The main difference is

that we have to access the 3D object through the target parameter, since the plug-in functions

are C functions, not C++ member functions with a hidden this parameter. Also, we have chosen

to make the plug-in pyramid rotate more slowly and around a different axis than the subclassed 3D

object.

Notice that we declare a new class, l3d_plugin_pyramid, to hold plug-in specific data,

and that we create an instance of this class in the constructor function. Importantly, we then

save a pointer to this newly created object in the target–>plugin_data member variable,

where we can access it again later in the update function. This is similar to subclassing because
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we are associating arbitrary new data with an instance of l3d_object, but has the advantage

that we don’t actually need to declare and compile a new subclass. The disadvantage is the lack of

type checking; all the extra data is passed around as a void pointer.

The last item of note with the plug-in 3D object is the use of the data parameter in the con-
structor function. The my_world code which creates the plug-in object also creates an

object of type l3d_plugin_environment, and passes a pointer to this environment object to

the constructor function. The constructor function then casts the void data pointer into a

pointer of type l3d_plugin_environment, and extracts the environment data. As men-

tioned earlier, think of the data parameter as a means of passing arbitrary “arguments” to the

plug-in constructor. The class l3d_plugin_environment is presented in Listing 7-21. It

simply is a structure (without significant behavior) which holds information about the external

environment that the plug-in needs to know in order to function properly. Two of the members of

the class, the texture loader and the surface cache, are not used in this book and are relevant only

for advanced polygon rendering algorithms, covered in the companion book Advanced Linux 3D

Graphics Programming. The class offers a clone method to allow the environment object to

clone itself, so that copying a plug-in object also copies the environment information.

Listing 7-21: plugenv.h
#ifndef __PLUGENV_H
#define __PLUGENV_H
#include "../../tool_os/memman.h"

#include "../../system/sys_dep.h"
#include "../../geom/object/object3d.h"
#include "../../geom/texture/texload.h"
#include "../../geom/polygon/p3_ltex.h"

class l3d_plugin_environment {
public:
l3d_texture_loader *texloader;
l3d_screen_info *sinfo;
l3d_surface_cache *scache;
void *data;
l3d_plugin_environment::l3d_plugin_environment(l3d_texture_loader *l,

l3d_screen_info *sinfo,
l3d_surface_cache *scache,
void *data)

{
texloader = l;
this->sinfo = sinfo;
this->scache = scache;
this->data = data;

}

virtual l3d_plugin_environment *clone(void) {
l3d_plugin_environment *e = new l3d_plugin_environment

(texloader, sinfo, scache, NULL);
return e;

}
};

#endif
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Planes in 3D
Until now we’ve been treating the concept of a plane in 3D rather informally. We have seen the

near z clipping plane and the projection plane, both of which were oriented perfectly vertically,

located a certain distance along the positive z axis. Now, let’s see how we can generalize the notion

of a plane to include arbitrary orientations. We need planes to perform 3D polygon clipping

against arbitrary planes, collision detection, and several other operations in 3D graphics.

Defining a Plane
Geometrically, as we have mentioned before, you can think of a plane as an infinitely wide and

high, flat, and infinitely thin 2D surface arbitrarily oriented in 3D space. We can define a plane

with a normal vector and a point. The normal vector specifies the orientation of the plane. But

there are an infinite number of planes with a particular orientation. This is the purpose of the point:

to specify a particular point on the plane to distinguish it from all other planes with the same nor-

mal vector.
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orientation of a plane.

Figure 7-28: There are an infinite
number of planes for a given
normal vector. Thus we must
specify a normal and a point on
the plane to uniquely specify a
particular plane.
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Mathematically, the equation for a plane in 3D is as follows:

This equation comes from the vector form of the equation:

In this equation, N is the known normal vector [A,B,C,0]T to the plane, P is a point of the form

[x,y,z,1]T, and P0 is the known point [x0,y0,z0,1]T on the plane. Taking the dot product of the nor-

mal vector with a point can be considered the same as taking the dot product of the normal vector

with a vector going from the origin to the point (recall the discussion of the relationship between

points and vectors in Chapter 5). Also, remember that the dot product of two vectors can be inter-

preted geometrically as the projection of the second vector onto the first vector. Therefore, the

vector form of the equation says that all points lying on the plane must satisfy the constraint that

the projection onto the normal vector of the vector going from the origin to the point must be a

constant—specifically, the constant obtained by projecting the vector from the origin to the

known point onto the plane’s normal vector.

Put another way, in the non-vector form of the plane equation, the terms A, B, and C are the

normal vector to the plane. Assuming the normal vector has been normalized, the term D is the

signed distance from the plane to the origin, in the direction of the normal vector. A positive value

of D means you travel D units in the direction of the normal vector to get from the plane to the ori-

gin; a negative value of D means you travel D units in the opposite direction of the normal vector

to get from the plane to the origin.

Notice that if you expand the vector form of the equation, move all terms to the left-hand side

of the equation, and denote all constant terms by the term D, you arrive at the non-vector form of

the equation.
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Figure 7-29: The meaning of A, B, C, and D
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Sides of a Plane
A plane has two sides: a front side and a back side. Since a plane has infinite width and height, it

divides the entire 3D space into two areas: the area in front of the plane and the area behind the

plane. The front side of a plane is the same side in which the normal vector points; the back side is

the other side.

Often, we have a given point and wish to determine whether the point is located in front of the

plane or behind the plane. To do this, we simply evaluate the plane equation with the given point.

If the point is (xp,yp,zp), then we would calculate the value Axp+Byp+Czp+D. The result is a sca-

lar number. The sign of this scalar number tells us the position of the point relative to the plane. If it

is positive, the point is in front of the plane. If it is negative, the point is behind the plane. If it is

neither positive nor negative, that is, if the result is exactly zero, then the point lies on the plane.

The reason this method works can be understood by examining the vector form of the equa-

tion. For all points in front of the plane, the vector going from the origin to the point, projected

onto the plane’s normal vector, will be longer than the corresponding vector projection for points

on the plane. Similarly, for all points behind the plane, the vector projection will be shorter. For all

points on the plane, the vector projection will be identical. The term Axp+Byp+Czp is the projec-

tion for the point being tested; by adding D, we are effectively subtracting the constant vector

projection distance for all points on the plane. If the result of this subtraction is positive, then the

vector projection for the point being tested is longer, meaning the point is in front of the plane; if

the result is negative, the vector projection is shorter, and the point is behind the plane.

The l3d_plane Class
We use the class l3d_plane to represent a plane with arbitrary orientation.

Listing 7-22: plane.h
#ifndef __PLANE_H
#define __PLANE_H
#include "../../tool_os/memman.h"

#include "../../system/sys_dep.h"
#include "../../math/vector.h"
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#include "../point/point.h"
#include "../../dynamics/collide.h"

#define EPSILON_PLANE float_to_l3d_real(0.001)
#define CROSS_FRONT_TO_BACK 1
#define CROSS_BACK_TO_FRONT -1

class l3d_plane
{
public:
l3d_real a,b,c,d;
void align_with_point_normal(const l3d_point& point,

const l3d_vector& normal);

void align_with_points(const l3d_point& p0,
const l3d_point& p1,
const l3d_point& p2);

l3d_real side_of_point(const l3d_point& p) const {
return (l3d_mulrr(a,p.X_) +

l3d_mulrr(b,p.Y_) +
l3d_mulrr(c,p.Z_) +
d);

}

l3d_real intersection_t;
l3d_point intersection;
int intersect_with_segment(const l3d_point& p0,

const l3d_point& p1);
};

#endif

Listing 7-23: plane.cc
#include "plane.h"
#include "../../tool_os/memman.h"

void l3d_plane::align_with_point_normal(const l3d_point& point,
const l3d_vector& normal)

{

a = normal.a[0];
b = normal.a[1];
c = normal.a[2];

d = -a * point.X_ - b * point.Y_ - c * point.Z_;
}

void l3d_plane::align_with_points(const l3d_point& p0,
const l3d_point& p1,
const l3d_point& p2)

{
align_with_point_normal(p0, normalized(cross(p1-p0, p2-p0)));

}

int l3d_plane::intersect_with_segment(const l3d_point& p0,
const l3d_point& p1)

{
l3d_real t_top, t_bottom,
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dx, dy, dz;

t_bottom = (l3d_mulrr(a,(dx=p1.X_ - p0.X_)) +
l3d_mulrr(b,(dy=p1.Y_ - p0.Y_)) +
l3d_mulrr(c,(dz=p1.Z_ - p0.Z_)));

if(l3d_abs(t_bottom) <= 0)
{
return 0;

}

t_top = -1*(d +
l3d_mulrr(a,p0.X_) +
l3d_mulrr(b,p0.Y_) +
l3d_mulrr(c,p0.Z_));

intersection_t = l3d_divrr(t_top, t_bottom);

intersection.X_ = l3d_mulrr(dx,intersection_t) + p0.X_;
intersection.Y_ = l3d_mulrr(dy,intersection_t) + p0.Y_;
intersection.Z_ = l3d_mulrr(dz,intersection_t) + p0.Z_;
intersection.W_ = int_to_l3d_real(1);

return (t_top>0 ? CROSS_BACK_TO_FRONT : CROSS_FRONT_TO_BACK);
}

The member variables a, b, c, and d allow us to directly access and change the coefficients of the

plane as seen in the plane equation. The method align_with_point_normal takes a point

on the plane and a normal vector as parameters, and computes the appropriate a, b, c, and d coef-

ficients. Similarly, the method align_with_points takes three points on the plane as

parameters, and computes the plane coefficients based on these three points. It works by interpret-

ing the three points as a clockwise specification of polygon vertices, computing the normal vector

to this polygon by taking a cross product, and calling the align_with_point_normal
method with the computed normal vector and one of the specified points.

The method side_of_point takes a point as a parameter and evaluates the plane equation

with the given point. The returned real value is positive if the point is in front of the plane, negative

if the point is behind the plane, or zero if the point is on the plane.

NOTE Due to the inherent numerical inaccuracy of finite precision computations in the
computer, points on the plane may, when evaluated with side_of_point, return values
close to but not exactly zero. The solution to this inaccuracy is usually to introduce an epsilon
parameter, which has the effect of making the plane slightly “thick.” All points whose
side_of_point return values lie between –epsilon and epsilon are then considered to be
on the plane.

The method intersect_with_segment intersects the plane with a line specified by two

points p0 and p1. It returns 0 if no intersection could be found, 1 if an intersection was found and

p0 is on the front side of the plane, or –1 if an intersection was found and p0 is on the back side of

the plane. The intersection, if found, is stored in member variableintersection. The intersec-

tion time, a parametric value ranging from 0 to 1 and representing the percentage of displacement

from p0 to p1, is stored in member variable intersection_t. The intersection of lines with

planes is useful for polygon clipping against arbitrary planes (covered next) and collision detec-

tion (covered in the companion book Advanced Linux 3D Graphics Programming).
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Let’s look at how the method intersect_with_segment works. First of all, let us con-

sider the parametric form of the line going from p0=(x0,y0,z0) to p1=(x1,y1,z1).

As the parameter t varies from 0 to 1, the coordinates move from p0 to p1. Outside of this range,

the coordinates move before p0 or beyond p1.

Next, we plug in the x, y, and z values from the line into the plane equation. This gives us an

expression for the plane equation at the time of its intersection with the parametrically defined

line.

Solving the equation for t yields:

Notice that if the denominator of t is zero, then the parametric line and the plane never intersect;

the line runs “parallel” to the plane. After calculating t, we can then plug it into the parametric

form of the line to obtain the exact intersection point between the line and the plane.

This method calculates the intersection between the infinitely long line defined by the two

endpoints and the plane. To calculate the intersection between the finitely long line segment and

the plane, we would simply need to ensure that the computed t value lies between 0 and 1; if not,

then the intersection is somewhere along the infinitely long line, but outside of the finitely long

line segment. The method intersect_with_segment does not make this test, but instead

stores the intersection time t so that the calling routine can decide what to do—in some cases, we

want to intersect with just the line segment; in other cases, with the entire line.

Clipping Polygons to an Arbitrary 3D Plane
With the capability of intersecting lines and arbitrarily oriented planes, we can now clip a polygon

against an arbitrary 3D plane. We have already seen how to clip a polygon against the near z plane,

which we defined by a single scalar value. Now, we know how to represent arbitrary planes and

how to intersect line segments (i.e., polygon edges) with these planes. With this knowledge, clip-

ping a polygon against an arbitrary plane is a simple implementation issue.

The l3d_polygon_3d_clippable Class

The class l3d_polygon_3d_clippable is a polygon in 3D which can be clipped against an

arbitrary 3D plane. The member variable plane stores the 3D plane of the polygon itself and is

updated by the overridden methods init_transformed and transform. The method

clip_to_plane clips the polygon’s geometry against an arbitrary plane, specified as the

parameter clip_plane. This method works similarly to the near z clipping method we already
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saw, clip_near_z. We look for crossing edges by using the plane’s side_of_point
method. We intersect crossing edges with the plane by using the intersect_with_segment
method. Then, as usual, we create a new list of clipped vertices, and swap this with the main list.

The “inside side” of the plane is defined to be the front side of the plane; everything in front of the

plane is kept, everything behind the plane is clipped away.

CAUTION Defining the front side of a plane to be the “inside side” is not necessarily uni-
versal for all situations; it is simply the naming convention we choose for the purposes of 3D
clipping. For solid modeling purposes, discussed in the companion book Advanced Linux 3D
Graphics Programming, we tend to view the front side of a plane as representing the “outside”
of an object. When you see the term “inside side” of a plane, keep in mind in which context
the “inside side” is meant.

Notice that the clip_to_plane method is virtual. This is because descendant polygon classes

may need to clip other information in addition to the geometry. In particular, clipping a textured

polygon in 3D requires us also to clip the texture coordinates at the vertices, as described in the

companion book Advanced Linux 3D Graphics Programming. In this case, the textured polygon

class, which inherits from the clippable polygon class, overrides this method.

Listing 7-24: p3_clip.h
#ifndef __P3_CLIP_H
#define __P3_CLIP_H
#include "../../tool_os/memman.h"

#define __ACTIVE__P3_CLIP_H

#include "poly3.h"
#include "../plane/plane.h"
#include "../../dynamics/collide.h"

class l3d_polygon_3d_clippable :
virtual public l3d_polygon_3d

{
public:
l3d_polygon_3d_clippable(void) : l3d_polygon_3d() {};

l3d_polygon_3d_clippable(int num_pts) :
l3d_polygon_3d(num_pts),
l3d_polygon_2d(num_pts)

{};
virtual ~l3d_polygon_3d_clippable(void) {};

l3d_plane plane;
virtual int clip_to_plane(l3d_plane& clip_plane);
void init_transformed(void);
void transform(const l3d_matrix &m, int count);

l3d_polygon_3d_clippable(const l3d_polygon_3d_clippable &r);
l3d_polygon_2d *clone(void);

};

#undef __ACTIVE__P3_CLIP_H

#endif
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Listing 7-25: p3_clip.cc
#include "p3_clip.h"
#include "../../tool_os/memman.h"

int l3d_polygon_3d_clippable::clip_to_plane(l3d_plane& clip_plane) {
int idx0,idx1;
int crossedge0_idx0,crossedge0_idx1,crossedge1_idx0,crossedge1_idx1;
int newedge_ivertex0, newedge_ivertex1;
int i;
int dir;

idx0=0;
idx1=next_clipidx_right(idx0, clip_ivertices->num_items);

temp_clip_ivertices->num_items = 0;
int extends_behind_plane = 0;

while(
!( (clip_plane.side_of_point((**vlist)[ (*clip_ivertices)[idx0].ivertex ].transformed) >

EPSILON_PLANE
&& clip_plane.side_of_point((**vlist)[ (*clip_ivertices)[idx1].ivertex ].transformed) <

-EPSILON_PLANE)
||
(clip_plane.side_of_point((**vlist)[ (*clip_ivertices)[idx0].ivertex ].transformed) <

-EPSILON_PLANE
&& clip_plane.side_of_point((**vlist)[ (*clip_ivertices)[idx1].ivertex ].transformed) >

EPSILON_PLANE)))

{
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[idx0].ivertex;

idx0=idx1;
if (clip_plane.side_of_point((**vlist)[ (*clip_ivertices)[idx0].ivertex ].transformed) <

-EPSILON_PLANE) {extends_behind_plane = 1; }

if(idx0==0) {

if (extends_behind_plane) {
return 0;

}

else
{
return 1;

}

}

idx1=next_clipidx_right(idx0, clip_ivertices->num_items);
}

if (clip_plane.side_of_point((**vlist)[ (*clip_ivertices)[idx0].ivertex ].transformed) >
EPSILON_PLANE

&& clip_plane.side_of_point((**vlist)[ (*clip_ivertices)[idx1].ivertex ].transformed) <
-EPSILON_PLANE)

{dir = CROSS_FRONT_TO_BACK; }else {dir = CROSS_BACK_TO_FRONT; }

crossedge0_idx0 = idx0;
crossedge0_idx1 = idx1;
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idx0=idx1;
idx1=next_clipidx_right(idx0, clip_ivertices->num_items);

while(
!( (dir==CROSS_FRONT_TO_BACK

&& clip_plane.side_of_point((**vlist)[ (*clip_ivertices)[idx1].ivertex ].transformed) >
EPSILON_PLANE)

||
(dir==CROSS_BACK_TO_FRONT
&& clip_plane.side_of_point((**vlist)[ (*clip_ivertices)[idx1].ivertex ].transformed) <

-EPSILON_PLANE)
)

)
{
idx0=idx1;
if(idx0==crossedge0_idx0) {
fprintf(stderr,"shouldn't be here! can't find 2nd crossing edge");
return 0;

}

idx1=next_clipidx_right(idx0, clip_ivertices->num_items);
}

crossedge1_idx0 = idx0;
crossedge1_idx1 = idx1;

int new_idx;
clip_plane.intersect_with_segment(
(**vlist)[(*clip_ivertices)[crossedge0_idx0].ivertex].transformed,
(**vlist)[(*clip_ivertices)[crossedge0_idx1].ivertex].transformed);

new_idx = newedge_ivertex0 = (*vlist)->next_varying_index();
(**vlist)[ new_idx ].transform_stage = 0;
(**vlist)[ new_idx ].original.X_ =
(**vlist)[ new_idx ].transformed.X_ = clip_plane.intersection.X_;

(**vlist)[ new_idx ].original.Y_ =
(**vlist)[ new_idx ].transformed.Y_ = clip_plane.intersection.Y_;

(**vlist)[ new_idx ].original.Z_ =
(**vlist)[ new_idx ].transformed.Z_ = clip_plane.intersection.Z_;

(**vlist)[ new_idx ].original.W_ =
(**vlist)[ new_idx ].transformed.W_ = int_to_l3d_real(1);

clip_plane.intersect_with_segment(
(**vlist)[(*clip_ivertices)[crossedge1_idx0].ivertex].transformed,
(**vlist)[(*clip_ivertices)[crossedge1_idx1].ivertex].transformed);

new_idx = newedge_ivertex1 = (*vlist)->next_varying_index();
(**vlist)[ new_idx ].transform_stage = 0;
(**vlist)[ new_idx ].original.X_ =
(**vlist)[ new_idx ].transformed.X_ = clip_plane.intersection.X_;

(**vlist)[ new_idx ].original.Y_ =
(**vlist)[ new_idx ].transformed.Y_ = clip_plane.intersection.Y_;

(**vlist)[ new_idx ].original.Z_ =
(**vlist)[ new_idx ].transformed.Z_ = clip_plane.intersection.Z_;

(**vlist)[ new_idx ].original.W_ =
(**vlist)[ new_idx ].transformed.W_ = int_to_l3d_real(1);

{
idx0=idx1; idx1=next_clipidx_right(idx0, clip_ivertices->num_items);

}

temp_clip_ivertices->num_items = 0;
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if(dir==CROSS_FRONT_TO_BACK) {
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
newedge_ivertex1;

for(i=crossedge1_idx1;
i!=crossedge0_idx0;
i=next_clipidx_right(i,clip_ivertices->num_items))

{
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[i].ivertex;

}
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[crossedge0_idx0].ivertex;

(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
newedge_ivertex0;

swap_temp_and_main_clip_lists();
}else {
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
newedge_ivertex0;

for(i=crossedge0_idx1;
i!=crossedge1_idx0;
i=next_clipidx_right(i, clip_ivertices->num_items))

{
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[i].ivertex;

}
(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
(*clip_ivertices)[crossedge1_idx0].ivertex;

(*temp_clip_ivertices)[temp_clip_ivertices->next_index()].ivertex =
newedge_ivertex1;

swap_temp_and_main_clip_lists();
}

return 1;
}

void l3d_polygon_3d_clippable::init_transformed(void) {
l3d_polygon_3d::init_transformed();
plane.align_with_point_normal(center.transformed,

normalized(sfcnormal.transformed- center.transformed));

}

void l3d_polygon_3d_clippable::transform(const l3d_matrix &m, int count) {
l3d_polygon_3d::transform(m,count);
plane.align_with_point_normal(center.transformed,

normalized(sfcnormal.transformed-center.transformed));
}

l3d_polygon_2d* l3d_polygon_3d_clippable::clone(void) {
return new l3d_polygon_3d_clippable(*this);

}

l3d_polygon_3d_clippable::l3d_polygon_3d_clippable
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(const l3d_polygon_3d_clippable &r)
: l3d_polygon_3d(r)

{
plane = r.plane;

}

The l3d_polygon_3d_flatshaded_clippable Class

Future polygon classes descend from l3d_polygon_3d_clippable, so that they can all be

clipped against arbitrary planes. However, the existing flat-shaded 3D polygon class

l3d_polygon_3d_flatshaded introduced earlier does not descend from l3d_poly-
gon_3d_clippable. For this reason, we declare the l3d_polygon_3d_flat-
shaded_clippable class to allow for flat-shaded polygons which can also be clipped against

arbitrary planes in 3D. The class only overrides the clone method to return a copy of itself; all

other behavior is inherited.

Listing 7-26: p_cflat.h
#ifndef __P3_CFLAT_H
#define __P3_CFLAT_H
#include "../../tool_os/memman.h"

#include "p3_flat.h"
#include "p3_clip.h"

class l3d_polygon_3d_flatshaded_clippable :
virtual public l3d_polygon_3d_flatshaded,
virtual public l3d_polygon_3d_clippable

{
public:
l3d_polygon_3d_flatshaded_clippable(int num_faces) :
l3d_polygon_2d(num_faces),
l3d_polygon_2d_flatshaded(num_faces),
l3d_polygon_3d(num_faces),
l3d_polygon_3d_flatshaded(num_faces),
l3d_polygon_3d_clippable(num_faces)

{}

l3d_polygon_3d_flatshaded_clippable
(const l3d_polygon_3d_flatshaded_clippable &r);
l3d_polygon_2d *clone(void);

};

#endif

Listing 7-27: p_cflat.cc
#include "p3_cflat.h"
#include "../../tool_os/memman.h"

l3d_polygon_2d* l3d_polygon_3d_flatshaded_clippable::clone(void) {
return new l3d_polygon_3d_flatshaded_clippable(*this);

}

l3d_polygon_3d_flatshaded_clippable::l3d_polygon_3d_flatshaded_clippable
(const l3d_polygon_3d_flatshaded_clippable &r)

: l3d_polygon_3d(r),
l3d_polygon_2d_flatshaded(r),
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l3d_polygon_3d_flatshaded(r),
l3d_polygon_2d(r),
l3d_polygon_3d_clippable(r)

{
}

The l3d_object_clippable Class

Since we can clip polygons against arbitrary planes, the next logical step is to clip entire objects of

polygons against arbitrary planes. This is essentially nothing more than clipping each polygon of

the object in turn. However, there is an additional catch which makes it worthwhile to encapsulate

the code in a separate routine. Specifically, it is often the case that we wish to permanently clip an

object against a plane. Until now, we have always regarded clipping as a temporary opera-

tion—the original definition of the vertices stayed constant, and for each frame we initialized the

clip vertex lists to be the same as the original vertex lists, then did any clipping we needed for the

frame. At the beginning of the next frame, we again began with the original vertex lists. But there

are some cases where we wish to perform a clip operation, and then actually redefine the original

geometry of the object to be the clipped version. Some of the visible surface schemes presented in

the companion book Advanced Linux 3D Graphics Programming require such clipping opera-

tions. (Examples include the BSP tree and octree.)

Making clipped geometry permanent is easy, but tedious to implement. We must:

� Move the varying items in the vertex list into the non-varying part. These are the new vertices

which were created during clipping.

� Set the original value of each vertex to be the same as the current transformed (i.e.,

clipped) value.

� Copy the clipped vertex index list into the original vertex index list.

� Create a new polygon list for the object, containing only those polygons which survived the

clipping operation.

� Shrink the vertex list for the object by removing any vertices which are no longer referenced

by any polygon, and rewrite all polygon definitions to use the new vertex indices in the new,

smaller vertex list.

Because of the number of steps involved, we have implemented the object clipping routines in a

class. The class l3d_object_clippable represents a 3D object which can be clipped as a

whole against an arbitrary 3D plane. The method clip_to_plane clips each polygon of the

object against the specified plane, removing any polygons which are completely clipped away

from the object’s non-culled polygon list. This implies that init_nonculled_list must

have been called earlier, usually indirectly through a call to the object’s reset method. The

method make_current_geometry_permanent carries out the steps listed above to make

the current clipped geometry permanent.

Listing 7-28: oclip.h
#ifndef __OCLIP_H
#define __OCLIP_H
#include "../../tool_os/memman.h"

#include "object3d.h"
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#include "../polygon/p3_clip.h"

class l3d_object_clippable :
virtual public l3d_object

{

public:

l3d_object_clippable(int num_fixed_vertices) :
l3d_object(num_fixed_vertices) {};
virtual ~l3d_object_clippable(void);

int clip_to_plane(l3d_plane& clip_plane);
void make_current_geometry_permanent(void);

};

#endif

Listing 7-29: oclip.cc
#include <stdio.h>
#include <stdlib.h>
#include "oclip.h"
#include "../../tool_os/memman.h"

l3d_object_clippable::~l3d_object_clippable() {}

int l3d_object_clippable::clip_to_plane(l3d_plane& clip_plane)
{
l3d_polygon_3d_node *n = nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_clippable *pc;
pc = dynamic_cast<l3d_polygon_3d_clippable*>(n->polygon);
if(pc) {
if(pc->clip_to_plane(clip_plane)) {
}else {
if(n->prev) {
n->prev->next = n->next;

}else {
nonculled_polygon_nodes = n->next;

}

if(n->next) {
n->next->prev = n->prev;

}
}

}
n = n->next;

}
if(nonculled_polygon_nodes) return 1; else return 0;

}

void l3d_object_clippable::make_current_geometry_permanent(void)
{
vertices->num_fixed_items =
vertices->num_fixed_items +
vertices->num_varying_items;

vertices->max_varying_items =
vertices->max_varying_items -
vertices->num_varying_items;
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vertices->num_varying_items = 0;

int ivtx;
for(ivtx=0;

ivtx<vertices->num_fixed_items;
ivtx++)

{
(*vertices)[ivtx].original = (*vertices)[ivtx].transformed;

}

l3d_polygon_3d_node *n = nonculled_polygon_nodes;
while(n) {
*(n->polygon->ivertices) = *(n->polygon->clip_ivertices);
n = n->next;

}

n = nonculled_polygon_nodes;
l3d_list<l3d_polygon_3d*> new_polygon_list;
while(n) {
new_polygon_list[new_polygon_list.next_index()] = n->polygon;
n=n->next;

}

for(int i=0; i<polygons.num_items; i++) {
int found=0;

for(int j=0; j<new_polygon_list.num_items; j++) {
if(polygons[i] == new_polygon_list[j]) {found = 1; }

}

if(!found) {
delete polygons[i];

}
delete ( & polygons[i] );

}
for(int i=polygons.num_items; i<polygons.max_items; i++) {
delete ( & polygons[i] );

}
polygons.num_items = 0;
polygons.max_items = 0;

polygons = new_polygon_list;

//- clean up any unused vertices, and rewrite polygon definitions
//- to use new vertex indices

l3d_two_part_list<l3d_coordinate> *new_vlist;
new_vlist = new l3d_two_part_list<l3d_coordinate> (1);
*new_vlist = *vertices;
new_vlist->num_fixed_items = 0;
for(ivtx=0; ivtx<vertices->num_fixed_items; ivtx++) {
int vtx_found = 0;
for(int ipoly=0; ipoly<polygons.num_items && !vtx_found; ipoly++) {
for(int ivtx_poly=0;

ivtx_poly<polygons[ipoly]->ivertices->num_items && !vtx_found;
ivtx_poly++)

{
if((*polygons[ipoly]->ivertices)[ivtx_poly].ivertex == ivtx) {
//- vertex is used: keep it.
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vtx_found = 1;

int new_ivtx = new_vlist->num_fixed_items;
new_vlist->num_fixed_items++;

(*new_vlist)[new_ivtx] = (*vertices)[ivtx];
//- replace all occurrences in all polys of "ivtx" with "new_ivtx"
for(int ipoly_repl=0; ipoly_repl<polygons.num_items; ipoly_repl++) {
for(int ivtx_poly_repl=0;

ivtx_poly_repl<polygons[ipoly_repl]->ivertices->num_items;
ivtx_poly_repl++)

{
if((*polygons[ipoly_repl]->ivertices)[ivtx_poly_repl].ivertex

== ivtx)
{
(*polygons[ipoly_repl]->ivertices)[ivtx_poly_repl].ivertex
= new_ivtx;

}
}

}
}

}
}

}

new_vlist->num_varying_items = 0;
new_vlist->max_varying_items = 0;

for(int i=new_vlist->list->max_items - 1;
i >= new_vlist->num_fixed_items;
i--)

{
delete ( & (*new_vlist)[i] );
new_vlist->list->max_items--;

}

new_vlist->list->num_items = new_vlist->num_fixed_items;

l3d_two_part_list<l3d_coordinate> *old_vlist;

old_vlist = vertices;
vertices = new_vlist;

delete old_vlist;

}

Sample Program: objcopy
The next sample program, objcopy, illustrates object clipping by splitting a pyramid object

against a plane and animating the split part in a cyclic motion so that you can see exactly where the

split occurred. Use the normal navigation keys of class l3d_pipeline_world to fly around

the scene.
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NOTE To run this program, you must type ./objcopy instead of just objcopy because of the
system command named objcopy. The preceding dot and slash force the shell to execute
the program in the current directory rather than the system command.

To “split” an object into two pieces, we create two identical copies of the object via the overridden

assignment operator. Then, we clip the first copy of the object against the plane and make the clip-

ping permanent. Next, we clip the second copy of the object against the other side of the plane and

also make the clipping permanent. Clipping against the other side of the plane is done simply by

negating the a, b, c, and d components of the plane—this has the effect of reversing the normal

vector and the displacement of the plane, which essentially flips the front side and back side of the

plane. By doing the clipping in this way, we end up with two parts of the object: one part which lies

in front of the plane and another part which lies behind the plane. Thus, the object has been split by

the plane into two pieces.

The main routine of interest in this program is the constructor for class my_world, which is

where we create a pyramid object, copy it, and clip the two copies against different sides of the

plane. The rest of the program is the typical object setup and pipeline initialization. The pyramid

objects in this program have the ability to move back and forth in a cyclic motion, so that we can

see the effect of the split more clearly (otherwise the two split pieces would still be located flush

against one another, and no split would be visible).

Listing 7-30: main.cc, main file for program objcopy
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p3_flat.h"
#include "../lib/tool_2d/screen.h"
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#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rast3.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/system/fact0_2.h"

#include "shapes.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

class my_world:public l3d_world {
public:
my_world(void);
void update_all(void);

};

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;

factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete d;
delete p;
delete w;

}

void my_world::update_all(void) {
l3d_world::update_all();

}

my_world::my_world(void)
: l3d_world(640,400)

{

l3d_screen_info *si = screen->sinfo;

camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(5.5);
camera->far_z = int_to_l3d_real(500);

int i,j,k,onum=0, prev_onum;

i=10; j=0; k=20;
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k=0;

//- create a pyramid
pyramid *orig_pyr;
objects[onum=objects.next_index()] = orig_pyr = new pyramid();
l3d_polygon_3d_flatshaded *p;
for(int pnum=0; pnum<objects[onum]->polygons.num_items; pnum++) {
p = dynamic_cast<l3d_polygon_3d_flatshaded *>

(objects[onum]->polygons[pnum]);
if(p) {
p->final_color = si->ext_to_native

(rand()%si->ext_max_red,
rand()%si->ext_max_green,
rand()%si->ext_max_blue);

}
}
orig_pyr->dx = 0;

//- copy the pyramid
pyramid *copy_pyr;
prev_onum = onum;
objects[onum=objects.next_index()] = copy_pyr =

new pyramid();
*objects[onum] = *objects[prev_onum];
copy_pyr->dx = float_to_l3d_real(0.25);
copy_pyr->maxx=int_to_l3d_real(5);
copy_pyr->minx=int_to_l3d_real(0);

//- define a clip plane
l3d_plane clip_plane;
clip_plane.a = int_to_l3d_real(-1);
clip_plane.b = int_to_l3d_real(-1);
clip_plane.c = int_to_l3d_real(-1);
clip_plane.d = int_to_l3d_real(3);

//- split the first copy on one side of the plane
orig_pyr->reset();
orig_pyr->clip_to_plane(clip_plane);
orig_pyr->make_current_geometry_permanent();

//- split the second copy on the other side of the plane
clip_plane.a = -clip_plane.a;
clip_plane.b = -clip_plane.b;
clip_plane.c = -clip_plane.c;
clip_plane.d = -clip_plane.d;
copy_pyr->reset();
copy_pyr->clip_to_plane(clip_plane);
copy_pyr->make_current_geometry_permanent();

screen->refresh_palette();
}

Listing 7-31: shapes.h, declaration of pyramid objects for program objcopy
#include "../lib/geom/object/oclip.h"

class pyramid:public l3d_object_clippable {
public:
l3d_real x;
l3d_real dx;
l3d_real maxx, minx;
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pyramid(void);
virtual ~pyramid(void);
int update(void);

};

Listing 7-32: shapes.cc, definition of pyramid objects for program objcopy
#include "shapes.h"

#include "../lib/geom/polygon/p3_cflat.h"
#include <stdlib.h>
#include <string.h>

pyramid::pyramid(void) :
l3d_object(4),
l3d_object_clippable(4)

{
(*vertices)[0].original.set(float_to_l3d_real(0.),float_to_l3d_real(0.),float_to_l3d_real(0.),

float_to_l3d_real(1.));
(*vertices)[1].original.set(float_to_l3d_real(10.0),float_to_l3d_real(0.),float_to_l3d_real(0.),

float_to_l3d_real(1.));
(*vertices)[2].original.set(float_to_l3d_real(0.),float_to_l3d_real(10.),float_to_l3d_real(0.),

float_to_l3d_real(1.));
(*vertices)[3].original.set(float_to_l3d_real(0.),float_to_l3d_real(0.),float_to_l3d_real(10.),

float_to_l3d_real(1.));

int pi;
pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded_clippable(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded_clippable(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded_clippable(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded_clippable(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

num_xforms = 1;
x=int_to_l3d_real(0);
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dx=int_to_l3d_real(0);
modeling_xforms[0] = l3d_mat_translate

(dx,
int_to_l3d_real(0),
int_to_l3d_real(0));

modeling_xform=
modeling_xforms[0];

}

pyramid::~pyramid(void) {
}

int pyramid::update(void) {
x += dx;
if(x<=minx || x>=maxx) {
dx = -dx;

}
modeling_xforms[0]=l3d_mat_translate

(x,
int_to_l3d_real(0),
int_to_l3d_real(0));

modeling_xform=
modeling_xforms[0];

}

Summary
In this chapter, we looked at the theoretical and practical side of using 3D polygons in our virtual

environments. We saw l3d classes for handling 3D polygons, 3D objects, and 3D worlds. Some

important topics we looked at were: normal vectors, vertex ordering, near z clipping, arbitrary

plane clipping, dynamic behavior of 3D objects via subclassing or plug-ins, and the painter’s

algorithm.

We now have a pretty good handle on handling and drawing 3D polygons. But our sample

programs have still been using fairly basic 3D objects: pyramids consisting of just a few triangles.

Creating more complicated objects requires the use of a 3D modeling package. The next chapter

covers using the free 3D modeling package Blender to create more interesting models for use in

our 3D programs.
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C h a p t e r 8

Basic 3D Modeling withBasic 3D Modeling with
Blender

Overview

T
he previous chapters have emphasized the theoretical and algorithmic aspects of Linux 3D

graphics. This chapter takes a break from the theory and looks at a completely different side

of 3D graphics: 3D modeling. The term 3D modeling refers to the use of a special software

package to create, edit, and possibly animate 3D objects. In this book, we focus on 3D modeling

from the standpoint of creating models for interactive 3D programs; the companion book

Advanced Linux 3D Graphics Programming takes this one step further and shows how to model

entire 3D worlds. 3D modeling in and of itself is a rich and varied field, and it is also possible to

approach 3D modeling as a goal in its own right—to create visually attractive images or movies.

For the purposes of this book, though, 3D modeling is a tool which makes it possible to create and

to import interesting polygonal 3D objects into our 3D programs.

First of all, we look at the basics of 3D modeling packages in general, then proceed with a

hands-on exercise using the freely available Blender modeler for Linux. To my knowledge,

Blender is by far the most capable free 3D modeler available on any platform, and can definitely

rival packages costing thousands of dollars. Blender 1.80 is included on the CD-ROM.

In this chapter we cover the following topics:

� Basics of 3D modeling

� The Blender user interface

� 3D polygonal modeling with Blender

� Exporting and importing 3D files

Basics of 3D Modeling
In order to create 3D models, a 3D modeling program must fulfill a few basic requirements. These

include:

� Creation and placement in 3D of points, edges, polygons, surface normals, and meshes. A

mesh is a group of 3D polygons sharing a common vertex list, just like the l3d_object

class of Chapter 7.
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� A selection of predefined primitive shapes (cube, sphere, pyramid) from which to build more

complex objects.

� Viewing and changing the model from various viewpoints.

� Saving the polygonal data to a file for later import by a 3D engine.

Writing a simple 3D modeler is an instructive and to some extent enjoyable exercise; for some of

my first experiments in 3D graphics, I used a 3D modeler that I wrote during my university stud-

ies. Based on the information from Chapters 1 through 7, you should be able to write your own 3D

modeler. However, making a good 3D modeler—one which really saves time and enables com-

plex models to be created and managed—is no small undertaking. Some of the features which a

“good” 3D modeler should include are:

� Tools for changing meshes. Such tools work on groups of points instead of on individual

points, which can greatly save time. Examples include a magnet tool, which allows propor-

tional movement of several vertices within a given radius, and an extrusion tool for creating

tubes from rings.
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� Lighting capabilities to illuminate polygons.

� Texture mapping and texture coordinate assignment onto polygons.

� Animation of the objects within the scene.

� Layers for managing different, independent parts of the scene (background and foreground,

for instance).

� Temporary hiding of some objects to make editing interior objects or parts of objects possible

by temporarily hiding the exterior part. This is vital for dense or complex models.
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vertex with a magnet
(or proportional
editing) tool. The vertex
and all surrounding
vertices are
magnetically pulled
along with the selected
vertex.

Figure 8-3: An
extrusion tool. The ring
shape, left, is extruded
to create the tube
shape on the right.



Modelers which go beyond these requirements and offer some or more of the following features

begin to fall in the professional category:

� Scripting language and/or plug-ins for programmatically extending program functionality.

� Key frame animation

� Inverse kinematics for easy animation of jointed figures

� Particle systems for creation of smoke, spark, or fire effects

� Lattice deformation allowing the “bending” of an entire 3D mesh at once

� Non-polygonal modeling with curved surfaces

The free modeler Blender falls into the professional category, which is at first quite surprising,

considering that it is a freely available tool. Let’s first talk a bit about the history and philosophy of

Blender, then take a tour of Blender and create some models.

Blender Background
Blender was originally the in-house modeling and animation tool for the Dutch animation com-

pany NeoGeo. Development of Blender took place internally in order to produce a better tool to

create animations. Blender thus grew out of the real, day-to-day needs of 3D modelers and

animators.

In May 1998, NeoGeo decided to go out of business. At this point, Ton Roosendaal, the pri-

mary architect and programmer of Blender, founded the company Not a Number (NaN) to support

the further development of Blender as a product in its own right. Interestingly, NaN chose not to

sell Blender, but rather to make it freely available for download. Blender was financed by the sale

of user manuals and a special so-called C-key, which was a special license file which enabled the
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use of the newest Blender features. NaN’s policy was always to let features migrate from the

C-key version into the free version.

Today, the C-key has been discontinued, and all Blender features are freely available in Com-

plete Blender, which is version 1.80. NaN now has financial backing from interested investors,

and development continues on the much-awaited Blender version 2.0, which is currently available

in a beta version for download on the Blender home page at http://www.blender.nl.

Plans are to make Blender 2.0 also available as freeware. The official Blender user manuals are

still available for purchase directly from NaN.

The unusual and generous business strategy of NaN has made it possible for countless indi-

viduals to enter the world of 3D modeling without needing to buy expensive 3D software, the

prices of which usually start in the four-digit range. Blender is a powerful, freely available tool

with which to do 3D modeling under Linux.

The Blender Philosophy
Blender has a very consistent, but somewhat unusual, user interface. This can be rather intimidat-

ing at first, but once you understand some basic principles, you will find that work with Blender is

very efficient indeed.

Data, Visualize, Edit
Blender organizes 3D modeling around a three-part process: data, visualization, and editing. At

the lowest level, data blocks form the basis for all Blender modeling activities. Blender scenes

consist of many small data structures hierarchically linked together to form larger structures. For

instance, the Blender mesh data structure defines the geometry of an object in 3D, containing ver-

tices, polygons (also called faces), and normal vectors. The material data structure defines

material properties of a surface, such as color, reflectivity, or transparency. The texture data

defines a texture (i.e., an image) to be mapped onto a polygon or set of polygons. By linking a

mesh with a material, and a material with a texture, we apply the texture to the mesh. This

approach, which Blender terms an object-oriented approach to modeling, emphasizes the use and

linking of several small data blocks, rather than a few monolithic data blocks, to create 3D objects

and scenes.

Visualization of data blocks occurs within Blender’s visualization and windowing system.

The 3D data can be visualized in a number of ways, either in a high-quality 3D preview or in a sim-

ple wire-frame mode. Blender’s windowing system allows for simultaneous viewing of the 3D

data from various angles.

Editing of the data blocks occurs after the user selects some data to edit, typically by clicking

on it with the mouse. Then, depending on the current selection, a number of different tools are

available for changing the data. For instance, a mesh object offers tools for creating and reposi-

tioning vertices; a lamp object offers means of specifying light intensity and color. Editing occurs

directly on the data itself, not on the visualization of the data. Then, the changed data is visualized

once again, and the editing process continues in a loop.
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The Keyboard and the Mouse
Blender typically offers both keyboard shortcuts and menu-based access to the same functions.

However, to efficiently use Blender, you must take the time to learn several keyboard commands.

During my visit to the NaN office, Ton explained that Blender’s keyboard shortcuts were chosen

so as to optimize work with the left hand on the keyboard and the right hand on the mouse. The

right hand manipulates the mouse to select and position objects in the scene. The left hand presses

single keys, which are more favorably located to the left side of the keyboard, to specify the

desired tool for editing the selection. The alternative—always using the mouse to both choose

commands from a menu and select parts of the 3D model—leads to a very tiring and repetitive

movement of the mouse back and forth between menu and model. Once you get used to the sys-

tem, you will like it!

The Learning Curve
Ton Roosendaal freely admits in the official Blender manual that Blender has a steep learning

curve. It is not “easy to use” in the usual sense. Thus, please take the time to read slowly through

the following few sections to understand the basics of Blender. Once you see how the system is

constructed, you will find that all commands do indeed behave very consistently.

If you are fluent with the vi text editor, you can think of Blender as being similar for the area of

3D modelers. In vi, for instance, the command string :.,$s/^/\/\// puts a C++ comment delimiter

at the beginning of every line from the current cursor position to the end of the file. With no knowl-

edge of vi, the command looks cryptic, but with an understanding of regular expressions, the

command is quite logical—indeed, simple. Learning Blender is similar to learning vi. At first, you

fumble around trying to do the simplest of operations. Then, once you understand the system, you

can learn the basic commands quickly. In the end, you can work very efficiently with the system.

So, it’s now time to look at the Blender user interface and do some simple operations.

The Blender Interface
Start blender as follows: type blender at the shell prompt, and press Enter. (See the Appendix for

instructions on installing Blender.) Immediately after starting, the Blender screen appears as in

Figure 8-5. The same screen with added annotations appears in Figure 8-6. Later exercises in this

chapter give you a chance to understand the various buttons and windows in a hands-on fashion,

so don’t worry if it all seems confusing now.

NOTE The version of Blender described here is Blender 2.0 (also called the “Game
Blender”). At the time of this writing, Blender 2.0 is currently in beta status, whereas Blender
1.80 (also called the “Complete Blender,” and included on the CD-ROM) is the last stable
release. A few features only work in 1.80 and not in 2.0, and vice versa. Therefore, at least for
now, it is useful to use both Blender versions. The only differences in the interface between
Blender 1.80 and Blender 2.0 are the location and appearance of some of the buttons; these
differences are noted as appropriate in the remainder of the chapter.
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The Window System
The first thing you will notice about Blender is that it fills the entire screen. Resizing the main

Blender window depends on your window manager. The Blender user interface is drawn com-

pletely using OpenGL commands, not X Window System commands. This makes the interface
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Blender user interface
immediately after
starting.

Figure 8-6: The
Blender user
interface, annotated.



portable to any OpenGL-capable operating system, but also means that the window handling

depends on how your window manager deals with OpenGL windows.

To resize the main Blender window, using the KDE window manager:

1. Move the mouse cursor to one of the corners of the Blender screen.

2. Press and hold Alt.

3. Right-click the window corner, and drag the mouse cursor to resize the window.

To move the main Blender window:

1. Position the mouse cursor somewhere inside the Blender interface.

2. Press and hold Alt.

3. Left-click the Blender window, and drag the mouse cursor to reposition the window.

Under other window managers (for instance, IceWM under Debian), you can use the normal win-

dow manager commands to resize or move the main Blender window (drag the window corner to

resize, drag the title bar to move).

Inside of its main window, Blender’s user interface is completely under the control of

Blender, and its behavior does not depend on the external window manager. The Blender interface

consists of a number of non-overlapping, rectangular windows. A thin border separates windows

at their edges. You can resize a window within Blender by dragging its border as follows:

1. Position the mouse cursor exactly over the border. The mouse cursor changes to a small

two-sided arrow to indicate that the border can now be dragged. If the border is vertical, it can

only be dragged horizontally; if it is horizontal, it can only be dragged vertically.

2. Click and hold the left mouse button, move the mouse cursor to a new position, and release the

mouse button.

Window Types

Each window in Blender has a type. The window type determines the appearance and functional-

ity of the window. A unique feature of the Blender window system is that you can change the type

of an existing window, rather than opening a new window of the desired type. Any window can

assume every type. This means you can have multiple copies of the same window type, or you can

even do all your work in one single window, changing the type of the window as necessary.
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Each window has a header, which is a sort of miniature toolbar containing buttons for the

most frequently used commands for the window type. The window header may be positioned

either at the top or the bottom of the window. To change the positioning of the header:

1. Right-click on a blank area (between the buttons) in the header. A pop-up menu asks for

confirmation.

2. Press Enter. The header changes position, from top to bottom or bottom to top.

NOTE If you try this out now, switch the header back to its original position when you are
done. Otherwise, the appearance of your screen may no longer correspond to the figures
and text.

A button at the very left of the window header indicates the current window type. This button

is one of Blender’s many custom button types—in this case, the button is of type ICONSLI. We

cover Blender’s button types later in this chapter. The window type button can take on one of a

fixed number of “values,” where each value is an icon specifying the window type. Figure 8-9 lists

the possible window types, and Figure 8-10 shows a Blender interface with all window types open

simultaneously.
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Figure 8-8: Various window
headers in Blender. The
leftmost button in the header
indicates the window type.

Figure 8-9: Window types in Blender.



In Blender 2.0, change the type of a window as follows:

1. Click on the ICONSLI button in the window header. Notice the vertical menu which pops up,

where each entry in the menu is an icon representing a window type.

2. Click the desired entry in the menu. The current window changes to become a window of the

selected type.

In Blender 1.80, the operation of the ICONSLI buttons was different. Thus, in Blender 1.80,

change the type of a window as follows:

1. Position the mouse cursor over the leftmost ICONSLI button in the window header.

2. Left-click the ICONSLI button, keeping the left mouse button pressed.

3. Drag the mouse left or right to change the value of the button, and thus the window type, to the

previous or next setting. Alternatively, left-click the left or right side of the button once to

change to the immediately preceding or immediately following setting.

Let’s now briefly go over each window type.

� InfoWindow: Contains global settings for the entire program, such as directory names.

� 3DWindow: Displays 3D objects and allows creation, positioning, and editing of these

objects.

� ButtonsWindow: Edits properties of the current selection in the 3D window, or of global edit-

ing or rendering parameters.

� FileWindow: Selects files for loading and saving.

� OopsWindow: Displays the internal object-oriented programming structure (OOPS) of the

currently selected scene, in a tree format. Editing is not allowed in this window.
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TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



� SoundWindow: Allows integration of sounds into interactive 3D environments created with

Blender. In Blender 2.0 beta, this window type is not yet fully functional.

� IpoWindow: Displays and edits interpolators (IPOs), which are used for interpolating various

object parameters over time. Blender has a very flexible interpolation system where many

parameters can be interpolated and thus animated over time; interpolators can animate

objects, vertices, textures, lamps, or sequences.

� SequenceWindow: Combines and mixes among various animation sequences. This window

type is essentially a post-production video studio, where each animation sequence is repre-

sented as a horizontal strip with the length indicating the duration. Strips can be blended or

combined with one another, allowing, for instance, smooth fades between different parts of a

3D animation. Another exciting possibility is the combination of Blender rendered anima-

tions with existing video footage from another source, such as a video camera.

� TextWindow: Edits a text file. Used primarily for creating script files for the built-in Python

extension language.

� ImageWindow: Displays an image. Useful for previewing texture image files; also used for

assigning specific texture coordinates to specific faces of a mesh.

� ImageSelectWindow: Selects an image file for loading or saving, displaying a thumbnail pre-

view of each image file for easy differentiation.

The following sections cover in more detail the InfoWindow, 3DWindow, ButtonsWindow, and

FileWindow, which are the main windows we need to perform basic 3D modeling. Unfortunately,

a detailed coverage of all window types in Blender is beyond the scope of this book. Consult the

Blender reference manual, available directly from NaN, for a comprehensive coverage of Blender

functionality. Additionally, there are several excellent tutorials available online from enthusiastic

Blender users. Many of these are linked directly from the Blender home page at www.

blender.nl. After understanding the window system and the Blender mechanisms for moving

and selecting objects, you should also be able to explore the other window types on your own.

Operations on Windows

We’ll now look at some useful operations on windows: maximizing, restoring, splitting, and join-

ing windows.

Maximizing a window causes it to fill the screen. Maximize a window as follows:

1. Move the mouse cursor into the window to be maximized.

2. Press Ctrl+Up Arrow. Pressing the same keys again undoes the maximization.

Splitting a window creates two windows in place of one, each of the same type as the previous

window. You can only split a window at the borders. Split a window as follows:

1. Move the mouse cursor into the window to be split.

2. Move the mouse cursor towards the border until it changes shape into a two-sided arrow,

indicating that the cursor is exactly on top of the border. If you overshoot the border and the

mouse cursor lands in the next adjoining window, you must begin again at step 1; the window

to be split is the window in which the mouse cursor was immediately before landing on the

border.
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3. Middle-click the border. A pop-up menu appears asking for confirmation of the action.

4. Press Enter to confirm the action, or Esc to cancel.

Joining two windows is the opposite of splitting them. To join two windows:

1. Move the mouse cursor into the window which should remain after the join operation.

2. Move the mouse cursor towards the border until it changes to a two-sided arrow, being careful

again not to overshoot the border.

3. Right-click the border. A confirmation menu appears.

4. Press Enter to confirm the action, or Esc to cancel.

A final word about working with windows: the position of the mouse cursor determines which

window may receive keyboard input. To work with a window, make sure that the mouse cursor is

located somewhere within the borders of the desired window.

Button Types
Blender has a number of unique button types for setting options and entering data. Some are prob-

ably familiar to you, but some are almost certainly new or different than expected. Figure 8-11

illustrates the possible button types in Blender.

A description of each button type follows.

� BUT: Executes a single action, such as save or load. Left-click the button once to invoke the

action.

� ICONBUT: The same as type BUT, but with an iconic instead of a text caption.

� TOGBUT: Toggles a particular option on or off. Left-click the button once to change its status

from off to on or vice versa. In the on status, the button appears depressed; on the off status, it

appears to protrude.

� TOG3BUT: Toggles a particular option between three states: off, positive, or negative. In

negative status, the text is displayed in yellow.

� ICONTOG: The same as type TOGBUT, but with an iconic instead of a text caption.
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� TEXTBUT: Allows entry of text strings to name data blocks or specify other textual informa-

tion. Left-click the button once to activate the text entry mode. Then, type the text. During text

entry, press Shift+Backspace to delete the entire text; press Shift+Left Arrow or

Shift+Right Arrow to move the cursor to the beginning or end of the text, respectively. Press

Enter or left-click the button again to confirm the entry. Press Esc to cancel the entry.

� NUMBUT: Allows entry of numerical values. Left-click and drag the mouse left to decrease

the value; drag the mouse right to increase the value. During dragging, press and hold Ctrl to

change values in steps, or Shift to change the values in finer increments. Alternatively,

left-click the left side of the button to decrease the value slightly; right-click to increase. Or,

press and hold Shift, and left-click the button for approximately one second. The button then

changes into a TEXTBUT, allowing direct keyboard entry of the desired numerical value.

� ROWBUT: Selects one of a number of mutually exclusive options. Only one button in the row

can be active at any time.

� ICONROW: The same as type ROWBUT, but with iconic instead of text captions.

� NUMSLI: Allows visual entry of a numerical value, whose range is limited, via a slider.

Left-click and drag the slider left or right to decrease or increase the value. The left side of the

button functions exactly like a TEXTBUT and allows direct keyboard entry of the desired

value.

� ICONSLI: The same as type ICONROW, but only the active button is displayed. The opera-

tion of this button is different between Blender 1.80 and Blender 2.0. In Blender 2.0, click the

button to display a menu with the available options; then click on the desired selection. In

Blender 1.80, left-click the button and drag the mouse left or right to see and activate the other

available options. Alternatively, in Blender 1.80, left-click the left side of the button to select

the previous option; left-click the right side of the button to select the next option.

� MENUBUT: Allows selection, creation, and deletion from a list of items. The middle part of

the button is a TEXTBUT and displays the currently selected entry; if no entry is selected, this

part is blank. Left-click and hold the left part of the button (displaying the hyphen) to display a

pop-up menu containing the current list of items. Drag the mouse to the desired item and

release the left mouse button to make a selection. Or, select the ADD NEW entry from the

menu to create a new entry in the list. Edit the name of the new entry by using the TEXTBUT

as described earlier. Left-click the X at the right side of the button to delete the currently

selected entry from the list.

Now let’s take a closer look at the windows we will need most frequently: the InfoWindow, the

ButtonsWindow, the 3DWindow, and the FileWindow. Of these, the 3DWindow is the most

important, because most of the 3D modeling work is done within this window.

The InfoWindow: Setting Global Parameters
The InfoWindow is initially located at the top of the Blender interface, with only one line visible.

Resize this window by dragging its border downwards. Figure 8-10 shows a resized InfoWindow

at the top.
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Make sure that the ToolTips button is activated. This causes a brief explanatory text to appear

either in the header of the InfoWindow (Blender 1.80) or next to the button (Blender 2.0) when the

mouse is located over a button in the user interface. This makes understanding unknown features

easier.

The Auto Temp Save button should also be activated, which causes your work to automati-

cally be saved at regularly occurring intervals specified by the adjoining button Time. The

automatically saved files are located in the directory specified by the underlying Dir button, and

have the name <pid>.blend, where <pid> is the process number of the Blender program.

After successfully exiting Blender, the file is renamed to quit.blend. This automatic save

facility is very valuable; if for some reason your computer crashes, you will lose, at most, a few

minutes of work.

TIP Make sure you understand the auto-save features of Blender to avoid losing work.

The header of the InfoWindow also contains some useful buttons. In particular, there are two but-

tons of type MENUBUT, one labeled “SCR,” the other “SCE.” The SCR button controls which

screen is currently active. A Blender screen is a particular window configuration. By defining

multiple screens, you can configure multiple work spaces for the same scene, each with a different

window layout. For instance, one screen might contain a window layout ideal for editing 3D infor-

mation, while another could contain a window layout optimized for editing video sequences. The

SCE button controls which scene is currently active. (Starting with Blender 2.0, the SCE button is

only accessible through the header of the ButtonsWindow, when the AnimButtons are active.) A

scene is a complete set of 3D objects in Blender, typically separate from other scenes, although

objects can be linked between scenes (with key Ctrl+l) so that changes to the object in one scene

propagate to other scenes. Creating new scenes allows you to store several logically separate 3D

scenes within one Blender file. Furthermore, you can copy the entire scene into a new scene,

which allows you to freely experiment with making changes to the scene without the danger of

destroying your original work.

Creation of new screens and new scenes occurs through the MENUBUT buttons and the entry

ADD NEW. Creation of a new scene causes a pop-up menu to appear, where you can choose if the

new scene should be empty, should contain links to the current scene, or should contain a complete

and separate copy of the current scene. Creating links between the new scene and the old scene

means that changing the positions of objects in the original scene also causes a change in position

in the new scene; creating a complete and separate copy means that changes in one scene do not

affect the other scene.

The ButtonsWindow: Properties of the Current Object
The ButtonsWindow is initially located at the bottom of the Blender interface, and provides infor-

mation either about the currently active object in the 3DWindow (covered in the next section), or

about globally applicable options such as rendering or radiosity parameters. A button of type

ICONROW is in the middle of the window header; the current selection in this button determines

the appearance of the rest of the window. See Figure 8-12.
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You may be familiar with contemporary visual programming environments for Rapid Appli-

cation Development (RAD); such environments typically offer a window where you design dialog

boxes, and a property editor with two tab sheets where you specify properties and events for the

current selection in the design window. (Delphi is a good example of such an environment.) Think

of Blender’s ButtonsWindow as a property editor for the currently active object in the 3DWindow;

instead of just having two categories of possible settings (properties and events), it has 12 catego-

ries of possible settings—the number of buttons in the ICONROW.

Each possible setting of the ICONROW button in the ButtonsWindow calls up a different set

of buttons, each of which has a name. Figure 8-13 shows the name of the set of buttons which each

setting causes to appear.
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A description of each of these sets of buttons follows. Each set of buttons can also be called up

with a single key combination. The following list shows the most important hotkeys in parenthe-

ses; see the Blender manual for the others.

� ViewButtons (Shift+F7): Control the view settings affecting this window. In order to use the

ViewButtons, you must first change this window to be of type 3DWindow, then back to type

ButtonsWindow, via the ICONSLI button in the window header (as described earlier). Having

done this, you then see the ViewButtons. The settings in the ViewButtons then determine the

viewing parameters for this window when it is of type 3DWindow. In a 3DWindow, press

Shift+F7 to display the ViewButtons; press Shift+F5 to return to the 3DWindow. (Note that

you can achieve the same effect by manually changing the window type.)

� LampButtons (F4): Control settings for the currently active lamp object in the 3DWindow. If

no lamp object is active in the 3DWindow, then no LampButtons appear.

� MaterialButtons (F5): Control settings of the materials for the currently active object. A mate-

rial is a set of parameters controlling the appearance of the surface of an object, and any tex-

tures mapped onto the surface; such parameters include color, specularity, reflection, and

transparency. Up to 16 materials may be associated with an object. If the currently active

object in the 3DWindow (such as a lamp) has no alterable material parameters, then no

MaterialButtons appear.

� TextureButtons (F6): Control settings of the textures for the currently active object. Textures

may be images, procedural textures, or plug-in textures. Up to eight textures may be associ-

ated with an object. If the currently selected object in the 3DWindow cannot be associated

with a texture, then no TextureButtons appear.
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� AnimButtons (F7): Control settings for animations consisting of moving objects. These but-

tons also allow for the creation of additional animation effects, such as particle systems.

� RealtimeButtons (F8): Control settings for the construction of real-time interactive environ-

ments within Blender. These buttons are only available starting with Blender 2.0, and are

intended to allow the creation of interactive content within Blender by associating behavior

with each object. Because of the complexity and amount of information which may be entered

in these buttons for large real-time interactive simulations, these buttons may migrate into a

new window type in a future version of Blender.

� EditButtons (F9): Control settings related to the editing of the currently active object in the

3DWindow. For instance, for a polygonal mesh object, the EditButtons offer functions to

spin, extrude, or otherwise alter the positions or parameters of the vertices of the mesh; for a

text object, the EditButtons allow the setting of the font and justification of the text.

� WorldButtons: Control settings of the current world. A world in Blender is a non-polygonal

background image and settings above which the real 3D objects are rendered. For instance,

modeling of skies and stars are usually done through the world.

� VertexPaintButtons: Control settings of VertexPaint mode. In VertexPaint mode, you can

assign colors directly to the vertices of polygons in the 3DWindow, which are then interpo-

lated across the polygon during rendering. This allows for custom lighting effects.

� RadiosityButtons: Control settings for the computation of radiosity lighting for the currently

active object in the 3DWindow. Radiosity lighting in Blender creates a new, finely divided

mesh with many more vertices, and assigns the newly computed light intensities to the new

vertices. (An alternative, more often used in real-time graphics applications, would be to

leave the original mesh intact, and to compute light maps for each of the polygons in the origi-

nal mesh.)

� ScriptButtons: Control settings for either global or object-specific scripts. A Blender script is

a small program in the Python programming language which can be executed manually or

called automatically when certain events (such as a frame change in an animation) occur.

� DisplayButtons (F10): Control global settings for the display and rendering of images and

animations.

Typically, you use the ButtonsWindow by making a certain object in the 3DWindow active, then

by altering parameters of the active object in the ButtonsWindow. Thus, the ButtonsWindow and

the 3DWindow interact closely. Let’s now look at the 3DWindow.

The 3DWindow: Editing 3D Objects
The 3DWindow is the main part of the Blender interface, and is therefore, by default, the largest

window. In the 3DWindow, you create and position vertices in 3D to form polygons and objects,

and position objects in 3D to form complete 3D scenes. Typically, you do not begin creating a 3D

polygonal object from scratch, but instead begin with one of Blender’s predefined 3D primitives,

such as a cube, a sphere, or a pyramid. Then, you change the model by scaling it, adding or delet-

ing vertices and polygons, extruding it, and so forth.
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Changing the Viewing Parameters

Initially, the 3DWindow displays an overhead view of the scene in parallel (also called ortho-

graphic) projection mode. Blender offers functions for changing the projection mode as well as

the viewpoint. Let’s cover each topic separately.

Perspective or Parallel Projection

As for the viewing mode, Blender offers two modes: a perspective projection mode and a parallel

projection mode, as defined in Chapter 5. The viewing mode defines the appearance of the 3D

objects within the 3DWindow. The default is the parallel projection mode. Typically, you perform

modeling in the parallel projection mode, for precise positioning of the vertices. Precise modeling

in perspective mode is difficult because of the convergence of parallel lines as they recede into the

distance. However, perspective mode is useful after precise positioning in parallel mode, in order

to see if the final model looks correct as it will be displayed later in the 3D program. Toggle the

viewing mode between perspective and parallel by typing 5 on the numeric keypad.

Standard Viewpoints

Blender offers four standard viewpoints; alternatively, you can interactively change the view-

point. Type any of the following keys, which must be typed from the numeric keypad, to change

the viewpoint to one of the standard views:

� 1: Front view, parallel projection

� 3: Side view, parallel projection

� 7: Top view, parallel projection

� 0: Camera view, with projection mode being defined by the camera’s parameters (typically

perspective projection)

Notice that on the numeric keypad, the 7 key is above the 1 key, and the 3 key is beside the 1 key.

This explains the choice of keys.

You can also interactively change the viewpoint in several ways, covered below.

Rotation

Rotation of the viewpoint allows you to see the scene from a different angle. Rotate the viewpoint

with the mouse as follows:

1. Move the mouse cursor somewhere inside the 3DWindow.

2. Middle-click, and keep the mouse button pressed.

3. Drag the mouse cursor to change the viewpoint. The starting mouse location from step 1

determines the amount of rotation of the viewpoint.

Alternately, you can use the arrow keys on the numeric keypad (not the normal arrow keys) for

rotating the viewpoint; the viewpoint rotates in the direction of the chosen arrow.

Typically, you only rotate the viewpoint in perspective mode, just to see how the model looks

from various angles. Rotating the viewpoint in orthographic mode can be very confusing visually,

because the lack of perspective foreshortening leads to confusion between the near side and far

side of objects.
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Zooming

Zooming the view allows you to see more or less of the scene. To zoom the view with the

keyboard:

1. Press + on the numeric keypad to zoom in the view.

2. Press - on the numeric keypad to zoom out the view.

To zoom the view with the mouse:

1. Press and hold Ctrl.

2. Middle-click within the 3DWindow, and drag the cursor. Dragging up zooms the view in;

dragging down zooms the view out.

Panning or Translating

Panning or translating the view allows you to move the viewpoint directly up, down, left, or right

to see another part of the scene. To translate the view with the keyboard, press Shift+Left Arrow,

Shift+Right Arrow, Shift+Up Arrow, or Shift+Down Arrow to translate the viewpoint directly

left, right, up, or down. These arrow keys are the ones on the numeric keypad.

To translate the view with the mouse:

1. Press and hold Shift.

2. Middle-click within the 3DWindow, and drag the cursor. The viewpoint translates in the

direction of the drag.

To zoom the view with the mouse:

1. Press and hold Ctrl.

2. Middle-click within the 3DWindow, and drag the cursor. Dragging up zooms the view in;

dragging down zooms the view out.

Multiple Simultaneous Views

Blender’s window system allows for several windows of the same type to be open simultaneously.

This means that we can open several 3DWindows, each with a separate view of the scene. Blender

automatically updates all 3DWindows simultaneously.

It can be useful, for instance, to have a top and side view of the scene open simultaneously.

This makes modeling easy: in one 3DWindow, you model as seen from the top; in another, from

the side. You can also open a 3DWindow with a perspective or camera view on the object to see, in

real time, the object as it would appear in an l3d 3D application (since l3d applications use per-

spective projection).

The Home View

In large 3D scenes, it is possible to get “lost in space” by accidentally repositioning the viewpoint

such that nothing more is visible. To recover from such a situation, left-click the Home button, dis-

played with a small house icon, in the header of the 3DWindow. This positions the viewpoint such

that all objects are visible.
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The 3D Cursor

The 3D cursor in Blender is shaped like a cross hair, and is initially located in the center of the

screen. (Refer back to Figure 8-6.) It denotes the position, in 3D, where new objects or vertices

will be added. It also plays a role in certain rotation and scaling operations. Therefore, knowing

how to position the 3D cursor accurately is very important.

Fundamentally, a left-click in the 3DWindow causes the 3D cursor to be positioned at the

location of the mouse cursor. Of course, this is an ambiguous problem: the mouse cursor position

is specified by 2D screen coordinates, whereas the 3D cursor position is an arbitrary 3D location.

The fact that a left-click in the 3DWindow positions the 3D cursor, combined with the fact

that the screen to 3D problem is ambiguous, means that we typically use two viewpoints to posi-

tion the 3D cursor. For instance, first we switch to top view, then position the cursor from an

overhead view. Then, we switch to side view, and additionally specify the vertical position of the

cursor, as seen from the side. You can do this either by using one 3DWindow and switching the

viewpoint as described above, or you can have two 3DWindows open simultaneously, each with a

different viewpoint.

The Toolbox and Menus

The ToolBox is the main pop-up menu used for editing operations in the 3DWindow. Many of the

functions in the ToolBox also have keyboard shortcuts.

Display the ToolBox by pressing Space. Select items in the ToolBox by moving the mouse

cursor and left-clicking. The ToolBox is a multi-level menu: an entry followed by “>>” means that

the entry has sub-entries; an entry preceded by “>” indicates that the entry is not at the top level of

the menu, but is instead at some deeper level. Deeper levels of the ToolBox menu are not dis-

played in new menus, but instead use the same menu, where each entry is then preceded by a “>”

character. To go back up to the higher level in the menu, simply move the mouse cursor to the left

side of the menu.

Moving the mouse cursor outside of the boundaries of the ToolBox causes it to disappear, tak-

ing no action. The Esc key has the same effect. On the other hand, pressing Enter or left-clicking

the desired entry accepts or executes the current selection within the menu.

The usage conventions described for the ToolBox apply not only to the ToolBox, but also to

pop-up menus in general within the Blender interface.

Working with Objects

Now, with an understanding of the most important features of Blender’s unique interface, we’re

ready to add and edit objects within the 3DWindow.

The following example adds a sphere to the scene. Other objects are added similarly, by

selecting the corresponding entries from the ToolBox.

1. Position the 3D cursor to the desired location in 3D space where the new object should be

added.

2. Press Shift+a. This brings up the ToolBox with the Add sub-menu already selected.

Alternatively, you can display the ToolBox as normal with Space, then select Add.
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3. Select item Mesh to add a polygonal mesh. The next deeper level of the menu appears.

4. Select item UVsphere to add a sphere defined by segments (vertical strips) and rings.

5. Notice the pop-up menu which asks for the number of segments. The entry is done in a button

of type NUMBUT. Enter 16 and click OK.

6. Notice the pop-up menu which asks for the number of rings. Again, the entry is done in a

button of type NUMBUT. Enter 16 and click OK.

7. Notice the sphere with 16 segments and 16 rings which is added. The Blender user interface

now enters the EditMode, covered a bit later. For now, we just want to leave EditMode. Press

Tab to leave EditMode.

At this point, you can reposition the 3D cursor and add other objects. Blender offers the following

polygonal 3D primitives: plane, cube, circle, UVsphere, icosphere, cylinder, tube, cone, and grid.

Of these, the plane, circle, and grid are actually flat 2D objects; the others are 3D. The 2D objects

can then be extruded to form 3D objects, an operation which we see later in this chapter.

NOTE Blender supports non-polygonal objects, such as NURBS curves and surfaces. We
won’t be using these directly, since we focus on polygonal 3D graphics in this book. However,
non-polygonal objects can usually be converted to polygonal objects in Blender by activating
the desired objected and pressing Alt+c.

Activating and Selecting Objects

Blender allows for selection of one or multiple objects in the 3DWindow. Although multiple

objects may be selected at once, there may only be a maximum of one active object. The active

object is the one for which the ButtonsWindow (and the IpoWindow, if one is open) show and

allow editing of the data. However, most commands typically operate on all selected objects, such

as scaling or deletion commands.

Selected objects are displayed in pink in the 3DWindow. The active object is displayed in a

lighter color than the other selected objects.

Select an object and make it active by right-clicking it. This also automatically deselects any

other objects. To select multiple objects, press and hold Shift while right-clicking the desired

objects. In this selection mode, clicking an object which is already selected deselects the object.

The last object clicked is the active object.

An alternative way of extending a current selection is to use the border selection mode. In this

mode, you can either select or deselect all objects located within a rectangular region on the

screen. Use border selection mode as follows:

1. Press b to enter border selection mode. Notice the large cross hair that appears within the

3DWindow.

2. Select a rectangular region of the screen by using the cross hair as follows. Move the mouse

cursor to one corner of the desired selection rectangle. Left-click, drag the mouse cursor to the

opposite corner of the desired rectangle, then release the left mouse button. The objects within

the rectangle are selected.
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3. Deselect a rectangular region in a similar manner, but using the right mouse button. Move the

mouse cursor to one corner of the rectangle, right-click and drag to the opposite corner, then

release the right mouse button. The objects within the rectangle are deselected.

Deleting Objects

Press x to delete the selected objects in the 3DWindow. A confirmation window appears; press

Enter to confirm the deletion, or press Esc to cancel.

Translating, Rotating, and Scaling Objects

You can apply a transformation, as defined in Chapter 6, to the active and/or selected objects. The

allowable transformations are translation, rotation, and scaling operations. All of these operations

do not change the underlying geometry of the object; instead, they merely define an additional

transformation to be applied to the object. Compare this with the array of transformation matrices

stored with class l3d_object; transformations do not change the underlying geometry, which

is defined in the vertex list. In Blender, applying a translation, rotation, or scaling operation to an

object is similar to storing an additional transformation matrix in the transformations array.

Changing the actual underlying geometry is done in EditMode, covered later in this chapter.

Use the following keys to translate, rotate, or scale the active and/or selected objects.

� Type s to scale the current selection. Then, move the cursor closer to the object’s center to

scale down or away from the object’s center to scale up. While moving the cursor, press and

hold Ctrl to scale in fixed increments; press and hold Shift to scale in very fine increments.

Left-click or press Enter to accept the scaling, or Esc to cancel. While scaling, you can mid-

dle-click to limit the scaling to just the x, y, or z axis (thus creating a non-uniform scaling);

Blender computes the appropriate axis based on the already initiated mouse movement. Mid-

dle-click again to return to normal uniform scaling mode. To completely undo a previously

applied scaling operation, press Alt+s; a pop-up menu appears. Confirm your choice by

pressing Enter.

� Type r to rotate the current selection. Then, move the cursor around the 3D object to rotate it,

and press Enter to accept. The Ctrl and Shift keys also work as described above. Type Alt+r

to clear a previously applied rotation.

� Type g to translate (grab) the current selection. Then, move the cursor to reposition the object,

and press Enter to accept. The Ctrl and Shift keys also work as described above. Type Alt+g

to clear a previously applied translation.

TIP Notice that in general, whenever a numerical value is being changed within the Blender
interface, the Ctrl and Shift keys work as modifiers to allow changing the value in fixed incre-
ments or in extremely fine increments. You can begin now to see what we mean when we say
that the Blender user interface is unique, but consistent.

While scaling, rotating, or translating an object, you can also use the arrow keys (the normal ones,

not the ones on the numeric keypad) to move the mouse cursor in pixel increments. This is conve-

nient for “nudging” an object very slightly in a particular direction.
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Duplicating Objects

Duplicating an object, which we equivalently refer to as copying an object, allows you to make a

second, identical copy of an object. Blender offers two duplicate functions: a normal and a linked

duplicate function. The normal duplicate function creates a completely separate and independent

copy of the original. On the other hand, the linked duplicate function creates a copy of the original

which may be independently transformed, but whose underlying geometrical shape is linked with

that of the original. With a linked duplicate, changes to the geometry (which are done in

EditMode, covered a bit later) of one of the objects automatically causes the same change in all of

the linked objects. This is useful for identical objects which must be positioned or oriented differ-

ently. For instance, you might want to model the four wheels of a car as linked duplicates. This

way, if you change the shape of one of the wheels, all four wheels automatically reflect the new

shape. With separate duplicates, you would have to update each of the wheels individually, and

could not be completely sure that all of the wheels were completely identical.

Create duplicates in Blender as follows.

1. Select the object or objects to be duplicated by right-clicking them. You may duplicate

several objects at once by selecting several objects (Shift+right-click).

2. Press Shift+d to create a normal (separate) duplicate, or press Alt+d to create a linked

duplicate. Blender immediately creates duplicates of the selected objects, places them at the

same location as the original objects, selects only the newly created duplicate objects, then

enters grab mode to allow you to move the newly created objects to a new location.

3. Move the mouse or use the arrow keys to position the duplicate objects at the desired position.

Left-click to finish the operation.

CAUTION You cannot cancel the duplicate operation by pressing Esc; instead, you must
delete the duplicate objects afterwards if you wish to cancel the operation.

Note that Blender immediately duplicates the objects after pressing Shift+d or Alt+d. If you press

Esc to try and cancel the operation, you actually cancel the grab operation which Blender automat-

ically invokes after the duplication; the duplicate objects have already been created at this point.

To delete the duplicate objects—and effectively cancel the duplicate operation—press x. Remem-

ber, Blender automatically selects just the duplicate objects after a duplicate operation, so pressing

x deletes just the duplicate objects. If you don’t press x to delete the duplicate objects, but instead

just press Esc, the duplicate objects remain in the 3DWindow, positioned exactly on top of the

original objects. This can lead to great confusion later because what looks like one object in the

3DWindow would in this case actually be two exactly overlapping objects. So, make sure to either

reposition or delete the duplicate objects after executing a duplicate operation.

In some cases, you may have made a linked duplicate which you then wish to separate from its

linked siblings, so that the duplicate object is then completely separate from all others and can be

modified without affecting any others. Remove the linked relationship as follows:

1. Select the object you wish to unlink.

2. Press l, which invokes the Make Local command. A menu appears asking which objects

should be made local.
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3. Select Selected from the menu and press Enter.

The selected object is now completely separate from all other objects, just as if it were duplicated

with the Shift+d instead of Alt+d duplicate command.

Hierarchical Objects

Sometimes, it can be useful to link objects together in a hierarchy, so that transformations applied

to the parent object also apply to the child objects. For instance, if modeling a car, it can be useful

to make the car body the parent of the wheel objects. This way, any transformation of the parent

object, the car body, also propagates to the child objects, the wheels. Or, if modeling an arm con-

sisting of a top limb and a bottom limb, you can make the top limb the parent of the bottom limb.

This way, moving the top part of the arm (the parent) also moves the rest of the arm (the child)

along with it, but the bottom part of the arm still has its own local transformation matrix and can

thus be rotated (or less commonly, translated) relative to the top of the arm.

To make such a hierarchical link between objects, proceed as follows:

1. Select all child objects.

2. Select the parent object. Make sure the parent object is active, as shown by its lighter color

than the other selected objects.

3. Press Ctrl+p to make the active object the parent. A confirmation menu appears; press Enter.

From this point on, all transformations applied to the parent object also apply to the child objects.

A broken line is drawn between the child and parent objects to indicate the hierarchical

relationship.
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To clear the hierarchical relationship, select the child object, and press Alt+p. A confirmation

menu appears. Select Clear Parent to separate the child object from its parent. This, however,

also clears any transformation which the parent may have applied to the child, which might cause

the child object to have a different location, rotation, or size after the parent has been cleared. To

maintain the same relative transformation between parent and child even after clearing the parent

relationship, select ...and keep transform from the confirmation menu. As the name suggests,

this clears the parent relationship, but keeps the same transformation so that the child object

appears identical after clearing the relationship.

TIP You can use the OopsWindow, mentioned earlier, to view the hierarchical relationships
among objects.

Layers

Blender allows objects to be stored within different layers. A layer is a collection of objects whose

visibility may be toggled between visible and invisible. Using layers allows you to organize your

work into logical areas and selectively make certain layers visible or invisible, so that you can

focus just on certain parts of the scene. Another use of layers is to temporarily move an object into

a different, invisible layer, which effectively makes the object temporarily invisible. Later, you

can move the object back into the original layer to make it visible again.

Blender offers 20 layers. The following keys control the use of layers:

� 1 through 0: Switch the currently visible layer to be a layer between 1 and 10.

� Alt+1 through Alt+0: Switch the current layer between layers 11 and 20.

� Shift+1 through Shift+0: Toggle visibility of layers 1 through 10, allowing multiple selection

of layers.

� Shift+Alt+1 through Shift+Alt+0: Toggle visibility of layers 11 through 20.

� m: Move the currently selected objects to another layer. After pressing m, a menu appears.

Type a digit from 1 through 0 or from Alt+1 through Alt+0 to choose the layer into which the

selected objects should be moved, and press Enter. The objects are moved into the specified

layer. If the specified layer is visible, then no change appears to take place; if the specified

layer is invisible, then the objects appear to disappear. Switch to the other layer to see the

objects again.

The currently visible layers are displayed in the layer buttons in the header of the 3DWindow. The

layer buttons are a group of 20 small toggle buttons, where any number may be simultaneously

activated. If the layer’s button is activated, then the objects in the layer are visible; otherwise, they

are invisible. You activate layers either by using the number keys, as described above, or by click-

ing directly on the appropriate layer buttons with the mouse.
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EditMode

We have now seen how to create primitive polygonal 3D objects, such as cubes, spheres, or cones.

We know how to place these objects in 3D space, how to view these objects from different view-

points, how to transform these objects, how to copy these objects, and how to use layers to

organize these objects.

There is a limit, however, to the types of modeling we can achieve only by using primitive

objects like cubes and spheres. Although we can theoretically use extremely large numbers of

extremely small primitives to create models of arbitrary complexity, this strategy approaches a

voxel representation rather than a polygonal one, meaning that we lose the efficiency of polygonal

representation. To create more interesting and efficient polygonal 3D models, we need to define

and change our 3D objects at the vertex and polygon level.

Blender clearly distinguishes between the object-level operations, which we have been per-

forming so far, and the vertex-level operations, which allow us to exactly define the vertices and

polygons forming an object. To perform vertex-level operations, you must switch Blender into a

special mode, the EditMode. Conversely, to return to object-level operations, you must exit out of

EditMode. EditMode operates only on one object at a time, the currently active object.

Switch into EditMode by pressing Tab. The currently active object is then displayed with its

edges drawn in black, instead of the usual light pink color. The individual vertices of the object are

drawn in pink, to indicate that they, in EditMode, may be directly manipulated. Exit EditMode by

pressing Tab again.

The EditButtons allow you to set some options which make editing easier. In particular,

Blender can draw the faces and normal vectors belonging to an object. (Normally, only the edges

of the faces are drawn, and the normal vectors are not drawn.) This is quite useful in many cases,

but can clutter the display when many faces are present, which is why Blender’s default is not to

activate these options. But, for beginning modeling, it is better to turn these options on. Turn on

Blender’s face and normal vector drawing as follows:
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1. Activate any polygonal mesh object in the 3DWindow by right-clicking it.

2. Display the EditButtons for the polygonal mesh in the ButtonsWindow: press F9 or click on

the EditButtons icon.

3. Notice the two buttons of type TOGBUT in the lower-right corner of the mesh EditButtons,

labled “Draw Normals” and “Draw Faces.” Activate both of these buttons.

From this point on, all polygonal mesh objects will be drawn with faces and normal vectors when

in EditMode.

Now, let’s see what we can do in EditMode; the following sections all assume that Blender is

already in EditMode. First, we see how to manipulate existing vertices and faces; then, we see how

to add new vertices and faces to an existing polygonal mesh.

Working with Existing Vertices and Faces

Working with vertices in EditMode is similar to working with objects when you are not in

EditMode. The following are the most important operations:

� Selection. Select a vertex by right-clicking it; select multiple vertices by pressing

Shift+right-click. Selected vertices are displayed by Blender in yellow; non-selected vertices

are displayed in pink. Type b to enable border selection mode of vertices; then, just as with

objects, dragging the cross hair with the left or right mouse button selects or deselects all ver-

tices within the dragged region. Type a to toggle selection of all vertices in the object.

Selecting a polygonal face is done by selecting all of its corresponding vertices; the selected

face is then displayed in yellow.

� Transformation. Type g, r, or s to grab (translate), rotate, or scale the selected vertices. The

transformations work very similarly to translating, rotating, or scaling complete objects;

moving the mouse after pressing the appropriate transformation key allows you to control the

amount of the transformation. The modifier keys Ctrl or Shift may be held down while mov-

ing the mouse to allow finer control of the transformation, just as before. Press the arrow keys
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after pressing the appropriate translation key to “nudge” the selected vertices slightly in a par-

ticular direction.

� Deletion. Type x to delete the selected vertices. Since selection of vertices and faces are essen-

tially equivalent in EditMode, Blender cannot immediately know whether you wish to delete

just the faces (leaving the vertices in place) or both the vertices and the faces. Thus, a menu

appears, asking you to specify what exactly you wish to delete. The allowable options are to

delete the vertices, edges, faces, all, edges and faces, or only faces.

� Alignment. Type Shift+s to snap (align) the selected vertices to certain positions. A pop-up

menu then allows you to snap the selected vertices to the nearest grid point or to the current

location of the 3D cursor. The second operation is generally only recommended when only

one vertex is selected, since with multiple selected vertices a snap to the cursor causes all the

selected vertices to overlap, which is usually undesirable (but overlapping vertices can be

removed with the Rem Doubles button in the EditButtons). Additionally, the pop-up menu for

the snap operation allows you to snap the cursor, instead of the selection, to the nearest grid

point or to the location of the selection (the center of the selection is used if multiple vertices

are selected).

TIP The snap commands can also be applied to entire objects outside of EditMode.

� Hiding. A very useful feature in EditMode is the temporary hiding of certain parts of the

geometry so that other parts are visible. Type h to hide the selected vertices temporarily; press

Alt+h to show all vertices again. Leaving EditMode also causes all vertices to be displayed.
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Adding New Vertices and Faces

In addition to merely manipulating existing vertices, you can also add new vertices and faces to an

object in EditMode. Add new vertices as follows:

1. Move the mouse cursor to the desired location for the new vertex.

2. Press and hold Ctrl, and left-click. A new vertex appears at the location of the mouse cursor.

If previously a vertex was selected, an edge is automatically created between the previously

selected vertex and the newly created one; otherwise, the new vertex appears alone and

unconnected to any other vertex. The new vertex is automatically selected after creation,

meaning that a series of connected edges may be created by a series of Ctrl+left-click

operations.

Creating faces requires an additional step. Faces (polygons) in Blender all have either three or four

vertices—no more. To create a face:

1. Select exactly three or four vertices which you wish to belong to a face.

2. Type f. Blender creates a face from the selected vertices. Assuming that face drawing mode is

enabled, as described above, the outline of the new face is also drawn.

Tips for Effectively Using EditMode

When you are dealing with moderate to large meshes, working in EditMode can sometimes get

confusing due to the large number of vertices and faces present. In particular, sometimes it is not

clear which vertices or faces have been selected, because things appear to overlap so much. Here

are a few tips for dealing with complex models in EditMode.

� Hide vertices which are obstructing your view (press Alt+h).

� Change the viewpoint interactively (middle-click and drag in the 3DWindow). Often, vertices

may appear to overlap, so what appears to be a selected vertex or face may in fact be a vertex

or face behind the intended one.
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� Switch between orthogonal and perspective viewpoints (type 5 on the numeric keypad).

Orthogonal mode is best for modeling, but perspective is good for getting a spatial sense of

the model.

� Temporarily start, then cancel a grab operation (type g, then press Esc). This allows you to

temporarily move the selected vertices to see which ones they actually are. This technique is

quite useful for discovering duplicate, overlapping vertices, edges, or faces. The Rem Dou-

bles button in the EditButtons removes overlapping vertices automatically should you dis-

cover any unwanted duplicates.

� Use border select mode to select all of a set of apparently overlapping vertices. (Apparently

overlapping vertices refers to the fact that the vertices simply appear to overlap from the cur-

rent viewpoint, though they may or may not actually overlap in 3D space.) Without border

selection mode, clicking on the vertex will only randomly select one of the overlapping verti-

ces. Border select mode selects them all.

� Activate the TOGBUT Draw Faces in the EditButtons if you want to be able to see which

faces are selected.

Undoing Changes in EditMode

We saw earlier that transformations made to objects outside of EditMode are easily undone; Alt+g

clears a translation, Alt+r clears a rotation, and Alt+s clears a scaling transformation on an object.

The reason that such changes are so easily undone, as explained earlier, is that these transforma-

tions do not affect the underlying geometry of the object, but are instead simply additional

matrices which are applied to the underlying geometry.

Changes in EditMode, however, are indeed permanent and affect the intrinsic geometry of the

object. For this reason, changes in EditMode are not easily undone. Blender offers a limited undo

mechanism. As soon as you enter EditMode, the current geometry (i.e., the position of all vertices

and the definitions of all faces) is saved. While in EditMode, and after having made any number of

changes to the vertices and faces, you can revert the object back to its original state by pressing u.

However, as soon as you leave EditMode, you can no longer undo your changes. Therefore,

before you make any changes to an object which you might wish to undo, it is useful to leave and

then enter EditMode, so that you can revert to the original state of the object. Additionally, you

may find it useful to make a separate copy of the object (Shift+d, outside of EditMode) before

making any major modifications, so that you still have the original in case something goes wrong.

You may also want to store the original in another, invisible layer, so that it does not clutter the cur-

rent scene. Finally, you can also create an unlimited number of scenes (by using the scene button

in the InfoWindow, described earlier) to store progressively more complicated versions of your

work so that going back to a previous state simply requires you to switch to a previously created

scene.

The FileWindow: Saving, Loading, and Exporting Files
Saving and loading files occurs in the FileWindow. Blender supports a number of different file

formats, including native Blender, VRML, DXF, and a simple ASCII file format called

Videoscape. We focus on the native Blender file format and the Videoscape format. The native
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Blender file format is the usual format you should use to save your work; it saves all objects, all

layers, all scenes, and even the window layout and any global parameters set in the InfoWindow.

Therefore, loading a file previously saved in native Blender format completely restores your

working environment to be the way it was at the time of the save. The native Blender file format,

however, is extremely complex internally (it is in fact a sort of self-contained file system) and is

not documented. Therefore, to save our 3D models into files which can be read by other programs,

we need to use one of the other file formats supported by Blender. In this book, we use the

Videoscape format, which is a very simple ASCII file format, described below.

Save a file in native Blender format as follows:

1. Press F2. The current window changes to become type FileWindow. Notice the window

header displays the caption “SAVE FILE.” The top line of the FileWindow displays the

current directory. The next line displays the current filename. Beneath these two lines is a list

of directories and files accessible from the current directory.

2. Type a filename into the second line of the FileWindow and press Enter. Or, middle-click on

a filename within the list to select an existing file. Left-click a directory name in the list to

change to that directory; this also refreshes the directory listing.

NOTE Blender filenames end with the string “.blend.” If you do not specify “.blend” as the
filename extension, it will be appended automatically to the filename you specify.

3. If the specified file already exists, a confirmation menu appears asking if you wish to save

over the existing file. Press Enter to confirm, or Esc to cancel.

Load a file as follows:

CAUTION Even if you have unsaved changes in the current file, Blender will load a new file
without asking you to save your previous changes. So make sure you have saved any changes
before loading a new file.

1. Press F1. The current window changes to become type FileWindow.
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2. Type a filename into the second line of the FileWindow and press Enter. Or, middle-click an

existing filename in the list.

You can append an existing file to the current file by pressing Shift+F1, clicking on the button

APPEND in the window header, and specifying a filename.

Save objects in the Videoscape file format as follows:

1. Select the objects to be saved in the 3DWindow by right-clicking them.

2. Press Alt+w. The current window changes to become type FileWindow. Notice the window

header displays the caption “SAVE VIDEOSCAPE.”

3. Type a filename into the second line of the FileWindow and press Enter. Or, middle-click on

a filename within the list to select an existing file. Videoscape files end with the string “.obj”;

if you do not specify this extension, it will be appended automatically to the filename you

specify.

Blender then saves each 3D object into a separate file. The separate files have sequentially num-

bered filenames; that is, each file has a filename of the form xxx.obj, xxx.obj1, xxx.obj2,

and so forth.

Loading Videoscape files is done with the F1 key, just as with normal native Blender files.

Selecting one of the sequentially numbered Videoscape files causes that Videoscape file and all

sequentially following files to be loaded. So, if you choose the first xxx.objVideoscape file, all

files xxx.obj, xxx.obj1, xxx.obj2, and so forth will be loaded. If you choose xxx.obj1,

then only all files with a number of 1 or higher will be loaded.

A Videoscape file looks as follows:
3DG1
number
X Y Z
X Y Z
...
nr index1 index2 index3 ... color
nr index1 index2 index3 ... color

NOTE This is the Videoscape file format for polygonal meshes. Blender also supports
curves and surfaces, as mentioned earlier. The Videoscape export formats for these objects is
different than these for polygonal meshes, but we only use polygonal meshes in this book.

The lines of the file are interpreted as follows:

� 3DG1: The header for a Videoscape file.

� number: The total number of vertices.

� X Y Z: A vertex, represented as a 3D (x,y,z) location. This line type appears within the file as

many times as the total number of vertices.

� nr index1 index2 index3 ... color: A polygonal face definition. This line type

appears within the file as many times as there are polygonal faces. The term nr is the number

of vertex indices within this face. The terms index1, index2, and so forth are integer ver-

tex indices, starting at 0, that refer to vertices in the vertex list specified earlier in the file. The

vertices define the polygon and are specified in counterclockwise order looking at the front
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side of the polygon, which is exactly the opposite of the convention we have been using so far.

(We use a left-handed system for our computations; Blender uses a right-handed system. We

see later how to convert from the right-handed to the left-handed system.) The term color is

a 24-bit hexadecimal number specifying the color of the face in blue, green, red format (the

highest 8 bits blue, the middle 8 bits green, and the lowest 8 bits red.

At this point, we know enough about Blender to create some models and import them into our pro-

grams. We haven’t looked at all of Blender’s features, but will touch upon some other of Blender’s

capabilities in the course of exploring a practical example. So now, let’s look at a hands-on tutorial

with Blender.

Tutorial: Creating and Exporting a
Spaceship

In this tutorial, we create a simple spaceship consisting of two identically shaped side thrusters

and a main body. Begin by starting Blender. Then, press Ctrl+x, Enter to clear the entire scene.

Create and Link a Thruster Object
The first step is to create the thruster objects as follows:

1. Type 1 on the numeric keypad to switch to front view. Left-click somewhere in the upper-left

corner of the 3DWindow to position the 3D cursor.
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2. Type 3 on the numeric keypad to change to side view. Left-click the 3DWindow

approximately seven grid lines to the right of the middle line to position the 3D cursor further

back.

3. Press Shift+a, and select Mesh then Cone from the Toolbox. A menu appears asking the

number of vertices in the cone.
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4. Enter 5 in the NUMBUT and press Enter. A cone appears at the 3D cursor position, viewed

from the front, and Blender switches into EditMode.

5. Type 7 on the numeric keypad to change to top view. Notice that from the top, the cone is now

clearly recognizable.
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6. Press Tab to exit EditMode.

7. Press Alt+d to create a linked duplicate of the cone. Blender enters grab mode automatically.

Move the duplicate cone somewhere to the right of the square plane object in the middle of the

screen, and left-click to place the object.
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8. Type r and rotate the cone about 70 degrees so that the tip points upwards and slightly away

from the square plane object. Left-click to finish.

9. Press Alt+d to create another linked duplicate of the cone, and position it similarly on the left

side of the square plane object. Rotate it as well, so that it points towards the upper left. The

left and right cones should now be mirror images of one another, one on each side of the plane

object.

10. Right-click the first cone object, located at the upper-left corner of the screen. Press Tab to

enter EditMode, right-click the tip vertex of the cone, press g, and move the vertex a few units

to the right so that the cone is longer, and left-click to finish. Notice that all cone objects

change shape simultaneously, because they are all linked. Also notice that we are using the

upper-left cone object as a “help” object, whose simple horizontal orientation makes changes

in length easier than direct manipulation of the oddly oriented (with 70 degree rotations)

objects actually forming the geometry of our model.
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11. Press a to deselect all vertices. Press b and use border selection mode to select all vertices

forming the base of the cone. Press s to scale all of these vertices. Move the mouse cursor

slightly closer to the center of the cone to cause a scale-down operation of the selected

vertices. Left-click to finish.

12. Press Tab to exit EditMode.

At this point, we have a help object which forms the basic shape of the thruster, and two linked

thruster objects which are linked to the help object’s shape and which are positioned correctly in

the model.

Create the Main Body
Next, we create the main body. For this, we make use of the default plane object which Blender has

already placed in the center of the screen.

NOTE Blender’s “plane” object is actually simply a finite, square polygon. This is in contrast
to the mathematically infinite planes we defined in Chapter 7; do not confuse these notions.

First of all, let’s temporarily hide the thruster objects by moving them to a different, invisible

layer.

1. Select all thruster objects (Shift+right click).

2. Type m, 2 and press Enter. All selected objects are moved into layer 2 and are no longer

visible.

3. Type 2 to switch to layer 2. Notice that only the thruster objects are in layer 2.

4. Type 1 to switch back to layer 1. Notice that only the plane object is visible.
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Now that we have removed some of the surrounding clutter, we can work on creating the main

body from the plane object. To do this, we use the extrude function, which, as we mentioned ear-

lier, creates tube-like forms out of ring-like forms. In this case, the ring-like form is the square

formed by the plane object. By extruding a square, we produce a box. More specifically, extruding

a flat polygonal shape causes a duplicate of the shape to be created, all vertices to be linked, and

new faces to be formed.

Create the main body using extrusion as follows:

1. Select the plane object.

2. Type 3 on the numeric keypad to switch to side view.

3. Press Tab to enter EditMode.

4. Type a to select all vertices.

5. Type e and press Enter to begin the extrusion operation. Blender automatically duplicates the

selected vertices and enters grab mode, allowing you to position the newly copied vertices.

6. Press Up Arrow a few times to move the new vertices up about two units on the grid, and

press Enter.
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7. Now, check your work to see what the extrusion operation has just done. Press 5 on the

numeric keypad to change the view from orthographic to perspective. Middle-click and drag

the mouse cursor to rotate the view. Notice that the plane has now been extruded to become a

box.

8. Return to the side orthographic view: type 5, 3 on the numeric keypad.
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9. Type a to deselect all vertices, then type b and use border select mode to select all vertices on

the right-hand side of the box. Type g to grab the vertices, move them a few units to the right,

and left-click to finish.

10. Type s to scale the selected vertices, move the mouse cursor towards the center of the object to

scale down slightly, and left-click to finish.

11. Press Tab to exit EditMode.

Now, we have finished the main body. It’s time to move the thruster objects back from the

invisible layer 2 into layer 1.

1. Type 2 to switch to layer 2.

2. Type a to select all objects.

3. Type m, 1 and press Enter to move all objects in layer 2 back into layer 1.

4. Type 1 to switch back to layer 1.

5. Press 7 on the numeric keypad to switch to top view. Notice that all objects are now again

located in layer 1.

With the main body and thrusters now modeled, position the thrusters so that they are located at

the same height as the main body:

1. Select the two thruster objects to the left and right of the main body.

2. Press 3 on the numeric keypad to switch to side view.

3. Type g to grab the selected thruster objects, use the mouse to position them vertically at the

same height as the main body, and left-click to finish.
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To complete our modeling, let’s join the thruster and body objects into one mesh so that we

can export the entire spaceship as one combined object (instead of as separate body and thruster

objects). Join the thrusters and body as follows:

1. Select only the main body and the two side thrusters. Do not select the “help” thruster object

in the upper-left corner of the screen.

2. Type l, select Selected from the pop-up menu, and press Enter to break the link between the

thrusters and the help thruster object.

3. Press Ctrl+j and press Enter to join the selected meshes.

At this point, the entire spaceship is one polygonal mesh. The help object, which we used earlier to

set the length of the thrusters, is no longer needed and can be deleted. In fact, the help object no

longer has links to the thruster objects, since we joined the thrusters with the main spaceship body;

this means that the help object indeed cannot be used any further, since it has no more influence on

the shape of the now merged thruster objects. In general, this implies that after joining meshes, any

help objects which you may have used will generally become useless.

Checking the Normal Vectors
After creating the model, you should generally check to make sure that all normal vectors are

pointing in the correct directions; if they are not, then faces will be pointing the wrong way when

you import the models into l3d. Check the normal vectors as follows:

1. Ensure that the TOGBUT Draw Normals in EditButtons is activated.

2. Set the value in the NUMBUT Nsize (short for “Normal size”) to be approximately 0.6.

3. Select the model in the 3DWindow (right-click) and enter EditMode (Tab).
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4. Notice the normal vectors drawn in blue. They should all be pointing outward, since the

visible surface of the model is on the outside. Rotate the model to see it from various angles,

and verify that the normals are pointing in the right direction.

NOTE For a room object, where the camera is located inside the object, the normal vectors
should point inward, not outward, since the visible surface of the object is, in this case, the
inside of the object. For normal objects viewed from outside of the object itself, the normal
vectors should point outward.

5. If any normal vectors are pointing the wrong way, correct this in EditMode as follows: select

the face (by selecting all of its vertices). Press Ctrl+n to recalculate the normal vector of the

face to point outward; press Ctrl+Shift+n to recalculate the normal vector of the face to point

inward. A pop-up menu appears asking for confirmation; press Enter, and the normal vector

is recalculated and redisplayed. To correct all normal vectors at once, select all faces (a), then

press Ctrl+n or Ctrl+Shift+n.

After ensuring that the normal vectors are all pointing in the correct direction, we are ready to

make a test rendering of our model within Blender to see how it looks.

Rendering Our Creation
Let’s now make Blender draw a rendering of our 3D model so that we can see approximately how

it will look when it is imported into a 3D program.
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Positioning the Camera

To draw a rendering with Blender, we first must position the camera so that it has a good view of

the scene. Blender allows us to interactively position the camera in real time. Position the camera

as follows.

1. Split the 3DWindow into two vertical halves: middle-click the top border of the 3DWindow,

click Split, position the new vertical window border approximately in the middle of the

screen, and left-click to finish.

2. In the right window, press 0 on the numeric keypad to shift to the camera view.

3. In the left window, press 7 on the numeric keypad to switch to top view.

4. Right-click the camera object. It is the pyramid-shaped object located (as seen from the top

view) slightly beneath the center of the window.

5. Move the camera by grabbing and rotating it (with keys g and r). Notice that the view in the

right window updates automatically to show the view from the current camera position.

Position the camera so that the entire spaceship is visible. Since from the top view you can

only move the camera around in two dimensions, you probably will also want to change to

side view to control the position of the camera in the third dimension.
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NOTE Blender actually allows several camera objects to be present within one scene, to
allow for the definition of multiple viewpoints. Only one camera, however, is the current cam-
era whose view actually gets rendered. You can add additional cameras through the Toolbox,
and make an active camera object the current camera by pressing Ctrl+0 on the numeric
keypad.

Adding a Light

The next step in rendering our model is to add a light object. Otherwise, our scene would be pitch

black, and we would see nothing. Add a light to the scene as follows:

1. Position the 3D cursor slightly above and behind the main body of the spaceship. To do this,

you must use both the top and side views in the 3DWindow.

2. Press Shift+a, and select Lamp from the Toolbox. A lamp appears at the position of the 3D

cursor.

3. Verify in the top and side views that the lamp is indeed positioned correctly, slightly above

and behind the spaceship.
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Rendering the Scene

To render the scene, press F12. This is the one exception where Blender actually opens a new win-

dow separate from the main Blender window. Blender renders the scene in the new window.

Toggle the visibility of the render window by pressing F11; this allows you to quickly hide or

recall a previously rendered image.

If you have positioned the camera and the light correctly, you should see a gray spaceship on a

black background, from the viewpoint you selected earlier.
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For a more interesting rendering, go to the WorldButtons (F8), and add a new world via the

MENUBUT in the header of the ButtonsWindow. By default this adds a fading blue sky to the

scene. Activate the TOGBUT labeled “Stars.” Render the scene again. The spaceship then appears

to be located in a starry blue sky. The settings in the WorldButtons do not affect the polygonal

model, and therefore are only of interest for creating pretty pictures. As mentioned at the begin-

ning of this chapter, we are more interested in using Blender to create polygonal models rather

than pretty pictures—although creating good images can also be a goal in itself.

You can now reposition the camera, add more lights, or alter the model, and render the scene

again, until you are satisfied with the model.

Saving and Exporting the Spaceship
Next, save the Blender file in native Blender format, so that you can load and change the model

later if desired. Save the entire workspace with the F2 key, as described earlier.

Then, export the spaceship mesh as a Videoscape file. Remember, the Blender file format is

very complex, whereas the Videoscape file format is quite simple and ideal for importing into our

own programs. To export in Videoscape, select the spaceship, press Alt+w, specify a filename of

spaceship.obj, and press Enter. This creates the file spaceship.obj in Videoscape for-

mat. Take a glance at the contents of the file and compare it with the Videoscape file description

presented earlier. Notice how simple and straightforward the file format is: it contains vertices and

polygons defined in terms of indices into a common vertex list. Conveniently, this is exactly the

same way that l3d stores polygonal objects. So, let’s see how to import the Videoscape file into an

l3d program.
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Reading a Videoscape File into l3d
We use a plug-in to read the Videoscape file into l3d. The code for the plug-in is shown in Listings

8-1 and 8-2.

Listing 8-1: vidflat.h
#include "../../../dynamics/plugins/plugenv.h"
#include "../../../tool_os/memman.h"

class l3d_plugin_videoscape_flatshaded_mesh {
public:
l3d_plugin_environment *plugin_env;

l3d_plugin_videoscape_flatshaded_mesh(l3d_plugin_environment *env);
virtual ~l3d_plugin_videoscape_flatshaded_mesh(void);
char mesh_fname[1024];

};

Listing 8-2: vidflat.cc
#include "../../../system/sys_dep.h"
#include "../../../geom/object/object3d.h"
#include "../../../geom/polygon/p3_cflat.h"
#include "../../../dynamics/plugins/plugenv.h"
#include "../../../tool_2d/si_idx.h"
#include "../../../tool_2d/si_rgb.h"
#include <stdlib.h>
#include <string.h>
#include "vidflat.h"
#include "../../../tool_os/memman.h"

l3d_plugin_videoscape_flatshaded_mesh::l3d_plugin_videoscape_flatshaded_mesh
(l3d_plugin_environment *env)
{
plugin_env = env;

}

l3d_plugin_videoscape_flatshaded_mesh::~l3d_plugin_videoscape_flatshaded_mesh(void) {
delete plugin_env;

}

extern "C" {

void constructor(l3d_object *target, void *data) {
l3d_plugin_environment *env = (l3d_plugin_environment *)data;
l3d_plugin_videoscape_flatshaded_mesh *mesh;

target->plugin_data = mesh = new l3d_plugin_videoscape_flatshaded_mesh(env);

char rest_parms[4096];
strncpy(rest_parms, (char *)env->data, sizeof(rest_parms));
char *tok;

float posx,posy,posz;
float xaxis_x, xaxis_y, xaxis_z,
yaxis_x, yaxis_y, yaxis_z,
zaxis_x, zaxis_y, zaxis_z;
l3d_matrix position, orientation;
strcpy(mesh->mesh_fname,"");
position.set(int_to_l3d_real(1),
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int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1));

orientation = position;

tok = strtok(rest_parms, " "); if(tok) {sscanf(tok, "%f", &posx); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &posy); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &posz); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_z); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_z); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_z); }

tok = strtok(NULL, " ");
if(tok) {strncpy(mesh->mesh_fname, tok, sizeof(mesh->mesh_fname)); }

FILE *fp;
fp = fopen(mesh->mesh_fname, "rt");

char line[4096];
if(fp) {
fgets(line, sizeof(line), fp);
fgets(line, sizeof(line), fp);

int num_vert;
sscanf(line, "%d", &num_vert);
int i;

delete target->vertices;
target->vertices =
new l3d_two_part_list<l3d_coordinate> ( num_vert );

for(i=0; i<num_vert; i++) {
fgets(line, sizeof(line), fp);
float x,y,z;
sscanf(line, "%f %f %f", &x, &y, &z);

//- change from blender's right-handed +z-up system to a
//- left-handed +y-up system
(*target->vertices)[i].original.set
(float_to_l3d_real(x),
float_to_l3d_real(z),
float_to_l3d_real(y),
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float_to_l3d_real(1.));
}

while(!feof(fp)) {
fgets(line, sizeof(line), fp);
if(feof(fp)) break;

char *tok;

int numv;
tok = strtok(line, " ");
sscanf(tok, "%d", &numv);

l3d_polygon_3d_flatshaded_clippable *p;
int polygon_idx = target->polygons.next_index();
target->polygons[polygon_idx] =
p =
new l3d_polygon_3d_flatshaded_clippable(numv);

target->polygons[polygon_idx]->vlist = &target->vertices;

int r,g,b;

unsigned long col;
l3d_screen_info_indexed *si_idx;
l3d_screen_info_rgb *si_rgb;
if (si_idx = dynamic_cast<l3d_screen_info_indexed *>( env->sinfo )) {
col = rand() % si_idx->get_palette_size();

}else if (si_rgb = dynamic_cast<l3d_screen_info_rgb *>(env->sinfo)) {

r = rand() % ((si_rgb->red_mask) > (si_rgb->red_shift));
g = rand() % ((si_rgb->green_mask) > (si_rgb->green_shift));
b = rand() % ((si_rgb->blue_mask) > (si_rgb->blue_shift));

col = r<si_rgb->red_shift |
g<si_rgb->green_shift |
b<si_rgb->blue_shift;

}
p->final_color = col;

for(i=0; i<numv; i++) {
int cur_iv=0;

tok = strtok(NULL," ");
if(tok) {
int ivtx;
sscanf(tok,"%d", &ivtx);
cur_iv=target->polygons[polygon_idx]->ivertices->next_index();
(*(target->polygons[polygon_idx]->ivertices)) [cur_iv].ivertex
= ivtx;

}
}

//- now reverse the list IN-PLACE; for this we need one temp swap
//- variable, which we allocate (virtually from the list, i.e. we
//- let the type of the temp object be allocated by the list itself)
//- here:

l3d_polygon_ivertex *
swap_iv =
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&((*(target->polygons[polygon_idx]->ivertices))
[target->polygons[polygon_idx]->ivertices->next_index()]);

for(i=0; i<numv/2; i++) {
*swap_iv = (*(target->polygons[polygon_idx]->ivertices))[i];
(*(target->polygons[polygon_idx]->ivertices))[i] =
(*(target->polygons[polygon_idx]->ivertices))[numv-1 - i];

(*(target->polygons[polygon_idx]->ivertices))[numv-1 - i] =
*swap_iv;

}

target->polygons[polygon_idx]->ivertices->num_items =
target->polygons[polygon_idx]->ivertices->num_items - 1;

target->polygons[polygon_idx]->compute_center();
target->polygons[polygon_idx]->compute_sfcnormal();

p->plane.align_with_point_normal(p->center.original, normalized(p->sfcnormal.original -
p->center.original));

}
target->num_xforms = 2;

orientation.set
(float_to_l3d_real(xaxis_x),
float_to_l3d_real(yaxis_x),
float_to_l3d_real(zaxis_x),
int_to_l3d_real(0),
float_to_l3d_real(xaxis_y),
float_to_l3d_real(yaxis_y),
float_to_l3d_real(zaxis_y),
int_to_l3d_real(0),
float_to_l3d_real(xaxis_z),
float_to_l3d_real(yaxis_z),
float_to_l3d_real(zaxis_z),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1));

target->modeling_xforms[0] =
orientation;

position.set(int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0),
float_to_l3d_real(posx),
int_to_l3d_real(0),
int_to_l3d_real(1),
int_to_l3d_real(0),
float_to_l3d_real(posy),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1),
float_to_l3d_real(posz),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
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int_to_l3d_real(1));

target->modeling_xforms[1] = position;
target->modeling_xform = target->modeling_xforms[1] |

target->modeling_xforms[0];

}

if(fp) fclose(fp);
}

void update(l3d_object *target) {
l3d_plugin_videoscape_flatshaded_mesh *mesh;
mesh = (l3d_plugin_videoscape_flatshaded_mesh *)target->plugin_data;

}

void destructor(l3d_object *target) {
delete (l3d_plugin_videoscape_flatshaded_mesh *) target->plugin_data;

}

void copy_data(l3d_object *target, l3d_object *copy_target) {
l3d_plugin_videoscape_flatshaded_mesh *mesh;
mesh = (l3d_plugin_videoscape_flatshaded_mesh *) target->plugin_data;

l3d_plugin_environment *new_env;
l3d_plugin_videoscape_flatshaded_mesh *new_mesh;

new_env = mesh->plugin_env->clone();
new_env->data = mesh->plugin_env->data;
new_mesh = new l3d_plugin_videoscape_flatshaded_mesh(new_env);

strcpy(new_mesh->mesh_fname, mesh->mesh_fname);

copy_target->plugin_data = (void *)new_mesh;
}

}

The structure of the plug-in is as defined in Chapter 7: a constructor, an update function, a copy

function, and a destructor. The constructor is the function of interest. The data parameter passed to

the constructor is a plug-in environment object, as introduced in Chapter 7, so that the plug-in

knows something about its calling environment. The environment object, in turn, stores another

data parameter. In the case of the Videoscape plug-in, this data parameter is a pointer to a character

string containing a list of additional parameters needed to load the Videoscape file.

The Videoscape parameter string in the environment object has the following form:
x y z A B C D E F G H I mesh.obj

The entries are interpreted as follows:

� x y z: Floating-point numbers indicating the origin of the object’s local coordinate system.

In other words, this is the location of the object.

� A B C D E F G H I: Nine floating-point numbers representing the object’s orientation as a

3� 3 rotation matrix. The numbers are in row-major order (i.e., A B C is the first row of the

matrix, D E F the second row, G H I the last row). Recalling the discussion in Chapter 6 about

matrices and coordinate systems, this means that the vector (A,D,G) (the first row of the
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matrix) is the x axis of the object’s local coordinate system, (B,E,H) is the y axis, and (C,F,I) is

the z axis.

� mesh.obj: The filename of the Videoscape file containing the geometry of the object.

The plug-in constructor first parses the parameter string to get the position, orientation, and

required filename for the Videoscape object to be loaded. Next, it opens the mesh file and reads in

the vertices and faces. The Videoscape format stores coordinates in a right-handed system, with

the z axis going up; l3d uses a left-handed system with the y axis going up. To convert between

these two systems, we need to do two things: swap the y and the z values as we read them from the

Videoscape file, and reverse the ordering of the vertices in a face definition to preserve the

front/back orientation of the face after the vertex swap. After converting the coordinates in this

manner, the constructor then initializes each polygon by computing its center, surface normal, and

containing plane. At this point, the polygon is also assigned a random color.

After reading in all vertices and faces, the constructor then defines two transformation matri-

ces, one for rotating the object according to the rotation matrix specified within the parameter

string, and a second matrix for translating the object to the specified position. These matrices are

concatenated together and stored in the object as a composite transformation.

The program vidflat, in Listing 8-3, creates a Videoscape plug-in object with the appro-

priate parameters by creating an environment object, storing the parameter string within the data
member of the environment object, and passing the environment itself to the plug-in constructor.

Calling the plug-in constructor then causes loading of the Videoscape file.

Listing 8-3: File main.cc of program vidflat
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p3_flat.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rast3.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
#include "../lib/system/fact0_2.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/dynamics/plugins/plugenv.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

class my_world:public l3d_world {
public:
my_world(void);
virtual ~my_world(void);

};

my_world::my_world(void)
: l3d_world(400,300)
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{
l3d_screen_info *si = screen->sinfo;

camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(5.5);
camera->far_z = int_to_l3d_real(500);

//- for mesa rasterizer's reverse projection
rasterizer_3d_imp->fovx = &(camera->fovx);
rasterizer_3d_imp->fovy = &(camera->fovy);
rasterizer_3d_imp->screen_xsize = &(screen->xsize);
rasterizer_3d_imp->screen_ysize = &(screen->ysize);

int i,j,k,onum=0;

i=10; j=0; k=20;
k=0;

//- create a plugin object

objects[onum=objects.next_index()] = new l3d_object(10);
//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

objects[onum]->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

objects[onum]->plugin_loader->load("../lib/dynamics/plugins/vidflat/vidflat.so");
objects[onum]->plugin_constructor =
(void (*)(l3d_object *, void *))
objects[onum]->plugin_loader->find_symbol("constructor");

objects[onum]->plugin_update =
(void (*)(l3d_object *))
objects[onum]->plugin_loader->find_symbol("update");

objects[onum]->plugin_destructor =
(void (*)(l3d_object *))
objects[onum]->plugin_loader->find_symbol("destructor");

objects[onum]->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
objects[onum]->plugin_loader->find_symbol("copy_data");

l3d_plugin_environment *e =
new l3d_plugin_environment
(NULL, screen->sinfo, NULL,
(void *)"0 0 0 1 0 0 0 1 0 0 0 1 spaceship.obj");

if(objects[onum]->plugin_constructor) {
(*objects[onum]->plugin_constructor) (objects[onum],e);

}

screen->refresh_palette();
}

my_world::~my_world(void) {
}

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;
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factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete d;
delete p;
delete w;

}

The glorious output of program vidflat is shown in Figure 8-42—the model we created in

Blender has now been successfully imported into our program, where we can manipulate it at will.

You can navigate around the scene with the usual l3d_world navigation keys.

Notice that each polygon has a random color assigned to it, since the Videoscape plug-in

assigns a random color to each flat-shaded polygon as it is created from the data in the Videoscape

file. Instead of assigning random colors to the polygons, it would be possible to assign colors to

the polygons in Blender, then to export these polygons with color information to a Videoscape file.

When reading the polygons into l3d, the plug-in would then create the polygons and assign them a

color according to the information in the Videoscape file. The practical problem with this

approach is that the Videoscape format saves colors per vertex, not per polygon, which makes a

coloring scheme somewhat complex. A better solution is to associate an entire bitmap image with

each polygon. This makes for much more interesting polygonal displays, since in this case each

polygon then appears to be “colored” with an entire image instead of with just one single color.
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This technique is called texture mapping, and is covered in detail in the companion book

Advanced Linux 3D Graphics Programming.

Summary
In this chapter, we took a break from 3D theory—indeed, there wasn’t a single equation in this

chapter—and looked at the artistic side of 3D graphics. We looked at the basics of 3D modeling in

general, then looked at the specifics of the quite unique software package Blender. We then got

hands-on experience creating a model in Blender and learned a number of useful modeling

techniques.

We then imported the Blender model into our l3d programs, using the Videoscape file format.

We used a Videoscape plug-in object to read the Videoscape file. We also saw how to convert

Videoscape’s right-handed coordinates into l3d’s left-handed coordinates.

Having come this far in the book, you now know quite a bit about Linux 3D graphics pro-

gramming—both theoretical and practical aspects. With the free compilers and 3D modeling tools

available for Linux, you can put all of this knowledge to work by practicing writing 3D programs

and creating interesting 3D models for use in these programs.

The next and final chapter takes a brief look at some of the 3D techniques specific to creating

larger, more interesting, more interactive environments.
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C h a p t e r 9

Advanced TopicsAdvanced Topics

W
e’ve almost reached the end of this book. Regrettably, the space between the covers of

a book is limited. Much as I would have liked to, it is simply not feasible to include in

this book much more information on Linux 3D graphics programming. There is still

much more material left to cover.

The purpose of this chapter is to provide a brief overview of other advanced topics in Linux

3D graphics programming. Space considerations force me to treat each subject at a very high level

of abstraction; I focus mainly on the important concepts, with little attention to implementation

details. If you have carefully read the previous chapters, and have understood and adopted the geo-

metrical and mathematical style of inquiry which I have tried to emphasize in this book, then you

should be able to derive the details and come up with working implementations for yourself.

But you don’t have to.

All of these topics are covered at much greater length in the companion volume to this book,

titled Advanced Linux 3D Graphics Programming. If this chapter whets your appetite, I encourage

you to read the advanced volume. It discusses all of the following topics in the same geometrical

and incremental explanatory philosophy I have tried to apply in this book. Numerous code exam-

ples also accompany the advanced volume, building on the l3d library.

In this chapter, we look at the following topics:

� Morphing in 3D

� Computing and rendering the effects of light

� Texture mapping, light mapping, and shadows

� Visible surface determination (back-face culling, frustum culling, z buffer, BSP trees, octrees,

portals)

� More complex modeling with Blender (textured models, jointed models with inverse kine-

matics, editing entire interactive 3D worlds)

� Special effects, such as smoke, particle systems, water, and lens flare

� Non-graphical elements (digital sound, networking, physics, collision detection)

� High-level 3D content creation systems on Linux (World Foundry, Game Blender)
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3D Morphing
In Chapter 3, we looked at a sample program that performed morphing in 2D through the use of a

vertex interpolator. The idea was to start with one source polygon and one destination polygon,

both with equal numbers of vertices. Each vertex in the source polygon corresponds to a particular

vertex in the destination polygon. Then, over a fixed number of frames, we interpolate the position

of each vertex from its starting location to its destination location.

We can extend this idea easily into 3D. Instead of morphing one polygon’s shape into another

polygon’s shape, in 3D we can morph an entire polygonal object, of type l3d_object, from one

shape into another. For instance, you could morph a cube into a palm tree.

To morph in 3D, we start with two objects of type l3d_object: a source and a destination

object. Both objects should have the same number of total vertices. Remember that a 3D object of

type l3d_object stores one common vertex list which is shared by all polygons in the object.

This means that to morph one 3D object into another, we merely need to morph the vertices in the

object’s vertex list into the vertices in the destination object’s vertex list. By changing the values in

the object’s vertex list, all polygons in that object change shape accordingly.

Computing Lighting Effects
Displaying polygons with physically realistic lighting effects can greatly enhance the visual

appearance of a program. In Chapter 2, when we developed the classes for accessing the 2D raster

display under Linux, we introduced the concept of a lighting table. The idea was that each color

should also be displayable in a range of intensities. Each intensity value in the lighting table corre-

sponds to an intensity of light. The lighting table therefore allows us to show any color at any light

intensity.

The question remains as to how we compute the light intensity in the first place. One simple

lighting model is the Lambertian or diffuse lighting model. In this model, the intensity of light fall-

ing on a surface is calculated by taking the dot product of two normalized vectors N and L. Vector

N is the surface normal vector, and vector L is a normalized vector pointing from the surface to the

light source. Assuming the surface is facing the light, the dot product yields a value between zero

and one, which can be thought of as the percent of light energy reaching the surface based on the
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angle that the light strikes the surface. We can then multiply the result of the dot product, which is

a scalar, with an arbitrary light intensity measured in arbitrary units. The dot product either allows

the full light intensity to illuminate the surface (if the light is striking the surface head-on), or

scales the light intensity down (if the light strikes the surface at an angle).

As it turns out, for diffusely reflective surfaces, the amount of light energy seen from a surface

is independent of the location of the viewer. Therefore, once we know the amount of light striking

the surface, we know the amount of light seen by the viewer.

To summarize: take the dot product between the surface normal and a vector from the surface

to the light source. Multiply this by the light intensity to obtain the light striking the surface. Since

the lighting model assumes diffuse reflection, use the light striking the surface as the amount of

light seen by the viewer. Use this light value as a look-up value in the lighting table, and alter the

color of the surface accordingly.

How often you compute the light is another issue. You can compute light intensities for each

pixel, which results in the highest quality but is the slowest. You can calculate a light value just

once for each entire polygon. This gives surfaces a definite faceted, computer-like appearance.

You can compute light at each vertex, and interpolate the values during rasterization, which is a

compromise between the above two extremes. Or you can compute the light at regularly spaced

points along the polygon, a technique called light mapping, discussed in the next section.

Texture Mapping, Light Mapping, and
Shadows

We’ve briefly mentioned the topic of texture mapping at a number of points in this book. Texture

mapping is the process of applying a texture, or an image, to a polygon. When we draw the poly-

gon, it then appears that the texture image is “glued onto” or otherwise mapped onto the surface of

the polygon. This, like lighting, allows us to create more engaging 3D images.
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Texture mapping is a subject too complex to cover in depth here. Nevertheless, I can summa-

rize the important points, should you wish to try to implement your own texture mapping routines.

Again, as with all topics in this chapter, if you are interested in learning more, I suggest you read

the companion book Advanced Linux 3D Graphics Programming, where we have much more

space to discuss these topics at length.

Texture mapping can be conceptually thought of as “stretching” an image to fit across a poly-

gon. For simplicity, let us assume we have a square texture image and a square polygon. To map

the texture to the polygon, we associate each vertex of the polygon with a location in the texture

image. For instance, we could associate the first polygon vertex with the upper-left corner (0,0) of

the texture image, the second polygon vertex with the lower-left corner (0,64) of the texture, and

so forth. Then, to draw the polygon, we first project it from 3D into 2D (as discussed in Chapter 5).

Assuming the projected polygon is not clipped to the 2D screen, we then have four projected

screen-space coordinates corresponding to the original four 3D vertices of the polygon, which in

turn are associated with four locations in the texture image.

We rasterize the polygon by starting at the topmost vertex, and proceeding downward

on-screen along the polygon’s left and right edges (see Chapter 3). A key observation is that the

rasterization loop always proceeds from vertex to vertex in the polygon; the polygon “edges” that

are traversed during rasterization are defined by their end vertices. At each vertex we know the

corresponding location in the texture map; this location is called a texture coordinate. This means

we can interpolate texture coordinates between vertices as we draw the polygon. For each pixel

being rasterized in the polygon, we draw the color of the pixel found in the texture map at the inter-

polated texture coordinate.

Consider the projected image of a square polygon. Depending on the orientation of the poly-

gon with respect to the viewer, the polygon may appear tilted on-screen, but, assuming it is not

clipped, it will still have four vertices. Think of the texture as a square piece of rubber with the tex-

ture image printed on it. The above description of texture mapping corresponds to pinning each

corner of the rubber square onto each corner of the projected polygon, resulting in the image on the

square getting stretched onto the surface of the projected polygon.

The above description of texture mapping is mathematically incorrect for polygons displayed

with perspective projection. The reason is that the image on the texture is not foreshortened, as it

should be; the texture stretching is a purely 2D operation which fails to account for the 3D effects

of perspective. Let us use the terminology (u,v) to denote a texture coordinate associated with a

polygon vertex. Instead of storing and directly interpolating the texture coordinates u and v across

the projected polygon surface during rasterization, a perspective-correct scheme must interpolate

the values u/z, v/z, and 1/z across the polygon surface. This means that each vertex of the polygon

is associated with a u/z, v/z, and 1/z value. The z value is the camera space z coordinate of the poly-

gon vertex. We interpolate these values during rasterization, and for each pixel, we divide the

interpolated u/z value by the interpolated 1/z value to obtain the perspective-correct u value for the

pixel. Similarly, we divide the interpolated v/z value by the interpolated 1/z value to obtain the per-

spective-correct v value for the pixel. This gives us a perspective-correct (u,v) texture coordinate

for the pixel, which we then use to find the appropriate pixel from the texture image, whose color

is displayed for the pixel currently being rasterized.
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This description is admittedly very terse. I strongly encourage the interested reader to read the

discussion of texture mapping in the companion book Advanced Linux 3D Graphics Pro-

gramming, where the topic of texture mapping is given much more thorough treatment, complete

with diagrams, equations, and sample programs. Texture mapping is actually a change in coordi-

nate system, as discussed in Chapter 6, but with the added twist that a perspective projection has

eliminated one dimension, which needs to be recovered.

Light mapping is similar to texture mapping. Instead of mapping an image onto a polygon, as

is the case with texture mapping, light mapping maps an intensity grid onto a polygon. This inten-

sity grid, which actually is called a light map, is a rectangular array of values, where each entry

represents the light intensity falling on that particular area of the polygon. Light maps are often

combined with texture maps.

If a light map represents the light intensity falling on a polygon, then it follows that dark areas

of the light map are those areas of the polygon which are in shadow. Computing shadowed areas

requires that we not illuminate any elements of the light map which are blocked from the light

source. An element in the light map is blocked from the light source if there exists any object

obstructing a ray from the light source to the 3D location of the light map element. This corre-

sponds with physical reality: if an opaque object lies between a light ray and a part of a target

object, then that part of the target object is in shadow.
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Visible Surface Determination
Chapter 7 mentioned the topic of visual surface determination (VSD), also known as hidden sur-

face removal (HSR). The main issue with VSD schemes is to ensure a correct display of all

surfaces which should be visible to the viewer. This also means eliminating, as much as possible,

any unnecessary processing of surfaces which are not visible to the viewer. VSD schemes there-

fore address correctness and efficiency issues.

The VSD scheme covered in Chapter 7 was the painter’s algorithm. This algorithm is easy to

understand and implement, and gives acceptable results most of the time. Nevertheless, there are

several more sophisticated VSD algorithms worth mentioning, which effectively attack both the

correctness and efficiency issues. The following list summarizes some of the most important

algorithms.

� Back-face culling culls polygons which are not facing the camera, since they are never seen in

closed, convex polyhedra.

� View frustum culling culls polygons which are outside of the field of view, or which are too

far away. The scheme can be hierarchically applied.

� The z buffer algorithm computes surface visibility per-pixel and is very accurate, but is also

potentially slow and memory intensive. Graphics acceleration hardware often includes a z

buffer, making it a very viable choice for solving many (but by no means all) VSD problems

in the presence of appropriate hardware.

� BSP trees, octrees, and regular spatial partitioning schemes all use a “divide and conquer”

approach to VSD. In these schemes, space is partitioned into separate, disjointed areas to

allow spatial sorting of these areas with respect to the viewpoint, thereby allowing a correct

display for the given viewpoint.
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� Portals and cells are another way of spatially partitioning and sorting which require explicit

specification of the spatial regions and specification of a connectivity graph between regions.

Portal schemes can quickly eliminate very large invisible portions of the world from further

processing, but are generally only easily applicable in indoor environments.

Advanced 3D Modeling with Blender
We saw in Chapter 8 some of the features of the Blender 3D modeling package. Blender has many

other features which we didn’t get to cover. There are also some useful tips and tricks for achiev-

ing specific effects. Blender techniques relevant to programming interactive Linux 3D

applications include:

� Creating compatible morph targets. Generally, you do this by starting with one mesh, and

deforming it in Blender to the other mesh. In this way both meshes have the same number of

vertices and faces.

� Applying textures and texture coordinates to polygons. We saw in Chapter 8 how to export a

simple spaceship model, but the model included only geometry. We can also use Blender to

associate textures and texture coordinates with our polygonal models. Doing so requires us to

use Blender’s texture edit mode (activated with the “f” key and using the ImageWindow to

select a texture) and the VRML export feature of Blender to extract the texture coordinates.

We also need a new custom Videoscape plug-in to read in the texture image and coordinates.
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� Using inverse kinematics (IK) to create animated, jointed figures. Blender allows you to cre-

ate Ika chains, which are limb-like structures connected by joints. (Add an Ika by selecting

Add-Ika from the Blender Toolbox.) By moving the tip of the Ika chain, the entire limb

repositions itself in a very natural manner. For instance, you can control the position of an

entire jointed arm, including the intermediate elbow joint, just by positioning the hand. IK

allows you to easily pose humanoid models simply by positioning the “hands” and “feet” in

the appropriate locations. Combined with animation, this is a very powerful technique.
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Special Effects
There are a few special effects we can use to increase the visual realism or impact of our 3D pro-

grams. Here is a brief list of some important techniques.

� Environment mapping. This is a form of dynamic texture mapping where the image mapped

onto a polygon’s surface is a reflection of the surrounding environment. For instance, a sil-

vered, highly reflective cylinder placed within a forest will reflect the surrounding trees. As

the cylinder moves through the environment, it also reflects different parts of the environment

off of its surface. OpenGL provides functions for realizing environment mapping (you must

enable automatic texture coordinate generation by calling glTexGeni with a parameter of

GL_SPHERE_MAP).

� Billboards. A billboard is a special texture-mapped polygon which is always drawn such that

it is facing the screen. You can think of a billboard as a sort of 2D “sticker” placed on top of a

3D image. Imagine viewing the world through a pair of glasses. Then, imagine putting a flat,

2D sticker, with an image of a tree, on the surface of the glasses. You would then appear to see

the tree on top of the 3D scene you see through the glasses, although the tree is actually a flat

2D image. This is the idea behind billboarding. Billboarding allows us to simulate complex

geometry with very few polygons.
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� Particle systems. A particle system is a system of many small objects, called particles, all of

which are set into motion and controlled by some algorithm specific to the system. Any effect

which can be viewed as a collection of particles can be modeled with a particle system. Exam-

ples of systems which can be modeled with particle systems are explosions, fire, smoke, a

swarm of insects, or a school of swimming fish. Programming particle systems requires you

to define a large number of particles and a set of rules controlling the behavior of the particles.

The behavior of one particle may depend on the behavior of neighboring particles, as is the

case with a school of fish. The optical effect of a particle system can be very convincing.
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system.



Non-Graphical Elements
It can be useful to incorporate a number of non-graphical elements into 3D graphics programs.

These elements all add to the overall immersive effect of a 3D environment.

� Digital sound. Sound is controlled on Linux systems by the character special file

/dev/audio. Also, ready-made sound server programs exist, such as RPlay.

� TCP/IP networking. Networking is useful when multiple 3D programs running on different

machines must communicate with one another to allow for multi-user virtual worlds. TCP/IP

networking is done via sockets under Linux, and enables both local network communications

inside a LAN, as well as worldwide communication with other Internet-connected machines.

� Collision detection. Detecting if solid objects are about to move through one another (and pre-

venting this situation) is the goal of collision detection (and collision response, respectively).

By implementing collision detection and response, a program conveys a sense of physical

reality. Objects appear solid and impenetrable, just as they are in real life. Absence of colli-

sion detection allows objects within a virtual environment to float unhindered through one

another, which distracts from the illusion of reality such environments usually attempt to cre-

ate. Simple collision detection can be done with bounding spheres, where a collision is

detected if the distance between two objects’ centers is less than the sum of their bounding

spheres’ radii.

� Physics. As with collision detection, a realistic physical response system acting in accordance

with Newtonian laws of physics can contribute to the sense of reality of a 3D program.

Objects can appear to fall, tumble, bounce, roll, or crash realistically, as we would expect

them to in real life. Implementing physics requires some sort of numerical integration scheme

to solve Newtonian equations of motion.

Content Development Systems
The term 3D content development system refers to a visual 3D environment which allows the cre-

ation of interactive content with a minimum of programming. Such systems show us the direction

that future 3D development might take. Two existing and exciting content development systems

for Linux are Blender 2.0 (also known as Game Blender), and World Foundry.

Game Blender is a free, proprietary product available for download at

http://www.blender.nl. It integrates the creation of interactive content, such as games,

into Blender’s already powerful modeling and animation facilities. This means that all game

development activity, from modeling to texturing to scripting, can take place within Blender.

World Foundry is an open source (GPL) package, originally developed as a commercial prod-

uct, that enables non-programmers to create 3D environments and games. It combines a powerful

3D engine with an external level editing system and an internal scripting system. The system is

extremely modular, and, through its scripting capabilities, the engine is capable of very varied

behavior without changing the engine itself. This gives game designers a large amount of

Chapter 9: Advanced Topics 563



flexibility. There is also a sophisticated, unique camera-handling model, allowing for dramatic

camera motion during game scenes.

TIP The companion book Advanced Linux 3D Graphics Programming contains tutorials on
using both Game Blender and World Foundry.

Summary
In this chapter, we took a quick look at some more advanced topics relating to Linux 3D graphics

programming. We skimmed over geometrical techniques (3D morphing), visual techniques (light-

ing, texture mapping, special effects), VSD schemes, advanced Blender modeling (texturing and

IK), and non-graphical elements (sound, networking, physics). Finally we mentioned two 3D con-

tent development systems for Linux, which provide an interesting glance into the possible future

of interactive 3D graphics programming.

A Look Ahead
This concludes the content for this book, Linux 3D Graphics Programming. Congratulations on

making it to the end! You now have a wealth of knowledge and code for creating realistic, interac-

tive Linux 3D applications. Hopefully your mind is buzzing with ideas you want to try out. I

encourage you to try them out, and to have fun and continue to learn in the process. Also, check

out this book’s WWW site at http://www.linux3dgraphicsprogramming.org for

additional resources and information pertaining to the book, the code, and Linux 3D programming

in general.

564 Chapter 9: Advanced Topics

Figure 9-11: Some of the types
of worlds possible with World
Foundry.



You might still have some questions about topics we didn’t have time to cover properly, like

the topics in this last chapter. Not to fear—the journey isn’t over yet! The companion book,

Advanced Linux 3D Graphics Programming, picks up right here where this book leaves off. Tex-

ture mapping, shadows, fog, z buffering, portals, BSP trees, view frustum culling, IK modeling,

particle systems, collision detection, digital sound, and more—it’s all in the next volume, com-

plete with explanations, images, equations, and working sample code. Excited? I certainly am!

I sincerely hope that this book has helped you to learn and experience the wonderful world of

Linux 3D graphics programming, and that you will join me on the continued journey in Advanced

Linux 3D Graphics Programming. All aboard!

Chapter 9: Advanced Topics 565



This Page Intentionally Left Blank

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



A p p e n d i x

CD Installation

T
he first part of this appendix explains what is on the companion CD-ROM and how to install

it.

License
The source code in this book was written by myself, Norman Lin, and is Copyright � 2000

Norman Lin. This version of the source code has been released under the GNU General Public

License (GPL). Please read the file book/l3d/COPYING on the CD-ROM. The other software

packages on the CD-ROM, located in directory book/software, were written by other indi-

viduals or companies and may be subject to other licenses; read the documentation for each

software package carefully.

Essentially, the GPL allows you to use this software in your own projects, but also requires

you to make the source code to such projects available under the GPL. The GPL therefore encour-

ages the sharing of information and source code among software developers. The GNU/Linux

operating system was written in this spirit; developing the code in this book would not have been

possible without the availability of free, open source, high-quality software and tools. Releasing

my code under the GPL is my way of giving something back to the community. Check out this

book’s Web site, http://www.linux3dgraphicsprogramming.org, to find the latest

source code and related information. You can also download or submit your own source code

improvements to l3d (via a common CVS repository), leave your comments, discuss the material

with others, or join an open source project. I encourage you to do all of these things.

Note that the GPL permits you to sell your programs for a fee, even if those programs are

based off of l3d or other GPL source code. The “free” in free software refers to freedom, not price.

The purpose of requiring you to provide source code is not to try to prevent you from earning

money based on the sale of your software; the purpose is to ensure that users of your program

receive the same freedoms that you receive when you choose to use GPL source code as a basis for

your own code. You must therefore make the source code to your software available so that others

have the freedom to analyze, modify, improve, and use your software, just as you have the free-

dom to analyze, modify, improve, or use the software in this book.
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Contents of the CD-ROM
Here is a brief list of some of the more important software and files included on the CD-ROM.

There is, in reality, much more software on the CD-ROM (since the Linux operating system and

tools are included), but here the focus is on the software and files relevant to 3D graphics

programming.

� l3d library and sample programs

� Color versions of all the figures from the book

� Animated videos of 3D concepts to supplement the static 2D figures, in AVI format

� Xanim: Video file player to play the AVI files

� The GNU/Linux operating system, based on Debian GNU/Linux 2.2

� gcc: C++ compiler and tools for Linux

� Blender 1.80: Complete 3D modeling and animation suite

� Cygnus gcc: C++ compiler and tools for Microsoft Windows (can be used to port l3d to

Windows)

� GIMP: GNU Image Manipulation Program, for editing 2D images

� Mesa: OpenGL compatible library

� GLUT: Mark Kilgard’s GL Utility Toolkit

� XFree86 4.0: Free X Window System with support for 3D hardware acceleration in a window

� Glide: 3D library for communicating with 3DFX graphics hardware (used indirectly through

Mesa)

For those software packages or libraries distributed under the GPL, you can obtain the source code

by following the links on this book’s Web page, http://www.linux3dgraphicspro-
gramming.org.

Quick Start Guide
This section describes the essential information to install the software on the CD-ROM. It reviews

the locations of files on the CD-ROM and basic installation instructions, including the order in

which the various software packages should be installed.

This section assumes you already have a working Linux installation with the X Window Sys-

tem (XFree86) installed. If this is not the case, first install Linux and the X Window System, both

included on the CD-ROM. Instructions appear in the section, “Installing Linux from the

CD-ROM.”

Directories

The directories on the CD-ROM are organized as follows:

� debian/: Contains release 2.2 of the Debian distribution of the GNU/Linux operating sys-

tem. Also contains hundreds of software libraries and packages in the.deb package format.

� book/: Contains all software written for or mentioned in the book.
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� book/l3d: Contains all of the example programs in the book and the l3d library, in

.tar.gz format.

� book/software: Contains all of the third-party software and extra libraries used by the

book, including Blender, GIMP, Mesa, and XFree86 4.0.

� book/figures: Contains color versions of all of the figures and equations in the book, in

PCX format.

� book/videos: Contains animated 3D videos illustrating 3D concepts, to supplement the

flat 2D pictures in the book.

The CD-ROM is bootable. Booting from the CD-ROM starts the installation process for the

Debian GNU/Linux operating system. You do not need to boot from the CD-ROM if you only

want to install the l3d programs; you only need to boot from the CD-ROM if you want to install the

included Linux operating system.

Installing the Sample Programs and Other Software

1. Install Linux from the CD-ROM by booting from the CD-ROM and following the

instructions provided by the menu-driven Debian GNU/Linux installation program.

Alternatively, use an existing Linux installation. The installed Linux distribution must

include the following software packages: gcc 2.95, an X Server (e.g., XFree86 3.3.5), Mesa,

and GLUT. Almost all Linux distributions, including the one on the CD-ROM, include these

libraries. If your Linux distribution does not include some of these packages, you must find

them from another source (e.g., download from the Internet) and install them manually.

2. Mount the CD-ROM to make it accessible: mount /cdrom.

3. Type export LD_LIBRARY_PATH=/usr/local/lib. This allows the supplementary

libraries, installed into this directory in the next step, to be located by other programs during

the installation process.

4. Install each of the following supplementary libraries in the following order:

glib-1.2.8.tar.gz, gtk+-1.2.8.tar.gz, libsigc++-1.0.1.tar.gz,

gtkmm-1.2.1.tar.gz, and rplay-3.2.0b5.tgz. All of these libraries are located

in /cdrom/book/software. The first four are needed by the Blender attributes editor

program of Chapter 8; the last library is the RPlay sound server described in Chapter 9.

4a. Make a temporary directory to contain the files during installation. For instance, to install the

glib library, type mkdir glib_work. Change to the directory you just created: cd glib_work.

4b. Unpack the files into the current work directory. Type tar xzvf /cdrom/book/software/

LIB.tgz, where LIB is the name of the library being installed (e.g., glib-

1.2.8.tar.gz). This should create a new subdirectory, such asglib-1.2.8. Change to

this directory: type cd glib-1.2.8.

4c. If desired, read the documentation for the software package.

4d. Compile the library. Type ./configure; make. (Though all of the libraries listed above require

the configuration step with configure, in general not all software requires this step, in which

case you would simply type make.) Compilation should complete without errors. If an error

occurs, carefully examine the output of the command to determine the reason for failure,
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correct this, and try again. One possible reason for failure is the absence of other libraries

required by the library being compiled. In this case, you must install the prerequisite libraries

first.

4e. After successful compilation, install the library. Type su and press Enter, enter the root

password, and press Enter. You are now the superuser. Type make install to install the

compiled binaries into the proper locations on the system. Type exit to end the superuser

session.

4f. Remove the temporary work directory. Assuming the temporary work directory was

glib_work, then type cd ../.. to change to the original top-level directory from which you

started the installation. Then, type rm -rf glib_work to remove the work directory.

4g. Repeat this process for each of the supplemental libraries to be installed.

5. Install the l3d sample programs as follows.

5a. Choose a directory where you want to install the sample programs, create it, and change to it.

For instance, type mkdir l3d;cd l3d.

5b. Set the L3D environment variable to point to the l3d directory, which is the current directory

into which you are about to unpack the sample programs. Type export L3D=`pwd` and press

Enter. Note that the quotation marks are single back-quotes, not normal quotes.

5c. Unpack the sample programs: tar xzvf /cdrom/book/l3d/l3d-0.5.tar.gz.

NOTE It is recommended that you recompile the sample programs as described in the steps
below. However, the CD-ROM also contains precompiled binary versions of the programs. To
run the precompiled sample programs under the included Debian distribution, you should
first execute the following command as the root user: ln -s /usr/lib/libstdc++-libc6.1-
2.so.3 /usr/lib/libstdc++-libc6.1-1.so.2. This command “tricks” the system into using a
newer version of the dynamically linked C++ library even if an older version is requested.
This trick is necessary because the C++ library version in the included Debian distribution is
a newer version than the C++ library version which was used to compile the precompiled
sample programs on the CD-ROM.

5d. Edit the file Makefile.vars to set up the proper directory names for your system. The

defaults work for the Debian GNU/Linux system, but may need to be changed for other Linux

distributions. In particular, the variable GLIDEDIR should be set to the directory containing

the Glide libraries, in case you are using Glide for 3DFX hardware acceleration.

MESAINCLUDEDIR should point to the directory containing the Mesa include files.

MESALIBDIR should point to the directory containing the Mesa binary library files

libGL.a, libGLU.a, and libglut.a. The standard values should be correct for most

systems.

5e. Type make -f makeall.lnx to build all of the sample programs. Remember, compiling the

blend_at program requires that the following libraries be installed: glib 1.2.8, gtk+ 1.2.8,

libsigc++ 1.0.1, and gtkmm 1.2.1.

6. Install Blender. Blender installation is different than installation of the other packages

because Blender is distributed without source code in a precompiled binary form. Install

Blender as follows.
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6a. Make a directory to store the Blender files, and change to it. For instance, type mkdir

blender1.80; cd blender1.80.

6b. Unpack the Blender executable files into the current directory. Type tar zxvf

/cdrom/book/software/blender/blender1.80-linux-glibc2.1.2-i386.tar.gz. This creates a

new subdirectory. Change to this subdirectory: type cd blender1.80-linux-glibc2.1.2-i386.

6c. Set the Blender environment variable to point to the current directory containing the Blender

files. Type export BLENDERDIR=`pwd`. Note the back-quotes.

6d. To start Blender, type ./blender in the Blender directory.

To install any other programs or libraries in the directory book/software, unpack each

.tar.gz file into a separate directory, and read the installation instructions for each package.

Installing Linux from the CD-ROM

The CD-ROM includes the Debian 2.2 distribution of the GNU/Linux operating system. If you do

not yet have Linux installed on your computer, you can install it from the CD-ROM. Simply boot

from the CD-ROM and follow the instructions in the menu-driven interface. Note that you must

have at least one free partition available on your hard drive to install Linux. It is recommended that

the boot partition for Linux be located within the first 1024 cylinders (approximately 524 mega-

bytes) of the hard drive; your computer might not be able to boot from a partition located beyond

cylinder 1024. If you only have a free partition past cylinder 1024, and you don’t want to reparti-

tion, then you can also create a boot floppy, and boot from it to access Linux. Full installation

instructions appear on the CD-ROM in the file debian/doc/install/index.html,

which is in HTML format; view it with your favorite WWW browser.

CAUTION Always back up all of your data before attempting to install Linux or any other
operating system. One false move could destroy all of the data on your hard drive. Of course,
you should run regular backups anyway.

TIP The key rule when installing Debian is: if you don’t know the answer to a question, just
press Enter. The default settings for almost all of the questions asked during installation are
correct.

After installation, the system will reboot from the hard drive. You should remove the CD-ROM

from the drive before restarting the system. If the system does not boot from the hard drive auto-

matically (possible causes include a boot partition lying beyond the 1024th cylinder), then reboot

from the CD-ROM again, and at the first boot prompt, type rescue root=/dev/XXXX, where

XXXX is the name of the partition where you installed Linux. For instance, if you installed Linux

on the second partition of an IDE hard drive, you would use /dev/hda2. Alternatively, you can

use the rescue boot disk that you should have created during the installation process. This method

of rebooting from external media allows you to access your newly installed system, and to repeat

the steps necessary to correct the setup for hard drive booting. See the Debian installation docu-

mentation for more information.
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After the reboot, the installation process continues by asking you which software you wish to

install. You can choose either the simple or the advanced installation method. I suggest that you

use both procedures as follows:

1. Use the simple method during initial installation to quickly obtain a basic running system.

You should install the following packages: C++ development and X Window System

(complete). Allow the X Window System installation to automatically detect your video card,

and also install the icewm window manager.

2. After basic installation, run dselect (as the root user) to install the following additional

Debian packages not installed by the simple method: mesag3, mesag-dev, glutg3, and

glutg3-dev. This installs the Mesa and GLUT libraries from the prepackaged Debian

package files.

3. Finally, manually install the other software (e.g., Blender, l3d, and so forth) as described in

the Quick Start section.

After installing the operating system, the X server may or may not automatically start. You can

choose to configure this during installation. If the X server does not start immediately (i.e., you see

a text screen rather than a graphics screen after booting the system), then you should log in and

start the X server with the following command: startx -- -bpp 32. The 32 indicates the color depth

of the X server. You can also use 16- or 8-bit mode if you wish, which are slightly faster (because

less data must be transmitted for each pixel), but also have lower visual quality.

If for some reason your configuration of the X server during the initial setup is incorrect, you

can run XF86Setup (as the root user) to reconfigure X. Also, note that the program gpm (which

allows text selection with the mouse in a text console) may interfere with the mouse movement

under X. The mouse file /dev/mousemust exist and be a symbolic link to the proper device file

(such as /dev/psaux for a PS/2 style mouse) in order for the mouse to work under X, or at all.

The documentation in directory /usr/doc/HOWTO provides additional notes on getting your

mouse to work.

If you want to reinstall the packages or review your selections after the installation process

has completed, then become the root user and run tasksel to install logical groups of packages

(e.g., “Games,” or “C++ programming”). Alternatively, use dselect to install individual pack-

ages, such as one particular programming utility or one particular library such as Mesa. Note that

these are Debian-specific commands; for another Linux distribution, consult the documentation

for the appropriate commands.

Please note that it is not possible for me or the publisher to provide support related to installa-

tion of the Linux operating system. The CD-ROM contains ample documentation on the

installation and configuration process. Furthermore, the documentation lists Internet addresses

where you can look up more information or ask questions to the Debian community at large. Also,

see this book’s Web site http://www.linux3dgraphicsprogramming.org for a dis-

cussion board where you can post questions or share your experiences with other members of the

community.
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Using an Existing Linux Distribution

You do not have to install the included Debian distribution of Linux in order to run the programs; if

you have an existing Linux installation from another source, you can almost certainly use it as

well. It is important that your Linux installation has the following software:

� gcc compiler version 2.95 or greater, to compile the C++ code

� An X server, such as XFree86 version 3.3.5 or greater, to display the 3D graphics output in an

X window

� The Mesa library, an OpenGL-compatible graphics library, to take advantage of OpenGL fea-

tures and hardware acceleration

� GLUT, Mark Kilgard’s GL Utility Toolkit library, for use with OpenGL

You will probably also want to install the following software. Most Linux distributions come pre-

packaged with these software packages; you just need to select them during the installation

process.

� GIMP, the Gnu Image Manipulation Program, for editing 2D images such as texture maps

� The PPM utilities for converting PPM files to other formats from the command line

All of this software is included on the CD-ROM in the Debian package format (.deb). Also, the

following software is provided in .tar.gz format: Mesa, GLUT, Blender.

Basic Linux Configuration and Commands

This section assumes that you have successfully installed Linux and have the X server working.

We now look at a few basic commands which you need in order to correctly configure your Linux

system for using the software in this book.

After starting X, a terminal window, also called a command shell, should either appear auto-

matically or can be started via a menu. This depends on the exact window manager you use.

Typically, the menu can be invoked by clicking on a starting button at the lower left of the desktop,

or by clicking on the desktop itself. Many important commands under Linux must be executed

from a command shell, so make sure you can start one.

The most important part of using the X Window System is to ensure that the DISPLAY envi-

ronment variable is set correctly. An environment variable is a variable set within the command

shell, which can then be queried by all programs started from within that environment. The

DISPLAY environment variable is used by all X programs to find the network address of the com-

puter on which the program should display its output.

You ordinarily want to display graphics on your local monitor. First, check to see if the

DISPLAY variable is already set. Type printenv DISPLAY and press Enter. If a line such as

“0:0” or “localhost:0.0” is displayed, then the DISPLAY variable is already correctly set. If you

see nothing, then you need to set the DISPLAY variable.

To set the DISPLAY variable, type the following command in the shell and press Enter:
export DISPLAY=127.0.0.1:0.0

This sets the display to be the local host (127.0.0.1), using screen 0 and display 0. This assumes

you are using the command shell bash, which is standard on Linux systems.
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NOTE If you are using a csh variant as your command shell (as opposed to sh or bash),
then you must type setenv DISPLAY 127.0.0.1:0.0 to set the environment variable. This
syntax applies to setting all environment variables in csh, not just the DISPLAY variable.

To test your DISPLAY variable, type xterm& and press Enter. A new command shell window

should appear. If this occurs, your DISPLAY environment is set correctly. If you get an error such

as Can't open display, then the DISPLAY variable is not correctly set. If you get an error

such as Client is not authorized to connect to Server, then for some reason

the X program was not allowed to connect to the specified X server. In the case of a local X server,

one reason for this can be if you started the X server as one user, but then tried to start X applica-

tions as another user. To solve this, start X programs as the same user that started the X server.

If you’re new to Linux, the following are some useful shell commands to get you started.

� mount /cdrom makes the files on the CD-ROM available in directory /cdrom.

� cd directory_name changes to a particular directory.

� ls lists the contents of the current directory. ls -l shows more information.

� pwd prints the current directory.

� less filename displays the contents of a file. Press q to exit less.

� printenv VARIABLE and setenv VARIABLE=value print and set environment

variables.

Simply type the name of a program in the current directory, such as program_name, to execute it.

If that doesn’t work, then type ./program_name. Whether or not it works without the leading dot

depends on whether or not the current directory (denoted by the dot character “.”) is in your PATH

environment variable. This setting is different among the various Linux distributions.

With these basic commands, you will be able to navigate around a Linux system and find

other documentation to read. See Chapter 1 for more information on how to access the online doc-

umentation on a Linux system with the man command.

Troubleshooting the Sample Programs

If you have problems running the sample programs, here are some tips for finding the problem.

� Ensure that the DISPLAY environment variable is set correctly and that you can start other X

programs from the command line.

� Ensure that all required libraries (Mesa, GLUT) have been installed. Under Debian, run

dselect to install the Mesa and GLUT packages.

� Ensure that any data files needed by the program are accessible or in the current directory.

Such files include object mesh files and plug-in shared library files.

� Ensure that mesh files contain no invalid polygons. An example of an invalid polygon would

be one with only two vertices, since a valid polygon must contain at least three vertices.

� If all else fails, try compiling the sample code with debugging. Edit the file

Makefile.vars, uncomment the line containing “DEBUG=-g”, and comment out all

other lines referencing “DEBUG.” (In Makefiles, the comment character is the pound sign #.)

Then, type cd $L3D;make clean;make -f makeall.lnx to recompile all programs with
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debugging. Finally, execute the program in question with the debugger, as described in Chap-

ter 1, to determine exactly where the program crashes and why.

Some Comments on the Sample Programs

The source code on the CD-ROM has additional comments within the C++ source code which, for

space reasons, were omitted in the listings in the book. This removal of comments was done via an

automated Perl program, so you can be sure that the code contents of the listings in the book are

identical to those on the CD-ROM. The only difference is that there are ample comments in the

code on the CD-ROM.

Again, see this book’s Web site http://www.linux3dgraphicsprogram-

ming.org to see the latest version of the l3d code.

Hardware Acceleration

As covered in Chapter 2, l3d programs can all take advantage of hardware acceleration by using

OpenGL as the rasterization layer. This means that OpenGL must be configured to use hardware

acceleration in order for l3d programs to use hardware acceleration.

There are two ways for you to use hardware acceleration. The first way requires a 3DFX

graphics card, the Glide library, and a Mesa distribution compiled with Glide support. This means

that you need to manually install Glide and compile Mesa; see the Mesa documentation for more

information. There are many versions of the Glide library, for different generations of 3DFX hard-

ware. I have included two versions of Glide on the CD-ROM, which should work with Voodoo

and Voodoo3 cards. If you have a different 3DFX card, check out the Web site

http://linux.3dfx.com to download the proper version of Glide for yourself. After

installing Glide and compiling Mesa to use Glide, you must edit the file $L3D/Make-

file.vars to point to the correct directories. Variable GLIDEDIR should point to the directory

containing the Glide library; MESAINCLUDEDIR should point to the directory containing the

include files used to compile Mesa, and MESALIBDIR should point to the directory containing

the new, 3DFX-enabled Mesa libraries. Also, you must uncomment the line starting with

GLIDE_LIBS to cause l3d programs to be linked with the Glide library. After following these

steps, you can use 3DFX/Glide hardware acceleration as described in Chapter 2.

The second way of using hardware acceleration involves using XFree86 4.0 and the Direct

Rendering Infrastructure (DRI). This requires you to compile the XFree86 4.0 system (included

on the CD-ROM) with support for your 3D graphics card, and for you to use the special DRI

Mesa/OpenGL libraries, which use the DRI to communicate directly with the underlying graphics

hardware. This is similar to using Mesa to access 3DFX hardware through Glide, but with broader

support for various hardware, and with the ability to display accelerated 3D graphics within a win-

dow, as opposed to full-screen. Using the DRI for hardware acceleration does not require you to

change the file Makefile.vars. However, you do need to ensure that the DRI OpenGL librar-

ies, which use hardware acceleration, are dynamically linked to your executable program. To test

this, type ldd PROGRAM, where PROGRAM is the name of the executable program which

should use hardware acceleration. You should see a line indicating that the libGL.so file is

dynamically linked with the libGL.so file from the XFree86 4.0 directory. If some other
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libGL.so file is linked, then this other OpenGL library will most likely be unable to use the DRI

hardware acceleration. To control which directories are searched during dynamic linking, set the

environment variable LD_LIBRARY_PATH. See the man page on the dynamic linker ld.so for

more information. The XFree86 4.0 documentation also provides information on troubleshooting

the DRI.

TIP The Utah-GLX project contains drivers for some 3D cards which are not yet supported
by the DRI. Eventually, the Utah-GLX drivers will be integrated into the DRI, but before this
happens, you may still find it useful to use the Utah-GLX drivers directly. The home page for
the Utah-GLX project is http://utah-glx.sourceforge.net.

Integer, Floating-Point, and Fixed-Point
Math

Throughout this book, we have made reference to fixed-point math. The type l3d_real is a sort

of facade allowing either fixed-point or floating-point variables to be used throughout the code

just by changing a #define. We also explicitly used fixed-point in the software texture mapping

routines. This section discusses exactly what fixed-point math is.

Motivation
When dealing with numbers in a programming language, a fundamental distinction is made

between integer values and fractional values. Integer values are whole numbers with no fractional

portion and are represented in memory directly as byte values in two’s complement format. Inte-

ger values which are too large to be stored in one byte must span multiple bytes, in which case,

byte ordering or “endian-ness” becomes an issue. Fractional values are represented either in a

fixed-point or, more frequently, a floating-point representation. The latter part of this section

describes fixed-point in detail. With a floating-point representation, the total number of bits of pre-

cision is limited, but the precision can “float” to the range of interest. For instance, a typical

10-digit pocket calculator uses a floating-point system: you have 10 digits, but these 10 digits can

represent a 10-digit number with no decimal places, an eight-digit number with two decimal

places, a four-digit number with six decimal places, and so forth. The decimal point—or general-

izing to other number bases, the “fraction point”—floats to accommodate the desired range of

precision; hence the term “floating-point.”

In computer memory, integer and floating-point numbers are internally represented and pro-

cessed differently. Hardware support for mathematical operations on integers has always been

present, since the processor itself requires integer mathematics in order to fetch the next instruc-

tion from the correct address in memory. Thus, integer math has always been relatively fast.

Historically, hardware support for floating-point numbers had lagged behind that for integers.

Originally, floating-point coprocessors, also known as floating-point units or FPUs, were a rarity

in the consumer PC scene. High-end number-crunching workstations might have boasted an FPU,

but the average PC had to emulate floating-point operations in software. Thus, operations on

576 Appendix

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



floating-point numbers were, in earlier PC generations, noticeably slower than equivalent opera-

tions on integers.

3D graphics deals conceptually with fractional values. Thus, conceptually speaking, integers

are insufficient for modeling 3D graphics. On the other hand, without an FPU, using floating-

point would have been too slow for interactive 3D applications in earlier PC generations. The

solution was to use a sort of hybrid representation—the so-called fixed-point system. This system

encodes a fractional value within an integer, offering simultaneously fractional precision and inte-

ger speed.

Recently, FPUs have become widespread. This makes it quite possible to write a real-time 3D

program completely using floating-point. Fixed-point has decreased in significance as a result. So,

why should anyone worry about fixed-point anymore? There are two reasons:

1. You may wish to develop 3D graphics programs for platforms that have no floating-point

coprocessor. For instance, a friend recently asked me if I could program a wireframe tank

simulation for his palmtop computer, which had no FPU.

2. Conversion between floating-point and integer values is slower than conversion between

fixed-point and integer values. This is particularly an issue with rasterization, since sub-pixel

accuracy requires computations using sub-integer precision, but actually plotting the pixel

requires conversion to an integer coordinate.

So, although due to the spread of FPUs the need for fixed-point has diminished, it is still a tech-

nique which can be used to your advantage. Let’s now examine fixed-point math in detail.

Concepts
The idea behind fixed-point math is actually quite simple. We restrict our numbers to have a fixed

amount of precision before the decimal point and a fixed amount of precision after the decimal

point. In a decimal (base 10) system, this could mean, for instance, that we have five digits before

the decimal point, and five digits after the decimal point. Then, if we artificially move the decimal

point five places to the right, and remember that the actual value requires us to move the decimal

point back five places to the left, then we have effectively devised a scheme for storing fractional

values in integers. For instance, we could store the fractional number 47213.46325 as the whole

number 4721346325. The five rightmost, or least significant, digits represent the fractional part of

the number, and the five leftmost, or most significant, digits represent the whole part of the

number.

In a binary system, we don’t deal with digits, but instead with bits. This means that we have a

certain number of bits for the whole part (before the decimal point) and a certain number of bits for

the fractional part (after the decimal point). The l3d library by default uses 32-bit signed integers,

with 14 bits of precision (the least significant or rightmost 14 bits) for the fractional part of the

number.

Overflow and Underflow
As we mentioned earlier in this book, adding and subtracting fixed-point numbers can be done

with normal C addition and subtraction operators. However, multiplication and division requires
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us to use the macros l3d_mulrr, l3d_mulri, l3d_divrr, or l3d_divri, as we saw ear-

lier. When using fixed-point math, these macros are mapped to the macros fixfixmul,

fixintmul, fixfixdiv, and fixintdiv. Each of these macros defines a special way of

multiplying or dividing fixed-point numbers with integers or other fixed-point numbers.

The reason we need to use special routines to deal with multiplication of fixed-point numbers

is due to the unfortunate and rather annoying topic of overflow. By converting fractional numbers

into integers, we are essentially merely multiplying the fractional numbers by a constant in order

to scale them to be larger integers. For instance, with 14 bits of fractional precision, we multiply a

fractional value by 2^14 to arrive at the corresponding integer value.

The problem is that when multiplying two fixed-point values, we effectively multiply by the

square of the scaling factor. For instance, say we have fractional values x and y. To represent these

in fixed-point as integers, we store these as x*2^14 and y*2^14. If we multiply these two values

together, we arrive at the value x*y*(2^14)*(2^14). However, the desired result is the scaled value

of the product, in other words, x*y*(2^14). Therefore, conceptually, we can perform fixed-point

multiplication by multiplying the numbers, then dividing by the scaling factor to cancel out the

second scaling factor. However, practically, it isn’t quite this simple. After performing the multi-

plication but before the corrective division, the maximum possible size of the temporary result is

much larger—2^14 or 16,384 times larger, to be exact—than the actual desired result. This large

result will very likely not fit into the number of bits (32, in this case) allocated for our fixed-point

numbers, meaning that after the multiplication, overflow has occurred and the higher bits of the

result have been irrevocably lost. This means that after performing the corrective division, it’s too

late—overflow has already occurred and the corrective division cannot recover the lost digits. A

similar problem, underflow, plagues division of fixed-point numbers; in this case, we lose frac-

tional precision in the lower (instead of the higher) bits.

The only solution to this quandary is to perform the multiplication or division operations with

higher precision so that the larger temporary results do not overflow or underflow. There are gen-

erally two ways to do this. One is to use algebraic manipulation to explicitly partition the

multiplication operation into a series of smaller multiplications, all of which can fit into the space

of a single integer, then combining the results. The other way is to use assembler instructions to

call processor-specific higher-precision integer multiplication and division routines. The alge-

braic solution is more portable, but is slower because it requires several operations to perform just

one multiplication or division. The assembler solution is less portable, but is faster.

The l3d library illustrates both techniques of implementing fixed-point multiplication and

division, but by default the assembler solution is used. As we saw earlier, since we use macros to

perform the multiplications and divisions, we often need to nest macros to perform complex oper-

ations. For instance, x*(y/z) would be expressed in code as:
fixfixmul(x,fixfixdiv(y,z))

Even after eliminating the inherent overflow problem by reformulating the multiplication and

division operators, overflow still comes back to haunt us again and again with fixed-point math.

This is because many operations, such as matrix multiplication, cross product and dot product

computation, distance calculations, and so forth, require multiplying large numbers by other large

numbers. Eventually, these numbers usually get scaled down again by a division, but if at any
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intermediate point during the computation an intermediate result is too large, then overflow occurs

and the entire computation returns an invalid result. For instance, say that the maximum whole

value you can represent in the whole part of your fixed-point numbers is 131072. Then, say that

you have two objects located at the edge of the universe, with x coordinates of 131071 and

131070. Assume you wish to compute the distance between these two objects. Doing so requires a

dot product, which multiplies the two x coordinates together. We multiply 131071 by 131070,

which exceeds our maximum allowable value of 131072—overflow has struck again.

This means that you always need to be extremely careful when formulating complex

fixed-point computations to ensure that even intermediate results can never overflow. The l3d

library has some built-in assertions to assist in this process, as described in the next section.

Another useful technique (currently not implemented in l3d) is to define an operator which per-

forms a multiplication immediately followed by a division, because this is a typically recurring

operation in 3D graphics. By performing the multiplication and division with extended precision

in an assembler routine and only returning the scaled-down result, we can avoid overflow by judi-

cious use of this operator.

Classes and Fixed-Point Math
One last comment on fixed-point math is in order. The use of macros leads to somewhat unnatural

nested invocation of two-argument macros. The problem seems to lend itself readily to a C++

class with overloaded operators for the necessary mathematical operations (+, –, *, /). This

approach, while conceptually correct, has a major drawback: it creates and destroys temporary

objects on the fly. This can be quite expensive in terms of execution time. Consider the expression

(x*y) + ((y/z) / (x*z)). Using overloaded operators, five temporary objects are created and

destroyed. Why? Because this natural, mathematical form of expression is recursive in nature. At

the highest level, the expression is the sum of one term plus another. Each term is, in turn, another

complete subexpression. When evaluating this expression, the computer needs to save each of the

intermediate results, which, in turn, requires invocation of an object constructor and shortly there-

after the destructor. Even if we use a global pool of pre-allocated objects (as we did in Chapter 4

for matrices), we still have an overhead of fetching a temporary object, updating a global counter

to point to the next free object, and so forth.

One could argue that clarity of expression afforded through overloaded operators outweighs

the performance penalty. In general, this is true, but in the case of fixed-point math, we must keep

overhead to an absolute minimum. The fundamental fixed-point mathematical operations could

be performed hundreds of thousands of times per frame, multiplying every small inefficiency by

orders of magnitude.

You might wonder, “If the overloaded-operator version creates temporaries, doesn’t the

nested-function version also create temporaries?” The answer is yes, but the overloaded-operator

version creates temporary objects, whereas the nested-function version creates temporary inte-

gers. The former requires calling a constructor and a destructor, or at the very least requires fetch-

ing of a pre-allocated object from a global pool. The latter only requires allocation of an intrinsic

data type. This is the reason for the difference in performance. It should be noted that the over-

loaded-operator version can be optimized somewhat by using an inline constructor/destructor
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combined with a peephole optimization phase after compilation, which can theoretically reduce

the overhead to be the same as that of integers. However, the compiler may not be able to store a

class within a register (even if it fits), whereas integers are more likely to be able to be stored in

registers with the register keyword. The only way to check this for sure is to examine the

assembler output of the compiler.

Compiling Fixed-Point Examples
At one earlier point in time, the l3d library supported both fixed-point and floating-point versions

of the code. Currently, only the floating-point versions have been maintained; most of the

fixed-point versions do not currently run as they stand. Nevertheless, the entire infrastructure for

fixed-point math is present. If you define the symbol FIXED_POINT_MATH before compilation,

the l3d_mulXX and l3d_divXXmacros will be mapped to their fixed-point versions. Further-

more, an entire directory tree is devoted to the binary files for the fixed-point versions of the

programs, and contains appropriate Makefiles defining FIXED_POINT_MATH. All programs do

at least compile in the fixed-point directory, but they need extra work to actually run.

The most annoying part about getting fixed-point programs to work is, as we mentioned ear-

lier, overflow. You must use algebraic manipulation to break up computations into parts which

cannot overflow the size of the fixed-point numbers.

To make porting the code to fixed-point a less tedious affair, the l3d macros for fixed-point

multiplication and division include an assertion which checks that the result of the operation is the

same as the result when performed with floating-point numbers. If the results differ, then the pro-

gram aborts execution and prints the offending line number. If the program is compiled with the

symbol NDEBUG defined, then the assertions are removed by the compiler and incur zero run-time

overhead (but then, of course, cannot catch any overflow errors).

So, to convert a particular program to use fixed-point, follow this general procedure:

1. Change to the fixed-point directory, such as

$L3D/binaries/linux_x/fixed/app/fltsim.

2. Copy any data files from the corresponding floating-point directory into the fixed-point

directory.

3. Edit file $L3D/Makefile.vars. Turn on debugging (set DEBUG=-g). This also turns off

optimization and enables assertion checking.

4. Compile and run the l3d library and the program. Notice and correct any overflow assertion

violations.

5. Manually scan the source code for floating-point variables or multiplications, and replace

these with appropriate calls to l3d_mulXX or l3d_divXX. For instance, if there are three

variables of type l3d_real named x, y, and z, and there is a line reading x=y*z, then you

should replace this with x=l3d_mulrr(y,z). Again, every such change you make is a

potential source of an overflow error and needs to be carefully checked. Note that changing

the code to use l3d_mulXX and l3d_divXX variables still allows the floating-point

version of the code to work, since with floating-point, the macros map to ordinary C

floating-point multiplication and division operators.
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Program Listings for Fixed-Point Math
The following code is the l3d code implementing fixed-point math. Remember, the use of these

macros is controlled by the#define FIXED_POINT_MATH. If this symbol is not defined, then

the l3d_mulXX and l3d_divXX macros map to ordinary C floating-point operators; other-

wise, the operators are defined as shown in the following listings. (This differentiation takes place

in sys_dep.h).

Listing A-1: math_fix.h
#ifndef __MATH_FIX_H
#define __MATH_FIX_H
#include "../tool_os/memman.h"

#include "../system/sys_dep.h"
#include <assert.h>

//- We perform fixed point math by using 32-bit integers, which
//- we assume are signed. Since we assume they are signed,
//- fixed point multiplication does not do sign extension, for speed
//- reasons.

typedef long l3d_fixed; //- this must be 32 bits, and MUST BE SIGNED

//- Now we define how many bits we use to store the fractional part, and
//- the remainder we use to store the integer part.
//-
//- FX_PRECIS is the # of precision bits, which we set to 14
//- FX_PRECIS_QUOT is the # of precision bits for the divisor AND quotient
//-
//- 14 bits means we can represent up to 2^-16384 precision = 4 dec places
//- implies 32 - 14 - 1(sign bit) = 17 bits for whole part = max 131072
//- implies 32 - 14 -1(sign) whole bits after int multiplication = max 131072
//- implies 32 - (14+14) -1(sign) whole bits after fix*fix mult. = max 8
//- but we can express fix*fix mult as a series of fix*int mult's; slower
//- implies FX_PRECIS_QUOT bits of precision for divisor AND quotient
//-
//- summarizing:
//- addition/subtraction of fixed points: +/- 131072.0000
//- mult of fixed*int: : +/- 131072.0000
//- mult of fixed*fixed: : +/- 8.00000000
//- slower mult of fixed*fixed : +/- 131072.0000
//- div of fixed/fixed : +/- 131072.00
//- div of fixed/int : +/- 131072.0000

#ifndef FX_PRECISION_ALREADY_DEFINED
#define FX_PRECISION_ALREADY_DEFINED
#include "fix_prec.h"
#endif

extern int fm_whole;
extern long fm_localdata;
extern float fm_sign;

//- conversion routines between fixed and floating/integer and vice-versa

#define float2fix(aFloat) ((long)((aFloat)*FX_PRECIS_MAX))
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#define int2fix(aInt) ((long)(aInt) < FX_PRECIS)

#define fix2float(aFixed) ((double)((aFixed) / FX_PRECIS_MAX))

#define fix2int(aFixed) ( (aFixed) > FX_PRECIS)

//- right shift for whole, discard frac. part

//- routines for fixed*fixed and fixed*int multiplication
//-
//- general notes for multiplication:
//- 1. ensure operands are in correct format (sign-extending if necessary)
//- 2. ensure result is in correct format (sign-extending if necessary)
//-
//- #2 automatically taken care of IF fixed-type is signed
//- thus we just worry about #1, for FixIntMul

//-
//- just treat a as a regular signed long and b as a regular signed int
//- proof:
//- f1_fixed = Int(f1*SHIFT)
//- f1_fixed * x = Int(f1*SHIFT) * x;
//- f1_fixed * x = Int(f1*x*SHIFT);
//-
//- the result is properly shifted.
//-
//- sign extension is unnecessary if we assume a is signed; this means
//- we do not need sign-extending code such as
//- if(b<0) {
//- return a * ( ((long)(-b)^FX_ALLBITS_MASK) + 1 ) ;
//- }
//-

#define fixintmul(a,b) ( {\
assert((fix2float(a)*(b)-fix2float((a)*(b)) > -0.2) && \

(fix2float(a)*(b)-fix2float((a)*(b)) < 0.2) || \
(printf("fixintmul %f %d = %f, should be %f", \

fix2float(a),b,fix2float((a)*(b)),fix2float(a)*(b))\
&&0)); \

(a)*(b); })

//- a=fixed, b=int

#define FIX_ASM
#ifdef FIX_ASM

#define fixfixmul(a,b) \
( {long __result = (a), __arg = (b); \

asm("imul %2;" \
"shrd %3,%2,%0;" \
: "=a" (__result) \
: "0" (__result), "d" (__arg) , "I" (FX_PRECIS) ); \

assert( \
((fix2float(__result) - fix2float(a)*fix2float(b) > -0.2) \
&& \
(fix2float(__result) - fix2float(a)*fix2float(b) < 0.2)) \
|| \
(printf("fixfixmul %f %f = %f, should be %f", \

fix2float(a),fix2float(b),fix2float(__result), \
fix2float(a)*fix2float(b)) \
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&& 0) \
); \

__result; \
}\

)

#else

//-
//- if we were to use a formula of the form
//- return ((a*b) > FX_PRECIS) ;
//- then we would have only
//- 32 - (14+14) -1(sign) whole bits after fix*fix mult. = max 8
//- as the maximum after a fixed*fixed multiplication.
//-
//- proof:
//- f1_fixed = Int(f1*SHIFT)
//- f2_fixed = Int(f2*SHIFT)
//- f1_fixed- f2_fixed = Int(f1*SHIFT)- Int(f2*SHIFT)
//- = Int(f1*f2*SHIFT*SHIFT)
//- so we shift TWICE = 2*SHIFT bits taken up by
//- fractional part; = TOTAL_BITS - 2*SHIFT -1(sign)
//- for whole part = 32 - 2*14 - 1 = 3; 2^3=8 !
//-
//- Instead we recast the fixed*fixed multplication as follows:
//-
//- fixed1- fixed2 = (f1_whole + f1_frac)- (f2_whole + f2_frac)
//- = f1_whole*f2_whole
//- + f1_frac*f2_frac
//- + f1_whole*f2_frac
//- + f1_frac*f2_whole
//- note that if fixed1 is negative, BOTH f1_whole and f1_frac are negative
//- particularly important is f1_frac, since if we try to access the
//- fractional part with &FX_SIGN_MASK we lose the sign if it's negative.
//- thus if a # is negative we access its fractional part by first
//- making it positive, &'ing with FX_SIGN_MASK, and -ating the result.
//-

(
/* if */ ( ((b) & FX_SIGN_MASK) ^ ((a) & FX_SIGN_MASK) ) ? /* dift signs */ \
/* if */ ( ((b) & FX_SIGN_MASK) ^ ((a) & FX_SIGN_MASK) ) ? /* dift signs */ \
/* if */ ((b) & FX_SIGN_MASK) ? /* a +ve, b -ve */ \
- ( \

( (((a)>FX_PRECIS) * ((-(b))>FX_PRECIS)) < FX_PRECIS ) + \
( ((a) & FX_PRECIS_MASK) * ((-(b)) & FX_PRECIS_MASK) > FX_PRECIS ) + \
( ((a)>FX_PRECIS) * ((-(b)) & FX_PRECIS_MASK) ) + \
( ((-(b))>FX_PRECIS) * ((a) & FX_PRECIS_MASK) ) \

) \
/* else */ : /* a -ve, b +ve */ \
- ( \

((((-(a))>FX_PRECIS) * ((b)>FX_PRECIS)) < FX_PRECIS ) + \
(((-(a)) & FX_PRECIS_MASK) * ((b) & FX_PRECIS_MASK) > FX_PRECIS )+\
(((-(a))>FX_PRECIS) * ((b) & FX_PRECIS_MASK) ) + \
(((b)>FX_PRECIS) * ((-(a)) & FX_PRECIS_MASK) ) \

) \
/* else */ : /* same signs */ \

/* if */ ((b) & FX_SIGN_MASK) ? /* a -ve, b -ve */ \
( \
((((-(a))>FX_PRECIS) * ((-(b))>FX_PRECIS)) < FX_PRECIS ) + \
(((-(a)) & FX_PRECIS_MASK) * ((-(b)) & FX_PRECIS_MASK) > FX_PRECIS )+\
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(((-(a))>FX_PRECIS) * ((-(b)) & FX_PRECIS_MASK) ) + \
(((-(b))>FX_PRECIS) * ((-(a)) & FX_PRECIS_MASK) ) \

) \
/* else */ : /* a +ve, b+ve */ \
( \
((((a)>FX_PRECIS) * ((b)>FX_PRECIS)) < FX_PRECIS ) + \
(((a) & FX_PRECIS_MASK) * ((b) & FX_PRECIS_MASK) > FX_PRECIS ) + \
(((a)>FX_PRECIS) * ((b) & FX_PRECIS_MASK) ) + \
(((b)>FX_PRECIS) * ((a) & FX_PRECIS_MASK) ) \

)
)

#endif

//- routines for fixed/int and fixed/fixed division

//- NOTES: fixed division — each bit you take OUT of the divisor is
//- a bit of precision you RECEIVE in the quotient. If you take NO
//- bits out of the divisor (i.e. divisor is not right-shifted and
//- has full precision), quotient has NO fractional precision!
//- proof:
//- f1_fixed = Int(f1 SHIFT)
//- f2_fixed = Int(f2 SHIFT)
//- f1_fixed/f2_fixed = Int(f1*SHIFT) div Int(f2*SHIFT)
//- = Int((f1*SHIFT)/(f2*SHIFT))
//- = Int(f1/f2)
//- = no fractional precision at all
//- a final shift of SHIFT is necessary to cvt 2 fixed

//- taking bits out of the divisor means doing a reverse-shift on the
//- divisor and yields:
//- f1_fixed/f2_fixed = Int(f1*SHIFT) div Int(f2*SHIFT/RSHIFT)
//- = Int( (f1*SHIFT)/(f2*SHIFT/RSHIFT) )
//- = Int( f1*RSHIFT / f2 )
//- = gained RSHIFT bits of precision in result
//- final shift of SHIFT-RSHIFT is needed to cvt 2 fixed

//- This is solved in HW by making dividend twice as large, but here we
//- must simply make our divisor less accurate. We make our divisor
//- less accurate by FX_PRECIS_QUOT (=RSHIFT) bits. We normally
//- shift by FX_PRECIS (=SHIFT) bits.

//- general notes for division:
//- 1. ensure operands are both positive (negating — based on the
//- type of the operand — as necessary)
//- 2. ensure result has correct sign (negating, based on the representation
//- of Tfixed, as necessary)

#ifdef FIX_ASM

#define fixfixdiv(a,b) \
( {long __result = (a), __arg = (b); \

asm("xor %1,%1;" \
"shrd %4,%3,%1;" \
"sar %4,%3;" \
"idiv %2" \
: "=a" (__result) \
: "0" (0), "b" (__arg) , "d"(a) , "I" (32-FX_PRECIS) ); \

assert( \
(fix2float(__result) - fix2float(a)/fix2float(b) > -0.2) \
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&& \
(fix2float(__result) - fix2float(a)/fix2float(b) < 0.2) \
|| \
(printf("fixfixdiv %f %f = %f, should be %f", \

fix2float(a),fix2float(b),fix2float(__result), \
fix2float(a)/fix2float(b)) \

&& 0) \
); \

__result; \
}\

)

#else

(\
/* NEGATIVE RESULT */ \
\
/* if */ ( ((b) & FX_SIGN_MASK) ^ ((a) & FX_SIGN_MASK)) ? /* dift signs */ \
/* if */ ((b)&FX_SIGN_MASK) ? /* a+ve, b-ve */ \
/* do a positive/positive division and negate (2's comp.) result */ \
~ (((a)/((~(b)+1)>FX_PRECIS_QUOT)) < (FX_PRECIS-FX_PRECIS_QUOT)) \
+ 1 \
/* else */ : /* a-ve, b+ve */ \
/* do a positive/positive division and negate (2's comp.) result */ \
~ (((~(a)+1)/((b)>FX_PRECIS_QUOT)) < (FX_PRECIS - FX_PRECIS_QUOT)) \
+ 1\
\
/* POSITIVE RESULT */ \
\
/* else */ : \
/* if */ ((b)&FX_SIGN_MASK) ? /* a-ve, b-ve */ \
\
/* do a positive/positive division instead of a -ve/-ve division */ \
((~(a)+1) / ((-(b))>FX_PRECIS_QUOT)) < (FX_PRECIS - FX_PRECIS_QUOT) \
/* else */ : /* a+ve, b+ve */ \
\
/* easiest case: a positive/positive division */ \
((a) / ((b)>FX_PRECIS_QUOT)) < (FX_PRECIS - FX_PRECIS_QUOT)
)

#endif

//- just treat a as a regular signed long and b as a regular signed int
//- proof:
//- f1_fixed = Int(f1*SHIFT)
//- f1_fixed / x = Int(f1*SHIFT) / x;
//- f1_fixed / x = Int(f1/x*SHIFT);

//- the result is properly shifted.

#define fixintdiv(a,b) ( {\
assert((fix2float(a)/(b)-fix2float((a)/(b)) > -0.2) && \

(fix2float(a)/(b)-fix2float((a)/(b)) < 0.2) || \
(printf("fixintdiv %f %d = %f, should be %f", \

fix2float(a),b,fix2float((a)/(b)),fix2float(a)/(b))\
&&0)); \

(a)/(b); })
/* a fix, b int */

#endif
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Listing A-2: math_fix.cc
/*****************************************************************************
* Global temporary variables for fixed math. We declare these once instead
* of allowing each inline fixed math function to have its own copy (which
* would be wasteful of space)
*****************************************************************************/

int fm_whole;
long fm_localdata;
float fm_sign;

Porting the Code to Microsoft Windows
The l3d code has been designed so that it can be easily ported to other operating systems, such as

Microsoft Windows. With a few exceptions, the sample programs in this book compile and run

under Windows. However, support for Windows has not been a primary concern for l3d, since it

was written to illustrate graphics programming under Linux, and since I have neither installed nor

need any Microsoft products whatsoever on my main computer. Under the (not necessarily true)

assumption that Microsoft and Windows continue to maintain some short-term market relevance,

it might be interesting for you to make your programs available under Microsoft Windows as well.

To compile the code under Microsoft Windows, you can use the Cygnus GCC compiler,

included on the CD-ROM in directory book/software/ms-win. This is a free C++ compiler

and debugger which runs under Microsoft Windows and which can be used to compile the l3d

code. Be sure also to read and install the OpenGL header files and libraries included with the

Cygnus GCC compiler. The OpenGL files are located in the archive file opengl-1.2.1-
1.tar.gz on the CD-ROM.

The file makecyg.bat is a batch file which compiles all of the examples for Microsoft

Windows by using the Cygnus GCC compiler. The following are Windows-specific source code

files, which you should use as a starting point for understanding the ported code:

� fwin.cc, fwin.h: factory classes for creating Microsoft Windows factories.

� sc_mswin.h, sc_mswin.cc: screen classes for creating a 2D output window using a

device-independent bitmap (DIB) section.

� dis_mswin.h, dis_mswin.cc: dispatcher classes for event handling under Microsoft

Windows.

� sc_wogl.h, sc_wogl.cc, sc_wzogl.h, sc_wzogl.cc: screen classes for creating

an output window using OpenGL under Windows.

The binaries directory for Windows object and executable files is $L3D/binaries/cygwin.

The porting was performed by duplicating the directory structure from the Linux directory and by

editing the Makefiles as necessary.

By default the Windows code is compiled with both a software renderer and an

OpenGL-based renderer. This means that you should have OpenGL and the GLUT libraries

installed on your system. OpenGL libraries should come standard with the operating system, and

are also distributed as specialized drivers with any modern 3D graphics card. The GLUT library
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(file GLUT32.DLL) is included in the file opengl-1.2.1-1.tar.gz included with the

Cygnus GCC compiler on the CD-ROM. If your OpenGL driver supports hardware acceleration,

then the l3d programs will also run with hardware acceleration under Microsoft Windows. In the

unlikely event that you do not have any OpenGL libraries at all installed on your system, you can

change the Makefiles to compile and link without the OpenGL-specific files; in other words, it is

also possible to compile l3d using purely software rendering under Windows.

Plug-ins do not yet work with the Microsoft Windows version of the code. There appears to be

some difficulty in using Linux-style plug-ins with Cygnus GCC. For this reason, any programs

using plug-ins will not currently work under Windows. Currently, the code is relying on an emula-

tion of the Linux dlopen system call to load the libraries. However, Windows has its own

dynamic library loading mechanism, LoadLibrary, which could be used instead.

NOTE Using a scripting language for dynamic behavior instead of plug-ins would avoid
the problems of system-specific dynamic library conventions, but with a possibly slower
run-time performance.

Be sure to check this book’s Web site http://www.linux3dgraphicsprogram-
ming.org to see the status of the Microsoft Windows l3d code and to download the latest ver-

sion. Alternatively, you can choose to abandon Microsoft Windows entirely, which for the long

term may be a better solution.

Tools Used to Prepare This Book
At the suggestion of my technical editor, Kevin Seghetti, I’ll now briefly go over the tools used to

prepare this book.

This book was written using exclusively Linux tools. The Linux distribution was SuSE 6.3,

though I am currently in the process of migrating to Debian, because of Debian’s clear commit-

ment to the free software community.

The text was prepared using Corel WordPerfect 8 for Linux. I would have preferred to have

written the text in LyX, which is a front end to the LaTeX document preparation system often used

in academic circles. However, at the time of this writing, there exists no reliable way of converting

LyX/LaTeX files to the proprietary word processing format required by my publisher. Sure, there

were several tools which could do most of the conversion (latex2html, for instance), but after try-

ing around five different packages, I found no solution which preserved fonts, lists, indentation,

headers, and so forth. So I used WordPerfect, which could export files in exactly the format

needed by the publisher.

The program listings were stored separately from the text, as subdocuments. A Perl script

stripped extraneous comments from all source code files and converted the ASCII source code

files into RTF files. The RTF files were then linked into the master document. The code snippets

within the text were delimited by specially formatted comments in the code; another Perl script

then extracted these regions, and again created RTF files which could be bound into the master

document. The scripts are in the l3d distribution, as files make_clean.sh, no_dou-
ble_space.pl, and snippets.pl. Whenever I needed to update the source code, I would
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then merely run my scripts again, and the updated source code was automatically rebound into the

master document.

The 2D figures were generated using Xfig, a very flexible object-based (as opposed to

bitmap) drawing program. The class diagrams were generated manually with TCM, the Toolkit

for Conceptual Modeling. Other promising class diagram tools include Argo/UML (which I did

not use because it focuses on Java) and doxygen (which automatically produces excellent docu-

mentation from uncommented C++ code, and which I will probably use in the future). The 3D

figures were generated with Blender. The animations on the CD-ROM were also created with

Blender. Post-processing work on the figures was done with GIMP.

The equations were generated using LyX, an almost WYSIWYG environment for LaTeX. I

created one LyX file containing all equations for a particular chapter. Next, I exported the LyX file

as a LaTeX file. Then, I used latex2html to convert the LaTeX code into HTML; latex2html has

the wonderful feature that it automatically converts LaTeX equations into bitmap image files.

These bitmap image files were then renamed into the eqnxx-xx files on the CD-ROM.

To manage the large number of figures and equations for each chapter, I again wrote a Perl

script which read an input file containing a list of all the figures for the chapter, in order. These fig-

ures were then converted into the format needed by the publisher and assigned sequential

filenames. This way, I could work on the figures separately, with different file formats, and not

worry about their exact order. If a figure got added or deleted, I simply made the appropriate

change to the list of figures, and all the figures got assigned the correct numbers during the next

run of the script. The PBM utilities were used within the script file to convert the varying image

file formats into one common format.

Resources
The following is a list of some printed and online resources which may be of use to you as you con-

tinue to explore, and hopefully advance the state of, Linux 3D graphics. The next section is a

comprehensive list of the specific literature referenced in this book.

Blender v1.5 Manual by Ton Roosendaal. This is the definitive guide to using Blender. See also

http://www.blender.nl.

Computer Graphics, Principles and Practice by James Foley, Andries van Dam, Steven Feiner,

and John Hughes. Regarded by many as a classic in the field, this book covers an extremely

broad range of topics relevant to 2D and 3D graphics programmers. Practically every impor-

tant topic is covered, even if only briefly. This book has a somewhat mathematical slant to it.

The C++ Programming Language by Bjarne Stroustrup. This is, of course, the definitive refer-

ence on the C++ language.

Das Blender Buch by Carsten Wartmann. This book provides a practical introduction and guide to

using Blender, with several hands-on tutorials. (In German.)

Data Structures and Program Design by Robert Kruse. This introduction to data structures

describes many of the fundamental structures of computer science that are essential in pro-

grams of all kinds, including 3D programs.
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Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard

Helm, Ralph Johnson, and John Vlissides. This landmark book documented for the first

time the concept of a “design pattern,” presented a catalog of reusable patterns, and encour-

aged the use of this technique for object-oriented development.

Digital Character Animation 2, Volume 1—Essential Techniques by George Maestri. This plat-

form-independent book illustrates the fundamentals of character animation with plenty of

exercises and illustrations to help you understand and master the difficulties.

Drawing on the Right Side of the Brain by Betty Edwards. This book deals with developing the

visual skills to become a good 2D artist. While it doesn’t directly deal with computer graph-

ics, the visual skills you can learn from this book are very effective for all types of visual

expression, including 3D modeling.

The Guitar Handbook by Ralph Denyer. I have found that good programmers are often also good

artists—musically, visually, or otherwise. If you write interactive 3D programs such as

games, you might also need to write music to accompany these programs. This book, while

focusing on the guitar, provides a good treatment of music theory as well.

Keys to Drawing by Bert Dodson. This book, too, does not deal directly with computer graphics,

but offers a number of useful tips or “keys” to creating effective 2D art.

Looking Good in 3D by Andrew Reese. This practice-oriented book explains basic principles of

3D imagery and illustrates which 3D graphics techniques to use in order to create effective

presentations.

Object-Oriented Software Construction by Bertrand Meyer. This book is a comprehensive treat-

ment of the subject of object orientation and how it improves software quality. The book is

very readable, yet also provides rigorous treatment of what object orientation actually is,

and its relationship to other software methodologies and to the field of scientific study as a

whole. While much literature attempts to make object orientation appear easy, this book

does not shy away from showing the true, subtle, real-world difficulties of software con-

struction, and how object orientation attacks these problems head-on.

OpenGL Programming Guide by Mason Woo, Jackie Neider, and Tom Davis. This is the defini-

tive guide to programming with OpenGL.

Real-Time Rendering by Tomas Möller and Eric Haines. This book contains numerous algorithms

and concepts required for rendering high-quality graphics in real time. It is currently (March

2001) one of the more up-to-date books in the field, and is a good collection of the most use-

ful contemporary techniques.

University Physics by Francis W. Sears, Mark W. Zemansky, and Hugh D. Young. This under-

graduate-level text provides a useful introduction to the field of physics, some of which can

be applied to computer simulations.

The X Window System: Programming and Applications with Xt by Douglas Young and John Pew.

This book provides an introduction to programming the X Window System.

http://mesa3d.sourceforge.net. The Mesa home page provides news and the latest

version of the Mesa library, which is effectively compatible with OpenGL.
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http://sunsite.auc.dk/linuxgames. The Linux Games Development Center pro-

vides articles and news for developers of games under Linux.

http://www.blender.nl. This is the official home page of the Blender 3D rendering, ani-

mation, and game development suite.

http://www.debian.org. This is the home page for the Debian GNU/Linux distribution of

the Linux operating system.

http://www.flipcode.com. This site offers many tutorials and columns relevant to pro-

gramming real-time 3D graphics and games.

http://www.gnu.org. This is the home page of the GNU project, which is a pivotal propo-

nent of free software (“free” as in “freedom”), and whose software forms a large and

important part of the GNU/Linux operating system. The GNU project is the source of the

GNU General Public License, or GPL, under which much Linux software has been released.

http://www.graphicspapers.com. This site contains a very large searchable database

of academic papers dealing with 3D graphics.

http://www.linux3dgraphicsprogramming.org. This is the home page for the

book, and provides links to many other resources, as well as discussion forums, hourly

updated Linux 3D news, tutorials, articles, code repositories, and more. Check it out!

http://www.opengl.org. The OpenGL home page provides news, links, and sample code

dealing with OpenGL.

http://www.worldfoundry.org. This is the home page for the World Foundry system

described in Chapter 9, a game development kit allowing creation of sophisticated,

multi-platform 3D games with no programming.
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An asterisk indicates the reference includes code segments.

2D,

projecting 3D objects in, 249-250

projecting 3D polygons into, 299-304*

2D Cartesian coordinate system, 85

2D pixel coordinate system, 84-85

2D pixel coordinates, mapping to, 278-281

2D polygons, extending into 3D, 396-402*

2D rotation, 312

2D scaling, 316-317

2D screen coordinate system, 86

2D translation, 31

2D/3D theory, 8

3D applications in Linux, 10

3D computer graphics, 2

3D content development system, 563

3D demonstration program, 285-292*

3D, extending 2D polygons into, 396-402*

3D graphics, 2, 227

defined, 228-229

3D graphics coordinate systems, 388-390

3D graphics programming with Linux, 8-12

3D modelers, 10-11

features of, 497-500

3D modeling, 497

with Blender, 559-560

3D morphing, 554

3D objects, 433

creating plug-in system for, 447

defining geometry of, 440-444

perception of, 238

projecting in 2D, 249-250

subclassed, 471

transforming, 444-445

3D pipeline, 15-17, 293-294

3D plane, clipping polygons to, 481-490*

3D point, 257

3D polygon, 394-396

drawing, 419-420*

projecting into 2D, 299-304*

transforming, 409-412

using, 421-430*

3D rotation, 313-314

3D scaling, 317

3D simulation program,

creating, 238-242*

evaluating, 244-245

3D translation, 312

3D vector, 257

3D WC, see 3D world coordinate system

3D world coordinate system, 250-252

3Dfx, 17-18

window hack, 18, 225

3DOM, 11

abstract class, 42

abstract factory pattern, 60-61

ac3d, 11

Aegis, 4

amapi, 10

analytical 2D clipping, 190-196

APIs relevant to Linux, 9

application, abstracting, 105*

application server, 13-14

arbitrary camera position, specifying, 353-356

axis, rotating around, 363-367

back-face determination, 406-407

in OpenGL, 407

backward-facing normal, 405-406

basis vectors, 387

billboards, 561-562

binocular vision, 230, 234

binutils, 38

Blender, 4, 8, 500-501

3D cursor, 516

3DWindow, 513-526

button types, 508-509

ButtonsWindow, 510-513

FileWindow, 526-529

InfoWindow, 509-510
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interface, 502-529

principles of, 500

Toolbox, 516

tutorial, 529-543

viewing parameters, 514-515

working with objects in, 516-521

Blender format,

loading file in, 527-528

saving file in, 527

Blender window, 503-504

operations on, 507-508

types of, 504-507

blitting, 76, 299

breakpoints, 30

setting, 33

bridge design pattern, 132

byte-to-pixel mapping, 86-88

C++, 5

callback function, 43

camera,

positioning, 367-375*

transformation, 385, 445

camera orientation, specifying, 353-356

camera position, specifying, 353-356

Cartesian coordinates, 3D, 251

CD-ROM, installing, 567-575

ClanLib, 9

class diagram, 58-59

classes,

abstract, 42, 59-60

client, 46

concrete, 42, 60

supplier, 46

client class, 46

client relationship, 67

clip_segment_to_edge_2d function, 194-196

clipping, 187-188, 412-414, 421-430*

implementing, 487, 490-492*

strategies, 188-196

clockwise rotation, 313-316

clone method, 178-179

code reuse, 67, 70-74*

collision detection, 563

color,

and XImages, 88-92

colormapped, 88-90

depth, 74-75

indexed, 76, 88-90

palette, 76

paletted, 76, 88-90

colormap, 76

creating, 89

colormapped color, 88-90

column matrix, 317-318

column vector, 317-318

compiler, 25

concave polygon, 154

rasterizing, 181-182

concrete class, 42

convergence, 1

convex polygon, 155

rasterizing, 181-182

coordinate space, 84

coordinate systems, 84

2D Cartesian, 85

2D screen, 86

and matrices, 385-388

converting between, 388

in 3D graphics, 388-390

reversed-y, 86

transforming, 385-388

counterclockwise rotation, 313-316

Cramer’s rule, 378

culling, 298-299

curved surfaces, modeling, 395

curves, 156

cvs, 4

data, displaying in XImage, 79-82*

data flow, tracing, 30-31

database traversal, 295

debugger, 30

debugging, 34

dependency, 26

depth, see color depth

design pattern, 60-61

determinant, 378-379

digital sound, 563

DirectColor, 76, 90-92

dispatcher, 102

creating, 102-103

starting, 103

display device, representing, 216-219*

Display structure, 46

display surfaces, 228

distances, comparing, 260

dot product, 258-259
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and angles, 260-261

and side_of_point function, 262-263

and unit vectors, 260

and vector projection, 261-264

dot, rasterizing, 149-150*

double buffering, 76-77

draw_all function, 463

draw_event function, 101, 102

draw_line function, 151-152*

drawdot program, 93-95*

drawing order, 464-466

DRI, 19

edge cross, 191-192

EditMode in Blender, 522-526

editors in Linux, 20-21

Emacs editor, 4, 21-25

environment mapping, 561

epsilon parameter, 480

event checking routines, 51

event dispatcher, representing, 220-222*

event dispatching, 43

event dispatching loop, abstracting, 106-107*

event masks, 50

event notification, requesting, 50-51

event source, abstracting, 106*

execute function, 59

external vertex list, 162-163

factories, choosing, 98-99

factory class, abstract, 62

factory design pattern, 61

factory manager, 141-143*

extending, 453-455*

factory, concrete, 62

fixed-point math, 153, 575-580

implementing, 580-585*

flat-shaded polygon object, creating, 179-180*

floating-point math, 153, 576

fog table, 112-113

foreshortening, 243

forward-facing normal, 405-406

FPS, 463

calculating, 463

frame, 83

frame rate, 463

frames per second, see FPS

full-screen mode, 40

Game Blender, 563

GAMES, 9

GC, 78

gcc, 4

gdb, 4, 31

General Graphics Interface, see GGI

geometric primitive, 148

GGI, 9

GLUT, 8, 212

drawing triangles with, 212-215*

GLX, 18

GNU Animation and Multimedia Entertainment

System, see GAMES

GNU Debugger, see gdb

GNU General Public License, see GPL

GPL, 3-4

gprof, 4

graphics context, see GC

graphics, displaying in XImage, 79-82*

GrayScale, 76, 88-90

handle, 130

hardware acceleration, 15, 149

configuring for Mesa, 224

integrating into X, 17

hardware-accelerated geometry, 17

hardware-accelerated rasterization, 17

header files, searching, 38

height field, 395

hello.cc program, 24-25*

hierarchical objects, 520-521

homogenous coordinate, 319, 379

using, 320-321

horizontal field of view, 282

horizontal field of view term, 283

defining, 283-285

HOWTO files, 38

identity matrix, 325

implicit rule, 29

incremental algorithm, 150-151

indexed color, 88-90, 219-220*

screen information, 119-124*

info, 37

information hiding, 46

inheritance relationship, 67

intersection, calculating, 275-278
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inverse kinematics, 560

inverse, see matrix inverse

Java, 11

Java 3D, 11

key_event function, 100, 102

key frames, 205

l3d classes, 104-105

l3d concepts, 97-103

l3d directory structure, 96-97

l3d example program, 93-96*

l3d_camera class, 362-363

l3d_coordinate class, 156-161*

l3d_dispatcher class, 106-107*

l3d_dispatcher_mesa class, 220-222*

l3d_dispatcher_x11 class, 107-108*

l3d_event_source class, 106*

l3d_factory_manager class, 141-143*

l3d_factory_manager_v_o_2 class, 453-455*

l3d_list class, 163-166*

l3d_mat_rotu function, 367

l3d_mat_rotx function, 341

l3d_mat_roty function, 341

l3d_mat_rotz function, 341

l3d_mat_scale function, 341

l3d_mat_translate function, 337

l3d_matrix class, 326-333*

l3d_moveable class, 356-361*

l3d_object class, 434-439*

methods of, 439, 444

l3d_object_clippable class, 487-490*

l3d_pipeline class, 105*

l3d_pipeline_world class, 460-463*

l3d_plane class, 478-481*

l3d_plugin_loader class, 451-453*

l3d_plugin_loader_linux class, 452-453

l3d_point class, 156-161*

l3d_polygon_2d class, 176-178*, 194

l3d_polygon_2d_flatshaded class, 179-180*

l3d_polygon_3d class, 396-402*

methods of, 410-412

l3d_polygon_3d_clippable class, 481-486*

l3d_polygon_3d_flatshaded class, 419-430*

l3d_polygon_3d_flatshaded_clippable class, 486-487*

l3d_polygon_3d_node structure, 418*

l3d_polygon_ivertex class, 176-177*

l3d_rasterizer_2d class, 130-132*

l3d_rasterizer_2d_imp class, 133

l3d_rasterizer_2d_mesa_imp class, 222-224*

l3d_rasterizer_2d_sw_imp class, 133-140*

l3d_real type, using, 152-154

l3d_screen class, 108-111*

combining with l3d_screen_info class, 113

l3d_screen_info class, 111-113*

combining with l3d_screen class, 113

l3d_screen_info_indexed class, 119-124*

l3d_screen_info_indexed_mesa class, 219-220*

l3d_screen_info_rgb class, 113-119*

l3d_screen_info_rgb_mesa class, 219-220*

l3d_screen_mesa class, 216-219*

l3d_screen_x11 class, 124-129*, 197-200*

l3d_screen_x11_shm class, 197*

l3d_two_part_list class, 163-166*

l3d_vector class, 265-270*

l3d_world class, 456-460*

layers, 521

left-handed 3D Cartesian coordinates, 251

left-handed coordinate system, 265

length, computing for line, 259-260

light, geometry of, 232-238

light map, 557

light mapping, 557

light rays, 230-231

from cube, 235-236

from lines, 233-235

from single point, 231

from two points, 232-233

paths of, 231-236

light table, see lighting table

lighting models, 554-555

lighting table, 112

line length, computing, 259-260

linear perspective, 1

lines, rasterizing, 150-152*

linked list, 417-418

using to track polygons, 421-430*

linker, 26

Linux, 3

3D applications, 10

advantages to using, 3-6

and 3D graphics programming, 8-12

editors, 20-21

libraries, 7, 9

resources, 588-590

software development with, 6-7
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standards, 5-6

tools, 4, 586-587

local coordinates, 389

local rotation, 351-352

local scaling, 351

magnitude, 260

make utility, 25

compiling program with, 27

Makefile, 25, 26-27

structure, 28-29

man pages, 35-37

mapping, byte-to-pixel, 86-88

matrices,

and coordinate systems, 385-388

multiplying, 322-324

using, 321

matrix, 317-318

inverting, 377-378

multiplying by matrix, 322-324

multiplying by scalar, 321-322

notation, 318-319

representing perspective projection as, 379-381

matrix determinant, 378-379

matrix inverse, 325

matrix multiplication, 322-324, 335-336

using, 333-334*

matrix stack, 381

matrix system in OpenGL, 381-384

matrix transpose, 326

Mesa, 5, 8, 212

classes for using, 216

drawing triangles with, 212-215*

running programs with, 224-225

mesh, 497

Microsoft Windows, porting code to, 585-586

Midnight Modeler, 10

MLX, 19

modeling, methods of, 156

monocular vision, 230, 234

morphing, 554

my_pipeline class, 293*

near z clipping, 412-414

implementing, 412-417

near z clipping plane, 413

defining, 414-415

nested generalization, 113

network transparency, 13

non-graphical elements, incorporating into 3D graphics

program, 563

non-uniform scaling, 316

normal vectors, 402

calculating, 402-403

orientation, 405-407

storing, 403-405

transforming, 408-409

normals, see normal vectors

n-tuple, 252

object coordinate system, 350

object coordinates, 306, 389

object files, 25-26

object orientation, 64-65

object-level processing, 16

object-oriented code reuse, 66-67, 70-74*

object-oriented program, 55-58*

objects,

hierarchical, 520-521

storing in layers, 521

working with in Blender, 516-521

online manual, 35-37

OpenGL, 5, 19, 212

matrix functions, 383

matrix system, 381-384

primitive types in, 215

transformation system, 381-384

OpenGL Utility Toolkit, see GLUT

orthographic projection, 248

painter’s algorithm, 465-466

paletted color, 88-90

screen information, 119-124*

parallax, 236-238

parallel projection, 248

parent window, 49

particle systems, 562

perception, of 3D objects, 238

perspective, linear, 1

perspective projection, representing as a matrix,

379-381

perspective transformation matrix, 380-381, 444

PEX, 11

PHIGS, 11

physics, implementing, 563

pipeline, 99

creating, 103

pipeline subclass, declaring, 99-102
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pixel, 74, 84

drawing, 149-150*

pixel-level processing, 16

pixels, drawing set of, 150-152*

pixmap, 77

planar geometric perspective projection, 248

plane, 264

defining, 476-477

sides of, 478

plug-in, 446

functions, 448-449

loading, 451-453*

using, 455-456

using to read Videoscape file into l3d,

544-548*

writing, 450

plug-in 3D object, creating, 471-475*

plug-in system, creating for 3D objects, 447

point,

adding to vector, 254-255

subtracting vector from, 255

points, 256-257

subtracting, 255

polygon clipping, 187-188

methods of, 188-196

polygon objects,

creating flat-shaded, 179-180*

drawing and clipping, 201-205*

polygon rasterization algorithm, 182-183

polygon-level processing, 16

polygons, 154

clipping to 3D plane, 481-490*

defining, 168-176*

defining in 3D, 441-444

drawing, 180-182

linked lists of, 417-418

morphing, 205-211*

projecting from 3D into 2D, 299-304*

sorting, 464

specifying, 156-161*

tracking with linked lists, 417-418

transforming 3D, 409-412

primitive types in OpenGL, 215

program,

compiling, 25-26, 27-28

critique of, 54-55

debugging, 30-32

executing, 29-30

linking, 25-26

object-oriented rewrite of, 55-58*

projection, 247-248

projection plane, 274

projection plane window, 274

PseudoColor, 76, 88-90

screen information, 119-124*

Pythagorean theorem, 259

qsort function, 464

raster, 84

raster graphics, 84

rasterization, 17, 147, 299, see also software

rasterization

rasterizer, abstracting, 130-132*

rasterizer implementation, 98-99, 133

representing, 222-224*

software, 133-140*

rcs, 4

retina, 230

reversed-y coordinate system, 85

RGB color model, 219-220*

right-handed 3D Cartesian coordinates, 251

right-handed coordinate system, 265

root window, 49

rotation, 312-316, 337-341, 350-352, 363-367

rotation axis, 363

rotation matrices, using, 342-347*

row matrix, 317

row vector, 317

rule, 26

runway lights, simulating, 238-242*

sample programs

camspikes, 367-375*

clipz, 421-430*

dots, 285-292*

drawdot, 93-96*

fltsim, 466-471*

hello, 24-25*

matmul, 333-334*

mesaflat, 212-213*

morph2d, 207-210*

objcopy, 490-495*

rotspikes, 342-347*

runway, 239-242*

spikes, 299-305*

vecmath, 270-272*

xform, 201-203*
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scalar, 258

multiplying by matrix, 321-322

multiplying by vector, 258

scaling, 278-279, 316-317, 341, 350-352

scanline clipping, 188-190

sced, 10

sceda, 10

scene graph, 11-12

scissoring, 188-190

screen, 40

abstracting control of, 108-111*

representing, 124-129*

screen information, abstracting, 111-113*

scripting systems, 447

SDL, 9

seen light rays, 231

shadows, 557

shared libraries, 26

side_of_point function, 194, 262-263

Simple DirectMedia Layer, see SDL

simple sequential transformations, 348-350

simulation code, 295-296

software rasterization, 148-149

advantages of, 149

software rasterizer implementation, 133-140*

space, 84

spans, 150

drawing, 181

spatial occupancy, 156

special effects, 561-562

spike class, 430-432*

StaticColor, 76, 88-90

StaticGray, 76, 88-90

stereopsis, 230

strategy design pattern, 106

structures

Display, 46

l3d_polygon_3d_node, 418

Visual, 48-49

XEvent, 51-52

XKeyEvent, 53

XPixmapFormatValues, 74

subclassed 3D object, 471

subclassing, 446

sub-pixel correction, 186-187

sub-pixel rasterization issues, 184-186

supplier class, 46

surface modeling, 394-395

surface normal vector, see normal vectors

SVGALIB, 11

TCP/IP networking, 563

tessellation, 154-155

text editors, 20-21

texture, 555

texture coordinate, 556

texture mapping, 555-556

transformation system in OpenGL, 381-384

transformations, 310

combining, 348-350

of 3D polygons, 409-412

of normal vectors, 408-409

reversing order of operations of, 390-391

specifying, 444-445

translation, 310-312, 336-337

transparency, network, 13

transpose, see matrix transpose

triangles, drawing, 212-215*

TrueColor, 76, 90-92

screen information, 113-119*

two-part vertex lists, 167-168

type field, 53

uniform scaling, 316

unit vectors, 260

upcasting, 62

update_all function, 463

update_event function, 101, 102

vector, 252-253

adding to point, 254-255

multiplying by scalar, 258

normalized, 264

normalizing, 260

subtracting from point, 255

vector cross product, 264-265

vector dot product, 258-259

vector projection, 263-264

vectors, 256-257

adding, 254

implementing, 265-270*

multiplying, 258, 264-265

subtracting, 254

using, 270-272*

vertex, 159

vertex animation, 205-211*

vertex interpolation, 205-206

vertex lists,
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defining, 162

external, 162-163

two-part, 167-168

vertex normals, 407

vertices, 156

defining in 3D, 440-441

discarding, 188-189

vi editor, 20

Videoscape file,

loading, 549-551*

reading into l3d, 544-548*

Videoscape format, saving file in, 528

view frustum, 15-16

viewing situation, 273-275

viewpoint, 231

Virtual Reality Modeling Language, see VRML

vision, 230

visual classes, 75-76

visual perception, 231-236

Visual structure, 48-49

visual surface determination algorithms, 558-559

volume pixels, see voxels

voxels, 156, 395

VRML, 6, 11

w coordinate, 319-320, 379

using, 320-321

widget set, 45

window, 40

creating, 48-50

mapping, 50

window hack in 3Dfx, 18, 225

windowed hardware acceleration, 225

windowing system, 40-42

windows, 13

world, 456

creating 3D, 466-471*

drawing, 463-466

storing, 456-460*

updating objects in, 463

world coordinates, back-face determination in, 406-407

world database, 460

World Foundry, 10, 563-564

X, 12-14

client, 13

dispatcher, 107-108*

header files, 45

integrating hardware acceleration into, 17

program structure, 43

terminal, 13

X events,

receiving, 50-51

responding to, 51-54

X server, 13

connecting to, 46-48

X Toolkit, 45

X Window System, 8, 12, see also X

X11 DGA extension, 200-201

X11 SHM extension, 196

X3D-PEX, 11

XCreateImage function, 77

XCreateWindow function, 49

XEvent structure, 51-52

XFree86, 8, 12

XImage, 76

and color, 88-92

XKeyEvent structure, 53

Xlib, 45

XMapWindow function, 50

XOpenDisplay function, 47-48

XPixmapFormatValues structure, 74

XSelectInput function, 50

Xt Intrinsics, 45

xxgdb, 4

xxgdb debugger, 31-34

z value issues, 298





CD/Source Code Usage License Agreement

Please read the following CD/Source Code usage license agreement before opening the CD and using the contents

therein:

1. By opening the accompanying software package, you are indicating that you have read and agree to be bound
by all terms and conditions of this CD/Source Code usage license agreement.

2. The compilation of code and utilities contained on the CD and in the book are copyrighted and protected by
both U.S. copyright law and international copyright treaties, and is owned by Wordware Publishing, Inc. Indi-
vidual source code, example programs, help files, freeware, shareware, utilities, and evaluation packages,
including their copyrights, are owned by the respective authors.

3. No part of the enclosed CD or this book, including all source code, help files, shareware, freeware, utilities,
example programs, or evaluation programs, may be made available on a public forum (such as a World Wide
Web page, FTP site, bulletin board, or Internet news group) without the express written permission of
Wordware Publishing, Inc. or the author of the respective source code, help files, shareware, freeware, utilities,
example programs, or evaluation programs.

4. You may not decompile, reverse engineer, disassemble, create a derivative work, or otherwise use the enclosed
programs, help files, freeware, shareware, utilities, or evaluation programs except as stated in this agreement.

5. The software, contained on the CD and/or as source code in this book, is sold without warranty of any kind.
Wordware Publishing, Inc. and the authors specifically disclaim all other warranties, express or implied,
including but not limited to implied warranties of merchantability and fitness for a particular purpose with
respect to defects in the disk, the program, source code, sample files, help files, freeware, shareware, utilities,
and evaluation programs contained therein, and/or the techniques described in the book and implemented in
the example programs. In no event shall Wordware Publishing, Inc., its dealers, its distributors, or the authors
be liable or held responsible for any loss of profit or any other alleged or actual private or commercial damage,
including but not limited to special, incidental, consequential, or other damages.

6. One (1) copy of the CD or any source code therein may be created for backup purposes. The CD and all accom-
panying source code, sample files, help files, freeware, shareware, utilities, and evaluation programs may be
copied to your hard drive. With the exception of freeware and shareware programs, at no time can any part of
the contents of this CD reside on more than one computer at one time. The contents of the CD can be copied to
another computer, as long as the contents of the CD contained on the original computer are deleted.

7. You may not include any part of the CD contents, including all source code, example programs, shareware,
freeware, help files, utilities, or evaluation programs in any compilation of source code, utilities, help files,
example programs, freeware, shareware, or evaluation programs on any media, including but not limited to
CD, disk, or Internet distribution, without the express written permission of Wordware Publishing, Inc. or the
owner of the individual source code, utilities, help files, example programs, freeware, shareware, or evaluation
programs.

8. You may use the source code, techniques, and example programs in your own commercial or private applica-
tions unless otherwise noted by additional usage agreements as found on the CD.

CAUTION Opening the CD package makes this book nonreturnable.

NOTE See the Appendix for information about the companion CD-ROM.




